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Preface 

Although Pade presented his fundamental paper at the end of the past century 

while he was working with Hermite at the Ecole Normale Superieure de France, 

the studies on Pade approximants only became significant in the second part of 

this century. A systematic analysis of this subjet was made by G.A. Baker and 

J.L. Gammel in 1960; G.A. Baker, J.L. Gammel and J. Willis in 1961 presented 

an invariance theorem, the unitarity theorem was published by J.L. Gammel and 

F.A. Mc Donald in 1966 and in 1972 W.B. Gragg studied the connection between 

Pade approximants and some algorithms of numerical analysis. In 1973 (with the 

Institute of Physics London and Bristol) P.R. Graves-Morris edited some lectures 

delivered at a summer school held at the University of Kent in July 1972 on theo

retical and applied aspects of the Pade approximants. 

Pade's procedure is related to the theory of continued fractions, born in the 

seventeenth century, and some convergence theorems can be expressed only in 

terms of continued fractions, but Pade approximants have some advantages of 

practical applicability with respect to the continued- fraction theory. Moreover, as 

Chisholm notes, a given power series determines a set of approximants which are 

usually unique, whereas there are many ways of writing an associated continued 

fraction. 

The principal advantage of Pade approximants with respect to the generating 

Taylor series is that they provide an extension beyond the interval of convergence 

of the series. 

This procedure has been used as a standard technique by many applied math-

v 
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ematicians, theoretical physicists, theoretical chemists and electrical engineers. In 

the fluid-dynamics field there is also interest for Pade methods: in a recent congress 

Pade approximants were defined "magic". In fact the possibility of extracting in

formation from a diverging series and constructing a powerful sequence of approx

imants of a function seems too good to be real. 

Pade approximants can be applied in many parts of fluid-dynamics, both in 

steady and in nonsteady flows, both in incompressible and in compressible regimes. 

The exposition is divided into four parts. The first one deals with the properties 

of the Pade approximants that are useful for the applications and illustrates, with 

the aid of diagrams and tables, effectiveness of this technique in the field of applied 

mathematics. The second part recalls the basic equations of fluid-dynamics (those 

associated with the names of Navier-Stokes, Euler and Prandtl) and gives a quick 

derivation of them from the general balance equation. 

The third, the longest, shows eight examples of application of the Pade ap

proximants to steady flows, taking also into account the influence of the coupling 

of heat conduction in the body along which a fluid flows with the conduction and 

convection in the fluid itself. 

The fourth part considers two examples of application of the Pade approximants 

to unsteady flows. 

The purpose of this work is to show that the Pade approximants constitute an 

useful tool for solving fluid-dynamics problems. 

No specialized topic either in mathematics or in fluid-dynamics is presumed to 

be known by readers of this book. 

Only a basic knowledge is required of calculus: properties of series (convergence 

of power series, Cauchy product), etc. 
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In particular the determination of the Pade approximants, starting from the 

MacLaurin series, is obtained by the solution of a system of linear algebraic equa

tions, the coefficients of which are given in the first part. 

The derivation of the basic equations of Fluid Dynamics, contained in the 

second part, is obtained in a non standard way following a microscopic approach. 

This point of view, which uses the Dirac 8 function to describe the microscopic 

discontinuity of the medium, has two advantages: it enables us to easily understand 

the physical meaning of the terms in the general balance equation and represents 

a compact and fast procedure to obtain the Navier-Stokes equations. Thus no 

previous knowledge of the equation of fluid-dynamics, and in particular of the 

energy equation, is required. 

The main part of this work is the third, in which eight problems of steady 

fluid-dynamics are chosen to show how the Pade approximants enable us to obtain 

the full determination of the fluid-dynamics field even in those regions in which 

the Taylor series is inadequate to describe the field. 

The exposition is self-contained because it presents the physical problem, its 

mathematical model, the solution and the analysis of the results. Of course a 

particular emphasis is given to the application of the Pade approximants technique. 

The last part shows that even in unsteady flows such a procedure is useful. 

These ten examples, which refer to situations very different from each other, al

low us to conclude that in many fields of fluid-dynamics it is possible to successfully 

apply the Pade approximants technique. 
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Chapter 1 

ELEMENTS OF PADE' APPROXIMANTS 
THEORY 

1.1 Introduction 

In many problems of applied mathematics one needs to represent a function in an 

approximate way either in proximity of a point or in a given interval. 

The basic approach for finding such representations is the Taylor series in the 

first case and the expansion in a series of orthogonal functions in the second: in 

general the Taylor series does not allow us to approximate a function in a given 

interval. In fact if one writes 

oo 

n=0 

where x0 is the initial point of the series (when x0 = 0 the series (1) is called 

MacLaurin series) and 

n! \dx")x=Xo 

3 

/ (*) ' 
oo 

n=0 

n(x- - x 0 y 

1 fd"f\ 
a„ ~ n! v^-A™. 
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such equality holds only for x„ — r<x< x„ -f r where r is the radius of convergence 

of the series. 

r is infinity only in particular cases, i.e., the expansion holds for any value of 

x. This situation occurs, for example, for exponential, sine and cosine functions. 

In order to obtain the advantages of the Taylor expansion for small value of 

| x — x0 | and to extend such representation of a function to high values of | x - x0 | 

the Pade approximant technique can be used. 

This procedure- requires the knowledge of a certain number of coefficients au 

of Eq.(l): in this way it is still possible to approximate the function / ( a ) near 

the initial point x0. The second step allows us to determine a rational function 

Q(x)/D(x), where Q(x) and D(x) are polynomials, that approximates /(:r) far 

from x0 as well. The coefficients of Q(x) and D(x) can be obtained from a system 

of linear equations. 

Moreover it is possible to gain an approximate evaluation of the radius of 

convergence r of the series in Eq.(l), by finding the roots of D(x): if r j , riy... ,rM 

are the moduli of such roots, the smallest of rt gives an approximation of r. (In 

fact, this would be the exact radius of convergence- of the Taylor series of a rational 

function). 

2.1 MacLaurin series and Pade approximants 

A regular function / = f(x) can be represented by means of a power series 

(MacLaurin series) in the form 
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03 

zoo = Yl «»*" (?) 

within the convergence interval (-r, r), where r is the radius of convergence of the 

series and a„ = / M (o) / rc! . Among the available formulas for calculating r we 

may quote the following 

r = lim | anlan_x \ . (2) 
n-*oo 

This representation is very useful when x is small because it is possible to consider 

only a few terms of the series and thus obtain a good accuracy. The knowledge of r 

is important in order to correctly handle Eq.(l ') that does not hold when | x |> r. 

A technique that extends the range of the MacLaurin expansion is the one sug

gested by Pade through its approximants. This method, that uses the coefficients 

an of Eq. (1'), allows us to calculate r and to obtain a representation of f(x) which 

is valid even when | x |> r. Pade approximants are defined in the following 

manner 

^w = #44, (3) 

where 

N M 

QN = Yl A"x" > DM = E B«x" ■ <4) 
n=0 n=0 
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The M + N +1 unknown coefficients (we can assume B0 = 1 because P£ is defined 

as the ratio of two polynomials) are obtained by the condition that the equation 

/(*)**£ (5) 

holds up to terms of order xN+M . 

In particular the sequence PN = Pfi is called diagonal scqutmcr.. 

When f(x) is represented by Eq.(l ') , then Eq.(5) can l>e written as 

QN = DM Y, a"x" ■ (6) 

From this equation, by using Cauchy's rule for the product of series, we have 

N oo 

n=0 n=0 

where 

n 

f„ = Yl Dia"-< ■ (8) 
teO 

Therefore the equations that determine the coefficients A„ and 2?„ arc 

n 

^n ~ Z l a»-iB< » (9) 

N oo 5>*" = £ Cn*" , 
n=0 n=0 

(7) 
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where n = 0 ,1 , ...,7V + M. 

We notice in these equations that An = 0 for n > TV. Therefore Eq.(9) for 

TV < n < TV + M may be written in the following form 

n 

5 3 a*-iBi = -BQan , (10) 

whereas for 0 < n < TV the equations are in the general form (9). 

If n > M coefficients 5 , with i > M appear in Eq.(10): these coefficients are 

zero. 

We put B0 = 1 as suggested by Baker (this choice is not trivial as we shall 

show in Chap. 2). Then the system defined in Eq.(10) determines the coefficients 

Bt. Once the coefficients Bi are known Eq.(9), written for 0 < n < TV, gives the 

coefficients A{ in terms of the B^s. 

For any P£ the knowledge of the polynomial DM allow us to obtain an ap-

proximant of the radius of convergence r of the series (1'). If r1 ; r2, ...,rM are the 

moduli of the roots of DM, the smallest of rt gives an approximation of r. 

For M = 2,r is the smaller of the two numbers | B 1 / 2 B 2 ± ( 5 1
2 / 4 5 | - 1 / S 2 ) 1 / 2 |. 

3.1 The case of the diagonal sequence 

When TV = M, diagonal sequence, the TV coefficients B{ are determined by the 

equations 

n 

53 an-iBi = 
1=1 

= -B0an , 
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n 

£>„_,!?< = -a„ (N <n<2N) (11) 

and the N + 1 coefficients At are given by the equation 

n 

An = Y, a»~*Bi (0 < n < iV) . (12) 
>=o 

The Cramer rule enables us to write the coefficients Sj in the form 

Bi = -dt/d, (13) 

where d is the determinant of the system (11) and dt is the determinant obtained 

by replacing the i-th column of d by aN+1, ...,a2N. For N = 2 one has d — a\ — 

a^a3, d1 = a3a2 — a1a4, <f2 = a2a4 — al- F° r iV = 3 one has 

d — ax{a4 — 0,30,5) — a2{a3a4 — a2a5) + a3(a3 — a2a4), 

di = ai(a5a4 — a3a6) — a2(a5a3 — a2ae) + a4(a3 — a7a4), 

d2 = ai(a4a6 — al) — a4(a4a3 — a5a2) + a3(asa3 — a2d6), 

d3 = a3(a3as — a4as) — a2(a4a6 — a\) + a4(a4 — a3a5). 

4.1 Pade approximants for functions whose Taylor 
series has an infinite radius of convergence 

When the radius of convergence of a power series of a given function f(x) is infinite 
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one can obtain an accurate approximation of f(x) by the first n terms of the series 

with a high value of n. In this case the application of the Pade approximants is not 

very useful because the approximation given by the series expansion is comparable 

with that given by the Pade approximants (calculated with the same number of 

coefficients). 

As examples we consider two functions: exp(x) and l / r ( ; r ) , where T(x) is the 

gamma function. 

For the first function the MacLaurin expansion has a„ = 1/n!. At x — 

1, exp(x) = 2.7183. The Pade approximant for N = 2 (which has B2 = 1/12, Bj = 

—1/2, A2 = 1/12, A[ = 1/2, A0 = 1) gives 2.7142, whereas the first five terms of 

the MacLaurin expansion give 2.7083. At x = 2, exp(x) = 7.3891 and both P2 and 

the first five terms of the MacLaurin expansion give 7. The radius of convergence 

obtained from P2 is 3.5 and that obtained from P s is 11.3. 

An idea of the convergence of Pade approximants is given by the sequence of 

PN for exp(x). At x = 1 the exact value with six figures is 2.71828, whereas the 

Pade approximants give: P, = 3,P2 = 2.71429, P3 = 2.71831, P4 = 2.71828. At 

x = 5 the exact value with six figures is 148.413, whereas the Pade approximants 

give: P4 = 128.619, P5 = 149.697, P6 = 148.362, P7 = 148.415, P8 = 148.413. 

In Bender and Orsag [1] it is shown that for this function the Pade approximants 

reduce the error after N terms by a factor proportional to 2N. 

The diagram of exp(x) is displayed in Fig.l, together with its expansion in 

series (five and seven terms) and with the Pade representation (for N=2 and 3), 

for 0 < r < 4. One can see that the Pade approximants give, with the same 

number of coefficients, the same accuracy, and that the approximation that one 

can reach increases with the number of coefficients. 
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A second example is given by the function 1/T(x), the coefficients of whose 

MacLaurin expansion are given in Abramowitz and Stegun [2]. The first seven coef

ficients are aQ = 0, ax = 1, a2 = 0.577216, a3 = -0.655878, a4 = -0.042002, a5 = 

0.166539, o6 = -0.042198. At x = 1, T(x) = 1; the first five terms of the MacLau

rin series gives 0.87934 and Pade approximant with N = 2 gives 0.83052. The 

diagram of l / r ( x ) is displayed in Fig.2, together with its expansion in series (five 

and seven terms) and the Pade representation (for N=2 and 3) for 0 < X < 1.5. 

This figure shows the same qualitative behaviour as Fig.l. Small value of N 

gives accurate results for small x, both for the MacLaurin expansion and for Pade 

approximants: the accuracy obtained depends, of course, on the particular function 

considered. 

As N increases any degree of approximation can be reached. 

5.1 Pade approximants for functions whose Taylor 
series has a finite radius of convergence 

In order to give an idea of the convergence of Pade approximants when the cor

responding MacLaurin series does not converge let us consider two series, whose 

radius of convergence is 1, obtained by the binomial series. If / ( x ) = l / ( l + x ) 1 ' 2 the 

a„ coefficients of Eq.(l ') are a„ = (-l)"d2n_l/p„, where dm = 1 • 3...m, (d_i = 1) 

and p2n = 2 • 4 ■ ...2n (p0 = 1). One has o0 = 1, aY = - 1 / 2 , a2 = 3/8, a3 = 

—5/16, a4 = 35/128 and so on. 

For N = 2 one finds B2 = 5/16, Bi = 5/4; A2 = -1 /16 ; A, = 3/4; A0 = 1. At 



Elements of Pade approximants theory - 11 

x = 1, 1/(1 + xy>2 = 0.7071, the Pade approximant with JV = 2 gives 0.6585 and 

the first 5 terms of MacLaurin expansion gives 0.8359. At x = 2, 1/(1 + x)1 / 2 = 

0.5773, the Pade approximant with N = 2 gives 0.4737 and the first 5 terms 

of MacLaurin expansion gives 2.625. Pade approximant gives for the radius of 

convergence the value 0.8944. 

The diagram of 1/(1 + x)1 / 2 is displayed in Fig.3 together with its expansion 

in series (five and seven terms) and the Pade representation (for N=2 and 3) for 

0 < x < 10. This figure shows the strong difference between the Pade approximants 

and the expansion in series of a given function / (x ) . When x belongs to the interval 

of convergence both representations hold, but even when x is external to such 

interval Pade approximants represent the function well: in this case P3 is accurate 

up to x = 10. 

A second example is given by f(x) = log(\ + x); in this case the expansion in 

series can be obtained by integrating a binomial series. The a„ coefficients of Eq.(l ') 

are an = ( -1)"" 1 for n > 0 and a0 = 0. At x = 1, log{\ + x) = 0.6931. The Pade 

approximant with N = 2 (B2 = \/%,B1 = \,A2 = 1/2, Aj = 1,A0 = 0,r = 1.27) 

gives 0.6923 and the first five terms of MacLaurin expansion gives 0.0833. At 

x = 2, log(l + x) = 1.0986, P2 gives 1.0909 and the first five terms of MacLaurin 

expansion gives —1.3333. 

The diagram of log(l + x) is displayed in Fig.4 together with its expansion 

in series (five and seven terms) and the Pade representation (for N=2 and 3) for 
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0 < x < 10. In this case we find again similar behaviours as those shown in Fig.3. 

6.1 Two-point Pade approximants 

The procedure of determining the Pade approximants for a given f(x) described 

above can be generalized by calculating its N + M + 1 coefficients in a different 

way. 

If f(x) has the expansion 

f(x) = £ > B ( x - S o ) B (14) 

where the initial point is x0 and has the expansion 

/(*) = £&„(*-*!)" (15) 

when the initial point is xly one can determine p coefficients of Pj^ by requiring 

that the first p terms of the expansion of P$ agree with the first p terms of the 

expansion (14) of / and the remaining M + N +1 — p coefficients by requiring that 

the first M + N + 1 — p terms of the Taylor series expansion of Pj% agree with the 

first M + N + 1 — p terms of the expansion (15). 

This procedure has been used with success, for instance, in the approximate 

evaluation of inverse Laplace transform, as it allows the substitution of a rational 
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function, where inverse Laplace transform is easily calculated, for a general function 

whose Laplace transform may not be available in closed form. 

References to Chapter 1 

[1] C M . Bender and S.A. Orsag, Advanced mathematical methods for scientists 

and engineers, Mc Graw-Hill (1978). 
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Fig.l Comparison between Pade approxlmants and MacLaurln 
expansion for the exponential. 
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Fig.2 Comparison between Pade approximants and MacLaurin 
expansion for the inverse of the gamma function. 
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Fig.3 Comparison between Pade approximants and MacLaurin 
1/2 expansion for l/(l+x) 
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F i g . 4 Comparison between Pade approximants and MacLaurin 
expansion fo r the l oga r i t hm. 



Chapter 2 

SOME THEORETICAL ASPECTS OF PADE 

APPROXIMANTS 

1.2 Uniqueness of Pade approximants 

Pade approximants, presented by Pade in 1882, have been introduced in different 

ways as analytically continuing a Taylor series (Wall 1948), or through moments 

theory, (Wall 1948, Yndurain 1973), or through Hilbert's method of minimal it

erations (Garibotti and Villani 1969, Chisholm 1963) or through the theory of 

orthogonal polynomials (Szego 1949), or by using vaxiational theory. 

Pade approximants can be considered more general than continued fractions 

(that constitute a particular set of rational functions), a technique that is much 

older (it was used by Wallis, Gauss and Euler) but was only studied in a systematic 

way by Markov and Stieltjes at the end of the past century. 

Bessis (1973) proved some invariance properties in a non commuting algebra. 

In order to discuss the uniqueness of the sequence of Pade approximants we 

write them again in the form 

19 
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wnere 
N M 

QN = j2A"x"> DM = 1LB"XN- (2) 
n=0 n=0 

The rational form (1) implies that one coefficient of the polynomials (2) can be 

chosen arbitrarily. 

Baker suggests to put B0 = 1. This choice is important because if B0 = 0 

is allowed an ambiguity can arise. A classical example was discussed by Wallin 

(1972) and by Baker (1973). Let us consider a function f(x) whose expansion in 

MacLaurin series, gives the following two-term approximation: 

/ (*) = 1 + z2- (3) 

The four coefficients of P1 given by 

_ A) + AlX 
Fl ~ B0 + BlX

 W 

must satisfy Eqs. (9.1) that for N = 1 become 

■^o — aoBv , 

Aj = a^Ba + a0Br , (5) 

A2 = a2B0 + aiBi + a0B2 , 

(1) 
pN _ QN 
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where A2 = B2 = 0 and a0 = 1, at = 0, a2 = 1. These three equations 

present four unknowns because there is a free parameter. 

If we assume B0 = 0 we have A0 = 0 and Ax = Bt; it turns out that 

P, = - ■ 
a: 

This approximation is correct because it satisfies Eq.(5,l) up to terms of order x2: 

in fact it leads to the equation 

x(l + x2) = x . 

But if we write Pt in the form Pi = 1 we have 

1 + x2 = 1 

and this equation is not satisfied up to terms of order x2. 

The choice BQ — 1 avoids this inconvenience. 

Another ambiguity in defining P£ arises when the solution of the system (10.1) 

is not unique, i.e. when the rank of the matrix of coefficients of such system is 

less than M. In this case there is a common polynomial factor in QN and DM 

(Chisholm 1973). 

In order to analyse the uniqueness of Pade approximants let us consider two 

rational functions 
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QN,1 I QN,2 

both approximating a given function / up to term xM+N. One may write the 

following approximate equations 

QN,I — }DM,\ 

QN,2 = JDM,2 ■ 

Multiplying the first equation by QN2 and the second one by QN:\ and subtracting 

one has (always up to terms of order xM+N) 

DM,\QN,I ~ DM2QN,I = 0 • 

This equation proves that 

QN.I _ QN,2 

DM,1 DM2 

and t h a t there is a unique Pfi, of min imum order in numera to r and denominator . 

