
Lecture Notes in Computer Science 2649
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

BernhardWestfechtel André van der Hoek (Eds.)

Software Configuration
Management

ICSE Workshops SCM 2001 and SCM 2003
Toronto, Canada, May 14-15, 2001
and Portland, OR, USA, May 9-10, 2003
Selected Papers

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Bernhard Westfechtel
RWTH Aachen, Informatik III
52056 Aachen, Germany
E-mail: westfechtel@cs.rwth-aachen.de

André van der Hoek
University of California, School of Information and Computer Science
444 Computer Science Building, Irvine, CA 92697-3425, USA
E-mail: andre@ics.uci.edu

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): K.6.3, K.6, D.2

ISSN 0302-9743
ISBN 3-540-14036-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Christian Grosche, Hamburg
Printed on acid-free paper SPIN: 10929407 06/3142 5 4 3 2 1 0

Preface

The discipline of software configuration management (SCM) provides one of the
best success stories in the field of software engineering. With the availability of
over 100 commercial SCM systems that together form a billion-dollar market-
place, and the explicit recognition of SCM by such standards as the CMM and
ISO-9000, the discipline has established itself as one of the essential cornerstones
of software engineering.

While SCM is a well-established discipline, innovative software engineer-
ing approaches constitute new challenges that require support in the form of
new or improved tools, techniques, and processes. These challenges emerge in
component-based development, distributed systems, dynamically bound and re-
configured systems, embedded systems, software architecture, Web-based sys-
tems, XML, engineering/product data management, system engineering, process
support, concurrent and cooperative engineering, etc.

Since the first SCM workshop was held in 1988, the workshop series has
provided a recurring forum for researchers and practitioners to present technical
contributions, to exchange and discuss ideas, and to establish contacts for further
cooperation. The current volume contains papers from two workshops which were
both co-located with the International Conference on Software Engineering, but
differed in their formats and goals.

SCM-10 was held as an ICSE workshop at Toronto, Canada in May 2001. It
was deliberately decided to have an informal workshop in order to open a forum
for discussing new practices, new challenges, and new boundaries for SCM. This
was achieved by a blend of invited talks, talks on selected position papers, and
lively discussions. Originally, informal proceedings were produced which were
delivered to the workshop participants. Later on, 5 out of 22 submissions were
selected for publication in this joint volume. All authors were asked to extend
their contributions to full papers and to revise them thoroughly.

While the SCM-10 experiment proved very successful, the SCM community
felt that it should go for a formal workshop once again. In fact, this would open
up the opportunity to document current research and fertilize the development
of this discipline. As a consequence, the follow-up workshop SCM-11 was held
as a co-located event with ICSE at Portland, Oregon in May 2003. The Call
for Papers received a lively response with 36 submissions, out of which 15 were
accepted for publication (12 long and 3 short papers). These papers appear in the
second part of this volume, ordered by topic. In addition to paper presentations,
the workshop provided sufficient time for inspiring discussions.

The chairs of both workshops would like to acknowledge the invaluable con-
tributions of all authors and speakers, the program committees, the organizers
of the ICSE conferences, and Springer-Verlag.

May 2003 Bernhard Westfechtel
André van der Hoek

VI Preface

Program Committee of SCM 2003

Geoff Clemm, Rational, USA
Reidar Conradi, NTNU Trondheim, Norway
Ivica Crnkovic, Malardalen University, Sweden
Wolfgang Emmerich, University College London, UK
André van der Hoek, University of California, Irvine, USA
Annita Persson, Ericsson AB, Mölndal, Sweden
Bernhard Westfechtel (Chair), RWTH Aachen, Germany
Jim Whitehead, University of California, Santa Cruz, USA
Andreas Zeller, University of Saarbrücken, Germany

Program Committee of SCM 2001

Geoff Clemm, Rational, USA
Ivica Crnkovic, Malardalen University, Sweden
Wolfgang Emmerich, University College London, UK
Jacky Estublier, LSR-IMAG, France
André van der Hoek (Chair), University of California, Irvine, USA
Jeff Magee, Imperial College, London, UK
Bernhard Westfechtel, RWTH Aachen, Germany
Jim Whitehead, University of California, Santa Cruz, USA
Andreas Zeller, University of Saarbrücken, Germany

SCM Workshops

SCM-1, Grassau, Germany (1988)
SCM-2, Princeton, USA (1990)
SCM-3, Trondheim, Norway (1991)
SCM-4, Baltimore, USA (1993)
SCM-5, Seattle, USA (1995)
SCM-6, Berlin, Germany (1996)
SCM-7, Boston, USA (1997)
SCM-8, Brussels, Belgium (1998)
SCM-9, Toulouse, France (1999)
SCM-10, Toronto, Canada (2001)
SCM-11, Portland, Oregon (2003)

Table of Contents

Best Papers of SCM 2001

Defining and Supporting Concurrent Engineering Policies in SCM 1
Jacky Estublier, Sergio Garćıa, and Germán Vega

Configuration Management in Component Based Product Populations 16
Rob van Ommering

Software Architecture and Software Configuration Management 24
Bernhard Westfechtel and Reidar Conradi

Supporting Distributed Collaboration through Multidimensional Software
Configuration Management . 40

Mark C. Chu-Carroll and James Wright

Software Configuration Management Related to the Management of
Distributed Systems and Service-Oriented Architectures 54

Vladimir Tosic, David Mennie, and Bernard Pagurek

Version Models I

Uniform Comparison of Configuration Management Data Models 70
E. James Whitehead, Jr. and Dorrit Gordon

Towards Intelligent Support for Managing Evolution of Configurable
Software Product Families . 86

Tero Kojo, Tomi Männistö, and Timo Soininen

Integrating Software Construction and Software Deployment 102
Eelco Dolstra

Version Models II

Data Product Configuration Management and Versioning in Large-Scale
Production of Satellite Scientific Data . 118

Bruce R. Barkstrom

Merging Collection Data Structures in a Content Management System 134
Axel Wienberg

Compatibility of XML Language Versions . 148
Daniel Dui and Wolfgang Emmerich

VIII Table of Contents

Architecture

Using Federations for Flexible SCM Systems . 163
Jacky Estublier, Anh-Tuyet Le, and Jorge Villalobos

Dissecting Configuration Management Policies . 177
Ronald van der Lingen and André van der Hoek

Concurrency and Distribution

Improving Conflict Detection in Optimistic Concurrency Control Models . . 191
Ciaran O’Reilly, Philip Morrow, and David Bustard

Data Topology and Process Patterns for Distributed Development 206
Darcy Wiborg Weber

Component-Based Systems

Managing the Evolution of Distributed and Interrelated Components 217
Sundararajan Sowrirajan and André van der Hoek

A Lightweight Infrastructure for Reconfiguring Applications 231
Marco Castaldi, Antonio Carzaniga, Paola Inverardi,
and Alexander L. Wolf

Education

A Software Configuration Management Course . 245
Ulf Asklund and Lars Bendix

New Applications

Applications of Configuration Information to Security 259
Dennis Heimbigner

Towards Software Configuration Management for Test-Driven
Development . 267

Tammo Freese

Author Index . 275

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 1-15, 2003.
” Springer-Verlag Berlin Heidelberg 2003

Defining and Supporting
Concurrent Engineering Policies in SCM

Jacky Estublier, Sergio García, and Germán Vega

LSR-IMAG, 220 rue de la Chimie, BP53
38041 Grenoble Cedex 9, France

{jacky.estublier,sergio.garcia,german.vega}@imag.fr

Abstract. Software Configuration Management addresses roughly two areas,
the first and older one concerns the storage of the entities produced during the
software project; the second one concerns the control of the activities per-
formed for the production / change of these entities. Work space support can be
seen as subsuming most of the later dimension. Indeed, work space is the place
where activities take place; controlling the activities, to a large extent, is work
space control. This short paper presents our concurrent engineering experience
in Dassault Systèmes, as well as our new approach in the modeling and support
of concurrent engineering for large teams.

1 The Problem

The Dassault Systèmes Company develops a family of large systems, notably Catia,
the world leader in computer aided design CAM. This system alone contains more
than 4 millions LOCs, is developed simultaneously by 1000 engineers which produce
a new release every 4 months. The last two numbers show that Dassault Systèmes ex-
periences very high concurrent engineering constraints. Indeed, the time where a
software engineer was “owning” the set of files needed for his job, for the duration of
his job is far away. Take the Dassault Systèmes example:

In average, at any point in time, there exist about 800 workspaces each containing
in average 2000 files. Obviously each file may be present in more than one workspace
at a given point in time; our numbers show that a given file is contained in 50 to 100
different workspaces simultaneously. The consistency of data submitted to concurrent
access is known for long by the data base community, which have established the
transaction consistency criteria. In our case, consistency would mean that a file could
be changed in a single workspace at a time. Unfortunately, the duration of a activity
can be days and weeks: a file would be locked for too long and severe dead lock
would occur.

In the Dassault Systèmes context, this hypothesis has been measured. At any point
in time, in average, a file is changed simultaneously in 3 workspaces, with maximum
around 30; but most files are not changed at all. In average, a few hundred files are
changed in a workspace before it is committed. Thus, still in average, a workspace
conflicts permanently with about 100 other workspaces. Not allowing simultaneous

Jacky Estublier et al.2

changes for a file would reduce concurrent engineering almost to null, most of the
1000 engineers being forced to wait.

The direct consequence of this is that merges occur frequently, depending on the
policy and the kind of software. The average for an application file is 2 merges a year,
for a kernel file 0.4 a year. These numbers may seem low, but averages are meaning-
less because most files are not changed or merged at all. Conversely, files under work
are subject to many changes and merges. We have records of more than 200 merges a
year for the same file, which means about 1 merge per workday. Globally, about one
thousand merges occur each day at Dassault Systèmes.

We think these numbers clearly show that concurrent change does exist on a very
serious scale. Controlling this situation is a real critical issue. For us concurrent engi-
neering control means:

• Merge control (what is to be merged, when...)
• Activity structuring and control.
• High level policy modeling and enforcement.

We will see shortly theses topics. For more info on activity structuring and control
see [11][12][15][18].

1.1 Merge Control

The above values apply to files whereas, in this work and at Dassault Systèmes, we
deal with objects (files are atomic attributes in our object model). Our experience
shows that concurrent changes to the same attribute of different objects (typically the
source code) as well as changes to different attributes of the same object (like respon-
sible, state, name, file name, protection etc.) are very common. Merging must address
both cases. For example, restructuring, renaming and changing files are common but
may be independent activities undertaken by different persons. Raising the granularity
from file to object makes appear new kinds of concurrent changes, which may pro-
duce new kinds of merges (typically composition changes). It is our claim that objects
concurrent change control subsumes traditional file control and provides homogene-
ous and elegant solutions to many difficulties that currently hamper concurrent soft-
ware engineering.

Suppose we denote by A0, A1,... Ai the different values of an attribute A, and Ai =
Ci(A) the value of A after change Ci is performed. The classic (ACID) transaction
concept says that Ci and Cj are performed in transaction if the result A3 = Cj (Ci (A))
or A3 = Ci (Cj (A)). We extend that definition saying that, given an object A, changes
Ci and Cj on the that object can be performed in a concurrent way if there exists a
function M (merge) such that M (C1(A0), C2(A0)) = Ci(Cj(A0)) = Cj(Ci(A0)) = M
(C2(A0), C1(A0)) .

This means that the result of a merge is the same as if changes Ci and Cj were per-
formed in sequence on A0, irrespective of the order. If an exact merge function ex-
isted for each attribute, concurrent engineering would always lead to consistent re-
sults! Unfortunately, for a given attribute, such a merge function either (1) exists, (2)
is an approximation, or (3) does not exist at all. Typically, the composition attribute
has an exact merge, sourceFile merge is an approximate function (the usual merges),
and most attributes like fileName have no merge at all.

Defining and Supporting Concurrent Engineering Policies in SCM 3

2 High Level Concurrent Engineering Policies

Experience shows that customers find extremely difficult to design their own concur-
rent engineering strategies. Our claim is that planning and implementing different
strategies is a hard task in existent SCM tools because of the lack of an adequate level
of abstraction. Any decision made using classic SCM concepts (branches and revi-
sions) is error prone, due the unexpected effects it might have.

We propose a basic work model (the group) and a set of operations on which con-
current engineering policies can be easily designed. This vision allows us to take CE
policies conception to a more adequate level, using abstractions that are more natural
to concurrent work (group’s workspaces and operations among them) instead of the
traditional low level ones (branches, revisions and merges). We have defined a lan-
guage that lets us express the most common forms of group based C.E. policies in a
simple straightforward way.

2.1 Product Data Model

A product is a typed and named object composed of attributes (name-value pairs) and
a complex object representing the document in a domain or tool specific format. At-
tributes are either common or versionable; document formats can be data based
schema, XML, or any other, but most often it is a simple file system representation
i.e. a hierarchy of files and directories, where each file is seen as operating system at-
tributes (name, author, rights …) and a content.

2.2 Workspaces

A workspace contains one or more documents. A workspace is made of two parts: the
working area, and the workspace local history.

The working area is a repository in which documents are represented following
their original format, and under the tool required for their management; and attributes
can be seen and changed through our specific attribute management tool. In Dassault
Systèmes the working workspace is simply a FS containing the documents. [4]

The workspace local history is a repository in which is stored some states of the
associated workspace (i.e. its value at a given point in time). The local history is
meant to be local to the participant’s machine and therefore can be used while work-
ing off-line. A workspace manager is responsible of providing the mapping operations
between the working workspace and the local history repository.

In a large development environment it is possible to have different policies re-
garding the frequency and the motivation of creating new versions; it is also possible
to have different version managers according to the different versioning requirements
and different emplacements. Our system doesn’t address the problem of versioning; it
is capable to work with heterogeneous version managers, s long as a few functions are
available (i.e. the CI and CO functions) [5]. In our simple CE tool, the local history
can be either CVS or Zip, and the working workspace is a FS containing the docu-
ments, plus the attribute management tool.

Jacky Estublier et al.4

From the “outside world” only a single workspace state is visible, it is always one
of the states stored in the local history; not necessarily the latest one. The working
workspace is not directly visible.

Fig. 1. Workspace

2.3 Groups

A group is a set of workspaces working on the same products to achieve a common
goal. One of them, the parent workspace, is in charge of synthesize and integrate the
work made by the child workspaces. The child workspaces can only communicate
with the parent.

Comparing with databases, the parent workspace plays the role of the central DB
and the Childs the role of the cache for the concurrent transactions.

The complete group behaves as its Parent alone; from outside, the Parent is a
"normal" workspace in which is performed the whole job of the group. It is thus pos-
sible to build groups where Childs can be parent of a lower level group. The work
structure is therefore a tree where nodes are either parent or child workspaces, and ar-
rows the containment relationships. Containment between two groups may mean ei-
ther work decomposition into concurrent activities (each group performing a different
task), or different level of validation (top level nodes being more validated that
leaves).

In practice, companies use both approaches simultaneously; Dassault Systèmes
uses currently at least a 6 level work space hierarchy; the 3 top level being called GA
(general availability), BSF (Best So Far), and Integration which represent different
levels of validation, while the 3 (or more) lowest levels represent a decomposition in
task and sub-task for the current work to do.

It is also interesting to point out that a group defines de facto a cluster of highly
related work spaces; the Parent work space playing the role of global repository for
the group. It allows for a real distribution of repositories as shown in [6]; there is no
longer any need for a common central repository; distributed and remote work is han-
dled that way. It is our belief that concurrent engineering of very large teams cannot

Working
Area

Local History

Latest version

Visible version

cgrosche

Defining and Supporting Concurrent Engineering Policies in SCM 5

be handled without such a distribution of repositories, not found in classic SCM tools
[9].

CE policies are defined for a group, a whole hierarchy of groups can have different
polices reflecting the different methodologies and consistency constraints of each
level. Typically, the groups closer to the top level, which can be seen as holding the
official copies of the documents, have more restrictive policies then the “bottom”
groups, who need higher concurrency levels.

2.4 CE Global Policies

A product is a composite entity that has a number of internal consistency constraints.
In a similar way as transactions, a number of changes must be done before a product
recovers a new consistent state; this means that only complete new consistent states
can be communicated to other workspaces, not only a sub sets of changes. Therefore
operations between workspaces involve only complete product states.

Provided a group with Parent workspace P and a child workspace W, these opera-
tions are the following:
Synchronize (W,D): If Document D does not exist in workspace W, it is copied from
P. Otherwise, the currently visible D version of P, is integrated in W working work-
space. In other words, changes made on D in P since last synchronize operation, are
integrated in W.
Integrate (W,D): All modifications made on the visible version of D in workspace W
are integrated into the D in the Parent’s working workspace. In practice, it means that
changes performed in W, since last Integrate, are propagated in P.

These operations are critical for any CE policy. It is important to know who is en-
titled to decide to synchronize or integrate two workspaces (the Child or the Parent
one (“w” or “p”), and if the synchronization or integration are performed interac-
tively (“i”), or “batch” (“b”), as well as to decide the level of consistency of such
critical operations.

By default, interactive merging allows unsynchronised integrations (s), merges (m)
and conflicts (c), and batch (b) do not. For example “I” alone means that integration is
initiated by the Parent workspace, in interactive mode, merges and conflicts allowed.
Unsynchronised (s) means that the receiving workspace is the current common an-
cestor, which means the operation is simply a copy of the current workspace to the re-
ceiving one.

 “Ibsm” means that the integrate operation (I) is asked by the Parent workspace in
batch mode(b); it can involve merges (m) but not conflicts. For example, CVS en-
forces “Iws” and “Sbmc” assuming the Parent WS is the CVS repository; i.e. Inte-
gration is at the child initiative (w), in batch mode (b), and allows no merge nor con-
flict; while Synchronize are batch (b), but accept merges (m) and conflicts (c).

Of course “m” implies “s”, and “c” implies “m”, thus “smc” and “c” are equiva-
lent. In order to make policies more readable, by convention “Ip” is equivalent to “I”
and “Sw” to “S”; and “S” and “P” alone is interpreted as “Swismc” and “Ipismc”.

The other possible operations are:
Publish (D): The integrator stores its working state of document D in the local history
and made it visible. All child workspaces are notified that there is a new visible ver-
sion to synchronize from.

Jacky Estublier et al.6

Propose (W, D): Workspace W stores its working state of document D in the local
history; that version becomes the visible version, and the integrator is notified that
there is a new version of D, on the workspace W ready to be integrated.
Change (C, D, W): Pseudo operation Change means workspace W is allowed to per-
form a modification on document D, this is, it can modify its attributes.

2.5 Policy Definition

Defining a policy means defining the valid history of operations a workspace can per-
form on a given product. This can be made by defining a state machine representing
the different valid operations (the inputs of the state machine) for a given state of the
workspace (a particular step in the work cycle of the workspace). A global policy de-
fines the rules for a particular child workspace and on a particular product. We can
then define a global policy using the following conventions for the operations:

• I : Integrate, as discussed above (with possibly suffixes p, w, i, s, b, m, c)
• S : Synchronize, as discussed above (with possibly suffixes p, w, i, s, b, m, c)
• Pu : Publish
• Pr : Propose
• C : Change

The parameters of the operations are the workspace and the product for which the
policy is being defined. We use regular expressions syntax as the base for our lan-
guage. For examples:

Fig. 2. (S C Pr)*

In this simple global policy, a workspace must first to Synchronize (S) to have the
current visible version of the product in Parent, and only then it can start its work,
modifying what it needs to change(C), and finally, propose (Pr) its working version to
be integrated. The cycle then starts again. Integrate is not indicated, it means that the
Parent workspace decides, based on the Childs ready for integration, which one to in-
tegrate. But, in this policy, integration may involve merges and conflicts that the user
working in the Parent workspace will have to solve.

Defining and Supporting Concurrent Engineering Policies in SCM 7

Fig. 3. (C S Iwbs)*

In this policy, the workspace starts working on the product (C) followed by a syn-
chronize (S) and an integrate (I), both executed at the current workspace initiative.
Since S is performed right before I, merges, if any, are performed in the child work-
space during the S operation. This is consistent since S alone stands for Swismc i.e.
interactive with merges and conflict allowed. In this policy, Integrate will not involve
any merges; this is why it is often used.

The Change Operation
The pseudo operation C indicates when, in the execution of a policy, modifications
can be made. This does not means that actual changes on the product attributes are
mandatory, but only the possibility to perform them. We then always interpret C as
(C)? meaning a change is always optional.

Integrator Initiated Operations and Behavior of the Integrator Workspace
The user working in the Parent workspace (when existing) plays the role of group
manager. He/she manages the reference version of the group, he/she decides what
product to integrate (if “Ii”), notifies when new versions are available (“Pu”). It will
be seen later that he/she has also special role in managing locks, solving conflicts and
handling failures, using for that purpose, special operations.

The global policy defines the behaviour of a single child workspace. For a given
state, only some operations are allowed, and its execution fires the transition to the
next state, where new operations are allowed. Some of the group operations, however,
are not under the control of child workspaces, but are initiated by the integrator. It is
desirable to clarify some aspects of the interaction between integrator and child work-
spaces, such as the fact a newly integrated version has to be immediately published,
or that a workspace must wait for a Publish to continue working.

Our strategy is to gather all these details in a single global policy, in order to have a
single place to look to know the policy.

Fig. 4. ((S C)+ Iwsm Pu)*

In this policy, a workspace can synchronize and modify a product several times,
but it needs to do at least one synchronization/modification cycle(“(S C)+”). When

Jacky Estublier et al.8

the workspace integrates its work, at its initiative (Iwsm), a publish is automatically
executed, to notify all workspaces that a new version is available in the integrated
workspace.

Fig. 5. (S C Pr (Ipic Pu) ?)*

In this policy, the workspace does not need to wait for “publish”; after proposing a
modification (pr), it can synchronize again and continue to work. A new “propose”
will however replace the visible version with the new visible state of the product in
the workspace. When the user working in the Parent workspace integrates one of the
proposed versions, it is published immediately.

2.6 Local Policies

The global policy assumes all attributes can be changed and that conflicts, if any, are
solved during the “synchronize” or “integrate” operations. According to the nature of
the attribute, merge functions may not exist, in which case the work will be lost dur-
ing synchronization. If the merge function is approximate, the merge operation is
risky and may require manual intervention. Even if perfect, merges may be not desir-
able without control.

Sensible data can be protected using the consistency constraints for S and I opera-
tions defined in the global policy. An operation that violates the imposed constraints
is banned, and a special recovery mechanism must be applied. This is an optimistic
strategy, while recovery might be an expensive operation; violations of the consis-
tency constraints are expected not to occur often. In local policies a pessimistic ap-
proach using locks can be used to protect consistency of the data held by the most
sensible attributes.

Local policies have a name and are defined for families of attributes, for examples:
AttributeName => PolicyName

Standard expansion rules for files and directories apply, with the product directory
as the root directory. Operating system file attributes are precised using “:” after the
file expansion. :

FileSuffix:FileAttributeName => PolicyName
Examples:
Date => Policy1
src/*.c:name => Policy2
Which means that the “Date” attribute is managed following the Policy1 policy,

and the name of C files “*.c:name” found under the “src” directory are managed fol-
lowing the Policy2 policy.

Defining and Supporting Concurrent Engineering Policies in SCM 9

Local Operations
Reserve (W, P, A) : A lock is set on attribute A of product P by workspace W, if there
is no lock already. When a lock is set, only the workspace that owns it can modify the
attribute.
Free(W, P, A) : A lock is removed on attribute A of product P by workspace W, if W
owns that lock.

Correctness
The complex nature of the data manipulated, the semantic dependences among the at-
tributes, and the long duration of the tasks in concurrent engineering make global no-
tions of correctness such as serializability and atomicity inconvenient. Instead, user
defined correctness criteria based on semantic knowledge of the attributes; their rela-
tionships and the tasks performed must be allowed. Studies on cooperative transac-
tions have found in patterns and conflicts a natural way to specify different correct-
ness criteria. Patterns define the operations that must happen, and the order in which
they must happen for a transaction to be correct. On the other side, conflicts specify
the forbidden interleaving between different transactions [1][2][3][10][16].

We have not defined a general language for defining any possible correctness crite-
ria for any cooperative transaction, as proposed in [1], where the defined grammar can
take into account all possible interleaving among transactions. This would make pol-
icy definition difficult, and threaten the dynamic nature of our system where new
groups and policies can be easily created as the development advances. Instead we
propose a tiny set of interpretations of the local policies corresponding to different
levels of consistency, inspired by typical consistency constraints found in Software
Engineering.

Our global policy defines the pattern of behaviour for all attributes, for example in
the policy “(S C I)*” states that a synchronization, modifications and integration, in
that order, are necessary for a workspace to correctly finish a cycle of work. Intro-
ducing Reserve and Free operations in the local policies we define the conflicts, re-
ducing the possible interleaving to a sub-set that enforces our correctness criteria:

Very Strict Policies
Very strict policy execution might be desirable for groups of attributes that are related
by strong consistency constraints.

An example is the name of the files composing a software module. Restructuring
that module involves changing file names, and clearly this task should be undertaken
in a single workspace at a time.

A group of attributes under a very strict policy can only be modified by a single
workspace, thus locking the whole group of attributes before starting the transaction.

Module_names = very_strict: (R S C I F)*
We protect the source file names of certain module with the local policy:

/project/libxyz/*.java:name : Module_names
If a workspace tries to modify the name of a java file in the module libxyz, it needs

to reserve all the name attributes, synchronize, modify and integrate, and finally all
attributes are freed.

Jacky Estublier et al.10

Strict Policies
A very-strict policy guarantees consistency of relationships among attributes within a
group, but prohibits any concurrent work. In some cases concurrent modifications on
different workspaces is still considered consistent as long as the set of attributes modi-
fied are not overlapping.

For example, a given word files should not be edited concurrently in different
workspaces, but it is no problem to edit different word files concurrently. It corre-
sponds to a strict interpretation of policy like:

EditDoc = strict: (R Swismc C Ipismc F)*
/project/stat/*.xls : EditDoc

EditDoc policy means that all Excel documents that are to be changed in a session
are to be first reserved, then a synchronize is performed (thus getting in the current
version of the documents), then editing of the document is allowed; the session ends
by integrating all the changed documents.

Flexible Policies
The strict interpretation requires an a-priori knowledge of all the documents that are
involved in a session; it is not possible to try to reserve a new document as soon as the
editing session is started. For most purposes, this is too strict.

For a given attribute A, “R ... S ... C” is equivalent to “S ... R ... C” if between
synchronization and reserve the attribute value did not change in the Parent work-
space.

This property is at the base of flexible policies. In a flexible policy, the reserve is
automatically attempted when the attribute is to be changed; this reserve succeeds
only if the value of that attribute did not changed in the Parent WS since last opera-
tion S. Therefore the policy

EditDocFlex = flexible: (R S C I F)*
/project/doc/*.doc : EditDocFlex

looks similar to EditDoc presented above, but here, as soon as a new word document
is about to be changed, a reserve operation is attempted. There is no need to perform
explicit reserve operations. This is much more flexible indeed, but there is two draw-
backs, with respect to a strict policy:

There is a risk of inconsistency, if some documents have strong semantic consis-
tency constraints, and one of them is not reserved,

There is a risk of dead locks if two concurrent sessions require an overlapping set
of documents.

Reservation Propagation
Reserving an attribute in a group means reserving that attribute for all the group
workspaces, including the Parent. But reserving the attribute in the parent may reserve
it in the group to which the parent pertains, and successively. Thus, reserving an at-
tribute may propagate to a large number of workspaces, especially because higher
level groups have stricter policies, and are more likely to define policies with locks.

Defining and Supporting Concurrent Engineering Policies in SCM 11

Optimistic and Controlled Strategies without Locks
The major reason to use locks, is to make sure that an integrate operation will not in-
volve any merge and conflict. But our specialization of operation I and S allows such
a control, a posteriori, i.e. an optimistic controlled policy, as opposed to locking
strategies which correspond to pessimistic ones; the different lock interpretations
ranging from very pessimistic (very-strict), to relaxed-pessimistic (flexible).

For example
Pesimistic= strict: (R Swismc C Iwb Pu F)*

is similar to
Optimistic= (Swismc C Iwb<&S> Pu)*

The difference is that in the Optimistic policy “Iwb” may fail, if there are merges
or conflict involved. If case of failure, the policy indicates that an operation synchro-
nize must be performed, and Integrate attempted again “<&S>”.

Implementation
We translate the policies, including their correctness criteria, into a state machine. Our
implementation is efficient, because a single state machine is sufficient for a group of
attribute, whatever the number of actual attributes in the group, and the state machine
interpretation is straightforward. Policy interpretation is very cheap. Further, these
state machines are created and executed on the workspace machine, and need little
interaction with other work space to be executed. Reserve and free are those opera-
tions, as well as a delayed reserved (to check the attribute value in the parent); but in
all cases, only the parent workspace is involved.

2.7 Summary

The language is based on the distinction between global and local policies. Global
policies come from the fact consistency requires a product to be managed as an
atomic entity; local policies come from the fact each attribute may have different con-
sistency constraints, either technical (related to the availability of reliability of their
merge function) or logical (sensitivity and criticality of the attribute, semantic rela-
tionships, and so on). The system allows for both and enforces the consistency of the
whole.

The language is also fairly independent from a given data model. Indeed, it is
based on attributes of entities and can therefore be adapted to almost any data model,
even if the tool we have built works on a very pragmatic one: file system attributes
and a number a specific attributes.

The central issue in concurrent engineering is always to find the compromise be-
tween high concurrent work (and thus very optimistic policies, or no policy at all),
and reliability (and thus restrictive policies). We address this issue first, allowing dif-
ferent policies for different attributes, second allowing a large range of pessimistic-
optimistic policies.

The optimistic / pessimistic range is split in two. In the pessimistic side, we use
locks, and we provide three different interpretations of the lock instruction: very-
strict, strict, and flexible. But locks propagate and may seriously reduce concurrency.

Jacky Estublier et al.12

In the optimist side, we provide a number of restriction in operations Synchronize
and Integrate (batch/interactive, parent/child, synchronized/unsynchronised, merge/
no_merge, conflict/no_conflict) which allows to avoid problems, still retaining maxi-
mum concurrency, but in this case, the policy must include failure recovery.

Altogether, the language covers a very wide spectrum of concurrency policies,
going much farther than traditional database strategies, and capable to represent many
database strategies (including, ACID, dirty read, non repeatable read, 2PL and oth-
ers). Nevertheless, the language does not allow for any and all concurrency policy,
but do correspond to actual practices in software engineering. It is our goal to propose
a very simple language, intuitive enough for users to define easily the policies they
need, not to define anything, thus this selection of interpretations, which corresponds
to best practices.

3 The CE Tool

We have built a prototype implementing the ideas presented above. Our system ex-
poses the following features:

• It contains an interpreter of our language that runs locally to each workspace, en-
forcing the policies defined for the group that contains the workspace. An efficient
implementation of the interpreter has been

• It implements the basic synchronization services
• It implements a distributed locking system.
• It manages dynamic creation of new groups as development evolves

Special attention is paid to the awareness capabilities of the tool. Awareness is
characterized as “an understanding of the activities of others, which provide a context
for your own activity” [7]. The assumption is that providing the users with the appro-
priate contextual information allows them to make more sophisticated local decisions.
The awareness concept has been long studied and proved beneficial in the CSCW
domain, but has never gained the same popularity in SCM systems.

For the vision of context to be useful it must provide only the information relevant
for the user to take decisions based on it, without the unimportant information intro-
ducing noise. We use the group model to filter all the information coming from all the
workspaces to the subset that is useful for each user.

The most basic contextual information needed for cooperative work is group mem-
bership, our CE Tool provides every user with a vision of the workspaces in his
group, as shown in figure 6, this list is synchronized with the actual state of the group
held by the integrator. Additionally, the user can find what documents each user has
proposed.

The tool also provides a vision of the state of the document’s attributes. Based on
the operations’ history in a group, the attributes of a child workspace version of a
document can be in one of the following states:

Defining and Supporting Concurrent Engineering Policies in SCM 13

Fig. 6. The CE tool

• Obsolete: The attribute has changed in the parent workspace and not in the child
workspace.

• Updated: The attribute has the same value in the child workspace than in the parent
workspace.

• Modified: The attribute has been modified in the child workspace and not in the
parent workspace.

• Conflict: The attribute has been modified both in the parent workspace and in the
child workspace.

Currently, the system can run using CVS or our home-grown zip version manager
as the tools to store the local history, but integration with other version managers
should be not difficult.

Propose
Integrate
Synchronize
Lock
Unlock
Change
Check-out
Check-in

Group
Members

 Synchronize

Integrate

Lock

Unlock

Change

Check Out

Check In

Propose
Docment’s
file hierarchy

Document’s
Attributes The interpreter makes

buttons active and
unactive depending
on the policy step.

Jacky Estublier et al.14

4 Conclusion

The intention of such a language is to propose, to non-expert users, a simple way to
define and understand their concurrent engineering policies. Indeed the language is
based on operations that user know very well, since it is what they use daily, and
hides implementation concepts like branches, revisions, predecessor relationship,
common ancestor and so on. Since these operations are, in a way or another, available
in all SCM systems, the language is independent from any single version manager and
therefore is completely general; it can be adapted to any SCM system, and at least
used by team leaders to define their policy first, before to find a way to implement it
using their current SCM system.

The language; despite been simple, allows for a wide set of policies, ranging from
the most restrictive (very-strict with locks), to the more relaxed (optimistic, no locks),
or even no policies at all. We believe the fact workspaces are typed, as well as poli-
cies, the fact that policies can be applied independently to different attribute groups,
makes the system extremely powerful and versatile, but still simple.

Indeed the experience so far proved that users find the language very convenient to
define the policies; users understand fast what it means, and it allows them to reason
on their policy, to discuss their respective merits, and gradually to define and select
the one most convenient to them. Only this is already a major progress.

We believe that this work goes a step beyond, deriving from the policy an auto-
matic implementation, still independent from the actual version manager in use in the
company. We have built a tool that support policy definition and policy enforcement,
including the special operations for recovery, not presented here. The tool is dynamic,
in that groups are created and changed dynamically at execution. Of high interest, is
the fact policies can be statically analysed, and properties statically derived. Among
the properties, we can mention that we know if merges are possible or not, we know
where and who is the common ancestor and we know which files will be involve in
next Synchronize and Integrate. From these properties, optimisations can be per-
formed including the determination of the files involved in the next Synchronize / In-
tegrate, the computation of deltas before hand, and the avoidance of useless checks
like changes or merges. Indeed, in many cases, most of the work involved in the
heavy operations Synchronize and Integrate can be computed before hand. This is im-
portant since experience shows that users feel that Synchronize and Integrate are op-
erations that slow down their work; our optimisations make these operations much
faster from the user point of view and improve significantly user comfort.

The properties are also used to improve awareness strategies. Indeed our tool in-
cludes awareness facilities only sketched in this paper.

Altogether, we believe that our system improves the state of the art of concurrent
engineering in many dimensions, both from theoretical and practical point of views.
From conceptual point of view, we found a language simple, powerful, with well-
defined semantics. From the practical point of view, this system improves user under-
standing of CE issues, improves the enforcement of these policies, improves the inde-
pendence between policies and versioning tools, improves efficiency of the system,
and improves user comfort and awareness.

Defining and Supporting Concurrent Engineering Policies in SCM 15

References

[1] M. Nodine, S. Ramaswamy, and S. Zdonik. “A Cooperative Transaction Model for Design
Databases”. Edited by A. Elmagarmid. “Database Transaction Models”. Chapter 3, pages
54-85, Morgan Kauffman Publishers, Inc.

[2] S. Heiler, S. Haradhvala, S. Zdonik. B. Blaustein, and A. Rosenthal “A Flexible Frame-
work for Transaction Management in Engineering Environments”. Edited by A. Elmagar-
mid. “Database Transaction Models”. Chapter 88-121, Morgan Kauffman Publishers, Inc.

[3] A. Skarra. “Localized correctness specifications for cooperating transactions in an object-
oriented database”. Office Knowledge Engineering, 4(1):79-106, 1991

[4] J. Estublier. “Workspace Management in Software Engineering Environments”. In SCM-
Workshop. LNCS 1167, Springer-Verlag, Berlin, Germany, March 1996

[5] J. Estublier and R. Casallas. “Three Dimensional Versioning”. In SCM-4 and SCM-5
Workshops. J. Estublier (editor), September, 1995. LNCS 1005, Springer-Verlag, Berlin,
Germany

[6] J. Estublier. “Distributed Objects for Concurrent Engineering”. In SCM-9. Toulouse,
France. September 1999

[7] P. Dourish and V. Belloti: “Awareness and Coordination in Shared Work Spaces”. Pro-
ceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW'92)

[8] C. Neuwirth, D. Kaufer, R. Chandhok, and J. Morris, “Issues in the design of Computer
Support for Co-authoring and Commenting”, Proc. CSCW’90 Computer Supported Coop-
erative Work (Los Angeles, Ca., October 1990)

[9] J. Estublier and R. Casallas. “The Adele Software Configuration Management”. Configu-
ration Management”. Configuration Management. Edited by W. Tichy; J. Wiley and Sons.
1994. Trends in software

[10] A. Skarra. Concurrency control for cooperating transactions in an object-oriented data-
base. SIGPLAN Notices, 24(4), April 1989

[11] J.!Estublier, S.!Dami, and M.!Amiour. “APEL: A graphical yet Executable Formalism for
Process Modelling”. Automated Software Engineering, ASE journal. Vol. 5, Issue 1, 1998

[12] J. Estublier, S. Dami, and M. Amiour. High Level Processing for SCM Systems. SCM 7,
LNCS 1235. pages 81-98, May, Boston, USA, 1997

[13] P. Molli, H. Skaf-Molli, and C. Bouthier: “State Treemap: an Awareness Widget for
Multi-Synchronous Groupware”. 7th International Workshop on Groupware (CRIWG'01).
September 2001

[14] P. Dourish and S. Blay, “Portholes: Supporting Awareness in Distributed Work Groups”,
Proc. CHI’92 Human Factors in Computer Systems (Monterey, CA, May 1993)

[15] C. Godart, F. Charoy, O.Perrin, and H. Skaf-Molli: “Cooperative Workflows to Coordi-
nate Asynchronous Cooperative Applications in a Simple Way”. 7th International Confer-
ence on Parallel and Distributed Systems (ICPADS’00). Iwate, Japan, July 2000

[16] M. Franklin, M, Carey, and M. Livny: “Transactional Client-Server Cache Consistency:
Alternatives and Performance”. ACM Transactions on Database Systems, Vol. 22, No. 3.
September 1997

[17] C. Godart, G. Canals, F. Charoy, and P. Molly. “About some relationships between con-
figuration management, software process and cooperative work: The COO Environment”.
In 5th Workshop on Software Configuration and Maintenance, Seatle, Washington D.C.
(USA), LNCS 1005, Springer-Verlag, Berlin, Germany, April 1995

[18] C. Godart, O. Perrin, and H. Skaf. ”Coo: A Workflow operator to improve cooperation
modeling in virtual enterprises”. In 9th IEEE International Workshop on Research Issues in
Data Engineering Information Technology for Virtual Enterprises” (RIDE-VE’99), 1999

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 16-23, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Configuration Management in
Component Based Product Populations

Rob van Ommering

Philips Research Laboratories,
Prof. Holstlaan 4, 5656AA Eindhoven, The Netherlands

Rob.van.Ommering@philips.com

Abstract. The ever-increasing complexity and diversity of consumer products
drives the creation of product families (products with many commonalties and
few differences) and product populations (products with many commonalties
but also with many differences). For the latter, we use an ap proach based on
composition of software components, organized in packages. This influences
our configuration management approach. We use traditional CM systems for
version management and temporary variation, but we rely on our component
technology for permanent variation. We also handle build support and distrib-
uted development in ways different from the rest of the CM community.

1 Introduction

Philips produces a large variety of consumer electronics products. Example products
are televisions (TVs), video recorders (VCRs), set-top boxes (STBs), and compact disk
(CD), digital versatile disk (DVD) and hard disk (HD) players and recorders. The soft-
ware in these products is becoming more and more complex, their size following
Moore's law closely [1]. Additionally, the market demands an increasing diversity of
products. We have started to build small software product families to cope with the
diversity within a TV or VCR family. But we believe that our future lies in the cre ation
of a product population that allows us to integrate arbitrary combinations of TV, VCR,
STB, CD, DVD, and HD functionality into a variety of products.

This paper describes the configuration management approach that we devised to
realize such a product population. We first define the notion of product family and
pro duct population, and then describe some of our technical concepts. We subse-
quently discuss five aspects of configuration management, and end with some con-
cluding remarks.

c©

Configuration Management in Component Based Product Populations

17

2 Product Family and Population

We define a product family as a (small) set of products that have many commonalties
and few differences. A software product family can typically be created with a single
variant free architecture [9] with explicit variation points [2] to control the diversity.
Such variation points can be defined in advance, and products can be instantiated by
'turning the knobs'. Variation points can range from simple parameters up to full plug-
in components. An example of a product family is a family of television products,
which may vary - among other things - in price, world region, signal standard and
display technology.

We define a product population as a set of products with many commonalties but
also with many differences [4]. Because of the significant differences, a single variant
free architecture no longer suffices. Instead we deploy a composition approach, where
products are created by making 'arbitrary' combinations of components. An example
product population could contain TVs, VCRs, set-top boxes, CD, DVD, and HD pla y-
ers and recorders, and combinations thereof. These products have elements in com-
mon, e.g. a front-end that decodes broadcasts into video and audio signals. These
products are also very different with respect to for instance display device and storage
facility.

It is true that any product population of which all members are known at initiation
time, can in principle be implemented as a product family, i.e. with a single variant free
architecture. In our case, two reasons prevent us from doing so. First of all, our set of
products is dynamic - new ideas for innovative products are invented all the time.
Secondly, different products are created within different sub organizations, and it is
just infeasible - both for business as well for social reasons - to align all developments
under a single software architecture.

3 Technical Concepts

In this section we briefly describe the software component model that we use, and
show how components are organized into packages and into a component based ar-
chitecture.

3.1 The Koala Component Model

We use software components to create product populations. Our component model,
Koala, is specifically designed for products where resources (memory, time) are not
abundant [5, 6]. Basic Koala components are implemented in C, and can be comb ined
into compound components, which in turn can be combined into (more) compound
components, until ultimately a product is constructed. The Koala model was inspired
by Darwin [3].

Koala components have explicit provides and requires interfaces. Provides inter-
faces allow the environment of the component to use functionality implemented within

Rob van Ommering

18

the component; requires interfaces allow the component to use functionality imple-
mented in the environment. All requires interfaces of a component must be bound
explicitly when instantiating a component. We find that making all requires interfaces
both explicit and third-party bindable, greatly enhances the reusability of such com-
ponents.

Provides and requires interfaces of components are actually instances of reusable

interface definitions. We treat such interface definitions as first class citizens, and
define them independently from components. Such interface definitions are also com-
mon in Java, and correspond with abstract base classes in object-oriented languages.

Diversity interfaces, a special kind of requires interfaces, play an important role in
Koala. Such interfaces contain sets of parameters that can be used to fine-tune the
component into a configuration. We believe that components can only be made reus-
able if they are heavily parameterized, otherwise they either become too product spe-
cific, or they become too generic and thus not easily or efficiently deployable.

Note that the Koala terminology slightly differs from that used by others. A Koala
component definition , or more precisely a component type definition, corresponds
closely with the notion of class in object-oriented languages. A Koala component
instantiation corresponds with an object . What Szyperski calls a component, a binary
and independently deployable unit of code [10], resembles mostly a Koala package as
described in the next section, i.e. a set of classes and interfaces. It is true that we dis-
tribute source code for resource-constrained reasons, but users of a package are not
allowed to change that source code, only compile it, which inherently is what Szyper-
ski meant with 'binary'.

3.2 Packages

We organize component and interface definitions into packages , to structure large-
scale software development [7]. A package consists of public and private component
and interface definitions. Public definitions can be used by other packages - private
definitions are for use in the package itself only. This allows us to manage change and
evolution without overly burdening the implementers and users of component and
interface definitions.

Koala packages closely resemble Java packages, where component definitions in
Koala resemble classes in Java, and interface definitions in Koala resembling interfaces
in Java. Unlike in Java, the Koala notion of package is closed; users of a package can-
not add new elements to the package.

3.3 The Architecture

With Koala we have created a component-based product population that consists of
over a dozen packages, each package implementing one specific sub domain of
functionality [8]. Products can be created by (1) selecting a set of packages
appropriate for the product to be created, (2) instantiating the relevant public
component definitions of those packages, and (3) binding the diversity and (4) the

Configuration Management in Component Based Product Populations

19

of those packages, and (3) binding the diversity and (4) the other requires interfaces of
those components. Product variation is managed by making choices in steps (1) - (4).

4 Configuration Management

We now come to the configuration management aspects of our product population
development. We distinguish five issues that are traditionally the domain of configura-
tion management systems, and provide our way of dealing with these issues. These
issues are:

• Version management.
• Temporary variation.
• Permanent variation.
• Build support.
• Distributed development.

The issues are discussed in subsequent subsections.

4.1 Version Management

In the development of each package, we use a conventional configuration manage-
ment system to maintain a version history of all of the programming assets in that
package, such as C header and source files, Koala component and interface defini-
tions, Word component and interface data sheets, et cetera. Each package develo p-
ment team deploys its own configuration management system - see also the section
that describes our distributed development approach.

A package team issues formal releases of a package, where each release is tagged
with a version identification (e.g. 1.1b). The version identification consists of a major
number, a minor number, and a 'patch letter'. The major and minor version numbers
indicate regular releases in the evolution of the package - the 'patch letter' indicates
bug-fix releases for particular users of the package.

Each formal release of a package must be internally consistent. This means that in
principle all components should compile and build, and run without errors. In pra ctice,
not every release is tested completely, but it is tested sufficiently for those products
that rely on this specific version of this package.

Customers of a package only see the formal releases of the package. They will
download the release from the intranet (usually as ZIP file), and insert it in their local
configuration management system. This implies that they will only maintain the formal
release history of the package, and will not see all of the detailed (intermediate) ver-
sions of the files in the package.

Each release of a package must be backward compatible with the previous release of
that package. This is our golden rule , and it allows us to simplify our version ma n-
agement - only the last release of each package is relevant. Again in practice, it is
sometimes difficult to maintain full backward compatibility, so sometimes we apply our

Rob van Ommering

20

silver rule, which states that all existing and relevant clients of the package should
build with the new release of the package.

4.2 Temporary Variation

For temporary variation we use the facilities of traditional configuration management
systems. We recognize two kinds of temporary variation.

Temporary variation in the small arises if one developer wants to fix a bug while
another developer adds a feature. By having developer-specific branches in the CM
system, developers do not see changes made by other developers until integration
time. This allows them to concentrate on their own change before integrating changes
made by others into their system.

Temporary variation in the large arises just before the release of a product utilizing
the package. Note that packages are used by multiple products - this is what reuse is
all about. We cannot run the risk of introducing bugs into a product coming out soon
when adding features to a package for a product to be created somewhere in the fu-
ture. This is why we create a branch in the package version history for a specific pro d-
uct just before it is being released. Bug fix releases for such a product are tagged with
'patch letters', e.g. 1.2a, 1.2b, et cetera. As a rule, no features may be added in such a
branch, only bugs may be fixed.

Although the branch may live for a number of weeks or even months - it may take
that long to fully test a product - we still call this a temporary branch since the branch
should be closed when the product has been released. All subsequent products
should be derived from the main branch of the package. There is also permanent
variation in our product population, but we handle that completely outside of the
scope of a configuration management system, as described in the next section.

4.3 Permanent Variation

For permanent variation, i.e. the ability to create a variety of products, we do not de-
ploy a traditional configuration management system, but rely instead on our compo-
nent technology. We have a number of arguments for doing so:

• It makes variation explicit in our architecture, instead of hiding it in the CM system.
• It allows us to make a late choice between compile-time diversity and run-time di-

versity, whereas a CM system typically only provides compile-time diversity.
• It allows us to exercise diversity outside the context of our CM system (see also the

section on Build Support).

The second item may require further clarification. Koala diversity interfaces consist of
parameters that can be assigned values (expressions) in the Koala component descrip-
tion language. The Koala compiler can evaluate such expressions and translate the
parameters into compile -time diversity (#ifdefs) if their value is known at compile -time,
or run-time diversity (if statements) otherwise. This allows us to have a single notion
of diversity in our architecture. We can then still decide at a late time whether to gen-

Configuration Management in Component Based Product Populations

21

erate a ROM for a single product (with only the code for that product), or a ROM for a
set of products (with if statements to choose between the products). Note that always
generating a ROM for a single product complicates logistics, but on the other hand
always generating a ROM for multiple products increases the ROM size and hence the
bill of material.

Put differently, we expect that once (binary) components are commonplace, the
whole configuration issue will be handled at run-time, and not by a traditional CM
system.

With respect to the first item mentioned above, we have four ways of handling di-
versity [7]:

• Create a single component that determines by itself in which environment it oper-
ates (using optional interfaces in Koala, modeled after QueryInterface in COM).

• Create a single component with diversity interfaces, so that the user of the comp o-
nent can fine-tune the component into a configuration.

• Create two different (public) components in the same package, so that the user of
the package can select the right component.

• Create two different packages for different implementations of the same sub domain
functionality, so that users may select the right package (before selecting the right
public component, and then providing values to diversity parameters of that com-
ponent).

It depends on individual circums tances which way is used in which part of the archi-
tecture.

4.4 Build Support

The fourth issue concerns build support, a task normally also supported by traditional
CM systems. We deliberately uncoupled the choice of build environment from the
choice of CM system, for a number of reasons.

First of all, we cannot (yet) standardize on one CM tool in our company. And even
if different groups have the same CM system, they may still utilize incompatible ver-
sions of that system. So we leave the choice of a CM system open to each develop-
ment group (with a preferred choice of course, to reduce investments). This implies
that we must separate the build support from the CM system.

Secondly, we do not want to integrate build support with CM functionality, be-
cause we want to buy the best solution for each of these problems, and an integrated
solution rarely combines the best techniques. So our build support currently utilizes
our Koala compiler, off-the-shelf C compilers and a makefile running on multiple ver-
sions of make. We deploy Microsoft's Developer Studio as our IDE.

Thirdly, we want to be able to compile and link products while outside the context
of a CM system, e.g. when in a plane or at home, or in a research lab. Although not a
compelling argument, we find this approach in practice to be very satisfying, because
it allows us to do quick experiments with the code at any place and at any time.

Rob van Ommering

22

4.5 Distributed Development

The fifth and our final issue with respect to configuration management concerns dis-
tributed development. Recently, many commercial CM systems provide support to
distribute the CM databases over the world. We are not in favor of doing that for the
following reasons.

First of all, it forces us to standardize again on one CM system for the entire com-
pany, and we have shown the disadvantages of this in the previous section.

Secondly, we want to be able to utilize our software outside the context of the CM
system, and relying on a distributed CM system does not help here.

Thirdly, we think this approach doesn't scale up. We envisage a 'small company
approach' for the development of packages in our company. You can 'buy' a package,
and download a particular release of that package, without having to be integrated
with the 'vendor' of that package in a single distributed CM system. Imagine that in
order to use Microsoft Windows, you would have to be connected to their CM sys-
tem!

This concludes the five issues that we wanted to tackle in this paper.

5 Concluding Remarks

We have explained our component-based approach towards the creation of product
populations. We briefly sketched our Koala component model and the architecture
that we created with it. We then listed five configuration management issues, some of
which we may have tackled in different ways than is conventional. The issues are:

• Version management of files and packages;
• Temporary variation for bug fixes, feature enhancements and safeguarding pro d-

ucts;
• Permanent variation as explicit issue in the architecture;
• Build support separated from configuration management;
• Distributed development using a 'small company model' rather than a dis tributed

CM system.

The approach sketched in this paper is currently being deployed by well over a hun-
dred developers within Philips, to create the software for a wide range of television
pro ducts.

References

1. Remi Bourgonjon, The Evolution of Embedded Software in Consumer Products , Interna-
tional Conference on Engineering of Complex Computer Systems, (unpublished keynote
address), Ft. Lauderdale, FL, 1995

2. Ivar Jacobson, Martin Griss, and Patrick Jonsson, Software Reuse – Architecture, Process
and Organization for Business Success, Addison Wesley, New York, 1997

Configuration Management in Component Based Product Populations

23

3. Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer, Specifying Distributed
Software Architectures, Proc. ESEC'95, Wilhelm Schafer, Pere Botella (Eds.) LNCS 989,
Springer-Verlag, Berlin, Heidelberg, 1995, pp. 137-153

4. Rob van Ommering, Beyond Product Families: Building a Product Population?, Proceed-
ings of the 3rd international workshop on the development and evolution of software ar-
chitectures of product families, Las Palmas, March 2000

5. Rob van Ommering, Koala, a Component Model for Consumer Electronics Product Soft-
ware, Proceedings of the Second International ESPRIT ARES Workshop, Springer-Verlag,
Berlin Heidelberg, 1998

6. Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee, The Koala Com-
ponent Model for Consumer Electronics Software, IEEE Computer, March 2000, pp. 78-
85

7. Rob van Ommering, Mechanisms for Handling Diversity in a Product Population, Fourth
International Software Architecture Workshop, June 4-5, 2000, Limerick, Ireland

8. Rob van Ommering, A Composable Software Architecture for Consumer Electronics Prod-
ucts , XOOTIC Magazine, March 2000, Volume 7, no 3, also to be found at URL:
http://www.win.tue.nl/cs/ooti/xootic/magazine/mar-2000.html

9. Dewayne E. Perry, Generic Architecture Descriptions for Product Lines , Proceedings of
the Second International ESPRIT ARES Workshop, LNCS 1429, Springer-Verlag, Berlin
Heidelberg, 1998, pp. 51-56

10. Clemens Szyperski, Component Software, Beyond Object-Oriented Programming, Addi-
son-Wesley, ISBN 0-201-17888-5, 1997

Software Architecture and Software Configuration
Management

Bernhard Westfechtel1 and Reidar Conradi2

1 Lehrstuhl für Informatik III, RWTH Aachen
Ahornstrasse 55, D-52074 Aachen

bernhard@i3.informatik.rwth-aachen.de
2 Norwegian University of Science and Technology (NTNU)

N-7034 Trondheim, Norway
Reidar.Conradi@idi.ntnu.no

Abstract. This paper examines the relations between software architecture and
software configuration management. These disciplines overlap because they are
both concerned with the structure of a software system being described in terms of
components and relationships. On the other hand, they differ with respect to their
focus — specific support for programming-in-the-large, versus general support
for the management of evolving software objects throughout the whole life cycle.
Several problems and alternatives concerning the integration of both disciplines
are discussed.

1 Introduction

Software architectures play a central role in the development and maintenance of a
software system. A software architecture description defines the structure (high-level
design) of a software system in terms of components and relationships. It describes the
interfaces between components and serves as the blueprint of the system to be imple-
mented. It can be used for generating implementations (complete ones or frames to be
filled in by programmers), makefiles to drive system building, overall test plans, etc.

Software configuration management (SCM) is the discipline of managing the evo-
lution of complex software systems. To this end, an SCM system provides version and
configuration control for all software objects created throughout the software life cycle.
In addition, it supports system building (creation of derived objects from their sources),
release management, and change control.

These disciplines overlap considerably. In particular, both software architectures
and software configurations describe the structure of a software system at a coarse
level. On the other hand, they differ with respect to their focus (specific support for
programming-in-the-large versus general support to manage software objects through-
out the whole life cycle).

In this paper, we examine the relation between software architecture and SCM. We
discuss this relation not only at a conceptual level; we also address tool support for
software architecture and SCM, respectively. We identify several problems and alterna-
tives concerning the integration of both disciplines. By summarizing our findings and
views with the help of a set of theses, we hope to raise discussions and motivate further
research in the intersection of software architecture and SCM.

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 24–39, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Software Architecture and Software Configuration Management 25

Fig. 1. Software process

2 Software Process

There is a great variety of software processes. Numerous life cycle models have been
proposed, including the waterfall model, the spiral model, several incremental process
models for object-oriented software development, etc. However, in order to discuss the
relationships between software architecture and SCM, we have to make some minimal
assumptions on the overall software process. Therefore, we briefly introduce a core life
cycle model to establish the context of our subsequent discussion (Figure 1). Require-
ments engineering addresses the problem domain (what has to be built). Programming-
in-the-large belongs to the solution domain (how the system is to be built). Here, the
software architecture is defined, and then realized in programming-in-the-small.SCM is
concerned with the management of all software objects (requirements definitions, soft-
ware architecture models, component implementations, test data, etc.) created through-
out the entire software life cycle. Project management deals with coordination issues
such as planning, organizing, staffing, controlling, and leading software projects. Qual-
ity assurance comprises activities such as validation, verification, inspections, testing,
etc. Finally, documentation includes both technical and user documentation.

3 Software Architecture

3.1 Definition

Although not being a new invention, the discipline of software architecture has re-
cently attracted much attention [1]. Unfortunately, there is no definition of this disci-
pline which has been accepted universally. This became evident at a Dagstuhl Seminar

26 Bernhard Westfechtel and Reidar Conradi

held in 1995 [2] and has not changed significantly since then. The Software Engineer-
ing Institute has collected a large set of definitions [3]. Below, we quote one of these
definitions [4] which we consider appropriate in the context of this paper:

An architecture is the set of significant decisions about the organization of a
software system, the selection of the structural elements and their interfaces by
which the system is composed, together with their behavior as specified in the
collaborations among these elements into progressively larger subsystems, and
the architectural style that guides this organization.

Terms such as organization, structure, behavior, interfaces, composition, and inter-
action indicate what is addressed by software architecture. While software architecture
is concerned with the overall organization of a software system, this does not imply that
details do not have to be considered. In contrast, the design of interfaces and collabora-
tions is an essential part of software architecture.

3.2 Architectural Languages

A variety of languages have been proposed and used to describe software architectures.
We will categorize all of them as architectural languages, even though they vary con-
siderably from each other. Deliberately, we do not go into debates on the choice of the
“best” modeling abstractions for software architectures.

The term module interconnection language [5] denotes a group of languages that
were developed from the mid 70s to the mid 80s. The first module interconnection
languages were designed to add architectural information that could not be expressed
in contemporary programming languages. Later on, modular programming languages
such as Modula-2 and Ada were developed, parts of which were dedicated to specifying
module interconnection. Module interconnection languages address the structure and
partly the evolution of software systems, but they do not deal with behavior. Software
architectures are described in terms of modules and their export and import interfaces,
where modules may be composed into subsystems. Some module interconnection lan-
guages offer version control, e.g., multiple realization versions for the same interface.

Object-oriented modeling languages can be used for expressing software architec-
tures, but they usually cover requirements engineering as well. Today, the Unified Mod-
eling Language (UML) [4] dominates the scene. The UML provides a comprehensive
set of diagram types that may be used to model both the structure and behavior of soft-
ware systems, e.g., class, object, collaboration, sequence, and state diagrams. Models
may be structured into packages which may be nested. Model evolution is supported
e.g. by subclassing and by allowing for multiple classes realizing the same interface.

Loosely defined, “an architecture description language for software applications
focuses on the high-level structure of the overall application rather than the implemen-
tation details of any specific source module” [6]. According to a survey conducted by
Medvidovic and Taylor [7], an architecture description language models architectures
in terms of components, connectors, and configurations. A component is a unit of com-
putation or a data store. Components communicate with their environment through a
set of ports. Connectors are architectural building blocks used to model interactions be-
tween components. The interfaces of connectors are called roles, which are attached to

Software Architecture and Software Configuration Management 27

ports of components. An architectural configuration is a connected graph of components
and connectors that describe architectural structure. For the sake of scalability, complex
components and connectors may be refined by subconfigurations. In addition to struc-
ture, architecture description languages address behavior of architectural elements, by
using e.g. state diagrams, temporal logic, CSP, etc.

3.3 Tools

With respect to tool support, we may distinguish among the language categories intro-
duced above. Tools for module interconnection languages are concerned with analysis
and system construction. Analysis refers to syntax and static semantics of module in-
terfaces. System construction comprises version selection and code generation.

Object-oriented modeling languages are supported by integrated CASE tools which
provide graphical editors, analysis tools, code generators, and interpreters (if the mod-
eling language is executable). Many commercial CASE tools are available, including
e.g. Rational Rose (for the UML), ROOM, and SDT for SDL. CASE tools have often
been criticized as drawing tools. Clearly, the functionality of a CASE tool depends on
how well the syntax and semantics of the underlying modeling language are defined. In
the case of an executable modeling language, CASE tools go far beyond drawing tools.

Tools for architecture description languages partly offer more sophisticated func-
tionality than most CASE tools, in particular for those languages in which behavior
may be formally specified. An overview is provided in [7], which categorizes tool func-
tionality into active specification, multiple views, analysis, refinement, implementation
generation, and dynamism. Most of these tools are research prototypes with frequently
incomplete functionality.

4 Software Configuration Management

4.1 Definition

Software configuration management (SCM) is the discipline of controlling the evolution
of complex software systems [8]. In an IEEE standard [9], the four main functions of
SCM are defined as follows:

Configuration management is the process of identifying and defining the items
in the system, controlling the changes to these items throughout their life cy-
cle, recording and reporting the status of these items and change requests, and
verifying the completeness and correctness of items.

In addition, [10] includes software manufacture, process management, and team
work into SCM. However, in the context of this paper, we will take a product-centered
view on SCM. That is, we will focus on the management of all software objects created
throughout the whole life cycle, their composition into software configurations, and the
evolution of both individual objects and their configurations.

28 Bernhard Westfechtel and Reidar Conradi

Fig. 2. Product space and version space

4.2 Concepts, Models, and Languages

SCM is concerned with the management of all software objects (artifacts, documents)
created throughout the software life cycle. This includes requirements definitions, soft-
ware architectures, implementations, test plans, test data, project plans, etc. These are
arranged into software configurations by means of various kinds of relationships such
as hierarchies and dependencies. In addition to source objects, SCM deals with derived
objects such as compiled code and executables.

The evolution of software systems is addressed by version control. Generally speak-
ing, a version represents some state of an evolving object. Evolution may occur along
different dimensions. Versions along the time dimension are called revisions, where a
new revision is intended to replace a previous one. In contrast, multiple variants may
coexist at a given time, e.g., a software system required to run on multiple platforms.

Thus, SCM deals with both the product space and the version space [11]. Software
objects and their relationships constitute the product space, their versions are organized
in the version space. A versioned object base combines product space and version space.
In particular, SCM has to support the consistent selection of versions across multiple
software objects and their relationships. All of the above is illustrated in Figure 2.

In SCM, version control has always played an important role. Version control is
based on an underlying version model. A version model defines the objects to be ver-
sioned, version identification and organization, as well as operations for retrieving ex-
isting versions and constructing new versions. A large variety of version models have
been proposed and implemented; see [11].

Evolving software configurations can be represented in different ways, depending
on the type of the respective SCM system. In a file-based system, a configuration is
represented by a collection of versioned files. Alternatively, SCM systems may offer
a (versioned) database. Then, the user may define types of software objects and rela-
tionships in a schema, and subsequently populate the database with instances of these
types. Finally, system modeling languages have been developed for representing soft-

Software Architecture and Software Configuration Management 29

ware configurations. A system model defines the system components, as well as their
relationships. A system model is usually described at the level of source objects (in par-
ticular, program source code), but it may also contain rules for producing the derived
objects. The system modeling language may be either specific (for design and imple-
mentation objects [12,13]), or it may deal with arbitrary software objects [14,15,16].

4.3 Tools

A great variety of tools have been developed for SCM, see e.g. the Ovum reports [17]
for information about commercial tools. The services provided by SCM systems may be
classified according to the functions introduced in Section 4.1 (identification, control,
status accounting, verification, software manufacture, process management, and team
work).The spectrum ranges from small tools for specific tasks, e.g., Make [18] for soft-
ware manufacture and SCCS [19] or RCS [20] for version control), to comprehensive
integrated systems such as ClearCase [21] and Continuus [22].

A driving force behind the development of SCM systems is the intent to provide
general services which may be re-used in a wide range of applications. An SCM sys-
tem provides a versioned object base which acts as a common repository for all of the
software objects maintained by tools for requirements engineering, programming-in-
the-large, programming-in-the-small, project management, quality assurance, and doc-
umentation. For the sake of generality, SCM systems make virtually no assumptions
about the contents of software objects, which are usually represented by text files or
binary files.

5 Interplay of Software Architecture and SCM

Based on the preceding sections, we make some initial observations concerning the re-
lationships between software architecture and SCM. These observations will be refined
in the next sections. Table 1 summarizes the relationships between software architecture
and SCM as discussed so far:

Coverage. Software architecture focuses on programming-in-the-large, while SCM
covers the whole life cycle.

Software objects. Software architecture deals with design objects such as components,
modules, classes, etc. SCM is concerned with all kinds of software objects. While
some of these may be organized according to the software architecture (e.g. mod-
ule implementations), others bear no obvious relationships to design objects (e.g.,
requirements specifications or project plans).

Relationships. In software architectures, design objects are typically organized by
means of inheritance hierarchies, import relationships, connectors, etc. SCM has
to deal with all conceivable kinds of relationships between software objects.

Semantic level. Architectural languages strive for a high semantic level which allows
one to analyze software architectures for syntactic and semantic consistency. On
the other hand, SCM is performed at a rather low semantic level — which is both
a strength and a weakness. To provide for re-usability, SCM systems abstract from
the contents of software objects, which are typically treated as text or binary files.

30 Bernhard Westfechtel and Reidar Conradi

Table 1. Comparison of software architecture and SCM

Granularity. Software architecture specifically addresses the overall organization of
large software systems. However, architectural languages typically cover also fine-
grained descriptions of interfaces, e.g., provided and required resources. SCM also
deals with the overall organization of software objects, but takes the whole software
life cycle into account. Software objects are usually treated as black boxes whose
internal structure is not known.

Versions. To support evolution of software systems, architectural languages typically
provide concepts such as inheritance, genericity, or abstraction (distinction between
interface and realization). In terms of SCM, this kind of evolution support may
be used to represent variants, also called logical versioning in [23]. In contrast,
SCM also covers historical versioning, i.e., revisions. In addition, SCM deals with
cooperative versioning, i.e., versions which are created concurrently by different
developers (and are merged later on).

6 Integration Approaches

In the current section, we describe different approaches which have been developed for
the integration of software architecture and SCM. These approaches differ with respect
to the “division of labor” between software architecture and SCM (see Figure 3 for an
overview). Please note that we will discuss the interplay between software architecture
and SCM not only at a conceptual level. In addition, we will address pragmatic issues
of tool integration (inter-operation of architectural design tools and SCM tools).

6.1 Orthogonal Integration

In the case of orthogonal integration, software architecture and SCM are decoupled as
far as possible. The versioned object base of the SCM system contains a set of ver-

Software Architecture and Software Configuration Management 31

Fig. 3. Integration approaches

sioned objects (typically files). A configuration description is used to select object ver-
sions from the versioned object base. The workspace manager, a component of the
SCM system, sets up a uni-version workspace which provides access to the selected
object versions. Architectural design tools operate on architectural descriptions via the
workspace by reading and writing the corresponding files.

Orthogonal integration is a mainstream approach to the coupling of architectural
design tools and SCM systems (consider, e.g., the integration of Rational Rose [24] and
ClearCase [21,25], as described in [26]). Architectural evolution is supported on two
levels: Embedded evolution is performed within the software architecture, e.g., by the
separation of interfaces and realizations, inheritance, or genericity (parameterization).
All of these mechanisms are suitable to deal with variants, i.e., logical versioning, but
they are not designed for historical versioning. In contrast, meta-level evolution deals
with evolution of the software architecture as a whole. In this way, global evolution is
supported (also with respect to other software objects).

Orthogonal integration supports bottom-up integration of existing tools. An archi-
tectural design tool may be combined with multiple SCM systems and vice versa. Since

32 Bernhard Westfechtel and Reidar Conradi

vendors of SCM systems strive for re-usability, they make virtually no assumptions
concerning the application tools to be supported. Vice versa, the vendors of application
tools — e.g., architectural design tools — usually do not want to become dependent on
a specific SCM system.

6.2 SCM-Supported Software Architecture

In orthogonal integration, an architectural design tool does not take advantage of func-
tions provided by an SCM system. In particular, this applies to version control. Version
selection is performed beforehand; the architectural design tool sees only a single ver-
sion. In the case of SCM-supported software architecture, an architectural design tool
makes use of the services provided by the SCM system. The overall software archi-
tecture is decomposed into units (packages or subsystems) which are submitted to ver-
sion control. To compose a software architecture from a set of architectural units, the
architectural design tool offers commands for browsing the versioned object base, for
supplying configuration descriptions, and for initiating checkout/checkin operations. At
the user interface, this results in more convenient access to SCM services. The software
architect may invoke these services directly from the architectural design tool. In the
case of orthogonal integration, the user has to work outside the architectural design tool
instead.

On the other hand, this integration approach also suffers from some disadvantages.
The architectural design tool needs to be extended. Such extensions require implemen-
tation effort, and they assume that the tool provides adequate extension mechanisms
(e.g., definition of new command menus). Furthermore, the extended architectural de-
sign tool depends on the specific services provided by the SCM system. Therefore, the
extensions may have to be adapted if another SCM system is used. To a certain ex-
tent, such adaptations may be avoided by introducing an abstract interface. However,
presently there is no standard interface to SCM services.

To a large extent, SCM-supported software architecture coincides with orthogonal
integration. The SCM system does not make specific assumptions concerning the ap-
plications tools using it (including architectural design tools). Moreover, reusable SCM
services are still implemented only once in the same way for all applications. However,
in orthogonal integration the architectural design tool is not aware of the SCM system,
while it depends on the SCM system and takes advantages of its services in the case of
SCM-supported software architecture.

6.3 Redundant Integration

In the case of SCM-supported software architecture, the architectural design tool ben-
efits from the services provided by the SCM system, but it does not contribute to a
richer description of the software configuration. Architectural information is still con-
tained almost exclusively only in the representation maintained by the architectural
design tool (apart from the decomposition into architectural units which are maintained
as versioned objects in the SCM repository). In contrast, redundant integration aims at
providing more architectural information as part of the overall software configuration.

Software Architecture and Software Configuration Management 33

To this end, an abstraction of the architecture is represented in the software configura-
tion. Please note that redundant integration and SCM-supported software architecture
may complement each other, i.e., they are not mutually exclusive alternatives.

Redundant integration provides several benefits: First, it can be applied under the
constraints of bottom-up integration, provided that the architectural design tool offers an
interface to its architectural representation. Second, architectural information is repre-
sented in the software configuration. Therefore, the software configuration can be used
as a skeleton for organizing software objects according to the architecture. Third, an
abstraction of the architecture is represented in the SCM repository in an application-
independent way. Therefore, it is not necessary to run the architectural design tool to
access this abstraction. Moreover, if different architectural languages and tools are used
for different parts of the overall software system, the software configuration (system
model) acts as a neutral and integrating architectural representation.

