
Lecture Notes in Computer Science 2867
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Marcus Brunner Alexander Keller (Eds.)

Self-Managing
Distributed Systems

14th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, DSOM 2003
Heidelberg, Germany, October 20-22, 2003
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Marcus Brunner
NEC Europe Ltd., Network Laboratories
Kurfürstenanlage 36, 69115 Heidelberg, Germany
E-mail: brunner@ccrle.nec.de

Alexander Keller
IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA
E-mail: alexk@us.ibm.com

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): C.2, K.6, D.1.3, D.4.4, K.4.4

ISSN 0302-9743
ISBN 3-540-20314-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

©2003 IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg,Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by DA-TeX Gerd Blumenstein
Printed on acid-free paper SPIN: 10966747 06/3142 5 4 3 2 1 0

Orchestrating Self-Managing Systems

for Autonomic Computing:
The Role of Standards

Thomas W. Studwell

IBM Corporation, Autonomic Computing Architecture and Technology Group
3039 Cornwallis Road, Research Triangle Park, NC 27709-2195, USA

studwell@us.ibm.com

Computing technology has progressed rapidly over the last several decades with
implementations and applications that were unthinkable a decade ago now com-
monplace. The rate of progress, however, has brought its own cost. As large
IT infrastructures grow more complex the cost of managing these systems has
increased rapidly. As a result a greater percentage of the IT budget is going
toward maintenance of the infrastructure rather than improving its benefit to
the business.

One doesn’t have to dig too deeply to understand that this increasing main-
tenance cost is directly related to the increase in complexity of computing tech-
nologies that have become so advanced that traditional manual management
techniques are equally as apt to harm systems rather than enhance them. As
each new technology strives to add enhancements for manageability, the very
controls that were viewed as improving capability are actually weakening sys-
tems because the IT systems become unwieldy from the sheer number of adjust-
ments whose interactions are unknown and virtually unknowable. Couple this
increased complexity with the trend to heterogeneous distributed systems, and
the complexity of the computing environments increases dramatically.

While, at first glance, the solution may seem to be a move back to very sim-
ple IT infrastructures, this is clearly not a viable alternative. The promise of
e-business, distributed computing, and, eventually, Utility computing and Grid
computing is just too great to ignore. For the IT Industry to bring these com-
plex, unmanageable sytems under control it is necessary to move to self-managing
systems where technology itself is used to manage technology. Autonomic sys-
tems in the human body provide the appropriate model for this progression. In
this keynote, we will discuss how self-managing systems, similar to biological
processes found in every living being will not only help solve today’s problem
of increasing complexity but, will, in fact, finally allow IT infrastructures to
directly serve the corporation’s business needs rather than being a static and
poorly implemented attempt to automate yesterday’s business processes.

This last point is vital – the IT industry must think in terms of solving
business solutions rather than each supplier dwelling on the piece parts they
supply to the infrastructure. This can only be accomplished through active par-
ticipation in open standards where issues of interoperability and decomposition
of function for self-managing systems can be properly resolved. In this keynote
we will delineate the opportunities for, and challenges of, standardization of

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 1–2, 2003.
c© IFIP International Federation for Information Processing 2003

2 Thomas W. Studwell

self-managing technologies. The IEEE will play an important role in these stan-
dardization efforts but coordination of work within the IEEE and other key
computing standards bodies, such as DMTF, OASIS, GGF, and IETF, will be
essential to the success of this effort. It is difficult to overstate the importance
for standardization collaboration. It is not enough for localized domains to be
self-managing; every component within the IT infrastructure must participate
in an orchestrated way. Just as the human body has many discrete autonomic
systems but all work toward a single goal, so must all the self-managing systems
in the future IT infrastructure work in a uniform and predictable way.

In this keynote we will describe IBM’s vision for autonomic computing and
how we plan to apply the model of autonomic systems to self-managing systems
with particular focus on problem determination, configuration, and optimization.
At each point we will highlight the key standardization efforts underway with
special emphasis on areas where standardization effort is necessary but not yet
begun.

Ironically, the most prominent gap in standardization exists, not because it
is perceived as unimportant, but precisely because it is recognized as essential
to self-managing systems. The key area is Policy and the rules that govern self-
managing systems. While each standards domain has a reasonable understanding
of its own technology, policy related to the self-management of each domain is,
to a large extent, determined by needs beyond the scope of the domain. Hence,
without coordination of standards across domains the industry is deadlocked into
uncertain or inadequate policy implementations. Breaking this logjam is critical
to the advancement of self-managing system’s standards. Further, breaking this
logjam will allow the fundamental goals of the business to be converted into the
standardized policies that govern the distributed IT domains throughout the
enterprise.

As to the future, as self-managing systems are widely deployed, initial systems
will have very rudimentary control functions. This will create new opportunities
for research and product development in the area of analysis and control nec-
essary to improve efficiency and accuracy of autonomic control. We will discuss
these as well hoping to spark the interest of the DSOM community to join the
call to advance the technologies of self-managing systems.

Biography

Thomas Studwell is a Senior Technical Staff Member in IBM’s Autonomic Com-
puting Architecture and Technology team. In 1975, Tom joined IBM’s Thomas J.
Watson Research Center and has worked for a number of IBM divisions includ-
ing Research, Microelectronics, Networking Systems, and Personal Computing
Devices. Tom joined IBM’s Autonomic Computing Architecture and Technology
group in December, 2002, and is responsible for promoting autonomic computing
technologies in open standards. Tom holds several patents, is an IEEE member,
and has represented IBM on IEEE, PCI SIG, and other industry consortia work-
groups.

Generic Online Optimization

of Multiple Configuration Parameters
with Application to a Database Server

Yixin Diao1, Frank Eskesen1, Steven Froehlich1, Joseph L. Hellerstein1,
Lisa F. Spainhower2, and Maheswaran Surendra1

1 IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

2 IBM Server Group, 2455 South Rd., Poughkeepsie, NY 12601
{diao,eskesen,stevefro,hellers,lisa,suren}@us.ibm.com

Abstract. Optimizing configuration parameters is time-consuming and
skills-intensive. This paper proposes a generic approach to automating
this task. By generic, we mean that the approach is relatively indepen-
dent of the target system for which the optimization is done. Our ap-
proach uses online adjustment of configuration parameters to discover the
system’s performance characteristics. Doing so creates two challenges:
(1) handling interdependencies between configuration parameters and
(2) minimizing the deleterious effects on production workload while the
optimization is underway. Our approach addresses (1) by including in
the architecture a rule-based component that handles interdependencies
between configuration parameters. For (2), we use a feedback mecha-
nism for online optimization that searches the parameter space in a way
that generally avoids poor performance at intermediate steps. Our stud-
ies of a DB2 Universal Database Server under an e-commerce workload
indicate that our approach can be effective in practice.

1 Introduction

The advent of e-Commerce has created a need for responsive and cost-effective
information technology (IT) services. However, the increasing complexity of com-
puting systems has resulted in a correspondingly larger human effort for system
configuration, especially the optimization of configuration parameters. This pa-
per describes a generic approach to automating configuration optimization. The
approach is generic in that it is relatively independent of the target system for
which the optimization is done.

Enterprise level software, especially middleware, has tens to hundreds of con-
figuration parameters. For example, IBM’s DB2 Universal Database Server has
approximately 100 to 200 configuration parameters (e.g., buffer pool sizes, time
delay for writing commit records, maximum number of database applications).
The challenges here are well recognized, as evidenced by efforts such as IBM’s au-
tonomic computing initiative to develop self-managing systems [1]. In particular,

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 3–15, 2003.
c© IFIP International Federation for Information Processing 2003

4 Yixin Diao et al.

addressing self-configuration and self-optimization often depends on subtleties
in the workload and system configuration. This motivates the need for a generic
approach that discovers the performance impact of configuration parameters by
interacting with the target system. However, such an approach creates two chal-
lenges: (1) handling interdependencies between configuration parameters and
(2) minimizing the deleterious effects on production workload while the opti-
mization is underway (e.g., minimize oscillations, avoid large response times).

There are several efforts related to our work. Some researchers have studied
the regulation of system resources to achieve policy objectives, especially using
control theory [2]. Examples here include controlling buffer length in Internet
routers [3] and response times for web service differentiation [4]. The problem
we address differs from these efforts in that we seek to optimize a service level
metric (e.g., response time) rather than regulate it, which typically means that
a search is required. Thus, closer to our current work is [5], who describe a sys-
tem that performs on-line optimization of a web server by using hill climbing
techniques. However, the approach taken requires a detailed knowledge of the
system being optimized in order to construct the queueing models. A similar
concern arises with the approach in [6] who consider how to maximize prof-
its based on queueing-theoretic formulas. [7] proposes a fuzzy control approach
to minimize response time using a combination of feedback control system and
qualitative insights into the effect of tuning parameters on QoS. However, only
one configuration parameter is considered. [8] presents case studies of using ran-
domly generated configuration settings for application servers. This approach is
simple and generates good results for off-line parameter optimization, but the
absence of a guided search may turn out to be problematic for online optimiza-
tion (as discussed in Section 4). A further concern with all of the foregoing is
that none of the approaches consider the architecture necessary to support on-
line optimization, especially handling interdependencies between configuration
parameters.

This paper describes a generic, online approach to optimizing configuration
parameters. The approach builds on recent work in the area of metric discovery,
especially the use of the Common Information Model (CIM) to discover metrics
and configuration parameters and the architecture necessary to support this [9].
The problem of interdependencies between configuration parameters is addressed
by architecting rule-based components on the target system that handle such
interdependencies. The challenge of online search is addressed by employing
an existing optimization technique that generally avoids poor performance at
intermediate steps. We apply our architecture to IBM’s DB2 Universal Database
Server since automated configuration of databases is a pressing issue [10]. While
there have been many efforts in this area (e.g., [11, 12]), our approach differs
in that it requires no prior knowledge of the target system being optimized,
although we do require access to the sensors (e.g., response time measurements)
and effectors (e.g., buffer pool sizes).