2.2 Pade approximants and inverse series 

Let us consider two functions }(x) and F(x), wi th / ( 0 ) ^ 0, satisfying the identi ty 

QN,I and QN,2 

1>MA L>M,2 
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F(x)f(x) = 1 . (6) 

Let the expansions in series of / and F be 

oo 

/ ( * ) = $ > * < (7) 

t=0 

oo 

F(x) = Y.Cixi. (8) 
;=o 

Then the series (8) is said "inverse" of series (7). 

The coefficients C,- may be calculated in terms of Cj by using Cauchy's rule for 

the product of two series. 

It results that 

Co Co = 1 (9) 

n 

£>C n _ f = 0 (n = l,2). (10) 
i=0 

It is easy to check that the polynomial 

N 

FN(x) = Y,Ct* (11) 
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is the P° Pade approximant to f(x). More generally Baker and Gammel (1961) 

proved that the P£ approximant to F(x) is equal to the inverse of the Pff approx

imant to fix). 

In fact the Pade approximant to the function f(x), 

JDM 

(always up to terms of order xM+N) obeys the equation 

(£>*' ] /*„ = faH (12) 

whereas the Pade approximant to F(x), 

El _ -^OM 

obeys the equation 

ff;<vW = FQM. as) 

Now multiplying Eq.(12) by series (8) one finds 

( CO \ CO / CO \ 

E cj E «**'/*« = E c«*' /«« • (14) 
i=o / i=o \i=o / 

Taking into account Eq.(6) one has 

fpN - $QN fpN -
/ B M 

\ i=0 / 
I /»» — /<3A 

_ FQM 

FDN 

/ oo "< V 

£<**' )FD„ = - FQM • 
\ i = 0 / 1 

(£c<*: 
) E CixifD* = 
' i=0 ^ (sc-\ J f()N ■ 
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k = fQNJ2C<xi (15) 

Eqs.(13) and (15) give 

^ = 7 ^ - (16) 
?DN JQN 

3.2 Pade approximants and continued fractions 

Series (7) may be approximated by means of continued-fraction theory, symboli

cally defined as 

<%, 1 -
a0 

j 

- d\X 1 -

a0 

a] a; 1 -

a0 
1 -

a0 
j 

- d\X 1 -
1 — a2x 

1 -
1 - a2z 

1 — a3x 

(18) 

In particular when n is even .Fn is the ratio of two polynomials of degree 

The approximants to the series (7) are 

(17) F„ a0 F„ 
1 -

axx 
1 -

1 -
a2x 1 -

1 -
i a„_iX 

1 -
1 -

' 1 - anx 
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n 
2 

and when n is odd F„ is the ratio of a polynomial of degree 

f t - 1 
2 

and a polynomial of degree 

n + 1 
2 ' 

This sequence is determined by approximating the series (7) up to terms of the 

maximum possible order. 

Let us consider for example the sequence of coefficients of the representation 

(17) for exp x. It results that 

aB — 1; ai = 1 

and for n > 1 

1 1 
"2" - - ( 4 n - 2 ) ; °2"+1 _ (4n + 2 ) -

In Fig.l we have plotted the continued-fraction approximation for n = 4 and 

n = 5 for such function. 

The continued-fraction representation (18) is equal to the Pade approximants 
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P0°, P° , P}, PI... (19) 

when every member of this sequence exists and no two members are equal (under 

these conditions the sequence (19) is said to be normal). 

4.2 Convergence theorems 

There are several theorems on Pade approximants: the most significant differences 

among them deal with the way in which M and JV go to infinity. 

de Montessus de Ballore (1902) considered the convergence of P$ with M 

fixed; he proved that if a function f(z), with z complex variable, is regular at 

all the points of a circle of radius R except for a finite number of poles, of total 

multiplicity M, then Pj£ converges, for N —► oo, to f(z) in the circle except at the 

poles of f(z). 

Some informations about the convergence of particular sequences P^ can be 

obtained from continued-fraction theory. The diagonal sequence P$ and the para-

diagonal one P$+h, with h fixed, have greater interest in the applications, have an 

invariance property (Bessis 1973), but they do not have general convergence theo

rems. There exists a conjecture of Baker and Gammel's (1961), neither proved nor 

disproved, stating that if f(z) is regular in the circle | z |< 1, except for m poles 

inside the circle and at z = 1, then a subsequence of Pfi converges uniformly to 

f(z) inside the circle except around the poles. 

The main difficulty in obtaining these results resides in the knowledge of the 
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poles and zeros of P^. 
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Fig.l Continued-fraction approximation for the exponential 



Chapter 1 

BALANCE EQUATIONS 

1.1 The general balance equation 

Let Q be a point in a domain D in which there are N particles the i-th of which, 

at time t, is at point Qi, has velocity £ and the extensive property 11;. 

Denoting by the symbol < / > the statistical mean value of a function f(xlt x2, 

. . . , x „ ) , we define density of the property n , at a point Q of Z), the function 

Pn(Q,t) such that its integral, extended to D, is equal to the sum of property II, 

over the particles that are in D. 

In order to express the density in terms of II,, Q and Qi we introduce the Dirac 

delta function S(Q): this function is always zero except at the origin where it goes 

to infinity in such a way that its integral extended to any domain enclosing the 

origin is equal to 1. Thus the density is defined as follows 

N 

Pn =< X > < 5 ( Q - Qi) > ■ (1) 

By integrating this equation we have 

33 
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/ PndD = < ] T n , / 8{Q - Qt)dD > = < ^ 1 1 , > . (2) 
JD JD 

It is now possible to write the general balance equation by differentiating Eq.(l). 

It results that 

^ pn = < £ i U ( Q - Q.) + n,.^ 6{Q - Qt) > (3) 

where II denoted the derivative of II with respect to t. 

For any function f[Q — Qi(t)],f, = —c,(<) • gradQf, where c,- = Qi, and £ 

gradf = div(fci), because c, does not depend on Q. Therefore we have 

| - S(Q - QO = -div[c,6(Q - Qt)] . (4) 

Then Eq.(3) becomes 

Pu + divJp = P+ (5) 
dt 

where 

P+ =<J2 n.£(Q - Qt) >; Jp =<YJ u^6iQ ~ Qi) > (6) 



Balance equations - 35 

Eq.(6) is the general balance equation for the property II. P+ and J are the density 

of production and the density of flux of II. 

2.1 The continuity equation 

When we consider as property 11; associated with the i-th particle its mass m,-

Eq.(5) gives the following continuity equation 

pt + divpV = 0 (7) 

where p = Pm is the mass density. The mean mass velocity V_ is denned through 

the equation 

£ . = pv- (8) 

The mass production P+ is vanishing. 

3.1 The momentum equation 

When we consider as property II,- the momentum m^ of the i-th particle Eq.(5) 

gives the following momentum equation 
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(PV)t+divJmom = F (9) 

where, denoting by / . the force acting "at a distance" on the i-th particle and by 

F_ the density of production of momentum, it is 

Jmom =<YJ m*£iSiS(Q - Q*) > (10) 

£ = <£/..*(Q-<W> (ii) 

J „ „ is the momentum flux and F_, called "volume force", represents the mean 

force, per unit volume, acting on the volume D (the earth's field exerts a volume 

force = gp, where g is the gravity acceleration). 

Equation (10) can be written in a different form by putting the velocity c,- of a 

particle as sum of the mean velocity V_ and of a velocity of diffusion C, as follows 

Qi = V + C, ■ (12) 

In this way, taking into account that from Eq.(8) one has 

<£m'£ , 5( (9- (30>= o (13) 

Eq.(10) can be written in the form 
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Jmom = pVV + Imom (14) 

where the stress tensor Imom is 

Imom = < J2m&£i6(Q ~Qi)> ■ (15) 

Then Eq.(9) becomes 

{pV)t + divpV V + divImom = F (16) 

DV 
p-jjT + aivImom = F (17) 

where 

D d 
Dt = = QT + YL- grad . 

4.1 The energy equation 

When we consider as property II, the energy e; of the i-th particle and we put 

or 
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E =<Y,*tKQ-Qi)> (18) 

L = < X>a*(9 - QO > (W) 

pt = <5>*(Q-Q<)> (20) 

where e, is the time derivative of e,, Eq.(5) gives the following energy equation 

E, + divJ, = P+ (21) 

Eq.(21) holds for any form of energy which we can associate with the i-th particle 

of the volume D, and it is possible to write the energy equation according to the 

definition of e,-. 

A first form of energy is the kinetic one e t i i, which can be written as 

e*,> = rriiCf/2 + erA + e„,,- . (22) 

The three terms on the r.h.s. of this equation respectively represent the trans-

lational, rotational and vibrational energy of the particle. 

The gravitational form of energy of the particle mf due to the presence of a 

particle of mass rrij is given by 
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egij = -Gm.mj/di j (23) 

where G = 6.67 x 10'&cm3/gsec2 is the Newton's gravitational constant and d0 

is the distance between the i-th and the j-th particle. Therefore the gravitational 

energy egi of the i-th particle is given by 

3 

Another form of energy is that due to other interactions between particles, 

different from the gravitational one. Moreover there are forms of energy that can 

be considered belonging to the particle, i.e. not arising from the presence of other 

bodies or fields, such as those present during chemical or nuclear reactions: these 

forms are constant if the associated reaction does not take place. 

Let us consider as energy associated with the i-th particle the following 

e< = e M + eti . (25) 

Then we have 

E = p(U + Us + V2/2) (26) 

where 

e9> 

3 

(24) 
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Pu = < Yjimtfl* + %A + e»>)s(Q - Qi) > (27) 

pU, =<'£e«6(Q-Ql)> (28) 

U and Ug wee called internal energy and gravitational energy respectively. 

For this type of energy J_, is given by 

£ = (U + U, + V2/2)pV + J,her + V-Imom (29) 

vhere 

£*r = E ( m ' C ' / 2 + ^ + e».i)ZS(Q ~ Q') (30) 

is called heat flux density. 

Then the energy equation, when e, is given by Eq.(25), is 

PWt{U + U° + y V 2 ) + div{Lth" + Z ' J " - m ) = Pe+ ■ ( 3 1 ) 

This equation can be written in a different form, in which the gravitational term 

appears on the r.h.s. In fact, as 

j^U, = ^Us + V-gradUg = V-g 
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we have 

p§~t{U + F ' / 2 ) + d i v ^ + V- U ) = A (32) 

where Pr = P+ - pV-g. 

The internal energy U is related to the absolute temperature T through the 

equation 

dU = c,dT (33) 

where c„ is the constant-volume heat-transfer coefficient. 

5.1 The Navier-Stokes equations 

For Newtonian fluids the stress tensor can be expressed as follows 

Imom = pUn + h (34) 

where p is the pressure, Un is the unit tensor and Id, the dissipative part of the 

stress tensor, is given by 

2 
Id = -f*(gradV + grad+V) + -pdivV Un (35) 

o 
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where p. is the viscosity coefficient and the symbol -f denotes a transposed tensor. 

The heat flux density vector Jihtr is given by the following Fourier law 

lihcr = -*gradT (36) 

where A is the coefficient of thermal conductivity. 

In this way the continuity, momentum and energy equations are written in 

terms of the macroscopic unknowns p, p, T and V_. 

It can be useful to write the energy equation in terms of the enthalpy h, defined 

as 

h = U + p/p (37) 

and the total enthalpy H, defined as 

H = h + V2/2. (38) 

In particular, taking into account the continuity equation, yields 

d(U + V2/2) DH Dp 
P Di = P^t ~ Di - pdlvY-

Therefore the continuity, momentum and energy equations can be written as follows 

p, + divpV_ = 0 (39) 
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DV 
P~Dt + gr P = — ~~ divId ^ 

DH 
P^T = Pi + Pi ~ diviZ-Is+la^) (41) 

Eqs.(39)-(41) are called Navier-Stokes equations which, when p, p, and A are con

stant, assume the following simplified form 

divV_ = 0 (42) 

DV 
P~Dt + 9radp = — + / i A 2 ~ ^43^ 

D M 
p— = Px + pt + AA2T - pdiv[V-(gradV +grad+V)} . (44) 

The fourth equation that completes the system of equations for the four unknowns 

p, p, T(orH) and V_ is the equation of state. The most commonly used forms of 

this equation are 

p = const. (incompressible fluids) 

p = pRT [perfect gases) 
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where the gas constant R is related to the universal constant R0 by the equation 

R = Ro/m, where m is the molecular weight of the gas. 

6.1 Non-dimensional form of the Navier-Stokes 
equations 

In order to write the Navier-Stokes equations in a non-dimensional form reference 

quantities must be chosen. 

For velocity, density, length and for the coefficients of viscosity, thermal conduc

tivity and specific heats, at constant pressure and volume, we assume typical quan

tities representative of mean conditions of the flow denoted by V0, pa, L, p0, A0, 

cpo and c„]0 respectively. The reference time t0 and pressure p0 can be chosen as 

L/V0 and poV^, but in some cases this choice is not suitable and the reference time 

and pressure must be denoted explicitly by t0 and p0- The reference quantities for 

F and P\ will be denoted by F0 and P10. 

A reference temperature T„ or enthalpy (hQ or H0) must also be chosen. 

By denoting non-dimensional quantities without any labels Eqs.(39)-(41) can 

be written as follows 

—Pt + divpV = 0 (45) 
Veto 

^ f Z , + pV-gradV + -^gradp = ^ - F - -±-divId (46) 
"o*o PoV<? p0V0

2 Re 

— - p t + divpV = = 0 

——V, + pV-gradV. -\ ^gradp = 
V0t0 p0V0

2 

LF0 

P«Vf~ 
- —divli 

Re 
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^-Ht + pV-gradH = LP10 PoL 

v0t0 Po-HoVo p0HDV0t0 

(47) 

where 

Re = 
PaV0L 

Mo 
(Reynolds number) 

Pr = CpoMo 

Ao 
(Prandtl number) 

when the fluid is perfect p = pRT: by introducing the velocity of sound a 

(ryRT)1^, where 7 = cp/cv, it results that 

Po 1 
p0V* ~ 7 M 2 

where the Mach number is denned as follows 

M = — (Mach number) . 
a. 

In the incompressible case, on assuming the transport coefficients to be constant 

and putting p0 = p0V0
2 and *0 = L/V0, Eqs.(42)-(44) become 

divV = 0 (48) 

1 
~ Re K % > ^ + |<Mi^) 
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ill + 11 • gradY_ + gradp = p0\J Re 
(49) 

LPW V* 
H, + V- gradH = 7rirPl + #P ' 

(50) 

1 
" 0 



Chapter 2 

INNER-OUTER EXPANSIONS 

1.2 Outer expansion 

For large values of the Reynolds number of the flow it is possible to expand the 

four basic unknowns, p, p, T (or H) and V_ in terms of e = 1/jRe1'2 by writing for 

each of these functions an expansion of the following type (outer expansion) 

f(x,y,z,t,e) = ^ / f ( * , S , 2 ; , t ) 6 ' ' (1) 

where we used a cartesian system of reference (x,t/, z). The leading terms of these 

expansions lead to the following Euler equations 

p, + divpV = 0 (2) 

P-QT + 9radp = F (3) 

DH 
P^f = Pi + P. ■ (4) 

47 
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2.2 Inner expansion 

The expansion (1) involves the loss of the second order dtn'ivntivt's of the unknowns 

in the systems of equat ions Mutt determine tin- successive approximations. Tims 

not »vll the boundary conditions can In- satisfied: for instance it is not possible to 

assure the adherence of tlie lluid to the body over which it flows, 

This problem is solved by nie;ms of a sevoud, different expansion, tlie inner 

expansion. that UoKIs in n narrow region (typically near the body over which the 

fluid flows) while the expansion (1) holds in the region complementary with respivt 

to this: tin- inner nud the outer expansions ait- matched along a line belonging to 

both regions. 

In order to writ*" this second expansion we assume that the component of 

velocity along the x axis is the main part of velocity Mid that tin- y axis is nearly 

nornwd to tin- body over which (lit- thud flows. 

Then we introduce a new variable tis follows 

</ rV (ft) 

and we t-xpand in the inner region any function f in this way 

f(T,Y,!,t,<) ^/ 'U.r ,F 1 ? , fy . (<••) 
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The leading terms of these expansions lead to the boundary layer Prandtl equations 

which in a non-dimensional form, assuming t0 = L/VQ and p0 = /OoV0
2, can be 

written as 

Pot + (po"o)t + (po"i)v + (poWa); = 0 (7) 

Po(uo,+U0Uox+ViUoY+W0U0;) + px = (.0 + (^OY)Y (8) 

PY = no (9) 

Po(w,„ + u0wOT + thirty + w0w0l) + p., = Co + (PWOY)Y (10) 

LP V2 

PoiHc+UoH^ + ViHoY+w0H0z) = '° Pi + 7rPo« 
Pa Voaa « o 

(11) 

+ i S^k ( A T B y ) y + r o ^ U o U o y ) y 
rr Jtia 

where the components along the axes x, y and z of V and LF0FJp0V^ are denoted 

by u, c. w and f, r/, C respectively. 

Notice that all the unknowns (p, p. «, to, T) appearing in Eqs.(7)-(11) are 
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represented by their "zero-order" term except v which is represented by the "first-

order" term of its expansion. 

3.2 Matching of the inner and outer solutions 

In order to match the outer expansion (1) with the inner expansion (6) we need 

a new expansion for any function ft of the outer expansion (1) in terms of the y 

variable. Then we can write 

M*,y,*,*) = E /«(*i*.*y (12) 
i 

where 
1 d> f-

fu{x,z,t) = j r ^ ( z , 0 , i , t ) . (13) 

This equation taking into account Eq.(5) can also be written as 

/,(x,y,z,t) = Y, A»(x,*,*)yV - (14) 
i 

Then by imposing that the inner and the outer solutions give the same values on 

a suitable surface, we can write for the Eqs.(6) and (12), on such surface Y+ = 

Y+(x,z,t), 

£ Fi(x,Y+,z,t)ei = E E h(*,***)Y+''?" (15) 
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where the l.h.s. refers to the inner solution and the r.h.s. to the outer one. 

Equation (15) must be satisfied for any e; therefore by equating the coefficients 

of same powers of e one has 

F0(x,Y+,z,t) = /„„(*,*,*) (16) 

Fl(xJY+,z,t) = f10(x,z,t) + fn(x,z,t)Y+ (17) 

and so on. 

The surface Y+ = Y+(x,z,t) does not coincide with y = 0; therefore when 

e tends to zero, for Eq.(5) Y+ tends to infinity. In this case Eqs. (16) and (17) 

become 

lim F0(x,Y,z,t) = foo(x,z,t) (18) 

lim [ * i ( * , y , * , i ) ~ 1 7 o i ( * , M ) ] = fio(x,z,t). (19) 
Y-KX) 

4.2 The Euler and Prandt l equations in a two-di
mensional flow and their boundary conditions 

The Euler equations, which can be obtained from the Navier-Stokes ones by con

sidering that the dissipative coefficients are vanishing, are 
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p, + div(pV) = 0 (20) 

piYj + V_ ■ gradV) + gradp = F (21) 

p{Ht + V-gradH) = pt (22) 

when we assume Pj = 0. 

The boundary conditions associated with this system can be written as follows. 

A t = 0 the four unknowns must be given as functions of the spatial variables. 

When we consider the flow of a fluid along a body, very far from the body the 

fluid assumes a given asymptotic velocity, density, pressure and enthalpy; moreover 

the body is a streamline, i.e. if n denotes the normal to the body V_- n = 0 along 

the body. 

The boundary layer equations (7)-(ll) when P1 = rj0 = (B = 0, for two-

dimensional flows can be written as follows (the labels of the variables are missing) 

p, + {pu)x + (pv)Y = 0 (23) 

p(ut + uux + vuY) + px = £0 + (fj,uY)Y (24) 

PY = 0 (25) 
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p(Ht + uHx + vHY) = 5 £ Pt + -L CJ£H {XTY)y + %- (fiuur)Y . (26) 

From Eq.(25) one has p(x,Y) = p(x,oo); moreover Eq.(16), applied to the 

pressure, shows that the pressure in the inner region equals that obtained from 

the Euler equations at the body. If the label " e" denotes value of functions of the 

outer region calculated at the body one has 

Px - -PeUeuex . (27) 

Finally, by expressing the temperature as function of H, Eq.(26) can be written as 

follows 

p(Ht + uHx + VHY) = S . pt + - L (XHy)y + ^ (fMUUy)y (l - ^-) . (28) 

The boundary conditions require that at t = 0 all the unknowns be given as 

functions of the spatial variable. 