On the other hand, a price has to be paid: redundant representations have to be kept
consistent with each other. To cope with redundancy, we have to invest programming
effort (to write an integration tool which maintains consistency), runtime (for executing
the tool), and storage space (for storing redundant representations). Here, similar prob-
lems have to be solved as in makefile generation (where build rules are derived from
the source code).

6.4 SCM-Centered Software Architecture

In this approach, software architecture is considered a part of SCM. The SCM system
provides support for representing software architectures; it is assumed that there is no
representation of the software architecture outside the SCM system. Software archi-
tectures are typically represented with the help of system modeling languages. As ex-
plained in Section 4, we may distinguish between system modeling languages dealing
specifically with design objects, and languages for arbitrary software objects.

With respect to system modeling, it is instructive to study the evolution of the Adele
system. An early version of the Adele system [13] offered a predefined module inter-
connection language derived from Intercol [12]. However, this made it difficult to model
non-code objects; for example, even a simple textual document was required to have an
interface and a body. Furthermore, the user was forced to adopt the predefined language
for programming-in-the-large. Thus, more flexibility and generality is required. There-
fore, the current version of Adele offers an “out of the box” system model that the user
may or may not adopt. In addition, the user may define any desired system model for
organizing software objects. In fact, the predefined system model is defined in terms of
a database schema, i.e., on top of Adele rather than built-in [27].

SCM-centered software architecture avoids redundancy problems because it is based
on the assumption that there is no representation of the software architecture outside
the SCM system. This assumption may have been valid a long time ago, but it does
not hold any more. Using the modeling facilities of an SCM system may be considered
the “poor man’s approach to software architecture”: one may resort to this solution if
nothing else is available. However, providing a full-fledged architectural language such
as e.g. Wright [28] or Rapide [29] goes beyond the scope of an SCM system (which,
on the other hand, has to deal with general software objects). Thus, we consider it more

34 Bernhard Westfechtel and Reidar Conradi

realistic to maintain abstractions of the software architecture in the SCM system, as it
is done in the case of redundant integration.

6.5 Architecture-Centered SCM

Architecture-centered SCM inverts the approach described in the previous subsection.
SCM is considered part of software architecture. This approach acknowledges the cen-
tral role which the software architecture plays in software development and mainte-
nance. In particular, the architecture may be used for organizing implementation and
test activities, for reconfiguring deployed software systems, etc. In contrast to orthogo-
nal integration, evolution is not handled on two levels. Rather, evolution is supported in
a unified way in the underlying architectural language and the respective support tools.

In [30,31], it is argued that software architecture and SCM are highly related, and
the advantages of a single, unified system model are stressed. The Mae system [32]
was developed along these lines. To cope with architectural evolution, Mae provides
multiple concepts such as (sequences of) revisions, variants, optionality, and inheri-
tance. Version selection is supported at the architectural level. Several opportunities
of this integrated approach are identified such as version selection based on compat-
ibility relationships, multi-version connectors, and generation of change scripts based
on architectural differences. From the user’s point of view, Mae behaves in a similar
way as in the case of SCM-supported software architecture. However, Mae does not
use a general-purpose SCM system. The mainstream version model of SCM — version
graphs — is considered inappropriate because revisions and variants are intermingled
rather than separated cleanly.

Architecture-centered SCM provides several benefits. There is only a single rep-
resentation of the software architecture. Furthermore, evolution is dealt with at one
place (in the software architecture), while orthogonal integration and its derivatives
handle evolution on two levels (meta-level and embedded evolution, respectively). Fi-
nally, many software development and maintenance activities are centered around the
software architecture. For example, implementation and test activities may be planned
with the help of the software architecture. Moreover, the architecture can be used to
organize a large set of documents created in the software process.

However, SCM needs to be applied throughout the whole life cycle rather than only
to the software architecture and the attached software objects. Therefore, the redun-
dancy problem is not really solved from a more global perspective. That is, a general
SCM system is required to manage “the rest” (requirements definitions, project plans,
etc.). Taking this into account, extending an architectural design tool with SCM support
works against the intent of SCM systems — namely to provide uniform, application-
independent services for version control, configuration control, etc.

This goal is achieved in both orthogonal integration and SCM-supported software
architecture. The latter provides similar benefits as architecture-centered SCM in that it
makes SCM services available in an architectural design tool, and it avoids the disadvan-
tages of the “SCM services in the tools” solution (re-implementation of SCM services,
no global repository). On the other hand, architecture-centered SCM provides more
freedom and allows e.g. to use the “favorite version model”. In contrast, the conceptual
world of the SCM system has to be adopted in SCM-supported software architecture.

Software Architecture and Software Configuration Management 35

7 Discussion

This section summarizes the discussion of the relationships between software architec-
ture and SCM with the help of a set of theses.

7.1 Software Life Cycle

Thesis 1 (Architectural Design vs. the Whole Life Cycle). Software architecture and
SCM overlap since they both deal with the overall organization of a software sys-
tem. However, while software architecture refers to programming-in-the-large, SCM
addresses the whole software life cycle.

We have stressed this point repeatedly in this paper. Architectural languages provide
more high-level support for system composition and consistency. On the other hand,
SCM also deals with non-design objects (requirements definitions, test plans, project
plans, documentations, etc.) and offers version control, which is only partly covered by
software architecture.

Thesis 2 (Limitations of an Architecture-Centered Software Process). Even though
the architecture plays a central role in the software process, an architecture-centered
software process overemphasizes the importance of software architecture and neglects
important parts of the software process, e.g., requirements engineering.

Since the software architecture plays a central role in the software process, the vi-
sion of an architecture-centered process is quite tempting. In such a process, the soft-
ware architecture is used as a “skeleton” for organizing software objects, browsing,
generation of implementation frames and test plans, etc. However, the total software
process can be covered only partly this way, especially for incremental development
models. We may rather argue that a software process should be requirements-centered
(or user-centered). No matter where the focus is set: An SCM system has to manage
software objects created in all life cycle phases, and it also should support traceability
from the initial or negotiated requirements to the finally delivered code.

7.2 Tool Integration

Thesis 3 (Tool Integration – Bottom-Up or Top-Down). An SCM system has to pro-
vide general services for a wide range of applications. Therefore, it must be designed
for bottom-up integration with existing tools.

Bottom-up integration means that existing tools are integrated after the fact (tool-
kit approach, integration of legacy systems). Since vendors of SCM systems usually
strive for re-usability, they make no assumptions concerning the tools to be integrated
with the SCM system. Vice versa, the vendors of application tools usually do not want
to become dependent on a specific SCM system (this independence may be achieved
e.g. by a virtual workspace). In contrast, top-down integration means that new tools
are designed and implemented as a whole, resulting in a tightly integrated software
engineering environment (comprising tools for architectural design and SCM). Then,
the SCM tools may be used only as a part of the integrated environment.

36 Bernhard Westfechtel and Reidar Conradi

Thesis 4 (Different System Description Languages). Since there are many architec-
tural languages with different syntax and semantics, an SCM system must not prescribe
a specific language for describing software architectures. In contrast, the software ar-
chitecture description has to be handled like any other document.

This thesis is underpinned by the Adele system, which evolved from an SCM sys-
tem with a built-in module interconnection language to a fairly general object-oriented
database system. A language for architectural design which is built into an SCM system
clashes with the architectural languages being in use today. For example, if a company
adopts the UML, there is not a free choice of the architectural language any more.
Therefore, an SCM system should be developed under the assumption that the archi-
tecture is modeled in an application-dependent way using some architectural language,
many of which are available today. A system modeling language offered by an SCM
system should be considered only as a “poor man’s architecture description language”.

Thesis 5 (Unavoidable Redundancy in System Descriptions). Under the constraints
of bottom-up integration, there is no hope to unify software architectures and software
configurations in the sense that only a single, integrated description needs to be main-
tained. A certain amount of redundancy is therefore inevitable.

In [30], it is argued that multiple descriptions of the software architecture result in
redundancy and increased modeling support. However, the vision of an integrated ap-
proach assumes top-down integration. That is, a new system is built where the notions
of software architecture and software configuration are unified from the beginning. A
user of such a system would have to commit to this conceptual world. Mostly, however,
there are constraints concerning the notations and tools used throughout the software
life cycle. To cope with redundancy, tools are therefore required which extract the over-
all organization of a software system from the software architecture into a (part of) a
software configuration. With the help of such tools, we may maintain software config-
uration descriptions which provide more information than e.g. directory hierarchies.

7.3 Evolution

Thesis 6 (Evolution at the Architectural Level). Architectural design deals with ar-
chitectural evolution at a semantic level. In particular, variants can be represented
within the software architecture description (as realization variants, subclasses, or in-
stances of generic modules).

That is, to some extent version control is supported within the software architec-
ture description. Architectural design attempts to ensure that software architectures are
reusable, and that they remain stable even under changing requirements. For example,
we may define a neutral file system interface which can be mapped onto different actual
file systems, confining platform changes to a single spot in the architecture.

Thesis 7 (Evolution at the SCM Level). SCM offers general version control services
for all kinds of applications. These address not only variants, but also revisions. Ver-
sion control is performed at a fairly low semantic level. The SCM system deals with
versioning of the architecture, covering temporal, logical, and cooperative versioning.

Software Architecture and Software Configuration Management 37

Thus, software architecture descriptions are placed under version control, like all
other software objects. If a software architecture description is composed of multiple
software objects (the usual case), configuration control is also required. Version control
provided by an SCM system can be used e.g. to handle change requests that imply
architectural restructuring, to maintain competing architectural variants for the purpose
of comparison and evaluation, to handle concurrent changes, e.g., fixes in an old release
while the new release is being developed on the main branch, etc.

Thesis 8 (Evolution at Different Abstraction Levels). Altogether, the evolution of
software architectures has to be dealt with at two levels: at the architectural level and
at the SCM level. These two levels complement each other and cannot be unified easily.
On the other hand, the levels are not orthogonal with respect to logical versioning
(variants).

At the architectural level, we may deal with semantic changes. Interfaces, inher-
itance, genericity, etc. have a well-defined meaning. Therefore, evolution cannot be
delegated to an SCM system which treats software objects as black boxes. In addition,
we may have to use multiple variants simultaneously, while the user of an SCM system
usually has to pre-select one version to work on. At the SCM level, we may handle
global changes of any kind throughout the software life cycle (comprising both variants
and revisions, usually at a fairly low semantic level). Handling these changes at the ar-
chitectural level would defeat the very purpose of an SCM system: to relieve software
tools from tasks which can be taken care of by general services.

8 Conclusion

We examined the relationships between software architecture and SCM. To this end,
we delineated their roles in the software life cycle and introduced five approaches to the
integration of software architecture and SCM. Finally, we summarized our conclusions
with the help of eight theses. In this way, we intend to initiate further discussions;
indeed, other authors take different views, see e.g. [30].

According to our view, software architecture and SCM play different roles in the
software life cycle. However, they overlap both in the product space and the version
space. An architectural configuration should be considered a part of an overall software
configuration covering the whole life cycle. The architectural configuration constitutes
an abstraction of an architectural description whose level of detail (e.g., in interface
descriptions) goes beyond the fairly coarse-grained level of software configurations.
Therefore, a certain amount of redundancy is inevitable, in particular under the con-
straints of bottom-up integration of existing tools and languages. Evolution can be han-
dled both at the architectural level and the SCM level.

Most of the integration approaches that have been realized so far do not follow this
view. In the case of orthogonal integration, coupling is reduced to an absolute minimum.
SCM-centered architecture and architecture-centered SCM are unbalanced approaches
which focus on one discipline at the expense of the other. Thus, the potentials for syn-
ergy between software architecture and SCM have to be exploited further.

38 Bernhard Westfechtel and Reidar Conradi

Acknowledgments

This paper is an extended version of a position paper contained in the informal SCM-10
proceedings [33]. It was presented and discussed at the workshop. The authors grate-
fully acknowledge the contributions of the workshop participants.

References

1. Garlan, D., Shaw, M.: An introduction to software architecture. In Ambriola, V., Tortora,
G., eds.: Advances in Software Engineering and Knowledge Engineering. Volume 2. World
Scientific, Singapore (1993) 1–39

2. Garlan, D., Paulisch, F., Tichy, W.: Summary of the Dagstuhl workshop on software archi-
tecture. ACM Software Engineering Notes 20 (1995) 63–83

3. Software Engineering Institute Pittsburgh, Pennsylvania: How Do You Define Software Ar-
chitecture? (2003)
http://www.sei.cmu.edu/architecture/definitions.html.

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addi-
son Wesley, Reading, Massachusetts (1998)

5. Prieto-Diaz, R., Neighbors, J.: Module interconnection languages. The Journal of Systems
and Software 6 (1986) 307–334

6. Vestal, S.: A cursory overview and comparison of four architecture description languages.
Technical report, Honeywell Systems and Research Center (1993)

7. Medvidovic, N., Taylor, R.: A classification and comparison framework for software archi-
tecture description languages. IEEE Transactions on Software Engineering 26 (2000) 70–93

8. Tichy, W.F.: Tools for software configuration management. In Winkler, J.F.H., ed.: Proceed-
ings of the International Workshop on Software Version and Configuration Control, Grassau,
Germany, Teubner Verlag (1988) 1–20

9. IEEE New York, New York: IEEE Standard for Software Configuration Management Plans:
ANSI/IEEE Std 828-1983. (1983)

10. Dart, S.: Concepts in configuration management systems. In Feiler, P.H., ed.: Proceedings of
the 3rd International Workshop on Software Configuration Management, Trondheim, Nor-
way, ACM Press (1991) 1–18

11. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Computing Surveys 30 (1998) 232–282

12. Tichy, W.F.: Software development control based on module interconnection. In: Proceed-
ings of the IEEE 4th International Conference on Software Engineering, Pittsburgh, Penn-
sylvania, IEEE Computer Society Press (1979) 29–41

13. Estublier, J.: A configuration manager: The Adele data base of programs. In: Proceedings of
the Workshop on Software Engineering Environments for Programming-in-the-Large, Har-
wichport, Massachusetts (1985) 140–147

14. Marzullo, K., Wiebe, D.: Jasmine: A software system modelling facility. In: Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments. ACM SIGPLAN Notices 22-1, Palo Alto, California (1986)
121–130

15. Tryggeseth, E., Gulla, B., Conradi, R.: Modelling systems with variability using the PRO-
TEUS configuration language. [34] 216–240

16. Leblang, D.B., McLean, G.D.: Configuration management for large-scale software develop-
ment efforts. In: Proceedings of the Workshop on Software Engineering Environments for
Programming-in-the-Large, Harwichport, Massachusetts (1985) 122–127

Software Architecture and Software Configuration Management 39

17. Burrows, C.: Ovum Evaluates: Configuration Management. Ovum Limited, London, UK.
(2002) http://www.ovum.com.

18. Feldman, S.I.: Make — A program for maintaining computer programs. Software Practice
and Experience 9 (1979) 255–265

19. Rochkind, M.J.: The source code control system. Transactions on Software Engineering 1
(1975) 364–370

20. Tichy, W.F.: RCS – A system for version control. Software Practice and Experience 15
(1985) 637–654

21. Leblang, D.: The CM challenge: Configuration management that works. [35] 1–38
22. Cagan, M.: Untangling configuration management. [34] 35–52
23. Estublier, J., Casallas, R.: Three dimensional versioning. [34] 118–135
24. Boggs, W., Boggs, M.: UML with Rational Rose 2002. Sybex, Alameda, California (2002)
25. White, B.A.: Software Configuration Management Strategies and Rational ClearCase. Ob-

ject Technology Series. Addison-Wesley, Reading, Massachusetts (2000)
26. Rational Software Corporation Cupertino, California: Using Rational Rose and Rational

ClearCase in a Team Environment. (2002) http://www.rational.com.
27. Estublier, J., Casallas, R.: The Adele configuration manager. [35] 99–134
28. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on

Software Engineering and Methodology 6 (1997) 213–249
29. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Specification

and analysis of system architecture using Rapide. IEEE Transactions on Software Engineer-
ing 21 (1995) 336–354

30. van der Hoek, A., Heimbigner, D., Wolf, A.L.: Software architecture, configuration man-
agement, and configurable distributed systems: A menage a trois. Technical Report CU-CS-
849-98, University of Boulder, Colorado (1998)

31. van der Hoek, A., Heimbigner, D., Wolf, A.L.: Capturing architectural configurability: Vari-
ants, options, and evolution. Technical Report CU-CS-895-99, University of Boulder, Col-
orado (1999)

32. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming architectural
evolution. In: Proceedings of the Joint 8th European Software Engineering Conference and
the 9th ACM SIGSOFT Symposium on Fundamentals of Software Engineering. ACM Soft-
ware Engineering Notes 26-5, Vienna, Austria, ACM Press (2001) 1–10

33. Westfechtel, B., Conradi, R.: Software architecture and software configuration management.
In van der Hoek, A., ed.: 10th International Workshop on Software Configuration Manage-
ment: New Practices, New Challenges, and New Boundaries (SCM 10), Toronto, Canada
(2001) 19–26

34. Estublier, J., ed.: Software Configuration Management: Selected Papers SCM-4 and SCM-5.
LNCS 1005, Seattle, Washington, Springer-Verlag (1995)

35. Tichy, W.F., ed.: Configuration Management. Volume 2 of Trends in Software. John Wiley
& Sons, New York, New York (1994)

Supporting Distributed Collaboration through

Multidimensional Software Configuration
Management

Mark C. Chu-Carroll and James Wright

IBM T. J. Watson Research Center
30 Saw Mill River Road, Hawthorne, NY 10532, USA

{mcc,jwright}@watson.ibm.com

Abstract. In recent years, new software development methodologies
and styles have become popular. In particular, many applications are
being developed in the open-source community by groups of loosely co-
ordinated programmers scattered across the globe.
This style of widely distributed collaboration creates a suite of new prob-
lems for software development. Instead of being able to knock on the door
of a collaborator, all communication between programmers working to-
gether on a system must be mediated through the computer. But at the
same time, the bandwidth available for communication is dramatically
more limited than those available to local collaborators.
In this paper, we present a new SCM system called Stellation which is
specifically designed to address the limits of current SCM systems, par-
ticularly when those systems are applied to large projects developed in a
geographically distributed environment. Stellation attempts to enhance
communication and collaboration between programmers by providing a
mechanism called multidimensionality that allows them to share view-
points on the structure and organization of the system; by providing a
hierarchical branching mechanism that allows the granularity of coordi-
nation to be varied for different purposes; and by providing a mechanism
for integrating programming language knowledge into the system, allow-
ing it to be used for organizational and coordination purposes.

1 Introduction

The key problem introduced by geographically distributed or open-source devel-
opment is communication: many of the traditional channels for communication
are not available in this environment. In distributed development, programmers
rarely or never communicate face to face, but rather through email, on-line
chats, through the coordination facilities of the SCM system, and through the
code itself.

The Stellation SCM system has been designed to work in this kind of geo-
graphically distributed environment. Many of Stellation’s features are designed
specifically with the goal of enhancing communication between programmers.
Stellation is based on combining the following key ideas:

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 40–53, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Supporting Distributed Collaboration 41

1. Finer artifact granularity, with linguistic knowledge through component mod-
ules;

2. Dynamic/multidimensional project organization;
3. Coordination in terms of artifact collections; and
4. Hierarchical change isolation and repository replication.

We believe that a software configuration management system with these ca-
pabilities, integrated with a supporting programming environment, provides sig-
nificant benefits to programmers working cooperatively in a distributed environ-
ment, well beyond those provided by a conventional SCM system.

We divide the features of Stellation into three main categories: multidimen-
sionality; repository replication; and distributed coordination. In the following
sections, we will briefly describe the features of Stellation, and how they enhance
communication, coordination and collaboration in a distributed environment.
Due to the limits of this format, we will not be able to go into great depth; more
details of the Stellation SCM system can be found in [6,5,8].

2 Multidimensionality

Multidimensionality is a way of separating code storage from code organization
in a manner that enhances a programmer’s ability to describe or demonstrate
a viewpoint on the semantic or organizational structure of the code. This is
closely related to the notion of multidimensional separation of concerns [23]
and aspect-oriented software development [22]. More details of our approach to
multidimensionality can be found in [7].

The key observation of multidimensionality is that in a conventional SCM
system, source files are used for two distinct purposes: storage, and organization.
Storage is an obvious notion: code must be placed in a source file to be stored
by a file-based system. But the placement of code into a particular source file
is not just for the purpose of storage: it communicates information about the
system to other programmers. The layout of code into and within source files
creates an organizational decomposition of the system into discrete units which
demonstrates a viewpoint on the structure or meaning of the system.

In Stellation, we separate these two purposes. Stellation performs storage
and versioning of relatively fine-grained artifacts, and allow those artifacts to be
composed into viewable aggregates that resemble structures source files. We call
these virtual source files (VSFs). For example, the granularity of storage used for
Java programs is shown in figure 1. Virtual source files do not play a role in pro-
gram storage, but exist solely for the purpose of communicating organizational
meaning. This separation of storage from organization allows programmers to
create multiple, orthogonal code organizations in terms of VSFs, each of which
describes a distinct viewpoint of the structure of the system. In addition to
storing and versioning the individual programs, Stellation stores and versions
descriptions of the programmer-defined organizations.

Through this mechanism, programmers familiar with particular parts of the
system can store views that serve as an illustration or explanation of that part

42 Mark C. Chu-Carroll and James Wright

Fig. 1. Java fragments

of the system.In addition to this service for code understanding, it allows pro-
grammers to store code in structures well suited to different tasks: to perform
a particular task, the programmers can choose the organization best suited to
that task. We believe that this facility is generally useful for helping program-
mers understand large systems, but in the realm of distributed development,
where communication is more limited, such a facility is particularly important.

Fig. 2. Orthogonal program views in an actual system

Supporting Distributed Collaboration 43

Fig. 3. A Stellation VSF editor

As an example of different organizations, in figure 2, we illustrate some uses
of virtual source files for generating alternate organizational views of a real sys-
tem. The horizontal boxes illustrate source code in the conventional Java source
organization for the basic programming environment underlying a predecessor
of the Stellation IDE.

The data model for this system is implemented using the interpreter pat-
tern discussed in [11]. Each major property or operation on source code is im-
plemented using identically named methods in each of the model classes. A
very useful view would assemble the methods corresponding to a given opera-
tion from all of the model classes together. This is illustrated by the vertical
PropertyComputation view in the figure, which gathers together the relevant
methods. The value of this view is understated in the figure; the actual model
package contained approximately 30 source files; to debug a single operation
could mean opening editor windows on 30 different source files in a conventional
system!

A more difficult example of this is the menu generation process. In this
system, understanding how menus are dynamically assembled by the various
components of the system can be extremely difficult to understand, because it
is scattered through many files in the dominant organization of the program.
There is no uniform method name for all of the code elements that should be
part of this view, and it cuts across the dominant organization in a highly irreg-

44 Mark C. Chu-Carroll and James Wright

ular fashion. But in Stellation, the code organization which gathers together the
menu generation/management code and documentation could coexist with the
standard dominant organization.

A screenshot of a Stellation VSF editor integrated into the Eclipse program-
ming environment is shown in figure3. The VSF Editor (left) presents views on a
set of source fragments selected by some criteria (in this case, methods using the
interface IMarker). Fragments which meet the criteria are included in the VSF
view, separated by a narrow horizontal separator; a thicker separator is used to
denote type (source file) boundaries. The Content Outline on the right lists a
set of available VSFs and all fragments in the current VSF.

2.1 Aggregation and Structure in VSFs

aggregate java class { (a)
name : [conflict] String

package : [conflict] java package decl

imports : [union] java import decl

decl : [conflict] java class decl

members : [linear] java member List

}

aggregate java viewpoint { (b)
name : [conflict] String

description : [linear] Text

members : [dynamic] java member List

}

aggregate test case { ... } (c)

aggregate bug report { (d)
title : [conflict] String

severity : [largest] Integer

description : [conflict] Text

subject code : [dynamic] java member decl Set

test data : [union] test case Set

}

aggregate specifies relationship { (e)
specification : [union]Z fragment Set

implementation : [union]java member decl Set

}

Fig. 4. Sample aggregate declarations

Aggregates formed from collections of fine-grained artifacts can be used for
a variety of different purposes, from capturing simple views, to capturing het-

Supporting Distributed Collaboration 45

erogeneous views containing artifacts of different types (e.g., code and rich text
documentation), to representing relationships between different structures (e.g.,
connecting a UML diagram to the code that it models), to representing meta-
data. In order to support these diverse purposes, aggregates must provide more
structure than a conventional source file. We have defined a mechanism which
allows administrators and users to define types of aggregates for different pur-
poses. A full discussion of the aggregate system is beyond the scope of this paper,
and can be found in [8].

Briefly, the aggregate system provides a mechanism for specifying structured
types for repository artifacts containing references to other repository artifacts.
The aggregate type system is similar to the type systems used for defining data
structures in programming languages such as ML. The aggregate types are ad-
ditionally annotated with information describing how merges should be imple-
mented for their instances.

Some sample aggregate types are illustrated in figure 4. The first example
illustrates how a compilable Java class can be implemented as a Stellation ag-
gregate; the second illustrates an aggregate structure for a simple Java view;
the next two suggest how Stellation could capture bug reports using aggregates;
and the final illustrates how aggregates could represent the relationship between
parts of a specification and the code that implements the specified behavior.

2.2 Queries and Program Organization

A crucial key to our form of multidimensionality is the method used for genera-
tion of VSFs, aggregates, and program organizations. For this purpose, we have
designed a query language that allows programmers to specify how artifacts are
selected for inclusion in a VSF. It also provides higher order constructs that al-
low groups of related VSFs to be gathered into virtual directories and complete
program organizations.

Queries specify predicates that a program artifact must satisfy for inclusion
in a VSF. These predicates can be based on syntactic structure, on semantic
information generated by simple program analysis, on contextual information
provided by the programming environment (such as compilation context infor-
mation), or from annotations attached to an artifact by the programmer. Due
to space constraints, we will not describe Stellation’s query language in detail
here; we plan to specify it completely in a future publication. Figure 5 illustrates
a query to generate the menu management VSF shown in figure 2. The syntax
illustrated is based on a set theoretic query mechanism; the queries can be read
as set comprehensions.

In our programming environment, programmers can build queries incremen-
tally, by viewing the results of an approximate query, and then gradually refining
it, both by changing the predicate specified in the query and by explicitly adding
or removing program artifacts.

46 Mark C. Chu-Carroll and James Wright

Menu mgmt = new java vsf {
name = "menu management"

description = "Menu management component"

members = all m : java method |
m calls subscribe("menu.contribution.request", *, *)

OR m.name = contributeMenu

OR m calls sendMessage("menu.contribution", *, *)

OR m.name = UIDriver.populateMenus

}

Fig. 5. Query to extract the menu management VSF illustrated in figure 2

2.3 Linguistic Knowledge

The query system described in the previous section requires linguistic and se-
mantic knowledge about the system under development. In a conventional SCM
system, no semantic knowledge is available: program artifacts are managed as
opaque atomic entities. In Stellation, this knowledge is generated through dy-
namically registered extension components. Each program artifact is tagged with
information about its language, and that tag is used to identify a collection of
components which should be used for analysis of that artifact.

Stellation supports two kinds of extension components: analysis extensions,
and query extensions. An analysis extension is executed on an artifact whenever
a new version is stored in the repository, and generates a summary string which
is stored with the artifact version. A query extension provides a set of predicates
that can be used in a query expression. A common idiom for the use of these
extensions is to provide paired analysis and query extensions, where the analysis
extension provides summary information which is used by the query extension
to rapidly determine if a candidate artifact belongs in a VSF.

2.4 Locks and Coordination

The query system is also used for coordination. Stellation uses an advisory lock
based coordination mechanism. When a programmer wants to make a change
to the system,they issue a query specifying a collection of artifacts to lock. To
actually acquire the lock, they are required to give a description of the change
that they are making, which is recorded by the system: this description is first
associated with the lock (while it exists) and then with the change (when it is
completed and the lock is released). There are two significant advantages to this
approach. First, the programmer can lock exactly the set of artifacts associated
with a change. Instead of locking an entire source file (as in most file-based SCM
systems), or locking individual fine-grained artifacts (as in most fine-grained
SCM systems), the programmer can precisely specify the scope of the change,
and lock exactly the relevant artifacts.

Second, this mechanism enhances team communication and awareness of
other programmers. While the change is in process, a programmer who tries

Supporting Distributed Collaboration 47

to create a conflicting lock will be informed of the conflict, and will see the de-
scription of the conflicting change. If they want to break the lock, they are free
to do so, but the programmer holding the lock will be notified of the break, and
the description of the change that required the break.

3 Hierarchical Replication

As we mentioned earlier, one of the critical problems in widely distributed de-
velopment is the limited communication bandwidth available between the pro-
grammers working on a project. In addition to this bandwidth gap, there is also
a time gap: when programmers are scattered in different time zones, their active
work times may not overlap at all. In order to address bandwidth limitations, the
Stellation repository functions as a collection of loosely coupled repository repli-
cas. In order to address the issues of time synchronization and the lack of direct
communication available to co-located programmers, communication facilities
related to coordination are integrated into the repository, so that programmers
who cannot interact directly can still stay in close touch and coordinate their
work.

The Stellation repository is implemented as a family of related repository
replicas, which are coordinated through a low-bandwidth subscription based
messaging system. The use of a repository hierarchy allows individual program-
mers and project sub-teams to work closely together, without having to pay the
bandwidth cost of global coordination and consistency. In addition, the use of
repository replicas provides a style of disciplined implicit branching that allows
project sub-teams to isolate their changes in progress,but still maintain contact
and coordination with the rest of the project. It enables programmers working
in diverse locations to closely coordinate with an SCM program repository with-
out requiring continual network contact with the central root server. We will
present the Stellation hierarchical repository in two parts: first, we describe how
repository replication and the hierarchy work to provide safe change isolation,
and then we will describe how changes made in isolation are propagated outward
through the system by programmer initiated releases.

3.1 Replication and Change Isolation

The Stellation repository is implemented as a hierarchy of linked repository
replicas. The system provides a central master program repository, which man-
ages the master copy of the system. Anything which has been checked in to
the master repository is available to all programmers working on the project.
This master repository is replicated by each project sub-team, to provide a pri-
vate sub repository. The sub-repository may be further replicated to produce
sub-repositories for smaller sub-teams until each programmer (or each small
team of programmers) has a private sub-repository where they can place their
own changes. Changes can be checked into these sub-repositories without those
changes becoming visible to the rest of the project team. (We call this ability to

48 Mark C. Chu-Carroll and James Wright

Fig. 6. Team structure and repository replication

create frequent isolated project versions temporal fine granularity.) We illustrate
an example of a project team divided into sub-teams, and the corresponding
repository replica structure in figure 6.

The sub-repositories are linked to their parent using a subscription based
notification facility. When relevant events occur, notifications are transmitted
between the levels of the tree. For instance, when a unit of code is changed, in-
formation about the change is transmitted from the repository where the change
occurred to its parent. If appropriate, the parent transmits information about
that change to its parent and to its other children. When a replica is discon-
nected from the network, relevant events are queued and transmitted en masse
when connection is reestablished.

3.2 Change Integration

As discussed in the previous section, in Stellation, changes are initially isolated to
a private repository replica. When the programmers responsible for that replica
reach stable point, they need to be able to make their changes accessible to
other members of the project. In Stellation, this process is called releasing a
set of changes. Change releases are integrated into the repository hierarchy.
When a programmer releases a set of changes from her replica, the entire set of
changes is copied to her replicas parent. After a release, the parent repository
reflects a different head version of artifacts than any other sub-repositories not

Supporting Distributed Collaboration 49

involved in the release. The parent then sends out a notification to any other child
replicas, informing them that they need to re-synchronize their sub-repository.
Upon receiving this notification, the replicas will alert the associated users of
the availability of changes. When the users of the replica are ready, they can
resynchronize with the parent replica, integrating the newly released changes
into their replica. This resynchronization is initiated by the user of the replica,
rather than automatically, in order to prevent abrupt, unexpected changes from
interfering with programmers in the middle of some task, and to ensure that
programmers are always aware of updates.

For example, in figure 6, suppose that a member of project sub-team A2
makes a change to the system, affecting artifacts ”j”, ”h”, and ”k” (illustrated
in the figure by marking the changed artifacts with dotted lines). This change is
immediately visible to other members of sub-team A2; but to members of sub-
team a1 or any other sub-team, the changes are not visible. When the members
of sub-team A2 become confident in the stability of the changes, these changes
are integrated into repository replica ”A”, making them visible to all members
of sub-team A, including sub-team A1, but not yet making them available to
members of sub-team B.

Because of the locking mechanisms, users rarely make concurrent changes to
a single fragment. But under some circumstances, concurrent changes are un-
avoidable. In such a situation, Stellation will perform an optimistic merge of the
concurrent changes, and if any errors are detected, it will notify the program-
mers responsible for the conflicting changes, and they will then be responsible
for resolving the conflicts.

3.3 Hierarchical Coordination

Stellation tightly integrates support for repository replication hierarchy and lock
based coordination. Programmers can request that locks be placed at any point
in the replication hierarchy; and a lock can be placed by a replica owner in a man-
ner that allows changes to a collection of artifacts to all programmers accessing a
given sub-hierarchy of replicas, while all programmers accessing replicas outside
of the selected region view the artifacts as locked. Inside the lock-holding sub-
hierarchy, the artifacts are viewed as unlocked, and further locks can be placed
which affect only that sub-hierarchy.

For example, in the programming environment project shown in figure 6,
we illustrate a typical scenario of how locks integrate with the replica/branch
hierarchy in figure 7. In this diagram, shaded areas represent locks.

The UI sub-team places a lock on the menu management code, consisting of
the set of artifacts {J, H, K, I, L}. The lock is assigned to the UI team’s shared
branch, resulting in the situation as shown where the artifacts are locked in
the main branch and all of the child branches outside of the UI team hierarchy;
within the UI team branch and its children, the artifacts remain unlocked. Thus,
to all programmers outside of the UI sub-team, the menu management subsystem
is locked. But for the UI team, the subsystem is unlocked.

50 Mark C. Chu-Carroll and James Wright

Fig. 7. Hierarchical locking

Next, a member of the browser team locks the browsers menu management
code in the UI branch/replica. This lock covers artifacts {J, H, K}. Now the
lock is assigned to the Browser team branch, and the artifacts are locked in the
rest of the UI branch hierarchy. Finally, the programmers in the browser team
could then edit that code, placing locks that affect other members of the browser
sub-team as appropriate (as illustrated by the lock on artifact J in the figure..
When all of the subsystem changes were complete, then the global lock could be
released, and the changes integrated into the global repository.

This hierarchical coordination mechanism allows programmers to use locks
at different granularities to reflect different degrees of closeness in collaboration.
The closer the collaboration, the finer the granularity of locks. This mechanism
also minimizes communication bandwidth required for coordination by eliminat-
ing the need to communicate information about fine-grained locks to all of the
repository replicas.

Supporting Distributed Collaboration 51

4 Related Work

For the most part, the individual features that make up Stellation are not novel;
it is our combination of them in a distributed collaborative setting that provides
new capabilities that better address the problems of distributed team-based
programming better than any of its predecessors.

Replication has appeared in TeamWare [21], Infuse [17], and Adele [10,2].
Branching facilities that provide semantically similar functionality are provided
by Vesta [13] and Clearcase [18,28]. Finally, another family of systems including
Adele and Infuse allow the use of sub-repositories.

Distributed support for SCM has been provided by several systems. CVS [4],
while generally a weak system, provides excellent support for remote repository
access. NUCM [26,27] and ENVY [16] each provide support for remote repository
access and repository replication. Bitkeeper [3] provides a mechanism for allow-
ing programmers to work in private repositories without any inter-repository
coordination, and to integrate changes through email using patch packages. The
W3C has released the WebDAV [12,9] extensions to HTTP that provide a net-
work based access mechanism to SCM repositories. The WebDAV protocol will
likely be supported by a future version of Stellation.

Locks as a coordination mechanism date back at least to RCS [25] and SCCS.
Optimistic coordination has been provided by a large number of systems, includ-
ing the popular open-source SCM system CVS [4].

Fine-grained versioning as a mechanism for inter-programmer coordination
was explored by the COOP/Orm project [1]. COOP/Orm used an even finer
grained form than than Stellation. However, COOP/Orm assumed that pro-
grammers were geographically local, and had high-bandwidth network connec-
tions between the programmers.

Many systems, including Adele [10], Vesta [13], Infuse [17] and DSEE [15],
have focused attention on software building as a different aspect of the collabora-
tive programming problem. Stellation does not yet make any attempt to address
this problem; we hope to make this a focus for the future.

The idea of multidimensionality used by Stellation originated in the separa-
tion of concerns community, and the ideas were developed in discussions with
IBM’s HyperSpaces [24] team. The basic abstractions of Stellation and HyperJ
are another mechanism for achieving the same goals as aspect oriented program-
ming [14]. This notion is closely related to the dynamic view mechanisms of the
Gwydion Sheets environment [20], and Desert [19], and the dynamic hierarchical
configurations in ICE [29], Adele, and Infuse [17].

5 Conclusion

In this paper, we have briefly discussed the Stellation software configuration
management system. Stellation is designed to simplify the task of developing
large scale software systems, particularly when that development occurs in a
geographically distributed environment. Stellation provides a set of features,

52 Mark C. Chu-Carroll and James Wright

including multidimensionality, repository replication and hierarchical coordina-
tion, that enhance the ability of programmers separated by distance and time
to communicate, collaborate, and coordinate their work.

Stellation is an open-source sub-project of the Eclipse Technologies project.
The full source code of the current system is available from Eclipse at
http://www.eclipse.org/stellation.

References

1. B. Magnusson and U. Asklund. Fine grained version control of configurations in
COOP/Orm. In ICSE’96 SCM-6 Workshop, pages 31–48, 1996.

2. N. Belkhatir, J. Estublier, and W. Melo. Adele 2: A support to large software
development process. In Proceedings of the 1st International Conference on the
Software Process, 1991.

3. Inc. Bitkeeper. BitKeeper source management: Details of operation. Webpage:
http://www.bitkeeper.com/bk05.html.

4. P. Cederqvist. CVS Reference Manual, 1998. Available online at
http://www.loria.fr/~molli/cvs/doc/cvs_toc.html.

5. M. Chu-Carroll and S. Sprenkle. Coven: Brewing better collaboration through
software configuration management. In Proceedings of FSE 2000, 2000.

6. M. C. Chu-Carroll. Supporting distributed collaboration through multidimensional
software configuration management. In Proceedings of the 10th ICSE Workshop
on Software Configuration Management, 2001.

7. M. C. Chu-Carroll, J. Wright, and A. T. T. Ying. Aspects and multidimensionality
in software configuration management. In Proceedings of the 2nd Conference on
Aspect-Oriented Software Development, pages 188–197, 2003.

8. Mark C. Chu-Carroll, James Wright, and David Shields. Supporting aggregation
in fine grained software configuration management. In Proceedings of SIGSOFT
FSE 10, 2002. To appear.

9. G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead. Versioning exten-
sions to WebDAV: Internet draft, draft-ietf-webdav-versioning-20-final. Technical
Report RFC3253, The Internet Society, March 2002.

10. J. Estublier and R. Casallas. Configuration Management, chapter The Adele Con-
figuration Manager. Wiley and Sons, Ltd., 1994.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

12. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP extensions
for distributed authoring – WebDAV. proposed standard - request for comments
(rfc) 2518. Technical report, The Internet Society, February 1999.

13. A. Heydon, R. Levin, T. Mann, and Y. Yu. The vesta approach to software con-
figuration management. Technical Report 1999-01, Compaq SRC, 1999.

14. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proceedings of ECOOP, June
1997.

15. D. Lubkin. Heterogeneous configuration management with DSEE. In Proceedings
of the 3rd Workshop on Software Configuration Management, pages 153–160, 1991.

16. OTI. ENVY/Developer: The collaborative component development environment
for IBM visualage and objectshare, inc. visualworks. Webpage: available online at:
http://www.oti.com/briefs/ed/edbrief5i.htm.

Supporting Distributed Collaboration 53

17. D. Perry and G. Kaiser. Infuse: a tool for automatically managing and coordinating
source changes in large systems. In Proceedings of the ACM Computer Science
Conference, 1987.

18. Rational ClearCase. Pamphlet at http://www.rational.com, 2000.
19. S. Reiss. Simplifying data integration: the design of the Desert software develop-

ment environment. In Proceedings of ICSE 18, pages 398–407, 1996.
20. R. Stockton and N. Kramer. The Sheets hypercode editor. Technical Report 0820,

CMU Department of Computer Science, 1997.
21. Sun Microsystems, Inc. TeamWare user’s guides, 1994.
22. R.E. Filman T. Elrad and A. Bader (editors). Special section on Aspect Oriented

Programming. Communications of the ACM, 44(10):28–97, October 2001.
23. P. Tarr, W. Harrison, H. Ossher, A. Finkelstein, B. Nuseibeh, and D. Perry, edi-

tors. Proceedings of the ICSE 2000 Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering, 2000.

24. P. Tarr, H. Ossher, W. Harrison, and Jr. S. Sutton. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the 21st International
Conference on Software Engineering, pages 107–119, 1999.

25. W. Tichy. RCS - a system for version control. Software: Practice and Experience,
7(15), 1985.

26. A. van der Hoek, A. Carzaniga, D. Heimbigner, and A.Wolf. A reusable, distributed
repository for configuration management policy programming. Technical Report
CU-CS-864-98, University of Colorado Department of Computer Science, 1998.

27. A. van der Hoek, D. Heimbigner, and A. Wolf. A generic, peer-to-peer repository
for distributed configuration management. In Proceedings of ICSE 18, March 1996.

28. Brian A. White. Software Configuration Management Strategies and Rational
ClearCase: A Practical Introduction. Pearson Education, 2000.

29. A. Zeller. Smooth operations with square operators: the version set model in ICE.
In ICSE’96 SCM-6 Workshop, pages 8–30, 1996.

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 54-69, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Software Configuration Management Related to the
Management of Distributed Systems and

Service-Oriented Architectures

Vladimir Tosic, David Mennie, and Bernard Pagurek

Network Management and Artificial Intelligence Lab
Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
{vladimir,bernie}@sce.carleton.ca

Abstract. We summarize our three research projects related to software configu-
ration management and discuss three challenges for the future research in soft-
ware configuration management. The three projects that we discuss are dynamic
service composition from service components, extending service comp onents
with multiple classes of service and mechanisms for their manipulation, and dy-
namic evolution of network management software. The three challenges to
software configuration management research that we are interested in are: 1)
managing dynamism and run-time change, 2) integration of software configura-
tion management with other management areas and domains, and 3) management
of Web Service compositions.

1 Introduction

In the past, our research group focussed on researching the domain of network ma n-
agement including network configuration management. This included investigating the
use of mobile agent technologies and artificial intelligence techniques to enhance how
a network is controlled and managed. However, in recent years our focus has shifted
more towards management of distributed systems and service-oriented architectures.
Many of our recent research projects have uncovered issues related to software con-
figuration management (SCM).

We view software configuration management as a part of the broader work on the
management of distributed systems, networks, applications, and services. In particular,
we are interested in managing dynamism and run-time change in distributed sys tems.
Since this is a very complex problem with many open issues, we have broken it into
sub-problems and our different research projects investig ate one or more of these sub-
problems from different perspectives and in different environments. The environment
that is increasingly in the focus of our attention is a service-oriented architecture
(SOA), particularly a Web Service composition. We view the management of dyna-
mism and run-time change, the integration of software configuration management with

c©

Software Configuration Management

55

other management areas and domains, and the management of Web Services and Web
Service compositions as three important challenges for the future research on software
configuration management. While our research projects have uncovered some issues
and provided some results, future work is necessary.

In this paper, we summarize some of our projects, experiences, and results related to
software configuration management and discuss the three challenges to software
configuration management mentioned above. In this section, we gave an introduction
into the relationship between our research and software configuration management. In
the next section, we define terminology used in this paper. In particular, we define the
terms ‘service-oriented architecture’ and ‘service component’. In the following three
sections we summarize our three projects most related to software configuration ma n-
agement. Firstly, we present an architecture supporting dynamic (i.e., run-time) com-
position of service components. Secondly, we summarize our work on service compo-
nents with multiple classes of service and dynamic adaptation mechanisms based on
the manipulation of classes of service. Thirdly, we discuss our results on software hot-
swapping – an approach to dynamic evolution of software with minimal disru ption of
its operation. After the summary of these three research projects, we discuss three
challenges to software configuration ma nagement. Section 6 discusses management of
dynamism and run-time change. Section 7 examines the need of integrating software
configuration management and other management areas and domains. Section 8 out-
lines some issues related to the management of Web Service compositions. In the final
section of the paper, we summarize conclusions.

2 Software Components as Service Components

The concepts such as a service-oriented architecture, the “software is a service” busi-
ness model, service component, and particularly a Web Service have become common
in software literature. Since our research uses these concepts and since we argue that
service-oriented architectures rise new challenges to software configuration manage-
ment, we briefly define these terms here.

Unfortunately, an unambiguous definition of these concepts is not possible be-
cause the term ‘service’ has many different meanings. These meanings vary between
different areas and even between works of different authors discussing the same area.
For the topic of this paper, we emphasize two of dictionary definitions of the term
service: 1) useful labor that does not produce a tangible commodity; and 2) a facility
supplying some public demand. These meanings are reflected in the ‘software is a
service’ business model. In the traditional ‘shrink-wrap’ software business model,
software is a product that is delivered on some external memory medium (e.g., a Com-
pact Disk – CD), sold in stores, and has to be installed on the computer(s) of end u s-
ers. In the ‘software is a service’ business model, software is no longer a product, but
a service available over a network (e.g., a virtual private network – VPN or the Inter-
net). Some of the advertised benefits of this software business model are faster and
easier distribution of software updates, easier management of dependencies between
software mo dules, and more optimal utilization of computing resources. A number of

Vladimir Tosic et al. 56

applic ation service providers (ASPs) use this business model to provide network ac-
cess to software applications. In addition, component service providers (CSPs) started
to appear. They offer network access not to monolithic applications, but to libraries of
composable service components.

In this paper, by a ‘service component’ we mean ‘a self-contained, network-
accessible unit of service provisioning and management that encapsulates some ser-
vice functionality and data, has a well-defined interface, and can be composed with
other service components’. A service component is relatively independent from other
service components in a particular composition – it can be relatively easily detached
and replaced with another appropriate service component. Also, it can be reused in
many different service compositions. Many authors use the term ‘service’ with the
same meaning we use for ‘service component’. The two terms can be used inter-
changeably, but we prefer the term ‘service component’ because the term ‘service’ has
far too many diffe rent meanings and does not reflect composability. In addition, when
we speak about ‘service management’, ‘service’ means ‘customer view of the func-
tionality provided by the system’. Note that services and service components can
provide not only software functionality and data, but also access to some hardware
resources, such as memory, printing, and network bandwidth1. However, in this paper
we are predominantly interested in software-based service components. A service
component is a higher-level abstraction than a software component or a dis tributed
object. It can be implemented with one or more software components and/or distrib-
uted objects and/or other software entities. Despite the differences, there are also
many similarities between service components and software components. Conse-
quently, we find important relationships between the creation and management of
service components and the work on component configuration management [1].

A service-oriented architecture (SOA) [2] is a software architecture where mono-
lithic applications are decomposed into distributed network-accessible service compo-
nents, potentially provided by different business entities. The relationships and inter-
actions between service components are not determined during design-time or de-
ployment-time, but during run-time. When a new provider (supplier) service comp o-
nent becomes available during run-time, its description is published in a registry (di-
rectory or repository). When some requester (consumer) service comp onent needs
new functionality during run-time, it searches the repository to find an appropriate
provider service component. When it finds such a provider, it retrieves its network
address from the repository and invokes the provider directly. This is known as the
‘publish-find-bind’ model of dynamic interaction between service components.

Several industrial initiatives and standardization efforts of several industrial forums
are based on the concept of a Web service. A Web service2 is a service component (in
our definition) that is identified by a set of Uniform Resource Identifiers (URIs) and
can be described, published, found, composed, and invoked using Extensible Markup
Language (XML) based technologies. The three most widely used Web Service tech-
nologies are the Web Service Description Language (WSDL), the SOAP XML me ssag-

1 A recent example of a service component that can encapsulate both software and hardware

functionality is a Grid Service, a special case of a Web Service.
2 A recent definition of a Web Service can be found in [3].

Software Configuration Management

57

ing protocol, and the Universal Description, Discovery, and Integration (UDDI) dire c-
tory [2]. Web Services are currently the most widely used service-oriented architec-
ture.

3 An Architecture Supporting Dynamic Service Composition

Dynamic service composition is the process of creating new services at run-time from
a set of service components. This process includes activities that must take place
before the actual composition such as locating and selecting service components that
will take part in the composition, and activities that must take place after the comp osi-
tion such as registering the new service with a service registry. Dynamic service com-
pos ition can also be used for adapting running applications and changing their exis t-
ing functionality by adding or removing features. Ideally, dynamic service composition
is an automated process with minimal human involvement. An example of dynamic
service composition is when a user requires an Internet search engine that will filter
out advertising from the results returned for a particular query, but this service was
not designed ahead of time. The user could ask some dynamic composition architec-
ture to assemble such service at run-time from an Internet search engine and adver-
tisement filtering software, implemented as service components.

There are several benefits to dynamic service composition, but we emphasize in-
creased flexibility, adaptability, agility, and availability. Firstly, support for dynamic
service composition enhances flexibility and adaptability of software systems. To
address new problems or needs, many new services can be assembled from a set of
basic service components. These services may not have been designed or even con-
ceived during design or deployment time. The composition can be performed on de-
mand of the application or a user. While dynamic service composition has limits be-
cause not every new service can be realized as a combination of existing service com-
ponents, it can be a useful mechanism for dynamic system evolution. Secondly, dy-
namic composition of service comp onents increases agility of software systems. It
happens during run-time, in limited time, and with minimal human involvement. Co nse-
quently, it enables faster adaptation to new circumstances or demands than off-line
system redesign. Thirdly, dynamic service composition enhances the overall system
availability. It minimizes interruptions of services provided to users during upgrades or
the addition of new functionality into the system.

Composing service components at run-time is a challenging undertaking because of
all the subtleties of the procedure involved, the many exceptions to the compositional
rules that can occur, and the possibility of error and unexpected problems [4, 5]. One
of the main challenges is in dealing with many unexpected issues in a relatively short
time. All decisions must be made relatively quickly or dynamic composition becomes
impractical. Further, since the composition is performed at run-time, it is not possible
to predict or test everything during design time. In dynamic composition, as we have
defined it, it is extremely difficult to predict beforehand the exact environmental condi-
tions that will exist in a system at the time the composition is performed. We call this
unanticipated dynamic composition [6], meaning that all potential compositions are

Vladimir Tosic et al. 58

not known and neither the service components nor the supporting composition infra-
structure are aware if a particular composition will be successful until it is actually
carried out. While some steps can be taken to decrease the chance of a failed com-
position, it cannot always be avoided. Further, unexpected interactions between the
composed service components can occur, but they cannot be easily and rapidly dis-
covered and recovered from. Human input can be used for alleviating such problems,
but human involvement can also significantly slow the composition process. Locating
components at run-time for composition requires a component library or code reposi-
tory that is integrated with the software infrastructure performing the composition.

One of the fundamental challenges in composing services at run-time is the design
and implementation of an infrastructure that will support the process. There is a lack of
support for dynamic techniques in programming languages and other development
tools, so specialized tools are needed. We have designed and implemented a general-
purpose dynamic service composition architecture called the Infrastructure for Com-
posability At Run-time of Internet Services (ICARIS) [4, 5]. The architecture provides
all of the required functionality to form composite services from two or more service
components that have been designed for composability. While this architecture was
developed before Web Service technologies appeared, some of its results can be
beneficial for the s tudy of Web Service compositions.

One of the measures we have taken to minimize problems with service compositions
in ICARIS was to bundle each service component with a comprehensive specification
that describes all known dependencies, constraints, and potential incompatibilities.
This specification also contains a list of the operations contained within the service
component that can be reused in a composite comp onent. These methods are referred
to as composable methods. By looking at the specification for each component of
interest before attempting to aggregate them in a composite service, failed attempts
can be minimized or recovered from. The general rule is that the composition is aborted
if a conflict is detected by the supporting infrastructure.

The ICARIS architecture supports three primary composition techniques [4, 5]:

1. composite service interface,
2. stand-alone composite service using a pipe-and-filter architecture, and
3. stand-alone composite service with a single body of code.

The creation of a composite service interface for several service components is
achieved by extracting and combining signatures of their composable methods. Ser-
vice components involved in the composition remain distinct, while communicating
with consumers (clients) through the common composite service interface. The com-
posite service interface redirects all incoming calls to the appropriate service comp o-
nent for execution.

The creation of a new stand-alone composite service from multiple service comp o-
nents is achieved by interconnecting service components using a pipe-and-filter archi-
tecture. In essence, the pipe-and-filter architecture chains the output of one service
component to the input of the next. While this is a fairly primitive connection scheme,
some complex constructions are also possible. One example is when the outputs of
one component are looped back into its inputs. Other connection schemes, such as
service components processing the same input in parallel, are not supported in the

Software Configuration Management

59

Fig. 1. Architecture of the ICARIS Configuration Manger

Xerces XML Parser

Java Code Extra ctor

Text Merging Module

Composition Module

Composite Service Cache

Service Deployment Module

ICARIS User Interface Applet Service Object (Proxy)

Service Component Retrieval Module

ICARIS architecture because they introduce a number of potential problems for dy-
namic service composition. While this is a limitation of ICARIS, the pipe-and-filter
architecture can be enough for many applications.

The creation of a new stand-alone composite service with a single body of code is
achieved by extracting and assembling the composable methods from software-based
service components involved in the composition. The corresponding method signa-
tures are also merged into a new composite service specification. This is the mo st
challenging type of service composition and one motivation for its undertaking can be
performance. In theory, a composite service with a single body of code may take
longer to create than the other types of composite services, but it should also execute
much faster.

To illustrate a justifiable use of dynamic service composition techniques and the vi-
ability of the ICARIS architecture, we have developed an ICARIS prototype based on
Java, Jini, JavaBeans, and XML. These base technologies were not altered, but the Jini
Lookup Service (LS) was extended to support the semantically rich comprehensive
specification of XML service components and their “fuzzy” matching. Component
composition is achieved at runtime by using an application of JavaBeans and the Ex-
tensible Runtime Containment and Services Protocol (ERCSP). The ICARIS prototype
consists of the Jini infrastructure, the Registration Manager, and the Co mpos ition
Manager. The Registration Manager is the entity that is responsible for ma naging
registration and access rights. This includes registration of clients, servers, and ser-
vice brokers. The Composition Manager is the entity that is responsible for the actual
dynamic service composition in the system. Its architecture is given in Figure 1 [4].
Two other elements called the Service Broker and the Service Provider are also re-
quired, but they are not considered parts of the ICARIS infrastructure and can be
provided by third parties. The Service Broker is used to store and retrieve Service
Items. Service components are provided by a Service Provider and are stored with a
Service Broker within a structure called a Service Item. A Service Item is made up of

Vladimir Tosic et al. 60

two major parts: a Service Object (Proxy) implemented as a valid JavaBean and a Ser-
vice Specification written in XML. To support composition of new stand-alone ser-
vices with a single body of code, a separate repository in the Service Broker stores the
raw source code for the Service Object.

Based on this ICARIS prototype, we have developed the Composable Security Ap-
plication (CSA). CSA enables dynamic, on-demand construction and deployment of
point-to-point security associations between a client and a server in the network. It
enables introduction of security services into applications that were not originally
designed with security mechanisms. Since the specification of security associations is
carried out at run-time, the composite client and server security services are con-
structed dynamically. CSA is an accessible, robust infrastructure that is capable of
establishing many types of security associations for any application. Additionally, it is
both fast enough to assemble and deploy these associations at run-time and flexible
enough to add or remove secure services to meet the needs of the applications it
serves. Our application of ICARIS to dynamic composition of security associations
showed the viability and feasibility of our concepts and demonstrated the applicability
of dynamic service composition.

4 Service Components with Multiple Service Offerings

Another project in our research group investigates the concept of classes of service
for service components and management applications of dynamic manipulation of
classes of service. Classes of service can be used for customization of service comp o-
nents to various consumers. Manipulation of classes of service enables dynamic ad-
aptation of service components and their compositions without breaking these com-
pos itions. In this project, we are particularly interested in service components that are
loosely coupled, i.e., distributed and not very dependent. Further, we study cases
where one service component can be a part of many different compositions and serve
many different consumers. Web Services are such service components, so they are in
the focus of this research project. This research is compatible with Web Service indus-
trial initiatives and explores issues that they currently do not address. It can also be
viewed as complementary to the work on dynamic service composition and to the work
on adaptable software using re-composition [7].

For a service component used in a variety of different service compositions, it can
be useful to offer several different classes of service to its consumers. A class of ser-
vice is a discrete variation of the complete service and quality of service (QoS) pro-
vided by one service component. Classes of service can differ in usage privileges,
service priorities, response times guaranteed to consumers, verbosity of response
information, etc. The concept of classes of service also s upports different capabilities,
rights, and needs of potential consumers of the service component, including power
and type of devices they execute on. Further, different classes of service may imply
different utilization of the underlying hardware and software resources and, conse-
quently, have different prices. Additionally, different classes of service can be used
for different payment models, like pay-per-use or subscription-based. Differentiation of

Software Configuration Management

61

classes of services gives consumers a wider choice of delivered functionality and QoS.
On the other hand, it gives the provider service component an opportunity to better
balance its limited hardware and software resources and to address the needs of a
bigger set of consumers. Note that for software components the benefits of differenti-
ating classes of service are not as strong as for service comp onents.

Classes of service are not the only possible mechanism for differentiation of func-
tionality and QoS. We have also examined relevant alternatives, including parameteri-
zation, multiple interfaces, multiple service components, and personalization tech-
niques like user profiling. The main advantages of having a relatively limited number of
classes of service over other approaches to service customization are limited complex-
ity of required management and relatively low overhead incurred.

In the ICARIS project, we have concluded that formal and comprehensive descrip-
tion of service components is needed for more precise run-time selection of service
components and for minimization of unexpected side effects of dynamic service com-
position. On the other hand, the benefits of the formal specification of constraints in
component-based software engineering are widely recognized [8]. In this project, we
have examined what are the crucial parts of classes of service for service comp onents.
The fo rmal specification of QoS (non-functional) constraints—describing issues such
as performance, availability, and reliability—and prices is probably most important. As
the number of service components in the market offering similar functionality in-
creases, the QoS, price/performance ratio, and adaptability will become the major dif-
ferentiation criteria. Formal specification of QoS constraints is also important for appli-
cation and service management. It specifies what QoS metrics to monitor and what
conditions to check to know whether the guara nteed QoS were obeyed. Another im-
portant category of constraint is an authorization right (policy). Authorization rights
can be used for differentiation of service and for security management purposes. Fu r-
ther, the formal specification of constraints can be used for choosing between service
components implementing operations with the same signature. In addition, the formal
specification of supported coordination protocols and design patterns, as well as of
known composition incompatibilities can be very useful in the dynamic composition
process.

In our work, a service component can have not only mult iple interfaces (units of
service functionality), but also multiple service offerings. We define a service offering
as the formal representation of one class of service for a service component. Service
offerings relate to the same functionality (i.e., operations of the service comp onent),
but differ in QoS constraints, authorization rights, and cost. Occasionally, differences
in functional constraints (preconditions, postconditions, and invariants) may exist
between service offerings, but this is generally not the case. By separating the con-
cepts of an interfa ce and a service offering, we provide additional support for dynamic
flexibility and adaptability within a service component.

For the formal specification of service offerings for Web Services, we are develo p-
ing a novel XML-based language – the Web Service Offerings Language (WSOL)3. A
comprehensive description of service components would contain description of all

3 Actually, WSOL is now almost completely developed. More information about WSOL can be

found in [9, 10, 11].

Vladimir Tosic et al. 62

operations, interfaces, functional constraints, QoS constraints, access rights, prices,
compatibilities and incompatibilities, service offerings, and other appropriate informa-
tion. However, since operations and interfaces (ports) of Web Services are already
specified in WSDL, WSOL is made compatible with WSDL and specifies only addi-
tional information. WSOL enables the formal specification of functional constraints,
QoS constraints, access rights for differentiation of services, price, and some other
management statements for Web Services. The specification of security information is
currently outside the scope of WSOL, while the specification of supported coordin a-
tion protocols, design patterns, and known composition incompatibil ities is left for
future work.

Apart from the formal specification of classes of service, we are also researching
manipulation of classes of service as mechanisms for dynamic adaptation of service
compositions. We are developing algorithms and infrastructure support for switching
between service offerings, deactivation/reactivation of existing service offerings, and
(to some limited extent) creation of new appropriate service offerings. By ‘creation of
new service offerings’ we mean the creation of new sets of constraints for the exis ting
functionality, not the creation of new functionality or new functional interfaces. While
these dynamic adaptation mechanisms have limited power compared to re-
composition, we find them suitable for several different situations. For example, if a
service offering has to be dynamically deactivated while it is used by at least one con-
sumer, maybe the consumer would be satisfied with another service offering from the
same service component. Another example is using dynamic creation of service offer-
ings after dynamic evolution of a service component. Some of the issues that we try to
address in our research of these dynamic adaptation mechanisms are: how to relate
service offerings to better support automatic switching between them, how to inte-
grate into service components the support for deactiv ation/reactivation of service
offerings, how to support rules governing creation of new service offerings, etc. We
are developing4 prototype architecture implementing support for service offering and
their d ynamic manipulation for Web Service.

5 Dynamic Evolution of Network Management Software

Our research group is also investigating the issue of the dynamic evolution of soft-
ware with minimal disruption of its operation. This is an important issue for high-
availability and real-time systems. The evolution required can be [12]:

1. corrective – fixing bugs or problems,
2. perfective – improving performance,
3. ext ensive – adding new functionality, and/or
4. adaptive – adaptation to new operation environments.

As noted in [7], a number of different approaches have been taken by research in-
s titutions trying to address this issue. The major efforts are based on the des ign of a

4 A discussion of our recent results in this area and some recent related works is given in [11].

Software Configuration Management

63

software architecture, a new programming language, a data-flow architecture, a dis trib-
uted system, a distributed object technology such as CORBA and COM, a compiler,
an operating system, or a real-time system that will support software evolution. Some
of the issues that pertain to dynamic software evolution are described in [13]. These
include developing the appropriate infrastructure support, developing dynamically
upgradable software modules, defining the module granularity, defining the scenarios
where software upgrading is allowed or not allowed, obeying the limits on the allowed
duration of the upgrading process, transferring the state between module versions,
and transactional issues.

We are particularly interested in the problem of dynamic software evolution as it
pertains to network management software. A network management system is a rele-
vant case study that can be used to capture general software evolution issues. Shut-
ting down the entire network management system to perform an upgrade is not an
appropriate solution for large mission critical networks. We have developed our own
infrastructure and experimentally applied it to a modular Simple Network Management
Protocol, version 3 (SNMPv3) system implemented in Java [12, 14].

Our approach to dynamic software evolution, called software hot-swapping [12, 13,
14], is based on the concept of swappable modules (S-modules) and corresponding
non-swappable proxies (S-proxies). Only S-modules can be hot-swapped in our archi-
tecture. It must be decided during design time to make a software module a hot-
swappable S-module. Currently, all application modules that are expected to be hot-
swapped have to be manually converted to S-modules before a swap. We have at-
tempted to automate the process of convertin g arbitrary application modules to S-
modules and achieved some limited results. Each S-module has an S-proxy that is per-
manently associated with it. Only the S-proxy has a reference to the S-module. S-
proxies are generated automatically when the application starts and are not changed
during run-time. The S-module and the S-proxy together constitute an S-component.
Apart from S-components, there can be a number of other non-swappable modules in
the application. An application supporting hot-swapping must contain a Swap Man-
ager that controls all swapping transactions. The Swap Manager has access to all S-
modules and provides services listed in Table 1 [12].

Tab. 1. Swap Manager Services

Service Explanation
Listening Waits for new S-modules and instantiates them
Security Performs authentication of incoming S-modules
Transaction Provides control of hot-swapping transactions
Timing Ensures timely completion of hot-swapping transactions
Event Notification of hot-swap events to observers
Repository Caches S-module states during transaction

When a new S-module version is transferred to the desired location using mobile
code, its currently executing version has to be put into a swappable state before a hot-
swap can take place. The S-proxy gets the state of the currently executing version,
initializes the new S-module version with this state, and redirects all references from

Vladimir Tosic et al. 64

the current version to the new version. If during this process, the given swapping time
limit is exceeded, the process is terminated and rolled-back. Otherwise, the new S-
module version is started and the old S-module version is removed from the system.
For the hot swap to succeed, the appropriate support for hot-swapping has to be inte-
grated into S-modules. This includes the ability to extract the state of a running S-
module and to initialize an S-module with the state extracted from the previous version.
The ma pping rules between different versions have to be defined for every S-module
and can be implemented in S-module initialization methods.

This proxy -based approach was chosen after a study of the advantages and disad-
vantages of several possible solutions. Further details on this study are given in [13].
While we found the proxy-based technique to be suitable and efficient enough for the
dynamic evolution of SNMPv3 modules [12], it is not applicable to all software archi-
tectures. For some real-time systems that require even higher availability, other ap-
proaches to dynamic software evolution may be more appropriate. One of the issues of
this proxy approach is that it accommodates hot-swapping of S-modules that provide
different operation implementations, but not S-modules with different operation signa-
tures. Another issue is that every S-module is accompanied by one S-proxy and when
the number of S-modules is high, the overhead of creating and managing the same
number of S-proxies cannot be ignored. Further, our implementation uses Java reflec-
tion, which can affect system performance significantly. There is a tradeoff between
the flexibility of the architecture and its performance. For network management, the
flexibility likely outweighs performance issues, but this need not be the case with other
applications.

6 The Challenge of Managing Dynamism and Run-Time Change

Managing dynamism and run-time change is the most important challenge for software
configuration management that we have focussed on in our research. The archetypal
problem we are addressing is how to dynamically and autonomously (i.e., without
explicit human intervention) reconfigure and, if necessary, upgrade software to mini-
mize the effects of a fault or a performance problem on an end user. This problem is a
very complex one with many open issues.

An important aspect in all our research efforts is the modular nature of software –
we investigate dynamism and run-time change issues on the level of software comp o-
nents or modules. Consequently, our work has relevance to the domain of component
configuration management. As discussed in [1] and as we have experienced, the em-
phasis in software configuration management has moved:

1. from development time to run time,
2. from the source code management to the integration and version management of

the components,
3. from the management of implementation libraries to the management of interfaces.

The possibility of run-time change supports valuable system agility, flexibility, and
adaptability, but it also gives rise to a number of problems, some of which can be alle-

Software Configuration Management

65

viated by applying software configuration management. Important examples are de-
pendency management and ensuring consistency. The software configuration ma n-
agement work on dependency management is a good starting point for future research,
but it should be re-evaluated in the context of very frequent change and the crucial
requirement of timely reaction. Similarly, the software configuration management
mechanisms for version tracking and management have to be re-evaluated. With fre-
quent run-time changes, it becomes also harder to achieve consistency. Software con-
figuration management should research not only methods that try to ensure consis-
tency before the change occurs, but also methods that enable successful system o p-
eration when the change causes an inconsistency. It is not possible to always pre-
cisely predict or test the effects of run-time changes. Therefore, the run-time software
configuration management infrastructure should have mechanisms to discover incon-
s istencies and recover (e.g., rollback) from unsuccessful changes. However, to achieve
a consistent state, a system might have to pass through intermediary inconsis tent
states and therefore mechanisms for transactional changes are also needed. The im-
portance of flexibility, availability, scalability, and performance of management solu-
tions (including software configuration management) will increase further. While our
research is focused on increasing flexibility and availability, we also examine scalability
and performance issues in our research projects.

7 The Challenge of Integrating Software Configuration
Management with Othe r Management Areas and Domains

The International Organization for Standardization (ISO) identifies configuration ma n-
agement as one of five management functional areas, which also include fault ma n-
agement, performance management, accounting management, and security manage-
ment. Further, software configuration management is a subset of application manage-
ment, which covers distribution, installation, configuration, monitoring, maintenance,
versioning, and removal of application software. Also, the management of software
(i.e., applications) is becoming more tightly connected with the management of com-
puter systems (both stand-alone and distributed), peripheral devices, networking in-
frastructure, databases, and other resources. Integrated network and system manage-
ment – also known as enterprise management – strives to unify these management
domains within the overall computing/communication system. A further unification is
achieved with service management, which focuses on monitoring and controlling ser-
vice level agreements (SLAs) between service providers and users. Service manage-
ment adopts business- and customer- centric point of view, instead of the technology-
centered point of view. This requires mapping technology-centered management ac-
tivities and data into appropriate business issues and data directly showing how the
value provided to end users and service providers’ responsibilities stated in service
level agreements are affected.

Service components can encapsulate not only software, but also hardware func-
tionality. In this context, the issues like balancing limited underlying hardware and
software resources during run-time and managing QoS become more important. Such

Vladimir Tosic et al. 66

issues are traditionally beyond the scope of software configuration management solu-
tions. We believe that one of the main challenges for software configuration manage-
ment in the future will be its integration with other management areas (fault, account-
ing, performance, and security management) and domains (device, desktop, network,
system, data, application, enterprise, service management). Note that enterprise ma n-
agement software suites like Hewlett-Packard OpenView, IBM Tivoli, and Computer
Associates Unicenter TNG already include some software configuration management
functionality and integrate it with other management applications in the suite. Also,
the Common Information Model (CIM) standard for description of network, system,
and application management data can be used for describing software configurations.
However, we see the need for further work and research, at least on three tightly
interrelated topics:

1. Integration of configuration management and other management areas, particularly
with other areas of application ma nagement.

2. Integration of software configuration management with system and network con-
figuration management.

3. Mapping software configuration management solutions to service management, i.e.,
to business-related issues and data. To better support this mapping, the
price/performance ratio, uninterrupted service availabilit y, and other issues (both
technical and non-technical) relevant to end users must be addressed.

The archetypal problem of dynamic reconfiguration given in the previous section
also illustrates these issues. First, this dynamic reconfiguration problem requires inte-
gration of configuration management and fault or performance management. Fu rther,
the fault or performance problem in question can be software-based, but it can also be
caused by an underlying computer hardware or network infrastructure, so the integra-
tion of application management with systems and network management is needed.
Finally, as the ultimate goal of management is to minimize impacts on end users, this is
also a service management pro blem.

