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Preface

This book is the first of a series on fluid dynamics that will comprise the following
four parts:

Part 1. Classical Fluid Dynamics

Part 2. Asymptotic Problems of Fluid Dynamics

Part 3. Boundary Layers

Part 4. Hydrodynamic Stability Theory

The series is designed to give a comprehensive and coherent description of fluid dy-
namics, starting with chapters on classical theory suitable for an introductory un-
dergraduate lecture course, and then progressing through more advanced material
up to the level of modern research in the field. Our main attention will be on high-
Reynolds-number flows, both incompressible and compressible. Correspondingly, the
target reader groups are undergraduate and MSc students reading mathematics, aero-
nautical engineering, or physics, as well as PhD students and established researchers
working in the field.

Over the last 50 years, there have been major advances in various aspects of fluid
dynamics. In particular, significant progress has been achieved in understanding the
behaviour of compressible fluid flows, including the supersonic, transonic, and hyper-
sonic flow regimes. Also during these years, two fundamental fluid-dynamic phenom-
ena, namely boundary-layer separation and laminar–turbulent transition, have received
significant attention from researchers.

Success in studying these and other phenomena has been facilitated by the de-
velopment of modern asymptotic methods. These are now an inherent part of applied
mathematics, but it was fluid dynamics where various asymptotic techniques, including
the method of matched asymptotic expansions, were first formulated and used. Keep-
ing this in mind, we start Part 2 of this series with a discussion of the mathematical
aspects of the asymptotic theory. This is followed by an exposition of the results of
inviscid flow theory, starting with thin aerofoil theory for incompressible and subsonic
flows, steady and unsteady. Then we turn our attention to the properties of supersonic
flows, where the linear Ackeret theory is followed by second-order Buzemann analysis.
Both the flow near the aerofoil surface and in the far field are discussed. Part 2 also
includes a discussion of the properties of transonic and hypersonic inviscid flows. We
will conclude Part 2 with a brief discussion of viscous low-Reynolds-number flows.

Part 3 is devoted to the theory of high-Reynolds-number fluid flows. We first con-
sider a class of flows that can be described in the framework of classical boundary-layer
theory. These include the Blasius flow past a flat plate and the Falkner–Skan solutions
for the flow over a wedge surface. We also discuss the Chapman shear-layer flow and
Schlichting’s solution for the laminar jet. Among other examples are Tollmien’s solu-
tion for the viscous wake behind a rigid body and the periodic boundary layer on the
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surface of a rapidly rotating cylinder. This is followed by a discussion of the proper-
ties of compressible boundary layers, including hypersonic boundary layers, which are
known to involve extremely strong heating of the gas near the body surface. We then
turn our attention to the phenomenon of flow separation from a rigid-body surface,
which cannot be described in the framework of classical boundary-layer theory. In-
stead, one has to use the viscous–inviscid interaction concept, also known under the
name of the triple-deck model. We first formulate the triple-deck theory in application
to self-induced boundary-layer separation in supersonic flow, and then use it to de-
scribe the incompressible flow near the trailing edge of a flat plate. This is followed by
an exposition of other applications, including incompressible flow separation from a
smooth body surface and marginal separation theory, which describes flow separation
at the leading edge of a thin aerofoil.

Part 4 of the series is devoted to hydrodynamic stability theory, which serves to pre-
dict the onset of laminar–turbulent transition in fluid flows. Similar to Part 3, we start
with the classical results. We introduce the concept of linear instability of fluid flows,
and formulate the Orr–Sommerfeld equation, which describes the stability properties
of parallel and quasi-parallel flows, such as boundary layers. We also discuss the sta-
bility properties of ‘inviscid flows’ governed by the Rayleigh equation. This is followed
by an exposition of the results of the application of the theory to various flows. Then
we turn our attention to more recent developments, including receptivity theory and
nonlinear stability theory. Receptivity theory is now an integral part of the theoretical
predictions of laminar–turbulent transition in aerodynamic flows. It deals with the
process of excitation of instability modes in the boundary layer, namely, the genera-
tion of Tollmien–Schlichting waves, cross-flow vortices, and Görtler vortices, resulting
from the interaction of the boundary layer with external perturbations, for example
acoustic noise, free-stream turbulence, or wall roughness. Finally, the nonlinear sta-
bility of fluid flows will be discussed, including the Landau–Stuart weakly nonlinear
theory, and the derivation of the Ginzburg–Landau equation. We conclude Part 4 with
a discussion of linear and nonlinear critical layers.

The present Part 1 is aimed at giving an introduction to fluid dynamics, and to
prepare the reader for the more advanced material in Parts 2, 3, and 4. The book series
is based on courses given by the authors over a number of years at the Moscow Institute
of Physics and Technology, the University of Manchester, and Imperial College London.
In fact, the majority of the material follows closely the actual lecture notes, and is
supplemented with Exercises that have been used in problem classes.

Our observation is that the students find it helpful when the results of the theoret-
ical analysis of fluid motion are compared with experiments. We make such compar-
isons, where appropriate, throughout the book series. Every effort has been made to
contact the holders of copyright in materials reproduced in the book. Any omissions
will be rectified in future printings if notice is given to the publisher.
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Introduction

The history of theoretical fluid dynamics dates back over 250 years, originating in
1755, when Euler derived the differential equations describing the ‘frictionless’ motion
of an incompressible fluid. Euler was the first to recognise the importance of the
pressure forces acting inside the moving fluid, but he disregarded the forces of internal
viscosity. The ‘viscous’ fluid dynamic equations, known as the Navier–Stokes equations,
were later deduced by Navier (1827), Poisson (1831), Saint-Venant (1843), and Stokes
(1845).

As with any other branch of physics, it was through a combination of experimental
observations and theoretical reasoning that the principal concepts of fluid dynam-
ics (such as the continuum description of a moving fluid) were introduced, and the
equations of fluid motion were derived. One might presume that once the governing
equations became known, the analysis of various fluid flows could be conducted math-
ematically by solving these equations. This, of course, did not happen, since a direct
solution of the Navier–Stokes equations proved to be very difficult except for a limited
number of cases for which exact solutions were possible; see Chapter 2. This difficulty
is a reflection of the fact that fluid flows are rather complex and also rich in their
diversity. Consequently, to achieve progress in understanding fluid flow behaviour, ap-
propriate simplification in the mathematical formulation of the problem reflecting the
physical nature of the flow being considered is required.

In order to demonstrate how this works, let us consider, as an example, the jet
that forms when a fluid such as water escapes from a large container through an
orifice equipped with a mouthpiece as shown in Figure I.1(a). We shall assume that
the mouthpiece is symmetric and composed of two flat plates, AB and A′B′, with
the container being on the left of A and A′. This flow was first studied by Helmholtz
(1868) with the aim of comparing it with the electrostatic field between two charged
plates; see Figure I.1(b). The electric field potential ϕ is known to satisfy the Laplace
equation

∇2ϕ = 0 (I.1)

everywhere outside the plates AB and A′B′. If the plates are good electrical conductors
(such as a metal), then the potential will be constant along each plate, which means
that equation (I.1) should be solved with the boundary conditions

ϕ =

{
0 on AB,

Q on A′B′.
(I.2)

Here the potential has arbitrarily been taken equal to zero on AB, and the difference
Q in the potential between AB and A′B′ depends on the electrical charge distribution
on the plates. The solution of the boundary-value problem (I.1), (I.2) is shown in
Figure I.1(b) in the form of equipotential lines.
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Let us now turn our attention to the fluid flow in Figure I.1(a). It is known that
in many flows the internal viscosity of the flow is very small. For example, in the jet
created with a teapot spout, the viscous forces are thousands of times smaller than
the pressure forces. We shall show in Chapter 3 that if the viscosity of the fluid is
disregarded, then one can investigate the flow by solving the Laplace equation

∇2ψ = 0 (I.3)

for the stream function ψ. The main property of the stream function is that the lines
of constant ψ represent the trajectories of the fluid particles. Therefore, keeping in
mind that the fluid moves along the plates AB and A′B′, one can write the boundary
conditions for (I.3) as

ψ =

{
0 on AB,

Q on A′B′,
(I.4)

with Q now representing the rate of fluid flux through the mouthpiece.
The two mathematical problems (I.1), (I.2) and (I.3), (I.4) are absolutely equiva-

lent. The solution of (I.1), (I.2) shown in Figure I.1(b) correctly models the physical
situation for an electric field between the two plates. A ‘mathematician’ could expect
the trajectories of the fluid particles in the jet (Figure I.1a) to coincide with the equipo-
tential lines in Figure I.1(b). However, an ‘experimentalist’ and, in fact, anyone who
has observed how tea is served, would disagree. The observations clearly show that
the flow through a mouthpiece does not exhibit the pattern shown in Figure I.1(b).
The fluid is never observed to turn around the edges of the flat plates at B and B′,

A

B
C

A′

B′ C′

(a) Streamlines in the incompressible fluid flow
through a mouthpiece composed of two flat
plates AB and A′B′.

A

B

A′

B′

(b) Equipotential lines in the electrostatic field
between two flat plates AB and A′B′.

Fig. I.1: Comparison of the electrostatic field between two semi-infinite flat plates with
the corresponding fluid flow.
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and flow back over the external surfaces AB and A′B′. Instead, the flow separates at
points B and B′ to form a confined jet surrounded by the ambient air.

This dilemma led Helmholtz to a conjecture that, in addition to the smooth solution
shown in Figure I.1(b), the Laplace equation also allows for a solution where the fluid
velocity has a jump across the boundaries of the jet, BC and B′C ′ (see Figure I.1a).
We shall discuss these types of solutions in Section 3.8. Helmholtz further argued that
it is the fluid viscosity that, despite being very small, is responsible for global changes
in the fluid motion.

In the history of fluid dynamics, there have been many episodes like these, when
the alliance of theory and experiment has led to novel concepts and ideas. About
fifty years ago, a new member of the alliance emerged, computational fluid dynamics
(CFD). It relies on numerical solution of the Navier–Stokes equations as a means
of studying the behaviour of fluid flows. At the beginning, some researchers called
this approach ‘numerical experimentation’, and speculated that it could become a
substitute for real experiments; the latter were known to be very expensive, especially
when large-scale wind tunnels were involved. There were others who believed that
with the development of CFD the role of theory would diminish. It is, of course, true
that over the years CFD has become a powerful tool. However, both experiments and
theory retain their importance. In particular, theory remains, and always will, an ideal
instrument for uncovering the fundamental physical processes behind observed fluid
flow behaviour. It also remains the preferred way of presenting the subject of fluid
dynamics to students.

In this book series we shall mainly rely on theoretical fluid dynamics, although
some elements of CFD will be introduced where this is useful for the presentation of
the material.



1

Fundamentals of Fluid Dynamics

1.1 The Continuum Hypothesis

Theoretical fluid dynamics is a subdivision of continuum mechanics and as such does
not attempt to describe either the molecular structure of a medium or the motion of
individual molecules.1 The continuum models matter that is sufficiently dense such
that averaging over a very large number of molecules permits a meaningful definition
of macroscopic quantities. Of course, this approach has certain inherent restrictions,
and these may be expressed in terms of the Knudsen number.

Let us consider fluid flow past a rigid body, say a sphere as sketched in Figure 1.1,
and try to determine the density of the flowing matter. The density ρ is defined as
the ratio of the mass mD to the volume τD contained in a region D inside the flow. If
there were no variation of density throughout the flow field then the region D could
be chosen arbitrarily. However, many fluids of practical interest are compressible
and undergo density changes as they move. For example, for the situation shown in

V∞

x

y

z

ℓr

L

D
D′

Fig. 1.1: Calculation of density ρ(r, t) at point r and time t in a fluid flow.

1It should be noted the Navier–Stokes equations governing fluid motion may be derived not only
using the continuum mechanics approach as described in this book, but also based on the Boltzmann

equation of the kinetic theory of gases, which treats fluid flow as the motion of an assemblage of
molecules.
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Figure 1.1, the fluid experiences deceleration near the front part of the sphere as it
approaches from upstream, resulting in a process of compression. As the fluid subse-
quently moves around the sphere, it undergoes acceleration and a process of expansion.
This is followed by a second compression occurring as the fluid decelerates near the
rear portion of the sphere. The characteristic length scale associated with these vari-
ations coincides with the diameter L of the sphere. Therefore, in order to define the
density, it is necessary to first choose an observation point in the flow. In Figure 1.1
this is denoted by the radius vector r. This point must then be surrounded by region
D, whose characteristic length scale ℓ is small compared with L. The density at point
r and time t is then evaluated as

ρ(r, t) ≈ mD

τD
. (1.1.1)

Formula (1.1.1) becomes progressively more accurate as the region D is made smaller,
and a more precise definition of density should be written in the form

ρ(r, t) = lim
ℓ→0

mD

τD
. (1.1.2)

Thus the question of whether the concept of a continuum is useful in a particular flow
becomes a question of whether the limit in equation (1.1.2) exists.

In general, the variations of mD/τD with decreasing ℓ are quite complex, as shown
schematically in Figure 1.2. When ℓ is comparable to the body scale L, then mD/τD
is found to be dependent not only on the volume τD, but also on the shape of region
D. If this region is stretched to the front of the cylinder (like region D′ shown by
the dashed line in Figure 1.1) then formula (1.1.1) will obviously overestimate the real
density at point r; if, on the other hand, it is stretched towards a region where the fluid
experiences an expansion (solid line in Figure 1.1) then (1.1.1) will underestimate the
density. This is illustrated in Figure 1.2, where the solid curve corresponds to region
D in Figure 1.1 while the dashed line corresponds to region D′.

mD

τD

ℓ

microscopic
limit

macroscopic
limit

overlap region︷ ︸︸ ︷

Fig. 1.2: Variations of mD/τD for different possible shapes of region D. Here the solid
and dashed lines represent the solid and dashed shapes of region D in Figure 1.1.
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For a fluid medium that is sufficiently dense, the apparent density as measured
with various shapes of region D converge to the same value as τD shrinks to the
observation point r, thereby indicating the existence of the limit in equation (1.1.2).
However, this limit is only an intermediate macroscopic limit since a further decrease
in region D eventually reveals complex fluctuations in the apparent density, which are
associated with chaotic motions at the molecular level; by this stage τD is so small
that any measurement of mD is strongly dependent on the number of molecules that
happen to be in D at instant t, and therefore the fluctuations are also time-dependent.
Oscillations, such as those depicted in Figure 1.2, would be recorded when ℓ becomes
small enough that it is comparable to the molecular mean free path, λ. Here λ is defined
as the average distance an individual molecule travels in a gas before colliding with
another molecule. Thus the macroscopic intermediate limit (see Figure 1.2) exists only
if ℓ is small with respect to L, but at the same time large with respect to λ, namely

λ≪ ℓ≪ L. (1.1.3)

The density ρ(r, t) may also be defined from a microscopic point of view as follows.
If ND denotes the number of molecules contained at time t within region D and m0 is
the average mass of an individual molecule then

ρ(r, t) =
m0ND

τD
. (1.1.4)

It is known from statistical thermodynamics that chaotic fluctuations in the appar-
ent value of ρ that can occur as molecules pass in and out of the measuring region
D do not influence the values of macroscopic quantities provided that the system
of molecules being considered is large enough. Thus formula (1.1.4) should be more
precisely written as

ρ(r, t) = lim
ND→∞

m0ND

τD
. (1.1.5)

The process indicated in equation (1.1.5) is called the microscopic limit and again
must be interpreted as an intermediate one. It should be noted here that the notation
‘ND → ∞’ does not actually imply that ND, and therefore the region D, must become
indefinitely large. To avoid performing an average for the density over a region whose
size ℓ is comparable to the body scale L, the restriction ℓ≪ L must still be observed.

Formulae (1.1.2) and (1.1.5) give the same result in the so-called overlap region
(see Figure 1.2) where both restrictions in (1.1.3) are observed.2 The Knudsen number
is defined by

Kn =
λ

L
,

and it immediately follows from (1.1.3) that Kn must be small compared with unity.
Alternatively, if Kn ≪ 1 then any point in the flow may be surrounded by a small
region whose characteristic length scale ℓ satisfies the conditions (1.1.3). Being con-
sidered as a material fragment of the moving medium, such a region represents the

2For a detailed discussion of the notion of overlap region, the reader is referred to Part 2 of this
book series.
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basic notion of the continuum description of fluid flows, the notion of a fluid particle.

Definition 1.1 The fluid particle is an elementary part of the moving fluid that
possesses all the macroscopic properties of the fluid; it should be regarded as small
enough that variations of macroscopic quantities over its volume may be neglected but,
at the same time, large enough that microscopic variations are not important.

In the continuum mechanical description of fluid motion, the entire flow field is
envisaged as being continuously filled with fluid particles; in addition all quantities
describing the dynamic and thermodynamic characteristics of the fluid particles, such
as the velocity vector V(r, t), pressure p(r, t), density ρ(r, t), temperature T (r, t),
etc., are considered to be continuous and smooth functions of the spatial coordinates
r = (x, y, z).

1.2 Forces Acting on a Fluid

All the forces acting on a moving fluid may be subdivided into two classes: body forces
and surface forces. A typical representative of a body force is the force due to gravity.
Recall that any material body of mass m placed in the Earth’s gravitational field
experiences a force

F = mg,

where g is the gravitational acceleration vector directed vertically downwards. Near
the Earth’s surface, |g| = 9.8m s−2.

In fluid dynamics, one deals with a mass continuously distributed in space, and
so it is convenient to express the body force F through its density distribution vector
f(r, t). The latter is defined as a body force per unit mass and may be calculated via
the limit

f(r, t) = lim
ℓ→0

FD

mD
, (1.2.1)

where FD is the force acting on the fluid contained in a small region D whose char-
acteristic length scale is denoted, as before, by ℓ, with the mass of the fluid inside D
being mD. Since mD = ρτD, we can also write

f(r, t) = lim
ℓ→0

FD

ρ τD
=

1

ρ
lim

τD→0

FD

τD
. (1.2.2)

As the body forces act on volume elements of a fluid, they are also referred to as
volume forces. For the gravitational force, the vector f(r, t) is simply

f(r, t) = g.

Other volume forces of interest in fluid dynamics are inertial forces and electro-
magnetic forces. An example of an inertial force is the Coriolis force. This should be
taken into account when a fluid motion is considered in a rotating coordinate system,
which is convenient, for example, for flow analysis through compressor and turbine
blades inside a jet engine. For a fluid motion considered in a coordinate system Oxyz
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that rotates with constant angular velocity Ω around axis OO′ passing through the
coordinate origin O, the inertial force is calculated as

f =
(
Ω× r

)
×Ω+ 2

(
V ×Ω

)
.

Electromagnetic forces need to be considered when an electrically conducting fluid
is moving in a magnetic field. The branch of fluid dynamics that deals with such flows
is called magnetohydrodynamics. The interaction of an electric current in a fluid flow
with a magnetic field results in a volume force known as the Lorentz force,

f =
1

ρ

(
j×B

)
.

Here the vectors j and B are the electric current density and the magnetic field,
respectively.

1.2.1 Surface forces

In the other group are the surface forces, such as the pressure and internal viscosity.
They play a most important role in fluid flows, representing the means by which
the fluid particles ‘communicate’ with one another. The importance of the pressure
forces in a moving fluid was first recognised by Euler (1755), who not only derived
the differential equations for inviscid fluid motion, known as the Euler equations, but
also put forward a new non-collision concept of flow over a rigid body. In the earlier
so-called ‘Newtonian model’, it was supposed that all fluid particles move towards a
body along straight trajectories and exert a force on the body by simple collision with
the body surface (see Figure 1.3a). Meanwhile, in reality, the interaction of a fluid flow
with a rigid body always leads to a pressure increase in front of the body, making the
fluid particles deviate from straight-line motion and adjust their trajectories in such
a way that they smoothly flow around the body surface as shown in Figure 1.3(b).

The surface forces have a direct molecular origin and are produced by the inter-
action of molecules with each other via the mutual forces of attraction and repul-
sion. Most simply, the process of the interaction may be accounted for in gases. Gas

(a) Interaction of fluid particles with a
rigid body surface according to the ‘New-
tonian model’.

(b) Visualization of cylinder flow at Re = 26 by
S. Taneda (see Van Dyke, 1982, p. 28).

Fig. 1.3: Comparison of the ‘Newtonian model’ with a real flow past a circular cylinder.
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molecules spend most of their life flying freely in intermolecular space. They interact
with each other via collisions, in the course of which they change their velocities and
directions of flight. Since the characteristic time of the collision is much smaller than
the mean flight time between collisions, we do not need to describe the collision pro-
cess in detail. To determine the surface forces in gases, it is sufficient to know only the
result of the collision—more precisely, the transport of momentum from gas molecules
to rigid bodies if the force on the rigid body surface is to be found, or the transport
of momentum from one molecule to another if the force in the bulk of the gas is to be
found.

Figure 1.4(a) illustrates what happens when molecule a crosses an imaginary sur-
face SS′ in a gas medium and after colliding with molecule b on the other side of the
surface is reflected back into the region above SS′. Of course, the force exerted on
molecule b is very small, but in normal circumstances there are so many molecules
crossing SS′ that the integral effect is substantial. If the gas is at rest then averaging
over a large number of molecules results in the pressure force acting perpendicular
to surface SS′. If the gas is moving, then, in addition to the pressure, there is also a
tangential force acting along SS′. It is known as the shear force and is attributed to
the internal viscosity of the fluid. Figure 1.4(b) illustrates how this force is produced.
Suppose that the average velocity of molecules in region 1 above the surface SS′ is
larger than that in region 2 below SS′, as shown by arrows in Figure 1.4(b). Suppose
further that a set of molecules from region 1 migrate in their Brownian motion into re-
gion 2. In region 2 they have to adjust their average velocity to that of the surrounding
medium; this is achieved through collisions of molecules. As a result a certain amount
of momentum is transmitted to the gas in region 2. This action is equivalent to a
tangential force between regions 1 and 2.

Molecules in liquids are ‘packed’ much closer to each other—in fact, so close that
each of them appears to be under the permanent influence of a number of surrounding
molecules. Consequently, the surface forces in liquid media are dependent not only on
the mean velocity of molecules in their thermal motion, but also on the manner by
which they are composed in a liquid and the way in which the intermolecular forces
depend on the distance between molecules.

In both cases (gases or liquids) the surface forces are created by ‘short-range’
processes taking place in a very thin layer near the surface of a body placed in a flow
or an imaginary surface drawn through the bulk of the fluid. The thickness of the
layer is of the order of the molecular mean free path λ. Therefore, as Kn = λ/L→ 0,

S S′

a

b

(a) Pressure production.

S S′
1

2

(b) Shear stress production.

Fig. 1.4: The origin of surface forces.
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this layer degenerates into a surface, and the intermolecular interaction forces, being
considered from the macroscopic point of view, turn into true surface forces.

Again, instead of a surface force, we shall be dealing with its density, which is called
the stress. The formal definition of the stress applicable for any motion of a fluid may
be introduced as follows. LetM be a point where the stress is to be found. The position
of this point is defined by the position vector r, as shown in Figure 1.5. We draw a
surface S throughM and choose one side of S to be its front side; correspondingly, the
other side of S will be called its rear side. The unit vector n normal to S is introduced
in such a way that it points into the fluid on the front side of S, and serves here to
define the orientation of surface S.

Let us consider a small element of surface S whose area is ∆S (it is shown in
Figure 1.5 as the region with the grid of squares), and denote by ∆Pn the surface
force that the fluid on the front side of S exerts through ∆S on the fluid on the rear
side of S. Let us now assume that the element ∆S shrinks to point M . The stress is
a vector quantity defined by the limit

pn = lim
∆S→0

∆Pn

∆S
. (1.2.3)

Notice that by Newton’s Third Law the force acting through ∆S on the fluid on the
front side of S has the same magnitude but opposite direction, i.e. is equal to −∆Pn.

The suffix n in (1.2.3) is used to indicate that the stress vector pn is dependent
not only on the location of the point M , but also on the orientation of the surface S
drawn through M . We shall now demonstrate that the stress pn can always be found
if nine components of the so-called stress tensor are known.

x

y

z

M

S

r

n

∆Pn

Fig. 1.5: The surface element used in equation (1.2.3) to define the stress pn.
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x

y

z

M

Sx

Fig. 1.6: The surface element for defining px.

In order to introduce the notion of the stress tensor, let us place the origin of
Cartesian coordinate system (x, y, z) into point M as shown in Figure 1.6, and draw
through M a plane surface Sx perpendicular to the x-axis. We shall choose the side
of Sx facing the positive direction of the x-axis as its front side. The stress on Sx is
denoted by px. Like any other vector quantity, it may be represented in the coordinate
decomposition form

px = pxxi+ pxyj+ pxzk, (1.2.4)

where i, j, and k are the unit coordinate vectors.
Similarly one can consider surface Sy perpendicular to the y-axis and surface Sz

perpendicular to the z-axis, with the corresponding stresses being py and pz, respec-
tively. Their coordinate decompositions are written as

py = pyxi+ pyyj+ pyzk,

pz = pzxi+ pzyj+ pzzk.
(1.2.5)

Combined together, the components of px, py, and pz form the stress tensor

P =



pxx pxy pxz
pyx pyy pyz
pzx pzy pzz


 . (1.2.6)

The diagonal components of the stress tensor are called the normal stresses. For exam-
ple, pxx represents the x-component of the stress (1.2.4) acting on a surface perpen-
dicular to the x-axis. The two other terms in (1.2.4) and correspondingly all the non-
diagonal components of the stress tensor (1.2.6) are the tangential or shear stresses.

We shall now deduce a formula that expresses the stress pn on an arbitrarily
oriented surface via the components of the stress tensor P. For this purpose, we apply
Newton’s Second Law to the fluid contained inside a small tetrahedron MABC (see
Figure 1.7) with apexM placed at the point where the stress pn is to be calculated. Let
the area of the front face ABC be ∆Sn. The three other faces that are perpendicular
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x

y

z

A

B

C

M

Fig. 1.7: A fluid element in the shape of tetrahedron.

to the x-, y-, and z-axes have areas ∆Sx, ∆Sy, and ∆Sz respectively. With n being
the unit vector normal to the front face ABC, we have

∆Sx = nx ∆Sn, ∆Sy = ny ∆Sn, ∆Sz = nz ∆Sn. (1.2.7)

Let us now apply Newton’s Second Law to the fluid element contained inside the
tetrahedron MABC. If V is the velocity of the fluid element and ρ the density then

ρτD
dV

dt
= ρτDf + pn ∆Sn − px ∆Sx − py ∆Sy − pz ∆Sz. (1.2.8)

Here τD denotes, as before, the volume of the fluid element considered. When cal-
culating the force acting on the fluid element through face ABM , it has been taken
into account that the fluid element is situated in front of ∆Sx. Meanwhile, px was
introduced as the stress by which the fluid on the front side of Sx (see Figure 1.6)
acts upon the fluid behind Sx. Since we need to consider the surface force that acts
precisely in the opposite direction, the corresponding term px∆Sx in (1.2.8) is taken
with the minus sign. The same arguments apply equally to the following terms, py∆Sy

and pz∆Sz.
It is easily seen that with ℓ denoting the characteristic linear size of the tetrahedron

MABC, the left-hand side of equation (1.2.8) as well as the first term on the right-
hand side may be estimated as O(ℓ3). The rest of the terms are proportional to ℓ2.
Therefore, in the limit ℓ → 0, when the tetrahedron MABC shrinks to point M ,
equation (1.2.8) reduces to a balance of the surface forces

pn ∆Sn − px ∆Sx − py ∆Sy − pz ∆Sz = 0. (1.2.9)

Substitution of (1.2.7) into (1.2.9) yields

pn = nxpx + nypy + nzpz. (1.2.10)
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The coordinate decomposition of (1.2.10) reads

pnx = nxpxx + nypyx + nzpzx,

pny = nxpxy + nypyy + nzpzy,

pnz = nxpxz + nypyz + nzpzz,





(1.2.11)

which shows that we really need to know the nine components of the stress tensor P
at point M to calculate the stress on an arbitrary surface S drawn through M .

Equation (1.2.10) may also be expressed in tensor form

pn = nP. (1.2.12)

Notice that vector n is written here in front of the tensor P to show that the column-
by-column multiplication rule has to be applied to find the components of the stress
vector pn.

1.2.2 The concept of a fluid

The term fluid is generally used to describe either a liquid or a gas since both have
a common feature that makes it possible to construct a unified dynamical theory for
liquids and gases simultaneously. This common property is referred to as fluidity, which
is broadly defined as a tendency of either medium to flow under action of any external
force,3 no matter how small; in other words, a fluid moves and deforms continuously
as long as an external force is applied. This behaviour may be contrasted with that
of a solid, which when exposed to external forces will undergo a certain deformation,
but then internal stresses will develop in the solid that will resist further deformation.
As a result, the solid will assume a new state as shown in Figure 1.8.

In a fluid, shear stresses are not possible when the material is at rest. They can
only exist if portions of the fluid are moving relative to one another. Such stresses are
associated with the internal viscosity of fluids and are called viscous forces.

(a) Original form of a solid sample.

F

−F

(b) Deformation of the sample under action
of an external force F and reaction of the
ground −F.

Fig. 1.8: Deformation of a solid body with rectangular cross-section placed on a flat
surface.

3The only exception is the pressure; when it is distributed evenly in space it does not cause a fluid
to move.
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The only surface force possible in a fluid at rest is the pressure p. It acts equally
in all directions and therefore the stress tensor may be written as

P =




−p 0 0
0 −p 0
0 0 −p


 . (1.2.13)

Indeed, the pressure force acting upon the fluid behind the surface Sx of Figure 1.6 is
perpendicular to this surface and directed opposite to the x-axis. This suggests that
the components of vector px as given by (1.2.4) may be written as

pxx = −p, pxy = 0, pxz = 0.

Similarly the components of vectors py and pz may be written for a fluid at rest as

pyx = 0, pyy = −p, pyz = 0,

pzx = 0, pzy = 0, pxz = −p.

With (1.2.13), equation (1.2.12) reduces to

pn = −pn. (1.2.14)

We need now to generalise the notion of the pressure for a moving fluid, where,
in addition to the pressure, the forces of internal viscosity act through any surface S
drawn through the fluid. Since only the total stress can be measured, it is up to us
to decide which part of the stress has to be assigned to the pressure. Intuitively, the
pressure is associated with the normal stresses. However, in a moving fluid the diagonal
elements of the stress tensor (1.2.6) do not coincide with one another. Keeping this in
mind, we shall define the pressure as the mean normal stress with sign reversed:

p = −1

3

(
pxx + pyy + pzz

)
. (1.2.15)

The reason for this is twofold. Firstly, it is known from tensor theory that the sum of
the diagonal elements is an invariant under rotation of the coordinate system, which
ensures that the pressure defined by (1.2.15) is a scalar quantity. Secondly, for a fluid
at rest when the stress tensor has the form of (1.2.13), formula (1.2.15) reduces to the
conventional static pressure.

1.3 Thermodynamic Relations

Although the equations of motion may be derived, as we shall see, in a general form that
is applicable for both liquids and gases, it is important to appreciate that the motion
of these media may be quite different. The reason for this lies, first and foremost, in the
effect of compressibility. In general, liquids exhibit very high resistance to compression,
and, in normal circumstances, the pressure variations that are produced as a result of
fluid acceleration or deceleration in a flow past a rigid body are well below the level
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necessary to make even slight changes in the volume of a fluid particle. For this reason,
the density in a liquid flow is essentially constant throughout the flow field

ρ = const, (1.3.1)

and is therefore considered to be a known quantity. Such flows are termed incompress-
ible.

In contrast, in the analysis of gas flows the density distribution must be evaluated
as a part of the solution of the governing fluid-dynamic equations.4 The addition of the
density to the parameters defining the motion of a fluid requires its relation to other
thermodynamic functions to be specified. When describing gas flows we will be dealing
with density ρ, pressure p, temperature T , internal energy e, enthalpy h, and entropy
S. It is known that for a gas in the state of thermodynamic equilibrium only two of
these quantities are independent. If, say, the temperature and density are known then
the pressure is determined by the so-called equation of state

p = p(ρ, T ).

Intuitively, this may be understood by considering a gas contained in a vessel. This
gas is composed of many molecules moving in random paths at very high speeds and
colliding at intervals with each other and the vessel walls. The force they exert through
these collisions against any solid surface is observed as the pressure of the gas. The
frequency of the collisions depends on the gas density, and the force produced by an
individual collision grows with mean kinetic energy of a molecule, which is known to
be proportional to the temperature.

The main focus in this book series is on gases that obey the ideal gas law given by
the Clapeyron equation

p = ρRT. (1.3.2)

Here T is the absolute temperature measured in kelvin (K), and R is the gas constant.
It is related to the universal gas constant Ru = 8310m2 s−2 K−1 by R = Ru/µg, where
µg is the molecular weight of the gas measured in relative non-dimensional units. For
air, which is of particular interest in aerodynamic applications, µg = 28.97. A fluid
that conforms to equation (1.3.2) is referred to as a perfect gas.

Equation (1.3.2) was originally deduced from experimental observations. It may be
also derived on the basis of the kinetic theory of gases, a short account of which will be
now presented. Let us consider a fluid that is composed of N molecules. Let us assume,
to begin with, that all the molecules are identical and monatomic. The discussion that
follows will be also valid for more complicated molecules with ‘frozen’ internal degrees
of freedom, rotation of molecules, and oscillation of atoms in molecules. Under this
assumption, the dynamical behaviour of each molecule, say molecule with number i,
is fully defined by its position ri in space and velocity vector ξi. In order to describe
the assemblage of N molecules, 6N -dimensional Γ-space is introduced. A point

(r1, . . . , rN , ξ1, . . . , ξN ) (1.3.3)

in this space defines a state of the assemblage.

4Interestingly enough, it follows from these equations that gas flows may be treated as incompress-
ible as long as the Mach number is small (see Problem 4 in Exercises 4).
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Although the molecules obey dynamical laws, there are so many of them as to make
statistical description of their motion appropriate. This may be done by introducing
the distribution function

FN (r1, . . . , rN , ξ1, . . . , ξN , t),

which, when multiplied by the volume element

δτN = δr1 · . . . · δrN · δξ1 · . . . · δξN
of the Γ-space centred at point (1.3.3), gives the probability of the assemblage to be
in this volume element at instant t.

The forces acting between molecules depend on their distribution in physical space.
This is accounted for by the position vectors r1, . . . , rN in the assemblage state vector
(1.3.3). Since the interaction between molecules that are not close to one another
may be neglected, one is normally interested in a cluster of a small number, say s,
neighbouring molecules. The state of the cluster is considered in the γs-space

(r1, . . . , rs, ξ1, . . . , ξs). (1.3.4)

The function

Fs(r1, . . . , rs, ξ1, . . . , ξs, t) =

∫
· · ·
∫
FN drs+1 · . . . · drN · dξs+1 · . . . · dξN

gives the probability of the s molecules in the cluster to be at instant t in a unit volume
of the γs-space centred at point (1.3.4) independent of the positions of the rest of the
molecules.

The feature of a gas to which most of its distinctive properties are attributed is the
wide separation of the molecules and the dynamical isolation of each molecule during
most of its life. Gas molecules exert no force on each other except at collisions. A
collision is a process in which one molecule comes so close to another that the mutual
repulsive force becomes large enough to change their trajectories. The separation of
the molecules at a collision d0 is termed the diameter of a molecule, and in normal
conditions d0 is much smaller as compared with the molecular mean free path, i.e.

ǫ =
d0
λ

≪ 1. (1.3.5)

This suggests that the statistical description of a perfect gas may be based on the
function F1(r1, ξ1, t), which gives the probability of the first molecule of the assemblage
to find itself in a unit volume of the γ1-space independent of the locations of the rest
of the molecules. Correspondingly, the function

f(r, ξ, t) = NF1(r, ξ, t),

when multiplied by δr δξ, gives the number of molecules expected at instant t in a
volume element δr = δx δy δz of the physical space, and a volume element δξ =
δξx δξy δξz of the velocity space. In particular, f(r, ξ, t) δξ gives the expected number
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of molecules in a unit volume of the physical space that have velocity components in
the range δξx, δξy, δξz about ξx, ξy, ξz, respectively. Thus the number of molecules in
a unit volume (independent of their velocities) is calculated as

n(r, t) =

∞∫∫∫

−∞

f(r, ξ, t) dξ, (1.3.6)

and, with m0 being the mass of a molecule, the fluid density

ρ(r, t) = m0

∞∫∫∫

−∞

f(r, ξ, t) dξ.

An average molecular velocity is given by the integral

V(r, t) =
1

n

∞∫∫∫

−∞

ξf(r, ξ, t) dξ,

and this coincides with the macroscopic velocity of a fluid particle that happens to be
at point r at instant t.

The thermal velocity of molecules in the coordinate system moving with the fluid
particle is defined as

c = ξ −V.

The average kinetic energy of molecules in their translational thermal motion is

1

n

∞∫∫∫

−∞

m0c
2

2
f(r, ξ, t) dξ,

using which we shall define the gas temperature T (r, t) as

3

2
kT (r, t) =

1

n

m0

2

∞∫∫∫

−∞

c2f(r, ξ, t) dξ, (1.3.7)

where k is an absolute constant known as Boltzmann’s constant :

k = 1.3806488× 10−23 kgm2 s−2 K−1.

Let us consider a small surface element ∆S moving with the fluid, and calculate
the flux of momentum across ∆S due to the chaotic molecular motion. The orientation
of the surface element is given as before by the unit normal vector n (see Figure 1.9),
and a flux in the direction of n will be reckoned as positive. The surface element ∆S
is crossed by molecules with different values of the velocity vector ξ. Let us consider
molecules with velocity in the range δξ about ξ. To cross ∆S, they have to come from
the cylindrical region D whose base coincides with ∆S while the sides are parallel to
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c

c

M

∆S

n

D

Fig. 1.9: Calculation of the momentum flux through surface element ∆S.

the relative velocity vector c. If we want to know the number of molecules crossing ∆S
per unit time then we have to choose the sides of region D to have the length c = |c|
as shown in Figure 1.9. All the molecules inside D will cross ∆S, while those further
away will not be able to reach this surface.

The height of region D is given by the scalar product c · n, and its volume equals(
c ·n

)
∆S. Therefore the number of molecules crossing ∆S per unit time with velocity

in the range δξ about ξ is (
c · n

)
∆S f(r, ξ, t) δξ.

Each of the molecules carries momentum m0 c. Thus the total flux of momentum is

m0 ∆S

∞∫∫∫

−∞

c
(
c · n

)
f(r, ξ, t) dξ.

It coincides with the surface force ∆Pn acting on the fluid on the front side of the
surface element. Hence, using formula (1.2.3) and relying on Newton’s Third Law, we
find that the stress pn may be calculated as

pn = −m0

∞∫∫∫

−∞

c
(
c · n

)
f(r, ξ, t) dξ.

In particular, choosing n to be along the x-axis, we can write

px = −m0

∞∫∫∫

−∞

ccxf(r, ξ, t) dξ.

Being projected, say, on the y-axis, this formula gives

pxy = −m0

∞∫∫∫

−∞

cycxf(r, ξ, t) dξ. (1.3.8)
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Formulae like (1.3.8) are more conveniently expressed using the index notation
where x, y, z are denoted as x1, x2, x3, respectively. Then any element pij of the
stress tensor (1.2.6) may be written as

pij = −m0

∞∫∫∫

−∞

cicjf(r, ξ, t) dξ. (1.3.9)

Substituting (1.3.9) into (1.2.15), we find

p = −1

3
(p11 + p22 + p33) =

m0

3

∞∫∫∫

−∞

(
c21 + c22 + c23

)
f(r, ξ, t) dξ,

which, when compared with (1.3.7), yields

p = nkT. (1.3.10)

It remains to note that the density ρ = m0n, and (1.3.10) reduces to (1.3.2) with the
gas constant

R = k/m0.

It is interesting that the above analysis does not rely on the assumption that the
gas is in a state of thermodynamic equilibrium. Therefore, the following statement
is valid. With the pressure defined by (1.2.15), the Clapeyron equation is valid for a
perfect gas no matter how far from equilibrium.

1.3.1 The First Law of Thermodynamics

The First Law of Thermodynamics is essentially a statement of the law of conser-
vation of energy. It states that heat energy and mechanical energy are equivalent and
interchangeable. In fact, formula (1.3.7) indicates that heat energy is really mechanical
energy on a molecular scale.

According to the First Law of Thermodynamics, if a quantity of heat is introduced
into a closed system (say, a gas) it must either be accumulated by the system as
internal energy or reappear externally as work done by the gas on its surroundings.
This is written as

dQ = dE + dW, (1.3.11)

where dQ is the heat, E is the internal energy of the gas, and dW is the work done by
the gas.

For simplicity, we shall consider a cylinder with a movable piston of area A con-
taining a gas of volume V at pressure p (see Figure 1.10). We shall suppose that the
piston is balanced by a force F so that

F = pA.

Let us assume that the piston moves to the right through a distance dx. Then the gas
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performs a work against the force F of amount5

dW = F dx = pAdx = p dV,

where dV is the change in volume of the gas. The First Law (1.3.11) may now be
written as

dQ = dE + p dV. (1.3.12)

When referred to a unit mass of a gas, equation (1.3.12) reads

dQ = de+ p dv, (1.3.13)

where the volume v occupied by a unit mass of the gas is related to the density via
the equation

v =
1

ρ
. (1.3.14)

If the volume is kept constant then (1.3.13) takes the form

dQ = de.

The specific heat at constant volume cv with units kJ kg−1 K−1 is defined as the rate
of heat addition per one degree of temperature rise per unit mass, dQ/dT . It may be
calculated as

cv =

(
dQ
dT

)

v

=

(
de

dT

)

v

. (1.3.15)

The internal energy e is made up of the following contributions that occur at the
microscopic level: (i) the total kinetic energy of the translational motion of molecules
in their thermal motion, (ii) the total rotational energy of the molecules, and (iii) the
total vibrational energy of individual atoms comprising a gas molecule as they oscillate
with respect to each other inside the molecule. The potential energy associated with
intermolecular interactions is very small for a perfect gas in which condition (1.3.5)
holds.

The specific heat cv depends on the structure of the gas molecules and, principally,
on the number of atoms in each molecule. For monatomic molecules (such as the dis-
associated gases H, N, O, etc.), internal energy is stored entirely in their translational

dx

F

Fig. 1.10: The work performed by a gas contained in a cylinder with the piston moving
against force F through a distance dx.

5This formula may be easily generalised for arbitrary deformation of the region occupied by the
gas.
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motion. Taking into account that the average kinetic energy of molecules in the thermal
motion is given by the right-hand side of formula (1.3.7), the internal energy per unit
mass for a monatomic gas may be found by dividing the left-hand side of (1.3.7) by
the mass of a molecule m0:

e =
3

2

k

m0
T =

3

2
RT. (1.3.16)

Using (1.3.16) in (1.3.15), we can easily find that for a monatomic gas

cv =
3

2
R. (1.3.17)

In order to deduce the corresponding formulae for the energy e and specific heat
cv for diatomic molecules, we have to restrict our analysis to a gas in a state of
thermodynamic equilibrium. In this case function f(r, ξ, t) is known to be represented
by the Boltzmann distribution

f = Ae−ǫ/kT . (1.3.18)

Here A is a factor to be found and ǫ is the energy of an individual molecule. If we
return for a moment to monatomic molecules (or molecules where all other degrees of
freedom except translational motion are frozen), then

ǫ =
1

2
m0c

2 =
1

2
m0(c

2
x + c2y + c2z),

which when substituted into (1.3.18) and then into (1.3.6) yields

A = n

(
m0

2πkT

)2/3

.

As a result, (1.3.18) turns into the classical Maxwell distribution of molecular velocities

f(r, ξ, t) = n(r, t)

(
m0

2πkT (r, t)

)3/2

e−m0c
2/2kT (r,t),

where c = ξ −V(r, t).
The energy of a diatomic gas molecule is composed of the kinetic energy of trans-

lational motion, the energy of rotation of the molecule, and the energy of oscillations
of atoms with respect to one another inside the molecule. At normal temperatures the
oscillation mode is ‘frozen’, and therefore molecules may be considered as rigid bodies.
This allows us to express the energy of an individual molecule in the form

ǫ =
1

2
m0c

2
x +

1

2
m0c

2
y +

1

2
m0c

2
z +

1

2
I1Ω

2
1 +

1

2
I2Ω

2
2. (1.3.19)

Here I1, I2 are the moments of inertia of the molecule with respect to the principal
axes and Ω1, Ω2 are the angular velocities of rotation around these axes.
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To calculate the factor A in the Boltzmann distribution (1.3.18), we shall again
use the density integral. Now, instead of (1.3.6), we have to write

n =

∞∫
· · ·
∫

−∞

f dcx dcy dcz dΩ1 dΩ2. (1.3.20)

Substitution of (1.3.19) into (1.3.18) and then into (1.3.20) yields

A = n
(m0I1I2)

1/2

(2πkT )5/2
.

The gas energy per unit volume is calculated as

∞∫
· · ·
∫

−∞

(
m0c

2
x

2
+
m0c

2
y

2
+
m0c

2
z

2
+
I1Ω

2
1

2
+
I2Ω

2
2

2

)
f dcx dcy dcz dΩ1 dΩ2, (1.3.21)

which gives6

5

2
nkT. (1.3.22)

The gas mass per unit volume equals

nm0. (1.3.23)

Dividing (1.3.22) by (1.3.23), we find that the energy per unit mass is

e =
5

2

k

m0
T =

5

2
RT.

Using (1.3.15), we see that for a gas with diatomic molecules

cv =
5

2
R. (1.3.24)

The increase in cv over monatomic gases (1.3.17) is due to the additional energy
associated with rotational degrees of freedom of the diatomic gas molecules. It is in-
teresting to notice that each quadratic term in the parentheses in the energy integral
(1.3.21) gives the same contribution 1

2
nkT to the result of the integration. Being re-

ferred to unit mass, this translates into 1
2RT contribution of each degree of freedom of a

molecule to the total gas energy e. This result is known as the principle of equipartition
of energy.

In aerodynamic flows the fluid, air, is a mixture of gases, most of which have
diatomic molecules (N2, O2, H2, etc.). At normal temperatures, very little energy is
partitioned into the vibrational modes of these molecules, and therefore the formula
(1.3.24) is normally used for the specific heat cv. It becomes invalid for very low
temperatures that may be observed, for example, in a supersonic wind tunnel, and

6See Problem 2(c) in Exercises 1.
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at very high temperatures typical of hypersonic flows. A wind tunnel is a device that
serves to convert the internal energy of air into its kinetic energy. If a wind tunnel is
designed for high-Mach-number experiments, the temperature in the test section may
be so low that the rotational degrees of freedom become frozen and instead of (1.3.24)
one has to use for cv the monatomic formula (1.3.17).

On the other hand, with increasing temperature, excitation of atomic oscillation
in molecules is ultimately activated. The two atoms composing a molecule perform
oscillations along an imaginary line connecting them. To account for this motion, two
additional quadratic terms should be written in (1.3.19), the first one representing
the kinetic energy of the oscillational motion and the second the potential energy of
the attraction/repulsion force acting between the atoms in a molecule. As a result, the
specific heat increases to

cv =
7

2
R. (1.3.25)

In most circumstances the flow conditions do not reach these extremes, and the specific
heat cv may be treated as constant. In particular, for air it is given by (1.3.24). The
internal energy of a perfect gas is then expressed by the equation

e = cvT. (1.3.26)

1.3.2 Enthalpy and entropy

The enthalpy per unit mass in units of kJ kg−1 is defined by

h = e+
p

ρ
, (1.3.27)

and it follows from (1.3.26) and the state equation (1.3.2) that

h = cpT, (1.3.28)

where cp is the specific heat at constant pressure given by

cp = cv +R. (1.3.29)

Indeed, equation (1.3.13) may be rearranged as

dQ = de+ p dv = de+ d(pv)− v dp = d
(
e+ pv

)
− v dp,

and using (1.3.14) we find

dQ = d

(
e+

p

ρ

)
− dp

ρ
= dh− dp

ρ
. (1.3.30)

Thus, if the pressure is kept constant then dQ = dh and

cp =

(
dQ
dT

)

p

=

(
dh

dT

)

p

.

The ratio of specific heats

γ =
cp
cv

(1.3.31)

is an important non-dimensional parameter that is characteristic of compressible gas
flows. For air, cp and cv are given by equations (1.3.24) and (1.3.29), whence γair = 1.4.
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With (1.3.31), equation (1.3.29) may be rewritten as

cp =
cp
γ

+R,

and it follows that
cp =

γ

γ − 1
R.

This formula when substituted into (1.3.28) yields

h =
γ

γ − 1
RT. (1.3.32)

It remains to make use of the state equation (1.3.2), and we will have the following
expression for the enthalpy:

h =
γ

γ − 1

p

ρ
. (1.3.33)

One more function that we will be dealing with in gas flows is called the entropy
S. It is defined by the equation

dS =
dQ
T
. (1.3.34)

Substitution of (1.3.32) into (1.3.30) and then into (1.3.34) yields

dS =
γ

γ − 1
R
dT

T
− dp

ρT
. (1.3.35)

It follows from the state equation (1.3.2) that ρT = p/R, which, being used in the
second term on the right-hand side of equation (1.3.35), results in

dS =
γ

γ − 1
R
dT

T
−R

dp

p
=

R

γ − 1

[
γ
dT

T
− (γ − 1)

dp

p

]
.

Integrating this equation, we have

S = C +
R

γ − 1
ln

T γ

pγ−1
. (1.3.36)

Let us now write the state equation (1.3.2) as

T =
p

ρR
,

and use it to eliminate T from (1.3.36). This results in the following equation:

S = C̃ +
R

γ − 1
ln

p

ργ
, (1.3.37)

which expresses the entropy per unit mass in terms of pressure p and density ρ. For
our purposes the constant C̃ = C −

[
γ/(γ − 1)

]
R lnR can remain arbitrary.
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Exercises 1

1. Thermodynamic relations, including equations (1.3.26), (1.3.33), and (1.3.37) for
the internal energy, enthalpy, and entropy, may be used provided that the medium
is in the state of thermodynamic equilibrium. From the microscopic point of view,
the equilibrium is represented by specific form of the distribution function f ,
which for a perfect gas is given by the Boltzmann distribution (1.3.18). This
distribution is set up through mutual collisions of the molecules, and it is known
that a molecule should undergo just a few collisions for the equilibrium to be
established. In a moving gas the surrounding conditions for each fluid particle are
constantly changing, and we can only speak about a quasi-equilibrium state.

Consider a perfect gas flowing past a rigid body as shown, for example, in
Figure 1.1. With V∞ and c denoting the free-stream flow velocity and mean
molecular velocity, respectively, show that the quasi-equilibrium is achieved for
each fluid particle provided that

Kn
V∞
c

≪ 1.

Hint : Compare the average time a molecule spends in flight between two colli-
sions with the characteristic time a fluid particle experiences a changing environ-
ment in its motion past the rigid body.

2. Consider the Boltzmann distribution (1.3.18) for a diatomic gas, when the energy
ǫ is given by equation (1.3.19).

(a) Verify that the factor A in (1.3.18) can indeed be calculated using the equation

A = n
(m0I1I2)

1/2

(2πkT )5/2
.

(b) Confirm that equation (1.3.7), used to define the gas temperature T in terms
of average kinetic energy of translational motion of molecules, still holds.

(c) Demonstrate that each quadratic term in parentheses in the energy integral
(1.3.21) gives the same contribution 1

2nkT to the result of the integration.

Suggestion: You may use without proof the fact that for any positive α,

∞∫

−∞

e−αx2

dx =

√
π

α
,

∞∫

−∞

x2e−αx2

dx =

√
π

2
α−3/2.

3. A thermodynamic process is termed adiabatic if there is no exchange of heat
between the system considered and the environment (dQ = 0). Using the defini-
tion of entropy (1.3.34) and equation (1.3.37), argue that for a perfect gas in an
adiabatic process the pressure p and density ρ are related as

p

ργ
= const.

Using further the Clapeyron equation (1.3.2), find the corresponding relationship
between the temperature T and density ρ.
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1.4 Kinematics of the Flow Field

Two distinct ways to describe the motion of continuous media are utilised in fluid
dynamics, namely, the Lagrangian and Eulerian descriptions. The Lagrangian approach
is similar to that of classical mechanics when one considers a set of material particles
moving in space. In this problem, a number i is ascribed to each particle, and its
position with respect to a suitably chosen coordinate system (x, y, z) is given at time
t by the position vector ri(t) with coordinates xi(t), yi(t) and zi(t).

The continuum model assumes that fluid particles are continuously distributed
throughout the flow field in a population that is indefinitely large and cannot be
enumerated. In the Lagrangian approach, one particle is distinguished from another
by specifying its location in the field at some initial instant t = t0. This is done in the
following way. Let D0 be a region fixed in the coordinate system (x, y, z) with fluid
continually passing through it (see Figure 1.11). We shall consider a set composed
of all fluid particles that happen to be inside D0 at the initial instant t = t0. In
an experiment one could mark the fluid particles with different colour dyes; in the
theoretical description the initial position vector, r0, which points at a fluid particle
inside D0 serves this purpose.

As time increases, a fluid particle moves in space and its location may be expressed
in the form

r = r(t, r0), (1.4.1)

signifying that r is a function of two independent variables, time t and initial position
vector r0. If the second argument r0 in (1.4.1) is fixed and time t increases, then an
observer will record the trajectory of the particle as indicated by the dotted line in
Figure 1.11. A transition from one fluid particle to another is accomplished by a change
of r0.

In the Lagrangian approach, not only the position vector (1.4.1) but all other fluid
quantities are considered as functions of t and r0. For example, density ρ and fluid

x

y

z

O

r

r0

dτ

dτ0

D

D0

Fig. 1.11: Lagrangian description of the flow field.
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temperature T are written as

ρ = ρ(t, r0), T = T (t, r0). (1.4.2)

If the functions r(t, r0), ρ(t, r0), and T (t, r0) were known, then all other fluid-dynamic
quantities could be easily obtained from well-known thermodynamic and kinematic
relations. For instance, the velocity and acceleration of a fluid particle may be deter-
mined by differentiating (1.4.1) with respect to time:

V =
∂r

∂t
, a =

∂2r

∂t2
. (1.4.3)

In order to determine the functions (1.4.1) and (1.4.2), one has to use the con-
servation laws of mass, momentum, and energy. We shall show here how the mass
conservation law may be formulated in the Lagrangian variables. Let D be a region
occupied by fluid particles from D0 at a later instant, t > t0. Consider a small element
of volume dτ in D that originates in its counterpart in region D0 of volume dτ0; see
Figure 1.11. As we are dealing with the same fluid particle, the law of conservation of
mass states

ρ0 dτ0 = ρ dτ. (1.4.4)

Here ρ0 and ρ denote the density of the fluid particle at times t0 and t respectively.
In order to establish a relationship between the volumes dτ0 and dτ , let us return

to equation (1.4.1). It may be interpreted as a transformation of coordinates from
(x0, y0, z0) to (x, y, z). For any such transformation, the volume elements are known
to be related via

dτ =

∣∣∣∣
∂(x, y, z)

∂(x0, y0, z0)

∣∣∣∣ dτ0. (1.4.5)

Substitution of (1.4.5) into (1.4.4) yields

∣∣∣∣
∂(x, y, z)

∂(x0, y0, z0)

∣∣∣∣ =
ρ0
ρ
, (1.4.6)

which is the continuity equation in Lagrangian variables.

1.4.1 Eulerian approach

In the Eulerian description of the motion, the viewpoint is entirely different, and
rather than following individual fluid particles, the main interest is in the state and
development of the flow field. The functions of interest include the velocity vector,
density, and temperature,

V = V(t, r), ρ = ρ(t, r), T = T (t, r), (1.4.7)

with time t and the position vector r = (x, y, z) being independent variables. To
explain how these functions must be interpreted, let us consider, for example, the
function V(t, r). This function represents the flow velocity at point (x, y, z) at time t,
or, more precisely, gives the velocity of the fluid particle that happens to be at point
(x, y, z) at time t.
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Since a new fluid particle passes through a given point at each instant, the accel-
eration a of a particle cannot be determined as the partial derivative of V(t, r) with
respect to t. In order to determine the acceleration a, the Lagrangian representation
(1.4.1) for the fluid particle location must be substituted into the Eulerian represen-
tation (1.4.7) of the velocity. This gives the velocity of a fluid particle

Vp(t) = V
[
t, r(t, r0)

]
= V

[
t, x(t, r0), y(t, r0), z(t, r0)

]
. (1.4.8)

Formula (1.4.8) is then differentiated with respect to t using the chain rule:

a =
dVp

dt
=
∂V

∂t
+
∂V

∂x

∂x

∂t

∣∣∣∣
p

+
∂V

∂y

∂y

∂t

∣∣∣∣
p

+
∂V

∂z

∂z

∂t

∣∣∣∣
p

, (1.4.9)

where the suffix p is used to indicate that the differentiation is carried out for the
fluid particle that passes point r at time t. Writing the first of equations (1.4.3) in the
coordinate decomposition form, we have7

u =
∂x

∂t

∣∣∣∣
p

, v =
∂y

∂t

∣∣∣∣
p

, w =
∂z

∂t

∣∣∣∣
p

.

Hence, equation (1.4.9) may be written as

a =
∂V

∂t
+ u

∂V

∂x
+ v

∂V

∂y
+ w

∂V

∂z

or

a =
DV

Dt
=
∂V

∂t
+
(
V · ∇

)
V. (1.4.10)

Here the differential operator

D

Dt
=

∂

∂t
+
(
V · ∇

)

is called the material or full derivative and gives rise to two terms in equation (1.4.10).
The first term, ∂V/∂t, is called the local acceleration. It represents an acceleration due
to temporal changes in the velocity field as the fluid particle arrives at the point in
question. The second term, (V · ∇)V, is called the convective acceleration and is an
acceleration due to the fact that the fluid particle is being convected into a point with
different velocity. The convective derivative is the scalar product of the velocity vector
and the gradient operator defined by

V = iu+ jv + kw, ∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

with i, j, k being the unit basis vector triad of the Cartesian coordinate system.

7In fluid dynamics, the components of the velocity vector V are usually denoted by u, v, and w.
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1.4.2 Streamlines and pathlines

The streamline and pathline patterns are extremely useful when ‘visualising’ the results
of fluid flow analysis. Suppose that the velocity vector field is known in terms of
Eulerian variables:

V = V(t, r).

To determine the streamline pattern, one first has to choose the time of observation t
and, keeping it fixed, make use of the following definition.

Definition 1.2 Line L is called a streamline if at each point M on this line the
velocity vector V is tangent to L; see Figure 1.12.

If r is the position vector of point M and dr is its increment along the streamline
L connecting point M with a neighbouring point M ′, then dr should be parallel to V

for small enough |dr|. Therefore, the vector product of dr and V should be zero,

dr×V = 0. (1.4.11)

More explicitly, equation (1.4.11) may be written as

dr×V =

∣∣∣∣∣∣

i j k

dx dy dz
u v w

∣∣∣∣∣∣

= i(w dy − v dz) + j(u dz − w dx) + k(v dx− u dy) = 0. (1.4.12)

Since each component in (1.4.12) must be zero, the differentials dx, dy, and dz are
related to each other by

dx

u(t, x, y, z)
=

dy

v(t, x, y, z)
=

dz

w(t, x, u, z)
, (1.4.13)

where the coordinate arguments x, y, z of the velocity components u, v, w are varying
along the streamline considered, while time t is fixed, implying that at each instant
the streamline pattern may be different.

x

y

z

O

r
r+ dr

VM

M ′

L

Fig. 1.12: A streamline.
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Definition 1.3 Pathlines are the trajectories of fluid particles.

With known velocity field V(t, r), the equation for pathlines is

dr

dt
= V(t, r).

It consists of three components

dx

dt
= u(t, x, y, z),

dy

dt
= v(t, x, y, z),

dz

dt
= w(t, x, y, z)

and may be expressed in a form similar to (1.4.13),

dx

u(t, x, y, z)
=

dy

v(t, x, y, z)
=

dz

w(t, x, y, z)
= dt, (1.4.14)

but now time t varies while a fluid particle is travelling along a pathline.
In order to demonstrate the difference between streamlines and pathlines, let us

choose a point in the flow field (in Figure 1.13, it is shown as point M) and draw
the streamline and pathline originating from M . In accordance with their definitions,
both the streamline and pathline must follow the direction of the velocity vector. So
we take the velocity V at point M and place point M1 a small distance from M in
the direction of V. It will be a common point for both the streamline and pathline.
Now, if the streamline is to be plotted, the velocity vector V1 at point M1 must be
taken at the same time t as at point M . The next point on the streamline will be M2;
see Figure 1.13(a). This procedure being repeated many times results in a broken line
MM1M2 . . . , which tends to the actual streamline as the distances between points M ,
M1, M2, etc. tend to zero.

If the pathline is to be constructed, one has to take into account that while the
fluid particle is travelling fromM toM1, the velocity vector, being dependent on time,
changes to become V′

1; see Figure 1.13(b). So the next point on the pathline will be
M ′

2, not M2. The more steps that are made along the pathline, the more significant

M

M1

M2

M3

V V1 V2

V3

(a) Construction of a streamline.

M

M1

M ′

2

M ′

3

V
V′

1

V′

2

V′

3

(b) Pathline; the ‘dashed’ vectors reproduce
vectors V1, V2, etc. from the previous sketch.

Fig. 1.13: Comparison of a streamline with the corresponding pathline.
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is expected to be its deviation from the streamline. However, if the velocity field is
independent of time,

V = V(x, y, z),

then the streamline and the pathline obviously coincide with each other. Flows of this
kind are called steady flows. They have an important role in fluid dynamics. Because
of the time independence of fluid-dynamic functions, steady flows are easier to analyse
theoretically and experimentally. They are, at the same time, of great importance from
an applied engineering point of view. Steady flows may be observed, for example, in
wind tunnel experiments when in the laboratory coordinate frame the velocity at each
point of the flow does not change with time t. The flow over an aircraft in cruise flight
is also steady for the passengers on board, but is unsteady for an observer on the
Earth’s surface.

The notion of a steady flow, obviously, makes sense only in Eulerian variables. Time
dependence in the Lagrangian trajectory function r = r(t, r0) may disappear only if
there is no fluid motion at all. Even in a flow that is steady from the Eulerian point of
view, fluid particles experience acceleration and deceleration in the vicinity of a solid
body, making the analysis in Lagrangian variables as difficult as it is for non-steady
flows. For that reason, Eulerian variables are normally more convenient to use.

1.4.3 Vorticity

With known velocity V = V(t, r), the vorticity field ω may be defined as

ω = curlV.

Here ‘curl’ is a differential operator defined as the vector product of the gradient
operator

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

and the velocity vector
V = iu+ jv + kw.

In the coordinate decomposition form, it may be written as

ω = curlV = ∇×V =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

u v w

∣∣∣∣∣∣

= i

(
∂w

∂y
− ∂v

∂z

)
+ j

(
∂u

∂z
− ∂w

∂x

)
+ k

(
∂v

∂x
− ∂u

∂y

)
. (1.4.15)

The vorticity ω serves to describe local rotation of fluid particles about their ‘cen-
tres’. If, in particular, we consider a special form of fluid flow, when the fluid moves
as if it was a rigid body,8 then the velocity field can be written as

V = V0 +Ω× (r− r0). (1.4.16)

8The term ‘rigid body’ is used in situations when a solid body may be treated as undeformable.
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Fig. 1.14: Graphical illustration of formula (1.4.16).

Indeed, it is known from classical mechanics that any rigid-body motion may be rep-
resented as a superposition of (i) translational motion of arbitrary chosen ‘centre’ O
inside the body (see Figure 1.14) and (ii) rotation around the axis OO′ that is drawn
through the centre O parallel to the angular velocity vector Ω.

The meaning of different terms in formula (1.4.16) is demonstrated by Figure 1.14.
The vector V on the left-hand side of (1.4.16) is the velocity of an arbitrary cho-
sen point A whose position vector is r. The first term on the right-hand side is the
translational velocity V0 of the centre O and the second term, Ω × (r − r0), is the
circumferential velocity of the body in rotation around the axis OO′; the latter is
drawn through the centre O in the direction of the angular velocity vector Ω. Notice
that in a rigid-body motion, Ω is independent of a choice of the centre O and remains
the same for any point A situated inside the body.

The coordinate decomposition of equation (1.4.16) is written as

u = u0 +Ωy(z − z0)− Ωz(y − y0),

v = v0 +Ωz(x− x0)− Ωx(z − z0), (1.4.17)

w = w0 +Ωx(y − y0)− Ωy(x− x0),

where Ωx, Ωy, and Ωz are the projections of the angular velocity vector Ω on the x-,
y-, and z-axes, respectively.

Substitution of (1.4.17) into (1.4.15) yields

ω = i 2Ωx + j 2Ωy + k 2Ωz = 2Ω.

Thus, for a fluid in rigid-body motion, the vorticity ω is simply twice the angular
velocity, Ω.
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1.4.4 Circulation

If C is a closed contour inside a moving fluid, then the circulation Γ of the velocity
vector V along C is defined as

Γ =

∮

C

V · dr. (1.4.18)

We also need to give here the definition of a vortex line.

Definition 1.4 Line L is called a vortex line if at each point M on L the vorticity
vector ω is tangent to L.

Let us consider a closed contour C, and use it to form a vortex tube. The latter
is made of the vortex lines originating from contour C. In Figure 1.15, the vortex
tube is shown as surface Σ. Let us now draw another contour C ′ on Σ and ‘close’ the
tube from both sides using surface σ that rests on C and surface σ′ that rests on C′.
We shall call the region bounded by Σ, σ, and σ′ region D. Using Gauss’s divergence
theorem, we can write ∫∫∫

D

divω dτ =

∫∫

S

(
ω · n

)
ds, (1.4.19)

where S is the surface surrounding D and n is the external unit vector normal to S.
The divergence of ω is given by the formula

divω =
∂ωx

∂x
+
∂ωy

∂y
+
∂ωz

∂z
. (1.4.20)

Using (1.4.15) in (1.4.20), it is easy to find that for any velocity field

divω = 0.

Taking further into account that on Σ the vorticity vector ω is perpendicular to n, we
can see that (1.4.19) reduces to

∫∫

σ

(
ω · n

)
ds+

∫∫

σ′

(
ω · n

)
ds = 0.

ω

n

n

n

σ

C

Σ

C ′

σ′

Fig. 1.15: Vortex tube.
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If we change the direction of the normal vector n on σ′ to the opposite one, making it
the same as on σ, then we will have

∫∫

σ

(
ω · n

)
ds =

∫∫

σ′

(
ω · n

)
ds.

We have proved that the flux of the vorticity through a cross-section of a vortex tube
does not depend either on the form of the cross-section or on its position along the
tube.

In accordance with Stokes’s theorem,
∫∫

σ

(
ω · n

)
ds =

∮

C

V · dr,

which means that the following result, known as the First Helmholtz Theorem, is valid.

Theorem 1.1 The circulation of the velocity vector along a closed contour embracing
a vortex tube is an invariant quantity. It is called the intensity of the vortex tube.

Exercises 2

1. The motion of a fluid is described by the following Lagrangian coordinate func-
tions:

x = x0

(
1 +

t

τ

)
, y = y0

(
1 + 2

t

τ

)
, z = z0

(
1 +

t2

τ2

)
,

where τ is a constant.

(a) Find the velocity field.

(b) Consider the fluid particle that was at the point (a, b, c) at time t = τ , and
find its position at t = 3τ .

2. Consider the motion of a fluid with velocity field defines in Eulerian variables by
the following equations:

u = kx, v = −ky, w = 0,

where k is a constant. Also assume that the density is given by

ρ = ρ0 + Ayekt.

What is the rate of density change for each individual fluid particle (ρ0 and A are
constants)?

3. Find Lagrangian coordinate functions

x = x(t, x0, y0, z0), y = (t, x0, y0, z0), z = z(t, x0, y0, z0)

corresponding to the following Eulerian velocity field:

u = −Ax, v = By, w = 0,

where A and B are positive constants.
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4. Find the streamlines and pathlines for a flow in which the velocity components
are

u = u0, v = v0 sinΩt, w = w0,

where u0, v0, w0, and Ω are constants.

5. Taking into account that the vorticity ω in a three-dimensional flow is calculated
using equation (1.4.15), show that in a two-dimensional flow, where w = 0, and
u and v are independent of z, the vector ω has only one non-zero component ωz.
Give an expression for ωz.

6. In the Couette flow between two flat plates, one of which is stationary, and an-
other is moving parallel it with constant velocity (see Figure 1.16), the velocity
components are known to be (see Section 2.1.1)

u = ay, v = 0, w = 0.

Determine the pathlines (streamlines) and the vorticity of the flow. Explain how
with the straight trajectories of fluid particles, the vorticity may be non-zero.

x

y

Fig. 1.16: Couette flow.

7. The ‘potential vortex’ is a two-dimensional flow with streamlines having the form
of concentric circles (Figure 1.17). In Section 3.4, we will see that in the potential
vortex the radial velocity component Vr is zero everywhere in the flow field, and
the circumferential velocity Vφ is inversely proportional to the distance r from the

x

y

r
φ

Vφ

Fig. 1.17: The potential vortex.
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vortex centre:

Vφ =
Γ

2πr
.

Determine the vorticity distribution in this flow.
Hint : You may use without proof the fact that in cylindrical polar coordinates

(r, φ), the vorticity ωz may be calculated using the equation9

ωz =
1

r

∂(rVφ)

∂r
− 1

r

∂Vr
∂φ

.

1.4.5 Rate-of-strain tensor

In addition to translation and rotation, fluid particles are also subject to deformation.
In order to understand what the deformational motion of a fluid is, let us compare
the velocity field of an undeformable rigid body with that of an arbitrarily moving
fluid. Recall that any motion of a rigid body may be represented as a superposition of
the translational motion of an arbitrarily chosen ‘centre’ O and rotation around the
axis OO′ passing through the centre (see Figure 1.14). This statement is expressed by
equation (1.4.16) with coordinate decomposition given by (1.4.17).

Taking into account that the vorticity ω is twice the angular velocity Ω, we can
write (1.4.17) in the form

u = u0 +
1
2ωy(z − z0)− 1

2ωz(y − y0),

v = v0 +
1
2ωz(x− x0)− 1

2ωx(z − z0),

w = w0 +
1
2ωx(y − y0)− 1

2ωy(x− x0).





(1.4.21)

Equation (1.4.15) shows that the components of the vorticity vector ω are calculated
as

ωx =
∂w

∂y
− ∂v

∂z
, ωy =

∂u

∂z
− ∂w

∂x
, ωz =

∂v

∂x
− ∂u

∂y
. (1.4.22)

Substitution of (1.4.22) into (1.4.21) yields

u = u0 +
1

2

(
∂u

∂z
− ∂w

∂x

)
(z − z0)−

1

2

(
∂v

∂x
− ∂u

∂y

)
(y − y0),

v = v0 +
1

2

(
∂v

∂x
− ∂u

∂y

)
(x− x0)−

1

2

(
∂w

∂y
− ∂v

∂z

)
(z − z0),

w = w0 +
1

2

(
∂w

∂y
− ∂v

∂z

)
(y − y0)−

1

2

(
∂u

∂z
− ∂w

∂x

)
(x− x0).





(1.4.23)

For a flow of a deformable medium, the formula (1.4.16) is not applicable, nor can
the notion of angular velocity Ω, being constant over a finite fluid volume, even be
introduced. However, assuming that the velocity field is smooth, we can study the
local behaviour of the flow field as follows. Let us consider a small fluid element (see
Figure 1.18) in the flow with the velocity V = V(t, r) defined in the Euler variables.