At the body u = v = 0. For Y —> oo one has 

u(x, oo) = ue , H(x,oo) = He . 

A condition on H must be given at the body: the simplest assigns the value of 

H or of its derivative with respect to Y. 

p(Ht + uHx + vHY) = - l P ' + Pr ^ ^ + H0 ^ " • 

p(H, + uHx+vHY) = V2 1 V2 / 
= ITP> + ir(XHy)Y + -^{^uY)Y(i-

tla Pr Jtl0 \ 

-i-V 
Pr) 



Chapter 1 

THE THERMO-FLUID-DYNAMIC 
EQUATIONS 

1.1 Introduction 

We can assume as basic unknowns for thermo-fluid-dynamic problems velocity V_, 

pressure p, density p and temperature T; they are determined by the continuity, 

momentum, energy and state equations and by suitable boundary conditions. 

When a fluid flows along a body the boundary conditions are easily given by 

assuming that velocity vanishes at the body and takes on a given value very far 

from it. More difficult is to give the boundary condition for temperature at the 

body. The simplest way is to assign the temperature at the solid-fluid interface, 

but this type of condition is of little interest for applications because in general the 

temperature at the interface is unknown. 

The case of insulated bodies, corresponding to vanishing heat flux at the inter

face, occurs more frequently. 

In order to solve problems of practical interest one must determine together 

with the temperature field in the solid and the thermo-fluid-dynamic field in the 

fluid. 

These problems are very difficult for the elliptic character of the solution, even 

57 
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in the case of high Reynolds number flow that enables us to reduce the elliptic 

Navier-Stokes equations to the approximate parabolic Prandtl ones. In fact the 

elliptic character of the Laplace equation that governs temperature in the solid 

makes the whole coupled problem elliptic. Boundary conditions can be given in 

a simpler way if one considers elongated solid bodies and neglects axial thermal 

conduction. In this case it is possible to obtain the temperature distribution in the 

solid by means of an expansion in a Taylor series and to solve the fluid equations 

with a suitable relation between temperature and heat flux at the interface. By 

studying this problem, which does not lead to similarity solutions even for simple 

geometries, one sees that it is characterized by coupling parameters between solid 

and fluid properties. Useful solutions can be obtained for small and large values 

of these parameters, but the exact solution is also important: Pade approximants 

give a good representation of such exact solution. 

The relation between temperature and heat flux at the interface depends on 

regime (steady or unsteady), geometry of the body, type of thermal condition at 

the body surface that is not wetted by the fluid. 

In this part we consider steady problems both for forced convection and for 

natural convection, the solution of which was obtained by Luchini, Lupo and Pozzi 

(1990) and Pozzi and Lupo (1988, 1989, 1990, 1991). 

2.1 Temperature in the solid 

The temperature T in the solid, in steady regime, is governed by the Laplace 
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equation 

A2T = 0 . (1) 

We shall denote quantities calculated at the fluid-solid interface by the subscript 

w. 

When the geometry of the body is elongated, in the sense that its transverse 

dimension is small compared to the longitudinal one, it is possible to express heat 

flux at the interface in terms of Tw and its axial derivatives, as we shall do in several 

situations. 

Let us study Eq.(l) in a strip of height b in a cartesian system (a;', y') (Fig.l) 

with two types of boundary conditions T = Tb — const, on the lower part and 

T = Tm on the upper part, case (a); Ty, = 0 on the lower side and T = Tw on the 

upper part, case (b): x' and y' denote dimensional coordinates. 

In case (a), if L is a characteristic length in the x' direction, it is convenient 

to introduce the dimensionless coordinates X = x'/L and Y = y'/b. Then Eq.(l) 

may be written as 

Tsy = -{b/Lf%m (2) 

and the temperature may be expanded in a MacLaurin series in power of the 

parameter (b/L)2, when such a parameter is less than 1. 

The leading term T° of this expansion, governed by the equation TyY = 0, is 

given by 



60- Applications of Pade Approximation Theory in Fluid Dynamics 

T° = Tw + (T. - Tb)Y . (3) 

Then 

r;,. = (T. - T,)/6 . (4) 

Also in case (b) Tyl may be expanded into a Taylor series in terms of y'. Taking 

Eq.(l) into account one has, for the leading term 

T„»|1U = -Tx,x,wb. (5) 

Let us now study Eq.(l) in polar coordinates (r, 6) in a wedge of half angle a 

(Fig.2) with two types of boundary conditions: T(a, r) = Tw(r) and T(o, r) = Tb = 

const., case (c), T(a,r) = Tw(r) and Ts(0,r) = 0, case (d). Equation (1) in polar 

coordinates becomes 

Tu + r{rTr)r = 0 . (6) 

In this case the temperature may be expanded into a MacLaurin series in power 

of a2. An analysis similar to that of case (a), valid for small values of a2, leads in 

case (c) to the following temperature distribution in the solid at leading order 

T = Tb + (T. - Tb)8/a . (7) 
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For the temperature derivative in the direction normal to the wall, at wall, T„yW 

one has, always at leading order 

Tn,w = r-lTe<a = ( T . - T , ) / a r . (8) 

For case (d) we find 

Tn,„ = r " 1 ^ = -a(rTr)r,w . (9) 

3.1 Equations and boundary conditions for 
thermo-fluid-dynamic problems 

The thermo-fluid-dynamic field in the fluid for high Reynolds numbers, is governed 

by the boundary layer equations, which in dimensionless two-dimensional form may 

be written as 

(puX + (pv)s = 0 (10) 

P(UUX + VUy) = {HUy)y "f" PT H" ^ (H) 

P{uTT + vTy) = {XTy)y/Pr + ( 7 - l ) M V J (12) 
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where F denote volume forces, Pr and M are respectively the Prandtl and Mach 

numbers of the external flow, ■> is the ratio of specific heats; u and v are the 

components of velocity along the axes .r and t/, p and p denote pressure and density 

and p, and A denote the viscosity and thermal conductivity coefficients respectively. 

When a fluid flows along a body the boundary conditions associated with Eqs. 

(10)-(12) are u = v — 0 at the body; u(x,oo) = u«, T(r ,oo) = T„ where ue 

and Te are the external velocity and temperature respectively. The last condition, 

given by the coupling of thermal field of the fluid with that of the solid, requires 

the continuity of temperature and of heat flux at the solid-fluid interface. In 

dimensional form the heat-flux coupling condition may be written as 

XTn>w = ASTS,„ (13) 

where ' V denotes properties of the solid and T„ „, and T, „ are the normal deriva

tives at wall of the temperature of the fluid and the solid. The expressions of 

T s n were given in the previous section in terms of the wall temperature and its 

derivatives for the four cases considered. 

4.1 Stewartson-Dorodnitzin transformation 

When we can assume that the coefficients of viscosity p and of thermal conduc

tivity X depend linearly on absolute temperature the products pp and Xp do not 

depend on temperature for perfect gases. In this case it is convenient to use the 
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Stewartson-Dorodnitzin transformation [6] to obtain the fluid equations in a sim

pler quasi-incompressible form, by introducing new dependent (U, V) and indepen

dent (f, T}) variables. In particular for constant pressure fields the transformation, 

in dimensionless variables, can be written as 

£ = X; T) = I pdy; U = u; V = pv + urfI . (14) 
Jo 

In this case Eqs. (10)-(12) can be reduced to the following form 

Ut + Vn = 0 (15) 

UU( + VU, = U„ + F/p (16) 

U0f + V0n = 0„/Pr + (y-l)M2U^/AT (17) 

where 0 = (T — To 0)/AT and AT is a suitable reference temperature. 

When px is different from zero the transformation (always in non-dimensional 

form) is 

X = f a?dx ; Y = I* acpv;^dy (18) 

U = U/ac; V = (VY. + f*>v-l/*)/a? (19) 

X = / c£dx; 
Jo 

Y = f aepv7
l'Uy 

Jo 

u = U/ae; V = (UY + pvv^ya? 



tvl Applications of I'tvilo Approximation Theory ill I'Mllid Uynaniii's 

where tlic reference quanti t ies lor the outer velocity of sound <ir and lor density 

are the corresponding s tagnat ion ones; the reference quanti ty for the stagnation 

kinetic viscosity v, is tha t used in the definition of Reynolds immher. 

In terms of these new variables Rq.s. (15) (17) liecouie 

Vx I \ v 0 (I'D) 

l''VX + Wy = llyy + ( | | S)P,Vt\ (211 

USS + VSy = Syy/I'r + ( 7 - 1 )(M'J / .11 ,„)(] V - 1)( H«, )V / / V (22) 

where S = H/ll, 1, // t',,7' I M*/2 is the total enthalpy, //,, is the outer value 

of H, He„ ; ll,./cv'Vr where Tr is a t empera tu re of reference. 
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Fig.l Flow cases: 
a) strip with isothermal condition on the lower side; 
b) strip with adiabatic condition on the lower side. 
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Fig.2 Flow cases: 
c) wedge with isothermal condition on the axis; 
d) wedge with adlabatic condition on the axis. 



Chapter 2 

FLOWS OVER BODIES IN FORCED 
CONVECTION: 
T H E FLAT PLATE CASE 

1.2 Introduction 

We shall determine the thermo-fluid-dynamic field around bodies wetted by a fluid 

stream, using the equations and the boundary conditions recalled in chapter 1. We 

begin from the flat plate case. 

The presence of a coupling parameter in the boundary condition at interface 

for the energy equation does not allow similarity solution in general. In these cases 

we found the solution of the problem for the plate, the wedge and the stagnation 

flow by putting the incompressible, or quasi incompressible stream function (such 

that xpx = -V, ipv = U) and 0 = (T - T c o)/AT, where AT is a suitable reference 

temperature, in the following form 

oo oo 

i = 0 i = 0 

where z = r]/(b, mi = £c/p, a, 6, c are numbers depending on the geometry and 

67 

CO 

6 = J2 m'M') 
i=0 

(1) 
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p is the coupling parameter. The functions /;(z) and hi(z), that constitute the 

coefficients of MacLaurin expansions (1), can be found by substituting Eqs.(l) into 

the momentum and energy equations and by writing these equations in the form 

00 oo 

J2 mlMz) = 0; J2 m\B^z) = ° (2) 
i=0 >=0 

Ai = 0 and Bt = 0 give all equations we need. 

We consider positive values of c: therefore the series (1) converge in the range 

(0,r) of mi, where r is the radius of convergence. 

The series (1) do not hold for any values of mx because r is finite. In order to 

calculate r and to obtain expansions valid for all values of mi we use the technique 

of Pade approximants. 

2.2 Forced convection over a flat plate 

The reference work for the problem of laminar forced convection along a fiat plate 

(see Fig.l) with a boundary condition that couples the thermo- fluid-dynamic flow 

over the plate with the thermal field in the solid (conjugated problem) is due to 

Luikov et al. in 1971 [1]. 

The authors solved the problem by means of the generalized Fourier sine trans

formation and an expansion in series in terms of the Fourier variable. The results 

of such an analysis were presented in two figures for two examples. This solution 

cannot be easily used and Luikov in 1974 [2] has given an approximate solution of 
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the problem assuming a linear temperature distribution in the plate. 

An extension of these results was obtained by Payvar in 1977 [3] for high 

Prandtl numbers. An improvement of the Payvar analysis was studied by Karvinen 

in 1978 (ref. [4] and [5]) who also presented an iterative technique for solving the 

conjugated heat transfer problem in a fiat plate in the presence of internal heat 

sources. 

Gosse in 1980 [6] presented an analytic solution which held at high values of 

the abscissa x. 

We now describe the thermo-fluid-dynamic field generated by a forced flow on 

one side of a flat plate of small thickness b (see Fig.l), insulated on the edge, and 

with a temperature Tb maintained on the other side. 

In Eqs.(10,l)-(12,1) of chap.l, in which F = 0, we take as reference lengths 

the wall thickness b and bRe'1!2 along x and y directions, respectively, where 

Re = u^b/uoa. The heat flux condition (13,1), taking into account Eq.(4,l) can be 

written as 

\RelfX(tO) = *.(*.-<»)• (3) 

In this case pressure is constant. 

Therefore by using Eqs.(14,l) one finds that in Stewartson-Dorodnitzin plane 

the velocity components are independent of temperature and it is 

U = Z> ; V = (zZ1 - Z)/2e/2 (4) 

where z = J?/^1/2 and Z(z) is the function that solved Blasius equation (2Z'" + 
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ZZ" = 0) with the boundary conditions Z(0) = Z'(0) = 0, Z'(oo) = 1. In terms 

of the variables £ and r\ energy equation (12,1) may be written as 

Pr{U9(+Vev) = $„ + aOl (5) 

where 6 = (T - T ^ ) / ^ - T«,), a = Pr(j - 1)M2/ 'Atm and Ai„, = (Tt - T^/T^. 

The coupling condition (17,1) assumes the form 

p0„(£,o) = ew-\ (6) 

where 6W = 0(£,O) and p = yoaRe1/2/Xs. The other two thermal conditions are 

6(0,V) = 0 ; 0(£,oo) = 0 . (7) 

By substituting Eq.(lb) into Eqs.(5), (6) and (7) one finds, with m, = £1/2/p 

the following leading-order equation and boundary conditions 

K + PrZh'0+aZ"2 = 0 (8) 

h'0 = 0 ; fco(oo) = 0 (9) 

and the following for the ith order 
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W! - PriZ'ihi - Zh\) = 0 (10) 

K(°) = V , ( 0 ) - 6ih ^ (oo) = 0 (11) 

where 6{j is the Kronecker symbol (Sy = 0 for i ^ j and 6y = 1 for i = j). 

By using the Pade approximants technique we find the temperature distribution 

for any value of mi. 

The solution, holding for small values of mj = ^ ' 2 / p , (initial solution) and 

described by equation ( lb) , has been found with 21 terms of expansion using a 

standard method. In table 1 the values of fcj(0), giving the interface temperature 

0W for Pr = 0.7 (air), for M ~ 0 and M = 3, and for Pr = 7.02 (water) have been 

listed. 

By means of these coefficients it was possible to determine the Pade approxi

mants: we assume the diagonal sequence and consider several values of N. 

No significant difference was noted between the results obtained for N = 10 

and those for TV > 10. 

In Fig.2 the interface temperature 6m represented by the initial solution Eq.(lb) 

and the Pade approximants plotted against mi is drawn for Pr = 0.7, M ~ 0, for 

Pr = 7.02 and M ~ 0 and for Pr = 0.7 and M = 3 (*curves). 

This figure shows that for mi < mj" (where mf ~ 0.5 for Pr = 0.7 and 

mf ~ 0.9 for Pr = 7.02) the two representations give very similar results, while 

for mi > mj", are completely different. If we denote by Lin the length of the strip 
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in which the initial solution holds, Lin = (mfp)2b. 

3.2 Accuracy of the solution for the fiat plate 
flow 

In order to check the accuracy of the solution obtained in sect.2 we shall consider 

the asymptotic solution and we shall show that the initial solution, represented by 

Pade approximants, tends to the asymptotic solution when £ tends to infinity. 

To study the behaviour of the solution for £ —> oo it is convenient to introduce 

the variable m as follows 

m = p/e/2 ■ (12) 

It is not possible to expand the function 9 in a MacLaurin series with respect 

to m (m —* 0 corresponds to £ —> oo). In fact if we write 

oo 

e = Y. m'*«W (13) 
1=0 

the initial condition (7a) cannot be satisfied because m diverges for vanishing (. 

Moreover, the linearized problem presents eigenvalues: this circumstance, although 

it does not permit us to utilize an expansion, in terms of m, of the form of Eq.(13), 

does enable us to solve the problem of the initial condition. 

If one wishes to obtain a representation of the solution that holds for high 

values of £ it is necessary to modify Eq.(13) and to give the boundary condition 
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at m (m = p/£0 j where £0 is a suitable positive value £) according to boundary 

condition (7a). 

We are not interested in this complicated expansion: we are only seeking the 

asymptotic behaviour of the solution in order to compare it with the results of the 

representation obtained by means of Pade approximants. 

First we find the eigenvalues linked with the expansion (13). If one substi

tutes this expansion into Eqs.(5), (6) and (7b) he finds the following equation and 

boundary conditions at leading-order 

l&l + PrZ6'Q + 2aZ"2 = 0 (14) 

*o(0) = 1 ; 0o(°o) = 0 (15) 

and the following at ith order 

Wl + PriZ'iO, + Ze[) = 0 (16) 

»m = eiM; »i(«>) = o (17) 

Eq.(16) presents eigensolutions when associated with the boundary conditions 

0.(0) = 0;(oo) = 0. The first one appears for 1 < ft = i < 2 and depends on Pr. 

For instance, ft = 1.60 for Pr = 0.7 and ft = 1.51 for Pr = 7.02. 
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The first two terms in expansion (13) may then be determined by means of 

Eqs.(14)-(17) and the solution may be written in the form 

1 

9 = J2 m,6,{z) + m^R(m,z) (18) 
i = 0 

where the function R(m, z) is not analytic with respect to m. Therefore neglecting 

terms of order mh the asymptotic solution can be written as follows 

6 = 0o(z) + m ^ ( z ) (19) 

Table 2 compares the values of 0z(ml, 0) obtained by means of the Pade summation 

and the asymptotic solution (19) for Pr = 0.7 and M ~ 0. 

In Fig.3, the interface temperature Bw represented by the Pade summation and 

by the asymptotic solution with two terms is plotted against mi for Pr = 0.7 

and M ~ 0, for Pr = 7.02 and M ~ 0 and for Pr = 0.7 and M = 3. Table 

2 and Fig.3 show that for m^ > 8 the values given by the Pade representation 

practically coincide with those given by the asymptotic solution. Therefore, while 

the MacLaurin initial expansion holds for 0 < m1 < ml the Pade representation 

holds in the entire field. 

References to Chapter 2 
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T a b l e 1 
C o e f f i c i e n t s h . ( 0 ) of e x p a n s i o n ( l b ) ( i n i t i a l s o l u t i o n ) 

Pr = 0.7, Pr = 0.7, Pr = 7.02, 
i Af = 0 A f = 3 M = 0 
0 0 5.8853303 0 
1 2.4636984 -12.035983 1.1280761 
2 -5.1291153 25.057417 -1.0799054 
3 9.5413968 -46.612845 9.2572774E-1 
4 -16.313412 79.696306 -7.3030601E-1 
5 26.073775 -127.3783 5.3904464E-1 
6 -39.399996 192.48139 -3.7639352E-1 
7 56.744427 -277.21406 2.5060616E-1 
8 -78.362526 382.82461 -1.6004882E-1 
9 104.25337 -509.30837 9.8498975E-2 
10 -134.12117 655.22015 -5.8632192E-2 
11 167.36393 -817.61883 3.3859516E-2 
12 -203.09191 992.15765 -1.9017861E-2 
13 240.17474 -1173.3142 1.0411339E-2 
14 -277.31236 1354.7373 -5.5655834E-3 
15 313.12236 -1529.6733 2.9098012E-3 
16 -346.23453 1691.4286 -1.4899360E-3 
17 375.38318 -1833.8199 7.4809335E-4 
18 -399.48843 1951.5720 -3.6872367E^i 
19 417.71981 -2040.6281 1.7857745E-4 
20 -429.53754 2098.3516 -8.5057695E-5 
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Fig. 2 The interface temperature represented by the ini
tial solution ( ) and by Pade summation ( »—) for 
Pr=7.02 and M=0 (lower curves), Pr=0.7 and M=0 (middle 
curves), Pr=0.7 and M=3 (upper curves). 

Table 2. Comparison between Pade summation and the asymp
totic solution with two terms 

Pade Asymptotic solution 
m, summation two terms (sq.(19)) 

0.5 -0.2088 -0.2927 
1.0 -0.2530 -0.2927 
1.5 -0.2692 -0.2927 
2.0 -0.2769 -0.2927 
3.0 -0.2839 -0.2927 
4.0 -0.2870 -0.2927 
6.0 -0.2897 -0.2927 
8.0 -0.2909 -0.2927 

10.0 -0.2915 -0.2927 
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Fig.3 The interface temperature in the asymptotic 
(— — — — ) and Pade representation ( ) for Pr=0.7 and 
M=0 (upper curves), Pr=7.02 and M=0 (middle curves), 
Pr=0.7 and M=3 (lower curves). 