We have explored such integration in our projects. For example, we have used the
ICARIS architecture for dynamic composition of security services and the software
hot-swapping for SNMPv3 security modules. In this way, we have used software con-
figuration management to support application and network security ma nagement.

The research of mappings between software configuration management and service
management can be extended with the research of relationships between software
configuration management and business process management (BPM) systems. When
activities in business processes are software modules or service components (e.g.,
Web Services), the description of the business process can be viewed as a software
configuration description. Dynamic optimization, adaptation, or re-engineering of such
business processes can use extended software configuration management data and
techniques. Again, we see the challenge in relating technical and business data to be
able to assess bus iness impacts of software configuration modifications.

Software Configuration Management

67

8 The Challenge of Web Service Composition Management

We make a difference between Web Service management (WSM) and Web Service
composition management (WSCM). We define Web Service management as the ma n-
agement of a particular Web Service or a group of Web Services within the same d o-
main of management responsibility. For example, Web Services provided with one
applic ation server can be managed as a group. Similarly, Web Services provided by
the same business entity can be managed in a unified manner as a group, either com-
pletely or only in some respects. A large number of companies already claim that their
products perform some kind of Web Service management, predominantly in perform-
ance management. Many of these products are platform-specific application manage-
ment products, often based on Java Management Extensions (JMX). Another frequent
Web Service management approach is to use Web Service gateways, hubs, or proxies
that serve as a single point of control, metering, and management.

On the other hand, we define Web Service composition management as the ma n-
agement of Web Service compositions. In a general case, the composed Web Services
are distributed over the Internet and provided by different business entities. Some of
these business entities might not want to relinquish or outsource control over their
Web Services. They often have mutually incompatible and even conflicting manage-
ment goals. In addition, management of the Internet infrastructure is a very challeng-
ing task. Consequently, Web Service composition management will usually not be able
to involve full Web Service management of the composed Web Services and manage-
ment of the Internet communication infrastructure. Therefore, the emphasis in Web
Service composition management must be on decisions related to which Web Services
are composed and how they interact. Contrary to Web Service management, there are
relatively few results on Web Service composition management.

Note that Web Service compositions can have very different characteristics. In
some cases, there will be an explicit description of the composition5. However, in some
cases there will be no such description. A Web Service composition can emerge spon-
taneously, from a series of (primarily) bilateral contracts. In such case, there is no
‘master plan’ and no common goal; all participants have their own interests, mutually
conflicting. Consequently, the Web Service composition management becomes harder,
albeit possible.

Software configuration management is certainly an important part of Web Service
management. A Web Service implementation can use many different software pro d-
ucts, possibly from different vendors. Some examples are a Web Server, an applic ation
server, SOAP packaging/unpackaging software, a software component container, a
number of implementation software components, performance management instrumen-
tation, load balancing software, and security management software. It can also happen
that some of these products execute on different platforms. The existing software con-
figuration management techniques and tools can be very useful to manage such a
diverse set of software entities.

5 Several languages, including the Business Process Execution Language for Web Services

(BPEL4WS), have appeared in this area.

Vladimir Tosic et al. 68

On the other hand, there is a need to research further the relationships between
software configuration management and Web Service composition management. The
Web Service composition management is positioned between the traditional applica-
tion management (including software configuration management) on one side and the
business process management on the other. Significant analogies can be made be-
tween the Web Service composition management and both of these related areas.
While significant body of existing knowledge can be exercised for the Web Service
composition management, there are also important differences. One of the differences
from the traditional application management tools is that the composed Web Services
are under full control of their vendors, with different management goals. An important
difference from the traditional business process ma nagement tools is that a Web Ser-
vice comp osition is not only a representation of a business process, but also a busi-
ness service and a distributed software system and component for further comp osi-
tion. Neither the traditional application management nor the business process ma n-
agement solutions completely address the complexity of multi-party, multi-goal, multi-
level, and multi-aspect management.

9 Conclusions

With service-oriented architectures, such as Web Services, the distribution, dyna-
mism, and complexity of software systems increases. Service components can abstract
both software and hardware functionality, and they are increasingly viewed from the
bus iness, instead of technology, perspective. This all raises a number of new chal-
lenges that software configuration management has to address.

Many of these challenges are related to the management of dynamism and run-time
change. Dynamism and run-time change improve system flexibility, adaptability, agil-
ity, and availability. However, their management is inherently complex and has a pos-
sibility error. Dynamic service composition and software hot-swapping are good ex-
amples. This possibility of error can be minimized, but not completely avoided. Since
success cannot be guaranteed a priori, mechanisms for error discovery and handling
are needed. Additional hardening circumstances are that such management actions
have to be performed in limited time, with minimal human involvement, and with mini-
mal disruption of the overall system and its users.

Another challenge is the integration of software configuration management with
other management areas and domain, particularly the association of technical ma n-
agement information and business data. Software is a part of a larger computing and
business system. The end users are ultimately interested in the overall functionality
and QoS that they get and in business impacts of software operation and problems.

While software configuration management plays a very important role in Web Ser-
vice management, it has even bigger role in Web Service composition management.
The latter requires not only management of dynamism and run-time change, but also
handling multiple business entities with conflicting goals.

Software Configuration Management

69

References

1. Larsson, M., and Crnkovic, I.: New Challenges for Configuration Management. In Proc. of
System Configuration Management - Software Configuration Management-9 (Toulouse,
France, Aug. 1999), Springer

2. Gisolfi, D.: An Introduction to Dynamic e-Business. IBM developerWorks (April 2001),
IBM. On-line at: http://www-106.ibm.com/developerworks/webservices/library/ws-arc1/

3. World Wide Web Consortium (W3C): Web Services Description Requirements. W3C Work-
ing Draft 28, October 2002. On-line at:
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028/

4. Mennie, D.W.: An Architecture to Support Dynamic Composition of Service Components
and Its Applicability to Internet Security. M.Eng. thesis, Carleton University, Ottawa,
Canada (2000). On-line at: http://www.sce.carleton.ca/netmanage/papers/MennieThesis.pdf

5. Mennie, D., and Pagurek, B.: A Runtime Composite Service Creation and Deployment and
Its Applications in Internet Security, E-commerce, and Software Provisioning. In Proc. of
the 25th Annual International Computer Software and Applications Conference -
COMPSAC 2001 (Chicago, USA, Oct. 2001) IEEE Computer Society Press. 371-376

6. Kniesel, G.: Type-Safe Delegation for Run-Time Component Adaptation. In Proc. of
ECOOP '99 (LNCS 1628), Springer-Verlag (Lisbon, Portugal, June 1999). 351-366

7. Oreizy, P., Medvidovic, N., and Taylor, R.N.: Architecture-Based Software Runtime Evo-
lution. In Proc. of the International Conference on Software Engineering 1998 - ICSE'98
(Kyoto, Japan, April 1998) ACM Press 177-186

8. Beugnard, A., Jezequel, J.-M., Plouzeau, N., and Watkins, D.: Making Components Con-
tract Aware. Computer, Vol. 32, No. 7. IEEE. (July 1999). 38-45

9. Tosic, V., Patel, K., and Pagurek, B.: WSOL – Web Service Offerings Language. In Proc. of
the Workshop on Web Services, e-Business, and the Semantic Web at CaiSE’02 (Toronto,
Canada, May 2002). Lecture Notes in Computer Science (LNCS), Springer-Verlag (2002)
No. 2512, 57-67

10. Patel, K.: XML Grammar and Parser for the Web Service Offerings Language. M.A.Sc..
thesis, Carleton University, Ottawa, Canada (2003). On-line at:
http://www.sce.carleton.ca/netmanage/papers/KrutiPatelThesisFinal.pdf

11. Tosic, V., Pagurek, B., Patel, B. Esfandiari, B., and Ma, W.: Management Applications of
the Web Service Offerings Language (WSOL). To be published in Proc. of the 15th Confer-
ence On Advanced Information Systems Engineering - CAiSE’03 (Klagenfurt/ Velden, Aus-
tria, June 2003), Lecture Notes in Computer Science (LNCS), Springer-Verlag.

12. Feng, N., Ao, G., White, T., and Pagurek, B.: Dynamic Evolution of Network Management
Software by Software Hot-Swapping. In Proc. of IM 2001, IEEE Publications (Seattle,
USA, May 2001) 63-76

13. Feng N.: S-Module Design for Software Hot-Swapping. M.Eng. thesis, Carleton Univer-
sity, Ottawa, Canada (1999). On-line at:
http://www.sce.carleton.ca/netmanage/papers/FengThesis.pdf

14. Ao, G.: Software Hot-swapping Techniques for Upgrading Mission Critical Applications
on the Fly. M.Eng. thesis, Carleton University, Ottawa, Canada (2000). On-line at:
http://www.sce.carleton.ca/netmanage/papers/AoThesis.pdf

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 70-85, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Uniform Comparison of Configuration Management
Data Models

E. James Whitehead, Jr. and Dorrit Gordon

Dept. of Computer Science
University of California, Santa Cruz

Santa Cruz, CA 95064, USA
{ejw,dgordon}@cs.ucsc.edu

Abstract. The data models of a series of 11 configuration management
systems—of varying type and complexity—are represented using containment
data models. Containment data models are a specialized form of entity-
relationship model in which entities may be containers or atoms, and the only
permitted form of relationship is inclusion or referential containment. By using
entities to represent the native abstractions of each system, and containment
relationships to model inclusion and identifier references, systems can be
modeled uniformly, permitting consistent cross-comparison of systems.

1 Introduction

The past 27 years of research and commercial development have witnessed the
creation of scores of configuration management systems, with Conradi and
Westfechtel’s survey listing 21 systems [3] , and the CM Yellow Pages listing an
additional 43 in the commercial sector [2]. Despite the existence of solid
comprehensive survey work on configuration management systems [3], it is still the
case today that developing a detailed understanding of the data model of a particular
system requires labor -intensive study of the papers and documentation describing it.
Worse, once developed, there is no modeling mechanism that allows this
understanding to be represented in a way that both aids communication about the
model, and permits cross-comparison with other system models. As a result, many of
the data modeling lessons embedded in configuration management systems remain
difficult to access for people outside the field.

Ideally, we would like to represent the data models of configuration management
systems with a mechanism that has the following properties:
• Uniformity: model systems using a minimal and uniform set of abstractions.

Instead of providing a normative definition of versioning and configuration
management concepts, and then mapping system abstractions into these concepts,
ideally we want to use atomic entities to build up models of each system’s
abstractions.

• Utility: easily answer basic version data model questions such as, “how are
version histories represented (if they are explicitly represented at all)”, “are

c©

Uniform Comparison of Configuration Management Data Models 71

directories and other collection-type objects versioned”, and “is there some
notion of workspace, activity, or configuration?”

• Support Analysis: be able to examine systems to tease out different design spaces
employed in each system’s data model.

• Graphic formalism: communicate to a wide range of parties, inside and outside
of the configuration management community, requiring minimal time to learn the
graphic language, and with most people having an intuitive understanding of the
formalism. Allow commonality among systems to be visually evident.

• Concise format: be able to fit the containment models of multiple systems onto a
single page or screen, allowing rapid comparison of system data models.

• Cross-discipline: model the containment properties of multiple kinds of
information systems, such as document management and hypertext versioning
systems, and compare them to configuration management systems.

Previous work by the authors introduced the concept of containment data
modeling, using it to describe a wide range of data models for hypertext, and
hypertext versioning systems [21]. Other work began a preliminary examination of
using containment modeling to represent configuration management systems, but
modeled only a small number of systems [6]. Though this previous work suggested
that containment modeling could successfully be applied to a wide range of
configuration management systems, a larger set of systems must be modeled to
provide full confidence that containment modeling is applicable in this domain. The
present paper provides ten additional containment data models of configuration
management systems, across a range of system types. Common features visible in the
data models of each class of systems are then discussed.

In the remainder of this paper, we provide a brief introduction to containment
modeling, and then apply it to the well known SCCS [12] and RCS [14] systems.
Next, we model systems that provide an infrastructural data model, intended for use in
creating more complex data models for specific uses or environments. Since these
systems provide fundamental data model building blocks, they are a good test of the
uniformity of containment data modeling. As a scalability test, the models of DSEE
[9], ClearCase [8] , and DeltaV [1] are presented, and aspects of the evolution of thes e
complex models are discussed. The last set of models contrast the data models of two
different system types, the version graph system CoMa [18], and the change-based
system PIE [5], and demonstrate that containment models make system type
differences much easier to identify and analyze. Related work and conclusions
complete the paper.

2 Containment Modeling

Containment modeling is a specialized form of entity-relationship modeling wherein
the model is composed of two primit ives: entities and containment relationships. Each
primitive has a number of properties associated with it. A complete containment
model identifies a value for each property of each primitive. Unlike general entity-

E. James Whitehead, Jr. and Dorrit Gordon 72

relationship models, the type of relationships is not open-ended, but is instead
restricted only to varying types of referential and inclusion containment.

2.1 Entity Properties

Entities represent significant abstractions in the data models of configuration
management systems, such as source code revisions, directories, workspaces and
configurations. The properties of entities are:
Entity Type. Entities may be either containers or atomic objects. Any entity that can
contain other entities is a container. Any entity that cannot contain other entities is an
atomic entity. Any entity contained by a container may be referred to as a containee
of that container.
Container Type. There are two sub-types of container: ‘and’ and ‘xor’. Unless
otherwise specified, a container is generic. ‘And’ containers must contain two or more
possible containee types and must contain at least one representative of each; ‘xor’
containers must have two or more possible containee types and may contain
representatives of no more than one of them. While superficially similar to Tichy's
notion of AND/OR graphs [13], the ‘and’ and ‘xor’ types herein describe constraints
that apply to container classes, while AND/OR graphs are instance-level constraints.
There is typically no precomputable mapping between the two sets of relationships.
Total Containees. A range describing the total number of containees that may belong
to a container. A lower bound of zero indicates that this container may be empty.
Total Containers. Indicates the total number of containers to which this entity may
belong. A lower bound of zero indicates that the entity is not required to belong to any
of the containers defined in the model. Note that for the models in this paper, it is
assumed that all elements reside in some type of file system, databas e, or other
structure external to the system being modeled.
Cycles. Many systems allow containers to contain other containers of the same type.
For example, in a standard UNIX file system, directories can contain other directories.
This property indicates whether a container can contain itself (either directly or by a
sequence of relationships). Unless otherwise specified this paper assumes that cycles
are allowed, where possible.
Constraints, Ordering. The constraints property allows us to express other restrictions
on the containment properties of an entity, such as mutual exclusion and mutual
inclusion. The ordering property indicates whether there is an order between different
containee types (i.e., class-level ordering; ordering of multiple containees of the same
type is captured as a relationship property). In previous work [6] we used constraints
and ordering in modeling characteristics of hypertext systems; in this paper we have
not needed these properties.

2.2 Relationship Properties

Containment Type. Containment may be either inclusive or referential. Where
inclusive containment exists, the containee is physically stored within the space
allocated for the container. This often occurs when an abstraction is used to represent

Uniform Comparison of Configuration Management Data Models 73

actual content in the system. Referential containment indicates that the containee is
stored independently of the container.
Reference Location. The references that connect containers and their containees are
usually stored on the container; but on some occasions they are stored on the
containee, or even on both container and containee. This property indicates where the
references are stored.
Membership. The membership property indicates how many instances of a particular
container type an entity may belong to. If the lower bound on the value is zero, then
the entity is permitted, but not required, to belong to the container indicated by the
relationship.
Cardinality. The cardinality property indicates how many instances of a particular
containee a container may contain. If the lower bound on the value is zero, then the
container is permitted, but not required, to contain instances of the containee indicated
by the relationship.
Ordering. The ordering property indicates whether there is an ordering between
instances of a particular entity type within the container indicated by the relationship.

2.3 Graphical Notation

Entities are represented as nodes of the containment model graph, and relationships
are the arcs. Fig. 1 below describes the graphic notation used to represent containment
data models. Relationships are indicated by directed edges between pairs of entity
nodes in the containment model graph. In Fig. 1, visual elements that represent the
source end of an edge are shown on the left ends of lines. Visual elements that
represent the sink end of an edge appear at the right ends of lines.

To readers familiar with the Unified Modeling Language (UML), a natural
question is why we did not use this better-known modeling not ation instead. There are
several reasons. First, by definition all UML classes may potentially have attributes.

Entity Type:

Total Containees: Name
(a..b)

‘a’ is the lower bound,
‘b’ is the upper bound.
If the upper bound is
unlimited, replace ‘b’
with ‘n’.

Container Type:

cont-
ainer

atomic
object

and xor

x..y
x..y

Containment Type: inclusive
referential

Ordering:
ordered
unordered

Reference Location:
on both
on containee
on container

Cardinality:
Membership:

Entities Relationships

Fig. 1. Graphical notation used to represent containment data models

In our modeling of hypertext systems in [21] we found several systems with content
objects that, by definition, could not have associated attributes. UML makes no visual

E. James Whitehead, Jr. and Dorrit Gordon 74

distinction between container and non-container objects, and since containment is
central to our approach, we wished to make this more explicit by representing
containers as circles, and atoms as squares.

UML contains many features that are not needed for containment modeling, such
as the visibility of attributes, and operations available on data. While the core of UML
is simple to understand, it certainly takes more time to learn than our notation. UML
also permits the expression of inheritance relationships, which we do not permit. In
previous work we used inheritance in a limited way within containment diagrams
[21]. In later work, we moved away from this, since we found it difficult to
comprehend that all relationships that apply to the parent also apply to the child [6].
Our experience has been that not using inheritance leads to minor duplication of
entities and containment relationships within diagrams, and these diagrams are much
easier (for us) to understand.

It is possible to represent containment data models using UML notation, and in
previous work we have found that the equivalent UML model takes up more paper
space than the equivalent containment diagram [6]. A system designer familiar with
UML could use UML for containment modeling with minimal loss of fidelity, and the
advantages of compatibility with UML might outweigh the advantages of the notation
presented herein.

3 Modeling Version Control Systems

In previous work, we have created containment models of hypertext systems [21], as
well as a small set of hypertext versioning and configuration management systems
[6]. Due to the complexity and variety of existing configuration management systems,
we want to model a larger number of these systems, both to validate that containment
modeling is sufficiently expressive to represent their data models, as well as to
support an initial cross-comparison of data modeling approaches. To begin with, we
present containment data models of RCS [14] and SCCS [12], two well-known
version control systems, in Fig. 2 below.

Examining Fig. 2 highlights several aspects of containment modeling. First, notice
that individual revisions are modeled as containers, rather than atomic entities. Since
revisions have associated with them a number of attributes, as well as the textual
content of the revision, this is modeled using inclusion containment relationships.
That is, a revision is viewed as a container of a number of predefined attributes and
the revision text. The relationship between the revision history and individual
revisions is also modeled using inclusion containment, since it is not possible to
delete the revision history without also deleting all revisions. Each revision also has
one or more identifiers that point to the next revision, and emanating branches, and
this use of identifiers to point at other entities is the characteristic quality of
referential containment. Hence, even though RCS inclusively contains revisions
within a revision history, there is still referential containment within its data model.

Uniform Comparison of Configuration Management Data Models 75

revision
history
(2..n)

SCCS

revision
text

Revision
(5)

Valid
users

timestamp

1

1

1

11

11

1..n

userversion
identifier comment

1

1
1

1

1

1

revision
history
(5..n)

Revision
(6..n)

revision
texttimestamp authorversion

identifier comment state

1

1 1

1

1

1

1 1 1

1

1
1

1

1..n

1..n

0..n

next revision
& branches

access symbolscomment locks

1 1 1 1

1

1

1
1

RCS

Fig. 2. Data model of the SCCS [12] and RCS [14] systems

Finally, neither model explicitly represents deltas. This is consistent with the user
interface of both tools, which allow users to operate on revisions but not deltas, and
agrees with Conradi and Westfechtel’s characterization of these systems as state-
based [3]. That revis ion histories and revisions are stored in files, and revisions are
stored as deltas, can be viewed as concrete representation issues. While these
concrete representation issues have an important impact on the performance of the
tools (e.g., reverse deltas vs. forward deltas [14]), they are a concern that can be
abstracted away when examining data models.

With implementation representation issues abstracted away, it is easy to identify
differences and similarities between these two systems. The most significant
difference is the referential containment arc in RCS, which points to branches and the
next revision. This permits RCS to have a much richer set of branch operations than

E. James Whitehead, Jr. and Dorrit Gordon 76

SCCS. The other significant difference lies in the attributes of revision histories and
revisions. In RCS, the revision history contains a set of symbols that are used to label
specific revisions; SCCS lacks this capability. Only RCS revisions contain a state
attribute, thus permitting RCS to associate revisions with specific states in a
(externally defined) state-transition workflow. RCS stores information about locks as
an attribute of the version history, while SCCS does not save any lock information.

Both systems share many similarities. Each has a revision history inclusively
containing revisions, and the revisions in both systems share many of the same
attributes (identifier, timestamp, revision text, comment, author). In both systems,
access control information is stored on the revision history (SCCS: valid users, RCS:
access).

Equally important, by examining Fig. 2 one can clearly see what features these
systems lack. Neither has an entity representing workspaces, a first-class notion of
configuration, logical change tracking (e.g., activities or change sets), or an ability to
record the revision history of directories. Additionally, both systems only allow
predefined attributes, and do not allow arbitrarily named attributes. While these facts
are well known, what is unusual is how quickly they can be determined by examining
the containment data model. Instead of spending many minutes scanning though the
documentation and system papers, the containment data model allows these questions
to be answered quickly. Similarly, while it is possible to provide a detailed
comparison of these data models by laboriously studying the documentation of the
SCCS and RCS file formats, it is much faster to just contrast two containment
diagrams. Additionally, when many systems are to be compared, it is extremely
difficult to remember every detail of each system’s data model. A consistent, common
notation is crucial.

4 Models of Configuration Management Systems

In order to demonstrate that it is possible to create containment models of a wide
range of configuration management systems of varying complexity, we now present a
series of such models.

4.1 Data Models of Infrastructure Systems

A major goal of containment modeling is uniformity, that is, representing data models
while bringing as few biases into the modeling activity as possible. By using a simple
model with limited prejudices, it permits expression of a wide range of data models
using a uniform set of modeling primitives. One way to validate this quality of
uniformity is to model existing systems whose goal is to provide a simple,
infrastructural data model used as a basic building block for creating more complex
data models for a specific application or programming environment. If it is possible to
create uniform containment models of infrastructural data models, then cross
comparison of these models will be possible, permitting an examination of the model-

Uniform Comparison of Configuration Management Data Models 77

Object
(0..n)

Version
(0..n)Attribute

Relation
ship
(0..n)

Attribute

11
0..n0..n

DAMOKLES
(DODM modeling concepts)

0..n

0..n

0..n0..n
0..n

0..n0..n

0..n 0..n

object
(1..n)

attribute

link
(3..n)

attribute

1

0..n

0..n

0..n
2

PCTE

type

1

1

contents

1

1

1

atom
(1..n)

attribute

0..n

NUCM

1

collection
(0..n)

attribute

0..n
1

0..n

0..n

0..n

0..n

content

1

1

object
(19..n)

attribute

18..n

Shape/AtFS

contents

1

1

1

Each object has 18 predefined
attributes: hostname, system path,
name, type, generation number, revision
number, variant name, version state,
owner, author, size, access permissions,
lock, last modification date, last access
date, last status change date, last save
date, and last lock change date.

1

0..n 1

Attribute

0..n
1

successors
(0..n)

prede-
cessors
(0..n)

1

1

1

1
1

0..n

1

0..n

Fig. 3. Data models of DAMOKLES [4], NUCM [16], PCTE [11,17], and Shape/AtFS [10]

ing tradeoffs made by each. Examples of such systems are DAMOKLES [4], PCTE
[11,17], NUCM [16], and Shape/AtFS [10], modeled in Fig. 3.

What immediately jumps out from the figure is the relative simplicity of the data
models of these systems, ranging from 1 to 4 container entities. This is due to their
explicit desire to have small set of entities that can then be used to build up more
complex capabilities. All systems have the ability to represent version histories,
however each system does so differently. DAMOKLES and NUCM can both use
containment to represent version histories, though DAMOKLES has a compound
object containing a series of versions (and versions containing versions), while
NUCM makes it possible to use an explicit collection entity. In PCTE, every object
maintains lists of links that point to predecessor and successor objects, and NUCM
collections cou ld also be used to represent predecessor/successor relationships.

E. James Whitehead, Jr. and Dorrit Gordon 78

Neither DAMOKLES nor Shape/AtFS explicitly represent predecessor/successor
relationships, with Shape/AtFS representing version histories implicitly via version
identifier conventions (e.g., version 1.2 defined to be the successor of 1.1).

While the systems in Fig. 3 are generally capable of representing the data models of
the others, they do so with varying degrees of mismatch. For example, DAMOKLES
objects and relationships map to NUCM collections, and DAMOKLES versions map
somewhat to NUCM atoms. However, DAMOKLES requires versions to belong to
only one object; NUCM doesn’t have this restriction. DAMOKLES objects and
versions store all non-containment state in attributes, while NUCM atoms have a
distinguished content chunk. Since PCTE uses links to represent containment
relationships, and NUCM uses collections to represent links, it is possible to map
between NUCM and PCTE by performing appropriate link/collection conversions.
While Shape/AtFS could mimic collections and relationships by defining attributes on
Shape/AtFS objects, these would not have any special properties, such as the
referential integrity constraints enforced by PCTE on containment links.

As with RCS and SCCS, the containment data models in Fig. 3 permit a rapid
examination of facilities not provided by these systems. None of the systems provide
explicit support for workspaces, activities/change sets, or configurations, though these
facilities could be provided by building on the existing data models.

Since all models can be represented and compared using containment modeling, it
highlights the ability of containment modeling to allow cross comparison of even
basic, foundational models, permitting the assumptions of each to be compared.

4.2 Tracing the Evolution of Data Models

Since all of the systems modeled so far have been relatively simple, it is reasonable to
be curious about how well containment modeling handles more complex systems. We
address this issue by examining the DSEE [9], ClearCase [8,19], and DeltaV [1]
systems, modeled in Fig. 4-Fig. 6. Together they form a direct intellectual lineage, with
DSEE and ClearCase having the same initial system architect, David Leblang, and
with ClearCase influencing DeltaV via the direct involvement of Geoff Clemm, who
was simultaneously an architect of both ClearCase and DeltaV from 1999-2002.
Since these systems all have complex data models, ranging from 9 to 14 collection
entities, the models validate that containment modeling can represent large systems.
By concisely representing the data models of these systems in three pages, we can
view the evolution of system concepts in this lineage more easily than by reading over
150 pages of primary source text.

All three systems have objects that represent an entire revision history, and though
all systems supporting branching, only ClearCase has an entity that explicitly
represents branches. While DSEE and ClearCase both use delta compression, in the
DSEE data model element revisions are inclusively contained by the element history,
while ClearCase uses referential containment between elements, branches, and
versions.

Uniform Comparison of Configuration Management Data Models 79

release
(2..n)

library
(2..n)

Bound
Config.
Thread
(0..n)

element
history
(1..n)

element
version
(4..n)

monitor
(3..n)

system
executable keywords

derived
object
pool
(0..n)

attributes

task
(4..n)

activation
commands

tasklist
(0..n)

attributes

0..n

1

1

1..n

1

2

1

0..n
0..n

0..n

1

4..n

1

3..n

subtask

1

1..n

1

1

10..n

1

11

1

1

0..n

0..n

0..n

1..n

0..n

0..n

1

0..n

0..n

Predefined attributes are: comment,
node id, creator, creation date

Predefined attributes are:
creator, creation date, title

DSEE

0..n

0..n

task
template

derived
object

Fig. 4. Data model of the DSEE system [9]

The DSEE notion of task and tasklist evolved into the ClearCase and DeltaV

notion of activity, though in DSEE a revision points at an activity, while in ClearCase
and DeltaV the activity points at revisions. In ClearCase and DeltaV, activities are
more integrated into version selection and workspaces than in DSEE, with ClearCase
streams pointing to both activities and views, and DeltaV activities pointing directly
to workspaces (and vice-versa). The dynamic version selection provided by DSEE
bound configuration threads (BCTs) and ClearCase streams, views, and configuration
specifications are similar, though ClearCase ga ins additional flexibility for handling
large projects by introducing the stream entity. DeltaV supports only version selection
using baselines and activities, with no equivalent concept to BCTs or views.

Both DSEE and ClearCase provide abstractions for representing groupings of
multiple source objects and directories. DSEE has the notion of a library, containing a
set of elements and tasklists, appropriate for modeling subsystems of a large project.
ClearCase offers greater flexibility, with a distinction between Project Versioned
Object Base (PVOB) and regular VOBs. PVOBs hold project and component entities,
while VOBs hold source objects and their inter-relationships. A large project might
have multiple VOBs, and a single PVOB, thus proving scalability advantages over
DSEE. The implicit notion of a “server” in DeltaV is similar to a combined
PVOB/VOB.

E. James Whitehead, Jr. and Dorrit Gordon 80

file
version
(0..n)

view
(2..n)

directory
version
(0..n)

hyper-
link
(2)

branch
(0..n)

VOB
(0..n)

version
label

config.
spec.

derived
object

1

1

0..n

1

1

1

1

1

0..n

1..n1..n
1..n

0..n

0..n

0..n

0..n

0..n

ClearCase 4

Project
VOB
(0..n)

project
(0..n)

integration
stream
(0..n)

element
(0..n)

dev.
stream
(0..n)

component
(0..n)

baseline
(0..n)

activity
(0..n)

0..n

11

0..n

1
1

0..n1

0..n

0..n

0..n

0..n
0..n 0..n

0..n0..n

0..n

1

0..n

11

0..n

0..n
0..n

0..2
0..2

0..n

0..n

0..n
0..n

0..n

0..n

0..n

0..n
0..n

entity

attribute

1
0..n

elements,
baselines,
branches,
versions,

hyperlinks,
projects,

components,
and activities

can have
attributes

Fig. 5. Data model of the ClearCase system, version 4 [19]

All three systems have the ability to explicitly record configurations of versioned
objects. In DSEE, an unversioned “release” entity performs this function, while
ClearCase and DeltaV use a versionable “baseline” to record configurations.
ClearCase and DeltaV also provide stronger support than DSEE for creating baselines
from changes associated with tasks.

Finally, we note that while it is possible to model these systems, the exercise
exposes some limitations in the visual representation of containment models. As
diagrams get larger, it becomes more difficult to layout the entities and relationships
to avoid diagrammatic clutter. In the DeltaV model in Fig. 6, we used a convention
that omitted properties to keep the diagram on a single page, deviating from strict
adherence to our graphical notation to save concision and clarity. Additionally, as

Uniform Comparison of Configuration Management Data Models 81

collection
(0..n)

resource
(1..n)

0..n

1..n

0..n

0..n
WebDAV/DeltaV

workspace
(1..n)

version
controlled

config.
(1..n)

baseline
(1..n)

version
history
(1..n)

version
controlled
resource

(1..n)

version
resource

(1..n)

working
resource

(1..n)

version
controlled
collection

(1..n)

collection
version
(1..n)

activity
(1..n)

1

0..n

pred-set

succ-set

checkout-set

0..n

1

0..n

pred-set

succ-set

subbaseline-set

current
activity

set

current
workspace

set

checked-in/out0..n 0..1

ver sion histor y

0..n

1

ve rsio
n his

to ry

0..n

1

1

1

1

1..n

root ve rsi on
checked-in/out

0..n0..1
ver sion set

r o
ot

 ve
rs

i on

ve
r s

ion
 se

t

1
1

1..n

1

w orkspace
workspace

0..n 0..n

0..n

ve
rs

ion
 c

on
tro

lle
d

bi
nd

in
g

se
t

0..n

0..n

subactivity set

activity
set

activity
version

set

0..n
0..n

0..n
0..n

0..n
0..n

0..n

0..n0..n

0..n
0..n

0..n

0..n

0..1

0..1

0..1
0..1

0..n

1

ba
se

lin
e-

co
nt

ro
lle

d
co

lle
ct

io
n

0..n

checked-in/out

0..1

activity
set

0..n

0..n

Fig. 6. Data model exposed by the DeltaV protocol [1]. To reduce figure clutter, resource
properties (attributes) are not shown. For many DeltaV entities their properties contain lists of
identifiers, and hence strict modeling would show these properties as container entities. Due to
the complexity of the model, we use a convention of annotating containment arcs with the
name of the property that contains the identifiers for that arc. Plain arcs represent containment
by the entity proper (i.e., not by a property)

models grow larger, our choice to label entities with the same terminology used in the
description of the system makes it more difficult to understand each diagram. While
using each system’s native terminology avoids modeling bias and saves us from a
thorny definitional thicket, it also requires the reader to have greater knowledge of
each system to understand the diagram. This was not as great a problem for the
systems in Fig. 3, since their data models are less complex. In future work, we hope to
distill out design spaces for such issues as representing workspaces and
configurations, thereby focusing on smaller, more manageable aspects of complex
systems.

4.3 Comparing Different Types of Configuration Management System

In our last set of figures, we present the data models of CoMa [18] and PIE [5] in Fig.
7. Using the taxonomy of systems provided in [3], CoMa is a version graph system,

E. James Whitehead, Jr. and Dorrit Gordon 82

while PIE is a change -based versioning system. Since these are two different styles of
system, we would expect these differences to be visible in a comparison of their
containment models, and this is indeed the case.

version
depen-
dency

(2)

object
depen-
dency

(2)

0..n

CoMa

document
group
(0..n)

config-
uration
(0..n)

object
compon-

ent
(1..n)

history
reln
(2)

version
compon

ent
(0..n)

2

2

2

2

0..n

0..n0..n

0..n

1
1

0..n

1

1

0..n

0..n

0..n

1

0..n

1
1

0..n

1

0..n

Entity
(0..n)

Attribute

1

0..n

All Entities in
CoMa:

Network
(3..n)

Source
Node
(1..n)

Layer
(1..n)

Context
(1..n)

Source
Element

Attribute

1
1 1

1..n

0..n

1

1
1

0..n

0..n

1..n

0..n

0..n1

1..n

0..n

1

0..n

PIE

Link
(1)

0..n

1..n

Fig. 7. Data models of the CoMa [18] and PIE [5] systems

The CoMa system represents a version history using a versioned object container
that holds all revisions, as well as links for the predecessor/successor relationships. In
Fig. 7 this pattern is visible twice, first as the object component (the versioned object)
containing version components (individual revisions of objects) and history

Uniform Comparison of Configuration Management Data Models 83

relationships (representing predecessor/successor relationships), next as document
groups (versioned object) containing configurations (revisions) and history
relationships. PIE uses a different scheme altogether, with individual source nodes
organized into layers representing versions or variants, and contexts grouping layers,
with occlusion among layers depending on their relative ordering.

5 Related Work

Several prior research efforts are similar to the work presented herein. Conradi and
Westfechtel’s survey of configuration management systems examines many issues of
data modeling across a broad set of systems [3]. Our work differs in that it focuses on
data modeling, and provides a modeling mechanism that permits uniform cross-
comparison of data models. Conradi and Westfechtel’s description of data modeling
issues was primarily textual, as contrasted with the graphical technique presented
here. However, their work also surveyed version selection techniques, which are not
covered by containment modeling.

The schema languages in CoMa [18] and DAMOKLES [4] bear some similarity to
the containment modeling approach, having notions of containment, and a separation
between the schema and its concrete representation. However, neither of these
schemas have been used to model existing CM systems. The data model of NUCM
[15,16] is also similar to the basic set of primitives in containment modeling, since it
too has containers and atoms. Since the intended use of NUCM is to construct more
sophisticated configuration management capability on top of these basic entities, there
is no separation between model and concrete representation, with NUCM directly
representing containers and atoms in its repository. Containment modeling is intended
to be more abstract, and hence doesn’t have a default concrete representation. Another
difference is that NUCM collections and atoms have hardwired attributes, while there
are no predetermined inclusion containment relationships among entities in a
containment data model. However, given that the vast preponderance of collection
entities in configuration management systems have attributes, it is arguable whether
the ability to explicitly model the inclusion of attributes is a significant benefit. We
have primarily found this flexibility to be useful in modeling hypertext systems,
where the use of attributes is not quite so universal.

6 Contributions

Containment modeling is a modeling mechanism that permits uniform representation
of the data models of a wide range of configuration management systems.
Containment modeling has been validated by presenting the models of 11 existing
configuration management systems. In the case of ClearCase and DeltaV, these are
very complicated data models, perhaps the most complex in existence. Additionally,
in previous work we have created containment models of an additional 16 hypertext
systems [6,21], highlighting how the uniformity of the modeling technique permits
data modeling across multiple system domains.

E. James Whitehead, Jr. and Dorrit Gordon 84

Containment modeling provides a new technique that is useful for performing
detailed comparisons of configuration management data models. Since containment
data models are visual and compact, it is much easier to cross-examine data models,
making it possible to quickly identify similarities and differences. In previous work
we have used insights derived from containment models of hypertext versioning
systems to develop design spaces for link and structure versioning [20], and in future
work we wish to similarly leverage configuration management containment models to
develop design spaces for features such as workspaces, change sets, and
configurations.

The compact, visual notation of containment models is good for capturing the
current best understanding of a system’s data model. This permits iterative
improvement of containment data models over time, as understanding improves. This
is not possible without an explicit model. Additionally, the process of creating models
is error-prone, indicative of the fact that trying to understand a data model from a
textual description is also error-prone. While we have worked to remove errors from
the containment models presented herein, there is no mechanical way to validate their
correctness, and hence it is possible some errors may still persist. The explicit nature
of containment models allows errors to be exposed, and then corrected.

Lastly, the visual notation makes it easier to communicate results across
disciplinary boundaries. The existence of 27 data models of configuration
management and hypertext systems makes it easier to compare/contrast across these
two domains, and learn from each other. In future work we hope to extend the
containment data modeling technique into other domains, including Document
Management, and VLSI CAD [7], as well as to model more CM systems, to complete
our data model survey of CM systems.

Acknowledgements

This research was supported by the National Science Foundation, by grant NSF
CAREER CCR-0133991.

References

1. G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead, “Versioning Extensions to
WebDAV,” Rational, IBM, Microsoft, U.C. Santa Cruz. Internet Proposed Standard
Request for Comments (RFC) 3253, March, 2002

2. CM Today, “CM Yellow Pages,” (2002). Accessed December 21, 2002.
http://www.cmtoday.com/yp/configuration_management.html

3. R. Conradi and B. Westfechtel, “Version Models for Software Configuration
Management,” ACM Computing Surveys, vol. 30, no. 2 (1998), pp. 232-282

4. K.R. Dittrich, W. Gotthard, and P.C. Lockemann, “DAMOKLES - A Database System for
Software Engineering Environments,” Proc. Advanced Programming Environments,
Trondheim, Norway, June, 1986, pp. 353-371

5. I.P. Goldstein and D.P. Bobrow, “A Layered Approach to Software Design,” in Interactive
Programming Environments, New York, NY: McGraw-Hill, 1984, pp. 387-413

Uniform Comparison of Configuration Management Data Models 85

6. D. Gordon and E.J. Whitehead, Jr., “Containment Modeling of Content Management
Systems,” Proc. Metainformatics Symposium 2002 (MIS'02), Esbjerg, Denmark, Aug 7-10,
2002

7. R.H. Katz, “Toward a Unified Framework for Version Modeling in Engineering
Databases,” Computing Surveys, vol. 22, no. 4 (1990), pp. 375-408

8. D. Leblang, “The CM Challenge: Configuration Management that Works,” in
Configuration Management, New York: Wiley, 1994, pp. 1-38

9. D.B. Leblang and J.R.P. Chase, “Computer-Aided Software Engineering in a Distributed
Workstation Environment,” Proc. ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments , Pittsburgh, PA, April, 1984,
pp. 104-112

10. A. Mahler and A. Lampen, “An Integrated Toolset for Engineering Software
Configurations,” Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symp. on
Practical Software Development Environments, Boston, MA, Nov. 28-30, 1988, pp. 191-
200

11. F. Oquendo, K. Berrada, F. Gallo, R. Minot, and I. Thomas, “Version Management in the
PACT Integrated Software Engineering Environment,” Proc. ESEC'89, Coventry, UK,
Sept. 11-15, 1989, pp. 222-242

12. M.J. Rochkind, “The Source Code Control System,” IEEE Transactions on Software
Engineering, vol. 1, no. 4 (1975), pp. 364-370

13. W.F. Tichy, “A Data Model for Programming Support Environments and its Application,”
Proc. IFIP WG 8.1 Working Conf. on Automated Tools for Info. Systems Design and Dev.,
New Orleans, LA, Jan 26-28, 1982, pp. 31-48

14. W.F. Tichy, “RCS - A System for Version Control,” Software-Practice and Experience,
vol. 15, no. 7 (1985), pp. 637-654

15. A. van der Hoek, “A Generic Peer-to-Peer Repository for Distributed Configuration
Management,” Proc. ICSE-18, Berlin, 1996, pp. 308-317

16. A. van der Hoek, “A Testbed for Configuration Management Policy Programming,” IEEE
Trans. Software Eng., vol. 28, no. 1 (2002), pp. 79-99

17. L. Wakeman and J. Jowett, PCTE: The Standard for Open Repositories. New York:
Prentice Hall, 1993

18. B. Westfechtel, “Using Programmed Graph Rewriting for the Formal Specification of a
Configuration Management System,” Proc. 20th Int'l Workshop on Graph-Theoretic
Concepts in Computer Science (WG'94), Herrsching, Germany, June 16-18, 1994, pp. 164-
179

19. B. A. White, Software Configuration Management Strategies and Rational ClearCase: A
Practical Introduction. Boston, MA: Addison-Wesley, 2000

20. E. J. Whitehead, Jr., “Design Spaces for Link and Structure Versioning,” Proc. Hypertext
2001, Århus, Denmark, August 14-18, 2001, pp. 195-205

21. E.J. Whitehead, Jr., “Uniform Comparison of Data Models Using Containment Modeling,”
Proc. Hypertext 2002, College Park, MD, June 11-15, 2002

Towards Intelligent Support
for Managing Evolution

of Configurable Software Product Families

Tero Kojo, Tomi Männistö, and Timo Soininen

Software Business and Engineering Institute (SoberIT)
Helsinki University of Technology

P.O. Box 9600, FIN-02015 HUT, Finland
{Tero.Kojo,Tomi.Mannisto,Timo.Soininen}@hut.fi

Abstract. Software product families are a means for increasing the ef-
ficiency of software development. We propose a conceptualisation for
modelling the evolution and variability of configurable software product
families. We describe a first prototype of an intelligent tool that allows
modelling a software product family on the basis of the conceptualisation
and supports the user in interactively producing correct configurations
with respect to the model. The implementation is based on an existing
general purpose configurator and thus is not application domain specific.
We use the Debian Familiar Linux package configuration task over many
releases and package versions as an example. Preliminary results show
that the conceptualisation can be used to model evolution of such a soft-
ware product family relatively easily and the implementation performs
acceptably.

1 Introduction

Software product families (SPF) (or lines, as they are also known) have been
proposed as a means for increasing the efficiency of software development and
to control complexity and variability of products [1,2]. A SPF can be defined to
consist of a common architecture, a set of reusable assets used in systematically
producing, i.e. deploying, products, and the set of products thus produced.

Software product families are subject to evolution, similarly as other soft-
ware [3]. This leads to a need for practical solutions for controlling evolution.
Configuration management tools keep evolving software products under control
during their development [4]. However, the configuration management of large
and complex software and the post installation evolution of software products
present challenges [5,6].

In this paper we propose an approach to the modelling of evolving software
product families based on viewing them as configurable software product fami-
lies. A configurable product is such that each product individual is adapted to
the requirements of a particular customer order on the basis of a predefined
configuration model [7]. Such a model explicitly and declaratively describes the

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 86–101, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Managing Evolution of Configurable Software Product Families 87

set of legal product individuals by defining the components out of which an in-
dividual can be constructed and the dependencies of components to each other.
A specification of a product individual, i.e., a configuration, is produced based
on the configuration model and particular customer requirements in a configu-
ration task. Efficient knowledge based systems for configuration tasks, product
configurators, have recently become an important application of artificial intelli-
gence techniques for companies selling products adapted to customer needs [8,9].
They are based on declarative, unambiguous knowledge representation methods
and sound inference algorithms. A configuration model traditionally captures the
versioning of an SPF in space, i.e., it describes all the different configurations the
SPF consists of. Evolution, i.e., versioning in time, is typically not supported.

The main contribution of this paper is a conceptual foundation for modelling
evolution of configurable SPFs with the main concern being the deployment
phase and generation of valid configurations. The conceptual foundation is based
on a subset of a de-facto standard ontology of product configuration knowledge
[10] and extended with concepts for modelling evolution.

We describe a prototype implementation of an intelligent tool for modelling
configurable SPFs on the basis of the conceptualisation and supports the user
in interactively producing a correct configuration with respect to the model. In
this we use a state-of-the-art prototype product configurator [11] as an imple-
mentation platform. Our implementation is not product or application domain
specific. It is enough to change the model to use it for another SPF.

To show the feasibility of both the modelling method and its implementa-
tion, we use the Debian Familiar Linux package configuration as an example.
It is an appropriate software product family for the purposes of this work as it
has a component structure consisting of hundreds of packages, resulting to well
over 2100 potential configurations. Furthermore, there are multiple subsequent
releases of the same package.

The remainder of this paper is structured as follows. Section 2 describes De-
bian Familiar Linux, its package model and how evolution is currently handled.
Section 3 defines the conceptual foundation for representing the evolution of
configurable SPFs. In Section 4 the implementation is described and some pre-
liminary results on its feasibility are given. After that the modelling method and
implementation are discussed and compared to related work in Section 5. Finally,
some conclusions and topics for further research are presented in Section 6.

2 Debian Familiar Linux Case

Debian Linux Familiar is an open source operating system distribution developed
for the Hewlett-Packard iPAQ handheld computer. Familiar is distributed as
packages, each of which provides a piece of software, such as an application or
device driver. A Familiar release is a collection of packages, which make up a
complete Linux environment for the iPAQ. Therefore a release always includes a
Linux kernel, device drivers and essential user software such as a shell and editor.
The packages of a Familiar release are described in a package description file

88 Tero Kojo et al.

distributed with the release. Each release has a release date, on which that release
becomes the official current Familiar distribution. The releases are stored in
separate folders on the ftp.handhelds.org FTP server. Figure 1 shows an example
of a single package description.

Package: ash

Essential: yes

Priority: required

Section: shells

Installed-Size: 152

Maintainer: Carl Worth <cworth@handhelds.org>

Architecture: arm

Version: 0.3.7-16-fam1

Pre-Depends: libc6 (>= 2.2.1-2)

Filename: ./ash_0.3.7-16-fam1_arm.ipk

Description: NetBSD /bin/sh

Fig. 1. Example Debian Familiar Linux package description

The package description provides information on the different properties of
the package it represents. The description provides the package name, essen-
tiality, version information and dependencies. The version information contains
the revision information and the status of the package. If a revision number
is followed by ”a” or ”alpha” or ”pre”, the package is an alpha or pre-release
version. The possible dependencies of a package are Depends, Pre-depends,
Conflicts, Provides, Replaces, Recommends and Suggests. The meanings
of these are:

– Depends - the package requires another package to be installed to function
correctly.

– Pre-depends - installation of the package requires another package to be
installed before itself.

– Conflicts - the package should not be present in the same configuration some
other package.

– Provides - the package provides the functionality of some other package.
– Replaces - the installation of the package removes or overwrites files of an-

other package.
– Recommends - another package is recommended when it is presumable that

the users would like to have it in the configuration to with the package.
– Suggests - another package is suggested to get better use of the package.

Of these dependencies Depends, Pre-depends and Conflicts directly indicate
the need for an another package or conflict with another package. Provides, Rec-
ommends and Suggests can be seen as a method of providing help at installation
time in the form of features. Replaces is directly associated with the installation
of the package. The dependencies are used by the Familiar package management

Managing Evolution of Configurable Software Product Families 89

tool when installing a package. Most packages have a different maintainer, as
the packages are maintained by volunteer hackers. This brings inconsistencies,
for example, in the usage of dependencies and to the version naming scheme.

The Linux Familiar distribution has had four major releases, 0.3, 0.4, 0.5 and
0.6, and several minor releases between the major releases during the two years
the project has been active. The releases 0.4, 0.5, 0.5.1 and 0.5.2 were chosen for
this study. Release 0.6 was not included as it has just recently come out.

The total number of packages in the four releases is 1088, making the average
number of packages per release 272. Of these packages 148 have their priority
set as required. The number of dependencies between packages is 1221.

Installation instructions for each release of Familiar can be found on the Fa-
miliar WWW pages [12]. Each release has separate installation instructions, even
though the process is similar for each release. This is a configuration problem
related to the versioning in space. Problems related to evolution are the focus
of this paper and include the representation of configuration knowledge over
time and (re)configuration tasks that span time. For example, updating from
an older release to a newer one requires that the user installs everything from
scratch onto her/his HP iPAQ, which wipes the handheld clean removing all
the user data. Installing packages from multiple releases is not supported. This
means that once a user has installed a certain release on her/his iPAQ she/he
must use packages only from that particular release. There clearly is need for a
package management utility that supports (re)configuration over several releases.
To achieve this one needs to incorporate the versioning in space and versioning
in time. Constructing such a solution is the topic of this paper.

3 A Conceptualisation for Modelling Evolution

This section describes a conceptualisation for evolution of configurable software
product families. This work is based on a de-facto configuration ontology [10],
which does not contain concepts for evolution. The conceptualisation uses con-
cepts, such as components, their properties, compositional structure and con-
straints, which are introduced in the following and illustrated in Figure 2. We first
introduce the main concepts for modelling configurable SPFs, i.e., for capturing
versioning in space, and thereafter add the concepts for modelling evolution—
more detailed discussion is postponed to Section 5.

A configurable SPF fundamentally consists of a large set of potential product
individuals, called configurations. In the conceptualisation, a configuration is
represented by component individuals, their properties and has-part relations
between component individuals. A configuration model is defined to describe
which configurations are legal members of a configurable SPF. A configuration
is related to a configuration model by a is-configuration-of relation.

A configuration model contains component types, their part definitions and
property definitions and constraints. Component types define the characteristics
(such as parts) of component individuals that can appear in a configuration. A
component type is either abstract or concrete (represented by the concreteness

90 Tero Kojo et al.

Fig. 2. Meta-model of concepts for modelling evolution of configurable SPFs

of the component type). Only an individual directly of a concrete type is specific
enough to be used in an unambiguous configuration.

A component type defines its direct parts through a set of part definitions. A
part definition specifies a part name, a non-empty set of possible part types and
a cardinality. A component type may also define properties that parameterise or
otherwise characterise the type.

Component types are organised in a taxonomy or class hierarchy by means
of a is-a relation where a subtype inherits the property and part definitions of
its supertypes in the usual manner. Multiple inheritance is not supported.

These concepts provide the basic variation mechanisms, i.e., means for cap-
turing the versioning in space:

1. Alternative parts are modelled by part type of part definitions, which defines
the component types whose individuals are allowed as parts in a has-part
relation with a particular (part) name.

2. A cardinality defines a range for the allowed number of component individ-
uals for a has-part relation. Zero minimal cardinality represents an optional
part and minimal cardinality of 1 a mandatory part.

3. A property definition with an enumeration type defines a set of variation
choices, e.g., “UNIX”, “win2000”, “MacOs”.

4. Subtyping of component types can also be used for representing variation;
the subtypes of a component type being the variants of the component type.

Constraints associated with component types define additional conditions
that a correct configuration must satisfy. A constraint is a boolean expression
with references to access the parts and properties of component individuals.

To model the evolution in configurable SPFs, additional concepts are intro-
duced, namely component type revision, status, and effectivity period.

A component type has a set of revisions, called component type revisions,
which are related to the component type by is-revision-of relation, and ordered

Managing Evolution of Configurable Software Product Families 91

by is-successor-of relation. These relations provide a simplified conceptualisation
for revisioning and elaboration on them goes beyond the scope of this paper. Re-
visions capture the evolution of a component type in time. However, separating
the versioning in time from versioning in space in this manner is a simplification
we make in this paper. Ultimately, such versioning dimensions of a component
type should be represented uniformly [13].

Status tells the life-cycle status of a component type revision [14]. The status
is a measure of the maturity of a component type revision, e.g., “unstable”, “sta-
ble” and “end of life”, and can be used as additional information in configuration
task. The status is a useful concept, e.g., for expressing the user requirements,
but has no relevance in determining the correctness of a configuration.

Effectivity period is a time interval stating when an component type revision
may legally appear in a configuration. Effectivity period is thus a new additional
concept needed in determining the correctness of a configuration.

In the meta-model, component type revision is a subtype of component type
to indicate that component type revisions have the same properties as compo-
nent types plus the additional concepts for representing evolution. Each compo-
nent individual is directly an instance of a component type revision, represented
by is-instance-of relation. This basically means that component individuals are
component type instances with additional revision information.

The is-a relation between component types is constrained more than what is
visible in Figure 2. The relation is only allowed between component types, not
component type revisions. Similarly, the is-version-of relation can only be from
a component type revision to component type.

4 Implementation

This section describes a prototype implementation of the modelling method and
the intelligent support system, presented in Figure 3, for managing and con-
figuring SPFs based on the models. We first describe an existing configurator
prototype, called WeCoTin1, that is used as the implementation platform. We
then show how the Debian Familiar Linux package descriptions are modelled us-
ing the conceptualisation presented in the previous section. After this we show
how a model based on the conceptualisation is represented using the modelling
language of the prototype configurator. Finally the functionality of the modelling
and support tool is presented, and some preliminary results on the feasibility of
the method and implementation are provided.

The implementation consists of two new pieces of software, software that
mapped the individual Familiar package description files to the conceptualisa-
tion, software that mapped the conceptualisation to a product configuration
modelling language (PCML) and the existing WeCoTin configurator.

1 Acronym from Web Configuration Technology.

92 Tero Kojo et al.

Fig. 3. The architecture of the implementation

4.1 Existing Work

An existing product configurator, WeCoTin, which is currently under develop-
ment at Helsinki University of Technology, is used as the implementation plat-
form for the conceptualisation presented in the previous section [11].

WeCoTin enables configuration over WWW and centralised configuration
model management. The implementation semi-automatically generates a web-
based user-interface. WeCoTin supports the user by preventing combinations of
incompatible components or their versions, by making sure that all the neces-
sary components are included, and by deducing the consequences of all selections.
WeCoTin is also capable of automatically generating an entire correct configura-
tion based on requirements. A state-of-the-art logic-based artificial intelligence
knowledge representation and reasoning language and a system implementing
it provide the inference mechanism for WeCoTin [15]. WeCoTin translates the
configuration model presented in PCML to weight constraint rules and uses
a state-of-the-art general implementation of such rules, Smodels [16], for effi-
ciently computing configurations satisfying given requirements. PCML is based
on a practically important subset of a de-facto standard ontology of configura-
tion knowledge [10] that unifies most of the existing approaches to configuration
modelling.

4.2 Mapping the Evolution of the Familiar Linux Releases

The package descriptions from the different releases of Familiar were mapped to
the conceptualisation as follows (Table 1).

A root component type, the root of all configuration models was defined.
For each package a component type was defined, and made a part of the root

component type by a part definition. If the package is essential the cardinality
of of the part definition corresponding to it is 1, otherwise it is 0..1. The part

Managing Evolution of Configurable Software Product Families 93

Table 1. The mapping of Familiar package descriptions to the conceptualisation

Familiar term Conceptualisation

Package Component type
Part definition in the root component type

Name of the package Component type name

Essentiality Part definition cardinality

Version Component type revision
Component type revision status

Release date information Component type revision effectivity period

Depends Constraint

Pre-depends Constraint

Conflicts Constraint

Provides Installation time activity (Not mapped)

Replaces Installation time activity (Not mapped)

Recommends Semantics unclear and installation time activity
(Not mapped)

Suggests Semantics unclear and installation time activity
(Not mapped)

types of the part definition contains the component type that was mapped. The
name of the component type and the name of the package were the same.

A component type has the revision of the package it represents as a property.
The version identifier was taken directly from the package information. If the
package had multiple versions, the is-successor-of relation was defined by the
chronological order of the package versions.

Status information of a package is a property of the component type revision.
The status information was derived from the package version information, if a
version was marked with ”a” or ”alpha” or ”pre”, the status property of the
component type revision was given the value unstable, otherwise a stable value
was given.

The component type revisions have an effectivity period based on the releases
the package is in. If a version of a package is present in only one release the
component type revision has an effectivity period starting with the release date of
that release and ending with the release date of the next release. If a version of a
package is present in consecutive releases the effectivity period of the component
type revision is a combination of the effectivity periods as if the package version
were present in all the releases separately.

The package dependencies were mapped to constraints. Depends and pre-
depends were mapped both to a requirement constraint that states, that the
package requires another package. The additional information provided by pre-
depends is used only in the instantiation phase, which was outside the scope
of this case. Conflicts was mapped to a constraint that states, that the two
packages may not exist together in the same configuration. Provides, replaces,
recommends and suggests were not mapped, as they are seen as a method of

94 Tero Kojo et al.

providing help at installation time and thereby fall outside the scope of this
work.

4.3 Mapping the Conceptualisation to PCML

The conceptualisation needed to be mapped to PCML so that WeCoTin could
be used to generate configurations of the Familiar system (Table 2).

Table 2. The mapping of the conceptualisation to PCML

Conceptualisation PCML mapping

Component type Component type

Property definition Property definition

Part definition Part definition

Constraints Constraints

Component type revision Property of component type as a tempo-
rally ordered list of strings

Component type revision status Property of component type as a tempo-
rally ordered list of strings

Component type revision effectivity
period

Properties of component type as integers
stating end and start time of effectivity pe-
riod
Constraints expressing which version is ef-
fective at which part of the effectivity pe-
riod

PCML provides modelling concepts for component types, their compositional
structure, properties of components, and constraints. The mapping from the
evolution concepts to PCML concepts was simple for these concepts. PCML
also provides value types and structures such as lists, strings and integers, which
were used in the mapping of the other evolution terms [11].

Component type revisions were mapped to a property of component type as
a temporally ordered list of strings, i.e., ordered by the is-successor-of relation.
Strings were used as the version identifiers in the Familiar package descriptions
contain alphanumerical characters.

Component type revision status was mapped to a property of component
type as a list of strings that was ordered in the same way as the list of revisions.

Component type revision effectivity periods were combined and mapped as
two integers stating the start and end of the component type effectivity period.
Constraints were used to specify which component type revision can be used in
a configuration at specific parts of the effectivity period. This was used in cases
where a package was present in many Familiar releases and it was necessary to
identify when each revision can be used in a configuration.

Due to the fact that the inference engine in WeCoTin does not at this time
support reasoning over large integer domains well, time used for effectivity peri-

Managing Evolution of Configurable Software Product Families 95

ods was discretised. The times selected were those at which the Familiar releases
were made and single points of time in between the release times.

4.4 Implementation of the Conceptualisation

The software for mapping the Familiar package descriptions reads the package
description file for a single Familiar release and maps the package descriptions
to the conceptualisation as described in Section 4.2. The software performs the
mapping for each Familiar release. The software was implemented with Perl and
it’s output is files containing the evolution models of each Familiar release that
was mapped.

The software for mapping the conceptualisation to PCML reads the evolution
models created by the component for mapping the Familiar package descriptions,
combines them and simultaneously maps them to a PCML model as described in
Section 4.3. The software searches the evolution model files for component types
and collects the different component type revisions under a single component
type. The constraints expressing which revision is effective at which part of
the effectivity period are created as the component type revisions are collected.
Identical part definitions and constraints are removed. The output from the
software is a PCML model, which can be given as input to WeCoTin. The
software was implemented with Perl.

Figure 4 shows the final PCML presentation of the previously shown Familiar
package description (Figure 1 in Section 2).

The PCML model was then input into WeCoTin which translated it into
weight constraint rules. Internal inconsistencies in the model were identified and
removed. The inconsistencies come from missing or erroneous package defini-
tions, such as requirements on packages that are not in the model and inconsis-
tent requirements, where a package at the same time depends on another package
and conflicts with it. Requirements on packages that are not in the release are
an implication that the package has been ported from somewhere else, like the
main Debian Linux PC distribution, and the maintainer has not updated the
package dependencies. After the inconsistencies were removed the PCML model
was ready for use. The final PCML model file was an ASCII text file of 781
kiloBytes.

WeCoTin can semi-automatically generate a web-based user-interface for the
end user based on the PCML model, presented in Figure 5. WeCoTin provides
the possibility of defining default property sets, which in this implementation
were used to set the default component type revisions according to the current
time set by the user. WeCoTin supports the user by preventing combinations
of incompatible component types or their versions, by making sure that all the
necessary component types are included, and by deducing the consequences of
already made selections. The implementation is also capable of automatically
generating entire correct and complete configurations from the model based on
user requirements. The inference engine makes inferences on the basis of the
model in a sound and complete manner, meaning that e.g. the order in which

96 Tero Kojo et al.

component type ash

subtype of concrete

property revision value type string constrained by $ in

list("0.3.7-16-fam1","0.3.7-16")

property status value type string constrained by $ in

list("stable","unstable","eol")

property refinement effectivity_start value type integer always 20010606

property refinement effectivity_end value type integer always 20020621

part ashpart

allowed types ash

cardinality 0 to 1

constraint ash_0_3_7_16_fam1_time

ashpart.ash:revision = "0.3.7-16-fam1" implies current_time > 20020514

and current_time < 20020621

constraint ash_0_3_7_16_time

ashpart.ash:revision = "0.3.7-16" implies current_time > 20010606

and current_time < 20020621

constraint ash_DEP_libc6_2_2_1_2

present(ashpart) implies present (libc6part) and

libc6part.libc6:revision >= "2.2.1-2"

Fig. 4. Example Debian Familiar Linux package description

the package descriptions appear in a model do not affect the set of correct config-
urations. The inference engine does not need to be changed if the model changes.

It took about one minute to map the individual Familiar package description
files to the conceptualisation and a similar amount of time to map the concep-
tualisation to PCML. The translation of the configuration model by WeCoTin
took 20 minutes. The removal of inconsistencies took about an hour of work,
but had to be performed only once to the package descriptions. After that the
model can be used to generate a correct Familiar configuration in seconds. No
programming is necessary at any step of the configuration process. The config-
urations generated by WeCoTin are according to our initial experiences correct
with respect to the package descriptions used in configuration and based on
manual inspection could be loaded into an iPAQ to provide a bootable working
Familiar installation.

5 Discussion and Related Work

5.1 Modelling Method

The concepts provided by PCML for configuration were used in the conceptual-
isation presented in this paper. In addition to these concepts PCML offers other

Managing Evolution of Configurable Software Product Families 97

Fig. 5. WeCoTin user-interface

modelling primitives, that are not discussed here. We chose to use PCML since it
provides a means for modelling the component types and their dependencies and
there is a prototype configurator supporting PCML on top of which we could
build the implementation of the modelling method.

The method presented in this paper was sufficient for modelling the evolu-
tion and structure of Linux Familiar package descriptions over multiple releases.
However the modelling method has limitations. The separation of the versioning
in time from versioning in space performed in the conceptualisation is a sim-
plification. Ultimately, such versioning dimensions of a component type should
be represented uniformly [13,?]. However for the prototype implementation the
limited version concept was sufficient. The modelling method supports variation,
e.g., through the use of alternative and optional parts of a component type. This
is not a optimal method for representing component type variants, but more a
way of presenting the variation in the product family structure. The relationships
between versions should perhaps be modelled with a richer set of relations.

In the mapping of the Familiar package descriptions to PCML some com-
promises were made. Versions of a package were mapped as properties of the
component type. Constraints did not have explicit effectivity periods, but were
effective throughout the model, when the effectivity should be the same as the
component type revisions’ that they refer to. The global effectivity period of con-

98 Tero Kojo et al.

straints does not impact the configuration results, as they only have meaning if
the component type revisions they refer to are effective.

As the modelling method was tested on one product family, Linux Familiar,
the question of whether the modelling method is suitable to other products
is open. More example implementations are needed to verify that the model
concepts are suitable and sufficient to model evolution in different types of SPFs.

Conradi and Westfechtel [5] present an overview of existing approaches in
software configurationmanagement for building consistent configurations of large
software products. They identify version models and the constraints for combin-
ing versions as the most important parts in configuring large software products.
Managing the complexity of the different versions of objects under SCM control
and the close ties of the configuration rule base with the version database are
seen as problems. The use of constraints for and versioning of the rule base are
seen as solutions to these problems. The approach described in this paper relies
on an object-oriented configuration modelling method that allows representing
constraints between components types to partially solve these problems.

The use of attribute value pairs [14,6] or attribution schemes in the selection
of a configuration are used in many SCM systems [18]. By selecting attribute
sets components are included in the configuration. Feature logic can be used to
verify the correctness of a configuration based on the feature terms or attributes
[18]. The model presented in this paper contains the concept of properties for
component types, which can be used like attributes. The constraints presented
in this work can be used in selecting the component types as in SCM systems
using an attribution scheme or feature logic. In addition this work also provides
formal semantics for the model giving a more powerful language which can be
used to generate a correct configuration.

Configuration management techniques are applied for presenting the variabil-
ity, optionality and evolution of software architecture in [19]. The tool Menage
can be used to graphically specify software architectures. The work of Menage
has been continued in Mae [20], which added an environment for architecture
based analysis and development. Their works bridges the gap between the areas
of software architecture and configuration management by introducing a system
model combining architectural and configuration management concepts in a way
which is similar to the model presented here, with the exception that our model
does not include concepts for modelling connections of components types. These
were not required for Linux configuration but may well be appropriate for other
SPF configuration problems.

Software release management is the process of making a working piece of
software available to users [21]. Software release management provides the notion
of dependency between components. The tool SRM (Software Release Manager)
[21] supports the release management process. It provides developers with a tool
to track and control dependencies between components and users with a single
source of software. The approach described in this paper differs from SRM in
that it uses formal semantics in describing the configuration model and relies on
artificial intelligence methods to generate a correct configuration. However SRM

Managing Evolution of Configurable Software Product Families 99

provides installation help and hides the physical distribution of of software from
users.

The Koala component model provides a method for describing the product
configuration through components and interfaces [22]. The Koala model does not
provide a method for modelling evolution in itself, but a separate process which
handles evolution is needed. The process includes rules for making changes in
the interfaces and components. The approach in this paper provides support for
modelling evolution on the concept level rather than on the process level, giving
more freedom in choosing a development process.

5.2 Implementation

Based on the modelling method a prototype implementation of the evolution of
Linux Familiar package descriptions was presented. The implementation showed
that it is possible to model the evolution of a large software product using
product configuration techniques. The model made from four releases of Familiar
Linux can be used to configure a valid Linux environment for the HP iPAQ. Even
reconfiguration of the system over time is possible. The model provides a way
for creating a configuration containing any packages which have an effectivity
at the current time. This overcomes the problem of needing to make a clean
install when the user wishes to have packages from different Familiar releases on
her/his HP iPAQ. The model supports having packages from multiple releases in
a single configuration and the system checks that the generated configuration is
correct based on the declarative semantics of the model. These are clear benefits
compared to the current release system of Familiar Linux.

WeCoTin also support structuring the Familiar packages into categories and
provides an intuitive web interface, with intelligent support for the user, such
as graying out packages that may not be selected. None of these are possible
with the current package management tools of Familiar. However this is only a
prototype implementation and not yet capable of replacing the current package
management tools of Familiar. For example the installation tools of Familiar
have not been integrated to the current implementation.

Configuration problems are typically at least NP-complete [11]. However, it
is not clear that the worst-case exponential computation for generating a con-
figuration occurs in practise, since many physical products seem to be loosely
constrained and can be configured efficiently [11]. This same potential for ex-
pensive computation holds for WeCoTin [15] and the implementation presented
in this paper. This should be studied further by extensively testing the current
implementation as well as with other software product families.

The Debian Linux PC distribution has been successfully modelled with a
similar approach as presented in this paper [23]. Also a release of Familiar has
been modelled as a configurable software product with PCML [24]. The two
works proved that the modelling of software products with configuration mod-
elling languages is feasible. This paper brings the addition of evolution concepts
to the configuration of SPFs.

100 Tero Kojo et al.

6 Conclusions and Further Work

In this paper we proposed an approach to modelling the evolution and variability
of software product families based on viewing them as configurable products. We
presented a conceptualisation for modelling evolution of such product families
that is based on a subset of a de-facto standard ontology of product configura-
tion. This subset was extended with concepts for modelling evolution: revision,
effectivity and status. With these concepts the compositional structure and evo-
lution of a software product family can be modelled. We further described a
first prototype implementation of an intelligent tool that allows modelling a
configurable software product family on the basis of the conceptualisation, and,
supports the user in interactively producing a correct configuration with respect
to the model. The implementation is based on an existing general purpose con-
figurator prototype and thus it is not product or application domain specific.

To show the feasibility of both the modelling method and its implementation,
we use a Debian Familiar Linux package configuration task over many releases
as an example. Preliminary results from the implementation show that the mod-
elling language can be used to model evolution of such a product family relatively
easily and that the implementation performs acceptably. However, several topics
for further research remain. It is not clear that the modelling method is appli-
cable for all software product families. In particular, the concepts for modelling
evolution were relatively simple and may need to be strengthened to incorporate
more complex semantics for example generic objects and the evolution of the en-
tire model. Furthermore, it may be that some dependencies between components
of a product family were easier to model if concepts for modelling interfaces and
connections between components were included. In addition, as the configuration
problem solving can be computationally very expensive, more thorough testing
of the efficiency of the implementation should be carried out. These issues should
be investigated by more empirical research into modelling different types of soft-
ware product families and testing the implementation more thoroughly on those
and also on the Linux distribution discussed in this paper. This would proba-
bly require and result in further developments to the conceptual foundation and
improving the usability and efficiency of the prototype implementation.

Acknowledgements

We gratefully acknowledge the financial support of Technology Development
Centre of Finland. We also thank Andreas Anderson and Juha Tiihonen for
providing the configurator used in this research and for their help in using it.