9See equation (1.8.38c) on page 82.
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x
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O

r0
r

δr
M M ′

Fig. 1.18: Deformation of a fluid element.

We choose a point M inside the element as its ‘centre’. The position of this point at
instant t is defined by the position vector r0. We then consider (at the same instant)
a neighbouring point M ′ whose position vector is r = r0 + δr. Here the symbol δ is
used to signify that the variation of coordinates is taken at the same instant t.

Taking into account that the viscous forces always act to smooth out possible
discontinuities in flow functions, we shall suppose that the velocity components are
differentiable, and therefore may be represented by the Taylor expansions

u(t, r) = u(t, r0 + δr) = u(t, r0) +
∂u

∂x
δx+

∂u

∂y
δy +

∂u

∂z
δz,

v(t, r) = v(t, r0 + δr) = v(t, r0) +
∂v

∂x
δx+

∂v

∂y
δy +

∂v

∂z
δz,

w(t, r) = w(t, r0 + δr) = w(t, r0) +
∂w

∂x
δx+

∂w

∂y
δy +

∂w

∂z
δz.

or, after regrouping,

u(t, r) = u(t, r0) +
1

2

(
∂u

∂z
− ∂w

∂x

)
δz − 1

2

(
∂v

∂x
− ∂u

∂y

)
δy

+
∂u

∂x
δx+

1

2

(
∂u

∂y
+
∂v

∂x

)
δy +

1

2

(
∂u

∂z
+
∂w

∂x

)
δz, (1.4.24a)

v(t, r) = v(t, r0) +
1

2

(
∂v

∂x
− ∂u

∂y

)
δx− 1

2

(
∂w

∂y
− ∂v

∂z

)
δz

+
1

2

(
∂v

∂x
+
∂u

∂y

)
δx+

∂v

∂y
δy +

1

2

(
∂v

∂z
+
∂w

∂y

)
δz, (1.4.24b)
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w(t, r) = w(t, r0) +
1

2

(
∂w

∂y
− ∂v

∂z

)
δy − 1

2

(
∂u

∂z
− ∂w

∂x

)
δx

+
1

2

(
∂w

∂x
+
∂u

∂z

)
δx+

1

2

(
∂w

∂y
+
∂v

∂z

)
δy +

∂w

∂z
δz. (1.4.24c)

The first lines in the expressions (1.4.24a), (1.4.24b) and (1.4.24c) are easily seen
to coincide with the formulae (1.4.23). They describe the ‘quasi-rigid’ motion of the
fluid element, which would be its only motion if the fluid element suddenly solidified.
Consequently, the second lines in (1.4.23) should be attributed to the deformational
motion of the fluid:

udef =
∂u

∂x
δx+

1

2

(
∂u

∂y
+
∂v

∂x

)
δy +

1

2

(
∂u

∂z
+
∂w

∂x

)
δz,

vdef =
1

2

(
∂v

∂x
+
∂u

∂y

)
δx+

∂v

∂y
δy +

1

2

(
∂v

∂z
+
∂w

∂y

)
δz,

wdef =
1

2

(
∂w

∂x
+
∂u

∂z

)
δx+

1

2

(
∂w

∂y
+
∂v

∂z

)
δy +

∂w

∂z
δz.





(1.4.25)

The tensor composed of the coefficients of δx, δy, and δz in (1.4.25)

E =



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


 =




∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂z + ∂w

∂x

)

1
2

(
∂v
∂x + ∂u

∂y

)
∂v
∂y

1
2

(
∂v
∂z + ∂w

∂y

)

1
2

(
∂w
∂x

+ ∂u
∂z

)
1
2

(
∂w
∂y

+ ∂v
∂z

)
∂w
∂z



, (1.4.26)

is called the rate-of-strain tensor.
Using this tensor, equations (1.4.24) may be expressed in the form

V(t, r) = V(t, r0) +Ω× δr+ E δr (1.4.27)

which proves the Second Helmholtz Theorem.

Theorem 1.2 Any motion of a small fluid element is a superposition of (i) quasi-rigid
motion represented by the first two terms in (1.4.27) and (ii) deformational motion
with the velocity Vdef = E δr.

Notice that the rate-of-strain tensor (1.4.26) is symmetric with respect to the prin-
cipal diagonal, since

εyx = εxy, εzx = εxz, εzy = εyz.

The six unequal elements of the tensor represent six possible modes of the deformation
of a fluid particle. To reveal their physical content, it is convenient to use a moving
Cartesian coordinate system Oxyz with the origin O being in the fluid element ‘centre’
at all times and the coordinate axes x, y, z rotating together with angular velocity
Ω = 1

2curlV. The only fluid motion that may be observed in this coordinate system
is the deformation of the fluid element with respect to the centre. At any point inside
the fluid particle, the deformation velocity is calculated as

V = E δr,
where δr is the position vector of the point of interest.
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Fig. 1.19: Deformation of a fluid element.

Let us, for example, consider point A situated on the x-axis as shown in Figure 1.19.
The position vector of this point may be written as δr = i δx, where i is the unit vector
along the x-axis. The fluid velocity at point A is

V = E δr =



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz






δx
0
0


 =



εxx δx
εyx δx
εzx δx


 ,

which is written in coordinate-decomposition form as

u = εxx δx, v = εyx δx, w = εzx δx.

Consequently, the fluid particle that was at point A at initial instant t translates
shortly afterwards to a new position A′ (see Figure 1.19) with the coordinates

x = δx+ εxx δx∆t, y = εyx δx∆t, z = εzx δx∆t. (1.4.28)

Here ∆t denotes the time spent by the fluid particle when travelling between points
A and A′.

The distance between the new location A′ of the fluid particle and the coordinate
origin O is

lOA′ = δx
√

(1 + εxx ∆t)2 + (εyx ∆t)2 + (εyz ∆t)2

= δx
√

1 + 2 εxx ∆t+O
[
(∆t)2

]
= δx (1 + εxx ∆t) +O

[
δx (∆t)2

]
.

It differs from the distance lOA = δx between the original location A and the coordinate
origin O by the value

∆l = lOA′ − lOA = εxx δx∆t. (1.4.29)
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Formula (1.4.29), obviously, holds for any fluid particle situated on the x-axis in the
vicinity of the centre O. Therefore, if we consider a material line composed of the fluid
particles occupying the interval (O,A) of the x-axis, then we can see that the material
line experiences uniform extension at a relative rate

1

δx
lim

∆t→0

∆l

∆t
= εxx.

In addition to the extension, the material line deviates from the x-axis. According
to (1.4.28), its projection (O,A′′) upon the (x, y)-plane (see Figure 1.19) makes an
angle

∆θyx = arctan
y

x
(1.4.30)

with the x-axis. Substituting (1.4.28) into (1.4.30), we have

∆θyx = arctan
εyx ∆t

1 + εxx ∆t
,

which for small ∆t reduces to

∆θyx = arctan
(
εyx ∆t

)
= εyx∆t.

In the same way, it may be shown that the material line composed of the fluid
particles from the interval (O,B) of the y-axis experiences extension with the rate εyy
and deviates from the y-axis such that its projection (O,B′′) upon the (x, y)-plane
makes an angle

∆θxy = εxy ∆t

with the y-axis (see Figure 1.19). Consequently, the original right angle between the
material lines (O,A) and (O,B) decreases by an amount

∆θyx +∆θxy = (εyx + εxy)∆t.

Taking into account that εyx = εxy, we can conclude that the angle between the x-
and y-axes decreases with the rate

lim
∆t→0

∆θyx +∆θxy
∆t

= εyx + εxy = 2εxy.

The same arguments may be, of course, applied to a material line on the z-axis,
leading to the conclusion that the three diagonal elements εxx, εyy, εzz of the rate-
of-strain tensor (1.4.30) describe linear expansion of a small fluid element in the x-,
y-, and z-directions, respectively. The non-diagonal elements εxy, εxz, εyz and their
symmetric counterparts εyx, εzx, εzy serve to describe angular compression of the fluid
element in the (x, y)-, (x, z)-, and (y, z)-planes.
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1.5 Constitutive Equation

Returning to the question of the origin of the surface forces acting in fluids (see Sec-
tion 1.2), one has to remember that these are the short-range forces produced by the
interaction of molecules via mutual forces of attraction and repulsion. In particular,
in gases, the dominant mechanism is transport of momentum from one fluid layer to
another due to collisions of molecules in their thermal motion. In a fluid at rest, the
only surface force possible is the pressure p acting equally in all directions, with the
stress tensor assuming the form (1.2.13):

P =




−p 0 0
0 −p 0
0 0 −p


 = −pI, (1.5.1)

where

I =




1 0 0
0 1 0
0 0 1




is the unit tensor.
If a fluid moves like a rigid body (translation and rotation), then the interaction

between the molecules will remain the same as they would be in this fluid at rest.
Consequently, the stress tensor will remain unchanged, i.e. it could be represented by
equation (1.5.1). Keeping this in mind, we shall write the stress tensor (1.2.6) for an
arbitrarily moving fluid as

P = −pI + T , (1.5.2)

where the tensor

T =



τxx τxy τxz
τyx τyy τyz
τzx τzy τzz




is called the deviatoric stress tensor. Its existence is entirely attributable to the defor-
mational motion of a fluid.

The purpose of the following analysis will be to find an explicit form of the re-
lationship between T and the rate-of-strain tensor E . Such a relationship is termed
the constitutive equation. Since the rate-of-strain tensor (1.4.26) is symmetrical, there
exists a privileged Cartesian coordinate system (x̂, ŷ, ẑ) where E assumes a diagonal
form 


εx̂x̂ 0 0
0 εŷŷ 0
0 0 εẑẑ


 . (1.5.3)

These coordinates are called the principal axes of the rate-of-strain tensor.
Our strategy will be to deduce the constitutive equation in the principal axes

(x̂, ŷ, ẑ) and then we will return to the original Cartesian coordinates (x, y, z). If we
write the deviatoric stress tensor in the principal (x̂, ŷ, ẑ)-axes,

T =



τx̂x̂ τx̂ŷ τx̂ẑ
τŷx̂ τŷŷ τŷẑ
τẑx̂ τẑŷ τẑẑ


 , (1.5.4)
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then each element in (1.5.4) has to be a function of the three elements of the tensor
(1.5.3).

In this presentation, we restrict our attention to fluids that satisfy the following
two postulates.

1. Linearity postulate. All the elements of the deviatoric stress tensor (1.5.4)
are linear functions of the three elements of the rate-of-strain tensor (1.5.3). For
example, the first diagonal element may be written as

τx̂x̂ = a1εx̂x̂ + a2εŷŷ + a3εẑẑ . (1.5.5)

Here the coefficients a1, a2, and a3 are assumed to be independent on the velocity
field, but might depend on the local thermodynamic state of the fluid.

2. Isotropy postulate. The form of the equations, such as (1.5.5), relating the
elements of the deviatoric stress tensor (1.5.4) to the elements of the rate-of-
strain tensor (1.5.3) should be independent on the choice of Cartesian coordinates
aligned with the principal axes.

Applying the first postulate to the second diagonal element of the tensor (1.5.4),
we can write

τŷŷ = b1εx̂x̂ + b2εŷŷ + b3εẑẑ . (1.5.6)

We shall now prove that the coefficients b1, b2, b3 in (1.5.6) are not independent of the
coefficients a1, a2, a3 in (1.5.5). For this purpose, we rotate the coordinate system as
shown in Figure 1.20. According to the second postulate, equation (1.5.6) is invariant
with respect to the rotation, and in the ‘new coordinates’ (x̂′, ŷ′, ẑ′), it should be
written as

τŷ′ŷ′ = b1εx̂′x̂′ + b2εŷ′ŷ′ + b3εẑ′ẑ′ .

It is obvious that τŷ′ŷ′ and τx̂x̂ represent the same physical quantity, the projection on
the x̂-axis of the stress acting on a surface element drawn perpendicular to the x̂-axis
(with the pressure subtracted). Hence, we can write

τx̂x̂ = τŷ′ŷ′ = b1εx̂′x̂′ + b2εŷ′ŷ′ + b3εẑ′ẑ′ . (1.5.7)

ŷ′

ẑ′

ẑ

ŷ

x̂

x̂′

Fig. 1.20: Rotation of the principal axes.
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It further easily seen from Figure 1.20 that

x̂′ = ẑ, ŷ′ = x̂, ẑ′ = ŷ,

û′ = ŵ, v̂′ = û, ŵ′ = v̂.

Consequently, using the formula for the first diagonal element of E in (1.4.26), we find

εx̂′x̂′ =
∂û′

∂x̂′
=
∂ŵ

∂ẑ
= εẑẑ. (1.5.8)

Similarly, it can be deduced that

εŷ′ŷ′ = εx̂x̂, εẑ′ẑ′ = εŷŷ. (1.5.9)

Substitution of (1.5.8) and (1.5.9) into (1.5.7) results in

τx̂x̂ = b1εẑẑ + b2εx̂x̂ + b3εŷŷ. (1.5.10)

It remains to compare (1.5.10) with (1.5.5), and we can conclude that b1 = a3, b2 = a1,
and b3 = a2, which allows us to write (1.5.6) as

τŷŷ = a1εŷŷ + a2εẑẑ + a3εx̂x̂ . (1.5.11)

Similarly, it may be shown that

τẑẑ = a1εẑẑ + a2εx̂x̂ + a3εŷŷ . (1.5.12)

Let us now show that a2 = a3. For this purpose, we rotate the coordinate system
around the x̂-axis through a right angle as shown in Figure 1.21. The new axes x̂′, ŷ′,

x̂

ŷ

ẑ

Sx̂

ẑ′

x̂′

ŷ′

Fig. 1.21: Rotation of the principal axes around the x̂-axis through an angle π/2.
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and ẑ′ lie along the principal axes of the rate-of-strain tensor E , and therefore, accord-
ing to the second postulate, we can still use equation (1.5.5). In the new coordinates,
it is written as

τx̂′x̂′ = a1εx̂′x̂′ + a2εŷ′ŷ′ + a3εẑ′ẑ′ . (1.5.13)

The new and old coordinates and the components of the velocity vector are related to
one another as

x̂′ = x̂, ŷ′ = ẑ, ẑ′ = −ŷ,
û′ = û, v̂′ = ŵ, ŵ′ = −v̂.

Consequently,

εx̂′x̂′ =
∂û′

∂x̂′
=
∂û

∂x̂
= εx̂x̂ , εŷ′ŷ′ =

∂v̂′

∂ŷ′
=
∂ŵ

∂ẑ
= εẑẑ ,

εẑ′ẑ′ =
∂ŵ′

∂ẑ′
=
∂v̂

∂ŷ
= εŷŷ .

Using these in (1.5.13), we find

τx̂′x̂′ = a1εx̂x̂ + a3εŷŷ + a2εẑẑ . (1.5.14)

It remains to compare (1.5.14) with (1.5.5) and take into account that τx̂′x̂′ and τx̂x̂
represent the same physical quantity, namely, the normal component of the stress act-
ing upon surface Sx̂ drawn perpendicular to the x̂-axis, with the pressure subtracted.
We see that a2 and a3 are really equal to one another.

Two factors a1 and a2 in (1.5.5), (1.5.11), and (1.5.12) remain independent of one
another. If instead we introduce parameters λ and µ such that

a1 = λ+ 2µ, a2 = a3 = λ,

then equations (1.5.5), (1.5.11), and (1.5.12) assume the forms

τx̂x̂ = λ(εx̂x̂ + εŷŷ + εẑẑ) + 2µεx̂x̂ ,

τŷŷ = λ(εx̂x̂ + εŷŷ + εẑẑ) + 2µεŷŷ ,

τẑẑ = λ(εx̂x̂ + εŷŷ + εẑẑ) + 2µεẑẑ .





(1.5.15)

The parameter µ is called the first viscosity coefficient and the parameter λ the second
viscosity coefficient. Since

εx̂x̂ + εŷŷ + εẑẑ =
∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
= divV,

equations (1.5.15) may be written as

τx̂x̂ = λ divV + 2µεx̂x̂ ,

τŷŷ = λ divV + 2µεŷŷ ,

τẑẑ = λ divV + 2µεẑẑ .





(1.5.16)
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We shall now show that all the non-diagonal elements of the deviatoric stress tensor
(1.5.4) vanish when T is written in the principal axes x̂, ŷ, ẑ of the rate-of-strain tensor
E . It is sufficient to prove that τx̂ŷ = 0. According to the first postulate, we can write

τx̂ŷ = c1εx̂x̂ + c2εŷŷ + c3εẑẑ . (1.5.17)

If we rotate the coordinate system around the x̂-axis through an angle π, as shown in
Figure 1.22, then, using postulate 2, we can also write

τx̂′ŷ′ = c1εx̂′x̂′ + c2εŷ′ŷ′ + c3εẑ′ẑ′ . (1.5.18)

The new and old coordinates, and the corresponding velocity components, are related
as

x̂′ = x̂, ŷ′ = −ŷ, ẑ′ = −ẑ,
û′ = û, v̂′ = −v̂, ŵ′ = −ŵ.

Consequently,

εx̂′x̂′ =
∂û′

∂x̂′
=
∂û

∂x̂
= εx̂x̂ , εŷ′ŷ′ =

∂v̂′

∂ŷ′
=
∂v̂

∂ŷ
= εŷŷ ,

εẑ′ẑ′ =
∂ŵ′

∂ẑ′
=
∂ŵ

∂ẑ
= εẑẑ ,

which, when substituted into equation (1.5.18), render it in the form

τx̂′ŷ′ = c1εx̂x̂ + c2εŷŷ + c3εẑẑ. (1.5.19)

Since the right-hand sides in (1.5.19) and (1.5.17) coincide with one another, we can
conclude that

τx̂′ŷ′ = τx̂ŷ. (1.5.20)

The second equation relating these quantities may be deduced by simply recalling
the physical content of τx̂ŷ and τx̂′ŷ′ : the former is the ŷ-projection of the stress acting

x̂

ŷ

ẑ

Sx̂

ŷ′

x̂′

ẑ′

Fig. 1.22: Rotation of the coordinate system around the x̂-axis through an angle π.
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upon the surface Sx̂ drawn perpendicular to the x̂-axis (see Figure 1.22), while the
latter is the projection of the same stress on the ŷ′-axis. Since the ŷ- and ŷ′-axes are
directed opposite to one another,

τx̂′ŷ′ = −τx̂ŷ. (1.5.21)

It follows from (1.5.20) and (1.5.21) that τx̂ŷ is, indeed, zero, and we can conclude
that the deviatoric stress tensor (1.5.4) assumes a diagonal form

T =



τx̂x̂ 0 0
0 τŷŷ 0
0 0 τẑẑ


 . (1.5.22)

Using (1.5.16) in (1.5.22), we find that the sought constitutive equation has the form

T = λ divV




1 0 0
0 1 0
0 0 1


+ 2µ



εx̂x̂ 0 0
0 εŷŷ 0
0 0 εẑẑ


 ,

or, equivalently,
T = λdivV I + 2µ E . (1.5.23)

Tensor equations, such as (1.5.23), do not depend on a choice of the coordinate
system. Therefore, we can now return from the principal axes (x̂, ŷ, ẑ) to arbitrarily
oriented Cartesian coordinates (x, y, z); equation (1.5.23) will remain valid. Substi-
tuting (1.5.23) into (1.5.2), we find that the constitutive equation relating the stress
tensor P to the rate-of-strain tensor E has the form

P = (−p+ λ divV) I + 2µ E , (1.5.24)

or, equivalently,



pxx pxy pxz
pyx pyy pyz
pzx pzy pzz


 = (−p+ λ divV)




1 0 0
0 1 0
0 0 1


+ 2µ



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


 .

It remains to make use of equation (1.4.26) that expresses the elements of the rate-of-
strain tensor in terms of the velocity components, and we can conclude that

pij = (−p+ λ divV) δij + µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
, i, j = 1, 2, 3. (1.5.25)

Here we use index notation, with coordinates (x, y, z) denoted by (x1, x2, x3) and the
velocity components (u, v, w) by (V1, V2, V3) respectively; δij is the Kronecker delta,

δij =

{
1 if i = j

0 if i 6= j
.

The following experiment may be used to reveal the physical significance of the
coefficient µ in the constitutive equation (1.5.25). Let us consider two coaxial cylinders
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Fig. 1.23: Flow between two coaxial cylinders.

of radii R1 and R2 respectively and suppose that the annular space between them is
filled with a fluid (see Figure 1.23). Suppose further that the internal cylinder is held at
rest, while the external cylinder is rotated around its axis. Owing to the viscosity of the
fluid, a certain torque has to be applied to the external cylinder to keep it moving. This
torque may easily be recorded and then used to determine the viscosity characteristics
of the fluid. For more details, see Section 2.1.4 and Problem 6 in Exercises 6.

If the distance h = R2 − R1 between the cylinders is small compared with the
average radius R = 1

2
(R1 + R2), then the problem reduces to a simple Couette flow

between two parallel plates, as shown in Figure 1.24. In this flow, the fluid moves in
layers parallel to the plates with a velocity that grows linearly with distance y from
the lower flat plate (see Section 2.1.1):

u =
U

h
y.

Here U denotes the velocity of the upper plate.
Taking into account that in Couette flow the velocity component normal to the

plates v = 0, we can easily deduce from (1.5.25) that the shear stress acting between
the fluid layers

τyx = µ
∂u

∂y
. (1.5.26)

x

y

h

U

Fig. 1.24: Couette flow.

R
1

R2
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For Couette flow, equation (1.5.26) takes the form

τyx = µ
U

h
.

Therefore, with S being the surface area of the upper plate, the force that should be
applied to this plate to keep it in a steady motion may be calculated as

F = µ
U

h
S.

Formula (1.5.26) is known as the Newtonian law. The coefficient µ depends on the
fluid considered and is called the viscosity coefficient or, more precisely, the dynamic
viscosity coefficient in contrast to the kinematic viscosity coefficient, which is defined as

ν =
µ

ρ
.

Experimental measurements show that for most fluids the viscosity µ is a function
of temperature only; under normal conditions, µ does not depend on pressure. It
appears to behave differently for liquids and gases. For liquids, µ normally decays as
the temperature rises. In contrast, for gases, µ grows with temperature. Tables 1.1 and
1.2 show the viscosity coefficients for water and air.

It should be noted that liquid flows, as well as slow gas flows (with speed small
compared with the speed of sound), are incapable of producing a noticeable variation
of temperature. Therefore, unless the moving fluid is heated or cooled by an external
source, the viscosity coefficient µ may be assumed constant throughout the flow field.
For high-speed subsonic and supersonic gas flows, the temperature variations become
significant, and in order to study such flows one needs to specify the dependence of
µ on the temperature T . A good approximation of the experimental data is given by
the Sutherland law:

µ

µ0
=

(
T

T0

)3/2
T0 + S

T + S
.

Here the temperature T is measured on the Kelvin scale; for air S = 110.4K, T0 =
273.1K, and µ0 is the value of the viscosity coefficient at 0◦C (see Table 1.2).

Table 1.1: The viscosity coefficient of water as a function of temperature

Temperature

(◦C)
µ× 103(kgm−1s−1)

Temperature

(◦C)
µ× 103(kgm−1s−1)

0 1.792 40 0.656
5 1.519 45 0.599
10 1.308 50 0.549
15 1.140 60 0.469
20 1.005 70 0.406
25 0.894 80 0.357
30 0.801 90 0.317
35 0.723 100 0.284
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Table 1.2: The viscosity coefficient of air as a function of temperature

Temperature

(◦C)
µ× 105(kgm−1s−1)

Temperature

(◦C)
µ× 105(kgm−1s−1)

0 1.709 260 2.806
20 1.808 280 2.877
40 1.904 300 2.946
60 1.997 320 3.014
80 2.088 340 3.080

100 2.175 360 3.146
120 2.260 380 3.212
140 2.344 400 3.277
160 2.425 420 3.340
180 2.505 440 3.402
200 2.582 460 3.463
220 2.658 480 3.523
240 2.733 500 3.583

For theoretical studies of viscous gas flows, the power law

µ

µ∗
=

(
T

T∗

)n

is often used. The choice of reference values of viscosity µ∗ and temperature T∗ depends
on the particular problem considered. For example, in a uniform flow past a rigid
body, µ∗ and T∗ may be chosen to coincide with the values of the viscosity µ∞ and
temperature T∞ in the oncoming flow. As far as the parameter n is concerned, we shall
see in Part 3 of this book series that the theoretical analysis of high-speed boundary-
layer flows may be significantly simplified by choosing n = 1; however, experimental
data are better represented with n = 0.76.

Let us now turn our attention to the second viscosity coefficient λ. With the pres-
sure defined by equation (1.2.15), it may easily be deduced that

λ = −2

3
µ. (1.5.27)

Indeed, using (1.5.25) in (1.2.15), we find

p = −1

3

(
p11 + p11 + p11

)
= p−

(
λ+

2

3
µ
)
divV. (1.5.28)

If divV = 0, then the second viscosity has no significance, since the term λdivV simply
disappears in the constitutive equation (1.5.25). If, on the other hand, divV 6= 0, then
to satisfy equation (1.5.28) we have to set λ+ 2

3µ = 0. Substituting (1.5.27) back into
(1.5.25), we can finally express the constitutive equation in the form

pij = −
(
p+

2

3
µdivV

)
δij + µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
. (1.5.29)
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To conclude this discussion, we shall make the following comments on the two
postulates that were used in the above analysis leading to the constitutive equation
(1.5.29). The isotropy postulate represents one of the fundamental physical principles
any isotropic fluid should obey. The linearity postulate is an approximation valid for
fluid motions with not too strong velocity gradients, when the leading-order linear term
of the Taylor expansion may be used to approximate an ‘exact’ relationship between
the stress and rate-of-strain tensors. A large body of experimental evidence shows that
under normal conditions many common liquids and all gases satisfy this restriction,
and their motion may be described quite accurately based on the constitutive equation
(1.5.29). Such fluids are termed Newtonian, in recognition of the fact that the simple
relationship (1.5.26) was proposed by Newton.

In the other category are liquids with unusual molecular structure, for example
those with long molecular chains, such as synthetic paints, plastic materials, rubber-
like liquids, and some emulsions and suspensions, for which the constitutive equation
(1.5.29) becomes inaccurate in normal flow conditions. Such liquids are termed non-
Newtonian, and they will not be considered further in these books.

Exercises 3

1. When deducing the constitutive equation (1.5.25), rotation of coordinates was
used: first they were rotated from general Cartesian coordinates to the principle
axes of the rate-of-strain tensor, and then, after the form of the constitutive
equation (1.5.23) has been established in the principle axes, they were rotated
back to the original coordinates. At this stage, it was implicitly assumed that the
constitutive equation (1.5.23) remained invariant with respect to the rotation.
However, this is only true if both the stress and rate-of-strain tensors are real
tensors (more precisely, affine orthogonal tensors of second rank), i.e. they satisfy
conventional rules of tensor transformation with transformation of coordinates.
These rules are formulated as follows.

Suppose that Cartesian coordinate systems (Ox1x2x3) and (Ox′1x
′
2x

′
3) have

common origin O, and may be obtained from one another by rotation around
O. Let (e1, e2, e3) be the coordinate unit vectors in the (Ox1x2x3) coordinate
system and (e′1, e

′
2, e

′
3) the coordinate unit vectors in the (Ox′1x

′
2x

′
3) coordinate

system. Then the transformations of coordinates from x1, x2, x3 to x′1, x
′
2, x

′
3 and

backwards are performed by means of the equations

x′i = αijxj , xi = αjix
′
j ,

where αij are the cosines of the angles between the corresponding axes, which
may be expressed as

αij = cos
(
x

′

i, xj
)
= e′i · ej .

For

Q =



q11 q12 q13
q21 q22 q23
q31 q32 q33
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to be a tensor, its elements should satisfy the following transformation rule:

q′ij = αikαjlqkl.

Using this information and

(a) applying equation (1.2.10) for a direction n = e′i along the x′i-axis, prove that
the stress tensor (1.2.6) is a real tensor;

(b) taking into account that the velocity components transform as

V ′
i = αij , Vi = αjiV

′
j ,

prove that the rate-of-strain tensor (1.4.26) is also a real tensor.

1.6 Equations of Motion

The differential equations describing fluid motion may be deduced from conservation
of mass, momentum, and energy. The mass conservation law has been already used
to formulate the Lagrangian continuity equation (1.4.6). We shall now do it using
Eulerian variables.

1.6.1 Continuity equation in Eulerian variables

In order to formulate the mass conservation law in Eulerian variables, we shall consider
an arbitrary region D fixed in space (see Figure 1.25a) with fluid passing through D
as time t increases. We denote the surface surrounding region D by S and the external
unit normal to S by n. The fluid mass contained in region D at instant t is given by
the integral

m(t) =

∫∫∫

D

ρ(t, r) dτ, (1.6.1)

where dτ is a volume element in D.
Notice that time t plays the role of a parameter in the integral (1.6.1). Since region

D does not change with time, the differentiation of (1.6.1) involves variation of the
integrand only. We have

dm

dt
=

∫∫∫

D

∂ρ

∂t
dτ, (1.6.2)

which represents the rate of change of mass inside region D.
Provided that there are no sources or sinks of fluid inside D, this mass variation

can be due only to the influx of fluid through the surface S. The mass flux through a
small element ds of the surface S is given by

ρ
(
V · n

)
ds.

It equals the local density ρ multiplied by the volume of the slanted parallelepiped (see
Figure 1.25b) swept by the fluid passing through ds per unit time. The area of the
base of the parallelepiped is ds and its ribs are |V| long and have the same direction
as the velocity vector V.
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The total mass flux through the entire surface S is

∫∫

S

(
ρV · n

)
ds. (1.6.3)

Since n is the external normal, the integral (1.6.3) represents the outflow from region
D. So the mass conservation law, applied to D, can be written as

∫∫

S

(
ρV · n

)
ds = −dm

dt
.

Applying Gauss’s divergence theorem to the left-hand side of this equation, we have

∫∫∫

D

div(ρV) dτ = −dm
dt
. (1.6.4)

Combining (1.6.2) with (1.6.4) results in

∫∫∫

D

[
∂ρ

∂t
+ div(ρV)

]
dτ = 0. (1.6.5)

Let us suppose that both ρ and V have continuous derivatives. Then, by virtue of
the arbitrariness of region D, the integrand in (1.6.5) should be zero everywhere in
the flow field, and so

∂ρ

∂t
+ div(ρV) = 0. (1.6.6)

S

ds

D

n

x

y

z

(a) Region D used in derivation of the mass con-
servation law.

ds
n

V

|V|

(b) Zoomed surface element ds and cylindri-
cal region filled by the fluid passing through
ds per unit time.

Fig. 1.25: Geometrical layout used in the derivation of the mass conservation law.
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Indeed, if the function

Φ =
∂ρ

∂t
+ div(ρV)

did not vanish (say, it was positive) at least at one point in the flow, then, because Φ
is continuous, it would be positive in a small vicinity of this point. Hence the integral
(1.6.5) taken over such a vicinity would also be positive.

Equation (1.6.6) is the continuity equation in Eulerian variables. In Chapters 2 and
3, we will be dealing with so-called incompressible fluid flows. These are flows where
the fluid density ρ remains constant, and the continuity equation (1.6.6) reduces to

divV = 0. (1.6.7)

1.6.2 Momentum equation

We shall now formulate the fluid-dynamic version of Newton’s Second Law. When
applied to a solid body, Newton’s Second Law is written as

ma = F. (1.6.8)

Here m is the mass of the body, a its acceleration, and F the force applied to the body.
The following three remarks should be made concerning equation (1.6.8). First,

this equation is valid if a body’s motion is analysed in the framework of an inertial
coordinate system. Second, if more than one force is applied to the body, then the
vector F in (1.6.8) must be interpreted as the resultant force that is equal to the
vector sum of all forces acting on the body. Third, if the body is not ‘small’ and
its different parts experience different accelerations, then equation (1.6.8) serves to
determine the acceleration a of the mass centre. A convenient idealisation is based
on the assumption that the body size is small compared with the characteristic path
traced by the body during the time of observation, in which case the body may be
thought as a material point. In fluid dynamics, the role of material points is played by
the fluid particles.

Let us consider an assemblage of N material points. Each element obeys Newton’s
Second Law

mi
dVi

dt
= Fi. (1.6.9)

Here suffix i is used to enumerate the elements in the assemblage, and the acceleration
ai of the ith element is written via the velocity derivative dVi/dt. Since the mass mi

does not vary with time, equation (1.6.9) may also be written as

dKi

dt
= Fi, (1.6.10)

with Ki = miVi being the momentum of the ith material point.
The force Fi is represented as a superposition of internal and external forces:

Fi =

N∑

j=1

Fij +Fie, (1.6.11)

where Fij is the force exerted by the element with number j upon the element with
number i, and Fie is the external force produced by any physical agents outside the
system under consideration.
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Substitution of (1.6.11) into (1.6.10) and summation over all the elements in the
assemblage yields the momentum equation

dK

dt
= R, (1.6.12)

where K is the momentum of the entire material system,

K =
N∑

i=1

miVi, (1.6.13)

and R is the resultant external force,

R =
N∑

i=1

Fie.

Internal forces obviously cancel in the course of summation owing to Newton’s Third
Law, which states that an action and reaction are equal and opposite: Fij = −Fji.

Now we shall apply equation (1.6.12) to a moving fluid. To express the derivative
dK/dt on the left-hand side of (1.6.12) in terms of the fluid-dynamic variables, we
have to keep in mind that the momentum equation (1.6.12) is valid for a material
system consisting of the same elements; no exchange of matter between the system
under consideration and the surrounding medium is allowed.

Let D be again an arbitrary region in an inertial coordinate system. The surface
surrounding D we will denote as before by S and the external unit normal to S by n

(see Figure 1.26). However, now we shall treat this region differently. We choose an
arbitrary instant t and ‘mark’ all the fluid particles that happen to be inside D at this
instant. Then we follow these fluid particles as time increases; considered together,

S

ds

D

n

x

y

z

Fig. 1.26: Fluid body deforming with time.
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they form a fluid body, to which we shall apply the momentum equation (1.6.12). The
momentum (1.6.13) of the body is expressed by the integral

K(t) =

∫∫∫

D

ρ(t, r)V(t, r) dτ. (1.6.14)

Direct differentiation of (1.6.14) with respect to t involves differentiation of the
integrand ρV as well as analysis of the fluid body deformation,10 which is significantly
more intricate. This may be avoided if, before differentiating K(t), a transformation of
integration variables is performed in (1.6.14) with new variables chosen in such a way
that the region of integration ceases to depend on time t. A proper choice is obviously
provided by the Lagrangian position vector function

r = r(t, r0), (1.6.15)

which relates the ‘initial location’ r0 of a fluid particle at time t0 to its current location
r at time t. Formula (1.6.15) may obviously be considered as a transformation of
variables from (x, y, z) to (x0, y0, z0) and vice versa. Using (1.6.15) in (1.6.14) results in

K(t) =

∫∫∫

D0

ρ
[
t, r(t, r0)

]
V
[
t, r(t, r0)

]∣∣∣∣
∂(x, y, z)

∂(x0, y0, z0)

∣∣∣∣ dτ0 , (1.6.16)

where D0 is the region occupied by the fluid body at the initial time t0 and dτ0 is a
volume element from D0.

It follows from the continuity equation in Lagrangian variables (1.4.6) that
∣∣∣∣
∂(x, y, z)

∂(x0, y0, z0)

∣∣∣∣ =
ρ0
ρ
.

Hence, (1.6.16) may be rewritten as

K(t) =

∫∫∫

D0

ρ0V
[
t, r(t, r0)

]
dτ0 . (1.6.17)

Here both the initial density ρ0 and initial region D0 are independent of t. Therefore
differentiation of (1.6.17) yields

dK

dt
=

∫∫∫

D0

ρ0

[
∂V

∂t
+
∂V

∂x

∂x(t, r0)

∂t
+
∂V

∂y

∂y(t, r0)

∂t
+
∂V

∂x

∂z(t, r0)

∂t

]
dτ0 .

Taking into account that the expression in the square brackets is the acceleration of a
fluid particle (1.4.10), we can further write

dK

dt
=

∫∫∫

D0

ρ0
DV

Dt
dτ0.

10The shape of the body at the next instant t+ dt is depicted in Figure 1.26 by the dashed line.
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It remains to return to the original integration variables (x, y, z), and we will have

dK

dt
=

∫∫∫

D

ρ
DV

Dt
dτ. (1.6.18)

We shall now calculated the resultant force R acting on the fluid inside region D.
As we know, all the forces acting on a moving fluid may be subdivided into two classes:
body forces and surface forces. With f(r, t) denoting the body force upon a unit mass,
the force acting on a volume element dτ inside D is calculated as

ρ(r, t)f(r, t) dτ,

and the entire body force acting upon the fluid contained in region D proves to be

∫∫∫

D

ρ(r, t)f(r, t) dτ. (1.6.19)

Let us now turn to the surface forces. According to (1.2.3), an element ds of the
surface S surrounding region D experiences a force (see Figure 1.27)

dPn = pn ds. (1.6.20)

The total force acting upon the fluid in D through S is calculated as

Rs =

∫∫

S

pn ds. (1.6.21)

S

ds

D

n

x

y

z

Fig. 1.27: Calculation of the surface force.
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Adding (1.6.21) to (1.6.19), we obtain the resultant force R that should be used on the
right-hand side of equation (1.6.12). Using for the left-hand side the formula (1.6.18),
we arrive at the following integral form of the momentum equation:

∫∫∫

D

ρ
DV

Dt
dτ =

∫∫∫

D

ρ f dτ +

∫∫

S

pn ds. (1.6.22)

In order to express this equation in a differential form, we need to convert the
integral (1.6.21) for the surface force Rs into a volume integral. When performing
this task, it is convenient to use index notation, with (x, y, z) denoted as (x1, x2, x3).
Taking into account that, according to (1.2.10),11

pn = nipi,

the projection of the vector equation (1.6.21) on the xα-axis may be written as

Rs

∣∣∣
α
=

∫∫

S

nipiα ds, α = 1, 2, 3. (1.6.23)

If we introduce the vector A = (A1, A2, A3) such that

Ai = piα, i = 1, 2, 3,

then the right-hand side of (1.6.23) may be expressed via the scalar product of A and
the normal unit vector n. We have

Rs

∣∣∣
α
=

∫∫

S

(
A · n

)
ds.

Now Gauss’s divergence theorem may be used, leading to

Rs

∣∣∣
α
=

∫∫∫

D

divA dτ.

Here

divA =
∂Ai

∂xi
=
∂piα
∂xi

,

and therefore

Rs

∣∣∣
α
=

∫∫∫

D

∂piα
∂xi

dτ. (1.6.24)

11Here we again use the well-known summation convention according to which terms containing a
repeated suffix are to be regarded as summed over all three possible values of the suffix, i.e.

nipi =

3
∑

i=1

nipi.
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Since equation (1.6.24) is valid for all α = 1, 2, 3 , it may be written in vector form as

Rs =

∫∫∫

D

divP dτ. (1.6.25)

The vector divP is referred to as the divergence of the stress tensor (1.2.6); its com-
ponents are written as

(
divP

)
x
=
∂pxx
∂x

+
∂pyx
∂y

+
∂pzx
∂z

,

(
divP

)
y
=
∂pxy
∂x

+
∂pyy
∂y

+
∂pzy
∂z

,

(
divP

)
z
=
∂pxz
∂x

+
∂pyz
∂y

+
∂pzz
∂z

.





(1.6.26)

Substitution of (1.6.25) into (1.6.22) yields

∫∫∫

D

(
ρ
DV

Dt
− ρf − divP

)
dτ = 0,

and we can conclude that in a region of smooth variation of the fluid-dynamic functions
ρ, p, and V, the following equation holds:

ρ
DV

Dt
= ρf + divP , (1.6.27)

which represents the sought differential form of the momentum equation.

1.6.3 The energy equation

To derive the energy equation we shall return to the First Law of Thermodynamics
(1.3.11) and apply it to the fluid body contained at time t inside region D as shown in
Figure 1.26. Instead of the work performed by the body, we will consider an opposite
quantity, the work performed by the forces acting upon the body. Correspondingly, we
shall write equation (1.3.11) in the form

dE

dt
=W +Q, (1.6.28)

where E is the energy of the fluid body, W the work performed per unit time by the
forces acting on the body, and Q the rate of heat transfer to the body.

In a fluid in motion, the energy E consists of the internal energy of fluid particles
and their kinetic energy. The internal energy per unit mass is e. Hence the internal
energy of a fluid particle occupying a volume element dτ is eρ dτ . The kinetic energy
of the fluid particle is 1

2V
2ρ dτ . This means that the entire energy E of the fluid body

occupying region D at time t may be written as

E(t) =

∫∫∫

D

ρ

(
e+

V 2

2

)
dτ.
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The derivative of this function is calculated in the same way as the derivative of the
momentum K(t) given by (1.6.18). We have

dE

dt
=

∫∫∫

D

ρ
D

Dt

(
e+

V 2

2

)
dτ. (1.6.29)

Let us now calculate the work W on the right-hand side of (1.6.28). It is known
that the work is given by the scalar product F · δr of the force F acting on a body,
and the distance δr travelled by the body. Thus the work per unit time will be F ·V.
The work performed by the body force acting on a fluid particle is ρ

(
f · V

)
dτ , and

therefore the entire work of the body forces acting upon region D is

Wb =

∫∫∫

D

ρ
(
f ·V

)
dτ. (1.6.30)

The surface force acting on an element ds of surface S (see Figure 1.27) is given by
equation (1.6.20). The work performed by this force is

(
pnds ·V

)
. Integrating over the

entire surface S surrounding the fluid body in region D yields

Ws =

∫∫

S

(
pn ·V

)
ds. (1.6.31)

The second term on the right-hand side of equation (1.6.28) represents the heat
rate Q. We shall assume that the only physical process that leads to heat transfer is
the heat conduction due to the temperature variation in the flow field.12 The heat
conduction vector q is known to be proportional to the temperature gradient, i.e.

q = −κ∇T,

where κ is a positive constant called the heat conductivity coefficient. It depends on
the temperature only, and is related to the dynamic viscosity coefficient, µ, such that
the quantity

Pr =
µcp
κ
, (1.6.32)

called the Prandtl number, can be treated as a constant for a given fluid. In particular,
for air at ‘room temperature’ and atmospheric pressure, Pr ≈ 0.713.

With n being the external normal to the surface S (see Figure 1.27), the heat
transfer towards the fluid body contained in region D is calculated as

Q = −
∫∫

S

(
q · n

)
ds =

∫∫

S

(
κ∇T · n

)
ds. (1.6.33)

Substituting (1.6.29), (1.6.30), (1.6.31), and (1.6.33) into (1.6.28), we arrive at the

12In hypersonic flows, the gas temperature might become sufficiently high to provoke an additional
process, namely radiation of heat.
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following integral form of the energy equation:
∫∫∫

D

ρ
D

Dt

(
e+

V 2

2

)
dτ =

∫∫∫

D

ρ f ·V dτ +

∫∫

S

pn ·V ds+

∫∫

S

κ∇T · n ds. (1.6.34)

In order to convert the surface work integral (1.6.31) into a volume integral, we
again use formula (1.2.10). We have

pn ·V = (nipi) ·V = ni

(
pi ·V

)
= nipijVj .

Hence, if we introduce a vector A = (A1, A2, A3) such that

Ai = pijVj , i = 1, 2, 3, (1.6.35)

then the integral (1.6.31) may be written as

Ws =

∫∫

S

pn ·V ds =

∫∫

S

(
A · n

)
ds.

Now we can use Gauss’s divergence theorem. We have
∫∫

S

pn ·V ds =

∫∫∫

D

divA dτ =

∫∫∫

D

div(PV) dτ. (1.6.36)

Here it is taken into account that the vector A, whose components are defined by
equation (1.6.35), is equal to the product of the stress tensor (1.2.6) and the velocity
vector V.

Applying Gauss’s divergence theorem also to the heat transfer integral on the
right-hand side of equation (1.6.34), we can express this equation in the form

∫∫∫

D

[
ρ
D

Dt

(
e+

V 2

2

)
− ρ f ·V − div(PV)− div(κ∇T )

]
dτ = 0.

Taking into account that the region D is arbitrary, we deduce that the integrand must
be zero. We have

ρ
D

Dt

(
e+

V 2

2

)
= ρ f ·V + div(PV) + div(κ∇T ) = 0. (1.6.37)

The kinetic energy term on the left-hand side of (1.6.37) may be calculated using
the momentum equation (1.6.27). Indeed, scalar multiplication of (1.6.27) with the
velocity vector V yields

ρ
D

Dt

(
V 2

2

)
= ρ f ·V +V · divP ,

which, when subtracted from (1.6.37), results in the following form of the energy
equation:

ρ
De

Dt
= div(PV)−V · divP + div(κ∇T ). (1.6.38)
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1.7 The Navier–Stokes Equations

The Navier–Stokes equations are obtained by using the constitutive equation (1.5.25)
in the momentum (1.6.27) and energy (1.6.38) equations. At this stage, it is convenient
to consider incompressible and compressible fluid flows separately.

1.7.1 Incompressible fluid flows

In an incompressible flow, the fluid density ρ is a constant quantity, which means that
the continuity equation (1.6.6) may be written as

divV = 0. (1.7.1)

Consequently, the constitutive equation (1.5.25) reduces to

pij = −pδij + µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
. (1.7.2)

As has already been mentioned in Section 1.5, liquid flows, as well as slow gas flows, are
incapable of producing a noticeable variation of temperature. Therefore, the viscosity
coefficient µ may be assumed constant in (1.7.2).

Now, we need to write equations (1.6.26) using index notations. We see that, with
i playing the role of the summations index, the projection of divP upon the xj-axis is

(
divP

)
j
=
∂pij
∂xi

, j = 1, 2, 3. (1.7.3)

Substitution of (1.7.2) into (1.7.3) yields

(
divP

)
j
= − ∂p

∂xj
+ µ

∂

∂xi

(
∂Vi
∂xj

)
+ µ

∂2Vj
∂xi∂xi

.

Changing the order of differentiation in the second term,

∂

∂xi

(
∂Vi
∂xj

)
=

∂

∂xj

(
∂Vi
∂xi

)
=

∂

∂xj

(
divV

)
,

and using the continuity equation (1.7.1), we arrive at the conclusion that this term
is zero. Hence,

(
divP

)
j
= − ∂p

∂xj
+ µ

∂2Vj
∂xi∂xi

, j = 1, 2, 3.

In vector form, this equation is written as

divP = −∇p+ µ∇2V, (1.7.4)

where the symbol ∇2V denotes a vector whose components are
(
∇2u,∇2v,∇2w

)
.
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With (1.7.4), the momentum equation (1.6.27) becomes13

DV

Dt
= f − 1

ρ
∇p+ ν∇2V. (1.7.5a)

This should be supplemented with the continuity equation

divV = 0 (1.7.5b)

to form a closed set of Navier–Stokes equations that govern the motion of incompress-
ible fluids. In coordinate decomposition form, they are written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= fx − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (1.7.6a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= fy −

1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (1.7.6b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= fz −

1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
, (1.7.6c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.7.6d)

These four equations involve four unknown functions: the velocity components u, v,
w and the pressure p. It should be noted here that when calculating the velocity and
pressure fields in an incompressible flow, we do not need the energy equation.

1.7.2 Compressible fluid flows

We start again with the momentum equation (1.6.27). This may be projected on the
three coordinate axes. The x-component of the momentum equation is written, using
the first of equations (1.6.26), as

ρ
Du

Dt
= ρfx +

∂pxx
∂x

+
∂pyx
∂y

+
∂pzx
∂z

. (1.7.7)

From the constitutive equation (1.5.25), it is easily found that

pxx = −p+ µ

[
4

3

∂u

∂x
− 2

3

(
∂v

∂y
+
∂w

∂z

)]
,

pyx = µ

(
∂v

∂x
+
∂u

∂y

)
,

pzx = µ

(
∂w

∂x
+
∂u

∂z

)
,

13Recall that the kinetic viscosity ν = µ/ρ.
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which, after substitution into (1.7.7), yields

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= ρfx − ∂p

∂x
+

∂

∂x

{
µ

[
4

3

∂u

∂x
− 2

3

(
∂v

∂y
+
∂w

∂z

)]}

+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
. (1.7.8)

Similarly, the y-component of the momentum equation may be shown to be

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= ρfy −
∂p

∂y
+

∂

∂y

{
µ

[
4

3

∂v

∂y
− 2

3

(
∂u

∂x
+
∂w

∂z

)]}

+
∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]
, (1.7.9)

and the z-component is written as

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= ρfz −
∂p

∂z
+

∂

∂z

{
µ

[
4

3

∂w

∂z
− 2

3

(
∂v

∂y
+
∂u

∂x

)]}

+
∂

∂x

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]
. (1.7.10)

Let us now turn to the energy equation (1.6.38),

ρ
De

Dt
= div(PV)−V · divP + div(κ∇T ). (1.7.11)

Remember that PV coincides with the vector A whose components are given by
equation (1.6.35). Consequently,

div(PV) =
∂Ai

∂xi
=

∂

∂xi
(pijVj) = pij

∂Vj
∂xi

+ Vj
∂pij
∂xi

. (1.7.12)

Taking into account that the components of the vector divP are given by (1.7.3), we
can easily see that

Vj
∂pij
∂xi

= V · divP . (1.7.13)

Substituting (1.7.13) into (1.7.12) and then into (1.7.11) renders the energy equation
in the form

ρ
De

Dt
= pij

∂Vj
∂xi

+ div(κ∇T ). (1.7.14)
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Using the constitutive equation (1.5.29), we can express the first term on the right-
hand side of (1.7.14) as

pij
∂Vj
∂xi

= −
(
p+

2

3
µ divV

)
divV + µ

∂Vj
∂xi

(
∂Vi
∂xj

+
∂Vj
∂xi

)
.

Direct summation with respect to indices i, j = 1, 2, 3 yields

∂Vj
∂xi

(
∂Vi
∂xj

+
∂Vj
∂xi

)
=2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2]

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2

,

and we can conclude that the energy equation (1.7.14) may be written in the form

ρ
De

Dt
= −p divV − 2

3
µ
(
divV

)2
+ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2]

+ µ

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2]
+ div(κ∇T ). (1.7.15)

For an incompressible fluid flow, equation (1.7.15) turns into the following equation
for the temperature T :

ρcv

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
− κ

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)

= 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2]

+ µ

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2]
. (1.7.16)

Indeed, the first and second terms on the right-hand side of (1.7.15) disappear in view
of the fact that in incompressible flows divV = 0. When dealing with the internal
energy e on the left-hand side of (1.7.15), equation (1.3.26) has been used. Also, we
have used the fact that in incompressible flows, the heat transfer coefficient κ and the
viscosity coefficient µ are constant throughout the flow field. Equation (1.7.16) allows
us to calculate the temperature variations over the flow field after the velocity field
has been found by solving equations (1.7.6).

Now, returning to compressible flows, it is convenient to express the energy equation
(1.7.15) as an equation for the enthalpy h. In order to perform this task, we start with
the continuity equation (1.6.6):

∂ρ

∂t
+ div(ρV) = 0. (1.7.17)
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We note that

div(ρV) =
∂(ρVi)

∂xi
= ρ

∂Vi
∂xi

+ Vi
∂ρ

∂xi
= ρdivV +V · ∇ρ.

Hence, the continuity equation (1.7.17) may be written as

Dρ

Dt
+ ρdivV = 0,

and therefore, the first term on the right-hand side of (1.7.15) can be substituted by

−p divV =
p

ρ

Dρ

Dt
.

Using further the identity

p

ρ

Dρ

Dt
=
Dp

Dt
− ρ

D

Dt

(
p

ρ

)
,

and taking into account that the enthalpy is defined as h = e + p/ρ, we see that the
energy equation (1.7.15) may be written in the form

ρ
Dh

Dt
=
Dp

Dt
− 2

3
µ
(
divV

)2
+ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2]

+ µ

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2]
+ div(κ∇T ). (1.7.18)

In this book series, our main attention will be on perfect gas flows, in which case
the enthalpy h is given by equation (1.3.28),

h = cpT.

Therefore, assuming cp constant, we have

∇T =
1

cp
∇h.

This equation can be rearranged, using (1.6.32), as

κ∇T =
µ

Pr
∇h. (1.7.19)

It remains to substitute (1.7.19) into (1.7.18), and we have the energy equation for a
perfect gas flow in the form

ρ
Dh

Dt
=
Dp

Dt
− 2

3
µ
(
divV

)2
+ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2]

+ µ

[(
∂u

∂y
+
∂v

∂x

)2
+

(
∂u

∂z
+
∂w

∂x

)2
+

(
∂v

∂z
+
∂w

∂y

)2]
+

1

Pr
div(µ∇h). (1.7.20)
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Collecting together the momentum equations (1.7.8), (1.7.9), (1.7.10), the energy
equation (1.7.20), the continuity equation (1.6.6), and the perfect gas state equation
(1.3.33), we can write the Navier–Stokes equations governing the motion of a perfect
gas as

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= ρfx − ∂p

∂x
+

∂

∂x

{
µ

[
4

3

∂u

∂x
− 2

3

(
∂v

∂y
+
∂w

∂z

)]}

+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
, (1.7.21a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= ρfy −
∂p

∂y
+

∂

∂y

{
µ

[
4

3

∂v

∂y
− 2

3

(
∂u

∂x
+
∂w

∂z

)]}

+
∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]
, (1.7.21b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= ρfz −
∂p

∂z
+

∂

∂z

{
µ

[
4

3

∂w

∂z
− 2

3

(
∂v

∂y
+
∂u

∂x

)]}

+
∂

∂x

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]
, (1.7.21c)

ρ

(
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z

)
=
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z

+
1

Pr

[
∂

∂x

(
µ
∂h

∂x

)
+

∂

∂y

(
µ
∂h

∂y

)
+

∂

∂z

(
µ
∂h

∂z

)]

+ µ

(
∂u

∂y
+
∂v

∂x

)2

+ µ

(
∂u

∂z
+
∂w

∂x

)2

+ µ

(
∂v

∂z
+
∂w

∂y

)2

+
4

3
µ

[(
∂u

∂x
− ∂v

∂y

)
∂u

∂x
+

(
∂v

∂y
− ∂w

∂z

)
∂v

∂y
+

(
∂w

∂z
− ∂u

∂x

)
∂w

∂z

]
, (1.7.21d)

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0, (1.7.21e)

h =
γ

γ − 1

p

ρ
. (1.7.21f)
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1.7.3 Integral momentum equation

If the solution of the Navier–Stokes equations is found for a particular flow, say, for
a flow past a rigid body, then the total force experienced by the body may be calcu-
lated through integration of the stress pn produced by the moving fluid on the body
surface. However, it often happens that only partial information about the flow field is
available. For example, an experimentalist might want to avoid disturbing the flow in
the immediate vicinity of the body surface, and choose to perform the measurements
at some distance from the body. A theoretician might be able to find the behaviour
of the solution in the ‘far field’, but not close to the body. The force experienced by
the body may still be calculated, for which purpose the integral momentum equation
is used.

When deducing this equation, we shall assume that the flow considered is steady
(∂V/∂t = 0) and the body force is negligibly small (f = 0). Then the momentum
equation (1.6.27) takes the form

ρ
(
V · ∇

)
V = divP .

Projecting this equation upon the xα-axis, we have

ρVi
∂Vα
∂xi

=
∂piα
∂xi

, α = 1, 2, 3. (1.7.22)

Here the xα-component of divP is calculated according to the rule given by equations
(1.6.26).

For a steady flow, compressible or incompressible, the continuity equation (1.6.6)
is written as

div(ρV) = 0,

or, equivalently,
∂

∂xi

(
ρVi
)
= 0. (1.7.23)

Multiplying (1.7.23) by Vα and adding the result to (1.7.22) yields

∂

∂xi

(
ρViVα

)
=
∂piα
∂xi

. (1.7.24)

Hence, if we introduce a vector A whose components are defined as

Ai = ρViVα − piα, i = 1, 2, 3, (1.7.25)

then we can write equation (1.7.24) as

divA = 0.

Let us integrate this equation over the region D, termed control volume, that lies
between the body surface Sb and an arbitrarily chosen surface Sc embracing the body
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n

n

Sb

Sc

D

Fig. 1.28: Control volume D.

as shown in Figure 1.28; both the body and control surface are assumed to be fixed
with respect to an inertial coordinate system (x1, x2, x3). We have

∫∫∫

D

divA dτ = 0.

Then using Gauss’s divergence theorem, we can write

∫∫

Sc

(
A · n

)
ds+

∫∫

Sb

(
A · n

)
ds = 0, (1.7.26)

where n is the unit normal vector external to D.
It follows from (1.7.25) and (1.2.11) that

A · n = Aini = ρVα(Vi ni)− piαni = ρVα
(
V · n

)
− pnα,

which, when substituted into (1.7.26), yields

∫∫

Sc

[
ρVα

(
V · n

)
− pnα

]
ds+

∫∫

Sb

[
ρVα

(
V · n

)
− pnα

]
ds = 0.

Since this equation is valid for α = 1, 2, 3, it may be written in a vector form

∫∫

Sc

[
ρ
(
V · n

)
V − pn

]
ds+

∫∫

Sb

[
ρ
(
V · n

)
V − pn

]
ds = 0. (1.7.27)

Let us examine the second integral in (1.7.27). We note, first, that the surface of a
rigid body is impenetrable by a fluid. This means that the normal velocity component
Vn = V · n is zero everywhere on Sb. Second, returning to (1.2.3), we recall that
pn ds is the force acting through ds on the fluid situated on the rear side of Sb. With
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the direction of n as shown in Figure 1.28, this is the force experienced by the fluid
surrounding the body. Hence, the force acting upon the body is given by

F = −
∫∫

Sb

pn ds. (1.7.28)

Combining (1.7.27) and (1.7.28), we have

F =

∫∫

Sc

pn ds−
∫∫

Sc

ρ
(
V · n

)
V ds. (1.7.29)

This shows that the force exerted by the flow on a rigid body equals the force acting on
the control surface Sc minus the momentum flux through this surface.

Of course, if there is no rigid body inside the control surface Sc and the entire
region D is filled with moving fluid, then equation (1.7.29) reduces to

∫∫

Sc

ρ
(
V · n

)
V ds =

∫∫

Sc

pn ds, (1.7.30)

stating that the momentum flux through a control surface equals the total surface force
acting on this surface.

1.7.4 Similarity rules in fluid dynamics

When solving the Navier–Stokes equations (1.7.21), one needs to use an appropriate
set of boundary conditions. The form of the latter depends on the particular problem
considered. Here we shall assume that we are dealing with a rigid body, say, an aircraft
wing, placed in a uniform flow of a perfect gas. We shall denote the gas velocity far
from the body (termed the free-stream velocity) as V∞, the free-stream pressure as
p∞, the gas density in the free stream as ρ∞, and the dynamic viscosity coefficient as
µ∞. The coordinate system can always be rotated to make the x-axis parallel to the
free-stream velocity vector, and then we will have

u = V∞, v = w = 0, p = p∞, ρ = ρ∞ at x2 + y2 + z2 = ∞. (1.7.31)

Let us further assume that the body force f is that due to gravity. For an aircraft
in cruise, this is directed vertically downwards, i.e.

fx = fz = 0, fy = −g, (1.7.32)

where g is the acceleration of free fall.
Finally, the boundary conditions on the wing surface S have to be formulated. We

shall assume that the wing surface equation may be written in the form

Φ

(
x

L
,
y − y0(t)

L
,
z

L

)
= 0. (1.7.33)

Here the arguments of the function Φ are made dimensionless using the wing chord L.
This allows us to consider a family of wings that are geometrically similar to one
another but have different size L.



70 Chapter 1. Fundamentals of Fluid Dynamics

Equation (1.7.33) also allows for wing oscillations to be included in the discussion,
as we want to model phenomena such as wing flutter.14 For our purposes, it is sufficient
to assume that the wing moves as a whole along the y-axis, being described by the
equation

y0(t) = Lȳ0

(
t

T

)
,

with the period T of the oscillation used to make the argument of the function ȳ0
dimensionless.

The fluid velocity has to satisfy the following conditions on the body surface S:

u = w = 0, v =
dy0
dt

on S. (1.7.34)

These conditions represent a fundamental property of fluid motion, which consists in
the following observation. When a fluid particle comes in contact with a solid body, it
always assumes the same velocity as the corresponding element of the body surface.
This is attributed to the molecular forces acting between fluids and solids. They prevent
the fluid from ‘sliding’ along the body surface. The resulting restriction on the fluid
velocity field is called the no-slip condition. Theoretical justification of this result is
still to be found for a general fluid flow, and therefore one has to rely on the available
experimental evidence. The latter is ample and supports the view that the no-slip
condition is a universal law of fluid dynamics.

In addition to (1.7.34), one has to formulate a boundary condition for the en-
thalpy h. If we assume that the body surface S is thermally isolated, i.e. there is no
heat transfer through S, then

∇h · n = 0 on S. (1.7.35)

This closes the formulation of the boundary-value problem for the Navier–Stokes equa-
tions (1.7.21).

We shall now cast the equations (1.7.21) and the boundary conditions (1.7.31),
(1.7.34), (1.7.35) in non-dimensional form. We introduce the non-dimensional variables
(denoted by the ‘bar’) using the following transformations

t = T t̄, x = Lx̄, y = Lȳ, z = Lz̄,

u = V∞ū, v = V∞v̄, w = V∞w̄,

p = p∞ + ρ∞V
2
∞p̄, ρ = ρ∞ρ̄, h = V 2

∞h̄, µ = µ∞µ̄.





(1.7.36)

Substitution of (1.7.36) into (1.7.21) results in

14Flutter is observed when an aircraft’s speed exceeds a critical value, and then violent oscillations
of the wing take place, which can result in destruction of the wing frame.
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ρ̄

(
St
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄

)

= −∂p̄
∂x̄

+
1

Re

∂

∂x̄

{
µ̄

[
4

3

∂ū

∂x̄
− 2

3

(
∂v̄

∂ȳ
+
∂w̄

∂z̄

)]}

+
1

Re

∂

∂ȳ

[
µ̄

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)]
+

1

Re

∂

∂z̄

[
µ̄

(
∂ū

∂z̄
+
∂w̄

∂x̄

)]
, (1.7.37a)

ρ̄

(
St
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄

)

=− 1

Fr2
ρ̄− ∂p̄

∂ȳ
+

1

Re

∂

∂ȳ

{
µ̄

[
4

3

∂v̄

∂ȳ
− 2

3

(
∂ū

∂x̄
+
∂w̄

∂z̄

)]}

+
1

Re

∂

∂x̄

[
µ̄

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)]
+

1

Re

∂

∂z̄

[
µ̄

(
∂v̄

∂z̄
+
∂w̄

∂ȳ

)]
, (1.7.37b)

ρ̄

(
St
∂w̄

∂t̄
+ ū

∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄

)

= −∂p̄
∂z̄

+
1

Re

∂

∂z̄

{
µ̄

[
4

3

∂w̄

∂z̄
− 2

3

(
∂v̄

∂ȳ
+
∂ū

∂x̄

)]}

+
1

Re

∂

∂x̄

[
µ̄

(
∂ū

∂z̄
+
∂w̄

∂x̄

)]
+

1

Re

∂

∂ȳ

[
µ̄

(
∂v̄

∂z̄
+
∂w̄

∂ȳ

)]
, (1.7.37c)

ρ̄

(
St
∂h̄

∂t̄
+ ū

∂h̄

∂x̄
+ v̄

∂h̄

∂ȳ
+ w̄

∂h̄

∂z̄

)
= St

∂p̄

∂t̄
+ ū

∂p̄

∂x̄
+ v̄

∂p̄

∂ȳ
+ w̄

∂p̄

∂z̄

+
1

RePr

[
∂

∂x̄

(
µ̄
∂h̄

∂x̄

)
+

∂

∂ȳ

(
µ̄
∂h̄

∂ȳ

)
+

∂

∂z̄

(
µ̄
∂h̄

∂z̄

)]

+
1

Re

{
µ̄

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)2

+ µ̄

(
∂ū

∂z̄
+
∂w̄

∂x̄

)2

+ µ̄

(
∂v̄

∂z̄
+
∂w̄

∂ȳ

)2

+
4

3
µ̄

[(
∂ū

∂x̄
− ∂v̄

∂ȳ

)
∂ū

∂x̄
+

(
∂v̄

∂ȳ
− ∂w̄

∂z̄

)
∂v̄

∂ȳ
+

(
∂w̄

∂z̄
− ∂ū

∂x̄

)
∂w̄

∂z̄

]}
, (1.7.37d)

St
∂ρ̄

∂t̄
+
∂ρ̄ū

∂x̄
+
∂ρ̄v̄

∂ȳ
+
∂ρ̄w̄

∂z̄
= 0, (1.7.37e)

h̄ =
1

(γ − 1)M2
∞

1

ρ̄
+

γ

γ − 1

p̄

ρ̄
. (1.7.37f)

The free-stream boundary conditions (1.7.31) are written in the non-dimensional vari-
ables as

ū = ρ̄ = 1, v̄ = w̄ = p̄ = 0 at x̄2 + ȳ2 + z̄2 = ∞, (1.7.38a)

and the conditions on the wing surface, (1.7.34) and (1.7.35), assume the form

ū = w̄ = 0, v̄ = St
dȳ0
dt̄
, ∇h̄ · n = 0 on S. (1.7.38b)
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The equations (1.7.37) and boundary conditions (1.7.38) involve six non-dimensional
parameters. Two of these, the ratio of specific heats γ and the Prandtl number Pr,
were introduced in Sections 1.3.2 and 1.6.3, respectively. The four ‘new’ parameters
are

Reynolds number Re =
ρ∞V∞L

µ∞
,

Mach number M∞ =
V∞√

γp∞/ρ∞
,

Strouhal number St =
L

V∞T
,

Froude number Fr =
V∞√
gL

.

Provided that the solution of the boundary-value problem (1.7.37), (1.7.38) exists
and is unique, the following statement is valid. If two wings with different chords L
and different periods of oscillations T are placed into two flows with different V∞, p∞,
and ρ∞, but (i) the functions Φ and ȳ0 representing the wings’ geometry and motion
are the same and (ii) the similarity parameters Re,M∞, St, Fr, Pr, and γ are also the
same in the two flows, then these flows will appear identical in the non-dimensional
variables. The first of the above conditions is known as geometric similarity and the
second as dynamic similarity.

The similarity properties of fluid flows are widely used by experimentalists. In
particular, an essential part of the aircraft design process is wind tunnel testing. These
tests are performed on scaled-down models of the entire aircraft or its elements. To
achieve dynamic similarity of the flow in a wind tunnel with that in real flight, one
needs to reproduce the Mach number M∞ and the Reynolds number Re as closely as
possible,15 and then the velocity, density and pressure fields are expected to be the
same in the non-dimensional variables. The dimensional quantities are recalculated in
an obvious way, keeping in mind that

u

V∞
,

v

V∞
,

w

V∞
,

ρ

ρ∞
,

p− p∞
ρ∞V 2

∞

remain the same at the corresponding points in the flow field.

Exercises 4

1. Does the continuity equation

∂ρ

∂t
+ div(ρV) = 0

admit a simplification in the case when ρ remains unchanged for each fluid particle
but is different for different fluid particles? An example of such a fluid is sea water.
It has different salt concentration, depending on the water depth.

15In aerodynamic flows, one does not need to think of the Froude number, since gravitational effects
are too small. Also, when dealing with a steady flow, typical of cruise flight, the Strouhal number
becomes unimportant.
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2. Verify the identity
(
V · ∇

)
V = ω ×V +∇

(
V 2

2

)
,

known as the Lamb formula. Here V is the modulus of the velocity vector V.
Hint : It is sufficient to consider, say, the x-component of the identity.

3. Prove that ∇2V, representing the viscous term on the right-hand side of the
incompressible Navier–Stokes equation (1.7.5a), may be written as

∇2V = −curlω.

Suggestion: As with the previous problem, you only need to consider the
x-component of the identity.

4. The role of the Mach number in compressible flow behaviour is discussed in detail
in Chapter 4; see, in particular, Section 4.1. Here your task is to show that for small
values of the Mach number, the gas flows may be described by the incompressible
Navier–Stokes equations (1.7.6).

When performing your analysis, assume that gravitational effects may be
disregarded (Fr = ∞). Assume further that the Reynolds number Re and the
Strouhal number St are finite. Finally, assume that the Mach number M∞ is
small, and represent the solution of the compressible Navier–Stokes equations
(1.7.37) in the form

ū = u0 +M2
∞u1 + · · · , v̄ = v0 +M2

∞v1 + · · · , w̄ = w0 +M2
∞w1 + · · · ,

p̄ = p0 +M2
∞p1 + · · · , ρ̄ = 1 +M2

∞ρ1 + · · · , h̄ =
1

(γ − 1)M2
∞

+ h1 + · · · ,

µ̄ = 1 +M2
∞µ1 + · · · ,

and, working with the leading-order terms, show that the velocity components
u0, v0, w0 and the pressure p0 satisfy the incompressible Navier–Stokes equations
(1.7.6).

Suggestion: Start your analysis with the continuity equation (1.7.37e).

1.8 Curvilinear Coordinates

There are many situations where, instead of Cartesian coordinates, it is more conve-
nient to write the Navier–Stokes equations in curvilinear coordinates. For example, to
take advantage of simplifications that arise when dealing with an axisymmetric flow,
one needs to use cylindrical coordinates; see Figure 1.30 on page 80.

Any coordinate system serves the following purposes. First of all, it should specify
the position of a point in space. In the Cartesian coordinate system, this is achieved by
ascribing particular values to x, y, z. For each point, these are found as the projections
on the three coordinate axes. Inversely, given three coordinates x, y, z, the position
of the corresponding point in space is uniquely defined. Any other coordinate sys-
tem (q1, q2, q3) should perform the same task; namely, it should provide a one-to-one
correspondence between the points and their coordinates q1, q2, q3.
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A curvilinear coordinate system (q1, q2, q3) may be introduced by specifying the
three functions on the right-hand sides of the equations

x = x(q1, q2, q3), y = y(q1, q2, q3), z = z(q1, q2, q3). (1.8.1)

With (1.8.1) given, the task of determining the position of a point in space through its
curvilinear coordinates q1, q2, q3 reduces to the conventional task of identifying this
point in the Cartesian coordinates x, y, z.

Let M be a point whose curvilinear coordinates are q1, q2, q3. Three coordinate
lines may be drawn through this point; see Figure 1.29(a). The q1-coordinate line is
produced by increasing q1 from its value at M and keeping q2 and q3 unchanged. The
q2- and q3-coordinate lines are produced by increasing q2 and q3, respectively, and
keeping the two other coordinates unchanged.

The second purpose for which coordinate systems are used is the presentation of
vectors by their components. In Cartesian coordinates any vector A may be decom-
posed as

A = Axi+Ayj+ Azk.

with i, j and k being the unit vectors along the x-, y- and z-axes. When dealing with a
curvilinear coordinate system, the unit vectors e1, e2, and e3 are drawn tangentially to
the q1-, q2-, and q3-axes, respectively. Using vector triad (e1, e2, e3), we can represent
vector A as

A = A1e1 + A2e2 +A3e3, (1.8.2)

where (A1, A2, A3) are the components of A in the curvilinear coordinates (q1, q2, q3).
Notice that, unlike Cartesian unit vectors (i, j,k), the curvilinear coordinate triad
(e1, e2, e3) changes its orientation when the point of observation M moves in the
space. In other words, the vectors e1, e2, and e3 are functions of q1, q2, and q3. In
what follows, we shall assume that the unit vectors (e1, e2, e3) remain perpendicular
to one another. Coordinate systems that satisfy this restriction are termed orthogonal.