The remainder of the paper is organized as follows. Section 2 details our
control architecture, and Section 3 describes how we optimize the setting of

Generic Online Optimization of Multiple Configuration Parameters 5

End-Users

RT Probe

Coordinator

Control
Logic

AutoTune Controller

Data Repository

Probe Interface

C
IM

O
MProbe

adapter

CIM adapter
(CIMClient)

Control
Interface

Target System

CIM
provider
 Rules

CIM
provider
 Rules

Fig. 1. Diagram of system architecture

configuration parameters. Section 4 presents the testbed setup and experimental
results. Our conclusions are contained in Section 5.

2 System Architecture

This section describes the architecture used to support online optimization of
configuration parameters.

Figure 1 depicts our architecture. The main elements are the target system
being controlled, the AutoTune Controller that dynamically adjusts configu-
ration parameters, and the RT Probe1 that collects response times from the
end-users (the workload). We use the Common Information Model (CIM) [13]
to describe the target system (e.g., a database with tables and tablespaces) and
the response time probe, especially their metrics (e.g., response times, rows read,
sort times) and configuration parameters (e.g., buffer pool sizes). The architec-
ture that we present extends our prior work with metric discovery [9]. Indeed, we
discover configuration parameters in the same manner as is done with discovering
resource metrics.

The operation of the system is depicted in Figure 2. Every control interval,
the AutoTune Controller sends a request to the target system to modify a subset
of the configuration parameters. The target system makes these modifications,
and the RT probe provides data on the achieved performance. Based on this,
the AutoTune Controller computes new values of the configuration parameters.

One point should be underscored in the foregoing. The only way that the
AutoTune Controller knows the performance of a setting of configuration pa-
1 In general, this could be a measurement source for any service level metric.

6 Yixin Diao et al.

AutoTune Controller:
Request change in config

Target System:
Make change in config

RT Probe:
Report performance

AutoTune Controller:
Determine new config

Fig. 2. High level flow of the operation of online optimization of multiple con-
figuration parameters

rameters is to observe the system under those settings. Since this is taking place
during normal system operation, caution must be exercised so that there is min-
imal impact on end-users both in terms of poor performance and the variability
of performance.

Now consider the target system. Access to both metrics and configuration
parameters is handled by the CIM Object Manager (CIMOM). The CIMOM
provides a standard object-oriented interface to this information. The informa-
tion itself is obtained by various CIM Providers. Note that CIM Providers have
rules associated with them to handle conflicts that arise from interdependencies
between settings of parameter values. For example, a CIM Provider for memory
would handle requests for re-sizing buffer pools that result in demands that ex-
ceed memory constraints. That the rules are associated with CIM Providers is
appealing in that the specifics of the constraints are known to the providers.
A disadvantage is that there may be constraints that involve multiple CIM
Providers, although we have not encountered these to date.

Now consider the element schemas used by the CIMOM. The CIM Providers
extract data from various parts of the target system (e.g., table spaces, buffer
pools) and provide this to the CIMOM. This design is done according to the prin-
ciple that all descriptive and capability-related information of a managed element
is modeled as properties of the class representing the resource itself, while its sta-
tistical data is put in an associated class, subclassed from CIM StatisticalData.
Specifically: (1) the controllerName property is used in multiple controller en-
vironments to specify which controller is to be used; (2) the physicallyEnabled
indicator determines whether the provider is physically capable of setting a con-
trol (e.g., the DB2 provider is not capable of setting a control when DB2 is
stopped), and (3) the logicallyEnabled indicator is intended to be set by the
system administrator to override the controller.

Generic Online Optimization of Multiple Configuration Parameters 7

The RT Probe provides response time information. Its element schema de-
scribes how to operate the probe (e.g., what synthetic transactions can be sent,
the resource to which these transactions are sent) and the response times re-
ported (e.g., by transaction type and resource).

The AutoTune Controller is an agent based system that uses the Agent Build-
ing and Learning Environment (ABLE) [14]. ABLE is a Java-based toolkit for
developing and deploying hybrid intelligent agent applications. Built on top of
ABLE is a general AutoTune agent framework that facilitates the construc-
tion of control agents by separating the control interface (e.g., probe adaptor,
DB2 adaptor) with control logic (e.g., the direct search method described in
Section 3). This general and extensible ABLE/AutoTune based controller ar-
chitecture allows us to easily target our controller to a controlled element (for
example, DB2) simply by adding an “adaptor” component that knows how to in-
terface with the controlled element. The control logic typically requires a history
of control actions. These data are accumulated by using the control interface to
find relevant data for the element (by querying the element schema) and then
subscribing to updates of element data (which are then placed in the controller’s
historical data repository).

3 Optimization Technique

From Figure 2, we see that configuration parameters are changed on an on-going
basis. This places two requirements on the approach taken to optimization. First,
once a “bad” setting of configuration parameters is identified, we want to move
quickly back to “good” settings. Second, we want to minimize the variability in
performance due to exploring parameter settings.

Many optimization methods have been studied and applied to solve real world
problems (e.g., [15]). However, not all of them are suitable for online optimiza-
tion. For example, gradient methods (e.g., steepest descent, conjugate gradient,
Newton’s [16]) are widely used. These techniques evaluate the derivative of per-
formance with respect to configuration parameters, and change parameters in
the direction in which they improve performance. However, these techniques are
quite sensitive to noise, and noisy data are common in computing systems. Also,
obtaining the gradients or Hessians information through approximations and
using the line search algorithm to choose the step size require more evaluation
samples. They are costly for online optimization. A second class of techniques
that are fairly robust to noise are stochastic optimization methods (e.g., random
search [8], genetic algorithms) in which randomness is used to evaluate differ-
ent settings of configuration parameters. However, these approaches can have
longer times to converge and more extreme variations in performance during
convergence.

Our starting point is the Nelder-Mead simplex method [17, 18, 19], a robust
version of a gradient method that has been used with success in many practi-
cal optimization problems. This technique is also referred to as a direct search
method as it does not actually compute the gradient. Rather, it uses informa-

8 Yixin Diao et al.

tion about local minima and maxima to determine the direction in which the
parameter space should be searched.

Some notation is introduced for the following discussion. We denote the vec-
tor of configuration parameters by θ = (θ1, · · · , θn). Thus, each θ can be viewed
as a point in n-space. Let J(θ) be the performance of the system if the setting of
the configuration parameters is θ. Our objective is to navigate points so that the
best performance is achieved in a short time without extreme values of J(θ) at
intermediate configurations. In the following, we assume that best means lowest
value, as in minimizing response times (although the approach applies to maxi-
mizing values as well). That is, we want to find θ∗ such that minθ J(θ) = J(θ∗).
(Technically, what is found is only a local minimum, not a global minimum. This
should be fine for most resource allocation problems where the cost function is
convex and a local minimum is also a global minimum. However, if the function
is not convex, random search or genetic algorithms may perform better.)

Below, we briefly summarize the steps in the direct search method. (1) Ini-
tialize: Define a simplex with n+1 vertices θ(1), θ(2), . . . , θ(n+1); (2) Evaluate:
Evaluate the performance (i.e., compute J(θ)) of all vertices; (3) Navigate: Sev-
eral moves should be considered including reflection (mirroring the worst vertex),
contraction (converging towards the best vertex), and expansion (moving further
along the good direction), which identifies a θ that replaces the worst vertex and
forms a new simplex with better performance; (4) Test for completion: If the
new simplex is sufficiently small, then the optimization is complete; otherwise,
go to Step 2.

Figure 3 illustrates the direct search method for a simulation of two DB2
buffer pools in which response times are obtained from an analytic model. The
four plots in the figure represent four iterations of the algorithm. Each contains
a contour plot showing how the two configuration parameters affect response
time. (The contour plot can be constructed because the example is generated by
simulation.) Iteration 0 corresponds to Step 1 above. We see that the simplex
is below and to the left of the region of small response times that are in the
middle of the range of parameter values plotted. In iteration 1, a new simplex is
constructed by applying Step 3 to move towards a region in which response times
are smaller. The new simplex is constructed by using the new θ to replace the
one with the largest response time. Iteration 2 results in a simplex constructed in
a similar manner. In iteration 3, we see that the new point has a larger response
time than the one previously encountered, but it is smaller than the vertex with
the largest response time in iteration 2.

The online optimization technique that we employ handles some practical
considerations from some well-known techniques [18, 19, 20]: (1) Re-evaluate J
at the vertices before the simplex is contracted to help convergence in the ex-
istence of stochastics, and when the simplex is converges to adapt to workload
nonstationarity. (2) Limit and fix the smallest size of the simplex to better handle
variations in workload and avoid unnecessary oscillations, which can be costly
especially for online optimization of computer configurations. (3) Incorporate
constraints on parameter interdependencies to handle boundary conditions. The

Generic Online Optimization of Multiple Configuration Parameters 9

Fig. 3. Illustration of the direct search method for a simulation of two DB2
buffer pools. The contour plots illustrate the response times with axes for buffer
pool sizes. The triangle in each plot depicts the simplex used in that iteration
of the search

constraints are obtained from the CIM provider, and also enforced by it. For
example, the buffer pool size cannot be negative, and the total buffer pool size
cannot exceed a limit otherwise the system may crash. Thus, it is a constrained
optimization problem. The projection method is used to enforce the parameter
constraints.

4 Experimental Assessment

4.1 Testbed Setup

To assess the applicability of our approach to online optimization of configura-
tion parameters, we study it in the context of a database server. IBM’s DB2
version 8.1 provides a plethora of tuning parameters that can be changed pro-
grammatically in an online environment. Among them are some memory related
parameters such as buffer pool size, package cache size, and sort heap size, which
have drastic impact on database performance. In this paper, we consider buffer
pool tuning.

Our evaluations are done using TPC-W, an industry standard e-commerce
benchmark [21]. We used three buffer pools, BP INDEX4K for indexing spaces,
BP TEMP4K for cached data, and BP DATA4K for all remaining data. Generally,

10 Yixin Diao et al.

emulated
browser

emulated
browser

emulated
browser..........

emulated
browser

TPC-W Workload

Probe

Coordinator

Control
Logic

AutoTune Controller

Data Repository

Probe Interface

.