References

1. Bosch, J., Evolution and Composition of Reusable Assets in Product Line Archi-
tectures: a Case Study, Proc. 1.st Working IFIP Conf. on SW Architecture, (1999)

2. Clements, P., Northrop, L., Software Product Lines: Practices and Patterns,
Addison-Wesley, (2001)

Managing Evolution of Configurable Software Product Families 101

3. Svahnberg, M., Bosch, J., Evolution in Software Product Lines: Two Cases, Journal
of Software Maintenance - Research and Practise 11(6), (1999) 391–422

4. Estublier, J., Software Configuration Management: A Roadmap, ICSE - Future of
SE Track, Ireland,(2000) 279–289

5. Conradi, R., Westfechtel, B., Configuring Versioned Software Products, in:
ICSE’96, Proc., LNCS, Vol. 1167, Springer, (1996) 88–109

6. Belkhatir, N., Cunin, P.Y., Lestideau V., Sali, H., An OO framework for Configu-
ration of Deployable Large Component based Software Products, OOPSLA 2001

7. Soininen, T., An Approach to Knowledge Representation and Reasoning for Prod-
uct Configuration Tasks, PhD thesis, Acta Polytechnical Scandinavica, No. 111,
(2000)

8. Faltings B, Freuder EC, editors., Special Issue on Configuration. IEEE intelligent
systems & their applications; 13(4), (1998) 29–85

9. Darr T, McGuinness D, Klein M, editors., Special Issue on Configuration Design.
AI EDAM; 12(4), (1998)

10. Soininen, T., Tiihonen, J., Männistö, M., Sulonen, R., Towards a General Ontology
of Configuration, AI EDAM 12(4), (1998) 357–372

11. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R., Empirical Testing of a Weight
Constraint Rule Based Configurator, ECAI 2002 Configuration Workshop, (2002)

12. Hicks, J., Nelson, R., Familiar v0.6 Installation Instructions
http://handhelds.org/familiar/releases/v0.6/install/install.html

13. Männistö, T., Soininen, T. and Sulonen, R., Product Configuration View to Soft-
ware Product Families, SCM-10 held at ICSE 2001, Canada, (2001)

14. Mahler, A., Lampen, A., An integrated toolset for engineering software configura-
tions, SIGPLAN Software Engineering Notes, 13(5), USA, (1988)

15. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R., Representing Configuration
Knowledge With Weight Constraint Rules, AAAI Spring 2001 Symposium, USA,
(2001)

16. Simons, P., Niemelä, I., and Soininen, T., Extending and implementing the stable
model semantics, Artificial Intelligence, 138(1-2), (2002) 181-234

17. Männistö, T., A Conceptual modelling Approach to Product Families and their
Evolution, PhD thesis, Acta Polytechnical Scandinavica, No. 106, (2000)

18. Zeller, A., Configuration Management with Version Sets, PhD thesis, Technical
University of Braunschweig, (1997)

19. van der Hoek, A., Heimbigner, D., Wolf, A.L., Capturing Architectural Configura-
bility: Variants, Options and Evolution, CU-CS-895-99, Univ of Colorado, (1999)

20. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N., Taming Archi-
tectural Evolution, ESEC/FSE 2001, (2001) 1–10

21. van der Hoek, A., Hall, R., S., Heimbigner, D., Wolf, A., L., Software Release
Management, ESEC/FSE 1997, (1997) 159–175

22. van Ommering, R., van der Linden, F., Kramer, J., Magee, J., The Koala Compo-
nent Model for Consumer Electronics Software, IEEE Computer 33(3), (2000)

23. Syrjänen, T., A rule-based formal model for software configuration, Master’s thesis,
Helsinki University of Technology, (2000)

24. Ylinen, K., Männistö, T. and Soininen, T., Configuring Software with Traditional
Methods - Case Linux Familiar, ECAI 2002 Configuration Workshop, (2002)

Integrating Software Construction

and Software Deployment

Eelco Dolstra

Utrecht University, P.O. Box 80089
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Abstract. Classically, software deployment is a process consisting of
building the software, packaging it for distribution, and installing it at
the target site. This approach has two problems. First, a package must
be annotated with dependency information and other meta-data. This
to some extent overlaps with component dependencies used in the build
process. Second, the same source system can often be built into an of-
ten very large number of variants. The distributor must decide which
element(s) of the variant space will be packaged, reducing the flexibil-
ity for the receiver of the package. In this paper we show how building
and deployment can be integrated into a single formalism. We describe a
build manager called Maak that can handle deployment through a suffi-
ciently general module system. Through the sharing of generated files, a
source distribution transparently turns into a binary distribution, remov-
ing the dichotomy between these two modes of deployment. In addition,
the creation and deployment of variants becomes easy through the use
of a simple functional language as the build formalism.

1 Introduction

Current SCM systems treat the building of software and the deployment of
software as separate, orthogonal steps in the software life-cycle. Controlling the
former is the domain of tools such as Make [1], while the latter is handled by,
e.g., the Red Hat Package Manager [2]. In fact, they are not orthogonal. In this
paper we show how building and deployment can be integrated in an elegant
way. There are a number of problems in the current approaches to building and
deployment.

Component Dependencies. Separating the building and deployment steps leads
to a discontinuity in the formalisms used to express component dependencies.
In a build manager it is necessary to express the dependencies between source
components; in a package manager we express the dependencies between binary
components.

Source vs. Binary Distribution. Another issue is the dichotomy between source
and binary distributions. In an open-source environment software is provided as

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 102–117, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Integrating Software Construction and Software Deployment 103

source packages and sometimes as binary packages. The packaging and instal-
lation mechanisms for these are quite different. This is unfortunate; after all, a
binary distribution can be considered conceptually to be a source distribution
that has been partially evaluated with respect to a target platform using, e.g., a
compiler.

Variability. Most software systems exhibit some amount of variability, that is,
several variants can be instantiated from the same source system. Typical vari-
ation points are choosing between exclusive alternatives, whether to include op-
tional features, and so on. Deployment in binary form makes it hard to change
build time variation points.

Contribution. This paper demonstrates how build management and package
management can be elegantly integrated in a single formalism. We show a build
tool called Maak that constructs systems from descriptions in a simple func-
tional language. By providing a sufficiently powerful module system and caching
facility, the desired deployment characteristics can be obtained. In addition, the
Maak language makes it easy to describe build variants.

Overview. The remainder of this paper is structured as follows. We motivate our
research in section 2. We give a brief overview of the Maak system in section
3. We discuss the integration of deployment into build management in section
4. The state of the implementation is addressed in section 5, and related work
in section 6. We end with concluding remarks and directions for future work in
section 7.

2 Motivation

The task of a build manager is to generate derivates from sources by invoking
the right generators (such as compilers), according to some formal specification
of the system. The specification defines the actions by which derivates can be
produced from sources or other derivates; that is, actions can depend on the
outputs of other actions. The job of the build manager is to find a topological
sort on the graph of actions that performs the actions in the right order. There
are several important aspects to such a tool.

2.1 Correctness

A build manager should be correct: it should ensure consistency between the
sources and the derivates, i.e., that all derivates are derived from current sources,
or are equal to what they would be if they had been derived from current sources.

104 Eelco Dolstra

2.2 Efficiency

It is desirable to have a degree of efficiency: within the constraints of consistency
redundant recompilations should be avoided. It is debatable whether this is the
task of the build manager: it can be argued that this problem is properly solved
in the actual generators, since only they have complete dependency information.
Nevertheless, the efficiency aspect is the main purpose of classic build managers
such as Make.

2.3 Variability

The system specification formalism should enable us to easily specify variants.
That is, we want to parameterize a (partial) specification so that the various
members of a software product line [3] (a set of systems sharing a common set
of features) can be instantiated by providing different parameters.

In open-source systems in particular there tend to be many build-time vari-
ation points in order to make the system buildable in a wide variety of envi-
ronments that may or may not have the characteristics necessary to implement
certain features. In turn this is due to the use of fine-grained deployment strate-
gies: many small independent packages are used to compose the system. For
example, a program might have the ability to generate graphical output in JPG
and PNG format, but only if the respective libraries libjpg and libpng are
available.

Open-source distributors typically need to use binary packages for speed of
installation. Unfortunately, binary packages tend to force a “one-size-fits-all”
approach upon the distributors for those variation points that are bound at
build-time. In packaging the previous example system the distributor would
either have to deny the JPG/PNG feature to the users, or force it on users that
don’t need it, or deploy binary packages for each desired set of feature selections.

Let’s look at a real-life example. The ATerm library [4] is a library for the
manipulation and storage of tree-like data structures. The library is fairly small,
consisting of a dozen C source files. An interesting aspect of the package is that
the library has to be built in several variants: the regular library, the library
with debug information enabled, the library with maximal subterm sharing (a
domain feature) disabled, and various others.

Support for this in the package’s Makefile (actually, an Automakefile) is
rather ad hoc. To prevent the intermediate files used in building each variant
from overwriting each other, the use of special filename extensions has to be
arranged for:

SRCS = aterm.c list.c ...

libATerm_a_LIBADD = $(SRCS:.c=.o)
libATerm_dbg_a_LIBADD = $(SRCS:.c=-dbg.o)
libATerm_ns_a_LIBADD = $(SRCS:.c=-ns.o)

Integrating Software Construction and Software Deployment 105

This fragment causes the extensions .o, -dbg.o, and -ns.o to be used for the
object files used in building the aforementioned variants. To make it actually
work, we have to provide pattern rules:

%.o: %.c
gcc -c $< -o $@

%-dbg.o: %.c
gcc -g -c $< -o $@

%-ns.o: %.c
gcc -DNO_SHARING -c $< -o $@

Also note that this technique does not cover all variants in the variant space;
for example, no library without maximal sharing but with debug information is
built.

2.4 Modularity and Composability

Fourth, and most relevant to this paper, we claim that a build manager should
provide support for the composition of source components. Software seldom ex-
ists in a vacuum; to build a component, it is generally necessary that certain
other components are built as well. Most build managers work well when com-
ponents are statically composed, that is, when they are part of the same source
tree. For components that need to be separately deployable, this often does not
hold.

Continuing the previous example, apart from the library itself, the ATerm
distribution also provides a set of utility programs for manipulating terms. These
utilities are linked against the ATerm library, of course. Such a dependency is
easy to express when the library and utilities are part of the same package. E.g.,
one of the utilities, termsize, can be constructed as follows using Make:

termsize: termsize.o ../aterm/libATerm.a
cc -o termsize termsize.o libATerm.a

termsize.o: termsize.c
cc -o termsize.o -c termsize.c -I../aterm

(The references to ../aterm are present because the library proper is built
in a subdirectory aterm of the package, while the utilities are located in the
utils directory.) The Makefile properly expresses the relationships between the
components; e.g., if any of the sources of the library changes, the program will
be rebuilt as well. That is, the build manager has access to the full dependency
graph.

Suppose, however, that we want to move the utilities into a separate pack-
age, so that, e.g., it can be deployed independently. The typical procedure for
installation from source in a Unix environment would be:

106 Eelco Dolstra

1. Fetch the source code for package aterm containing the library.
2. Configure and build it (e.g., using Make).
3. Install it. This entails copying the library and C header files to some “global”

location, such as /usr/lib and /usr/include.
4. Fetch the source code for package aterm-utils that contains the utilities.
5. Configure and build it. Configuration includes specifying or finding the loca-

tion of the aterm library; for example, Autoconf configuration scripts scan
a number of well-known directories for library and header files.

6. Install it. This means copying the programs to, e.g., /usr/bin.

What is wrong with this approach? Note that we end up with two Makefiles
for each package, each providing an insufficient amount of dependency informa-
tion. For example, for the program package we might have the following Makefile:

termsize: termsize.o
cc -o termsize termsize.o -lATerm

termsize.o: termsize.c
cc -o termsize.o -c termsize.c

The dependency of the program component on the library component is
no longer explicit at the Makefile level. The aterm-utils package depends on
the aterm package, but this is not a formal dependency (i.e., it’s not made
explicit); rather, aterm-utils uses some artifacts (say, libATerm.a) that have
hopefully been installed by aterm. This is unsafe. For instance, we link in a file
such as /usr/lib/libATerm.a (through -lATerm). This file is an “uncontrolled”
input: we have to hope that it is the right version, has been built with the right
parameters, and so on, and in any case we have no way to rebuild it if it isn’t.

We now have to express the dependency at the level of the package manager
(if we express it at all; these things are often left implicit for the user to figure
out from the documentation!). That is, splitting one package into several lifts
dependencies to the higher level of package management, making them invisible
to the lower level of build management.

In summary, splitting components in this manner leads to more work for both
the developer of the package and the users of the package and is unsafe. This is
very unfortunate, because the refactoring of large components into smaller ones
is desirable to promote small-grained reuse [5]. What we really want is to import
in a controlled manner the aterm package into aterm-utils package, so that
the former can be build if necessary during the construction of the latter. Since
these packages are not part of a single source tree and can come from separate
sources, this implies that there can be a deployment aspect to build management.
For example, we may want to fetch packages transparently from the network if
they are not available locally.

3 The Maak System

Maak (from the Dutch verb for “to make”) is a build manager. It allows system
models to be described in a simple functional language. Maak evaluates an ex-

Integrating Software Construction and Software Deployment 107

pression that describes a build graph—a structure that describes what to build
and how to build it—and then realizes that graph by performing the actions
contained in it.

In this section we give a brief overview of Maak. It is not the intent to
provide a full overview of the syntax, semantics, and feature set of the system.
Rather, we focus on some examples that show how the problems of modularity
and variability can be solved in Maak.

A Variability Example. The variants of the ATerm library (introduced in section
2) can be built using Maak as follows. First, we consider the simple case of
building just the regular variant:

srcs = [./aterm.c ./list.c ...];

atermLib = makeLibrary (srcs);

What happens here is that we define a list srcs of the C sources constituting
the library. The variable atermLib is bound to the library that results from
applying the function makeLibrary to the sources; makeLibrary knows that it
should compile the sources before putting them in the library.

It should be noted that atermLib is a variable name and not a filename,
unlike, e.g., ./aterm.c; the sole difference between the two syntactical classes is
that filenames have slashes in them. So what’s the filename of the library? The
answer is that we don’t need to know; we can unambiguously refer to it through
the variable atermLib. (The function makeLibrary generates a name for us).

Hence, we can now use the library in building an executable program:

test = link {in = ./test.c, libs = atermLib};

We see here that Maak has two calling mechanisms: positional parameters (e.g., f
(x, y, z)) and by passing an attribute set (f {a = x, b = y, c = z}). The
latter allows arguments to be permuted or left undefined.

Similarly, we can create the debug and no-maximal-sharing variants:

atermLibDbg = makeLibrary {in = srcs, cflags = "-g"};
atermLibNS = makeLibrary {in = srcs, cflags = "-DNO_SHARING"};

Much better, though, is to solve the variability issue comprehensively as
follows. We can abstract over the definitions above by making atermLib into a
function with arguments debug and sharing:

atermLib = {debug, sharing}:
makeLibrary

{ in = srcs
, cflags = if (sharing, "", "-DNO_SHARING")

+ if (debug, "-g", "")
};

after which we can select the desired variant:

108 Eelco Dolstra

test = link
{ in = ./test.c
, libs = atermLib {debug = true, sharing = false}
};

Lazy Evaluation. Maak’s input formalism is a lazy functional language, meaning
that variable bindings and function arguments are evaluated only when actually
needed. This has two advantages. First, it prevents unused parts of the build
graph from being evaluated. Second, it allows the definition of control structures
in the language itself. For example, an if-then-else construct can take the form
of a regular function if taking three arguments: the conditional and the values
returned on true and false, respectively; only one of the latter is evaluated.

Model. Build graphs consist of two types of nodes: file nodes and action nodes.
Nodes are represented as attribute sets: mappings from names to values. A file
node consists of an attribute name that denotes the name of the file, and option-
ally (for derivates) an attribute partOf whose value is the action that builds the
derivate; that is, partOf denotes an edge in the graph.

Action nodes are also represented as attribute sets. There are several kinds of
attributes involved in an action. File attributes denote either the action’s sources
or its derivates (i.e., they denote graph edges). A file x is a derivate of an action
y if x.partOf == y, where == denotes pointer equality. The special attribute
build specifies the command to be executed to perform the action.

We can therefore describe the action of generating a parser from a Yacc
grammar as follows:

parser =
{ in = ./parser.y
, csrc => ./parser.c
, header => ./parser.h
, build = exec "yacc -b {in}"
};

The notation => is sugar: it ensures that the partOf attribute of the value points
back at the defining attribute set, i.e., it defines a derivate of the action. Inputs
are not marked in a particular way. Given the action parser, the C source can
be selected using the expression parser.csrc.

Defining Tools. Rather than write each action in the graph explicitly, we can
abstract over them, that is, we can write a function (i.e., a λ-abstraction) that
takes a set of attributes and returns an action. The following example defines a
basic C compiler function that takes two arguments: the source file in, and the
compiler flags cflags.

compileC = {in, cflags}:
{ in = in
, cflags = cflags

Integrating Software Construction and Software Deployment 109

, out => prefix (in) + ’.o’
, build = exec "cc -c {in} -o {out}"
}.out;

The syntax {args}: body denotes a function taking the given arguments and
returning the body. We select the out attribute of the action to make it easier
to pass the output of one action as input into another (e.g., link (compile
(./foo.c))).

Module System. Maakfiles are modular: they can import other Maakfiles. For
example, the declaration import ./src/Maakfile makes the definitions in the
specified Maakfile visible in the current Maakfile. The argument to the import
keyword is an expression (rather than a filename) that evaluates to a filename.
Crucially, as we shall see in section 4, this allows arbitrary module management
policies to be defined by the user (rather than have them hard-coded in the
language). Local definitions in a module take precedence over imported defini-
tions. In addition, qualified imports are possible: import e into x binds the
definitions in a module to the qualifier x, so that a definition y in the imported
module can be referenced as x.y.

4 Deployment

As stated previously, software deployment generally proceeds as follows. First,
the software is built using, e.g., compilers, generally under the control of a build
manager such as Make. Then, the relevant artifacts are packaged, that is, put in
some deployable unit such as a zip-file or an RPM package; depending on the
mechanism meta-data can be added to describe package dependencies and so
on. Finally, the package is installed, typically by an installer shipped as part of
the package, or by a package manager present on the target system such as the
Red Hat Package Manager.

Let’s consider the example based on the ATerm library mentioned in section
2 where we wanted to split this distribution into two separate packages: aterm
(containing the library), and aterm-utils (containing the utility programs).
In this section we show a simpler approach to the deployment process. The
central idea is to deploy packages in source form, i.e., along with an appropriate
Maakfile. Packages can depend on each other by having the Maakfile import the
Maakfiles of other packages. Since the packages are not part of the same source
tree, an indirection is required.

Figure 1 shows the Maakfile for the aterm package. It exports a function
atermLib that builds a variant of the ATerm library, along with a pointer to the
header files. Note that no installation occurs; the source code is the installation.

Figure 2 shows the Maakfile for the aterm-utils package. It imports the
library package through the statement import pkg ("aterm-1.6.7-2"). The
function pkg maps abstract package names to Maakfiles, while ensuring that the
package is present on the system.

110 Eelco Dolstra

import stdlibs; # for makeLibrary etc.

atermLib = {debug, sharing}:

makeLibrary

{ in = srcs

, cflags = if (sharing, "", "-DNO_SHARING")

+ if (debug, "-g", "")

};

atermInclude = ./;

Fig. 1. Maakfile for package aterm

import stdlibs;

import pkg ("aterm-1.6.7-2");

default = progs;

progs = [termsize ...];

termsize = link’ (./termsize, ./termsize.c); # and so on...

link’ = {out, in}: put (out, link # put copies a file to ‘out’

{ in = in

, libs = [atermLib {debug = false, sharing = true}]

, includes = [atermIncl]

});

activate = map ({p}: activateExec (p), progs);

Fig. 2. Maakfile for package aterm-utils

An Example Deployment Strategy. Now, how do we deploy this? It’s a mat-
ter of defining an appropriate implementation for the function pkg. It must be
emphasized that pkg is not a primitive: it is a regular function. The user can de-
fine other functions, or change the definition of pkg, to obtain arbitrary package
management policies. A possible implementation is outlined in figure 3. Here the
source code is obtained from the network; in particular, it is checked out from
a Subversion repository1. The source code for package X is downloaded into
/var/pkg/X on the local machine, and pkg will return /var/pkg/X/Maakfile
to the import statement.

Of course, pkg needs to know how to map package names to URLs. This map-
ping is maintained locally: through the function registerPkg (package-name,
url) we can associate a package name with a URL. These mappings can also be
1 Subversion is a version management system intended to be “a compelling replace-
ment for CVS in the open source community” [6]. It fixes CVS’s most obvious defi-
ciencies, such as unversioned directories and non-atomic commits.

Integrating Software Construction and Software Deployment 111

Client

http://serverA/pkgSrcs.mk

downloads and
registers

http://serverB/aterm/tags/1.6.7-2/

checks out

http://serverC/aterm-utils/tags/1.6.7-1/

checks out

refers to

refers to

implicitly imports

Fig. 3. A deployment strategy

obtained over the network by fetching a Maakfile containing calls to registerPkg
from the network and executing it (clearly, security issues need to be addressed
in the future!). The package aterm-utils can now be built by issuing the com-
mand

maak -f ’pkg ("aterm-utils-1.6.7-1")’

which will recursively obtain the source for aterm-utils and aterm, build the
variant of atermLib required for the utilities, and finally build the utilities.
(The switch -f obtains a Maakfile from the given expression rather than from
the current directory).

Installation. The above command will build the ATerm utilities, but it will
not “install” them. In the Make paradigm, it is customary to have a phony
install target that copies the appropriate files to the right system directories.
This is essentially a redundant step. Indeed, it’s just an additional complication
(for example, it is often quite troublesome to get executables using dynamically
linked libraries to work both in the source and installed location).

The main point of installing is to make software available to the user; for
example, copying a program to /usr/bin has the effect of having it appear
in every user’s search path. That is, the point of installing is to activate the
software. For example, the function activateExec will create a symbolic link in
/usr/bin to its argument. Hence, the command

maak -f ’pkg ("aterm-utils-1.6.7-1")’ activate

112 Eelco Dolstra

will build the utilities and make them available to the user. (The function map
used in figure 2 applies a function—here, activateExec—to all elements of a
list).

Binary Distribution. Of course, we cannot expect the clients to build from
source, so we need the ability to transparently export derivates to the client;
if a client runs Maak to build derivates that have already been built, i.e., were
built with the same attributes, then the pre-existing ones will be used. On the
other hand, if the client attempts to build a derivate with attributes or sources
such that no equivalent derivate exists in any cache, it must be built locally.
This enables a graceful fallback from binary distribution to source distribution.

Maak provides a primitive implementation of this idea. The command

maak ’exportDerivates (/tmp/shared, foo)’

will copy all derivates occurring in the build graph defined by the variable foo to
the directory /tmp/shared, where a mapping is maintained from build attributes
to files. (Generally, we would put such a cache on the network or on distribution
media). Subsequently, another user can build foo through the command maak
--import /tmp/shared foo; Maak will try to rebuild missing derivates first by
looking them up in the mapping, and by rebuilding them if they do not occur in
/tmp/shared. Therefore, if any changes have been made to the sources of foo,
or to the build attributes, the derivates will be rebuilt.

Barriers. When we share derivates, we encounter a problem: any change to
the attributes or dependencies will invalidate a derivate. This is often too rigid.
For example, recompilation will be triggered if the recipient has a different C
compiler (since it’s a dependency of the build process). If this behavior is not
desired, we can use update barriers to prevent a change to the compiler from
causing a rebuild, while a change to any “real” source file still triggers a rebuild.

foo.c

compile foo.o

bar.c

compile bar.o

/usr/bin/gcc

link prog

/usr/bin/ld

Fig. 4. An update barrier

Integrating Software Construction and Software Deployment 113

The idea is outlined in figure 4 where we have two source files, foo.c and
bar.c, to be compiled and linked into an executable. The C compiler gcc is also
a dependency, but changes to it should not trigger recompilation. We ensure this
by making an action node which has foo.c and bar.c as inputs, prog as output,
and as its action the building of the subgraph that builds prog. If neither foo.c
nor bar.c changes, the action (the big box in the figure) will not be executed. If
either of them changes, Maak will execute the action, which consists of updating
prog using the subgraph. Note that if either has changed, and the C compiler
has changed as well, then both files will be recompiled! This is exactly right: we
have to maintain consistency between the object files in the presence of potential
changes to the Application Binary Interface (ABI) of the compiler.

5 Implementation

A prototype of Maak has been implemented and is available under the terms of
the GNU Lesser General Public License at http://www.cs.uu.nl/~eelco/maak/.
The implementation comes with a (currently small) standard library providing
tool definitions for a number of languages and tools, include C and Java. The
prototype is written in Haskell, a purely functional programming language. This
is a nice language for prototyping, but ultimately a re-implementation in C or
C++ would be useful to improve portability and efficiency.

Maak implements up-to-date checking by maintaining per directory a map
from the derivates to the set of attributes used to build them, along with exact
timestamps (or for improved safety, hashes of the contents) of input files.

A problem in building variants is that we have to prevent the derivates from
each variant from overwriting each other; hence, they should not occupy the
same names in the file system. We take the approach that the actions (i.e., the
tool definition functions) are responsible for choosing output filenames such that
variants do not overwrite each other. The usual approach is to form an output
name using a hash of the input attributes. For example, compileC (./foo.c)
might yield a filename .maak_foo_305c.o, while compileC {in = ./foo.c,
cflags = "-g"} would yield .maak_foo_54db.o; in actuality, we use longer
hashes to decrease the probability of a collision. If a collision does occur, a
derivate may overwrite an older derivate, but since Maak registers the attributes
used to build them, this will not lead to unsafe build; if the older derivate is
required again, it will be rebuilt.

A useful feature of the prototype is the ability to perform build audits on
Linux systems to verify the completeness of Maakfile dependencies. By using
the strace utility Maak can trace all open() system calls, determine all actual
inputs and outputs of an action, and complain if there is a mismatch between
the specified and actual sets of inputs and outputs.

Another useful feature are generic operations on the build graph: given a
build graph, we can, for example, collect all leaf nodes to automatically create a
source distribution, or collect all nodes that are not inputs to actions to create
a binary distribution.

114 Eelco Dolstra

6 Related Work

Build Managers. The most widely used build manager is Make [1], along with
a large number of clones, not all of them source-compatible. Make’s model is
very simple: systems are described as a set of rules that specify a command
that builds a number of derivates from a number of sources. Make rebuilds a
derivate if any of the sources has a newer timestamp (a mechanism that is in
itself subject to race conditions). Unfortunately, Make often causes inconsistent
builds, since Makefiles tend to specify incomplete dependency information, and
the up-to-date detection is unreliable; e.g., changes to compiler flags will not
trigger recompilation. Make’s input language is also quite simplistic, making it
hard to specify variants.

The Makefile formalism is not sufficiently high-level; it does not provide scal-
able abstraction facilities. The abstraction mechanisms — variables and pattern
rules — are all global. Hence, if we need to specify different ways of building
targets, we cannot use them, unless we split the system into multiple Make-
files. This, however, creates the much greater problem of incomplete dependency
graphs [7].

Can’t we do the sort of deployment strategy described in section 4 using
Make? Through Make’s ability to invoke external tools, we can of course in
principle do anything with it. However, Make lacks a serious module system. It
does provide an include mechanism, but its flat namespace makes it unsuitable
for component composition.

There have been attempts to fix this defect by building layers on top of Make
rather than replace it, such as Automake [8], which generates Makefiles from a
list of macro invocations. For example, the definition foo_SOURCES = a.c b.y
will cause Automake to generate Make definitions that build the executable foo
from the given C and Yacc source, install it, create a source distribution, and
so on. The problem with such generation tools is that they do not shield the
user from the lower layers; it is the user’s job to map problems that occur in a
Makefile back to the Automakefile from which it was generated. Automake does
not provide a module system and so does not solve the problem of incomplete
dependency graphs. It provides some basic variability mechanisms, such as the
ability to build a library in several variants. However, Automake is not extensible,
so this feature is somewhat ad hoc.

Autoconf [9] is often used in conjunction with Make and/or Automake to
specialize an element of a product line automatically for the target platform. It is
typically used to generate Makefiles from templates with values discovered during
the configuration process substituted for variables. The heuristic approach to
source configuration promoted by Autoconf is very useful in practice, but also
unreliable. For example, we should not guess whether /usr/lib/libfoo.so is
really the library we’re looking for; rather, we should import the desired version
of the library so that the process can never go wrong.

Autobundle [10] is a tool to simplify composition of separately deployable
Autoconf-based packages. Based on descriptions of package dependencies, lo-
cations, etc., Autobundle generates a script that fetches the required source

Integrating Software Construction and Software Deployment 115

packages from the network, along with a configuration script and a Makefile
for the composed package. This is similar to the package management strat-
egy described in section 4, but it is yet another layer in the construction and
deployment process.

A handful of systems go beyond Make’s too-simple description language.
Vesta [11] integrates version management and build management. It’s Software
Description Language is a functional language [12], similar to Maak’s. An in-
teresting aspect is the propagation of “global” settings (such as compiler flags),
which happens by passing down an environment as a hidden argument to every
function call; the environment is bound at top-level. In Maak propagation is ex-
plicit and left to the authors of tool definitions. Vesta also allows derivates to be
shared among users; if a user attempts to build something that has previously
been built by another user, the derivates can be obtained from a cache. This is
quite reminiscent of our stated goal of allowing transparent binary deployment.
However, the Vesta framework only allows building from immutable sources;
that is, all sources to the build process (such as compilers) must be under ver-
sion control. When deploying source systems, unfortunately, we cannot expect
the recipient to have a identical environment to our own.

Odin [13] also has a somewhat functional flavor. For example, the expression
hello.c denotes a source, while hello.c :exe denotes the executable obtained
by compiling and linking hello.c; variants build can be expressed easily, e.g.,
hello.c +debug :exe. However, tool definitions in Odin are special entities,
not functions.

Amake [14] is the build tool for the Amoeba distributed operating system.
Like Odin, it separates the specification of build tools and system specifications.
Given a set of sources Amake automatically completes the build graph, that is,
it finds instances of tool definitions that build the desired targets from the given
sources. This is contrary to the model of explicit tool application to values in
Vesta and Maak. The obvious advantage is that specifications become shorter;
the downside is that it becomes harder to specify alternative ways of building,
and to see what’s going on (generally, it is a good idea to be explicit in saying
what you want).

Package Managers. There are many package management systems, ranging from
the basic— providing just simple installation and uninstallation facilities for in-
dividual packages—to the advanced—providing the features needed for ensuring
a consistent system. The popular Red Hat Package Manager (RPM) [2], used
in several Linux distributions, is a reasonably solid system. By maintaining a
database of all installed packages, it ensures that packages can be cleanly unin-
stalled and do not overwrite each other’s files, allows tracibility (e.g., to what
package does file X belong?), verifies that the prerequisites for installation of a
package (specified by the developer in an RPM specfile) are met, and so on.

But RPM also clearly demonstrates the dangers of separating build and pack-
age management: RPM packages often have incomplete dependency information
[15]. For example, a package may use some library libfoo.so without actually

116 Eelco Dolstra

declaring the foo package as a prerequisite. This cannot happen in Maak because
the way to access the library is by importing package foo.

Not a failing of RPM per se but of RPM package builders (and, indeed, most
Unix packaging systems) is the difficulty of having several variants of the same
product installed at the same time; e.g., RPMs of different versions or variants of
Apache typically all want to be installed in /usr/lib/apache/. This is mostly a
“cultural” problem: a better installation policy (such as described in section 4)
solves this problem. For example, a very useful feature for system administrators
is the ability to query to what package a file belongs. This query becomes trivial
if every package X is installed in /var/pkg/X .

There also exist several source-based package management systems, such as
the FreeBSD Ports Collection [16]. The main attraction is that the system can
be optimized towards the platform and requirements of the user, e.g., by select-
ing specific compiler optimization flags for the user’s processor, or by disabling
unnecessary optional package features. The obvious downsides are slowness of
installation, and that validation becomes hard: with so many possible variants,
how can we be sure that the system compiles correctly, let alone runs correctly?
For most ports pre-compiled packages exist (which do not offer build-time vari-
ability, of course). The two modes of installation are not abstracted over from the
user’s perspective; i.e., both present different user interfaces. With regard to the
slowness of source deployment, the holy grail would of course be the transparent
use of pre-built derivates described in section 4.

Of course, most users are not interested in building from source; the goal is to
relieve the developer from the burden of having to deal explicitly with the build
and deployment processes. As stated in the introduction, we can view binary
deployment as an optimization of source deployment. Such optimization should
happen transparently.

7 Conclusion

Van der Hoek [17] has argued that deployment functionality should be added to
SCM tools (and vice versa). In this paper we have shown how we can integrate
deployment with the build system. Also, since Maak is policy-free with regard to
the deployment policy, we can integrate deployment with version management.
For example, the deployment policy suggested in section 4 obtains packages
from a networked version management system; this could, for instance, be used
to push component updates to clients.

In the remainder of this section some issues for future work will be sketched.
The most important one is that the sharing of derivates—essential for transpar-
ent binary/source distribution—is currently rather primitive. A related issue is
that we need to be able to do binary-only distributions. This could be done by
making Maak pretend that the source does exist (e.g., by supplying file content
hashes). Security issues related to derivate sharing need to be addressed as well.
For example, if the administrator has built a package, other users should use it;
but not the other way around.

Integrating Software Construction and Software Deployment 117

We need to address scalability. For example, in the case of a Java package
that requires a Java compiler, the former should import the package that builds
the latter, just in case it hasn’t been built yet. But this would make the build
graph huge. Update barriers could be used to confine up-to-date analysis to the
package at hand.

Acknowledgments

This work was supported in part by the Software Engineering Research Cen-
ter (SERC). I am grateful to Eelco Visser, Andres Löh, Dave Clarke, and the
anonymous referees for commenting on drafts of this paper.

References

1. Feldman, S.I.: Make — a program for maintaining computer programs. Software
— Practice and Experience 9 (1979) 255–65

2. Bailey, E.C.: Maximum RPM. Sams (1997)
3. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach. Addison-Wesley (2000)
4. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.: Efficient annotated

terms. Software—Practice and Experience 30 (2000) 259–291
5. de Jonge, M.: To Reuse or To Be Reused. PhD thesis, University of Amsterdam

(2003)
6. CollabNet: Subversion home page. http://subversion.tigris.org (2002)
7. Miller, P.: Recursive make considered harmful (1997)
8. Free Software Foundation: Automake home page.

http://www.gnu.org/software/automake/ (2002)
9. Free Software Foundation: Autoconf home page.

http://www.gnu.org/software/autoconf/ (2002)
10. de Jonge, M.: Source tree composition. In: Seventh International Conference on

Software Reuse. Number 2319 in Lecture Notes in Computer Science, Springer-
Verlag (2002)

11. Heydon, A., Levin, R., Mann, T., Yu, Y.: The Vesta approach to software con-
figuration management. Technical Report Research Report 168, Compaq Systems
Research Center (2001)

12. Heydon, A., Levin, R., Yu, Y.: Caching function calls using precise dependen-
cies. In: ACM SIGPLAN ’00 Conference on Programming Language Design and
Implementation, ACM Press (2000) 311–320

13. Clemm, G.M.: The Odin System — An Object Manager for Extensible Software
Environments. PhD thesis, University of Colorado at Boulder (1986)

14. Baalbergen, E.H., Verstoep, K., Tanenbaum, A.S.: On the design of the Amoeba
configuration manager. In: Proc. 2nd Int. Works. on Software Configuration Man-
agement. Volume 17 of ACM SIGSOFT Software Engineering Notes. (1989) 15–22

15. Hart, J., D’Amelia, J.: An analysis of RPM validation drift. In: LISA’02: Sixteenth
Systems Administration Conference, USENIX Association (2002) 155–166

16. The FreeBSD Project: FreeBSD Ports Collection.
http://www.freebsd.org/ports/ (2002)

17. van der Hoek, A.: Integrating configuration management and software deployment.
In: Proc. Working Conference on Complex and Dynamic Systems Architecture
(CDSA 2001). (2001)

Data Product Configuration Management and
Versioning in Large-Scale Production of

Satellite Scientific Data

Bruce R. Barkstrom

Atmospheric Sciences Data Center
NASA Langley Research Center
Hampton, VA 23681-2199 USA

Abstract. This paper describes a formal structure for keeping track of
files, source code, scripts, and related material for large-scale Earth sci-
ence data production. We first describe the environment and processes
that govern this configuration management problem. Then, we show that
a graph with typed nodes and arcs can describe the derivation of pro-
duction design and of the produced files and their metadata. The graph
provides three useful by-products:

• a hierarchical data file inventory structure that can help system
users find particular files,

• methods for creating production graphs that govern job scheduling
and provenance graphs that track all of the sources and transforma-
tions between raw data input and a particular output file,

• a systematic relationship between different elements of the structure
and development documentation.

1 Introduction – On the Meaning of ‘Version’

Scientific data management must deal with several configuration management
issues that are more general than those that arise in tracking software versions.
Indeed, it is useful to consider several possible meanings of the term version that
arise in dealing with scientific data.

For archives with genomic or chemical data, the structure of the archive
contents is relatively fixed, but contributors constantly add new information [1,
2]. This constant addition and revision leads to distinct annual or semi-annual
versions of genomic or chemical databases that are similar to annual versions of
encyclopedias. Users have a clear motivation to use the latest version, since new
and improved information is likely to replace older versions of the same kind of
information.

Experimental fields of science, such as high-energy physics, need to record
their basic observational data. These data include the particle tracks in detectors
located around the targets in accelerators. Data users interpret these observa-
tional data, sometimes using extensive simulation programs, sometimes using

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS2649, pp. 118–133, 2003.

c© Springer-Verlag Berlin Heidelberg 2003

Data Product Configuration Management and Versioning 119

calibrations of the parameters of the original detectors [3]. While the simula-
tions are often easy to produce anew, the original data and the calibrations
become targets for longer term data preservation. For these fields, a version of
the archived data is likely to keep the original observations intact, but to append
new values for the calibration coefficients.

In observational sciences, such as astronomy [4], solar physics [5], and Earth
science, observations are unique. Unfortunately, neither the data downlinks nor
the instrument understanding is perfect. Furthermore, scientists usually need
to convert the instrument data into other geophysical parameters using code
that embodies complex algorithms. Data from satellite instruments cascades
through layers of editing and processing. Scientists desire long time series of data
with homogeneous uncertainties. To satisfy it, data producers create long series
of data with the ‘same’ code. At the same time, reexamination of previously
produced data suggests changes that should be inserted into the production
system to improve data quality. Such revisions force the scientists to rerun the
old data with new ‘versions’ of the code and coefficients. The new revisions
may also force reprocessing of ‘higher level,’ derived data products. In contrast
with software configuration management that only needs to track source code
revisions, management of observational data requires careful tracking of the total
configuration of computer code, input coefficients, and versions of ‘lower level’
data products.

In the remainder of this paper, we concentrate on data production, version-
ing, and configuration management of both data and source code for Earth
Science data. We are particularly interested in data produced by instruments
on NASA’s Earth-observing satellite systems. The large volume of data and the
production approach we just discussed lead to discrete, batch production. In
other words, versions of Earth science data products are discrete collections of
files that contain time series of related data.

2 Data Production Paradigms and CM Requirements
for Earth Science Data

In general, it is reasonable to divide data production approaches into “database-
like” or “batch” production. The first approach uses transactions that update
individual elements of data. The second ingests files, operates on the ingested
data values, and outputs new files. Database practitioners have been hopeful
about the use of databases. Musick [6] suggests that scientific computing needs
both computation at rates limited by CPU speed and data bandwidth as close
to native I/O as possible. Unfortunately, his benchmarks suggest that current,
commercial databases use so much CPU that their performance on very large
data volumes is unacceptable.

NASAs Earth Observing System Data and Information System (EOSDIS)
[7] illustrates a file-oriented system that provides reasonable production and
data distribution throughput. EOSDIS now includes seven major data centers,
with stored data volumes ranging from about 1 TB to more than 2 PB. At the

120 Bruce R. Barkstrom

authors data center at Langley Research Center, data production adds about 20
TB/month. This production will continue to add to the total data volume for
most of the next decade.

Within EOSDIS, there are a number of identifiable “data production para-
digms.” At the simple end, Landsat data producers use a simple process to
create images of the Earth. At the complex end, the CERES data production
uses priority interrupt scheduling with thirteen major subsystems. In the latter
case, the science team responsible for the instrument and for the data has about
650,000 source lines of code (SLOC) in the science production software. The team
also has about 45,000 lines of scripts to control production, and about 450,000
SLOC of code for production of coefficient files and data validation. In addition,
the data center has a similar volume of infrastructure code and Commercial
Off-The-Shelf software. There is a substantial variation in the number of jobs
being run each day for various instruments in EOSDIS. At the simple end are
instruments that require only a few tens of jobs per day. Two of the instruments
now producing data in the Langley Atmospheric Sciences Data Center (ASDC)
run about 1,000 jobs per day each. At the high end of production rate is the
MODerate-resolution Imaging Spectroradiometer (MODIS), for which the data
producers may run more then 10,000 discrete jobs per day.

As one might expect, different instrument teams meet different production
control problems. Some of these problems for Earth science data are similar
to those found in other branches of industrial engineering. From a sociological
standpoint, the data producers are like small to mid-sized firms with varying
market sizes. Each science team devises data products and data production
strategies appropriate to their market niche.

One important and universal problem for Earth science data centers is the
production volatility induced by changes in algorithms and coefficients as re-
sult of validation and reprocessing. Earth scientists require data validation to
quantify the data uncertainties in a scientific data product. Of course, valida-
tion entails detailed data examination that reveals correctable problems with
the data. Corrections introduce unexpected delays and force the data center to
perform rework that may not be present in other kinds of data management.

Other production control problems are probably unique to production of
Earth science data. One key difference between this production and other indus-
trial engineering problems is that data products produced at intermediate stages
in the production process are useful in their own right. Use of these intermediate
products in later steps of the production process does not destroy them. A sec-
ond key difference is that scientific data production for research always involves
requirements revisions. Both of these differences lead to stringent requirements
for configuration management. The traceability of the production process can
be the key to understanding whether data anomalies are due to changes in the
Earth or are simply the result of errors in the algorithms or input parameters.

Data Product Configuration Management and Versioning 121

3 A Simple Example Data Production Topology

Earth science data managers usually group NASA satellite data into file collec-
tions known as Data Products. They classify each data product as falling into
one of four levels:
• Level 0 (L0) - raw data from instrument data sources, usually consisting

of time-ordered packets of data
• Level 1 (L1) - calibrated data with geolocation included, with the indi-

vidual measurements retaining substantially the same temporal and spatial
resolution as the Level 0 data

• Level 2 (L2) - geophysical fields derived from the calibrated data, with the
fields retaining the same temporal and spatial resolution as the Level 1 data

• Level 3 (L3) - time and space averaged fields derived from the Level 2 data,
where the same fields as Level 2 now appear at larger spatial resolutions and
longer time intervals than they had in the Level 2 data products

As an example of this classification, fig. 1 shows a Data Flow Diagram for
a simple, linear production system that creates one data product for each of
three levels. In this figure, Data Products appear in rectangular boxes; Algo-
rithm Collections (ACs) appear in circles. We also show various coefficient files
that encapsulate key variable values for each AC. Because the coefficients are
changeable (and often voluminous), most science teams do not embed them in
their production code. Rather, they put the coefficients in files.

L0

Data

L1

Data
L2

Data

L3

Data

Calibrate

and

Geolocate

Produce

Instantaneous

Fields

Average

over Time

and Space

Calibration

Coefficients

Earth

Model

Geophysical

Conversion

Coefficients

Averaging

and Interpolation

Weights

Parameter Files

Fig. 1. Data flow diagram for simple linear data production

There are three important ideas that flow from this representation of data
production. First, the basic topology is a directed graph, in which the Data
Products are one kind of node and the Algorithm Collections are another. Sec-
ond, the Data Products themselves form a tree. In fig. 1, for example, we can
take the L0 Data node as the root of the tree. We can then count the data prod-
ucts (or data product levels) by distance from this root node. Distance in the

122 Bruce R. Barkstrom

graph is roughly equivalent to the number of ACs between a data product and
the root node. In more complex production topologies, data product Level can
be quite misleading about the number of predecessor processes. Third, including
the coefficient files in the production graph improves identification of the factors
that determine the possible scientific versions of the higher level data products.

Consider, the first Algorithm Collection in fig. 1. As its name implies, this
collection contains two algorithms: a calibration algorithm and a geolocation
algorithm. If either of these algorithms changes, then the AC will produce dif-
ferent numerical values in the Level 1 data than the ones found in the original
version. Suppose the original geolocation algorithm located the pixels on a spher-
ical Earth and a new version locates them on an ellipsoidal one. Data users need
to be able to verify which version of the algorithm created data they are using.
Likewise, we might suppose that the original calibration algorithm used a lin-
ear relation between the pixel data numbers and the calibrated radiances. Then
suppose the science team introduced a revised calibration algorithm that had a
small quadratic correction. The revision would produce different numerical val-
ues in the Level 1 data products – and in the subsequent Level 2 and 3 products.
It is easy to devise a combinatorial expansion of the number of versions that are
possible. There is no easy way to provide a linear sequence of versions, rendering
the conventional approach of sequential numbering inaccurate.

4 A Deeper Exploration of a Hierarchy for Classifying
Earth Science Data and File Collections

While the four data product levels we just discussed are useful, they may seri-
ously distort the data production topology for an investigation that has multiple
input sources and multiple data products. In this section, we identify a more ro-
bust hierarchy of data groupings. We start with a discussion of scientific param-
eters and measurement values that form the basis for placing data in files. Then
we consider homogeneous groupings of files whose data has (nearly) identical
structure and similar samplings in time and space. We call these homogeneous
groupings of files Data Products. Within a Data Product, we then describe file
collections that become more and more homogeneous.
Scientific Parameters and Measurement Values. Data lies at the heart of
data production. When we think of scientific data, we invariably think of mea-
surements and measurement values. These quantities are typically numerical -
and the numerical values have units attached. If we want to use data intelligently,
we care about the units – transforming to other units would require changes
in numerical values. Furthermore, individual data values represent spatial and
temporal averages of continuous fields. The spatial and temporal extent of the
measurement values is a critical component in identifying appropriate scientific
uses for data.
Files as Collections of Measurement Values. When data producers place
measurement values into files, they usually make sure that each file has the same
parameters as well as a particular spatial and temporal scale. They are somewhat

Data Product Configuration Management and Versioning 123

less sensitive to the internal structure of the files. For example, a stratospheric
investigator might create files that contain one-day, latitudinal averages of in-
stantaneous ozone profiles. It is unlikely that this producer would make a strong
distinction between files that organized instantaneous values into vertical pro-
files from files that organized the same numerical values into latitudinal arrays
for each altitude level.
Data Products. The largest collection of files we discuss is the Data Product.
We expect that all of the files in a Data Product will contain the same parame-
ters. They will also have similar samplings of time and space, and be similar in
structure. In most cases, the files contain data from regular intervals of time. In
other words, we can often characterize Data Products as being ‘hourly’, ‘daily’,
‘weekly’, or ‘monthly’.

The regularity of files within a Data Product makes it relatively easy to
produce a natural enumeration of the file instances within a Data Product.
Informally, we might say “This file contains data from the first time interval
we sampled and this other one contains data from the second interval.” More
formally, we can index such regularly occuring files that contain data in the time
interval (ti, ti + ∆t) with an index, i, computed as

i = �((t − t0)/∆t)� + 1 (1)

where ∆t is the time interval for data in any of the files, and t0 is the start time
of the data series in the data product files.
Data Sets. Within a Data Product, we can distinguish between large collections
of files produced by different instruments or by similar instruments on different
platforms. This distinction may not be important for small collections of data
from a single ground site or a single, low data rate instrument. However, when
similar instruments make measurements from different platforms, breaking the
files within a Data Product into smaller groupings we call Data Sets is partic-
ularly important. Different Data Sets within a Data Product may have quite
different properties.

For example, at the author’s data center, the CERES investigators need to
distinguish files from the CERES instrument on the Tropical Rainfall Measuring
Mission (TRMM) from those obtained with the two instruments on Terra, the
first satellite of the Earth Observing System. The data from these three instru-
ments are similar to the data from the two instruments on Aqua, the second
major satellite in that System. However, TRMM only samples the Earth within
about forty degrees latitude from the Equator; Terra and Aqua obtain measure-
ments from Pole-to-Pole. CERES data from TRMM started in January, 1999
and effectively ended about two months after the two CERES instruments on
Terra started collecting data. The latter two instruments now have many more
files than the TRMM instruments provided.

Each data set has a distinct start time associated with the time when its
data source started collecting data. Each data set also will eventually have a
distinct end time, when the source data collection stops. For the uniform time
discretization shown in equation (1), a data set thus has a computable number
of possible file instances.

124 Bruce R. Barkstrom

We can state this rule more formally. The files in a Data Set particularize the
instances of possible files in a Data Product. We can think of a Data Product as
establishing a rule for indexing a sequence of files. A Data Set identifies a first
element and a last element in a Data Product’s potential sequence. A Data Set
might also have rules that identify which elements of a Data Products sequence
a particular data source sampled and which it did not. In other words, from a
formal point of view, a Data Set establishes a Sampling Strategy that identifies
the actual files that can exist within a Data Product’s sequence.

This fundamental principle makes it relatively easy to establish which files in
two Data Sets cover the same time interval. Recognition of this fact may help to
improve the probability of obtaining coincident and synchronous data from two
different data sources. Of course, if a Data Product enumerates its files by time
and if two Data Sets in the Product do not overlap in space when they overlap
in time, the files may not have spatially coincident data. We do not consider the
problem of how to find spatially coincident data in this paper – our focus is on
the intrinsic structure of file collections.

Data Set Versions. If scientific data production were easy, instruments would
have stable calibrations and validation activities would discover no need for
corrections that vary with time. Unfortunately, validation invariably shows that
instrument calibrations drift and that algorithms need a better physical basis.
Within a Data Set, we can think of a Data Set Version as a collection of files in
a Data Set that have a homogeneous Data Production Strategy. Within a Data
Set Version, we expect the code producing the files to be stable. We also expect
that the algorithm input coefficients will be stable as well. The intent of data
production is to produce data whose uncertainties are statistically similar under
similar conditions of observation. In other words, a Data Set Version strives to
be a “scientifically homogeneous” collection of files within a Data Set.

Data Set Version Variants. While scientists may not notice variations within
a Data Set Version, there are a number of sources of variability that are apparent
to people who have to manage data production. The compiler may change. The
operating system or the programs that do scheduling may change. The data
center operators may add disks or CPUs - or some of the hardware may break.
The data producer may even introduce scientifically unnoticeable changes in the
format of the file or in the documentation and metadata embedded within the
file. Such variations in production mechanisms are apparent to the programs and
scripts that control data production. They do not affect the numeric values or the
uncertainty of data values. We lump these scientifically unnoticeable variations
together as Variants within a Data Set Version.

Granules. If we now return to the environment in which a data center stores
the data, we meet several complications to the presentation of the files in Data
Products or Data Sets. A data center or the data producer may find it convenient
to group several files together into a single inventory entry. We call such an entry
a Granule. If a data user wants a particular file, the data center may need to
find and extract the Granule and then extract the file from those in the granule.

Data Product Configuration Management and Versioning 125

The data center may also put data files onto tapes that break a file into pieces
stored on separate tape volumes. From the standpoint of the Data Center, these
pieces still belong to the same file and the same granule. A data user would have
to read the tape volumes in the proper sequence to recover the original order of
data within the file (or granule).

For our purposes, the distinction between files and granules is mildly aca-
demic. We will ignore it in the remainder of this paper.
A Somewhat More Formal Description. We are now at the point where we
can provide a somewhat more formal description of the data file groupings. The
lowest level of our grouping has files. These are the leaves in the tree representing
the hierarchy in fig. 2. In most cases, we can index the files within a Data Set
Version sequentially, usually by the starting time of data in a file. If we base the
design of the file storage on this natural indexing principle, then we can recognize
complete collections and incomplete ones. A complete (or potentially complete)
collection of files in a Data Set Version forms an “Edition” of that Data Set. A
Data Set Version created as part of a validation exercise may have gaps in its
sequence that will never exist. By analogy with book or encyclopedia editions,
we would probably label such an incomplete collection as a “Partial Edition” or
an “Incomplete Collection.”

Figure 2 shows a hierarchy that contains all of the file collections a project
or investigation could produce. At the highest level of the hierarchy, we group
a project’s files into Data Products. At the next level, we group the files in
a Data Product into Data Sets. We identify each Data Set with a Sampling
Strategy. Still deeper in the hierarchy, we break each Data Set into Data Set
Versions. A Production Strategy distinguishes one Version from another. The
Data Set Versions are scientifically distinguishable from one another. We distin-
guish Data Set Version Variants within a Version by a Configuration Code
that identifies sources of file-to-file variability that are not scientifically impor-
tant. The configuration code is typically an integer that we increment with each
new variant in a version. The leaves of this hierarchy are the individual files.

From a scientific standpoint, the most important characteristic about a Data
Set Version is that the data in its files have homogeneous uncertainties. The pro-
duction of a Data Set Version uses stable algorithms, stable input coefficients,
and input data with homogeneous uncertainties. Users should expect that data
values taken under similar conditions (e.g., daylight, over the clear Indian Ocean)
will have similar uncertainties. The most important difference between one Ver-
sion of a Data Set and another Version is the uncertainty of the data. We can
now see that a Data Set is a collection of Data Set Versions. The difference
between versions appears in the Production Strategy. That strategy specifies
the collection of algorithms and parameters that change input data into output
data. At a still larger collection scale, we distinguish Data Sets by their Sampling
Strategy – typically the platforms or instruments creating the data. Finally, a
Data Product consists of all of the Data Sets that have the “same kind” of data.

126 Bruce R. Barkstrom

Project

Data
Product

Data
Set

Data
Set
Version

Data
Set
Version
Variant

File

Fig. 2. Hierarchical groupings of files from data products to individual files

5 Discretized Production Processes

This paper treats data production as batch processing - not continuous or quasi-
continuous transaction updates. Thus, we need a discrete entity corresponding
to what computer operators used to call a “job.” In those ancient times, a job
was a collection of punched cards that a data producer put through a card reader
to program the computer. In the modern version, the equivalent is a script that
directs the computer to perform a sequence of computational activities. The
script may call for one or more executable files to perform one of these sequences.
The executable files contain compiled code that instantiates algorithms that
transform input files into output files. In the material that follows, we consider
how to organize collections of “jobs” into a hierarchy of recognizable and useful
entities. The natural elements of the hierarchy are
• Algorithm Collections in Subsystems
• Subsystem Design Templates
• Subsystem Designs
• Code
• Code Versions
• Executables

Data Product Configuration Management and Versioning 127

Algorithms. In the nomenclature of this paper, we define an Algorithm as a
finite procedure that transforms one kind of data into another within the context
of a subsystem. Knuth [8, p4ff.] provides a more detailed definition.

We can distinguish between specific algorithms and Algorithm Classes or
“algorithmic functionality.” In the nomenclature we are using, an algorithm has
all of its coefficients fixed. In contrast, an Algorithm Class provides a generic
kind of functionality, but might include many different algorithms, each with its
own set of fixed coefficients.

Algorithm Collections in Subsystems. In the production context, a science
team typically combines several Algorithm Classes into an Algorithm Collection
within a Subsystem. A Subsystem is then a major design element in a Project’s
data system that contains one or more Algorithm Classes. Simple data produc-
tion systems may not need more than one algorithm for each subsystem over the
life of the project. On the other hand, complex production systems may have
several algorithm collections in each subsystem.

We do not prescribe the order in which the Algorithm Classes in a collec-
tion transform the input data to output data. Neither do we guarantee that the
Subsystem will use exactly the same algorithm on each input file. Experience
suggests that our hierarchy needs to recognize the possibility of completely re-
placing one algorithm with another that performs a similar function (or, more
generically, that isa member of the same Algorithm Class).

One simple example of how an algorithm family works in practice comes from
the CERES experience on TRMM. The first Subsystem in the CERES data
production is one that geolocates and calibrates the “raw” instrument data.
In the first runs of this subsystem, the algorithm for geolocation located the
individual footprints on a geocentric Earth. When the data management team
looked at the location of these footprints along coastlines, they decided they
needed to use a geodetic Earth location. The new algorithm still fit into the first
CERES subsystem and still did geolocation. However, the new algorithm did not
follow the same steps as the first one did. In the terms we suggest, the geocentric
and geodetic Earth location algorithms belong to the same Algorithm Class.

It is also important to note that the two algorithms in this example class do
not have the same input parameters. The Earth locations they produce do not
have the same uncertainty. However the input and output from the algorithms
in the family is recognizably the same. In more general cases, the output may
differ. The key point is that the Algorithms in an Algorithm Class perform clearly
identified transformations that create output data products. We can anticipate
that changes in the specific algorithms (as reflected in the algorithm source code)
will produce different Data Set Versions.

Subsystem Design Templates. The data flow diagram for a large and com-
plex science project usually does not include the Coefficient Collections and QC
Summary files. Such a diagram is like an “architectural plan view” of a house
within its environment. It doesn’t include enough information to actually build
the house. In order to do that, we need “blueprints” that provide the neces-

128 Bruce R. Barkstrom

sary details. In other words, we need diagrams that show how the coefficient
collections and quality control files interact with the subsystems.

We call such diagrams Subsystem Design Templates (SSDT’s). The Tem-
plate for a Subsystem Design identifies the input Data Products and the output
Data Products for the Subsystem. It also identifies the Algorithm Coefficient
Collections that must be input and the Quality Control Summaries that must
be output. Because it serves as an architectural design element, the SSDT is also
an appropriate system element to use for developing an estimate of the volume
of code that a science team will have to create to provide a working version of
the subsystem.
Subsystem Design. At a more concrete level, a Subsystem Design (SSD)
should provide a detailed design for the algorithmic steps that the Subsystem
must perform. The SSD needs to identify input data sets (not data products) and
output data sets (not data products). It also needs to identify the appropriate
file collections for coefficients and quality summaries. While a SSD may inherit
Algorithm Classes from a SSDT, it needs to be quite specific about whether the
same algorithms will be used for the same functionality if there are different data
sources.

In CERES, the instruments are similar enough that there is only one design
for the Subsystem that calibrates and geolocates the Level 1 data. On the other
hand, the CERES Cloud Identification Algorithm Collection provides an exam-
ple of a divergence in Subsystem Designs for the same SSDT. For TRMM, the
Cloud Identification Subsystem needs to ingest data from the VIRS instrument.
VIRS has five spectral channels, a fairly narrow swath (600 km), and a spatial
resolution of about 2 km. For Terra and Aqua, this Subsystem needs to ingest
data from the MODIS instrument particular to each satellite. The MODIS in-
strument has about forty channels, a swath nearly as wide as CERES (about
2000 km), and a spatial resolution of about 1 km. The marked differences be-
tween VIRS and MODIS made the CERES team create two separate versions
of the Cloud Subsystems design to deal with cloud property data products.

For object-oriented design, we can view Algorithm Collections, SSDTs, and
SSDs as successive steps in an inheritance chain. The AC is the most abstract
form; the SSDT inherits connectivity from the AC. It also provides a template
that constrains the choices that the SSD can make for its connectivity. The
process inheritance is similar to the inheritance chain that leads from a Data
Product to the Data Sets that are its children.
Code. When the time comes to get the computer to perform the operations
identified in a SSD, the science team needs to instantiate the design in Code.
For our purposes, Code lies at the level of detail below Design. The difference
between Code and Designs is perhaps clearer if we think of instantiating a Design
in different languages. In code, the designers must specify a number of details
that are not important in the subsystem algorithm description. For example,
suppose the team codes an Algorithm in C that uses a multi-dimensional array.
The array indexing for this implementation will have a different order than it
would if the team codes the algorithm in FORTRAN. The output numerical

Data Product Configuration Management and Versioning 129

values from the two implementations should be the same, but the code may
store the data in a different order.
Code Version and Code Version Variants. Normal configuration manage-
ment systems operate on Code Versions. However, there may be several Code
Versions that produce output that is scientifically indistinguishable. For exam-
ple, we might need to change the names of functions in the code that access
OS functions when there is a new release of the OS. We call such scientifically
indistinguishable collections of code, Code Version Variants. Code Version
Variants produce Data Set Version Variants; Code Versions produce Data Set
Versions. A science team would use a single Code Version to produce the se-
quence of files in a single Data Set Version.
Executables. Executables are the lowest level entities that implement algo-
rithms. Executables consist of compiled and linked object code. When the
appropriate execution invocation calls them, an executable converts input files
to output files. An executable may also accept and send messages within the
operational environment.

It is clear that a single executable can create many different file instances. In
the next section, we consider how to catalog sequences of runs.

6 Discretized Production Flow Design

Within the framework we have described, the hierarchy of file collections and the
hierarchy of processes are the static portion of production. To this framework
we need to add a description of the production flow. If we adapt the industrial
engineering analogy, the files contain the material being processed from a raw
state to finished products. The processes are the tools that perform the conver-
sion. To complete the analogy, we need a procedure for sequencing the tools that
work on the material that is transformed by the data production process.

The atomic element in the procedure is usually a script that controls the se-
quence in which particular files and particular executables operate. We also need
to take into account the fact that batch processes operate on large collections
of files. For example, CERES needs to collect about 20 TB of data on disk in
order to process a month of data efficiently. The production system will have to
stage and destage large data volumes. These staging and destaging processes are
collections of jobs in their own right.

In rough accord with EOSDIS nomenclature, we call a generic instance of an
atomic script a Product Generation Executable, or PGE. However, as we
needed to carefully define set of terms to describe the organization of groups of
files, we need a careful description of collections of PGEs. The paragraphs that
follow provide the appropriate concepts.
PGE Runs. In operating a discrete data production system, we identify the
lowest level of control as a Product Generation Executable (PGE) run. A PGE
is a self-contained unit that consists of a script that calls one or more executable
objects into operation. A PGE Run accesses specific data files as well as spe-
cific executables. In our hierarchy, a PGE Run is the smallest (i.e., the atomic)

130 Bruce R. Barkstrom

element of execution control. We expect a PGE Run to have executable (object)
files that come from Code Version Variants.
PGE Run Collections. We use the term PGE Run Collection (PGERC)
to describe the PGE Runs that accept Data Set Version Variants as input and
create Data Set Version Variants as output. A PGE Run Collection should also
include staging and destaging processes. In scheduling terms, a PGERC is an
entity that a system scheduler can send to a job dispatcher. The scheduler may
separate the individual PGE Runs and dispatche them to individual CPU’s for
execution.

7 Implementing the Graph

The structure we have described is a particularly intricate graph with typed
nodes. Perhaps surprisingly, it is relatively straightforward to instantiate its core
functions with a pair of tables. The key to this implementation is to recognize
that we can represent both connectivity between file collections and processes
and the inheritance between different levels of abstraction as arcs between nodes
that represent the entities in the description. The nodes go into one array. The
arcs between the nodes go into a second.

With this representation, pointers between nodes and arcs become equivalent
to array indices. This equivalence has the advantage that in-memory storage is
easily converted to off-line storage (and vice versa). Furthermore, it is useful to
separate the storage of the files, their metadata, and the connectivity for indi-
vidual PGE Runs from the arrays that provide the graph for collections of files
and the processes that produce them. Such a separation makes the collection
structure quite compact and easy to search. In other words, this structure pro-
vides a way to structure the catalog and inventory of a large, Earth science data
center, as we suggest in fig. 3.

The two structures in the upper left of fig. 3 represent the arrays we just
discussed. At the lower center, we have the files in the data set versions. Cor-
responding to the file inventory structure, there is an equivalent structure of
file-specific metadata, which appears on lower left. To put it in slightly different
terms, this metadata associates a collection of parameters that are common for
all of the files in a Data Set Version with each file. The metadata serves as a
statistical summary of the file contents. The other elements in fig. 3 are arrays
that provide the attributes of file or process collections.

This structural organization allows us to pull out very useful views of the
file organization within the archive. In particular, the two arrays that hold the
graph make it easy to create the inheritance tree that shows the data products
for a particular project. We can build an inheritance tree by making a graph
traversal that extracts only the Data Product nodes. By going deeper into the
tree, it is easy to view the Data Sets belonging to each Product – or the Data
Set Versions belonging to each Data Set. It is easy to store these structures for
rapid presentation to users in the form of the familiar “Tree-View” control used
to present folders and files in the Windows family of interfaces.

Data Product Configuration Management and Versioning 131

Node

Array

Adjacency

List

Links

Array

Data

Product

Properties

Data

Set

Properties

Algorithm

Collection

Properties

.

.

.

File Metadata

Metadata

for Files

in One

Data Set

Version

Metadata

for Files

in One

Data Set

Version
. . .

Files

Files

in One

Data Set

Version

Files

in One

Data Set

Version
. . .

Production Connectivity

. . .

Pointers

to Prede-

cesor

Files and

Processes

for a File

in a Data

Set Version

Pointers

to Prede-

cesor

Files and

Processes

for a File

in a Data

Set Version

Fig. 3. Relationship of graph to other elements in an archive

A second feature of this data structure design is that it makes it easy to
provide a view of the inheritance from a Production Graph Template (contain-
ing SSDTs and Data Products) to a Production Graph (containing Files and
PGE Instances). Production Graphs are useful for deriving automated produc-
tion plans. Furthermore, it is easy to assemble the graph that provides the full
production history of a particular data product. For this purpose, we can start
a graph traversal at the node that represents the file of interest. This node will
have only one predecessor PGE. That PGE will, in turn, have predecessor files
that were produced by previous PGE’s. This approach to deriving provenance is
similar to that suggested in [9], except that here we place the Provenance Graph
in a systematic, top-down framework.

Fig. 3 also shows that the time ordering of files within a Data Set Version
provides a theoretical justification for storage sequence of these files. As we
commented earlier, one of the key attributes of a Data Product is the time
interval of the data in each file. A Data Set has a start date and an end date.
These two times and the data time interval allow us to use time interpolation to
find the index of the file that holds data for a particular data. A file whose data
comes from a time about half-way between the start date and the end date will
have an index about half-way through the array.

The data structure connections in fig. 3 provide a compact representation of
file collections that is natural to the properties imposed by the time ordering
of data collection. With care, the auxiliary tables of collection properties will

132 Bruce R. Barkstrom

also be compact. Further, we can bring nearly constant, file-specific metadata
fields into the collection properties. This summarization will leave the file-specific
metadata unencumbered by fields whose values are nearly constant for all file
instances.

8 Concluding Comments

Versioning for discrete, batch processing is rather different from versioning for
tracking complex code changes. A simple view of standard approaches to config-
uration management is that they concentrate on tracking the graph representing
text modifications, e.g. [10, 11, 12]. The system we have described has more ele-
ments and relationships. It is similar to configuration management for industrial
production, as noted by [13]. It is also different from the CM required for data
warehouses [14]. CM for batch processing in Earth Science data production does
not require keeping track of the trail of code changes. Rather, it is sufficient to
keep track of the deliveries of code (and documentation) as they arrive - without
tracking the intermediate states of editing.

At the same time, CM for discrete production requires tracking many kinds
of entities. We suggest that it helps to use a graph that is considerably different
than the graph used to track changes only in the code. What we have demon-
strated is that by maintaining the coefficient files, PGE’s, and related entities in
an explicit graph representation, we can efficiently combine information that is
useful in design with information that is needed for tracking the provenance of
data production for particular files.

References

1. Cavalcanti, M. C., M. L. Campos, and M. Mattoso, “Managing Scientific Models in
Structural Genomic Projects,” paper presented at the Workshop on Data Lineage
and Provenance, Chicago, IL, Oct. 10-11, 2002, available at
http://people.cs.uchicago.edu/˜yongzh/position papers.html

2. Pancerella, C., J. Myers, and L. Rahn, “Data Provenance in the CMCS,” paper
presented at the Workshop on Data Lineage and Provenance, Chicago, IL, Oct.
10-11, 2002, available at
http://people.cs.uchicago.edu/˜yongzh/position papers.html.

3. Cavanaugh, R., G. Graham, and M. Wilde, “Satisfying the Tax Collector: Using
Data Provenance as a way to audit data analyses in High Energy Physics,” paper
presented at the Workshop on Data Lineage and Provenance, Chicago, IL, Oct.
10-11, 2002, available at
http://people.cs.uchicago.edu/˜yongzh/position papers.html.

4. Mann, R., “Some Data Derivation and Provenance Issues in Astronomy,” paper
presented at the Workshop on Data Lineage and Provenance, Chicago, IL, Oct.
10-11, 2002, available at
http://people.cs.uchicago.edu/˜yongzh/position papers.html.

Data Product Configuration Management and Versioning 133

5. Fox, P., “Some Thoughts on Data Derivation and Provenance,” paper presented
at the Workshop on Data Lineage and Provenance, Chicago, IL, Oct. 10-11, 2002,
available at
http://people.cs.uchicago.edu/˜yongzh/position papers.html.

6. Musick, R., and T. Critchlow, “Practical Lessons in Supporting Large Scale Com-
putational Science,” Lawrence Livermore Report UCRL-JC-135606, 1999.

7. Baum, B., and B. R. Barkstrom, “Design and implementation of a prototype data
system for Earth radiation budget, cloud, aerosol, and chemistry data,” Bull. Amer.
Meteor. Soc., 74, 591-598, 1993

8. Knuth, D. E., The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms, 2nd Ed., Addison-Wesley, Reading, MA, 1973.

9. Frew, J., and R. Bose, “Lineage Issues for Scientific Data and Information,” paper
presented at the Workshop on Data Lineage and Provenance, Chicago, IL, Oct.
10-11, 2002, available at
http://people.cs.uchicago.edu/˜yongzh/position papers.html

10. Mahler, A., Variants: Keeping Things Together and Telling Them Apart, Config-
uration Management , W. F. Tichy, ed., 73-97, J. Wiley, 1994.

11. Zeller, A., and G. Snelting, Unified Versioning through Feature Logic, ACM Trans.
On Software Engineering and Methodology , 6, 398-441, 1997.

12. Conradi, R. and B. Westfechtel, Version models for software configuration man-
agement, ACM Computing Surveys, 30, No. 2, 232-282, 1998.

13. Estublier, J., J-M. Favre, and P. Morat, “Toward SCM/PDM integration?,” Proc.
SCM8, Bruxelles, Belgium, July, 1998, Springer-Verlag, LNCS 1439, 75-95.

14. Cui, Y. Lineage Tracing in Data Warehouses, Ph.D. Dissertation, Stanford Univ.,
2001.

Merging Collection Data Structures

in a Content Management System

Axel Wienberg

CoreMedia AG, Ludwig-Erhard-Straße 18, Hamburg, Germany
axel.wienberg@coremedia.com

http://www.coremedia.com

Abstract. Motivated by our work on object-oriented Content Man-
agement, this paper proposes an extensible formal framework for delta
and merging strategies, each applicable to a specific type of content un-
der specific constraints. By exploiting type-specific constraints, adequate
deltas can be computed even without detailed operation logs. The frame-
work thereby allows the use of unmodified third-party editing applica-
tions. We present initial experience with conflict detection and content
merging algorithms for a number of link collection types, namely sets,
lists, maps, and maps without duplicates.

1 Introduction and Motivation

As experienced in application domains such as CAD or Software Engineering,
the collaborative development of complex, compound artifacts is best supported
by incremental design transactions in autonomous workspaces. As a necessary
consequence, concurrent, conflicting changes occur and have to be merged. Due
to the volume of content, an automated analysis and resolution of conflicts is
desirable. Due to the complexity of the content, however, merging in the general
case requires interactive user decisions.