The figures are reprinted from Int. J. of Heat and Mass 
Transfer Vol.32, A. Pozzi and M. Lupo, "The coupling of 
conduction with forced convection over a flat plate", 
1207-1214, Copyright 1989 with permission from Pergamon 
Press Ltd., Headington Hill Hall, Oxford 0X3 OBW, UK. 



Chapter 3 

FORCED CONVECTION IN STAGNATION 
FLOW 

1.3 Incompressible flow against a slab: constant 
t empera ture on the lower side of the slab 

In the analysis of the incompressible stagnation flows bounded by the geometries 

shown in cases a) and b) of Fig.l of chap.l the stream function ip is given by 

i/) = xf(y) and / is the solution of the differential equation 

/ ' " + / / " + 1 - / ' 2 = 0 (1) 

with the boundary conditions / (0) = / ' (0) = 0, / '(oo) = 1. The energy equation 

in terms of / can be written as follows 

*«./* - / « , = 9„/Pr + (7 - 1 )M 0 V/" 2 (2) 

where 0 = (T - Te)/T0. The reference quantities are L, LRe~1/2 , V0, VaRe~112, 

p0, fj,0, and A0 for x, y, u, v, p, \i and A respectively. Vo, fj,0, and A0 are the 

79 
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characteristic velocity, density, viscosity and thermal conductivity of the flow, M0 

is the Mach number referred to temperature T0, L is a characteristic length in the 

direction of the x axis, Te is the external temperature and T0 is equal to Tb — Te. 

Boundary conditions associated with Eq.(2) are 

0(x,oo) = 0 ; p0s,w = 9W - 1 (3) 

where p = i?e1/26A0/£Aa. The solution of Eqs.(2) and (3) is determined as the sum 

of 9h(y), a solution of the homogeneous part of Eq.(2), and (7 — l)Mo
2a:20p(y), a par

ticular solution of the same equation. The equations and the boundary conditions 

for 9h and 6p are 

KIPr + fK = 0 (4) 

<?„(oo) = 0 ; p8'h(0) = 9h(0) - 1 (5) 

0;/Pr + f"2 ~ 2f'9p + f% = 0 (6) 

0„(oo) = 0 ; p0'p(O) = 9P(0). (7) 

The solution of Eq.(4) with boundary conditions (5) is given by 
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8h = / exp 
Joo 

-Pr [fdy 
Jo 

dyl I exp 1 —Pr 1 f dy I dy — p (8) 

The curves of 6h(0) and 0P(O) versus p are plotted in Fig.l. 

The value of #p(0) as p —> oo (dotted line) is also plotted in the figure, obtained 

with the adiabatic boundary condition at the interface. 

2.3 Incompressible flow against a slab: adiabatic 
condition on the lower side of the slab 

When Ty = 0 on the lower side of the slab the stream function ip is the same as in 

previous section. The boundary conditions associated with Eq.(2) are 

6(x, oo) = 0 ; p8ViW = (9) 

where 

p = Re1/2L\0/b\,. (10) 

In this case the solution can be found by means of a procedure that respects the 

elliptic character of the boundary condition (9b). In fact this condition couples 

the solution valid for small values of x with that valid for high values of a;, so that 
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the temperature at the stagnation point 0(0,0) becomes an unknown. In general 

a problem of this kind, given its hnearity, can be solved writing 6 in the following 

form 

0 = C0h(x,y) + ( 7 - l ) M o V 0 p ( z , i / ) (11) 

where C is 6(0,0), whose value should be calculated by requiring that the correct 

asymptotic behavior be obtained for x —> oo. 

The functions Bh(x, y) and 6p(x,y) can be expressed by means of the following 

MacLaurin series in the variable mi = px2 

oo oo 

0h = Y, rn\6Uv) i % = Yl rn^iy) . (12) 

By substituting Eq.( l l ) into Eq.(2) and into its associated homogeneous, taking 

into account Eqs.(12), one has for the homogeneous part 

K,JPr + f<yh,0 = 0 (13) 

0M(oo) = 0 ; 0M(O) = 1 (14) 

for the leading term, and 

ffyPr - 2i6Kif + fffhi = 0 (15) 
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8kit(oo) = 0 ; 0M(O) = ^ , . _ 1 (0 ) / (4 , : 2 -20 (16) 

for i > 0. 

Fbr the particular integral 

*lJPr + f'" - 20„>o/' + f»pja = 0 (17) 

tf,.o(oo) = 0 ; 0„iO(O) = 0 (18) 

for the leading term and 

elJPr - 2(1 + 00,,,./ ' + /«;,* = 0 (19) 

f?,,,(co) = 0 ; 9Pil = -f?V_1(0)/(2 + 6*' + 4,J) (20) 

for * > 0. 

To calcultate the constant C we need to determine the asymptotic solution as 

j - —> oo. This solution may be obtained by expanding 8P in an asymptotic series in 

the variable m2 = l/rr»i and considering the leading term h0(y) of this expansion. 

The equation and the boundary conditions determining h0(y) are 

h''/Pr + f"2 - 2haf + fK = 0 (21) 
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&o(oo) = 0 ; h'a(0) = 0. (22) 

Now the constant C can be determined by matching the solution (11) with the 

asymptotic solution (7 — l)M2x2h0(y) calculated, for instance, at y = 0. One has 

h_1)M, = j™ -2 [̂ o(O) - E - i^ ,(0)] / E mi»M(0) • (23) 
* ' / 0 j_0 ,=o 

So far we have described the general procedure. However, in the particular case of 

Eqs.(2) and (9), characterized by the appearance of x in integral powers, an exact 

solution having a polynomial dependence on x turns out to exit. On expressing an 

expression of the form 

9 = e0(y) + x2$2(y) (24) 

into Eqs.(2) and (9), it may be verified that these equations are satisfied provided 

that 0O and 02 obey the equations and boundary conditions 

Kv/Pr + ( 7 - l ) M 0
2 / " 2 = 2B3f - f$i„ ; *„,« = 0 (25) 

0Oyy/Pr = -f60y ; p60yiW = -20%tll. (26) 

The same result would, of course, be recovered if Eq.(23) were evaluated numeri

cally. 
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In F ig .2p6 m / { ^~ l )Ml i s plotted versus m, together with the function mih0(0) 

(dotted curve) up to m, = 50 whereas in Fig.3 ft0(0) (dotted curve) andp0„, /m](7-

1)M„ are plotted versus m t . 

3.3 Compressible flow against a flat plate: non 
viscous flow 

We study the thermo-fluid-dynamic field generated by a fast stream impinging on 

an isothermal plane. The Mach number of the stream is less than one but not so 

small that compressibility can be neglected. 

The analysis requires first the non viscous solution of the basic equation and 

then the viscous solution in the boundary layer approximation. The results of this 

research are reported in ref. [1]. 

The compressible stream function i{> for the inviscid subsonic flow can be deter

mined in the hodograph plane, i.e. by assuming the cartesian component u and v 

of the velocity as independent variables. In this plane the equation for */> becomes 

linear and can be solved by separation of variables in terms of simple solutions [2]. 

By introducing the compressible stream function ij} (such that ipy = pu/ps, 

ipx = —pv/p,, where u and v are the velocity components along the cartesian axes 

x and y and the subscript "s" indicates stagnation conditions) the two-dimensional 

motion equations can be written as 

V>„(1 - u2/a2) - 2rPxyuv/a2 + tfw(l - v'/a2) = 0 (27) 
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a2 + (7 - l )V 2 /2 = a) (Bernoulli equation) (28) 

where a is the sound velocity, V2 = u2 + v2 and 7 is the ratio between the specific 

heat coefficients. 

If one assumes V and 0, angle between the velocity vector and x-axis, as inde

pendent variables, Eq.(27), becomes (see Appendix) 

V2[l-(7-l)V2/(2al)Wvv + [ l - ( 7 + l)VV(2aJ)]^„ 

(29) 

+ V [ l - ( 7 - 3 ) V * / ( 2 « ; ) W v = 0 . 

It is convenient to introduce the variable r = (7 — l)V2 / (2a2) , where a,[2/(7 — l)]1 '2 

is the limiting velocity VL (the critical velocity Vc is related to VL by the equation 

Vc = Vt[(7 - l ) / ( 7 + 1)]1/2; therefore V = a when r = (7 - l ) / ( 7 + 1). In this way 

Eq.(28) in a non-dimensional (a is nondimensionalized with respect to a,) form 

becomes 

a2 + T = 1 (30) 

and the density and the pressure can be written as 

p/p, = (1 - T-)1"*-1 ' ; p /p . = (1 - r r ' ^ - y . (31) 
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Solutions of Eq.(29) can be written in the form 

V>„ = -sin(nO + dn)Vnfn(T) (32) 

where dn is an arbitrary constant and /„ is the Gaussian hypergeometric function 

F(a„,bn,n + l,r) [3] with 

«», K = { ( 7 - l ) n - l ± [ ( 7
2 - l ) n 2 + l ] } / [ 2 ( 7 - l ) ] 

for 7 = 1.4 and n = 2 /„ becomes a polynomial: in this case, the stream function 

can be written in a non-dimensional form as 

xl> = -sin28V2f2(r)/2 (33) 

where / 2 = 1 — 5 T / 2 + 3 5 T 2 / 1 6 — 21r3 /32 and V is nondimensionalized with respect 

to a suitable reference velocity Vr: therefore it is r = k2V2, where k = Vr/VL. 

This function vanishes when 6 = 0 and 0 = n/2 and therefore it represents the 

stream function of a flow symmetrical with respect to the x-axis impinging on a 

plane: the inflow and outflow can be obtained from Eq.(33). The last streamline 

that we consider can be assumed to represent a wall. 

The potential function can be determined from the irrotationality equation 

ipt — VipvP,/P- One has 

<p = V2(l -5T + 105r2/16 - 21r78)cos20/2(l - r ) 5 / 2 . 
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The expression giving x(V, 6) and y(V, ff) can be obtained from the following equa

tions 

xv = (<pvcos6 — sindtpvpj p)/V 

yv = (y>vsinO + cos6ipvps/p)/V 

xe = ((fgCOsO — sin9ipepa/p)/V 

ye = (ipgsinB + cos9tptp,/p)/V 

From Eq.(35) in nondimensional form one has 

(34) 

(35) 

/ 3 ( 1 - Tyn 

(36a) 

/ 3 ( 1 - - rf2 

(366) 

and in particular from Eq.(36a) it is 

i, = V(3 - 25r/2 + 245r2/16 - 189T3/32)/3(1 - rf'2 (37) 

or 

15 105 , 63 a -„*(*.-£*+g^J x = VcosB 3 - r H T2 -
2 16 - 3 2 r " -„*(*.-£*+g^J 

V = -Vsin9 
' 15 105 , 63 s - sin26 1 5r -

35 , 63 , \ 
-TT+-eT) 
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where the subscript "to" indicates the wall. 

The streamlines of such a flow are drawn in Fig.4. 

Any two of these streamlines can be considered as walls of a duct discharging 

against a plane plate. The non-dimensional modulus of velocity, V, and its incli

nation 6 with respect to the x-axis at y = — 1 are plotted in Fig.5: in this way 

the initial conditions of this flow are known. V and 0 at x = 0.2 and x = 0.5 are 

plotted in Fig.6. Figure 7 gives Kx versus r . 

4.3 Compressible flow against a flat plate: 
viscous flow 

The boundary layer equation in a non-dimensional form can be written as 

(pu)x + ( H » = 0 (38) 

P(UUX + VUy ) = peUeUeX + {HUy)y (39) 

p(uSx + vSs) = (\S,\/Pr + (Pr - l)[^uuy)JPrHe (40) 

where the subscript "e" indicates external inviscid condition calculated on the wall; 

H and A are the viscosity and thermal conductivity coefficients, S = htot/hto,ie — 1 

and hioi is the total enthalpy h + V2/2. The boundary conditions associated with 

Eqs.(38)-(40) are u(x,0) = v(x,0) = 0; it(x,oo) = we; 5(x,0) = Sm, 5(x,oo) = 0. 
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Equations (38)-(40) by means of the Dorodnitzin-Stewartson transformation 

(ae and p are nondimensionaJized with respect to the respective stagnation quan

tities) become 

Ux + VY = 0 (41) 

UUX + VUy = Uyy + (1 + S)U.U.X (42) 

USx + VSY = Syy/Pr + (Pr - l)a>V?UUy /'(PrH.) . (43) 

By introducing the stream function %j> (such that ipY = U and %j)x = —V) and the 

variable T(X) given by Eq.(37), Eqs.(42) and (43) can be written as 

IpY^Yr - ll>ri>YY = ^YYY Xr + (1 + S)U,Uer (44) 

lPYST - VrSy = SYYXT/Pr + {Pr - 1)(1 - T)XT^y J>„V?/(PrH.) . (45) 

These equations can be solved by putting 

oo oo 

H = [r/(i - r)]1'2 Y, T'MY); 5 = E r'5<(y) (46) 
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with / ,(0) = /;(0) = 0; /i(oo) = 1; £(oo) = 0 for i > 0; 50(0) = Sa; 5,(0) = 0 for 

i > 0 and ^ (oo) = 0. 

By substituting Eqs.(46) into Eqs.(44) and (45) one has the equations for the 

unknowns /, and Si. In particular the leading order of the expansion gives 

/o" + /o'/o — /o = —1 — 50 

(47) 

S'UPr + f0S'0 = 0 

while /„ and 5„, with n > 0, are given by 

f: + / o / : - 2(n + l ) / ^ + (2n + l)/J ' /« = - 5 „ + Fn 

(48) 

S^'/Pr + f0S'n - 2nSnf0 = G„ 

where 

g(r) = (1 - 17r/2 + 275r2/16 - 441r3/32 + 63r4 /16)/2 = ^ j r ^ 

Fn = - 2 / J ' ( f f n - 2 S „ _ 1 + s „ _ 2 ) + 2 ( n - l K / n - i - 2(n-l)fX-i 
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n - l 

-2 X) tfT-xfo - 2^-i + Sw) + /"-![(« + 1/2)/. 

- ( j - i ) / ^ ] - /;_!((*+1/2)/; - («-!)/;_,)] 

n 

C = - X) K--(*" 2*-> + *-») + (n " 0S.-«(/; " £-*) 

-5;_,[(/,(i + l/2) - (J- l ) / , - , ) ] ] - 2(Pr-l)hJPr 

where 

fe" = X ) ( E / - ' / " - ^ ) (9-1-2^-2+5. -3) -
i=0 \ j = 0 / 

The representation of ip and 5 given by Eqs.(46) is not valid for any value of 

r . In order to evaluate the range of validity of such expansion and to obtain 

a representation valid for higher values of r we use the Pade representation. The 

numerical solution of Eqs.(47) and (48), found using the Runge-Kutta method, has 

been obtained by considering 13 terms of Eqs.(46). The radius of convergence r of 

MacLaurin expansion has been determined by the Pade approximants technique: 

we found r = 0.06. The Pade approximants also allow to obtain a representation 

of the functions rj> and S valid for values of r > r. 

The second derivative of E/JT* and the first of ES,r ' at y = 0 are drawn in 

Figs.8, 9, 10 and 11; dashed curves represent expansion (46) while solid curves 
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represent Pade approximants. The curves of uSt0 and S are drawn for Pr = 1 

and Pr = 0.74, for both Sm = - 0 . 8 and Sw = -0 .4 . We can see that the two 

representations practically coincide when T < r; when T > r the MacLaurin series 

diverges while the Pade representation is regular. Non-dimensional shear stress 

«y,o and heat flux Sy,o are therefore exactly given by the Pade approximants in the 

entire field of interest. The same quantities are drawn (for M = 0.5 and M = 0.75) 

versus r in Figs.12 and 13. 
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Fig.l Stagnation flow with isothermal condition on the lo
wer side of the slab; constants necessary for calculation 

2 2 of the wall temperature, as -̂  =^h(0)+(7-l)M x # (0), versus 
coupling parameter p. 
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Fig.2 Stagnation flow with adiabatic condition on the 
lower side of the slab. Universal plot of wall temperature, 
rescaled as indicated, versus generalized axial coordinate 
m. in the presence ( ) and absence ( ) of wall con
duction. 
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Fig.3 Stagnation flow with adiabatic condition on the 
lower side of the slab: same results as in Fig. 2 plotted 
in a different scaling in which the dimensionless tempera
ture is finite at infinity. 
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Fig.4 Streamlines; ip = 0.01, 0.05, 0.1, 0.5. 
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F i g . 5 V(x) and i K x ) a t y = - l . 
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Fig.6 V(y) and % ) at x = 0.2 and x = 0.5 
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Fig.7 Abscissa versus velocity. 
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Fig.8 Comparison between MacLaurin expansion £ / " r ' and their Pade 

approximants oi(u/Ue)Yi0 for Pr = 1, Pr = 0.74 and Sw = —0.8. 
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Fig.9 Comparison between MacLaurin expansion TIS^T' and their Pade 

approximants of SY,a for Pr = 1, Pr = 0.74 and Sw = -0 .8 . 
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Fig.10 Comparison between MacLaurin expansion ^f"T' and their Pade 

approximants oi(u/Ue)Y,o for Pr = 1, Pr = 0.74 and Sw = —0.4. 
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Fig. 11 Comparison between MacLaurin expansion ES-r' and their Pade 

approximants of SY,o for Pr = 1, Pr = 0.74 and Sw = —0.4. 
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Fig. 12 (u/Ue)Y,o versus x for M = 0.5 and M = 0.75, Pr = 1, Sm = 0.8. 
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Fig.13 Sy,0 versus x for M = 0.5 and M = 0.75, P r = 1, Sw = - 0 .8 . 



Appendix to Chapter 3 

M O T I O N EQUATIONS IN THE ODOGRAPH 
PLANE 

Compressible two-dimensional irrotational steady equations of motion can be writ

ten in a linear form assuming V (modulus of velocity V) and 0 (angle that V_ forms 

with a reference axis x) as independent variables. From irrotationality of motion 

we have 

V = gradip (^-1) 

where <p is the scalar potential function. 

The potential vector A gives velocity by means of the following equation 

pV = rot A (A.2) 

where p is the density. We assume a cartesian system of reference (a:, y) and denote 

by u and v the components of V_ in this system. One has 

u = Vcos6; v = VsinO. (A3) 
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108- Applications of Pade Approximation Theory in Fluid Dynamics 

In two-dimensional plane case A only has non zero value for the third compo

nent; we denote by ip (stream function) such a component. Therefore we have 

tpx = -pv ; ipy = pu . (A4) 

By differentiating <p and ip we have 

d(p = udx + vdy ; dip = —pvdx + pudy . (^-5) 

These equations, taking into account Eqs. (A.3), give for dx and dy the following 

expressions: 

dx = (cosOdtp — (1/p)sin6dip)/V 

(A6) 

dy = (sinOdip + (l/p)cos6dtp)/V . 

If we assume V and 8 as independent variables we have 

dx = xvdV + xgd0; dy = yvdV + yed0 (^-7) 

dtp = ipvdV + iped9 dip = jpvdV + iped6. (A.8) 

By substituting Eqs.(A.7) and (A.8) into Eqs.(A.6) it results 
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xv = {cosQify — sin6ipv/p)/V 

(A9) 

xt = (cos9ips — sin8tJ>e/p)/V 

yv = (sinQipy + cosdipy I p)/V 

(A10) 

y„ = {sinOipe + cos0rpg/p)/V . 

By equating Xyg to Xgy (obtained from Eqs. (A.9)), and yyg to y^y (obtained from 

Eqs. (A.10)) we have two equations that can be written in the form 

AsinQ + BcosQ = 0 

( A l l ) 

AcosO + Bsind = 0 . 

Therefore it is A = B = 0, i.e. 

<p, = V^v/p ( A 12) 

Vv = {\/p)v^ - (l/p),^v - (l/pV)*, ■ (A13) 
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From Bernoulli equation 

(7 - l ) f 2 / 2 + a2 = a] (A14) 

where a, is the stagnation velocity of sound, the isoentropic one 

p/py = const (A. 15) 

and state equation for perfect gases 

p = pRT (A. 16) 

(a2 = pp = jRT, where 7 is the ratio of heat coefficients) it results that a, p and p 

only depend on V. Moreover from Eqs. (A.14)-(A.16) one has 

dp = -pVdV (A. 17) 

i.e. 