.
Table

.Table-
space

.Buffer
pool

Operating System

DB2

CIM
provider

CIM
provider

CIM
provider

CIM
provider

DBMS

CIM
provider

Database

C
IM

O
MProbe

adapter

CIM adapter
(CIMClient)

Control
Interface

Target System

 Rules

 Rules

 Rules

 Rules

 Rules

Fig. 4. Diagram of testbed system on which experiments were conducted

having larger buffer pool size results in smaller user response time. However, the
total buffer pool size cannot go to infinity due the limited memory space.

Figure 4 displays how we instantiated the architecture in Figure 1. The
testbed itself consists of three machines for the database server, the database
client, and the AutoTune controller. The database server machine is an IBM
RS/6000 model 7044-170 with 768 megabytes of RAM storage. This machine
uses the AIX operating system and contained IBM DB2 V8.1 server and the
CIM server code including DB2 CIM providers. The database client machine,
an IBM RS/6000 model 7044-270 with 1 gigabyte of RAM storage, also uses the
AIX operating system. This machine drives the client application using DB2 V8.1
client support. The client application is an emulated browser (EB), an online or-
dering load generator using TPC-W to emulate database access characteristics
of a web e-commerce environment. The AutoTune controller runs on an IBM
model T20 ThinkPad with Windows 2000.

Our experiments proceed as follows. A set of 50 emulated browsers (EBs)
were running which executed transactions against the database server according
to the TPC-W benchmark specifications. A subset (5) of these EBs were also
instrumented to provide client side response time for the AutoTune controller.
The AutoTune controller used the direct search method to determine the buffer
pool sizes and the desired values were sent to the database for real time adjust-
ment. In this environment, while the DB2 client and controller machines were
lightly loaded, the DB2 server was always driven at 100% CPU utilization. The
control interval was set as 20 minutes. The buffer pool sizes were changed at the
start of the interval but the client side response time was measured 5 minutes
later (for 15 minutes) to avoid the transient effect of buffer pool resizing.

Generic Online Optimization of Multiple Configuration Parameters 11

Table 1. Results of the first six iterations of direct search on the testbed

BP DATA4K BP INDEX4K BP TEMP4K RT
Sample

(4K pages) (4K pages) (4K pages) (sec.)

1 29199 23359 2919 15.8
2 14599 23359 2919 17.8
3 29199 11679 2919 16.7
4 29199 23359 1459 19.2
5 19465 15572 4379 15.0
6 14598 11679 5839 18.4

4.2 Experimental Results

Table 1 displays some data obtained from applying direct search to our testbed
system. Intuitively, the direct search method operates by evaluating different
buffer pool settings within a small region, and moving towards the direction that
reduces the response time. Since we use three buffer pools, the initial simplex
was composed of 4 vertices and 4 sample buffer pool combinations were selected
and evaluated accordingly (as shown in the first four lines in Table 1). The
first sample takes the default buffer pool size, and the reset three are defined
by halving the size, one at each sample. The constraint is that the total size
cannot go beyond 150% of the default total size. Among the four samples, the
first sample had minimum response time (15.8 seconds) and the fourth sample
had maximum response time (19.2 seconds). Next, we evaluate the reflection
point as shown in the fifth sample, which is defined as the mirror point of the
maximum point through the centroid. Since its response time (15.0 seconds) is
even smaller than the minimum response time we get in the first sample, we
evaluate the expansion point as shown in the sixth sample, which was expanded
further along this direction. However, the expansion results in higher response
time (18.4 seconds). Therefore, according to the direct search algorithm, we
complete the first iteration and use the vertices at sample 1, 2, 3, and 5 to
compose the simplex for the next iteration.

Figure 5 displays the results of applying direct search until convergence is
achieved. In the upper plot, the dashed line indicates the buffer pool size for
BP DATA4K, the dotted line indicates BP INDEX4K, the dashed-dotted line indi-
cates BP TEMP4K, and the solid line indicates the total buffer pool size. Note that
as the optimizing continues, BP DATA4K and BP TEMP4K increase, and BP INDEX4K
decreases. This indicates that indexing space (BP INDEX4K) need not be so large,
but more space is required for cached data (BP TEMP4K) and the remaining data
(BP DATA4K). During the search there is one instance of a large response time
(e.g., the 16th sample) since not all the moves in navigation are heading towards
the correct direction. However, the wrong moves will not be continued. Gener-
ally, the algorithm convergence time is up to the applications, e.g., the number
of configuration parameters, the initial parameter values, the performance func-
tion shape, and the convergence criteria. Our experiments indicate a reasonable
convergence requires roughly 10*(number of parameters) samples.

12 Yixin Diao et al.

Fig. 5. Experimental results of DB2 buffer pool tuning with the direct search
method

It is also interesting to compare direct search with the techniques used in [8]
for off-line parameter optimization (but we used it here in an on-line scenario).
We conducted experiments in which the total buffer pool size is chosen from
a uniform distribution over the range 300,000 to 900,000 4K pages, and then the
selected total pool size is randomly sub-divided into three buffer pools. Some of
the experimental results are shown in Figure 6. Note that this random approach
achieves performance comparable to direct search. However, there is much more
variability in performance during the optimization, and considerably longer re-
sponse times at intermediate values. This comes no surprise as the direct search
method chooses the navigation directions based on the sample values that are
just evaluated, but the above method goes randomly without guidance.

5 Conclusions

Optimizing configuration parameters to improve performance is time-consuming
and skills-intensive. We have proposed an architecture and an algorithm for au-
tomating this process through the simultaneous optimization of multiple config-
uration parameters in a manner that minimizes prior knowledge of the target
system (the system being optimized).

Central to our approach is minimizing knowledge of the target system. We
accomplish this by discovering the effect of configuration parameters on the per-
formance of the target system by making changes to configuration parameters
and observing the effects of these changes. Doing so has two implications. First,
we must handle interdependencies between configuration parameters (e.g., limits

Generic Online Optimization of Multiple Configuration Parameters 13

Fig. 6. Experimental results of DB2 buffer pool tuning with the stochastic
optimization method

on the total size of a buffer pool). Second, the search for better configurations
should be done in a manner that is unlikely to degrade performance excessively
and restores performance quickly when it is degraded. Our approach to the first
incorporates rules into the CIM Providers of the target system so that changes in
configuration parameters are properly constrained. The second is addressed by
using the direct search algorithm, a feedback mechanism that exploits the perfor-
mance function to optimize performance with guidance. This generic approach is
expected to be applicable for a wide class of online optimization problems such
as configuring server parameters to increase system utilization, differentiating
services from different customers, and balancing workload among multi-tiered
systems.

In this paper we have applied our architecture and approach to IBM’s DB2
Universal Database Server to optimize the setting of buffer pool sizes. This re-
sults in approximately a 25% response time reduction in an e-commerce bench-
marking environment. We compare these results with an alternative - randomly
selecting configuration settings. While the random approach achieves almost the
same reduction in response time, its intermediate settings of configuration pa-
rameters result in highly variable performance and some very large response
times.

Acknowledgements

We would like to thank Dr. Rajarshi Das for many valuable discussions on ap-
plying the direct search method for a related Apache Web server optimization
problem.

14 Yixin Diao et al.

References

[1] IBM, “Autonomic computing: IBM’s perspective on the state of information tech-
nology,” available at http://www.research.ibm.com/autonomic/, 2001. 3

[2] G. F. Franklin, J. D. Powell, and A. Emani-Naeini, Feedback Control of Dynamic
Systems. Reading, Massachusetts: Addison-Wesley, third ed., 1994. 4

[3] C.V. Hollot, V. Misra, D. Towsley, and W.B. Gong, “On designing improved
controllers for AQM routers supporting TCP flows,” in INFOCOM, 2001. 4

[4] C. Lu, J.A. Stankovic, T. F. Abdelzaher, G. Tao, S. Son, and M. Marley, “Perfor-
mance specifications and metrics for adaptive real time systems,” in Proceedings
21st IEEE Real Time Systems Symposium, pp. 13–24, Nov. 2000. 4

[5] D. Menasce, D. Barbara, and R. Dodge, “Preserving QoS of e-commerce sites
through self-tuning: A performance model approach,” in Proceedings of 2001 ACM
Conference on E-commerce, 2001. 4

[6] Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing service-level-agreement
profits,” in Proceedings of the ACM Conference on Electronic Commerce, 2001.
4

[7] Y. Diao, J. L. Hellerstein, and S. Parekh, “Optimizing quality of service using fuzzy
control,” in Proceedings of Distributed Systems Operations and Management, 2002.
4

[8] M. Raghavachari, D. Reimer, and R. Johnson, “The deployer’s problem: Config-
uring application servers for performance and reliability,” in Proceedings of the
International Conference on Software Engineering, Portland, OR, 2003. 4, 7, 12

[9] Y. Diao, F. Eskesen, S. Froehlich, J. L. Hellerstein, A. Keller, L. Spainhower, and
M. Surendra, “Generic on-line discovery of quantitative models for service level
management,” in Proceedings of IEEE/IFIP Symposium on Integrated Network
Management, 2003. 4, 5

[10] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback, “Self-tuning database
technology and information services: from wishful thinking to viable engineering,”
in International Conference on Very Large Data Bases, 2002. 4

[11] G.M. Lohman and S. S. Lightstone, “Smart: Making db2 (more) autonomic,” in
Proceedings of the 28th International Conference on Very Large Data Bases, Hong
Kong, China, 2002. 4

[12] J. Rao, C. Zhang, G.M. Lohman, and N. Megiddo, “Automating physical database
design in a parallel database,” in SIGMOD, 2002. 4

[13] “Common Information Model (CIM) Core Model, Version 2.4,” white paper, Aug.
2000. http://www.dmtf.org/var/release/Whitepapers/DSP0111.pdf 5

[14] J. P. Bigus, D.A. Schlosnagle, J. R. Pilgrim, W.N. Mills III, and Y. Diao, “ABLE:
A toolkit for building multiagent autonomic systems,” IBM Systems Journal,
vol. 41, no. 3, 2002. 7