This experience applies directly to Content Management. In a Content Man-
agement System such as the CoreMedia Research Platform (CRP)[1], the con-
tent is represented as a network of structured objects, and is edited within
workspaces. Websites or other desired products are generated continuously or
on-demand from the fine-grained object repository.

The CRP is based on an object-oriented meta model, which allows the defini-
tion of application-specific object types and constraints. Such an explicit schema
can contribute to merging in the following ways:

– by improving the locality of changes,
– by supporting the automated generation of merge proposals,
– by improving the user presentation of merge conflicts, and
– by detecting unsuccessful merges, which violate schema constraints.

We realized that due to the important role and rich selection of link types
offered by the CRP, and in order to support an open-ended set of application-
specific “binary” content types edited by third-party applications, we needed a
generic framework for merge support.

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 134–147, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Merging Link Collection Data Structures in a Content Management System 135

In this paper, we therefore define an extensible formal framework for delta
and merging strategies, each applicable to a specific type with specific con-
straints. Using this framework, we present initial experience with conflict de-
tection and content merging algorithms for a number of link collection types.

After introducing the running example for this paper in section 2, we briefly
describe the modeling language used in the CoreMedia Research Platform in
section 3, then recapitulate the general concept of three-way merging in section 4,
and go on to apply this concept to selected link collection data structures in
section 5, which forms the body of this paper. After reporting on related work
in section 6, we conclude with a summary in section 7.

2 Example Scenario

As an example scenario, let us consider two editors working on the web site for
a music portal. We shall concentrate on the home page, shown in Fig. 1, since
it portrays the site’s functionality.

Fig. 1. Home page of a web portal

136 Axel Wienberg

As indicated by the navigation elements on the left, the site consists of several
music departments. These can again contain subdepartments etc., leading to a
hierarchical navigation structure. For each node in the hierarchy there is a home
page which features selected articles (in the middle) and selected products (on
the right) from this area of the site.

Now assume there are two content editors, one responsible for the Classics
department, the other for Jazz. The Classics editor writes a teaser for a new
article, and carefully selects a location on the homepage for the teaser. The editor
reviews her changes in the context of her workspace, and decides to publish it.
However, in the meantime the Jazz editor has also edited the homepage, so their
changes have to be reconciled.

Since the editors are using a modern Content Management System, they are
not working on HTML pages directly. The actual web site is generated from a
content base using templates which select and combine the content. For example,
the navigation bars are computed from the current position in the navigation
hierarchy. The “teasers” for the selected articles are printed in the order arranged
by the site editors, and each teaser’s representation is made up from its title, its
body text, and an associated image.

The use of a content schema has two important consequences in this scenario:
Firstly, by providing a conceptual model understood by both the users and the
system, the area of changes is clearly localized. In the example, the only point
where changes clash is the list of teasers. Secondly, knowing that the teasers on
the homepage form an ordered list, the system can present the conflict to the
user in an intelligible way, and offer sensible merge proposals.

3 Content Schema

Content Management involves the detailed construction of web pages and other
output formats integrating fragments of different content objects, and therefore
requires a rather fine-grained understanding of content by the system.

In the approach followed by the CoreMedia Research Platform, the schema
is explicitly defined, stored in, and understood by the Content Management
System. Content objects are classified by their structure, and their properties
and associations are defined.

The modeling language used by the CRP is object-oriented, implementing a
subset of UML. Objects are the semantic unit for reference, collaboration, and
versioning. An object aggregates property bindings, each binding a property to
an appropriate value.

As shown in Fig. 2, available classes of properties include atomic properties
such as string and integer properties, media properties bound to application-
specific binary values, and link properties bound to collections of links to other
objects.1 A declaration of a link property includes the expected type for targets
of the contained links, cardinality and uniqueness constraints, and may indicate
1 In this paper, we restrict our scope to explicitly modeled links, and do not consider

the extraction of link information from media data.

Merging Link Collection Data Structures in a Content Management System 137

LinkMapPropertyLinkProperty

LinkSetProperty LinkListProperty

Type Property

LinkCollectionProperty
minCard, maxCard: int
duplicates: boolean

1
declares

target

subtype

0..1

supertype

*

MediaProperty StringProperty

mimeType:String nullable: boolean

Fig. 2. UML class diagram for the content meta-model

that the link collection is keyed or ordered, turning it into a map or a list,
respectively. The available link collection types therefore correspond to those in
most modern programming languages: simple link, link set, link list, link map.

Article
title: String
text: Media(text/xml)

parent
0..1

Image
caption: String
data: Media(image/*)

Page Content

Teaser

sub

title: String
teasertext: Media(text/xml)

name:String

{ordered} *
center

{ordered} *
side

1

1

name: String
Category

anchor:String

0..3

Fig. 3. A simple Content Schema, represented as UML

Figure 3 shows a partial content schema for the example from section 2,
featuring all mentioned collection types:

– A Teaser has a simple link to an Article.
– An Article holds a link set of up to three Categories.
– A Page has a link list of Content objects appearing in the center row.
– An Article has a link map of Images, keyed by their anchor in the text.
– A Page further has a link map of named subpages, where each subpage occurs

at most once.

We will refer to this content schema in subsequent examples.

4 Workspaces and Merging

In the CoreMedia Research Platform, all content is put under configuration
management, and is edited within workspaces. A workspace is the place where
a user or a group of users work together on advancing the web site in some
direction. The workspace concept is well-known in SCM, and its applicability to
content development is discussed e.g. in [2].

138 Axel Wienberg

Merging is a necessary consequence of using workspaces. We realized that
due to the important role and rich selection of link types, and in order to sup-
port different kinds of application-specific “binary” content, we need a generic
framework for merge support, especially three-way merge.

A so-called “three-way merge” generally serves to combine the changes made
to a versioned object in two parallel branches. It requires a common ancestor
version (va) to be identified, and works by computing a delta from the ancestor
to each derived version v1, v2, resulting in ∆i = delta(va, vi). These deltas are
then combined to produce a merge delta ∆m = merge(∆1, ∆2), which, when
applied to the common ancestor, yields the merge result: vm = apply(va, ∆m).

In practice, the “merge” function cannot be completely formalized; rather, it
aims to solve the obvious cases and support a human user in resolving the more
difficult ones.

To separate the changes for which independent decisions are required, a delta
∆i is split up into delta chunks δi

j , ∆i = {δi
1, ..., δ

i
n}. The delta chunks of each

delta are then paired with corresponding chunks in the other delta, by observing
if two delta chunks affect, or depend on, overlapping regions of the common
ancestor. Such a pair of delta chunks is said to be in conflict.

How the resolution of the conflict is decided is determined by a merge policy[3],
depending on the types of delta chunks: one option may be chosen automati-
cally, or one option out of a set may be proposed to the user, giving him an
opportunity to disagree and select a different option, or the choice from a set of
options may be left entirely to the user.

5 Merging Content

The three-way merge framework just described is traditionally applied to line-
oriented text files. So for example, if the same line was inserted in two descendant
text files at the same position, the deltas agree on this delta chunk. However, if
two different lines were inserted at the same position, the affected region overlaps,
so a user decision will usually be requested.

In the following, we will apply the framework to collection data structures.
For each kind of data structure to be merged, the types of the values and the
types of the delta chunks have to be specified. Next, we can specify the algorithm
for determining the delta of two values, and for applying a delta to a value; then,
we examine the notion of the region of influence of a delta chunk for the respective
data structure, which defines when two regions overlap. Finally, the options for
resolving conflicting chunks are described.

A resolution option is described as a set of delta chunks which replace the
conflicting chunks. This resolves the original conflict, and may also resolve or
cause other (hopefully less severe) conflicts. The process is repeated until all
conflicts have been resolved.

Merging Link Collection Data Structures in a Content Management System 139

5.1 Sets

As a warm-up exercise, we start by considering sets of objects, o ∈ O, v ∈ P(O).
Link set properties are used in the content schema whenever an unordered 1:n or
m:n relationship is modeled, which needs to be navigable towards the “n” side.
Examples include the categories assigned to an article, or the set of products to
be presented along with an article.

When a set property has been modified between two versions and is to be
merged with independent changes to the same property, the delta of two values
is (naturally) reconstructed as the insertions and deletions that have taken place:

delta(v1, v2) = {ins(o) | o ∈ v2 \ v1}
∪ {del(o) | o ∈ v1 \ v2}

apply(v, ∆) = v\ {o ∈ O | del(o) ∈ ∆}
∪ {o ∈ O | ins(o) ∈ ∆}

∆Set = {ins(o) | o ∈ O}
∪ {del(o) | o ∈ O}

The equations satisfy the requirement that apply(v, delta(v, v1)) = v1.
The region influenced by a delta chunk is simply defined to be the object

inserted or deleted. An insertion and a deletion for the same object are therefore
in conflict, and therefore must not both occur in a wellformed delta.

region(ins(o)) = {o}
region(del(o)) = {o}

Given any two conflicting delta chunks δ1 and δ2, the possible ways to resolve
them can be represented as a set of options, where each option is a set of delta
chunks. For a non-conflicting delta chunk δ, the options are always to take it or to
leave it, i.e. the empty set ∅ and the singleton {δ}. For conflicting delta chunks,
the options always include taking none or exactly one of the two: ∅, {δ1}, {δ2}.
Also note that the table of options is always symmetrical (even though a concrete
policy need not be). For sets, this already describes all available options.

We observe that, when computing the difference to a common ancestor, set
delta chunks are always equal or are not in conflict at all: existing elements of the
ancestor value can only be removed, and elements not contained in the ancestor
can only be added. So the only distinction is whether a delta chunk is contained
in none, exactly one or both of ∆1 and ∆2. This can easily be displayed to a
user, by visualizing the operation on the respective sides of the affected element.

A preliminary merge may violate additional semantic constraints, for example
the minimum or maximum cardinality, or may produce links to deleted objects.
The system supports this by allowing, but flagging these temporary violations[1],
and blocking publication until all integrity issues have been resolved. This way,
we also take inter-object constraints into account.

Example. Coming back to our example scenario, let’s say we have an article as-
signed to two categories, “interview” and “tour”. Two editors work on the article
in parallel and both edit the keywords. One editor replaces “tour” by “concert”,

140 Axel Wienberg

while the other replaces “tour” by “festival”. For simplicity, we write the cate-
gory’s name to represent a link to the category object. Then, the situation is as
follows:

va = {interview, tour}
v1 = {interview, concert}
v2 = {interview, festival}

delta(va, v1) = {del(tour), ins(concert)}
delta(va, v2) = {del(tour), ins(festival)}

region(del(tour)) = {tour}
region(ins(concert)) = {concert}
region(ins(festival)) = {festival}

The only overlapping regions are those of the (equal) delete chunks for v1 and
v2. The framework computes the following resolution options:

options(del(tour),del(tour)) = {∅, {del(tour)}}
options(ins(concert), no conflict) = {∅, {ins(concert)}}
options(no conflict, ins(festival)) = {∅, {ins(festival)}}

The user or a configured policy picks one option in each case. Assuming the
deletion is rejected, but both inserts are accepted, we get:

∆m = {ins(festival), ins(concert)}
vm = apply(va, ∆m)

= {interview, festival, concert}
The result is within the limits of the declared cardinality constraint. Other-

wise, the constraint violation would be flagged, and some merge decisions would
have to be reconsidered.

5.2 Lists

For differencing lists (sequences) of text lines, longest-common-subsequence
based algorithms[4] have been used successfully for years. Since the concepts
are well-known in the SCM community, we do not repeat the actual algorithm
for computing an alignment of two sequences here, but only show how to fit it
into the general merging framework.

Mathematically, a list of length n can be described as a function l : {1...n} →
O. We denote literal lists as 〈l1, l2, ..., ln〉.

∆List = {ins(i, 〈o1, ..., on〉) | i ≥ 0 ∧ ok ∈ O}
∪ {del(i, j) | 1 ≤ i ≤ j}
∪ {upd(i, j, 〈o1, ..., on〉) | 1 ≤ i ≤ j, ok ∈ O}

Informally, ins inserts a subsequence after position i, del deletes and upd
replaces the sublist in the range i...j, where i and j are inclusive.

Merging Link Collection Data Structures in a Content Management System 141

region(ins(i, l)) = {after(i)}
region(del(i, j)) = {on(k) | i ≤ k ≤ j} ∪ {after(k) | i ≤ k < j}

region(upd(i, j, l)) = {on(k) | i ≤ k ≤ j} ∪ {after(k) | i ≤ k < j}

The regions are defined so that an insert is in conflict with an insert at the
same position, and with a deletion or update that spans both its left and its
right neighbor.

As always, possible conflict resolutions include taking none or exactly one of
the conflicting chunks. Two overlapping delete chunks may be split into three,
generating two non-conflicting delete chunks and one delete chunk common to
both deltas.2 This simplifies the user interaction.

The algorithm of diff3[5] simplifies the comparison further by joining and ex-
tending conflicting delta chunks until the regions are equal, effectively taking the
symmetric, transitive closure of the “conflicts with” relation. This is achieved
by converting ins and del operations to updates, and then joining the updates
by adding intervening elements of the ancestor version into the substituted list.
After this simplification, each chunk is in conflict with at most one other chunk,
which allows a linear side-by-side output format. On the downside, some preci-
sion of the delta analysis is lost, which could be avoided if the merge is executed
in an interactive process as assumed in this paper.

For conflicting insert operations, the user may decide an order of insertion,
effectively inserting the concatenated sublist. Another resolution option is to
compute a two-way lcs-based delta between the inserted sublists, and to replace
the conflicting big insert with a sequence of smaller inserts, which are again
non-conflicting or equal.3

Example. In the example content schema of Figure 3, a Page has a list of
Content objects to be displayed in the center column. Let the center list of the
home page be

va = 〈ChiliPeppers, Hancock, Kunze〉
Editor 1 moves Kunze to position one, while editor 2 adds Madonna as number
1 and removes Herbie Hancock and Heinz-Rudolf Kunze.

v1 = 〈Kunze, ChiliPeppers, Hancock〉
v2 = 〈Madonna, ChiliPeppers〉

The LCS algorithm computes the following deltas:

delta(va, v1) = {ins(0, 〈Kunze〉),del(2, 2)}
delta(va, v2) = {ins(0, 〈Madonna〉),del(1, 2)}

2 The refinement of delta chunks, i.e. changing the representation of a delta to facilitate
the comparison with another delta, is not formalized in this paper.

3 To express the ordering of the smaller insert operations, the syntax of the ins oper-
ation needs to be extended with a sub-index: ins(i, isub, l).

142 Axel Wienberg

region(ins(0, 〈Kunze〉)) = {after(0)}
region(del(2, 2)) = {on(2)}
region(ins(0, 〈Madonna〉)) = {after(0)}
region(del(1, 2)) = {on(1),after(1),on(2)}

There are several options for resolving the conflicting chunks:

options (ins(0, 〈Madonna〉), ins(0, 〈Kunze〉))
= { ∅,

{ins(0, 〈Madonna〉)},
{ins(0, 〈Kunze〉)},
{ins(0, 〈Madonna,Kunze〉)},
{ins(0, 〈Kunze,Madonna〉)}}

options (del(1, 2),del(2, 2))
= { ∅, {del(1, 2)}, {del(2, 2)}}

Picking a combined insert and the larger delete, we get:

∆m = {ins(0, 〈Madonna, Kunze〉),del(1, 2)}
vm = apply(va, ∆m)

= 〈Madonna, Kunze, ChiliPeppers〉

5.3 Maps

Link map properties are often used in the CRP to express file system like struc-
tures. Link maps are also used to provide further information about the contained
links, such as a link’s source position, or the role of the link target.

Formally, a map is a partial function f from keys k ∈ K to values o ∈ O.
We identify a map with the set of its entries, f ⊂ K ×O, where each key occurs
at most once. The delta is constructed as the insertions, deletions and updates
that have taken place:

∆Map = {ins(k, o) | k ∈ K, o ∈ O}
∪ {del(k) | k ∈ K}
∪ {upd(k, o) | k ∈ K, o ∈ O}

delta(v1, v2) = {ins(k, v2(k)) | k ∈ dom(v2) \ dom(v1)}
∪ {del(k) | k ∈ dom(v1) \ dom(v2)}
∪ {upd(k, v2(k)) | k ∈ dom(v1) ∩ dom(v2)}

apply(v, ∆) = v \ {(k, v(k)) ∈ K ×O | del(k) ∈ ∆}
\ {(k, v(k)) ∈ K ×O | upd(k, o) ∈ ∆}
∪ {(k, o) ∈ K ×O | ins(k, o) ∈ ∆ ∨ upd(k, o) ∈ ∆}

The region affected by a map operation is defined to be its key, so different
delta chunks for the same key are in conflict.

region(ins(k, o)) = {k}
region(del(k)) = {k}

region(upd(k, o)) = {k}

Merging Link Collection Data Structures in a Content Management System 143

Note that when computing the deltas to a common ancestor, insert/delete
or insert/update conflicts cannot occur; the only conflicts are insert/insert with
different value, delete/update and update/update with different value.

Renaming of entries is not modeled, since it cannot be distinguished from
a sequence of insert and delete: There is no constraint forbidding a deletion
without an insert, or an insert while rejecting the delete, so it is not appropriate
to couple both into one decision presented to the user.

Example. In the example content schema of Figure 3, an Article has a link
map of Images, whose positions (anchors) in the article’s text are given by the
map keys.

Let bigImage and smallImage be two image objects. We start in a situation
where the article has the smallImage at position “#A1”. Editor 1 replaces the
smallImage with the bigImage, while Editor 2 removes the smallImage and adds
the bigImage at position “#A2”. Formally:

va = {(“#A1”, smallImage)}
v1 = {(“#A1”, bigImage)}
v2 = {(“#A2”, bigImage)}

delta(va, v1) = {upd(“#A1”, bigImage)}
delta(va, v2) = {del(“#A1”), ins(“#A2”, bigImage)}

region(upd(“#A1”, bigImage)) = {“#A1”}
region(del(“#A1”)) = {“#A1”}
region(ins(“#A2”, bigImage)) = {“#A2”}

Obviously, the update and the delete are in conflict. The resolution options,
and a possible merge obtained by rejecting both the update and the delete are
shown below.

options(upd(“#A1”, bigImage),del(“#A1”))
= {∅, {upd(“#A1”, bigImage)}, {del(“#A1”)}}

options(no conflict, ins(“#A2”, bigImage))
= {∅, {ins(“#A2”, bigImage)}}

∆m = {ins(“#A2”, bigImage)}
vm = apply(va, ∆m)

= {(“#A1”, smallImage), (“#A2”, bigImage)}

5.4 Maps without Duplicates

A map property presenting a file hierarchy will often be constrained by the
content model not to contain duplicates, with a cardinality of at most 1 on
the parent side of the relationship.4 In this case, a different delta and merging
4 This gives the semantics of the Windows file system, as opposed to the UNIX file

system.

144 Axel Wienberg

strategy can be applied, which detects moves, and which avoids merges that
would violate the map’s uniqueness constraint.

So we consider partial one-to-one functions f : K → O, where each key as
well as each object occurs at most once in the set of entries f ⊂ K ×O. Since f
is injective, we can define the inverse partial function f−1 : dom(f) ⊂ O → K.

The delta is constructed as the insertions, deletions and moves that have
taken place. Delta chunks within a delta are not ordered, so moves are concep-
tually executed all at the same time. This allows cycles to be represented without
introducing arbitrary temporary names, which would be difficult to merge.

∆MapUniq = {ins(k, o) | k ∈ K, o ∈ O}
∪ {del(k) | k ∈ K}
∪ {mov(k1, k2) | ki ∈ K}

delta(v1, v2) = {ins(v−1
2 (o), o) | o ∈ cod(v2) \ cod(v1)}

∪ {del(v−1
1 (o)) | o ∈ cod(v1) \ cod(v2)}

∪ {mov(k1, k2) | v2(k2) = v1(k1) ∧ k1 = k2}
apply(v, ∆) = v \ {(k, v(k)) ∈ K ×O | del(k) ∈ ∆}

\ {(k2, v(k2)) ∈ K ×O | mov(k1, k2) ∈ ∆}
∪ {(k2, v(k1)) ∈ K ×O | mov(k1, k2) ∈ ∆}
∪ {(k, o) ∈ K ×O | ins(k, o) ∈ ∆}

The region affected by a map operation is defined to be the keys removed and
the keys added, so two moves to the same target are in conflict, but a move from
the target of another move is not. Insertion and deletion of the same key cannot
occur during merging, since both deltas are computed relative to a common
ancestor, so this conflict does not have to be detected.

region(ins(k, o)) = {add(k)}
region(del(k)) = {rem(k)}

region(mov(k1, k2)) = {rem(k1),add(k2)}
Apart from the standard conflict resolutions, we offer the interactive entry

of a new name to be used as the key.

Example. As an example, we use the subpage property from Figure 3, which
is a link map without duplicates. In the ancestor version, the home page has the
subpages PopRockPage and JazzPage, referenced under the name “Pop/Rock”
and “Jazz”. Now Editor 1 adds a new Rock Page and renames “Pop/Rock” to
“Pop”, while Editor 2 renames “Pop/Rock” to “Rock” and adds a new “Pop”
Page.

va = {(“Pop/Rock”, PopRockPage), (“Jazz”, JazzPage)}
v1 = {(“Pop”, PopRockPage), (“Rock”, RockPage), (“Jazz”, JazzPage)}
v2 = {(“Pop”, PopPage), (“Rock”, PopRockPage), (“Jazz”, JazzPage)}
In contrast to the algorithm given in the previous subsection, this delta al-

gorithm recognizes the move operation:

Merging Link Collection Data Structures in a Content Management System 145

delta(va, v1) = {ins(“Rock”, RockPage),mov(“Pop/Rock”, “Pop”)}
delta(va, v2) = {ins(“Pop”, PopPage),mov(“Pop/Rock”, “Rock”)}

region(ins(“Rock”, RockPage)) = {add(“Rock”)}
region(ins(“Pop”, PopPage)) = {add(“Pop”)}
region(mov(“Pop/Rock”, “Pop”)) = {rem(“Pop/Rock”),add(“Pop”)}
region(mov(“Pop/Rock”, “Rock”)) = {rem(“Pop/Rock”),add(“Rock”)}
The two moves are in conflict, as well as each move with the insert of its

target name. One insert/move conflict can be resolved by entering a different
name for the new PopPage object (“PopTemp”). Both remaining conflicts can
be solved by accepting the move to “Pop” instead of “Rock”.

options(ins(“Pop”, PopPage),mov(“Pop/Rock”, “Pop”))
= { ∅,

{ins(“Pop”, PopPage)},
{mov(“Pop/Rock”, “Pop”)},
{ins(enterName(), PopPage),mov(“Pop/Rock”, “Pop”)},
{ins(“Pop”, PopPage),mov(“Pop/Rock”, enterName())}}

options(mov(“Pop/Rock”, “Pop”),mov(“Pop/Rock”, “Rock”))
= { ∅,

{mov(“Pop/Rock”, “Pop”)},
{mov(“Pop/Rock”, “Rock”)}}

∆m = { ins(“Rock”, RockPage), ins(“PopTemp”, PopPage),
mov(“Pop/Rock”, “Pop”)}

apply(va, ∆m)
= { (“Pop”, PopRockPage), (“Rock”, RockPage),

(“PopTemp”, PopPage), (“Jazz”, JazzPage)}

6 Related Work

The concept of combining sequences of change operations is expressed succinctly
in [6]. However, the framework presented by the authors is only applicable if
atomic changes are recorded by the environment. We transfer their ideas to
merging deltas computed after-the-fact, to gain some of the benefits even when
operating outside a closed development environment, and without the potentially
huge volume of operation logs that would have to be maintained to support pure
operation-based merging.

Merging of object graphs is also addressed in [7] in the context of a UML
diagram editor, but the authors only consider unordered n:m relationships, which
roughly corresponds to the merging of link set properties detailed above.

A way of specifying a default policy for resolving overlapping delta chunks is
described in [3], where depending on the conflicting operations, one resolution
option can be fixed, a configurable merge function can be invoked, or the decision
can be passed to a user. Our work is complementary in that we give type-specific
resolution options for the considered link collections data structures, and define

146 Axel Wienberg

when two delta chunks are considered to be in conflict. Since our algorithm aims
to generate as many sensible resolution options as possible, it actually depends
on some semi-automatic policy in order to make large merges feasible.

Another way to determine conflicts between delta chunks is to say that two
operations are in conflict if they do not commute, i.e. that the order of their ap-
plication matters[6]. This criterion works best if detailed operation logs are avail-
able, and if a consolidation merge [3] is intended. With synthesized delta chunks,
and to also support more critical review policies, we preferred the broader no-
tion of the region of influence. This notion should even extend to hierarchical
structures as in [8], or to cross-cutting concerns as in [9].

The context free merge algorithms for abstract syntax trees given in [10] can
be seen as a specialized application of the framework presented in this paper,
coupled with a default policy. The author goes on to describe context sensitive
merge, which also checks identifier scoping. This is an application specific inter-
object constraint, which in our approach would not be implemented inside the
merge framework, but as a separate tool used to verify a preliminary merge.

Algorithms for semantic merging of programs [11] can be integrated into our
framework at the granularity of entire programs, yielding an additional conflict
resolution option (reject, accept program A, accept program B, accept semantic
merge). More research is required to facilitate partial and interactive semantic
merging.

7 Summary and Concluding Remarks

Motivated by the requirements of an object-oriented Content Management Sys-
tem, we have presented a framework for type- and constraint-specific delta com-
putation and merging. A strategy for a constrained type is added to the frame-
work by defining

– the types of delta chunks,
– an algorithm for computing a delta,
– an algorithm for applying a delta,
– the type of locations that are affected by delta chunks, and
– type-specific conflict resolution options.

We presented strategies for a small selection of collection data structures, which
can detect changes that would be obscured in a less constrained data struc-
ture and which avoid detecting artificial changes induced by the coincidences of
representation.

By requiring a type-specific delta algorithm to be supplied, we also avoid the
need to maintain detailed operation logs. The framework therefore allows the
integration of unmodified third-party editing applications.

We hope to extend this framework by integrating strategies for all common
combinations of type and constraints occurring in the CoreMedia Research Plat-
form, including link collection types as well as common application data formats.
We also look forward to validating the framework and strategies using a practical
prototype.

Merging Link Collection Data Structures in a Content Management System 147

References

1. Wienberg, A., Ernst, M., Gawecki, A., Kummer, O., Wienberg, F., Schmidt, J.W.:
Content schema evolution in the CoreMedia content application platform CAP.
In: Proceedings of the 8th International Conference on Extending Database Tech-
nology (EDBT 2002). Volume 2287 of Lecture Notes in Computer Science. (2002)
712–721

2. Frohlich, P., Nejdl, W.: WebRC: Configuration management for a cooperation tool.
In Conradi, R., ed.: Software Configuration Management (SCM-7). Volume 1235
of Lecture Notes in Computer Science., Springer-Verlag, Berlin (1997) 175–185

3. Munson, J.P., Dewan, P.: A flexible object merging framework. In: Proceedings
of the 1994 ACM Conference on Computer Supported Cooperative Work, ACM
Press (1994) 231–242

4. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1
(1986) 251—266

5. Smith, R.: UNIX diff3 utility. http://www.gnu.org (1988)
6. Lippe, E., van Oosterom, N.: Operation-based merging. In: Proceedings of the 5th

ACM SIGSOFT Symposium on Software Development Environments, ACM Press
(1992) 78–87

7. Zuendorf, A., Wadsack, J., Rockel, I.: Merging graph-like object structures. Posi-
tion paper in [12] (2001)

8. Asklund, U., Magnusson, B.: Support for consistent merge. Position paper in [12]
(2001)

9. Chu-Carroll, M.C., Sprenkle, S.: Coven: Brewing better collaboration through
software configuration management. In: Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM Press
(2000) 88–97

10. Westfechtel, B.: Structure-oriented merging of revisions of software documents. In:
Proceedings of the 3rd International Workshop on Software Configuration Man-
agement, ACM Press (1991) 68–79

11. Binkley, D., Horwitz, S., Reps, T.: Program integration for languages with
procedure calls. ACM Transactions on Software Engineering and Methodology
(TOSEM) 4 (1995) 3–35

12. van der Hoek, A.: International Workshop on Software Configuration Management
(SCM-10): New Practices, New Challenges, and New Boundaries. ACM SIGSOFT
Software Engineering Notes 26 (2001) 57–58

Compatibility of XML Language Versions�

Daniel Dui and Wolfgang Emmerich

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{D.Dui,W.Emmerich}@cs.ucl.ac.uk

Abstract. Individual organisations as well as industry consortia are
currently defining application and domain-specific languages using the
eXtended Markup Language (XML) standard of the World Wide Web
Consortium (W3C). The paper shows that XML languages differ in sig-
nificant aspects from generic software engineering artifacts and that they
therefore require a specific approach to version and configuration man-
agement. When an XML language evolves, consistency between the lan-
guage and its instance documents needs to be preserved in addition to
the internal consistency of the language itself. We propose a definition
for compatibility between versions of XML languages that takes this ad-
ditional need into account. Compatibility between XML languages in
general is undecidable. We argue that the problem can become tractable
using heuristic methods if the two languages are related in a version his-
tory. We propose to evaluate the method by using different versions of
the Financial products Markup Language (FpML), in the definition of
which we participate.

1 Introduction

The eXtensible Markup Language (XML) is a meta-language for defining markup
languages. It became a recommendation of the World Wide Web Consortium
(W3C) in February 1998 [5] and since then it has gained enormous popularity.
An XML document is simply a text file containing tags that identify its seman-
tical structure. The XML specification [6] precisely defines the lexical syntax, or
in XML-parlance “well-formedness”, of a document. The well-formedness con-
straints impose what characters are allowed in an document, that for all open
tags there shall be a corresponding closing tag, etc.

Satisfaction of well-formedness constraints alone is sufficient for a document
to be parsed and processed by a variety of libraries and tools, but for most non-
trivial applications the language designer will want to define a grammar for the
language explicitly and precisely. She can define a concrete syntax by means of
a schema language and a static semantics by means of a constraint language.

The most common schema languages are currently Document Type Defini-
tion (DTD), XML Schema [12], and Relax NG. The DTD language is part of the

� This work is partially funded by UBS Warburg.

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 148–162, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Compatibility of XML Language Versions 149

XML 1.0 specification, it is simple, but of limited expressiveness. XML Schema
and Relax NG have gained acceptance more recently; they are more expressive
than DTD and support, among other things, data types and inheritance. Unlike
DTD, they are themselves XML-based languages. XML Schema is a W3C rec-
ommendation as of May 2001 and Relax NG is currently an ISO draft standard.

Static semantic constraints can be specified with languages like Schema-
tron [15] or the xlinkit [21] rule language. Schematron is a rule-based validation
language that allows to define assertions on tree-patterns in a document and
it is undergoing ISO standardisation at the time of writing. The xlinkit rule
language is part of xlinkit, a generic technology for managing the consistency
of distributed documents, that was successfully used to specify static semantic
constraints for complex financial documents [10]. There is not currently a generic
constraint language endorsed by the W3C.

A large number of organisations are currently using XML to define data for-
mats. The data format can be a simple file format used by one single application
or it could be a complex interchange format standardised by many organisations
that constantly produce, store, and exchange innumerable instance documents.
XML-based languages have been developed to represent chemical structures,
gene sequences, financial products, business-to-business (B2B) transactions, and
complex software engineering design documents. We consider the definition of
an XML-based language to consist of a syntax definition, given by means of a
schema language, and of a set of additional static semantics constraints, given
by means of a constraint language.

Some of these XML languages tend to evolve over time, for example because
the initial requirements for the language have not been fully understood, or be-
cause change is inherent in the domain. We actively participate in the definition
of the Financial products Markup Language (FpML), a language used to rep-
resent financial derivative products. In this domain, new financial products are
being invented constantly and as a result FpML is in a constant state of flux.
These changes need to be exercised in a controlled way and give raise to the
need for version and configuration management of XML languages.

The main contribution of this paper is the observation that the version and
configuration management needs for XML languages are different is some respect
and more demanding than those of more traditional software engineering arti-
facts. We define the notion of compatibility between XML language definitions
and that in general compatibility is undecidable. We propose a heuristic method
that exploits relationships between different versions of a language definition to
decide version compatibility. We propose to evaluate the method using different
versions of FpML.

The paper is further structured as follows. In Section 2, we give a more
detailed motivation for the problem. Section 3, we define the notion of version
compatibility both for language grammars and for static semantic constraints
and show why compatibility is undecidable in general. In Section 4, we sketch our
heuristic method to solve compatibility between versions of the same language.

150 Daniel Dui and Wolfgang Emmerich

We review related work in Section 5. We discuss further work and conclude the
paper in Section 6.

2 Motivation

Our work on version and configuration management of XML languages is mo-
tivated by our participation in the FpML standardisation effort. The FpML
language is both large and complex because FpML is used to represent finan-
cial derivative products, some of the most complex types of products traded in
financial markets.

FpML raises several interesting questions for version and configuration man-
agement because it changes quickly over time for the following reasons: Firstly,
FpML is being developed in a truly distributed manner by a number of differ-
ent working groups that work concurrently on the language and therefore need
to manage different versions appropriately. Secondly, the standard committee is
including in the language support for the various types of financial derivative
products gradually, as the interest for FpML grows, rather than attempting to
include support for all of them at once. Thirdly, financial organisations con-
stantly invent new products that they will want to represent in FpML either by
changing the standard or by adding in-house extensions. Finally, it is inevitable
that, as the language evolves, some of its parts will be redesigned to allow further
developments or to mend previous mistakes.

The designers of FpML, and of other complex XML languages, may need to
make changes to the language while retaining overall compatibility. Intuitively
and informally, compatibility demands first changes to the language to obey
the syntactic and static semantic rules of the meta languages (such as DTDs,
Schemas or constraint languages) and second the continued ability to validate
any instance documents against the language. This validation would include both
syntactic validation (against the schema of the language) and static semantic
validation (against the constraint language).

Thus, the notion of compatibility for XML languages is wider than the one
with which software configuration management was traditionally concerned. Un-
like in usual software configuration management where the notion of compati-
bility can be established by examining a well-known and finite set of artifacts
(such as design documents, code, deployment descriptors and test data), test-
ing compatibility between XML languages typically involves an unknown and
potentially infinite set of instances of that language.

It may be impractical to demand compatibility of language changes at all
times. If, however, designers must introduce changes that break language com-
patibility, they will want to do this deliberately rather than accidentally and
they would also need to convert instance documents between versions of the lan-
guage. If also this is not a viable option, they will need to identify exactly what
causes the incompatibility, which instance documents are affected and in what
way. And they can do this only with the assistance of appropriate methods and
tools, which currently do not exist.

Compatibility of XML Language Versions 151

3 Compatibility

The aim of this section is to define more formally the notion of XML language
compatibility that is absent from the existing XML specifications [6,12,2,3].

The definition of an XML language is given by a schema that defines the
concrete syntax and a set of constraints that define the static semantics for
the language. An instance document is valid against the language definition
if it satisfies all the constraints defined by the language schema and by the
constraints. We note that XML schema and existing constraint languages, such
as Schematron or xlinkit are XML languages themselves. Thus any modification
to the language definition first of all has to be valid against the meta-constraints.

We can obtain several definitions of compatibility by reasoning on the rela-
tionship between extents of two languages. We borrow the term extent from the
literature on object oriented databases [1] where it denotes the set of instances
of a class. In the context of XML-based languages we use it to denote the set
of all possible instance documents valid against a language definition. In most
cases that occur in practice, this is an infinite set.

It is reasonable to expect that a language definition includes both syntax
and semantics. In practice the semantics of XML-based languages is defined
informally, or sometimes it is not defined at all because it is evident from the
syntax of the language. It is no surprise that there is no XML standard or
technology to define the semantics of XML documents.

For example the FpML specifications do not provide a definition for the
semantics. Financial products are described in any good text book on financial
derivatives [14,27], in the ISDA documentation, and ultimately by the physical
paper contract that an FpML file represents. The FpML specifications assume
that users of FpML already know about financial products and that they can
univocally associate a meaning to the syntax of instance documents.

Furthermore an XML document does not necessarily have a unique seman-
tics: An XML document represents simply data to which different consumers
of the document are free to associate a different meaning. But, in the context
of financial documents, we can assume that there is one and only one seman-
tical interpretation of a given syntax, so two documents that are syntactically
equivalent are also semantically equivalent.

Our research shall therefore focus primarily on issues regarding syntax (i.e.
the document structure, and static semantic constraints) and not on issues re-
garding pure semantics (i.e. the meaning of documents) because of the absence
of a both formal and standard way to define the meaning of XML documents.

3.1 Syntactic Compatibility

We start with syntactic compatibility that only considers the schema. The sim-
plest case of syntactic compatibility is when, taken two languages, the first is
compatible with the second one. This happens when all possible instance docu-
ments of the first language are valid also with respect to the second language.
In other words the extent of the first language is a subset of the extent of the

152 Daniel Dui and Wolfgang Emmerich

second language. Fig. 1 shows a Venn diagram where the sets A and B represent
the extent of the two languages respectively. More formally:

Definition 1. Let L(A) be the extent of Schema A and L(B) be the extent of
Schema B. Schema B is syntactically compatible with Schema A if and only if
L(A) ⊆ L(B).

B
A

Fig. 1. Instance document sets for compatible languages

The compatibility relation is asymmetric: the fact that Schema B is compat-
ible with Schema A does not imply that Schema A is compatible with Schema
B, which would happen only if L(A) = L(B). We can also say that Schema B is
backward compatible with Schema A when B is a new updated version of A.

1 class
1 teacher
+ student

1 class
? teacher
+ student

Fig. 2. Compatible schemas

Fig. 2 gives an example of two Schemas A and B where B is compatible
with A. This and the following examples in this section assume for simplicity
that the schema fully defines the syntax of the language. Schema A defines that
instance documents shall have exactly one element called class and inside that
element there shall be exactly one element called teacher and one or more
elements called student. Schema B is a new version of Schema A. The only
difference between the two schemas is the cardinality of element teacher, which
in Schema B can appear zero or one time. Clearly all valid instance documents for
Schema A will be valid also against Schema B, therefore Schema B is backward
compatible with Schema A.

On the contrary, two schemas are syntactically incompatible if Definition 1
does not hold. Fig. 3 shows an example of two incompatible schemas. Schema B,
as before, introduces inside the class element another element called teacher,
but this time the new element must appear exactly once. All instance documents
of Schema A do not have a teacher element, whereas all instance document of
Schema B are required to have one. Schema B is therefore incompatible with
Schema A.

Compatibility of XML Language Versions 153

1 class
+ student

Schem aA Schem aB

1 class
1 teacher
+ student

Fig. 3. Incompatible schemas

Language incompatibility is usually an inconvenience, but it can be overcome
if the designer can devise a transformation function that converts an instance
document for Schema A to a valid instance document for Schema B.

BA

T(a)

Fig. 4. Instance document transformation

Fig. 4 shows how the transformation function T (a) maps an element of L(A)
onto an element of L(B).

Fig. 5 gives an example of an instance document of Schema A to which a
transformation is applied to convert it to an instance document of Schema B.
The transformation defines to insert an element teacher with value “unknown”
as a child of the element class.

We note that XML languages are context-free languages. This is because
they require a push-down parser (rather than a finite state machine) to establish
whether or not a document is valid against a schema. Equivalence, containment
and empty intersection of context free languages have shown to be undecidable
problems. For the proof of this undecidability, we refer to [23,25] and note that
therefore syntactic compatibility or incompatibility of general XML languages
is undecidable.

Nevertheless, the examples in this section show that it can still be solved, at
least in particular circumstances, which we will investigate in Section 4. In our
case the languages in question are closely correlated because one is derived as a
successor version from the other. We believe that this allows us to find heuristic
criteria to determine, in most practical scenarios, if two XML-based languages
are compatible.

3.2 Static Semantic Compatibility

The previous subsection has dealt with the language syntax only as it is defined
in the schema, but additional constraints are in the general case also part of the

154 Daniel Dui and Wolfgang Emmerich

Schema A instance document

<class>

<student>Eric Cartman</student>

<student>Kyle Broflovski</student>

<student>Stan Marsh</student>

...

</class>

Schema B instance document

<class>

<teacher>unknown<teacher>

<student>Eric Cartman</student>

<student>Kyle Broflovski</student>

<student>Stan Marsh</student>

...

</class>

Fig. 5. Instance document transformation (example)

language definition. Examples of such constraints for the FpML language are
given in [10]. Nonetheless, Definition 1 still holds.

LanguageA

1 class
1 subject
+ teacher
? teaching_assistant
+ student

RuleA:Ifthevalueofelem ent
subjectis“English”or“French”,then
elem entteaching_assistantshallexist.

LanguageB

1 class
1 subject
+ teacher
? teaching_assistant
+ student

RuleB:Ifthevalueofelem ent
subjectis“English”,thenelem ent
teaching_assistantshallexist.

Fig. 6. Compatibility and consistency rules

Fig. 6 shows an example of the evolution of a language definition that com-
prises a schema and a consistency rule. Rule B is weaker than Rule A so Language
B is compatible with Language A.

In general, weakening constraints preserves compatibility, whereas strength-
ening constraints leads to incompatibility. The definition of the terms stronger
and weaker in relation to constraints stems directly from logic:

Definition 2. Let c1 and c2 be two constraints, c1 is termed stronger than c2
and c2 weaker than c1 iff c2 ⇒ c1.

Compatibility of XML Language Versions 155

The static semantic constraints of a language are typically defined by a set of
constraints. We can thus extend this definition to constraint sets in the following
way:

Definition 3. Let A be the set of constraints that determine for Language A and
B be the set of constraints for Language B. B is static semantically compatible
with A iff ∀b∈B∃a∈Ab ⇒ a.

Another problem is that consistency rules for a language typically refer to the
schema definition of the language, so there is also the problem of keeping them
consistent with the schema as the schema evolves. For example if in Schema B the
element teaching assistant was renamed assistant, then also all rules that
refer to that element would need to be updated accordingly. More precisely, the
constraints of xlinkit or Schematron use XPath expressions. These expressions
express traversals in the DOM tree, the syntax tree that XML parsers establish.

Definition 4. We say that a static semantic constraint a is well-formed against
a Schema A iff it only uses XPaths that are valid in A. We say that a set of
constraints A is well-formed against a Schema A, iff ∀a∈A a is well-formed
against A.

Schem a 1.0

Constraints 1.0

syntactic
com patibility

static sem antic
com patibility

w ell
form edness

w ell
form edness

Version 1.0

Schem a 1.1

Constraints 1.1

Version 1.1

Fig. 7. Language compatibility

We can now summarise our discussion and reformulate the problem of check-
ing compatibility between language versions more precisely by reviewing Fig. 7.
An XML language definition consists of a schema that defines the grammar and
a set of constraints that are well-formed against the grammar. In order for a new
version of the language to be compatible to the previous version the following
three conditions must hold:

– The new version of the schema must be syntactically compatible to its pre-
decessor version.

– The new version of the constraint set must be well-formed against the new
version of the schema.

– The new version of the constraint set must be static semantically compatible
to the predecessor version.

156 Daniel Dui and Wolfgang Emmerich

4 Deciding Compatibility between Language Versions

We have already discussed that checking language compatibility is, in the gen-
eral case, an undecidable problem. We note, however, that the definitions of two
versions of the same language are bound to be strongly correlated. Our hypoth-
esis is that it is possible to devise heuristic rules that can be used to establish in
most practical cases if one language definition is compatible or not with another.

Checking well-formedness is not strictly speaking a version management
problem as well-formedness also needs to be decided for single versions of a
language definition. We therefore do not pursue this question further, but note
that a well-formedness check needs to be executed when deciding on version
compatibility of a change to a language.

For the two remaining problems, we propose the following approach. We
establish the differences between both the constraints and the schema. As both
the schema and the constraints are written in XML languages, we note that
specialist algorithms can be used, such as XMLTreeDiff, which is based on a
tree differencing algorithm [16] and delivers more precise results than text-based
differencing. We then analyse the sets of differences.

A difference between versions can either be an addition of an element to a
schema or a set of constraints, a deletion of an element of a schema or a constraint
or a change to a schema element or a constraint. We discuss these separately
now.

4.1 Syntactic Compatibility

We start the discussion of syntactic compatibility by reviewing the effect of
changes that add or delete elements, the more straightforward cases. The addi-
tion of a new element to a schema by itself does not break syntactic compatibility.
It may lead to a violation if another schema element is changed to include the
new element, but then this case is handled by analysing the change to that ele-
ment. If a schema element is deleted, it is clear that syntactic compatibility will
be broken as instances of these types can then no longer occur in documents
that are instances of the new version.

In order to analyse changes to an element of a schema, we can use the finite
set of XML schema constructs to classify the change into those that retain com-
patibility and those that break it. Let us use the example in Fig. 2 for illustrative
purposes.

Schema A

<xsd:element name="class">

<xsd:complextype>

<xsd:sequence>

<xsd:element name="teacher" type="xsd:string"

minOccurs="1" maxOccurs="1" />

<xsd:element name="student" type="xsd:string"

minOccurs="1" maxOccurs="unbounded" />

Compatibility of XML Language Versions 157

</xsd:sequence>

</xsd:complextype>

</xsd:element>

Schema B

<xsd:element name="class">

<xsd:complextype>

<xsd:sequence>

<xsd:element name="teacher" type="xsd:string"

minOccurs="0" maxOccurs="1" />

<xsd:element name="student" type="xsd:string"/>

minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complextype>

</xsd:element>

Schema A defines an element called class that contains two other elements:
teacher and student. Element teacher must occur in instance documents ex-
actly once. Element student must occur at least once and the maximum number
of its occurrences is unbound. Schema B differs from Schema A only because el-
ement teacher has been changed to be optional. This particular type of change
modifies the cardinality in a compatible way as we can argue that the extent of
the language for B includes the extent of A.

In general, we can classify changes into those that retain or violate syntactic
compatibility. Examples of changes that retain compatibility include enabling
fewer minimal set of elements in a sequence, increasing the number of maximal
elements in a sequence, adding non-required attributes to an element, adding,
changing or removing default initialisations, changing the order of elements in
a choice and so on. Examples of changes to an element that do break syntactic
compatibility include addition of a new non-optional sub-element to a sequence,
changing the order of elements in a sequence, changing the type of an element
or attribute, deleting an element from a sequence and so on.

In order to express changes that do not break compatibility, we can now
formalise these as constraints using the xlinkit constraint language at a meta
level on XML schemas as follows:

<forall var="a" in="/Schema_A//element">

<forall var="b" in="/Schema_B//element">

<implies>

<equals op1="$a/@name" op2="$b/@name" />

<and>

<equals op1="$a/@type" op2="$b/@type" />

<and>

<lessThanOrEq op1="$b/@minOccurs" op2="$a/@minOccurs" />

<greaterThanOrEq op1="$b/@maxOccurs" op2="$a/@maxOccurs" />

</and>

</and>

158 Daniel Dui and Wolfgang Emmerich

</implies>

</forall>

</forall>

This constraint states that for all elements of Schema A and Schema B that
have the same name, the value of attribute minOccurs in Schema B is less than
or equal to the value of the corresponding attribute minOccurs in Schema A and
that the value of the attribute maxOccurs is greater than or equal to the value
of the corresponding attribute maxOccurs in Schema A.

We can formalise rules for changes that would break syntactic compatibility
in the same way. We can then use the xlinkit rule engine [21] to decide whether
or not a particular version is syntactically compatible to a predecessor version.

4.2 Static Semantic Compatibility

Again we first review addition and deletion of constraints, which are the simple
cases. Unless it is a tautology, the addition of a new constraint breaks static
semantic compatibility because the new set of constraints will be more restrictive
than the ones that were demanded in the predecessor version. The removal of a
constraint will preserve static semantic compatibility as any document that was
valid against a more inclusive set of constraints will continue to be valid against
the smaller set of constraints.

It is possible to change a constraint without changing its meaning at all by
using de Morgan’s laws. By encoding these laws in a term rewriting system, we
can check whether a particular change leads to an equivalent rule. For those
rules where this is not the case, we need to establish whether they are weaker or
stronger.

To analyse the implication of a change in that respect we can again use a
similar approach that uses the constructs of the constraint language to classify
whether or not a change weakens or strengthens a constraint. As an example,
consider the following two xlinkit constraints, which in fact formalise the con-
straints shown in Fig. 6.

Rule A

<forall var="a" in="//class">

<implies>

<or>

<equals op1="$a/subject/text()" op2="’English’" />

<equals op1="$a/subject/text()" op2="’French’" />

</or>

<exists var="b" in="$a/teaching_assistant" />

</implies>

</forall>

Rule B

Compatibility of XML Language Versions 159

<forall var="a" in="//class">

<implies>

<equals op1="$a/subject/text()" op2="’English’" />

<exists var="b" in="$a/teaching_assistant" />

</implies>

</forall>

The xlinkit constraint language is rather simple. It can express boolean oper-
ators (and, or, implication and not), a few set of operators on DOM nodes (such
as equal), as well as existential and universal quantification over a set of nodes
identified by XPaths. Thus again we can identify for each possible change to an
expression in a constraint whether it strengthens or weakens the constraint and
then decide whether the overall change to the constraint breaks static semantic
compatibility.

In the above example the change has strengthened the pre-condition of the
implication by removing an <or> operand, thus making it less likely for the pre-
condition to be true. Due to the ex falso quod libet rule for implications, this
means that it is more likely for the overall formula to be true, which means
that this change from version A to version B has weakened the constraint and
is therefore statically semantically compatible.

Other examples of weakening a constraint include removing an <and> oper-
and, adding an <or> operand, changing a universal quantifier into an existential
quantifier, and so on. Examples of strengthening a constraint include adding an
<and> operand, removing an <or> operand changing existential into universal
quantification and so on.

5 Related Work

The problems of checking compatibility and of tracking version chenges fall into
the realm of software configuration management (SCM). According to Jacky
Estublier [11], most issues about versioning have already been solved in the
general case and the key problem is to incorporate these solutions into SCM tools.
Reidar Conradi and Bernhard Westfechtel [8] give a comprehensive overview
and classification of versioning paradigms. In their words: “In SCM systems,
versioning of the schema is rarely considered seriously. On the other hand schema
versioning often does not take versioning of instance data into account”. Our
approach intends to address both these concerns.

Most XML technologies take a programmer’s pragmatic viewpoint and in
some respects lack of formal foundation or consistency among them. We have
already mentioned that the concept of schema compatibility is absent.

There is also some important work on formal analysis of XML schema lan-
guages [7,17,20,18] part of which has been incorporated in XML standards such
as Relax NG. However, none of these covers compatibility between language
versions.

XML schemas bear clear similarities with database schemas and collections
of instance documents can be regarded as a data repository. Understanding of

160 Daniel Dui and Wolfgang Emmerich

database technology should provide insight on how to approach problems in the
XML domain.

The most popular types of database systems are currently relational, object
relational, and to a less extent object-oriented for which both the theory and
the technology are mature and well documented in many books [24,19,9]. More
recently, XML databases have appeared, where XML support is build into the
data base management system (DBMS) [4].

We are interested in particular in schema evolution and schema versioning.
Ferrandina et al. [13] have proposed a mechanism for schema evolution based on
transition functions in the context of object-oriented databases. The difference
to our work is that the extent of a class in an object-oriented schema is known –
they can work on a closed world assumption, whereas for an XML language the
extent is generally unknown and unaccessible.

6 Conclusions and Further Work

This paper identifies a novel area of research in software configuration man-
agement that will become increasingly important as the adoption of XML pro-
gresses. We have defined the notion of compatibility between different versions
of an XML language for both the syntactic and the static semantic constraints
of a language. We have observed that the problem of syntactic compatibility is
undecidable in general, but have argued that it can become tractable by taking
information about differences between versions into account.

Our future work will focus on refining and evaluating the approach for check-
ing version compatibility that we were only able to sketch in this paper. We are
in the process of completing the definition of syntactic compatibility rules in the
xlinkit constraint language and can then use the existing xlinkit engine for exer-
cising syntactic version compatibility checks. We will have to implement a term
rewriting system to apply the de Morgan rules to xlinkit to test for equivalence
and implement the strengthening and weakening semantics. To do so, we will
again be able to reuse a large portion of the xlinkit rule engine, which to date
implements two different semantics for the language in order to generate xlinks
and to generate automated repair actions [22].

We have already identified our evaluation case study, which will be to check
different versions of the FpML language for compatibility. The International
Swaps and Derivatives Association (ISDA) has so far defined three major ver-
sions of FpML and for each of these versions a number of minor versions exist
that have been in transitional use prior to adoption of the major version. We
are actively participating in the standardisation of FpML and have participated
in the establishment of a validation working group that will define the static
semantic constraints for FpML. Constraints for version 1.0 have already been
specified using xlinkit [26] and a working group is currently adding constraints
for versions 2.0 and upward.

Compatibility of XML Language Versions 161

Acknowledgements

We are indebted to Matt Meinel, Bryan Thal, Steven Lord, and Tom Carroll of
UBS Warburg and the members of the FpML Architecture Working Group for
drawing our attention to the significant version and configuration managements
challenges of FpML in particular and XML languages in general. We would also
like to thank Anthony Finkelstein and Chris Clack for their helpful comments
on an earlier draft of this paper.

References

1. F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database
System: the Story of O2. Morgan Kaufmann, 1992.

2. P.V. Biron and A. Malhotra. XML Schema Part 1: Structures. Recommen-
dation http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ , World Wide
Web Consortium, MAY 2001.

3. P.V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. Recommendation
http://www.w3.org/TR/xmlschema-2/REC-xmlschema-2-20010502/, World Wide
Web Consortium, MAY 2001.

4. R. Bourret. XML and Databases.
http://www.rpbourret.com/xml/XMLAndDatabases.htm .

5. T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible Markup Language.
Recommendation http://www.w3.org/TR/1998/REC-xml-19980210, World Wide
Web Consortium, March 1998.

6. T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensi-
ble Markup Language (XML) 1.0 (Second Edition). Recommendation
http://www.w3.org/TR/2000/REC-xml-20001006 , World Wide Web Consortium
(W3C), October 2000.

7. A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL - a model for W3C XML
schema. In Proc. of the 10th Int. Conf. on World Wide Web, pages 191–200. ACM
Press, 2001.

8. R. Conradi and B. Westfechtel. Version models for software configuration man-
agement. ACM Computing Surveys (CSUR), 30(2):232–282, 1998.

9. C.J. Date and H. Darwen. Foundation for Object/Relational Databases: The Third
Manifesto. Addison-Wesley, 1998.

10. D. Dui, W. Emmerich, C. Nentwich, and B. Thal. Consistency Checking of Finan-
cial Derivatives Transactions. In Objects, Components, Architectures, Services and
Applications for a Networked World, volume 2591 of Lecture Notes in Computer
Science. Springer, 2003. To appear.

11. J. Estublier. Software configuration management: a roadmap. In Proc. of the Conf.
on the Future of Software Engineering, pages 279–289. ACM Press, 2000.

12. D.C. Fallside. XML Schema Part 0: Primer. Recommendation
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/, World Wide Web
Consortium, MAY 2001.

13. F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Updates for
an Object Database System. In Proc. of the 20th Int. Conference on Very Large
Databases, Santiago, Chile, pages 261–272, 1994.

14. John C. Hull. Options, Futures and Other Derivatives. Prentice-Hall International,
2002.

162 Daniel Dui and Wolfgang Emmerich

15. R. Jelliffe. The Schematron. http://www.ascc.net/xml/resource/schematron ,
1998.

16. K.Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 29(3):422–433,
1979.

17. D. Lee and W.W. Chu. Comparative analysis of six XML schema languages.
SIGMOD Record (ACM Special Interest Group on Management of Data), 29(3):76–
87, 2000.

18. D. Lee, M. Mani, and M. Murata. Reasoning about XML schema languages us-
ing formal language theory. Technical report, IBM Almaden Research Center,
November 2000.

19. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, 1999.

20. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. In Extreme Markup Languages, Montreal, Canada, August
2001.

21. C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology, 2(2):151–185, 2002.

22. C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency Management with
Repair Actions. In Proc. of the 25th Int. Conference on Software Engineering,
Portland, Oregon. ACM Press, 2003. To appear.

23. V.J. Rayward-Smith. A First Course in Computability. Blackwell, 1986.
24. A. Silberschatz, H.F. Korth, and S. Sudarshan. Database System Concepts.

McGraw-Hill, 2001.
25. M. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.
26. B. Thal, W. Emmerich, S. Lord, D. Dui, and C. Nentwich. FpML Validation:

Joint proposal from UBS Warburg, University College London, and Systemwire.
http://www.fpml.org, June 25, 2002.

27. Paul Wilmott. Derivatives - The Theory and Practice of Financial Engineering.
John Wiley and Sons, 1998.

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 163-176, 2003.
” Springer-Verlag Berlin Heidelberg 2003

Using Federations
for Flexible SCM Systems

Jacky Estublier, Anh-Tuyet Le, and Jorge Villalobos

LSR-IMAG, 220 rue de la Chimie, BP53
38041 Grenoble Cedex 9, France

{Jacky.Estublier,Anh-Tuyet.Le,Jorge.Villalobos}@imag.fr

Abstract. SCM products are large and monolithic, difficult to adapt and evolve,
with high entry cost. This paper describes a new approach to SCM in which the
system is built from, potentially heterogeneous, existing pieces, with assembly
mechanisms that enforce high-level properties. The approach does not provide a
simple SCM tool, but a family of tools that is easily customized, fits both low-
end users (only the required functionalities are present at a very low cost), as
well as high-end users (for which very advanced features and/or specific
features can be easily added). The paper describes the concepts and
mechanisms of federations, and shows how our federation technology was used
to develop a family of SCM systems.

1 Introduction

SCM systems have evolved over the years to become powerful and mature tools.
However, they have also grown to be large, monolithic products, difficult to adapt and
evolve, with high entry cost.

From the beginning, SCM tools have been closed worlds, offering features for
specific classes of applications with underlying assumptions regarding the
development process used, the kind of development, size of teams, size of software,
platform and other sorts. These assumptions, often implicit, have profound influences
on the design of the major aspects of an SCM system, like its data model, versioning
model or workspace model.

These assumptions, altogether, limit the range of applications these tools can
handle reasonably well and have large consequences on many aspects including
evolvability, adaptability and interoperability. This limited range of applicability is
exemplified by the fact that no tool can handle both software and hardware
development (system development) precisely because these assumptions are different.
It’s also unfortunate that because of the very limited interoperability, even between an
SCM system and another closely related system, it is either not possible to make an
SCM system interoperate with a PDM system [7][16] or, even worse, hardly with
another different SCM system.

This interoperability limitation is a very concerning issue since within the virtual
enterprise, different companies, with different SCM tools, will have to cooperate in
common software projects. This is especially concerning since a customer using a
given SCM system cannot change without a huge investment in time, money and

Jacky Estublier et al.164

energy; in practice, such a change is so expensive and risky that it is seldom
undertaken.

Therefore, customers tend to buy high-end systems, in the hope they will fit their
future needs. Consequently, vendors propose systems with a large amount of features
supposed to fit any future need for any customer. This leads to another issue: SCM
systems are too big, too expensive, and too difficult to master. The entry barrier is too
high.

There is a clear need for systems that can grow with the customer needs and that
can be tailored to his/her specific requirements. Unfortunately, the underlying SCM
system assumptions include the dimension and the kind of features required by
customers. SCM systems provide, in a monolithic way, all the features that could be
useful for the targeted customers, with very little room for adaptation. Being
monolithic and centralized, scalability (in size and space) and adaptability of these
systems to our very decentralized and fast evolving world is fairly limited.

This paper describes a new architecture and framework allowing us to easily
assemble families of SCM systems, out of heterogeneous pieces. The resulting
systems show extreme adaptability, evolvability and interoperability facilities. These
properties have been experimented both to realize low-end systems (cheap, simple
and efficient), and to propose very advanced features, like our novel concurrent
engineering support system. The latter shows the properties of heterogeneity,
distribution and scalability of the system, and proposes a novel concept for the
explicit formalization of concurrent engineering policies.

2 An SCM Federation

We have been developing federation technology during the last years, exactly for the
purpose of creating a new generation of SCM systems to address the drawbacks
mentioned above. Currently, however, this technology revealed itself general enough
that we consider our SCM system only as an example of application of the federation
technology. In this paper, we will shortly present the federation technology, through
the example of our SCM system.

A federation is basically an architecture for the interoperability of large
heterogeneous software components. The federation allows the construction of new
applications by assembling and integrating existing tools and components.

When building a federation, however, we do not reason in terms of tools and
components, but at a higher level of abstraction, in terms of interrelated domains. This
approach enables us to think of the architectural and interoperability issues at an
adequate semantic level, in an implementation independent way, while at the same
time keeping the benefits of the component approach at the execution level (a similar
approach is presented in [11]).

The concept of domain is fundamental for federations and will be expanded further
in section 2.3, but for now, we can define it as a group of tools and code that,
altogether, manage a set of related concepts. The SCM federation is defined by
several interrelated domains that model the different aspects of an SCM system.
Figure 1 shows some of the basic domains and their relationships.

Using Federations for Flexible SCM Systems 165

Abstraction

Product

Product

Desktop

Process
Resource

Resource

Federation managed mapping

Concept relationship

 Domain

Abstraction

Fig. 1. Abstraction relationship

Consider the nature of the relationship between the process domain and the
resource and product domains depicted in figure 1. We label it as an abstraction
relationship because it links a common concept between the two domains and implies
that the source domain only needs limited knowledge of that concept whilst the
destination domain is supposed to have full knowledge of the concept and be in
charge of handling the actual real entities: the source domain abstracts away a
complex concept from the destination domain.

This mapping between domains is explicitly defined in the federation at design
time, through a series of models described in section 2.1, and is used at execution
time to manage and coordinate the actions of the real tools actually involved.

In our case, the process domain “knows” that it does not “own” the concepts of
product and resource, and relies on very limited knowledge of such concepts
(actually, their names only). It completely ignores which domain(s) will manage the
real products and what is the actual mapping that will be performed, at execution, by
the federation from its abstract products to real ones (a related approach in which
different aspects of a workflow are defined independently, but mixed at execution, is
presented in [18]).

The process domain defines a “product” class that acts like an abstract class; most
notably it defines (usually empty) factory methods “load” and “create”, which return
an ID. The process engine calls these methods whenever an existing or a new product
is required in the process; the ID is supposed to be sufficient for the product domain
to know, later on, which product is managed by the process. The same applies for
resources.

The approach has the advantage that almost any product manager and resource
manager can be connected to, and interoperate with, the same process manager, and
that the federation mapping is flexible enough to impose almost no constraints on the
interface and actual concepts of product and resource in their specific managers.

Indeed, in our implementation, the process domain is implemented by the Apel
Process Engine [6], where a product is defined as an atomic entity with a name (a
string), a type (a string) and attributes. Our actual Product Manager defines a product
as a potentially complex hierarchy of directory and files, having predefined (file
system) and user defined attributes, which can be in turn common (whose value is
shared by all that product’s instance versions) or versioned attributes (whose values
are specific to each version of that product).

Jacky Estublier et al.166

For example, a product of type “configuration” is an atomic entity in the process
domain, but in the product domain it may actually be a real and complete software
configuration, with thousands files, associated documents, attributes and so on. The
actual definition of a “configuration” is up to the Product Manager in charge of the
“configuration” type of product. The same process (say a change control process) can
be used almost irrespective of the actual configuration manager to which the type
“configuration” is mapped. This allows us to define business processes in a virtual
enterprise disregarding the actual SCM system used by the different companies.

In classic integration technologies, the approach, which consists of composing
existing pieces of code, has been tried many times and has constantly shown major
weaknesses. This is because the usual composition mechanism is the method call: a
class calls another class. It requires strict compatibility between method signatures,
there is no semantic control; the only property available (imposed) is that method
calls are synchronous. In short, there is no matching support.

The major difference between our approach and usual component composition
approaches lies in the fact that the mapping between domains is handled by the
federation, based on a set of models, established by a “federation designer” who is in
charge of composing an application (an SCM system in our case) from a set of
existing tools and domains. These models provide flexibility for adapting different
domains.

2.1 Domain Mapping Models

Three mapping models drive the federation-managed mappings: a concept mapping
model, a functional contract model and a non-functional contract model.

The concept mapping models expresses the semantics of the relationship which
links the common concept between the two domains. This model is split in three
parts: the meta model mapping, the model mapping and the behavior mapping.

The meta model mapping expresses the relationship itself, at type level; which
attribute relates with each other attribute in the other domain, along with the
transformation function, if any. Note that being an abstraction relationship, few
attributes are to be related.

The model mapping expresses the constraints on the entities modeled, including
existential and referential constraints. In our case, what does mean creating/deleting a
product in the process domain, with respect to the real product manager. Indeed,
deleting a product in the process does not delete it really; it is simply “out of
process”; it can be brought again in a process at a later time. This mapping also
expresses the functions allowing to translate an ID from a domain to another.

The behavior model mapping expresses the correspondence between actions in the
abstract domain to other equivalent action(s) in the concrete domain. This is needed
since the abstraction relationship means that actions on the abstract entity are
“dummy” actions, they must be translated into real actions on the real products. The
correspondence may not be trivial, and may require some computing if the semantic
matching between concepts is not direct. In our case, it expresses what it mean, for
the product domain, that a product is transferred between two activities in the process
domain. It is interesting to mention that this model provides more capabilities than

Using Federations for Flexible SCM Systems 167

traditional component composition (method calls). In our case, the simple language
we propose includes synchronous and asynchronous calls, parallel and sequential
execution, as well as local and distributed calls.

The functional contract model expresses the logical constraints under which the
mapping is considered valid or not. Most notably, the concept of success is explicit.
This model expresses the initial conditions for an abstract action to be valid: a valid
mapping can be found in the actual state of both the abstract and concrete domains.
Once the mapping is executed, the contract model checks if the resulting state, in both
domains, is valid or not. If valid, post conditions can be asserted (in both domains), if
not valid, the original action and all the mapped actions are undone and alternative
actions can be undertaken or exceptions returned to the caller of the abstract action.

The non-functional contract model expresses properties that have to associated with
the above mappings. It can be compared to the concept of a “container” in
component-based systems. Indeed, it is in this model that domain distribution,
transactions, domain persistency, (communication) security, life cycle and other
properties are formally expressed.

It is of uttermost importance to realize that these mappings are external to both
domains, which allows much better reusability. The federation framework provides
specialized editors for each one of these models and addresses also the static as well
as the dynamic evolution dimension.

2.2 The Abstract Architecture: Composition Relationships

Our technology provides much more flexible composition facilities than traditional
ones, but the abstraction relationship is not sufficient. Other domain relationships
have been established and are handled in our system: refinement, extension and
specialization. Figure 2 shows different usages of these relationships in our SCM
federation.

Abstraction

Product

Product

Desktop
pp

Work Space

Concept relationship

Process
resource

Resource

Product

Refinement

Federation managed mapping

Specialization

Refinement
Extension

Concurent
Engineering

Manager
Domain

Abstraction

Fig. 2. Composition relationships

Jacky Estublier et al.168

A concept from one domain is refined when another domain adds structural or
behavioral properties to that concept, in a transparent way, to the original domain. In
our case for example, the concept of desktop, in the process domain, has been refined
to the concept of workspace. Extension means that a concept from a domain is related
to another different concept in another one, like desktop (from process) and site (from
workspace). Indeed, very often refinement and extension come together.

The process domain is therefore very simple and lightweight. Refinement and
Extension are the mechanisms we have used to add state transition diagrams,
collaboration, and interoperability with other process support systems in a fully
transparent way; precisely the functionalities that were provided monolithically in the
previous Apel system [6]. This new Apel System is about 10 times smaller and runs
10 times faster than previous Apel one (V4), not talking about complexity and
maintainability.

The process domain ignores the extensions and refinements and does not need
them to work. In fact, we could easily contemplate a low-cost entry SCM federation,
without the workspace or a sophisticated product domain, in which the process
domain is used to define and keep track of the software development process,
obviously without automatic workspace or configuration management.

Specialization means that a domain is a specialization of another one, like class and
the super class in programming languages. In programming languages, the run-time is
in charge of selecting the right methods depending on the situation (type of entity); in
a similar way, for federations, it is the mapping that is specialized, and which is in
charge of transferring the control to one domain or the other or both. In our example,
depending on the process topology, it is either the workspace or the concurrent
engineering domains that takes the control, or both.

The same mapping models are used to describe these relationships semantics.
Space does not allow a detailed description of these models and mechanisms. Let us
simply mention that refinement and extension are similar to Aspect Oriented
Programming, except that we handle contracts and that “aspects” are structured
according to domains relationships. The underlying technology we use is based on our
“Extended Object Machine” that allows us to intercept method calls and add attributes
and methods to objects. Our models, for the most part, generate code for this extended
object machine.

2.3 Domains

Domains models and meta models are implementation independent; therefore, the
different domain relationships are implementation independent composition
mechanisms. We are stressing the fundamental role of our composition relationships,
because they are powerful means for structuring a complex software application:

• Hierarchically: a composed domain is a domain.
• Conceptually: refinement, extension, abstraction and specialization are structuring

concepts.
• Technically: domains are implemented independently.

We emphasize also the fact that the composition models and mechanisms are
external to the domain they compose, enhancing their reusability potential. Finally we

Using Federations for Flexible SCM Systems 169

emphasize the fact that domain definition and composition mechanisms are both
model based and implementation independent. These characteristics are those at the
base of the OMG Model Driven Architecture (MDA) initiative [4][19] , allowing us
to claim that our domains are similar to MDA PIMs (Platform Independent Models),
and that our solution is MDA compliant.

In contrast with MDA, however, a domain is said to be abstract only because it
manages abstract concepts, but it is always represented as a piece of code which
makes concrete the meta model. In the simplest case it is the set of empty classes
generated by XMI from the MOF meta model; in other cases it is the program which
corresponds to the meta model. In our example, the process domain is associated with
the Apel engine, the product domain with our product manager and so on.

A the abstract level, a federation is a set of domains related by our semantic
relationship; a execution, these domains execute, and the federation is in charge
(among other things) to interpret the relationships defined between the domains, thus
coordinating the domains and makings the complete (abstract) execution consistent.
However, this execution is still abstract. The real tools and the real execution are still
not performed.

2.4 The Implementation Relationship

A domain can also be associated with a set of tools (COTS or legacy) and specific
pieces of code, which together make concrete the abstract domain (or interpret the
domain model). The major goal of a domain is to encapsulate how the abstract
domain “execution”, which is platform and tool independent, translates to real
platform(s) and tool(s) execution. This “implementation” of the domains is performed
in two steps. First, the real tools are abstracted in the form of “roles” and domains are
connected to roles through the relationship implements. Second roles are connected to
real tools or specific code.