Let us now place point M1 on the q1-axis close to point M ; the coordinates of
point M1 are q1 + dq1, q2, q3. Similarly, we place point M2(q1, q2 + dq2, q3) on the q2-
axis and point M3(q1, q2, q3 + dq3) on the q3-axis. We then build a small coordinate

M

q1

q2

q3

e1

e2

e3

(a) Coordinate lines.

M

q1

q2

q3

M1

M2

M3

N
N1

N2

N3

(b) Coordinate parallelepiped.

Fig. 1.29: Curvilinear coordinates.



1.8. Curvilinear Coordinates 75

parallelepiped as shown in Figure 1.29(b). Its faces are made of the coordinate surfaces.
Two of them, MM2N1M3 and M1N3NN2, are drawn through points M and M1

orthogonal to the q1-axis. The orthogonality condition is the requirement that on these
surfaces the first coordinate remains constant; it equals q1 onMM2N1M3 and q1+dq1
on M1N3NN2. The other four faces of the coordinate parallelepiped are constructed
in an obvious way.

Let us now discuss the geometrical properties of the coordinate parallelepiped. The
length of edge MM1 may be calculated as

dl1 =
√

(dx)2 + (dy)2 + (dz)2.

Since the coordinates of points M and M1 are (q1, q2, q3) and (q1+ dq1, q2, q3), respec-
tively, it follows from (1.8.1) that

dx =
∂x

∂q1
dq1, dy =

∂y

∂q1
dq1, dz =

∂z

∂q1
dq1,

and therefore

dl1 =

√(
∂x

∂q1

)2

+

(
∂y

∂q1

)2

+

(
∂z

∂q1

)2

dq1. (1.8.3a)

Similarly, the length of edge MM2 is calculated as

dl2 =

√(
∂x

∂q2

)2

+

(
∂y

∂q2

)2

+

(
∂z

∂q2

)2

dq2, (1.8.3b)

and for MM3 we have

dl3 =

√(
∂x

∂q3

)2

+

(
∂y

∂q3

)2

+

(
∂z

∂q3

)2

dq3. (1.8.3c)

The quantities

H1 =

√(
∂x

∂q1

)2

+

(
∂y

∂q1

)2

+

(
∂z

∂q1

)2

,

H2 =

√(
∂x

∂q2

)2

+

(
∂y

∂q2

)2

+

(
∂z

∂q2

)2

,

H3 =

√(
∂x

∂q3

)2

+

(
∂y

∂q3

)2

+

(
∂z

∂q3

)2





(1.8.4)

are known as the Lamé coefficients or scale factors. They serve to convert the incre-
ments dq1, dq2, dq3 of the curvilinear coordinates q1, q2, q3 to the actual distances
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measured along the coordinate axes. Using (1.8.4), equations (1.8.3) can be written in
a more compact form

dl1 = H1 dq1, dl2 = H2 dq2, dl3 = H3 dq3. (1.8.5)

Since the coordinate system (q1, q2, q3) is orthogonal, the task of calculating the
area of any of the six faces of the coordinate parallelepiped (Figure 1.29b) reduces to
a simple multiplication of two length elements from (1.8.5). For example, the area of
the left-hand side face is

σ1 = dl2 dl3 = H2H3 dq2 dq3.

Similarly, the areas of the front and bottom faces are

σ2 = H1H3 dq1 dq3, σ3 = H1H2 dq1 dq2.

The volume of the coordinate parallelepiped is

τ = dl1 dl2 dl3 = H1H2H3 dq1 dq2 dq3.

We are now ready to consider differential operators such as the gradient, divergence,
and curl. Our task will be to express them in the curvilinear coordinates (q1, q2, q3).
We start with the gradient. Recall that the gradient of a scalar function φ is defined
in Cartesian coordinates as

∇φ = i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z
.

This definition, however, is not suitable for our purpose. We need a definition that
does not depend on a particular choice of coordinate system. We shall use the following
one.

Definition 1.5 Let P and P ′ be two points situated close to one another, and let dr
be the vector connecting P with P ′. Then we shall call the vector A the gradient of
the scalar function φ if

A · dr = φ(P ′)− φ(P ) + α(dr), (1.8.6)

where the remainder term α(dr) is such that

lim
|dr|→0

α(dr)

|dr| = 0.

Suppose that function φ is given in curvilinear coordinates (q1, q2, q3). Let us choose
point P to coincide with point M of Figure 1.29(b) and point P ′ with pointM1. Then
the vector connecting these points is

dr = dl1e1 = H1e1dq1.
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Using for the vector A its coordinate decomposition (1.8.2), we can see that the left-
hand side of equation (1.8.6) is

A · dr = A1H1 dq1. (1.8.7)

The increment of the function φ on the right-hand side of (1.8.6) may be represented
as

φ(P ′)− φ(P ) = φ(q1 + dq1, q2, q3)− φ(q1, q2, q3) =
∂φ

∂q1
dq1 + β(dq1), (1.8.8)

with the remainder term satisfying the condition

lim
dq1→0

β(dq1)

dq1
= 0.

Substituting (1.8.7) and (1.8.8) into (1.8.6) and taking dq1 → 0, we find that

A1 =
1

H1

∂φ

∂q1
.

Similarly, the other two components may be shown to be

A2 =
1

H2

∂φ

∂q2
, A3 =

1

H3

∂φ

∂q3
.

Consequently, we can conclude that the gradient of the function φ is written in or-
thogonal curvilinear coordinates (q1, q2, q3) as

∇φ =
1

H1

∂φ

∂q1
e1 +

1

H2

∂φ

∂q2
e2 +

1

H3

∂φ

∂q3
e3. (1.8.9)

Let us now calculate the divergence of a vector field A(q1, q2, q3). We shall use for
this purpose Gauss’s divergence theorem

∫∫∫

D

divA dτ =

∫∫

S

(
A · n

)
dσ. (1.8.10)

Here D is an arbitrary region; the surface around D we denote by S, with n being the
unit external normal to S, and dσ the area of a small element of the surface S. We shall
apply equation (1.8.10) to the coordinate parallelepiped of Figure 1.29(b). Since the
region confined by this parallelepiped is small, divA remains almost constant over D,
and therefore the volume integral on the left-hand side of (1.8.10) may be calculated as

∫∫∫

D

divA dτ = divA τ = divAH1H2H3 dq1 dq2 dq3. (1.8.11)

In order to evaluate the surface integral on the right-hand side of equation (1.8.10),
we need to calculate the flux of the vectorA through the six faces of the coordinate par-
allelepiped. We start with the pair of faces orthogonal to the q1-axis. On MM2N1M3,
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the normal vector n = −e1. Hence,

A · n = −A1,

and the flux of the vector A through MM2N1M3 is

−A1σ1 = −A1H2H3 dq2 dq3. (1.8.12)

On the opposite faceM1N3NN2, the normal vector n = e1, which means that we have
to change the sign in (1.8.12). We also have to take into account that on M1N3NN2

the first coordinate is q1 + dq1, not q1. Therefore the flux of the vector A through
M1N3NN2 is expressed as

(
A1H2H3 +

∂(A1H2H3)

∂q1
dq1

)
dq2 dq3. (1.8.13)

Adding (1.8.12) and (1.8.13) together, we can conclude that the flux of the vector A
through the two faces orthogonal to the q1-axis equals

∂(A1H2H3)

∂q1
dq1 dq2 dq3. (1.8.14)

Similarly, the flux of the vector A through the two faces orthogonal to the q2-axis may
be shown to be

∂(A2H3H1)

∂q2
dq1 dq2 dq3, (1.8.15)

and, finally, the flux through the two faces that are orthogonal to the q3-axis is ex-
pressed as

∂(A3H1H2)

∂q3
dq1 dq2 dq3. (1.8.16)

Combining (1.8.14), (1.8.15), and (1.8.16), we have

∫∫

S

(
A · n

)
dσ =

[
∂(A1H2H3)

∂q1
+
∂(A2H3H1)

∂q2
+
∂(A3H1H2)

∂q3

]
dq1 dq2 dq3. (1.8.17)

It remains to substitute (1.8.11) and (1.8.17) into (1.8.10), and we find that

divA =
1

H1H2H3

[
∂(A1H2H3)

∂q1
+
∂(A2H3H1)

∂q2
+
∂(A3H1H2)

∂q3

]
. (1.8.18)

Finally, we shall consider the curl of a vector field A(q1, q2, q3). In order to deduce
an expression for curlA in the curvilinear coordinates, we will make use of Stokes’s
theorem ∫∫

S

(
curlA · n

)
dσ =

∮

C

A · dr. (1.8.19)

Here C is a closed contour, S an open surface based on this contour, and n the unit
vector normal to S. The integration along the contour C on the right-hand side of
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(1.8.19) should be performed in the counter-clockwise direction when the contour C
is observed from the tip of the vector n.

We start by choosing S to coincide with the left-hand side face MM2N1M3 of the
coordinate parallelepiped; see Figure 1.29. Let us further choose the normal vector n
to be in the positive direction of the q1-coordinate, i.e.

n = e1.

Representing curlA through its components in the curvilinear coordinates,

curlA =
(
curlA

)
1
e1 +

(
curlA

)
2
e2 +

(
curlA

)
3
e3,

we find that
curlA · n =

(
curlA

)
1
.

Therefore, the integral on the left-hand side of (1.8.19) appears to be

∫∫

S

(
curlA · n

)
dσ =

(
curlA

)
1
σ1 =

(
curlA

)
1
H2H3 dq2 dq3. (1.8.20)

Now we turn to the contour integral on the right-hand side of (1.8.19). It may
be calculated by considering the contributions from the four edges that bound the
left-hand side face of the coordinate parallelepiped. When integrating from M to M2,
we have to take

dr = e2 dl2 = e2H2 dq2,

and therefore ∫

MM2

A · dr = A2H2 dq2. (1.8.21)

On the opposite edge N1M3, the integration is performed from N1 toM3, which means
that we have to change the sign in (1.8.21). Besides, on N1M3, the third coordinate is
q3 + dq3, not q3 as on MM2. Consequently,

∫

N1M3

A · dr = −
[
A2H2 +

∂(A2H2)

∂q3
dq3

]
dq2. (1.8.22)

The integrals along M2N1 and M3M are calculated in a similar way, leading to

∫

M2N1

A · dr =

[
A3H3 +

∂(A3H3)

∂q2
dq2

]
dq3, (1.8.23)

∫

M3M

A · dr = −A3H3 dq3. (1.8.24)

Adding (1.8.21), (1.8.22), (1.8.23), and (1.8.24) together, we find that the contour
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integral on the right-hand side of equation (1.8.19) is

∮

C

A · dr =

[
∂(A3H3)

∂q2
− ∂(A2H2)

∂q3

]
dq2 dq3.

Comparing this with the surface integral (1.8.20) on the left-hand side of (1.8.19),
leads to the conclusion that

(
curlA

)
1
=

1

H2H3

[
∂(A3H3)

∂q2
− ∂(A2H2)

∂q3

]
. (1.8.25)

The other two components of curlA may be found by applying Stokes’s theorem
(1.8.19) to the front and bottom faces of the coordinate parallelepiped of Figure 1.29.
Alternatively, one can exploit the freedom in choosing the notations for the coordinates
used, namely, coordinate q1 may be always re-denoted as q2, coordinate q2 as q3, and
coordinate q3 as q1. Making the correspondent alterations in (1.8.25), we have

(
curlA

)
2
=

1

H3H1

[
∂(A1H1)

∂q3
− ∂(A3H3)

∂q1

]
, (1.8.26)

(
curlA

)
3
=

1

H1H2

[
∂(A2H2)

∂q1
− ∂(A1H1)

∂q2

]
. (1.8.27)

Cylindrical polar coordinates

In cylindrical coordinates (see Figure 1.30), the position of point M is given by the
distance r from the z-axis, the angle φ between the x-axis and the straight line con-
necting the projection of M upon the (x, y)-plane with the coordinate origin, and the

M

x

y

z

z

r

φ

Vr

Vφ

Vz
C

Fig. 1.30: Cylindrical coordinates.
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altitude z of point M above the (x, y)-plane. We have

q1 = r, q2 = φ, q3 = z.

The cylindrical coordinates are related to Cartesian coordinates by

x = r cosφ, y = r sinφ, z = z. (1.8.28)

Substitution of (1.8.28) into (1.8.4) yields, after simple manipulations, that

H1 = 1, H2 = r, H3 = 1. (1.8.29)

Alternatively, one can take advantage of the fact that the Lamé coefficients have a
clear geometrical meaning, and deduce formulae (1.8.29) directly from (1.8.5). Indeed,
if we increase r by dr and keep φ and z unchanged, then point M in Figure 1.30 will
travel through a distance

dl1 = dr.

Repeating this procedure for the other two coordinates, φ and z, we find

dl2 = r dφ, dl3 = dz.

Comparing these equations with (1.8.5), we can see the Lamé coefficients are really
given by (1.8.29).

We are now ready to consider the Navier–Stokes equations. For simplicity, we
shall restrict our attention here to incompressible fluid flows, when the Navier–Stokes
equations (1.7.5) are written as

∂V

∂t
+
(
V · ∇

)
V = f − 1

ρ
∇p+ ν∇2V, (1.8.30a)

divV = 0. (1.8.30b)

The convective term on the left-hand side of the momentum equation (1.8.30a) may
be expressed in terms of conventional differential operators using the Lamb formula16

(
V · ∇

)
V = ω ×V +∇

(
V 2

2

)
, (1.8.31)

Here ω = curlV and V is the modulus of the velocity vector V. For the viscous terms
on the right-hand side of (1.8.30a), we shall use the following identity (see Problem 3
in Exercises 4)

∇2V = ∇(divV)− curlω.

The continuity equation (1.8.30b) reduces it to

∇2V = −curlω. (1.8.32)

16see Problem 2 in Exercises 4
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After making use of (1.8.31) and (1.8.32), the momentum equation (1.8.30a) takes the
form

∂V

∂t
+ ω ×V +∇

(
V 2

2

)
= f − 1

ρ
∇p− ν curlω. (1.8.33)

The velocity vector V is decomposed in cylindrical polar coordinates as

V = Vre1 + Vφe2 + Vze3. (1.8.34)

Here the unit vector triad (e1, e2, e3) is built at the point M (see Figure 1.30) in the
following way. The vector e1 points in the radial direction, the vector e2 is tangent to
the circle C that lies in the plane drawn through point M perpendicular to the z-axis
and has its centre on the z-axis, and, finally, the vector e3 is parallel to the z-axis. Cor-
responding to this, Vr is called the radial velocity component, Vφ the circumferential
component, and Vz the axial component.

Applying the divergence operator (1.8.18) to the velocity vector (1.8.34), we find
that the continuity equation (1.8.30b) is written in cylindrical coordinates as

∂Vr
∂r

+
1

r

∂Vφ
∂φ

+
∂Vz
∂z

+
Vr
r

= 0. (1.8.35)

Now we turn to the momentum equation (1.8.33). In (1.8.34), the unit vectors e1,
e2, and e3 depend on the position of point M but not on time. Therefore,

∂V

∂t
=
∂Vr
∂t

e1 +
∂Vφ
∂t

e2 +
∂Vz
∂t

e3. (1.8.36)

The second term on the left-hand side of (1.8.33) is calculated as

ω ×V =

∣∣∣∣∣∣

e1 e2 e3
ωr ωφ ωz

Vr Vφ Vz

∣∣∣∣∣∣

= e1(ωφVz − ωzVφ) + e2(ωzVr − ωrVz) + e3(ωrVφ − ωφVr), (1.8.37)

where, according to (1.8.25)–(1.8.27),

ωr =
1

r

[
∂Vz
∂φ

− ∂(rVφ)

∂z

]
=

1

r

∂Vz
∂φ

− ∂Vφ
∂z

, (1.8.38a)

ωφ =
∂Vr
∂z

− ∂Vz
∂r

, (1.8.38b)

ωz =
1

r

[
∂(rVφ)

∂r
− ∂Vr

∂φ

]
=
∂Vφ
∂r

− 1

r

∂Vr
∂φ

+
Vφ
r
. (1.8.38c)

Finally, for the third term on the left-hand side of (1.8.33), formula (1.8.9) should be
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used. Taking into account that V 2 = V 2
r + V 2

φ + V 2
z , we have

∇
(
V 2

2

)
= ∇

(
V 2
r + V 2

φ + V 2
z

2

)
=

(
Vr
∂Vr
∂r

+ Vφ
∂Vφ
∂r

+ Vz
∂Vz
∂r

)
e1

+
1

r

(
Vr
∂Vr
∂φ

+ Vφ
∂Vφ
∂φ

+ Vz
∂Vz
∂φ

)
e2

+

(
Vr
∂Vr
∂z

+ Vφ
∂Vφ
∂z

+ Vz
∂Vz
∂z

)
e3. (1.8.39)

At this stage, it is convenient to deal with the three components of the momentum
equation (1.8.33) separately. If we consider, for example, the radial component, then,
collecting the corresponding terms in (1.8.36), (1.8.37), and (1.8.39), we find
[
∂V

∂t
+ ω ×V +∇

(
V 2

2

)]

r

=
∂Vr
∂t

+ ωφVz − ωzVφ + Vr
∂Vr
∂r

+ Vφ
∂Vφ
∂r

+ Vz
∂Vz
∂r

.

It remains to make use of formulae (1.8.38b) and (1.8.38c), and we find that the radial
component of the left-hand side of the momentum equation (1.8.33) is

[
∂V

∂t
+ ω ×V +∇

(
V 2

2

)]

r

=
∂Vr
∂t

+ Vr
∂Vr
∂r

+
Vφ
r

∂Vr
∂φ

+ Vz
∂Vr
∂z

−
V 2
φ

2
. (1.8.40)

Now we turn to the right-hand side of (1.8.33). The first two terms, being projected
on the radial direction, are written as

[
f − 1

ρ
∇p
]

r

= fr −
1

ρ

∂p

∂r
. (1.8.41)

Here fr denotes the radial component of the body force f .
In order to calculate the viscous term, we use formula (1.8.25). We have

(
curlω

)
r
=

1

r

∂ωz

∂φ
− ∂ωφ

∂z
. (1.8.42)

Substitution of (1.8.38b) and (1.8.38c) into (1.8.42) leads to

(
curlω

)
r
=

1

r

∂2Vφ
∂r∂φ

− 1

r2
∂2Vr
∂φ2

+
1

r2
∂Vφ
∂φ

− ∂2Vr
∂z2

+
∂2Vz
∂r∂z

. (1.8.43)

Finally, we combine (1.8.43) with (1.8.41) on the right-hand side of equation
(1.8.33) and use formula (1.8.40) for the left-hand side. As a result, we have the radial
momentum equation in the form

∂Vr
∂t

+ Vr
∂Vr
∂r

+
Vφ
r

∂Vr
∂φ

+ Vz
∂Vr
∂z

−
V 2
φ

2
= fr −

1

ρ

∂p

∂r

+ ν

[
− 1

r

∂2Vφ
∂r∂φ

+
1

r2
∂2Vr
∂φ2

− 1

r2
∂Vφ
∂φ

+
∂2Vr
∂z2

− ∂

∂r

(
∂Vz
∂z

)]
. (1.8.44)

The canonical form of the radial momentum equation is obtained by solving the con-
tinuity equation (1.8.35) for ∂Vz/∂z and substituting into the last term in (1.8.44).



84 Chapter 1. Fundamentals of Fluid Dynamics

The resulting equation is written below together with the circumferential and axial
momentum equations which are deduced using a similar procedure. For completeness,
we also include the continuity equation (1.8.35). We have

∂Vr
∂t

+ Vr
∂Vr
∂r

+
Vφ
r

∂Vr
∂φ

+ Vz
∂Vr
∂z

−
V 2
φ

r
= fr −

1

ρ

∂p

∂r

+ ν

(
∂2Vr
∂z2

+
1

r2
∂2Vr
∂φ2

− 2

r2
∂Vφ
∂φ

+
∂2Vr
∂r2

+
1

r

∂Vr
∂r

− Vr
r2

)
, (1.8.45a)

∂Vφ
∂t

+ Vr
∂Vφ
∂r

+
Vφ
r

∂Vφ
∂φ

+ Vz
∂Vφ
∂z

+
VrVφ
r

= fφ − 1

ρr

∂p

∂φ

+ ν

(
∂2Vφ
∂z2

+
1

r2
∂2Vφ
∂φ2

+
2

r2
∂Vr
∂φ

+
∂2Vφ
∂r2

+
1

r

∂Vφ
∂r

− Vφ
r2

)
, (1.8.45b)

∂Vz
∂t

+ Vr
∂Vz
∂r

+
Vφ
r

∂Vz
∂φ

+ Vz
∂Vz
∂z

= fz −
1

ρ

∂p

∂z

+ ν

(
∂2Vz
∂z2

+
1

r2
∂2Vz
∂φ2

+
∂2Vz
∂r2

+
1

r

∂Vz
∂r

)
, (1.8.45c)

∂Vr
∂r

+
1

r

∂Vφ
∂φ

+
∂Vz
∂z

+
Vr
r

= 0. (1.8.45d)

Spherical polar coordinates

In spherical polar coordinates (see Figure 1.31), the position of point M is defined by
the distance r from M to the coordinate origin O, the angle ϑ made by the position
vector r with the x-axis, and the angle φ between the (x, y)-plane and the plane S
drawn through point M and the x-axis. Correspondingly, the velocity vector V is
represented by three components Vr, Vφ, and Vϑ. The radial component Vr is parallel

Mφ r

ϑ

x

y

z

O

Vr

Vφ

Vϑ

C

S

Fig. 1.31: Spherical polar coordinates.
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to the radius r. The azimuthal component Vφ is tangent to circle C that lies in the
plane drawn through point M perpendicular to the x-axis and has its centre on the x-
axis. Finally, the meridional velocity component Vϑ lies in plane S and is perpendicular
to the radius OM .

It is easily seen from Figure 1.31 that the spherical polar coordinates are related
to the Cartesian coordinates by

x = r cosϑ, y = r sinϑ cosφ, z = r sinϑ sinφ. (1.8.46)

Therefore, choosing q1 = r, q2 = ϑ, and q3 = φ and substituting (1.8.46) into (1.8.4),
leads to the conclusion that in spherical polar coordinates the Láme coefficients are

H1 = 1, H2 = r, H3 = r sinϑ. (1.8.47)

We can now employ the same routine as the one used in the previous section for
cylindrical polar coordinates. We find that the Navier–Stokes equations are written in
spherical polar coordinates as

∂Vr
∂t

+ Vr
∂Vr
∂r

+
Vϑ
r

∂Vr
∂ϑ

+
Vφ

r sinϑ

∂Vr
∂φ

−
V 2
ϑ + V 2

φ

r
= fr −

1

ρ

∂p

∂r

+ ν

(
∂2Vr
∂r2

+
1

r2
∂2Vr
∂ϑ2

+
1

r2 sin2 ϑ

∂2Vr
∂φ2

+
2

r

∂Vr
∂r

+
1

r2 tanϑ

∂Vr
∂ϑ

− 2

r2
∂Vϑ
∂ϑ

− 2

r2 sinϑ

∂Vφ
∂φ

− 2Vr
r2

− 2Vϑ
r2 tanϑ

)
, (1.8.48a)

∂Vϑ
∂t

+ Vr
∂Vϑ
∂r

+
Vϑ
r

∂Vϑ
∂ϑ

+
Vφ

r sinϑ

∂Vϑ
∂φ

+
VrVϑ
r

−
V 2
φ

r tanϑ
= fϑ − 1

ρr

∂p

∂ϑ

+ ν

(
∂2Vϑ
∂r2

+
1

r2
∂2Vϑ
∂ϑ2

+
1

r2 sin2 ϑ

∂2Vϑ
∂φ2

+
2

r

∂Vϑ
∂r

+
1

r2 tanϑ

∂Vϑ
∂ϑ

− 2 cosϑ

r2 sin2 ϑ

∂Vφ
∂φ

+
2

r2
∂Vr
∂ϑ

− Vϑ

r2 sin2 ϑ

)
, (1.8.48b)

∂Vφ
∂t

+ Vr
∂Vφ
∂r

+
Vϑ
r

∂Vφ
∂ϑ

+
Vφ

r sinϑ

∂Vφ
∂φ

+
VrVφ
r

+
VϑVφ
r tanϑ

= fφ − 1

ρr sinϑ

∂p

∂φ

+ ν

(
∂2Vφ
∂r2

+
1

r2
∂2Vφ
∂ϑ2

+
1

r2 sin2 ϑ

∂2Vφ
∂φ2

+
2

r

∂Vφ
∂r

+
1

r2 tanϑ

∂Vφ
∂ϑ

+
2

r2 sinϑ

∂Vr
∂φ

+
2 cosϑ

r2 sin2 ϑ

∂Vϑ
∂φ

− Vφ

r2 sin2 ϑ

)
, (1.8.48c)

∂Vr
∂r

+
1

r

∂Vϑ
∂ϑ

+
1

r sinϑ

∂Vφ
∂φ

+
2Vr
r

+
Vϑ

r tanϑ
= 0. (1.8.48d)
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Body-fitted coordinates

When analysing fluid motion in close proximity to the surface of a rigid body, the
body-fitted coordinate system

q1 = s, q2 = n, q3 = z

is often used. We shall assume that the body in question has a cylindrical surface.
Figure 1.32 shows the cross-section of the body in a plane drawn perpendicular to the
surface generatrix. When dealing with body-fitted coordinates, one starts by choosing
a point on the body contour to be the coordinate origin O. The position of any point
M in the flow field is then defined by the distance s measured along the body contour
from O to point N , which is obtained by dropping the perpendicular from M to
the body surface; the second coordinate n is the distance between M and the body
surface. Finally, the spanwise coordinate z is measured along the surface generatrix,
i.e. perpendicular to the plane of the sketch in Figure 1.32.

The unit vector triad (e1, e2, e3) is oriented at point M such that e1 is parallel
to the tangent to the body contour drawn through point N ; e2 is directed along the
n-axis and e3 along the body generatrix. Corresponding to this, the velocity vector is
decomposed as

V = Vτe1 + Vne2 + Vze3,

with Vτ termed the tangential velocity, Vn the normal velocity, and Vz the spanwise
velocity.

In order to calculate the Lamé coefficients, the following simple geometrical argu-
ments may be used. If we give the first coordinate s a small increment ds and keep n
and z fixed, then point M will travel to a new position M1. The distance between M
and M1 is denoted, as usual, by dl1. It may be related to ds through the equation

dl1
R+ n

=
ds

R
,

M
M1

R

s
n

n
dl1

N
N1

ds

C

O

Fig. 1.32: Body-fitted coordinates.
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where R is the local radius of the body contour. Taking further into account that the
curvature of the body contour κ(s) = 1/R, we find17

H1 =
dl1
ds

= 1 + κ(s)n.

The length elements dl2 and dl3 in the other two directions coincide with dn and dz,
respectively, and therefore H2 = H3 = 1. We have

H1 = 1 + κn, H2 = 1, H3 = 1.

Now the routine of recasting of the Navier–Stokes equations in curvilinear coordi-
nates may be undertaken, leading to

∂Vτ
∂t

+
Vτ
H1

∂Vτ
∂s

+ Vn
∂Vτ
∂n

+ Vz
∂Vτ
∂z

+
κVτVn
H1

= fτ − 1

ρH1

∂p

∂s

+ ν

[
1

H1

∂

∂s

(
1

H1

∂Vτ
∂s

)
+
∂2Vτ
∂n2

+
∂2Vτ
∂z2

+ κ
∂

∂n

(
Vτ
H1

)
+

κ

H2
1

∂Vn
∂s

+
1

H1

∂

∂s

(
κVn
H1

)]
, (1.8.49a)

∂Vn
∂t

+
Vτ
H1

∂Vn
∂s

+ Vn
∂Vn
∂n

+ Vz
∂Vn
∂z

− κV 2
τ

H1
= fn − 1

ρ

∂p

∂n

+ ν

[
1

H1

∂

∂s

(
1

H1

∂Vn
∂s

)
+
∂2Vn
∂n2

+
∂2Vn
∂z2

+ κ
∂

∂n

(
Vn
H1

)
− κ

H2
1

∂Vτ
∂s

− 1

H1

∂

∂s

(
κVτ
H1

)]
, (1.8.49b)

∂Vz
∂t

+
Vτ
H1

∂Vz
∂s

+ Vn
∂Vz
∂n

+ Vz
∂Vz
∂z

= fz −
1

ρ

∂p

∂z

+ ν

[
1

H1

∂

∂s

(
1

H1

∂Vz
∂s

)
+
∂2Vz
∂n2

+
∂2Vz
∂z2

+
κ

H1

∂Vz
∂n

]
, (1.8.49c)

1

H1

∂Vτ
∂s

+
∂Vn
∂n

+
∂Vz
∂z

+
κVn
H1

= 0. (1.8.49d)

Stress tensor

Once the solution of the Navier–Stokes equations has been found for a particular flow,
it is often required to determine the forces acting in the interior of the fluid and on the
body surface washed by the flow. Here we shall show how to express the stress tensor
in curvilinear coordinates. In Section 1.2.1, we introduced the stress tensor

P =



pxx pxy pxz
pyx pyy pyz
pzx pzy pzz




17Notice that κ is positive for a convex wall and negative for a concave wall.
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using Cartesian coordinates. For this purpose, we considered a plane surface Sx per-
pendicular to the x-axis (see Figure 1.6 on page 11) and denoted the stress on Sx by
px. We then represented px in the coordinate decomposition form (1.2.4)

px = pxxi+ pxyj+ pxzk.

The three components pxx, pxy, and pxz of the stress px form the first row in the stress
tensor P. The second and third rows are obtained in a similar way by considering
the stresses py and pz on surfaces Sy and Sz perpendicular to the y- and z-axes,
respectively.

In order to write the stress tensor P in a curvilinear coordinate system, one needs
to consider, first of all, the stress p1 on a surface element S1 perpendicular to the unit
vector e1; see Figure 1.29(a) on page 74. The coordinate decomposition of p1 is

p1 = p11e1 + p12e2 + p13e3.

Similarly, the stresses p2 and p3 on the surfaces S2 and S3 perpendicular to the unit
vectors e2 and e3 are decomposed as

p2 = p21e1 + p22e2 + p23e3,

p3 = p31e1 + p32e2 + p33e3.

Correspondingly, in the coordinate system considered, the stress tensor is written as

P =



p11 p12 p13
p21 p22 p23
p31 p32 p33


 . (1.8.50)

In order to express the elements pij of the stress tensor (1.8.50) in terms of the
components of the velocity vector V = (V1, V2, V3), the constitutive equation (1.5.24)
will be used. In the coordinate system considered, it is written as



p11 p12 p13
p21 p22 p23
p31 p32 p33


 = (−p+ λ divV)




1 0 0
0 1 0
0 0 1


+ 2µ



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33


 . (1.8.51)

The elements εij of the rate-of-strain tensor

E =



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33


 (1.8.52)

may be calculated in the same way as was done in Section 1.4.5, where the motion of
a fluid particle was analysed. Now the analysis has to be repeated using curvilinear
coordinates. Alternatively, one can start with the Second Helmholtz Theorem. It is
expressed by equation (1.4.27), which holds in any coordinate system.
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x

y

z

O

r
r′

δr
M M ′

Fig. 1.33: Deformation of a fluid element.

Remember that the vector V(t, r) on the left-hand side of (1.4.27) is the fluid
velocity at point M ′ in Figure 1.18, while the first term V(t, r0) on the right-hand
side is the fluid velocity at point M . Consequently,

V(t, r)−V(t, r0) =
dr

dt
− dr0

dt
=

d

dt
(δr),

which allows to write equation (1.4.27) as

d

dt
(δr) = Ω× δr+ Eδr. (1.8.53)

Since Ω× δr is perpendicular to δr, the rotational motion may be excluded from this
equation through scalar multiplication of both sides of (1.8.53) with the vector δr. We
have

1

2

d

dt

(
|δr|2

)
=
(
δr · Eδr

)
. (1.8.54)

Let us return to Figure 1.18 and change the notations slightly. For our purposes,
it is convenient to denote the position vector of the fluid particle point M as r and
the position vector of the fluid particle at point M ′ as r′; see Figure 1.33. We shall
assign to the fluid particle at point M coordinates (q1, q2, q3); the coordinates of the
fluid particle at point M ′ will be (q′1, q

′
2, q

′
3). Then, in view of (1.8.5),

|δr|2 = |r− r′|2 =
3∑

i=1

H2
i (q

′
i − qi)

2. (1.8.55)

With time, the two fluid particles move in space, changing their coordinates. Differ-
entiation of (1.8.55) gives

1

2

d

dt

(
|δr|2

)
=

3∑

i=1

3∑

j=1

Hi
∂Hi

∂qj

dqj
dt

(q′i − qi)
2 +

3∑

i=1

H2
i (q

′
i − qi)

(
dq′i
dt

− dqi
dt

)
. (1.8.56)
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Here it has been taken into account that the Lamé coefficients do not depend on time
explicitly but only through the coordinates q1, q2, and q3.

When the fluid particle at point M moves in space along qi-axis, changing its
coordinate qi by a small value dqi, the actual distance travelled is Hi dqi. Consequently,
the corresponding velocity component is given by

Vi = Hi
dqi
dt
. (1.8.57)

Solving (1.8.57) for dqi/dt, we have

dqi
dt

=
Vi(q1, q2, q3)

Hi(q1, q2, q3)
. (1.8.58)

Similarly, for for the fluid particle at point M ′,

dq′i
dt

=
Vi(q

′
1, q

′
2, q

′
3)

Hi(q′1, q
′
2, q

′
3)
.

Therefore, taking into account that pointsM andM ′ are situated close to one another,
we can write

dq′i
dt

− dqi
dt

=

3∑

j=1

∂

∂qj

(
Vi
Hi

)
(q′j − qj). (1.8.59)

Substitution of (1.8.58) and (1.8.59) into (1.8.56) yields

1

2

d

dt

(
|δr|2

)
=

3∑

i=1

3∑

j=1

∂Hi

∂qj

Hi

Hj
Vj(δqi)

2 +

3∑

i=1

3∑

j=1

H2
i

∂

∂qj

(
Vi
Hi

)
δqi δqj ,

where δqi = q′i − qi. It remains to express the increments δqi of the curvilinear coordi-
nates qi through the corresponding length elements dli = Hi δqi, and we will have the
left-hand side of equation (1.8.54) in the form

1

2

d

dt

(
|δr|2

)
=

3∑

i=1

3∑

j=1

[
Vj

HiHj

∂Hi

∂qj
(dli)

2 +
Hi

Hj

∂

∂qj

(
Vi
Hi

)
dli dlj

]
.

Consequently,

(
δr · Eδr

)
=

3∑

i=1

3∑

j=1

[
Vj

HiHj

∂Hi

∂qj
(dli)

2 +
Hi

Hj

∂

∂qj

(
Vi
Hi

)
dli dlj

]
. (1.8.60)

We shall now use equation (1.8.60) to determine the elements of the stress tensor
(1.8.52). If we choose the vector δr to be aligned with the q1-axis (see Figure 1.29 on
page 74), namely,

δr = (dl1, 0, 0), (1.8.61)

then the rate-of-strain tensor (1.8.52), being multiplied by δr, will produce a vector
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with components

Eδr = (ε11dl1 , ε21dl1 , ε31dl1).

The scalar product of this vector with δr is easily seen to be

(
δr · Eδr

)
= ε11(dl1)

2,

With (1.8.61), the right-hand side of equation (1.8.60) reduces to

3∑

j=1

Vj
H1Hj

∂H1

∂qj
(dl1)

2 +
∂

∂q1

(
V1
H1

)
(dl1)

2,

and we can conclude that

ε11 =
1

H1

∂V1
∂q1

+
V2

H1H2

∂H1

∂q2
+

V3
H1H3

∂H1

∂q3
. (1.8.62a)

The other two diagonal elements, ε22 and ε33 of the rate-of-strain tensor (1.8.52) are
calculated by choosing δr = (0, dl2, 0) and δr = (0, 0, dl3), respectively. We find

ε22 =
1

H2

∂V2
∂q2

+
V3

H2H3

∂H2

∂q3
+

V1
H2H1

∂H2

∂q1
, (1.8.62b)

ε33 =
1

H3

∂V3
∂q3

+
V1

H3H1

∂H3

∂q1
+

V2
H3H2

∂H3

∂q2
. (1.8.62c)

If we now choose the vector δr to be (dl1, dl2, 0), then the left-hand side of equation
(1.8.60) assumes the form

(
δr · Eδr

)
= ε11(dl1)

2 + 2ε12 dl1dl2 + ε22(dl2)
2. (1.8.63)

Using (1.8.62a) and (1.8.62b) for ε11 and ε22 in (1.8.63), and calculating the right-hand
side of (1.8.60) with δr = (dl1, dl2, 0), we find that

ε12 = ε21 =
1

2

[
H1

H2

∂

∂q2

(
V1
H1

)
+
H2

H1

∂

∂q1

(
V2
H2

)]
. (1.8.64a)

The four remaining elements of the rate-of-strain tensor,

ε13 = ε31 =
1

2

[
H1

H3

∂

∂q3

(
V1
H1

)
+
H3

H1

∂

∂q1

(
V3
H3

)]
, (1.8.64b)

ε23 = ε32 =
1

2

[
H2

H3

∂

∂q3

(
V2
H2

)
+
H3

H2

∂

∂q2

(
V3
H3

)]
, (1.8.64c)

are calculated in a similar way.
Now we can return to the constitutive equation (1.8.51) and use equations (1.8.62)

and (1.8.64) to determine the elements of the stress tensor P . We find that for an
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incompressible flow, when divV = 0, the diagonal elements of the stress tensor are
given by18

pii = −p+ 2µ

(
1

Hi

∂Vi
∂qi

+
Vi+1

HiHi+1

∂Hi

∂qi+1
+

Vi+2

HiHi+2

∂Hi

∂qi+2

)
,

The non-diagonal elements are calculated as

pij = µ

[
Hi

Hj

∂

∂qj

(
Vi
Hi

)
+
Hj

Hi

∂

∂qi

(
Vj
Hj

)]
.

In particular, in cylindrical coordinates,

prr = −p+ 2µ
∂Vr
∂r

, prφ = µ

(
1

r

∂Vr
∂φ

+
∂Vφ
∂r

− Vφ
r

)
,

pφφ = −p+ 2µ

(
1

r

∂Vφ
∂φ

+
Vr
r

)
, prz = µ

(
∂Vr
∂z

+
∂Vz
∂r

)
,

pzz = −p+ 2µ
∂Vz
∂z

, pφz = µ

(
∂Vφ
∂z

+
1

r

∂Vz
∂φ

)
.





(1.8.65)

In spherical polar coordinates

prr = −p+ 2µ
∂Vr
∂r

, prϑ = µ

(
1

r

∂Vr
∂ϑ

+
∂Vϑ
∂r

− Vϑ
r

)
,

pϑϑ = −p+ 2µ

(
1

r

∂Vϑ
∂ϑ

+
Vr
r

)
, prφ = µ

(
∂Vφ
∂r

+
1

r sinϑ

∂Vr
∂φ

− Vφ
r

)
,

pφφ = −p+ 2µ

(
1

r sinϑ

∂Vφ
∂φ

+
Vr
r

+
Vϑ

r tanϑ

)
,

pϑφ = µ

(
1

r sinϑ

∂Vϑ
∂φ

+
1

r

∂Vφ
∂ϑ

− Vφ
r tanϑ

)
,

and, finally, in body-fitted coordinates

pττ = −p+ 2µ

1 + κn

(
∂Vτ
∂s

+ κVn

)
, pτn = µ

(
∂Vτ
∂n

+
∂Vn/∂s− κVτ

1 + κn

)
,

pnn = −p+ 2µ
∂Vn
∂n

, pτz = µ

(
∂Vτ
∂z

+
1

1 + κn

∂Vz
∂s

)
,

pzz = −p+ 2µ
∂Vz
∂z

, pnz = µ

(
∂Vn
∂z

+
∂Vz
∂n

)
.






(1.8.66)

18Here the conventional index cycling rules are used, with 2 + 2 and 3 + 1 meaning 1, and 3 + 2
meaning 2.



1.8. Curvilinear Coordinates 93

Exercises 5

1. Show that for a two-dimensional flow, considered in body-fitted coordinates, the
streamlines are given by the equation

dn

ds
=
[
1 + κ(s)n

]Vn
Vτ
. (1.8.67)

Suggestion: Notice that in body-fitted coordinates

dr = e1H1 ds+ e2 dn,

and therefore, equation (1.4.12) becomes

dr×V =

∣∣∣∣∣∣∣

e1 e2 e3

(H1ds) dn dz

Vτ Vn 0

∣∣∣∣∣∣∣
= 0.

2. A circular cylinder container of radius R is filled with water and placed on a
horizontal disk such that the axis of symmetry of the container passes through
the disk centre (see Figure 1.34). The disk is then brought to steady rotation with
angular velocity Ω.

g

Ω

Fig. 1.34: Rotating cylinder.

(a) Assume that after an initial ‘relaxation’ period, the water inside the cylinder
assumes steady rotation as a rigid body. Taking into account the presence of
the Earth’s gravitational field (fz = −g), show that the height z of the water
surface depends on the distance r from the axis of rotation as

z =
Ω2

2g
r2 +

C − pa
ρg

,

where pa is the atmospheric pressure, ρ is the density of the water, and C is
a constant whose value depends on the amount of water in the container.
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(b) Taking into account that the mass M of water in the container may be cal-
culated as

M = ρ

R∫

0

z 2πr dr,

find the critical value Ωc of the angular velocity Ω above which a dry patch
forms at the bottom of the container.

Suggestion: When dealing with this flow it is convenient to use cylindrical
polar coordinates (see Figure 1.30) with z-axis aligned with the axis of rotation of
the fluid. Simplify the Navier–Stokes equations (1.8.45) assuming that the water
in the cylinder rotates like a rigid body, i.e.

Vφ = Ωr, Vr = Vz = 0. (1.8.68)

Determine the pressure distribution inside the water and on its surface.

3. It is known that the Earth is not a perfect sphere. It is also known that the
pressure in the ocean increases with depth much faster than it decreases in the
atmosphere. Keeping this in mind, find the shape of the Earth by assuming that
it may be thought of as a rotating volume of fluid surrounded by vacuum. The
fluid is kept together through the action of the gravitational force. Assume that
this force has only a radial component, which is proportional to the distance from
the Earth’s centre, namely

fr = −αr.
Given that the angular velocity of the Earth’s rotation is Ω, and the Earth’s radius
at the North Pole is R0, show that at any other meridional angle ϑ (measured
from the North Pole), the distance R from the Earth’s surface to the centre is
given by

R =
R0√

1− Ω2

α
sin2 ϑ

. (1.8.69)

Suggestion: Thanks to the fact that the fluid motion is symmetric with re-
spect to the Earth’s axis, it is convenient to use spherical polar coordinates (see
Figure 1.31), where the Navier–Stokes equations are given by (1.8.48). Take into
account that

Vφ = Ωr sinϑ, Vr = 0, Vϑ = 0,

and, using (1.8.48), show that the pressure is zero on the surface given by (1.8.69).



2

Solutions of the Navier–Stokes
Equations

Having now established the governing Navier–Stokes equations, one can expect to be
able to study various fluid flows by constructing the corresponding solutions to these
equations. However, this strategy has proven to be difficult to implement. The reason
lies in the complexity of the Navier–Stokes equations, which, of course, reflects the
complexity of fluid motion itself. As a result, the development of fluid dynamics has
always been based on various simplifications of the Navier–Stokes equations. We will
rely on this approach throughout this book series. However, to start with, we shall
consider a number of cases when direct solution of the Navier–Stokes equations is
possible. An exposition of such cases is presented in Section 2.1. Then in Section 2.2,
to illustrate various properties of fluid motion, we will give some examples of numerical
solutions of the Navier–Stokes equations.

2.1 Exact Solutions

The term exact solution is used in situations where the governing fluid-dynamic equa-
tions may be solved in an analytical form or where they may be reduced to ordinary
differential equations.

2.1.1 Couette flow

Let us consider a layer of incompressible fluid of thickness h confined between two
parallel flat plates as shown in Figure 2.1. The lower plate is kept motionless in the
laboratory frame, while the upper moves parallel to itself with a constant velocity U . In
order to study the fluid motion between the plates, we shall use Cartesian coordinates
with the x-axis drawn along the surface of the lower plate in the direction of motion of

x

y

h

U

Fig. 2.1: The problem layout.
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the upper plate, the y-axis perpendicular to the plates, and the z-axis perpendicular
to the sketch plane in Figure 2.1.

When studying this flow, we can make the following simplifications in the Navier–
Stokes equations (1.7.6):

1. We shall assume that the body forces are negligible compared with the viscous
forces acting in the fluid, which allows us to set

fx = fy = fz = 0. (2.1.1)

2. We shall further assume that the velocity of the upper plate has been kept constant
for long enough for the flow to become steady, i.e.

∂u

∂t
=
∂v

∂t
=
∂w

∂t
= 0. (2.1.2)

3. If the distance h between the plates is small compared with the characteristic
longitudinal and spanwise lengths of the plates, then the plates may be viewed as
infinite. In this case, the solution should be invariant with respect to an arbitrary
shift in the x- or z-direction, which means that the fluid-dynamic functions are
independent of x and z, i.e.

∂

∂x
=

∂

∂z
= 0. (2.1.3)

We shall start our analysis with the continuity equation (1.7.6d). In view of (2.1.3),
the first and third terms in this equation should be disregarded, and we are left with

∂v

∂y
= 0. (2.1.4)

When integrating this equation, we will take into account that the fluid particles
are not allowed to cross the surface of either of the plates. This requirement is written
as

v
∣∣∣
y=0

= v
∣∣∣
y=h

= 0, (2.1.5)

and is known as the impermeability condition. It holds on any rigid-body surface,
except in special cases when, for example, the surface is artificially perforated for the
purpose of flow control by means of suction or blowing through the perforation. Solving
(2.1.4) with (2.1.5), we see that

v = 0 (2.1.6)

everywhere in the flow field.
Let us now consider the x-momentum equation (1.7.6a). Term-by-term analysis of

this equation shows that it may be simplified significantly. In fact, all the under-braced
terms

∂u

∂t︸︷︷︸
(2.1.2)

+ u
∂u

∂x︸︷︷︸
(2.1.3)

+ v
∂u

∂y︸︷︷︸
(2.1.6)

+ w
∂u

∂z︸ ︷︷ ︸
(2.1.3)

= fx︸︷︷︸
(2.1.1)

− 1

ρ

∂p

∂x︸ ︷︷ ︸
(2.1.3)

+ ν
∂2u

∂x2︸ ︷︷ ︸
(2.1.3)

+ν
∂2u

∂y2
+ ν

∂2u

∂z2︸ ︷︷ ︸
(2.1.3)
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appear to vanish; the reason for this is indicated by the equation number below the
corresponding term. We have

∂2u

∂y2
= 0.

This equation has to be solved with the no-slip conditions on the two plates1

u
∣∣∣
y=0

= 0, u
∣∣∣
y=h

= U.

We find that

u =
U

h
y. (2.1.7)

Thus the fluid velocity grows linearly from zero on the lower plate to U on the upper
plate, as shown in Figure 2.2.

We shall conclude the analysis of Couette flow by demonstrating that w, the pro-
jection of the velocity vector on the z-axis2 is zero. In view of (2.1.1)–(2.1.3) and
(2.1.6), the z-momentum equation (1.7.6c) reduces to

∂2w

∂y2
= 0.

In order to solve this equation, we need to formulate the no-slip condition on the two
plates. Thanks to the fact that the x-axis is chosen to point in the direction of motion
of the upper plate, we have

w
∣∣∣
y=0

= w
∣∣∣
y=h

= 0.

Consequently, the solution for w is, indeed, w = 0.
We see that in Couette flow, all the fluid particles are travelling along straight lines

parallel to the x-axis with velocity given by (2.1.7).

x

y

h

U

Fig. 2.2: Couette flow.

1In a more general case, the no-slip condition is expressed by equations (1.7.34).
2In what follows, we shall often call this velocity component the spanwise velocity.
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2.1.2 Poiseuille flow

Let us now assume that both plates in Figure 2.1 are motionless, and form a channel
through which the fluid is driven by the pressure difference ∆p = p1 − p2 between the
two channel ends. Here p1 and p2 are the values of the pressure in cross-sections 1
and 2, respectively; see Figure 2.3. As an example, one might think of a pipeline
used for transporting oil or natural gas. In order to maintain the flow through the
pipeline, suitably spaced pump stations are built to create a pressure difference along
the corresponding segments of the line. If we denote the length of the channel by L,
then an average pressure gradient along the channel may be calculated as

dp

dx

∣∣∣∣
average

=
∆p

L
. (2.1.8)

Note that for the fluid to flow from left to right, ∆p should be negative.
If the channel is long enough, then, after initial adjustment near the channel intake

(cross-section 2), the longitudinal velocity profile establishes itself and for the rest of
the flow appears to be independent of x, i.e.

∂u

∂x
= 0. (2.1.9)

Since the problem considered is invariant with respect to an arbitrary shift in the
spanwise direction, we can also claim that the derivative of any function with respect
to z is zero:

∂

∂z
= 0. (2.1.10)

With (2.1.9) and (2.1.10), the continuity equation (1.7.6d) reduces again to

∂v

∂y
= 0,

which, being integrated with the impermeability condition (2.1.5), leads to the con-
clusion that

v = 0 (2.1.11)

everywhere in the flow field.

x

y

h

12

L

Fig. 2.3: Poiseuille flow.
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Using (2.1.1), (2.1.2) and (2.1.9)–(2.1.11) in the x-momentum equation (1.7.6a),
we have

∂2u

∂y2
=

1

µ

∂p

∂x
. (2.1.12)

Since the flow considered is incompressible, we can assume that the dynamic viscosity
coefficient µ is constant. Substituting (2.1.11) into the y-momentum equation (1.7.6b),
we find that

∂p

∂y
= 0, (2.1.13)

which means that the pressure does not change across the channel. Differentiation of
(2.1.12) with respect to x yields

∂

∂x

(
∂p

∂x

)
= µ

∂2

∂y2

(
∂u

∂x

)
. (2.1.14)

Using (2.1.9) on the right-hand side of (2.1.14), we see that

∂

∂x

(
∂p

∂x

)
= 0. (2.1.15)

It follows from (2.1.13) and (2.1.15) that the pressure gradient ∂p/∂x remains constant
all over the flow field, which makes formula (2.1.8) applicable for calculating not only
an average but also the actual pressure gradient.

Integrating (2.1.12) with the no-slip conditions on the two plates,

u
∣∣∣
y=0

= u
∣∣∣
y=h

= 0,

we find that in the flow considered the velocity profile is parabolic (see Figure 2.4):

u =
1

2µ

dp

dx
(y − h)y.

The maximum velocity is reached at the middle of the channel, y = 1
2
h, and is

given by

umax =
h2

8µ

∣∣∣∣
dp

dx

∣∣∣∣ =
h2|∆p|
8µL

.

x

y

h

Fig. 2.4: Velocity profile in Poiseuille flow.
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2.1.3 Hagen–Poiseuille flow

Now we shall consider an axisymmetric analogue of the channel Poiseuille flow dis-
cussed in Section 2.1.2. We shall assume now that an incompressible fluid flows through
a tube of circular cross-section, being driven by a pressure difference ∆p between the
tube ends. This flow received its name in honour of Hagen (1839) and Poiseuille (1840,
1841) for their contribution to studying the flows of this type.

When dealing with Hagen–Poiseuille flow, it is convenient to use cylindrical polar
coordinates. In order to preserve the notation introduced in Figure 1.30, we shall place
the z-axis of the cylindrical coordinate system (Figure 1.30) along the centre-line of
the tube (Figure 2.5). Similar to the previous examples, we shall assume that the tube
is long enough for the longitudinal velocity Vz to be independent of the position along
the tube, i.e.

∂Vz
∂z

= 0. (2.1.16)

We can simplify the problem further by taking into account that the flow is axisymmet-
ric, and therefore all the fluid dynamic functions are independent of the circumferential
coordinate φ:

∂

∂φ
= 0. (2.1.17)

Using (2.1.16) and (2.1.17) in the continuity equation (1.8.45d), we find

∂Vr
∂r

+
Vr
r

= 0,

or, equivalently,
∂

∂r

(
rVr
)
= 0.

We see that rVr is a function of φ and z only, say, F (φ, z). Consequently, the radial
velocity component

Vr =
F (φ, z)

r
. (2.1.18)

The function F (φ, z) may be found from the impermeability condition on the tube
wall. Denoting the radius of the tube by R, we have

Vr

∣∣∣
r=R

= 0. (2.1.19)

z

x

y

r

φ

Fig. 2.5: Hagen–Poiseuille flow.
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Substitution of (2.1.18) into (2.1.19) shows that F (z, φ) = 0, and therefore

Vr = 0 (2.1.20)

throughout the flow field.
Let us now turn to the circumferential momentum equation (1.8.45b). We assume

that the flow is steady, i.e. ∂Vφ/∂t = 0, and the body force fφ is negligible. We further
assume that, similar to Vz, the circumferential velocity component Vφ is independent
of the longitudinal coordinate z, and both Vφ and the pressure p are independent of
φ. Then equation (1.8.45b) reduces to

∂2Vφ
∂r2

+
1

r

∂Vφ
∂r

− Vφ
r2

= 0. (2.1.21)

This is a partial differential equation, but it involves only derivatives with respect to
r, and therefore may be treated as an ordinary differential equation. We shall seek the
two complementary solutions of (2.1.21) in the form

Vφ = rλ. (2.1.22)

Substitution of (2.1.22) into (2.1.21) leads to the quadratic equation

λ2 − 1 = 0,

with the two solutions being

λ1 = 1, λ2 = −1.

Consequently, the general solution to (2.1.21) is written as

Vφ = F (φ, z) r +G(φ, z)
1

r
.

We see that with G(φ, z) 6= 0 the circumferential velocity Vφ develops a singularity
at r = 0. This sort of behaviour could only be possible if there was a fast rotating
cylinder of infinitely small radius inserted in the flow along the axis of symmetry.3

Since our flow is free of such devices, we have to set G(φ, z) = 0.
Using further the no-slip condition on the tube wall,

Vφ

∣∣∣
r=R

= 0,

we find that F (φ, z) is also zero. Thus, in the flow considered, the circumferential
velocity component

Vφ = 0. (2.1.23)

3When using a cylindrical coordinate system, one has to keep in mind that this coordinate system
does not provide a one-to-one correspondence between the position of a point in space and coordi-
nates (r, φ, z). Indeed, for any point situated on the axis of symmetry, the angle φ appears to be
undetermined. This is why a singularity in the solution at r = 0 is to be expected.
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Now it is easily found from the radial momentum equation (1.8.45a) that the
pressure does not change with r:

∂p

∂r
= 0.

Finally, it remains to consider the axial momentum equation (1.8.45c). Under the
conditions stated above, it reduces to

∂2Vz
∂r2

+
1

r

∂Vz
∂r

=
1

µ

∂p

∂z
. (2.1.24)

Notice that the pressure gradient ∂p/∂z on the right-hand side of (2.1.24) represents
the force that drives the fluid through the tube. In view of (2.1.16), the left-hand side
of equation (2.1.24) is independent of z, and therefore so should the right-hand side.
This means that the pressure gradient ∂p/∂z is constant throughout the flow field,
and may be calculated as

∂p

∂z
=

∆p

L
.

Here we use the same notation as in the channel Poiseuille problem (see Section 2.1.2),
with ∆p = p2 − p1 < 0 being the pressure difference between the tube ends and L the
length of the tube.

Since Vz is a function of r only, we shall write equation (2.1.24) using ordinary
derivatives:

d2Vz
dr2

+
1

r

dVz
dr

=
1

µ

∆p

L
.

Multiplying both sides of this equation by r, we have

d

dr

(
r
dVz
dr

)
=

1

µ

∆p

L
r.

This equation is easily integrated to yield

dVz
dr

=
1

2µ

∆p

L
r +

C1

r
. (2.1.25)

Integration of (2.1.25) results in

Vz =
1

4µ

∆p

L
r2 + C1 ln r + C2. (2.1.26)

It remains to find the constants of integration C1 and C2. In order for the velocity
Vz to remain finite, the first of these, C1, should be set to zero. The second constant,
C2, may be found from the no-slip condition

Vz

∣∣∣
r=R

= 0.

We have

C2 = − 1

4µ

∆p

L
R2,
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which, being substituted back into (2.1.26), yields

Vz =
1

4µ

∆p

L

(
r2 −R2

)
. (2.1.27)

With the velocity profile known, we can calculate the volumetric flow rate, called
the flux, through any cross-section of the tube as follows. If we consider an annular
element of the cross-section of radius r and width dr, then the area of this element
will be 2πr dr, and the flux4

dQ = Vz2πr dr. (2.1.28)

Substituting (2.1.27) into (2.1.28) and performing the integration, we find that the
entire flux

Q =
π

2µ

∆p

L

R∫

0

(r2 −R2)r dr = − π

8µ

∆p

L
R4. (2.1.29)

An average velocity V̄z may be defined as the ratio of the fluid flux Q and the
cross-sectional area of the tube πR2. We have

V̄z =
|∆p|
8µL

R2.

Referring the axial velocity Vz to its average value V̄z, we can express the velocity
profile (2.1.27) in the following non-dimensional form:

Vz
V̄z

= 2

(
1− r2

R2

)
.

We see that the maximum velocity appears to be twice the average velocity.

2.1.4 Flow between two coaxial cylinders

Here we consider two coaxial cylinders of radii R1 and R2 rotating with angular veloc-
ities Ω1 and Ω2, respectively; see Figure 2.6. The space between the cylinders is filled
with an incompressible fluid of density ρ and dynamic viscosity coefficient µ. Our task
is to determine the velocity and pressure distributions between the cylinders.

When dealing with this problem, it is convenient again to use cylindrical polar
coordinates (Figure 1.30) with the z-axis now aligned with the common axis of the
cylinders. In the flow considered, the Navier–Stokes equations (1.8.45) allow for the fol-
lowing simplifications. First, the flow is two-dimensional, which means that the deriva-
tives of all the functions with respect to z are zero. Also, the axial velocity is zero:

∂

∂z
= 0, Vz = 0. (2.1.30)

Second, none of the functions depend on the circumferential angle φ, i.e.

∂

∂φ
= 0. (2.1.31)

4Notice that the mass flux is obtained by multiplying the volumetric flux by the fluid density ρ.
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Fig. 2.6: Flow between two coaxial cylinders.

We start with the continuity equation (1.8.45d). In view of (2.1.30) and (2.1.31),
it reduces to

∂Vr
∂r

+
Vr
r

= 0,

with the general solution given by (2.1.18):

Vr =
F (φ, z)

r
.

The impermeability condition on the two cylinders,

Vr

∣∣∣
r=R1

= Vr

∣∣∣
r=R2

= 0,

is satisfied by setting F (φ, z) = 0. We can conclude that

Vr = 0 (2.1.32)

throughout the flow field.
With (2.1.30)–(2.1.32), the radial (1.8.45a) and circumferential (1.8.45b) momen-

tum equations reduce to

1

ρ

∂p

∂r
=
V 2
φ

r
, (2.1.33a)

∂2Vφ
∂r2

+
1

r

∂Vφ
∂r

− Vφ
r2

= 0. (2.1.33b)

Equation (2.1.33b) may be solved independently of (2.1.33a). It coincides with equa-
tion (2.1.21), which has been shown to have two complementary solutions, r and 1/r.
Therefore, the general solution of equation (2.1.33b) is written as

Vφ = C1r +
C2

r
. (2.1.34)

R
1

R2
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The constants C1 and C2 may be found using the no-slip conditions on the two cylin-
ders:

Vφ

∣∣∣
r=R1

= V1, Vφ

∣∣∣
r=R2

= V2. (2.1.35)

Here V1 = Ω1R1 and V2 = Ω2R2. Substituting (2.1.34) into (2.1.35) and solving the
resulting equations for C1 and C2, we find

C1 =
V1R1 − V2R2

R2
1 −R2

2

, C2 = R1R2
V1R2 − V2R1

R2
2 −R2

1

. (2.1.36)

It remains to substitute (2.1.36) back into (2.1.34) and we will have the distribution
of the velocity Vφ between the cylinders.

In order to determine the pressure distribution, we substitute (2.1.34) into the
radial momentum equation (2.1.33a). We find that

dp

dr
= ρC2

1r +
2ρC1C2

r
+
ρC2

2

r3
. (2.1.37)

Integration of (2.1.37) yields

p = p0 +
1
2
ρC2

1r
2 + 2ρC1C2 ln r −

ρC2
2

2r2
,

where the constant of integration p0 remains arbitrary. Notice that in the case of
incompressible flows the Navier–Stokes equations (1.7.6) involve the pressure gradient
only, not the pressure itself. Therefore, adding a constant to the pressure does not
affect these equations.

2.1.5 Impulsively started flat plate

Let us assume that an incompressible viscous fluid occupies a semi-infinite region that
is bounded on one side by a flat surface. The latter may be thought of as the surface
of an infinitely large flat plate. Let us further assume that initially both the fluid and
the plate were kept at rest. Then, at time t = 0, the plate is suddenly brought into
motion parallel itself with a velocity U that remains constant for all t > 0.

Through the action of the viscous forces, the fluid close to the plate and then further
in the field will be brought in motion, and our task is to describe how it happens. We

x

y

U

Fig. 2.7: The flow above an impulsively started flat plate.
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shall use Cartesian coordinates with x measured along the plate in the direction of
its motion and y perpendicular to the plate surface (see Figure 2.7). The governing
Navier–Stokes equations (1.7.6) allow for the following simplifications.

First of all, the problem considered is invariant with respect to an arbitrary shift
in the x- and z-directions. Therefore, the derivatives of all the fluid-dynamic functions
with respect to x and z are zero, i.e.

∂

∂x
=

∂

∂z
= 0. (2.1.38)

This reduces the continuity equation (1.7.6d) to

∂v

∂y
= 0.

Integration of this equation with the impermeability condition at the plate surface,

v
∣∣∣
y=0

= 0,

leads to the conclusion that
v = 0 (2.1.39)

everywhere in the flow field.
If the x-component fx of the body force f is negligible, then, in view of (2.1.38)

and (2.1.39), the x-momentum equation (1.7.6a) will reduce to

∂u

∂t
= ν

∂2u

∂y2
. (2.1.40)

When formulating the boundary conditions for this equation, one needs to keep in
mind that a set of boundary conditions compatible with a particular partial differential
equation depends on its type. Equation (2.1.40) is parabolic as it has a second-order
derivative with respect to y and only a first-order derivative with respect to t. A
classical example of a parabolic equation is the heat transfer equation. When applied,
say, to a heat-conducting rod, it may be written as

∂T

∂t
= a

∂2T

∂x2
, (2.1.41)

where a is a positive constant, representing the thermal conductivity of the material
of which the rod is made, T is the temperature to be found, t is time, and x is
the coordinate measured along the rod. The latter is assumed to occupy the interval
x ∈ [0, d] of the x-axis, as shown in Figure 2.8. In order to determine the temperature
T at a point y = y0 inside the rod, at time t = t0, it is necessary to specify the
temperature distribution along the rod at initial instant t = 0 and also to formulate
the thermal conditions at the rod ends for t ∈ [0, t0]. These boundaries are shown by
braces in Figure 2.8. The solution at point (t0, x0), obviously, does not depend on the
boundary conditions at the rod ends at later times t > t0.
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︸ ︷︷ ︸

︷ ︸︸ ︷

(t0, x0)

O

d

t0 t

x






Fig. 2.8: The boundary conditions for the heat transfer equation (2.1.41).

Similarly, when dealing with equation (2.1.40), one needs, first of all, to formulate
an initial condition. Since, for all t < 0, the fluid remained at rest, we can write

u = 0 at t = 0, y ∈ (0,∞). (2.1.42)

In addition to this, equation (2.1.40) requires two boundary conditions. The first is
the no-slip condition on the plate surface:

u = U at y = 0, t > 0. (2.1.43)

The second boundary condition should be formulated at large values of y, where the
fluid is expected to remain motionless for all finite values of t:

u = 0 at y = ∞, t > 0. (2.1.44)

Now our task will be to find the solution to the problem (2.1.40)–(2.1.44). We start
by noting that no characteristic length or time scales can be assigned to the problem,
which suggests that the solution may be expected to have a self-similar form. This
means that if the distribution of the velocity u in the direction perpendicular to the
plate is known at some time t, then at any other time it may be found by means of
‘zooming’. Mathematically, this zooming is performed via affine transformations.

Let
u = F (t, y). (2.1.45)

be the solution of (2.1.40)–(2.1.44). We shall seek the affine transformation in the form

u = Aū, t = Bt̄, y = Cȳ, (2.1.46)

where A, B, and C are constants. Substitution of (2.1.46) into equation (2.1.40) yields

1

B

∂ū

∂t̄
=

ν

C2

∂2ū

∂ȳ2
,
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while the boundary conditions (2.1.42)–(2.1.44) become

ū = 0 at t̄ = 0,

Aū = U at ȳ = 0,

ū = 0 at ȳ = ∞.

If we choose
A = 1, B = C2, (2.1.47)

then the transformed problem will be identical to the original one. It therefore admits
the solution (2.1.45), which should now be written as

ū = F (t̄, ȳ). (2.1.48)

Returning in (2.1.48) to the original variables (2.1.46), we have

u

A
= F

( t
B
,
y

C

)

which, in view of (2.1.47), may also be written as

u(t, y) = F
( t

C2
,
y

C

)
. (2.1.49)

The parameter C in (2.1.49) may assume an arbitrary value, and therefore it may be
treated as an additional independent variable. Still, it has been introduced artificially;
the solution does not really depend on it. To ‘hide’ this parameter, we can choose, for
example, C =

√
t, which leads to

u = F
(
1,

y√
t

)
.

This shows that the solution of the problem (2.1.40)–(2.1.44) has the form

u(t, y) = f(η), (2.1.50)

where the independent variable

η =
y√
t

(2.1.51)

is referred to as the similarity variable.
In order to deduce a differential equation for the function f(η) we need to substitute

(2.1.50) and (2.1.51) into the governing equation (2.1.40). It is easily seen that

∂η

∂t
= −1

2

y

t3/2
= −1

2

η

t
,

∂η

∂y
=

1√
t
.

Therefore,

∂u

∂t
= f ′(η)

∂η

∂t
= −1

2

η

t
f ′(η),

∂u

∂y
= f ′(η)

∂η

∂y
=

1√
t
f ′(η),

∂2u

∂y2
=

1

t
f ′′(η),
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which reduces (2.1.40) to

νf ′′ +
1

2
ηf ′ = 0. (2.1.52)

The boundary conditions for this equation are formulated by substituting (2.1.50) and
(2.1.51) into (2.1.42)–(2.1.44). Taking into account that η = ∞ at t = 0, we find from
(2.1.42) that

f(∞) = 0. (2.1.53)

Condition (2.1.43) is imposed at y = 0, where η = 0. We have

f(0) = U. (2.1.54)

Finally, we need to use condition (2.1.44), but it is easily seen to lead again to (2.1.53).
Thus, our task now will be to solve equation (2.1.52) subject to the boundary condi-
tions (2.1.53) and (2.1.54).

Equation (2.1.52) may be integrated once by making use of separation of variables:

f ′′

f ′
= − η

2ν
.

We find that

f ′ = C1e
−η2/4ν .

A second integration yields

f(η) = C1

η∫

0

e−s2/4ν ds+ C2.

The integration constants C1 and C2 may be found from the boundary conditions
(2.1.53) and (2.1.54) to be5

C1 = − U√
πν
, C2 = U.

Consequently,

f(η) = U − U√
πν

η∫

0

e−s2/4ν ds. (2.1.55)

Introducing a new integration variable ζ = s/
√
4ν in (2.1.55) and returning to (2.1.50)

5When applying condition (2.1.54), the following formula is used:

∞
∫

0

e−αs2ds =
1

2

√

π

α
.
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and (2.1.51), we finally have the solution in the form

u(t, y) = U erfc
( y

2
√
νt

)
, (2.1.56)

where

erfcx = 1− 2√
π

x∫

0

e−ζ2

dζ

is referred to as the complementary error function. It follows from (2.1.56) that the
thickness of the layer of fluid involved in motion by the viscous forces may be estimated
as

y ∼
√
νt. (2.1.57)

The above solution was first produced by Stokes (1851); hence the layer of the fluid
put in motion by the plate is termed the Stokes layer.

2.1.6 Dissipation of the potential vortex

Let us assume that an incompressible fluid is involved in rotational motion with the ve-
locity field represented by the potential vortex solution, which is written in cylindrical
polar coordinates as

Vr = 0, Vφ =
Γ

2πr
, Vz = 0. (2.1.58)

Physically, this motion may be produced with a help of a circular cylinder of small
radius placed inside the fluid and brought in rotation around its axis with a large
angular velocity (see Problem 5 in Exercises 6).

Suppose that at time t = 0 the cylinder suddenly ‘vanishes’, and the fluid parti-
cles on the opposite sides of its surface come in contact with each other, generating
extremely large shear stress at the centre of rotation. This will make the singularity
that the initial velocity (2.1.58) has at r = 0 disappear immediately. We then expect
the action of the viscous forces to lead to a gradual deceleration of the fluid rotation,
and our task is to describe how this happens.

We start, as usual, with the continuity equation (1.8.45d). Taking into account
that the flow is axisymmetric and two-dimensional, we can disregard the derivatives
with respect to φ and z, which yields

∂Vr
∂r

+
Vr
r

= 0.

The solution of this equation is written as

Vr =
F (t)

r
.

The function F (t) defines the volumetric fluid flux through a circle centred at the axis
of rotation:

Q = 2πrVr = 2πF (t).
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Therefore, assuming that there are no sources or sinks situated at r = 0, we have to
set F (t) = 0, and we arrive at the conclusion that

Vr = 0 for all t > 0.

We then see that the circumferential momentum equation (1.8.45b) takes the form

∂Vφ
∂t

= ν

(
∂2Vφ
∂r2

+
1

r

∂Vφ
∂r

− Vφ
r2

)
. (2.1.59)

Again, the choice of the boundary conditions for equation (2.1.59) depends on its type.
The latter is determined by the higher-order derivatives. Equation (2.1.59) has only
one derivative with respect to time, which is ∂Vφ/∂t, and the second-order derivative
with respect to r is ∂2Vφ/∂r

2. Hence, the equation is parabolic, and requires one initial
condition and two boundary conditions.

The initial condition follows directly from (2.1.58), and is written as

Vφ =
Γ

2πr
at t = 0, r > 0. (2.1.60)

The far field is expected to remain undisturbed as long as time t is finite, which gives
the first boundary condition:

Vφ =
Γ

2πr
as r → ∞, t > 0. (2.1.61)

In order to formulate the second boundary condition, we shall assume that, owing
to the action of viscous forces, the singularity at the centre of rotation will vanish
momentarily, and there exists a positive constant M such that

|Vφ| < M at r = 0, t > 0. (2.1.62)

The problem (2.1.59)–(2.1.62) does not involve any characteristic length or time
scales. This suggests that the solution may be expected to have a self-similar form. To
verify this possibility, we use the affine transformations

Vφ = AV̄φ, t = Bt̄, r = Cr̄. (2.1.63)

Substituting (2.1.63) into the analysed equation (2.1.59), we find

A

B

∂V̄φ
∂t̄

=
A

C2
ν

(
∂2V̄φ
∂r̄2

+
1

r̄

∂V̄φ
∂r̄

− V̄φ
r̄2

)
.