[15] D.G. Luenberger, Linear and nonlinear programming. Addison-Wesley, Reading,
MA, 1984. 7

[16] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein, and S. Parekh, “Online
response time optimization of apache web server,” in Proceedings of the 11th In-
ternational Workshop on Quality of Service, pp. 461–478, 2003. 7

[17] J.A. Nelder and R. Mead, “A simplex method for function minimizatioin,” Com-
puter Journal, 1965. 7

[18] F.H. Walters, J. L.R. Parker, S. L. Morgan, and S.N. Deming, Sequential Sim-
plex Optimization: A technique for improving quality and productivity in research,
development, and manufacturing. CRC Press, 1991. 7, 8

Generic Online Optimization of Multiple Configuration Parameters 15

[19] C.H. Brooks, “An introduction to amoeba,” available at
http://nexus.cs.usfca.edu/˜brooks/papers/amoeba.pdf 7, 8

[20] J.O. Kephart, R. Das, and J. K. MacKie-Mason, “Two-sided learning in an agent
economy for information bundles,” in AmEC IJCAI, 1999. 8

[21] W.D. Smith, “TPC-W: Benchmarking an ecommerce solution,” in
http://www.tpc.org/tpcw 9

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 16-27, 2003.
 IFIP International Federation for Information Processing 2003

Eos: An Approach of Using Behavior Implications for
Policy-Based Self-Management

Sandeep Uttamchandani1, Carolyn Talcott2, and David Pease1

1 IBM Almaden Research Center, San Jose CA
{sandeepu,dpease}@us.ibm.com

2 SRI International, Menlo Park CA
clt@csl.sri.com

Abstract. Systems are becoming exceedingly complex to manage. As
such, there is an increasing trend towards developing systems that are
self-managing. Policy-based infrastructures have been used to provide a
limited degree of automation, by associating actions to system-events.
In the context of self-managing systems, the existing policy-
specification model fails to capture the following: a) The impact of a
rule on system behavior (behavior implications). This is required for
automated decision-making. b) Learning mechanisms for refining the
invocation heuristics by monitoring the impact of rules.

This paper proposes Eos; An approach to enhance the existing policy-
based model with behavior implications. The paper gives details of the
following aspects:

• Expressing behavior implications.
• Using behavior implications of a rule for learning and automated

decision-making.
• Enhancing existing policy-based infrastructures to support self-

management using Eos.

The paper also describes an example of using Eos for self-management
within a distributed file-system.

1 Motivation
Systems are becoming extremely complex to manage. The cost of administration is
becoming a significant percentage (75-90%) of the Total Cost of Ownership (TCO)
[6,16]. Jim Gray in his Turing award speech �What next? - A dozen IT research
goals� [9] emphasized the need for buildings systems that are self-managing. IBM's
initiative on autonomic computing aims to build self-managing systems, reducing the
demand on system administrators.

System management in the real world is done by administrators. Their primary task
is to ensure that the behavior goals specified by Service Level Agreements (SLA) are
met. As such, they employ the following action loop: monitoring → analyzing

Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management 17

required changes to system behavior → tuning system parameters and invoking
system-services.

A self-managing system can be defined as one in which the system by itself
decides the configuration parameters to be set and system-services to be invoked, in
response to a specific system state. The aim of this adaptation is to meet the specified
goals. Another important aspect of a self-managing system is its ability to evolve and
learn from its actions i.e. self-learning

Currently, policy-based infrastructures have been used to provide a limited degree
of automation [15]. In simple words, a policy is defined as a set of rules that are based
on ECA i.e. Event → if (Condition) → then (Action). These rules map system states
to setting of tunable parameters and invocation of system services [5].

There are multiple approaches for specifying policies. They can be specified as a
programming language that is processed and interpreted as a piece of software [8,10]
or in terms of a formal specification language [17,19] or the simplest approach is to
express policies as a sequence of rules. The IETF has chosen rule-based policy
representation in its specifications [1].

2 Problem Statement

Existing rule-based policy specifications lack the capability to express semantics
required for automated decision-making and self-learning. There is no systematic
approach to define the following:
• The impact of the rule on system behavior. This mapping is the essence for

automated decision-making that the system uses to decide the rule(s) to be
invoked.

• Refining the invocation heuristics of the rules i.e. self-learning. Each time a rule
is invoked, its impact of system can be recorded to refine future decision-making.

Eos is an approach that extends the existing policy-based infrastructures for
providing self-management semantics. The key contributions of this paper are:

• Extending existing rule-based semantics for self-management specifications.
• Using the extended semantics for automated decision-making and self-learning.
• Describing the modules to be added to existing policy-based infrastructures to

support the self-management semantics.

The paper is organized as follows. Section 3 enumerates the terminology. Section 4
gives a bird's eye-view of Eos. Section 5 formalizes the Eos concepts using a vector-
space model. Section 6 describes a real-world example of self-management within a
distributed file-system. Section 7 describes implementation details namely
specification template, strategies for self-learning and decision-making and the Eos
framework. Section 8 discusses the related work followed by the conclusion.

18 Sandeep Uttamchandani et al.

Fig. 1. Dimensions of behavior

3 Terminology

Dimensions of Behavior

The term �behavior� is generally used loosely to describe the observable
characteristics of the system. These characteristics can be specified using abstractions
such as QoS goals, transaction-properties [3], etc. In each of these abstractions,
behavior is a composition of multiple dimensions. Figure 1 represents system
behavior to be composed of dimensions such as throughput, latency, reliability,
security, availability and so on.

Behavior Implications

It is the impact of a rule on system behavior. It is expressed in terms of dimensions of
behavior.

Management-Knob

Broadly classified, administrators have two sets of controls for managing the behavior
of the system. First, there are configuration parameters that are either application-
specific or system variables such as buffer-size, number of concurrent threads, etc.
Second, there are system services that can be invoked in certain scenarios. For
example, in a distributed file system, there are services such as backup, data-
migration, and replication. These parameters and services are together referred as
�management knobs.�

Low-Level System-State

It represents details of the system such as resource utilization and system events.
Resource utilization is expressed in terms of cpu, i/o and network bandwidth being
used. Events can specify system conditions such as disk is 95% full or errors such as
network failures, or disk failures.

Workload Characteristics

It captures the properties of the application request-stream. For example, in a file-
system, workload characteristics include read-write ratio, sequential/random, etc.
Workload characteristics play a significant role in deciding the impact of the
management-knob on system behavior. For example, increasing the Prefetch-knob
makes sense only when the access pattern is sequential.

Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management 19

Fig. 2. Extending existing specification model with Behavior implications

4 Bird's Eye-View of Eos

In the existing policy-specification model, rules are defined as condition-action pair
expressed using if-then semantics. Eos extends this specification by defining a
wrapper around the existing rule (Figure 2). The wrapper represents the behavior
implications of the rule and also the workload characteristics on which it is
dependent.

In simple words, the working of Eos can be described as follows: When the
assigned goals are not met, a trigger is generated. The decision-making module scans
through the repository using behavior implications, low-level pre-conditions, and
workload characteristics. Based on this analysis, it decides the rule(s) that should be
invoked. Each time a rule is invoked, its impact is monitored and used to refine the
behavior implications.

5 Eos Concepts

To formalize the Eos model, we represent the concepts using an n-dimensional vector
space. Vector space models have also been used in other areas of research such as
information retrieval [22]. To make the discussion concrete, we consider the example
of invoking the data-replication knob within a distributed system. A more elaborate
example is covered in the next section

5.1 Behavior Implications

Let t1, t2, �.. tn be the terms used to describe the dimensions of system behavior. For
each term there is a corresponding vector ti in a vector space. This is shown in
Figure 3. This vector space is referred to as the behavior space. At any given time, the
state of the system is represented as a point within the behavior space.

Current-state = (a1 t1, a2 t2, �, an tn)

where ai is the current value along the dimension ti.
The behavior implication of a rule B(r) is represented as a difference vector

between the new state (b1t1, b2t2, �, bn tn) and the previous state (a1t1, a2t2, �, antn)

20 Sandeep Uttamchandani et al.

before the rule is invoked. This vector is a sparse matrix with the diagonal
representing the values of the dimensions it affects (assuming the dimensions are
independent). A compact representation is represented as the following summation:

B(r) = ∑i=1,n (bi - ai) ti

Fig. 3. Vector space to represent system behavior

As an example, the behavior implication of the data-replication rule is a vector
along the dimensions of throughput, latency and availability. It is represented as:

B(data-replication) = [(0.3)Throughput � (0.1)Latency + (0.2) Availability]

where invoking replication improves throughput and availability by 30% and 20%
respectively, and degrades latency by 10%.

5.2 Self-Learning

The behavior implication of a knob is not a constant vector. For example, in the case
of data-replication knob, it is a function (g) of the workload characteristics (read/write
ratio), the degree change of the knob-value (number of replicas) and the current value
of the knob (going from 1 replica to 2 replicas has a different impact on behavior than
going from 5 to 10 replicas).

The behavior implication vector is a key component for automated decision-
making. Hence, the aim of self-learning is to refine the behavior implication vector by
learning the dependency function (g). Each time a rule is invoked, the changes to
system behavior are monitored. The following feedback information is recorded:

• Current behavior value and percentage change in value by invoking the knob (β).
• Workload characteristics when the knob was invoked (γ).
• Current value of the knob (η).

Self-learning refines the behavior implication vector and is represented by:

S[B(r)] = ∑j=1,n [g(β, γ, η)]j tj

where the composite function (g) is learnt by using machine learning approaches such
as neural networks.

Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management 21

5.3 Automated Decision-Making

This is a 3-step process. The first step is to analyze the current state and determine the
goals that are not met, the workload characteristics and the low-level system state.
Next, a list of candidate rules is generated. This is done by matching the workload
characteristics and pre-conditions of the rules to the current system-state.