It is striking to see that actual composition mechanisms including components,
EAI, and process based approach like BPM and even the most recent ones [20] are
only at this implementation level.

Abstract Tool Mapping. A role models a part of a tool or a component functionality.
Technically, a role is very similar to a component interface; it is defined by a (java)
interface (facets), the set of produced and consumed events, and the set of the domain
methods the role can call (receptacles). A tool is therefore modeled under the form of
functional interfaces represented by the set of its roles.

The implementation of a role is always a “component”. Indeed, our federation
engine includes a complete component framework supporting full life cycle support,
transparent distribution support and component’s interface discovery and dynamic
connection between roles. This framework is intended for simplifying the
implementation of the components which implement a tool set of interfaces, and thus
are modeling a tool.

A set of roles define concepts and can thus be seen as a (low level) domain.
However, the implementation relationship is different than the other relationship in
that concepts managed by the roles and the abstract domain are not at the same level
of abstraction; there is, in general, no one to one mapping between the concepts

Jacky Estublier et al.170

(abstract, refine and extend usually relate pair of concepts). Thus, it is common that
an abstract concept be related to many low level ones, and therefore, that an abstract
operation involve many low level operations.

Another difference between the abstract and implementation domains, is that the
meta-meta level is object oriented for the former (classes, inheritance, links), but the
later also includes the federation component model (interfaces, life cycle, connection
protocols etc), the concepts of connector, the mapping role/connectors.

Roles being implemented in Java (in our platform), the “programming” (modeling)
of these additional concepts is done outside the role implementation, through
specialized editors producing the non functional mapping models similar to
“containers” for component models. We emphasize the fact that many difficult
technical issues are handled in that way, and therefore removes from role
implementation its most tricky issues. It is the federation engine which executes these
non functional models.

Concrete Tool Mapping. Still, this implementation domain layer is abstract, the real
tools are still not involved. The concrete tool mapping is in charge of connecting the
roles to the actual associated tools.

This mapping is specific to role / tool connection. From one side it is simpler than
the other mapping, since we have the strict relationship role / tool, and because roles
are purposely built as abstraction of the tool. From another side, this mapping is more
complex because, in the general case :

• Tools are not located on the federation machine,
• Tools use heterogeneous technologies and run on heterogeneous platforms
• Tools are autonomous, and sometimes interactive
• Tools do not expose their interfaces nor their meta model

For COTS, there is in general a need to write a “wrapper”, in charge of both
observing, and command the tool. Observe because an interactive tool may act “by
itself”, and thus show initiative, at unpredictable time and unpredictable ways. The
wrapper is in charge of notifying to the federation these behaviour, at least when they
are relevant from the federation point of view. Command, because the federation need
to ask the tool to perform tasks required by the federation, and the way to ask a tool to
perform a task is very dependent on the tool, platform and technology used.

Because of the distribution issue, wrapper and roles implementations are on
different machines. Worse, in many cases, the same tool (say the client version
manager or an IDE), may need to be present and executed on different machine
depending on the execution context. Worse, the same role may need to be filled by
different real tools depending on the context (the platform of the nature of the entities,
or anything else). For example, the IDE to invoke may depend on the programming
language, the platform, or the user preference; from the federation point of view, this
must be transparent : “the” IDE has to be called on the “current user” workspace.

For all these issues, the meta non functional model provided by the federation for
this mapping includes a taxonomy of tools (local, remote, client/server, web Service,
EJB, etc), it fully supports distribution handling, multiples copy and dynamic location
handling, network error recovery (dynamic restarting / reconnection of wrappers and
tools), fire wall and security handling and so on.

Using Federations for Flexible SCM Systems 171

The definition and development of this non-functional model and its support was
very much time and energy consuming, but it removes from wrapper and role
implementations most of its complexity. Even if writing a wrapper is not (necessarily)
simple, we already have experimented that this non-functional model, and its
automatic management by the federation engines, is a major help in defining and
implementing federations.

3 The SCM Federation Implementation

In our system, a domain must have an explicit domain meta model, in the form of an
XML schema, and zero or more associated domain models, in the form of xml files.
The abstract domain is constituted of the domain model, reified in the form of java
entities (the execution view)1, plus, optionally, other objects if needed to manage the
model objects. In the most degenerated case, the abstract domain is simply a java
program.

Take for example the process domain. The meta model is an XML schema defining
concepts of activity, desktop, product (a name only), resources and so on. The process
model is an Apel model, produced using our graphical process editor, and stored in an
XML file. The abstract domain is the Apel engine, including the entities (activity
instances, product instances) that reify the model entities.

The abstract product and resource domains are limited to the corresponding reified
entities, and code to manage them (the real humans for example).

Compositions Editors
A federation instance is defined at three levels. At the meta level, its definition is the
domains involved, their meta model and the relationship between domains. At the
execution level, it is the set of executables for the domains, and the set of associated
tools. At model level, it is the set of models for the domains to work with.

In our example,

• the meta level is roughly represented in fig 2.
• the execution level is the domain code (apel engines, …), plus the tools (e.g. CVS

and its wrappers (or Zip tool or whatever version manager) for the version manager
abstract tool), and so on …

• at the model level, we must indicate which process models are involved (change
control, concurrent engineering, development process …), the products involved
(configurations, change control document, tests …), the resource model (which
employees and roles are involved).

 We provide graphical editors for each one of these three levels. These editors
generate the code and scripts required for the corresponding execution.

It is very interesting to consider that a fairly large family of SCM systems can be
built only “playing” at the model level, using only the graphical domain model editors
to define the various models. End users can therefore deeply customize their system

1 We use the Castor package (from exolab) to translate between xml and java.

Jacky Estublier et al.172

without any knowledge of the technology involved. In our example, they only need to
model their processes, resources and products, not a single line of code is required.

At the execution level, our execution composition editor allows to select, for each
domain, the different executables, for the domain itself, for the roles it requires, and
for each role, the tools that play the role.

If the vendor provides different possible tools for the roles, the user can simply
select the one it prefers. If the user wants to use its tool instead, say its preferred
version manager, it has to write the wrapper and role implementation for the tools to
play the roles required in the federation; and everything else will work as always. This
has to be compared with the deep rework required when the data model or the
versioning model is changed in an SCM tool.

At the meta level, it is possible to add domains and to define its relationships with
the existing domains; everything else is left unchanged. For example, when it came to
add our concurrent engineering tool, we only had to add a relationship
“specialization” to the actual system to get the new one. That relationship definition is
about 15 lines long. This is again to be compared with the rework it would require in
a classic architecture to include such a demanding system, which makes interferences
with the process, the data model, the resources and so on. Nevertheless the CE system
is also, without change a stand alone tool usable without the federation control.

Domain Model Editors
In our SCM system family, we have developed model editors for each domain
(process, product, workspace, resource). These editors first ask the user for which
federation composition to work with. Once this is known, the editor can ask the
federation engine what are the available dependent entities available in this federation
composition. For instance, the process editor only shows, and allows, the products
types and user roles available in this federation composition. A level of consistency is
enforced.

Similarly, the model composition editor checks if all dependencies between models
are solved. It acts, for models, like a link editor for binaries; which is no surprise since
our federation system, to a large extend, translates to the model level the techniques
and feature traditionally found at code level.

4 Experience and Validation

The federation approach sketched above has been used to design and implement an
SCM system in radical different terms. The first use was to design lightweight and
efficient SCM systems, easily customized to user needs and using the tools already in
use in the company. This family of SCM systems is structured in a similar way as
described above, in 4 domains.

The second work we have done was to show that it is possible to extend
significantly such an SCM system without any need to rework it. In order to make the

Using Federations for Flexible SCM Systems 173

exercise very significant, we have included a high level concurrent engineering
system. Such a system interacts deeply with the data model, the process, and the
resources and of course the workspaces. Integrating such a system in a traditional
architecture would require a deep rework of the architecture, and changes of code
everywhere. And, of course, any change in the CE features would potentially affect
any other parts of the system, making difficult to adapt such a system to user specific
needs.

Indeed, we have been even surprised to see how light weight is has been to
integrate such a demanding system. Indeed the system currently exhibits 4 different
kinds of versioning, each handled in a different domain, and implemented
independently the on from the other:

• the process systems support a king of cooperative versioning,
• the workspace supports simple historical versioning,
• the concurrent engineering supports another cooperative versioning based on

groups and policies,
• the product manager supports a logical versioning for a single branch.
• we are in the process of adding logical versioning on multiple levels.

We do not know anything, even close, that can make cooperate, in safe way, these
many different versioning, along with their different data models, with high
capabilities to add/change/remove some of them easily.

On the negative side, the experience also shows that the new development we have
made, on domain relationships, require support to reduce the complexity of their use.
To this end we have developed the three composition editors, but more work is
required in this direction. We envision a system where composition is fully supported,
but this requires major research work, under way currently in the team.

This paper presents shortly the current state of a long work seeking to find
fundamentally new ways to develop SCM systems, and other complex systems,
avoiding the monolithic nature of today solutions.

The early concepts about federations were first published in [9], the first prototype
was running in 2000 [21]. The first attempt to put a federation into industrial
production was done in 2001, but showed conceptual and technical deficiencies. The
domain concept was not present, nor the domain composition relationships and their
associated mapping models, nor the editors supporting these model definitions not the
composition editors, of course. From a technical point of view, efficiency, availability
and stability were not sufficient. Error recovery, evolution and firewall were not
supported. A complete re-implementation was undertaken and the current system
supports industrial production since the end of 2002.

New federations, not related to SCM, are under development and should be put
into production in 2003, among others a federation for the interoperability of transport
back-offices (highways, trains, and tunnels), and a federation for the support of
System On Chip (SOC) design. A larger use of this technology in industry is
forecasted.

So far, our claims about flexibility and evolvability have been fully supported by
experience. For example, the integration of the concurrent engineering domain
involved only the definition of a specialize relationship whose mapping model is 20
lines long.

Jacky Estublier et al.174

Conversely, it took us a long time to understand the concept of domain and to
establish the nature of the composition relationships; this process is not finished at
time of writing; more support is needed in this process of domain composition.

5 Conclusion

It is a permanent goal in computer sciences, to find ways to compose applications
from existing elements. Unfortunately, so far, the existing technologies, including the
object paradigm, components, EAI and BPM, have shown too insufficient
capabilities, both conceptually and technically. This paper presents the current state of
our work in attempting to overcome the difficulties involved in application design and
building.

The first lesson we learned is that there is little room for solution at the code level.
There is a need to reason, design and implement at the much higher, implementation
independent, level of domains. Domains are model driven and exhibit meta models
and models.

The second lesson is that composing domains requires specific concepts and tools.
Direct mapping are generally impossible. Composition, in our approach, is based on
the identification of semantic relationships between domains and the associated
mapping models provide an explicit definition of the relationship; including concept
mapping, functional and non-functional contract models.

Composition through semantic relationships allows one to

• Compose a new domain based on existing domains, at different levels of
abstraction: refinement, abstraction, extension and specialization relationships.

• Structure the solution since a composite domain is itself a domain, allowing us to
define domain hierarchies. These contrasts with classic technologies that allow
only flat structure.

• Implement a domain, using the implementation relationship.

It is important to mention that each of these relationships fulfils a different
semantic purpose and constitute complementary fundamental conceptual guideline for
both designers and implementers, but they all rely on the same technical mechanisms,
and on almost the same mapping models: concept mapping, functional contract
mapping and non-functional contract mapping. This contrasts with the usual
composition technologies where only direct method mapping is supported.

Domain implementation relies on the implementation relationship and its
associated mappings and also on the role concept, which provides an additional
independence between tools and domain. This contrasts with the usual composition
technologies where only the tool level of abstraction is supported, i.e. a very low
level.

The experience in building an SCM system, using this technology, supports the
above claims. The system we have built does not claim to be a complete and state of
the art solution on all dimensions, but shows that simple, practical and efficient
solutions can be built on demand, at a very low cost, and reusing existing elements.

We have shown that the solution is easily extensible and can interoperate easily
with third party systems. This is a feature no system can provide currently.

Using Federations for Flexible SCM Systems 175

Finally, we have shown, with our concurrent engineering system, that very
advanced and state of the art features can be included easily in the system. We think
that the original claim of finding a system which can lower the entry barrier (cost as
well as complexity), which can grow with the customer needs, which can interoperate
with other heterogeneous systems (SCM or other), and which can accommodate the
advanced features the user needs (and only these), is no longer a dream. We believe
this is major progress.

But, as claimed in [5], this requires us to completely redesign our systems with
these new paradigms in mind and using a new generation composition framework.
Our system is an early implementation, and may be the first, of this new framework
generation.

References

[1] Jean Bezivin and Sébastient Gérard. A Preliminary Identification of MDA Components
[2] Desmond D.Souza, Model-Driven Architecture and Integration Opportunities and

Challenges. White paper. http://www.kinetium.com/
[3] P. Dourish and V. Belloti: “Awareness and Coordination in Shared Work Spaces”.

Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW'92)

[4] Dsouza, D. Model-Driven Architecture and Integration: Opportunities and Challenges
Version 1.1, document available at http://www.kinetiuym.com/, February 2001

[5] J. Estublier: “Distributed objects for Concurrent Engineering”. 9th International
Symposium on System Configuration Management in the European Software Engineering
Conference. Toulouse, France, September 1999

[6] J.!Estublier, S.!Dami, and M.!Amiour. “APEL: A graphical yet Executable Formalism for
Process Modelling”. Automated Software Engineering, ASE journal. Vol. 5, Issue 1, 1998

[7] J. Estublier, J.M. Favre, and P. Morat. "Toward an integration SCM / PDM". SCM8,
Brussels, 20-21 July 1998. In LNCS 1439, Springer Verlag

[8] Jacky Estublier and Anh-Tuyet LE. Design and development of Software Federation.
ICSSEA 2001, Paris, 4-6 December 2001

[9] Jacky Estublier, Pierre-Yves Cunin, and Noureddine Belkhatir. An architecture for
process support interoperability. ICSP 5, Pages 137-147. 15-17 June 1998 Chicago,
Illinois, USA

[10] M. Franklin, M, Carey, and M. Livny: “Transactional Client-Server Cache Consistency:
Alternatives and Performance”. ACM Transactions on Database Systems, Vol. 22 No. 3.
September 1997

[11] A. Gokhale, D.C. Schmidt, B. Natarajan, and N. Wang: “Applying Model-Integrated
Computing to Component Middleware and Enterprise Applications”. Communications of
the ACM, Vol. 45, No. 10. October 2002

[12] C. Godart, F. Charoy, O.Perrin, and H. Skaf-Molli: “Cooperative Workflows to
Coordinate Asynchronous Cooperative Applications in a Simple Way.”. 7th International
Conference on Parallel and Distributed Systems (ICPADS’00). Iwate, Japan, July 2000

[13] P. Molli, H. Skaf-Molli, and C. Bouthier: “State Treemap: An Awareness Widget for
Multi-Synchronous Groupware”. 7th International Workshop on Groupware (CRIWG'01).
September 2001

[14] OMG. A UML Profile for Enterprise Distributed Object Computing Joint Final
Submission. 21 November 2002

Jacky Estublier et al.176

[15] OMG Model Driven Architecture A Technical Perspective Architecture Board MDA
Drafting Team Draft 21st February 2001

[16] A. Personn, I. Crnkovic, M. Larsson: “Managing Complex Systems – Challenges for PDM
and SCM”. 10th International Workshop on Software Configuration Management, in the
International Conference on Software Engineering. Toronto, Canada, May 2001

[17] John Poole. Model-Driven Architecture: Vision, Standards And Emerging Technologies.
ECOOP 2002

[18] R. Schmidt and U. Asmann: “Extending Aspect-Oriented-Programming in order to
flexibly support workflows”. Aspect Oriented Programming Workshop in the International
Conference on Software Engineering. Kyoto, Japan, April 1998

[19] Soley, R. and the OMG staff Model-Driven Architecture. White paper, Draft 3.2,
document available at www.omg.org, November 2000

[20] G. Valetto and G. Kaiser. Using Process Technology to Control and coordinate Software
Adaptation. ICSE, Portland May 2003

[21] Herve Verjus. PhD Thesis. Chambery 2000

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 177-190, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Dissecting Configuration Management Policies

Ronald van der Lingen and André van der Hoek

School of Information and Computer Science
 University of California, Irvine
 Irvine, CA 92697-3425 USA

{vdlingen,andre}@ics.uci.edu

Abstract. A configuration management policy specifies the procedures through
which a user evolves artifacts stored in a configuration management system.
Different configuration management systems typically use different policies,
and new policies continue to be developed. A problem in the development of
these new policies is that existing policies (and their implementations) typically
cannot be reused. As a basis for a future solution, this paper presents a new
configuration management system architecture that focuses on modularly speci-
fied policies. In particular, policies consist of a set of constraint modules, which
enforce the desired repository structure, and a set of action modules, which
govern the desired user interaction. New policies can be developed by combin-
ing relevant existing modules from existing policies with new modules that spec-
ify the unique aspects of the new policy. We demonstrate how several quite dif-
ferent configuration management policies can be effectively constructed this
way.

1 Introduction

Building a new configuration management system is a daunting undertaking. The
Subversion project [13], for example, initiated in May 2000, currently comprises over
100,000 lines of code, and has iterated over 14 alpha releases to date. Its first beta
release is not scheduled until early next year, and still a number of known issues are
yet to be addressed. This is all the more surprising, because the goal of Subversion is
merely to provide a better implementation of CVS [2] that addresses a relatively small
number of functional “annoyances” in the process [14].

A significant portion of the effort lies in the fact that Subversion is a carefully ar-
chitected, open, and pluggable implementation with extensive error handling and dis-
tributed operation. The inherent non-reusability of the configuration management
policy of CVS, however, also played a role. Because the policy of CVS is interwoven
throughout its implementation, functionality related to its policy (such as the rules for
updating a version tree or selecting artifacts) could not be easily extracted for reuse
and had to be re implemented in Subversion.

A number of projects have attempted to address this issue. EPOS [8] and ICE [21],
for instance, provide logic -based infrastructures upon which to implement new con-

c©

Ronald van der Lingen and André van der Hoek 178

figuration management systems by specifying their policies as logical constraints.
Another approach, NUCM [16], provides a programmatic approach that reuses a ge-
neric repository and supports implementation of specific policies via a standard pro-
grammatic interface. While successful in making the development of new configuration
management systems easier, we observe that all of these approaches only focus on
reuse of a generic configuration management model. In particular, the infrastructures
provide generic data modeling facilities that are reused for expressing policies, but the
policies themselves are not reused.

This paper introduces a new configuration management system architecture that
focuses on policy reuse. It is loosely based on the generic model of NUCM, but addi-
tionally recognizes that policies can be modularly specified and implemented. In par-
ticular, a policy is defined by a set of constraint modules, which enforce the desired
repository structure on the server side, and a set of action modules, which govern the
desired user interaction on the client side. Four types of constraint modules exist:
storage, hierarchy, locking, and distribution. They are complemented by four types of
action modules: selection, evolution, concurrency, and placement. A policy is formed
by choosing relevant implementations of each type of constraint module and action
module. Reuse occurs when new policies are formed by combining one or more exis t-
ing modules with newly developed modules that capture the unique aspects of the
new policy. A single constraint or action module, thus, can be used in the specifica-
tion of multiple policies.

Below, we first introduce some background information to form the basis for the re-
mainder of the paper. We then introduce our new architecture and discuss the avail-
able constraint and action modules in detail. We continue by showing how several
quite different configuration management policies are constructed using our approach.
We then briefly compare our architecture to existing architectures and conclude with a
discussion of the potential impact of our work and an outlook at our future plans.

2 Background

To understand our approach, it is necessary to clearly delineate a configuration ma n-
agement model from a configuration management policy. The two are often inter-
twined, which is not surprising given that a typical CM system requires only a single
model tuned to a single policy. As a result, terminology has not been quite clear and
early papers on configuration management policies, for instance, referred to them as
models [6].

Here, we define a configuration management model as the data structures used to
track the evolution of one of more artifacts and a configuration management policy as
the procedures through which a user evolves the artifacts stored in those data stru c-
tures. For example, the version tree model is generally used in conjunction with the
check-in/check-out policy [12]. As another example, the change sets policy [11] gener-
ally uses specialized data structures to capture and relate individual change sets.

While efficiency reasons may prescribe the use of a customized model in support of
a particular policy, research has shown how certain policies can be emulated with
other models. For instance, the change sets policy can be supported using the model

Dissecting Configuration Management Policies 179

for the change package policy [20]. Generalizations of this approach provide generic
models that support a wide variety of policies [1,16,19,21]. In sacrificing efficiency for
generality and expressiveness, these generic models can be used for the exploration
and evaluation of new policies [15]. Once a desired policy has been determined, it may
need to be reimplemented in an optimized fashion with a specialized model should
efficiency be of great concern. Evidence shows, however, that effective systems can
be built directly on top of the generic infrastructures [16,21]. Still, reuse of policies
themselves remains difficult, a problem we tackle in this paper to make the constru c-
tion of new configuration management systems even easier.

3 New System Architecture

We base our approach on the observation that configuration management policies do
not have to be treated as single, monolithic entities. Rather, they can be dissected into
smaller modules, each governing one aspect of one or more policies. As illus trated in
Figure 1, we distinguish constraint modules from action modules. Co nstraint modules
are placed on the server side of a configuration management system, and enforce the
desired repository structure. The purpose of a storage constraint module, for instance,
is to limit the potential relationships among a set of baselines and changes. Among
others, those relationships may be restricted to form a linear structure, a version tree, a
version graph, or even an arbitrary graph.

Action modules govern the desired user interaction on the client side of a configu-
ration management system. Part of the purpose of a concurrency action module, for
example, is to determine which baselines and changes must be locked before a user
starts making changes. Example strategies could be to lock all baselines and all
changes, only baselines and changes on the current branch, or no baselines or
changes at all.

Our architectural decision to place constraint modules on the server side and ac-
tion modules on the client side is a deliberate choice. While both types of modules
could have been placed together on either the server or client side, separating them as
in Figure 1 has two significant advantages. First, it places constraint checking at the
level of the server, which reduces the need to send state information from the server to
a client every time other clients commit changes. Second, it has the advantage of being
prepared for a future in which different clients operate with different policies.

Different constraint and action modules can be associated with different artifacts.
This allows the architecture to support policies that treat different artifacts differently
(e.g., the policy underneath CVS [2] supports file versioning but does not support
directory versioning). To avoid having to individually associate modules with every
single artifact, default constraint and action modules can be specified.

Ronald van der Lingen and André van der Hoek 180

3.1 Constraint Modules

The architecture supports four types of constraint modules: storage, hierarchy, lock-
ing, and distribution. These types were selected because they represent the common
dimensions along which current configuration management policies vary. As our re-
search continues, we will be exploring adding additional dimensions as necessary.

An important aspect of the architecture is that each constraint module is specified
independently from the others, making it possible to replace one of the constraint
modules without influencing the operation of the others. Of note is also that the sole
purpose of a constraint module is to simply enforce the desired repository structure.
As such, each constraint module only verifies if a particular operation adheres to the
specified constraints. The standard, generic part of the architecture interprets the
results of each constraint module and either commits the operation (if all constraints
are satisfied) or aborts the operation (if one or more constraints are violated).

Below, we briefly discuss the role of each type of constraint module.

Fig. 1. New configuration management system architecture

Dissecting Configuration Management Policies 181

3.1.1 Storage Constraint Module
The architecture is built on baselines and changes. At the storage layer, a baseline
represents a version of a single artifact (containment is supported by the hierarchy
layer, see Section 3.1.2), as stored in its complete form. A change represents an incre-
mental version, and is stored using a delta mechanism.

The purpose of a storage constraint module is to limit the number of baselines and
changes that may be created by a user, as well as to limit the potential relationships
that may exist among those baselines and changes. For example, directories in CVS
cannot be versioned. The storage constraint module for those directories, therefore,
would limit the generic server to only be able to store one baseline of a directory at a
time. Files, on the other hand, can be versioned in CVS and are stored as baselines and
changes that are related in a directed graph. The storage constraint module for files,
therefore, would allow a directed graph but still disallow parts of that graph to be dis-
connected.

To understand the role of storage constraints, Figure 2 presents the structures that
result from applying a number of different storage constraint modules. Figure 2a, for
instance, shows a baseline-only structure that results from a very conservative stor-
age constraint module. Figure 2b shows the traditional version tree that results from
allowing intermittent baselines and changes that each have a single parent. The ver-
sion graph in Section 2c is the result of slightly different constraints that allow a single

baseline or change to have multiple parents, as long as no cycles result. The examples
of 2d and 2e show disconnected graphs, as suited for change package [20] and change
set [11] policies, respectively.

Fig. 2. Structures resulting from different storage constraint modules

Ronald van der Lingen and André van der Hoek 182

3.1.2 Hierarchy Constraint Module
The purpose of a hierarchy constraint module is to limit a user in forming potentially
arbitrary hierarchal structures. The dimensions along which different policies vary are
threefold: (1) whether or not the hierarchical composition of artifacts is allowed, (2)
whether or not a single artifact can be part of more than one higher level artifact, and
(3) whether or not cyclic relationships are allowed. We have defined and implemented
a hierarchy constraint module for each of the meaningful combinations of these three
dimensions.

Individually, hierarchy constraint modules are not very powerful. Combining them
with storage constraint modules, however, makes for a storage facility that is more
generic than its predecessor (i.e., the storage model of NUCM [16]). In particular, our
new architecture supports containers that: (a) have actual content in addition to con-
tainment information and (b) explicitly distinguish baselines from changes.

3.1.3 Locking Constraint Module
The mechanisms that different configuration management policies use for concurrency
control vary. So me are optimistic and rely on automated merging [7] for conflict resolu-
tion. Others are pessimistic and rely on locking to avoid conflicts altogether. In terms
of persistent state that must be preserved over some timeframe, locks are the only
entities that must be stored. Therefore, concurrency-related decisions are made by a
concurrency action module (see Section 3.2.1), but locking related checks are per-
formed by a locking constraint module. In particular, a locking constraint module de-
termines whether a request carries the correct set of locks.

Several different locking constraint modules exist that range from not enforcing any
locking at all (e.g., in case of a change set policy) to enforcing the simultaneous lock-
ing of all baselines and all changes (e.g., in case of a policy like the one in SCCS [10]).
Perhaps the most commonly used strategies are to either lock a single node, or to lock
a node and its branch.

Locking constraints are specified independently fro m any hierarchy constraints
and therefore cannot cross different levels in the storage hierarchy. Nonetheless, at-
taching the appropriate locking constraint to each level, combined with the use of an
appropriate concurrency action module (see Section 3.2.1), will provide such function-
ality.

3.1.4 Distribution Constraint Module
The last type of constraint module pertains to the distribution of artifacts over multiple
different servers. Different configuration management systems differ in their policies in
a number of different ways. First, some support no distribution at all. Second, those
that support distribution may support distribution of an artifact as a whole or of indi-
vidual baselines or changes. Finally, a policy may support replication of artifacts as a
whole or of individual baselines or changes.

The purpose of a distribution constraint module, then, is to ensure that the appro-
priate distribution policy is followed by a user (e.g., a request to replicate a single
baseline cannot be honored if only an artifact as a whole can be replicated). Again, a
distribution constraint module operates on a single artifact. If the distribution of hier-

Dissecting Configuration Management Policies 183

archically organized artifacts needs to be coordinated, a placement action module can
do so.

3.2 Action Modules

In addition to the constraint modules, four types of action modules exist: selection,
concurrency, evolution, and placement. Action modules represent the decision points
in a configuration management policy. They, for example, make sure to lock the right
set of artifacts or to establish appropriate parent relationships when a user merges two
or more branches.

Action modules augment the basic user interaction protocol that is supported by
the architecture. This interaction protocol consists of two requests. First, a user popu-
lates a workspace with artifacts and indicates whether they want read or write access.
Second, after the desired changes have been made, they place the changes back in the
repository. The actual behavior of the system in response to these requests depends
on the particular modules that are “plugged in”. For example, if a concurrency action
module is plugged in that supports simple locking, populating a workspace results in
the artifacts being locked and placing changes back in the repository results in them
being unlocked. As described below, each type of action module provides a range of
options from which different configuration management policies are composed.

3.2.1 Selection Action Module
A selection action module interprets a request for populating a workspace and auto-
matically incorporates other artifacts as necessary. Particularly important dimensions
in this process are whether or not a request is hierarchical (i.e., whether a request for a
collection additionally leads to populating of the workspace with constituent art ifacts),
whether or not latest versions should be selected (i.e., the policy of DVS [3] is to select
by default the latest version of any constituent artifact), and whether or not additional
selection criteria should be interpreted (i.e., attribute selection or configuration specifi-
cations [4]).

The power of the selection action module lies in it being a counterpart to the hier-
archy constraint module. If hierarchical artifacts are permitted, the selection action
module makes it easy for a user to meaningfully obtain a set of hierarchically related
artifacts with a single request.

Note that the selection action module does not actually populate a workspace, but
rather only determines the artifacts with which it should be populated. The generic
client takes care of taking the list of artifacts and actually placing them in the work-
space. This has two advantages. First, new selection action modules become simpler
to implement and require fewer details concerning the internals of the architecture.
Second, it provides another form of reuse as the generic client implements the mecha-
nisms for obtaining artifacts from the server.

3.2.2 Concurrency Action Module
Similar to the way the selection action module complements the hierarchy constraint
module, the concurrency action module serves as a complement to the locking con-

Ronald van der Lingen and André van der Hoek 184

straint module. When a user requests write access to an artifact that is being placed in
their workspace, the concurrency action module determines the appropriate set of
baselines and changes that must be locked. As described in Section 3.1.3, the set may
be empty in case a change set policy is desired, but it also may involve locking multi-
ple baselines or changes.

A concurrency action module also takes care of determining the set of baselines
and changes to be unlocked when a user commits their changes to the server. No r-
mally, of course, this will be the same set that was locked in the first place.

In order to support concurrency policies at the hierarchical level, a concurrency ac-
tion module specifies two Booleans: the first determines whether locking a container
artifact should lead to locking of its constituent artifacts and the second whether lock-
ing an artifact should lead to its parent artifacts being locked. Both cases of transitive
locking, although rare, are present in certain configuration management policies. Note
that the Booleans only indicate a desired behavior. The actual child or parent artifacts
are locked according to their o wn concurrency action modules.

A few configuration management systems incorporate concurrency policies that
involve direct workspace-to-workspace communication [5,18]. At the moment, we
consider this out of scope since we focus on policies in the setting of client-server
based configuration management systems. Our eventual goal, however, is to support
such peer-to-peer interaction.

3.2.3 Evolution Action Module
While a storage constra int module limits the relationships that may exist among bas e-
lines and changes, certain choices still must be made. For example, when a user wants
to create a new version of an artifact, that version must receive a version number, it
must be determined whether it should be stored as a baseline or change, and it must be
determined what relationships are desired with the other baselines and changes. An
evolution action module, guided by appropriate user input, takes care of these kinds of
decisions.

Evolution policies range from simply replacing the current version of the artifact in
case the artifact is not versioned to storing the new version of the artifact as an inde-
pendent change in case of a change set policy. Perhaps the most common policy is to
add a new version to the end of the branch from which it originated, unless a newer
version already exists, in which case a new branch is created. In effect, this policy
creates a version tree.

If a version graph is desired, selection information kept in the workspace will help
in determining when merge arcs are needed. In particular, if a user requested a work-
space to be populated with a version that represents the merging of two branches
(simply by asking for those two versions, the architecture automatically merges the
two), this information is kept in the workspace and fed into the versioning policy by
the standard client.

Because the layers in our architecture are orthogonal, the evolution of hierarchical
artifacts (containers) is performed in the same manner as the versioning of atomic
artifacts. The only exception to this rule is that, again, an evolution action module can
specify two Booleans to determine whether committing a new version of a collection
should lead to the committing of parent and/or child artifacts.

Dissecting Configuration Management Policies 185

3.2.4 Placement Action Module
The last action module in our architecture is the placement action module, which
makes decisions regarding the distribution of artifacts, or versions of artifacts. In par-
ticular, when a user commits an artifact, the placement action module determines the
location where the new baseline or change has to be stored. Normally, that will be the
server from which the artifact originated, but it is also possible for a policy to store and
or even replicate artifacts on servers that may be closer to the user that is currently
making modifications. Again, we note that this module only determines where an arti-
fact will be stored, the actual mechanism of doing so is provided by the generic server
implementation.

Just like the concurrency and evolution action modules, the placement action mo d-
ule has two Booleans determining whether parent and/or child artifacts should be co-
located with the artifact being manipulated. This way, a policy can restrict a subtree of
artifacts to be located at a single server.

4 Examples

In order to demonstrate the use of our new architecture, we have studied which con-
straint and action models are needed to model some of the more prolific existing con-
figuration management policies. Below, we first demonstrate how to construct a policy
similar to the policy of RCS [12]. We then demonstrate how to construct a policy simi-
lar to the policy of CVS [2], and show how variants of that policy can be easily con-
structed. As an example of a rather different kind of policy, we then show how to
model the change set policy [11].

In all of these examples, it is important to note that user interaction with the con-
figuration management system remains the same. Users request artifacts for reading
and/or writing, and place modified artifacts back into the repository. By plugging in
different constraint and action modules, the configuration management system adjusts
its behavior to the desired policy. This may result in some user actions to be prohib-
ited (for example, the policy of RCS does not support hierarchical composition), but
generally a user will notice little difference.

4.1 RCS

Table 1 illustrates how one would build a configuration management system with a
policy similar to RCS. This policy is a relatively simple one and focuses on versioning
of individual artifacts in a non-distributed setting. As a result not all features of our
architecture are used. In part icular, the hierarchy constraint module disallows any
hierarchical composition and the distribution constraint module prevents distribution
of artifacts over multiple repositories. Consequently, the placement action module is
empty, since no decisions regarding placement of artifacts have to be made. Similarly,
the value of the Boolean indicators that determine whether the remaining three action
modules operate in a hierarchical fashion should be set to false.

Ronald van der Lingen and André van der Hoek 186

Versions are stored in a connected graph of bas elines and changes, which in effect
forms a version tree in which branching is allowed. A new version is stored on the
branch from which it was created, unless an earlier version was already stored on the
branch, in which case a new branch is started. When a user selects two versions of an
artifact to put in the workspace, the result is a merged artifact and a merge link in the
version graph when the result is placed back in the repository. Locking is per baseline
or change, and arbitrary nodes can be locked.

Table 1. Policy of RCS as constructed in our architecture

Module Implementation
Storage constraint Acyclic, fully connected graph of baselines

and changes
Hierarchy constraint No hierarchical composition
Locking constraint At least a single node at a time
Distribution constraint No distribution
Selection action At most two versions at a time
Concurrency action Lock/unlock a single node
Evolution action Store on existing or new branch
Placement action No placement

4.2 CVS

The policy that CVS uses differs from the policy of RCS in several ways. First, whereas
RCS has a pessimistic policy that resolves around the use of locks to prevent con-
flicts, CVS has an optimistic policy that relies on the use of merging to resolve con-
flicts as they occur. Second, CVS supports the construction of hierarchal artifacts via
the use of directories. Directories themselves, however, cannot be versioned.

Table 2 presents the modules one would use to model the policy of CVS using our
architecture. Quite a few modules are different from those of the previous policy in
Table 1. In particular, the locking constraint module is now void, as is the concurrency
action module. Hierarchical composition is enabled, but restricted to single parents in
order to only allow a strict tree of hierarchically structured artifacts. In addition, a new
storage constraint module is introduced to handle directories, which can only be
stored as a single baseline.

The storage constraint module for files remains unchanged, but t he accompanying
evolution action module has been modified slightly. Rather than automatically creating
a branch if a newer version of an artifact exists (if the artifact is a file), the evolution
action module will fail and inform the user they have to res olve the conflict. This is in
concordance with CVS, which allows parallel work but puts the burden of conflict
resolution on those who check in last. Directories are not versioned in CVS, therefore
the evolution action module for directories simply replaces the one existing baseline.

Although the number of modules that were changed in comparison with the RCS
policy may be surprising, we observe that the development of a module is a relatively
simple task. In fact, we plan to have all of the modules discussed thus far available as
standard modules distributed as part of the architecture.

Dissecting Configuration Management Policies 187

Table 2. Policy of CVS as constructed in our architecture

Module Implementation
Storage constraint Acyclic, fully connected graph of baselines

and changes for files; single baseline for
directories

Hierarchy constraint Hierarchical composition, single parent
Locking constraint No locking
Distribution constraint No distribution
Selection action At most two versions at a time
Concurrency action No locking
Evolution action Store on existing branch if no conflict for

files; replace existing baseline for directories
Placement action No placement

Changing from a CVS -like policy to a Subversion-like policy is trivial with our archi-

tecture. Simply applying the existing storage constraint module for files to directories
turns our CVS implementation into a Subversion implementation. Compared to the
scenario presented in Section 1, this is a significant difference in effort.
Similarly, the effort involved in making the CVS policy distributed is also small. Since
distribution is orthogonal to the other modules, the other modules are simple reused
and do not need to be changed. For instance, to replicate artifacts or move artifacts to
the repository closest to a user, one would plug in the appropriate distribution con-
straint and placement action modules.

4.3 Change Set

The change set policy does not use a version tree, but instead stores individual bas e-
lines and changes independently. Individual versions are constructed in the work-
space by applying a set of changes to a baseline. Because changes are considered
completely independent, locking is not necessary.

Table 3 shows the modules used to construct the change set policy with our archi-
tecture. Because the change set policy stores baselines independently from each
other, the storage constraint module allows disconnected graphs. Because changes
are always based on a baseline, however, the storage constraint module enforces d e-
pendencies from changes on baselines. The evolution action module is slightly differ-
ent from its counterpart for the CVS policy, since it only establishes relationships
between changes and the baselines upon which they are based.

Our change set policy reuses the hierarchy constraints from the CVS policy, and
similarly has no locking and no concurrency action module. Should distribution be
desired, the same distribution constraint and placement action modules can be reused
from the CVS policy, showing the strength of our architecture in separating concerns
and promoting reuse.

Ronald van der Lingen and André van der Hoek 188

Table 3. Change set policy as constructed in our architecture

Module Implementation
Storage constraint Acyclic graph of baselines and changes that

depend on baselines
Hierarchy constraint Hierarchical composition, single parent
Locking constraint No locking
Distribution constraint No distribution
Selection action Arbitrary baselines and changes
Concurrency action No locking
Evolution action Store new version as an independent change

depending on the baseline
Placement action No placement

5 Related Work

Several previous projects have explored the issue of easing the development of new
configuration management systems. ICE [21], EPOS [8,19], and NUCM [16] were
among the first to provide a generic (also called unified) configuration management
model upon which to build new configuration management systems. ICE and NUCM,
however, have the problem that a configuration management policy is treated as a
single monolithic unit. Some reuse is possible, but neither approach explicitly pro-
motes it. The approach of EPOS is better in that regard, since its architecture explicitly
separates different parts of a policy in different layers. Due to strong interdepend-
ences among the different layers, however, significant amounts of policy reuse remain
elusive.

Parisi and Wolf [9] leverage graph transformations as the mechanism for specifying
configuration management policies. While certain compositional properties are dem-
onstrated with respect to configuration management policies, the policies they explore
are so closely related (e.g., those underneath RCS [12] and CVS [2]) that it is unclear
how the approach may apply to more diverse policies (e.g., change set [11]).
Finally, the unified extensional model [1] is an attempt at creating a generic model that
is solely tailored towards extensional policies. While advantageous in providing spe-
cific support for building such policies, the approach is limited with respect to policy
reuse since it focuses on reuse of the model, not policies.

6 Conclusion

We have introduced a new configuration management system architecture that e xplic-
itly supports policy reuse. Key to the approach is our treatment of configuration ma n-
agement policies as non-monolithic entities that are modularized into sets of constraint
and action modules. We are currently implementing the architecture. While we still
have some significant implementation effort in front of us, early results are encoura g-

Dissecting Configuration Management Policies 189

ing in that the architecture can be faithfully implemented and supports policy modu-
larization.

The initial goal of the project is to reduce the time and effort involved in implement-
ing a new configuration management system. Especially when it is not clear which
policy is best suited for a particular situation, our architecture has benefits in speeding
up the exploration and evaluation process.

In the long term, our architecture has the potential of making significant impact on
two long-standing problems in the field of configuration management. First, we believe
the architecture is a step forward towards building a configuration management sys-
tem that can be incrementally adopted. An organization would start with relatively
simple policies, but over time relax those policies and introduce more advanced capa-
bilities as the users become more familiar with the system. For instance, the use of
branches (a notoriously difficult issue [17]) could initially be prohibited with a restric-
tive storage constraint module. Later on, when the users have a good understanding
of the other aspects of the desired policy, the original storage constraint module is
replaced with a storage constraint module that allows the use of branches.

The second problem that the architecture may help to address is that of policy in-
teraction. Existing configuration management systems typically enforce a policy on the
client side. Our architecture, on the other hand, enforces policy constraints on the
server side. This represents a step towards addressing the problem of policy intera c-
tion, since it allows a server to continue to enforce the original policy as associated
with an artifact.

Acknowledgements

This research is supported by the National Science Foundation with grant number
CCR-0093489. Effort also sponsored by the Defense Advanced Research Projects
Agency, Rome Laboratory, Air Force Materiel Command, USAF under agreement
numbers F30602-00-2-0599 and F30602-00-2-0608. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Defense Advanced Re-
search Projects Agency, Rome Laboratory or the U.S. Government.

References

1. U. Asklund, L. Bendix, H.B. Christensen, and B. Magnusson. The Unified Extensional
Versioning Model. Proceedings of the Ninth International Symposium on System Configu-
ration Management, 1999: p. 100-122

2. B. Berliner. CVS II: Parallelizing Software Development. Proceedings of the USENIX Win-
ter 1990 Technical Conference, 1990: p. 341-352

Ronald van der Lingen and André van der Hoek 190

3. A. Carzaniga. DVS 1.2 Manual. Department of Computer Science, University of Colorado
at Boulder, 1998

4. R. Conradi and B. Westfechtel, Version Models for Software Configuration Management.
ACM Computing Surveys, 1998. 30(2): p. 232-282

5. J. Estublier. Defining and Supporting Concurrent Engineering Policies in SCM. Proceedings
of the Tenth International Workshop on Software Configuration Management, 2001

6. P.H. Feiler. Configuration Management Models in Commercial Environments. Software
Engineering Institute, Carnegie Mellon University, 1991

7. T. Mens, A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, 2002. 28(5): p. 449-462

8. B.P. Munch. Versioning in a Software Engineering Database - the Change-Oriented Way.
Ph.D. Thesis, DCST, NTH, 1993

9. F. Parisi-Presicce and A.L. Wolf. Foundations for Software Configuration Management
Policies using Graph Transformations . Proceedings of the Third International Conference
on Fundamental Approaches to Software Engineering, 2000: p. 304-318

10. M.J. Rochkind, The Source Code Control System. IEEE Transactions on Software Engineer-
ing, 1975. SE-1(4): p. 364-370

11. Software Maintenance & Development Systems Inc. Aide de Camp Product Overview.
1994

12. W.F. Tichy, RCS, A System for Version Control. Software - Practice and Experience, 1985.
15(7): p. 637-654

13. Tigris.org, Subversion, http://subversion.tigris.org, 2002
14. Tigris.org, Subversion Frequently Asked Questions,

http://subversion.tigris.org/project_faq.html, 2002
15. A. van der Hoek. A Generic, Reusable Repository for Configuration Management Policy

Programming. Ph.D. Thesis, University of Colorado at Boulder, Department of Computer
Science, 2000

16. A. van der Hoek, A. Carzaniga, D.M. Heimbigner, and A.L. Wolf, A Testbed for Configura-
tion Management Policy Programming. IEEE Transactions on Software Engineering, 2002.
28(1): p. 79-99

17. C. Walrad and D. Strom, The Importance of Branching Models in SCM. IEEE Computer,
2002. 35(9): p. 31-38

18. A.I. Wang, J.-O. Larsen, R. Conradi, and B.P. Munch. Improving Coordin ation Support in
the EPOS CM System. Proceedings of the Sixth European Workshop in Software Process
Technology, 1998: p. 75-91

19. B. Westfechtel, B.P. Munch, and R. Conradi, A Layered Architecture for Uniform Version
Management. IEEE Transactions on Software Engineering, 2001. 27(12): p. 1111-1133

20. D. Wiborg Weber. Change Sets versus Change Packages: Comparing Implementations of
Change-Based SCM . Proceedings of the Seventh International Workshop on Software Con-
figuration Management, 1997: p. 25-35

21. A. Zeller and G. Snelting, Unified Versioning through Feature Logic. ACM Transactions on
Software Engineering and Methodology, 1997. 6(4): p. 398-441

Improving Conflict Detection in Optimistic
Concurrency Control Models

Ciaran O’Reilly, Philip Morrow, and David Bustard

School of Computing and Information Engineering
University of Ulster, Coleraine
BT52 1SA, Northern Ireland

{ciarano, pj.morrow,dw.bustard}@infc.ulst.ac.uk

Abstract. Configuration Management is required in all software devel-
opment processes. To support ‘agile’ methodologies, an approach is de-
sirable that allows developers to work as independently as possible and
yet be aware of each other’s activities. Optimistic concurrency control
provides good support for independent working but is less supportive of
communication. This paper looks at the relationship between the opti-
mistic approach and the needs of the agile philosophy. In particular, it
examines support facilities provided by the Concurrent Versions System
(CVS) and identifies possible improvements in conflict detection to aid
communication. The design and construction of a prototype extension
to CVS, implementing some of these enhancements, is described.

1 Introduction

Agile methodologies are having an influence on the way that all aspects of soft-
ware development are now perceived. Cockburn [5] describes the agile approach
as a “frame of mind” rather than a fixed set of rules. In essence, it emphasises
communication, productiveness and response to change over that of supporting
tools, processes, documentation, contracts and planning.

Superficially, software configuration management (SCM)–a control mecha-
nism that is often perceived as bureaucratic–may seem in conflict with the agile
approach. In practice, however, many of the functions of SCM [4], [6] are fun-
damental to all software development processes and are frequently mentioned,
or implied, in the literature describing agile techniques [1], [13], [18] and [16].
In particular, because the agile approach involves greater iterative development
the need for effective version control is increased.

Version control systems generally take either a pessimistic or optimistic ap-
proach to managing concurrent access to shared files [2]. The traditional ap-
proach is pessimistic, using some form of reserved checkout model to give sole
update access to the person who has checked out a file. Examples of control
systems based on this model include MKS [21] and RCS [19].

In contrast, the optimistic approach uses an unreserved checkout model, al-
lowing all files to be modified as local copies, only checking for conflict when the
files are committed back to the central version control repository or when updates

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 191–205, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

192 Ciaran O’Reilly et al.

from the central repository are applied to a person’s local copy. A merge process
is then used to handle any conflict detected [8]. Examples of systems supporting
the optimistic approach include ClearCase [24] and CVS (Concurrent Versions
System) [3].

The distinction between pessimistic and optimistic systems is perhaps not
that clear as pessimistic systems can be used in an optimistic way. For example,
increased parallel activity can be achieved by using branching [12] or simply
maintaining locks on the repository for the time it takes to resolve and check-in
changes. As a general rule, however, it is assumed that control systems should
be directly supportive of the development process involved, otherwise such tools
can be laborious and error prone.

An agile approach to software development requires an optimistic strategy
to permit as much independent parallel development as possible [11]. This, how-
ever, must also be balanced with another tenet of the agile philosophy, namely
that developers should work closely together and be aware of how one person’s
work affects another. With the optimistic approach, conflict is only detected
at the check-in stage, leaving responsibility for merging to the person finding
the problem. In addition, the time delay between when a conflict occurs and
its detection could be significant. To support the agile philosophy it would be
better if potential conflicts could be identified as soon as possible, leaving it to
developers to decide how to react. This is particularly important because there
is a significant correlation between the number of parallel changes and related
defects [17].

This paper considers how the optimistic SCM strategy might be extended
to improve communication for agile working. To fix ideas, the work is based
on CVS, a popular SCM tool supporting the optimistic model. Section 2 of
the paper provides an overview of CVS, summarising its facilities for optimistic
concurrency control and identifying where it might be extended to help improve
communication. Section 3 presents the design and construction details of the
Night Watch system, an experimental prototype implementing some of these
extensions. Suggestions for future work are included in the conclusion.

2 Extending The Optimistic Model to Aid
Communication

There are many version control systems that implement the optimistic concur-
rency control model. CVS was selected as the representative system for this study
because it is open source and freely available. Indeed, it is the most widely used
version control system on open source projects [22]. It supports version control,
basic workspace management, and provides several hooks to permit customisa-
tion within a specific working environment.

2.1 Overview of CVS

CVS actually supports three different models for controlling concurrent access to
files. The unreserved and reserved checkout models have already been described

Improving Conflict Detection in Optimistic Concurrency Control Models 193

above in terms of optimistic and pessimistic mechanisms, with unreserved check-
outs being the default. The third model supported is watches, which lies between
the optimistic and pessimistic methods. Briefly, the watches mechanism permits
users to request notification of edit, un-edit and commit actions on files man-
aged by CVS that originate from other users. These requests for notification are
made explicitly by each user (‘cvs watch add...’ and ‘cvs edit...’), CVS does not
provide a mechanism for automatically setting up watches. However, the ‘cvs
watch add...’ command does permit a user to specify their desired watch policy
on a directory which then applies to any artifacts added to the directory, this
also applies recursively to subdirectories.

Essentially, watches operate the same way as the unreserved checkout model
but permit users to be notified of events that indicate potential conflict. Figure 1
and Figure 2 illustrate the use of watches, through a pair of UML sequence
diagrams [7]. These figures depict a CVS repository that has been set up to use
watches. At the beginning of these two sequences of events, user ‘A’ and user ‘B’
have identical working directory copies of the repository on their local machines.

#A: Working
Directory

#A: CVS
Client

: CVS Server : Repository

User A

cvs edit(f1.c)

cvs edit(f1.c)

edited(f1.c)

check for
watches on(f1.c)

add watch
(f1.c, for user A)

LEGEND Actor (UML), an enitiy external to a
system that interacts with it. May be
human or another system.

Object Instance (UML), an individual
member described by a type (class).:__

Asynchronous Message (UML), there is no
explicit return to the caller.

Synchronous Message (UML), operation that
handles the message is completed before the
caller resumes execution.

Fig. 1. Sequence diagram of user A’s events

User A makes a request to edit the file ‘f1.c’ (cvs edit (f1.c)), which causes
the file in User A’s working directory to become editable while notifying the
server that User A is intending to edit the file (edited(f1.c)). The server places
a watch in the repository for User A on file ‘f1.c’ (add watch(f1.c, for User A))
and then checks to see if any other users are watching the file (check for watches
on (f1.c)). At this point no one is doing so.

194 Ciaran O’Reilly et al.

: Notifier#B: Working
Directory

#B: CVS
Client

: CVS Server : Repository

User B

cvs edit(f1.c)

cvs edit(f1.c)

edited(f1.c)

check for
watches on(f1.c)

add watch
(f1.c, for user A)

notify(User A, f1.c,
edited, by User B)

Fig. 2. Sequence diagram of user B’s events

User B then makes a request to also edit file ‘f1.c’. The same steps occur as
with User A except that when the server checks to see if any other users have a
watch on ‘f1.c’ (check for watches on (f1.c)), it discovers that User A is currently
watching the file. The server then looks up its system configuration to determine
which application should be used to perform the notification action to User A.
The application responsible for notification (usually a mail program) is provided
with the relevant information (notify(User A, f1.c, edited by User B)) to notify
User A that User B has also started editing file ‘f1.c’.

This pair of sequence diagrams gives a general outline of how the watch
mechanism works within CVS and is similar to the process when a user commits
or un-edits a file. As can be seen, CVS provides its own built-in mechanisms for
supporting the detection of conflicts within an optimistic concurrency control
model. However, this mechanism can be improved by taking advantage of the fact
that CVS’s notification mechanism is configurable in terms of how notifications,
once generated, are handled and delivered.

2.2 Communication Requirements

The CVS watch facility, if used systematically and correctly goes a significant
way towards meeting the needs of SCM for agile development. The main diffi-
culty, which is substantial, is assuming that developers will be disciplined and
consistent in their use of the facilities provided. Requiring such discipline is also
against the spirit of agile development when these responsibilities can be taken
away with suitable tool support. That is the approach taken here. The objec-
tive is to allow developers to have free access to system components but keep
them informed of potential conflicts or possible activity of interest. Relevant
events can be either direct or indirect. The direct case is where, for example,

Improving Conflict Detection in Optimistic Concurrency Control Models 195

two developers modify the same component in parallel. The indirect case con-
cerns knock-on effects. For example, a developer may modify a component that
requires other dependent components to be adjusted. In this paper the main
focus is on providing automatic notification for direct conflicts and activities of
interest, all relating to the basic acts of creating, modifying and deleting files.
A ‘direct conflict’ in the context of this paper is considered to be two or more
people working on the same revision of an artifact simultaneously.

In CVS terms, the changes are as follows:

(1) Notification of Change. The effectiveness of CVS’s watch mechanism is re-
duced if the user within a working directory fails to use the edit, un-edit and
release commands provided. In this scenario the user changes permissions on
files manually or deletes them directly within their working directory. When this
is done no notification of these actions is forwarded to the server to inform other
interested users that edit or un-edit actions on these files have occurred. This po-
tential gap in receiving events of interest can be closed by monitoring the user’s
working directory for file updates. If updates occur to files that should have been
forwarded to the notification mechanism on the server the local monitor on the
working directory can do so. This removes the need to insist that all developers
use the edit, un-edit and release commands.

(2) Notification of Creation. The CVS watch mechanism does not have a notifi-
cation mechanism for files that have not yet been added to the repository. When
new work is begun it is possible that two or more developers start working on
similar functionality unknowingly within their independent working directories.
By monitoring the addition of new files to working directories it may be possible
to detect conflicts in advance of the newly developed work being added to the
repository.

(3) Self Notification. CVS does not notify users of their own changes. This is
based on whether the user name of the person taking the action matches the user
name of the person receiving notification [3]. Thus, if the user has multiple work-
ing directories they will not be notified of potentially conflicting changes they are
making in their separate copies of the repository. Notifying users of all their own
changes would address this problem. As the notification component called by
CVS is not involved in this decision process the user could receive these types of
notifications from components operating within their working directories. These
components would also collaborate in determining whether or not conflicts were
occurring amongst themselves independently of CVS’s mechanisms.

(4) Notification of State. Considering the sequence of events described in Fig-
ure 2 it can be seen that an issue exists in terms of who is made aware of the
potential for conflict. In this case, User A is notified that User B has edited the
file ‘f1.c’, however, User B was not notified of the fact that User A is already
editing the file. It would be preferable that when a user starts working with an

196 Ciaran O’Reilly et al.

artifact in their workspace that they be brought up to date with respect to the
current state of work in other users’ workspaces.

The addition of these improvements to CVS’s existing conflict detection mech-
anism would help to greatly reduce the period of time that conflicts remain
undetected during parallel development. No additional actions on behalf of the
developer are required apart from responding and considering relevant notifica-
tions that are provided to them. This helps to reduce the overhead a developer
would incur if attempting to perform these types of checks manually.

2.3 Adding Additional Notifications

To support the additional monitoring described in the previous section, our ap-
proach is to generate new types of notifications to extend those already provided
by CVS. These along with CVS’s existing notifications are listed in Table 1, with
indications as to which notifications are intended to support the notification cases
identified.

The notifications are derived from the nine different file statuses that CVS
specifies that a file can be in within a working directory. These are, Up to Date,
Locally Modified, Locally Added, Locally Removed, Needs Checkout, Needs Patch,
Needs Merge, Conflicts on Merge and Unknown. The Up to Date status is ignored
as it indicates the file within the working directory is identical to that in the
repository. The Needs Checkout and Needs Merge file statuses are treated as one
type of notification as they are logically equivalent. The Unknown file status is
specialised into Unknown added, removed and updated.

Scenario one is supported by the Locally Updated, Needs Checkout, Needs
Merge and Conflicts on Merge notification types. If, as described in scenario one,
an end user fails to use the edit, un-edit and release commands provided by CVS,
they will not receive edit and un-edit notifications. However, with the addition
of these four notifications, they will be notified of the fact that (a) another user
has modified a copy of a file that they themselves have updated or that (b) other
users who have updated a file which a user has committed are still inconsistent
with the committed revision (the remaining three notifications). All four of these
notifications show the state of the modifications that have been made within a
user’s working directory that notifies other users of actual, ongoing updates to
a file of interest.

Scenario two is supported by the Unknown Added, Unknown Removed and
Unknown Updated notification types, all of which are based on CVS’s Unknown
file status. All of the new notification types support in part the goals of scenarios
three and four.

3 Night Watch

Based on the name of CVS’s watch facility, Night Watch was the name given to
the collection of components that were developed to support the scenarios dis-

Improving Conflict Detection in Optimistic Concurrency Control Models 197

Table 1. Additional Notification Types

Notification Scenario Description

Locally Added (2), (3, 4) The file has been added to the working directory,
pending commit to the repository.

Locally Removed (2), (3, 4) The file has been removed from the working di-
rectory, pending commit to the repository.

Locally Updated (1), (3, 4) The file in the working directory is based on the
head revision in the repository but has been up-
dated in the working directory.

Needs Checkout (1), (3, 4) The file in the working directory is not the same
revision as the head revision in the repository.

Needs Merge (1), (3, 4) Same as ’Needs Checkout’ except that the file in
the working directory has been updated.

Conflicts on Merge (1), (3, 4) A merge was performed on a file in the working
directory but conflicts occurred.

Unknown Added (2), (3, 4) A file has been added to the working directory
that does not exist in the repository.

Unknown Removed (2), (3, 4) A file has been removed from the working direc-
tory that does not exist in the repository.

Unknown Updated (2), (3, 4) A file has been updated in the working directory
that does not exist in the repository.

Edit * N/A Received when another user edits a file that the
recipient is watching.

Un-Edit * N/A Received when another user un-edits or releases a
file that the recipient is watching.

Commit * N/A Received when another user commits a file that
the recipient is watching.

*An Existing CVS Watch Notification

cussed. The Night Watch system is based on the notion of intelligent agents
where emphasis is placed on defining software components that exhibit charac-
teristics of autonomy, reactivity, pro-activeness and social ability [23]. It operates
within a loosely coupled federation of cooperating components which makes it
easier to introduce its capabilities into a pre-existing software development en-

198 Ciaran O’Reilly et al.

vironment without being overly intrusive on existing infrastructure and pro-
cesses [15].

3.1 Design Overview

Three main components comprise Night Watch’s functionality. They are a Night
Watch Status Monitor a Notification Manager and a Notification Catcher. An
overview of these components and their dependencies is presented in Figure 3.

Notifcation
Manager

Notifcation
Catcher

Night Watch

<<library>>
JavaCVS

<<utility>>
File System

Monitor

Night Watch
Status

Monitor

FileSystemMonitorListener

NotificationManagerListener
NWStatusMonitorListener

FileSystemMonitorListener

LEGEND

Component (UML), a physical
implementation of logical model
elements (e.g. source, link
libraries, executables).

Package (UML), 'A general-purpose
mechanism for organizing elements into
semantically related groups.'

Dependency.

Interface (UML), 'describes the externally
visible and accessible behavior of a class, a
package or a component.'

Fig. 3. The Night Watch component model

The Night Watch Status Monitor is a component that runs on each user’s
development machine, monitoring the working directory using the File System
Monitor utility (which detects if files are added, removed or updated on the un-
derlying file system). It is responsible for identifying changes within the working
directory, checking them with the central repository, and determining if they
should be forwarded to a Notification Manager associated with the repository.
The Notification Manager is responsible for determining from those notifications
which should be forwarded to objects that have registered interest in receiving
them. Notifications can be received from the CVS repository via standard watch
notifications and from the Night Watch Status Monitors with which it is regis-
tered.

Improving Conflict Detection in Optimistic Concurrency Control Models 199

The final component is the Notification Catcher, which is responsible for for-
warding notifications received from the CVS Server to the Notification Manager.
The CVS Server’s generic mechanism for calling an external notification appli-
cation involves executing a process for each notification and passing information
to it via the standard input. It is therefore more appropriate to use a lightweight
process (the Notification Catcher) to forward the notifications received to the
long lived Notification Manager server process.

3.2 Construction Details

These components have been implemented in the Java programming language
using the JavaCVS library [10] to communicate with CVS where appropriate.
Each of the components developed follow guidelines presented in the Java Plat-
form’s component model specification [9]. To illustrate how the notifications that
the Night Watch system supports are implemented, two scenarios are described
below, the first detailing how integration with CVS’s existing notification mech-
anism is achieved and the second indicating how the new notifications generated
by Night Watch are managed.

Supporting CVS’s Existing Notification Mechanism. The point at which
the Night Watch System integrates with CVS’s watch facility is its notification
mechanism. The Notification Catcher and Manager components are responsible
for picking up and distributing these existing CVS notifications to the appropri-
ate users via their locally running Night Watch Status Monitors. The Notification
Manager is a long lived process as it handles notifications from Night Watch Sta-
tus Monitors residing on individual developer machines as well as from the CVS
Server; therefore receipt of a notification from a CVS Server is delegated to a No-
tification Catcher. The Notification Manager, when receiving a notification from
a Notification Catcher, determines which Night Watch Status Monitors should
receive the notification and then forwards it so that the recipient monitors may
present the notification to the end user.

Supporting the New Notification Types. The general mechanism by which
the additional notifications provided by Night Watch are handled is shown in
Figure 4. This indicates how the additional notifications are triggered and dis-
tributed.

In this scenario the users initially have identical copies of the repository in
their local working directories. User A updates a file ‘f1.c’ within their working
directory (1: update(f1.c)). A File System Monitor detects the update to this
file and notifies the Night Watch Status Monitor on whose behalf it is acting
(1.1: updated(f1.c)). The Night Watch Status Monitor obtains the status of the
file from the CVS Server (1.1.1: cvs status(f1.c)), which indicates that the file
is Locally Updated. A Locally Updated event notification is then created by
the Night Watch Status Monitor and forwarded to the Notification Manager
(1.1.2: statusNotification(f1.c)). The Notification Manager checks whether or

200 Ciaran O’Reilly et al.

: CVS Server

: Notification
Manager

#A: Working
Directory

#A: Night
Watch Status

Monitor

#B: Working
Directory

1.1.1: cvs status(f1.c)

1: update(f1.c)

#A: FileSystem
Monitor

1.1 : updated(f1.c)

1.1.2: statusNotification(f1.c)

#B: FileSystem
Monitor

2: update(f1.c)

2.1 : updated(f1.c)

2.1.1: cvs status(f1.c)

2.1.2: statusNotification(f1.c)

2.1.2.1: notificationFromCVSStatusMonitor(f1.c)

2.1.2.1.1: notify(f1.c)

User A User B

#B: Night
Watch Status

Monitor

Developer : File Server

User A's : Work Station User B's : Work Station

Fig. 4. Collaboration diagram of Night Watch’s general notification mechanism

not other Night Watch Status Monitors have indicated activity on an equivalent
revision of the file (for this scenario none are detected). User B then updates
an equivalent revision of the file ‘f1.c’ within their own local working directory
(2: update(f1.c)), following the same sequence of steps as with User A until the
Notification Manager detects that other Night Watch Status Monitors have had
activity on the file (2.1.2: statusNotification(f1.c)). In this instance, User A’s
Night Watch Status Monitor is noted as having had activity pertaining to the
same file. The Notification Manager then notifies the Night Watch Status Mon-
itor that another monitor has had activity against a related revision of file ‘f1.c’
in their working directory (2.1.2.1: notificationFromCVSStatusMonitor(f1.c)).
The Night Watch Status Monitor then notifies the end user via an appropriate
mechanism (2.1.2.1.1: notify(f1.c)) that a conflict has been detected between
their work and that of another user. In this way the end-user is only required to
address the issue of conflicts being detected as opposed to also being concerned
with whether or not conflicting work is occurring.

Managing Notifications. The distribution of notifications is managed by the
Notification Manager. For each notification received relating to a revision of an
artifact the Notification Manager monitors the state and degree of interest that
has been shown across workspaces. The mechanism by which the Notification
Manager determines who gets notified is outlined in Figure 5.

Improving Conflict Detection in Optimistic Concurrency Control Models 201

1 Active

Workspace

> 1 Active
Workspace

Notify New

Workspace of
State

Notify Other

Workspaces of
Change

Notification

Notification [from
Existing Workspace]

Remove

Remove [>2 active workspaces]

Remove [2 active workspaces]

Notification [from

Existing Workspace]

Notification
[from New Workspace]

Notification

[from New Workspace]

Notification Manager - Artifact Revision Monitor

Fig. 5. State transition diagram of how notifications are managed

When a notification is received for a particular revision of an artifact the
notification manager sets up a monitor to handle subsequent related notifica-
tions. Additional notifications from the same workspace have no impact until
another workspace sends a notification related to the same artifact and revi-
sion. When this occurs the new workspace is notified of the existing workspace’s
state of interest in the artifact followed by the existing workspace being notified
with the state of the new workspace. This basic mechanism repeats itself un-
til all workspaces have removed interest in receiving notifications related to the
specified artifact and revision being monitored.

Night Watch in Action. The following two figures show the Notification
Manager and Night Watch Status Monitor notification receipt screens. They
emphasise the client server relationship between Night Watch Status Monitors
and a Notification Manager.

In addition to receiving notifications from the CVS Servers watch facility, the
Notification Manager receives notifications from all Night Watch Status Monitors
that have registered with it. It is the responsibility of the Notification Manager
to filter these notifications to determine whether or not a conflict has been
detected across developer workspaces. On detection of a conflict an appropriate
notification is forwarded to the applicable Night Watch Status Monitors that are
monitoring the workspaces in which the conflict was detected.

Figure 7 shows notifications received by a Night Watch Status Monitor from
a Notification Manager. Each of these notifications is an indication of possible
conflicts across workspaces. This figure highlights the two types of notifications
and also the differences in details that can be forwarded by a Notification Man-
ager. That is, those that originated originally from a CVS Server (top half of

202 Ciaran O’Reilly et al.

Fig. 6. Notifications received by a Notification Manager

Fig. 7. Notifications received by a Night Watch Status Monitor

Figure 7) and those that originated from other Night Watch Status Monitors
that show activities against the same files as the receiving Night Watch Status
Monitor.

It can be seen from Figure 7 that the information contained in the notifica-
tions from a CVS Server are missing the host name, local root and working revi-
sion details which are present on the Night Watch Status Monitor notifications
(the CVS Server does not provide this information when calling a notifier). This
difference in information is related to scenario ‘(3) Self Notification’ outlined in
Section 2.2, which to support properly requires this additional information to
correctly identify the workspaces and related artifacts involved.

Improving Conflict Detection in Optimistic Concurrency Control Models 203

4 Related Work

The work presented here is similar to that of Sarma and van der Hoek [20] with
respect to their discussion of non-intrusively breaking the isolation of workspaces
by observing check-in and check-out actions. Their work is broader in that it ad-
dresses issues related to presentation and indirect conflicts. It also contains a
relevant discussion of related work in the field of Computer Supported Cooper-
ative Work (CSCW). The main difference with our work, is in the granularity of
the notifications received from a workspace. The work presented here explores
the use of finer grain notifications in order to detect potential conflicts as early
as possible.

More closely related work with respect to granularity of notifications is that of
Molli et al. [14]. The main difference that exists between the level of granularity
of notifications supported, is that here, support for artifacts that do not already
exist within the repository is considered.

5 Conclusions

All software tools are intended to provide support for stated or assumed ways
of working. In providing SCM support for the emerging agile philosophy the
two main concerns are to help maximise independent working while at the same
time keeping everyone informed of relevant activity by others. This paper has
described a first step towards providing such support. It takes the optimistic
strategy for SCM as its starting point, extending CVS with Night Watch. This
provides automatic monitoring and notification facilities to report relevant file
changes to collaborative developers.

Night Watch avoids the need for users to identify their interests or activities
explicitly and so helps support independent working. It also aids communication
by keeping everyone informed of file changes that may be relevant to them. An
evaluation of Night Watch has not yet been conducted to determine how benefi-
cial its usage is within a cooperative development environment. However, based
on the observations documented in [17] and the authors’ own experiences it is
believed that during the phases of architectural flux, implementation of cross-
cutting concerns and maintenance, the degree of conflict and miscommunication
experienced by developers is significant enough to warrant the need for such a
mechanism.

Night Watch is part of a loosely coupled federation of cooperating compo-
nents where registration of interest and distribution of events is handled by the
underlying infrastructure. The advantage of this approach is that it permits new
features to be developed independently and then integrated into the CVS envi-
ronment. However, Night Watch itself is coupled to CVS in its conception and
implementation. If it were to be used with another SCM system CVS’s watch
mechanism would need to be subsumed by Night Watch’s notifications either by
adding them or inferring their existence from existing notification types (e.g. an
edit is treated as a locally updated notification). Secondly, some of Night Watch’s

204 Ciaran O’Reilly et al.

notification types may need to be re-cast (e.g. Locally Added and Removed no-
tifications may be unsupportable across SCMs). Finally, in order to obtain the
status of an artifact from an SCM system a customized adapter would need to
be built for each system. As long as the SCM system uses the underlying filesys-
tem to store individual artifacts the trigger mechanism for deriving notifications
should be sufficient.

Night Watch provides good support for direct changes. The next stage of
development will be to consider indirect semantic dependencies among compo-
nents. This will generate additional notifications reporting possible knock-on
effects and provide more targeted information on the nature of the changes that
have occurred. This is obviously a difficult area to handle generally as it is sub-
stantially dependent on the nature of the components under SCM control.

Another important area of development is in the presentation of information
to developers. As the Night Watch system considers each change to an artifact
within a workspace as a trigger for generating a notification, multiple notifi-
cations relating to the same artifact can be generated from the same source.
This needs to be made more flexible to allow developers to tune the type of no-
tification provided to their individual tastes, in a non-obtrusive way. Semantic
analysis will also enable a greater filtering of notifications. Throughout, the agile
philosophy will be used as a guiding influence on the design and assessment of
this work.