Pv = -pV . (A.18) 

Therefore it is 

(l/p)v = -pv/p2 = -ppPv/p2 = -Pv/a2p2 = V/pa2 . (A19) 

Thus Eq.(A.13) becomes 
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Vv = {VIpa2 - 1/PV)J>, • (A20) 

By differentiating ipe with respect to V and (pv with respect to 8 and equating 

these two equations one has 

V2Vvv + V ^ r ( l + M 2) + (1 - M2)^ee = 0 (A.21) 

where M is the Mach number (M = V7o). From Eq. (A.14) one has 

1/M2 = a2/V2 - (7 - l ) /2 (A.22) 

and Eq. (A.21) becomes 

V2[l - (7 - l)V2/a2]Vvv + V[l - (7 " 3)V72«.2tyv 

(A.23) 

+ [1 - (7 + l ) F 2 / 2 a 2 ] ^ 8 = 0 . 



Chapter 4 

FLOWS OVER BODIES IN FORCED 

CONVECTION: THE WEDGE CASE 

1.4 Introduction 

In this chapter we analyze two situations of coupled heat transfer in a fluid and the 

adjacent solid wall that are of interest in supersonic and hypersonic flight, where 

care must be taken to dissipate the heat generated by friction and compression of 

the gas and transferred to the walls of the aircraft. A part of the analysis is based 

on a generalization of the previous solution (flat plate case) to boundary-layer 

flow over a wedge, behind the leading shock wave, considering, however, different 

boundary conditions with respect to conduction in the solid. We shall study two 

cases, quite different from each other: a solid wedge refrigerated, and thus held 

at constant temperature, on its axis, and a nonrefrigerated wedge, where heat is 

removed by axial conduction only. 

Therefore we shall consider a solid wedge surrounded by a supersonic stream 

that forms a shock at its wedge and held in either isothermal, case (c), or adiabatic 
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(symmetric), case (d), conditions on its axis, (see Fig.l). 

2.4 Equations and boundary conditions 

Also in this case pressure is constant. Therefore by using Eqs.(14,l) one finds 

that in Stewaxtson-Dorodnitzin plane the velocity components are independent of 

temperature and are those of the flat-plate case; it is 

U = Z' ; V = [zZ' - Z)/2£1/2 (1) 

where z = r]/£1/2 and Z(z) is the function that solves Blasius equation, 2Z'" + 

ZZ" = 0. 

In terms of Z the energy equation becomes 

&Z' - Z0J2 = 9zJPr + ( 7 - l ) M 0
2 Z " 2 (2) 

where 9 = (T — Te)/T0, M0 is the Mach number referred to the temperature T0 

that is equal to Tb — Te in case (c) and to the stagnation temperature in case (d). 

We consider a supersonic stream of Mach number Afx and temperature T\ that 

encounters a wedge aligned with the flow of half-angle a. After the shock wave 

that forms at the front the Mach number and temperature are M2 and T2. 

The dimensionless temperature 6 may be written as 
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» = OH + (7 - 1)MO
20, (3) 

where (7 - l)M0
2#p is a particular solution of Eq.(2) and 0h is a solution of the 

homogeneous part of Eq.(2). 

The boundary conditions associated with Eq.(2) are 

*(& 00) = 0 (4) 

and 

P*... = (ft. - l ) / e 1 / 2 ; P = Rel/2aX0/X,o (5) 

for case (c) and 

I*.,. = ~e/2m)(iW ; p = ReltaXQ/aX„ (6) 

for case (d). 

3.4 Isothermal condition on the axis 

When the axis of the wedge is at constant temperature, case (c), as the Mach 

number M0 has been referred to the temperature T0 = Tb — T2, we can write 

Ml = Ml /At, where A* = (T, - T2)/T2. 

In this case it is convenient to solve the problem in terms of the variables z and 
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m, = p x2 (7) 

by expressing 8h and dp of Eq.(3) by means of the following MacLaurin series in 

the variable ml 

oo 

6h = Y, m\9hii{z) (8) 

»=0 

oo 

0, = E miM*) ■ (9) 
1 = 0 

It is possible to follow a unified procedure for the determination of the equations 

and the boundary conditions for the terms 0hi and 6pi of Eqs.(8) and (9). 

In fact, from Eqs.(2) and (5) one obtains 

ff^/Pr + Zff0 + eZ"2 = 0 (10) 

0„ (0) = 1 - e ; 0o(oo) = 0 (11) 

where e = 0 for 6h0 and e = 1 for 8p 0, for the leading term and 

O'l/Pr + Z0[ - iZ% = 0 (12) 

0.(0) = 61,(0) ; 0,(oo) = 0 (13) 
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for i > 0. 

By using the Pade approximation technique we obtain a representation that is 

valid even when MacLaurin series does not converge. 

The comparison between the MacLaurin (dash and dot lines) and the Pade 

(solid lines) representations is shown in Fig.2 for 14-term expansions. For 0 < 

mi < 1 the two representations coincide because the radius of convergence of the 

MacLaurin series is 1. For mx > 1 the MacLaurin curves diverge while the Pade 

representation still converge. 

To verify the validity of the solutions given by Pade representation for 9h and 8p, 

we have studied the asymptotic behavior of these two functions. As in the previous 

chapter, we expand 6h and 0p in terms of the variable m2 = l/ml and consider the 

zero-order term of these expansions. It can be seen that the asymptotic solution 

for 6h is identically zero, whereas the one for 0p, denoted by h0(z), is the solution 

of the differential equation 

h'i/Pr + Zh'0 + Z"2 = 0 (14) 

with the boundary conditions 

fci(0) = 0 ; fto(oo) = 0 . (15) 

The curves of 0ft(O) and 9P(0), obtained from the Pade technique, and the asymp

totic value h0(0) (dotted line) are plotted versus mi in Fig.3. This figure shows 

that for mi —* oo(x —> oo), 0h indeed vanishes and 8p tends to the asymptotic 

solution h0. 
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We are now in a position to draw the curve of 0m and of the non-dimensional 

heat flux at wall Nu (Nusselt number). We consider a wedge of half-angle a = 

5deg.; Tj = 270 K, Tb = 1000 K and M, = 2,3,4,5,6. M2 can be obtained from 

the shock waves equations. The curves of 0W and Nu are plotted versus m, in Figs. 

4 and 5. 

It must be noted, in Fig.5, that Nu/Re)}2 tends to zero for m\ —> oo, because 

the asymptotic solution is the one obtained with the adiabatic condition at the 

interface. Figure 4 shows how 9W, starting from 1, reaches the adiabatic wall 

temperature (broken lines) at infinity, which presents the usual dependence on the 

Mach number. At Mi = 4 the solution coincides both with the asymptotic one and 

with the one obtained with the isothermal condition at the interface. Under this 

condition the wedge is at constant temperature. 

The dependence on p of the solution has been concealed by the choice of scales 

in Figs. 4 and 5. Changing p is equivalent to stretching the scale of mj in these 

figures; in particular for p —> 0 the solution corresponding to an isothermal bound

ary condition and for p —* oo the one corresponding to an adiabatic condition is 

attained. 

4.4 Adiabatic condition on the axis 

We consider the case of adiabatic condition on the axis (symmetric case). 

The solution of this case is trivial. In fact> as 6 turns out to be a function of 

the variable z only, because the variable x does not appear explicitly either in the 
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equation or in the boundary condition, the coupling condition (6) is satisfied by 

simply letting 0'(O) — 0. Hence the solution of equation (2) with the boundary 

condition (6) is the function 6 satisfying the following equation and boundary 

conditions: 

0"/Pr + Zff + Z'" = 0 

0'(O) = 0 ; 6>(oo) = 0 . 

The similarity solution thus obtained is at the same time adiabatic and isothermal 

at the wall and satisfies equation (6) for any value of p. 

Notice that the accidental situation that an adiabatic solution is at the same 

time isothermal makes this solution valid even when no approximation is made in 

the treatment of the thermal field in the solid wall, as in this case temperature 

inside the solid is simply constant. 
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Fig.l Flow cases: 
c) wedge with isothermal condition on the axis; 
d) wedge with adiabatic condition on the axis. 
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Fig. 2 Wedge flow with isothermal condition on the axis: 
convergence of Pade approximations (solid lines) and 
Taylor series (dotted lines). 
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Fig. 3 Wedge flow with isothermal condition on the axis: 
universal plot of the functions necessary for calculation 
of the wall temperature as #w(0)=iJ'h(0) + (y-l )M2# (0). 
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Fig.4 Variation of wall temperature $ versus generalized 
axial coordinate m. for wedge flow with isothermal bounda
ry condition at several Mach numbers. 
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1/2 Fig.5 Variation of local Nusselt number Nu/Re with 
m for wedge flow with isothermal boundary condition at 
several Mach numbers. 



Chapter 5 

T H E COUPLING OF CONDUCTION W I T H 
LAMINAR NATURAL CONVECTION ALONG 
A VERTICAL FLAT PLATE 

1.5 Introduction 

As pointed out in ref.[l], when convective heat transfer depends strongly on the 

thermal boundary conditions, natural convection must be studied as a mixed prob

lem if one needs an accurate analysis of the thermo-fluid-dynamics field. The 

phenomenon depends on several parameters: therefore in many cases this strong 

dependence does exist. 

In ref.[l] an analysis is given of the relative importance of the parameters of 

the problem in particular with reference to axial heat conduction. In ref.[2], by 

extending the analysis of Gosse [3], a technique is shown which improves the results 

given by the first term of an asymptotic expansion of the solution. In the same 

paper a new correlation for the evaluation of the heat transfer coefficient is also 

presented. 

This analysis holds for high values of the abscissa x; the value of the point 

xa from which the expansion is valid depends on the parameters that govern the 
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problem. 

In this chapter we study coupled natural convection by identifying the region 

where point x0 is located, improving the results concerning the asymptotic expan

sion by adding terms of higher order with respect to the first one, discussing the 

general form of the asymptotic expansion, which is singular for the presence of 

eigen-solutions, and determining the expansion holding for small values of x in an 

accurate way, by evaluating many terms of the series and its radius of convergence 

by means of Pade approximants technique. This analysis was published in ref.[4]. 

2.5 Equations and boundary conditions 

The equations that govern the steady two dimensional flow due to the free convec

tion along a side of a vertical flat plate of thickness b, insulated on the edges and 

with a temperature Tb on the other side (Fig.l) in non-dimensional form may be 

written as 

ux + vy = 0 (1) 

UUX + VUy = Uyy + () (2 ) 

u0x + v8s = 6yy/Pr (3) 
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where 0 = (T - T^)l(Tb - r „ ) . The reference quantities are: L = u2/3/g1/3 for x, 

L/d1/4 for y and vdllA for the stream function i/>, where d = (Tb — T^)/?, /9 is the 

volume thermal expansion coefficient and g is the acceleration due to gravity. 

The boundary conditions that must be associated with Eqs.(l)-(3) are 

u(x,0) = v(x,0) = u(0,y) = it(x,oo) = 0 (4) 

0(0, y) = 0(x,oo) = 0 (5) 

0(a : ,O)-1 = p0v(x,O) (6) 

where 

p = d^bX/LX, . (7) 

3.5 Solution for small x: initial expansion 

Let a = y/(p*)1 / 5 , i> = x^g(x,s)/p1>*, 0 = x^h(X>s)/p^. 

Then Eqs.(l)-(3) may be written as 

3ff' - 4gg„ + ^{g,gsx - gxg„) = 5(h + g,„) (8) 
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hgs - 4ghs + 5x(g,hx - h,gx) = 5h„/Pr (9) 

and Eq.(6) becomes 

h,(x,0) = m ^ ( i , 0 ) - 1 (10) 

where 

m, = x1/5/p4" . (11) 

By assuming mj and s as independent variables it is possible to expand the 

functions g and h in a MacLaurin series with respect to m^ (m; = 0 corresponds 

to x = 0) in this way 

OO CO 

9 = Yl rn\9i(s) ; h = £ m{fc*(») . (12) 

The following are the expansion of functions p, and h{ from (12) 

5?,'" - 6 ^ ; + 4 ( f t 9 ? + flbflT) - •"(ffisJ-ftS?) + 5/>< = M( 

(13) 

5fcf/Pr - ^ - *H»i + 49oK + 4Sih'0 - ifoJA, - fc'oft) = JV, 

where 
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The boundary conditions are 

ft(o) = g'M = ft'(oo) = fc.-(oo) = o 

(14) 

h'D(0) = - 1 ; fcj(0) = fc_x(0) (i > 0) . 

Equations (13) and (14) represent a standard boundary-value problem which can be 

easily solved numerically. The only difficulty with this expansion is the evaluation 

of its radius of convergence r(Pr). Such a function can be obtained by means of 

the technique of Pade approximants. 

We choose the diagonal sequence by assuming M = N. 

We have checked the reliability of the results by analyzing the two expansions 

related to the wall temperature and to the drag coefficient (i.e. uy(x,0)), for TV 

varying between 4 and 28 in increments of 2. The two sequences for Pr = 0.733 give 

the following values for the radius of convergence r : 0.97, 1.05, 1.09, 1.11, 1.13, 

1.14, 1.15, 1.15, 1.16, 1.16, 1.15, for the wall temperature expansion and 1.17, 

1.17, 1.16, 1.16, 1.16, 1.17, 1.16, 1.16, 1.15 for the drag coefficient expansion. 

Both sequences give a value of nearly 1.15 for r. For Pr = 2.97 we find r = 1.65. 

M, = E [Wi-, 
3=1 

-^9l ■i+ji: 'i"i-3 ~9i9l -;)] 

N, 
3=1 

-4ffiftL/+i(^<?,g - * * ; _ , ) ] ■ 
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The behaviour of expansion (12) in the range (0,r) of mj confirms the value 

of r found in this way. In Table 1 the values of 6 are listed for N terms of the 

expansion and for Pr — 2.97 : mx = 1.3 corresponds to 0.8r. For small values 

of mj a few terms are sufficient to obtain convergence, as m-^ approaches r the 

number of terms necessary to reach a good accuracy increases rapidly. 

Hence in the range (0,r) for m^ expansion (12) represents the solution of the 

problem well. 

4.5 Solution for large x: asymptotic expansion 

The solution for mx > r assumes a form different from that expressed by expansion 

(12). 

In fact if one substitutes the following expansions 

oo oo 

/ = E mif<w; e = E "*''*'(*) (15) 
i=0 i=0 

where z = y/x11*, xj> = x3/if(x,z) and 

m = paT1/4 (16) 

into Eqs.(l), (2), (3) and (6), that lead to 

2/,2 - 3 / / „ + 4 i ( / „ - / . / „ ) = M9 + f„.) 
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4x(9.f, - f.8.) - 3f6, = 46,,/Pr (17) 

0(x,0) - 1 = mO,(x,0) (18) 

one finds at the leading order the following system: 

2/02 - 3/o/j' = m+fn 

(19) 

- 3/ocJ; = 4 ^ / P r 

/0(0) = f'0(0) = /i(oo) = 0 

0O(O) = 1 flo(oo) = 0 

and at the ith order 

4</;" + 0,.) - 4 /^ / ; + 3/o//' + 3tf/, + i(f'Jo-fJo) = Si 

(20) 

4 ^ / P r + 3 M + 3/iflJ + i(/ift - O'ofi) = Tt 
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/.(0) = //(0) = tf(oo) = 0 

ft(0) = «J_i(0); ft(oo) = 0 

where 
i - l 

(21) 

Equations (20) represent the eigensolutions. 

The first one appeared in expansion (10) for i = 4, for linearized Eqs.(20) 

admit an eigensolution. In fact Eqs.(l)-(3) are unchanged by a translation of the 

origin of the x-axis and their solutions do not change in form when x is substituted 

for x — x0. If one expands tp(x,y,x0) and 8(x,y, x0) in powers of x0, by writing 

ip(x,y,x0) = x3/i[i/>0(x,y) + x0il>i(x,y)] and 0 = 0o(x,y) + x001(x,y), one finds that 

V>i and #! may be written as (l/x)Fl(z) and (l/x)G1(z). As this solution holds for 

any x0, F\ and G\ represent an eigensolution. In particular one finds 

ft = (3/4)/0 - ( l /4)z/J ; Gl = - ( l / 4 ) * ? 0 

where /0 and 0O are given by the leading-order term in expansion (10). Functions 

Fi and Gi satisfy Eqs.(20) with i = 4 and 5,- = T, = 0. 

s, -3/y/JV -K/;/r_i -/,/;;•)] 

r* : i - l 

-i(«r/t-i -M- - i ) - -»/,«;_,]. 
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Then the first four terms in expansion (15) can be determined by means of 

Eqs.(20) (the presence of the first eigenvalue does not permit the solution of 

Eqs.(20) for i = 4) and the solution can be written in the form 

3 

/ = Y, "»'/<(*) + m4Q(m,z) 
i=0 

(10') 
3 

0 = J2 m'Qiiz) + m4R(m,z) 
•=o 

where functions Q(m, z) and R(m, z) are not analytic. 

Both Q and R may be represented by suitable expansions. The eigenfunctions 

have the form (l/x)q f^{z), (l/x)q 9q(z) where q is a real parameter which takes 

on eigenvalues. 

The first eigenvalue of q for any Pr is 1; the second one for Pr = 2.97 is 2.2 

and for Pr = 0.73 is 2.4. 

The results have shown that the number of terms necessary to represent the 

initial solution satisfactorily in the range (0,x0), with x0 corresponding to a value 

of m equal to 0.8r (r being the radius of convergence), is 17. At x = x0, in the 

considered case, the asymptotic solution is represented well by means of four terms. 

For Pr = 0.733, 1.15, 2.97, 7.2, 13.6 the radii of convergence of the initial 

expansion are 1.16, 1.36, 1.65, 2.03, 2.29, respectively. 

The values at y = 0 of the first few terms of the initial and asymptotic expan

sions are listed in Tables 2 and 3. 

In order to compare our results with those of ref.[2] we consider a plate with 

length t and define a Grashof number according to its length; moreover, letting 
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K = X.i/X,b, we can write m = Gr^ftx/ty^K and m, = K***(x/€)lf*/Gr1'*. 

We assume for Gr the value of 109. We define the Grashof number as follows 

gfd 

In Figs. 2 and 3, 6, evaluated by means of the asymptotic expansion, is plotted 

vs. x/i for K = 500 and 1000 and Pr = 2.97 together with the results of ref.[2]. 

One can see that the first approximation is not very accurate for the lower value 

of K: an improvement is obtained by means of the technique of ref.[2]. As K 

increases, the differences between the first and the third approximation become 

smaller. 

To compare the two expansions we have considered 6 and uy at the wall as a 

representation of the thermal field and of the fluid-dynamic field. The number of 

terms of the initial expansion is 17. In Figs. 4 and 5 the case K = 500, Pr = 2.97 

is drawn. In Fig. 4 the dashed curve, corresponding to the asymptotic solution for 

6, diverges for i - t O and differs appreciably from the initial one up to x/£ = 0.05. 

For higher values of x/i one sees that the two curves are very close to each other. 

The value of xjt corresponding to the largest abscissa of convergence of the initial 

expansion is roughly 0.19; hence in the range (0.05, 0.19) both expansions seem to 

hold. A similar behaviour is displayed in Fig.5, but for the considered number of 

terms the two curves stay very close in a shorter range. 

In both cases the value of x0/£ = 0.06, corresponding to a value of mj = 0.8r, 

is a suitable starting point for the asymptotic expansion. 

In Figs. 6 and 7 the curves for the case of K = 250 and Pr = 2.97 are drawn. 

For these values x0/i > 1. Therefore, in the whole range (0,1) the thermo-fluid-
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dynamic field is governed by the initial solution. The figures show an appreciable 

difference between the dashed curve (asymptotic solution) and the solid curve (ini

tial solution) for both functions. 

In Figs. 8 and 9 the curves relating to K = 250 and Pr = 0.733 are drawn. 

In this case x0/£ = 0.26. The comparison with Figs. 6 and 7 shows that the lower 

value of Pr makes the difference between the two solutions very small, except for 

vanishing values of x. 