The boundary conditions (2.1.60)–(2.1.62), written in the new variables, take the form

AV̄φ =
1

C

Γ

2πr̄
at t̄ = 0,

AV̄φ =
1

C

Γ

2πr̄
at r̄ = ∞,

|V̄φ| < M̄ at r̄ = 0.
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In order for the transformed problem to be identical to the original one, we have to
set

B = C2, A =
1

C
,

where C remains arbitrary.
If Vφ = F (t, r) is the solution of the original problem, then the solution of the

transformed problem is written as

V̄φ = F (t̄, r̄). (2.1.64)

Returning in (2.1.64) to the original variables (2.1.63), we have

Vφ = AF

(
t

B
,
r

C

)
=

1

C
F

(
t

C2
,
r

C

)
.

As C is arbitrary, we can choose C = r, which leads to

Vφ =
1

r
F

(
t

r2
, 1

)
.

This suggests that the sought solution may be written in the form

Vφ =
1

r
f(η), η =

r2

t
. (2.1.65)

Substitution of (2.1.65) into (2.1.59) leads to the following equation for the function
f(η):

f ′′ +
1

4ν
f ′ = 0. (2.1.66)

The boundary conditions for this equation are deduced by substituting (2.1.65) into
(2.1.60)–(2.1.62). We have

f(0) = 0, f(∞) =
Γ

2π
. (2.1.67)

The general solution of equation (2.1.66) is written as

f(η) = C1 + C2e
−η/4ν , (2.1.68)

where the constants C1 and C2 may be found from (2.1.67) to be

C1 =
Γ

2π
, C2 = − Γ

2π
. (2.1.69)

It remains to substitute (2.1.69) back into (2.1.68) and then into (2.1.65). We see that
the circumferential velocity is given by the equation

Vφ =
Γ

2πr

[
1− exp

(
− r2

4νt

)]
, (2.1.70)

first deduced by Hamel (1916).
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It follows from (2.1.70) that the vortex has a viscous core of radius r ∼
√
νt. If

r ≫
√
νt, then the velocity field is represented by the potential vortex solution

Vφ =
Γ

2πr
for

r2

νt
≫ 1,

If, on the other hand, r ≪
√
νt, then, using the Taylor expansion for the exponential

function,6 we can find

Vφ =
Γr

8πνt
for

r2

νt
≪ 1,

which shows that, near the centre of the vortex core, the circumferential velocity grows
linearly with the radius r.

2.1.7 Kármán flow

Whereas the examples of the exact solutions we have met in the earlier sections deal
with two-dimensional flows, planar or axisymmetric, the flow over an infinite rotating
disk considered here gives rise to a fully three-dimensional solution of the Navier–
Stokes equations. It was first put forward by Kármán (1921)—hence the name Kármán
flow.

We shall formulate the problem as follows. Let us assume that a plane disk is placed
in an infinite reservoir filled with a stagnant incompressible fluid. The disk is brought
in rotation in its plane around the centre O; see Figure 2.9. Owing to the action of
viscous forces, the fluid particles adjacent to the disk will start to move following the
disk, but their trajectories will not be circular. Because of inertia, the fluid particles
will also tend to move away from the axis of rotation.

If the angular velocity of the disk rotation Ω is kept constant for a long enough
time, then the flow eventually becomes steady. As the flow is expected to be symmetric

Fig. 2.9: Kármán flow.

6Recall that
ex = 1 + x+ · · · as x → 0.

Ω

z

z

M

r
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Vz
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with respect to the axis of rotation, we shall use cylindrical polar coordinates (see
Figure 1.30 on page 80), choosing the z-axis to coincide with the axis of rotation of
the disk as shown in Figure 2.9. Disregarding the body force f and taking into account
that the derivatives with respect to time t and the circumferential angle φ are zero,
we have the Navier–Stokes equations (1.8.45) in the form

Vr
∂Vr
∂r

+ Vz
∂Vr
∂z

−
V 2
φ

r
= −1

ρ

∂p

∂r
+ ν

(
∂2Vr
∂z2

+
∂2Vr
∂r2

+
1

r

∂Vr
∂r

− Vr
r2

)
, (2.1.71a)

Vr
∂Vφ
∂r

+ Vz
∂Vφ
∂z

+
VrVφ
r

= ν

(
∂2Vφ
∂z2

+
∂2Vφ
∂r2

+
1

r

∂Vφ
∂r

− Vφ
r2

)
, (2.1.71b)

Vr
∂Vz
∂r

+ Vz
∂Vz
∂z

= −1

ρ

∂p

∂z
+ ν

(
∂2Vz
∂z2

+
∂2Vz
∂r2

+
1

r

∂Vz
∂r

)
, (2.1.71c)

∂Vr
∂r

+
∂Vz
∂z

+
Vr
r

= 0. (2.1.71d)

In order to formulate the boundary conditions for these equations and predict the
form of the solution, we shall discuss the physical processes involved in more detail. As
has been already mentioned, owing to the action of the viscous forces, it is expected
that a layer of the fluid will form above the disk, where the fluid particles will perform
circumferential motion following the rotation of the disk. The circumferential velocity
component Vφ has to satisfy the no-slip condition on the disk surface:

Vφ = Ωr at z = 0, (2.1.72)

which states that the fluid particles adjacent to the disk have to move with the same
velocity as the corresponding elements of the disk surface. Of course, further away
from the disk, the fluid in the reservoir is motionless. Therefore, the second boundary
condition for Vφ is

Vφ = 0 at z = ∞. (2.1.73)

Inside the rotating fluid layer, the circumferential velocity varies between (2.1.72)
and (2.1.73), which suggests that Vφ may be estimated as

Vφ ∼ Ωr. (2.1.74)

Let us now consider the radial velocity component Vr. The motion of the fluid in the
radial direction is caused by the centrifugal force, which is represented by the third
term, V 2

φ /r, on the left-hand side of the radial momentum equation (2.1.71a). The
acceleration of the fluid particles in the radial direction is represented by the first
term, Vr ∂Vr/∂r, in equation (2.1.71a). Clearly, they have to be in ‘balance’ with one
another, i.e.

Vr
∂Vr
∂r

∼
V 2
φ

r
. (2.1.75)

Using (2.1.74), we can estimate the centrifugal term as

V 2
φ

r
∼ Ω2r,
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which, being substituted into (2.1.75), yields

Vr
∂Vr
∂r

∼ Ω2r.

Solving this equation for Vr, we arrive at the conclusion that

Vr ∼ Ωr. (2.1.76)

Of course, Vr also depends on z, and is expected to have a maximum somewhere in
the middle of the rotating fluid layer. Still, on the disk surface, it has to satisfy the
no-slip condition

Vr = 0 at z = 0. (2.1.77)

As an observation point moves upwards towards the ‘outer edge’ of the rotating fluid
layer, the centrifugal force, V 2

φ /r, vanishes, which suggests the second boundary con-
dition for Vr to be

Vr = 0 at z = ∞. (2.1.78)

The circumferential motion of the fluid is governed by equation (2.1.71b). The
tangential viscous stress, which brings the fluid in rotation, is represented by the first
term on the right-hand side of (2.1.71b). In order to estimate the thickness of the layer
of fluid involved in rotation above the disk, we need to compare it with a convective
term on the left-hand side of (2.1.71b). Using, for example, the first convective term,
we can write

Vr
∂Vφ
∂r

∼ ν
∂2Vφ
∂z2

.

It follows from (2.1.74) and (2.1.76) that

Vr
∂Vφ
∂r

∼ Ω2r,

and therefore

∂2Vφ
∂z2

∼ Ω2

ν
r. (2.1.79)

Keeping in mind that Vφ ∼ Ωr, we can see that the balance (2.1.79) can only hold if
the thickness of the rotating fluid layer is independent of r, being estimated as

z ∼
√
ν

Ω
. (2.1.80)

We are prepared now to find an estimate for the axial velocity component Vz. We
shall use for this purpose the mass conservation law with the control volume in the
form of a circular cylinder installed on the disk surface as shown in Figure 2.10. We
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know that the fluid is moving from this cylinder through its side surface. As the area
of this surface is 2πrz, the corresponding fluid mass flux is calculated as

Q ∼ ρVr2πrz.

It has to be ‘resupplied’ through the top surface of the cylinder. The fluid flux through
this surface is estimated as

Q ∼ ρVzπr
2.

Consequently, the mass conservation law states

ρVr2πrz ∼ ρVzπr
2. (2.1.81)

Using (2.1.76) and (2.1.80) on the left-hand side of (2.1.81), and solving the resulting
equation for Vz, we find that7

Vz ∼
√
Ων. (2.1.82)

When formulating boundary conditions for Vz, one has to keep in mind that the mass
conservation law is represented by the continuity equation (2.1.71d), which is a first-
order differential equation. It allows for just one boundary condition for Vz. We shall
require that

Vz = 0 at z = 0. (2.1.83)

It remains to see what happens with the pressure p. If the disk radius is infinite,
then, outside the rotating fluid layer, the fluid velocity Vz will stay independent of r, as
equation (2.1.82) suggests. The pressure is also expected to remain constant. We shall
denote its value as p0, and then the boundary condition for the pressure is written as

p = p0 at z = ∞. (2.1.84)

The variation of the pressure across the rotating fluid layer is governed by equation
(2.1.71c). It is convenient to compare the pressure gradient in this equation with the

Fig. 2.10: Application of the mass conservation law.

7As we are conducting an order-of-magnitude analysis, we can disregard the factor 2 on the left-
hand side of equation (2.1.81).
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Vz

O
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second convective term, i.e.

Vz
∂Vz
∂z

∼ 1

ρ

∂p

∂z
,

and we see that
p− p0 ∼ ρΩν. (2.1.85)

We shall now return from the physical arguments to the mathematical analysis of
equations (2.1.71). Being guided by (2.1.74), (2.1.76), (2.1.80), (2.1.82), and (2.1.85),
we shall seek the solution for the velocity components and the pressure in the form

Vr = ΩrF (ζ), Vφ = ΩrG(ζ), Vz =
√
ΩνH(ζ), p = p0 + ρΩνP (ζ), (2.1.86)

where

ζ =

√
Ω

ν
z.

Substitution of (2.1.86) into the Navier–Stokes equations (2.1.71) reduces these equa-
tions to a set of ordinary differential equations

F 2 +HF −G2 = F ′′, (2.1.87a)

2FG+HG′ = G′′, (2.1.87b)

HH ′ = −P ′ +H ′′, (2.1.87c)

2F +H ′ = 0. (2.1.87d)

One can see that equations (2.1.87a,b,d) do not involve the pressure P (ζ), and may
be solved separately from equation (2.1.87c). Considered together, they constitute a
set of ordinary differential equations of fifth order, and require five boundary condi-
tions. These may be obtained by substituting (2.1.86) into (2.1.72), (2.1.73), (2.1.77),
(2.1.78), and (2.1.83). We have

F = 0, G = 1, H = 0 at ζ = 0,

F = 0, G = 0 at ζ = ∞.

}
(2.1.88)

The results of numerical solution of equations (2.1.87a,b,d) with the boundary con-
ditions (2.1.88) are displayed in Figure 2.11. We see that the circumferential velocity
component Vφ = ΩrG(ζ) decays monotonically from Vφ = Ωr on the disk surface
to zero at the outer edge of the rotating fluid layer (ζ = ∞). The radial velocity
component Vr = ΩrF (ζ) is positive everywhere inside the rotating fluid layer, which
confirms that, owing to the action of centrifugal forces, the fluid moves away from the
axis of rotation with a speed that grows linearly with the radius r. We also see that
the axial velocity component

√
ΩνH(ζ) is negative. The absolute value of the function

H(ζ) grows from zero on the disk surface to |H(∞)| = 0.883 at the outer edge of the
rotating fluid layer. Correspondingly, the fluid ‘resupply’ velocity appears to be

Vz = −0.883
√
Ων.
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Fig. 2.11: Radial, F (ζ), circumferential, G(ζ), and axial, H(ζ), velocity profiles for
rotating-disk flow.

With known velocity field, the pressure is easily found by integrating equation
(2.1.87c). We have

P = H ′ − 1
2
H2 + C.

In order to determine the constant of integration C, one needs to use the boundary
condition (2.1.84). Substitution of the equation for p from (2.1.86) into (2.1.84) yields

P (∞) = 0,

and we can conclude that C = 1
2

[
H(∞)

]2
.

Exercises 6

1. Consider Hagen–Poiseuille flow in a circular pipe of radius R and, instead of using
the Navier–Stokes equations (1.8.45), deduce equation (2.1.25) by balancing the
forces that act on a control volume D (see Figure 2.12). This volume has the form
of a circular cylinder of radius r < R, whose axis coincides with the axis z of
the pipe. The surface Sc surrounding the control volume D is composed of the
cylindrical side surface Σ and two circular end disks S1 and S2.

S1S2

Σ

r zD

Fig. 2.12: Hagen–Poiseuille flow.
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Suggestion: Start with the z-component of the integral momentum equation
(1.7.30), and notice that, for the flow considered, the momentum flux on the left-
hand side of (1.7.30) becomes zero automatically. This means that the momentum
equation reduces to the ballance of forces acting on the control surface Sc:

∫∫

Sc

pn ds = 0.

Project the above equation on the z-axis and observe that it represents the bal-
ance between the pressure forces acting on the end surfaces S2 and S1 and the
shear stress acting on the side surface Σ. In order to calculate the corresponding
integrals, recall that in cylindrical coordinates the components of the stress tensor
are given by (1.8.65). In particular,

pzz = −p+ 2µ
∂Vz
∂z

, prz = µ

(
∂Vr
∂z

+
∂Vz
∂r

)
.

2. Find the velocity profile in Couette–Poiseuille flow, i.e. the flow between two
parallel plates (see Figure 2.13), one of which is kept motionless while the other
moves parallel to it with constant velocity U . The distance between the plates
is h. Unlike in Couette flow, there is a non-zero pressure difference ∆p between
the channel ends. The length of the channel is L.

x

y

h

U

Fig. 2.13: Couette–Poiseuille flow.

3. Consider the motion of an incompressible viscous fluid through a tube of elliptic
cross-section given by the equation

y2

a2
+
z2

b2
= 1.

The pressure difference between the tube ends is ∆p. Assuming that the tube
length L is large, find the velocity distribution in the tube.

Suggestion: Use Cartesian coordinates with the x-axis directed along the centre-
line of the tube. You may assume without proof that the y- and z-components of
the velocity are zero. Seek the solution of the x-momentum equation

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
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in the form
u = C1 + C2y

2 + C3z
2,

where C1, C2, and C3 are constants to be found.

4. Consider viscous fluid flow down an infinite flat slope under the action of the
gravitational field g. The angle between the slope and horizon is α; see Figure 2.14.
Assume that the fluid forms a layer of constant thickness h. Assume also that the
flow is steady and none of the fluid-dynamic functions depends on the coordinate x
measured along the slope. Your task is to find the velocity distribution across the
layer.

x

y

h

α

g

Fig. 2.14: Fluid layer on the downslope.

Hint : Use the Navier–Stokes equations written in Cartesian coordinates, and
notice that the tangential stress

τyx = µ

(
∂v

∂x
+
∂u

∂y

)

is zero at the upper edge of the fluid layer.

5. Consider a circular cylinder of radius R surrounded by viscous fluid of density ρ
and dynamic viscosity µ. The cylinder rotates around its axis with angular velocity
Ω. Assuming that the fluid remains at rest far from the cylinder (r → ∞), prove
that the velocity field and pressure are given by the ‘potential vortex’ solution

Vr = 0, Vφ =
Γ

2πr
, Vz = 0, p = p∞ − ρΓ2

8π2r2
. (2.1.89)

How does the circulation Γ depend on the cylinder radius R and angular veloc-
ity Ω?

Hint : This may be done through direct substitution of (2.1.89) into the Navier–
Stokes equations (1.8.45).
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6. Consider again flow between two coaxial circular cylinders of radii R1 and R2

(see Figure 2.6), but now assume that the inner cylinder kept at rest as shown in
Figure 2.15. What torque (per unit length in the axial direction) has to be applied
to the outer cylinder to rotate it steadily with angular velocity Ω2?

Fig. 2.15: The flow between two coaxial cylinders.

Hint : According to (1.8.65) the tangential stress on the surface of the outer
cylinder is calculated as

prφ = µ

(
1

r

∂Vr
∂φ

+
∂Vφ
∂r

− Vφ
r

)
.

7. Generalise the solution (2.1.34), (2.1.36) for flow between two coaxial cylinders
(Figure 2.6) by assuming that they are made permeable, allowing the fluid to
flow across the gap between the cylinders. Let the amount of fluid supplied (per
unit time and unit length in the axial direction) into the gap through the inner
cylinder by Q, with an equal amount removed through the outer cylinder.

Show that in this flow the circumferential velocity is given by

Vφ =
C1

r
+ C2r

1+q/ν , (2.1.90)

where q = Q/2π and

C1 =
V1 − V2

(
R1/R2

)1+q/ν

1−
(
R1/R2

)2+q/ν
R1, C2 =

V2 − V1
(
R1/R2

)

1−
(
R1/R2

)2+q/ν

1

R
1+q/ν
2

. (2.1.91)

8. Consider an incompressible viscous fluid that occupies a semi-infinite region on
one side of an infinite flat plate (as shown in Figure 2.16). The plate performs
oscillatory motion in its plane with velocity given by

u = U cos(ωt). (2.1.92)

Here U is the amplitude of the oscillations and ω is the frequency. Find the velocity
distribution in the fluid above the surface.

R
1

R2
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x

y

U cos(ωt)

Fig. 2.16: Flow above an oscillating plate.

Suggestion: Argue that in the flow considered the fluid velocity satisfies equa-
tion (2.1.40). Notice that equation (2.1.92) may be written as

u = 1
2Ue

iωt + 1
2Ue

−iωt,

and try to find the solution of (2.1.40) in the form

u = f(y)eiωt + f(y)e−iωt,

where f(y) is a complex-valued function, and f(y) is the complex conjugate of
f(y).

9. Consider two-dimensional flow with the initial velocity field represented by two
adjacent uniform streams, namely

u =

{
U1 if y > 0,

U2 if y < 0,
for all x,

with v = 0 for all x and y. This field has a tangential discontinuity along the
x-axis, as shown in Figure 2.17(a), which can only make sense in the framework
of inviscid flow theory (see Chapter 3).

x

y

U1

U2

(a) Velocity field in the ‘laboratory’ frame.

x

y

U

−U
(b) Velocity field in the frame moving

with velocity 1

2
(U1 + U2).

Fig. 2.17: Initial velocity profiles in the ‘laboratory’ and moving frames.
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Assume that at time t = 0, the viscosity is ‘switched on’, and the discontinuity
starts to smooth out, creating a transitional layer between the two streams. Find
the velocity distribution in the layer.

Hint : If this problem is considered in the coordinate frame that moves steadily
along the x-axis with speed uframe =

1
2(U1+U2), then the flow becomes symmetric

with respect to the x-axis. The initial velocity profile in this frame is shown in
Figure 2.17(b), where U = 1

2 (U1 − U2).

2.2 Numerical Solutions

Exact solutions of the Navier–Stokes equations have an important role in revealing
the physical nature of fluid motion. However, the situations where the Navier–Stokes
equations allow for exact solutions are limited to rather simple cases. In all the exam-
ples considered in Section 2.1, with the exception of the Kármán flow, the nonlinear
convective terms in the Navier–Stokes equations happen to vanish. In the Kármán
flow, they do not disappear, but the flow displays a monotonic acceleration as the
fluid particles move in the radial direction. In the general case, things are much more
complicated. The problem of uniform flow past a rigid body may be regarded as one
of the fundamental flow configurations in fluid dynamics. In Section 2.2.1 and then,
in more detail, in Chapter 3 we shall study flow past a circular cylinder. We shall see
that the fluid acceleration over the front part of the cylinder surface is followed by
a deceleration near its rear part. The deceleration causes the flow to separate from
the cylinder surface, which leads to the formation of a recirculating eddy behind the
cylinder. The theory of flow separation will be presented in Part 3 of this book series.
Here we shall restrict ourselves to showing the results of the numerical solution of the
Navier–Stokes equations; no discussion of the numerical technique will be given. Our
goal is to show how the flow past a circular cylinder changes with Reynolds number.
Then, in Section 2.2.2, we consider another classical fluid-dynamic problem, recircu-
lating flow in a rectangular cavity driven by a flat lid that moves parallel to itself.
We use this example to demonstrate that the flow in the recirculation region becomes
more and more complicated as the eddies in the recirculation region multiply with
increasing Reynolds number.

2.2.1 Viscous flow past a circular cylinder

Let a circular cylinder of radius a be placed in a uniform flow of an incompressible
viscous fluid; see Figure 2.18. We denote the free-stream velocity of the fluid far from
the cylinder as V∞ and the free-stream pressure as p∞. The fluid density ρ and the
kinematic viscosity coefficient ν are assumed known constants. In order to describe
the flow, we introduce a Cartesian coordinate system with its origin at the centre of
the cylinder, the x-axis parallel to the free-stream velocity vector, the z-axis along the
axis of the cylinder, and the y-axis in the perpendicular direction.

We shall assume that the free-stream velocity vector is perpendicular to the gen-
eratrix of the cylinder. In this case, one can expect the flow past the cylinder to be
two-dimensional; that is, the ‘spanwise’ velocity component w is zero and none of
the fluid-dynamic functions depends on z. We shall further assume that the flow is
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x

y

V∞

a

Fig. 2.18: Steady uniform flow past a circular cylinder.

steady and the body force f is negligibly small. In these conditions, the Navier–Stokes
equations (1.7.6) assume the form

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.2.1a)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.2.1b)

∂u

∂x
+
∂v

∂y
= 0. (2.2.1c)

They have to be solved with the free-stream conditions,

u = V∞, v = 0, p = p∞ at x2 + y2 = ∞, (2.2.2)

and the no-slip conditions on the cylinder surface,

u = v = 0 if x2 + y2 = a2. (2.2.3)

When performing the calculations, it is convenient to use non-dimensional vari-
ables. These are introduced by means of the transformations

x = ax̄, y = aȳ,

u = V∞ū, v = V∞v̄, p̂ = p∞ + ρV 2
∞p̄.

As a result, the Navier–Stokes equations (2.2.1) take the form

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+

1

Re

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
, (2.2.4a)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
+

1

Re

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
, (2.2.4b)

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.2.4c)

where the Reynolds number Re is given by

Re =
V∞a

ν
.
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The free-stream conditions (2.2.2) are written in the non-dimensional variables as

ū = 1, v̄ = p̄ = 0 at x̄2 + ȳ2 = ∞, (2.2.5)

and the no-slip conditions (2.2.3) become

ū = v̄ = 0 if x̄2 + ȳ2 = 1. (2.2.6)

For very small or very large values of the Reynolds number, analytical methods
may be used to study the flow. However, when the Reynolds number is of order unity,
the boundary-value problem (2.2.4)–(2.2.6) has to be solved numerically. The results
of the calculations are shown in Figures 2.19 and 2.20 in the form of streamline plots.

At zero Reynolds number (see Figure 2.19a), the flow appears to be symmetric not
only with respect to the x̄-axis but also with respect to the ȳ-axis. When the Reynolds
number increases to Re = 2.5, the flow loses its symmetry with respect to the ȳ-axis,
but remains attached to the cylinder surface (see Figure 2.19b). Further increase of
the Reynolds number leads to flow separation from the cylinder surface. As a result,
two eddies form behind the cylinder. When the eddies first appear, they occupy a
small vicinity of the rear stagnation point (see Figure 2.20). Then, as the Reynolds
number increases, the separation point moves upstream along the cylinder surface, and
by Re = 200 reaches its limiting position. The length of the eddies continues to grow
as the Reynolds number increases beyond Re = 200. However, the flow in the vicinity
of the cylinder stays almost unchanged.

It should be emphasised that the calculations were performed under the steady flow
assumption. In reality, this assumption holds for Re < 24. As the Reynolds number
exceeds Re = 24, laboratory observations as well as numerical simulations show that
the flow becomes oscillatory, with vortices periodically shedding from the upper and
lower sides of the cylinder. This vortex system is known as the Kármán vortex street.
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(a) Re = 0.
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(b) Re = 2.5.

Fig. 2.19: Steady flow past a circular cylinder for Reynolds numbers Re = 0 and
Re = 2.5.
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(c) Re = 25.
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(d) Re = 200.

Fig. 2.20: Steady flow past a circular cylinder for Reynolds numbers Re = 5, 10, 25,
and 200. The dashed lines show the streamlines in the recirculation eddies.

2.2.2 Lid-driven cavity flow

Another example that demonstrates the complexity of recirculation eddies is flow inside
a cylinder with a square cross-section (see Figure 2.21). Here we assume that the two
side walls AB and CD and the bottom wall AD are motionless, while the upper wall
BC, termed the ‘lid’, moves parallel to itself with constant velocity V0. It is expected
that the tangential stress produced by the lid motion will bring the fluid inside the
‘cavity’ into a recirculatory motion.

We shall study this motion assuming that the flow is steady and two-dimensional.
We shall also assume that the body force f is negligible. Under these conditions, the
Navier–Stokes equations assume the form given by (2.2.1). They have to be solved
with the no-slip conditions on the three motionless walls of the cavity,

u = v = 0 at






x = 0, y ∈ [0, L],

y = 0, x ∈ [0, L],

x = L, y ∈ [0, L].

(2.2.7a)
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and, on the surface of the lid,

u = V0, v = 0 at y = L, x ∈ [0, L], (2.2.7b)

Here L denotes the width of the cavity, and we shall consider, as an example, the case
when the height of the cavity coincides with its width; see Figure 2.21.

The non-dimensional variables are introduced by means of the equations8

x = Lx̄, y = Lȳ,

u = V0 ū, v = V0 v̄, p̂ = p0 + ρV 2
0 p̄.

}
(2.2.8)

These turn the Navier–Stokes equations into

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+

1

Re

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
, (2.2.9a)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
+

1

Re

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
, (2.2.9b)

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.2.9c)

which are identical to the equations (2.2.4) that we used in the circular cylinder prob-
lem. The only difference is that the Reynolds number is now defined as

Re =
LV0
ν
.

x

y

L

V0

O

A

B C

D

Fig. 2.21: Lid-driven cavity flow.

8Clearly, the choice of the ‘background’ pressure p0 does not influence the velocity field.
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The boundary conditions (2.2.7) are written in the non-dimensional variables as

ū = v̄ = 0 at






x̄ = 0, ȳ ∈ [0, 1],

ȳ = 0, x̄ ∈ [0, 1],

x̄ = 1, ȳ ∈ [0, 1].

(2.2.10a)

ū = 1, v = 0 at ȳ = 1, x̄ ∈ [0, 1], (2.2.10b)

The results of the numerical solution of the boundary-value problem (2.2.9), (2.2.10)
are displayed in Figure 2.22, where the streamlines are shown at different values of
the Reynolds number. We see that when Re = 0 almost the entire flow region is oc-
cupied by a single primary eddy. Still, two small counter-rotating secondary eddies
are observed near the lower corners of the cavity. The latter grow as the Reynolds
number increases, and then additional eddies form inside the secondary eddies (see
Figure 2.22d). Notice that flow separation is also observed on the left-hand side wall
before the moving lid.
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Fig. 2.22: Steady flow in a lid-driven cavity. The dashed lines show the eddies rotating
in the anticlockwise direction.
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Inviscid Incompressible Flows

3.1 Integrals of Motion

The motion of inviscid incompressible fluid flows is governed by the Euler equations

∂V

∂t
+
(
V · ∇

)
V = f − 1

ρ
∇p (momentum equation), (3.1.1a)

divV = 0 (continuity equation), (3.1.1b)

which are obtained from the Navier–Stokes equations (1.7.5) by setting the viscosity
coefficient ν to zero.1

An alternative form of writing the momentum equation arises from using the Lamb
formula (see Problem 2 in Exercises 4)

(
V · ∇

)
V = ω ×V +∇

(
V 2

2

)
. (3.1.2)

Here ω = curlV and V is the modulus of the velocity vector V. Substitution of (3.1.2)
into (3.1.1) leads to the so-called Gromeko–Lamb form of the momentum equation:

∂V

∂t
+ ω ×V +∇

(
V 2

2

)
= f − 1

ρ
∇p. (3.1.3)

In further analysis, we will often use simplifications arising from the assumption
that the body force f is potential.

Definition 3.1 A body force field f is termed potential (or conservative) if there
exists a scalar function U such that

f = −∇U. (3.1.4)

The gravitational force clearly belongs to this class. If we introduce a Cartesian co-
ordinate system with x and y lying in the horizontal plane and z directed vertically
upwards, then equation (3.1.4) may be written in coordinate-decomposition form as

0 = −∂U
∂x

, 0 = −∂U
∂y

, −g = −∂U
∂z

,

1Of course, the Euler equations were deduced significantly earlier than the Navier–Stokes equa-
tions. In fact, this was done by Euler as early as in 1755.
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leading to

U = gz + C, (3.1.5)

where C is an arbitrary constant.
We shall start our analysis of inviscid incompressible fluid motion by introducing

a number of important integrals of the momentum equation. The first of these is the
Bernoulli integral, which allows one to find the pressure distribution over a flow field
with known velocity distribution.

3.1.1 Bernoulli integral

Theorem 3.1 Let the fluid flow be steady and the body force potential. Then along
any streamline, the Bernoulli integral

V 2

2
+
p

ρ
+ U = H, (3.1.6)

holds, where H remains constant along each streamline but might be different for dif-
ferent streamlines.

Proof Since the flow is steady (∂V/∂t = 0) and the body force is potential (f =
−∇U), we can write the momentum equation (3.1.3) as

ω ×V +∇
(
V 2

2
+
p

ρ
+ U

)
= 0. (3.1.7)

Let line L be a streamline. The unit vector τ tangent to L is parallel to the
velocity vector V, and therefore is perpendicular to ω × V, which ensures that the
scalar product of τ and ω ×V is zero. Hence, multiplying equation (3.1.7) by τ , we
have

τ · ∇
(
V 2

2
+
p

ρ
+ U

)
= 0.

This proves that the expression in parentheses really stays constant along L. ✷

3.1.2 Kelvin’s Circulation Theorem

Kelvin’s (1869) Circulation Theorem concerns the circulation of the velocity vector
along a fluid contour. To introduce the notion of a fluid contour, let us consider a
closed contour C0 that is fixed with respect to the coordinate system Oxyz as shown
in Figure 3.1. Let us then ‘mark’ all the fluid particles that happen to be on the contour
C0 at an initial instant t0. We shall follow these particles as they move in space with
increasing time t. Considered together, they constitute a fluid contour C that, owing
to the continuity of the flow field, will remain closed for t > t0.

The circulation along this contour is given by the integral (1.4.18):

Γ(t) =

∮

C

V · dr. (3.1.8)
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Fig. 3.1: Fluid contour.

Let us differentiate this integral with respect to time t. To perform the differentiation,
it is convenient to introduce the Lagrangian position vector

r = r(t, r0). (3.1.9)

Taking into account that, at t = t0, all the fluid particles in which we are interested
lie on C0, we can ‘mark’ them using the distance s measured along C0 from, say, point
M (see Figure 3.1). Correspondingly, we will write (3.1.9) as

r = r(t, s).

At each instant t, the variation of the position vector along C is given by

dr =
∂r

∂s
ds. (3.1.10)

Using (3.1.10) in (3.1.8) yields

Γ(t) =

L∫

0

(
V · ∂r

∂s

)
ds, (3.1.11)

where V = V
[
t, r(t, s)

]
and L is the entire length of the initial contour C0. Differen-

tiation of (3.1.11) results in

dΓ

dt
=

L∫

0

(
DV

Dt
· ∂r
∂s

)
ds+

L∫

0

(
V · ∂

2r

∂s∂t

)
ds. (3.1.12)

Taking into account that

V =
∂r

∂t
,

M

s
C

C0

x

y

z

O
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we can calculate the second integral in (3.1.12) as

L∫

0

(
V · ∂

2r

∂s∂t

)
ds =

L∫

0

(
V · ∂V

∂s

)
ds =

L∫

0

∂

∂s

(
V 2

2

)
ds =

V 2

2

∣∣∣∣
s=L

− V 2

2

∣∣∣∣
s=0

, (3.1.13)

and, since s = L and s = 0 represent the same point on contour C, we can conclude
that this integral is zero.

Turning to the first integral in (3.1.12), we shall assume that the body force f is
potential. In this case, using (3.1.4) in (3.1.1a) yields

DV

Dt
= −∇

(
U +

p

ρ

)
,

and we have

L∫

0

(
DV

Dt
· ∂r
∂s

)
ds = −

∮

C

∇
(
U +

p

ρ

)
· dr = −

∮

C

d

(
U +

p

ρ

)
. (3.1.14)

Observing that the point of integration, after making a full circle along C, returns to
its original position, we can conclude that the integral (3.1.14) is also zero.

This proves the following statement, known as Kelvin’s Circulation Theorem.

Theorem 3.2 In an inviscid incompressible fluid flow, the circulation Γ along any
closed fluid contour does not change with time; i.e.

dΓ

dt
= 0,

provided that the body force is potential.2

This theorem plays an important role in fluid dynamics; it lays a foundation for
potential flow theory. As we shall see, many inviscid flows may be treated as potential,
in which case the Euler equations (3.1.1) reduce to the simpler Laplace equation. In
fact, it is primarily because of this simplification that significant progress in inviscid
flow theory has been achieved.

Before turning to a description of potential flow theory, we shall give here two
examples that demonstrate how the Kelvin theorem may be used. The first concerns
fluid flows that start from rest. If at an initial instant t0 the flow velocity V = 0, then
the circulation along any closed contour C0 is zero. According to Kelvin’s Circulation
Theorem, it will remain zero after the fluid is put into motion, and at any time t > t0,

∮

C

V · dr = 0, (3.1.15)

where C is the fluid contour originating from C0.

2In particular, this theorem may be used when there is no body force at all.
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σ

C
n

x

y

z

O

Fig. 3.2: Surface σ to which Stokes’s theorem is applied.

Let us now consider a surface σ based on C as shown in Figure 3.2. We denote the
unit vector normal to σ by n and the area of a small element of σ by ds. Then, using
Stokes’s theorem, we have

∮

C

(
V · dr

)
=

∫∫

σ

(
curlV · n

)
ds =

∫∫

σ

(
ω · n

)
ds,

and it follows that ∫∫

σ

(
ω · n

)
ds = 0.

Taking into account the arbitrariness of C, we can conclude that any flow of this kind
is irrotational, i.e. free of vorticity:

ω = curlV = 0. (3.1.16)

In the second example, we consider a rigid body placed into a uniform stream
with free-stream velocity V∞, as sketched in Figure 3.3. Assuming that there are no

C0

C

V∞

body

Fig. 3.3: Fluid contour motion in flow past a rigid body.
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recirculating regions (these may form if the flow separates from the body surface), one
can claim that any closed contour C in the flow field ‘originates’ from the corresponding
contour C0 in the oncoming flow. Since on C0 the fluid velocity is constant, V = V∞,
the circulation along C0 is zero. According to Kelvin’s Circulation Theorem, it will
remain zero as C0 deforms into C. Hence, equation (3.1.15) holds again, and using
Stokes’s theorem, we can prove that the flow is irrotational.

3.1.3 Cauchy–Lagrange integral

It will be shown in Section 3.2 that, for any irrotational flow satisfying equation
(3.1.16), there exists a scalar function ϕ(t, r), called the velocity potential, such that

V = ∇ϕ. (3.1.17)

Hence, irrotational flows are also termed potential flows. In order to relate the pressure
p to the velocity V = |V| in a potential flow, steady or unsteady, the Cauchy–Lagrange
theorem may be used.

Theorem 3.3 Suppose that the flow of an inviscid incompressible fluid is potential,
V = ∇ϕ. Suppose further that the body force has potential U , such that f = −∇U .
Then the Cauchy–Lagrange integral holds:

∂ϕ

∂t
+
V 2

2
+
p

ρ
+ U = F(t) (3.1.18)

with the function F(t) being independent of position in the flow field.

Proof Under the conditions of the theorem, we can write the momentum equation
(3.1.3) as

∇
(
∂ϕ

∂t

)
+ ω ×V +∇

(
V 2

2

)
= −∇U −∇

(
p

ρ

)
. (3.1.19)

Substitution of (3.1.17) into (1.4.15) shows that any potential flow is irrotational, i.e.
ω = 0. Thus, equation (3.1.19) may be written as

∇
(
∂ϕ

∂t
+
V 2

2
+ U +

p

ρ

)
= 0,

which immediately proves that (3.1.18) is valid. ✷

If the conditions of both Theorem 3.1 and Theorem 3.3 hold simultaneously,
namely,

• the flow considered is steady,

• the body force is potential,

• and the flow is irrotational,

then the function H in (3.1.6) becomes independent of the streamline considered and
the function F(t) is independent of time. Hence, we can write

V 2

2
+
p

ρ
+ U = C, (3.1.20)

where C is a true constant.
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Exercises 7

1. Consider a pipe with cross-sectional area A placed vertically into the Earth’s
gravitational field g and connected to a horizontal pipe whose cross-sectional
area is A′ = kA, as shown in Figure 3.4. The vertical pipe is filled with water
to height h0; shutters FF

′ and GG′ are used to prevent the water flowing into
the horizontal pipe. Find the time that is required to discharge the vertical pipe
after the shutters are opened. Both vertical and horizontal pipes are open to the
atmosphere.

x

y

O

g

F

F ′

G

G′

−l(t) l(t)

h(t)

Fig. 3.4: Geometrical layout of the problem.

To solve this problem, denote the height of the water column in the vertical
pipe at time t by h(t), and use the Euler equations (3.1.1) to determine the
pressure distribution in this pipe between y = 0 and y = h(t).

Repeat the analysis for the horizontal pipe, and find the pressure distribution
between x = 0 and x = l(t).

Taking into account that at point O the pressure should be the same for the
horizontal and vertical pipes, show that the function h(t) satisfies the differential
equation

(
1− 1

4k2

)
hh′′ +

h0
4k2

h′′ + gh = 0.

Solve this equation assuming that k = A′/A = 0.5.
Hint : You may assume that the water motion in both pipes is one-dimensional.

2. Prove that the Bernoulli integral (3.1.6) holds not only along streamlines but also
along vortex lines.

3. An open barrel has a small orifice in the wall just above the base. It is filled
with water to height h and placed into the Earth’s gravitational field as shown in
Figure 3.5. Using Bernoulli’s equation, show that the velocity V in the jet that
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g

h

V

Fig. 3.5: Water escaping through a hole in a barrel.

forms as the water flows through the orifice may be calculated using the Torricelli
formula

V =
√
2gh.

4. A thin spherical shell of radius R0 is filled with water vapour and placed in deep
water. At initial instant t = 0, the shell is destroyed and the vapour comes in
contact with the water (see Figure 3.6).

Show that the time tc that it takes for the bubble to collapse to a point may
be calculated as

tc =

R0∫

0

dR√
2∆p

3ρ

(
R3

0

R3
− 1

) , (3.1.21)

Here ∆p = p∞ − p0, with p∞ denoting the pressure far from the centre of the
sphere and p0 the vapour pressure.

p∞

p0

R(t)

Fig. 3.6: Vapour bubble in deep water.
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You may assume that the flow may be treated as inviscid. You may also
assume that the flow is symmetrical with respect to the bubble centre and that
gravitational effects are too small to affect the collapse process. You may finally
assume that the pressure p∞ far from the bubble and the vapour pressure p0
inside the bubble remain constant during the collapse process. The governing
Euler equations may be obtained by setting ν = 0 in the Navier–Stokes equations
(1.8.48).

(a) Start your analysis with the continuity equation, and deduce that r2Vr is a
function of time only, say f(t):

r2Vr = f(t). (3.1.22)

Then, using the impermeability condition on the bubble surface, r = R(t),
show that

R2 dR

dt
= f(t). (3.1.23)

(b) Now, solve (3.1.22) for Vr, and using it in the radial momentum equation,
deduce that

−f
′(t)

r
+

1

2

[
f(t)

]2

r4
= −p

ρ
+ F (t). (3.1.24)

Taking into account that the pressure far from the bubble centre is p∞ and
the pressure on the bubble surface is p0, deduce that

−f
′(t)

R(t)
+

1

2

[
f(t)

]2
[
R(t)

]4 =
p∞ − p0

ρ
. (3.1.25)

(c) Equations (3.1.23) and (3.1.25) involve two unknown function, f(t) and R(t).
In order to solve these equations, represent the function f(t) in the form

f(t) = Φ
[
R(t)

]
,

and deduce that

Φ = ±
√
R
(
C − 2∆p

3ρ
R3
)
,

where C is a constant. Then return to equation (3.1.23) and show that the
time that it takes for the bubble to collapse to a point is given by (3.1.21).

5. Consider inviscid incompressible fluid flow through a symmetrical diffuser as
shown in Figure 3.7. The diffuser expands from cross-section AA′, whose area
is S1, to cross-section BB′ with area S2. The fluid velocity at BB′ is V .

Owing to the symmetry of the diffuser geometry, the total pressure force
acting upon the inner surface of the diffuser (called the thrust) is directed along
the diffuser axis. Using the integral momentum equation (1.7.30), find the value
of the thrust

T = −
∫∫

Sc

pnx ds,

where nx is the projection of n on the x-axis drawn along the axis of the diffuser.
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A

A′

B

B′

Fig. 3.7: Flow through a diffuser.

Suggestion: In the inviscid flow, the surface stress pn is represented by the
pressure only, and is given by (1.2.14):

pn = −pn, (3.1.26)

where n is the unit vector normal to the control surface Sc. With (3.1.26), the
integral momentum equation (1.7.30) assumes the form

∫∫

Sc

[
ρ
(
V · n

)
V + pn

]
ds = 0. (3.1.27)

Choose the control surface Sc to be composed of the two walls of the diffuser,
AB and A′B′, and the cross-sections AA′ and BB′ shown by the dashed lines
in Figure 3.7, and consider the projection of the momentum equation (3.1.27) on
the x-axis.

6. A jet of width d impinges upon a flat wall at an angle α as shown in Figure 3.8.

V

d
α

d2

d1

Fig. 3.8: Interaction of a jet with a flat wall.
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The fluid velocity is uniform across the jet and equals V . Assuming that the flow
is two-dimensional, i.e. the velocity vector V = (u, v, 0), find the total pressure
force (per unit depth normal to the plane of the figure)

F =

∞∫

−∞

(p− pa) dx,

exerted on the wall. Here x is measured along the wall and pa denotes the atmo-
spheric pressure. What are the thicknesses d1 and d2 of the two streams propa-
gating up and down the wall from the point of impact?

Suggestion: Consider two projections of equation (3.1.27), parallel to the wall
and in the perpendicular direction. Use the Bernoulli equation to find the fluid
velocity in the two streams propagating up and down the wall.

3.2 Potential Flows

We shall now prove that for any irrotational flow, i.e. a flow satisfying the equation

ω = curlV = 0, (3.2.1)

there exists a scalar function ϕ(t, r), called the velocity potential, such that

∇ϕ = V.

We start by choosing a reference point M0 whose position vector is r0; see Fig-
ure 3.9. For any other point M in the flow field, we define a function ϕ(t, r) as

ϕ(t, r) =

∫

C

V · dr, (3.2.2)

where C is a contour connecting points M0 and M .
It may easily be shown that ϕ(t, r) is a scalar function, i.e. it depends on the

position vector r of point M but not on the choice of contour C. Indeed, if we choose
another contour C′ and write

ϕ′(t, r) =

∫

C′

V · dr,

then the difference between ϕ(t, r) and ϕ′(t, r) may be expressed as

ϕ(t, r)− ϕ′(t, r) =

∫

C

V · dr−
∫

C′

V · dr =

∮

C̃

V · dr,

where C̃ is the closed contour composed of C and C ′, the latter being traced in the
negative direction, i.e. from M to M0. If an open surface σ lying entirely in the flow
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M

r0

r C
C′

M0

x

y

z

Fig. 3.9: Calculation of the velocity potential.

field may be built on contour C̃ (as in Figure 3.2), then, using Stokes’s theorem, we
can write ∮

C̃

V · dr =

∫∫

σ

(
curlV · n

)
ds, (3.2.3)

and it follows from (3.2.1) that ϕ(t, r) = ϕ′(t, r).
As the result of integration in (3.2.2) does not depend on the choice of contour C,

it is more appropriate to write

ϕ(t, r) =

r∫

r0

V · dr. (3.2.4)

A small variation δr of the position vector r leads to

ϕ(t, r+ δr) =

r+δr∫

r0

V · dr,

whence

ϕ(t, r+ δr)− ϕ(t, r) =

r+δr∫

r

V · dr. (3.2.5)

If V is a continuous function of r, then, owing to the smallness of δr, the integral on
the right-hand side of (3.2.5) may be approximated by V(t, r) · δr, and we have

ϕ(t, r+ δr)− ϕ(t, r) = V(t, r) · δr.
This proves that V(t, r) is indeed equal to the gradient of the function ϕ(t, r):

V = ∇ϕ. (3.2.6)

It should be noted that equation (3.2.2) defines the velocity potential ϕ to within
an arbitrary function of time t, which depends on the choice of the reference point r0.
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However, the difference between the values of ϕ(t, r) corresponding to two different
choices of r0 is independent of r, and therefore has no effect on the velocity field
calculated with the help of (3.2.6).

Substitution of (3.2.6) into the continuity equation (3.1.1b) leads to Laplace’s
equation

∇2ϕ = 0. (3.2.7)

The boundary conditions for this equation depend on the particular problem under
consideration. Let us suppose, for example, that flow past a rigid body is being studied.
If the flow were viscous, then the no-slip conditions would have to be used on the
body surface. However, unlike the Navier–Stokes equation (1.7.5a), the Euler equation
(3.1.1a) does not contain the second-order derivative on the right-hand side. Therefore,
the no-slip condition has to be relaxed, and one has to use instead the impermeability
condition. This condition implies that the surface of a rigid body is impenetrable,3

which means that the fluid particles that come in contact with the body’s surface will
remain on this surface for some time, moving along it downstream.

If the body’s surface is represented by the equation

Φ(t, r) = const,

then, using the Lagrangian position function r = r(t, r0), we can claim that, for all
fluid particles that happen to be on this surface,

Φ
[
t, r(t, r0)

]
= const. (3.2.8)

Differentiation of (3.2.8) with respect to t yields

∂Φ

∂t
+∇Φ · ∂r

∂t
= 0,

and, since the derivative of the position vector ∂r/∂t gives the fluid velocity V, we
can write (

1

|∇Φ|
∂Φ

∂t
+V · n

)∣∣∣∣
S

= 0. (3.2.9)

Here the subscript S is used to indicate that this equation holds on the body’s surface
and n denotes the unit vector normal to this surface,

n =
1

|∇Φ| ∇Φ.

When the body remains motionless in the coordinate frame used, the imperme-
ability condition (3.2.9) reduces to

(
V · n

)∣∣∣
S
= 0, (3.2.10)

which means that the velocity vector should be tangent to the surface of a rigid body.

3This, of course, is not true if, say, flow over a perforated wall is studied.
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Condition (3.2.10) may be rewritten for the velocity potential ϕ as follows:

(
∇ϕ · n

)∣∣∣
S
=
∂ϕ

∂n

∣∣∣∣
S

= 0.

One can intuitively expect the flow past a rigid body to depend on the body’s
shape as well as on the characteristics of the oncoming flow. Information about the
body’s shape is given by the impermeability condition. A second boundary condition,
termed the free-stream condition, is needed to specify the oncoming flow. If, far from
the body, the flow is uniform, with velocity V∞, then we can write

V → V∞ as |r| → ∞. (3.2.11)

This may be reformulated for the potential function ϕ as

ϕ = V∞ · r+ · · · as |r| → ∞.

Hence, to describe potential flow past a motionless body, one needs to solve the
following problem.

Problem 3.1 Find the velocity potential ϕ that satisfies Laplace’s equation

∇2ϕ = 0 (3.2.12a)

everywhere inside the flow field. It should also satisfy the impermeability condition

∂ϕ

∂n

∣∣∣∣
S

= 0 (3.2.12b)

on the body’s surface and the free-stream condition

ϕ = V∞ · r+ · · · as |r| → ∞ (3.2.12c)

in the far field.

We shall now discuss various ways in which Laplace’s equation (3.2.12a) can be
solved. We shall start with the principle of superposition, which is applicable to any
linear equation. It is easily seen that if the functions ϕ1 and ϕ2 satisfy Laplace’s
equation, then their linear combination ϕ = c1ϕ1+ c2ϕ2, with arbitrary coefficients c1
and c2, is also a solution of Laplace’s equation. Keeping this in mind, we shall introduce
some simple examples of potential flows that may be used as building blocks for more
complicated solutions.

Flow from a source

Let us start with flow from a point source in otherwise stagnant fluid. We shall define
the intensity of the source, q, as a quantity that, when multiplied by the fluid density
ρ, gives the mass of fluid produced by the source per unit time. Taking into account
the spherical symmetry of the flow, we use spherical polar coordinates; see Figure 3.10.
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Fig. 3.10: Spherical polar coordinates.

We place the source at the coordinate origin O, and we expect that at any point
M , with position vector r, the velocity is directed from the source, i.e. along r. This
means that in the flow considered here, only the radial velocity Vr is non-zero, and
it does not depend on the angles φ and ϑ. Therefore, if we draw a sphere of radius r
with centre at the source, then, using the mass conservation law, we can write

4πr2 Vr = q, (3.2.13)

where 4πr2 stands for the area of the sphere surface. Solving (3.2.13) for Vr, we have

Vr =
q

4πr2
. (3.2.14)

In order to find the velocity potential ϕ for this flow, equation (3.2.6) should be
used. Inserting (1.8.47) into (1.8.9), we see that the gradient of ϕ is written in spherical
polar coordinates as

∇ϕ =
∂ϕ

∂r
er +

1

r

∂ϕ

∂ϑ
eϑ +

1

r sinϑ

∂ϕ

∂φ
eφ.

Consequently, equation (3.2.6) is written in coordinate-decomposition form as

Vr =
∂ϕ

∂r
, Vϑ =

1

r

∂ϕ

∂ϑ
, Vφ =

1

r sinϑ

∂ϕ

∂φ
. (3.2.15)

Combining the first of equations (3.2.15) with (3.2.14) yields

∂ϕ

∂r
=

q

4πr2
, (3.2.16)

while from the second and third equations in (3.2.15) we see that ϕ is independent of
ϑ and φ.
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Integration of (3.2.16) results in4

ϕ = − q

4πr
, (3.2.17)

which is the sought potential of a source (sink for q < 0) situated at the origin. If a
source is placed at point r0, then (3.2.17) should be rewritten as

ϕ = − q

4π|r− r0|
.

Dipole

Let us now consider a source and a sink of the same intensity placed close to one
another. We shall assume that the source is situated at the coordinate origin and the
sink at the point with position vector δr0. Then, using the principle of superposition,
we have

ϕ = − q

4π|r|︸ ︷︷ ︸
source

+
q

4π|r− δr0|︸ ︷︷ ︸
sink

. (3.2.18)

If |δr0| is small, then, neglecting squares of perturbations, we can write

|r− δr0| =
√
(x− δx0)2 + (y − δy0)2 + (z − δz0)2

=
√
x2 + y2 + z2 − 2xδx0 − 2yδy0 + 2zδz0 + · · · ,

or, equivalently,

|r− δr0| =
√
r2 − 2

(
r · δr0

)
+ · · · = r

(
1− 2

r · δr0
r2

+ · · ·
)1/2

. (3.2.19)

Formula (3.2.19) may be simplified further using the well-known Taylor expansion

(1 + ε)α = 1 + αε+O(ε2). (3.2.20)

Choosing α = 1
2 in (3.2.20), we can see that (3.2.19) may be written as

|r− δr0| = r

(
1− r · δr0

r2

)
+O

(
|δr0|2

)
. (3.2.21)

It remains to substitute (3.2.21) into (3.2.18),

ϕ = − q

4πr
+

q

4πr

1

1− (r · δr0)/r2
,

and use (3.2.20) again, now with α = −1. We find

4An arbitrary constant may always be added to (3.2.17) since the velocity potential is defined to
within an arbitrary choice of the reference position vector r0.
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ϕ = − q

4πr
+

q

4πr

(
1 +

r · δr0
r2

)
+O

(
|δr0|2

)

=
q

4π

r · δr0
r3

+O
(
|δr0|2

)
. (3.2.22)

Finally, we assume that |δr0| tends to zero and q tends to infinity such that their
product remains finite. This leads to the following expression for the dipole potential:

ϕ =
m · r
4πr3

. (3.2.23)

Here the vector m = q δr0 is referred to as the dipole moment.
The dipole flow (3.2.23) is symmetric with respect to an axis drawn along the

vector m. In particular, if m = (m, 0, 0), then the axis of symmetry coincides with
the x-axis, and the streamline pattern in the S-plane of Figure 3.10 is independent of
the azimuthal angle φ. It is shown in Figure 3.11.

Fig. 3.11: Dipole streamline pattern.

3.2.1 Potential flow past a sphere

We shall now show that a superposition of a uniform flow and a dipole gives a solution
of Problem 3.1 (see page 142) that describes flow past a rigid motionless sphere. For
any direction of the oncoming flow, one can always rotate the coordinate system to
make the x-axis aligned with the free-stream velocity (see Figure 3.12). Then the
potential (3.2.12c) of the uniform flow becomes

ϕ = V∞x. (3.2.24)

Let us place the dipole into the sphere’s centre and assume that it is also aligned with
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V∞ ϑ x

a

Vϑ

Fig. 3.12: The flow view in the plane S of Figure 3.10.

the x-axis, i.e. its moment m = (m, 0, 0). In this case, (3.2.23) reduces to

ϕ =
mx

4πr3
. (3.2.25)

Superposing (3.2.24) with (3.2.25), we have

ϕ = V∞x+
mx

4πr3
. (3.2.26)

Let us now examine the boundary conditions (3.2.12 b,c). As r → ∞, the second
term in (3.2.26) tends to zero, reducing (3.2.26) to (3.2.24), which proves that the
free-stream boundary condition is satisfied. Turning to the impermeability condition
(3.2.12b), we note that at any point situated outside the sphere, x = r cosϑ, and
equation (3.2.26) may be written as

ϕ = V∞r cosϑ+
m cosϑ

4πr2
. (3.2.27)

With a being the radius of the sphere, we have

∂ϕ

∂n

∣∣∣∣
S

=
∂ϕ

∂r

∣∣∣∣
r=a

=

(
V∞ − m

2πa3

)
cosϑ.

Therefore, by choosing
m = 2πa3V∞, (3.2.28)

we can satisfy the impermeability condition (3.2.12b) for all values of ϑ, i.e. on the
entire surface of the sphere. This proves that formula (3.2.27) really represents the
solution for the flow past the sphere. Substituting (3.2.28) back into (3.2.27) results
in

ϕ = V∞

(
r +

a3

2r2

)
cosϑ. (3.2.29)

In this flow, the azimuthal velocity Vφ is, obviously, zero. The radial and meridional
velocities may be calculated using formulae (3.2.15):

Vr =
∂ϕ

∂r
= V∞

(
1− a3

r3

)
cosϑ, Vϑ =

1

r

∂ϕ

∂ϑ
= −V∞

(
1 +

a3

2r3

)
sinϑ. (3.2.30)
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On the sphere’s surface (r = a), the radial velocity component disappears, as it should
in view of the impermeability condition. Hence, the velocity vector is tangent to the
sphere’s surface and given by

Vϑ

∣∣∣
r=a

= −3

2
V∞ sinϑ. (3.2.31)

The minus sign in this formula implies that the velocity is directed against increasing
ϑ; see Figure 3.12. It turns zero at the front (ϑ = π) and rear (ϑ = 0) stagnation
points, and reaches its maximum at the equator (ϑ = π/2), where |Vϑ| = 3

2V∞.
It is interesting to note that the velocity (3.2.31) is symmetric with respect to the

equator (ϑ = 1
2π). Let us now find the pressure distribution. Since the flow considered

is steady and potential, one can use the Bernoulli equation in the form given by
(3.1.20). Disregarding the body force and using the free-stream conditions to calculate
the constant C on the right-hand side of (3.1.20), we have

V 2

2
+
p

ρ
=
V 2
∞

2
+
p∞
ρ
. (3.2.32)

Substituting (3.2.31) into (3.2.32) and solving the resulting equation for p, we find
that on the surface of the sphere

p = p∞ +
1

2
ρV 2

∞

(
1− 9

4
sin2 ϑ

)
.

Since the pressure is symmetric with respect to the equator, the integral pressure
force acting upon the front hemisphere is entirely balanced by the pressure force act-
ing upon the rear hemisphere, which suggests that the sphere should experience no
resistance when moving through a fluid with constant velocity. This result is known
as the d’Alembert paradox. As unrealistic as it appears to be, zero-drag prediction is
not a unique property of the sphere flow, but rather a common feature of inviscid flow
theory.

(a) Theoretical streamline pattern. (b) Visualization of sphere flow at Re =
15, 000 by H. Werlé; (see Figure 55 in Van
Dyke, 1982, p. 34).

Fig. 3.13: Comparison of potential flow theory with experimental observations.
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In Figure 3.13, the streamline pattern, drawn using solution (3.2.29), is compared
with an experimental visualisation of the flow. As can be seen, in reality, the flow does
not remain attached to the sphere’s surface. Instead, it separates near the equator,
leading to a distortion in the flow field. The flow loses its symmetry and, as a result, a
non-zero drag is produced. Experimental observations also show that, once separated,
the flow normally develops unsteadiness, which leads to an additional drag.

3.2.2 Virtual mass

Unlike the steady flow past a sphere, an unsteady flow can remain attached for a
period of time. Here we shall consider the flow around a sphere that is produced in the
following way. Suppose that the sphere is initially kept at rest and is surrounded by a
fluid that is also motionless. Then the sphere is brought in motion, causing the fluid
around it to yield. Numerous experiments show that the resulting fluid flow remains
fully attached for some time. During this time, the solution (3.2.29) remains valid.

We shall now generalise the above analysis for a sphere that moves through a
fluid with variable velocity. In this case, the coordinate system attached to the sphere
appears to be non-inertial, and we shall use instead the ‘laboratory coordinate system’
O′x′y′z′, in which the fluid far from the moving sphere remains at rest.

If we assume, to begin with, that the velocity of the sphere is constant, then the
solution in the laboratory frame may be obtained from (3.2.29) by means of a Galilean
transformation (see Figure 3.14):

x = x′ + V∞t, y = y′, z = z′,

u = u′ + V∞, v = v′, w = w′,

ϕ = ϕ′ + V∞x. (3.2.33)

Taking into account that r cosϑ = x (see Figure 3.10) and using (3.2.29) in (3.2.33),
we find

ϕ′ = V∞
a3

2r2
cosϑ, (3.2.34)

V∞t

x

y

z

x′

y′

z′

V∞

Fig. 3.14: Laboratory frame (x′, y′, z′) and coordinate frame (x, y, z) moving with the
sphere.



3.2. Potential Flows 149

where

cosϑ =
x

r
=
x′ + V∞t

r
, r =

√
x2 + y2 + z2 =

√
(x′ + V∞t)2 + y′2 + z′2.

We shall now generalise this solution for a sphere moving along the x′-axis with
variable velocity V0(t); it will be assumed that positive V0 corresponds to motion
in the positive x′-direction. Taking into account that formula (3.2.34) represents the
solution for a sphere that moves in the laboratory frame in the negative x′-direction
with velocity V∞, we have to replace V∞ in (3.2.34) by −V0(t), which yields

ϕ′ = −V0(t)
a3

2r2
cosϑ. (3.2.35)

Here

cosϑ =
x′ − x0(t)

r
, r2 =

[
x′ − x0(t)

]2
+ y′2 + z′2,

with x0(t) being the position of the sphere’s centre at instant t, such that

dx0
dt

= V0(t).

In order to demonstrate that the heuristic approach employed to deduce formula
(3.2.35) really gives the sought solution for the velocity potential, we need to return
to Problem 3.1 (see page 142). First of all, the velocity potential ϕ has to satisfy
Laplace’s equation (3.2.12a). This requirement may be verified by direct differentiation
of (3.2.35). Alternatively, one can notice that (3.2.35) represents a particular form of
the dipole (3.2.23); the latter was introduced as an elementary solution of Laplace’s
equation.

Turning to the impermeability condition (3.2.12b), we have to write it in the form
(3.2.9) suitable for unsteady flows. With the velocity component normal to the sphere
expressed as

(
V · n

)∣∣∣∣
S

=
∂ϕ′

∂r

∣∣∣∣
r=a

,

the impermeability condition (3.2.9) assumes the form

(
1

|∇Φ|
∂Φ

∂t
+
∂ϕ′

∂r

)∣∣∣∣
r=a

= 0. (3.2.36)

Here the function Φ(t, x′, y′, z′) represents the body’s surface. For the sphere of radius
a,

Φ(t, x′, y′, z′) =
[
x′ − x0(t)

]2
+ y′2 + z′2 − a2.

We see that

∂Φ

∂t
= −2

[
x′ − x0(t)

]dx0
dt

= −2
[
x′ − x0(t)

]
V0(t) = −2 r cosϑV0(t).

The modulus of the gradient of the function Φ is calculated as
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|∇Φ| =
√(

∂Φ

∂x′

)2

+

(
∂Φ

∂y′

)2

+

(
∂Φ

∂z′

)2

=

√
4
[
x′ − x0(t)

]2
+ 4y′2 + 4z′2 = 2r.

Consequently, the first term in (3.2.36) is

1

|∇Φ|
∂Φ

∂t
= −V0(t) cosϑ.

The second term is obtained by differentiating (3.2.35) with respect to r:

∂ϕ′

∂r

∣∣∣∣
r=a

= V0(t) cosϑ.

This proves that the function (3.2.35) satisfies the impermeability condition (3.2.36).
Finally, we need to check if the far-field boundary condition (3.2.12c) is satisfied.

In the laboratory frame, it is written as

ϕ′ → 0 as r → ∞,

which is certainly true for (3.2.35)
Having established the validity of the solution (3.2.35), we shall now turn to cal-

culation of the resultant force acting on the sphere. As the flow around the sphere is
axisymmetric, only the projection of the force on the x′-axis needs to be calculated. If
ds is the area of a small element of the sphere’s surface, then the pressure force acting
on this element

dF = p ds.

Its projection on the x′-axis is (see Figure 3.15)

dFx = p ds cosϑ. (3.2.37)

Let us consider an annular element of width b on the sphere’s surface, shown in
Figure 3.15 by dashed lines. Its area is calculated as

ds = b 2πh.

Here h is the radius of the annular element; it may be expressed via the sphere radius a
as h = a sinϑ. Taking further into account that b = a dϑ, we can write (3.2.37) in the
form5

dFx = 2πa2p cosϑ sinϑ dϑ. (3.2.38)

Integration of (3.2.38) gives the resultant force

Fx = 2πa2
π∫

0

p cosϑ sinϑ dϑ. (3.2.39)

5Notice that positive dFx corresponds to a force directed opposite to the x′-axis.
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x′x0(t)

ϑ
h

b

dF

dFx

Fig. 3.15: Calculation of the drag of accelerating sphere.

To calculate the integral in (3.2.39), we need to know the pressure distribution
along the sphere surface. It may be calculated using the Cauchy–Lagrange integral
(3.1.18). Assuming that the body force f is negligible, we can write

∂ϕ

∂t
+
V 2

2
+
p

ρ
= F(t). (3.2.40)

Differentiation of (3.2.35) with respect to time t yields

∂ϕ′

∂t
= −dV0

dt

a3

2r2
cosϑ+

1

2
a3
[
V0(t)

]2
{

1

r3
− 3

[x′ − x0(t)]
2

r5

}
. (3.2.41)

The squared velocity term in (3.2.40) may be obtained using (3.2.15). We have

V 2 = V 2
r + V 2

ϑ =

(
∂ϕ′

∂r

)2

+
1

r2

(
∂ϕ′

∂ϑ

)2

=
a6

r6
[
V0(t)

]2(
cos2 ϑ+

1

4
sin2 ϑ

)
.

We see that V 2 is symmetric with respect to the equator
(
ϑ = 1

2π
)
of the sphere.

It may therefore be disregarded in (3.2.40) since it does not contribute to the result
of the integration in (3.2.39). The same is true for the second term on the right-
hand sine of equation (3.2.41). Consequently, setting r = a in (3.2.41) and using the
Cauchy–Lagrange integral (3.2.40), we find that on the sphere

p
∣∣∣
r=a

=
1

2

dV0
dt

ρa cosϑ+ {symmetric part}. (3.2.42)

It remains to substitute (3.2.42) into (3.2.39), and we arrive at the conclusion that the
drag of the sphere

Fx = πa3ρ
dV0
dt

π∫

0

cos2 ϑ sinϑ dϑ =
2

3
πa3ρ

dV0
dt

. (3.2.43)

If a sphere of mass m accelerates in vacuum then, according to Newton’s Second
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Law, the force exerted on the sphere

F = m
dV0
dt

.

If the same sphere accelerates in a fluid medium then, taking into account the drag
force (3.2.43), we have to write instead

F =

(
m+

2

3
πa3ρ

)
dV0
dt

.

This explains why the factor 2
3
πa3ρ in (3.2.43) is termed the virtual mass of the sphere.

3.3 Two-Dimensional Flows

Let us consider inviscid flow of an incompressible fluid past a rigid body of cylindrical
shape whose cross-section is sketched in Figure 3.16; the generator of the body’s surface
is a straight line perpendicular to the sketch plane. We shall assume that the cylinder
is infinite in the spanwise direction.6 We shall further assume that the velocity vector
of the oncoming flow is perpendicular to the body’s generator. In this case, none of
the fluid-dynamic functions is expected to be dependent on the spanwise coordinate z
measured along the body’s generator, namely

∂

∂z
= 0. (3.3.1)

Also, the spanwise velocity component w is expected to be zero, so that the velocity
vector

V = (u, v, 0). (3.3.2)

Fluid flows that satisfy conditions (3.3.1) and (3.3.2) are termed two-dimensional.

V∞

u∞

v∞

S

x

y

Fig. 3.16: A two-dimensional flow.

6In practice it is sufficient for the spanwise length of a cylinder to be much larger than the
characteristic dimension of its cross-section.
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In a two-dimensional flow, the vorticity vector ω has just one component, ωz,
perpendicular to the plane of fluid motion. Indeed, using (3.3.1) and (3.3.2) in (1.4.15),
we have

ω = k

(
∂v

∂x
− ∂u

∂y

)
.

If the flow considered is irrotational, i.e.

ωz =
∂v

∂x
− ∂u

∂y
= 0, (3.3.3)

then there exists a velocity potential ϕ. It is related to the velocity field through the
integral (3.2.2). In a two-dimensional flow, this integral assumes the form

ϕ(t, r) =

r∫

r0

V · dr =

r∫

r0

(u dx+ v dy). (3.3.4)

When dealing with three-dimensional flow (see Figure 3.9 on page 140), we demon-
strated that the integral for ϕ(t, r) does not depend on a choice of contour C connecting
points r0 and r. We shall now look at this result more closely. We took two contours
C and C ′ connecting r0 and r, and denoted the results of the integration along C and
C′ by ϕ(t, r) and ϕ′(t, r), respectively. Then the difference between ϕ(t, r) and ϕ′(t, r)
was calculated using Stokes’s theorem:

ϕ(t, r)− ϕ′(t, r) =

∫

C

V · dr−
∫

C′

V · dr =
∮

C̃

V · dr =

∫∫

σ

(
ω · n

)
ds.

Here C̃ is a closed contour composed of C and C′, and σ is an open surface built on
C̃ as shown in Figure 3.2 on page 133.

We see that if ω = 0 everywhere on σ, then ϕ(t, r) = ϕ′(t, r). This conclusion,
however, relies on the assumption that the region occupied by the moving fluid is
singly connected, i.e., for any closed contour C̃, there exists a surface σ, resting on C̃,
that lies entirely inside the flow field. Two-dimensional flows past cylindrical bodies
clearly do not belong to this category: one path connecting points r0 and r might go
around one side of the body and the other might go around the other side, and the
result of the integration in (3.3.4) cannot be proven to be the same.

Corresponding to this, we can subdivide all closed contours into two classes. In the
first class are contours like C1 in Figure 3.17 that may be reduced to a point by a
continuous deformation (shrinking). When the position vector r in the integral (3.3.4)
makes a circle around such a contour, the potential ϕ(t, r) returns to its initial value.
In the second category are contours like C2. When travelling around such a contour,
the potential increases by a value

∆ϕ =

∮

C2

V · dr = Γ, (3.3.5)

which coincides with the velocity circulation in the flow past a rigid body.
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C1C2

Fig. 3.17: Classification of closed contours in two-dimensional flows.

It is easily shown that the circulation Γ is a universal constant for a given two-
dimensional flow, independent of the choice of a contour embracing the body. Indeed,
let us consider two contours C2 and C′

2 as shown in Figure 3.18, and write

Γ =

∮

C2

V · dr, Γ′ =

∮

C′

2

V · dr.

Then, using Stokes’s theorem, we will have
∮

C2

V · dr−
∮

C′

2

V · dr =

∫∫

σ

ωz ds, (3.3.6)

with σ now denoting the region between C2 and C′
2. Since in this region equation

(3.3.3) holds, we can conclude that the two integrals on the left-hand side of (3.3.6)
coincide with one another.

Thus, when dealing with two-dimensional irrotational flows past solid bodies, one
can still introduce the velocity potential ϕ with the help of the integral (3.3.4). How-
ever, in the general case, ϕ will not be a single-valued function, although the non-
uniqueness in ϕ is rather simple. Each time an observer goes around the body, the
value of ϕ at a given point r increases by the circulation Γ. In what follows, Γ will
be assumed positive when the integral in (3.3.5) is calculated in the counter-clockwise
direction.

C2

C′

2

σ

Fig. 3.18: Two closed contours C2 and C ′
2 and the surface σ exploited in equa-

tion (3.3.6).



3.3. Two-Dimensional Flows 155

Of course, each single-valued branch of the velocity potential ϕ still satisfies Laplace’s
equation (3.2.7), which is written in two dimensions as

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0.

3.3.1 Stream function

Similar to the velocity potential ϕ(t, r), which has been introduced based on the zero-
vorticity equation (3.3.3), we can use the continuity equation (3.1.1b), written in two
dimensions as

∂u

∂x
+
∂v

∂y
= 0, (3.3.7)

to introduce another scalar function ψ(t, r), termed the stream function, such that

∂ψ

∂x
= −v, ∂ψ

∂y
= u. (3.3.8)

For this purpose, we consider a vector field

A = (Ax, Ay, Az)

such that
Ax = −v, Ay = u, Az = 0, (3.3.9)

Since neither u nor v depends on z,

curlA =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

0

−v u 0

∣∣∣∣∣∣
= k

(
∂u

∂x
+
∂v

∂y

)
= 0.

Hence, the vector field A is irrotational, and there exists a scalar function ψ(t, r) that,
similar to (3.3.4), may be introduced using the integral

ψ(t, r) =

r∫

r0

A · dr =

r∫

r0

(−v dx+ u dy). (3.3.10)

Variation of the upper limit of integration in (3.3.10) results in

∇ψ = A = (−v, u). (3.3.11)

Writing (3.3.11) in the coordinate-decomposition form

∂ψ

∂x
= Ax = −v, ∂ψ

∂y
= Ay = u

proves the validity of equations (3.3.8).
The existence of the stream function relies solely on the continuity equation or,

more precisely, on the form (3.3.7) it assumes in two-dimensional incompressible flows.
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It does not matter if the flow is steady or unsteady, inviscid or viscous, irrotational
or with non-zero vorticity, one can still introduce the stream function. In the case of
irrotational flow, the stream function is easily seen to satisfy Laplace’s equation

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0,

which is obtained by substituting (3.3.8) into (3.3.3).
In order to clarify the physical content of the stream function, let us consider

two points M and M ′ in the (x, y)-plane (see Figure 3.19) and calculate the fluid
volume flux across a curve L joining M and M ′ or, more precisely, the flux across
an open surface swept out by translating curve L through unit distance in the z-
direction. Reckoning the flux positive when it is in the direction shown by the arrow
in Figure 3.19, we write

Q = −
∫

L

V · ndl = −
∫

L

(unx + vny) dl. (3.3.12)

Here n = (nx, ny) is a unit vector normal to L and dl is the length of a small element
of L. Notice that, unlike for the mass flux (1.6.3), the volume flux integral (3.3.12)
does not involve the fluid density ρ.