The final step is to decide the combination of rule(s) to be invoked from amongst
the list of candidate rules. One of the strategies for combining the behavior
implication vectors is using the following recursive algorithm (Figure 4):

• Generate the target vector starting from the current-state to the desired-state.
• At each stage, select the unit vector whose cosine angle with the target vector is

greatest. The step size of the vector is k, where �k' signifies the degree of
instability of the system and is less than the target vector.

Fig. 4. Strategy for combining rules

6 Example: A Self-Managing Distributed File-System

Consider the example of managing a distributed file system within a data-center. Let
database and multimedia be the two primary applications running on top of this file-
system. The database is serving a complex workload consisting of OLTP and
decision-support while the multimedia application is serving a Video-on-demand
(VOD) service. The database and multimedia applications are tuned assuming the
underlying file system meets goals specified in terms of throughput, latency,
reliability, and availability.

To meet the desired goals, the administrator tunes the file-system using the
management-knobs, enumerated in table 2. The policy specification of these knobs
consists of two parts. First, the low-level pre-conditions for invoking the knob.
Second, the wrapper that extends rules with behavior implications.

Table 1. Illustrating current system state

Goals
achieved

% Change required
[% Change Tolerated]

Throughput × 15[-]
Response-time ! 0 [2]
Availability × 8[-]
Security ! 0 [Authentication removable]
Reliability ! 0 [35]

22 Sandeep Uttamchandani et al.

Table 1 shows the current values of the assigned goals. Each of the goals is quantified
by parameters that can be monitored. For example reliability can be quantified by
MTBF, Time-to-repair (TTR), Number of Failures, type of Failures.

As shown in table 1, the throughput and availability goals are not being met. Based
on the low-level system-state, assume that the following management-knobs from
table 2 qualify the pre-condition: Pre-fetch size, Data replication service and Volume
migration service. Decision-making involves analyzing the behavior implications of
each of the management-knobs:

• Pre-fetch size: Will improve throughput, but does not have an impact on
availability.

• Replication: Will help throughput and replication, but will have a negative impact
on latency, due to consistency requirements of the replicas.

• Volume migration: Has a positive impact on throughput, availability and
response-time.

As shown in Table 1, the value of response-time cannot be changed by more than 2%.
Thus, based on the above analysis, the volume migration service is invoked.
Similarly, there can be scenarios where more than one rule is invoked, using the
vector-addition strategy described in Section 5.3.

Table 2. Information specified by the Administrator

↑ Positive Impact ↓ Negative Impact ↑+ Positive Impact ↓ - Negative Impact ↔ Unspecified Impact

Behavior ImplicationCapability Low-level
system-state
(Pre-conditions)
and workload
dependencies

Throughput Latency Availability Security Reliability

Configuration
Parameters

Clean-delay

Memory
available &&
high write/read
ratio

! ↔ ! ↔ ! ↔

Pre-fetch size Sequential
access-pattern ! ↑+ ! ↔

Data Integrity
Check

Application
imposed
requirement

! ↓ - ! ↓ - ! ↑ ! ↑

System Services

Load balancing
Resources not
uniformly
utilized

! ↑ ! ↑

Data replication Access pattern
read-intensive ! ↑ ! ↓ ! ↑+

Volume
migration

Non-uniform
utilization of
disks

! ↑ ! ↑ ! ↑

Data Backup
Low system-load
OR system
errors

! ↓ ! ↓ ! ↑

Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management 23

After volume migration is invoked, its impact on the behavior is recorded, along
with the workload and low-level system state. This information is used to re-fine the
implication vector. Assume that in the steady-state, the invocation of volume
migration actually degraded throughput. The implication vector is updated as:

B(volume migration) = -(0.15) Throughput + (0.04) Latency + (0.2) Availability

7 Implementation Details

7.1 Specification Template for Behavior Implications

The behavior implication template is specified as a wrapper around the existing rule.
The specification template is shown in Figure 5. The specifications are treated as
initial guidelines and are refined via self-learning. For the specification of behavior
dimensions, the administrator specifies the impact using an intuitive description
space. For example the degree of impact is described using terms such as positive,
negative, positive++, negative-- and unspecified.

Fig. 5. Specification template

The specification grammar is enumerated in Appendix. As an example, the data-
replication service is represented as follows:

24 Sandeep Uttamchandani et al.

7.2 Implementation of Self-Learning

When a rule is invoked, its impact on behavior depends on the following:

1. The current value of the knob.
2. The current behavior state.
3. The workload characteristics.

In a simplified case (assuming a single variable for behavior and workload
characteristics), these factors create a 3-dimensional learning space. This space is
divided into sub-spaces, referred as �zones.�

Each time a rule is invoked, the change in the behavior is recorded as a function of
the percentage change in knob value. This function could be linear, polynomial,
quadratic, exponential, etc. Similarly, the fact that the administrator invoked the knob
can also be recorded within the learning-space (Figure 6).

Fig. 6. Self-learning by dividing space into �zones�

7.3 The Eos Framework

Existing policy-based infrastructures consist of 3 key entities: A repository, Policy
Enforcement Point (PEP) and Policy Decision Point (PDP). The PDP acts as a rule-
filter i.e. based on the system-events, it determines the rules in the repository that are
applicable and directs them to the PEP.

Figure 7 illustrates the Eos Framework. It working can be defined as a sequence of
three stages:

1. Rule Filter: Pre-qualification of Management-Knobs

The rule-filter analyzes the low-level system state and determines the configuration-
knobs that can be invoked.

2. Capability Broker: Decision-Making for Selecting Knob

As shown in the figure, the Capability Broker compares the specified goals and their
current-values. It decides the knobs to be invoked.

Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management 25

3. Self-Learning

After the rule is invoked, its impact on system-behavior is monitored and recorded in
the rule repository.

Fig. 7. Components of the Eos Architecture

The existing policy-based infrastructure supports the mapping of low-level system
events to the invocation of management-knobs. The dotted line in the figure 7
illustrates this. Adding one more reasoning layer i.e. the Capability Broker to the
existing infrastructure, allows for higher-order operations on rules namely automated
decision-making and self-learning.

8 Related Work

Mark et al [13] propose an approach to separate the goal from the base rule
specification. In other words, they create a mapping between the rule and user-
requirements, making it easy for valiadation and usage. The Eos approach is in a
similar direction, but aims to encodes goals for automated decision-making and
refinement.

Zinky et al. [7] present a general framework, called QuO, to implement QoS-
enabled distributed object systems. The QoS adaptation is achieved by having
multiple implementations. Each implementation is mapped to an environment and a
QoS region. This approach is static as it does not implement semantics for reasoning
about the various possible configurations.

[4] describes an approach to build self-tuning systems using genetic algorithms. It
relies on the fact that each system parameter is tuned by an individual algorithm and
the genetic approach decides the best combination. This approach does not allow
refinement of the decision-making based on self-learning.

GridWeaver [2] and other projects [18] aim for configuration of large scale
computation fabrics such as the grid. Their primary concern is with the initial system
configuration. The goals of Eos are complementary to this effort and aims for
dynamic QoS management.

26 Sandeep Uttamchandani et al.

9 Conclusion

This paper is aimed as a starting-point in describing a systematic approach to build
self-managing systems, by extending the existing rule-based management model. The
key points of the Eos approach are: First, it defines behavior implications to capture
the mapping between the rule and its impact on system-behavior. Second, it describes
how these behavior implications can be used for automated decision-making and self-
learning i.e. adding information to the rules based on the feedback from previous
decisions.

References

[1] The IETF Policy Framework Working Group.
http://www.ietf.org/html.charters/policy-charter.html

[2] The GridWeaver Project. http://www.gridweaver.org/
[3] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, T. Lawrence. Taxonomy for QoS

Specifications. Workshop on Object-oriented Real-time Dependable Systems
(WORDS), 1997.

[4] D. Feitelson, Michael Naaman. Self-Tuning Systems IEEE Software 16(2), pp.
52-60, 1999.

[5] D. Verma. Simplifying Network Administration using Policy based
Management. IEEE Network Magazine, March 2002.

[6] E. Lamb. Hardware Spending Matters. Red Herring, pages 32�22, June 2001.
[7] J. A. Zinky, D. E. Bakken, and R. D. Schantz. Architectural Support for

Quality-of-Service for CORBA objects. Theory and Practice of Object
Systems, Vol. 3(1), 1997.

[8] J. Fritz Barnes and Raju Pandey. ``CacheL: Language Support for
Customizable Caching Policies. In Proc of Web Caching Workshop (WCW),
March 1999.

[9] J. Gray �What Next? A Dozen Information-Technology Research Goals,�
ACM Turing Award Lecture, June 1999, MS-TR-99-50.

[10] J. Hoagland, "Specifying and Implementing Security Policies Using LaSCO,
the Language for Security Constraints on objects". Ph.D. Dissertation, UC
Davis, March 2000.

[11] J. Matthews, D. Roselli, A. Costello, R. Wang, and T. Anderson. Improving the
performance of log-structured file systems with adaptive methods. In Proc. of
ACM SOSP, 1997.

[12] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
hierarchical storage system. ACM TOCS, pages 108�136, Feb. 1996.

[13] M. Bearden, S. Garg, W. Lee: Integrating Goal Specification in Policy-Based
Management. POLICY 2001: 153-170.

[14] M. Seltzer and C. Small. Self-monitoring and self-adapting operating systems.
In Proc. of HOTOS Conf., pages 124�129, May 1997.

[15] M. Sloman, E. Lupu. Security and management policy specification. IEEE
Network, pp. 10-19, March-April 2002.

Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management 27

[16] N. Allen. Don't Waste Your Storage Dollars. Research Report, Gartner Group,
March 2001.

[17] N. Damianou, N. Dulay, E. Lupu, and M Sloman, �Ponder: A Language for
Specifying Security and Management Policies for Distributed Systems�,
Imperial College, UK, Research Report DoC 2001, Jan. 2000.

[18] P. Anderson and A. Scobie. Large scale Linux configuration with LCFG. In
Proceedings of the Atlanta Linux Showcase, pages 363�372, Berkeley, CA,
2000. Usenix.

[19] R. Darimont, E. Dalor, P. Massonet and A. Van Lamsweerde. GRAIL/KAOS:
An Environment for Goal Driven Requirements Engineering. In Proc. of
International Conference on Software Engineering, pp. 58-62, 1998.