Acknowledgements

The authors are very grateful for the detailed constructive comments from the
anonymous referees. The development of this paper was supported by the Centre
for Software Process Technologies (CSPT), funded by Invest NI through the
Centres of Excellence Programme, under the EU Peace II initiative.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods. [Online]. Available:
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf [2002, Nov 27]

2. Bischofberger, W.R., Matzel, K.U., Kleinferchner, C.F.: Evolving a Programming
Environment Into a Cooperative Software Engineering Environment. Proceedings
of CONSEG 95 (1995)

3. Cederqvist, P., et al.: Version Management with CVS for CVS 1.11.2. [Online].
Available: http://www.cvshome.org/docs/manual/ [2002, Nov 7]

4. Clemm, G., Conradi, R., van der Hoek, A., Tichy, W., Wiborg-Weber, D., Es-
tublier, J. (ed.), Leblang, D. (co-ed.): Impact of the Research Community for the
Field of Software Configuration Management. Proceedings of the 24th International
Conference on Software Engineering (2002) 634–644

5. Cockburn, A.: Agile Software Development. Pearson Education, Inc., United States
of America (2002)

Improving Conflict Detection in Optimistic Concurrency Control Models 205

6. Dart, S.: Concepts in Configuration Management Systems. Proceedings of the 3rd
International Workshop on Software Configuration Management (1991) 1–18

7. Eriksson, H.E., Penker, M.: UML Toolkit. John Wiley & Sons, Inc., United States
of America (1998)

8. Estublier, J.: Software Configuration Management: A Roadmap. International
Conference of Software Engineering - Proceedings of the Conference on The Future
of Software Engineering (2000) 279–289

9. JavaBeans API Specification. [Online]. Available:
http://java.sun.com/products/javabeans/docs/spec.html/ [2002, Nov 7]

10. JavaCVS. [Online]. Available: http://javacvs.netbeans.org/ [2002, Nov 27]
11. Lovaasen, G.: Brokering with eXtreme Programming. 2001 XP Universe Confer-

ence Papers. [Online]. Available:
http://www.xpuniverse.com/2001/pdfs/EP201.pdf [2002, Nov 27]

12. MacKay, S.A.: The State of the Art in Concurrent, Distributed Configuration Man-
agement. Proceedings of the 5th International Workshop on Software Configuration
Management (1995)

13. Millington, D., Stapleton, J.: Developing a RAD Standard. IEEE Software, Vol. 12
Issue. 5 (1995) 54–55

14. Molli, P., Skaf-Molli, H., Bouthier, C.: State Treemap: an Awareness Widget for
Multi-Synchronous Groupware. Proceedings of the Seventh Intenational Workshop
on Groupware (2001)

15. O’Reilly, C.: Proactive Cooperative Software Development with Visualisation. MSc
Disseration, University of Ulster Coleraine (2002)

16. Paulk, N.C.: Extreme programming from a CMM Perspective. IEEE Software,
Vol. 18 Issue. 6 (2001) 19–26

17. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel Changes in Large-Scale Software Devel-
opment: An Observational Case Study. ACM Transactions of Software Engineering
and Methodology (TOSEM), Vol. 10 Issue. 3 (2001) 308–337

18. Pollice, G.: Using the Rational Unified Process for Small Projects: Expanding upon
eXtreme Programming. [Online]. Available:
http://www.rational.com/media/products/rup/tp183.pdf [2002, Nov 27]

19. RCS Man Pages. [Online]. Available:
ftp://ftp.cs.purdue.edu/pub/RCS/rcs-5.7.tar.Z [2002, Nov 27]

20. Sarma, A., van der Hoek, A.: Palantir: Coordinating Distributed Workspaces. Pro-
ceedings of the Workshop on Cooperative Supports for Distributed Software En-
gineering Processes (CSSE) (2002)

21. Source Integrity Enterprise Edition User Guide. [Online]. Available:
http://www.mks.com/support/productinfo/docs/SIE83_UserGuide.pdf [2002,
Nov 27]

22. van der Hoek, A.: Configuration Management and Open Source Projects. Proceed-
ings of the 3rd International Workshop on Software Engineering over the Internet
(2000)

23. Wooldridge, M.J.: Agent-Based Software Engineering. IEEE Proceedings of Soft-
ware Engineering. Vol. 144 Issue. 1 (1997) 26–37

24. Working in Base ClearCase. [Online]. Available (Requires Rational Membership):
http://www.rational.com/docs/v2002/cc/cc_dev.win.pdf [2002, Nov 27]

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 206-216, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Data Topology and Process Patterns
for Distributed Development

Darcy Wiborg Weber

Telelogic Technologies North America
9401 Jeronimo Road

Irvine, CA 92618
darcy@telelogic.com

Abstract. This paper describes data topology patterns and development process
patterns for distributed development across multiple locations and teams. It
describes the strengths and weaknesses of these patterns and for which types of
software project they are well suited. It also provides brief case studies for
several companies who have implemented these patterns. Finally, the paper
provides some best practices for distributed development based on the lessons
learned in the case studies.

1 Introduction

Distributed development is the process of developing software in multiple locations,
possibly with multiple teams. In the context of this paper, distributed development
also refers to the process of tracking change requests across multiple locations and
multiple teams, since software change management is an integral part of advanced
software configuration management.

This paper discusses patterns found in the data topology for distributed
development. A pattern is a model for a solution to a particular type of problem. In
object -oriented software development, the word pattern describes a standard way of
documenting a solution, including its strengths and weaknesses [1]. In this paper, the
term pattern is used more loosely; it describes solutions for distributed development
and discusses their strengths and weaknesses, but does not use a standard format for
describing them.

First, different types of software development are described; then patterns for data
topology and distributed development methodologies are discussed. Finally, this
paper documents several case studies of companies doing distributed development
using Telelogic tools [2].

The following assumptions are made about distributed development:

• The term repository (or database) refers to the physical location of the data.
Although there is a notion of a virtual repository [3], data can be distributed
between different physical repositories.

• A repository has full versioning and CM capabilities for different types of data.

c©

Data Topology and Process Patterns for Distributed Development 207

• Not all of the data in one repository needs to be distributed. For example, part of
the data in repository A may be only in database A, part may be distributed to
repository B, part to repository C, and both parts to repository D. This concept is
shown in Figure 1.

• Although a specific version of an object or file can be modified in only one
repository at a time, dat a shared between two repositories can be updated in both
locations. For example, users can check out parallel versions of the same file in
two different repositories.

• Distribution of changes between two databases can be uni-directional or bi-
directional.

• Software change management (i.e., change requests) can be distributed, as well as
the software itself [4].

Fig. 1. Granular data distribution

2 Types of Software Development

Several different types of team interaction or collaboration are common in software
development. This paper refers to two broad categories as co-development and
component development.

2.1 Co-Development

Multiple developers collaborate on a common set of source files to develop the same
software. Note that this characteristic does not imply that all of the developers are in
the same location or physical repository.

Darcy Wiborg Weber

208

2.2 Component Development

The software is split into components or modules that can be reused. A team (or
individual) is responsible for the development of a component, and teams may use
components developed by others. Component sharing has several forms [5] :

Black Box Components
Only the end products are published for use by other developers or teams; examples
of black box components include an executable, a DLL, or a jar file. A black box
component may also include some configuration files or include files that are needed
to configure or access the functionality of the component.

Source Components
Rather than publishing only the end products, some teams share components as source
code. The entire source tree is reused by other developers or teams.

The patterns and case studies in the following sections are discussed in the context
of these types of software development.

3 Patterns for Data Topology

Data topology describes the locations where project data is stored; for example, it can
be stored in a single database or in multiple databases.

The following patterns are common for data topology: single repository and
multiple repositories. The multiple repository pattern can be further broken down into
two topologies: point -to-point, and hub -and-spoke [2].

3.1 Single Repository

The simplest case is the one where all of a team’s project data is stored in a single
repository. This pattern is a good fit for a team who is located in a single location or
remote team members have high-speed network access (e.g., distance working) [6].

This pattern may be necessary if the team is using a CM tool that does not support
distributed development. The benefit of this pattern is low cost of administration.

3.2 Multiple Repositories

Data is transferred between multiple discrete repositories. This pattern is appropriate
if some team members reside in locations that do not have high -speed network access
or do not even share a network. This pattern is a good fit for teams who are doing
black box component development; since they can distribute only the components
without the source, there is less data to transfer and little need for collaboration on
source code. However, this pattern c an also be used for co-development.

Multiple repositories have a higher cost of administration, since the replication
between repositories must be planned and managed.

Data Topology and Process Patterns for Distributed Development 209

Teams who distribute data across multiple repositories have the choice of several
topologies for data transfer: point -to-point, and hub-and-spoke. [2]

Point-to-Point
Data is transferred directly between repositories as needed. This method is flexible
and is the quickest technique for data propagation. This method is well suited for co-
development of the same software in different locations, since changes can be
transferred quickly. However, this method does not scale well for distribution
between many repositories. An example of the point-t o-point data topology is shown
in Figure 2.

Fig. 2. Point-to-point data topology

Hub-and-Spoke
Data is transferred between development repositories (“spokes”) via central
repositories (“hubs”). With this method, it may take longer for data to be propagated
between two spoke databases, since the data must go through the hub. However, this
method is easier to manage, especially for teams with a large number of databases.
The hub and spoke topology is well-suited for component sharing and reuse, since the
hub repositories provide a good way to organize a central repository of components
that may have been developed by different teams in different repositories [2].

Darcy Wiborg Weber

210

Fig. 3. Hub-and spoke data topology

4 Development Methodology

The CM repository and CM policies are often tightly coupled [7]. Although the end
users may not necessarily be aware of the details, the CM administrator must be
aware of methodologies for distributing the data between databases, referred to here
are the development methodology. Several different development methodologies can
be used for distributing data to remote databases: master-and-satellite, publish -and-
subscribe, and point-to-point.

4.1 Master-and-Satellite

With the master-and-satellite methodology, components are developed by different
teams in different repositories, but must be built, tested, and released together. This
methodology might be used for outsourcing, co-located groups, or distributed groups.
[6] One repository is designated as the master where components are collected for
build, test, and release. The hub-and-spoke data topology is a good fit with this
methodology, where the master repository is the hub. [2]

The point -to-point data topology can also be used with the master-and-satellite
methodology, as long as the flow of data is well defined. For example, one team may
develop component X in database A and transfer component X to database B. In
database B, another team develops component Y, and then transfers components X
and Y to database C, where the final product is build, tested, and released.

Note that the data transfers may happen only at specific milestones such as once a
week, or on an ongoing basis so that the most recent version of a component is
available in all databases.

Data Topology and Process Patterns for Distributed Development 211

4.2 Publish-and-Subscribe

In the publish-and-subscribe methodology, centralized repositories are set up to
contain components. Components are developed and tested in development
repositories, then published to a centralized repository. Other repositories subs cribe to
reuse those components [5]. Again, the hub-and-spoke topology is a good fit, where
the centralized repository is the hub [2].

Some development sites that use the publish -and-subscribe methodology have
multiple centralized repositories; the topology may be a mix of hub-and-spoke and
point-to-point. For example, consider a site with three central component repositories:
repository B in Boston, repository L in London, and repository M in Mumbai, India.
In addition, each of these three locations has several local databases where different
components are developed; the components are published to the local central
repository. In turn, the three central repositories exchange components so that all
components are available at all sites.

4.3 Point -to-Point

With the point -to-point methodology, software is exchanged between repositories as
needed. Each repository builds and tests its own software. The point -to-point
methodology is a good fit for distributed groups who are co-developing the same
source code; however, this methodology does not scale well as the number of
databases increases [2].

5 Case Studies

The following case studies describe teams using Telelogic tools for different types of
development. The case studies include examples of the various repository topologies
and methodologies described earlier.

5.1 Case Study 1: Single Application Development

Company A develops a commercial software application that is released every 6 to 12
months. The software is organized into components, and is contained in three
development repositories: one for the server, one for the client, and one for the
business logic. Additionally, the team has an installation repository for gathering the
components to build and release the full software application. This installation
repository is the hub, collecting component data from the other three repositories as
spokes.

In addition, company A has a remote development site in another location. Portions
of the server and business logic repositories are replicated between the two locations
for co-development. The primary location us es the hub-and-spoke topology, while the
server and business logic repositories use the point -to-point topology for sharing data

Darcy Wiborg Weber

212

with the remote server and business logic repositories. The data topology is shown in
Figure 4.

Fig. 4. Repository topology for case study 1

As developers work, the latest changes to the source code are automatically
transferred between the peer repositories in different locations every night, prior to the
nightly build and integration test. As a part of the automated nightly build process,
components in Location A are updated with the latest changes and built in the three
local development repositories, then the resulting products (libraries, executables, jar
files, configuration files, etc.) are transferred from the local development repositories
to the installation repository (i.e., the hub), and packaged for testing.

In addition, the source code is sometimes transferred between the peer repositories
in different locations on demand, when the developers need to access each other’s
recent changes.

This topology and methodology works well for this team. The point -to-point
transfer between the peer repositories is flexible and keeps them synchronized, while
the hub-and-spoke transfer between the development repositories and the installation
repository enables the product to be built and packaged cleanly.

The only problem reported by this team is the occasional occurrence of parallel
versions between the peer repositories if developers in different locations should both
check out the same file on the same day without knowledge of each other’s changes.
(The developers are notified when the parallel versions are transferred; however, if
the parallel versions were not merged before the end of the day, the nightly build may
not include all necessary changes.) This sometimes costs the team one day’s delay in
integration testing. However, the problem does not occur often because the team is
well coordinated.

Lessons Learned
Lessons learned from case study 1 include:

• When co-developing the same source code in distributed repositories, it is
important to have a frequent or flexible (i.e., on demand) transfer mechanism
because developers often need to see each other’s changes.

• If developers change [different versions of] the same code in multiple databases,
parallel reporting is critical.

• Distributed development between different locations carries some administrative
overhead and can result in occasional project delays that would not occur if all
users were local to the same site.

Data Topology and Process Patterns for Distributed Development 213

• It is a good idea to plan the data topology with the team’s development
methodology in mind.

5.2 Case Study 2: Component Development in Centralized Repositories

Company B develops embedded software. The company continually releases many
different products, but reuses components extensively to build those products. They
have development sites in many countries around the world, and have many
centralized repositories for storing components. Individual teams publish components
to the centralized repositories when the components pass testing. Other teams
subscribe to reuse components from the centralized repositories; those components
are transferred to their local repositories for reuse.

Fig. 5. Repository topology for case study 2

Each team who develops a component is responsible to test and document it before
publishing it to the centralized repository. Sometimes the subscriber teams modify the
components and publish new versions. It is possible to have many versions of the
same component, some published by different teams.

Some of the centralized repositories contain certain types of components, while
others are copies, replicated for local network access in a particular location. Each
centralized repository acts as a hub to many spoke rep ositories. For example, a team
develops component R1, and publishes it to the local hub. In turn, R1 is propagated to
other hubs, where developers in local databases can subscribe to it.

Data transfers between the hubs (central repositories) and spokes (development
repositories) are on demand, as components are published or requested. Data transfers
between the central repositories and their replicated copies are automated to occur at
frequent intervals. Note that the transfers are bi -directional, rather than a master-slave
relationship. Spoke repositories can publish to their local copy of the repository, and
the new data is replicated to the other copy (and vice versa).

This topology and methodology works well for this team. The primary issue was
defining a process for development teams to be able to find the software components
to which they want to subscribe. The company solved this by implementing standards
for naming and publishing components.

It is worth noting that this company has been developing this topology and
methodology for many years, and that they originally started with a point -to-point
topology, then moved to a single global hub-and-spoke topology, and finally

Darcy Wiborg Weber

214

developed into the combination hub -and-spoke and point-t o-point topology that they
use today.

Lessons Learned
Lessons learned from case study 2 include:

• When dealing with many databases on a global scale, it is more efficient to set up
multiple local hubs and exchanging data between them. This topology results in
more duplicated data, but maximizes performance for local teams and minimizes
dependencies on wide area networks.

• Data moves through hub databases more slowly than it does through point -to-point
transfers.

• Transfers for component development are less time critical than for co-
development, since developers do not need to see each other’s ongoing changes.
(There are few issues of parallel development in component development.)

• Companies doing component development must consider a standard process for
naming and publishing components in order for other teams to find and identify
components for reuse.

5.3 Case Study 3: Point -to-Point Software Development

Company C develops network software. They have small development teams in three
locations. Each team has a local repository where they develop portions of the code.
Some of the code is co-developed by all teams and shared between all repositories,
while some code is local to a particular repository.

Fig. 6. Repository Topology for Case Study 3

The data is transferred between repositories continually. New changes are
immediately transferred to the other repositories that share the code. Each team is
responsible for building certain products.

This process works well for the team; however, they may find that the point-t o-
point model does not scale well as they grow and decide to add more sites that reuse
most of the same software.

Data Topology and Process Patterns for Distributed Development 215

Lessons Learned
Lessons learned from case study 3 include:
• The point-to-point data topology is the best method for getting changes to other

sites quickly. A hub-and-spoke model where data needed to pass through one
database to another would result in a delay that this team cannot accept.

• As seen in case study 1, if developers change [different versions of] the same code
in multiple databases, parallel reporting is critical.

6 Conclusions

Through working with companies who implemented distributed development using
various data topologies and methodologies, Telelogic has identified the following best
practices [2] .

• Plan ahead. A team should consider the following questions when setting up
repositories.
 How many repositories do you need?
 What is the primary purpose of each repository?
 Which data will be shared between repositories, and which data is not shared?
 Which repository is the master for each set of shared data?
 How often is data transferred and what technique is used? (I.e., is it automated
or manual, via LAN, WAN, FTP, etc.?)
 How is the software tested and built in each repository?
 How will the software development requirements change in the coming years,
and how will the distributed development process need to scale?

• Use point -to-point repositories when timeliness of data transfer is important.
• Use centralized repositories or hubs in order to scale up to sharing data between

large numbers of databases and to maximize performance for local teams. Point-t o-
point distribution does not scale well with a large number of databases that share
the same files, since the number of transfers increases exponentially with each
additional database.

• For comp onent reuse, consider setting up standards to organize and name
components in a way that makes them easy to find and reuse.

• Teams who are co-developing software in multiple locations should test their local
changes before they are incorporated in the master build. In addition, teams may
want to be insulated from other teams’ changes until they choose to include them.

• For any distributed development project, factor in some extra time for
administrative overhead. Be aware that distributed development between different
locations can result in project delays that would not occur if all users were local to
the same site.

Darcy Wiborg Weber

216

References

1. S. Berczuk. Configuration Management Patterns. Proceedings of the 1996 Pattern
Languages of Programs Conference. Washington University Technical Report #WUCS-97-
07. Available online at http://world.std.com/~berczuk/pubs/PloP9/plop96.html.

2. Telelogic. Distributed CM Guide. 2002.
3. J. Noll and W. Scacchi. Supporting Distributed Configuration Management in Virtual

Enterprises. In Proceedings of SCM7 – International Workshop on Software Configuration
Management, R. Conradi (Ed.), Boston, MA, USA, May 1997. LNCS, Springer.

4. Telelogic. Distributed ChangeSynergy. 2002.
5. D. Weber. A Framework for Managing Component Development. Available online at

http://www.telelogic.com .
6. U. Asklund, B. Magnusson, and A. Persson. Experiences: Distributed Development and

Software Configuration Management. In Proceedings of SCM9 – International Workshop on
Software Configuration Management, J. Estublier (Ed.), Toulouse, France, September 1999.
LNCS, Springer.

7. A. van der Hoek, D. Heimbigner, and A. L. Wolf. A Generic, Peer-to-Peer Repository for
Distributed Configuration Management. In Proceedings of the 18th International Conference
on Software Engineering. Berlin, Germany, March 1996.

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 217-230 , 2003.
 Springer-Verlag Berlin Heidelberg 2003

Managing the Evolution of Distributed
and Interrelated Components

Sundararajan Sowrirajan and André van der Hoek

School of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

{ssowrira,andre}@ics.uci.edu

Abstract. Software systems are increasingly being built by integrating pre-
existing components developed by different, geographically distributed organi-
zations. Each component typically evolves independently over time, not only
in terms of its functionality, but also in terms of its exposed interfaces and de-
pendencies on other components. Given that those other components may also
evolve, creating an application by assembling sets of components typically in-
volves managing a complex web of evolving dependencies. Traditional configura-
tion management systems assume a form of centralized control that simply does
not suffice in these situations. Needed are new configuration management sys-
tems that span multiple organizations, operate in a distributed and decentralized
fashion, and help in managing the consistent evolution of independently devel-
oped, inter-related sets of components. A critical aspect of these new configura-
tion management systems is that they must respect the different levels of
autonomy, privacy, and trust that exist among different organizations. In this
paper, we introduce TWICS, an early example of such a new configuration man-
agement system. Key aspects of TWICS are that it maintains traditional con-
figuration management functionality to support the development of individual
components, but integrates policy-driven deployment functionality to support
different organizations in evolving their inter-related components.

1 Introduction

Component-based software development has perhaps received the most attention of
any kind of software development method to date [13,21]. Based on the premise of
component reuse, the hypothesis is that application assembly out of pre -existing com-
ponents brings with it significant savings in terms of time and cost [26].

While much effort has been put towards developing component technologies via
which individual components can be implemented and subsequently assembled into
applications (e.g., .NET [18], EJB [7], CORBA [17]), tool support for component-based
software development has lagged behind. Exceptions exist (e.g., design notations such

c©

Sundararajan Sowrirajan and André van der Hoek 218

as UML [20], component reposit ories such as ComponentSource [4], and composition
environments such as Component Workbench [16]), but more often than not it is still
assumed that existing tools suffice in their present incarnations.

Configuration management systems suffer from this misperception. Although well
equipped to support the needs of traditional software development, it has been recog-
nized that they do not meet the unique demands of component-based software devel-
opment [12,29]. The assumption of centralized control underlying current configura-
tion management sys tems is at the core of this problem. Since different components
typically are developed by different organizations in different geographical locations,
centralized control cannot be enforced.

Needed is a new kind of configuration management system that explicitly supports
component-based software development. Such a configuration management system
must span multiple organizations, operate in a distributed and decentralized fashion,
and help in managing the consistent evolution of independently developed, inter-
related sets of components. For a component producer, this means that the configura-
tion management system must support development and publication of components.
For a comp onent consumer, this means that the configuration management system
must support the organization in obtaining components from other organizations,
controlling the local evolution of the obtained components independent from their
remote schedules of new releases, and publishing its own components with appropri-
ate documentation of their dependencies. In essence, the configuration management
system must integrate t raditional configuration management functionality with what is
known as software deployment functionality: automatically publishing, releasing, and
obtaining components and their dependencies [10].

In this paper, we introduce TWICS (Two -Way Integrated Configuration manage-
ment and Software deployment), an early example of a configuration management sys-
tem specifically designed to address component-based software development. TWICS
is built as a layer on top of Subversion, an exis ting open source configuration ma n-
agement system that supports the traditional code development paradigm [24]. TWICS
adds a component-oriented interface and wraps all the Subversion commands to oper-
ate on components as a whole rather than individual source files. Moreover, TWICS
adds deployment functionality in the form of an interface through which the release of
components and their dependencies can be controlled, and through which remote
components can be downloaded and placed in the local repository. Finally, TWICS
respects the different levels of autonomy, privacy, and trust that may exist among
different organizations. To do so, it allows individual organizations to establish and
enforce policies that govern such issues as to whether a component can be obtained
in binary or source form and whether a component may be redistributed by other or-
ganizations.

The remainder of the paper is organized as follows. In Section 2 we discuss a typi-
cal component-based software development scenario and illustrate the difficult issues
that it poses for a traditional configuration management system. Section 3 provides a
brief background on the disciplines of configuration management and software de-
ployment, which form the basis for our overall approach described in Section 4. Then,
in Section 5, we describe the detailed capabilities of TWICS. We conclude with an
outlook at our future work in Section 6.

Managing the Evolution of Distributed and Interrelated Components 219

2 Example Scenario

To exemplify the issues raised by component-based development for a traditional
configuration management system, consider the scenario depicted in Figure 1. Grey
boxes represent different organizations, ovals components developed by each organi-
zation, and arrows dependencies among the components. The organization
SPELLONE, for example, develops two different components: SPELLCHECKER and
DOCFORMATTER. The component SPELLCHECKER depends on the component
DICTIONARY as developed by the organization GRAMMAR. The component
DICTIONARY has no further dependencies, but the component SPELLCHECKER is
used by the component DOC-PROCESSOR as developed by the organization
POWERDOC. Many more component dependencies exist, creating an intricate web of
distributed, inter-dependent components. Note the use of version identifiers: since
each individual component evolves independently from the other components, de-
pendencies must be on a per-version basis.

A first challenge arises because some components may be available solely in b inary
format, some in source code format, and others maybe even in both. In the case of
source code, an organization that obtains such a component may make some local
modifications to the component. As newer versions of the component become avail-
able, the local changes must be carefully combined with the changes by the original
developer in order not to lose any functionality. For example, POWERDOC may be
using a locally modified version of GRAMMAR version 2.3. As GRAMMARCORP puts
out a new version of the component, version 2.4, POWERDOC must obtain that new
version, bring it into the local configuration management system, and ensure that its
local changes are integrated in the new version.

A second challenge arises when an organization decides to release its component.
At that point, its dependencies on other components must be precisely documented
such that anyone obtaining the component knows which other additional components
it must obtain. In some cases, an organization may simply document the dependencies.
In other cases, it may include the dependencies as part of its release. In yet other
cases, a mixed approach may be followed. In all cases, however, it is critical that the
dependencies, which may be both direct and indirect, are precisely documented. In the
case of POWERDOC, it has to include all of the dependencies of DOCPROCESSOR 2.1,
which indeed spans all components by all four organizations in our example. Clearly,
this is a non-trivial and error-prone task that often has to be performed manually.

A third challenge arises when organizations have different trust policies between
them. A component producer can choose to provide different types of access permis-
sions (source code access or binary access) and redistribution permissions for its
components to different component consumers. For example, GRAMMARCORP might
be willing to share the source code of its DICTIONARY version 1.0 component with
SPELLONE, but may be willing to provide only the binary of GRAMMAR version 2.3
component to POWERDOC. On the other hand, GRAMMARCORP may be willing to
allow redistribution of GRAMMAR version 2.3 by POWERDOC, but may not provide
similar privileges to SPELLONE for DICTIONARY VERSION 1.0. Clearly, there should
be a means for expressing such trust policies between companies and such policies

Sundararajan Sowrirajan and André van der Hoek 220

must be incorporated as part of the component’s deployment package to ensure they
are adhered to.

The above challenges are summarized by the following four questions:

• How can components that are developed by external organizations be effi-
ciently incorporated into the local development environment?

• How can the remote evolution of those components and their influence on
the locally developed software systems be controlled?

• How can a component-based software system be effectively deployed as a
consis tent set of inter-related components?

• How can the issues of autonomy, privacy, and trust of the various organiza-
tions be preserved throughout this process?

While it is clear that the availability of a separate configuration management system
and a separate software deployment system help in addressing these questions, we
observe that a single system that integrates configuration management and software
deployment functionality would be more desirable. Such a system, for example, can
automatically place deployment information regarding which components were ob-
tained from which other organizations in the local configuration management system.
That information can then be used to support the release of a component that depends

Fig. 1. Example scenario of component-based software development

Managing the Evolution of Distributed and Interrelated Components 221

on those components. TWICS is such a system, and is specifically designed to sup-
port scenarios like these.

3 Background

TWICS builds upon work of two areas, namely configuration management and soft-
ware deployment. We discuss relevant contributions in each of these areas below.

3.1 Configuration Management

Many configuration management systems have been built to date [3,5]. All share the
same basic goal: to manage the evolution of artifacts as they are produced in the soft-
ware life cycle. Most current configuration management systems still follow the model
introduced by early systems such as RCS [23] and CVS [2]. Artifacts are locally stored
in a repository, can be accessed and modified in a workspace, and, if modified, are
stored back in the repository as a new version. To manage concurrent changes, either
a pessimistic approach (locking) or an optimistic approach (merging [14]) is used.

Two particular shortcomings of current configuration management systems make it
difficult for these systems to support configuration management for component-based
software. First, current configuration management systems are very much focused on
managing files. While system mo dels have been devised that operate at a higher-level
of abstraction [8,9,27], principled use of these system models requires users to manu-
ally map them onto source code.

The second shortcoming lies in the fact that current configuration manageme nt sys-
tems assume centralized control regarding the evolution of artifacts. Only two systems
provide support for external components. The first, CM/Synergy [22], provides vendor
code management for automatically incorporating new versions of source code from
an external source. Similarly, auto bundle [6] supports the incorporation of external
components in a local configuration management system and even supports packa g-
ing of a resulting set of components.

Both systems are clearly a step in the right direction with respect to the problem of
managing component-based software development. However, CM/Synergy only
solves one aspect of the problem, namely the incorporation of other components into
the local environment. Subsequent deployment is not supported. Similarly, auto bun-
dle assumes that only source code is shared among different organizations. Neither
system addresses the different needs of autonomy, privacy, and trust as required by
different collaboration policies .

3.2 Software Deployment

Software deployment is concerned with the post-development phase of a software
product’s lifecycle [10]. In particular, a software deployment system typically supports
the activities of packaging, releasing, installing, configuring, updating, and adapting

Sundararajan Sowrirajan and André van der Hoek 222

(as well as their counterparts of unreleasing, uninstalling, etc.). Most software de-
ployment systems nowadays inherently support component-based software and han-
dle dependencies among components. Popular examples of such systems are Install-
Shield [11], NetDeploy [15], and Tivoli [25].

For our purposes, however, most of these systems fall short in providing the nec-
essary functionality. In particular, dependencies must be manually specified, they
often assume all components are released by a single organization, and they provide
limited support for managing multiple versions of a single component. SRM [28], the
Software Dock [10], and RPM [1,19] are examples of systems that address these short-
comings. They explicitly support distributed and decentralized organization in releas-
ing their comp onents, and also include support for managing different versions of
those components. Unfortunately, these software deployment systems operate in a
vacuum: they are not connected to a configuration management system. This is detri-
mental in two ways: (1) they cannot obtain components from the configuration ma n-
agement system to release them and (2) they cannot “install” components into the
configuration management system to bring them into the development environment.
As a result, much manual effort is still required.

4 Approach

The key insight underlying our approach is depicted in Figure 2. Rather than a tradi-
tional model in which a component is first developed in a configuration management
system and then deployed using a separate software deployment system, our ap-
proach is based upon a model in which a single configuration management system
integrally supports both the development of a component and its deployment to other
organizations. This allows both types of functionality to take advantage of each other
and provides users with a single, integrated solution.

Fig. 2. Traditional separation of CM and deployment functionality versus TWICS

Managing the Evolution of Distributed and Interrelated Components 223

To support this integration, TWICS builds upon an existing configuration manage-
ment system, Subversion [24], and overlays it with functionality for explicitly manag-
ing and deploying components. In particular, as described in detail in the next section,
TWICS organizes the configuration management repository in a component-based
fashion and adds three extra modules for managing the resulting artifacts.

• A producer package manager, which supports a developer in publishing a
component;

• A component publisher , which supports other organizations in downloading
a component; and

• A component downloader, which downloads a component and places it u n-
der local configuration management control.

All these modules take into account the possibility of dependencies. Additionally,
they collaborate in establishing and enforcing different trust policies as they exist
among different organizations.

The resulting architecture of TWICS is shown in Figure 3. The policies component
plays a key role in this architecture. It contains the declarative data describing the
trust policy of a particular organization. For instance, in case of the organization
FIRSTFORMAT of Section 2, its policies component may state that the organization
SPELLONE may download but not redistribute its components. Upon a download
request, the component publisher consults the policies component to ensure that
only trusted parties are able to download the components.

Of note is that it cannot be expected that all organizations use the same configura-
tion management system (e.g., Subversion). TWICS is therefore built on top of a ge-
neric API (see Figure 4). Given a bridge from this API to a particular configuration
management system, TWICS can operate on top of that configuration management
sys tem. We purposely kept the API small such that TWICS can easily be ported onto
new CM systems.

5 Implementation

We have implemented a prototype version of TWICS according to the architecture
described in Section 4. Below, we discuss each of the three major components in the
architecture, namely the producer package manager, component publisher, and com-
ponent downloader. Before we do so, however, we first discuss how TWICS stru c-
tures the normally unstructured repository of Subversion such that it provides a com-
ponent-based orientation.

5.1 Repository Structure

TWICS configures the repository structure of its underlying configuration manage-
ment system in such a way as to enable a transparent development and deployment of

Sundararajan Sowrirajan and André van der Hoek 224

both internal and external components. The resulting repository structure is shown in
Figure 5. TWICS partitions the available versioning space into two parts: a separate
module called “TWICS”, in which it stores all the data pertaining to its own operation,
and the remaining versio ning space, in which actual development takes place.

Producer side API:
// Method to create source and binary packages and place them on the TWICS side
createComponent(String comp onentName, String componentVersion);
// Method to add dependency and metadata information for a deployable package
addMetaData(String componentName, String comp onentVersion);
// Method to get the package to be deployed from the TWICS repository
getPackage(String comp onentName, String comp onentVersion, String accessAllowed, String
redistributionPermissions);
// Method to configure the CM repository to accommodate TWICS
configureSVN();

Consumer side API:
// Method to deploy an external component in the local TWICS repository
putComponent(String comp onentName, String componentVersion);
// Method to read the metadata of an external component and know its dependencies
getMetaData(String componentName, String comp onentVersion);

Fig. 3. Architecture of TWICS

Fig. 4. TWICS internal API

Managing the Evolution of Distributed and Interrelated Components 225

To preserve integrity, users should not directly manipulate the TWICS part of the

repository, but use the TWICS user interface instead. The remaining versioning space,
however, can be manipulated at will, provided that users adhere to a naming scheme in
which each Subversion module represents a component.

The TWICS part of the repository serves as a controlled store for packaged com-
ponents. These components may have been developed locally, in which case they are
stored for download by remote organizations. They may also have been developed
remotely, in which case the controlled store serves as a staging area from which com-
ponents are unpacked and brought into the development side of the repository. Com-
ponents are stored as archives, and may be available as a source archive, a binary
archive, or both. The metadata of a component is stored alongside the component
itself, containing both data describing the component (e.g., name, version, authoring
organization, dependencies) and data concerning the trust policy to be applied (e.g.,
organizations permitted to download the component, redistribution permissions).

Using the native versioning mechanisms of Subversion, different versions of a
component can be stored in the TWICS repository. This allows different versions of a
locally developed component to be available for download, and furthermore supports
an organization in obtaining and separating multiple versions of an externally devel-
oped component.

Separating the TWICS repository from the actual development area helps to sepa-
rate the remote evolution of an external component from any local changes that may
have been made. When a new version of such an external component is downloaded,
placing it in the TWICS repository does not dis turb any local development. At a later
time, suitable to the local organization, can the remote changes be merged and inte-
grated into the local effort.

Note that, under this scheme, different instances of TWICS in effect act as peers to
each other. Each can simultaneously serve as an instance that makes components
available to other instances and as an instance that downloads components from other
instances .

Fig. 5. TWICS repository structure

Sundararajan Sowrirajan and André van der Hoek 226

5.2 Producer Package Manager

Once a component has been developed using normal configuration management pro-
cedures (e.g., using Subversion), it must be packaged and made available for release.
To do so, a developer uses the TWICS producer pack age manager component. This
component, shown in Figure 6, first requests some metadata from the developer de-
scribing the component. In particular, it requests the name and version of the comp o-
nent to be released, the server to which it should be released (defaulted to the current
configuration management repository), and any dependencies that the component
may have on other components. After this information has been filled out, TWICS
automatically creates a source and a binary distribution for the comp onent and places
them on the TWICS side of the repository. Currently, TWICS assumes Java comp o-
nents and creates a package by automatically including source files in the source
package and class files in the binary package. Future versions of TWICS will extend
this capability significantly.

The second step that a developer must take is to attach a deployment policy to the
newly released component. As shown in Figure 7, a developer can specify (on a per-
organization basis, if needed) the level of access and redistribution rights of outside
organizations. This includes whether the comp onent may be downloaded in source

Fig. 6. Releasing a component

Managing the Evolution of Distributed and Interrelated Components 227

and/or binary form as well as whether the component may be modified and/or redis-
tributed directly by the outside organization. Note that if redistribution is disallowed,
the outside organization can still use t he component and upon release of its own com-
ponents establish a remote dependency.

5.3 Component Publisher

Once the trust policy has been specified, the component is available to other organiza-
tions for download. The download process itself is governed by the component pub-
lisher component, whose sole responsibility is to make sure the consumer is allowed
the request they are making. If not, the component cannot be downloaded. If the re-
quest can be granted, the component, along with its metadata, is shipped to the con-
sumer.

5.4 Component Downloader

The component downloader component eases the process of obtaining remotely
developed components. Based on the input received from the user, the component
downloader sends a deployment request to the producer of the requested component.
If the user is indeed allowed to download the comp onent, an archive will be received
from the producer and placed on the TWICS side the configuration management re-
pository. After that, the component downloader checks the metadata of the comp o-
nent and automatically fetches any required dependencies. This process is performed
recursively, until all the dependencies are obtained and placed in the local enviro n-
ment. Note that if a component that is a dependency is already at the consume r site, it
will not be downloaded again.

After the components have been downloaded, TWICS supports a user in automati-
cally unpacking the archives and placing the components on the development side of
the repository. From there on, a user can start using the components.
Note that if a user locally modified a component for which they are now downloading a
new version, TWICS currently requires them to manually integrate the two (perhaps
with assistance from the standard merge routines in Subversion). While TWICS makes
sure to not overwrite any changes, automated support for detecting and resolving
these situations is certainly desired (see Section 5.5).

Fig. 7. Specifying trust p olicies

Sundararajan Sowrirajan and André van der Hoek 228

5.5 Discussion

TWICS is a work in progress. The prototype described above represents only the
beginnings of our efforts. While it demonstrates the basic feasibility of the idea of
merging configuration management and software deployment functionality into a sin-
gle system, functionality wise the system is still in its infancy. At the forefront of our
efforts at improving TWICS are the following:

Incorporate extensive deployment support. TWICS should leverage systems such
as SRM [28], for automatically tracking and managing dependencies, and the Software
Dock [10], for supporting the configuration of newly downloaded components. Cu r-
rently, those tasks have to be performed by hand, which is cumbersome and time con-
suming.

Support the specification and enforcement of advanced trust policies. At the mo-
ment, our use of the word “trust” is somewhat overstated given the simplicity of the
policies involved. In future, we plan to extend TWICS to incorporate support for speci-
fying, in much more detail, the particular relationships between different organizations.
Additionally, we will enhance the TWICS infrastructure to guarantee the desired pro p-
erties. At present, for example, a consumer can circumvent a “do not redistribute”
mandate by taking a component out of the configuration management repository and
storing it under a different name. Such functionality should be disallowed.

Enhance the packager and unpackager components. Currently, these comp onents
have limited functionality and make a number of simplifying assumptions. We would
like to enhance the packager by providing a user interface for creating rules according
to which files should be chosen to be incorporated in a package. Similarly, we would
like to enhance the unpackager by incorporating some tracking support that: (a) main-
tains the version number originally assigned by the component producer, (b) detects if
the consumer has made any local changes, and (c) automatically integrates the new
version with any local changes.

6 Conclusion

TWICS represents a first attempt at building a configuration management system that
addresses the problem of managing the evolution of distributed, inter-related comp o-
nents. Set in the world of decentralized collaborating organizations, TWICS supports
component-based software development via an integrated configuration management
and software deployment system that establishes bi-directio nal communication among
the organizations that produce components and the organizations that consume those
components. A key aspect of TWICS is that it treats producers and consumers in the
same way, and that its underlying repository structure is the same for both. In effect,
producers and consumers serve as peers to one another in a distributed, loosely cou-
pled, federated configuration management repository.

Although TWICS is a limited prototype, it is worth noting that it provides an an-
swer to each of the questions posed in Section 2. By incorporating deployment func-
tionality directly in the configuration management system, components that are d evel-

Managing the Evolution of Distributed and Interrelated Components 229

oped by external organizations can be brought into the local development environ-
ment. By providing a controlled store separate from the development versioning
space, the remote evolution of components is separated from their local evolution. By
supporting the specification of dependencies and always maintaining the metadata
alongside a component, a component-based software system can be effectively de-
ployed. And finally, by establishing trust policies among the different configuration
management repositories participating in a federation, we can address the autonomy,
privacy, and trust issues that are key to effectively provide configuration management
for decentralized component-based software development. We intend to continue
developing TWICS to further address these questions.

Acknowledgments

Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0599. Effort also partially funded by the National Science Founda-
tion under grant number CCR-0093489. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Laboratory, or the U.S. Government.

References

1. E.C. Bailey, Maximum RPM. Red Hat Software Inc., 1997
2. B. Berliner. CVS II: Parallelizing Software Development. Proceedings of the

USENIX Winter 1990 Technical Conference, 1990: p. 341-352
3. C. Burrows and I. Wesley, Ovum Evaluates Configuration Management. Ovum

Ltd., Burlington, Massachussetts, 1998
4. ComponentSource, http://www.componentsource.com/, 2002
5. R. Conradi and B. Westfechtel, Version Models for Software Configuration Man-

agement. ACM Computing Surveys, 1998. 30(2): p. 232-282
6. M. de Jonge. Source Tree Composition. Proceedings of the Seventh International

Conference on Software Reuse, 2002
7. L.G. DeMichiel, L.U. Yalcinalp, and S. Krishnan, Enterprise Java Beans Specifica-

tion, Version 2.0 , http://java.sun.com/products/ejb/docs.html, 2001
8. J. Estublier and R. Casalles, The Adele Configuration Manager , in Configuration

Management, W.F. Tichy, Editor. 1994: p. 99-134
9. P.H. Feiler. Configuration Management Models in Commercial Enviro nments.

Software Engineering Institute, Carnegie Mellon University, 1991

Sundararajan Sowrirajan and André van der Hoek 230

10. R.S. Hall, D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Support
Software Deployment Using the Software Dock. Proceedings of the 1999 Intern a-
tional Conference on Software Engineering, 1999: p. 174-183

11. InstallShield, http://www.installshield.com/, 2001
12. M. Larsson and I. Crnkovic. Configuration Management for Component-based

Systems. Proceedings of the Tenth International Workshop on Software Config u-
ration Management, 2001

13. M.D. McIlroy, Mass Produced Software Components. Software Engineering: A
Report on a Conference Sponsored by the NATO Science Committee, P. Naur and
B. Randell (eds.), 1968: p. 138-155

14. T. Mens, A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 2002. 28(5): p. 449-462

15. NetDeploy, http://www.netdeploy.com/, 2001
16. J. Oberleitner. The Component Workbench: A Flexible Component Composition

Environment . M.S. Thesis, Technische Universität Vienna, 2001
17. Object Management Group, ed. The Common Object Request Broker: Architec-

ture and Specification . 2001, Object Management Group
18. D.S. Platt, Introducing Microsoft Dot-Net. Microsoft, Redmond, 2001
19. Red Hat, http://www.rpm.org/, 2001
20. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Refer-

ence Manual . Addison-Wesley, 1998
21. C. Szyperski, Component Software - Beyond Object-Oriented Programming.

Addison-Wesley / ACM Press, 1998
22. Telelogic,CM/Synergy,http://www.telelogic.com/products/synergy/cmsynergy/index.cfm,

2002
23. W.F. Tichy, RCS, A System for Version Control. Software - Practice and Experi-

ence, 1985. 15(7): p. 637-654
24. Tigris.org, Subversion, http://subversion.tigris.org/, 2002
25. Tivoli Systems, http://www.tivoli.com/ , 2001
26. V. Traas and J. van Hillegersberg, The Software Component Market on the Inter-

net: Current Status and Conditions for Growth. Software Engineering Notes,
2000. 25(1): p. 114-117

27. E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Systems with Variability Us-
ing the PROTEUS Configuration Language . Proceedings of the International
Workshop on Software Configuration Management: ICSE SCM-4 and SCM-5
Workshops Selected Papers, 1995: p. 216-240

28. A. van der Hoek, et al. Software Release Management . Proceedings of the Sixth
European Software Engineering Conference together with the Fifth ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 1997: p. 159-
175

29. D. Wiborg Weber. Requirements for an SCM Architecture to Enable Component-
based Development . Proceedings of the Tenth International Workshop on Soft-
ware Configuration Management, 2001

A Lightweight Infrastructure

for Reconfiguring Applications

Marco Castaldi1, Antonio Carzaniga2,
Paola Inverardi1, and Alexander L. Wolf2

1 Dipartimento di Informatica
Universita’ dell’Aquila

via Vetoio, 1 67100 L’Aquila, Italy
{castaldi,inverard}@di.univaq.it
2 Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado, 80309-0430 USA
{carzanig,alw}@cs.colorado.edu

Abstract. We describe Lira, a lightweight infrastructure for managing
dynamic reconfiguration that applies and extends the concepts of net-
work management to component-based, distributed software systems.
Lira is designed to perform both component-level reconfigurations and
scalable application-level reconfigurations, the former through agents as-
sociated with individual components and the latter through a hierarchy
of managers. Agents are programmed on a component-by-component
basis to respond to reconfiguration requests appropriate for that com-
ponent. Managers embody the logic for monitoring the state of one or
more components, and for determining when and how to execute re-
configuration activities. A simple protocol based on SNMP is used for
communication among managers and agents.

1 Introduction

This paper addresses the problem of managing the dynamic reconfiguration of
component-based, distributed software systems. Reconfiguration comes in many
forms, but two extreme approaches can be identified: internal and external.

Internal reconfiguration relies on the programmer to build into a component
the facilities for reconfiguring the component. For example, a component might
observe its own performance and switch from one algorithm or data structure
to another when some performance threshold has been crossed. This form of
reconfiguration is therefore sometimes called “programmed” or “self-healing”
reconfiguration.

External reconfiguration, by contrast, relies on some entity external to the
component to determine when and how the component is reconfigured. For ex-
ample, an external entity might monitor the performance of a component and
perform a wholesale replacement of the component when a performance thresh-
old has been crossed. Likewise, an external entity might determine when to

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 231–244, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

232 Marco Castaldi et al.

upgrade a component to a newer version and perform that upgrade by replacing
the component within the application system. Of course, replacing a component
is a rather drastic reconfiguration action, but there is little that an external
entity can do without cooperation from the component itself.

One common form of cooperation is the provision by a component of recon-
figuration parameters; the parameters define what internal reconfigurations a
component is prepared to carry out, while an external entity is given the ability
to set parameter values and thereby to determine which of the possible reconfigu-
rations is to occur and when. Clearly, any particular approach to reconfiguration
is likely to be some blending of the two extreme approaches in conjunction with
the use of reconfiguration parameters.

At a level above the individual components, we can consider the reconfigura-
tion of the larger application system, where the dominant concern is the topology
of the application in terms of the number and location of its components. What
this typically introduces into the problem is the need to carry out a coordinated
set of reconfigurations against the individual components. The question then
arises, how and where is this coordination activity specified and managed?

The “easy” answer would be some centralized, external entity. However, the
viability of such an entity essentially assumes that (a) components are designed
and built to cooperate with the external entity and (b) it is possible for the entity
to have global knowledge of the state of the application. These assumptions
run counter to modern development methodology: we want to build generic
components having few dependencies so that they can be reused in multiple
contexts, and we want distributed systems to be built without global knowledge
so that they can scale and be resilient to failure.

In previous work, we developed the Software Dock software deployment sys-
tem [11]. The Software Dock is a comprehensive tool that addresses issues such
as configuration, installation, and automated update. It also explores the chal-
lenges of representing component dependencies and constraints arising from
heterogeneous deployment environments [10]. The Software Dock provides an
extensive and sophisticated infrastructure in which to define and execute post-
development activities [12]. However, it does not provide explicit support for dy-
namic reconfiguration—that is, a reconfiguration applied to a running system—
although its infrastructure was designed to accommodate the future introduction
of such a capability.

In an effort to better understand the issues surrounding dynamic reconfigu-
ration, we developed a tool called Bark [21]. In contrast to the Software Dock,
which is intended to be generic, Bark is a reconfiguration tool that is designed
specifically to work within the context of the EJB (Enterprise JavaBean) [20]
component framework. Its infrastructure leverages and extends the EJB suite of
services and is therefore well integrated into a standard platform. Of course, its
strength is also its weakness, since this tight integration means that it is useful
only to application systems built on the EJB model. On the other hand, we
learned an important lesson from our experience with Bark, namely that it is
both possible and advantageous to make use of whatever native facilities are al-

A Lightweight Infrastructure for Reconfiguring Applications 233

ready provided by the components for the purposes of dynamic reconfiguration.
Moreover, the burden of tailoring reconfiguration activities is naturally left to
and divided among the developers of individual components, the developers of
subsystems of components, and ultimately the developers of the encompassing
applications.

Reflecting back, then, on our experience with the Software Dock, we realized
that it imposes rather severe demands on component and application developers,
above and beyond any necessary tailoring. In particular, the architecture of the
Software Dock requires that at least one so-called field dock reside on every host
machine. The field dock serves as the execution environment for all deployment
activities, the store for all data associated with deployment activities, and the
interface to the file system on the host. The field dock is also the mediator for
all communication between individual components and external entities having
to do with deployment activities. Finally, in order to make use of the Software
Dock, developers must encode detailed information about their components and
applications in a special deployment language called the Deployable Software
Description (DSD).

Thus, the Software Dock would lead to what we now consider a “heavy-
weight” solution to the problem of dynamic reconfiguration, a characteristic
shared by many other reconfiguration systems (e.g., DRS [1], Lua [2], and
PRISMA [3]). While such an approach may be feasible in some circumstances,
we are intrigued by the question of how to build lighter-weight solutions.

It is difficult to be precise about what one means by “lightweight”, since it
is inherently a relative concept. But for our purposes, we take lightweight to
indicate intuitively an approach to dynamic reconfiguration in which:

– the service is best effort, in that it arises from, and makes use of, the facilities
already provided by individual components, rather than some standardized
set of imposed facilities;

– reconfiguration is carried out via remote control, in that the management of
reconfiguration is separated from the implementation of reconfiguration, so
as to enhance the reusability of components and, in conjunction with the
best-effort nature of the service, broaden the scope of applicability; and

– communication is through a simple protocol between components and the
entities managing their reconfiguration, rather than through complex inter-
faces and/or data models.

In this paper we describe our attempt at a lightweight infrastructure for dynamic
reconfiguration and its implementation in a tool called Lira. The inspiration
for our approach comes directly from the field of network management and its
Internet-Standard Network Management Framework, which for historical rea-
sons is referred to as SNMP [6]. (SNMP is the name of the protocol used within
the framework.) Our hypothesis is that this framework can serve, with appropri-
ate extension and adaptation where necessary, as a useful model for lightweight
reconfiguration of component-based, distributed software systems.

In the next section, we provide background on network management and
the Internet-Standard Network Management Framework. Section 3 describes

234 Marco Castaldi et al.

Lira, while Section 4 presents a brief example application of Lira that we have
implemented. Related work is discussed in Section 5, and we conclude in Section 6
with a discussion of future work.

2 Background: Network Management

As mentioned above, the design of Lira was inspired by network management
approaches. The original challenge for network management was to devise a
simple and lightweight method for managing network devices, such as routers
and printers. These goals were necessary in order to convince manufacturers
to make their devices remotely manageable without suffering undue overhead,
as well as to encourage widespread acceptance of a method that could lead to
a de facto management standard. (Perhaps the same can be said of software
component manufacturers.)

The network management model consists of four basic elements: agents,1

each of which is associated with a network node (i.e., device) to be managed
and which provides remote management access on behalf of the node; managers,
which embody the logic for monitoring the state of a node and for determining
when and how to execute management activities; a protocol, which is used for
communication among the agent and manager management entities; and man-
agement information, which defines the aspects of a node’s state that can be
monitored and the ways in which that state can be modified from outside the
node.

Agents are typically provided by node manufacturers, while managers are
typically sophisticated third-party applications (e.g., HP’s OpenView [14]). The
standard protocol is SNMP (Simple Network Management Protocol), which pro-
vides managers with the primitive operations for getting and setting variables
on agents, and for sending asynchronous alerts from agents to managers. The
management information defines the state variables of an agent and is therefore
specific to each node. These variable definitions are captured in a MIB (Man-
agement Information Base) associated with each agent.

In our work on Lira, we are driven by the complexity of configurations in-
herent in today’s large-scale, component-based, distributed software systems.
Specifically, multiple components tend to execute on the same device, and regu-
larly come into and go out of existence (much more often than, say, a router in a
network). Further, the components, whether executing on the same or on differ-
ent devices, tend to have complex relationships and interdependencies. Finally,
domains of authority over components tend to overlap and interact, implying
complex management relationships.

In theory, the Internet-Standard Network Management Framework places
few constraints on how its simple concepts are to be applied, allowing for quite

1 The term “agent” as used in network management should not be confused with other
uses of this term in computer science, such as “mobile agent” or “intelligent agent”.
Network management agents are not mobile, and their intelligence is debatable.

A Lightweight Infrastructure for Reconfiguring Applications 235

advanced and sophisticated arrangements. In practice, however, network man-
agement seems to have employed these concepts in only relatively straightforward
ways. For instance, a typical configuration for managing a network consists of a
flat space of devices with their associated agents managed by a single, centralized
manager; a manager is associated with a particular domain of authority (e.g.,
a business organization) and controls all the devices within that domain. It is
interesting to note that there have been efforts at defining MIBs for some of the
more prominent web applications, such as the Apache web server, IBM’s Web-
Sphere transaction server, and BEA’s WebLogic transaction server, and more
generally a proposal for an “application management” MIB [15]. But, again, the
approach taken is to view these as independently managed applications, not a
true complex of distributed components.

3 Lira

The essence of the approach we take in Lira is to define a particular method
for applying the basic facilities of the Internet-Standard Network Management
Framework to complex component-based software systems. To summarize:

– We distinguish two kinds of agent. A reconfiguration agent is associated with
a component, and is responsible for reconfiguring the component in response
to operations on variables defined by its MIB. A host agent is associated with
a computer in the network, and is responsible for installing and activating
components on that computer, again, in response to operations on variables
defined by its MIB.

– A manager can itself be a reconfiguration agent. What this means is that
a manager can have a MIB and thereby be expected to respond to other,
higher-level managers. Such a manager agent would reinterpret the reconfig-
uration (and status) requests it receives into management requests it should
send to the agents of the components it is managing. In this way a scalable
management hierarchy can be established, finally reaching ground on the
base reconfiguration agents associated with (monolithic) components.

– We define a basic set of “standard” MIB definitions for each kind of agent.
These definitions are generically appropriate for managing software compo-
nents, but are expected to be augmented on an agent-by-agent basis so that
individual agents can be specialized to their particular unique tasks.

It is important to note that Lira does not itself provide the agents, although
in our prototype implementation we have created convenient base classes from
which implementations can be derived. Rather, the principle that we follow is
that developers should be free to create agents in any programming language
using any technology they desire, as long as the agents serve their intended pur-
pose and provide access through at least the set of MIB definitions we have
defined. For example, in our use of Lira within the Willow survivability middle-
ware system [16], there are agents written in C++ and Java. Furthermore, some

236 Marco Castaldi et al.

of the Willow manager agents are highly sophisticated workflow engines that can
coordinate and adjudicate among competing reconfiguration requests [17].

The remainder of this section describes these concepts in greater detail.

Reconfiguration Agent

A base reconfiguration agent directly controls and manages a component. Lira
does not constrain how the agent is associated with its component, only that
the agent is able to act upon the component. For example, the agent might be
part of the same thread of execution, execute in a separate thread, or execute in
a completely separate process. In fact, the agent might reside on a completely
different device, although this would probably be the case only for complex
agents associated with components running on capacity-limited devices.

The logical model of communication between a base reconfiguration agent
and its component is through shared memory; the component shares a part
of its state with the agent. Of course, to avoid synchronization problems, the
component must provide atomic access to the shared state.

A reconfiguration agent that is not a base reconfiguration agent is a man-
ager. It interacts with other base and non-base reconfiguration agents using the
standard management protocol. For purposes of simplifying the discussion be-
low, we abuse the term “component” to refer also to the subassembly of agents
with which a non-base reconfiguration agent (i.e., a manager agent) interacts.
Thus, from the perspective of a higher-level manager, it appears as though a
lower-level manager is any other reconfiguration agent. This is illustrated in the
example agent hierarchy of Figure 1.

C2

A 2 C3

A 3

1C
A 1

A4

C4

A5

Protocol

Agent

Component

Management

MIB
MIB

MIB
MIB

Fig. 1. An example Lira agent hierarchy

In the figure, agents A1, A2, and A3 are base reconfiguration agents acting
on components C1, C2, and C3, respectively. Agent A4 is a manager for A1, A2,

A Lightweight Infrastructure for Reconfiguring Applications 237

and A3, but is treated as a reconfiguration agent by the higher-level manager
A5. In effect, A4 is responsible for carrying out reconfigurations on a subsystem
represented by C4, and hides the complexity of that responsibility from A5.

A reconfiguration agent is essentially responsible for managing the lifecycle
of its component, and exports at least the following five management functions:2

– void START(startArgs)
– void STOP()
– void SUSPEND()
– void RESUME()
– void SHUTDOWN()

The function SHUTDOWN also serves to terminate the agent. Each reconfiguration
agent also exports at least the following two variables:

– STATUS
– NOTIFYTO

The first variable contains the current status of the component, and can take on
one of the following values: starting, started, stopping, stopped, suspending, sus-
pended, and resuming. The second variable contains the address of the manager
to which an alert notification should be sent. This is necessary because we allow
agents to have multiple managers, but we assume that at any given time only
one of those managers has responsibility for alerts. That manager can use other
means, not defined by Lira, to spread the alert.

Host Agent

A host agent runs on a computer where components and reconfiguration agents
are to be installed and activated, and is responsible for carrying out those activ-
ities in response to requests from a manager. (How a host agent is itself installed
and activated is obviously a bootstrapping process.) As part of activating a com-
ponent and its associated agent, the host agent provides an available network
port, called the agent address, to the reconfiguration agent over which that agent
can receive requests from a manager.

Each host agent exports at least the following variables:

– NOTIFYTO
– INSTALLEDAGENTS
– ACTIVEAGENTS

Host agents also export the following functions:

– void INSTALL(componentPackage)
– void UNINSTALL(componentPackage)
– agentAddress GET_AGENTADDRESS(agentName)

2 Lira provides the notion of a “function”, described below, as a convenient shorthand
for a combination of more primitive concepts already present in SNMP.

238 Marco Castaldi et al.

– agentAddress ACTIVATE(componentType,componentName,componentArgs)
– void DEACTIVATE(componentName)
– void REMOVEACTIVEAGENT(agentName)

Again, we expect host agents to export additional variables and functions con-
sistent with their particular purposes, including variables described in the Host
Resources MIB [24].

Management Protocol

The management protocol follows the SNMP paradigm. Each message in the
protocol is either a request or a response, as shown in the following table:

request response
SET(variable name, variable value) ACK(message text)
GET(variable name) REPLY(variable name, variable value)
CALL(function name, parameters list) RETURN(return value)

Requests are sent by managers to agents, and responses are sent back to man-
agers from agents. There is one additional kind of message, which is sent from
agents to managers in the absence of any request.

NOTIFY(variable name, variable value, agent name)

This message is used to communicate an alert from an agent back to a man-
ager. For instance, an agent might notice that a performance threshold has been
crossed, and uses the alert to initiate some remedial action on the part of the
manager.

4 Example

We now present a simple, yet practical example to demonstrate how Lira can be
used to achieve a dynamic reconfiguration. The example was implemented using
Java agents working on components of a pre-existing Java application. Lira has
been used in more complex and diverse settings, but this example suffices for
illustrative purposes.

The application is an overlay network of software routers for a distributed,
content-based, publish/subscribe event notification service called Siena [5]. The
routers form a store-and-forward network responsible for delivering messages
posted by publishers on one side of a network to the subscribes having expressed
interest in the message on the other side of the network. Publishers and sub-
scribers are clients of the service that can connect to arbitrary routers in the
network. The routers are arranged in a hierarchical fashion, such that each has a
unique parent, called a master, to which subscription and notification messages
are forwarded. (Notification messages also flow down the hierarchy, from parents
to children, but that fact is not germane to this example.) The master of a client

A Lightweight Infrastructure for Reconfiguring Applications 239

is the router to which it is attached. Siena is designed to adjust its forwarding
tables in response to changes in subscriptions, and also in response to changes
in topology. The topology can be changed through a Siena command called set
master, which resets the master of a given router.

S1
A 1

S3
A 3

1C A 4
C2A 5

Manager

S2
A 2

Fig. 2. Topology of an example Siena network

Figure 2 shows a simple topology, where S1, S2, and S3 are Siena routers,
and C1 and C2 are Siena clients. S1 is the master of both S2 and S3. Each
router and client has associated with it a reconfiguration agent. All the agents
are managed by a single manager. In addition to the “standard” set of variables,
each reconfiguration agent in this system exports a variable MASTER to indicate
the identity of its component’s master router.

The Siena clients and routers, together with their reconfiguration agents, can
each be run on separate computers. Each such computer would have its own host
agent. The manager interacts with the host agent to activate a client or router.
For example, the manager uses the function

ACTIVATE(SienaRouter,S1,
"-host palio.cs.colorado.edu -port 3333 -log -")

to activate Siena router S1.
Now, notice that if S1 were to fail, then clients C1 and C2 would not be able

to communicate. In such a case, we would like to reconfigure the Siena network
to restore communication. The manager can do this by reassigning S3 to be the
master of S2, as shown in Figure 3. The manager will change the value of the
variable MASTER of agents A2 and A3, sending the request SET("MASTER",S3) to
A2 and the request SET("MASTER","") to A3.

Clearly, for the manager to be able to decide on the proper course of action,
the state of the Siena network must be monitored. Moreover, the manager must
have knowledge of the current topology. This can be done in several ways using
Lira, including requests for the values of appropriate variables and the use of
the NOTIFY message when an agent notices that a router is unresponsive.

240 Marco Castaldi et al.

S1
A 1

C2A 5

Manager

S2
A 2

S3
A 3

1C A 4

S3
A 3

S1
A 1

1C A 4
C2A 5

S2
A 2

Manager

SET
("MASTER", S3) ("MASTER", null)

SET

Fig. 3. Reconfiguration in response to the failure of S1

5 Related Work

Supporting the dynamic reconfiguration of distributed systems has been a goal of
researchers and practitioners for the past quarter century, and many techniques
and tools have been developed. The work described in this paper is leveraging and
integrating the recent maturation of two disciplines, component-based software
engineering [13] and network management [6].

Endler divides dynamic reconfiguration into two forms according to when
the change is defined: programmed and ad hoc [8]. The first form is defined
at the time the system is designed, and may be compiled into the code of the
application. The second form is not predictable and defined only once the appli-
cation is already in execution. To a certain extent, Lira supports the use of both
forms of reconfiguration, the first through planned requests directed at recon-
figuration agents, and the second either through replacement of components or
through topological reconfigurations at the application level. Of course, the goal
of Lira is to automate reconfiguration activities, so the reconfigurations cannot
be completely unplanned unless control is given over to the ultimate manager,
the human operator.

Endler also discusses a distinction between functional and structural dynamic
reconfigurations [8]. Functional reconfiguration involves new code being added to
an application, while structural reconfiguration is topological in nature. Again,
Lira supports both.

Several researchers, including Almeida et al. [1], Bidan et al. [4], Kramer and
Magee [18], and Wermelinger [25], have tried to address the problem of main-
taining consistency during and after a reconfiguration. Usually, the consistency
properties of the system are expressed through logical constraints that should
be respected, either a posteriori or a priori. If the constraints are seen as post-
conditions [26], the reconfiguration must be undone if a constraint is violated.
If the constraints are seen as preconditions [8], the reconfiguration can be done
only if the constraints are satisfied.

Lira approaches the consistency problem using a sort of “management by
delegation” [9], in which it delegates responsibility to agents to do what is nec-
essary to guarantee consistency and state integrity. This is in line with the idea

A Lightweight Infrastructure for Reconfiguring Applications 241

of “self-organizing software architectures” [19], where the goal is to minimize
the amount of explicit management and reduce protocol communication. It is
also in line with the idea of a lightweight, best-effort service (see Section 1),
where we assume that the component developer has the proper insight about
how best to maintain consistency. This is in contrast to having the reconfigura-
tion infrastructure impose some sort of consistency-maintenance scheme of its
own.

Java Management eXtensions (JMX) is a specification that defines an ar-
chitecture, design pattern, APIs, and services for application and network man-
agement in the Java programming language [23]. Under JMX, each managed
resource and its reconfiguration services are captured as a so-called MBean. The
MBean is registered with an MBean server inside a JMX agent. The JMX agent
controls the registered resources and makes them available to remote manage-
ment applications. The reconfiguration logic of JMX agents can be dynamically
extended by registering MBeans. Finally, the JMX specification allows commu-
nication among different kinds of managers through connectors and protocol
adaptors that provide integration with HTTP, RMI, and even the SNMP pro-
tocols. While JMX is clearly a powerful reconfiguration framework, it is also a
heavyweight mechanism, and one that is strongly tied to one specific platform,
namely Java.

6 Conclusions and Future Work

Lira represents our attempt to devise a lightweight infrastructure for the dy-
namic reconfiguration of component-based, distributed software systems. Lira
follows the approach pioneered in the realm of network management, providing
in essence a particular method for applying the concepts of the Internet-Standard
Network Management Framework. Lira is designed to perform both component-
level reconfigurations and scalable application-level reconfigurations, the former
through agents associated with individual components and the latter through a
hierarchy of managers.

A hierachical approach is neither new nor necessary, but it seems to us to be
natural and suitable for the purpose, allowing the reconfiguration developer to
concentrate on the logic of the reconfiguration rather than on how to coordinate
the agents. We are currently investigating more sophisticated approaches to sup-
porting cooperation among agents and, consequently, for making more complex
coordinated reconfiguration decisions (see below).

Lira has been developed with the aim of providing a minimal set of func-
tionality. Some desirable capabilities found in more “heavyweight” approaches,
such as automated consistency management and version selection, are not pro-
vided as part of the basic infrastructure. However, two main strategies can be
followed to bridge the gap: (1) advanced capabilities can be used from, or im-
plemented within, individual agents, thus hiding them from managers (i.e., from
higher-level agents) or (2) they can be used or implemented at the management
level, exploiting variables and functions provided by lower-level agents. It is still

242 Marco Castaldi et al.

an open question as to whether this lightweight approach and its flexible pro-
grammable extension is superior to a heavyweight approach and its implicit set
of capabilities. We are trying to answer this question through case studies.

We have implemented a prototype of the Lira infrastructure and used it to
manage several complex distributed applications, including a network of Siena
overlay routers [5] and a prototype of a military information fusion and dissem-
ination system called the Joint Battlespace Infosphere [22]. Based on these and
other experiences, we have begun to explore how the basic Lira infrastructure
could be enhanced in certain specialized ways.

First, in order to simplify the exportation of reconfiguration variables and
functions for Java components, we have created a specialized version of the Lira
agent. This agent uses the Java Reflection API to provide mechanisms to export
(public) variables and functions defined in the agent and/or in the component.
These exported entities are then integrated into the MIB for the agent using a
callback mechanism.

Second, in order to provide more “intelligence” in reconfiguration agents,
we have created an API to integrate Lira with a ProLog-like language called
DALI [7]. The idea is to be able to implement agents that can reason about the
local context, make decisions based on that reasoning, and remember (or learn)
from past situations. The result of this integration is an intelligent agent we call
LiDA (Lira + DALI), which is more autonomous than a basic Lira agent and
uses its intelligence and memory to make some simple, local decisions without
support from a manager.

Finally, we have created a preliminary version of a reconfiguration language
that allows one to define, in a declarative way, application-level reconfiguration
activities. We have observed that Lira agents operating at this level follow a
regular structure in which their concern is centered on the installation/activation
of new components, changes in application topology, and monitoring of global
properties of the system. The particulars of these actions can be distilled out and
used to drive a generic agent. This echos the approach we took in the Software
Dock, where generic agents operate by interpreting the declarative language of
the DSD [11].

None of these enhancements are strictly necessary, but they allow us to better
understand how well Lira can support sophisticated, programmer-oriented spe-
cializations, which is a property that we feel will make Lira a broadly acceptable,
lightweight reconfiguration framework.

Acknowledgements

The authors thank Dennis Heimbigner, Jonathan Hill, and John Knight for their
helpful comments, criticism, and feedback on the design and prototype imple-
mentation of Lira.

This work was supported in part by the Defense Advanced Research Projects
Agency, Air Force Research Laboratory, Space and Naval Warfare System Cen-
ter, and Army Research Office under agreement numbers F30602-01-1-0503,

A Lightweight Infrastructure for Reconfiguring Applications 243

F30602-00-2-0608, N66001-00-1-8945, and DAAD19-01-1-0484. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency, Air Force Re-
search Laboratory, Space and Naval Warfare System Center, Army Research
Office, or the U.S. Government.

References

1. J.P.A. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis. Transpar-
ent Dynamic Reconfiguration for CORBA. In Proceedings of the 3rd International
Symposium on Distributed Objects and Applications, pages 197–207. IEEE Com-
puter Society, September 2001.

2. T. Batista and N. Rodriguez. Dynamic Reconfiguration of Component-Based Ap-
plications. In Proceedings of the International Symposium on Software Engineering
for Parallel and Distributed Systems, pages 32–39. IEEE Computer Society, June
2000.

3. J. Berghoff, O. Drobnik, A. Lingnau, and C. Monch. Agent-Based Configuration
Management of Distributed Applications. In Proceedings of the 3rd International
Conference on Configurable Distributed Systems, pages 52–59. IEEE Computer
Society, May 1996.

4. C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A Dynamic Reconfiguration
Service for CORBA. In Proceedings of the 4th International Conference on Con-
figurable Distributed Systems, pages 35–42. IEEE Computer Society, May 1998.

5. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a
Wide-Area Event Notification Service. ACM Transactions on Computer Systems,
19(3):332–383, August 2001.

6. J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability
Statements for Internet Standard Management Framework. RFC 3410. The Inter-
net Society, December 2002.

7. S. Costantini and A. Tocchio. A Logic Programming Language for Multi-Agent
Systems. In 8th European Conference on Logics in Artificial Intelligence, num-
ber 2424 in Lecture Notes in Artificial Intelligence, pages 1–13. Springer-Verlag,
September 2002.

8. M. Endler. A Language for Implementing Generic Dynamic Reconfigurations of
Distributed Programs. In Proceedings of 12th Brazilian Symposium on Computer
Networks, pages 175–187, 1994.

9. G. Goldszmidt and Y. Yemini. Distributed Management by Delegation. In Pro-
ceedings of the 15th International Conference on Distributed Computing Systems,
pages 333–340. IEEE Computer Society, May 1995.

10. R.S. Hall, D.M. Heimbigner, and A.L. Wolf. Evaluating Software Deployment
Languages and Schema. In Proceedings of the 1998 International Conference on
Software Maintenance, pages 177–185. IEEE Computer Society, November 1998.

11. R.S. Hall, D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Sup-
port Software Deployment Using the Software Dock. In Proceedings of the 1999
International Conference on Software Engineering, pages 174–183. Association for
Computer Machinery, May 1999.

244 Marco Castaldi et al.

12. D.M. Heimbigner and A.L. Wolf. Post-Deployment Configuration Management.
In Proceedings of the Sixth International Workshop on Software Configuration
Management, number 1167 in Lecture Notes in Computer Science, pages 272–276.
Springer-Verlag, 1996.