Let us now introduce a unit vector τ = (τx, τy) tangent to L. It may be easily seen
that

nx = −τy, ny = τx.

Hence, using (3.3.8), we can express the integral in (3.3.12) as

Q =

∫

L

(
∂ψ

∂x
τx +

∂ψ

∂y
τy

)
dl =

∫

L

(
∇ψ · τ

)
dl =

∫

L

∇ψ · dr,

with dr being an increment of the position vector r along L. We see that the volume
flux across any curve joining two points in the flow field equals the difference between
the values of ψ at these points:

Q = ψ(M ′)− ψ(M). (3.3.13)

M

M ′n

τ

Q

x

y

L

Fig. 3.19: Calculation of volume flux Q through curve L between points M and M ′.
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We can now prove the following theorem.

Theorem 3.4 The stream function is constant along any streamline, and any line
defined by the equation

ψ = const (3.3.14)

is a streamline.

Proof If line L in Figure 3.19 is a streamline, then, according to Definition 1.2 on
page 29, the velocity vector is tangent to L, and therefore there is no fluid flux across
L. Hence, Q = 0, and, using (3.3.13), we can conclude that for any two points M and
M ′ which belong to the same streamline, ψ(M ′) = ψ(M). This proves the first part
of the theorem.

To prove that any line defined by equation (3.3.14) is a streamline, we note that
for a line represented by equation (3.3.14), the unit vector normal to this line, n, may
be calculated as

n =
∇ψ
|∇ψ| =

1

|∇ψ|

(
∂ψ

∂x
,
∂ψ

∂y

)
.

Let us consider the scalar product of the velocity vector V and the normal vector n:

V · n =
1

|∇ψ|

(
u
∂ψ

∂x
+ v

∂ψ

∂y

)
. (3.3.15)

Using (3.3.8) in (3.3.15), we see that V · n = 0, which proves that the velocity vector
V is perpendicular to n, and therefore is tangent to the line considered. ✷

Exercises 8

1. Consider a building in the form of a hemisphere that has an open ventilation
window at the top of the roof. The entrance door, which is situated at point O on
the ground level, is initially sealed and does not allow air to penetrate through it.
The building is exposed to wind, which is directed such that the entrance door
finds itself at the front stagnation point; see Figure 3.20.

Fig. 3.20: Problem layout.

Show that the force that has to be applied to the door to open it outwards is

F = 9
8
ρV 2

∞A,

where ρ is the air density, V∞ the wind speed, and A the area of the door surface.
Suggestion: You may assume that the ventilation window is small compared

with the radius of the dome, and so is the door.

V∞
O



158 Chapter 3. Inviscid Incompressible Flows

2. For a two-dimensional flow, the Euler equations are written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= fx − 1

ρ

∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= fy −

1

ρ

∂p

∂y
,

∂u

∂x
+
∂v

∂y
= 0.

Performing cross-differentiation of the x- and y-momentum equations, deduce
a condition that should be imposed upon the body force f to ensure that the
vorticity remains constant for each fluid particle as it travels through the flow
field.

3. Prove that in a two-dimensional flow past a rigid cylindrical body the stream
function ψ is a single-valued function, i.e., after making a circle around the closed
contour C2 of Figure 3.17, ψ returns to its original value.

4. Assume that a flow of an incompressible fluid is steady and may be treated as
inviscid. Assume further that the body force f is potential, i.e. there exists a scalar
function U such that f = ∇U . Show that under these conditions the gradient of
the function H in the Bernoulli function (3.1.6) is related to the vorticity ω by
the equation

∇H = V × ω. (3.3.16)

Suggestion: Use the Gromeko–Lamb form (3.1.3) of the Euler equations.

5. The streamline pattern in a two-dimensional flow is defined by equation (3.3.14),
with different values of the stream function ψ corresponding to different stream-
lines. Therefore, function H on the right-hand side of the Bernoulli equation
(3.1.6) may be treated as a function of ψ. Starting with equation (3.3.16), prove
that

dH

dψ
= −ωz.

Hence, deduce that H is constant in an irrotational flow.

6. Suppose that a two-dimensional flow is irrotational and has velocity potential ϕ
given by

ϕ = ax(x2 − 3y2),

where a is a positive constant. Find the fluid volume flux across a curve connecting
points M = (0, 0) and M ′ = (1, 1) in the (x, y)-plane.

7. The continuity equation for an incompressible fluid is written in spherical polar
coordinates as

∂Vr
∂r

+
1

r

∂Vϑ
∂ϑ

+
1

r sinϑ

∂Vφ
∂φ

+
2Vr
r

+
Vϑ

r tanϑ
= 0. (3.3.17)

Assume that the flow considered is axisymmetric with respect to the x-axis (see
Figure 1.31 on page 84), and show that in this case equation (3.3.17) assumes the
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form
∂

∂r

(
r2 sinϑVr) +

∂

∂ϑ

(
r sinϑVϑ) = 0.

Based on this equation, introduce a scalar function ψ(r, ϑ), known as the Stokes
stream function, such that

∂ψ

∂r
= −r sinϑVϑ,

∂ψ

∂ϑ
= r2 sinϑVr, (3.3.18)

and prove that the equation
ψ = const

defines the streamlines in the flow.
Hint : You may use without proof the fact that gradient of ψ is written in

spherical polar coordinates as

∇ψ =
∂ψ

∂r
er +

1

r sinϑ

∂ψ

∂φ
eφ +

1

r

∂ψ

∂ϑ
eϑ,

with er, eϑ, and eφ denoting the unit vectors in the radial, azimuthal, and merid-
ional directions, respectively.

8. Combine (3.3.18) with the solution (3.2.30) for Vr and Vϑ in the flow past a sphere,
and show that in this flow

ψ =
V∞
2

(
r2 − a3

r

)
sin2 ϑ.

9. Consider the steady inviscid flow of an incompressible fluid past a swept wing
shown in Figure 3.21. The wing has an infinite span, and its profile at each cross-
section OO′ remains the same, i.e. is independent of the spanwise coordinate z.
Write the Euler equations (3.1.1) and the impermeability (3.2.10) and free-stream
(3.2.11) conditions in coordinate-decomposition form using Cartesian coordinates
x, y, z with z-axis parallel to the wing generatrix.

V∞

χ

z
O

O′

Fig. 3.21: Swept wing.
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Prove that the flow in the (x, y)-plane perpendicular to the generatrix may be
treated as two-dimensional.

3.4 Complex Potential

If a two-dimensional flow is irrotational and the fluid is incompressible, then equations
(3.3.3) and (3.3.7) hold:

∂v

∂x
− ∂u

∂y
= 0,

∂u

∂x
+
∂v

∂y
= 0. (3.4.1)

It follows from the first of these that there exists a velocity potential ϕ related to the
velocity vector by means of equation (3.2.6). In a two-dimensional flow, it is written
as

u =
∂ϕ

∂x
, v =

∂ϕ

∂y
. (3.4.2)

The second of equations (3.4.1) guarantees the existence of the stream function ψ, and
we can use equations (3.3.8):

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.4.3)

Comparing (3.4.2) with (3.4.3), we see that

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
. (3.4.4)

These are the Cauchy–Riemann equations representing the necessary and sufficient
conditions for the function

w(z) = ϕ+ iψ (3.4.5)

to be an analytical function of the complex variable z = x+ iy. This function is called
the complex potential.

If w(z) were known, then the velocity component u and v could be obtained by
means of differentiating w(z). We have

dw

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x
,

which, using (3.4.2) and (3.4.3), may be written as

dw

dz
= u− iv = V (z). (3.4.6)

The function V (z) = u− iv is called the complex conjugate velocity. Being the deriva-
tive of an analytic function, the complex conjugate velocity V (z) is also an analytic
function. The latter is confirmed by equations (3.4.1), which are the Cauchy–Riemann
conditions for V (z) = u− iv.

We shall now consider a number of elementary two-dimensional flows and deduce
the corresponding expressions for the complex potential.
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Uniform flow

Let the velocity vector V be constant over the entire flow field. In what follows, we
shall often use the complex potential of the uniform flow for the purpose of representing
the unperturbed free stream approaching a rigid body. Keeping this in mind, we shall
denote the modulus of the velocity V by V∞. If the angle that the velocity vector
makes with the x-axis is α (see Figure 3.22), then the two velocity components are

u = V∞ cosα, v = V∞ sinα,

and the complex conjugate velocity may be written as7

V (z) = u− iv = V∞(cosα− i sinα) = V∞e
−iα. (3.4.7)

Substituting (3.4.7) into (3.4.6), we have

dw

dz
= V∞e

−iα,

which is easily integrated to yield

w(z) = e−iαV∞z + C.

Here the constant of integration C = Cr + iCi may be disregarded without loss of
generality since both the velocity potential ϕ and the stream function ψ are defined to
within arbitrary constants. Keeping this in mind, we shall write the complex potential
for a uniform flow as

w(z) = e−iαV∞z. (3.4.8)

V

u

v
V∞

x

y

α

Fig. 3.22: Uniform flow.

Two-dimensional source

Let us suppose that a straight line L is drawn perpendicular to the (x, y)-plane. Let
us further suppose that three-dimensional sources are continuously distributed along
L. We shall define the strength q of the two-dimensional source as the volume of the

7Here the well-known Euler formula, eiα = cosα+ i sinα, is used.
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fluid produced (per unit time) by a segment of L of unit length. If the line L is infinite,
and q remains constant along L, then the integral effect will be a two-dimensional flow
in planes perpendicular L. In Figure 3.23, we show one of these planes, with the line
L passing through the coordinate origin. In this plane, the fluid moves in the radial
direction, and at a point M , situated at distance r from the source, the velocity Vr is
given by

Vr =
q

2πr
. (3.4.9)

Indeed, the circumference of the circle C drawn through M is 2πr, and therefore the
mass conservation law states

2πrVr = q.

Here it is taken into account that, owing to the symmetry of the flow, the velocity
vector has only a radial component Vr, which is the same at all points on C. An
alternative way of deducing equation (3.4.9) is discussed in Problem 1 in Exercises 9.

Denoting by ϑ the angle made by the velocity vector with the x-axis, we can write

u = Vr cosϑ =
q

2π

cosϑ

r
, v = Vr sinϑ =

q

2π

sinϑ

r
,

and therefore

V (z) = u− iv =
q

2π

cosϑ− i sinϑ

r
. (3.4.10)

Multiplying the numerator and denominator in (3.4.10) by cosϑ+ i sinϑ, we have

V (z) =
q

2π

1

r(cosϑ+ i sinϑ)
=

q

2πz
. (3.4.11)

Integration of (3.4.11) leads to

w(z) =
q

2π
ln z, (3.4.12)

which is the sought complex potential of a two-dimensional point source centred at
z = 0.

V

u

v

r

x

y

ϑ

C

M

Fig. 3.23: Two-dimensional source.
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Dipole

Similar to the three-dimensional dipole, we shall introduce its two-dimensional coun-
terpart as a superposition of a source and a sink. If a source is situated at z = 0 and
a sink of equal strength is situated at z = δz0, then we can write

w(z) =
q

2π
ln z − q

2π
ln(z − δz0)

=
q

2π
ln z − q

2π
ln

[
z

(
1− δz0

z

)]
= − q

2π
ln

(
1− δz0

z

)
. (3.4.13)

We shall now suppose that |δz0| is small compared with |z|. In this case, the Taylor
expansion for the logarithm, ln(1 + ε) = ε+ · · · , may be used. We have

ln

(
1− δz0

z

)
= −δz0

z
+ · · · ,

which reduces (3.4.13) to

w(z) =
meiα

2πz
. (3.4.14)

Here m = q|δz0| is the moment of the dipole and α = arg
{
δz0
}
defines the orientation

of the dipole in the (x, y)-plane.

Potential vortex

Here we shall use a different strategy. Instead of trying to find the form of the complex
potential for a given flow field, we shall start with a formula for w(z) and then our
task will be to determine the flow it represents. The complex potential of the source
(3.4.12) is given by the logarithmic function ln z with real factor q/2π. Let us now
assume that the factor is imaginary, i.e.

w(z) =
κ

2πi
ln z, (3.4.15)

with κ being a real constant.
In order to determine the form of the streamlines in this flow, we shall rely on

Theorem 3.4 (see page 157). We first need to separate the real and imaginary parts of
the complex potential (3.4.15). Expressing z in the exponential form z = reiϑ, we have

w(z) = ϕ+ iψ =
κ

2πi
(ln r + iϑ) =

κ

2π
ϑ− i

κ

2π
ln r.

Hence, the velocity potential and stream function are given by

ϕ =
κ

2π
ϑ, ψ = − κ

2π
ln r.

It is easily seen that the potential ϕ increases by a value of κ each time a point in
the complex z-plane makes a full circle around the vortex centre. Therefore, according
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x

y

Fig. 3.24: Streamline pattern for the vortex flow (3.4.15).

to (3.3.5), κ is the circulation Γ and we can write (3.4.15) as

w(z) =
Γ

2πi
ln z. (3.4.16)

Correspondingly, the stream function takes the form

ψ = − Γ

2π
ln r.

It should remain constant along each streamline, which can only happen if the radius
r is constant. This means that the streamlines have the form of concentric circles with
centre situated at z = 0 (see Figure 3.24).

In order to find the velocity, we differentiate (3.4.16) with respect to z:

V (z) =
dw

dz
=

Γ

2πiz
. (3.4.17)

As the velocity vector is tangent to the streamlines, the shape of which is already
known, we only need to find the modulus of the velocity

|V| = |V (z)| = Γ

2π|z| =
Γ

2πr
. (3.4.18)

Thus, |V| is inversely proportional to the distance from the vortex centre.

3.4.1 Boundary-value problem for the complex potential

When dealing with more complicated flows, it is important to have the corresponding
boundary-value problem properly formulated. Such a formulation provides a strict
mathematical basis for the fluid-dynamic analysis. In three dimensions, the behaviour
of potential flow past a motionless body is governed by Problem 3.1 (see page 142).
For two-dimensional flows, this problem may be more conveniently re-formulated in
terms of the complex potential w(z).
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Problem 3.2 Find the complex potential w(z) = ϕ+ iψ such that

1. w(z) is an analytic function of the complex variable z = x+ iy everywhere outside
the body contour S;

2. it satisfies the impermeability condition on the body contour

ℑ
{
w(z)

}∣∣∣
S
= const, (3.4.19)

3. and it satisfies the free-stream condition

dw

dz
= u∞ − iv∞ at z = ∞, (3.4.20)

where u∞, v∞ are the components of the velocity vector V∞ in the oncoming flow.

Condition 1 is equivalent to the requirement that the velocity potential ϕ satisfy
Laplace’s equation. Indeed, any analytical function w(z) = ϕ(x, y) + iψ(x, y) has to
satisfy the Cauchy–Riemann conditions

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
. (3.4.21)

Cross-differentiation of (3.4.21) leads to the Laplace equation for ϕ.
Condition 2 states that the stream function ψ should be constant along the body

surface. According to Theorem 3.4 (see page 157), this means that the body surface
has to coincide with one of the streamlines. Since the velocity vector is always tangent
to a streamline, condition 2 represents the impermeability condition on the surface
of a motionless body, which may be expressed in the form of equation (3.2.10) or,
equivalently, by equation (3.2.12b) in the formulation of Problem 3.1.

Finally, equation (3.4.20) simply casts the free-stream condition (3.2.12c) in terms
of the complex conjugate velocity, V .

3.4.2 Flow past a circular cylinder

Here we shall demonstrate that the solution of Problem 3.2 for the two-dimensional
flow past a circular cylinder may be constructed as a superposition of the uniform flow
(3.4.8) and the dipole (3.4.14). Without loss of generality, one can always choose the
x-axis to be parallel to the oncoming flow; see Figure 3.25. With this choice, the angle
of attack α in (3.4.8) has to be set to zero, and we have the complex potential of the
uniform flow in the form

w(z) = V∞z. (3.4.22)

We then place the dipole at the coordinate origin and assume that it is also aligned
with the x-axis. We therefore choose α = 0 in (3.4.14), leading to

w(z) =
m

2πz
. (3.4.23)
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ϑ

a

x

y z

z
V∞

Fig. 3.25: Flow past a circular cylinder.

Adding (3.4.22) and (3.4.23) together yields

w(z) = V∞z +
m

2πz
. (3.4.24)

The function (3.4.24) obviously satisfies condition 1 of Problem 3.2, since w(z) is
analytic everywhere except at the point z = 0. This point lies inside the body contour;
meanwhile analyticity of w(z) should be ensured in the flow field. Turning to condition
2, we shall assume that the cylinder has its centre at z = 0, with the radius being a.
Then, for any point on the cylinder’s surface,

z = aeiϑ, (3.4.25)

where ϑ is the position angle measured from the real positive semi-axis, as shown in
Figure 3.25. Substitution of (3.4.25) into (3.4.24) results in

w(z) = V∞ae
iϑ +

m

2πa
e−iϑ. (3.4.26)

The stream function on the cylinder’s surface is given by the imaginary part of (3.4.26):

ψ
∣∣∣
r=a

= ℑ
{
w(z)

}
=

(
V∞a−

m

2πa

)
sinϑ.

It may be made zero for all values of ϑ by choosing

m = 2πV∞a
2. (3.4.27)

Substituting (3.4.27) back into (3.4.24), we have

w(z) = V∞

(
z +

a2

z

)
. (3.4.28)

It remains to observe that the function (3.4.28) also satisfies condition 3 of Problem 3.2.
Indeed, as z → ∞, the second term in the parentheses tends to zero, and (3.4.28)
reduces to w(z) = V∞z, which represents a uniform flow parallel to the x-axis.
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Differentiating (3.4.28), we find that at any point z in the flow field, the complex
conjugate velocity

V (z) =
dw

dz
= V∞

(
1− a2

z2

)
. (3.4.29)

In particular, on the cylinder’s surface, where z is given by (3.4.25), we have

V
∣∣∣
r=a

= u− iv = V∞
(
1− e−2iϑ

)
,

which may be rearranged as

V
∣∣∣
r=a

= V∞e
−iϑ
(
eiϑ − e−iϑ

)
= 2V∞ie

−iϑ e
iϑ − e−iϑ

2i
= 2V∞e

i(π/2−ϑ) sinϑ.

The modulus of the velocity vector V is calculated as |V| =
√
u2 + v2, and obviously

coincides with the modulus of the complex conjugate velocity V = u−iv. Consequently,
we can conclude that on the cylinder’s surface

|V| = 2V∞ sinϑ. (3.4.30)

We see that there are two points where |V| = 0: the front stagnation point (ϑ = π) and
the rear stagnation point (ϑ = 0). Between them, the fluid velocity (3.4.30) appears
to be symmetric with respect to the middle point (ϑ = π/2), where it reaches the
maximum value of

|V|max = 2V∞.

In order to determine the pressure distribution, we shall use the Bernoulli equation
(3.2.32):

V 2

2
+
p

ρ
=
V 2
∞

2
+
p∞
ρ
. (3.4.31)

Substituting (3.4.30) into (3.4.31), it is easily deduced that on the cylinder’s surface

p = p∞ +
1

2
ρV 2

∞

(
1− 4 sin2 ϑ

)
.

Similar to the flow past a sphere, the solution for a circular cylinder appears to
be symmetric with respect to the y-axis (see Figure 3.25), which implies again a zero
drag force. In reality, though, the flow separates from the cylinder’s surface, as the flow
visualisation in Figure 3.26(a) clearly shows. The separation leads to a redistribution
of the pressure on the cylinder surface. As a result a non-zero drag is produced.

Interestingly enough, experiments also show that the separation may be suppressed
by rotating the cylinder around its centre. A non-dimensional parameter that governs
the flow past a rotating cylinder is

aΩ

V∞
.

Here Ω denotes the angular velocity with which the cylinder rotates. Figure 3.26
shows that with increasing Ω, the separation region becomes smaller, and disappears
altogether when aΩ/V∞ reaches a critical value slightly above 4; see Figure 3.26(d).
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In order to model theoretically the effect of the cylinder’s rotation on the flow, we
add the potential vortex (3.4.16) to the solution (3.4.28):

w(z) = V∞

(
z +

a2

z

)
+

Γ

2πi
ln z. (3.4.32)

Now we need to prove that (3.4.32) is a true solution to Problem 3.2. We first note
that the function w(z) as defined by (3.4.32) is analytic everywhere in the flow field
(|z| > a). Second, on the cylinder surface, where z = aeiϑ, we have

w(z) = V∞
(
aeiϑ + ae−iϑ

)
− i

Γ

2π
(ln a+ iϑ) = 2V∞a cosϑ+

Γϑ

2π
− i

Γ

2π
ln a,

which shows that the imaginary part of w(z) is indeed constant on the cylinder’s
surface:

ℑ
{
w(z)

}∣∣∣
|z|=a

= − Γ

2π
ln a.

(a) aΩ/V∞ = 0. (b) aΩ/V∞ = 2.

(c) aΩ/V∞ = 4. (d) aΩ/V∞ = 6.

Fig. 3.26: Visualisation of the flow past a rotating cylinder (Prandtl and Tietjens,
1934); the flow is from right to left.
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Third, the complex conjugate velocity is calculated as

V (z) =
dw

dz
= V∞

(
1− a2

z2

)
+

Γ

2πiz
, (3.4.33)

and obviously satisfies the free-stream condition (3.4.20).
The following two comments are appropriate here. First, while it is clear that the

circulation Γ in (3.4.32) is somehow linked to the speed of rotation of the cylinder,
the inviscid flow formulation does not allow for such a link to be established. Indeed, the
impermeability condition on the cylinder surface, (3.4.19), does not change if instead
of being motionless, a rotating cylinder is considered. Second, the boundary-value
problem of two-dimensional inviscid flow theory, namely, Problem 3.2 (see page 165),
is not a well-posed problem in the classical sense, since it does not define a unique
solution. Instead, it admits a family of solutions, with the circulation Γ being a free
parameter.

In order to see how changing Γ influences the flow past a circular cylinder, let us
consider the velocity distribution along the cylinder’s surface. Substituting (3.4.25)
into (3.4.33), we have

V (z) = u− iv = V∞
(
1− e−2iϑ

)
− iΓ

2πa
e−iϑ = ie−iϑ

(
2V∞ sinϑ− Γ

2πa

)
. (3.4.34)

It follows from (3.4.34) that a point on the cylinder’s surface whose position angle ϑ
satisfies the equation

sinϑ =
Γ

4πaV∞
(3.4.35)

is a stagnation point where both velocity components u and v simultaneously vanish.
In the case of zero circulation, Γ = 0, the flow is symmetric with respect to the

x-axis, and the stagnation points are located at ϑ = 0 and ϑ = π. The corresponding
streamline pattern is shown in Figure 3.27(a). In order to reproduce the visualisation
results of Figure 3.26, where the stagnation points lie on the lower side of the cylinder,
we have to assume that the circulation Γ is negative. If −4πaV∞ < Γ < 0, then
equation (3.4.35) has two solutions, which represent two stagnation points situated
symmetrically on the lower surface of the cylinder as shown in Figure 3.27(b). When
Γ = −4πaV∞, these points come together and the streamline pattern takes the form
shown in Figure 3.27(c). Finally, for Γ < −4πaV∞, no solutions of (3.4.35) can be
found, which suggests that the stagnation point moves from the cylinder surface into
the interior of the flow field; see Figure 3.27(d). Notice that at this stage the theoretical
streamline pattern starts to show a good agreement with the experimental observations
(see Figure 3.26d), and so does the pressure distribution on the cylinder’s surface.

We have seen that with Γ 6= 0 the flow past the cylinder loses its symmetry with
respect to the x-axis. As a result, the pressure below the cylinder appears to be larger
than the pressure above it, and a side force acting perpendicular to the direction of
the oncoming flow is created. Its value is given by the Joukovskii formula

L = −ρV∞Γ,

which will be deduced in Section 3.4.3 (see also Problem 6 in Exercises 9).
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(a) Γ = 0. (b) Γ = −2πaV∞.

(c) Γ = −4πaV∞. (d) Γ = −6πaV∞.

Fig. 3.27: Flow past a circular cylinder for different values of the circulation Γ.

The formation of the side force on a rotating cylinder is known as the Magnus
effect, named after the scientist who first performed a detailed experimental study of
the flow around a rotating cylinder (see Magnus, 1852). In everyday life, the Magnus
effect may be observed in a variety of situations. In particular, it represents an integral
part of various sports, ranging from football to table tennis. It would perhaps be too
optimistic to suggest that sportsmen understand the theory behind the phenomenon,
but they certainly know how by spinning a ball they can influence its behaviour in
flight.

3.4.3 Force on a cylinder

Let us consider a steady two-dimensional flow past a cylindrical body as shown in
Figure 3.28(a). If we assume that the body force f acting on the moving fluid is
negligibly small, then the pressure at any point in the flow field may found using the
Bernoulli equation (3.1.6):

p

ρ
+
V 2

2
= H. (3.4.36)

Provided that the oncoming flow is uniform, Bernoulli’s function H is a constant that
does not depend on the streamline considered. Indeed, using the free-stream conditions,
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one can find that

H =
p∞
ρ

+
V 2
∞

2
.

In order to calculate the resultant force acting on the cylinder, we consider a small
element dl of the cylinder contour C; see Figure 3.28(a). The integration along this
contour will be performed in the counter-clockwise direction. The pressure force acting
on the contour element dl (per unit length in the spanwise direction) is

F = p dl. (3.4.37)

The projections of this force upon the x- and y-axes are (see Figure 3.28b)

dX = −F sinϑ, dY = F cosϑ, (3.4.38)

where ϑ is the angle between the tangent to the body contour and the x-axis.
Substitution of (3.4.37) into (3.4.38) yields

dX = −p sinϑ dl, dY = p cosϑ dl.

Since
dx = dl cosϑ, dy = dl sinϑ,

we can conclude that
dX = −p dy, dY = p dx. (3.4.39)

Integrating (3.4.39) around the cylinder surface, we have the following formulae for
the components of the resultant force:

X = −
∮

C

p dy, Y =

∮

C

p dx.

It is convenient to combine them into the so-called ‘complex-conjugate force’:

x

y z

C
F

︸︷︷︸
dl

(a) Pressure force F on an element dl of
the cylinder’s surface.

ϑ

ϑ

︸ ︷︷ ︸ ︸
︷︷
︸

dl

dy

dx

F dY

dX

(b) Coordinate decomposition of the
pressure force acting on an element dl
of the cylinder’s surface.

Fig. 3.28: Calculation of the pressure force on the cylinder’s surface.
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X − iY = −
∮

C

p(dy + i dx) = −i
∮

C

p(dx− i dy) = −i
∮

C

p dz̄. (3.4.40)

It follows from the Bernoulli equation (3.4.36) that

p = ρH − ρ

2
V 2,

which, when substituted into (3.4.40), gives8

X − iY = i
ρ

2

∮

C

V 2 dz̄. (3.4.41)

Let dz be a small element of the integration contour C and ϑ the angle made by
dz with the x-axis (see Figure 3.29). Then

dz = |dz|eiϑ and dz̄ = |dz|e−iϑ. (3.4.42)

Since the velocity vector is tangent to the surface, we can write

V (z) = V e−iϑ.

Solving this equation for V , we have

V = V eiϑ. (3.4.43)

Substitution of (3.4.42) and (3.4.43) into (3.4.41) yields

X − iY = i
ρ

2

∮

C

V
2
ei2ϑ|dz|e−iϑ = i

ρ

2

∮

C

V
2|dz|eiϑ = i

ρ

2

∮

C

(
dw

dz

)2
dz. (3.4.44)

This equation is called the Blasius–Chaplygin formula in recognition of the fact that
Blasius (1910) and Chaplygin (1910) were the first to derive it.

Taking into account that the integrand in (3.4.44) is an analytic function, we can
change the integration path and use instead of the body contour C any other closed
contour embracing the body. In particular, the integration may be performed along a

ϑ

V

︷ ︸︸
︷dz

Fig. 3.29: An element of the body surface.

8Here it is taken into account that the integral of a constant along a closed contour is always zero.
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circle CR of large enough radius, and then V (z) may be represented by its far-field
asymptotic expansion. The latter is obtained as follows.

Assuming that there are no discontinuities of the velocity in the flow field, we
can treat V (z) as a single-valued analytical function. According to the free-stream
boundary condition (3.4.20), V (z) is finite at z = ∞, and therefore the Laurent series
for V (z) is written as

V (z) =
dw

dz
= a0 +

a1
z

+
a2
z2

+ · · · as z → ∞. (3.4.45)

The leading-order term is easily seen to be

a0 = u∞ − iv∞ = V∞e
−iα.

In order to clarify the physical meaning of the factor a1 in the second term, we integrate
(3.4.45), which gives

w(z) = V∞e
−iαz + a1 ln z +O

(
1

z

)
.

Let us assume that the point of observation z makes a full circle around the body.
This results in an increment of the complex potential,

∆w = ∆ϕ+ i∆ψ = a12πi. (3.4.46)

According to (3.3.5), ∆ϕ coincides with the circulation Γ. For a body with an impen-
etrable surface, ∆ψ = 0 (see Problem 3 in Exercises 8). Consequently, it follows from
(3.4.46) that

a1 =
Γ

2πi
,

and (3.4.45) may be written as

dw

dz
= V∞e

−iα +
Γ

2πiz
+O

(
1

z2

)
. (3.4.47)

Substituting (3.4.47) into (3.4.44), we have

X − iY = i
ρ

2

∮

C

(
V 2
∞e

−i2α +
V∞e

−iαΓ

πiz
+ · · ·

)
dz

= i
ρ

2

V∞e
−iαΓ

πi
2πi = iρV∞e

−iαΓ.

Separation of the real and imaginary parts yields

X = ρV∞Γ sinα, Y = −ρV∞Γ cosα. (3.4.48)



174 Chapter 3. Inviscid Incompressible Flows

α

α

α

V∞

X

Y

A

A′

B

B′

Fig. 3.30: Calculation of the lift and drag forces.

The lift force L is defined as the projection of the resultant force upon the direction
perpendicular to the free stream. It is calculated by projecting Y and X upon line
AA′ in Figure 3.30:

L = Y cosα−X sinα. (3.4.49)

Substituting (3.4.48) into (3.4.49), we find that

L = −ρV∞Γ. (3.4.50)

The drag force D is the projection of the resultant force upon line BB′ parallel to the
direction of the free stream. It is calculated as

D = Y sinα+X cosα.

Using (3.4.48), we can see that D = 0, which proves that d’Alembert’s paradox holds
for an arbitrary two-dimensional body.

Formula (3.4.50), which gives a surprisingly simple relationship between the lift
force L and the circulation Γ, is known as the Joukovskii formula. Interestingly, in
the original paper by Joukovskii (1906), the derivation of this formula was much more
involved.

Exercises 9

1. Consider a straight line L drawn perpendicular to the (x, y)-plane, and suppose
that three-dimensional sources are continuously and uniformly distributed along
L with density q. The latter is defined as the volume of the fluid produced (per
unit time) by a segment of L of unit length. In particular, if we consider a small
segment of length dz of the line L near point S, then the volume of fluid produced
by this segment per unit time will be q dz. According to (3.2.14), the velocity
produced by this segment at point M (see Figure 3.31) will be

V̄r =
qdz

4π(z2 + r2)
.
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L

z

r

ϑ
Vr

V̄r

M

S

Fig. 3.31: Calculation of the velocity Vr produced by the two-dimensional source.

Project this velocity on the direction perpendicular to the line L and integrate
along the line L. Compare your result with equation (3.4.9).

2. Consider a flow given by the complex potential

w(z) = (1− i) ln
z − 1

z + 1
,

and find the circulation of the velocity vector along a circle C that has unit radius
and is centred at z = −1 (see Figure 3.32).

C

−1

x

zy

Fig. 3.32: Contour C along which the circulation is to be found.

3. Consider the two-dimensional inviscid flow of incompressible fluid inside a quarter-
plane bounded by two plane walls placed along the positive x- and y-semi-axes
as shown in Figure 3.33. The flow is produced by a source of strength q situated
at the point z = 1 + i.

Calculate the fluid volume flux Q through a line that connects the source with
the point z = i.
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x

y

O

i q

Q

1

z

Fig. 3.33: Flow within a quarter-plane produces by a source.

Hint : Note that neither the source at z = 1+ i nor its reflection in the y-axis
contribute to the fluid flux.

4. Find the form of streamlines in the two-dimensional flow given by the complex
potential

w(z) = bz2, (3.4.51)

where b is a real constant.

5. Study the flow in a small vicinity of the front stagnation point on the surface
of a circular cylinder (Figure 3.25). Consider, for simplicity, the case where the
circulation Γ = 0.

(a) Try to find the complex potential behaviour near the stagnation point by
setting z = −a + z′ in (3.4.28) and assuming that |z′| is much smaller than
the cylinder radius a. Compare your result with (3.4.51).

(b) Show that on the cylinder’s surface the fluid velocity grows linearly with
distance from the stagnation point:

V =
2

a
V∞|z′|. (3.4.52)

Hint : You may use without proof the Taylor expansion

1

1 + x
= 1− x+ x2 + · · · ,

valid for small x, real or complex.

6. By direct integration of the pressure distribution on the surface of a circular
cylinder (see Figure 3.25), confirm that the lift force is given by the Joukovskii
formula, L = −ρV∞Γ. You can use without derivation the fact that on the cylinder
surface the complex conjugate velocity is given by equation (3.4.34):

V (z) = ie−iϑ

(
2V∞ sinϑ− Γ

2πa

)
.

7. A log of semicircular cross-section is placed on the ground as shown in Figure 3.34.
Given that the radius of the log is a and the mass per unit length in the spanwise
direction is m, find the critical wind speed V∞ capable of lifting the log.
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L =

a∫

−a

(p0 − p) dx,

where x is measured along the ground and p0 is the pressure in the gap between
the log and the ground. You may assume that p0 is constant and coincides with
the pressure at the front stagnation point A.

Using the Bernoulli equation, determine the pressure distribution on the upper
surface of the log and the pressure in the gap between the log and the ground.

Finally, balancing the lift force with the log weight, find the critical value of
the free-stream velocity.

8. A two-dimensional point source of strength q is placed at distance h from an
infinite flat plate (see Figure 3.35). Assuming that there is no fluid motion far
from the source centre and the impermeability condition holds on plate surface,
find the velocity distribution along the plate and calculate the integral pressure
force acting upon the plate,

F =

∞∫

−∞

(p− p∞) dx,

where p∞ is the unperturbed pressure far from the vortex.

Fig. 3.35: Source above a flat surface.

a

A

V∞

Fig. 3.34: Log on the ground.

When solving this problem, start with analysis of the pressure force acting on
a small element of the contour of the upper surface of the body. Project the force
on the vertical axis, and show that the integral force

x

y

q

h
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Substitute the source by a vortex with circulation Γ, and repeat the calcula-
tions.

Suggestion: In order to satisfy the impermeability condition on the plate sur-
face, the source should be reflected in the x-axis with the same sign, and the
vortex with the opposite sign.

9. Consider a two-dimensional flow produced by a superposition of a uniform flow
along the x-axis with velocity V∞ and the flow from a source of strength q situated
at the origin z = 0, where z = x+iy. Write down the complex potential w = ϕ+iψ
for this flow. Consider a semi-infinite rigid body whose contour coincides with the
streamline originating from the front stagnation point A (see Figure 3.36); it is
known as a Rankine body. Show that the body contour is given by the equation

y =
q

2V∞

(
1− ϑ

π

)
,

and determine the width 2d in the limit as x→ ∞.
Calculate the drag

D =

d∫

−d

(p− p∞) dy

of the Rankine body.

x

y

A
d

z

ϑ
V∞ r

q

Fig. 3.36: Rankine body.

Hint : When performing this task, note that on the body’s surface

r =
y

sinϑ
,

and express the integral for D via the angle ϑ made by the position vector with
the x-axis (see Figure 3.36).

10. If the velocity field V in a fluid flow is known, then the vorticity ω may be
calculated through formula (1.4.15). If, on the other hand, the vorticity field is
known and the fluid is incompressible, then the velocity field may be determined
through solving the equations

divV = 0, curlV = ω. (3.4.53)
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r

r′

dτ

V

ω

r−
r
′

x

y

z

M

Fig. 3.37: Graphical illustration of the Biot–Savart formula (3.4.54).

Assuming that the vorticity is distributed over region D and the fluid is at rest
in the far field, the solution to the set of equations (3.4.53) may be expressed by
the Biot–Savart formula,

V(r) =

∫∫∫

D

ω(r′)× (r− r′)

4π|r− r′|3 dτ. (3.4.54)

Here r is the position vector of the point M where the velocity V is to be found,
r′ denotes the vector that scans region D in the course of integration, and dτ is a
volume element of D; see Figure 3.37.

Suppose that the vorticity is confined within a cylinder that has infinite length
and a small radius. Suppose further that as the cross-sectional area S of the vortex
region tends to zero, the vorticity |ω| tends to infinity, such that the circulation
Γ = |ω|S remains finite. This leads to an idealisation known as a line vortex.

Using (3.4.54), show that in the flow field induced by the line vortex, all fluid
particles go around the vortex with velocity

V =
Γ

2πr
,

where r is the distance from the vortex axis (see Figure 3.38).
Suggestion: Assume that the axis of the vortex coincides with the z-axis as

shown in Figure 3.38, and consider a circle C lying in the (x, y)-plane. When
calculating the velocity V at point M on the circle, take into account that the
volume element dτ may be calculated as dτ = S dz′. When performing the inte-
gration, it is convenient to change the integration variable and use instead of z′

the angle θ between ω and the position vector r− r′.
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Fig. 3.38: Line vortex.

11. Consider a pair of vortices that are set free to travel in an inviscid fluid that
remains motionless at infinity (see Figure 3.39). Notice that Kelvin’s circulation
theorem ensures that the circulations Γ1 and Γ2 of the vortices remain constant.
When analysing the motion of vortices, take into account that a vortex cannot
act on itself; i.e. it would remain at rest if placed alone into a otherwise stagnant
fluid.

Denoting the coordinates of the vortices by z1 and z2, deduce that the equa-
tions of motion for the vortex pair are written as

dz1
dt

=
Γ2

2πi

1

z1 − z2
,

dz2
dt

=
Γ1

2πi

1

z2 − z1
.

x

y

z1

z2

z

Γ1

Γ2

Fig. 3.39: Vortex pair.
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Separating the real and imaginary parts in these equations, show that the
‘mass centre’ of the pair, whose coordinates are defined as

xc =
Γ1x1 + Γ2x2

Γ1 + Γ2
, yc =

Γ1y1 + Γ2y2
Γ1 + Γ1

,

remains at the same position at all times. Show further that the distance between
the vortices remains constant. Hence, conclude that the vortices travel around
one other along concentric circular trajectories.

12. What is the trajectory and speed of a single vortex placed at height h above a
flat surface as shown in Figure 3.40.

x

y

Γ
ih

z

Fig. 3.40: Vortex above a flat surface.

3.5 The Method of Conformal Mapping

One of the most powerful tools in the theory of two-dimensional inviscid flows is
the method of conformal mapping. Before turning to fluid-dynamic applications of
the method, we shall discuss basic mathematical aspects of the theory of conformal
mapping.

Any complex function ζ = f(z) serves the purpose of defining the value of ζ = ξ+iη
for a given value of the argument z = x + iy. It may therefore be thought of as a
mapping of points in the z-plane into the corresponding points in the ζ-plane.

3.5.1 Mapping with a linear function

To start with, we shall consider the mapping with a linear function

ζ = az + b, (3.5.1)

where a and b are complex numbers. If, in particular, a = 1, then, denoting the real
and imaginary parts of b by br and bi, respectively, we have

ξ = x+ br, η = y + bi.

This shows that mapping with the function ζ = z + b represents parallel translation
of all the points in the complex plane.
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Let us now consider the case where b in (3.5.1) is zero and a is an arbitrary complex
number different from zero and infinity. It may then be represented in the exponential
form

a = κeiδ, (3.5.2)

where κ is the modulus of a and δ its argument. With a given by (3.5.2) and b = 0,
the mapping (3.5.1) takes the form

ζ = κeiδz.

Since z may also be written in the exponential form (see Figure 3.41a)

z = reiϑ,

we have
ζ = κeiδreiϑ = (κr)ei(δ+ϑ).

Thus, the mapping ζ = az leads to magnification of |z| by a factor κ = |a| and rotation
through an angle δ = arg a (see Figure 3.41b).

Let us now return to the general linear function (3.5.1) and consider two points z′

and z′′ in the z-plane. Their images in the ζ-plane are

ζ ′ = az′ + b, ζ ′′ = az′′ + b,

and we see that
ζ ′′ − ζ ′ = a(z′′ − z′). (3.5.3)

If we again use the exponential form (3.5.2) for a and represent z′′ − z′ as

z′′ − z′ = |z′′ − z′| eiϑ,
then (3.5.3) becomes

ζ ′′ − ζ ′ = κeiδ |z′′ − z′|eiϑ = κ|z′′ − z′| ei(δ+ϑ).

This shows that mapping with the linear function (3.5.1) rotates a segment of a straight
line through an angle δ and stretches it κ times (compresses, if κ < 1).

x

y z

z

ϑ

r

O

(a) z-plane.

ξ

η

δ + ϑ

ζ

ζ

z

κr

O

(b) ζ-plane.

Fig. 3.41: Mapping with the function ζ = az.
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(a) z-plane.
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(b) ζ-plane.

Fig. 3.42: Preservation of the angle θ between intersecting lines L1 and L2 when
mapping with the linear function (3.5.1).

Since the angle of rotation does not depend on the initial orientation of the segment
in the z-plane or on its length, the following two statements are valid: (i) a straight
line in the z-plane is mapped by the linear function (3.5.1) onto a straight line in the
ζ-plane; (ii) if two lines in the z-plane make an angle θ at the point of their intersection,
then this angle is preserved in the course of the mapping with a linear function; see
Figure 3.42.

We can further prove the following theorem.

Theorem 3.5 The linear function

ζ = az + b,

where a 6= 0, transforms any circle on the z-plane into a circle on the ζ-plane.

Proof Let us consider a circle Cz of radius r centred at point z0 in the z-plane (see
Figure 3.43). We denote its image in the ζ-plane by Cζ . For any point z lying on Cz,
the following equation is valid:

|z − z0| = r.

Using z0 instead of z′ and z instead of z′′ in (3.5.3), we have

ζ − ζ0 = a(z − z0). (3.5.4)

Here ζ0 is the image of the centre z0 and ζ lies on the image Cζ of the circle Cz.
It follows from (3.5.4) that

|ζ − ζ0| = |a| |z − z0| = kr,

which proves that Cζ is indeed a circle. ✷
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Fig. 3.43: Mapping of a circle.

3.5.2 Conformal mapping

We shall use the following definition of conformal mapping.

Definition 3.2 The mapping ζ = f(z) is said to be conformal at a point z0 if the
function f(z) is analytic at z0 and f ′(z0) 6= 0.

Remember that a function f(z) is called analytic at a point z0 if it is differentiable at
this point, i.e. there exists the limit

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
,

which is independent of the orientation of ∆z in the complex plane. This means that
in a small neighbourhood of z0,

f(z0 +∆z)− f(z0) = f ′(z0)∆z + α(z0,∆z)∆z,

where the function α(z0,∆z) is such that

lim
∆z→0

α(z0,∆z) = 0.

Therefore, if we restrict our attention to a small neighbourhood of z0, then we can
write

f(z0 +∆z)− f(z0) = f ′(z0)∆z.

Finally, denoting z = z0 + ∆z and taking into account that ζ = f(z) and ζ0 = f(z),
we have

ζ − ζ0 = f ′(z0) (z − z0),

or, equivalently,
ζ = az + b,

where
a = f ′(z0), b = ζ0 − f ′(z0) z0. (3.5.5)

We can conclude that any conformal mapping behaves locally as a linear mapping.
In particular, it maps small circles onto small circles and preserves the angles between
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intersecting lines. It further follows from (3.5.2) and the first of equations (3.5.5) that
|f ′(z)| is the magnification factor κ of the mapping ζ = f(z), while the angle of
rotation δ is given by

δ = arg

(
df

dz

)
. (3.5.6)

3.5.3 Mapping with the power function

The power function is given by
ζ = zα, (3.5.7)

with α being a real constant. The function (3.5.7) is analytic in the whole complex
plane except at z = 0 and z = ∞. Therefore if one wants to deal with a single-valued
analytic branch of the power function, a branch cut should be made in the z-plane
connecting points z = 0 and z = ∞.

The derivative of (3.5.7)
dζ

dz
= αzα−1

remains finite at all finite z. As z → 0, it tends to zero for all α > 1. If, on the other
hand, α < 1, then dζ/dz becomes infinite at z = 0. This suggests that the mapping
performed by (3.5.7) preserves angles at all points of the complex plane, except z = 0.

As an example let us consider the corner made of two rays OA and OB emerging
from point O at an angle π − θ to one another; see Figure 3.44(a). For our purposes,
it is convenient to place the coordinate origin at the point O and draw the real axis
along one of the rays, say, OA.

Representing z in the exponential form

z = reiϑ (3.5.8)

and substituting (3.5.8) into (3.5.7) yields

ζ = rαeiαϑ.

This shows that the mapping with the power function (3.5.7) increases all the angles
by a factor α. It obviously leaves the first ray OA at the original place. The second
ray OB is rotated around point O, changing its angle from π − θ to α(π − θ). We see

x

y

z

z

r

θ ϑ

O A

B

(a) z-plane.

ξ

η

ζ
ζ

rα

αϑ

OB A

(b) ζ-plane.

Fig. 3.44: Mapping with the power function (3.5.7).
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that if, for example, we need to map the region above the corner in the z-plane onto
the upper half of the ζ-plane, then we have to set

α(π − θ) = π.

We can conclude that the power function (3.5.7) performs the desired mapping, pro-
vided that

α =
π

π − θ
.

3.5.4 Linear fractional transformation

The mapping

ζ =
az + b

cz + d
, (3.5.9)

where a, b, c, and d are complex constants such that ad − bc 6= 0, is called a linear
fractional transformation.

If c = 0, then (3.5.9) reduces to the linear transformation (3.5.1). If, on the other
hand, c 6= 0, then (3.5.9) may be written in the form

ζ =
a

c
+
bc− ad

c

1

cz + d
, (3.5.10)

which shows that the condition ad − bc 6= 0 is necessary to ensure that the linear
fractional transformation (3.5.9) is not a constant function mapping all the points in
the z-plane into just one point in the ζ-plane.

When cleared of fractions, equation (3.5.9) takes the form

c ζz + dζ − az − b = 0, (3.5.11)

which is linear in z and linear in ζ; i.e. it is bilinear in z and ζ. Hence, another name
for the linear fractional transformation (3.5.9) is a bilinear transformation.

Solving equation (3.5.11) for z, we find

z =
−dζ + b

cζ − a
. (3.5.12)

It follows from (3.5.9) and (3.5.12) that each point in the z-plane (except possibly
z = −d/c) has one and only one image point in the ζ-plane. Conversely, each point in
the ζ-plane (except possibly ζ = a/c) has one and only one image point in the z-plane.
In order to include the points z = −d/c and ζ = a/c in our considerations, we adopt
the following conventions for the complex number ∞:

1. If a is a finite number, then
a

∞ = 0.

2. If a 6= 0, then
a

0
= ∞.
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It is easily seen that for large but finite z, equation (3.5.9) may be written as

ζ =
a+ b/z

c+ d/z
.

For this reason, we will say that

ζ =
a

c
at z = ∞. (3.5.13)

If z approaches −d/c, then (3.5.9) gives

ζ =
b− ad/c

0
,

and we will say that

ζ = ∞ at z = −d
c
. (3.5.14)

With the extensions (3.5.13) and (3.5.14) the linear fractional function (3.5.9) performs
a one-to-one mapping of the extended z-plane onto the extended ζ-plane.

Definition 3.3 The complex z-plane with included infinite number z = ∞ is called
the extended z-plane.

Let us now return to formula (3.5.10). It shows that the linear fractional mapping
(3.5.9) can be obtained by the superposition of the following three mappings:

z1 = cz + d, (3.5.15a)

ζ1 =
1

z1
, (3.5.15b)

ζ =
a

c
+
bc− ad

c
ζ1. (3.5.15c)

The first and third are linear mappings, the properties of which we already know.
Hence, we only need to clarify the properties of the second mapping, (3.5.15b). Chang-
ing notation slightly, we write

ζ =
1

z
. (3.5.16)

If we use the exponential form for z, namely z = |z|eiϑ, then (3.5.16) gives

ζ =
1

|z| e
−iϑ.

We see that the transformation (3.5.16) consists of (i) reflection of point z in the
circle of unit radius (in this reflection, the image of z stays on the same radius but its
modulus changes to 1/|z|) and (ii) reflection in the real axis; see Figure 3.45.

An important property of the linear fractional transformation is the circle property,
which is expressed by the following theorem.
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z

ζ

(i)

(ii)
ϑ
−ϑ

r
=
1

Fig. 3.45: Two steps of the transformation (3.5.16).

Theorem 3.6 The linear fractional transformation

ζ =
az + b

cz + d

maps any circle on the extended z-plane into a circle on the extended ζ-plane.

Proof Consider, first, the mapping with the function (3.5.16). The inverse to (3.5.16)
is written as

z =
1

ζ
.

Expressing z and ζ via their real and imaginary parts

z = x+ iy, ζ = ξ + iη,

we have

x+ iy =
1

ξ + iη
=

ξ − iη

ξ2 + η2
.

Hence,

x =
ξ

ξ2 + η2
, y = − η

ξ2 + η2
. (3.5.17)

Any circle in the z-plane may be written as

A(x2 + y2) + Bx+ Cy +D = 0, (3.5.18)

where A, B, C, and D are real numbers. Substitution of (3.5.17) into (3.5.18) leads to

D(ξ2 + η2) +Bξ − Cη + A = 0, (3.5.19)

which represents a circle in the ζ-plane.
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Notice that with D = 0 the circle (3.5.18) in the z-plane passes through the origin
(x = y = 0). Its image (3.5.19) in the ζ-plane appears to be a straight line. If, on the
other hand, A = 0, then the circle (3.5.19) in the ζ-plane passes through the origin
(ξ = η = 0), while the circle (3.5.18) in the z-plane degenerates into a straight line.
Taking this into account, we will identify straight lines on the extended complex plane
as circles of infinite radius.

This completes the proof of the circle property for the transformation (3.5.16). It
remains to recall that the linear fractional transformation (3.5.9) may be performed
in three steps (3.5.15): linear mapping (3.5.15a), mapping with the function (3.5.15b),
and then the linear mapping (3.5.15c). All of these transformations assume the circle
property, and therefore, so does their superposition, the linear fractional transforma-
tion (3.5.9). ✷

3.5.5 Application to fluid dynamics

Let us consider the two-dimensional inviscid flow of an incompressible fluid under
conditions where the fluid motion may be treated as irrotational. In this case, the flow
analysis may be conducted in the complex plane z, where the body contour is denoted
by Sz; see Figure 3.46(a). In what follows, we shall refer to this plane as the physical
plane.

Let us further suppose that, corresponding to the flow in the physical plane z, we
can introduce an auxiliary complex plane ζ with a body contour Sζ that is simple
enough, say, a circle (see Figure 3.46b), such that the complex potential W (ζ) for the
flow in the ζ-plane is known. If the conformal mapping ζ = f(z) of the exterior of
the body contour Sz in the z-plane onto the exterior of the body contour Sζ in the
auxiliary plane ζ is also known, then the composite function

w(z) =W
[
f(z)

]
(3.5.20)

represents the sought complex potential of the flow in the physical z-plane.
Indeed, since the function W (ζ) represents the complex potential of a fluid flow, it

x

y z

Sz

(a) Physical plane.

ζ = f(z)

ξ

η ζ

Sζ

(b) Auxiliary plane.

Fig. 3.46: Conformal mapping.
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Fig. 3.47: Correspondence of the boundary points.

should be an analytic function, as condition 1 of Problem 3.2 (see page 165) requires.
The function f(z) performing the conformal mapping of the z−plane onto ζ−plane
is also an analytic function. Therefore, we can claim that the function w(z), being a
superposition of W (ζ) and f(z), is an analytic function everywhere outside Sz.

Turning to condition 2 of Problem 3.2, we note that, since W (ζ) represents a fluid
flow, the imaginary part of W (ζ) should be constant along the body contour Sζ in the
ζ-plane, i.e.

ℑ
{
W (ζ)

}∣∣∣∣
Sζ

= const. (3.5.21)

The principle of the correspondence of boundaries in a conformal mapping states that
any two points ζ1 and ζ2 that lie on the boundary Sζ in the ζ-plane are images of
points z1 and z2 that lie on the boundary Sz in the z-plane (see Figure 3.47), i.e.

ζ1 = f(z1), ζ2 = f(z2). (3.5.22)

It follows from (3.5.21) that

ℑ
{
W (ζ1)

}
= ℑ

{
W (ζ2)

}
.

Therefore, combining (3.5.20) and (3.5.22), we see that

ℑ
{
w(z1)

}
= ℑ

{
w(z2)

}
,

which, owing to the arbitrariness of z1 and z2 on Sz, proves that

ℑ
{
w(z)

}∣∣∣∣
Sz

= const.

Unfortunately, conformal mapping does not guarantee that condition 3 of Prob-
lem 3.2 is satisfied automatically. For this reason, the flow behaviour in the free stream
should be verified each time when the method of conformal mapping is employed.
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3.5.6 Circular cylinder with an angle of attack

We shall start with a simple example that demonstrates how the method of conformal
mapping may be used to generalise the solution for the flow past a circular cylinder
(3.4.32) to include an angle of attack. Suppose that in the physical z-plane we have
a circular cylinder of radius a centred at the coordinate origin z = 0. The oncoming
flow is such that the free-stream velocity vector has modulus V∞ and makes an angle
α with the x-axis; see Figure 3.48.

To reduce this problem to the one considered in Section 3.4.2, we introduce an
auxiliary plane ζ, which is obtained by rotating the z-plane through an angle α in the
clockwise direction:

ζ = e−iαz. (3.5.23)

This rotation aligns the oncoming flow with the real ξ-axis in the auxiliary plane,
making the equation (3.4.32) for the complex potential applicable. Expressing this
equation in terms of the auxiliary plane variables, we have

W (ζ) = V∞

(
ζ +

a2

ζ

)
+

Γ

2πi
ln ζ. (3.5.24)

Substituting (3.5.23) into (3.5.24), we find that in the z-plane

w(z) = V∞

(
ze−iα +

a2

z e−iα

)
+

Γ

2πi
ln z. (3.5.25)

The additive constant −αΓ/2π has been disregarded.

x

y z ζ

ξ

η

−a−a aa

V∞

V∞

α

Fig. 3.48: Rotation of the cylinder through an angle α.

Exercises 10

1. Consider two-dimensional irrotational inviscid flow of an incompressible fluid past
a body whose contour has a corner point (see Figure 3.49) with positive or nega-
tive angle θ. Making use of the method of conformal mapping, find the complex
potential of the flow near the corner point. Determine the behaviour of the ve-
locity V in the flow field as a function of the distance r = |z| from the apex of
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the corner, and discuss the theoretical predictions for pressure distribution on the
body surface for concave (θ > 0) and convex (θ < 0) corners.

Fig. 3.49: Zoomed view of a corner point on a body contour.

Suggestion: Use the conformal mapping shown in Figure 3.44. Assume that
in the auxiliary plane ζ the flow above the flat surface BOA is unidirectional and
parallel to this surface.

2. Consider the flow in Figure 3.49 again, but this time analyse the flow field by
solving Laplace’s equation ∇2ϕ = 0 for the velocity potential ϕ.

Fig. 3.50: Polar coordinates.

Introduce the polar coordinates (see Figure 3.50) and show, using (1.8.9),
(1.8.18), and (1.8.29), that Laplace’s equation is written in these coordinates as

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂ϑ2
= 0.

Try to find the solution of this equation in the form

ϕ = ϕ0 + rλf(ϑ),

where ϕ0 is the value of the velocity potential at the corner point and λ is a
constant to be found; restrict your attention to positive values of λ.

Remember that the radial and circumferential velocity components are calcu-
lated in polar coordinates as

Vr =
∂ϕ

∂r
, Vϑ =

1

r

∂ϕ

∂ϑ
, (3.5.26)

and, using the impermeability condition on the two walls, deduce that a non-trivial
solution exists if

λ = λk =
πk

π − θ
, k = 1, 2, 3, . . . . (3.5.27)

θ

θ

r

ϑ

V

VrVϑ
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Show that, corresponding to (3.5.27),

fk(ϑ) = Ck cos
(
λkϑ

)
,

and conclude that the solution can be written as

ϕ = ϕ0 +
∞∑

k=1

Ckr
λk cos

(
λkϑ

)
. (3.5.28)

Assume that r is small and disregard all the terms in the sum in (3.5.28)
except the first one. Deduce that the tangential velocity on the corner walls

Vr

∣∣∣
ϑ=0

= C1λ1r
θ/(π−θ) + · · · ,

Vr

∣∣∣
ϑ=π−θ

= −C1λ1r
θ/(π−θ) + · · ·





as r → 0. (3.5.29)

3. Study the flow round the tip of a semi-infinite flat plate as shown in Figure 3.51,
for which purpose you may use the solution of Problem 1 (see Figure 3.49) with
θ = −π.

x

y

Fig. 3.51: Flow around a plate tip.

Show that each streamline in this flow has a parabolic shape. Choose one
of the streamlines and, treating it as the surface of a solid body, calculate the
integral pressure force

Fx = 2

∞∫

0

(p− p∞) dy

acting upon the body parallel to the plate surface. Observe that the force Fx does
not depend on the streamline considered, which is why this force may be thought
of as a ‘suction force’ acting on the tip of the plate.

Hint : When using the Bernoulli equation, take into account that, far from the
plate tip (x2 + y2 → ∞), the flow velocity |V| tends to zero. Denote the value of
the pressure in the ‘far field’ by p∞.

4. Consider an inviscid incompressible fluid flow above flat ground on which a thin
fence of height h is installed; in Figure 3.52, the ground coincides with the x-
axis and the fence occupies an interval [0, h] of the y-axis. The flow velocity far
upstream of the fence is V∞.



194 Chapter 3. Inviscid Incompressible Flows

Fig. 3.52: Flow over a fence.

Deduce that the conformal mapping of the physical z-plane shown in Fig-
ure 3.52 onto the upper half-plane in the auxiliary ζ-plane is given by

ζ =
√
z2 + h2.

Assume that in the auxiliary plane the complex potential may be written as

W (ζ) = Ṽ∞ζ,

and find the value of the real constant Ṽ∞, taking into account that in the physical
plane the free-stream velocity is V∞.

Find the pressure distribution along the ground (z = x). Use of the Bernoulli
equation for this purpose.

Calculate the integral pressure force

F =

∞∫

−∞

(p− p∞) dx

acting upon the ground; here p∞ is the unperturbed pressure in the oncoming
flow.

3.5.7 Joukovskii transformation

Many fluid flows may be studied using the Joukovskii transformation. In order to
introduce this transformation, let us find the conformal mapping of a circular arc onto
a full circle. More precisely, we shall consider a region that consists of the whole z-plane
with the exception of a branch cut along a circular arc of depth h, with the interval
[−a, a] of the real axis serving as the arc chord; see Figure 3.53(a). This region is to
be mapped onto the exterior of a circle that is centered at ζ = ih and intersects the
real axis at points −a and a as shown in Figure 3.53(b).

We shall denote the angle between the tangent to the arc at point B and the
real axis in the z-plane by β; see Figure 3.53(a). It is well known that a straight line
connecting the top point of the arc, z = ih, with the right-hand edge of the arc B

ih

V∞

z

x

y
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−a a

z

ih

β

βA B

(a) z-plane.

−a a

ih
A B

ζ

β/2
θ = π

2
− β

2

(b) ζ-plane.

Fig. 3.53: Joukovskii transformation.

bisects the angle β. This means that a straight line, connecting the centre of the circle
and point B in the ζ-plane, makes an angle 1

2β with the real axis (Figure 3.53a).
Let us start with the z-plane, to which the following linear fractional transformation

will first be applied:

z1 =
z − a

z + a
. (3.5.30)

The transformation (3.5.30) assumes the circle property, i.e. it maps a circle (or circular
arc) in the z-plane onto a circle (or a straight line) in the z1-plane.

It is easily seen that the function (3.5.30) maps point B, situated at the right-hand
end of the arc in the z-plane into the origin z1 = 0 in the z1-plane. The image of the
left-hand end A of the arc, where z = −a, is easily seen to be z1 = ∞. Thus, the arc
is transformed into a ray emerging from the origin and extending to infinity as shown
in Figure 3.54(a).

The orientation of the ray may be found using formula (3.5.6), which gives the
angle δ of rotation of any line (more precisely, a small segment of a line) in the z-plane
when it is mapped onto the z1-plane. Differentiating (3.5.30), we have

dz1
dz

=
2a

(z + a)2
.

At point B, z = a and the derivative is real and positive:

dz1
dz

∣∣∣∣
z=a

=
1

2a
.

This means that a small segment of the arc in Figure 3.53(a) near point B does not
experience any rotation, δ = 0. Hence, the angle between the ray and the negative real
semi-axis in the z1-plane (see Figure 3.54a) has to be equal to the angle β between
the arc and the real axis at point B in the z-plane (Figure 3.53a).
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(a) z1-plane.
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2
− β

2

A

A

B

(b) ζ1-plane.

Fig. 3.54: Auxiliary planes z1 and ζ1.

We now apply the same transformation to the circle in the ζ-plane (Figure 3.53b):

ζ1 =
ζ − a

ζ + a
. (3.5.31)

As a result, point B is mapped into ζ1 = 0 and point A into an infinite point ζ1 = ∞.
The derivative of the function (3.5.31) at ζ = a is real and positive, which means again
that a small segment of the circle in Figure 3.53(b) near ζ = a does not experience any
rotation. Its image in the ζ1-plane is a straight line that makes an angle θ = π/2−β/2
with the real positive axis; see Figure 3.54(b). The exterior of the circle is mapped
onto the half-plane to the right of this line.

It is easily seen that the mapping between the z1- and ζ1-planes is performed by
the function

z1 = ζ21 . (3.5.32)

Substitution of (3.5.30) and (3.5.31) into (3.5.32) gives

z − a

z + a
=

(
ζ − a

ζ + a

)2

. (3.5.33)

The simple manipulations

z + a− 2a

z + a
=

(
ζ + a− 2a

ζ + a

)2

,

1− 2a

z + a
=

(
1− 2a

ζ + a

)2

= 1− 4a

ζ + a
+

4a2

(ζ + a)2
,

1

z + a
=

2

ζ + a
− 2a

(ζ + a)2
=

2ζ

(ζ + a)2
,

z + a =
(ζ + a)2

2ζ
= a+

ζ2 + a2

2ζ
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show that

z =
1

2

(
ζ +

a2

ζ

)
, (3.5.34)

which is the sought function performing the conformal mapping of the exterior of the
circle in the ζ-plane (see Figure 3.53) onto the exterior of the arc in the z-plane. It is
called the Joukovskii transformation.

Multiplying both sided of (3.5.34) by 2ζ,

ζ2 − 2z ζ + a2 = 0, (3.5.35)

and solving the quadratic equation (3.5.35) for ζ, we find that the inverse transforma-
tion is given by

ζ = z ±
√
z2 − a2.

Notice that while the Joukovskii transformation (3.5.34) is a single-valued function;
its inverse is double-valued. For each point in the z-plane, it produces two points in
the ζ-plane. One of them is situated outside the circle (see Figure 3.53b), while the
other finds itself inside the circle. If we take, for instance, z = 2a, then

ζ1,2 = (2±
√
3 ) a.

We see that in order to deal with the exterior of the circle in the auxiliary plane ζ, we
have to write the inverse transformation as

ζ = z +
√
z2 − a2. (3.5.36)

3.6 Flat Plate at an Incidence

To describe the flow past a flat plate, we return to Figure 3.53 and notice that the
camber of the arc in the physical plane z depends on the parameter h. If h is chosen to
be zero, then the arc becomes a segment of a straight line connecting points A and B.
At the same time, with h = 0, the centre of the circle in the auxiliary ζ-plane moves
into the coordinate origin. The radius of the circle becomes a, since it still has to be
drawn through points A and B. We see that the Joukovskii transformation (3.5.36)
performs a conformal mapping of the whole z-plane except for a branch cut along a
segment [−a, a] of the real axis onto the exterior of a circle that has radius a and is
centred at ζ = 0 in the auxiliary plane; see Figure 3.55.

According to (3.5.25), the complex potential in the auxiliary plane is written as

W (ζ) = Ṽ∞

(
ζe−iα +

a2

ζe−iα

)
+

Γ

2πi
ln ζ. (3.6.1)

Here Ṽ∞ denotes the free-stream velocity in the auxiliary plane, which does not neces-
sarily coincide with the free-stream velocity in the physical z-plane. In order to obtain
the complex potential w(z) in the physical plane, we have to combine (3.6.1) with the
Joukovskii transformation (3.5.36), namely w(z) =W

[
ζ(z)

]
.
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Fig. 3.55: Transformation of a flat plate onto a circle.

The complex conjugate velocity in the z-plane may be calculated as

V (z) =
dw

dz
=
dW

dζ

dζ

dz
=
dW

dζ

1

dz/dζ
. (3.6.2)

It follows from (3.6.1) that

dW

dζ
= Ṽ∞

(
e−iα − a2

ζ2e−iα

)
+

Γ

2πiζ
. (3.6.3)

Differentiating (3.5.34), we find

dz

dζ
=

1

2

(
1− a2

ζ2

)
. (3.6.4)

In the far field (z → ∞, ζ → ∞), formulae (3.6.3) and (3.6.4) reduce to

dW

dζ
= Ṽ∞e

−iα,
dz

dζ
=

1

2
.

Therefore
V (z) → 2Ṽ∞e

−iα as z → ∞,

and if the modulus of the velocity in the oncoming flow in the physical plane is V∞,
then in the auxiliary plane we have to take

Ṽ∞ =
1

2
V∞. (3.6.5)

The solution still involves one unknown parameter, the circulation Γ, and our task
now will be to study its influence on the flow behaviour. If, for example, we set Γ = 0,
then the streamline pattern will have the form shown in Figure 3.56.9 We see that the

9These streamlines were drawn using the following procedure. We introduced a uniform mesh in
the z-plane and calculated ζ for each node point z using (3.5.36). Then the value of ζ for the node
considered was used in formula (3.6.4) to calculate the complex potential. Its imaginary part gives
the stream function at the node points. As soon as the distribution of the stream function over the
mesh is known, the contour plot may drawn using a standard plotting package.
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y z
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(a) Physical plane.

ζ = z +
√

z2 − a2

ξ

η ζ
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α

(b) Auxiliary plane.
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S

S′

Fig. 3.56: The streamline pattern for the flow past a flat plate with Γ = 0 and incidence
α = 30◦.

flow goes round the leading and trailing edges of the plate, where the velocity should
becomes infinite.10 Indeed, according to (3.6.4) the derivative dz/dζ becomes zero at
ζ = −a and ζ = a, which is translated into singularities in the velocity (3.6.2) at
z = −a and z = a.

We further see that with Γ = 0 there are two stagnation points on the plate surface,
S and S′. Their positions may be found by setting dW/dζ as given by (3.6.3) to zero.
We have

e−iα − a2

ζ2e−iα
= 0,

which, being solved for ζ, gives
ζ = ±aeiα.

Their loci in the z-plane may be found using (3.5.34):

z = ±1

2

(
aeiα +

a2

aeiα

)
= ±a cosα.

Experimental observations show that the flow normally leaves the trailing edge in
a smooth fashion. The reason for this is that, near the trailing edge, the boundary
layer is well developed, and it is known to be unable to sustain violent variations of
the pressure that would happen if the flow were really going round the trailing edge as
shown in Figure 3.56.11 Meanwhile, it may easily be seen that the flow can be made
smooth near the trailing edge by a proper choice of the circulation Γ. Indeed, the
singularity in (3.6.2) can be avoided if we set dW/dζ as given by (3.6.3) equal to zero
at the point ζ = a, which represents the trailing edge of the plate in the auxiliary
ζ-plane. Substituting (3.6.5) into (3.6.3) and setting ζ = a, we write

V∞
2

(
e−iα − eiα

)
+

Γ

2πia
= 0.

10See Problem 3 in Exercises 10.
11The properties of the viscous boundary layer will be discussed in Part 3 of this book series. In

particular, the trailing-edge flow will be studied in detail.
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Solving this equation for Γ, we find that the circulation

Γ = −2πaV∞ sinα. (3.6.6)

The streamline pattern for the flow field with the circulation given by (3.6.6) is shown
in Figure 3.57.

Let us now calculate the velocity field for this flow. Substitution of (3.6.5) and
(3.6.6) into (3.6.3) yields

dW

dζ
=
V∞
2

(
e−iα − a2

ζ2e−iα

)
− V∞

a sinα

iζ

=
V∞
2

cosα− i
V∞
2

sinα− V∞
2

a2

ζ2
cosα− i

V∞
2

a2

ζ2
sinα + iV∞

a

ζ
sinα

=
V∞
2

(
1− a2

ζ2

)
cosα− i

V∞
2

(
1− a

ζ

)2
sinα. (3.6.7)

Now we substitute (3.6.7) and (3.6.4) into (3.6.2). We have

V =
dW

dζ

1

dz/dζ
= V∞ cosα− iV∞ sinα

ζ − a

ζ + a
.

Finally, using (3.5.36), we find that

ζ − a

ζ + a
=
z − a+

√
z2 − a2

z + a+
√
z2 − a2

=

√
z − a(

√
z − a+

√
z + a)√

z + a(
√
z + a+

√
z − a)

=

√
z − a

z + a
,

and therefore

V (z) = V∞ cosα− iV∞ sinα

√
z − a

z + a
.

Notice that at the trailing edge (z = a) the velocity is directed parallel to the plate
surface and has finite modulus |V | = V∞ cosα.

The condition that the velocity at the trailing edge should be finite was first intro-
duced by Joukovskii (1910) and Kutta (1910), and since then has been referred to as
the Joukovskii–Kutta hypothesis.

Fig. 3.57: The streamline pattern for α = 30◦ and the circulation given by (3.6.6).
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3.7 Joukovskii Aerofoils

In Section 3.5.7, it was demonstrated that the Joukovskii transformation

ζ = z +
√
z2 − a2 (3.7.1)

gives a conformal mapping of a circular arc in the z-plane onto a circle in the ζ-plane
(see Figure 3.53). The arc connects points −a and a on the real axis in the z-plane
and crosses the imaginary axis at the point z = ih. Its image in the ζ-plane is a circle
that has its centre at ζ = ih and intersects the real axis at the points −a and a.

We shall now use this mapping to introduce a family of aerofoil shapes known as
Joukovskii aerofoils. These are obtained in the following way. We extend the segment
of a straight line connecting the points ζ = ih and ζ = a in the ζ-plane beyond the
point ζ = ih as shown in Figure 3.58(b), and place the point ζ0 on the extension a
distance d from the point ih. We then use ζ0 as the centre of a new circle, and choose
its radius to be

R = d+
√
a2 + h2,

which ensures that the circle passes through point B, where ζ = a. In Figure 3.58(b),
this new circle is shown by the solid line; we also reproduce here the ‘old circle’ of
Figure 3.53(b) with the dashed line. In what follows, we shall refer to these as ‘large’
and ‘small’ circles, respectively.