[20] S. Chaudhuri and V. Narasayya. AutoAdmin �what-if� index analysis utility. In
Proc. of ACM SIGMOD Conf., pages 367�378, June 1998.

[21] S. Mullender, Distributed Systems. Addison-Wesley 1993.
[22] Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval.

McGraw Hill, New York, 1983.

Appendix: Specification Grammar

[Rule Category]
<Parameter-type>:= Tunable-parameter | System-service
<Parameter-range>:= Integer | Boolean| Floating-point
<Resource-type>: CPU | Memory | Network| Storage

[Behavior Dimensions]
[<Dimension><Impact-Degree><Impact-probability>]*

<Dimension>:= Throughput | Response-time| Reliability | Availability | Security |
Error-recovery
<Impact-Degree>:= Positive | Negative | Positive++ | Negative-- | Unspecified
<Impact-probability>:= Always | Mostly | Never | Depends | Unspecified

[Workload Characteristics]
<Primary parameter>:= <Parameter>
<Secondary parameters>:= [<Parameter>]*

<Parameter>:= Read/Write ratio | sequential/random ratio | Request-size |
Request-rate | Burst-interval | think-time

[Condition-Action Specification]
Rule:= Specified using existing rule-based languages

On the Algebraic Structure of Convergence

Alva Couch and Yizhan Sun

Tufts University, Computer Science
Medford MA 02155, USA

{couch,ysun}@cs.tufts.edu
http://www.cs.tufts.edu

Abstract. Current self-healing systems are built from “convergent” ac-
tions that only make repairs when necessary. Using an algebraic model
of system administration, we challenge the traditional notion of “con-
vergence” and propose a stronger definition with improved algebraic
properties. Under the new definition, the structure of traditional con-
figuration management systems is a natural emergent property of the
algebraic model. We discuss the impact of the new definition, as well as
the changes required in current convergent tools in order to conform to
the new definition.

1 Introduction

There are at present three main approaches to automated configuration manage-
ment. The “imperative” approach of ISconf and its relatives[16, 25, 26] is closest
to human practice; it expresses configuration actions as a series of commands
applied to a system that possesses a known initial state. The “convergent” ap-
proach of Cfengine and its relatives[3, 4, 5, 6] expresses configuration as a set
of known states to assure in an otherwise unknown system. The “generative”
approach of LCFG and its relatives[1, 2, 14, 15, 18, 19, 24] controls state via re-
generation of individual configurations from an overarching ruleset, rather than
by making incremental changes to existing configurations.

The three configuration management strategies differ in their ability to han-
dle reordering of configuration tasks in time. Imperative commands can branch
based upon existing conditions created by other configuration management com-
mands; the order of operations always matters in any imperative scheme[16, 26].
Meanwhile, Cfengine’s “convergence” proponents argue that not only is order
irrelevant, but novel self-healing configuration management strategies can be
based upon random ordering of convergent actions[12, 17]. Which is the proper
strategy: deterministic ordering, random convergent ordering, or generative re-
construction? We think that part of the key to this question lies in algebraic
properties of the primitive operations for the three kinds of methods.

One problem with current “convergent” strategies is that a composition of
individual convergent actions need not be convergent as a composite action.
We propose a very simple algebraic model that justifies a new definition of
convergence, in which a composition of convergent actions remains convergent.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 28–40, 2003.
c© IFIP International Federation for Information Processing 2003

On the Algebraic Structure of Convergence 29

We argue that this definition is “more correct” because the definition allows us
to derive an appropriate algebraic structure for an effective self-healing system.

2 Semigroups of Actions

We first develop an algebraic model of configuration management. This model
adopts some curious conventions in order to make a minimal set of structural
assumptions about configuration management. We then allow algebraic structure
to arise from the axioms we choose for the system. In this way, we can analyze
the axioms based upon the system properties that they imply when used.

Configuration actions are commands or subroutines that change the state of
the managed system. We make no other assumptions about their nature. Let P
represent a set of actions. Each action p ∈ P acts upon a system X to produce
a change in configuration. Configuration actions might include things like:

– replace /etc/inetd.conf with the one at foo:/bar/repo/inetd.conf
– replace /etc/inetd.conf with the one at cat:/dog/repo/inetd.conf
– delete all udp protocol lines in /etc/services.
– cd into /usr/src/ssh and run make.

etc. One can compose actions p, q ∈ P in the natural way, by performing one after
the other from right to left, e.g., p ◦ q ◦ X = p(q(X)). We also use composition
notation for the final step q(X) = q ◦ X because a system itself is already
composed of actions, even those such as “buy system from vendor Y”. The
system itself is some kind of action (e.g., a recipe for building it) but that action
may not be in the set of actions P that potentially configure X .

To simplify notation, we ignore parameters for actions. Similar actions with
different parameters are treated as differing actions. For example, “run tftp with
source directory /home/tftp” and “run tftp with source directory /tftpboot”
are separate and distinct actions for our purposes.

3 Sequences of Actions

Given P a set of actions, we form the set of all sequences of actions F(P) given
by

F(P) = {p = p1 ◦ p2 ◦ · · · ◦ pk−1 ◦ pk | k > 0, pi ∈ P, 1 ≤ i ≤ k} ∪ {ε} (1)

where ε is the identity action that consists of doing nothing at all. This is the
free semigroup with identity over the alphabet P . Clearly F(P) is an infinite set,
even though P is finite.

The free semigroup F(P) consists of all possible sequences of actions. Many
beliefs about the nature of actions in P can be expressed as equivalence relations
≈i on F(P), where ≈i is a set of pairs (p, q) where p, q ∈ F(P). As usual,
equivalence relations are reflexive ((x, x) ∈≈i for all x ∈ F(P)), symmetric
((x, y) ∈≈i→ (y, x) ∈≈i), and transitive ((x, y), (y, z) ∈≈i→ (x, z) ∈≈i).

In our physical interpretation of actions acting upon systems, two sequences
of actions are equivalent if they accomplish the exact same result.

30 Alva Couch and Yizhan Sun

Definition 1. Two configuration actions are equivalent if they achieve the same
effect and are interchangeable in all contexts.

In abstract terms, this means that equivalent actions are interchangeable within
a sequence of actions:

Definition 2. An equivalence relation ≈ is an action equivalence on F(P) if
for all x, y, a, b ∈ F(P), a ≈ b ↔ x ◦ a ◦ y ≈ x ◦ b ◦ y.

In other words, the substitution principle works. For the rest of this paper,
we assume that all equivalences on sequences of actions are action equivalences
according to this definition.

4 Convergent Actions

One concept of equivalence is that the actions are all convergent under the
accepted definition of convergence[3, 10, 12]. An action p is idempotent with
respect to an action equivalence ≈ if repeating the action has the exact same
effect as doing it once, i.e., p ◦ p ≈ p. A set of actions P is idempotent if each
individual action p ∈ P is idempotent.

Definition 3. We say a set of actions P is weakly convergent if P is idempotent
as a set.

This is the definition of convergence that controls actions in many common con-
figuration management tools. In physical terms, an action p is idempotent if re-
peating the action has no effect. Our algebraic definition of convergence does not
include discussion of other attributes of convergence, such as non-intrusiveness.
Non-intrusiveness is not an algebraic property, just an implementation detail.

In this paper, we will commonly study classes of actions by constructing an
action equivalence relation that describes their properties.

Definition 4. A weakly convergent set of actions P (Definition 3) determines
an action equivalence relation (Definition 2) ≈1 on elements p, q ∈ F(P).

According to this definition, p ≈1 q whenever p and q are sequences of actions
that differ only in the number of times they repeat specific elements in order.
For p1, p2, ..., pk ∈ P and a set of integer powers {ni | ni ≥ 1, 1 ≤ i ≤ k}, the
composition pn1

1 ◦ pn2
2 ◦ · · · ◦ pnk

k ∈ F(P) is equivalent under ≈1 to any other
sequence with differing choices of powers ni > 0.

Unfortunately, the definition of weak convergence in Definition 3 has an unde-
sirable property. The composition of idempotent actions need not be idempotent
itself:

Proposition 1. There are idempotent actions p and q where q ◦ p is not idem-
potent as a composite action.

On the Algebraic Structure of Convergence 31

Proof. Idempotence of an action means that there is no difference in the resulting
state of the system after repeating the action. As a very simple counterexample,
suppose that there are two configuration state parameters x and y, where the
initial or “baseline” state of the configuration is that x = y = 0. Let p be the
action “if (x==1) then y=2”, and let q be “x=1”. Clearly repeating either p
or q has no effect, so they are idempotent in isolation. Also, q ◦ p just sets x to
one (remembering that actions are applied from right to left), but (q ◦p)◦ (q ◦p)
sets y to 2 as well. Clearly q ◦ p is not idempotent as an action if we start from
the baseline state x = y = 0. If, e.g., one sets x and y initially to 1, rather than 0,
q ◦ p is idempotent.

This proof illustrates the general principle that idempotence and convergence
of operations is only meaningful relative to a choice of baseline state of a system:
the state of the system before configuration actions begin. In this paper, we will
presume that the baseline state is appropriately limited so that idempotence is
present, and defer study of the structure of the baseline state for later work.

The reason that a composition of actions is not idempotent is that in the
proof above, one action p is stateful, so that when it is called determines what it
does. There is a stronger characterization of what it means to be truly convergent
that assures that compositions of actions are always idempotent.

Definition 5. A set of actions P is pairwise stateless with respect to an action
equivalence relation ≈i if for any two actions p, q ∈ P , p ◦ q ◦ p ≈i p ◦ q.

In other words, repeating p before p ◦ q (remembering that we are evaluating
actions from right to left) has no effect.

Definition 6. A set of actions P is stateless with respect to an action equiva-
lence relation ≈i if for any action p ∈ P and any sequence of actions q ∈ F(P),
p ◦ q ◦ p ≈i p ◦ q.

Lemma 1. A set of actions P is stateless with respect to an action equivalence
relation ≈ iff it is pairwise stateless with respect to the same relation.