13. G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineer-
ing: Putting the Pieces Together. Addison-Wesley, Reading, Massachusetts, 2001.

14. Hewlett Packard. HP OpenView Family Guide, 1998.
15. C. Kalbfleisch, C. Krupczak, R. Presuhn, and J. Saperia. Application Management

MIB. RFC 2564. The Internet Society, May 1999.
16. J.C. Knight, D.M. Heimbigner, A.L. Wolf, A. Carzaniga, J. Hill, and P. Devanbu.

The Willow Survivability Architecture. In Proceedings of the Fourth International
Survivability Workshop, March 2002.

17. J.C. Knight, D.M. Heimbigner, A.L. Wolf, A. Carzaniga, J. Hill, P. Devanbu, and
M. Gertz. The Willow Architecture: Comprehensive Survivability for Large-Scale
Distributed Applications. Technical Report CU-CS-926-01, Department of Com-
puter Science, University of Colorado, Boulder, Colorado, December 2001.

18. J. Kramer and J. Magee. Dynamic Configuration for Distributed Systems. IEEE
Transactions on Software Engineering, SE-11(4):424–436, April 1985.

19. J. Magee and J. Kramer. Self Organising Software Architectures. In Proceedings
of the Second International Software Architecture Workshop, pages 35–38, October
1996.

20. R. Monson-Haefel. Enterprise JavaBeans. O’Reilly and Associates, 2000.
21. M.J. Rutherford, K.M. Anderson, A. Carzaniga, D.M. Heimbigner, and A.L. Wolf.

Reconfiguration in the Enterprise JavaBean Component Model. In Proceedings of
the IFIP/ACM Working Conference on Component Deployment, number 2370 in
Lecture Notes in Computer Science, pages 67–81. Springer-Verlag, 2002.

22. Scientific Advisory Board. Building The Joint Battlespace Infosphere. Technical
Report SAB-TR-99-02, U.S. Air Force, December 2000.

23. Sun Microsystems, Inc., Palo Alto, California. Java Management Extensions In-
strumentation and Agent Specification, v1.0, July 2000.

24. S. Waldbusser and P. Grillo. Host Resources MIB. RFC 2790. The Internet Society,
March 2000.

25. M. Wermelinger. Towards a Chemical Model for Software Architecture Recon-
figuration. In Proceedings of the 4th International Conference on Configurable
Distributed Systems, pages 111–118. IEEE Computer Society, May 1998.

26. A. Young and J. Magee. A Flexible Approach to Evolution of Reconfigurable
Systems. In Proceedings of the IEE/IFIP International Workshop on Configurable
Distributed Systems, pages 152–163, March 1992.

B.Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 245-258 , 2003.
 Springer-Verlag Berlin Heidelberg 2003

A Software Configuration Management Course

Ulf Asklund and Lars Bendix

Department of Computer Science, Lund Institute of Technology
Box 118, SE-221 00 Lund, Sweden
{ulf,bendix}@cs.lth.se

Abstract. Software Configuration Management has been a big success in re-
search and creation of tools. There are also many vendors in the market of sell-
ing courses to companies. However, in the education sector Software Configura-
tion Management has still not quite made it at least not into the university
curriculum. It is either not taught at all or is just a minor part of a general course
in software engineering. In this paper, we report on our experience with giving a
full course entirely dedicated to Software Configuration Management topics and
start a discussion of what ideally should be the goal and contents of such a
course.

1 Introduction

In the call for papers for the SCM workshop it says: "The discipline of software con-
figuration management (SCM) provides one of the best success stories in the field of
software engineering. With the availability of over a hundred commercial SCM sys-
tems that together form a billion dollar marketplace, and the explicit recognition of
SCM by such standards as the CMM and ISO-9000, the discipline has established
itself as one of the essential cornerstones of software engineering.".

The call furthermore says that "SCM is a well-established discipline". This, how-
ever, apparently does not apply to the educational aspects of SCM. To the best of our
knowledge universities only teach SCM as a small part of a more general course in
software engineering or not at all. If one wants to teach a more extensive course on
SCM topics, there is very little help to get with regards to the contents of such a
course. Most books on the subject, like Berlack [10], Leon [24] and many more, all
follow the traditional way of looking at SCM as consisting of "the four activities":
configuration identification, configuration control, configuration status accounting
and configuration audit. This more formal approach to SCM is, however, in our opin-
ion an experience not quite suited for university students.

At Lund Institute of Technology, we have had the possibility to develop a full
course dedicated entirely to SCM topics. In this paper, we want to report our experi-
ence from two years of teaching this course. We also want to start a discussion of
what topics could be included in such a course and how SCM can be taught in a full
course of its own as well as inside a software engineering course.

c©

Ulf Asklund and Lars Bendix 246

In the following, we will first describe how our course is given and what is in the
course. Then we discuss the considerations that led to the contents that the course
has today. This is followed by a discussion of the pedagogical considerations that we
have had. Finally, we reflect on the experience we have gained from the first two years
of giving the course, describe our plans for future changes to the course and draw our
conclusions.

2 Description of the Course

The course we give is at undergraduate level. The students are following the last years
of their education and as a prerequisite for following this course they must have taken
the project "Program development in groups" in which they in groups of 10 students
during a period of 7 weeks develop a software product, thus facing many of the pro b-
lems addressed by SCM.

What are the goals of the course? Given the amount of resources we have available
for this dedicated course, we can be rather ambitious. We can prepare our students for
many of the situations that they will meet in industry after they graduate. Most of our
students will probably make a career in industry and from an SCM perspective the
course should guarantee that they are qualified to cover positions ranging from devel-
oper through project leader to SCM expert or manager. The course is optional, so we
can count on the students following it out of interest.

If we look at SCM, it is related to many different roles on a company-wide scale. We
have distinguished at least the following roles: developers, SCM wizards, project lead-
ers, SCM experts or managers, SCM tool administrators, quality assurance and test,
release people, and SCM tool developers. An ambitious SCM course should consider
the needs of all these roles. The goals for our course are to provide the develo per with
knowledge of traditional SCM, comprehension of problems and solutions in develo p-
ment in groups and application of work models including the use of functionality like
merge and diff. In addition to what the developer learns, the SCM wizard on a project
team should have an analytical insight into problems and solutions in SCM for groups
and should reach application level for tasks that are more rarely performed, such as
weekly builds, creating branches and doing releases. The project leader needs to have
comprehension of the SCM problems and solutions encountered by developers and
he should reach application of traditional SCM including CCBs and SCM plans. An
SCM expert or manager should ideally know everything. In our course we want to
bring the students to a level where they can analyse SCM problems directly related to
developers, synthesise one or more possible solutions and evaluate these solutions.
In the present course, we choose to leave out the roles of SCM tool administrator and
SCM tool developer, the first being too tool specific and the latter too advanced. For
the quality assurance and test roles, we consider their needs to be at a usage level and
thus a sub-set of the developer's needs. Likewise we consider, in part, the needs of
release people to be covered by what is taught for the SCM wizard role.

Our SCM course lasts 7 weeks. Each week we have two lectures, one exercise ses-
sion and one session in the computer lab – each of the duration of two hours. Each

A Software Configuration Management Course 247

week is entirely dedicated to a specific theme and starts with a lecture that gives the
basics of the theme. Then there is an exercise session where the students, based on
open questions, discuss the theme of the week in small groups of 3-4 students. This is
followed by a second lecture on the theme of the week. This lecture starts with student
presentations of their results from the previous exercise session, followed by a in-
depth treatment of topics within the theme. Finally there is a session in the computer
lab, where the students wo rk in the same groups as during the exercise sessions. The
computer labs do not follow the themes, but aim at giving practical hands-on experi-
ence with two tools, CVS and ClearCase. There are five computer labs and six exe rcise
sessions, which gives a total of 50 hours for the whole course, not including the time
the students use for preparation and reading literature.

The themes that are treated in the course are the following:

1. introduction, motivation and overview
2. collaboration (construction site)
3. workspace (study)
4. repository (library)
5. traditional configuration management
6. SCM relations to other domains
7. wrap up, summary and question hour

Theme 1 is introduction, motivation and overview. The first lecture introduces SCM
and gives some example scenarios of program development to motivate the students
and explain why SCM is important. The exercise session is used for teambuilding,
forming the groups that will work together during the rest of the exercise sessions,
during the computer labs, and for the examination. We also use the first exercise ses-
sion to get information about the students' background and their expectations to the
course. The second lecture gives an overview of SCM and the rest of the course. The
literature used for this theme is chapters from Babich [6].

Themes 2, 3 and 4 all deal with what a developer needs from SCM and to describe
these aspects we use three metaphors [9]: a construction site, a study, and a library. A
developer needs to collaborate with others (a construction site), to create a workspace
where he can work undisturbed (a study), and a place where he and others can store
the results of their work (a library). Common for the exercise sessions during these
three themes is that we also use the metaphors to facilitate the discussions and that
each group has to produce one slide containing the most interesting/surprising result
from their discussions to be presented (by them) and discussed briefly during the
following lecture.

Theme 2 – the construction site: The first lecture is basics about co-ordination and
communication. The exercise session focuses on the importance of planning, co-
ordination and communication and the second lecture goes more in -depth with work
models and how geographical distribution affects SCM. Literature used is excerpts
from [25], parts of [2] and a chapter from [30].

Theme 3 – the study: The first lecture is basics about roles, versioning and work-
spaces. The exercise session discusses what a workspace should look like to make it
possible for the developer to get his work done. The in -depth lecture is about SCM
models and merging. Literature is excerpts from [31], [7], and [19].

Ulf Asklund and Lars Bendix 248

Theme 4 – the library: The basics here are repository structures, identification and
history. In the exercise session students discuss possible solutions for versioning,
branching, selection and representing dependencies. The in-depth lecture covers
versioning models and branching patterns. Literature is excerpts from [21], [3], and [1].

Theme 5 deals with the traditional way of looking at SCM as consisting of "the four
activities". The first lecture explains configuration identification and configuration
control with its main emphasis on the change process and the role and functioning of
the change control board (CCB). The second lecture covers the remaining activities of
configuration status accounting and configuration audit. Furthermore this lecture
covers CM plans and roles. This week's exercise session is not strictly connected to
the theme, as the session comes between the two lectures . Exercises are more focused
discussion questions than the previous weeks and relate to the identification, structur-
ing and process aspects of themes 2-4 seen in the light of this week's first lecture. As
literature we use chapters from [14] and excerpts from [24] and [13].

Theme 6 covers domains related to SCM. We treat product data management
(PDM), open source software development (OSS), software architecture (SA), and the
use of patterns for SCM. Literature is excerpts from [12] for patterns, [8] for SA , [4] for
PDM, and [5] for OSS. During the exercise session this week, the students have to put
the previous weeks' work together within the framework of a CM plan. Based on their
discussions during the metaphor sessions and with the knowledge they now have
about traditional SCM and the purpose and contents of CM plans, they have to con-
struct fragments of a CM plan for an imaginary project. This has to be written up as a
2-3 pages essay that has to be handed in before the examination.

The final theme wraps up the whole course. The pieces that each theme constitutes
are put together again to form a whole. We also look back on what we've been through
and focus on the relationships there are between the themes instead of looking at them
in isolation. The second lecture during the final week is an external lecture. The first
time we had an industrial presentation and the second time a PhD defence. Literature is
excerpts from [15] and [23].

The computer labs are not strictly connected to the themes followed by the lectures
and exercise sessions. Starting week 2 through week 6 there are five labs covering
practical work with the tools CVS (3 labs) and ClearCase (2 labs). Labs are a mixture of
detailed guidance and open ended experiments. The students work in the same groups
as for the exercise sessions.

In the first CVS -lab the students familiarise themselves with the tool. They set up
the repository and use it for simple collaboration using turn-taking. In the second lab
they continue to explore the support for parallel development and automatic merge.
They also make a release that is used in the third lab. The last CVS-lab is focused on
the use of branches for maintenance as well as for experiments/variants. Furthermore,
they investigate the possibilities for creating awareness within a group of developers.
Finally, they have the possibility use tkCVS to compare a graphical interface with a
pure command-based tool.

During the ClearCase-labs the students go through roughly the same set of tasks as
for the CVS-lab, but now getting experience with a different tool. They do not have to
set up the tool and the repository, but they do explore the VOB and the configuration
specifications. They create views exploring different collaboration patterns to discover

A Software Configuration Management Course 249

the flexibilit y and power of ClearCase – and the price paid. They also create a release
and turn back to it to create a maintenance branch – and to merge that branch back
into the main line of development.

In the week following the last lecture, we have the examination. It is an oral examina-
tion which uses the essay produced during the last exercise session, but the examina-
tion covers the whole course curriculum. It is carried out in the same groups that the
students work in during exercises and labs, it lasts for 15-20 minutes pr. student and is
a group discussion more than an interrogation. The students get individual grades.

3 Contents Considerations

The past two years at Lund Institute of Technology, we have had the opportunity to
teach a full course dedicated to SCM topics only. This course is an optional course for
students in the final years of their masters education in computer science. Usually the
problem is to choose what to put into – and especially what to leave out of – one or
two lectures about SCM given as part of a more general course in software engineer-
ing. Faced with the luxury of a whole course of 50 hours of lectures, exercise and lab
sessions we were unsure whether or not we could actually fill all this time with relevant
topics. All our doubts proved to be unfounded – quite on the contrary we found such
a wealth of topics in SCM that even with a full course we were faced with having to
choose between what to include and what to leave out .

With regards to a curriculum for an SCM course we looked around for help, but
found very little guidance. There are a number of papers on the concepts and princi-
ples of SCM starting with papers by Tichy [29] and Estublier [17] from the very first
SCM workshop. These two papers deal with fundamentals like versioning, selection,
configurations and builds. Things that are definitely central and should be covered by
any kind of SCM course. In fact, these topics are an important part of the contents in
our course being treated in themes 2, 3 and 4. However, we do not find the papers
themselves suited as literature because of their orientation towards tools and func-
tionality that was of interest for the papers' original audience. This is also the reason
why we chose Babich [6], who gives more motivational examples and less technical
detail, as literature for theme 1 "Overview and motivation". Later on Leblang [23] wrote
an overview paper about the fundamentals of SCM. It treats roughly the same pro b-
lems as [29] and [17], but sees SCM as part of an overall process and has more bias
towards tasks than tool functionality. In fact, this paper has a more general audience
and made it into the course literature – serving as the final look back tying things to-
gether. More recently Estublier [18] wrote another paper providing a roadma p of the
results that had been obtained by the SCM research community at the turn of the
millennium. It provides an even broader view by including explicitly also co-operative
work and product data management. Topics that are treated in themes 2 and 6 respec-
tively of our course. Because it is a roadmap, it does not go into any detail. Likewise it
is more focused on research results than on the actual problems they try to solve. For
these reasons we did not find the paper itself suited as literature – though an excellent
list of important topics.

Ulf Asklund and Lars Bendix 250

We also looked at general software engineering textbooks like [26] and [28]. By n a-
ture such textbooks cannot cover everything in each of the topics they treat. Both
books provide good overviews of formal as well as more informal aspects of SCM.
Being more hands-on oriented they focus on the activities of configuration identifica-
tion and configuration control for the formal part. The informal parts concerns versio n-
ing, releasing and building of systems. We have included both aspects in our course,
theme 5 covering the formal aspects and themes 2, 3 and 4 the informal aspects. Most
textbooks that deal with SCM only, like [10] and [24], cover the traditional way of look-
ing at SCM as consisting of the four activities of: configuration identification, config u-
ration control, configuration status accounting and configuration audit. We have
dedicated an entire theme to these formal aspects of SCM. However, in our opinion
these aspects may be important, but in the context of a university course there is much
more to SCM than that. This means that we treat all four activ ities in one theme (two
lectures and one exercise session). As such we can cover the most important parts,
but do not have the time to go into any level of detail. This also has the consequence
that we do not find these books suited as textbooks in their entirety as they convey
more details than overview. Two books stand out as exceptions to the traditional
treatment of SCM as consisting of "the four activities". Babich [6] and later on Mikkel-
sen and Pherigo [25] take on the developer's perspective and look at SCM as a set of
techniques to handle the individual developer's work and his co-ordination with the
rest of the people on a team. Our experience is that students consider these aspects
important and we too find that they are central aspects in the practice of SCM. As
such they are treated carefully and in detail in themes 2, 3 and 4 – collaboration, work-
space and repository respectively. Again neither of these books is sufficient as a
stand-alone textbook, as there is more to SCM than just the developer's view – how-
ever important it might be.

So far the above references have helped in identifying many topics that should be
included in an SCM curriculum. However, none of the references gives any thoughts
or advice about how to balance and structure the topics, neither how to prioritise
them. If we take all of the above mentioned topics and treat all topics in detail we will
have far more material than can be covere d even in a course with 50 hours of lectures,
exercise and lab sessions. To the best of our knowledge, the only reference that treats
the curriculum aspect is the Software Engineering Body of Knowledge (SWEBOK)
initiative [27]. It provides an overview of SCM and presents a breakdown of topics
along with a description of each topic. It is a very thorough and detailed work that we
would very much have liked to follow. However, in our opinion it has the weakness
that it considers only traditional SCM, even if it does extend "the four activities" with
those of management of the SCM process and release management and delivery.
These two extensions are still quite remote from what a developer is usually con-
fronted with. Thus we take note that these six activities are important and should be
treated in our course, but do not think that it can serve as the entire curriculum. As an
aside, these SCM workshops might not be the best forum for a discussion of the con-
tents of an SCM course as [27] consider these workshops to cover only 5 out of their
44 breakdown topics for SCM.

So we were left with no help when it came down to structuring and prioritising all
the topics that we wanted to crowd our course with. In the end we decided to try to

A Software Configuration Management Course 251

come up with what we thought would be a proper curriculum for at university course
on SCM. One of the main goals of the course is that the students should master SCM
as support for several roles and levels in a company organisation. Fig. 1 depicts four
such levels: the individual develo per, the project, the company and the society.

Fig. 1. The different spheres where SCM is practised

We based the structure and contents on these roles and levels presented in the p a-
pers [5] and [9]. The students' career in industry is reflected in the spheres seen from
Fig. 1, where they start as developers, have to interact with others in a project, will
become SCM-wizards on their project, will have to handle their project's SCM -
interaction with the company – and other projects, will become SCM experts that can
handle the company's SCM -interaction with customers – and other companies – and
will eventually become company-wide SCM experts. This is what we try to reflect in
the structure of the course – and in the weight we give each topic/s phere. We spend
more time on the innermost sphere and treat that before the others because it is the
first that our students will meet when they graduate and get a job. We also do it be-
cause we find it easier to build traditional SCM on top on that than the other way
around. We also spend less time and detail on traditional SCM as most of our students
will probably never have to deal with those aspects directly. However, we find it im-
portant that they have some knowledge of all aspects of SCM ranging from what a
developer needs to get his daily work done most efficiently to what the company
needs to do to provide its customers with consistent products – and why these cus-
tomers may have SCM requirements to the company. It will also provide them with a
proper foundation to build upon if they want to make a career in SCM.

Based on this we can start to structure the course and to prioritise the topics. There
should be a progression from developer to company view with main emphasis on the
former aspects. Furthermore, for each theme that we define there should be a progre s-
sion from the basics to more advanced topics. The latter progression we try to obtain
by treating basic concepts in the first lecture and dedicating the second lecture on a

”society”

company

projects

developers

Ulf Asklund and Lars Bendix 252

theme to a selected set of more advanced topics to be able to treat them in -depth. For
the former progression we have theme 3 (workspace) and in part theme 4 (repository)
that covers the developer's individual work. The developer's interaction with the pro-
ject – and as such also with his fellow developers – are covered by theme 2 (collabora-
tion) and by theme 4 (repository), as such describing SCM at the project level with
respect to the developers. The SCM-interactions that exist between a project and the
company – and between projects – are covered by theme 5 (traditional SCM) – a theme
that in reality also treats the SCM-interactions with the customer. Theme 6 (relations to
other domains) serve to broaden the students' view of SCM, how it can be practised in
different contexts and how other domains can use or inspire SCM. Parts of this theme
(PDM) also caters for the needs at the company level

4 Pedagogical Considerations

In this section, we discuss the pedagogical considerations that influenced the way we
organised and structured the course. These considerations have been sub-ordinate to
the contents considerations discussed above. However, we still think that these con-
s iderations are important, as they convey important information to understand why we
did things the way we did. Furthermore, it can help others to tailor the course if they
have other restrictions and traditions for schedule, group work and examination form.

Our first consideration was the prerequisites that the students should have to take
the course. In reality there is very little that the students have to know in order to
follow a course on SCM – in fact if we take the software out of SCM, many of the con-
cepts and principles would change only marginally. So with regards to knowledge the
course does not build on anything in specific and could be taught even at an introduc-
tory level. However, for the students to appreciate that there are indeed problems in
software development and that a great deal of help can be found in SCM they do need
a broad cultural background from software engineering topics and experience from
"real" projects. A trend in the curriculum for the undergraduate computer science
education in Lund is that the number of student projects increases. One of these is a
combined course and project on "Program development in group" [20] in which the
students, in groups of 10 during 7 weeks, develop a software product. In this way they
learn a lot about practical software engineering. Before the actual project there is a
course with lectures and computer lab exercises. One lecture and one lab exercise is
about SCM, which is just about enough to help them run the project. It does not give
them a deeper knowledge of SCM, however it exposes them to many problems and
make them aware that SCM exists and can be helpful. We require that students have
taken this project (which is on their second year), because it ensures that they have a
varied and broad background in software engineering and because it exposes the
s tudents to problems that can be handled by SCM. Being an optional course we thus
get interested, motivated and hard working students. We use the same principles of
project experience and background for the fair number of exchange students – and
graduated students – that want to take the course.

A Software Configuration Management Course 253

One of the reasons for the prerequisites is based on the philosophy of problem-
based learning (PBL) as reflected in the learning cycle of Kolb [22]. It says that we get
better and deeper learning if we respect the natural cycle of learning. This cycle starts
with experiencing a problem in practice, this is followed by a reflection about what
could be the causes of the problem, then we conceptualise a possible solution and
finally we plan how to carry it out in practice – at which point we can experience new
problems and the learning cycle can continue. During their project course they experi-
enced problems and some students even reflected on the possible causes. Now the
course on SCM should help them to conceptualise solutions and plan how they can
be carried out. The PBL philosophy reappears in the fact that the students actually try
out some of their solutions during the computer labs. It is also the reason for starting
at the developer level – where they have practical experience – and progressing
through to the comp any level. By the use of metaphors during the exercise sessions
we also try to draw on problems students have experienced that are similar in nature to
those caused by lack of SCM. Finally, the structure of each theme into a lecture fol-
lowed by an exercise session and another lecture and finally a computer lab was also
implemented to facilitate PBL.

Dreyfus and Dreyfus [16] explain how people progress from novices through ad-
vanced beginners, competent and proficient to become experts. We do not claim – or
even hope – to turn our students into experts on SCM. When we get them they are a
mixture of novices and advanced beginners in the field of SCM. What we can do is to
bring them to the level of competence in SCM – they can only obtain the levels of
proficiency and expertise through practising SCM and gaining experience. Something
that we can never hope to have time for in a university course. However, we find that
this philosophy gives support for the existence of the computer labs and also the fact
that exercise sessions are based on discussions and aimed at creating solutions rather
than just answers. Furthermore, it gives us a way to explain to the student that they
are not experts in SCM even though they have just followed a course dedicated to just
that subject. The course have made them competent – and experience will make them
become experts in time. This avoids that they start a job interview by claiming that
they are experts on SCM.

Bloom [11] introduces a taxonomy for levels of understanding that we can use when
we want to specify how far the students come with a given topic. He works with six
levels of increasing understanding – knowledge, comprehension, application, analysis,
synthesis, and evaluation. Working with such a distinction makes it easier to prioritise
each topic. The first three levels are sufficient for users of SCM, while higher levels are
necessary for people that have to design SCM. The higher up we get in the spheres of
Fig. 1, the less likely it is that our students have to practise – or even design – topics
at that level. Therefore, it might be sufficient to know that configuration audit exists
even though they do not comprehend it let alone are capable of practising it. The con-
trary applies for levels close to the developer. Our students should be capable of ana-
lysing SCM problems at these levels and to design and maybe even evaluate solu-
tions. Themes 2, 3 and 4 that focus on the developer and project levels are structured
such that the first lecture gives the basics and the second lecture gives more in-depth
and advanced knowledge. Thus the first lecture brings the students to the level of
comprehension or application. The discussions during the exercise sessions contrib-

Ulf Asklund and Lars Bendix 254

ute to preparing them for the analysis and synthesis levels while the second lecture
provides them with analytical tools and a wider and deeper background to synthesise
solutions. As such it will enable them to become "SCM wizards" in projects right after
the course has finished. For the outer spheres of SCM there is no division in basic and
in-depth lectures as we aim for only the first three levels of understanding. Also the
SWEBOK [27] project at one point applied Bloom's taxonomy to each of their break-
down topics, clearly aiming at people that had to carry out – as opposed to design –
the SCM activities (no breakdown topic exceeds the application level and most topics
remain at either knowledge or comprehension, which corresponds pretty much to the
levels students obtain in our course).

5 Lessons Learned

Reflecting on the experience we have obtained from running this course twice, we
want to share some of the lessons that we have learned along the way. What worked
and what did not? What are the students' impressions?

The open (metaphor) questions leading to brainstorming like discussions during
the exercise sessions works well and is popular among the students. However, it is
important to steer them into discussions about more concrete software development
pro blems, i.e. to transfer the metaphor back to the software engineering world (avoid
getting stuck in the metaphor). The metaphor is used only in the first phase of the
brainstorm – and whenever they get stuck discussing concrete SCM pro b-
lems/solutions. One way we facilitate the detachment from the metaphor is to insist
that they produce a concrete result that they can present for the other groups.

Dividing the course material into themes makes it easy for the students to focus on
one aspect at the time and to structure their minds. However, it may also lead to is o-
lated islands of knowledge, which they are not able to combine. Thus, it is very impor-
tant to actually reserve time to present the larger picture. The overview lecture the first
week provides a structure that is then filled out during the rest of the course. The final
lecture looks back at the course and makes sure that things are tied together. And
finally, the essay that they produce at the last exercise session asks for parts of a "to-
tal solution" in order for them to reflect on how all parts work together in practice.

To start with the developer view of SCM works very well. The students are from the
beginning well motivated to learn about how to manage situations/problems they have
been in themselves. Previous experience from teaching traditional CM, listing the "four
activities", is that it bores them to death. However, after three weeks of d eveloper view
– bringing them to a level where they are able to analyse different solutions – they are
ready to also understand and appreciate the needs and solutions of the manager and
the company.

Students gave the computer labs very high ratings in their evaluation of the course.
They got a solid understanding of the underlying models for the tools from the mixture
of guided exercises and more free experimentation. Even students that had previous
self-taught experience with CVS got a deeper insight. Several students wanted labs to
be longer than two hours to allow for even more experimentation with the tools. The

A Software Configuration Management Course 255

first lab on CVS was optional and was aimed at student with no previous experience
(not having followed the project that was a prerequisite). We believe the fact that they
got a solid understanding of ClearCase in just 2x2 hours of labs to be due to a carry-
over effect from the CVS labs and we are confident that they would now be able to
pick up any CM-tool in 4 hours or less.

Now what about the goals for the course – did we meet them? In our opinion we did
not set low standards for passing the course, but still no students were failed. We
applied several ways of evaluating the students. During the exercise sessions where
the students had to discuss in groups, we were present and circulating between
groups taking part in the discussions. This gave us both the possibility to guide the
discussions and to make an informal evaluation of the students' level. Furthermore,
each group had to shortly present and discuss their findings from the exercises. It is
our impression that all students have a very good comprehension of problems and
solutions from the developer's perspective. Most students are also very capable of
analysing, synthesising and evaluating such solutions. For traditional SCM, students
were able to produce fragments of an SCM plan and they were able to evaluate a given
SCM plan template with respect to the different roles. We were also present during the
lab exercises and could see that students were able to apply and use different work
models. We see the fact that they were able to get a solid understanding of ClearCase
in just 2x2 hours of lab as an indication of a thorough understanding of the different
work models. The final examination was oral and we were able to evaluate in more
detail their capability to analyse, synthesise and evaluate SCM problems and solu-
tions. As there were less exercise time for traditional SCM, we were more focused on
this aspect during the oral examination. The fact that the examination was done in
groups of 3-4 students gave us sufficient time to explore the depth of their learning
without sacrificing too much the range of topics.

6 Future Work

We have now run two iterations of the course where we have made only minor
changes from the first to the second. In general, our experience is that the course is
working fine. The students like it and we do not see any big problems that need fixing.
However, before running the third iteration we have some ideas for changes that we
want to carry out.

What is it that works very well and should be kept? The exercise sessions with the
students working in small groups and discussing open questions is definitely a strong
point of the course. The computer labs is also something that attract the students and
could even be extended as requested by the students. There is room in the schedule
for more computer labs and we contemplate utilising this for one or two more labs. We
have not decided whether it should be used for adding a third CM-tool, for digging
deeper into one of the tools or for exploring completely new aspects like PDM or pro b-
lem reporting. The structure with themes that fit into one week of activities is also
something that we want to maintain. Thus any changes that are made will have to
respect that constraint.

Ulf Asklund and Lars Bendix 256

The contents of the course seems to be appropriate and has not created any pro b-
lems. However, this is the point where we see the greatest potential for improving and
fine-tuning the course. Spending three weeks on topics from the developer and project
spheres and one week on topics from the company sphere may seem a bit unbalanced
– and we would not disagree. The reason for the present division is in part due to the
schedule constraints mentioned above. However, that does not mean that we could
not treat topics that are general for all levels – like the change process – at the deve l-
oper level and thus only deal with the more formal aspects of already seen solutions at
the higher levels. We also contemplate writing our own course material. At the present
state we use bits and pieces from many different places. Each part in itself is excellent
and to the point. However, the overall result of putting them together is rather like a
piece of patchwork.

One thing that we are definitely going to change is to make the students even more
active and involved than is the case today. Now all lectures are given by the authors
and the studen ts read the literature in parallel. Lectures are not exposing the literature,
but are exposing the theme and give a "second opinion" on what the students get
from the literature. This could work fine for the basics lectures, but for the advanced
topics lectures we plan to have the students do the presentation. 2-4 papers would be
selected for each advanced lecture session and each paper assigned to a group. This
groups would be responsible for presenting the paper – and all the other groups
would be responsible for having questions for discussion. This system would have
the consequence that the students would work more actively also with the literature.
The groups that had to present a paper on an advanced topic would get an even
deeper insight than today, and the rest of the groups would probably also work more
with the material during reading. Finally, it would transform the lectures from passive
listening to active discussion.

Another thing that we will do in the near future it to cast the course in other con-
texts. One of the authors has previously given the traditional two lectures on SCM
within a general course on software engineering. How could we take the present
course and fit it into two or three lectures? Should it be scaled or should we cut it
down – and can it be done from our set up or will it have to a course of its own? Fu r-
thermore, in the context of a research collaboration with industry, we have to give a
one-day course on SCM to future project managers. Again, how can we fit the present
50 hours into one day? Finally, we are considering a post-graduate course on SCM
and the above mentioned changes to actively involve students may be one step in
turning the present course into a post-graduate course.

7 Conclusions

We have shown that SCM does not have to be confined to a couple of lectures within
another course. SCM is rich enough in important topics to fill a whole course on its
own. Given more time, the students also reach a higher level of theoretical understand-
ing making it possible for them to analyse and reflect about different situations and

A Software Configuration Management Course 257

solutions. Students like SCM – out of a student population of 80-100 we have 15-20
students and 4-6 exchange students taking the course.

We have made a proposal for the structure and contents of such a course. We have
gained some experience giving the course twice and have stated some ideas for
changes and improvements. Obviously this is not the final word and we welcome sug-
gestions and discussion that can contrast and complement our experience with other
experience from the SCM community.

References

1. B. Appleton, S. P. Berczuk, R. Cabrera, R. Orenstein: Streamed Lines: Branching Patterns
for Parallel Software Development,
http.//www.cmcrossroads.com/bradapp/acme/branching/streamed-lines.html, 1998

2. U. Asklund: Configuration Management for Distributed Development – Practice and Needs,
Lund University , 1999

3. U. Asklund, L. Bendix, H. Christensen, B. Magnusson: The Unified Extensional Versioning
Model, in proceedings of SCM -9, Toulouse, France, September 5-7, 1999

4. U. Asklund, I. Crnkovic, A. Hedin, M. Larsson, A. Persson Dahlquist, J. Ranby, D. Svens-
son: Product Data Management and Software Configuration Management – Similarities and
Differences, Sveriges Verkstadsindustrier, 2001

5. U. Asklund, L. Bendix: A Study of Configuration Management in Open Source Software, in
IEE Proceedings – Software, Vol. 149, No. 1, February 2002

6. W. A. Babich: Software Configuration Management: Coordination for Team Productivity,
Addison-Wesley, 1986

7. M.E. Bays: Software Release Methodology, Prentice-Hall, 1999
8. L. Bendix, P. Nowack: Software Architecture and Configuration Management, in 4th Work-

shop on Object-Oriented Architectural Evolution, Budapest, Hungary, June 18, 2001
9. L. Bendix, O. Vinter: Configuration Management from a Developer's Perspective, in proceed-

ings of the EuroSTAR2001 Conference, Stockholm, Sweden, November 19-23, 2001
10. H.R. Berlack: Software Configuration Management, John Wiley & Sons, 1992
11. B.S. Bloom (ed.): Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain,

Addison-Wesley, 1984
12. W. J. Brown, H. W. McCormick III, S. W. Thomas: AntiPatterns and Patterns in Software

Configuration Management, Wiley, 1999
13. S.B. Compton, G. Connor: Configuration Management for Software, Van Nostrand Rein-

hold, 1994
14. M.A. Daniels: Principles of Configuration Management, Advanced Applications Consult-

ants, 1985
15. S. Dart: Configuration Management: The Missing Link in Web Engineering, Artech House,

2000
16. S. Dreyfus, H. Dreyfus: Mind Over Machine: The Power of Human Intuition and Expertise

in the Era of the Computer, Simon & Schuster, 2000

Ulf Asklund and Lars Bendix 258

17. J. Estublier: Configuration Management – The Notion and the Tools, in proceedings of the
International Workshop on Software Version and Configuration Control, Grassau, Ger-
many, January 27-29, 1988

18. J. Estublier: Software Configuration Management: A Roadmap, in proceedings of The Fu-
ture of Software Engineering, Limerick, Ireland, June 4-11, 2000

19. P. Feiler: Configuration Management Models in Commercial Environments , Software Engi-
neering Institute, 1991

20. G. Hedin, L. Bendix, B. Magnusson: Introducing Software Engineering by means of Extreme
Programming, in proceedings of the International Conference on Software Engineering,
ICSE 2003, Portland, Oregon, May 3-10, 2003

21. M. Kelly: Configuration Management – The Changing Image, McGraw-Hill, 1996
22. D.A. Kolb: Experiental Learning: Experience as the Source of Learning and Development,

Prentice-Hall, 1984
23. D. Leblang: The CM Challenge: Configuration Management that Works, in W. F. Tichy (ed.)

Configuration Management, John Wiley and Sons, 1994
24. A. Leon: A Guide to Software Configuration Management, Artech House Computer Library,

2000
25. T. Mikkelsen, S. Pherigo: Practical Software Configuration Management: The Latenight

Developer's Handbook, Prentice-Hall, 1997
26. R.S. Pressman: Software Engineering: A Practitioner's Approach, McGraw -Hill, 1997
27. J.A. Scott, D. Nisse: Software Configuration Management, in Guide to the Software Engi-

neering Body of Knowledge, Version 1.0, May 2001
28. I. Sommerville: Software Engineering, Fifth Edition, Addison-Wesley, 1995
29. W.F. Tichy: Tools for Software Configuration Management, in proceedings of the Interna-

tional Workshop on Software Version and Configuration Control, Grassau, Germany, Janu-
ary 27-29, 1988

30. B. White: Software Configuration Management Strategies and Rational ClearCase: A Practi-
cal Introduction, Addison-Wesley, 2000

31. D. Whitgift: Methods and Tools for Software Configuration Management, John Wiley and
Sons, 1991

Applications of Configuration Information

to Security

Dennis Heimbigner

Computer Science Department
University of Colorado

Boulder, CO, 80309-0430, USA
dennis.heimbigner@colorado.edu

Abstract. Securing software systems against malicious attack, corrup-
tion, and subversion has been an ongoing research problem. Novel ap-
plications of software configuration technology may provide solutions to
these problems. Three interesting problems and potentials solutions are
presented. The problems are intrusion tolerance, misuse protection, and
cyber-forensics. The first two can be addressed using dynamic reconfig-
uration to modify the behavior of a software system. The last problem
can be addressed using configuration information as a comprehensive
framework on which to hang a variety of other information necessary for
forensic analysis.

1 Introduction

Securing software systems against malicious attack, corruption, and subversion
has been an ongoing research problem. With the advent of the Internet, solving
these problems is increasingly seen as essential as use of networked computers
continues to pervade every aspect of society.

In the last few years, the Software Engineering Research Laboratory at the
University of Colorado has been developing novel applications of configuration
information to the problem of computer security. This builds upon a longer
history of research into configuration management [1,2,3,4,5].

Our initial work (Section 2) addressed the problem of responding to attacks
against software systems once those attacks were detected. In contrast to the
large amount of work in intrusion detection, intrusion response had been gener-
ally neglected. We recognized that an interesting approach to response was to
provide automated modifications to the behavior of software in order to make
it more resistant to attacks or to mitigate an ongoing attack. Such behavior
modifications clearly required the ability to dynamically reconfigure a software
system, and that in turn depended on being able describe a set of run-time
configurations that embodied the modified behavior.

Since that initial work, we have begun to identify additional research prob-
lems in security for which configuration information may provide an approach
for solving those problems. We use the term configuration information broadly
to include traditional development-time configuration-management information

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 259–266, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

260 Dennis Heimbigner

as well as the post-development configuration information such as deployment
information [6] and run-time architecture information [3].

In the remainder of this paper, we identify three interesting problems that we
believe can be attacked effectively using configuration information. The first two,
intrusion tolerance, and misuse protection, have solutions that rely on the ability
to modify the behavior of a software system by dynamic reconfiguration. The
last problem, cyber-forensics, can be addressed using configuration information
as a comprehensive framework on which to hang a variety of other information
necessary for forensic analysis.

2 Intrusion Response

The Willow project was our first application of configuration information to
security problems. Willow provides automated responses to attacks against soft-
ware systems. The problem of responding to attacks has received only limited
attention until recently. Currently most responses are manual, and manual pro-
cedures - however well designed and tested - cannot react to security breaches
in a timely and coordinated fashion.

Willow is a joint effort of the University of Colorado, the University of Vir-
ginia, and the University of California at Davis that supports software system
survivability by modifying the behavior of the system to improve its defenses or
to mitigate the effects of an attack after it has occurred. This is accomplished
through an architecture [7] that supports a secure, automated framework for
dynamically reconfiguring large-scale, heterogeneous, distributed systems.

The Willow architecture supports reconfiguration in a very broad sense, and
reconfiguration in this context refers to any scenario that is outside of normal,
”steady-state” operation. Thus, for example, initial system deployment is in-
cluded intentionally in this definition, as are system modifications, posturing
and so on. All are viewed merely as special cases of the general notion of recon-
figuration. More specifically, the system reconfigurations supported by Willow
are:

– Initial application system deployment.
– Periodic application and operating system updates including component re-
placement and re-parameterization.

– Planned posture changes in response to anticipated threats.
– Planned fault tolerance in response to anticipated component failures.
– Systematic best efforts to deal with unanticipated failures.

In order to reconfigure a system, it must, of course, be composed of functional
components. This in turn presumes that the overall architecture of the system
conforms to some component-based mechanism that is capable of supporting
reconfiguration. A number of such architectures exist, including EJB (J2EE),
CORBA, Web Services (UDDI), and OSGI. We are currently focusing on EJB
and OSGI for our target application architectures.

Applications of Configuration Information to Security 261

��������

�	�
���	�
���	�
��

�	���� ������
� ������ ����
�� ��	
�
�

���
������

������ ���	�

��������	���

����������	��

Fig. 1. Intrusion tolerance life cycle

Reconfiguration takes place after a decision is made that it is required. An
important element of the Willow approach is the integration of information from
sensing mechanisms within the network (such as intrusion detection systems) and
information from other sources (such as intelligence data).

Responses are of two kinds: proactive and reactive. Proactive responses at-
tempt to harden a software system before it is attacked. In addition, we view
the initial, correct installation of a system and the subsequent upgrades to be
a form of proactive reconfiguration because many system failures have occurred
purely through the mis-configuration of a system during normal maintenance.

Proactive reconfiguration adds, removes, and replaces components and inter-
connections, or changes their mode of operation. This form of reconfiguration,
referred to as posturing, is designed to limit possible vulnerabilities when the
possibility of a threat that will exploit them is heightened. Examples of postur-
ing would be a network-wide shutdown of non-essential services, strengthening
of cryptographic keys, and disconnection of non-essential network links. These
actions might be initiated by system or security administrators when they are
notified of the release of a new worm or are informed about infections that have
already been observed elsewhere in the Internet.

In a complementary fashion, reactive reconfiguration adds, removes, and re-
places components and interconnections to restore the integrity of a system in

262 Dennis Heimbigner

bounded time once damage or intrusions have taken place. In Willow, mech-
anisms are provided for both the detection of penetrations and the recovery
from them. As an example, the network might detect a coordinated attack on
a distributed application and respond automatically by activating copies of the
application modules on different network nodes while configuring the system to
ignore the suspect modules. The system would perform this modification rapidly
and inform system administrators of the change.

In addition to proactive and reactive configuration, Willow uses reconfigura-
tion to support a return to normalcy. After either a proactive or reactive recon-
figuration, the software system is typically not in a state that can be continued
as a normal operating state because of the cost in resources. When system or
security administrators recognize that the danger is past or perhaps an effective
patch is available, then they can invoke reconfiguration to ”un-harden” the ef-
fects of a potentially expensive proactive reconfiguration, to apply any available
patches, and also to repair any residual effects of an attack.

Figure 1 illustrates a simple application scenario using Willow. The bottom
of the figure illustrates the analysis before deployment of the specific application
to produce the set of specific postures. This analysis is derived from vulnerability
analysis and also an analysis of anticipated threats. Operational experience and
even intelligence information may also play a part in determining the necessary
postures. Note that part of the analysis must deal with the situation in which
the nature of the attack is unknown, and one or more “disaster” postures must
be produced.

After analysis, the application is deployed and is started under the watch
of Willow, as shown in the top half of Figure 1. The application starts in its
normal state. Suppose that it is then attacked; this puts it in a disrupted state.
Willow is invoked to apply an appropriate posture to reactively reconfigure the
application to repair it. Later, the system administrator learns of a threat to the
system and so invokes Willow proactively to put the application into a protected
(hardened) state. When the threat has passed, then the administrator will again
invoke Willow to move it from its now over-hardened state back to its normal
state.

3 Misuse Protection

Detecting and controlling misuse of software systems is increasingly recognized
as an important problem. This is most often cast as the ”insider problem,” where
a person with legitimate access to a system utilizes that access to subvert the
system. Detecting misuse of software may be viewed as a special case of the
intrusion detection problem. Unfortunately, it suffers from the same difficulties
as many current intrusion detection systems, which have significant problems
with false alarms. The term ”false alarm” means that some person or mechanism
has detected a pattern of behavior that appears superficially to be suspect, but
upon further investigation, turns out to be, in fact, benign behavior.

Applications of Configuration Information to Security 263

False alarms present serious difficulties for security administrators. When
the response to the alarm is performed manually, the responder (typically the
security/system administrator) can be overwhelmed by large numbers of false
alarms and can miss genuine alarms. For automated responses, false alarms
can cause overall system operation to seriously degrade as the system thrashes
between normal states and intrusion resistant states.

What is needed is a more controlled sequence of responses to potential misuse
that allows for better response to false alarms while retaining the ability to
disarm (and later rearm) the software by degrees. Thus, false alarms would
be met with more measured responses that provide both time and information
necessary to verify the correctness of the alarm. As the seriousness of the misuse
is ascertained, more severe responses can be brought to bear. In the event of a
false alarm, the response sequence and its effects should be reversible so that
normal operation is resumed.

We are addressing this problem by using controlled dynamic reconfiguration
to achieve the desired graduated response. In this approach, components and
data sets of a software system are systematically and dynamically modified, or
replaced, to establish modified or new behaviors for that software system. This
work builds on the Willow project to provide the reconfiguration infrastructure.
This project is building specific postures for the purpose of explicitly degraded
operation.

The key element of our approach is to use configuration information to re-
configure the software system into increasingly informative and increasingly de-
graded modes of operation. By informative, we mean that the component begins
to capture and report more detailed information about suspicious activities. By
degraded, we mean that the component begins to modify its outputs and actions
to reduce its functionality, or in more extreme case, even practice deception and
provide wholly or partially false outputs. This latter use of deception represents
a new use for the concepts first introduced by Cohen [8,9].

As with Willow, we assume a reconfigurable application architecture. How-
ever, our approach here is to try to be as generic as possible so that this work can
support a wide variety of application architectures only limited by the underlying
infrastructure.

Degradation of data is as important as degradation of functionality. A closely
related project is examining client-side degradation of web browsers. In this
project, the goal is to provide a systematic approach for providing modified
web content to a client who is potentially misusing the information. This work
may also branch out into the degradation of other data sources including office
documents, and databases.

The approach we are developing also provides two additional capabilities.
The first is self-destruction - the ability to reconfigure the software so that it
appears to be working but has in fact had all important information and ca-
pabilities destroyed, ideally without immediate knowledge by the misuser. The
second is restoration - the ability to reconfigure the software to undo degrada-
tion responses; this is a unique capability made possible by our use of dynamic

264 Dennis Heimbigner

reconfiguration, and is important in the event of false alarms or the external
neutralizing of the misuse threat.

4 Cyber-Forensics

Computer forensic analysis is an important element in overall response to cyber-
attacks. When a system crashes, it is critically important to quickly identify
the cause of the crash in order to determine if it was caused by an attack. It is
then important to identify anomalies indicating the attack mechanism and the
consequent effects in order to develop a defense against the attack.

Existing analysis tools such as the Coroner’s Toolkit [10] are excellent at
providing large quantities of information about the state of a crashed computer.
Unfortunately, this information is available only at a low level using abstractions
provided by the operating system: the processes running and the files that are
open, for example.

What is desperately needed is a set of higher level abstractions that can
provide more insight into the state of the system so that a forensic analyst can
focus on the anomalies and quickly identify the nature of any attack.

We are working on an approach that utilizes various models of software sys-
tems to organize and present high level abstractions about the state of crashed
systems. In particular, we are using run-time configuration information as the ba-
sis for this organization. We plan to provide both the ”should-be” configuration
and the ”as-is” configuration. The former represents the range of legal config-
urations for which a system was designed. The latter represents the apparent
configuration of the system as it was at the time of the crash. These representa-
tions provide important structural information about the programs that should
be, and are, running and how they relate to each other. They provide a high
level framework to which other, related information can be attached to provide
a growing complex of information about the state of the crashed system. They
will also become the basis for presenting the information in ways that will high-
light discrepancies between the expected state and the crash state in order to
guide the forensic analyst to potential problems. It should be noted that this ap-
proach has much in common with the concepts advanced by van der Hoek [11],
where it is proposed that architecture information be used to integrate develop-
ment time information. We take a similar approach, but are using it at a very
different point in the life cycle of a software system. This approach also has a
relationship to application-level intrusion detection [12] in which the behavior of
the system is monitored to look for anomalies based on a comparison to a model
of the system.

Our approach can also address the forensic analysis of distributed systems.
Such systems are difficult to analyze with existing forensics tools because those
tools find it difficult to relate information from one machine with information
from another machine. We can use configuration information about the archi-
tecture of a distributed application to help relate information across machines.

Applications of Configuration Information to Security 265

Thus, it is possible to indicate that process X on machine 1 is a server that was
connected to the client process Y on machine 2.

Another important new research issue raised by this approach involves mod-
eling of system state. Just as with code, the state of a system has substantial
structure and may have multiple versions. This project will need to investigate
the definition and manipulation of useful configuration models for system state.

We plan to build our research prototype using the University of Colorado
Information Integration framework [13]. This framework supports the dynamic
integration of a wide variety of information sources, and this is exactly what is
needed for forensic analysis. Using this framework, we will explore the following
capabilities:

– Maintenance of the ”should-be” configuration,
– Bottom-up construction of the ”as-is” configuration based directly on anal-
ysis of the crash data,

– Integration of the massive amounts of existing (but unstructured) crash anal-
ysis data provided by the Coroner’s Toolkit.

– Cross-machine relationships for distributed applications.

Over time, this framework can then be extended to include data from addi-
tional sources, subsequent analyses of that data, and additional models of the
system. We believe that our use of configuration information as the core will
produce a forensic analysis system significantly superior to the relatively un-
integrated products currently available.

5 Summary

This paper illustrates some new uses for configuration information. Three prob-
lems are presented:

1. Intrusion Response,
2. Misuse Protection, and
3. Cyber-Forensics.

For each problem, it is shown how appropriate use of configuration informa-
tion can significantly contribute to solving the problem. For the first two prob-
lems, the information supports behavior changes through dynamic reconfigura-
tion. For the last problem, configuration information is used as a comprehensive
framework upon which to coalesce and integrate forensic data.

Acknowledgments

This material is based in part upon work sponsored by the Air Force Research
Laboratories, SPAWAR, and the Defense Advanced Research Projects Agency
under Contract Numbers F30602-00-2-0608 and N66001-00-8945. The content
of the information does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

266 Dennis Heimbigner

References

1. Hall, R., Heimbigner, D., Wolf, A.: A Cooperative Approach to Support Software
Deployment Using the Software Dock. In: Proc. of the 1999 Int’l Conf. on Software
Engineering, ACM (1999) 174–183

2. Heimbigner, D., Krane, S.: A Graph Transform Model for Configuration Man-
agement Environments,. In: Proc. of the Third ACM-SIGSOFT Symposium on
Software Development Environments, Boston, Mass. (1988) 216–225

3. Rutherford, M., Anderson, K., Carzaniga, A., Heimbigner, D., Wolf, A.: Recon-
figuration in the Enterprise JavaBean Component Model. In: Proc. of IFIP/ACM
Working Conf. on Component Deployment, Berlin, FRG (2002)

4. van der Hoek, A., Carzaniga, A., Heimbigner, D., Wolf, A.: A Testbed for Config-
uration Management Policy Programming. IEEE Transactions on Software Engi-
neering 28 (2002) 79–99

5. van der Hoek, A., Heimbigner, D., Wolf, A.: A Generic, Peer-to-Peer Repository
for Distributed Configuration Management. In: Proc. of the 18th Int’l Conf. on
Software Engineering, Berlin, FRG, (1996)

6. Hall, R., Heimbigner, D., Wolf, A.: Evaluating Software Deployment Languages
and Schema. In: Proc. of the 1998 Int’l Conf. on Software Maintenance, IEEE
Computer Society (1998) 177–185

7. Knight, J., Heimbigner, D., Wolf, A., Carzaniga, A., Hill, J., Devanbu, P.: The Wil-
low Survivability Architecture. In: Proc. of the Fourth Information Survivability
Workshop, Vancouver, B.C. (2002)

8. Cohen, F.: A Mathematical Structure of Simple Defensive Network Decep-
tions. Technical report, Fred Cohen and Associates Technical Report (1999)
http://all.net/journal/deception/mathdeception/mathdeception.html.

9. Cohen, F., D.Lambert, Preston, C., Berry, N., Stewart, C., Thomas, E.: A Frame-
work for Deception. Technical report, Fred Cohen and Associates Technical Report
(2001) http://all.net/journal/deception/Framework/Framework.html .

10. Farmer, D., Venema, W.: Coroner’s Toolkit Web Page. (1999)
http://www.fish.com/tct.

11. van der Hoek, A.: Configurable Software Architecture in Support of Configura-
tion Management and Software Deployment. In: Proc. of the ICSE99 Doctoral
Workshop, Los Angeles, California (1999)

12. Ko, C., Brutch, P., Rowe, J., Tsafnat, G., Levitt, K.: System Health and Intru-
sion Monitoring Using a Hierarchy of Constraints. In: Proc. Recent Advances in
Intrusion Detection. (2001) 190–203

13. Anderson, K., Sherba, S., Lepthien, W.: Towards Large-Scale Information Integra-
tion. In: Proc. of the 24th Int’l Conf. on Software Engineering, Orlando, Florida
(2002) 524–535

Towards Software Configuration Management

for Test-Driven Development

Tammo Freese

OFFIS, Escherweg 2, 26121 Oldenburg, Germany
tammo.freese@offis.de

Abstract. Test-Driven Development is a technique where each change
to the observable behavior of a program is motivated by a failing test.
High design quality is maintained by continuous small design improve-
ments called refactorings. While some integrated development environ-
ments support automated refactoring, they do not handle problems that
occur if refactorings are used in development teams or on published inter-
faces. This paper outlines the idea of a specialized software configuration
management tool which integrates into a development environment to
record the steps of Test-Driven Development as operations. These oper-
ations are useful for summarizing local changes, merging parallel changes
and for migrating code that uses published interfaces.

1 Introduction

Test-Driven Development (TDD) [3] is the core development strategy of Extreme
Programming [2]. The main ideas of TDD are to test a program before writing
it, and to continuously maintain a simple design.

Each change of the observable program behavior has to be motivated by a
failing test. Seeing the test fail is important, as it verifies that the code does
not fulfill the test’s expectations. After writing just enough code to meet the
new expectations, all the tests have to pass to verify that the new expectation
as well as all the old ones are fulfilled. The tests are written by developers in
the development language itself using a testing framework like JUnit [10]. The
GUI front ends of these frameworks provide visual feedback. A green bar means
that all tests passed, while a red one means that at least one test failed. Each
development step may be understood as a state transition green–red–green.

Every development step introduces new behavior. The current design is often
not fitted to incorporate the new behavior, so it may grow more complex with
every change. To keep the design straightforward and easy to understand, it is
required to improve it without changing the observable behavior of the code.
This is known as refactoring [7]. In TDD, refactoring is only allowed if all exist-
ing tests pass. Since refactorings do not change the observable behavior, all tests
still have to pass afterwards. Refactoring steps thus may be understood as state
transitions green–green. Refactoring steps are typically small. Bigger refactorings
are achieved by many small steps. Examples for refactorings in Java are renam-
ing classes, interfaces or methods as well as extracting and inlining methods.

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003, LNCS 2649, pp. 267–273, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

268 Tammo Freese

As performing refactorings manually is slow and error-prone, tool support is es-
sential. Some integrated development environments (IDEs) support automated
refactoring and thus speed up TDD. However, there are still some shortcom-
ings in using local version histories, merging changes and applying changes to
published interfaces.

1.1 Local Version History

TDD is a feedback-driven development style with many small steps. From time to
time the development may take a wrong path, so that backtracking is necessary.
Common examples are a new test requiring too much code to be written so that
the developer does not get back to a green state quickly, or an experimental
refactoring route which led to an overly complex or otherwise inappropriate
design.

Many IDEs provide undo/redo features, some even provide local histories
that allow backtracking to every saved version. However, the huge number of
steps in TDD clutters local histories, making it difficult to identify interesting
targets for backtracking. An additional problem is that local changes and versions
often do not carry additional information, like whether they are refactorings
or whether the tests passed. Undo/redo is usually file-related and not project-
related, and too fine-grained for backtracking. Common implementations even
lose information, since undone development routes cannot be reached again after
changes.

1.2 Merging Changes

Commercial software configuration management (SCM) tools usually rely on
textual merging [12]. Refactorings often lead to problems when using textual
merging. Suppose we have a method x(). While developer A renames the method
to y(), developer B implements a new method using the old signature x(). Text-
oriented SCM tools will show no merge conflicts, but the resulting code will not
compile. Even worse, if both developers rename the same method to different
names, textual merging leads to conflicts at every invocation of the method.

Another problem is method inlining. If developer A inlines method x() while
developer B invokes it in a new code fragment, no merge conflicts will be shown,
although the resulting code will not compile.

1.3 Changing Published Interfaces

Many software development projects work on libraries or frameworks. Changing
published interfaces breaks client code and is therefore discouraged. Typical
recommendations are to publish as little as possible as late as possible or to make
changes additions [8,5]. While following these rules is generally useful, it makes
TDD more difficult, since refactorings cannot be applied easily to published
interfaces.

Towards Software Configuration Management for Test-Driven Development 269

2 Software Configuration Management for Test-Driven
Development

The main reason for the problems described in section 1 is the missing support
for Test-Driven Development in current SCM systems, as they are not aware
of the development steps. Our goal is therefore to build a specialized SCM for
Test-Driven Development.

2.1 Local Change History

As the SCM should be based on the steps of TDD, these steps have to be
recorded. By integration into an IDE, events like saving files, refactorings, compi-
lation success/failure and test success/failure may be gathered. With additional
information from the source code, we get a sequence of changes, each of them
either a delta for some source files or an automated refactoring. Each change
may carry additional information on compilation success (compilable change)
or failure (non-compilable change) and test success (green change) or failure
(red change). With these changes, a simple mechanism for backtracking may be
implemented. Backtracking itself is recorded as a kind of change as well.

The stream of changes contains the complete development path, but it does
not provide an overview. To focus on important information, the changes are
structured into a tree by organizing changes under new parent nodes. Each
parent node is regarded as a change and inherits the additional information
from its last child. Parent nodes are introduced for various change sequences:

– backtracking changes with all preceding changes they have undone
– changes where compilation was triggered with all preceding changes that

were not compiled
– compilable changes with all preceding non-compilable changes
– changes where tests were invoked with all preceding changes where the tests

were not invoked
– a maximal sequence of red changes followed by a green change, i.e. a TDD

development step
– a maximal sequence of green changes after a green change, i.e. a sequence of

TDD refactoring steps

Figure 1 shows a small example where 11 changes are structured in a tree. In
the collapsed form, the tree only shows 3 elements.

2.2 Merging Changes

The local change sequence provides valuable information for merging parallel
changes. Our goal is to combine operation-based merging [11] with syntactic
software merging [4]. Operation-based merging uses the operations that were
performed during development. Syntactic software merging takes the program-
ming language syntax into account.

270 Tammo Freese

before aggregation after aggregation
number type compile test number type compile test

37–38 non-compilable change F
38 change F 38 change F
37 change 37 change

35–36 refactoring step S S
36 refactoring S S 36 refactoring S S
35 refactoring S 35 refactoring S

28–34 development step S S
33–34 green change S S

34 change S S 34 change S S
33 change F 33 change F

28–32 red change S F
30–32 compilable change S F

32 change S F 32 change S F
31 change 31 change
30 change 30 change

28–29 non-compilable change F
29 change F 29 change F
28 change 28 change

S: success, F: failure

Fig. 1. Aggregating changes

For merging parallel changes, we would like to use operation sequences where
the code compiles after each change. Thus it is required that the local change
sequence starts and ends with compilable code. The operation sequence is created
by pruning all the development paths that were undone by backtracking, and
combining each compilable change with all its preceding non-compilable changes.

Each operation, then, is either a refactoring or a change to one or more
source files. We assume that we have an initial state X of the source code and
two operation sequences (transformations in [11]) Ta = Ta,nTa,n−1 . . . Ta,1 and
Tb = Tb,mTb,m−1 . . . Tb,1. The typical situation is that a developer (B) would
like to release his changes Tb to X into the repository. While he worked on his
changes, another developer (A) has released his changes Ta. The result of the re-
lease should then be TbTaX = Tb,mTb,m−1 . . . Tb,1Ta,nTa,n−1 . . . Ta,1X . Since the
operations Tb were applied to X and not to TaX , conflicts may occur. The ap-
proach followed here is to check each operations of Tb for conflicts with operations
of Ta. Conflicts are resolved by modifying the operations of Tb (automatically
or manually). The rationale behind this is that Ta is never changed, since it is
already stored in the repository.

In merging, the basic assumption for operation-based merging is used: If the
result of applying two transformations stays the same after changing their order,
the result is a good candidate for merging [11]. For merging two non-refactoring
operations, syntactic software merging [4] should be used to minimize conflicts.
If a change cannot be applied after a refactoring, it is often sufficient to apply the
refactoring on the change itself. The same strategy works for many conflicting

Towards Software Configuration Management for Test-Driven Development 271

refactorings. If this strategy does not work, in most cases the conflict is due to
a name clash. An example would be a change operation which adds method x()
and a refactoring renaming method y() to x(). These cases may be resolved
automatically by either modifying the change operation or the refactoring to use
another target name. Remaining conflicts should be solved interactively.

2.3 Changing Published Interfaces

If a library or framework is developed, refactorings on published interfaces have
to be applied to dependent code, too. Since the change operations themselves
are stored in the SCM, a refactoring script may be created for the operation
sequence since the last published version of the library. A migration tool may
apply these refactorings on dependent code by using the refactoring capabilities
of existing tools. Such a tool is expected to reduce migration costs in these cases
drastically, so that the development team may establish more liberate change
policies on published interfaces.

3 Related Work

The SCM tool outlined here combines various ideas, among them using the
change history in the development process, operation-based and syntactic soft-
ware merging as well as applying refactorings to code that uses published inter-
faces. This section summarizes these ideas and relates them to this paper.

3.1 Version Sensitive Editing

In [1], David L. Atkins describes the idea of enhancing the development pro-
cess by making the change history easily available to the programmer. The tool
described there is capable of showing the history for each line of code, thus sim-
plifying the identification of errors introduced earlier. The local change history
described in section 2.1 is guided by the same idea, but takes another approach.
In TDD, different ideas for a code change are often just tried one after another,
so it is important to be able to roll back the whole project to an earlier version.
So instead of showing the history of a line of code, the change history here shows
the history of the whole project.

3.2 Local Change Histories

Some IDEs ([6,9]) include local change histories which allow rolling back either
single methods or files or the whole project to older versions. The local change
history proposed here only allows to roll back the whole project. Its advantages
are that it simplifies finding interesting targets for backtracking by structuring
the development steps, and its awareness for refactoring operations which may
later be used in merging.

272 Tammo Freese

3.3 Operation-Based Merging

Most SCM tools use state-based merging, as they only have initial and final
versions available.

Operation-based merging [11] uses the operations that were performed during
development. As refactorings are typical operations in TDD, section 2.2 proposes
to use them as operations in merging. All other changes are combined to change
operations.

In [11], the operation sequences leading to different versions may both be
changed to create the merge result. The approach described here requires that
the sequence already in the repository is not changed: All changes have to be
applied to the sequence which is not in the repository. As a result, the repository
contains a stream of operations from version to version, which may be used for
migration of dependent code.

3.4 Syntactic Software Merging

In [4], Jim Buffenbarger provides an overview on methods of software merging,
including the idea of syntactic software merging that uses the programming lan-
guage for merging. Since the source code is compilable before and after each
change operation in section 2.2, two non-refactoring operations are good candi-
dates for syntactic merging.

3.5 Refactoring Tags

The strategies for changing published interfaces mentioned in section 1.3 are
inappropriate for Extreme Programming, since they focus on avoiding change.
In [13], Stefan Roock and Andreas Havenstein describe the concept of special
tags for framework development. The tags describe refactorings applied to the
framework. They are used by a migration tool to help application developers in
migrating their source code to a new version of the framework.

In comparison to the approach described here, the advantage of refactoring
tags is their independence of the development environment: They may be used
in every IDE or editor. However, the refactoring information is not gathered
automatically, but has to be added manually.

4 Current Status and Future Work

The SCM outlined in this paper is currently under development for the Java
programming language. It is integrated into the open source IDE Eclipse [6]
which provides a huge number of plug-in points which greatly simplify tool inte-
gration. At the time of writing (February 2003), the local change history works,
and plug-in points for providing local change types as well as building the tree
structure for the change sequence are finished. Since Eclipse does not yet pro-
vide information on invoked refactorings, we added a related plug-in point, and
currently work on creating the operation sequence from the local development
steps.

Towards Software Configuration Management for Test-Driven Development 273

References

1. Atkins, D.L.: Version Sensitive Editing: Change History as a Programming Tool.
In: Magnusson, B.: Software Configuration Management: ECOOP’98 SCM-8 Sym-
posium. Springer (1998)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(1999)

3. Beck, K.: Test-Driven Development: By Example. Addison-Wesley (2003)
4. Buffenbarger, J.: Syntactic Software Merging. In: Estublier, J. (ed.): Software Con-

figuration Management: Selected Papers SCM-4 and SCM-5. Springer (1995)
5. des Rivières, J.: Evolving Java-based APIs.

http://www.eclipse.org/eclipse/development/java-api-evolution.html

(2002)
6. Eclipse home page. http://www.eclipse.org
7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

(1999)
8. Fowler, M.: Public versus Published Interfaces. In: IEEE Software (March/April

2002)
9. IntelliJ IDEA home page. http://www.intellij.com
10. JUnit home page. http://www.junit.org
11. Lippe, E., van Oosterom, N.: Operation-based Merging. Lecture Notes in Computer

Science, Vol. 1000. In: Proceedings of ACM SIGSOFT’92: Fifth Symposium on
Software Development Environments (SDE5) (1992)

12. Mens, T.: A State-of-the-Art Survey on Software Merging. In: IEEE Transactions
on Software Engineering, vol. 28, no. 5 (2002)

13. Roock, S., Havenstein, A.: Refactoring Tags for automated refactoring of frame-
work dependent applications. XP2002 Conference (2002)

Author Index

Asklund, Ulf 245

Barkstrom, Bruce R. 118
Bendix, Lars 245
Bustard, David 191

Carzaniga, Antonio 231
Castaldi, Marco 231
Chu-Carroll, Mark C. 40
Conradi, Reidar 24

Dolstra, Eelco 102
Dui, Daniel 148

Emmerich, Wolfgang 148
Estublier, Jacky 1, 163

Freese, Tammo 267

Garćıa, Sergio 1
Gordon, Dorrit 70

Heimbigner, Dennis 259
Hoek, André van der 177, 217

Inverardi, Paola 231

Kojo, Tero 86

Le, Anh-Tuyet 163
Lingen, Ronald van der 177

Männistö, Tomi 86
Mennie, David 54
Morrow, Philip 191

Ommering, Rob van 16
O’Reilly, Ciaran 191

Pagurek, Bernard 54

Soininen, Timo 86
Sowrirajan, Sundararajan 217

Tosic, Vladimir 54

Vega, Germán 1
Villalobos, Jorge 163

Westfechtel, Bernhard 24
Whitehead, E. James Jr. 70
Wiborg Weber, Darcy 206
Wienberg, Axel 134
Wolf, Alexander L. 231
Wright, James 40

	Front matter
	Software Configuration Management
	Preface
	Program Committee of SCM 2003
	Table of Contents

	Chapter 1
	1 The Problem
	1.1 Merge Control

	2 High Level Concurrent Engineering Policies
	2.1 Product Data Model
	2.2 Workspaces
	2.3 Groups
	2.4 CE Global Policies
	2.5 Policy Definitions
	2.6 Local Policies
	2.7 Summary

	3 The CE Tool
	4 Conclusion
	References

	Chapter 2
	Chapter 3
	Introduction
	Software Process
	Software Architecture
	Definition
	Architectural Languages
	Tools

	Software Configuration Management
	Definition
	Concepts, Models, and Languages
	Tools

	Interplay of Software Architecture and SCM
	Integration Approaches
	Orthogonal Integration
	SCM-Supported Software Architecture
	Redundant Integration
	SCM-Centered Software Architecture
	Architecture-Centered SCM

	Discussion
	Software Life Cycle
	Tool Integration
	Evolution

	Conclusion

	Chapter 4
	Introduction
	Multidimensionality
	Aggregation and Structure in VSFs
	Queries and Program Organization
	Linguistic Knowledge
	Locks and Coordination

	Hierarchical Replication
	Replication and Change Isolation
	Change Integration
	Hierarchical Coordination

	Related Work
	Conclusion

	Chapter 5
	Chapter 6
	Chapter 7
	Introduction
	Debian Familiar Linux Case
	A Conceptualisation for Modelling Evolution
	Implementation
	Existing Work
	Mapping the Evolution of the Familiar Linux Releases
	Mapping the Conceptualisation to PCML
	Implementation of the Conceptualisation

	Discussion and Related Work
	Modelling Method
	Implementation

	Conclusions and Further Work

	Chapter 8
	Introduction
	Motivation
	Correctness
	Efficiency
	Variability
	Modularity and Composability

	The Maak System
	Deployment
	Implementation
	Related Work
	Conclusion

	Chapter 9
	1 Introduction - On the Meaning of 'Version'
	2 Data Production Paradigms and CM Requirements for Earth Science Data
	3 A Simple Example Data Production Topology
	4 A Deeper Exploration of a Hierachy for Classifying Earth Science Data and File Collections
	5 Discretized Production Processes
	6 Discretized Production Flow Design
	7 Implementing the Graph
	8 Concluding Comments
	References

	Chapter 10
	Introduction and Motivation
	Example Scenario
	Content Schema
	Workspaces and Merging
	Merging Content
	Sets
	Lists
	Maps
	Maps without Duplicates

	Related Work
	Summary and Concluding Remarks

	Chapter 11
	Introduction
	Motivation
	Compatibility
	Syntactic Compatibility
	Static Semantic Compatibility

	Deciding Compatibility between Language Versions
	Syntactic Compatibility
	Static Semantic Compatibility

	Related Work
	Conclusions and Further Work

	Chapter 12
	1 Introduction
	2 An SCM Federation
	2.1 Domain Mapping Models
	2.2 The Abstract Architecure: Composition Relationships
	2.3 Domains
	2.4 The Implementation Relationship

	3 The SCm Federation Implementation
	4 Experience and Validation
	5 Conclusion
	References

	Chapter 13
	Chapter 14
	Introduction
	Extending The Optimistic Model to Aid Communication
	Overview of CVS
	Communication Requirements
	Adding Additional Notifications

	Night Watch
	Design Overview
	Construction Details

	Related Work
	Conclusions

	Chapter 15
	Chapter 16
	Chapter 17
	Introduction
	Background: Network Management
	Lira
	Example
	Related Work
	Conclusions and Future Work

	Chapter 18
	Chapter 19
	Introduction
	Intrusion Response
	Misuse Protection
	Cyber-Forensics
	Summary

	Chapter 20
	Introduction
	Local Version History
	Merging Changes
	Changing Published Interfaces

	Software Configuration Management for Test-Driven Development
	Local Change History
	Merging Changes
	Changing Published Interfaces

	Related Work
	Version Sensitive Editing
	Local Change Histories
	Operation-Based Merging
	Syntactic Software Merging
	Refactoring Tags

	Current Status and Future Work

	Back matter
	Author Index