The inverse Joukovskii transformation

z =
1

2

(
ζ +

a2

ζ

)
(3.7.2)

maps the small circle onto a circular arc in the z-plane, shown in Figure 3.58(a) by
the dashed line. The image of the large circle represents a Joukovskii aerofoil. Since
at point B in the ζ-plane, the two circles are tangent to one another, their images

−a a

z

x

y

(a) z-plane.

ζ0

a

ih
A B

ζ

β/2d
−a

η

ξ

︸︷︷︸

(b) ζ-plane.

Fig. 3.58: Mapping of a circle in the auxiliary plane onto a Joukovskii aerofoil in the
physical plane. The particular shape of the aerofoil shown in the z-plane has been
calculated for h/a = 0.1 and d/a = 0.1.
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in the z-plane should also be tangent. This means that at the trailing edge both the
upper and lower surfaces of the aerofoil (see Figure 3.58a) are tangent to the arc,
and therefore the aerofoil contour forms a cusp at the trailing edge. Moving away
from point B in the auxiliary ζ-plane results in wider separation of the two circles.
Correspondingly, in the z-plane, the distance between the arc and the upper and lower
surfaces of the aerofoil contour grows larger. Since point A in the ζ-plane is situated
inside the large circle, the leading edge of the aerofoil appears to be rounded.

Apart from the parameter a, which may be used to change the aerofoil chord, there
are two more parameters controlling the aerofoil shape, namely the camber parameter
h and the thickness parameter d. The particular shape shown in Figure 3.58 was drawn
for h/a = 0.1 and d/a = 0.1. This was done numerically by placing a sufficiently large
number of points distributed uniformly round the circle in the ζ-plane and using the
Joukovskii transformation (3.7.2) to calculate their coordinates in the z-plane.

Now we need to adjust the complex potential (3.5.25) that describes the flow past
a circular cylinder shown on the left-hand side of Figure 3.48 (see page 191) to the
flow past the ‘large circle’ in the auxiliary ζ-plane (Figure 3.58b). Taking into account
that the radius of the circle now equals R and its centre is shifted to the point ζ0, we
write

W (ζ) = Ṽ∞

[
(ζ − ζ0)e

−iα +
R2

(ζ − ζ0)e−iα

]
+

Γ

2πi
ln(ζ − ζ0). (3.7.3)

Remember that with the method of conformal mapping conditions 1 and 2 in the
formulation of Problem 3.2 (see page 165) are satisfied automatically, but the free-
stream condition 3 requires special attention.

The complex conjugate velocity in the physical plane (Figure 3.58a) is calculated
as

V (z) =
dW

dζ

dζ

dz
, (3.7.4)

where
dW

dζ
= Ṽ∞

[
e−iα − R2

(ζ − ζ0)2e−iα

]
+

Γ

2πi

1

ζ − ζ0
(3.7.5)

and
dζ

dz
= 1 +

z√
z2 − a2

. (3.7.6)

At large values of z and ζ,

dW

dζ
= Ṽ∞e

−iα,
dζ

dz
= 2,

which on substitution into (3.7.4) yield

V (z) = 2Ṽ∞e
−iα + · · · as z → ∞.

We see that the free-stream condition is satisfied with

Ṽ∞ = 1
2
V∞. (3.7.7)

Let us now study the flow near the aerofoil. It follows from (3.7.6) that there are
two singular points: z = −a and z = a. However, in the flow past the Joukovskii
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aerofoil (Figure 3.58a), the first of these points, z = −a, is situated inside the aerofoil,
and we only need to consider the point z = a, which lies at the trailing edge of the
aerofoil. Its image in the auxiliary plane is the point B where ζ = a; see Figure 3.58(b).
According to the Joukovskii–Kutta condition, the complex conjugate velocity V (z) has
to be finite at the trailing edge, which is only possible if

dW

dζ

∣∣∣∣
B

= 0. (3.7.8)

It may easily be seen from Figure 3.58(b) that, at point B,

ζ − ζ0 = a− ζ0 = Re−iβ/2. (3.7.9)

Using (3.7.9) and (3.7.7) in (3.7.5) allows us to express equation (3.7.8) in the form

V∞
2

(
e−iα − 1

e−i(α+β)

)
− i

Γ

2π

1

Re−iβ/2
= 0,

which, being solved for Γ, yields

Γ = −2πRV∞
ei(α+β/2) − e−i(α+β/2)

2i
= −2πRV∞ sin

(
α + β/2

)
. (3.7.10)

This completes the task of finding the complex potential of the flow past a Joukovskii
aerofoil. Now any fluid-dynamic function may easily be determined. In particular, in
Figure 3.59, we show the streamline pattern for a Joukovskii aerofoil with h/a = 0.1
and d/a = 0.1 at incidence α = 20◦. This was obtained numerically by distributing the
mesh points on a set of concentric circles surrounding the large circle in Figure 3.58(b).
For each such point, the location of its image in the physical z-plane is calculated us-
ing the Joukovskii transformation (3.7.2). The value of the complex potential at this
point is found using equation (3.7.3) with (3.7.7) and (3.7.10). Separating the imagi-
nary part of W yields the stream function, ψ. The contours of constant ψ produce the
streamline pattern.

Fig. 3.59: Streamline pattern for the aerofoil in Figure 3.58(a); incidence α = 20◦.
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If one wants to find the fluid velocity at a given point z in the physical plane, then
the position ζ of the image of this point in the auxiliary plane should first be found,
using equation (3.7.1). Then, equation (3.7.4) together with (3.7.5) and (3.7.6) can be
used to determine the velocity components, u and v. Once the velocity is known, the
pressure at any point in the flow field and on the aerofoil surface can be found using
the Bernoulli equation

V 2

2
+
p

ρ
=
V 2
∞

2
+
p∞
ρ
.

Of course, one does not need to integrate the pressure over the aerofoil surface to
determine the lift force. This can be done with the help of the Joukovskii formula:

L = −ρV∞Γ = ρV 2
∞2πR sin

(
α+ β/2

)
. (3.7.11)

The theoretical predictions for the lift force are in good agreement with the exper-
imental data, but only for angles of attack below some critical value that depends on
the aerofoil shape. The reason is that the Joukovskii–Kutta condition presumes that
the flow remains attached to the aerofoil surface. While aerofoils are specially designed
to maintain attached flow, in reality separation can be avoided only within a narrow
range of angles of attack. As an example, in Figure 3.60 the flow past a NACA 4412
aerofoil is shown. We see that at an angle of attack α = 5◦ the flow is attached to the
aerofoil surface, but at α = 10◦ separation develops near the trailing edge. This leads
to a reduction of the circulation Γ produced by an aerofoil, and hence to a loss in the
lift force.

Despite the fact that inviscid flow theory completely fails to predict the drag force,
it has been used extensively in aerofoil design. The analysis of Joukovskii aerofoils
presented above takes advantage of the fact that the function performing the conformal
mapping of the aerofoil on a circle in the auxiliary plane can be expressed in the
analytic form (3.7.1). In the more general case, the mapping function should be found

(a) Incidence α = 5◦. (b) Incidence α = 10◦.

Fig. 3.60: Visualisation of the flow past a NACA 4412 aerofoil by Akira Ito. Reprinted
from Visualized Flow: Fluid motion in basic and engineering situations revealed by
flow visualization, Pergamon Press. Figures 123 and 124, page 77. Copyright 1988.
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numerically. As this task is quite complicated, the flow behaviour past an aerofoil is
normally predicted through direct numerical solution of Problem 3.1; see page 142.

Exercises 11

1. Consider an incompressible inviscid flow past a circular arc at zero angle of attack;
see Figure 3.61.

x

y

O

z

ih

−a a

V∞

Fig. 3.61: Flow past a circular arc.

Show that the lift force produced by the arc is

L = ρV 2
∞2πh.

Suggestion: You may use without proof formula (3.7.11) for the lift force of a
Joukovskii aerofoil.

2. An incompressible inviscid fluid flows past an ellipse whose large axis is aligned
with the free-stream velocity vector; see Figure 3.62(a).

x

y z

V∞

(a) Physical z-plane.

ζ

R
ϑ

(b) Auxiliary ζ-plane.

Fig. 3.62: Flow past an ellipse.

(a) Verify that the Joukovskii transformation

z =
1

2

(
ζ +

a2

ζ

)
(3.7.12)
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performs a conformal mapping of a circle of radius R > a in the ζ-plane
(Figure 3.62b) onto an ellipse in the z-plane (Figure 3.62a). For this purpose,
express the equation of the circle in the auxiliary ζ-plane in the form

ζ = Reiϑ. (3.7.13)

Substitute (3.7.13) into (3.7.12) and separate the real and imaginary parts.
Then eliminate ϑ, and show that

x2

α2
+
y2

β2
= 1, (3.7.14)

where

α =
1

2

(
R +

a2

R

)
, β =

1

2

(
R− a2

R

)
.

(b) Denote the free-stream velocity in the auxiliary plane by Ṽ∞ and, assuming
that the circulation Γ = 0, write the complex potential as

W (ζ) = Ṽ∞

(
ζ +

R2

ζ

)
.

Given that the free-stream velocity in the physical plane is V∞, find the free-
stream velocity Ṽ∞ in the auxiliary plane.

(c) Deduce that the maximum value of the velocity on the surface of the ellipse
is given by

Vmax =
2V∞

1 + a2/R2
,

and determine the pressure difference between the front stagnation point and
the point of maximum velocity.

3. Return to the flow past a flat plate at an incidence (Figure 3.55a). According to
the general theory of two-dimensional potential flows, the resultant pressure force
acting on the plate should be directed perpendicular to the free-stream velocity
vector (see Section 3.4.3). On the other hand, the pressure on the lower and upper
sides of the plate produces a force directed perpendicular to the plate surface.
Therefore, common sense suggests that resultant force should also be directed
perpendicular to the plate, not to the free-stream velocity. How can this dilemma
be resolved?

Hint : You might find Problem 3 in Exercises 10 useful.

4. Consider a two-dimensional source of strength q placed at a point z = b outside a
circular cylinder as shown in Figure 3.63. The cylinder is centred at the coordinate
origin and has radius a.
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x

y z

a b

Fig. 3.63: Flow over a circular cylinder due to a source.

Using the Joukovskii transformation

ζ =
1

2

(
z +

a2

z

)
,

map the cylinder onto an infinitely thin flat plate occupying the interval [−a, a]
on the real axis in the auxiliary ζ-plane. Find the position ζ0 of the source in the
ζ-plane.

Now, notice that an infinitely thin flat plate aligned with the source does not
affect the flow from the source. Hence, write the complex potential in the auxiliary
plane as

W (ζ) =
q

2πi
ln(ζ − ζ0).

Finally, return to the physical z-plane, and show that the flow may be treated
as being composed of the source situated at z = b, an additional source situated
inside the cylinder at point z = a2/b, and a sink at z = 0.

5. Consider the symmetrical flow past a parabola

y = ±a√x (3.7.15)

with the free-stream velocity V∞ as shown in Figure 3.64.

y = −a√x

y = a
√
x

V∞

x

y

Fig. 3.64: Symmetrical flow part a parabola.
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Use the conformal mapping z = ζ2 of the region ℑ{ζ} > h in the auxiliary
ζ-plane onto the exterior of the parabola in the physical z-plane, and find how h
is related to the parabola ‘width’ parameter a.

Show further that the complex conjugate velocity V on the surface of the
parabola is given by

V = V∞
ξ

ξ + ih
,

where ξ = y/2h.
Finally, calculate the parabola drag

D = 2

∞∫

0

(p− p∞) dy,

where p∞ is the pressure in the oncoming flow.

6. Consider now a non-symmetric flow past the parabola (3.7.15). The degree of
the non-symmetry may be characterised by the distance k from the stagnation
point O to the x-axis (see Figure 3.65). Assume that the nose of the parabola has
unit radius (in which case the factor a in (3.7.15) has to be set to a =

√
2) and

demonstrate that the tangential velocity on the surface of the parabola surface
may be written as

V = V∞
y + k√
y2 + 1

.

k

1

k

O

M

x

y

Fig. 3.65: Flow past a parabola at an incidence.

Show further that point M , where the velocity has a maximum, is situated at
a distance y = 1/k from the axis of the parabola, as shown in Figure 3.65.

What is the value of the maximum velocity?

7. Consider inviscid irrotational flow past a symmetric aerofoil that is made of two
circular arcs as shown on the left-hand side of Figure 3.66. The modulus of the
velocity in the free-stream far from the aerofoil is V∞, and the angle of attack
is α.
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Fig. 3.66: Physical z-plane and auxiliary ζ-plane for the generalised Joukovskii trans-
formation (3.7.16).

(a) Demonstrate that the generalised Joukovskii transformation, written implic-
itly as

z − a

z + a
=

(
ζ − a

ζ + a

)k

, (3.7.16)

maps the exterior of a circle of radius a in the auxiliary ζ-plane onto the
exterior of the aerofoil. What should the parameter k in (3.7.16) be if the the
angle between the upper and lower sides of the aerofoil at its leading (trailing)
edge is 2θ?

Suggestion: In order to perform this task, introduce two additional planes

z1 =
z − a

z + a
and ζ1 =

ζ − a

ζ + a
,

and find the mapping between them in the form of the power function z1 = ζk1 .
(b) Show that at large z and ζ, equation (3.7.16) reduces to

ζ = kz + · · · as z → ∞.

Hence, deduce that the free-stream velocity Ṽ∞ in the auxiliary ζ-plane is

Ṽ∞ = V∞/k.

(c) Write the complex potential in the auxiliary plane in the form

W (ζ) =
V∞
k

(
ζe−iα +

a2

ζe−iα

)
+

Γ

2πi
ln ζ.

Argue that the Joukovskii-Kutta condition is satisfied if dW/dζ is zero at
the point ζ = a in the the auxiliary ζ-plane, and deduce that

Γ = −4πa
V∞
k

sinα.
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3.8 Free Streamline Theory

3.8.1 Kirchhoff model

As has been mentioned previously, a major problem in inviscid flow theory is that
for steady flows past finite bodies it predicts zero drag. This result is known as
d’Alembert’s paradox, and it is generally believed to be due to the fact that the theory
fails to take into account flow separation. In particular, in Section 3.4.2, we analysed
the flow past a circular cylinder. According to theoretical predictions, the flow proved
to be symmetric not only with respect to the x-axis but also with respect to the y-axis;
see Figure 3.27(a) on page 170, reproduced here as Figure 3.67(b). For this reason, the
integral pressure force acting on the front side of the circle is fully compensated by the
pressure force acting on its rear side. In contrast, in experiments, a large separation
region is observed behind the cylinder (see Figure 3.67a). The separation leads to a
redistribution of the pressure on the cylinder’s surface and, as a result, a non-zero drag
is produced.

Interestingly enough, experiments further show that the separation region does not
become smaller when the fluid viscosity decreases. This suggests that, in addition to
the ‘attached solutions’, the Euler equations should allow for solutions with separa-
tion regions. Kirchhoff (1869) was the first to demonstrate that this second family of
solutions really exist. Following his original study, we shall consider here the inviscid
incompressible fluid flow past a flat plate of width 2h placed perpendicular to the free-
stream velocity vector as shown in Figure 3.68(b). We shall use a Cartesian coordinate
system Oxy with the origin O at the stagnation point in the middle of the plate. The
x- and y-axes are directed normal to and along the plate surface, respectively. The
modulus of the velocity in the oncoming flow is denoted, as usual, by V∞ and the
pressure by p∞.

We start the flow analysis by considering the streamline that lies along the x-
axis in front of the plate. If we start from point A in the unperturbed oncoming

(a) Experimental observations by Prandtl and
Tietjens (1934).

(b) Theoretical predictions.

Fig. 3.67: Comparison of experimental observations (see Figure 3.26 for details) with
theoretical predictions for the flow past a non-rotating circular cylinder.
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(a) Flow visualisation by Flachsbart (1935).
Copyright c© 1935 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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(b) Mathematical model.

Fig. 3.68: Helmholtz–Kirchhoff model for inviscid separated flows.

stream, and move towards the plate, then we can expect the velocity to decrease
monotonically until the stagnation point O is reached; see Figure 3.68(b). At this
point, the streamline considered splits into two branches. One branch turns upwards,
and follows the plate surface until the upper edge S of the plate is reached. The
second branch goes symmetrically downwards to the lower edge S′. At points S and
S′, separation takes place. As a result, the so-called free streamlines SF and S′F ′ are
formed. Their positions in the flow field are not known in advance and need to be
calculated as a part of the solution of our problem.

The Kirchhoff model is based on the following assumptions concerning the sepa-
ration region that lies between the free streamlines SF and S′F ′ behind the plate. It
is assumed, first of all, that the fluid in the separation region is at rest, and therefore
the pressure remains constant. It is, secondly, assumed that the value of the pressure
in the separation region, ps, coincides with that in the oncoming flow, i.e. ps = p∞.
We shall show that, under these assumptions, the separation region may be treated as
semi-infinite, with the free streamlines SF and S′F ′ extending from the plate edges
to infinity.

Everywhere outside the separation region, the fluid motion obeys the laws of po-
tential flow theory, and the only modification that has to be introduced into the
formulation of Problem 3.2 (see page 165) concerns the boundary conditions on the
free streamlines SF and S′F ′. We note, first of all, that these lines are impermeable
for the flow outside the separation region, and therefore we can write

ψ = ℑ
{
w(z)

}
= const on SF and S′F ′. (3.8.1)

Condition (3.8.1) is referred to as the kinematic condition. In addition to the kinematic
condition, we also need to formulate the dynamic condition, which is a statement of
the pressure balance at the boundary with the separation region:

p = p∞ on SF and S′F ′.
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Using the Bernoulli equation

p

ρ
+
V 2

2
=
p∞
ρ

+
V 2
∞

2
,

this condition may be reformulated for the modulus of the velocity:

|V | = V∞ on SF and S′F ′. (3.8.2)

Our task is to solve Problem 3.2 with addition of conditions (3.8.1) and (3.8.2). To
perform this task, we shall consider two analytic functions, namely the non-dimensional
complex conjugate velocity

ζ =
V

V∞
=

1

V∞

dw

dz
, (3.8.3)

and the complex potential
w = ϕ+ iψ.

Through analysis of their complex planes, we will try to find the function ζ = ζ(w)
that performs the conformal mapping of the w-plane onto the ζ-plane. Once ζ(ω) has
been found, we will return to equation (3.8.3) and express it in the form

dz =
1

V∞

dw

ζ(w)
,

which, being integrated,

z =
1

V∞

∫
dw

ζ(w)
, (3.8.4)

gives the inverse z = z(w) of the complex potential function w(z).
We start with the complex plane of the function (3.8.3), which is termed the hodo-

graph plane; see Figure 3.69(a). Denoting, as before, the angle between the velocity
vector V and the x-axis by ϑ, we write (3.8.3) as

ζ =
|V |
V∞

e−iϑ. (3.8.5)

At any point in the z-plane (see Figure 3.68b) that is situated far upstream of the
plate, and, in particular, at point A, we have ϑ = 0 and |V | = V∞. This means that
in the ζ-plane (Figure 3.69a), the point A lies at ζ = 1. If an observer moves in the
physical z-plane from point A towards the plate along the x-axis (Figure 3.68b), then
the angle ϑ will remain zero all the way to the stagnation point O. The modulus of
the velocity |V | will decrease monotonically from V∞ to zero, which means that the
corresponding point in the ζ-plane (Figure 3.69a) will travel along the real axis from
ζ = 1 to the coordinate origin O.

As has already been mentioned, the streamline that lies along the axis of symmetry
of the flow, AO, splits into two branches: an upper branch that follows the upper half of
the plate,OS, and a lower branch that lies along the lower half, OS′; see Figure 3.68(b).
We shall follow, to begin with, the upper branch. As the velocity vector is tangent to



3.8. Free Streamline Theory 213

the plate everywhere on OS, the angle ϑ = π/2, and therefore the argument of the
function (3.8.5) is equal to −π/2. The modulus of ζ increases as the fluid accelerates
towards the separation point S, where the condition (3.8.2) becomes applicable, and
ζ = e−iπ/2 = −i. Thus, while the point in the physical z-plane moves along the plate
from the front stagnation point O to the separation point S, its image in the ζ-plane
(Figure 3.69a) moves along the imaginary axis from the coordinate origin O to the
point ζ = −i.

Continuing further downstream along the free streamline SF , we can use the con-
dition (3.8.2), and we see that |ζ| = 1 all the way from the separation point S to
point F , which lies far downstream. As far as the velocity angle ϑ is concerned, it
equals π/2 at point S, where the fluid leaves the plate surface tangentially, and de-
creases monotonically to zero as the fluid particles travel along the free streamline
towards point F ; see Figure 3.68(b). Consequently, in the ζ-plane (Figure 3.69a) the
free streamline SF is represented by a quarter-circle connecting the points ζ = −i and
ζ = 1.

Similarly, the lower half of the plate OS′ in the z-plane maps onto a segment [0, i] of
the imaginary axis in the ζ-plane, and the second free streamline S′F ′ is represented
by a quarter-circle connecting the points ζ = i and ζ = 1. We can conclude that
the entire flow outside the separation region in the physical z-plane (Figure 3.68b) is
represented by the interior of the semicircle in the ζ-plane (Figure 3.69a).

Let us now consider the plane of the complex potential w = ϕ + iψ; see Fig-
ure 3.69(b). Since both the velocity potential ϕ and the stream function ψ are defined
to within an arbitrary constant, we can choose w to be zero at the front stagnation
point O. We know that the real negative semi-axis AO in the z-plane (Figure 3.68b)
is a streamline with ψ = 0 along it. In order to predict the behaviour of the velocity

Fig. 3.69: Planes of the non-dimensional complex conjugate velocity ζ and of the
complex potential w.
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potential ϕ on this line, we use the equation

∂ϕ

∂x
= u.

The velocity u is positive everywhere on AO (except at the front stagnation point O).
This suggests that ϕ decreases from zero at point O to ϕ = −∞ at point A far
upstream of the plate surface. Consequently, the real negative semi-axis in the z-plane
maps onto the real negative semi-axis in the w-plane (Figure 3.69b).

The branching of the streamline at the front stagnation point O in the z-plane
(Figure 3.68b) requires a branch cut to be introduced in the w-plane (Figure 3.69b).
The stream function ψ remains zero along the upper half OS of the plate and further
downstream along the upper free streamline SF ; see Figure 3.68(b). It is also zero
on the lower half OS′ of the plate and the lower free streamline S′F ′. Consequently,
the cut in the w-plane should be made along the real positive semi-axis, as shown in
Figure 3.69(b). In order to make clear which side of the cut corresponds to the upper
half of the flow in the physical plane, and which to the lower, we shall use the equation

∂ψ

∂y
= u.

Since u is expected to be positive everywhere except on the plate SS′, it follows from
this equation that ψ is positive in the upper half of the flow and negative in the lower.
Consequently, the image of the upper edge S of the plate should lie on the upper
side of the branch cut, and the image of the lower edge S′ of the plate should lie
symmetrically on the lower side of the cut in the w-plane. The value ϕ0 of the velocity
potential ϕ at points S and S′ is, of course, the same. It is not known in advance, but
will be found as a result of the flow analysis.

Now we need to establish the conformal mapping between the ζ- and w-planes. We
start by rotating the ζ-plane through an angle π/2 in the clockwise direction. This
operation is performed by

ζ1 = −iζ. (3.8.6)

The resulting ζ1-plane in shown in Figure 3.70.
As the next step, we will apply the Joukovskii transformation to ζ1. Remember, in

Section 3.5.6, it was expressed by equation (3.5.34),

z =
1

2

(
ζ +

a2

ζ

)
, (3.8.7)

and it was shown that if in the ζ-plane we consider a circle of radius a centred at
the coordinate origin,12 then (3.8.7) maps the exterior of this circle onto the whole
z-plane except for a branch cut along a segment [−a, a] of the real axis. If we now
consider two points, ζ ′ lying outside the circle of radius a and ζ ′′ = a2/ζ ′ lying inside
the circle, then it is easily seen that (3.8.7) maps these into the same point in the
z-plane. This means that, in addition to the exterior of the circle in the ζ-plane, the
Joukovskii transformation (3.8.7) also maps its interior onto the entire z-plane except
for a branch cut along a segment [−a, a] of the real axis.

12This corresponds to h = 0 in Figure 3.53, page 195.
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Fig. 3.70: Auxiliary ζ1-plane.

In the ζ1-plane (Figure 3.70 ), we are dealing with a semicircle of unit radius.
Therefore we shall introduce a new auxiliary plane ζ2 and write the Joukovskii trans-
formation as

ζ2 =
1

2

(
ζ1 +

1

ζ1

)
. (3.8.8)

We expect the semicircle to be mapped by (3.8.8) onto a half-plane. Indeed, if we
represent ζ1 in the form ζ1 = |ζ1|eiϑ and substitute it into (3.8.8), then we will find

ζ2 =
1

2

(
|ζ1|+

1

|ζ1|

)
cosϑ+

i

2

(
|ζ1| −

1

|ζ1|

)
sinϑ. (3.8.9)

The interior of the semicircle in the ζ1-plane corresponds to

|ζ1| < 1 and ϑ ∈ (−π, 0).

Under these restrictions, the imaginary part of (3.8.9) is positive. Consequently, we
can conclude that (3.8.9) maps the semicircle in the ζ1-plane onto the upper half of
the ζ2-plane; see Figure 3.71(a).

It remains to identify the positions of points S, O, S′, F , and F ′ in the ζ2-plane.
Let us consider, for example, the point S′. In the ζ1-plane (Figure 3.70), it is situated
at ζ1 = 1, which on substitution into (3.8.8) gives the position of S′ in the ζ2-plane to
be ζ2 = 1. The other characteristic points are dealt with in a similar way, and their
positions in the ζ2-plane are shown in Figure 3.71(a).

Now we need to return to the w-plane; see Figure 3.69(b). It may be mapped onto
the upper half-plane by means of the transformation

w1 =

√
w

ϕ0
. (3.8.10)

The function
√
w/ϕ0 has two roots. In what follows, we shall use the root that is

ζ1

−1 1

S O S

−i

F F
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O

Fig. 3.71: Auxiliary ζ2- and w1-planes.

defined as follows. We write (see Figure 3.72)

w = |w|eiϑ,

and then we have
√
w

ϕ0
=

√
|w|
ϕ0

eiϑ/2. (3.8.11)

Now we can easily see that point S (|w| = ϕ0, ϑ = 0) is mapped into w1 = 1 and point
S′ (|w| = ϕ0, ϑ = 2π) into w1 = −1; see Figure 3.71(b).

Finally, we need to relate the ζ2- and w1-planes. In both planes, the region we are
interested in occupies the upper half-plane, but with different arrangement of points
S, O, S′, F , and F ′ on the real axis. Since the upper half-plane may be thought of as
the interior of a circle of infinitely large radius, we shall seek the mapping in the form
of a linear fractional transformation (see Section 3.5.4):

ζ2 =
aw1 + b

cw1 + d
. (3.8.12)

w

w

ϑ

|w|

O

ϕ0

ψ

ϕS

S′

Fig. 3.72: The w-plane used in (3.8.11).
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Here a, b, c, and d are complex constants, which have to be chosen in such a way that
(3.8.12) performs the required mapping of the points S, O, S′, F , and F ′. We start
with the point O. In the w1-plane (see Figure 3.71b), it is situated at the coordinate
origin w1 = 0, which turns (3.8.12) into

ζ2 =
b

d
.

In the ζ2-plane (see Figure 3.71a), the point O is at ζ2 = ∞, which is only possible if
d = 0. Taking this into account, we write (3.8.12) as

ζ2 = α+
β

w1
, (3.8.13)

where α = a/c and β = b/c.
Let us now consider point F . The transformation (3.8.13) is supposed to map it

from w1 = ∞ to ζ2 = 0, which, obviously, only happens if α = 0. It remains to find
β, for which purpose either point S or point S′ can be used. The correct mapping of
both points is achieved by setting β = −1. Thus, we have

ζ2 = − 1

w1
. (3.8.14)

Substitution of (3.8.8), (3.8.6), and (3.8.10) into (3.8.14) yields

1

2

(
− iζ +

1

−iζ

)
= −

√
ϕ0

w
.

In order to solve this equation for ζ, we express it in the form

ζ2 + 2i

√
ϕ0

w
ζ − 1 = 0, (3.8.15)

and we have

ζ = −i
√
ϕ0

w
± i

√
ϕ0

w
− 1. (3.8.16)

Since the inverse of Joukovskii transformation (3.8.8) is a double-valued function,
it is not surprising that the mapping (3.8.16) is also double-valued. We need to choose
the root that maps the w-plane (see Figure 3.69b) onto the interior of the semicircle
in the ζ-plane (Figure 3.69a). We start by clarifying which root of the function

g(w) =

√
ϕ0

w
− 1 =

√
ϕ0 − w

w
(3.8.17)

we intend to use in (3.8.16). We make branch cuts in the w-plane as shown in Fig-
ure 3.73, and write

w − ϕ0 = r1e
iϑ1 , w = r2e

iϑ2 .

Since ϕ0 − w = −r1eiϑ1 = r1e
i(π+ϑ1), we have

g(w) =

√
r1
r2
ei(π+ϑ1−ϑ2)/2. (3.8.18)
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Now we are ready to identify the correct root in equation (3.8.16). Let us consider,
for example, the point w = −ϕ0, which lies on the real negative semi-axis between
points A and O in Figure 3.69(b). Using the notation of Figure 3.72, we have for this
point

|w| = ϕ0, ϑ = π. (3.8.19)

Substitution of (3.8.19) into (3.8.11) results in
√

w

ϕ0
= i. (3.8.20)

Similarly, in the notations of Figure 3.73, the point considered is represented by

r1 = 2ϕ0, r2 = ϕ0, ϑ1 = ϑ2 = π,

which, being substituted into (3.8.18), yields
√
ϕ0

w
− 1 = i

√
2. (3.8.21)

It remains to substitute (3.8.20) and (3.8.21) into (3.8.16). We find

ζ1 = −1−
√
2, ζ2 = −1 +

√
2.

The first of these corresponds to the plus sign in (3.8.16) and the second to the minus.
We have to choose the latter, since in the ζ-plane the point considered should find
itself inside the semicircle of Figure 3.69(a). Consequently, we can conclude that

ζ = −i
√
ϕ0

w
− i

√
ϕ0

w
− 1. (3.8.22)

Let us now return to the physical z-plane (see Figure 3.68b on page 211) and
remember that the non-dimensional complex conjugate velocity is defined as

ζ =
V

V∞
=

1

V∞

dw

dz
. (3.8.23)

w

w
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ϑ1
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O ϕ0

ψ

ϕ

Fig. 3.73: The w-plane used in (3.8.18).
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We know that, in the flow considered, ζ is related to the complex potential w = ϕ+ iψ
by the equation (3.8.22). If we rearrange (3.8.23) as

dz =
1

V∞

dw

ζ
, (3.8.24)

and integrate (3.8.24), taking into account that both z and w are zero at the front
stagnation point O,13 then we will have

z =
1

V∞

w∫

0

dw

ζ(w)
=

i

V∞

w∫

0

dw√
ϕ0/w +

√
ϕ0/w − 1

=
i

V∞

w∫

0

(√
ϕ0

w
−
√
ϕ0

w
− 1

)
dw. (3.8.25)

Our first task will be to find the value ϕ0 of the velocity potential at the separation
point S. We note that, at this point, z = ih and w = ϕ0, which reduces (3.8.25) to

h =
1

V∞

ϕ0∫

0

(√
ϕ0

w
−
√
ϕ0

w
− 1

)
dw. (3.8.26)

Since the integrand in (3.8.26) is analytic, the integration can performed along any
contour C connecting points O and S in the w-plane; see Figure 3.74. We choose to
integrate along a contour C̃ that lies on the upper side of the branch cut. In order to
select an appropriate branch of the first root in (3.8.26), we have to use Figure 3.72.
It shows that, at any point immediately above the cut,

|w| = ϕ, ϑ = 0.

w

C

O

ϕ0

ψ

ϕSC̃

S′

F

F ′

Fig. 3.74: Choice of integration contour in (3.8.26).

13See Figure 3.68(b) on page 211 and Figure 3.69(b) on page 213.
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Substituting these into (3.8.11), we have

√
w

ϕ0
=

√
ϕ

ϕ0
. (3.8.27)

Similarly, Figure 3.73 shows that, at any point on the integration path,

r1 = ϕ0 − ϕ, r2 = ϕ, ϑ1 = π, ϑ2 = 0,

which, being substituted into (3.8.18), yields

√
ϕ0

w
− 1 =

√
ϕ0 − ϕ

ϕ
eiπ = −

√
ϕ0

ϕ
− 1. (3.8.28)

Using (3.8.27) and (3.8.28) in (3.8.26), we have

h =
1

V∞

ϕ0∫

0

(√
ϕ0

ϕ
+

√
ϕ0

ϕ
− 1

)
dϕ.

The integral on the right-hand side of this equation is easily calculated by changing
the integration variable; ϕ = ϕ0 sin

2 t:

h =
2ϕ0

V∞

π/2∫

0

(
1 + cos t

)
cos tdt =

2ϕ0

V∞

π/2∫

0

(
cos t+

1 + cos 2t

2

)
dt =

2ϕ0

V∞

(
1 +

π

4

)
.

Thus, the velocity potential at the separation point S is

ϕ0 =
2hV∞
π + 4

. (3.8.29)

Now we turn to the calculation of the plate drag D. Since the pressure behind the
plate is p∞, the drag is given by

D = 2

h∫

0

(p− p∞) dy. (3.8.30)

Here p denotes the pressure on the front face of the plate, and, owing to the sym-
metry of the flow, the integration is restricted to the upper half OS of the plate; see
Figure 3.68(b) on page 211.

We note that, on OS, z = iy and therefore

dz = i dy. (3.8.31)

Combining (3.8.31) with (3.8.24), we can see that, on OS,

dy = − i

V∞

dw

ζ
. (3.8.32)
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Equation (3.8.32) allows us to convert the integration in the physical z-plane into
integration in the w-plane. Substitution of (3.8.32) into (3.8.30) results in

D = − 2i

V∞

ϕ0∫

0

(p− p∞)
dw

ζ
. (3.8.33)

Now we need to express the integrand in terms of the complex potential w. It
follows from the Bernoulli equation that

p− p∞ = 1
2ρ
(
V 2
∞ − V 2

)
. (3.8.34)

Substitution of (3.8.34) into (3.8.33) yields

D = −iρV∞
ϕ0∫

0

(
1− V 2

V 2
∞

)
dw

ζ
. (3.8.35)

On the plate surface, the longitudinal velocity component u is zero, which means that
the complex conjugate velocity V = u − iv and the modulus of the velocity vector
V =

√
u2 + v2 are given by

V = −iv, V = v,

respectively. Taking this into account, we can express the non-dimensional complex
conjugate velocity as

ζ = −i V
V∞

. (3.8.36)

Taking squares on both sides of (3.8.36) yields

V 2

V 2
∞

= −ζ2,

which, when substituted into (3.8.35), results in

D = −iρV∞
ϕ0∫

0

(
ζ +

1

ζ

)
dw.

It remains to make use of the equation (3.8.22) relating ζ and w. We see that

1

ζ
=

i√
ϕ0/w +

√
ϕ0/w − 1

= i

(√
ϕ0

w
−
√
ϕ0

w
− 1

)
,

and therefore
1

ζ
+ ζ = −2i

√
ϕ0

w
− 1.
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Consequently,

D = −2ρV∞

ϕ0∫

0

√
ϕ0

w
− 1 dw.

On the integration path, a proper branch of
√
ϕ0/w − 1 is given by (3.8.28). Hence,

D = 2ρV∞

ϕ0∫

0

√
ϕ0

ϕ
− 1 dϕ, (3.8.37)

Now, all the quantities in (3.8.37) are real. Changing the integration variable, ϕ =
ϕ0 sin

2 t, we find

D = ρV∞ϕ0π = ρV 2
∞2h

π

π + 4
. (3.8.38)

Correspondingly, the drag coefficient

CD =
D

1
2
ρV 2

∞2h
=

2π

π + 4
.

It should be noted that the Kirchhoff model underestimates the drag. The source of
the discrepancy between the theoretical predictions and experimental observations lies
in the simplifying assumptions upon which the theory is based. The first of these, that
the pressure is constant in the separation region, proves to hold in real flows in the near
wake. Experiments show that the fluid motion in the separation region immediately
behind the plate is indeed relatively slow. However, further downstream, unsteadiness
normally develops in the separation region, affecting the pressure distribution and the
integral force acting on the plate.

The second assumption is that the pressure in the separation region, ps, coincides
with the free-stream pressure p∞. It was adopted in the Kirchhoff model, first, to
simplify the theoretical description of the flow, and, second, to ensure that the plate
drag is non-zero. With ps = p∞, points F and F ′, representing the ‘ends’ of the free
streamlines in the z-plane (Figure 3.68b), have their images at the point ζ = 1 in the
non-dimensional complex velocity plane ζ; see Figure 3.69(a). Because this point is
also the image of the free-stream point A, the free streamlines SF and S′F ′ extend
to infinity in the z-plane, allowing the drag of the plate to become non-zero (see
Problem 4 in Exercises 12). Experimental evidence clearly shows that the pressure in
the separation region is always lower than in the free stream: ps < p∞. Therefore,
in reality, the drag coefficient appears to be larger than that predicted by formula
(3.8.38).

Despite the Kirchhoff model being found to be insufficient to capture the full com-
plexity of separated flows, it played an important role in the development of theoretical
fluid dynamics. In particular, it demonstrated that for a wide class of body shapes, the
Euler equations admit, in addition to smooth attached solutions, also discontinuous
solutions that may be used to represent separated flow. Finally, it is interesting to note
that while the Kirchhoff theory was originally intended for describing separated flows,
it proved to be very useful in the analysis of cavitating flows, where the predictions of
the theory were found to give surprisingly good accuracy (see e.g. Gurevich, 1966).
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3.8.2 Two-dimensional inviscid jets

Let us consider a jet that forms when an incompressible inviscid fluid escapes from
a large container through an orifice equipped with a mouthpiece as sketched in Fig-
ure 3.75. We shall assume that the mouthpiece is symmetric and composed of two flat
plates AB and A′B′, which make an angle α with the axis of symmetry. The mouth-
piece width, measured as the distance between the plates’ edges B and B′, equals 2b.
After leaving the mouthpiece, the fluid comes in contact with the surrounding atmo-
sphere of constant pressure. Keeping this in mind, we shall assume that, along the free
streamlines BC and B′C′, the pressure and hence the modulus of the velocity remain
constant; we shall denote the value of the latter as V0. Notice that at points B and B′

the free streamlines are tangent to the walls of the mouthpiece. As a consequence, one
has to expect a contraction of the jet, with its width decreasing from 2b at the mouth-
piece edge BB′ to a smaller value 2b′ further downstream when the free streamlines
ultimately become parallel to one another.

In order to describe this flow mathematically, we introduce Cartesian coordinates
with x aligned with the axis of symmetry of the flow and y passing through the edge
B of the upper plate. In what follows, the complex plane z = x+ iy will be referred to
as the physical plane. In addition to the physical plane, we shall consider the complex
plane of the function

Ω = ln

(
1

V0

dw

dz

)
. (3.8.39)

Denoting the modulus of the velocity vector V by V and the angle that it makes with
the x-axis by ϑ, we can write

V =
dw

dz
= V e−iϑ,

Fig. 3.75: Physical z-plane.
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which, when substituted into (3.8.39), yields

Ω = ln
V

V0
− iϑ. (3.8.40)

Equation (3.8.40) allows us to see that in the Ω-plane the flow is represented by the
semi-infinite strip shown in Figure 3.76. Indeed, at any point on the upper plate AB,
the velocity vector angle ϑ = −α, which means that the imaginary part, ℑ

{
Ω
}
= −ϑ,

of Ω stays equal to α all along AB. At point B where the flow comes in contact with
the atmosphere (see Figure 3.75), the modulus of the velocity, V , becomes equal to V0,
making the real part, ℜ

{
Ω
}
= ln(V/V0), of Ω zero. Upstream of B, the fluid velocity V

is smaller than V0. In fact, V/V0 decreases monotonically from unity at point B to zero
at the ‘infinite point’ A. Correspondingly, the real part of Ω decreases from ℜ

{
Ω
}
= 0

at point B to ℜ
{
Ω
}
= −∞ at point A. Thus, the upper side AB of the mouthpiece

(Figure 3.75) is represented in the Ω-plane by the upper side of the semi-strip as shown
in Figure 3.76.

Continuing further downstream of point B (see Figure 3.75), one can see that the
modulus of the velocity, V , stays equal to V0 all along the free streamline BC, while
the velocity vector angle increases from ϑ = −α at point B to ϑ = 0 at the ‘infinite
point’ C. This means that the free streamline BC is represented in the Ω-plane by the
segment of the imaginary axis ℑ

{
Ω
}
∈ [0, α].

The lower boundary of the flow, A′B′C ′, is analysed in the same way, and it is
easily seen that the second plate A′B′ is represented by the lower side of the semi-
infinite strip in the Ω-plane, and the lower free streamline B′C′ maps onto the segment
ℑ
{
Ω
}
∈ [−α, 0] of the imaginary axis.

In addition to the Ω-plane, we shall also consider the plane of the complex potential
w = ϕ+ iψ. We start again with the upper boundary ABC of the flow (Figure 3.75).
Since it represents a streamline, we have

ψ = const

on ABC. Taking into account that the stream function ψ is defined to within an
arbitrary constant, we choose ψ to be zero on ABC, and then in the w-plane this
streamline will lie along the real axis (see Figure 3.77).

Ω

A B

C
C′

B′A′

iα

−iα

Fig. 3.76: Ω-plane.
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If now we move from the upper plate down towards the lower plate (see Figure 3.75),
then the stream function ψ becomes negative. Indeed, we know that

∂ψ

∂y
= u.

Since, in the flow considered, u is positive, ψ decreases with decreasing y. In order to
find the value of ψ on the lower plate, we apply equation (3.3.13) to the edges B and
B′ of the two plates. We have

ψ(B)− ψ(B′) = Q.

Here Q is the fluid flux through the mouthpiece. Since ψ(B) = 0, we can conclude
that ψ(B′) = −Q, and, of course, the stream function remains constant on the lower
boundary A′B′C ′ of the flow as shown in Figure 3.77.

In order to explain why points A, B, C and A′, B′, C′ are positioned in the w-plane
as shown in Figure 3.77, we note, first of all, that the velocity potential ϕ is defined
to within an arbitrary constant. This allows us to choose ϕ = 0 at the edge B of the
upper plate (see Figure 3.75), which places the image of point B into the coordinate
origin in the w-plane; see Figure 3.77. Now, it follows from the equation

∂ϕ

∂x
= u

that ϕ increases when the observation point moves in the physical plane (Figure 3.75)
along the upper boundary of the jet from point B towards point C. This means that the
image of point C in the w-plane lies on the right-hand side of point C; see Figure 3.77.
Clearly, ϕ decreases as the observation point moves along the upper plate from point
B towards point A. Hence, in the w-plane the image of point A should be placed on
the left-hand side of point B. Owing to the symmetry of the flow considered, points
A′, B′, C′ should be placed opposite to points A, B, C on the lower boundary of the
strip in the w-plane.

We are ready now to establish a relationship between the functions Ω and w,
which is done through conformal mapping between the Ω-plane (Figure 3.76) and the

w

A B C

C′B′
A′ −iQ

ψ

ϕ

Fig. 3.77: w-plane.
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t

A′ B′ C′ C B A

−1 0 1

Fig. 3.78: Auxiliary t-plane.

w-plane (Figure 3.77). Since in both planes the flow is represented by polygons, it
is convenient to introduce an auxiliary t-plane, shown in Figure 3.78, and use the
Schwartz–Christoffel mapping.

A detailed discussion of the Schwartz–Christoffel theory may be found elsewhere
(see e.g. Dettman, 1965). Here we shall restrict ourselves to stating the main result of
the theory. It consists in the following. Suppose that in the z-plane we have a polygon
with n vertices, A1, A2, . . . , An (see Figure 3.79a). The mapping of this polygon onto
the upper half of the t-plane (Figure 3.79b) is given by the transformation

z = C1

∫
(t− t1)

α1/π−1 (t− t2)
α2/π−1 · · · (t− tn)

αn/π−1 dt+ C2, (3.8.41)

where t1, t2, . . . , tn, all lying on the real axis in the t-plane, are the images of the
vertices, A1, A2, . . . , An, respectively, and α1, α2, . . . , αn are the polygon angles;
the complex constants C1 and C2 are not known in advance and have to be adjusted
for each particular mapping. When using the Schwartz–Christoffel transformation, it is
convenient to choose one of the boundary points in the t-plane, say t1, to be at infinity.

z

α1

A1

α2

A2

αk

Ak

αn
An

(a) z-plane.

t

t1 t2 tk tn

(b) t-plane.

Fig. 3.79: Schwartz–Christoffel mapping.



3.8. Free Streamline Theory 227

Then the term (t − t1)
α1/π−1 has to be omitted in (3.8.41), making the integration

easier.
Let us now return to the particular problem we are dealing with here. Our task is to

find the mapping of the Ω-plane (Figure 3.76) onto the auxiliary t-plane (Figure 3.78).
In the Ω-plane, we have a triangle with one vertex situated at infinity. We have chosen
its image in the t-plane to be also at infinity. We have placed the images of vertices B′

and B into t1 = −1 and t2 = 1, respectively. The angles at B′ and B are α1 = α2 = 1
2π.

Using these in (3.8.41), we have

Ω = C1

∫
(t+ 1)−1/2(t− 1)−1/2 dt+ C2

= −iC1

∫
dt√
1− t2

+ C2 = −iC1 arcsin t+ C2. (3.8.42)

The constants C1 and C2 are found by ensuring the correspondence of points B and
B′ in the Ω- and t-planes. In the Ω-plane (Figure 3.76), point B is situated at Ω = iα.
It is mapped into the point t = 1 in the t-plane (Figure 3.78). Using these in (3.8.42),
we have

iα = −iC1
π

2
+ C2. (3.8.43)

Similarly, the desired mapping of point B′ is achieved if

−iα = iC1
π

2
+ C2. (3.8.44)

Solving (3.8.43) and (3.8.44) for C1 and C2, we have

C1 = − 2

π
α, C2 = 0. (3.8.45)

It remains to substitute (3.8.45) back into (3.8.42), and we can conclude that the
mapping of the auxiliary t-plane onto the Ω-plane is given by

Ω = i
2α

π
arcsin t. (3.8.46)

Now we need to repeat this procedure for the w-plane (Figure 3.77). The polygon
in the w-plane has only two vertices, A(A′) and C(C′). The first of these has its image
at infinity in the t-plane (Figure 3.78) and does not need to be accounted for in the
Schwartz–Christoffel integral (3.8.41). The second vertex, C(C′), is mapped into the
point t = 0, and since this vertex angle α = 0, we have

w = C1

∫
(t− 0)−1 dt+ C2 = C1 ln t+ C2.

Let us first apply this mapping to point B. In the t-plane it is situated at point t = 1,
and in the w-plane at point w = 0, whence C2 = 0. In order to find C1, we consider
the mapping of point B′. We have

−iQ = C1 ln(−1) = C1iπ,
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which gives C1 = −Q/π, and we can conclude that

w = −Q
π
ln t. (3.8.47)

We can now turn to the analysis of the geometry of the flow in Figure 3.75. For
this purpose, we use equation (3.8.39). We write it in the form

1

V0

dw

dz
= eΩ,

or, equivalently,
1

V0

dw

dt

1

dz/dt
= eΩ. (3.8.48)

It follows from (3.8.47) that dw/dt = −Q/(πt), which, being substituted into (3.8.48)
together with (3.8.46), yields

dz

dt
= − Q

πV0

e−i(2α/π) arcsin t

t
. (3.8.49)

We can integrate equation (3.8.49) starting, for example, from point B. In the physical
z-plane (Figure 3.75), it is situated at z = ib, and its image in the auxiliary t-plane
(Figure 3.78) is at t = 1. Consequently,

z = ib− Q

πV0

t∫

1

e−i(2α/π) arcsin t

t
dt. (3.8.50)

Figure 3.80(a) shows the streamline pattern for the flow through the mouthpiece
calculated for α = 1

4π. In order to explain the calculation procedure, it is convenient
to express t in the exponential form t = |t|eiφ. Then it is easily deduced from (3.8.47)
that the velocity potential ϕ and the stream function ψ are given by

ϕ = −Q
π
ln |t|, ψ = −Q

π
φ.

We see that in the t-plane the streamlines are represented by rays emanating from
the coordinate origin. We therefore distributed evenly nine rays in the upper half of
the t-plane, two of these being along the positive real semi-axis and negative real
semi-axis. We also introduced a semicircle of unit radius crossing the rays. We started
from the point B where t = 1 (see Figure 3.78) and integrated equation (3.8.50) along
the semicircle towards a chosen ray using the trapezoidal rule. Then we continued
along the ray in both directions, towards the coordinate origin and away from it. The
calculated values of z = x+ iy were then used to plot the corresponding streamlines
in Figure 3.80(a).

For comparison, we show in Figure 3.80(b) the streamline pattern that would be
observed if the fluid were able to go around the edges B and B′ without separation.
Interestingly enough, Figure 3.80(b) also shows the electrostatic field between two
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A

B
C

A′

B′ C′

(a) Flow with separation from the plates’
edges B and B′

A

B

A′

B′

(b) Flow without separation at the plates’
edges.

Fig. 3.80: Comparison of separated and attached flows; α = 1
4
π.

conductors having the form of semi-infinite plates AB and A′B′. Helmholtz (1868)
was the first to point out this analogy.14 He also argued that it is the fluid viscosity
that, despite being very small, always causes the flow to separate in situations like the
one shown in Figure 3.80(a).

Exercises 12

1. Analyse the asymptotic behaviour of the free streamlines SF and S′F ′ in the
Kirchhoff flow past a flat plate (see Figure 3.81a). For this purpose, modify equa-

S

S′

O

F ′

F

A

zy

x

ih

−ih

(a) Physical z-plane.

w

O

ϕ0

ψ

ϕS

S′

F

F ′

(b) w-plane.

Fig. 3.81: The physical z-plane and the complex potential w.

14See the discussion in the Introduction.
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tion (3.8.25) by writing it in the form

z = ih+
i

V∞

w∫

ϕ0

(√
ϕ0

w
−
√
ϕ0

w
− 1

)
dw. (3.8.51)

Concentrate your attention on the upper free streamline SF , in which case the
integration in (3.8.51) has to be performed along the upper side of the branch cut
in the w-plane from point S toward point F ; see Figure 3.81(b).

Use Figures 3.72 and 3.73 to evaluate
√
ϕ0/w and

√
ϕ0/w − 1 on the integra-

tion path, and show that, for any point that lies on the upper side of the branch
cut on the right-hand side of point S, equation (3.8.51) may be written as

z = ih+
i

V∞

ϕ∫

ϕ0

√
ϕ0

ϕ
dϕ+

1

V∞

ϕ∫

ϕ0

√
1− ϕ0

ϕ
dϕ. (3.8.52)

Show further that, for large values of ϕ/ϕ0, equation (3.8.52) gives

z =
ϕ

V∞
+ i

2
√
ϕ0

V∞
ϕ1/2. (3.8.53)

Finally, separate the real and imaginary parts in (3.8.53) and deduce that at a
large distance downstream of the plate, the equation for the upper free streamline
SF is written as

y = 2

√
ϕ0

V∞
x1/2 = 2

√
2h

π + 4
x1/2. (3.8.54)

2. Compare (3.8.54) with the parabola equation (3.7.15) in Problem 5, Exercises 11,
and note that these can be reduced to one another by setting

a = 2

√
2h

π + 4
. (3.8.55)

Using (3.8.55) in (3.8.38), show that the plate drag in the Kirchhoff flow may be
expressed in the form

D = 1
4ρV

2
∞a

2π,

Compare it with the parabola drag calculated when solving Problem 5 in Exer-
cises 11.

3. Sketch the region that the Kirchhoff flow (see Figure 3.81a) occupies in the com-
plex plane of the function

Ω = ln

(
1

V∞

dw

dz

)
.

4. Assume that the separation region, forming downstream of the plate, is finite as
shown in Figure 3.82.

Taking into account that the fluid in the separation region SFF ′S′, whatever
form of motion it assumes, is in a state of equilibrium, demonstrate that the plate
cannot experience any drag as long as the flow remains steady.
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S
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−ih

Fig. 3.82: Flow with finite separation region.

5. The contraction coefficient κ of the jet in Figure 3.75 is defined as the ratio of the
jet width 2b′ far downstream of the mouthpiece exit to the width 2b of the exit
BB′ itself.

You need to perform the following two tasks:

(a) Show that

κ =
b′

b
=

1

1 + (2/π)I
, where I =

1∫

0

sin

(
2α

π
arcsin t

)
dt

t
. (3.8.56)

(b) Calculate κ for α = 1
2π and α = π. The latter case is referred to as the Borda

mouthpiece. Draw sketches of the two flows.

Suggestion: When the observation point moves in the physical plane (Fig-
ure 3.75) from point B along the upper boundary of the jet towards point C, the
corresponding point in the t-plane (Figure 3.78) remains on the real axis, and
lies in the interval [0, 1]. Keeping this in mind, separate the real and imaginary
parts of equation (3.8.50), and concentrate your attention on the imaginary part.
Notice that point C is situated in the auxiliary t-plane at t = 0. Also notice that
the fluid flux Q may be calculated as Q = 2b′V0.

6. Return once again to the problem of a jet that forms as an inviscid incompressible
fluid escapes from a large container through an orifice equipped with a mouth-
piece as shown in Figure 3.75. This time your task is to show that in a small
neighbourhood of the separation point B, the pressure p on the upper plate AB
may be written as

p− p0
ρ

= 2αV0

√
V0
πQ

s1/2 + · · · ,

where s is the distance measured from B along the lower side of AB.
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You may perform this in the following steps:

(a) Notice that, near point B, t− 1 is small and therefore

arcsin t = 1
2π ± i

√
2(t− 1)1/2 + · · · . (3.8.57)

Substitute (3.8.57) into (3.8.46) and argue that, on AB,

Ω = iα− 2α

π

√
2(t− 1)1/2 + · · · . (3.8.58)

(b) Perform the corresponding simplifications in (3.8.47), and eliminate t−1 from
(3.8.58) to show that

Ω = iα− i2α

√
2

πQ
w1/2 + · · · .

(c) Use the definition (3.8.39) of the function Ω and the fact that |w| is small
near B to deduce the following equation for the complex potential w(z):

dw

dz
= V0e

iα
(
1− i2α

√
2

πQ
w1/2 + · · ·

)
. (3.8.59)

(d) The leading-order solution to (3.8.59) may be obtained by disregarding the
O(w1/2) term on the right-hand side of (3.8.59) and assuming that w = 0 at
point B. Use this solution to evaluate w1/2 in (3.8.59), and show that on the
lower side of the upper plate, AB, where z = ib+ e−i(π+α)s,

V =
dw

dz
= V0e

iα

(
1− 2α

√
2V0
πQ

s1/2 + · · ·
)
.

Finally, use the Bernoulli equation to determine the pressure distribution
on AB.
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Elements of Gasdynamics

4.1 General Properties of Compressible Flows

The influence of compressibility on the behaviour of gas flows depends on the flow
regime considered. The non-dimensional parameter controlling this effect is the Mach
number, defined as M = V/a, where V is the flow velocity and a the speed of sound.
For sufficiently small flow speed, when M ≪ 1, the pressure perturbations induced by
gas motion prove to be small, and are capable of producing only O(M2) perturbations
of the density (see Problem 4 in Exercises 4). Therefore, such flows may be treated
as incompressible, enabling the theory discussed in Chapter 3 to be used. If, on the
other hand, the Mach number is finite, M = O(1), then Laplace’s equation (3.2.7) is
no longer valid. Instead, one has to use a set of equations (4.3.6), (4.3.8), and (4.3.9).
We shall see that these equations are inherently nonlinear and more difficult to solve.
However, for subsonic flow regimes, when M < 1, they still constitute an elliptic
problem, and therefore the flow structure around a solid body remains similar to that
for incompressible flows.

Fundamental changes take place when the Mach number increases to values larger
than unity, M > 1, and the flow becomes supersonic. A major difference between
supersonic and subsonic flows past a flying object is that in subsonic flow the per-
turbations are radiated in all directions such that the entire flow around the object
appears to be perturbed. In contrast, in the supersonic case, the perturbations pro-
duced by the object are not capable of penetrating into the flow region upstream of
the front shock (see Figure 4.1). All the perturbations are confined to a region between
the shock and the body surface.

This may be explained as follows. Suppose that a flying object moves along a
straight line AB through a motionless atmosphere, producing small-amplitude per-
turbations at each point of its trajectory (see Figure 4.2). Once created, these per-
turbations propagate in the atmosphere in all directions with the speed of sound, a.
In particular, the perturbations radiated from the object when at point A form a
sphere S. The radius of the sphere grows with time t as at. While this happens, the
object moves to a new location B separated by a distance V t from A. If the object
speed V is supersonic, i.e. M = V/a > 1, then point B finds itself outside sphere S.
The perturbations radiated from the intermediate points of the trajectory are pro-
duced by the object with a corresponding time delay. If, say, we consider the point
situated midway between A and B, then it takes half the time for the object to reach
this point, and consequently the radius of the corresponding perturbation sphere S′

will be 1
2at. Similar consideration may be given to other points of the trajectory AB,
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Fig. 4.1: Supersonic flow past an ogive cylinder. Photograph from Transonic Range,
U.S. Army Ballistic Research Laboratory; reprinted from Van Dyke (1982), p. 161,
Figure 261.

leading to the conclusion that all the perturbations are confined within a cone whose
apex coincides with the current location of the object and whose semi-angle Θ is given
by

tanΘ =
at√

(V t)2 − (at)2
=

1√
M2 − 1

. (4.1.1)

This cone is called the Mach cone.

V t

Θ

at
at
2

S′

S

A

Mach cone

B

Fig. 4.2: Perturbations produced by an object that flies at a supersonic speed.

4.1.1 Euler equations for gas flows

The Euler equations governing the inviscid motion of compressible fluids may be ob-
tained from the Navier–Stokes equations (1.7.21) by setting the viscosity µ to zero.
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We have

ρ

[
∂V

∂t
+
(
V · ∇

)
V

]
= ρ f −∇p (momentum equation), (4.1.2a)

ρ

[
∂h

∂t
+
(
V · ∇h

)]
=
∂p

∂t
+V · ∇p (energy equation), (4.1.2b)

∂ρ

∂t
+ div(ρV) = 0 (continuity equation), (4.1.2c)

h =
γ

γ − 1

p

ρ
(state equation). (4.1.2d)

4.1.2 Piston theory

Let us consider a perfect gas contained inside a long cylinder as shown in Figure 4.3.
The gas is bounded from the left by a piston whose initial position is shown by the
dashed line. We shall assume that initially the gas is in a state of rest, with pressure,
density, and enthalpy being equal to p0, ρ0, and h0, respectively. We further assume
that, at the instant t = 0, the piston is brought into motion, and its position at any
time t > 0 is given by the equation

x = xw(t),

where the x-axis is drawn parallel to the cylinder generator from the initial position
of the piston surface.

As gases are light, the influence of gravity may be neglected under normal con-
ditions, which enables us to treat the flow in the cylinder as one-dimensional. This
means, first, that the velocity vector has only one non-zero component, V = (u, 0, 0),
and, second, that all the fluid-dynamic quantities depend on x and t only. These
simplifications allow us to reduce the Euler equations (4.1.2) to

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
, (4.1.3a)

ρ

(
∂h

∂t
+ u

∂h

∂x

)
=
∂p

∂t
+ u

∂p

∂x
, (4.1.3b)

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (4.1.3c)

ρh =
γ

γ − 1
p. (4.1.3d)

xxw(t)

Fig. 4.3: Problem layout.
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These are to be solved with the impermeability condition on the piston surface, which
may be written as

u = ẋw(t) at x = xw(t), (4.1.4)

where the “upper dot” denotes the derivative of xw(t) with respect to time, t.
In order to simplify the analysis of equations (4.1.3) and (4.1.4), we shall assume

that the piston displacement xw and velocity ẋw are small.1 In this case, one can
expect the perturbations induced in the gas medium to be weak, which suggests that
the solution may be sought in the form

u(t, x) = u′(t, x), p(t, x) = p0 + p′(t, x),

ρ(t, x) = ρ0 + ρ′(t, x), h(t, x) = h0 + h′(t, x).

}
(4.1.5)

Here p0, ρ0, and h0 are constants representing the unperturbed state of the gas. The
‘dashed quantities’ u′, p′, ρ′, and h′ appear in (4.1.5) owing to the piston motion. We
shall assume that they are small.

We need to substitute (4.1.5) into the Euler equations (4.1.3). To demonstrate how
this is done, let us consider the first term on the left-hand side of the momentum
equation (4.1.3a):

ρ
∂u

∂t
= (ρ0 + ρ′)

∂u′

∂t
= ρ0

∂u′

∂t
+ ρ′

∂u′

∂t
.

Since both ρ′ and ∂u′/∂t are small, the second term ρ′∂u′/∂t represents a quantity re-
ferred to as ‘square of perturbations’. It is small compared with the first term ρ0 ∂u

′/∂t
and can be neglected. We have

ρ
∂u

∂t
= ρ0

∂u′

∂t
+ · · · .

The second term in (4.1.3a), ρu∂u/∂x, is quadratic with respect to small perturbations,
and should be disregarded. Finally, the pressure gradient on the right-hand side of
(4.1.3a) may be written as

∂p

∂x
=
∂p′

∂x
,

and we see that the momentum equation (4.1.3a) turns into

ρ0
∂u′

∂t
= −∂p

′

∂x
. (4.1.6a)

Applying the same treatment to the energy (4.1.3b), continuity (4.1.3c), and state
(4.1.3d) equations, we have

ρ0
∂h′

∂t
=
∂p′

∂t
, (4.1.6b)

∂ρ′

∂t
+ ρ0

∂u′

∂x
= 0, (4.1.6c)

ρ0h
′ + h0ρ

′ =
γ

γ − 1
p′. (4.1.6d)

1More precisely, the velocity should be small compared with the speed of sound (see Problem 1 in
Exercises 13).



4.1. General Properties of Compressible Flows 237

With (4.1.5), the impermeability condition (4.1.4) may be written as

u′
[
t, xw(t)

]
= ẋw(t). (4.1.7)

We take into account that xw(t) is small and use the Taylor expansion of u′
[
t, xw(t)

]

with respect to the second argument,

u′
[
t, xw(t)

]
= u′(t, 0) + xw(t)

∂u′

∂x
(t, 0) + · · · .

Since both xw and ∂u′/∂x are small, xw∂u
′/∂x represents a square of perturbations

term. It may therefore be disregarded, which reduces (4.1.7) to

u′ = ẋw(t) at x = 0. (4.1.8)

It is interesting to note that, as a result of the approximation used, the impermeability
condition has been transferred from the actual position x = xw(t) of the piston surface
to x = 0.

Now our task will be to solve the linearised Euler equations (4.1.6) subject to the
boundary condition (4.1.8). For this purpose, we shall try to eliminate from (4.1.6) all
the unknown functions except for the pressure perturbation p′. We start with cross-
differentiation of the momentum (4.1.6a) and continuity (4.1.6c) equations, which
allows us to eliminate u′, leading to

∂2ρ′

∂t2
− ∂2p′

∂x2
= 0. (4.1.9)

Differentiating the state equation (4.1.6d) with respect to time t and using the resulting
equation for eliminating h′ from the energy equation (4.1.6b) yields

∂ρ′

∂t
=

1

(γ − 1)h0

∂p′

∂t
. (4.1.10)

Now we can use (4.1.10) to eliminate ρ′ from equation (4.1.9). As a result, we arrive
at the classical wave equation for p′:

∂2p′

∂t2
− a2

∂2p′

∂x2
= 0, (4.1.11)

where
a =

√
(γ − 1)h0. (4.1.12)

The solution of equation (4.1.11) may easily be found by introducing the charac-
teristic variables

ξ = x− at, η = x+ at,

If we consider ξ and η as new independent variables, then equation (4.1.11) may be
expressed in the form

∂2p′

∂ξ∂η
= 0,

with the general solution being

p′(t, x) = f(ξ) + g(η). (4.1.13)

Here f(ξ) and g(η) are arbitrary functions of their respective arguments.
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In order to determine these functions, it is helpful to clarify their physical content.
It may easily be seen that the function f(ξ) = f(x − at) represents a wave that
propagates through the gas medium in the positive x-direction. It is produced by the
motion of the cylinder surface, and then travels away from the cylinder with constant
speed a, keeping the profile of perturbations unchanged. The function g(η) = g(x+at)
represents a similar wave travelling in the opposite direction. For such a wave to exist,
there should be another source of perturbations situated at some position x0 > 0.
Therefore, if we assume that the piston shown in Figure 4.3 is the only source of
perturbations in the cylinder, then we have to write (4.1.13) as

p′(t, x) = f(x− at). (4.1.14)

To determine the function f(x − at), the impermeability condition (4.1.8) should
be used. It may be reformulated for p′ by setting x = 0 in the momentum equation
(4.1.6a) and using (4.1.8) for u′. We have

∂p′

∂x

∣∣∣∣
x=0

= −ρ0ẍw(t). (4.1.15)

Substitution of (4.1.14) into (4.1.15) yields

f ′(−at) = −ρ0ẍw(t),

which, being integrated, gives

f(−at) = aρ0ẋw(t) + C.

Denoting the argument of the function f by s, we have

f(s) = aρ0ẋw(−s/a) + C. (4.1.16)

It remains to substitute (4.1.16) back into (4.1.14), and we find that the pressure
perturbations propagating through the gas contained inside the cylinder are given by

p′(t, x) = aρ0ẋw

(
t− x

a

)
. (4.1.17)

The constant of integration C has been disregarded in this formula for the simple
reason that the gas medium should remain unperturbed (p′ = 0) when the piston
remains motionless (ẋw = 0).

Formula (4.1.17) may, in particular, be used to determine the pressure on the piston
surface itself. Setting x = 0, we find

p′ = aρ0ẋw(t).

It is interesting to note that the solution of the piston problem could be expressed
in a simple analytical form (4.1.17) without any particular restriction on the function
xw(t), except that the piston speed ẋw(t) was assumed to be small, such that only weak
perturbations are induced in the gas medium. Piston theory has various applications.
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It may be used, for instance, to describe the generation of sound, in which case the
piston should be thought of as a membrane performing harmonic oscillations in the
acoustic frequency range. The speed of acoustic waves, a, is, of course, the same as the
speed of any other small perturbation, which is why the quantity given by equation
(4.1.12) is referred to as the speed of sound.

In Section 4.5, we shall see that when the perturbations are not small, they can
form shock waves. These are able to propagate through the gas medium with a speed
that exceeds the speed of sound. This is illustrated in Figure 4.4, which shows a
visualisation of supersonic flow past a sphere. A bow shock wave is clearly visible in
front of the sphere. In the far field above and below the sphere, where the shock is
weak, it degenerates into a sonic wave, and the slope angle Θ may be calculated using
equation (4.1.1). However, closer to the sphere, the perturbations become stronger and
the shock starts to bend, connecting smoothly the two extremes predicted by (4.1.1).
Directly in front of the sphere, the shock is perpendicular to the oncoming flow, and
moves in the same direction and with the same speed as the sphere itself; the latter
may, obviously, be propelled through the gas with arbitrary velocity.

Fig. 4.4: Supersonic flow past a sphere. Photograph by A. C. Charters; reprinted from
Van Dyke (1982), p. 164, Figure 266.

4.2 Integrals of Motion

Here we shall return to the nonlinear equations (4.1.2) and deduce a number of integrals
of motion, starting with the compressible version of Bernoulli’s integral.

4.2.1 Bernoulli’s integral

Similar to the incompressible case (see Theorem 3.1, page 130) we shall assume that
(i) the gas flow is steady and (ii) the body force has potential, f = −∇U . Then the
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momentum equation (4.1.2a) may be written as

(
V · ∇

)
V = −∇U − 1

ρ
∇p, (4.2.1)

and the energy equation (4.1.2b) takes the form

V · ∇h =
1

ρ

(
V · ∇p

)
. (4.2.2)

Using the Lamb identity

(
V · ∇

)
V = ∇

(
V 2

2

)
+ ω ×V, (4.2.3)

we can recast equation (4.2.1) in the form

∇
(
V 2

2

)
+ ω ×V = −∇U − 1

ρ
∇p. (4.2.4)

Let us now consider the scalar product of (4.2.4) with the velocity vector V. Taking
into account that ω ×V is perpendicular to V, we have

V · ∇
(
V 2

2
+ U

)
= −1

ρ

(
V · ∇p

)
. (4.2.5)

Combining (4.2.5) with the energy equation (4.2.2) yields

V · ∇
(
h+

V 2

2
+ U

)
= 0.

This proves that the following theorem is valid.

Theorem 4.1 In a steady inviscid compressible fluid flow taking place in the field of
the body force f that has potential U , the Bernoulli integral holds; that is,

h+
V 2

2
+ U

remains constant along each streamline.

If the influence of the gravitational force f on flow behaviour may be neglected,
then Bernoulli’s equation assumes the form

h+
V 2

2
= const, (4.2.6)

which means that the function

H = h+
V 2

2
, (4.2.7)

referred to as the total enthalpy, does not change along streamlines.
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M

∞

Fig. 4.5: Calculation of the constant in the Bernoulli equation (4.2.6).

In particular, when dealing with flow around a rigid body that is placed into a
uniform stream, one can easily calculate the constant on the right-hand side of the
Bernoulli equation (4.2.6) from the free-stream conditions. Indeed, for any point M
in the flow field (see Figure 4.5) that may be ‘connected’ via a streamline with the
oncoming unperturbed flow,2 we have

h+
V 2

2
= h∞ +

V 2
∞

2
, (4.2.8)

where h∞ and V∞ are undisturbed values of the enthalpy and velocity in the oncoming
flow.

In Section 4.5 we will demonstrate that the total enthalpy H is also preserved
across shock waves. This allows us to use the Bernoulli equation throughout the flow
field even if there are multiple shock waves.

4.2.2 Entropy conservation law

This law may be easily deduced from the energy and state equations, for which purpose
it is convenient to write the energy equation (4.1.2b) in terms of the full derivatives:

ρ
Dh

Dt
=
Dp

Dt
. (4.2.9)

Differentiation of the state equation (4.1.2d) gives

Dh

Dt
=

γ

γ − 1

1

ρ

Dp

Dt
− γ

γ − 1

p

ρ2
Dρ

Dt
.

When substituted into (4.2.9), this yields

1

p

Dp

Dt
− γ

1

ρ

Dρ

Dt
= 0,

or, equivalently,
D

Dt

(
ln

p

ργ

)
= 0.

We can conclude that the following theorem is valid.

2This apparently cannot be done for points in a recirculation region that might form if the flow
separates from the body surface.
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Theorem 4.2 In an inviscid flow, the entropy

S = C̃ +
R

γ − 1
ln

p

ργ

stays unchanged for any fluid particle as it travels through the flow field.

Unlike the Bernoulli integral (4.2.6), the entropy conservation law does not rely on
the assumption of steady flow, nor does it require the body force f to be potential.
However, it should be noted that the entropy does not remain constant across shock
waves. As will be shown in Section 4.5, it always increases when a fluid particle passes
through a shock wave. Therefore, special care should be taken when using Theorem 4.2
in supersonic flows.