Proof. If P is stateless, it is clearly pairwise stateless. So assume that P is instead
pairwise stateless and proceed by induction on the length of q ∈ F(P). If q has
length 1, then it consists of one element x ∈ P and

p ◦ q ◦ p = p ◦ x ◦ p hypothesis
≈i p ◦ x pairwise statelessness
= p ◦ q hypothesis

(2)

32 Alva Couch and Yizhan Sun

If we assume that the lemma is true for compositions q containing n components,
then for q = q1 ◦ · · · ◦ qn ◦ qn+1 containing n + 1 components,

p ◦ q ◦ p = p ◦ q1 ◦ · · · ◦ qn ◦ qn+1 ◦ p definition
= (p ◦ q1 ◦ · · · ◦ qn) ◦ qn+1 ◦ p associativity
≈i (p ◦ q1 ◦ · · · ◦ qn ◦ p) ◦ qn+1 ◦ p hypothesis
= p ◦ q1 ◦ · · · ◦ qn ◦ (p ◦ qn+1 ◦ p) associativity
≈i p ◦ q1 ◦ · · · ◦ qn ◦ (p ◦ qn+1) pairwise statelessness
= (p ◦ q1 ◦ · · · ◦ qn ◦ p) ◦ qn+1 associativity
≈i (p ◦ q1 ◦ · · · ◦ qn) ◦ qn+1 hypothesis
= p ◦ q1 ◦ · · · ◦ qn ◦ qn+1 associativity
= p ◦ q definition

(3)

so that p ◦ q ◦ p ≈i p ◦ q and we are done.

Definition 7. A set of actions P is convergent with respect to an action equiva-
lence relation ≈ if it is both idempotent and stateless with respect to that relation.

Note that if P contains the empty (identity) action ε, then statelessness straight-
forwardly implies idempotence: p ◦ p = p ◦ ε ◦ p ≈ p ◦ ε = p.

Statelessness can be an elusive property in practice. The conditional chmod
command “chmod u+X file” is convergent but not stateless. The “u+X” flag sets
the owner execute flag if any execute flag is set for owner, group, or all. Inter-
spersing a command that changes other execute flags, e.g., “chmod g+x file”
or “chmod a-x file”, can change the effect of a second instance of “u+X”. The
command “chmod 755 file” is by contrast both convergent and stateless.

5 Equivalent Actions

We can now define what it means for stateless actions to be equivalent.

Definition 8. For any set of actions P , let ≈2 represent the set of equivalences
required by Definitions 2 and 7.

In particular, p ≈2 q if there is a sequence of substitutions according to the
definition that will transform p into q.

Definition 7 makes the situation in Proposition 1 impossible. For p, q ∈ P ,
q ◦ p ◦ q ◦ p ≈2 (q ◦ p ◦ q) ◦ p ≈2 (q ◦ p) ◦ p ≈2 q ◦ (p ◦ p) ≈2 q ◦ p.

For any set S and equivalence relation ≈, the factor set S/ ≈ of the set and
the relation is a partition of the set into pairwise disjoint subsets Si, each of
whose elements are equivalent according to the equivalence relation. For a set of
actions P , consider the factor set F(P)/ ≈2. This is the set of distinct actions
represented by F(P) under the equivalence ≈2.

Lemma 2. Every element in F(P) is equivalent under ≈2 to one containing
only the leftmost instance of each duplicated action. Thus F(P)/ ≈2 consists of
a finite number of subsets.

On the Algebraic Structure of Convergence 33

Proof. Let x ∈ F(P). The goal is to express the word x as another equivalent
word x′ possessing only the leftmost instance of each distinct action from x.
If x consists of one action p ∈ P , let x′ = x and we are done. So presume that
the lemma is true for strings of n objects and suppose that x consists of n + 1
objects p1 ◦ · · · ◦pn+1. Then y = p1 ◦ · · · ◦pn consists of n actions and the lemma
applies, so that there is a sequence y′ equivalent with y and containing only the
leftmost instance of each action in y. Then x ≈2 y◦qn+1 ≈2 y′◦qn+1. Now if qn+1

is not identical to some element of y′, y′ ◦ qn+1 consists of unique elements and
is an appropriate choice for x′. If it is identical to some qi that is a term of y′,
then by Definition 7, x ≈2 y′ ◦ qn+1 ≈2 y′ and y′ is an appropriate x′.

The purport of this proof is that even though the free semigroup F(P) is infinite,
we only “care about” a finite factor set of that infinite set.

Lemma 3. Every element p of F(P) is idempotent with respect to ◦ and ≈2,
i.e., ∀p ∈ F(P), p ◦ p ≈2 p.

Proof. Given p ∈ F(P), apply Lemma 2 to create an equivalent composition
p′ ≈2 p that contains no duplicates. Then

p ◦ p ≈2 p′ ◦ p′ Definition 1
≈2 p′ Lemma 2
≈2 p construction

(4)

and p is idempotent with respect to ≈2.

Lemma 4. If we define for p̃, q̃ ∈ F(P)/ ≈2, p̃ ◦̃ q̃ as the unique r̃ ∈ F(P)/ ≈2

such that
{a ◦ b | a ∈ p̃, b ∈ q̃} ⊆ r̃ (5)

then ◦̃ is well defined and (F(P)/ ≈2, ◦̃) is a semigroup.

Proof. The nature of equivalence is agreement on order of first appearance of
each action. By Lemma 2, p̃ and q̃ have unique elements p ∈ p̃ and q ∈ q̃ with
minimal length, and the sequence p ◦ q can be transformed by Lemma 2 to
a similar representative element r of r̃. The choice of r uniquely determines the
contents of r̃ by Lemma 2 and ◦̃ is thus well-defined.

Note that for p ∈ p̃ ∈ F(P)/ ≈2 and q ∈ q̃ ∈ F(P) ≈2, p ≈2 q exactly when
p̃ = q̃.

A semigroup whose elements are all idempotents is called a band. We have
thus shown that:

Theorem 1. If P is a finite set of convergent actions obeying the equivalence
≈2 and ◦̃ is the operation defined in Equation 5, (F(P)/ ≈2, ◦̃) is a finite band.

Note that this is not true in general if equivalence is expressed instead ac-
cording to Definition 3. We have already shown that there are primitive actions
p, q for which p ◦ q is not idempotent. Not only is F(P)/ ≈1 not idempotent; it
may not be a semigroup at all. It is only a semigroup if one can show that for
some operation ◦ and every p̃, q̃ ∈ F(P)/ ≈1, p̃ ◦̃ q̃ ⊆ r̃ for some uniquely deter-
mined r̃ ∈ F(P)/ ≈1. This is possible but depends on the nature of particular
actions in P .

34 Alva Couch and Yizhan Sun

6 Value of Idempotence

The properties and possible structures of idempotent semigroups have been very
extensively studied[20, 21, 22]. As a summary, we quote the following well-known
results without proof.

A subsemigroup (R, ◦) of a semigroup (S, ◦) is a subset R ⊆ S closed under ◦,
i.e., for r1, r2 ∈ R, r1 ◦ r2 ∈ R. A commutative band (S, ·) is one in which
all actions commute, i.e., for x, y ∈ S, x · y = y · x. A band Q is a matrix
band if it is isomorphic to some band (Γ × ∆, ·) where Γ and ∆ are (arbitrary)
disjoint alphabets, and for (x, y), (z, w) ∈ Γ ×∆, (x, y) · (z, w) = (x, w). In other
words, a matrix band is a particularly simple kind of band. Note in particular
that elements of a matrix band never commute except with themselves, because
(x, y) · (z, w) = (x, w) while (z, w) · (x, y) = (z, y).

Theorem 2. A semigroup all of whose elements are idempotents is a commu-
tative band of matrix bands of unit groups ([22], Corollary 2.14, page 320).

The proof of this theorem is too long to include, but the meaning for configu-
ration management tools is straightforward. A configuration management tool
implements a set of actions P , where we have shown that under the definition
of convergence we consider correct, F(P)/ ≈2 is a finite band. Its actions can
be partitioned into a set of disjoint non-commutative subsets B1, . . . ,Bn that,
considered as elements of a larger semigroup, commute. In this semigroup, the
product of two elements Bi and Bj is that unique semigroup Bk containing all
products of pairs bi ∈ Bi and bj ∈ Bj. Each member Bi of the larger commuta-
tive band represents all appropriate values for one parameter, and can be parti-
tioned further into subsets that form a semigroup of non-commutative members
Bi1, . . . ,Bik representing particular values for a parameter.

We have thus proven that configuration parameters exist in all cases, without
assuming that they do. Existence of parameters is an algebraic property that
arises from assumptions of action equivalence, idempotence, and statelessness!

7 Meaning of Commutativity

Commutivity or non-commutivity of idempotent actions has a rather simple
meaning.

Definition 9. Two idempotent actions a, b are consistent[12] iff they commute,
i.e., a ◦ b = b ◦ a.

Consistent actions agree in intent on how to arrange a configuration; inconsistent
actions do not. Note that orthogonal actions that affect differing parts of the
system are automatically consistent as well.

To understand this in a simple case, consider each action to be operating on
an extremely large vector of bits called “the configuration”. Every action asserts
some fixed values for a subset of bits of the configuration. Actions that agree

On the Algebraic Structure of Convergence 35

on any common values commute, including actions that act on different parts of
the configuration and thus cannot conflict. Conflicting actions do not commute.

As a concrete example, suppose that configuration consists of five bits a1 . . .
a5. A configuration is then a set of values for all five, i.e., a mapping from
{ai} → {0, 1}. Configuration actions are then assertions of values of particular
integers. If configuration action B = {a1 := 1; a5 := 0} , this commutes with
C = {a1 := 1; a2 := 1} but not with either D = {a1 := 0; a2 := 0} or
E = {a5 := 1}.

8 Implications for Configuration Management Tools

We have shown so far that particularly nice properties are exhibited by any set
of configuration primitives possessing statelessness as described in Definition 7.
Unfortunately, few actions in current configuration management tools are state-
less.