The previous analysis enables one to obtain the solution of the problem in 

the entire field using the initial solution for 0 < x < x0 and asymptotic solution 

for x > x0. x0 is the starting point of the asymptotic solution and the velocity 

and temperature profiles obtained from the initial solution represent the initial 

conditions for the asymptotic solution. 

According to the analysis presented in the previous sections the difference be

tween the two solutions at x = x0 must be of the order of magnitude m4: in fact 

we have taken into account the terms of the asymptotic expansion up to the third 

order. Figures 4-9 confirm such behaviour. 

Therefore, when m(x0) is n ° t too high, as in the considered cases, the approx

imation in which terms of order m4 are neglected is satisfactory. 

To obtain higher approximations one must consider a new expansion in terms 

of eigenfunctions, starting from order m4. 
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Fig.l A vertical flat plate and coordinate system. 
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Table 3. Asymptotic expansion: values of f"(0) and #' (0) 

PT-- = 0.733 Pr = = 2.97 
n /-"(0) 8,(0) /-"CO) O'M 
0 9.532x10-' -3 .591x10- ' 7.522x10" -5.749x10"' 
1 -2 .908x10" ' 1.315x10"' -3 .693x10- 3.414x10"' 
2 1.143x10-' -3.593 xlO"2 2.392x10- -1.545x10"' 
3 -4.128 xlO"2 3.845 x 10-8 -1.515x10" 8.482 x 10-' 

Fig.2 Non-dimensional temperature at the wall #(x,0) in 
9 the asymptotic solution for Pr=2.97, K=500, Gr=10 . 
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Fig.3 Non-dimensional temperature at the wall #(x,0) in 
the asymptotic solution for Pr=2.97, K=1000, Gr=10 . 

Fig.4 Non-dimensional temperature at the wall i?(x,0) for 
Pr=2.97, K=500. 

1.00 i 1 

0 . 8 0 — 

0 . 6 0 -// 

i 0.40 L Ini t ial , solution 
111 ' Asymptotic solution 

0.20 !_ 

_ _ _ ! I I I 
0 0 .04 0.08 O.IZ 0.16 0.20 
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F i g . 5 u ( x , 0 ) f o r P r = 2 . 9 7 , K=500. 

Fig.6 Non-dimensional temperature at the wall i%x,0) for 
Pr=2.97, K=250. 
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F i g . 7 u ( x , 0 ) f o r P r = 2 . 9 7 , K=250. 

Fig.8 Non-dimensional temperature at the wall #(x,0) for 
Pr=0.733, K=250. 
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F i g . 9 u (x ,0 ) fo r Pr=0.733, K=250. 

The figures are reprinted from Int. J. of Heat and Mass 
Transfer Vol.31, A. Pozzi and M. Lupo, "The coupling of 
conduction with laminar natural convection along a flat 
plate", 1807-1814, Copyright 1988 with permission from 
Pergamon Press Ltd., Headington Hill Hall, Oxford 0X3 
0BW, UK. 



Chapter 6 

VARIABLE-PROPERTIES EFFECTS: 
SUPERSONIC W E D G E FLOW 

1.6 Introduction 

The first studies on variable-property effects were based on empirical methods, 

such as the "reference-temperature method" and the "property-ratio method" [1]. 

In the reference-temperature method, the properties are calculated at a reference 

temperature Tr different for each property. In the property-ratio method, the 

variable-property results are obtained by multiplying the corresponding constant-

property results by a factor in the form 

where <X\ — /z, a2 = A, a3 = p and the exponents n, are determined empirically. 

Subsequently, the problem of variable-property effects has been studied, for walls 

of zero thickness, in the case of small temperature differences. In particular, Carey 

and Mollendorf [2] have presented a first-order perturbation analysis for liquids 

assuming a linear dependence of viscosity on temperature. Gray and Giorgini [3] 

145 
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have analyzed the limits of applicability of the Boussinesq approximation in the 

natural convection. Merker and Mey [4], studying the natural convection in a 

shallow cavity, have found that the reference temperature can be assumed to be 

the arithmetic mean between the highest and lowest temperatures, if the difference 

of these temperatures is on the order of 30 K or less. 

In this chapter we consider the variable-property effects on supersonic flow 

along a wedge, taking into account wall thermal resistance. The axis of the wedge 

is maintained either at a constant temperature or under adiabatic conditions. 

Viscosity and thermal conductivity coefficients are assumed to depend on tem

perature in a polynomial form by generalizing the analysis performed in chapter 

4. 

The problem governed by the isothermal condition on the axis does not admit 

similarity solutions and is solved by using two expansions, an initial one and an 

asymptotic one, and applying the Pade approximants technique. The solution 

of the second problem can be obtained in similarity form. A discussion of the 

variable-property effects ends this chapter. 

The results of this analysis were published in ref.[5]. 

2.6 Equation and boundary conditions 

As in chap.4, a supersonic stream of Mach number Mx, velocity it! and temper

ature Ti encounters a wedge whose axis is maintained at a constant temperature 

T„ in case a) or under adiabatic conditions in case b). Mach number, velocity 
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and temperature behind the shock wave caused by the wedge are M2, M2 and T2 

respectively (Fig.l). 

The equations governing the thermo-fluid-dynamic field are the boundary layer 

equations that in non-dimensional form may be written as 

(pu)x + (pv)y = 0 (1) 

p(uuT + vuy) = (puy)y (2) 

p(utx + vty) = (Xty)y/Pr + [(7 - l)Mi/At]fiu2
y (3) 

where u and v are the velocity components along the x and y cartesian axes, p, p 

and X denote density, viscosity and thermal conductivity coefficients of the fluid 

and t is the dimensionless temperature defined as (T — T2)/(Ta — T2) in case a) and 

(T - T2)/T2 in case b). 

The reference quantities are L, LRe'1/2, M2, u2Re~1/2, p2, p2, X2 for x, y, u, 

v, p, p. and A respectively, where the subscript 2 denotes free stream conditions 

downstream of the shock wave and L is a characteristic length in the direction of 

the x-axis. Re and Pr are the Reynolds and Prandtl numbers of the fluid and 

At = (T„ — T2)/T2 in case a) and At = 1 in case b). 

The boundary conditions associated with Eqs. (l)-(3) are 

u(x,0) = v(x,0) = 0 (4) 
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u(x,oo) — 1 ; i ( i ,oo) = 0 (5) 

The continuity of heat flux at the solid fluid interface in dimensionless form may 

be written as 

At,., = [tw-l]/Ix (6) 

in case a) and 

XtS}W = -(xtx)XiW/I (7) 

in case b), where the coupling parameter I is 

/ = Re1/2X2a/X, 

in case a) and 

/ = Re^Xz/^a) (9) 

in case b). 

In order to take into account the influence of variability of the fluid properties 

on the flow it is convenient to introduce the Stewartson-Dorodnitzin transformation 

in the isobaric form, by utilizing the new independent variables: 

(8) 
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( = x ; tj = I pdy. (10) 
Jo 

In terms of these variables Eqs. (l)-(3) become 

u( + V, = 0 (11) 

uu( + Vu„ = [(pn)u„]v (12) 

ut( + Vt„ = [(p\)Qv/Pr + [(7 - l)M*/At](P»yv (13) 

where 

V = pv + UTJX . (14) 

In the case of pp. constant, Eqs.( l l ) and (12) may be solved independently of the 

energy equation (13) and the stream function ip is obtained in similar form in terms 

of the variable 

z = v/e». 

If viscosity and thermal conductivity coefficients are assumed to depend on tem

perature in a polynomial form, Eqs.( l l ) and (12) must be solved together with 

Eq.(13). 
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In particular we assume the following dependence of p and A on absolute tem

perature T: 

n n 

/i = Y, a<T<: A = E #T< (15) 

so that, in dimensionless form, products, pp. and pX (p = l / T for a perfect gas) 

are expressed by means of polynomials in terms of t: 

n - 1 n - 1 

PP = i + Y ai*i; p* = i + $ 3 6,<i • (16) 
i = l i = l 

If we consider n = 2 it is 

pp = 1 + ait 

(17) 

pA = 1 + M 

where oa = a2(Ta - T 2 ) / ( a i + a2T2) and 6, = ft + ft(T0 - T,)/(ft + ftT2) in case 

a), whereas <Zi = a2T2/(ai + a2T2) and 6j = ftT2/(ft + ftT2) in case b). 

By introducing Eqs.(17) into conditions (6) and (7) we obtain the following 

conditions 

( I+M U >*,„ = [tm-iyie/2 

(18) 
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for case a) and b) respectively. 

3.6 The method of solution for case a) 

Owing to the coupling condition (18a) the problem does not admit similar solutions; 

in fact the solution has a different character for small and high values of £ (£ = x). 

For small values of £ the solution tends to that obtained with the isothermal 

condition at the interface and it is convenient to assume rrix = J^1 '2 and z as 

independent variables. In this case it is possible to expand the unknowns in a 

MacLaurin series with respect to mx. This expansion, whose leading term repre

sents the solution with the isothermal condition at the interface, has a finite radius 

of convergence and does not allow us to describe the entire thermo-fluid-dynamic 

field. However we shall see that it is possible, using the Pade approximants tech

nique, not only to calculate the radius of convergence of the initial expansion, but 

also to obtain a representation valid in the whole field. 

For high values of £ the solution tends to that obtained with the adiabatic 

condition at the interface and it is convenient to assume m2 = 1/mj and z as 

independent variables. In this case it is possible to expand the unknowns in a 

MacLaurin series with respect to m2 because, while no problem is encountered 

in calculating the first two coefficients of the expansion, the third one cannot be 

calculated for the presence of eigensolutions. Therefore to take into account terms 

of 0(m\) the asymptotic expansion must be modified so as to include non integral 

(1 + bltw)t,lw = = -m)^e/2/i 
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powers and logarithmic terms. Nevertheless, since terms of this kind do not appear 

below order 2, they can be neglected in the proposed procedure. 

Each term of the two expansions is obtained by solving numerically a system 

of ordinary differential equations obtained in the usual way from Eqs.(ll)-(13) 

applying the Cauchy's rule for multiplication of power series. In particular we 

assume in the following, for the sake of simplicity, Eqs.(17) (n = 2) for p\i and p\. 

4.6 Expansions for small and high values of (, for 
case a) 

In order to determine the equations and the boundary conditions which allow us to 

calculate the terms of expansion for small (initial expansion) and high (asymptotic 

expansion) values of £, we shall follow a unified procedure assuming z = 7?/£1/2 

and m = (J^ 1 ' 2 ) ' as independent variables where S = 1 for the initial expansion 

(m = mi), and S = — 1 for the asymptotic expansion (m = m2). Then, letting 

ip = £lt*f(£,z) (u = «/>, and V = — il>() and t = h(£,z) and assuming z and m as 

independent variables, Eqs.(12), (13) and (17) give: 

(l/2)(ft<n/,/,m - / / „ - Smfmf„) = (1 + a ifc) / J M + a A / , , (19) 

(l/2)(*m/Jfcm - fh. -Smfmh.) = (1 + b,h)hzz/Pr 

(20) 
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+ b1h2JPr + ( ( 7 - lK/AT)( l + <a)/A 

whereas the coupling condition (18a) becomes 

m ' ( l + M(a:,0))fc,(a:,0) = h(x,0)-l. (21) 

Now if one expands the functions / and / l i n a MacLaurin series with respect to m 

one has 

oo oo 

i = 0 i = 0 

Substituting the expansions (22) into Eqs.(4), (5), (19), (20) and (21) gives at the 

leading order the following system 

( l + aA) /o" ' + aih'0fX + (l/2)f0fi = 0 (23a) 

(l + hhoW^/Pr + biHf/Pr + (1/2)M 

+ ((7 - 1)M2/Af)(l + ai6B)ff = 0 

(236) 

/o(0) = f0(0) = 0 ; fi(<x>) = 1 i V ° ° ) = 0 (23c) 

\and 

• = 0 

CO 

h = V^ m'hi(z) . 
i=0 

(22; 
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fto(0) = 1 (23d) 

for the initial expansion (representing the solution with the isothermal boundary 

condition at the interface), and 

h'Q(0) = 0 (23e) 

for the asymptotic expansion (representing the solution with the adiabatic bound

ary at the interface), whereas at the i-th order one has 

(1 + a^o)/;" + ai(htfi' + h'J' + h'J!') - (i6/2)f'J! 

(24a) 

+ ( l / 2 ) / 0 / / ' + ((1-M7>)/2)/,X = M, 

( l + fe^o^'/Pr + b^hX + ZKKyPr - (i6/2)htn + (l/2)/0ft; 

(246) 

+ ((1 + iS)/2)fX + ( 7 - l ) M 2
2 ( 2 ( l + a1/l„)/o'/i" + a i ^ o ^ ) = N4 

m = /;(o) = /;(oo) = h^) = o (24c) 
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MO) = fc!-i(0) + fejS,-! (25) 

for the initial expansion, and 

(l + 6,fco(0))fci(0) + Mi(0)fc'0(0) = fco(O) - 1 (26a) 

for the first order of the asymptotic expansion, and 

(1 + M0(0))MO) + Mi(0)Ai(0) = fc,_,(0) - 6,5,., (266) 

for the successive terms of the asymptotic expansion, where 

Mt = - (( l+j*)/2)/ , / /V - «.,(/,,#, + fcjtf,)] 

Ni = f^lUSmhif,-, - ((l+i*)/2)/i*l-i - b^hli+KK^/Pr 
i= i 

- ( 7 - l ) W ? ( ( l + a i M + / X ; + aMiMi)] 

4 = E /TiT-* 
* = o 
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i 

Bi = £ A,(0)fcj_,(0). 
i=o 

The expansion for small values of £ (m = I(l/2) is regular and its radius of conver

gence can be calculated by means of Pade approximants technique. 

In this way it is possible to obtain a rapid convergence by using only a few 

terms of the original Taylor series but above all the utility of Pade approximants 

lies in the fact that they work well also when the Taylor series does not converge, 

obtaining a representation valid in the entire thermo-fluid-dynamic field. 

On the contrary the expansion for high values of £ (m = 1/(J^1'2)) is not 

regular and the terms of this expansion may be calculated without any difficulties 

only for i = 0,1; for i > 1 the system (24) with 6 = — 1 admits eigensolutions, the 

first of which results for i = 2. Therefore it is necessary to modify the form of the 

asymptotic expansion including the eigensolutions, and to give initial conditions at 

£ = £0 > 0. However we shall see that it is sufficient to consider only the first two 

terms of the asymptotic expansion because the Pade approximant technique will 

permit us to obtain a representation valid in the entire thermo-fluid-dynamic field. 

Thus the asymptotic solution will check only the accuracy of the Pade repre

sentation at high of £. 

5.6 Solution for case b) 

When the axis is under adiabatic conditions, case b), the thermal boundary con-
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dition at the solid-fluid interface may be expressed as 

(1 + M J i ^ = -(it()(tUllVl ■ (186) 

Then, the boundary layer equations (11)-(13) with condition (18b) may be solved 

assuming t and / {rj> = £1/2f) as functions of the similarity variable z only. In fact 

Eqs.(12b) and (12c) become 

(1 + 0 , * ) / - + ait'f"+ ( 1 / 2 ) / / " = 0 (27a) 

(1 + bjy/Pr + M ' V P r + ( l / 2 ) / f + ( 7 - 1)M2
2(1 + a^f"2 = 0 (276) 

with the boundary conditions 

/(O) = /'(O) = 0 ; / '(oo) = 1 ; t(oo) = 0 (27c) 

whereas Eq.(18b), as the r.h.s. equals zero, gives 

f(0) = 0. (27d) 
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6.6 Results and discussion 

The previous analysis will be applied to the case of air (Pr = 0.7) assuming for the 

Mach number upstream of the shock wave Mi the values of 3 and 6, and for 7\ the 

value of 300 K; moreover we have assumed a = 5° and Ta = 1000 K. For Mi = 3, 

Ti = 270 K and a = 5° one obtains, from the shock wave theory, M2 = 2.75 and 

T2 = 301 K (A* = (Ta - T2)/T2 = 2.32), whereas for M, = 6 and for the same 

values of Tj and a one has M2 = 5.32 and T2 = 332 K (At = 2.01). 

In the temperature range 300 — 1700 K the variation of viscosity and thermal 

conductivity can be well described by utilizing Eqs.(15) with n = 2 and calculating 

the coefficients au a,, ft, ft so that they pass through n(T = 400 K) = 2.27-10_4P 

and n(T = 1600 K) = 5.63 • 10"4P and through \(T = 400 K) = 3.27 ■ 10-2W/mK 

and X(T = 1600 K) = 1.00 ■ 10"' W/mK. In this way the maximum error obtained 

for fi(T) and A(T) is of the order of a few per cent. Finally we may calculate the 

coefficients ax and bx of Eqs.(17); these values, together with the values of h0(0) and 

/o'(0) for the solution with the adiabatic boundary condition (solution for x —> oo) 

are reported in Table 1. 

As noted in the previous section, Pade approximants technique has been used 

for the representation of results in the case of the solution with the isothermal 

boundary condition. The remarkable improvement obtainable by using Pade ap

proximants with respect to the MacLaurin expansion and the convergence to the 
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asymptotic expansion is shown in Figs. 2 and 3 where („, = <(m b0) is plotted 

versus m, for M2 = 5.32. Figure 2 shows that the initial expansion with 16 terms, 

that coincides with Pade representation for mj < 1, diverges when mi > 1; this re

sults is in complete agreement with that obtained by means of Pade technique that 

provides a value for the radius of convergence equal to about 1. Figure 3 shows the 

convergence of the results, obtained by Pade approximants, to those given by the 

asymptotic expansion calculated up to the first order. Thus Pade representation 

is valid also when the MacLaurin original expansion does not converge. 

In Figure 4 the curves of tm versus mj are drawn for Mx = 3 (M2 = 2.75) and 

M-L = 6 (M2 = 5.32); the curves obtained by choosing ax — bx = 0 (dotted curves), 

that is pfj, = p\ = 1, are also shown in Figs.4 and 5. For Mx = 3 the approximation 

pp. = p\ = 1 provides very good results; whereas for Mj = 6 the per cent difference 

is about 10. 

Figure 4 shows the influence of wall thermal resistance. At mx = 0 is tw = 1 

and hence for small values of Re, a, X2 and x or for high values of X,0 the solution 

is close to that obtained with the isothermal boundary condition, while for high 

values of m^ the solution tends to that obtained with the adiabatic condition. 

The curves of Nu/RelJ2 for Mi = 3 and M2 = 6 are plotted versus m1 in Fig.5 

where the Nusselt number Nu is defined as the dimensionless heat flux, that is 

Nu\2(Tw - Ta) 
q«> = • 

X 

It must be noted that, since the asymptotic solution is obtained with the adi

abatic condition, the curves of Nux ■ Re~1/2 tend to zero for mY —► oo (z —> oo). 

In order to appreciate better the difference with respect to the case ax = b\ = 0, 
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these curves are reported in Fig.6 up to mi = 5 by using two different scales for 

Mi = 3 and Mi = 6. As before the approximation pp = pX = 1 (dotted curves) is 

good for Mi = 3 whereas for Mi = 6 the per cent difference is about 15. 

The friction coefficient c / ; defined as 

' PlV\ 

is plotted in Fig.7 versus m^. It must be noted that, if we assume ax — bx = 0, 

Cf does not depend on the variable m.x\ in fact in this case the velocity field may 

be solved independently of the thermal field in terms of the similarity variable z. 

Figure 8 shows that for the evaluation of Cj the assumption pp. = pX = 1 is not 

satisfactory even for Mi = 3. The per cent difference with respect to the case 

o-i = &i — 0 is about 9 for Mi = 3 and about 30 for Mi = 6. 

The solution with the adiabatic boundary condition has been obtained in a 

similar form in terms of the variable z. The initial values t(0) and /"(0) depend 

on the values of ai and &!. 

In order to analyze the influence of the variable property of the fluid on flow 

the curves of tw = i(0) and cs are plotted versus ax in Figs. (8) and (9), assuming 

Mi = 3 and hY = —0.4,0,0.4. These figures show that both („ and cs increase 

almost linearly with at. 
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Table 1 
Values of the characteristic quantities for M] = 3 and Mi = 6 ( a = 5 deg) 

a, 6, At h0(0) n'(0) 

Mi = 3 -0.215 -0.134 2.32 0.535 0.359 

Mi = 6 -0.207 -0.129 2.01 2.145 0.489 
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Fig.l Schematic view of the problem. 
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Fig.2 t obtained by means of initial expansion and Pade 
approximants technique (M.=6). 