If we consider a flow free of shock waves (any subsonic flow belongs to this category),
then we can write

p

ργ
=
p∞
ργ∞

(4.2.10)

for any fluid particle whose trajectory originates in the unperturbed flow, where the
pressure and density are equal to p∞ and ρ∞, respectively.

In a compressible flow, the Bernoulli equation (4.2.8) alone is not sufficient for
converting the velocity field in a moving fluid into the pressure field. Using the state
equation (4.1.2d), we can express (4.2.8) in the form

γ

γ − 1

p

ρ
+
V 2

2
=

γ

γ − 1

p∞
ρ∞

+
V 2
∞

2
. (4.2.11)

Since the density ρ is also an unknown quantity, one has to consider equation (4.2.11)
together with the entropy conservation law (4.2.10). These may be solved for pressure
p and density ρ at any point in the flow field where the velocity V is known.

The entropy conservation law can also be used to extend Kelvin’s Circulation
Theorem (see page 132) to compressible flows.

4.2.3 Kelvin’s Circulation Theorem

As in Section 3.1.2, we will be dealing here with a closed fluid contour C. Remember
that a contour C is termed a fluid contour if it is composed of the same set of fluid
particles. Obviously, the contour deforms with time as the fluid particles move in space.
The circulation along such contour is given at any instant t by the integral (3.1.8):

Γ(t) =

∮

C

V · dr.

Manipulations with the derivative of this integral, leading to formula (3.1.12), do not
rely on a particular form of the dynamic equations of fluid motion, and therefore may
be used not only for a flow of incompressible fluid but also for any compressible flow.
We have

dΓ

dt
=

L∫

0

(
DV

Dt
· ∂r
∂s

)
ds+

L∫

0

(
V · ∂

2r

∂s∂t

)
ds. (4.2.12)
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According to (3.1.13), the second integral in (4.2.12) may be reduced to

L∫

0

(
V · ∂

2r

∂s∂t

)
ds =

V 2

2

∣∣∣∣
s=L

− V 2

2

∣∣∣∣
s=0

.

It remains zero as long as the flow is free of shock waves and hence the velocity field
is continuous.

In order to evaluate the first integral in (4.2.12), we use the momentum equation
(4.1.2a). Assuming that the body force is potential, f = −∇U , we have

DV

Dt
= −1

ρ
∇p−∇U. (4.2.13)

If the contour C does not intersect a shock wave, and all the fluid particles lying on C
originate from a region where p = p∞ and ρ = ρ∞, then the entropy conservation law
(4.2.10) can be used. If we take logarithms on both sides of (4.2.10) and differentiate
the resulting equation, then we will have

1

p
∇p− γ

ρ
∇ρ = 0. (4.2.14)

Similarly, it follows from the state equation (4.1.2d) that

1

h
∇h =

1

p
∇p− 1

ρ
∇ρ. (4.2.15)

Elimination of ∇ρ/ρ from (4.2.14) and (4.2.15) results in

∇h = h
γ − 1

γ

∇p
p

=
∇p
ρ
. (4.2.16)

This allows us to express equation (4.2.13) in the form

DV

Dt
= −∇

(
h+ U

)
,

which, being substituted into (4.2.12), yields

dΓ

dt
= −

∮

C

∇
(
h+ U

)
· dr.

We see that
dΓ

dt
= 0

for any fluid contour that does not intersect a shock wave. The Kelvin Circulation
Theorem may be now rephrased as follows.

Theorem 4.3 In an inviscid fluid flow, the circulation along any closed fluid contour
C does not change with time, provided that (i) the body force f is potential, (ii) all the
fluid particles on C originate from a region where p = p∞ and ρ = ρ∞, and (iii) the
contour C does not intersect a shock wave.
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In Section 3.1.2, we demonstrated how Kelvin’s Circulation Theorem may be used
to identify the physical situations where a fluid flow may be treated as potential.
Now, having established that Kelvin’s theorem also holds for perfect gas flows, we can
see that the arguments of Section 3.1.2 are equally applicable to compressible flows.
Another powerful tool, which allows us to distinguish between irrotational flows and
flows with non-zero vorticity, is Crocco’s formula.

4.2.4 Crocco’s formula

Theorem 4.2 deals with the variation of the entropy S of a fluid particle as it travels
through a flow field. Let us now instead consider the variation of S between neighbour-
ing points in the flow field at a given time. For this purpose, we differentiate formula
(1.3.37). We find that the gradient of the entropy

∇S =
R

γ − 1

∇p
p

−R
γ

γ − 1

∇ρ
ρ
. (4.2.17)

With the help of the state equation (4.1.2d), formula (4.2.7) for the total enthalpy
may be written as

H =
γ

γ − 1

p

ρ
+
V 2

2
.

Differentiation of this formula yields

∇H =
γ

γ − 1

∇p
ρ

− γ

γ − 1

p

ρ2
∇ρ+∇

(
V 2

2

)
,

which may be rearranged as

− γ

γ − 1

∇ρ
ρ

=
ρ

p
∇H − γ

γ − 1

∇p
p

− ρ

p
∇
(
V 2

2

)
. (4.2.18)

Substitution of (4.2.18) into (4.2.17) leads to

∇S =
Rρ

p
∇H −R

∇p
p

− Rρ

p
∇
(
V 2

2

)
.

If we multiply both sides of this equation by the temperature T ,

T∇S =
ρRT

p
∇H −RT

∇p
p

− ρRT

p
∇
(
V 2

2

)
,

and recall that, for a perfect gas,
p = ρRT,

then we will have

T∇S = ∇H − 1

ρ
∇p−∇

(
V 2

2

)
. (4.2.19)

Let us now consider the momentum equation (4.1.2a). Using the identity (4.2.3),
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we can write it in the Lamb form,

∂V

∂t
+ ω ×V +∇

(
V 2

2

)
= f − 1

ρ
∇p. (4.2.20)

Comparing (4.2.20) with (4.2.19), we can easily see that the equation

ω ×V = T∇S −∇H − ∂V

∂t
+ f , (4.2.21)

termed Crocco’s formula, is valid.
This formula shows that if we exclude from consideration a special class of so-called

‘helical flows’, for which ω is parallel to V, then the following theorem may be easily
proven.

Theorem 4.4 If a flow of a perfect gas is steady and free of shock waves, the body
force is negligible, and the oncoming free-stream flow is uniform, then this flow is
irrotational.

Proof Under the conditions of the theorem, equations (4.2.8) and (4.2.10) hold
throughout the flow field, and therefore ∇H = ∇S = 0. Since the flow is assumed
to be steady, ∂V/∂t = 0, and the body force negligible, f = 0, we can conclude that
the right-hand side of equation (4.2.21) is zero. Thus, if the fluid is not at rest, i.e.
V 6= 0, and the vorticity ω is not parallel to the velocity vector V, then ω should be
zero. ✷

It should be noted that Kelvin’s Circulation Theorem allows us to arrive at the
same conclusion without relying on the assumption of steady flow; the body force
may be also included, provided it is potential, f = −∇U . However, the importance of
Crocco’s formula becomes evident when analysing the influence of shock waves on the
vorticity ω. Many flows of practical interest involve only weak shocks. To this category
belong, for example, all transonic and supersonic flows past thin aerofoils (see Part 2
of this book series). The fact is that, in these flows, the velocity vector jump ∆V

across a weak shock is small, |∆V| ≪ 1, but the entropy jump is even smaller. It may
be estimated (see Problem 3 in Exercises 15) as ∆S ∼ |∆V|3. Therefore, according to
(4.2.21), the vorticity ω may be treated as zero to the leading-order approximation.

4.2.5 D’Alembert’s paradox

D’Alembert’s paradox, which states that in an inviscid steady flow a rigid body cannot
produce drag, was discussed in Section 3.2.1 in application to a sphere, and then in
Section 3.4.3 in application to a general two-dimensional incompressible flow. Now our
task will be to extend this result to include compressible flows. We shall deal here with
three-dimensional flow of a perfect gas. Let us assume that a rigid body with surface
S is placed into a uniform flow with free-stream velocity vector V∞, pressure p∞, and
density ρ∞; see Figure 4.6(a).
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Assuming that the flow is steady, we can write the governing Euler equations (4.1.2)
in the form

ρ
(
V · ∇

)
V = ρ f −∇p, ρ

(
V · ∇h

)
= V · ∇p,

div(ρV) = 0, h =
γ

γ − 1

p

ρ
.




 (4.2.22)

They hold everywhere outside the body surface S, and should be solved subject to the
impermeability condition (

V · n
)∣∣∣

S
= 0 (4.2.23)

and the free-stream conditions

V → V∞,

p→ p∞,

ρ→ ρ∞





as |r| → ∞. (4.2.24)

Let us assume that the solution of the boundary-value problem (4.2.22)–(4.2.24)
has been found, such that the velocity vector V, pressure p, density ρ, and enthalpy
h are known throughout the flow field and, in particular, on the body surface. Then
the resultant force acting upon the body may be calculated as

R = −
∫∫

S

pn ds. (4.2.25)

We shall now place the same body in the reversed flow; see Figure 4.6(b). In this
case, the governing equations (4.2.22) and the impermeability condition (4.2.23) will
remain unchanged. We only need to reformulate the free-stream conditions, which now
assume the form

V → V̆∞,

p→ p∞,

ρ→ ρ∞





as |r| → ∞, (4.2.26)

where V̆∞ = −V∞.

S

V∞

R

D

(a) Direct flow.

S

V̆∞

R

D

(b) Reversed flow.

Fig. 4.6: Direct and reversed flows past a rigid body.
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Of course, finding the solution of the boundary-value problem (4.2.22), (4.2.23),
(4.2.26) for an arbitrary body shape is an impossible task. However, with a known

solution V, p, ρ, h for the direct flow, the velocity field V̆, pressure p̆, density ρ̆, and
enthalpy h̆ in the reversed flow may easily be calculated by setting

V̆ = −V, p̆ = p, ρ̆ = ρ, h̆ = h. (4.2.27)

Indeed, taking into account that V, p, ρ, and h satisfy equations (4.2.22)–(4.2.24),
one can easily verify by direct substitution of (4.2.27) into equations (4.2.22), (4.2.23),
and (4.2.26) that the latter reduce to identities.

The resultant force acting upon the body in the reversed flow is calculated as

R̆ = −
∫∫

S

p̆n ds = −
∫∫

S

pn ds,

and proves to coincide with the resultant force (4.2.25) in the direct flow. The drag D
is the projection of the resultant force on the free-stream direction (see Figure 4.6).
Hence, if, in the direct flow, the body drag is non-zero, presumed positive, then, in
the reversed flow, it has to be negative. The latter, however, is impossible, since it
would mean that each time when a body produces a drag, one could turn it over, and
the body would be able to accelerate itself without consuming any energy. We have to
conclude once again that the flow calculations based on the inviscid theory are bound
to result in zero drag.

Exercises 13

1. Using formula (4.1.17), demonstrate that for the pressure perturbations p′ to be
small compared with the initial pressure p0, the following condition should hold:

ẋw ≪ a.

2. Modify the analysis of pressure perturbations in Section 4.1.2 assuming this time
that the cylinder has an end plate AA′ situated at x = x0 as shown in Figure 4.7.

xxw(t)
x0

A

A′

Fig. 4.7: A cylinder with a closed end.

(a) Argue that the solution (4.1.17) remains valid everywhere between the piston
and the closing plate AA′ during the time interval t ∈ (0, x0/a). Here t = 0
is the time when the piston starts to move. What is the significance of time
t = x0/a?
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(b) Notice that, after the perturbations start to reflect from the end plate AA′,
the solution should be written as

p′(t, x) = aρ0ẋw

(
t− x

a

)
+ g(x+ at).

Find the function g(x+ at) by imposing the impermeability condition

v′ = 0 at x = x0

on the surface of the end plate AA′.

(c) Show that the reflected wave increases the pressure on AA′ twofold.

3. Consider an unsteady flow of a perfect gas in a region D. Assume that

(a) the flow is potential, i.e. V = ∇ϕ;
(b) the body force f is also potential, i.e. f = −∇U ;

(c) all the fluid particles in region D originate from a region D0 where p = p∞
and ρ = ρ∞, and the fluid particles do not cross shock waves as they travel
from region D0 to region D.

Show that, under these conditions, the Cauchy–Lagrange integral

∂ϕ

∂t
+
V 2

2
+ h+ U = F(t) (4.2.28)

holds in region D, where F(t) is a function of time t only.
Hint : Notice that, under conditions (a) and (b), the momentum equation

(4.1.2a) may be written as

∇
(
∂ϕ

∂t
+
V 2

2
+ U

)
= −1

ρ
∇p.

Then argue that, under condition (c), equation (4.2.16) may be used.

4. Consider a wind tunnel whose cross-sectional area A is known as a function of
the longitudinal coordinate x, as shown in Figure 4.8. The flow in the tunnel is
steady and may be assumed to be one-dimensional, i.e. the velocity vector has
only one component, V = (u, 0, 0), and the fluid-dynamic functions u, p, and ρ
depend on x only.

x

A(x)

Fig. 4.8: Wind tunnel with a throat shaped in the form of a Laval nozzle.
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Using the mass conservation law

ρuA = const, (4.2.29)

the Bernoulli equation
γ

γ − 1

p

ρ
+
u2

2
= const, (4.2.30)

and the entropy conservation law

p

ργ
= const, (4.2.31)

deduce the following equation for the rate of change of the velocity along the
tunnel:

1

u

du

dx
=

1

M2 − 1

1

A

dA

dx
.

Here M is the local value of the Mach number.
Explain why the tunnel should be shaped as shown in Figure 4.8 to enable

the flow to accelerate the flow from a subsonic to a supersonic speed?

5. Before entering a supersonic wind tunnel (see Figure 4.9), a gas is accumulated
in a gas holder. Given that the speed of sound in the gas holder is a0, find

(a) the gas velocity V∗ in the wind tunnel throat OO′, where the local Mach
number M = 1;

(b) the maximum possible gas speed that may be achieved by accelerating the
flow to infinite Mach number. What happens with the gas temperature in
this acceleration?

O

O′

Fig. 4.9: Supersonic wind tunnel.

Suggestion: You may assume that the flow in the wind tunnel is one-dimensional.

6. Using the Bernoulli equation (4.2.30), prove that, along any streamline,

u

(
1 +

2

(γ − 1)M2

)1/2

= const, a

(
1 +

γ − 1

2
M2

)1/2

= const,

T

(
1 +

γ − 1

2
M2

)
= const.

Using further the entropy conservation law (4.2.31), prove that the following equa-
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tions hold along streamlines:

[
1 +

1

2
(γ − 1)M2

]γ/(γ−1)

p = const,

[
1 +

1

2
(γ − 1)M2

]1/(γ−1)

ρ = const.

Consider now a wind tunnel. Assuming the flow in the wind tunnel to be one-
dimensional, make use of the mass conservation law (4.2.29) and show that Mach
number is related to the cross-sectional area A as

M
[
1 + 1

2
(γ − 1)M2

] 1

2
(γ+1)/(γ−1)

A = const.

4.3 Steady Potential Flows

As was shown in Section 3.2, potential flows of incompressible fluids are governed
by Laplace’s equation (3.2.7) for the velocity potential ϕ. We shall now formulate
an equivalent version of this equation for compressible flows. In order to simplify the
analysis, we shall assume that the flow considered is steady and that there is no body
force acting on the fluid, i.e. f = 0. Then the Euler equations (4.1.2) may be written as

ω ×V +∇
(
V 2

2

)
= −1

ρ
∇p (momentum equation), (4.3.1a)

ρ
(
V · ∇h

)
= V · ∇p (energy equation), (4.3.1b)

ρdivV +V · ∇ρ = 0 (continuity equation), (4.3.1c)

h =
γ

γ − 1

p

ρ
(state equation). (4.3.1d)

Let us try to derive a single equation for the velocity V by eliminating from equa-
tions (4.3.1) all other quantities. Substitution of the state equation (4.3.1d) into the
energy equation (4.3.1b) yields

ρV ·
(

γ

γ − 1

∇p
ρ

− γ

γ − 1

p

ρ2
∇ρ
)

= V · ∇p,

which may easily be simplified to show that the gradient of the density, ∇ρ, is related
to the pressure gradient ∇p as

γ
p

ρ

(
V · ∇ρ

)
= V · ∇p. (4.3.2)

Combining equations (4.1.12) and (4.3.1d), we see that

γ
p

ρ
= (γ − 1)h = a2, (4.3.3)

where a is the local value of the speed of sound. Using (4.3.3) in (4.3.2), we find

V · ∇ρ =
1

a2
(
V · ∇p

)
.
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This equation allows us to eliminate the density gradient ∇ρ from the continuity
equation (4.3.1c), leading to

a2ρdivV +V · ∇p = 0. (4.3.4)

It remains to eliminate the pressure gradient ∇p from (4.3.4). For this purpose, we
multiply the momentum equation (4.3.1a) by the velocity vector V. We have

V · ∇
(
V 2

2

)
= −1

ρ

(
V · ∇p

)
. (4.3.5)

Comparing (4.3.5) with (4.3.4), we see that the sought equation for V has the form

V · ∇
(
V 2

2

)
= a2 divV. (4.3.6)

If the Mach number is small everywhere in the flow field, i.e. V ≪ a, then equation
(4.3.6) reduces to

divV = 0, (4.3.7)

i.e. this is the same as the incompressible continuity equation (1.7.1). If, further, the
flow is potential,

V = ∇ϕ, (4.3.8)

then to describe the fluid motion, one needs to solve Laplace’s equation

∇2ϕ = 0,

which is obtained by substituting (4.3.8) into (4.3.7).
If, on the other hand, the gas velocity V is comparable to the speed of sound, a,

then one has to deal with the entire equation (4.3.6). When solving this equation one
needs to calculate the local value of the speed of sound, a, at each point in the flow.
For this purpose, one uses the Bernoulli equation

a2

γ − 1
+
V 2

2
=

a2∞
γ − 1

+
V 2
∞

2
. (4.3.9)

This form of the Bernoulli equation is obtained by substituting (4.3.3) into (4.2.11).

4.3.1 Two-dimensional flows

In the two-dimensional case, when the velocity vector is composed of two components
V = (u, v), equation (4.3.6) is written as

u
∂

∂x

(
u2 + v2

2

)
+ v

∂

∂y

(
u2 + v2

2

)
= a2

(
∂u

∂x
+
∂v

∂y

)
,

and, after simple manipulations, it may be reduced to the form

(a2 − u2)
∂u

∂x
+ (a2 − v2)

∂v

∂y
= uv

(
∂v

∂x
+
∂u

∂y

)
. (4.3.10)
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If the flow is potential, then equation (4.3.8) may be used. Alternatively, we can
state that the vorticity ω is zero. For two-dimensional flows, this condition is written
as

∂v

∂x
− ∂u

∂y
= 0. (4.3.11)

In order to close the set of equations (4.3.10), (4.3.11), we finally need to use equation
(4.3.9):

a2 = a2∞ +
γ − 1

2

[
V 2
∞ − (u2 + v2)

]
. (4.3.12)

4.4 The Theory of Characteristics

Equations (4.3.10) and (4.3.11) represent a particular form of the quasi-linear set of
partial differential equations

a11
∂u

∂x
+ a12

∂u

∂y
+ b11

∂v

∂x
+ b12

∂v

∂y
= c1,

a21
∂u

∂x
+ a22

∂u

∂y
+ b21

∂v

∂x
+ b22

∂v

∂y
= c2,





(4.4.1)

where the coefficients aij , bij , and ci are function of x, y, u, and v.
We shall pose the following initial-value problem for (4.4.1). Let L be a line in

the (x, y)-plane given by the equation y = y(x). We shall assume that along this line
distributions of u and v are known, say, in the form of functions u = ũ(x) and v = ṽ(x).
Using these functions as initial data, our purpose will be to construct the solution
u(x, y), v(x, y) of equations (4.4.1) in some neighbourhood of L. This problem may be
also formulated in the four-dimensional space (x, y, u, v), where the initial conditions
are represented by a line L, whose shape is defined by functions y = y(x), u = ũ(x),
and v = ṽ(x). The task of finding the solution of equations (4.4.1) is equivalent to
constructing an integral surface S in the (x, y, u, v)-space passing through L.

Returning to the physical space (x, y), we note that in order to extend the solution
a small distance from the initial line L, one needs to find the derivatives ∂u/∂x, ∂u/∂y,
∂v/∂x, and ∂v/∂y at each point on L. The functions ũ(x), ṽ(x), representing the initial
conditions, are related to the sought solution u(x, y), v(x, y) by the equations

ũ(x) = u
[
x, y(x)

]
, ṽ(x) = v

[
x, y(x)

]
. (4.4.2)

Differentiating (4.4.2), we have

dũ

dx
=
∂u

∂x
+ χ

∂u

∂y
,

dṽ

dx
=
∂v

∂x
+ χ

∂v

∂y
, (4.4.3)

where χ is the slope of line L,
χ =

dy

dx
. (4.4.4)

With equations (4.4.1) considered on line L, we can use (4.4.3) to eliminate ∂u/∂x
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and ∂v/∂x in (4.4.1), leading to

(
a12 − χa11

)∂u
∂y

+
(
b12 − χb11

)∂v
∂y

= c1 − a11
dũ

dx
− b11

dṽ

dx
,

(
a22 − χa21

)∂u
∂y

+
(
b22 − χb21

)∂v
∂y

= c2 − a21
dũ

dx
− b21

dṽ

dx
.





(4.4.5)

The right-hand sides of equations (4.4.5) are known on L, as are the coefficients of
∂u/∂y and ∂v/∂y on the left-hand sides. We need to find out if these equations can
be resolved for ∂u/∂y and ∂v/∂y. To answer this question, one has to consider the
determinant of the matrix composed of the coefficient on the left-hand side of (4.4.5):

∆ =

∣∣∣∣∣
a12 − χa11 b12 − χb11

a22 − χa21 b22 − χb21

∣∣∣∣∣ = Aχ2 + 2Bχ+ C, (4.4.6)

where

A =

∣∣∣∣∣
a11 b11

a21 b21

∣∣∣∣∣ , 2B =

∣∣∣∣∣
b11 a12

b21 a22

∣∣∣∣∣+
∣∣∣∣∣
b12 a11

b22 a21

∣∣∣∣∣ , C =

∣∣∣∣∣
a12 b12

a22 b22

∣∣∣∣∣ .

If ∆ 6= 0, then the solution of equations (4.4.5) exists and is unique. With the condition
∆ 6= 0 holding everywhere along the initial line L, one can calculate ∂u/∂y and ∂v/∂y
at each point on L. Then, using (4.4.3), ∂u/∂x and ∂v/∂x may also be found, and
the solution of equations (4.4.1) may be extended into a small neighbourhood of the
initial line L. Choosing a neighbouring line L′, one can repeat the above procedure
and extend the solution further.

If, on the other hand,
∆ = 0, (4.4.7)

then, for a solution of (4.4.5) to exist, the initial functions u = ũ(x) and v = ṽ(x)
should satisfy a compatibility condition. In order to formulate this condition, one has
to analyse the determinant of the matrix that is obtained by substituting the first
column in (4.4.6) by the right-hand side of (4.4.5), i.e.3

∆u =

∣∣∣∣∣∣∣

c1 − a11
dũ

dx
− b11

dṽ

dx
b12 − χb11

c2 − a21
dũ

dx
− b21

dṽ

dx
b22 − χb21

∣∣∣∣∣∣∣
= (Aχ+E)

dũ

dx
+D

dṽ

dx
+M + χN,

3Remember that, according to Cramer’s rule, the solution of (4.4.5) may be written as

∂u

∂y
=

∆u

∆
,

∂v

∂y
=

∆v

∆
.

where ∆v is obtained by substituting the second column in (4.4.6) by the right-hand side of (4.4.5),

∆v =

∣

∣

∣

∣

∣

∣

∣

∣

a12 − χa11 c1 − a11
dũ

dx
− b11

dṽ

dx

a22 − χa21 c2 − a21
dũ

dx
− b21

dṽ

dx

∣

∣

∣

∣

∣

∣

∣

∣

.
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where

E =

∣∣∣∣∣
b12 a11

b22 a21

∣∣∣∣∣ , D =

∣∣∣∣∣
b12 b11

b22 b21

∣∣∣∣∣ , M =

∣∣∣∣∣
c1 b12

c2 b22

∣∣∣∣∣ , N =

∣∣∣∣∣
b11 c1

b21 c2

∣∣∣∣∣ .

Under condition (4.4.7), which may be written as

Aχ2 + 2Bχ+ C = 0, (4.4.8)

for a solution to exist, ∆u should also be zero:4

(Aχ+ E)
dũ

dx
+D

dṽ

dx
+M + χN = 0. (4.4.9)

In this case, equations (4.4.5) admit an infinite number of solutions; i.e., through the
initial line L in the four-dimensional space (x, y, u, v), one can draw an infinite number
of integral surfaces S.

Depending on the existence of real solutions of the quadratic equation (4.4.8), sets
of partial differential equations (4.4.1) are classified as follows.

Definition 4.1 If the coefficients of equations (4.4.1) are such that B2 − AC < 0,
then the set of equations (4.4.1) is called elliptic. If, on the other hand, B2−AC > 0,
then it is called hyperbolic.

No real solutions of equation (4.4.8) exist if equations (4.4.1) are elliptic, and there
are two solutions

χ1,2 =
−B ±

√
B2 −AC

A
(4.4.10)

if they are hyperbolic. In the latter case, characteristics may be introduced according
to the following definition.

Definition 4.2 The line L(c) whose slope dy/dx = χ at each point on L(c) coincides
with one of the solutions (4.4.10) of equation (4.4.8) is called a characteristic of the
set of equations (4.4.1).

The above discussion suggests that if the set of equations (4.4.1) is hyperbolic, then
to ensure that the initial-value problem for (4.4.1) is well-posed, one has to choose the
initial line L in the (x, y)-plane in such a way that at no point on L will its slope χ
coincide with the slope (4.4.10) of a characteristic. This guarantees that ∆ 6= 0 on
L, and therefore a unique solution of (4.4.1) may be constructed at least in a small
neighbourhood of L.

Let us now suppose that the solution has been constructed in a region D in the
(x, y)-plane, and distributions of u(x, y) and v(x, y) over D are therefore known. Using
this solution, one can calculate the coefficients aij , bij , and ci in equations (4.4.1) and
then find distributions of the functions χ1(x, y) and χ2(x, y) in D. With χ1(x, y) and

4Note that if ∆ = ∆u = 0, then owing to the proportionality of the columns in ∆ and ∆u, the
determinant ∆v automatically turns out to be zero.
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Fig. 4.10: Characteristics.

χ2(x, y) known, one can draw through any point in D two characteristics by integrating
the equations

dy

dx
= χ1,

dy

dx
= χ2.

Considered together, they form two families of characteristics as shown in Figure 4.10.
Along each characteristic, ∆ = 0, and, since the characteristics have been con-

structed based on an existing solution, we can claim that ∆u should also be zero. If,
for example, we consider a characteristic of the first family, for which

dy

dx
= χ1, (4.4.11)

then, using χ1 instead of χ in (4.4.9), we can write

(Aχ1 + E)
du

dx
+D

dv

dx
+M + χ1N = 0. (4.4.12)

Here, instead of ‘initial functions’ ũ, ṽ, we use functions u, v representing a solution
of equations (4.4.1).

Equations (4.4.11) and (4.4.12) may be further written in the form

dy = χ1 dx, (4.4.13a)

(Aχ1 +E) du+Ddv +Mdx+Ndy = 0. (4.4.13b)

Similarly, for the characteristics of the second family, we have

dy = χ2 dx, (4.4.14a)

(Aχ2 +E) du+Ddv +Mdx+Ndy = 0. (4.4.14b)

If one thinks of a solution of equations (4.4.1) as being represented by a surface
S in the four-dimensional (x, y, u, v)-space, then through any point on this surface
two characteristics may be drawn. Equations (4.4.13a) and (4.4.14a) represent their
projections onto the physical (x, y)-plane. The projections onto the hodograph (u, v)-
plane are given by equations (4.4.13b) and (4.4.14b), which, on integration, give the
so-called Riemann invariants of the equations (4.4.1).
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It should be noted that functions u and v do not remain independent when con-
sidered on a characteristic. Instead, they vary according to equations (4.4.13b) and
(4.4.14b). This, first, confirms that if the initial line L coincides with one of the char-
acteristics, then the initial-value problem for equations (4.4.1) cannot be solved, at
least for arbitrary initial functions u = ũ(x) and v = ṽ(x). Second, it shows that the
characteristics may be thought of as channels through which the information prop-
agates in hyperbolic systems. To clarify this latter point, we shall now give a short
description of the method of characteristics, one of the numerical techniques that may
be used to calculate solutions to hyperbolic equations.

4.4.1 The method of characteristics

Suppose that the solution of equations (4.4.1) has to be found to the right of the
initial line L (see Figure 4.11). Suppose further that the initial conditions for u and
v are given on an interval [A,B] on this line. Then, in order to use the method of
characteristics, one has to divide [A,B] into N small subintervals

[
Mi−1,Mi

]
, i = 1, . . . , N, (4.4.15)

where M0 is assumed to coincide with point A and MN with point B.
Let us consider one of these subintervals,

[
Mi−1,Mi

]
. Using equations (4.4.13a)

and (4.4.14a), we can draw two characteristics from each end of the subinterval. For
this purpose, χ1 and χ2 are calculated using the values of u and v at points Mi and
Mi−1, respectively. Provided that the slope χ = dy/dx of line L does not coincide
with χ1 or χ2, we will have four characteristics lying to the right of line L as shown in
Figure 4.11. Two of them intersect at pointM ′

i . We shall denote the coordinates of this
point by (x′i, y

′
i). To find the values u′i and v

′
i of the functions u and v atM ′

i , equations
(4.4.13b) and (4.4.14b) should be used. To be definite, we shall assume that Mi−1M

′
i

is a characteristic of the first family. Then writing (4.4.13b) in finite-difference form,
we will have

(Aχ1 + E)(u′i − ui−1) +D(v′i − vi−1) +M(x′i − xi−1) +N(y′i − yi−1) = 0. (4.4.16)

x

y

L

A

B

C

Mi−1

Mi M ′

i

Fig. 4.11: The method of characteristics.
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Here ui−1 and vi−1 are the values of u and v at point Mi−1 and (xi−1, yi−1) are the
coordinates of this point. Similarly, equation (4.4.14b) should be used on MiM

′
i . It

gives

(Aχ2 +E)(u′i − ui) +D(v′i − vi) +M(x′i − xi) +N(y′i − yi) = 0. (4.4.17)

We have obtained two linear algebraic equations (4.4.16) and (4.4.17), which may
easily be solved for u′i and v

′
i.

This procedure, being repeated for all subintervals (4.4.15), allows us to extend the
solution one step into the triangular region ABC that is bounded by the characteristics
AC and BC emerging from points A and B. The calculations may, of course, be
continued until the solution is known in the entire region ABC.

4.4.2 Supersonic flows

Let us now return to the equations (4.3.10) and (4.3.11) governing two-dimensional
steady potential gas flows. Comparing them with equations (4.4.1), we can see that

a11 = a2 − u2, a12 = −uv, b11 = −uv, b12 = a2 − v2, c1 = 0,

a21 = 0, a22 = −1, b21 = 1, b22 = 0, c2 = 0,

and therefore

A = a2 − u2, B = uv, C = D = a2 − v2, E =M = N = 0. (4.4.18)

The type of the equations, i.e. elliptic or hyperbolic, is determined by the sign of
B2 − AC. Using (4.4.18), we find

B2 − AC = u2v2 − (a2 − u2)(a2 − v2)

= u2v2 − a4 + a2u2 + a2v2 − u2v2 = a2(u2 + v2)− a4 = a2(V 2 − a2).

Hence, equations (4.3.10) and (4.3.11) are elliptic if the flow is subsonic (V < a) and
hyperbolic if it is supersonic (V > a). In the latter case, the characteristics may be
introduced. Their slope in the (x, y)-plane is given by formula (4.4.10), which can now
be written as

χ1,2 =
−uv ± a

√
V 2 − a2

a2 − u2
. (4.4.19)

With V being the velocity modulus and ϑ the angle made by the velocity vector with
the x-axis, we can write (see Figure 4.12)

u = V cosϑ, v = V sinϑ. (4.4.20)
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Fig. 4.12: Characteristics in the physical (x, y)-plane.

We can further see, by comparing Figure 4.12 with Figure 4.2, that

a = V sinΘ, (4.4.21)

where Θ is the Mach angle. Substitution of (4.4.20) and (4.4.21) into (4.4.19) gives

χ1,2 =
−V 2 sinϑ cosϑ± V 2 sinΘ cosΘ

V 2 sin2 Θ− V 2 cos2 ϑ
=

sinϑ cosϑ∓ sinΘ cosΘ

cos2 ϑ− sin2 Θ

=
sin 2ϑ∓ sin 2Θ

cos 2ϑ+ cos 2Θ
=

sin(ϑ∓Θ) cos(ϑ±Θ)

cos(ϑ+Θ) cos(ϑ−Θ)
= tan(ϑ∓Θ). (4.4.22)

This proves that the projections of the characteristics onto the (x, y)-plane coincide
with the Mach lines. The plus sign in tan(ϑ ∓ Θ) is normally assigned to the char-
acteristic of the first family, which is obtained by rotating the velocity vector in a
counter-clockwise direction through an angle Θ, while the minus sign is assigned to
the characteristic of the second family. Using this convention, we will write (4.4.19) as

χ1,2 =
−uv ∓ a

√
V 2 − a2

a2 − u2
. (4.4.23)

We shall now analyse the characteristics in the hodograph (u, v)-plane. Using
(4.4.18) in equations (4.4.13b) and (4.4.14b), we find that, along a characteristic of
either family,

(a2 − u2)χ1,2 du+ (a2 − v2) dv = 0. (4.4.24)

Hence, the slope of the characteristic in the hodograph plane may be calculated as

dv

du

∣∣∣∣
1,2

= −a
2 − u2

a2 − v2
χ1,2. (4.4.25)
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Substitution of (4.4.23) into (4.4.25) yields

dv

du

∣∣∣∣
1,2

=
uv ± a

√
V 2 − a2

a2 − v2
. (4.4.26)

Multiplying the numerator and denominator by uv ∓ a
√
V 2 − a2, we have

dv

du

∣∣∣∣
1,2

=
u2v2 − a2V 2 + a4

(a2 − v2)(uv ∓ a
√
V 2 − a2)

=
u2v2 − a2u2 − a2v2 + a4

(a2 − v2)(uv ∓ a
√
V 2 − a2)

=
(u2 − a2)(v2 − a2)

(a2 − v2)(uv ∓ a
√
V 2 − a2)

= − a2 − u2

−uv ± a
√
V 2 − a2

. (4.4.27)

Comparing (4.4.27) with (4.4.23), we can easily see that

dv

du

∣∣∣∣
1,2

= − 1

χ2,1
.

This proves that if two characteristics are drawn through a point on the surface S rep-
resenting the solution in the (x, y, u, v)-space, then the projection of the characteristic
of the first family onto the hodograph (u, v)-plane appears to be perpendicular to the
projection of the characteristic of the second family onto the physical (x, y)-plane, and
vice versa.

Let us now return to equation (4.4.26) and write it in the form

(
uv ± a

√
V 2 − a2

)
du = (a2 − v2) dv. (4.4.28)

If we use for the velocity components u and v formulae (4.4.20), then their variations
du and dv may be expressed as

du = −V sinϑ dϑ+ cosϑ dV, dv = V cosϑ dϑ+ sinϑ dV. (4.4.29)

Substitution of (4.4.20) and (4.4.29) into (4.4.28) yields

−aV
(
a cosϑ±

√
V 2 − a2 sinϑ

)
dϑ±

√
V 2 − a2

(
a cosϑ±

√
V 2 − a2 sinϑ

)
dV = 0,

or, equivalently,

(
a cosϑ±

√
V 2 − a2 sinϑ

)(
aV dϑ∓

√
V 2 − a2 dV

)
= 0. (4.4.30)

The first multiplier in this equation is not zero unless the angle ϑ made by the
velocity vector V with the x-axis is such that

tanϑ = ∓ a√
V 2 − a2

= ∓ 1√
M2 − 1

,

which may easily be avoided by simple rotation of the coordinate system. Consequently,
to study the variations of the velocity modulus V and its directional angle ϑ along the
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characteristics, one has to set to zero the second multiplier in (4.4.30):

aV dϑ∓
√
V 2 − a2 dV = 0.

We have

dϑ∓
√
M2 − 1

dV

V
= 0. (4.4.31)

Here, as usual, the upper sign corresponds to the first family of characteristics and the
lower to the second.

In order to integrate equation (4.4.31), one needs to find a relationship between the
velocity V and the local Mach number M . For this purpose, the Bernoulli equation
(4.3.9) is used:

a2

γ − 1
+
V 2

2
=

a2∞
γ − 1

+
V 2
∞

2
. (4.4.32)

It may be rewritten in the form

V 2

2

[
1 +

2

(γ − 1)M2

]
=

a2∞
γ − 1

+
V 2
∞

2
. (4.4.33)

Taking the logarithm of both sides of (4.4.33) and differentiating the resulting equa-
tion, we find

dV

V
=

1

1 + 1
2
(γ − 1)M2

dM

M
,

which, on substitution into (4.4.31), yields

dϑ∓
√
M2 − 1

1 + 1
2(γ − 1)M2

dM

M
= 0. (4.4.34)

Integration of (4.4.34) leads to

ϑ∓ ν(M) = const, (4.4.35)

where

ν(M) =

√
γ + 1

γ − 1
arctan

(√
γ − 1

γ + 1
(M2 − 1)

)
− arctan

(√
M2 − 1

)
(4.4.36)

is referred to as the Prandtl–Meyer function. Equation (4.4.35) holds along each char-
acteristic in a supersonic flow, provided that the flow considered is potential. In the
general case the constant of integration on the right hand side of (4.4.35) is different
for different characteristics.
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An alternative way to integrate equation (4.4.31) is to use the so-called normalised
velocity

λ =
V

V∗
, (4.4.37)

which is obtained by referring the velocity modulus V to the critical velocity V∗. The
latter is defined as the velocity at a point in the flow field where the fluid speed
coincides with the speed of sound. For this point, the Bernoulli equation (4.4.32) gives

V 2
∗

γ − 1
+
V 2
∗

2
=

a2∞
γ − 1

+
V 2
∞

2
. (4.4.38)

Of course, such a point might not physically exist in a particular flow considered. Still
the Bernoulli equation (4.4.38) can be always used to formally define V∗.

Combining (4.4.38) with (4.4.33), we have

V 2

[
1

(γ − 1)M2
+

1

2

]
=

V 2
∗

γ − 1
+
V 2
∗

2
=

γ + 1

2(γ − 1)
V 2
∗ ,

and we see that the normalised velocity λ is related to the Mach number M by

[
1

(γ − 1)M2
+

1

2

]
λ2 =

γ + 1

2(γ − 1)
, (4.4.39)

or

λ2 =
(γ + 1)M2

2 + (γ − 1)M2
. (4.4.40)

In subsonic flows (M < 1), the normalised velocity λ remains less than unity, while
the supersonic speed range, M ∈ (1,∞), corresponds to

λ ∈
[
1 ,

√
γ + 1

γ − 1

]
.

We shall now return to equation (4.4.31) and write it in terms of the normalised
velocity λ:

dϑ∓
√
M2 − 1

dλ

λ
= 0. (4.4.41)

When integrating this equation, one can use the formula

M2 − 1 =
λ2 − 1

1− γ−1
γ+1

λ2
(4.4.42)

relating the Mach number M to λ; it is easily deduced by solving equation (4.4.38)
for M2.
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Let λ0 and ϑ0 be the values of the normalised velocity λ and directional angle ϑ
at an ‘initial point’ on a characteristic of either the first or the second family. Then,
integrating equation (4.4.41), we have

ϑ− ϑ0 ∓
λ∫

λ0

√
λ2 − 1

1− γ−1
γ+1λ

2

dλ

λ
= 0,

or, equivalently,

ϑ− ϑ0 ∓
( λ∫

1

√
λ2 − 1

1− γ−1
γ+1λ

2

dλ

λ
−

λ0∫

1

√
λ2 − 1

1− γ−1
γ+1λ

2

dλ

λ

)
= 0.

This proves that the following equation holds along any of the characteristics:

ϑ∓ σ(λ) = ϑ0 ∓ σ(λ0), (4.4.43)

where

σ(λ) =

λ∫

1

√
λ2 − 1

1− γ−1
γ+1λ

2

dλ

λ

=

√
γ + 1

γ − 1
arctan

(√
γ − 1

γ + 1

√
λ2 − 1

1− γ−1
γ+1

λ2

)
− arctan

(√
λ2 − 1

1− γ−1
γ+1

λ2

)
(4.4.44)

is the Prandtl–Meyer function (4.4.36) written in terms of the normalised velocity λ.
A graphical representation of equation (4.4.43) is given in Figure 4.13. Here two

characteristics are drawn through an initial point (λ0, ϑ0), one belonging to the first
family of characteristics and the other to the second. It is interesting to note that,
unlike in the physical (x, y)-plane, where the shape of the characteristics depends on
the particular flow considered, in the hodograph (λx, λy)-plane all the characteristics
have a universal shape defined by a single function σ(λ) that is the same for char-
acteristics of both families. Because of their shape, they are termed epicycloids. The
reason is that they may be produced geometrically using the following procedure. Let
us consider two circles in the (λx, λy)-plane, both having their centres at the coordi-
nate origin. The radius of the inner circle is unity, and the radius of the outer circle
is
√

(γ + 1)/(γ − 1). Let us further introduce a third circle, whose radius is chosen in
such a way that it fits precisely between the inner and outer circles. If we roll the third
circle on the inner circle without slipping, then it may be shown that the points on
the rolling circle will move along the characteristics in the hodograph plane.

In what follows, we shall denote the constant on the right-hand side of (4.4.43)
by ξ for the characteristics of the first family and by η for the characteristics of the
second family:

ϑ− σ(λ) = ξ (first family), (4.4.45)

ϑ+ σ(λ) = η (second family). (4.4.46)
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λx

λy

1
√

γ+1

γ−1

ϑ0

λ0

Fig. 4.13: Characteristics in the hodograph plane calculated for γ = 1.4. The non-
dimensional velocity components λx and λy are defined as λx = u/V∗ and λy = v/V∗.

If we consider two characteristics of the first family with two different values of ξ on
the right-hand side of (4.4.45),

ϑ− σ(λ) = ξ1, ϑ− σ(λ) = ξ2,

then it may easily be seen that they may be obtained from one another by simple
rotation through an angle ∆ϑ = ξ2 − ξ1. The same rule, of course, applies to the
characteristics of the second family, (4.4.46).

4.4.3 Prandtl–Meyer flow

We shall now apply the theory of characteristics to the supersonic flow around a smooth
bend of a rigid-body contour. We shall assume that the body surface is initially flat,
with the flow above it being uniform. Then at point A the surface starts to bend as
shown in Figure 4.14. To perform an analysis of the flow, it is convenient to choose
the x-axis parallel to the initial flat part of the wall. The shape of the body contour
may then be characterised by the angle θ(x) made by the tangent to the body contour
with the x-axis.

The flow remains unperturbed everywhere upstream of the characteristic AA′ of
the first family originating from point A. Any point B on the bending part of the body
contour may obviously be ‘connected’ to the unperturbed flow by the characteristic of
the second family as shown in Figure 4.14. Along this characteristic, equation (4.4.46)
holds. The parameter η on the right-hand side of this equation may be found taking
into account that in the unperturbed flow upstream of AA′ the velocity vector is
parallel to the x-axis, i.e. ϑ = 0. Denoting the value of the normalised velocity λ in
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A

A′

B

B′

C

︷ ︸
︸ ︷

Characteristics of
the second family Characteristics of

the first family

θB

λ∞

Fig. 4.14: Supersonic flow around a bend.

the undisturbed flow by λ∞, we have

ϑ+ σ(λ) = σ(λ∞). (4.4.47)

The velocity vector, being tangent to the body contour, makes at point B an angle
ϑ = −θB with the x-axis. Consequently, the value λB of the normalised velocity λ at
this point may be found from the equation

−θB + σ(λB) = σ(λ∞).

The above discussion shows, interestingly enough, that the velocity variation along
the body contour is completely described by equation (4.4.47). This equation is rep-
resented in the hodograph plane (see Figure 4.15) by the characteristic of the second
family (epicycloid) that crosses the λx-axis at the point where λx = λ∞. The flow
on the body surface between points A and B in the physical plane (see Figure 4.14)
is represented by a segment of the epicycloid in the hodograph plane (Figure 4.15)
between the initial point A, where λx = λ∞, and point B, where ϑ = −θB.

In order to analyse the flow behaviour above the body surface, let us consider the
characteristic of the first family BB′ originating from point B as shown in Figure 4.14.
Along this characteristic, equation (4.4.45) holds. Any point C on the characteristic
may be ‘connected’ to the unperturbed flow by the corresponding characteristic of the
second family, and therefore, in addition to equation (4.4.45), we can use equation
(4.4.47). Solving (4.4.45) and (4.4.47) for ϑ and σ(λ), we find that, at point C,

ϑ =
1

2

[
σ(λ∞) + ξ

]
, σ(λ) =

1

2

[
σ(λ∞)− ξ

]
.

Since the parameter ξ does not change as C moves along BB′, we can conclude that
the normalised velocity λ and directional angle ϑ stay constant on BB′, and coincide
with their values at point B on the body contour (see Figure 4.14).

The same conclusion may be made about the remaining fluid-dynamic functions. In
particular, according to (4.4.42), with λ being constant, the Mach number M should
also remain constant. Taking further into account that the critical velocity V∗ is con-
stant over the entire flow field, we can conclude that the dimensional velocity V = λV∗
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Fig. 4.15: Prandtl–Meyer flow in the hodograph plane.

does not change along BB′ (see Figure 4.14). Then, using the entropy conservation
law (4.2.10) and the Bernoulli equation (4.2.11), we can claim that the density ρ and
pressure p are constant along BB′.

The shape of the characteristics in the physical (x, y)-plane is determined by equa-
tion (4.4.11), which, when combined with (4.4.22), shows that the slope of a charac-
teristic of the first family is given by

dy

dx
= tan(ϑ+Θ). (4.4.48)

Let us return to Figure 4.14 and consider characteristic BB′ again. We already know
that the velocity direction angle ϑ is constant on BB′. As far as the Mach angle Θ is
concerned, it is determined by equation (4.4.21),

Θ = arcsin
1

M
, (4.4.49)

and also proves to be constant. Hence, BB′ is a straight line. Because of the arbitrari-
ness of the characteristic considered, it is clear that in the Prandtl–Meyer flow all the
characteristics of the first family are straight lines.

In the flow over a convex bend, these characteristics form an expansion fan, as
shown in Figure 4.16. Indeed, using equation (4.4.48), one can see that the slope of
the characteristics becomes smaller as an observer progresses downstream. This is due
to the monotonic decrease of both the velocity vector directional angle ϑ and the Mach
angle Θ. The former remains constant along each characteristic and coincides with the
slope of the body contour at the foot of the characteristic. As far as the Mach angle
Θ is concerned, it is given by equation (4.4.49), which clearly shows that Θ decreases
with the flow acceleration round the bend.

The Prandtl–Meyer theory may in particular be used to describe expansion ramp
flow.5 In this case, the entire bending section of the body contour is represented by

5For an alternative way to study this flow, see Problem 1 in Exercises 14.
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A

A′

Fig. 4.16: Supersonic flow around a bend.

one point, the corner point A as shown in Figure 4.17. There are three distinct regions
in the flow: (i) the undisturbed flow upstream of the first characteristic AA′ of the
expansion fan; (ii) the expansion fan A′AA′′; and (iii) the region downstream of the
last characteristic AA′′ in the fan, where the flow again becomes uniform but with a
higher value of the Mach number.

The above theory first appeared in the dissertation of Meyer (1908).

A

A′

A′′

Fig. 4.17: Supersonic flow around an expansion ramp.

Exercises 14

1. In order to analyse the flow in the expansion fan A′AA′′ in the Prandtl–Meyer
flow in Figure 4.17, it is convenient to use cylindrical polar coordinates. When
performing the analysis use the following suggestions:

(a) Take into account that the flow considered is two-dimensional and, using
(1.8.9), (1.8.18), and (1.8.29), show that equation (4.3.6) is written in cylin-
drical polar coordinates (see Figure 4.18) as

(
a2 − V 2

r

)∂Vr
∂r

+
(
a2 − V 2

φ

)1
r

∂Vφ
∂φ

= VrVφ

(
∂Vφ
∂r

+
1

r

∂Vr
∂φ

)
− a2

Vr
r
. (4.4.50)
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Fig. 4.18: Cylindrical polar coordinates.

The flow in the expansion fan is known to be irrotational. Therefore, using
(1.8.38c), one can write

∂Vφ
∂r

− 1

r

∂Vr
∂φ

+
Vφ
r

= 0. (4.4.51)

(b) Now take into account that inside the fan A′AA′′ all the fluid-dynamic func-
tions are independent of the radius r, which reduces equations (4.4.50) and
(4.4.51) to

(
a2 − V 2

φ

)dVφ
dφ

= VrVφ
dVr
dφ

− a2Vr, (4.4.52a)

Vφ =
dVr
dφ

. (4.4.52b)

Combine equations (4.4.52a) and (4.4.52b) to show that

(
a2 − V 2

φ

)(dVφ
dφ

+ Vr

)
= 0.

(c) Assume first that
dVφ
dφ

+ Vr = 0, (4.4.53)

and show that the solution of equations (4.4.53) and (4.4.52b) represents a
uniform flow. It may be used upstream or downstream of the expansion fan
A′AA′′.

(d) In order to describe the flow inside the expansion fan, choose V 2
φ = a2 and,

using equation (4.3.12) for the speed of sound, a, deduce that

V 2
φ =

γ − 1

γ + 1
V 2
∞

[
1 +

2

(γ − 1)M2
∞

− V 2
r

V 2
∞

]
. (4.4.54)

Argue that, in the expansion fan, Vφ < 0, and, combining (4.4.54) with
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(4.4.52b), deduce that

dVr

V∞

√
1 +

2

(γ − 1)M2
∞

− V 2
r

V 2
∞

= −
√
γ − 1

γ + 1
dφ. (4.4.55)

Integrate (4.4.55) and conclude that, in the expansion fan,

Vr = V∞

√
1 +

2

(γ − 1)M2
∞

sin

[√
γ − 1

γ + 1
(φ0 − φ)

]
.

How can the constant of integration φ0 be found?

2. This problem is designed to study the effect of compressibility in subsonic flows.
Consider as an example the flow past a circular cylinder. Incompressible flow past
a circular cylinder was studied in Section 3.4.2. If the circulation Γ = 0, then
the complex potential for the flow is given by equation (3.4.28). Re-denoting the
radius of the cylinder by r0, it may be written as

w(z) = V∞

(
z +

r20
z

)
. (4.4.56)

Your task here will be to investigate the effect of compressibility on the flow, for
which purpose equation (4.4.50) may be used. The analysis is suggested to be
conducted in the following steps:

(a) Exclude the speed of sound, a, from (4.4.50) using the Bernoulli equation
(4.3.9). Then introduce the non-dimensional variables

Vr = V∞V̄r, Vϑ = V∞V̄ϑ, r = r0r̄,

and show that

∂V̄r
∂r̄

+
1

r̄

∂V̄φ
∂φ

+
V̄r
r̄

=
1

2
M2

∞

[(
V̄r

∂

∂r̄
+
V̄φ
r̄

∂

∂φ

)(
V̄ 2
r + V̄ 2

φ

)

+ (γ − 1)
(
V̄ 2
r + V̄ 2

φ − 1
)(∂V̄r

∂r̄
+

1

r̄

∂V̄φ
∂φ

+
V̄r
r̄

)]
. (4.4.57)

(b) Introduce a velocity potential ϕ̄(r, φ) such that

V̄r =
∂ϕ̄

∂r̄
, V̄φ =

1

r̄

∂ϕ̄

∂φ
, (4.4.58)

and, assuming that the Mach number M∞ is small, represent the solution in
the form

ϕ̄ = ϕ0(r̄, φ) +M2
∞ϕ1(r̄, φ) + · · · . (4.4.59)

Substitute (4.4.59) into (4.4.58) and then into (4.4.57). Disregard M4
∞ terms
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and, separating O(1) and O(M2
∞) terms, deduce that

O(1) :
∂2ϕ0

∂r̄2
+

1

r̄2
∂2ϕ0

∂φ2
+

1

r̄

∂ϕ0

∂r̄
= 0, (4.4.60)

O(M2
∞) :

∂2ϕ1

∂r̄2
+

1

r̄2
∂2ϕ1

∂φ2
+

1

r̄

∂ϕ1

∂r̄

=
1

2

∂ϕ0

∂r̄

∂

∂r̄

[(
∂ϕ0

∂r̄

)2

+
1

r̄2

(
∂ϕ0

∂φ

)2]

+
1

2r̄2
∂ϕ0

∂φ

∂

∂φ

[(
∂ϕ0

∂r̄

)2

+
1

r̄2

(
∂ϕ0

∂φ

)2]
. (4.4.61)

(c) Formulate the boundary conditions for equations (4.4.60) and (4.4.61), for
which purpose substitute (4.4.59) into the impermeability condition on the
cylinder surface,

∂ϕ̄

∂r̄

∣∣∣∣
r̄=1

= 0,

and the free-stream condition in the far field,

ϕ̄ = r̄ cosφ+ · · · as r̄ → ∞.

(d) Verify that the solution of the leading-order equation (4.4.60) is given by the
real part of (4.4.56), which is written in non-dimensional variables as

ϕ0 =

(
r̄ +

1

r̄

)
cosφ. (4.4.62)

Using (4.4.62), demonstrate that the right-hand side of equation (4.4.61) may
be written in the form6

RHS =

(
2

r̄7
− 4

r̄5

)
cosφ+

2

r̄3
cos 3φ.

Hence, seek the solution of equation (4.4.61) in the form

ϕ1 = f(r̄) cos 3φ+ g(r̄) cosφ.

3. Suppose that in the Prandtl–Meyer flow (see Figure 4.16), the wall slope angle θ(x)
is small. Using equation (4.4.31), show that in the leading-order approximation,
when O(θ2) terms are disregarded, the velocity modulus V at any point along the
bend may be calculated using the following simple formula:

V = V∞ − V∞
θ√

M∞ − 1
.

Here θ is the value of the slope angle at the point where the velocity V is to
be found and V∞ denotes the unperturbed value of the fluid velocity before the
characteristic AA′ in Figure 4.16.

6You may use without proof the formula cos 3ϑ = 4 cos3 ϑ− 3 cosϑ.
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Using further the entropy conservation law (4.2.10) and the Bernoulli equation
(4.2.11), demonstrate that the pressure p on the body contour is given by the
Ackeret formula

p = p∞ + ρ∞V
2
∞

θ√
M∞ − 1

.

4. Consider inviscid supersonic flow of a perfect gas around a corner (Figure 4.17)
with the wall deflection angle θB ; see Figure 4.19.

Fig. 4.19: Supersonic flow round corner.

Show that there exists a maximum value of the angle θB , given by

θB

∣∣∣
max

=
π

2

(√
γ + 1

γ − 1
− 1

)
− ν(M∞),

beyond which the flow downstream of the corner is no longer capable of remaining
attached to the body surface AB. Here ν is the Prandtl–Meyer function (4.4.36),

ν(M) =

√
γ + 1

γ − 1
arctan

(√
γ − 1

γ + 1
(M2 − 1)

)
− arctan

(√
M2 − 1

)
,

and M∞ is the Mach number before the corner point A.
How does the maximum value of θB depend on M∞?
Suggestion: Remember that the flow expansion around the corner is described

by equation (4.4.47). Using the Prandtl–Meyer function, this equation is written
as

ϑ+ ν(M) = ν(M∞).

Set M = ∞, and take into account that, on the body surface AB, behind the
corner, the velocity vector angle ϑ = −θB.

5. The theory of characteristics was presented in this section in application to irro-
tational flows when equations (4.3.10) and (4.3.11) may be used to describe the
velocity field. However, most supersonic flows develop shock waves. The latter are
known to be the sources of vorticity. In order to apply the theory of characteristics

θB

A

B
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to two-dimensional flows with non-zero vorticity, the following equations may be
used:

u
∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
= 0, (4.4.63a)

u
∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
= 0, (4.4.63b)

ρ
∂u

∂x
+ ρ

∂v

∂y
+

u

a2
∂p

∂x
+

v

a2
∂p

∂y
= 0. (4.4.63c)

The first two of equations are the x- and y-components of the momentum equa-
tion (4.1.2a) with the unsteady term ∂V/∂t and the body force f disregarded.
The third equation coincides with equation (4.3.4), which is used here instead
of the continuity equation (4.1.2c). The reason for this choice is that equation
(4.4.63c) relates the variations of the velocity components directly to the pressure
variations. This enables us to exclude the density from the set of functions that
are considered in the procedure leading to identification of the characteristics of
the system considered. Of course, the density itself may be found at any stage of
the calculations using the Bernoulli equation

γ

γ − 1

p

ρ
+

1

2
(u2 + v2) =

γ

γ − 1

p∞
ρ∞

+
1

2
V 2
∞.

In order to apply the theory of characteristics to equations (4.4.63) you may
start, as before, by introducing an initial line L that is defined by the equation
y = y(x). However, now three functions, u = ũ(x), v = ṽ(x), and p = p̃(x), should
be assumed known along L. Your task will be twofold:

(a) First, you need to show that the system of equations (4.4.63) has three families
of characteristics, with the slope χ = dy/dx given by

χ1,2 =
−uv ∓ a

√
V 2 − a2

a2 − u2
, χ3 =

v

u
.

Give a physical interpretation of these characteristics.

(b) Second, you need to demonstrate that, along characteristics of the first two
families, the following relation between the variations of u, v, and p holds:

v du− u dv +

[
(v − χ1,2u)

u

a2
+ χ1,2

]
1

ρ
dp = 0,

while, along a characteristic of the third family,

u du+ v dv +
1

ρ
dp = 0.

6. Generalise equation (4.3.10) for unsteady flow past an oscillating aerofoil. You
may assume that (i) the flow far from the aerofoil is steady and uniform; (ii) the
body force f is negligible; and (iii) the flow is free of shock waves.
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Argue that, under these conditions the flow is irrotational, and show that the
velocity potential ϕ satisfies the equation

[
a2 −

(
∂ϕ

∂x

)2 ]
∂2ϕ

∂x2
+

[
a2 −

(
∂ϕ

∂y

)2 ]
∂2ϕ

∂y2

= 2
∂ϕ

∂x

∂ϕ

∂y

∂2ϕ

∂x∂y
+ 2

∂ϕ

∂x

∂2ϕ

∂t∂x
+ 2

∂ϕ

∂y

∂2ϕ

∂t∂y
+
∂2ϕ

∂t2
, (4.4.64)

which is known as the unsteady potential equation.
Suggestion: In order to perform this task, proceed as follows:

(a) Start with the entropy conservation law (4.2.10). Notice that it may be ex-
pressed in the form

a2

ργ−1
= γ

p∞
ργ∞

. (4.4.65)

Take the logarithms of both sides of equation (4.4.65) and show that the full
derivatives of a2 and ρ are related to one another by

1

a2
D(a2)

Dt
=
γ − 1

ρ

Dρ

Dt
. (4.4.66)

(b) Now write the continuity equation (4.1.2c) as

Dρ

Dt
+ ρdivV = 0, (4.4.67)

and use (4.4.66) to eliminate Dρ/Dt from (4.4.67). You should find that

∂(a2)

∂t
+V · ∇(a2) + (γ − 1)a2 divV = 0. (4.4.68)

(c) Finally, argue that, under conditions (i), (ii), and (iii), the Cauchy–Lagrange
integral (4.2.28) may be written as

∂ϕ

∂t
+
V 2

2
+

a2

γ − 1
=
V 2
∞

2
+

a2∞
γ − 1

. (4.4.69)

Solve equation (4.4.69) for a2 and use it to calculate the time derivative and
the gradient of a2 in equation (4.4.68). Assuming, for simplicity, that the flow
is two-dimensional, you will arrive at equation (4.4.64).

4.5 Shock Waves

Let us make a small modification to the problem depicted in Figure 4.16, and assume
that, instead of bending down, the body contour bends up as shown in Figure 4.20(a).
Obviously, the Prandtl–Meyer theory remains applicable to this flow. Moreover, one
has to use the same epicycloid in the hodograph plane (see Figure 4.15), the one
that crosses the λx-axis at point A, where λx coincides with the normalised velocity
λ∞ in the flow before the bend. However, the flow is now represented by the part of
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(a) Prandtl–Meyer flow above a concave wall. (b) Flow visualisation by Johannesen (1952).
Reprinted by permission of Taylor & Francis
Ltd.

Fig. 4.20: Formation of a shock wave in a steady supersonic flow.

the epicycloid that lies above point A. According to the Prandtl–Meyer theory, the
characteristics of the first family will remain straight lines, but, instead of forming a
divergent fan, they will start converging as soon as the body contour starts to bend
up.

Assuming that the curvature of the body contour is finite, it may be demonstrated
(see Problem 1 in Exercises 15) that the point of convergence of the characteristics,
denoted by S in Figure 4.20(a), is situated at a finite distance from the body surface.
Below this point, the flow field remains smooth, which ensures that the Prandtl–
Meyer theory remains valid. However, in order to describe the flow above point S,
a modification of the theory is needed. In this region, the characteristics of the first
family begin to intersect. Two of these, AA′ and BB′, are shown in Figure 4.20(a).
They originate from different points on the body contour and ‘bring’ to the point of
intersection different values of the velocity modulus V , directional angle ϑ, pressure p,
density ρ, and other fluid-dynamic functions. The flow visualisation in Figure 4.20(b)
shows that the convergence of the characteristics leads to the formation of a shock
wave. In inviscid flow theory, it is represented as a surface across which the fluid-
dynamic functions experience a discontinuity.

4.5.1 The shock relations

The differential equations of fluid motion (4.1.2) clearly cannot be used across disconti-
nuities. Therefore, to deduce the shock equations, we have to return to first principles.
In order to simplify our task, we shall assume that the flow considered is steady.7

We shall further assume that the surface representing the shock has a finite radius of
curvature. In this case, a small element of the shock may be treated as a flat surface.
The flow across such a element of the shock will now be analysed.

It is convenient to consider the fluid motion in the plane perpendicular to the
shock and parallel to the velocity vector V1 immediately upstream of the shock. The
shock wave is represented in this plane (see Figure 4.21) by a straight line SS′. We

7This assumption will be lifted in Section 4.7.2.
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Fig. 4.21: Flow across a shock wave.

shall assume that the angle made by the shock with the velocity vector V1 is known
together with the modulus of the velocity |V1|, pressure p1, density ρ1, and hence all
other thermodynamic functions before the shock. The task is to find the corresponding
quantities V2, p2, ρ2, etc. behind the shock.

Let us choose a small area A on the surface of the shock and consider the fluid
moving through A during a small time interval ∆t. Before crossing the shock, the fluid
is contained in the region that is shown in Figure 4.21 as a shaded parallelogram. The
volume of this region is easily calculated to be V1n∆tA, where V1n is the component
of the velocity vector V1 normal to the shock. Correspondingly, the mass of fluid in
the parallelogram is m1 = ρ1V1n∆tA. When the fluid emerges on the other side of the
shock, it occupies the region shown in Figure 4.21 as an unshaded parallelogram. The
mass of the fluid may be now calculated as m2 = ρ2V2n∆tA. Hence, using the mass
conservation law m2 = m1, we can write

ρ2V2n = ρ1V1n. (4.5.1)

We now turn to the momentum equation (1.6.12). We shall write it in the form

K2 −K1

∆t
= R. (4.5.2)

Here K2 is the momentum of the fluid behind the shock. It can be calculated as

K2 = m2V2 = ρ2AV2n∆tV2. (4.5.3)

Similarly, the momentum of the fluid before the shock is

K1 = ρ1AV1n∆tV1. (4.5.4)

The resultant force R on the right-hand side of equation (4.5.2) is composed of the
pressure forces F1 and F2 acting on the front and rear faces of the region containing
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the fluid body as it makes its way across the shock:

R = F1 + F2.

An intermediate position of the fluid body is shown in Figure 4.21 by the broken
lines. Taking into account that the forces acting upon the fluid body should be used
in (4.5.2), we write

F1 = p1An, F2 = −p2An, (4.5.5)

where the unit normal vector n is directed as shown in Figure 4.21.
Substitution of (4.5.3)–(4.5.5) into the momentum equation (4.5.2) yields

ρ2V2nV2 + p2n = ρ1V1nV1 + p1n. (4.5.6)

This is a vector equation. Its projection on the direction normal to the shock reads

ρ2V
2
2n + p2 = ρ1V

2
1n + p1. (4.5.7)

The tangential projection of (4.5.6),

ρ2V2nV2τ = ρ1V1nV1τ ,

and the mass conservation law (4.5.1) allow us to conclude that the tangential velocity
component does not change across the shock:

V2τ = V1τ . (4.5.8)

It remains to consider the energy equation (1.6.28). Taking into account that in an
inviscid fluid heat transfer is a negligible effect, Q = 0, we can write this equation in
the form

E2 −E1

∆t
=W. (4.5.9)

The energy of the fluid body behind the shock is calculated as

E2 = m2

(
e2 +

V 2
2

2

)
= ρ2AV2n∆t

(
e2 +

V 2
2

2

)
. (4.5.10)

Similarly, before the shock,

E1 = ρ1AV1n∆t

(
e1 +

V 2
1

2

)
. (4.5.11)

The work W performed by the pressure forces F1 and F2 per unit time is

W = F1 ·V1 + F2 ·V2 = p1AV1n − p2AV2n. (4.5.12)

Substituting (4.5.10)–(4.5.12) into the energy equation (4.5.9) and recalling that, ac-
cording to (1.3.27), the enthalpy h = e+ p/ρ, we find that

h2 +
V 2
2

2
= h1 +

V 2
1

2
. (4.5.13)

This proves that the Bernoulli integral (4.2.6) holds not only in the flow before and
after the shock wave but also across it. Hence, we can conclude that even if a flow
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contains multiple shocks, the total enthalpy H = h+ 1
2
V 2 will remain constant along

all streamlines.
Summarising the results of the above analysis, we can write the shock relations

(4.5.1), (4.5.7), (4.5.8) and (4.5.13), also termed the jump conditions, as

ρ2V
2
2n + p2 = ρ1V

2
1n + p1 (normal momentum equation), (4.5.14a)

V2τ = V1τ (tangential momentum equation), (4.5.14b)

h2 +
V 2
2

2
= h1 +

V 2
1

2
(energy equation), (4.5.14c)

ρ2V2n = ρ1V1n (continuity equation). (4.5.14d)

Together with the state equation

h2 =
γ

γ − 1

p2
ρ2
, (4.5.15)

they form a set of five algebraic equations for five unknown quantities V2n, V2τ , p2,
ρ2, and h2, which fully describe the state of the flow immediately behind the shock.

In view of the fact that the early major contributions to understanding the be-
haviour of shock waves were due to Rankine (1870) and Hugoniot (1889), the shock
jump conditions (4.5.14) are often referred to as the Rankine–Hugoniot conditions.

4.5.2 Normal shock

If the shock is normal to the direction of the flow, then the tangential velocity com-
ponent is zero on both sides of the shock, V1τ = V2τ = 0, and the jump conditions
(4.5.14) assume the form

ρ2V
2
2 + p2 = ρ1V

2
1 + p1 (momentum equation), (4.5.16a)

h2 +
V 2
2

2
= h1 +

V 2
1

2
(energy equation), (4.5.16b)

ρ2V2 = ρ1V1 (continuity equation). (4.5.16c)

Here V1 and V2 are the values of the velocity modulus upstream and downstream of
the shock; see Figure 4.22.

We can note, first of all, that, according to the energy equation (4.5.16b), the
critical velocity V∗, defined by the Bernoulli equation (4.4.38), remains unchanged
across the shock. Using the state equation (4.5.15), we can express the left-hand side
of the energy equation (4.5.16b) as follows:

γ

γ − 1

p2
ρ2

+
V 2
2

2
=

V 2
∗

γ − 1
+
V 2
∗

2
=

γ + 1

2(γ − 1)
V 2
∗ . (4.5.17)

Hence, in the flow behind the shock,

p2
ρ2

=
γ + 1

2γ
V 2
∗ − γ − 1

2γ
V 2
2 . (4.5.18)
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Fig. 4.22: Flow across a normal shock.

Similarly, in front of the shock,

p1
ρ1

=
γ + 1

2γ
V 2
∗ − γ − 1

2γ
V 2
1 . (4.5.19)

We now turn to the momentum equation (4.5.16a). We divide its two sides re-
spectively by ρ2V2 and ρ1V1, which are equal according to the continuity equation
(4.5.16c). We have

V2 +
p2
ρ2

1

V2
= V1 +

p1
ρ1

1

V1
. (4.5.20)

With the help of (4.5.18) and (4.5.19), p2/ρ2 and p1/ρ1 can be eliminated from (4.5.20),
leading to

V2
V∗

+
V∗
V2

=
V1
V∗

+
V∗
V1
. (4.5.21)

Denoting the values of the normalised velocity (4.4.37) before and after the shock by
λ1 and λ2, respectively, we can express (4.5.21) in the form of a quadratic equation
for λ2:

λ22 −
(
λ1 +

1

λ1

)
λ2 + 1 = 0. (4.5.22)

Its first root, λ2 = λ1, represents a trivial solution of equations (4.5.16):

V2 = V1, ρ2 = ρ1, p2 = p1, h2 = h1,

which describes the flow without a shock wave.8

Since our interest here is in describing the shock properties, we have to consider
the second root of (4.5.22),

λ2 =
1

λ1
. (4.5.23)

This represents a basic law of shock theory, and is known as Prandtl’s relation. Accord-
ing to (4.5.23), any supersonic flow (λ1 > 1) passing through a normal shock becomes
subsonic (λ2 < 1).

8This solution automatically satisfies the momentum and energy equations as well as the mass
conservation law, and therefore is always possible.
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With the help of equation (4.5.23), one can easily calculate the ratio of the velocities
across the shock:

V2
V1

=
V2/V∗
V1/V∗

=
λ2
λ1

=
1

λ21
,

which may be expressed, using (4.4.40), in terms of the Mach number before the shock:

V2
V1

=
2 + (γ − 1)M2

1

(γ + 1)M2
1

. (4.5.24)

Using further the continuity equation (4.5.16c), we find the density ratio:

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

. (4.5.25)

In order to determine the pressure ratio, we return to the momentum equation
(4.5.16a). We have

p2 = p1 + ρ1V
2
1 − ρ2V

2
2 = p1 + ρ1V

2
1

(
1− ρ2

ρ1

V 2
2

V 2
1

)
.

In view of the continuity equation (4.5.16c), this may be written as

p2 = p1 + ρ1V
2
1

(
1− V2

V1

)
. (4.5.26)

Substitution of (4.5.24) into (4.5.26) results in

p2 = p1 + ρ1V
2
1

2M2
1 − 2

(γ + 1)M2
1

.

Dividing both sides of this equation by p1, and using formula (4.3.3) to calculate the
speed of sound before the shock, we finally find

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
. (4.5.27)

Finally, in order to calculate the temperature ratio, we apply the Clapeyron equa-
tion (1.3.2) to the gas before and after the shock. We have

T2
T1

=
p2
p1

ρ1
ρ2
. (4.5.28)

Substitution of (4.5.25) and (4.5.27) into (4.5.28) yields

T2
T1

=

[
2γM2

1 − (γ − 1)
] [

(γ − 1)M2
1 + 2

]

(γ + 1)2M2
1

.

It should be noted that, while equation (4.5.23) does not preclude the possibility
of an ‘expansion shock’ through which a subsonic flow with λ1 < 1 accelerates to a
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supersonic speed λ1 > 1, such situations are never observed in real flows. To explain
this, let us consider the entropy variation ∆S across the shock. Making use of (1.3.37),
we can write

∆S = S2 − S1 =
R

γ − 1
ln

[
p2
p1

(
ρ1
ρ2

)γ ]
.

Using (4.5.25) and (4.5.27), we can further write

∆S =
R

γ − 1
ln

[
2γM2

1 − (γ − 1)

γ + 1

]
+

γR

γ − 1
ln

[
2 + (γ − 1)M2

1

(γ + 1)M2
1

]
. (4.5.29)

In particular, it follows from (4.5.29) that ∆S = 0 at M1 = 1. In order to predict the
behaviour of the entropy in the shock wave for M1 6= 1, we differentiate (4.5.29) with
respect to M1:

d(∆S)

dM1
=

4γR

M1

(M2
1 − 1)2[

2γM2
1 − (γ − 1)

][
2 + (γ − 1)M2

1

] . (4.5.30)

Since the pressure should be positive both upstream and downstream of the shock,
equation (4.5.27) suggests that we have to assume 2γM2

1 − (γ − 1) > 0, and it then
follows from (4.5.30) that the derivative d(∆S)/dM1 is positive for all values of M1

exceptM1 = 1. This means that the entropy increases across the shock for allM1 > 1,
and is supposed to decrease for M1 < 1. The latter, however, contradicts the Second
Law of Thermodynamics, also known in the kinetic theory of gases as Boltzmann’s
H-theorem. This theorem states that, provided a body of gas is thermally isolated, its
entropy can never decay. In fact, if a gas undergoes a transformation, remaining all
the way in the state of thermodynamic equilibrium, then, according to (1.3.34), the
entropy will remain unchanged. This is exactly what happens in the flow upstream
and downstream of the shock. However, the transformation inside the shock is too
fast for fluid particles to be able to adjust to the surrounding conditions promptly.9

As a result, the entropy has to rise in the shock wave, which is only possible if the
Mach number before the shockM1 > 1. It follows from (4.5.25) that ρ2/ρ1 > 1 for any
M1 > 1, which is why these shock waves are termed ‘compression waves’, in contrast
to ‘expansion waves’ (M1 < 1), which are possible mathematically, but cannot be
observed in real flows.

4.5.3 Oblique shocks

Let us now return to the original problem of supersonic flow encountering an oblique
shock wave (see Figure 4.21). In order to study the oblique shock, we can deal directly
with equations (4.5.14). Alternatively, the results of the analysis for the normal shock
may be adopted for our purposes. The fact is that the oblique shock problem, depicted
in Figure 4.23(a), may easily be reduced to the corresponding problem for the normal
shock. This is done by means of the following two-step procedure. First, we perform
a rotation of the flow through an angle π − α. The result of this operation is shown

9It is known from the kinetic theory of gases that, unless M1 is close to unity, the thickness of
the shock wave is comparable to the mean free path of molecules, and therefore the condition of
equilibrium discussed in Problem 1 in Exercises 1 appears to be violated.
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in Figure 4.23(b). Then we introduce a new coordinate frame that moves along the
shock SS′ with velocity V1τ . Thanks to equation (4.5.14b), in the new coordinates,
the velocity vector appears to be normal to the shock on both sides of it, as shown in
Figure 4.22.

It is obvious that the coordinate transformation leaves the thermodynamic quan-
tities of the gas unchanged. The velocity component normal to the shock is also pre-
served. Therefore, when calculating the density ratio across the shock, we simply need
to modify formula (4.5.25) as

ρ2
ρ1

=
(γ + 1)M2

1n

2 + (γ − 1)M2
1n

. (4.5.31)

Here M1n is the normal component of the Mach number, defined as

M1n =
V1n
a1

.

The speed of sound before the shock, a1, is calculated using equation (4.3.3),

a1 =

√
γ
p1
ρ1
,

and proves to be independent of the coordinate frame used. If we denote by α the
angle of inclination of the shock to the velocity vector (see Figure 4.23), then

M1n =
V1n
a1

=
V1 sinα

a1
=M1 sinα,

which allows us to express equation (4.5.31) in the form

ρ2
ρ1

=
(γ + 1)M2

1 sin2 α

2 + (γ − 1)M2
1 sin2 α

. (4.5.32)
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Fig. 4.23: Oblique shock wave.
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Similarly, using (4.5.27) and (4.5.24), we find that

p2
p1

=
2γM2

1 sin2 α− (γ − 1)

γ + 1
, (4.5.33)

V2n
V1n

=
γ − 1

γ + 1
+

2

(γ + 1)M2
1 sin2 α

. (4.5.34)

The oblique shock relations (4.5.32)–(4.5.34), supplemented by equation (4.5.14b),
allow us to determine the two velocity components and the thermodynamic state of the
gas behind the shock, provided that the shock angle α is given. However, in most cases,
the orientation of the shock in the flow field is not known in advance. Instead, it should
be found as part of the solution of the corresponding gas-dynamic problem. Taking
this into account, it is useful to deduce a shock equation that does not involve α.

Since the shock always reduces the normal velocity component, leaving the tangen-
tial component unchanged, the velocity vector changes direction at the shock. With θ
being the velocity vector deflection angle (see Figure 4.23), we can write

V2n = V2 sin(α − θ)

= V2(sinα cos θ − cosα sin θ).

Let us now introduce a Cartesian coordinate system with x oriented parallel to the
velocity vector in front of the shock and y in the normal direction, as shown in Fig-
ure 4.23(a). The velocity components with respect to these coordinates are calculated
as

u2 = V2 cos θ, v2 = V2 sin θ,

and therefore
V2n = u2 sinα− v2 cosα. (4.5.35)

Substituting (4.5.35) into (4.5.34) and taking into account that V1n = V1 sinα yields

u2
V1

− v2
V1

1

tanα
=
γ − 1

γ + 1
+

2

(γ + 1)M2
1 sin2 α

. (4.5.36)

In order to eliminate α from (4.5.36), we use equation (4.5.14b), which may be
written as

V1 cosα = V2 cos(α− θ)

= V2(cosα cos θ + sinα sin θ) = u2 cosα+ v2 sinα,

and it follows that

tanα =
V1 − u2
v2

, sin2 α =
(V1 − u2)

2

(V1 − u2)2 + v22
. (4.5.37)

Substitution of (4.5.37) into (4.5.36) leads to

u2
V1

− v22
V1(V1 − u2)

=
γ − 1

γ + 1
+

2

(γ + 1)M2
1

(V1 − u2)
2 + v22

(V1 − u2)2
. (4.5.38)
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Finally, it is convenient to expressM1 via the normalised velocity λ1. From equation
(4.4.39),

1

M2
1

=
γ + 1

2

1

λ21
− γ − 1

2
=
γ + 1

2

V 2
∗

V 2
1

− γ − 1

2
. (4.5.39)

Substituting (4.5.39) into (4.5.38) and solving the resulting equation for v22 , we find

v22 =
(V1 − u2)

2(V1u2 − V 2
∗ )

V 2
∗ +

2

γ + 1
V 2
1 − V1u2

. (4.5.40)

A non-dimensional form of (4.5.40) may easily be obtained by dividing both sides
by V 2

∗ :

λ22y =
(λ1 − λ2x)

2(λ1λ2x − 1)

1 +
2

γ + 1
λ21 − λ1λ2x

. (4.5.41)

Here λ2x and λ2y are the two components of the normalised velocity behind the shock:

λ2x =
u2
V∗
, λ2y =

v2
V∗
.

Figure 4.24 gives a graphical representation of equation (4.5.41) in the hodograph
(λ2x, λ2y)-plane. Each point in this plane should be thought of as the tip of the nor-
malised velocity vector drawn from the coordinate origin O. Given λ1, equation (4.5.41)
allows us to calculate λ2y for any λ2x from the interval

λ2x ∈
[
1

λ1
,
1

λ1
+

2

γ + 1
λ1

]
. (4.5.42)

The restriction on the range of λ2x arises from the observation that the right-hand
side of equation (4.5.41) can never become negative. As λ2x changes within the range

λ2y

O λ1 λ2x

α
θ

A

B
C

D

S

sonic circle

shock polar

E

Fig. 4.24: Shock polar calculated for λ1 = 1.6 and γ = 1.4.
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(4.5.42), the point in the hodograph plane traces out a locus termed the shock polar ;
see Figure 4.24. It shows all possible positions of the tip of the normalised velocity vec-
tor behind the oblique shock for different possible orientations of the shock. Point D,
where λ2x = λ1, represents the state of the flow in front of the shock. At this point,
the numerator of the right-hand side of (4.5.41) becomes zero. The second zero of
the numerator is attained at point E, which represents the normal shock wave with
λ2x = 1/λ1. This point lies at the lower boundary of the interval (4.5.42). The up-
per boundary is given by the zero of the denominator in (4.5.41), which defines the
asymptote of the shock polar, depicted in Figure 4.24 by the vertical dashed line.

Assuming that the velocity vector deflection angle θ is known, one can easily deter-
mine the state of the flow behind the shock. For this purpose, a ray from the origin O
should be drawn at an angle θ to the λ2x-axis. It intersects the shock polar at three
points: A, B and C. At point C, the flow velocity is, obviously, larger than at point
D, which means that point C represents an ‘expansion shock’, and therefore should be
disregarded. Still, two solutions, namely those given by points A and B, are possible
for each deflection angle θ unless it exceeds a maximum value θmax, the latter being
dependent on λ1.

If we consider, for example, point B, then the position of this point in the hodo-
graph plane determines not only the normalised velocity behind the shock but also the
shock orientation. In order to find the shock angle α, the following procedure may be
used. We draw a straight line through points D and B. Then, taking into account that
the tangential velocity remains unchanged across the shock, we can conclude that the
shock OS should be perpendicular to this line, as shown in Figure 4.24.

The same procedure may, of course, be used for point A. The main difference be-
tween the solutions represented by points A and B is that the latter has an oblique
shock with a smaller angle α, which results in a smaller reduction in the flow speed.
This is why this solution is said to have a weak shock. In contrast, the solution repre-
sented by point A shows a more significant reduction in the flow velocity, and is said
to involve a strong shock.

By means of numerical analysis of the shock polar (4.5.41), it may be demonstrated
that point A always lies inside the sonic circle, the latter being defined by the equation

λ =
√
λ22x + λ22y = 1. Hence, the strong shock acts similarly to the normal shock; i.e.

it reduces the supersonic flow upstream of the shock to subsonic speed downstream of
it. The situation with point B is slightly more complicated. It lies outside the sonic
circle provided that the deflection angle θ is not very close to θmax. This suggests that
despite the normal velocity component being smaller than the speed of sound behind
the shock, the entire velocity appears to be supersonic. However, for any λ1, there
exists a neighbourhood of θmax where both solutions, with the strong (point A) and
weak (point B) shocks, reduce the flow speed to subsonic.

It should be noted that not only may both solutions described above be observed in
real flows, but also they often appear together in the same flow. As an example, we can
consider the flow past a sphere (see Figure 4.4). This flow is reproduced schematically
in Figure 4.25. At point E situated directly in front of the sphere, the shock is normal
to the oncoming flow, and the velocity deflection angle θ is zero. As the point of
observation moves along the shock, say, upwards, the shock angle α decreases, causing



284 Chapter 4. Elements of Gasdynamics

E

N

D

M < 1

M > 1

M > 1

Fig. 4.25: Supersonic flow past a sphere.

the deflection angle θ to increase. However, as the shock becomes more and more
oblique, it gradually weakens, making the jump in the normal velocity smaller. As
a result, a point is reached (shown as point N in Figure 4.25) where the deflection
angle θ reaches a maximum value θmax, and then θ decays monotonically, tending to
zero as the distance from the sphere tends to infinity (point D in Figure 4.25), where
the shock wave degenerates into a Mach line. Corresponding to this, the point in the
hodograph plane (Figure 4.24) travels from the normal shock position E all the way to
the weak shock point D, thus covering all the possible solutions on the upper branch
of the shock polar. The lower branch, obviously, corresponds to the lower half of the
shock in the physical plane (Figure 4.25).

An interesting feature of the flow past a sphere is that it represents a mixed type
of flow containing both subsonic and supersonic flow regions. The subsonic region lies
in front of the sphere. The flow then accelerates from the front stagnation point and
becomes supersonic. Sonic lines, shown in Figure 4.25 as dashed lines, serve the role
of the boundaries between subsonic and supersonic parts of the flow.

Finally, it should be noted that the presence of the shock makes the flow irreversible
in the sense depicted in Figure 4.6. The entropy increases when the gas crosses the
shock wave, and then remains constant along each streamline. As a result, a so-called
entropy wake forms behind the body. When the distance from the body becomes large,
the pressure in the wake returns to its free-stream value p∞. However, owing to the
increased entropy, the density ρ remains smaller than ρ∞. It further follows from the
Bernoulli equation

V 2

2
+

γ

γ − 1

p

ρ
=
V 2
∞

2
+

γ

γ − 1

p∞
ρ∞

that the velocity V also stays below its free-stream value V∞. Consequently, a deficit
of momentum is observed in the wake, which suggests that the body is bound to
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experience a drag force. Taking into account that it originates from losses of mechanical
energy in the shock wave, this is termed wave drag.

4.6 Supersonic Flows past a Wedge and a Cone

There are only a few known exact solutions of the compressible Euler equations. The
first of these is the Prandtl–Meyer flow past a sharp expansion corner or a smooth
bend of the body contour (see Section 4.4). Here we shall consider two more flows
described by exact solutions of the Euler equations, this time involving shock waves.

4.6.1 Flow past a wedge

As soon as the shock polar is calculated for a given value of the normalised velocity λ1
in the oncoming flow, it may be directly applied to describe the behaviour of a number
of simple supersonic flows, including the flow past a wedge and the flow in a vicinity
of a sharp corner in the body contour; see Figure 4.26. The latter is equivalent to a
wedge installed on a flat wall.

In both flows, the impermeability condition on the wedge surface may be satisfied
by assuming that the shock OS generated by the wedge is a straight line. In this case,
the flow, which is unperturbed everywhere in front of the shock, appears to be uniform
also behind the shock, and the problem reduces to finding the strength of the shock
that would be sufficient to cause the flow to turn through an angle θw, making it
parallel to the wedge surface. In the hodograph plane (Figure 4.24), the corresponding
solution may be found by choosing θ = θw. Experimental observations show that in
the flow past a wedge, the solution with a weak shock is usually realised. Therefore,
the normalised velocity behind the shock is given by point B, and the shock angle α
may be found by drawing a straight line through points B and D and recalling that
the shock OS is perpendicular to this line. With known α, all the flow parameters
in the region between the shock and the wedge surface are calculated using formulae
(4.5.32)–(4.5.34) and (4.5.14b).

It is interesting to note that, as long as the shock is attached to the wedge tip O,
as shown in Figure 4.26(a), the flow above the wedge is independent of that below it,
and therefore cannot be influenced by a deformation of the lower surface of the wedge,
say, its rotation around the tip O. However, when the wedge angle θw exceeds the

V1

V2

O

S

α
θw

(a) Flow past a wedge.

V1

V2

O

S

α
θw

(b) Flow past a corner.

Fig. 4.26: Flow past a wedge and a corner with attached shock.
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θw

Fig. 4.27: Flow past a wedge with detached shock.

maximum value θmax, the solution with attached shock can no longer exist. Instead,
flow with a detached shock is observed. It contains a subsonic region situated between
the front bow shock and sonic lines, shown in Figure 4.27 as dashed lines. Within this
region, perturbations are free to propagate in all directions.

4.6.2 Flow past a circular cone

Let a circular cone be placed in steady supersonic flow of a perfect gas as shown in
Figure 4.28. To describe the flow, we shall use equation (4.3.6). If the cone is oriented
in such a way that its axis is parallel to the free-stream velocity vector, then the flow
may be expected to be axially symmetric. Keeping this in mind, we shall use cylindrical
polar coordinates. In order to express equation (4.3.6) in these coordinates, one can
follow the standard procedure described in Section 1.8. Alternatively, and in fact more
easily, it can be done as follows.

We write equation (4.3.6) in Cartesian coordinates,

u

(
u
∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)
+ v

(
u
∂u

∂y
+ v

∂v

∂y
+ w

∂w

∂y

)

+ w

(
u
∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)
= a2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (4.6.1)
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z

Fig. 4.28: Flow past a circular cone.
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and choose the x-axis to coincide with the axis of the cone. Since the gas motion in each
plane drawn through the cone axis should be the same, we can restrict our attention to
one of these planes. We shall choose it to be the (x, y)-plane of our coordinate system.
It is obvious that, at any point in this plane,

w = 0,
∂w

∂x
= 0,

∂w

∂y
= 0,

which reduces equation (4.6.1) to

u

(
u
∂u

∂x
+ v

∂v

∂x

)
+ v

(
u
∂u

∂y
+ v

∂v

∂y

)
= a2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
. (4.6.2)

It remains to clarify how the last term in this equation, ∂w/∂z, has to be inter-
preted. For this purpose, a plane crossing the flow perpendicular to the cone axis will
be used; see Figure 4.29. Let us consider two points in this plane. Point 1 is an ar-
bitrary point lying on the y-axis. Point 2 has the same x- and y-coordinates, but is
placed a small distance ∆z off the (x, y)-plane. We have

∂w

∂z
= lim

∆z→0

w2 − w1

∆z
,

where w1 and w2 are the values of w at points 1 and 2, respectively. Denoting by δ
the angle between the y-axis and the ray drawn from the cone axis to point 2, we can
write

w1 = 0, w2 = v sin δ, ∆z = y tan δ,

and therefore
∂w

∂z
=
v

y
lim
δ→0

sin δ

tan δ
=
v

y
. (4.6.3)

δ

δ
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v v
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y

∆z

1 2

Fig. 4.29: Calculation of ∂w/∂z.
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Substituting (4.6.3) into equation (4.6.2) and dividing both of its sides by a2 yields

(
1− u2

a2

)
∂u

∂x
+

(
1− v2

a2

)
∂v

∂y
− uv

a2

(
∂u

∂y
+
∂v

∂x

)
+
v

y
= 0. (4.6.4)

The second equation relating the two velocity components u and v may be for-
mulated based on the following observations. Taking into account the shape of the
body, it is reasonable to expect that the front shock OS (see Figure 4.28) will have a
conical form. In this case, the strength of the shock, being defined by the shock angle
α, will to be the same for all streamlines crossing the shock. This means that, while
the entropy will increase at the shock, it will increase by the same amount for all fluid
particles crossing the shock, and therefore will be constant in the entire region between
the shock and the body surface. Having established this fact, we can turn to Crocco’s
formula (4.2.21). Assuming, as usual, that the body force f is negligible, we see that
all the terms on the right-hand side of (4.2.21) are zero, i.e.

ω ×V = 0.

Since in an axially symmetric flow the vorticity vector ω has only one component,
which is perpendicular to the velocity vector V, we have to conclude that the flow
behind the shock is irrotational, ω = 0. This is expressed by the equation

∂u

∂y
− ∂v

∂x
= 0. (4.6.5)

When solving equations (4.6.4) and (4.6.5) we will also need to use the Bernoulli
equation, which relates the local speed of sound a to the flow velocity V . Combining
(4.4.32) with (4.4.38), we have

a2

γ − 1
+
V 2

2
=

γ + 1

2(γ − 1)
V 2
∗ . (4.6.6)

We shall now demonstrate that the solution of equations (4.6.4)–(4.6.6) may be
found in a self-similar form, with the velocity components

u(x, y) = u(ξ), v(x, y) = v(ξ),

being functions of a single variable ξ defined as

ξ =
x

y
. (4.6.7)

Differentiation of (4.6.7) gives

dξ

dx
=

1

y
,

dξ

dy
= − x

y2
= − ξ

y
,

and we see that

∂u

∂x
=

1

y

du

dξ
,

∂u

∂y
= − ξ

y

du

dξ
,

∂v

∂x
=

1

y

dv

dξ
,

∂v

∂y
= − ξ

y

dv

dξ
. (4.6.8)
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Substitution of (4.6.8) into equations (4.6.4) and (4.6.5) reduces them to

(
1− u2

a2

)
du

dξ
− ξ

(
1− v2

a2

)
dv

dξ
+ 2ξ

uv

a2
du

dξ
+ v = 0, (4.6.9)

ξ
du

dξ
+
dv

dξ
= 0. (4.6.10)

Let us now use, instead of ξ, the longitudinal velocity component u as independent
variable. Our task will be to find a function v(u) that is related to function v(ξ) by
means of the equation

v(ξ) = v
[
u(ξ)

]
.

Differentiating this equation, we have

dv

dξ
=
dv

du

du

dξ
. (4.6.11)

Substitution of (4.6.11) into equations (4.6.9) and (4.6.10) yields

(
1− u2

a2

)
− ξ

(
1− v2

a2

)
dv

du
+ 2ξ

uv

a2
+ v

dξ

du
= 0, (4.6.12)

ξ = −dv
du
. (4.6.13)

From (4.6.13), we find that
dξ

du
= −d

2v

du2
. (4.6.14)

It remains to substitute (4.6.13) and (4.6.14) into (4.6.12), and we arrive at the fol-
lowing equation for the function v(u):

v
d2v

du2
= 1 +

(
dv

du

)2

−
(
u

a
+
v

a

dv

du

)2

.

This may be more conveniently written using the normalised velocity components

λx =
u

V∗
, λy =

v

V∗
.

We have

λy
d2λy
dλ2x

= 1 +

(
dλy
dλx

)2

−
(

λx
a/V∗

+
λy
a/V∗

dλy
dλx

)2

. (4.6.15)

Here a/V∗ may be found using the Bernoulli equation (4.6.6):

a

V∗
=

√
γ + 1

2
− γ − 1

2
(λ2x + λ2y).

From a physical point of view, it is natural to treat the cone angle θw as known
and seek the shock angle α as part of the solution for the flow past the cone. How-
ever, mathematically, it is more convenient to consider the inverse problem, in which
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Fig. 4.30: The cone flow solution calculated for λ1 = 1.6 and α = 50◦.

equation (4.6.15) is calculated in the following way. We start with constructing the
shock polar for a given normalised velocity λ1 in the free stream; see Figure 4.30.
Then, assuming the shock angle α to be known, we depict the shock position OS. A
straight line DS, drawn perpendicular to the shock, intersects the shock polar at point
B. The position of this point in the hodograph plane gives the values of both velocity
components λx and λy immediately behind the shock, thus specifying the first initial
condition for equation (4.6.15). Since (4.6.15) is a second-order differential equation,
we also need to know the derivative dλy/dλx at point B. This may be found from
equation (4.6.13). Using the normalised velocity components, this equation may be
written as

dλy
dλx

= −ξ = −x
y
,

or, equivalently,

r · dλ = 0, (4.6.16)

which shows that, along the integral curve, the increment dλ of the normalised velocity
vector λ = (λx, λy) is always perpendicular to the position vector r = (x, y). In
particular, immediately behind the shock, the integral curve should be perpendicular
to the shock or tangent to line DS; see Figure 4.30.

Now we can start calculating equation (4.6.15) from the shock towards the cone
surface. The impermeability condition suggests that the velocity vector should be
parallel to the position vector on the cone surface. In view of (4.6.16), this may be
written in the form

λ · dλ = 0. (4.6.17)

The calculations should stop as soon as condition (4.6.17) is met. The corresponding
point in Figure 4.30 is denoted as point W . Its position in the hodograph plane de-
termines both the cone angle θw and the value of the normalised velocity on the cone
surface.
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Exercises 15

1. Consider supersonic flow above a rigid-body surface that remains flat everywhere
upstream of point O but then starts to bend up as shown in Figure 4.31. According
to the Prandtl–Meyer theory, deceleration of the flow over a curved part of the
wall should be observed, causing the characteristics of the first family to converge.
Consider two of them, namely the characteristic emerging from point O and the
neighbouring characteristic emerging from point O′ situated a small distance ∆x
downstream of O. They intersect at point C; see Figure 4.31. Using equations
(4.4.48), (4.4.49), and (4.4.34), show that the distance d between points O and C
may be calculated as

d =
2(M2 − 1)

(γ + 1)M3θ′w(0)
.

Here θw(x) is the angle made by the tangent to the body contour with the x-axis
and M is the Mach number in the uniform flow upstream of OC. Assume that
the derivative θ′(x) of the wall slope angle θx(x) is finite at point O.

O O′

C

x

y

∆x

d

Fig. 4.31: Convergence of the characteristics.

2. Combining Prandtl’s relation (4.5.23) with equation (4.4.40), demonstrate that
the Mach number behind a normal shock may be calculated as

M2 =

√
1 + 1

2(γ − 1)M2
1

γM2
1 − 1

2(γ − 1)
.

3. Using equation (4.5.30), show that if the Mach number before the shock, M1, is
only slightly larger than unity, i.e. M1 − 1 is small, then the entropy increment
across the shock is proportional to the cube of M1 − 1:

∆S =
16γR

3(γ + 1)2
(M1 − 1)3.

For comparison, also consider the pressure increment. Using equation (4.5.27),
show that it is linear in M1 − 1:

p2 − p1
p1

=
4γ

γ + 1
(M1 − 1).

How are these formulae modified for an oblique shock?
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4. It may be observed from Figure 4.23 that

V2n
V1n

=
tan(α− θ)

tanα
.

Using (4.5.34), show that the velocity vector deflection angle θ and the shock
angle α are related by the equation

tan θ =

(
M2

1 sin2 α− 1
)
cotα

1 +
[
1
2(γ + 1)− sin2 α

]
M2

1

. (4.6.18)

Differentiating this equation with respect to α, demonstrate that the value αmax

of the shock angle corresponding to the maximum deflection angle θmax may be
determined from the equation

γM2
1 sin2 αmax = −1 +

γ + 1

4
M2

1 + (γ + 1)1/2
√

1 +
γ − 1

2
M2

1 +
γ + 1

16
M4

1 .

Hint : Use the relation

tan(α− θ) =
tanα− tan θ

1 + tanα tan θ
.

5. It may easily be seen from (4.6.18) that when the velocity vector deflection angle
θ is small, M2

1 sin2 α−1 is also small, suggesting that the oblique shock generated
by a thin wedge is indistinguishable from a Mach line with sinα = 1/M1.

By solving (4.6.18) for M2
1 sin2 α− 1 and using the result in (4.5.33), demon-

strate that the pressure on the wedge surface with small angle θ may be calculated
with the help of the Ackeret formula

p2 = p1 + ρ1V
2
1

θ√
M2

1 − 1
.

6. Show that the maximum possible compression ρ2/ρ1 in a shock wave is

ρ2
ρ1

=
γ + 1

γ − 1
.

4.7 One-Dimensional Unsteady Flows

Here we shall return to the problem depicted in Figure 4.3. Remember that the task
was to study the motion of a perfect gas in a cylinder caused by piston motion. It
was assumed that initially the gas was motionless, with the pressure, density, and
enthalpy being p0, ρ0, and h0, respectively. We further assumed that the piston was
brought into motion at time t = 0, with its position at any t > 0 given by the equation
x = xw(t). In Section 4.1, the flow analysis was conducted under the assumption that
the perturbations produced in the gas are weak, which holds when the piston speed
ẋ is much smaller than the speed of sound, a0 =

√
γp0/ρ0. We shall now lift this

restriction.
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4.7.1 Expansion wave

We shall consider first the case where the piston moves away from the gas as shown
in Figure 4.32. If the piston speed ẋw(t) is comparable to the speed of sound, a0, then
the nonlinear equations (4.1.3) have to be used:

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
, (4.7.1a)

ρ

(
∂h

∂t
+ u

∂h

∂x

)
=
∂p

∂t
+ u

∂p

∂x
, (4.7.1b)

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (4.7.1c)

h =
γ

γ − 1

p

ρ
. (4.7.1d)

In order to formulate the boundary conditions for these equations, we note, first of
all, that as the piston starts to move it causes perturbations propagating through the
gas with the speed of sound, a0. This means that for all x > a0t, the gas remains
unperturbed. Since we are dealing with the process where the gas expands, no shock
waves can form near x = a0t. Consequently, all the fluid dynamic-functions should
remain continuous, and we can write

u = 0,

p = p0,

ρ = ρ0





at x = a0t. (4.7.2)

The second boundary condition that we will be using is the the impermeability con-
dition on the piston surface. It is written as

u = ẋw(t) at x = xw(t). (4.7.3)

A simple analytic solution to the boundary-value problem (4.7.1)–(4.7.3) may be
found if we assume that the piston moves with a constant speed, i.e.

xw =

{
0 if t < 0,

−Vwt if t ≥ 0,

where Vw is a positive constant, then no characteristic length or time scale can be
ascribed to the physical process considered, suggesting that the solution may be sought

xO

xw(t)

Fig. 4.32: Expansion flow in the cylinder.
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in the self-similar form

u(t, x) = VwU(ξ), p(t, x) = ρ0V
2
wP (ξ),

ρ(t, x) = ρ0R(ξ), h(t, x) = V 2
wH(ξ),

}
(4.7.4)

where
ξ =

x

Vwt
. (4.7.5)

Substitution of (4.7.4) and (4.7.5) into the Euler equations (4.7.1) yields

R(U − ξ)U ′ = −P ′, (4.7.6a)

RH ′ = P ′ (4.7.6b)

(U − ξ)R′ +RU ′ = 0, (4.7.6c)

H =
γ

γ − 1

P

R
, (4.7.6d)

while the boundary conditions (4.7.2) and (4.7.3) become

U = 0,

P =
p0
ρ0V 2

w

,

R = 1





at ξ =
1

Mw
, (4.7.7a)

U = −1 at ξ = −1, (4.7.7b)

where Mw = Vw/a0.
In order to simplify the set of equations (4.7.6), we differentiate (4.7.6d) and sub-

stitute the result into (4.7.6b). We find that

P ′

P
− γ

R′

R
= 0,

which, on integration, leads to the entropy conservation law

P

Rγ
= C.

The constant of integration C is easily found from the conditions on P and R in
(4.7.7a). We have

P = CRγ , C =
p0
ρ0V 2

w

. (4.7.8)

We now differentiate the first of equations (4.7.8) and use it on the right-hand side
of equation (4.7.6a). This results in

(U − ξ)RU ′ = −CγRγ−1R′. (4.7.9)

Eliminating U ′ from (4.7.9) and (4.7.6c), we find that the velocity U and density R
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are related to one another as

(U − ξ)2 = CγRγ−1. (4.7.10)

If we take logarithms on both sides of equation (4.7.10) and perform differentiation,
then we find that

2
U ′ − 1

U − ξ
= (γ − 1)

R′

R
. (4.7.11)

It remains to eliminate R′ from (4.7.6c) and (4.7.11), and we can conclude that
the velocity U satisfies a rather simple equation, namely

U ′ =
2

γ + 1
.

The solution to this equation satisfying the boundary condition on U in (4.7.7a) has
the form

U =
2

γ + 1

(
ξ − 1

Mw

)
. (4.7.12)

Clearly, in the general case, the solution (4.7.12) for the expansion wave cannot
satisfy the boundary condition (4.7.7b) on the piston surface. In fact, if condition
(4.7.7b) were satisfied, then it would follow from (4.7.10) that, on the piston surface,
the gas density would become zero. What happens in reality is that the region between
the front of the expansion wave (x = a0t) and the piston is subdivided into two
subregions. The first (denoted as region 1 in Figure 4.33) is the expansion wave itself,
where the gas accelerates from rest on the wave front to the velocity of the piston. In
order to find the position of the rear of the wave where the piston velocity is attained,
we have to set U = −1 in (4.7.12). This gives

ξ =
1

Mw
− γ + 1

2
. (4.7.13)

Combining (4.7.13) with (4.7.5), we see that the equation of the rear of the wave is
written in dimensional variables as

x =
(
a0 −

γ + 1

2
Vw

)
t.

The second region (denoted as region 2 in Figure 4.33) extends from the rear of
the wave to the piston surface. In this region, the gas velocity remains constant and

Fig. 4.33: Propagation of the perturbations in the cylinder with time.

x
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coincides with the piston velocity.10 Since the density also stays constant, its value
in region 2 can be found by applying equation (4.7.10) to the point situated at the
boundary between regions 1 and 2. We know that, at the rear of the expansion wave,
U = −1 and ξ is given by (4.7.13). Therefore, it follows from (4.7.10) that, at the
boundary point,

R =

(
1− γ − 1

2
Mw

)2/(γ−1)

. (4.7.14)

Returning to dimensional variables, we can conclude that in region 2 the density is
given by

ρ2 = ρ0

(
1− γ − 1

2

Vw
a0

)2/(γ−1)

.

The pressure in region 2 is found by substituting (4.7.14) into (4.7.8). We have

p2 = p0

(
1− γ − 1

2

Vw
a0

)2γ/(γ−1)

. (4.7.15)

4.7.2 Compression flow

Let us now suppose that the piston moves towards the gas, i.e. in the positive x-
direction as shown in Figure 4.34. The piston motion causes a shock wave to form
in the cylinder. It propagates through the gas with a speed larger than the speed of
sound (see Problem 5 in Exercises 16). Before the shock, the gas remains at rest. As the
shock passes, the gas immediately acquires a finite velocity u > 0; see Figure 4.35(a).
The flow in the region between the shock and the piston is described by the Euler
equations

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
,

ρ

(
∂h

∂t
+ u

∂h

∂x

)
=
∂p

∂t
+ u

∂p

∂x
,

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0,

h =
γ

γ − 1

p

ρ
.






(4.7.16a)

In the problem considered, they have to be solved with the following conditions on the
shock x = xs(t):

ρ
[
ẋs(t)− u

]2
+ p = ρ0

[
ẋs(t)

]2
+ p0,

γ

γ − 1

p

ρ
+ 1

2

[
ẋs(t)− u

]2
=

γ

γ − 1

p0
ρ0

+ 1
2

[
ẋs(t)

]2
,

ρ
[
ẋs(t)− u

]
= ρ0ẋs(t),





(4.7.16b)

10The situation is similar to steady flow past an expansion corner (see Figure 4.17). Recall that in
this flow the gas acceleration process is confined to the Prandtl–Meyer fan A′AA′′.
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xO

shock

xw(t) xs(t)

Fig. 4.34: Compression flow in the cylinder.

and the impermeability condition on the piston surface

u = ẋw(t) at x = xw(t). (4.7.16c)

Equations (4.7.16b) can be deduced by a simple reformulation of the normal-shock
conditions (4.5.16) using a Galilean transformation. Recall that when deriving condi-
tions (4.5.16) we assumed the flow to be steady and the shock motionless. Now we
have to deal with the shock that propagates along the cylinder with speed Vs = ẋs;
see Figure 4.35(a).

Let us call the coordinate frame used in Figures 4.34 and 4.35(a) the laboratory
frame, and introduce a new frame that moves along the cylinder with the shock speed
Vs; see Figure 4.35(b). When an observer relocates from the laboratory frame to the
moving frame, the Galilean transformation requires the gas velocity to be reduced
by Vs. This means that the gas before the shock (region 1), which was stationary in
the laboratory frame, should now have the velocity Vs directed towards the shock.
The velocity behind the shock (region 2) becomes Vs − u. Since the thermodynamic
functions are invariant with respect to the change of the coordinate frame, we can
write

region 1: V1 = Vs, ρ1 = ρ0, p1 = p0, h1 = h0,

region 2: V2 = Vs − u, ρ2 = ρ, p2 = p, h2 = h.

}
(4.7.17)

S

S′

12

Vsu

(a) Laboratory frame.

S

S′

12

VsVs − u

(b) Moving frame.

Fig. 4.35: Galilean transformation from the laboratory frame to a coordinate frame
moving with the shock.



298 Chapter 4. Elements of Gasdynamics

Substitution of (4.7.17) into (4.5.16) yields

ρ(Vs − u)2 + p = ρ0V
2
s + p0,

h+
(Vs − u)2

2
= h0 +

V 2
s

2
,

ρ(Vs − u) = ρ0Vs.





(4.7.18)

It remains to recall that

h =
γ

γ − 1

p

ρ
, h0 =

γ

γ − 1

p0
ρ0
, Vs = ẋs(t),

and we can see that equations (4.7.16b) really hold for a shock wave propagating
through an initially stagnant gas.

In the general case, the boundary-value problem (4.7.16) has to be solved numeri-
cally. However, if the piston velocity Vw is constant, then a simple analytical solution
proves to be possible. Indeed, assuming the gas velocity u, pressure p, and density ρ
to be constant between the piston and the shock allows the Euler equations (4.7.16a)
to be satisfied. It then follows from the impermeability condition (4.7.16c) that

u = Vw. (4.7.19)

In order to find the shock speed Vs and the values of the pressure and density in the
region between the piston and the shock, we have to use the shock conditions (4.7.16b).
Using (4.7.19) in (4.7.16b), we have

ρ(Vs − Vw)
2 + p = ρ0V

2
s + p0, (4.7.20a)

γ

γ − 1

p

ρ
+

(Vs − Vw)
2

2
=

γ

γ − 1

p0
ρ0

+
V 2
s

2
, (4.7.20b)

ρ(Vs − Vw) = ρ0Vs. (4.7.20c)

We write the continuity equation (4.7.20c) as

ρ =
ρ0Vs

Vs − Vw
, (4.7.21)

and use it to eliminate ρ from the momentum (4.7.20a) and energy (4.7.20b) equations.
We find

ρ0VsVw = p− p0, (4.7.22a)

γ

γ − 1

p− p0
ρ0

− γ

γ − 1

Vw
Vs

p

ρ0
− VsVw +

1

2
V 2
w = 0. (4.7.22b)

Elimination of the shock speed Vs from (4.7.22) leads to the following equation for the
pressure jump p− p0 across the shock:

(p− p0)
2 − 1

2(γ + 1)ρ0V
2
w(p− p0)− γρ0V

2
wp0 = 0.
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This equation has two solutions:

(p− p0)1,2 =
γ + 1

4
ρ0V

2
w ±

√
(γ + 1)2

16
ρ20V

4
w + γρ0V 2

wp0,

one with positive increment of the pressure across the shock ∆p = p−p0 and the other
with negative ∆p. Since ‘expansion shocks’ cannot be observed in real flows, we have
to choose the first solution. It shows that the pressure behind the shock,

p = p0 + ρ0V
2
w

(
γ + 1

4
+

√
(γ + 1)2

16
+
a20
V 2
w

)
. (4.7.23)

Now the shock speed Vs can be found from equation (4.7.22a) and the density ρ
behind the shock from equation (4.7.21).

4.7.3 Shock-tube theory

A shock tube is a device designed for experimental studies of gases under the influence
of shock waves. A shock tube is usually made of a long circular cylinder divided by a
diaphragm into two chambers: a high-pressure chamber and a low-pressure chamber
(see Figure 4.36a). The test gas is placed in the low-pressure chamber, while the high-
pressure chamber is filled with a driver gas. To obtain a strong shock, the driver gas
is compressed to a pressure significantly higher than atmospheric. When the pressure
difference between the chambers reaches a desired level, the diaphragm is broken and
the two gases come into contact with one another. The contact surface moves into the
low-pressure chamber, leading to the formation of a shock wave propagating through
the test gas. Simultaneously, an expansion wave forms in the high-pressure section (see
Figure 4.36b).

Before the shock reaches the right-hand end of the tube or the expansion wave
reaches its left-hand end, no characteristic length or time scales can be ascribed to the
problem. This suggests that the solution has to have a self-similar form with the flow
velocity u, pressure p, and gas density ρ being constant on each ray emanating from
the coordinate origin in the (x, t)-plane (see Figure 4.36b). The contact surface has
to have a constant speed in this solution; we shall denote it, as before, by Vw for the
following reason. In the inviscid formulation, the perturbations produced in the gas
medium by the moving contact surface are indistinguishable from the perturbations
produced by the moving piston. This means that the solution for the expansion wave,
presented above, is directly applicable to the flow on the left-hand side of the contact
surface, and the solution for the compression flow is applicable in the region to the
right of the surface. These solutions have to be adjusted to one another through the
kinematic and dynamic conditions on the contact surface.

The kinematic condition states that the gas velocities on the two sides of the
contact surface should be equal to one another and to the velocity Vw of the contact
surface itself. If we denote the initial pressure, gas density, and speed of sound in the
high-pressure chamber by p′0, ρ

′
0, and a′0, respectively, then, using (4.7.15), we can
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Shock

0

Contact surface

1 2 3

Low-pressure sectionHigh-pressure section
(p = p′0, ρ = ρ′0) (p = p0, ρ = ρ0)

t

x

(b) Spreading of perturbations after diaphragm rupture. In addition to re-
gions 1 and 2 of Figure 4.33, we show here region 3, which forms in the
low-pressure gas between the contact surface and the shock wave.

Fig. 4.36: Shock-tube analysis.

express the pressure in region 2 (see Figure 4.36) as

p2 = p′0

(
1− γ′ − 1

2

Vw
a′0

)2γ′/(γ′−1)

, (4.7.24)

where γ′ is the specific-heat ratio of the driver gas. With p0, ρ0, a0, and γ denoting
the initial pressure, density, speed of sound, and specific-heat ratio of the test gas, the
pressure in region 3 is given by (4.7.23):

p3 = p0 + ρ0V
2
w

(
γ + 1

4
+

√
(γ + 1)2

16
+
a20
V 2
w

)
. (4.7.25)

The dynamic condition on the contact surface states that the pressure should be
the same on the two sides of this surface, i.e.

p2 = p3. (4.7.26)

Substitution of (4.7.24) and (4.7.25) into (4.7.26) leads to the following equation:

p′0

(
1− γ′ − 1

2

Vw
a′0

)2γ′/(γ′−1)

= p0 + ρ0V
2
w

(
γ + 1

4
+

√
(γ + 1)2

16
+
a20
V 2
w

)
, (4.7.27)

which serves to determine the velocity of the contact surface, Vw. This task has to
be performed numerically, except for limiting cases discussed in Problems 6 and 7 in
Exercises 16.

Diaphragm

Low-pressure chamberHigh-pressure chamber

(a) Shock tube before the diaphragm rupture.
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Exercises 16

1. Extend the theory of characteristics (see Section 4.4) to one-dimensional unsteady
flows. When performing this task, you may assume that you are dealing with a
perfect gas that starts moving from rest, with the initial gas density and pressure
being ρ0 and p0, respectively. You may further assume that the flow is free of
shock waves.

(a) Argue that, under these conditions, the entropy conservation law holds and
may be written as

p

ργ
=
p0
ργ0
. (4.7.28)

Use (4.7.28) to recast the momentum equation (4.7.1a) in the form

ρ
∂u

∂t
+ ρu

∂u

∂x
+ a2

∂ρ

∂x
= 0, (4.7.29)

where a is the local speed of sound.
(b) Combine (4.7.29) with the continuity equation (4.7.1c), and, treating ρ as v

and t as y, respectively, confirm that in the case considered the coefficients
in equations (4.4.1) are

a11 = ρu, a12 = ρ, b11 = a2, b12 = 0, c1 = 0,

a21 = ρ, a22 = 0, b21 = u, b22 = 1, c2 = 0.

Make use of this information to show that the set of equations (4.7.29),
(4.7.1c) is hyperbolic.

(c) Show further that equations (4.4.13) for the characteristics of the first family
assume the form

dx+ (a− u) dt = 0, (4.7.30a)

du− a

ρ
dρ = 0, (4.7.30b)

while equations (4.4.14) for the characteristics of the second family are written
as

dx− (a+ u) dt = 0, (4.7.31a)

du+
a

ρ
dρ = 0, (4.7.31b)

(d) Finally, use (4.7.28) to show that
∫
a

ρ
dρ =

2

γ − 1
a.

Hence, conclude that the Riemann invariants on the characteristics of the
first and second families are

u− 2

γ − 1
a = ξ (first family), (4.7.32)

u+
2

γ − 1
a = η (second family). (4.7.33)
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2. Consider the expansion flow problem (depicted in Figure 4.32) again, but now
allow the piston velocity Vw(t) to vary with time. Using the theory of character-
istics, demonstrate that formula (4.7.15) for the pressure on the piston surface
remains valid.

Fig. 4.37: Expansion flow: (x, t) diagram.

Suggestion: In order to perform this task, consider a point B in the (x, t)-plane
(see Figure 4.37) that lies on the piston surface at given time t, and draw from
B the characteristic of the first family to a point B′ that lies to the right of the
characteristic of the second family, AA′, emanating from the coordinate origin.
Consider further the Riemann invariant (4.7.32) that holds along the characteristic
BB′ and find the value of the constant ξ, making use of the fact that point B′

lies in the region where the gas remains unperturbed. Then take into account
that at point B the impermeability condition holds, namely that the gas velocity
coincides with the piston speed, u = −Vw(t), and show that

a = a0 −
γ − 1

2
Vw(t).

Finally, use the entropy conservation law (4.7.28) to show that the pressure on
the piston surface

p = p0

[
1− γ − 1

2

Vw(t)

a0

]2γ/(γ−1)

.

3. Return to the (x, t)-diagram discussed in Problem 2 (Figure 4.37), and choose
a point on the piston path; it is shown as point C in Figure 4.38. Draw the
characteristic of the second family, CC ′, from point C. Then choose a point on
the characteristic CC ′, say, point D and ‘connect’ this point with the unperturbed
gas region with the characteristic of the first family, DB′.

Making use of the Riemann invariants (4.7.32) and (4.7.33) on the charac-
teristics DD′ and CC′, show that the gas velocity u and the speed of sound, a,
remain constant along CC′. Hence, conclude that all characteristics of the second
family are straight lines in the (x, t)-plane with slope

dt

dx
=

1

a0 − 1
2 (γ + 1)Vw

,

x

tPiston path

A

A
B

B
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where Vw is the value of the piston velocity at the foot of the characteristic.
Discuss a possibility of a shock wave forming in the flow at some instance t > 0
after the piston starts to move.

Fig. 4.38: Expansion flow: (x, t) diagram.

4. Derive the shock conditions (4.7.18) from the first principles of mechanics, i.e.
directly from the momentum equation (4.5.2), the energy equation (4.5.9), and
the mass conservation law.

In order to perform this task, assume that the shock propagates with velocity
Vs through a gas that is initially at rest, with the pressure, the density of the gas
and internal energy being p0, ρ0, and e0, respectively. Consider the shock position
at time t and select a fluid body that (at this time) is situated immediately in
front of the shock and has a cylindrical shape MNN ′M ′ with the base lying in
the shock plane (see Figure 4.39a). Denote the area of the cylinder base by A and
choose its height to be Vs∆t. The latter ensures that after a time interval ∆t, the
fluid body appears to be immediately behind the shock as shown in Figure 4.39(b).

S

S′

M

M ′

N

N ′

Vs

Vs∆t

(a) The shock and fluid body at time t.

S

S′

M

M ′

N

N ′

Vs
Vs∆t

u∆t

(b) The shock and fluid body at time t+∆t. The
dashed line shows the shock position at time t.

Fig. 4.39: Shock wave SS′ passing through fluid body MNN ′M ′.

x

tPiston path

A

A

C

C

D

B
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Show that the pressure p, density ρ, internal energy e, and gas velocity u
behind the shock satisfy the following equations

ρ0Vsu = p− p0,

ρ0Vs
(
e+ 1

2
u2 − e0

)
= pu,

ρ(Vs − u) = ρ0Vs.

Manipulate these equations and show that they may be reduced to equations
(4.7.18).

5. Demonstrate that the speed Vs of a shock wave propagating through a perfect
gas at rest is given by

Vs = a0

√
γ − 1

2γ
+
γ + 1

2γ

p

p0
. (4.7.34)

where a0 and p0 are the speed of sound and pressure in the gas before the shock
and p is the pressure behind the shock.

Argue that for any p/p0 > 1, the shock speed is greater than the speed of
sound, a0, before the shock.

Also deduce that the speed of the gas behind the shock is

u =
a0
γ

p/p0 − 1√
γ − 1

2γ
+
γ + 1

2γ

p

p0

.

Suggestion: Start with elimination of the gas density behind the shock, ρ,
from the shock equations (4.7.18). Show that this leads to the following pair of
equations:

ρ0Vsu = p− p0,

γ

γ − 1

p− p0
ρ0

− γ

γ − 1

u

Vs

p

ρ0
− Vsu+

u2

2
= 0.




 (4.7.35)

Then eliminate the gas velocity behind the shock, u, from (4.7.35). You should
find that the shock speed Vs is given by (4.7.34).

6. If the pressure in the two chambers of a shock tube is the same, p′ = p, then one
expects the contact surface to remain motionless after removal of the diaphragm,
and, indeed, with p′ = p, equation (4.7.27) is satisfied by setting Vw = 0. If
∆p = p′ − p is small, then Vw is expected to be small.

Simplify both sides of equation (4.7.27), assuming that Vw is small compared
with the speed of sound, and show that, for small ∆p, the solution of (4.7.27) is
given by

Vw =
p′0 − p0

ρ0a0 + ρ′0a
′
0

.

7. When running experiments with a shock tube, one normally wishes to increase
the strength of the shock wave in the test gas. This can be achieved by increasing
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the speed of the contact surface, Vw. Assume that the initial pressure p′0 of the
driver gas is very high such that

p′0
p0

≫ 1,
p′0
ρ0V 2

w

≫ 1,

and deduce from the shock-tube equation (4.7.27) that the maximum attainable
speed of the contact surface is

Vw =
2

γ′ − 1
a′0.

If you are given a choice between helium and air as the driver gas, which one
would you choose?

Hint : When answering the last question, make use of the fact that the speed
of sound,

a =

√
γ
Ru

µg
T ,

where Ru is the universal gas constant and µg is the molecular weight of the gas.

4.8 Blast-Wave Theory

Here we shall study the shock wave that forms as a result of a massive explosion. As
the shock expands in the radial direction, it bring the gas (which was stagnant before
the shock) into motion. We shall study this motion from the viewpoint of an observer
situated sufficiently far from the centre of the explosion. Then detailed analysis of
various chemical processes taking place during the explosion becomes unnecessary.
Instead, the explosion may simply be treated as an instantaneous release of energy in
a region whose size is small compared with the observation distance.

The shock wave is expected to have a spherical shape, with the gas behind the
shock moving in the radial direction away from the centre of explosion. Keeping this
in mind, we shall express the Euler equations (4.1.2) in spherical polar coordinates
(see Figure 1.31):

ρ

(
∂Vr
∂t

+ Vr
∂Vr
∂r

)
= −∂p

∂r
, (4.8.1a)

ρ

(
∂h

∂t
+ Vr

∂h

∂r

)
=
∂p

∂t
+ Vr

∂p

∂r
, (4.8.1b)

∂ρ

∂t
+
∂(ρVr)

∂r
+

2ρVr
r

= 0, (4.8.1c)

h =
γ

γ − 1

p

ρ
. (4.8.1d)

Here we choose the coordinate origin to coincide with the centre of the explosion, in
which case the velocity vector has only one non-zero component, the radial velocity Vr.
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Equations (4.8.1) describe the gas motion between the centre of the explosion and
the shock wave. We now need to formulate the jump conditions across the shock.
Writing the shock equation in the form

r = rs(t),

and using Vr instead of u in (4.7.16b), we have

ρ
[
ṙs(t)− Vr

]2
+ p = ρ0

[
ṙs(t)

]2
+ p0, (4.8.2a)

γ

γ − 1

p

ρ
+

1

2

[
ṙs(t)− Vr

]2
=

γ

γ − 1

p0
ρ0

+
1

2

[
ṙs(t)

]2
, (4.8.2b)

ρ
[
ṙs(t)− Vr

]
= ρ0ṙs(t). (4.8.2c)

Our interest here is in a strong shock when the pressure p behind the shock is signifi-
cantly larger than the pressure p0 before the shock. We shall therefore disregard p0 on
the right-hand side of equation (4.8.2a). We further know that the density ratio ρ/ρ0
is always finite (see Problem 6 in Exercises 15). This means that we can also disregard

the term
γ

γ − 1

p0
ρ0

on the right-hand side of equation (4.8.2b). As a result, the shock

equations (4.8.2) assume the form

ρ
[
ṙs(t)− Vr

]2
+ p = ρ0

[
ṙs(t)

]2
, (4.8.3a)

γ

γ − 1

p

ρ
+ 1

2

[
ṙs(t)− Vr

]2
= 1

2

[
ṙs(t)

]2
, (4.8.3b)

ρ
[
ṙs(t)− Vr

]
= ρ0ṙs(t). (4.8.3c)

In order to complete the problem formulation, we need to establish a link between
the explosion and the resulting gas motion. This can be done through making used of
the energy conservation law. The kinetic energy of the gas behind the shock is 1

2
V 2
r

per unit mass. The shock also causes the internal energy e = cvT =
1

γ − 1

p

ρ
of the gas

to rise. Before the shock, the kinetic energy of the gas is zero and the internal energy

e =
1

γ − 1

p0
ρ0

is much smaller than that after the shock. Consequently, the energy

conservation law may be written as

rs∫

0

ρ

(
V 2
r

2
+

1

γ − 1

p

ρ

)
4πr2 dr = E. (4.8.4)

Here the left-hand side is the total energy of the gas inside the spherical shock wave;
the right-hand side is the energy released during the explosion.

Clearly, the problem at hand does not have any characteristic length or time
scales.11 Therefore we can expect the problem to admit a self-similar solution. The

11The two dimensional parameters involved in the problem formulation are the energy of the explo-
sion E and the initial gas density ρ0. These cannot be combined to produce a quantity with dimension
of length or time.
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form of this solution can be found using the method of affine transformations. We
write

Vr = AV̄r, p = Bp̄, h = Ch̄, ρ = Dρ̄,

t = at̄, r = br̄, rs = br̄s,

}
(4.8.5)

where A, B, C, D, a, and b are positive constants. Substitution of (4.8.5) into the
Euler equations (4.8.1) yields

A

a

∂V̄r
∂t̄

+
A2

b
V̄r
∂V̄r
∂r̄

= − B

Db

1

ρ̄

∂p̄

∂r̄
,

DC

a
ρ̄
∂h̄

∂t̄
+
DAC

b
ρ̄V̄r

∂h̄

∂r̄
=
B

a

∂p̄

∂t̄
+
AB

b
V̄r
∂p̄

∂r̄
,

D

a

∂ρ̄

∂t̄
+
DA

b

∂(ρ̄V̄r)

∂r̄
+
DA

b

2ρ̄V̄r
r̄

= 0,

Ch̄ =
B

D

γ

γ − 1

p̄

ρ̄
.

In order to ensure that the equations preserve their form, we have to set

A

a
=
A2

b
=

B

Db
,

DC

a
=
DAC

b
=
B

a
=
AB

b
,

D

a
=
DA

b
,

C =
B

D
.





(4.8.6)

In (4.8.6), only three equations are independent of others. They are

1

a
=
A

b
, A2 =

B

D
, C =

B

D
. (4.8.7)

The shock conditions (4.8.3) are dealt with in the same way. We find that they
preserve their form if, in addition to (4.8.7), the following equation holds:

D = 1. (4.8.8)

Finally, from the energy conservation law (4.8.4), we have

DA2b3 = 1. (4.8.9)

The set of algebraic equations (4.8.7)–(4.8.9) is easily solved to yield

A = a−3/5, B = a−6/5, C = a−6/5, D = 1, b = a2/5, (4.8.10)

where a remains arbitrary.
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Let us now assume that the original problem (4.8.1), (4.8.3), (4.8.4) admits a
solution

Vr = V (t, r), p = P (t, r), h = H(t, r), ρ = R(t, r),

with some functions U , P , H, and R. Then the solution of the transformed problem
may be written as

V̄r = V (t̄, r̄), p̄ = P (t̄, r̄), h̄ = H(t̄, r̄), ρ̄ = R(t̄, r̄). (4.8.11)

Using (4.8.5), we can express equations (4.8.11) in terms of the original variables:

Vr
A

= V

(
t

a
,
r

b

)
,

p

B
= P

(
t

a
,
r

b

)
,

h

C
= H

(
t

a
,
r

b

)
,

ρ

D
= R

(
t

a
,
r

b

)
.

Finally, we make use of (4.8.10), which leads to

Vr = a−3/5V

(
t

a
,
r

a2/5

)
, p = a−6/5P

(
t

a
,
r

a2/5

)
,

h = a−6/5H

(
t

a
,
r

a2/5

)
, ρ = R

(
t

a
,
r

a2/5

)
.





(4.8.12)

The parameter a in (4.8.12) may assume an arbitrary value, and therefore may
be thought of as an additional independent variable. Keeping in mind that it was
introduced artificially, we shall ‘hide’ it by choosing a = t. We have

Vr = t−3/5V

(
1,

r

t2/5

)
, p = t−6/5P

(
1,

r

t2/5

)
,

h = t−6/5H

(
1,

r

t2/5

)
, ρ = R

(
1,

r

t2/5

)
.





(4.8.13)

This shows that the functions V , P , H, and R are, in fact, functions of one variable

ξ =
r

t2/5
. (4.8.14)

The functions V , P , H, and R, as defined by equations (4.8.13), are dimensional.
If we wish to deal with non-dimensional variables, then we need to modify (4.8.13)
and (4.8.14) slightly. We note that there are two dimensional parameters, namely the
explosion energy E and the initial gas density ρ0, involved in the formulation of the
problem (4.8.1), (4.8.3), (4.8.4). The dimension of the energy E may be expressed as

E =
[
mass

]
·
[
velocity

]2
. (4.8.15)

Similarly, for the density ρ0, we have

ρ0 =

[
mass

]
[
length

]3 . (4.8.16)

Keeping in mind that [
length

]
=
[
velocity

]
·
[
time

]
,
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we can write (4.8.16) as

ρ0 =

[
mass

]
[
velocity

]3 ·
[
time

]3 . (4.8.17)

and it follows from (4.8.15) and (4.8.17) that

E

ρ0
=
[
velocity

]5 ·
[
time

]3
.

This suggests that, in order to make V dimensionless, we have to modify the first of
equations (4.8.13) as

Vr =

(
E

ρ0

)1/5

t−3/5V (ξ). (4.8.18a)

Applying similar arguments to the rest of the sought functions, we shall write

p = ρ
3/5
0 E2/5t−6/5P (ξ), h =

(
E

ρ0

)2/5

t−6/5H(ξ), ρ = ρ0R(ξ), (4.8.18b)

and

ξ =

(
ρ0
E

)1/5
r

t2/5
. (4.8.19)

Also, corresponding to (4.8.19), we shall express the shock equation in the form

rs(t) =

(
E

ρ0

)1/5

ξst
2/5, (4.8.20)

where the dimensionless constant ξs is to be found as a result of the solution of the
problem.

The equations for the functions V (ξ), P (ξ), R(ξ), and H(ξ) are deduced by sub-
stituting (4.8.18) and (4.8.19) into equations (4.8.1). We start with differentiation of
the similarity variable (4.8.19):

∂ξ

∂t
= −2

5

(
ρ0
E

)1/5
r

t7/5
= −2

5

ξ

t
,

∂ξ

∂r
=

(
ρ0
E

)1/5
1

t2/5
.

Now, we differentiate (4.8.18a), which yields

∂Vr
∂t

=

(
E

ρ0

)1/5[
− 3

5
t−8/5V + t−3/5V ′

(
− 2

5

ξ

t

)]
= −

(
E

ρ0

)1/5

t−8/5

(
3

5
V +

2

5
ξV ′

)
,

∂Vr
∂r

=

(
E

ρ0

)1/5

t−3/5V ′

(
ρ0
E

)1/5
1

t2/5
=

1

t
V ′.
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Similarly, we find that

∂p

∂t
= −ρ3/50 E2/5t−11/5

(
6

5
P +

2

5
ξP ′

)
,

∂p

∂r
= ρ

4/5
0 E1/5t−8/5P ′,

∂h

∂t
= −

(
E

ρ0

)2/5

t−11/5

(
6

5
H +

2

5
ξH ′

)
,

∂h

∂r
=

(
E

ρ0

)1/5

t−8/5H ′,

∂ρ

∂t
= −2

5
ρ0
ξ

t
R′,

∂ρ

∂r
= ρ

6/5
0 E−1/5t−2/5R′.

These reduce (4.8.1) to the following set of ordinary differential equations that are
valid between the centre of the explosion and the shock wave:

R

[
3

5
V −

(
V − 2

5
ξ
)
V ′

]
= P ′, (4.8.21a)

R

[
6

5
H −

(
V − 2

5
ξ
)
H ′

]
=

6

5
P −

(
V − 2

5
ξ
)
P ′, (4.8.21b)

RV ′ +
(
V − 2

5
ξ
)
R′ +

2RV

ξ
= 0, (4.8.21c)

H =
γ

γ − 1

P

R
. (4.8.21d)

Substituting (4.8.18)–(4.8.20) into the shock equations (4.8.3), we find that, at the
shock,

R

(
2

5
ξs − V

)2

+ P =
4

25
ξ2s ,

γ

γ − 1

P

R
+

1

2

(
2

5
ξs − V

)2

=
2

25
ξ2s ,

R

(
2

5
ξs − V

)
=

2

5
ξs






at ξ = ξs. (4.8.22)

Finally, substitution of (4.8.18)–(4.8.20) into the energy conservation law (4.8.4) re-
duces it to the form

4π

ξs∫

0

R

(
V 2

2
+

1

γ − 1

P

R

)
ξ2 dξ = 1. (4.8.23)

The problem (4.8.21)–(4.8.23) has to be solved numerically. It is convenient to start
with the shock ξ = ξs, where solution of equations (4.8.22) gives

V =
4

5(γ + 1)
ξs, P =

8

25(γ + 1)
ξ2s , R =

γ + 1

γ − 1
at ξ = ξs. (4.8.24)

In order to progress from the shock towards the centre of the explosion, we rearrange
equations (4.8.21) as follows. Substitution of (4.8.21d) into (4.8.21b) allows us to
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eliminate the enthalpy H and leads to the equation

(
V − 2

5
ξ

)(
P ′

P
− γ

R′

R

)
=

6

5
. (4.8.25)

Solving the continuity equation (4.8.21c) forR′ and substituting the result into (4.8.25),
we find that (

V − 2

5
ξ

)
P ′

P
+ γV ′ +

2γV

ξ
=

6

5
. (4.8.26)

Finally, eliminating P ′ from (4.8.26) with the help of the momentum equation (4.8.21a),
we have

V ′ = −3

5

V
(
V − 2

5
ξ
)
R/P − 2 + 10

3
γξ−1V

γ −
(
V − 2

5ξ
)2
R/P

. (4.8.27)

With known V , P , and R at some location ξ, one can find the derivative V ′ of the
radial velocity using (4.8.27). Then the derivative P ′ of the pressure is easily found
from (4.8.26), and the derivative R′ of the density from (4.8.25). These may then be
used to make a step to a smaller value of ξ. Of course, the position of the shock, ξ = ξs,
is not known in advance, and has to be determined through an iterative process to
satisfy the energy conservation law (4.8.23). The results of the calculations are shown
in Figure 4.40. Here the left-hand ordinate is used for V and P , and the right for R.
We find the shock parameter to be ξs = 1.0328. Behind the shock, the density R
experiences a sharp drop, and stays very low in the central region. This is due to the
fact that the gas in this region has been exposed to a very strong shock, which has led

to a significant increase of the entropy, S =
R

γ − 1
ln

p

ργ
. Since the pressure p remains

finite in the centre of the explosion (see Figure 4.40), the density ρ has to become
very low. This, in turn, means that the gas inertia is diminished, and explains why
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Fig. 4.40: Solution of the self-similar problem (4.8.21)–(4.8.23).
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the pressure develops an extended ‘plateau region’. Finally, it is interesting to notice
that the radial velocity V is zero at the centre of the explosion (ξ = 0) and shows an
almost linear rise with radius, except close to the shock.

In conclusion, we mention that the blast-wave theory described here was developed
by Sedov (1946) and Taylor (1950).
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Kutta, M. W. (1910). Über eine mit den grundlagen des flugsproblems in beziehung
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Meyer, Th. (1908). Über zweidimensionale bewegungsvorgänge in einem gas, das mit
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in Eulerian variables

convective acceleration, 28
local acceleration, 28

in Lagrangian variables, 27
Ackeret formula, 270, 292
adiabatic process, 25

Bernoulli integral
across shock wave, 275
compressible flow, 239
incompressible flow, 130

Biot–Savart formula, 179
Blasius–Chaplygin formula, 172
blast-wave theory, 305
body-fitted coordinates, 86
Boltzmann distribution, 21
Boltzmann equation, 4
Boltzmann’s constant, 17
Borda mouthpiece, 231
boundary conditions

dynamic condition, 211
free-stream condition, 142
impermeability condition, 141
kinematic condition, 211
no-slip condition, 70, 97
thermally isolated wall, 70

bow shock, 239, 286

Cauchy–Lagrange integral
compressible flow, 248
incompressible flow, 134

characteristic variables, 237
characteristics, 252, 254, 270, 301

method of, 256
circulation, 33
Clapeyron equation, 15, 19
complex conjugate velocity, 160
complex potential, 160

potential vortex, 163
two-dimensional dipole, 163
two-dimensional source, 161
two-dimensional uniform flow, 161

computational fluid dynamics, 3
conformal mapping, 181, 184

bilinear transformation, 186
Joukovskii transformation, 197

generalised, 208
linear fractional transformation, 186
Schwartz–Christoffel, 226

with linear function, 181
with power function, 185

conservation of entropy, 241
constitutive equation, 41, 46, 49
continuity equation

in Eulerian variables, 53
in Lagrangian variables, 27

continuum hypothesis, 4
Couette flow, 48, 95
critical velocity, 261
Crocco’s formula, 244
curvilinear coordinates, 73

curl, 80
divergence, 78
gradient, 77
Lamé coefficients, 75

cylindrical polar coordinates, 80

d’Alembert’s paradox, 147, 174, 210, 245
density, 5
deviatoric stress tensor, 41
differential equation type

elliptic, 254
hyperbolic, 254
parabolic, 106

dipole
three-dimensional, 145
two-dimensional, 163

drag
of infinite cylinder, 173
of sphere, 151
wave drag, 285

energy equation, 60
for compressible flows, 65
for incompressible flows, 64

enthalpy, 23
total enthalpy, 240

entropy, 24
conservation of entropy, 241

epicycloids, 262
equation

continuity, 27, 53
of energy, 60
of momentum, 58

integral form, 67
of state, 15

Euler equations
compressible, 234
incompressible, 129
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exact solutions

of the compressible Euler equations, 285
of the Navier–Stokes equations, 95

expansion ramp flow, 266

First Law of Thermodynamics, 19
flow past a circular cylinder

numerical solution, 123
potential theory, 165

fluid, 13
fluid particle, 7
flux, 103
forces acting on a fluid

body forces, 7
potential, 129

due to pressure, 9
electromagnetic, 8
inertial force, 8
surface forces, 8
volume forces, 7

free streamline theory
Kirchhoff flow, 210
two-dimensional inviscid jets, 223

contraction coefficient, 231
free streamlines, 211
Froude number, 72
full derivative, 28

gas constant, 15
Gromeko–Lamb form, 129

Hagen–Poiseuille flow, 100
heat conductivity coefficient, 59
Helmholtz

first theorem, 34
second theorem, 38

hodograph plane
in free streamline theory, 212
shock wave theory, 283
supersonic flow theory, 255, 262

ideal gas law, 15
incompressible flows, 15
integral momentum equation, 67
integrals of motion

compressible flows, 239
incompressible flows, 129

internal energy, 19, 20
inviscid incompressible flows

flat plate at an incidence, 197
flow past a circular arc, 205
flow past a parabola, 207

at an incidence, 208
flow past an ellipse, 205
past a circular cylinder, 165
past a corner, 191
past Joukovskii aerofoil, 201
rotating cylinder, 168

irrotational flows, 133, 244, 245
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aerofoils, 201
formula, 174
formula for lift, 169
transformation, 194, 197, 214

Joukovskii–Kutta condition, 200
jump conditions, 276

Kármán flow, 113
Kelvin’s Circulation Theorem

compressible flow, 242
incompressible flow, 130

kinetic energy of molecules, 17
kinetic theory of gases, 15
Kirchhoff flow, 210
Knudsen number, 4, 6

Lagrangian description, 26
Lamb formula, 73, 129
Laval nozzle, 248
lift force, 173

Mach cone, 234
Mach number, 72, 233
macroscopic quantities, 6
Magnus effect, 170
material derivative, 28
Maxwell distribution, 21
mean free path, 6
methods of characteristics, 256
momentum equation, 58

Navier–Stokes equations
compressible, 66
in body-fitted coordinates, 87
in cylindrical polar coordinates, 84
in spherical polar coordinates, 85
incompressible, 62
non-dimensional, 71

Newtonian fluid, 50
Newtonian model, 8
Newtonian viscosity law, 48
non-Newtonian fluid, 50
normalised velocity, 261

one-dimensional compressible flows
compression flow, 296
expansion wave, 293

pathline, 29
equation of, 30

perfect gas, 15
piston theory, 235
point source

three-dimensional, 142
two-dimensional, 161

Poiseuille flow, 98
potential flow equations, 251

compressible flow
steady, 251
unsteady, 272

incompressible flow, 141
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potential flow past a sphere
steady, 145
unsteady, 148

potential flows
compressible, 250
incompressible, 139, 153

potential vortex, 163
Prandtl number, 59
Prandtl’s relation, 277
Prandtl–Meyer flow, 263

expansion corner, 266
Prandtl–Meyer function, 260
pressure, 9, 14
principle of superposition, 142

Rankine body, 178
Rankine–Hugoniot conditions, 276
rate-of-strain tensor, 38

in curvilinear coordinates, 88
ratio of specific heats, 23
Reynolds number, 72
Riemann invariants, 255

Schwartz–Christoffel transformation, 226
self-similar solution, 108
separation point, 211
shear stress, 9, 11
shock polar, 283
shock relations, 273

for normal shock, 276, 278, 279
for oblique shock, 276, 281

shock tube, 299
shock wave, 272

normal shock, 276
oblique shock, 279

similarity of fluid flows, 69
dynamic, 72
geometric, 72

specific heat
at constant pressure, 23
at constant volume, 20

speed of sound, 239
spherical polar coordinates, 84
steady flows, 31
Stokes layer, 110
Stokes stream function, 159
stream function, 155, 157

axisymmetric flow, 159
streamline, 29

equation of, 29
stress, 10, 11

normal stress, 11

tangential stress, 11
stress tensor, 10, 19

deviatoric stress tensor, 41
in body-fitted coordinates, 92
in curvilinear coordinates, 92
in cylindrical polar coordinates, 92
in spherical polar coordinates, 92

strong shock, 283
Strouhal number, 72
supersonic flow, 233
supersonic flow past a circular cone, 286
supersonic flow past a wedge, 285
surface forces, 8

temperature, 15, 17
theory of characteristics

one-dimensional unsteady flows, 301
two-dimensional steady flows, 252, 270

thrust, 137
Torricelli formula, 136

unsteady potential equation, 272

velocity potential, 139, 153
virtual mass, 152
viscosity coefficient

dynamic, 48
first viscosity coefficient, 44
kinematic, 48
power law, 48
second viscosity coefficient, 44, 49
Sutherland law, 48

viscous flows
above oscillating plate, 121
between two coaxial cylinders, 103, 121
Couette flow, 95
dissipation of potential vortex, 110
down a slope, 120
Hagen–Poiseuille flow, 100
impulsively started flat plate, 105
Kármán flow, 113
lid-driven cavity flow, 126
past a circular cylinder, 123
Poiseuille flow, 98
through elliptic tube, 119

viscous forces, 13
vortex line, 33
vortex tube, 33
vorticity, 31

wave drag, 285
weak shock, 283
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