Fig.3 Matching between the Pade approximant and the 
asymptotic solution (M..=6). 
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F i g . 4 Curves of t f o r M„ =3 and M = 6 . w 1 1 

1 / ? 
F i g . 5 Curves of Nu/Re^ ' f o r M =3 and M1=6. 
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1/2 F i g . 6 C u r v e s o f Nu/Re ' f o r M =3 and M =6 . 

Fig.7 Curves of c Re ' for M =3 and M.=6 and for a.=b.=0. ix ± 1 XI 



166- Applications of Pade Approximation Theory in Fluid Dynamics 

F i g . 8 V a r i a t i o n o f t = t ( 0 ) w i t h a , and b , . 
w 1 1 

F ig .9 V a r i a t i o n of c f wi th a. and b 



Chapter 7 

VARIABLE-PROPERTIES EFFECTS: 
F R E E CONVECTION 

1.7 Introduction 

The analysis of natural convection problem is usually performed by applying the 

Boussinesq approximation which consists of considering all the properties constants 

and writing the momentum equation in the following form [1] 

p(uux + vuu) = ixuyy + p/3mg(T - T^) (1) 

where g is the acceleration due to gravity and /3 is the coefficient of thermal expan

sion, defined as the specific variation of volume at constant pressure. It is given 

by 

n d(l/P) 
P = 9 dT ■ 

For perfect gases, from the equation of state, one has 

167 

(2) 
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p -- 1 
T" 

T h e last t e rm of E q . ( l ) is t he buoyancy te rm. 

In order to consider t he variable-property effects in free convection we start 

from the m o m e n t u m equat ion in t he bounda ry layer approximat ion in t he following 

form 

P(UUX + VUy) + pr = (lMy)y + F (4) 

where F denotes the component of volume force along the vertical direction. 

In t he na tu ra l convection case t he volume forces cannot be neglected because 

they are t he only driving force. 

Let poo be the pressure t h a t exists when the velocity V_ vanishes ( T = T^); as 

F = — pg (F has the dimension of a force divided by a volume), it is 

dp°° tK\ 
- ^ = 9 P ~ . (5) 

It results t h a t p = p^ even when V_ is different from zero. Therefore Eq.(4) 

becomes 

p(uux + vus) = (nuy^ + g{pm-p). (6) 

For perfect gases one has 

(3) 
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Poo-P = P{P~f-l) = p f c £ — 1) (7) 

and Eq.(6) gives 

T 
p(uux + vus) = (fMy)y + gp{-=--l). (8) 

This analysis was published in ref.[2]. 

2.7 Basic equations 

Taking into account Eq.(8) the dimensionless boundary layer equations governing 

the problem are 

(Pit). + (PV^ = 0 (9) 

p(uux + VUy) = (̂ Mj,)„ + p9 (10) 

P(U0x+V0y) = ^ (11) 

where 

p(uBx + v6y) = (xey)s 
Pr 
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T -T 
e = -—— 

and Pr is the Prandtl number. 

The reference frame is illustrated in Figure 1, where b denotes the thickness of 

the plate, which is insulated at the edges, and a temperature Th is maintained on 

the side away from the fluid. 

The reference quantities are: L = v%,ag~1/3 for x', Ld~l/i for y', p„ for p, p.^ 

for p, Aro for A, and v^d}1* for the stream function ip (such that pu = ipyp^, pv = 

-1>zPo°), where 

d_(Tt-Ta>) 

It is possible to take into account the variable-property effects by means of the 

nondimensional Stewartson-Dorodnitzin transformation: 

( = x ; rj = pdy (12) 
Jo 

assuming that the viscosity and thermal conductivity coefficients are proportional 

to the absolute temperature, so that ftp = Xp = 1. 

This hypothesis concerning the dependence on temperature of the viscosity 

and thermal conductivity coefficients cannot adequate describe the thermo-fiuid-

dynamic field if the fluid-side plate temperature is very different from that of the 

outer side. Therefore we assume the following dependence of p. and A on absolute 

temperature T 
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/* = £ ) aiT1 (13) 
1 = 1 

n 

A = £ AT'' (14) 

so that , in dimensionless form, the products fip and \p (pT = 1) are expressed by 

means of polynomials in terms of 6: 

n - l 

(ip = 1 + J2 a,;? (15) 

n - l 

xP = i + J2 M* • ( i6) 
. = 1 

In particular, for n = 2 we have 

^/9 = 1 + a^O 

Xp = 1 + M 

where 

2 j — -loo , a h °° 
a1=a2 ■ — - ; h = P%—T—^T" 

(17) 
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Then Eqs.(9), (10), (11), (15) and (16) give 

u. + V, = 0 (18) 

uux + Vu, = 1 + J^ Oitf j u, + 9 (19) 

n - 1 

u6t + V9n = [(1 + J2 bAW,]JPr (20) 

where V = pu + UT/X. 

The boundary conditions associated with Eqs.(18)-(20) are 

it(x,0) = y(a;,0) = w(x,oo) = 6(x,oo) = 0 (21) 

«(0,i/) = 0(0, i;) = 0 . (22) 

The wall boundary condition associated with Eq. (20) usually involves assign

ing the temperature or the heat flux at the solid-fluid interface (y = 0). For a plate 

of nonzero thickness, we must solve the coupled thermal fields in both the solid 

and the fluid. The coupling conditions require that the temperature and the heat 

flux be continuous at the interface. The temperature Tso in the solid, neglecting 

the wall's longitudinal conduction, is 
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r,.-T.(«o-rc-rrW 
where Tw(x') = T(x' ,0) is the unknown temperature at the interface. 

The heat flux continuity condition, using Eq.(16), may be written in dimen-

sionless form as 

pfl + J ] Mtj*,(*,0) = 0.-1 (23) 

where 

p = ^ T (24) 

and A5() is the solid thermal conductivity. Equation (23) represents the last bound

ary condition associated with Eqs.(18)-(20). 

3.7 Solution for low x 

Let 

^ , x4/5g(x,s) n x*'*h(x,a) 
" (px)1/5 ' 

, x4/5g(x,s) 
V pV* 

and 
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x1/5 

"»' = ^ T ■ ( 2 5 ) 

We can expand the functions g and h in a MacLaurin series with respect to rrii, to 

get 

In this way, if we assume that g'^oo) = hj(oo) = 0, the initial condition of 

Eq.(22) are satisfied as well. 

From Eqs.(15), (16), (19), (20) and (23) we find at the leading order the fol

lowing system 

ty0
2 - « = Sff"' (27) 

h0g'o - 4goK = j - hf (28) 

with the boundary conditions 

ffo(0) = si(0) = fli(oo) = 0 (29) 

fci(0) = - 1 ; fco(oo) = 0 (30) 

(26) 
oo 

g = ^2 m\gi(s) ; 
1=0 

oo 

h = 2_\ Yto\hi(s). 
1=0 
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and at the ith order 

GgWi + ig'X - ^gog-+9i9o) - imt - H" = Ht (31) 

hog', + hi9'0 - 4{g0h't + 9ih'0) - j-h'l = K{ (32) 

with the boundary conditions 

ft(0) = ft'(O) = gKoo) = 0 (33) 

K(0) = ^.,(0) ; h,(oo) = 0 (34) 

where 

Ht = bh^ + a1E;:UMf'w + >^."-w) 

-SE; ; ! a'isu + EJ=I ^ ^ + E £ '»»«%■ + 4 £ £ ^ 

3=0 

• - 1 

J=I 
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+ J2^h'^M+JSiK-i) 
j = l 

4.7 Solution for high x 

To obtain the asymptotic expansion we introduce the same similarity variable used 

for the isothermal problem, z = r]/x1/4 . We let t/» = x3^4f(x,z) and 

* » = ■ & ■ ( » ) 

If we expand the functions / and 0 in a MacLaurin series, writing 

oo oo 

/ = E m'/«w' 6 = E "»'*■■(«) (3 6) 
>=0 i=0 

from Eqs.(15), (16), (19), (20) and (23) we find at the leading order the following 

system: 

(1 + ai W + ( M o + | / o ) /„' - \ f l + 9» = 0 (37) 

(1 + M o K + M'S + | ^ / „ 0 O = 0 (38) 
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/„(0) = / i (0) = /i(oo) = 0 (39) 

0„(O) = 1 ; 0„(oo) = 0 (40) 

(representing the isothermal problem) and at the ith order 

(l+Mo)/;" + «■ + "dw+w+m 

tin + \ (fof- + fits) + \ (fifo - /./o') = 5, 

(i + MoW + MW + « ) + | N M + M ) 

+ jPr(ft/5-/^) = T, 

(41) 

(42) 

/i(0) = //(0) = /?(») = 0 (43) 

0.(0) = 0,'-,(O) + iiAi-i ; 4(oo) = 0 (44) 

where 
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A = J2 »i(0)fl!_,(0) 
j=0 

T( = Y1 f-MW-,-+ «#_,) - ~iM*i/,'-;+M-i) - l^ / i^- i 
, - = i ■■ 

Eqs.(41)-(44) may be solved numerically without difficulty for i = 1, 2 and 3; 

for j = 4, Eqs. (41) and (42), with St = Tt = 0 and with the initial conditions 

/ .(0) = /4(0) = 04(O) = 0; / ; (0 ) = Cft'(0); 04(O) = -C0'o(0), where C is a free 

constant, allows a solution by /4 = C(3/ 0 — 2/0); &t = ~-Cz9'0, which satisfies 

the conditions at infinity / 4(°°) = 04(oo) = 0. Therefore /4 and 64 represent an 

eigensolution of Eqs.(41)-(44). 

To take into account terms of O^m4), we must modify the form of Eqs.(36) 

to include the eigensolutions and give initial conditions at x = x0 > 0. How

ever, we need to consider only the first four terms in Eqs.(36), because the Pade 

approximants technique permit us to obtain a representation valid in the entire 

thermo-fluid-dynamic field. Thus the asymptotic solution will check only the ac-

5, = E 
3 = 1 

2 Jj-it-j - - f. f " . 
^ J]Ji-i 

- -(ff ■ 
4 \J]J>-] 

-fifllj) ~ - aMfZs+W-j) 
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curacy of the Pade representation at high values of x. 

5.7 Results 

We will apply the preceding analysis to the case of air (Pr = 0.7), assuming for the 

ambient temperature, T^, the value of 300 K and for Tb the values of 700, 1000, 

and 1300 K (d = j3(Tb -Toa)= 1.33, 2.33, and 3.33). 

We consider a plate of finite thickness 6 and length I and define a Grashof 

number Gr, according to this length. Moreover, letting K = X^l/X^b, we can 

write 

p = d1/4/K , m = Grl/4/(x'/iy'4K , m, = K4"(x'/If/'/Gr}'5. 

All results are obtained for Gr, = 109 and for Pr = 0.7. 

The Pade approximants technique used to calculate the radius of convergence of 

the original MacLaurin expansion shows that the MacLaurin- expansion (26) have 

a finite radius of convergence (on the order of magnitude of unity (i.e., mx = 0(1)) , 

whereas the Pade representation is valid for the entire field. 

These results are shown in Figures 2 and 3, where 6W is plotted versus x'/l for 

the range 300 — 1000 K and for K = 250. The asymptotic and initial expansion are 

evaluated with 4 and 11 terms, respectively. 

Figure 2 shows that the initial expansion that coincides with Pade representa

tion for x'/l < 0.1 diverges when x'/l > 0.1. 
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Figure 3 shows that for x'/I > 0.1 the Pade approximant and the asymptotic 

expansion give practically the same values {x! jl = 0.1 corresponds to a value of 

mi close to the radius of convergence). Therefore Pade representation is valid 

also when the MacLaurin original expansion (initial expansion) does not converge. 

Hence Pade approximants accurately represent the solution for both low and high 

values of the abscissa. 

In Figures 4-10, we denote the range 300 — 700 K by , the range 

300 - 1000 K by and the range 300 - 1300 K by ; we denote 

the approximation p,p = Xp = 1 by 

We analyze the effects of the variable fluid properties and of the thickness of 

the plate on Nux, 0m, and c ; , and temperature and velocity profiles. The Nusselt 

number, defined as Nux = x'qw/X00(Tw-T00) = -x'XwTs,m/Xx(Tw - T „ ) , is plotted 

in Figure 4 versus x'/l for K = 250. For the evaluation of the Nusselt number, the 

assumption p,p = Xp = 1 for air works well enough in the ranges of temperature 

considered. In fact, at x/l = 1.0, the difference is only about 4% in the range 

300 - 700 K and about 6% in the range 300 - 1300 K. Considering a higher value of 

K, which corresponds to a smaller thermal resistance of the solid, does not modify 

these differences substantially. 

In Figure 5 the curves of Num/Gr)/A are based on K = 1000. The difference is 

about 4.5% in the range 300 - 700 K and about 6.5% in the range 300 - 1300 K. In 

this case the curves are flatter than those in Figure 4, because for high values of K 

the largest part of the variation in wall temperature is confined to a small region 

near the leading edge of the plate. Thus the wall-fluid interface can be considered 

almost completely isothermal. 

The dimensionless wall temperature 0,„ is plotted versus x'/l in Figure 6 for 
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K = 250 and K = 1000. Comparison of the curves of 6W, calculated with the 

assumption ftp = Xp = 1, to those in the range 300 — 1300 K shows that the 

dimensionless temperature at the wall is slightly dependent on the variation of 

p, A, and p with temperature. We found empirically for air that, in the ranges 

of temperature considered, we can obtain Nux/Grl/4 from the constant-property 

solution by calculating p. and A at the reference temperature Tr = Tw — 0.15(T„ — 

T^). The results obtained for the range 300 — 1000 K are represented in Figure 

7 by curve (*). Naturally, the most appropriate reference temperature is different 

for different quantities of interest (ct, boundary layer thickness, flow rate). 

The friction coefficient cf, defined as rwjp^iy^jx'Y , is plotted in Figure 8 for 

d = 1.33 and d = 3.33. The difference with respect to the curves obtained by using 

the assumption p\p = Xp = 1 (solid curves) is about 8% for d = 1.33 and about 

14% for d = 3.33. 

Pade approximants technique may also be used for determining temperature 

and velocity profiles. In fact, if we set 

JV+M N M 

Y^ m\hi(s) = J2 A(mi/^ Bim\ , 
1 = 0 1 = 0 1=0 

the Pade coefficients At and Bt would depend on s. By computing these coefficients 

for several values of s, we can draw temperature and velocity profiles for each value 

of mu that is, for each value of x'/l, a s m , = K4'5(x'/iy'5/Gr]1* . 

Figures 9 and 10 present dimensionless temperature and velocity profiles (s = 

r)/(px)1/5 , the similarity variable for the initial expansion) for K = 250 and Tb = 

1300 K. Figures 9 and 10 show that the approximation pp = Xp = 1 is acceptable 

for the temperature considered. 
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We summarize the preceding results in Table 1 by presenting some significant 

quantities obtained from the isothermal solution. All the results apply to the case 

of air and are based on the assumptions that T ,̂ = 300 K, Tb = 700, 1000, and 

1300 K, and Pr = 0.7. For different gases and for different ranges of temperature, 

the values of coefficients at and &i, appearing in the dimensionless products \j,p and 

\p (Eq.(17)) will be different. To analyze the influence of at and 6i on the thermo-

fluid-dynamic field, we plotted in Figures 11 and 12 the curves of Nux/Grl^ and 

(l+d)cf/Grl/4 versus &i for several values of ai for isothermal boundary conditions, 

assuming that Pr = 0.7. Both nondimensional groups vary almost linearly with a^ 

and bi in the ranges considered. 

References to Chapter 7 

[1] H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1968 

[2] A. Pozzi, M. Lupo, Variable properties effects in free convection, Int. J. Heat 

and Fluid Flow, (1990) Vol. 11, No.2, 135-141. 
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F i g . l Thermal model of a p l a t e , 

Fig.2 Non-dimensional temperature at the wall, A 
by initial expansion and Pade approximant. 

, given 
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F i g . 3 N o n - d i m e n s i o n a l t e m p e r a t u r e a t t h e w a l l , ft , g i v e n 

b y a s y m p t o t i c e x p a n s i o n a n d P a d e a p p r o x i m a n t . 

Fig.4 Comparison of Nux/Grx' for K=250, for d=1.33, 
2.33, and 3.33, with that of IJ<Q=A.Q=1. 
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Fig. 5 Comparison of Ni^/Gr^ 4 for K=1000, for d=1.33, 
2.33 and 3.33, with that of PQ=1IQ=1. 

Fig. 6 Comparison of #w for K=250 and K=1000, for d=3.33, 
with that of fMQ=XQ=1 • 
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x/1 
Fig.7 Comparison of Nu /C-r ( ) with those 
obtained by the reference temperature method, (*) curve, 
and by the approximation ̂ g=AG=l-

Fig.8 Comparison of cfd/Gr for d=1.33 and d=3.33 with 
that of fiQ=}LQ=l. 
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Fig.9 Plot of non-dimensional temperature # versus 
s=9j/(px)1/5 for d=3.33. 

Fig.10 Plot of non-dimensional velocity component u 
versus s=r)/(px)1' for d=3.33. 



Quantities obtained from the isothermal solution for T M =300 K. 
Table 1 

a, b, n s; Nu,/Gr;'* (l+dJcy'Gr3/4 

pp=.lp=1 
7, = 700K 
r,=ioooK 
7, = 13O0K 

0 
-0.229 
-0.316 
-0.380 

0 
-0.177 
-0.228 
-0.267 

0.960 
1.120 
1.206 
1.283 

-0.353 
-0.408 
-0.430 
-0.449 

0.353 
0.336 
0.332 
0.329 

0.960 
0.864 
0.825 
0.796 
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Fig.11 Plot of Nux/Gr1/4 for the isothermal solution 
versus b- for a1=-0.4, and 0.4 (Pr=0.7). 

Fig.12 Plot of (l+d)cf/Gr ' for the isothermal soluti 
versus b for a1=-0.4, 0, and 0.4 (Pr=0.7). 



Chapter 8 

PLANE JET INTO A MOVING MEDIUM 

1.8 Introduction 

In this chapter we study the flow of a fluid free from solid surfaces. We consider 

in fact a narrow plane jet issuing into a moving medium. 

Studies about the flow of viscous jets began with the analysis by Schlichting [1] 

who in 1933 presented a simple model of a thin laminar jet issuing into a medium 

at rest. He considered vanishing initial width of the jet and an incompressible fluid. 

These hypotheses led to a similarity solution of the problem which can be written 

in closed form in terms of hyperbolic functions. 

However, jets present many physical situations of primary interest that cannot 

be described by the Schlichting model and if one of his assumptions fails (except 

that of incompressibility provided that the product density-coefficient of viscosity 

is constant) the self-similarity of the problem is destroyed. 

A first example is given by a jet issuing into a moving medium: this case 

appears in jet propelled vehicles where the velocity of the outer medium destroys 

the similarity. 

A second example is given by a jet non-homogeneous with respect to the outer 

191 
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medium as in the cases of the combustion chambers and of the exhausts of a 

combustion machine in the atmosphere. Another example is given by a jet of a 

conductive liquid metal or ionized gas in the presence of a magnetic field. 

In ref. [2] these problems were studied as perturbations acting on the Schlicht-

ing model: the corresponding first approximations were solved in closed form by 

means of Legendre functions. 

In this chapter we consider the case of jet issuing into a moving medium and 

by using the Pade approximants technique we obtain very accurate results for any 

value of the outer velocity and in any point of the plane. 

2.8 The Schlichting solution for a jet issuing into 
a medium at rest 

In this section we consider the efflux of a jet from a narrow orifice when it mixes 

with the surrounding fluid at rest. 

The two-dimensional laminar boundary layer equations, when the axial pres

sure gradient is vanishing, in a non-dimensional incompressible form, can be written 

as follows 

ux + vy = 0 (1) 

UUX + VUy = U, (2) 
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The boundary conditions concern the symmetry of the jet, its asymptotic behaviour 

and the initial conditions. When the outer velocity is zero one has 

!!,(*, 0) = 0 (3) 

v(x,0) = 0 (4) 

u(:r,oo) = 0 (5) 

u(0,y) = Ui (6) 

where ut denotes the initial velocity of the jet. 

Schlichting assumed the initial width of the jet to be vanishing: in this case 

the condition at x = 0 must be given in an integral form. Let K be the initial 

momentum of jet; then the initial condition can be written as 

f u\0,y)dy = K. (7) 
J — CO 

We observe that the integration of Eq.(2) with respect to y between —oo and 

+oo, by taking into account Eqs.(l) and (5), gives 

A f u'dy = 0 . (8) 
ax J_m 
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Therefore one has 

/ u2dy = K. (9) 
J — CO 

By introducing the stream function ip (such that u = ?/>„, v = —xl>x) Eq.(l) is 

identically satisfied. By putting 

,/, = * ' / * / ( * ) ; * = 3 ^ 7 (10) 

one finds 

and from Eq.(2) one has 

/'" + r + if = o. (i2) 

Equations (3), (4) and (5) lead to the following boundary conditions 

/ (0) = /"(0) = /'foo) = 0 . (13) 

Moreover from Eq.(9) one has 

I fndz = ZK . (14) 

U - 3*>/3 f' ; V - 3**/3 W -- / ) til) 

£ j'Hz --= ZK . 
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Equations (12), (13) and (14) constitute the Schlichting problem. 

It must be noted that once a solution for a particular K has been found, 

any solution for a different value of K can be obtained, by a suitable change of 

variable, from the first one. In fact Eqs.(12) and (13) are invariant with respect to 

the substitution 

/ = af* ; z* = az (15) 

where a is an arbitrary constant and /* and z* are two new variables. 

From Eqs.(12) and (13) one has 

/ = (2Cy/2Tan(C/2f'2z (16) 

where Tan denotes hyperbolic tangent. C is an arbitrary constant equals / ' (0) . 

Equation (14) relates C to K as 

K = (4/9)C(2C)1 /2 . (17) 

3.8 Je t into a moving medium: initial solution 

We consider now the flow generated by a thin jet issuing into a medium whose 

velocity has the constant value ue (see Fig. 1). The differential equations that 
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govern this problem are the same, (1) and (2), that hold in the case of the jet into 

a medium at rest. In fact also in this case the axial pressure gradient is zero. 

The boundary conditions are 

u (x,0) = 0 ; v(x,Q) = 0 ; u(x,oo) - u,. . (18) 

In order to assign the intial condition at x = 0 we note that in this case Eq.(9) is 

replaced by 

/ u(u - u,)dy = Kt (19) 
J — Vj 

where Kj represents the initial momentum of the jet in this way 

Ki = I u(0,y)[u(0,y) - u,}dy 
J—oo 

Therefore Kt is the quantity that must be given at x — 0 in an integral form 

as initial condition. 

The third equation of Eqs.(18) destroys the similarity of the solution. We 

assume the following expression for the stream function ifr 

V> = yuc + xl/3f(m,z) (20) 

where 
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f(m,z) = £>7<(*) (21) 
• = 0 

and m = 3wex''3. Therefore u and v are given by 

1 °° 
u = u* + 3 ^ £ "»'■« C22) 

1 = 0 

" = 3̂ 77 E ^ N ' - t 1 +0/i] ■ (23) 

The equations that determine the functions ft are obtained by substituting 

Eqs.(22) and (23) into Eqs.(2), (3), (4) and (18). The function /„ is Schlichting's 

solution. From Eq.(16), by assuming C = 1/2 (i.e. K = 2/9), one has 

/o = Tan- . (24) 

The functions / , , with % > 0, are determined by the equations 

/;" + f"fo + (2-i)tifl + (l+i)ftfS = % (25) 

where 

T, = (i-2)fU - 2,fU + ^[[ / ! ( i - l )_2 2 / ; ] / ;_ j 
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-im+j) -2*/;]/;:.] 

and by the boundary conditions 

MO) = f"(0) = //(oo) = 0 . (26) 

The initial conditions arising from Eq.(19) require some remarks. 

Substituting Eq.(22) into Eq.(19) gives 

/

oo oo /«oo o° 

(J2 rn'ftfdz = 3K{ - £ mi+1 f[dz . (27) 
°° .=o ■'-«> i=0 

On equating the coefficients of the same power of m it results that 

/

oo 

f'ldz = 3K (28) 
CX) 

/

oo 

f'J[dz = - / 0 (oo) (29) 
oo 

and so on. 

Only Eq.(28) must be imposed as an initial condition, the other ones are iden

tically satisfied; in fact by integrating Eq.(25) between —oo and oo and taking 

into account Eqs.(26) one finds that Eq.(29) and all higher terms are identically 

satisfied. 

/•oo oo 

/ (Em'ftfdz 
■'-°° .=0 

= 3Kt 

/•CO ° ° 

- / £ mi+1f<dz ■ 
"'-°° i=0 

(27) 
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Numerical solution of Eqs.(25) and (26) gives the values of /,'(0) that, through 

Eq.(22), lead to the velocity on the axis of jet. In particular the first seven values 

of the functions ft at z - 0 are: ft = 0.5, ft = -0.4296518, ft = 0.4919479, 

ft = -1.142831, ft = 9.611662, ft = -162.2681, ft = 3949.968. 

The series appearing in Eq.(21) is convergent only for very small values of x. In 

fact its radius of convergence, calculated by means of Pade approximants in terms 

of the variable m, is 0.1. Therefore the series converges for m < 0.1, where 

The velocity field can be obtained for any values of x, through the Pade ap

proximants PN. 

Let us consider the series /,'(0) and its approximants P2 and P3. Figure 2 

displays the diagrams of the function / ' (0) , denned by Eq.(21), as expressed by 

its MacLaurin series (5 and 7 terms) and its Pade approximants PN (N = 2 and 

N = 3). In agreement with the value of the radius of convergence of the series, 

0.1, the series diverges for m > 0.1: for m < 0.1 all four representations give the 

same results. For m > 0.1 the curves that refer to P2 and P3 nearly coincide. The 

numerical results of these 4 representations are listed in table 1. 

4.8 Je t into a moving medium: asymptotic 
solution 

In order to check the accuracy of the results obtained by means of the Pade approx-

x=fe) ■ 
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imants we find the asymptotic solution which holds for high values of the abscissa 

x. 

We put 

u = ue + uas (30) 

where the velocity uas is much smaller than ue. The equation that determines ual 

is obtained from Eq.(2) by neglecting terms of order of magnitude u2
at with respect 

to terms of order uas. It results that 

d d2ua, ,„„. 
u'&tt- = - e^- (31) 

The boundary conditions associated with this equation are obtained from Eqs. 

(3) and (4), namely 

u. ..,,(*, 0) = 0 (32) 

ua,(x,oo) = 0 (33) 

and from Eq.(19): 

pea 

M« / 
J — oo 

uasdy -= Kt . (34) 
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The solution of the problem governed by Eqs.(31), (32) and (33), found by 

means of similarity solution technique, is 

ua, = -jj^exp(-y2/4:x) (35) 

where a is an arbitrary constant. Equation (34) gives the following value for a 

= K> 
11 2ue7T1/2 

The asymptotic solution together with the initial one, as represented by P3 , is 

drawn in Fig.3, for Kt = 2/9 and ue = 1. We can see that the Pade representation 

of the initial solution gives results that agree with those given by the asymptotic 

solution for m about 4. This agreement can also be checked in table 2. 

Therefore the Pade representation gives practically exact values for both small 

and high values of m. 

References to Chapter 8 

[1] H. Schlichting "Laminare Strahlenausbreitung" ZAMM (1933) 13, 368-373. 

[2] A. Pozzi - A. Bianchini "Linearized solutions for plane jets", ZAMM (1972), 

52, 523-528. 
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Fig.l Scheme of the problem. 

Table 1 

Velocity on the axis: Comparison between the series and Pade representation. 

m Series 7 terms Series 5 terms Pade N=2 Pade N=3 

0 25 1.248905 0.443022 0.415197 0.415015 
0 5 57.513407 0.866036 0.359413 0.358710 
0 75 667.516000 3.013539 0.319882 0.318573 
1 3796.731027 9.031127 0.290401 0.288508 
2 247751.625232 146.252432 0.222160 0.218474 
3 E6 2.840846 751.326760 0.188323 0.183515 
4 E7 1.601530 2394.096847 0.168111 0.162558 
5 E7 6.121703 5875.085313 0.154673 0.148594 
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Fig.2 Velocity on the axis: comparison between the power 
series and Pade representation. 
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Fig.3 Velocity on the axis: comparison between the Pade representa t ion and asymp

totic solution. 
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Fig.4 Velocity on the axis: comparison between the power 
series, Pade representation and asymptotic solution. 
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Table 2 

Velocity on t he axis: comparison between the P a d e representa t ion and the asymp

totic solution. 

m Pad6 N=3 Asymptot ic s o l u t i o n 

0.25 0.415015 0.651482 
0.5 0.358710 0.460667 
0.75 0.318573 0.376133 
1 0.288508 0.325741 
1.25 0.265146 0.291351 
1.5 0.246469 0.265966 
1.75 0.231196 0.246237 
2 0.218474 0.230333 
2.25 0.207713 0.217160 
2.5 0.198493 0.206016 
2.75 0.190504 0.196429 
3 0.183515 0.188066 
4 0.162558 0.162860 
5 0.148594 0.145675 



Chapter 1 

T H E IMPULSIVELY STARTED FLOW AWAY 
F R O M A PLANE STAGNATION POINT 

1.1 Introduction 

The plane stagnation flow, i.e. the flow that presents a point at vanishing velocity, 

both in the steady case and in non steady one has the property that the full 

Navier-Stokes equations that govern this problem are identical with the simplified 

boundary layers ones. Moreover it is possible to analyse this flow in terms of a 

function that does not depend on x. 

The study of the laminar impulsively started flow around the stagnation point 

of a stream that impinges on a plane is simple enough. The analysis of the stag

nation flow of a stream that leaves a plane is more complicate: in fact in this case 

the solution diverges (for instance the displacement-thickness grows exponentially 

with time). 

The basic work for this type of research is that of Blasius [1] who, in 1908, 

proposed a time series expansion, obtaining two terms of the series. 

Further terms of the series were calculated by Goldstein and Rosenhead [2] in 

1936 and Collins and Dennis [3] in 1973. 

209 
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Proudman and Johnson [4] in 1962 and Robins and Howarth [5] in 1972 studied 

an asymptotic expansion to model the time-dependent flow from a stagnation point 

and obtained a numerical solution that gives good results for finite times values. 

Hommel [6] in 1983 presented a series expansion for the shear stress at the 

stagnation point, and then he applied series-improvement techniques in order to 

extrapolate this solution to large times. 

In this chapter we summarize the results obtained by Hommel. 

2.1 Basic equations 

In order to study the impulsively started flow away from a plane stagnation point 

it is convenient to assume a non-dimensional system of reference x, y, t. The 

reference lengths for x and y are a, suitable characteristic length, and aRe1*2 , 

where the Reynolds number Re is given by 2V0a/u and V0 is the velocity at infinity. 

The reference time is a/2V0 and the reference stream function is a2(2aV0u)1/2. 

By writing the non-dimensional stream function %j> as 

V> = xF(y,t) (1) 

and by substituting Eq.(l) into the Navier-Stokes equations one has the following 

equation for F 

Fst - Fyvy + FFyy + 1 - F2 = 0 . (2) 
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The boundary conditions associated with this equation are 

F(0 , t ) = F„(Q,t) = 0 (3a) 

F,(ao,t) = 1 (36) 

Fy(y,0) = 1 . (3c) 

In order to expand F of a series of time it is convenient to introduce the variable 

v = y/x1'2 ■ 

Then one can write 

CO 

F = 2t1/2 Y, -fifa)** • (4) 

Substituting Eq.(4) into Eqs.(2) and (3) gives a series of linear, third order, 

ordinary differential equations. Blasius [1] solved the first two, Collins and Dennis 

[3] and Hommel [6] solved many others. In particular Hommel by means of a very 

accurate finite-difference scheme considered 44 equations. 

The most representative quantity of this analysis is given by the shear stress 

T, that in non-dimensional form can be written as 

T = 2k £ F"^'1 ■ (5) 
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In tnhlo 1 the first 20 values of F{'(Q) are listed. (The remaining values are listtsl 

in rot".[6].) 

3.1 Pade analysis of the series 

Hommel tirst uses the Caue-hy Root Test to estimate the ratlins ot" convergence of 

the series (-4), finding a value elose to 3. 

Additional informations he obtains from the Pade approximates l>y using the 

diagonal soqueneo Pn n.nd studying its poles in the complex planes (.r.ty). He 

notes that the singularity at the angle d — 3»r/S dominates tlie series. The residue 

of the associated singularity is larger tluvn the residue of any other singularities. 

In fact the residue magnitude aw 12.1, 9.20 and 0.355 for poles at angles 07.0", 

70.5°- and 90.5° respectively. All other residue magnitudes are less than 0.005. 

He further notes that the Pade analysis shows that the lirst zero of the roar 

stagnation-point shear stress is at i = 0.0438. This result, agrees very well with the 

values obtained in different, ways by niajvy authors. This agreement is significant 

because the time at which the shear stress goes to zero is very important and it is 

calculated with care. 
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Table 1. Values of F*(0) 

i F*(0) 

1 1.128379 

2 -1.607278 

3 -0.248092 

4 0.014290 

5 0.028692 

6 0.006377 

7 -0.001515 

8 -0.001075 

9 -0.97361xl0"4 

10 0.89268xl0"4 

11 0.30662xl0"4 

12 -0.18844x10"5 

13 -0.34650x10'5 

14 -0.61583xlO"6 

15 0.19425xl0"6 

16 0.10522xl0"6 

17 0.58123xl0"8 

18 -0.8889xl0"8 

19 -0.26564xl0-8 

20 0.24906X10'9 



Chapter 2 

T H E IMPULSIVELY STARTED FLOW PAST A 
CIRCULAR CYLINDER 

1.2 Introduction 

The impulsive flow past a circular cylinder presents two types of stagnation points 

discussed in chap.l, i.e. that of a stream impinging on a body and that of a stream 

leaving a body. This flow has another important character: the fluid, initially 

attached to the body, separates from it and generates free shear layers. 

In this case the full Navier-Stokes equations do not coincide with those of the 

boundary layer: the literature presents solutions of the two types of equations. 

Thoman and Szewczyk [1], Son and Hanratty [2], Collins and Dennis [3] and Ta 

Phuoc Loc [4] are some authors that presented numerical solutions of the Navier-

Stokes equations. Many authors have presented solutions of the boundary layer 

equations following different approaches. 

Blasius [5], Goldstein and Rosenhead [6], Collins and Dennis [7], Wang [8] and 

Bar-Lev and Yang [9] used the series in time. 

Cebeci [10] and Wang [11] used finite-difference methods. 

Cowley [12] extended the series solution of Blasius to many terms and obtained 

215 
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flow quantities of interest by recasting the series using rational functions. In this 

chapter we summarize the results obtained by Cowley. 

2.2 Basic equations 

The unsteady boundary layer equations describing incompressible flow past an 

impulsively started circular cylinder in a non-dimensional form can be written as 

U, + UUX + VUy = Uyy + U,, M „ ( l ) 

U* + vy = 0 . (2) 

The cartesian coordinate x is measured along the surface of the cylinder from 

the first stagnation point 0 (see Fig.l) and y is measured from the cylinder surface 

along the local normal; ue is the inviscid outer velocity. The variables x, y, t and 

u are non-dimensionalized with respect to the radius of the cylinder a, aRe1/2 , 

a/2V0 and 2V0 respectively. Re = 2V0a/u is the Reynolds number and v is the 

kinematic viscosity. V0 is the velocity at infinity. 

The non-dimensional outer velocity ut, i.e. the inviscid velocity along the 

cylinder surface obtained from the potential flow, is given by 

ue = smx . (3) 
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The boundary conditions associated with Eqs.(l) and (2) are 

u(x,y,t) = 0 for < < 0 (4) 

u(x,0,t) = v(x,0,t) = 0 (5) 

u(x, oo,i) = ue . (6) 

By introducing the stream function ^ (ipy = u, t))x = —v) Eqs.(l)-(6) give 

lj}y, + 1py^yx - i>*i>yy = Sinx COSX + tpyyy (7) 

i/>(x,y,t) = 0 for t<0 (8) 

il>(x,0,t) = i>s(x,0,t) = 0 (9) 

ij>y(x,oo,t) = sinx. (10) 

In order to solve Eqs.(7)-(10) by numerically extending the series solution of Blasius 

[5] to many terms it is convenient to use his variable by writing 
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n = — (11) 
' 2*1/2 ; 

V- = 2t1'*F(x,r,,t) (12) 

oo 

F(x,r,,t) = J2 F'iwW (13) 
r=0 

r+1 
Fr(x,V) = X ] sinPX U(V) ■ (1 4) 

Substituting Eqs.(ll)-(14) into Eqs.(7)-(10) gives the equations for the frp. In 

particular it is found that if r + p is even then frp = 0 and that if r +p is odd then 

/ ; ' + 2*7/; - 4 r / ; = 2(5 l r p + 52rp - S3rp - 6lr) (15) 

where 

r — 1 R a 

* l l > = 2 - / 2—1 n(.Jjr>Jk,p-n ~ fj"Jk,p-r>) 

T-l-p n3 

&2rp = £_d 2—1 n(fj'>fk,p+n ~ fj"fk,p+n) 
j'=0 n = l 

r—1 n4 

* * J l = 2 ^ Z-( n(fjnfk,n-p ~ fjnfk,n-p) 
j=p n=p+l 
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rii = max(l,p + j — r) 

n2 = min(j + l,p- 1) 

n3 = min(j + 1, r — j — p) 

ni = min(j + 1, r - j + p) 

k = r — 1 — j 

Sij = 0 for i ^ j and 1 for i = j (Kronecker symbol). 

The sum S is zero if the upper bound is less than the lower bound. 

The boundary conditions associated with Eqs.(15) are 

uo) = /;(o) (i6) 

/ o . M = 1 ; fr?(°°) = 0 for r > 0 . (17) 
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3.2 Numerical solution 

Both Collins and Dennis [3] and Cowley [12] numerically solve Eqa.(15)-(17) us 

ing a scheme, described by Fox [13], that works for second- order equations in

volving no first derivatives. Therefore they introduced the transformations f = 

Hrp(rj)exp(—?72/2) and f" = Krp(j))cxp(—rf /2), where Hrp and A'r/1 are two new 

unknowns. This scheme is h* -order accurate, where h is the step of integration. 

In addition, two step sizes h and 2h were combined so that the solution is h1' -order 

accurate. 

The analysis of the results has been made through the shear stress T, the 

displacement thickness 6 and the viscous displacement velocity vx at the edge of 

the boundary layer. In terms of the functions frp(^l) these quantities can be written 

as follows. 

oo r + I 

r(x,t) = u,(*,0,t) = «V»J3 f £ frP{0)sinpx (18) 
r=0 p= l 

r+ l 

^ 7 i - E « r E / - M sinpx 
P = I mux 

(19) 

cosx 
oo r+1 

Yl f Yl U(°o)pcospx (20) 

6(x,t) --■ro--)dv -. 2<1 / 2 
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The series, occurring in these equations, are convergent in the complex- time plane 

for | t |< | t'[x) | where t*(x) is the location of the nearest singularity to the origin. 

4.2 Analysis by means of Pade approximants 

In order to find the poles of the series of Eqs.(18)-(20) and to obtain an ana

lytic continuation of the solution in an approximate form the Pade approximant 

technique is used. 

The presence of poles on the positive time axis is important, but not all the 

poles of rational functions represent singularities of the functions that they ap

proximate: often poles and zeros of rational functions are paired so that they 

approximately cancel each other. 

Cowley [12] analyzed the wall shear stress r using the P2
2^ Pade approximant 

for several values of time. The functions T(X, 0.5), T(X, 1.5) and r ( i , 2.5) obtained 

by means of P2
2
5
4 are practically coincident with those obtained by less accurate 

Pade approximants. The function r(x,2.7), for 0.62TT < x < 0.827T is not well 

represented by P2
2
5
4 : for these values of t and x higher accuracy Pade approximants 

are necessary. With this exception the agreement between Cowley solution and 

those of other accurate analyses, see for instance Wang [11], is excellent. 
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