8.1 Convergence and File Editing

The premier tool for convergent system administration is Cfengine[3, 4]. While
Cfengine’s abilities to copy files, replicate links, and change protections are fully
convergent in the above sense, its extensive facilities for editing files are not con-
vergent according to the above algebraic definition. Editing operations commonly
conflict in intent, thus rendering them both non-commutative and problematic.

For example, if one reorders the Cfengine editing actions:

editfiles:
all::
{ /etc/services

deleteLinesMatching "tftp"
appendIfNotPresent "tftp 6900/udp"

}

(that have obvious meanings) there will be no line describing tftp instead of the
new line describing tftp. File editing is procedural, not declarative; the action of
deleting an old configuration line before adding a new one is non-commutative.

8.2 Rethinking File Editing

The argument above suggests that the true mathematical language of convergent
system administration consists of self-consistent assertions of state, where sets
of non-conflicting and consistent assertions commute. These assertions are not
similar to editing commands; they assert intent without the implicit changes of
intent that plague any attempt to edit during reconfiguration.

To address this problem, we completely rethought and redesigned the process
of file editing to be declarative rather than procedural. Each file is treated like
a database, and editing commands become precise assertions describing contents

36 Alva Couch and Yizhan Sun

in the file. Rather than the above Cfengine editing script, one might write the
stateless assertion:

in /etc/services
where field1=tftp
line is "tftp 6900/udp"

or perhaps:

in /etc/services
where field1=tftp
make field2=6900/udp

or even (splitting up fields and renaming):

in /etc/services
where service=tftp
make port=6900 proto=udp

To have the effect of deleting a line, one asserts its absence:

in /etc/services
where service=tftp
omit

This is clearly more trouble than a simple edit; one must translate from impera-
tive language to declarative. The interpreter of the declaration must understand
the syntax of the file.

Adapting this idea to configuration files that are not linear lists is non-trivial
but feasible. One must decompose each file into regions describing particular
intents, and parse each separately. As files typically follow a natural hierarchy,
the assertion language naturally follows that structure. For example, to configure
a virtual server, one might write

in /etc/httpd.conf
with virtual server foo.bar.com
make port=9001

Accomplishing this level of declarative interaction with configuration is not
a single-layer process. There are several layers of interaction involved, from low
to high:

1. A syntactic layer that describes the syntax of each configuration file, i.e.,
a parser.

2. A constraint layer that describes which configuration states are meaningful.
3. A policy layer that describes which configuration states are allowed by site

policy.
4. An intent layer that converses through the constraint and syntactic layers

to create a particular behavioral effect.

On the Algebraic Structure of Convergence 37

5. A validation layer that insures that configuration does indeed change behav-
ior.

A particular declaration, such as the examples above, travels downward (back-
ward) through these layers to achieve a particular intent.

Some layers are generic; the syntax of particular configuration files is portable
among all operating systems, as is the process of validating effects. For the most
part, intent is also portable, but there are two kinds of constraints: those imposed
by the system being configured and those configured by humans. Most of this
infrastructure is thus reusable, with the exception of the layer in the middle of
the sandwich that describes site policies. Creating the layers is significant work,
but most of it must be done once and is reusable everywhere.

8.3 Generative Management

A generative configuration management tool expresses actions in terms of the
complete replacement of configuration by new configuration. A typical tool re-
places all files at each configuration step, so that each configuration action ex-
presses a state for every configuration file. The simplest generative model is “wipe
the disk, re-install, and regenerate all configuration files”, as in MIT’s Project
Athena. More complex generative models such as LCFG[1, 2], PSGCONF[24],
database-driven models[18, 19], and some flavors of Arusha[14, 15] selectively
replace all configuration files while leaving all else alone.

A generative configuration tool decomposes configuration into generative ac-
tions g ∈ G each of which produces and asserts the contents of an entire config-
uration. For any generative actions g and h, h ◦ g = h, i.e., the last action wins.
This means that each element of a generative semigroup is a “left zero” of the
semigroup, so that the structure is “left annihilating”. These h’s are the bi’s in
the above discussion.

One disadvantage of generative configuration management is the expense of
building the initial model, the “problem of semantic distance”[11]. Typical con-
figuration procedures are documented for humans in terms of scripts, not in
terms of assertions. Moving that configuration from the script to a generator
means turning scripts into assertions about their effects, a problem that is as
difficult as proving a script to be correct. The generator incorporates distributed
knowledge from multiple scripts into an expression of global knowledge, consis-
tency, and precedences.

8.4 Imperative Management

By contrast, managing a system by imperative methods is the most complex
method algebraically. The actions in this method are imperative scripts, so that
interactions between scripts can potentially be arbitrarily complex. Unfortu-
nately, scripts are also necessary. As a legacy, most systems are initially built
through scripts. In general, however, concatenating two scripts does not guar-
antee a composite effect of both scripts.

38 Alva Couch and Yizhan Sun

Scripts do have several advantages. They are the legacy way to accomplish
change and are already part of tasks such as package installation. They work
well in the absence of changes. They establish a baseline within which another
tool can work, and that is difficult to establish otherwise.

9 Conclusions

We propose a new and more strict notion of convergence that rules out common
practices previously considered to be convergent. Using this definition alone,
the properties of a typical configuration management system emerge from the
theory of semigroups. Using the prior definition, no such properties emerge, and
the resulting inelegance of the system leads to usability problems in crafting
strongly convergent actions from weakly convergent primitives.

In a simple algebraic sense, imperative, generative, and convergent meth-
ods form a hierarchy in which imperative methods are closest to the machine
and convergent methods closest to becoming self-healing. During initial machine
bootstrapping, imperative methods are inescapable; the cost of replacing them
with generative or convergent methods is too high. After initial configuration,
convergent methods have the potential to inadequately cover all required op-
tions, a behavior not exhibited by typical generative systems, The initial run
of a convergent system must “configure all variables” and thus has a generative
flavor.

So, we conclude from this study that an ideal configuration management tool
actually has attributes of each of the strategies:

1. An imperative bootstrap.
2. A generative initial configuration.
3. A convergent ongoing management process.

where the latter is convergent in the strong sense (Definition 7) rather than the
weak sense exhibited in most current convergent tools, including Cfengine.

We strive for order in a disorderly world. Strongly emergent properties are
the result of strong axioms and an uncompromising adherence. The cost of this
adherence is sometimes high. We feel that the value exceeds the cost, and that
future self-healing tools will adopt strongly convergent methods to assure the
algebraic elegance that naturally results in simplicity of use.

Acknowledgements

This work is not the product of individuals, but of a coordinated inquiry among
a large and diverse intellectual community. We are grateful to the Large-Scale
System Configuration mailing list (lssconf) for providing sustained discussion of
the strategies for configuration management and their impact. George Leger and
David Krumme both provided detailed, in-depth comments and corrections to
the mathematics. Special thanks to Mark Burgess, Paul Anderson, and Steve

On the Algebraic Structure of Convergence 39

Traugott, for providing the main fuel for this debate with their groundbreaking
work. This work was supported in part by an equipment grant from Network
Appliance Corporation.

References

[1] P. Anderson, “Towards a High-Level Machine Configuration System” Proc. LISA-
VIII, USENIX Assoc., 1994. 28, 37

[2] P. Anderson, P. Goldsack, and J. Patterson, “SmartFrog Meets LCFG: Au-
tonomous Reconfiguration with Central Policy Control”, to appear in Proc. LISA-
XVII, USENIX Assoc., San Diego, CA, 2003. 28, 37

[3] M. Burgess, “A Site Configuration Engine”, Computing Systems 8, 1995. 28, 30,
35

[4] M. Burgess and R. Ralston, “Distributed Resource Administration Using
Cfengine”, Software: practice and experience 27, 1997. 28, 35

[5] M. Burgess, “Computer Immunology”, Proc. LISA-XII, Boston MA, USENIX
Assoc., 1998. 28

[6] M. Burgess, “Theoretical System Administration”, Proc. LISA-XIV, New Orleans
LA, USENIX Assoc., 2000. 28

[7] Lionel Cons and Piotr Poznanski, “Pan: A High-Level Configuration Language”,
Proc. LISA-XVI, USENIX Assoc., Philadelphia, PA, 2002.

[8] A. Couch, “SLINK: simple, effective filesystem maintenance abstractions for
community-based administration”, Proc. Lisa-X, USENIX Assoc, 1996.

[9] A. Couch, “Chaos out of order: a simple, scalable file distribution facility for
‘intentionally heterogeneous’ networks”, Proc. LISA-XI, USENIX Assoc., 1997.

[10] A. Couch and M. Gilfix, “It’s elementary, dear Watson: applying logic program-
ming to convergent system management processes”, Proc. Lisa-XIII, USENIX
Assoc., 1999. 30

[11] Alva L. Couch, “An expectant chat about script maturity”, Proc. LISA-XIV,
USENIX Assoc., 2000. 37

[12] Alva L. Couch and Noah Daniels, “The maelstrom: network service debugging via
‘ineffective procedures’ ”, Proc. LISA-XV, USENIX Assoc., 2001. 28, 30, 34

[13] A. Couch, J. Hart, E. Greenlee, and D. Kallas, “Seeking Closure in an Open
World: A Behavioral Agent Approach to Configuration Management”, to appear
in Proc. LISA XVII, USENIX Assoc., San Diego CA, 2003.

[14] Matt Holgate and Will Partain, “The Arusha Project: A framework for collabo-
rative Unix system administration”, Proc. LISA XV, USENIX Assoc., San Diego
CA, 2001. 28, 37

[15] Matt Holgate, Will Partain, et al, “The Arusha Project Web Site”,
http://ark.sourceforge.net 28, 37

[16] L. Kanies, “Practical and Theoretical Experience with ISconf and Cfengine”, to
appear in Proc. LISA XVII, USENIX Assoc., San Diego CA, 2003. 28

[17] Frode Eika Sandnes, “Scheduling partially ordered events in a randomised frame-
work - empirical results and implications for automatic configuration manage-
ment”, Proc. LISA XV, USENIX Assoc., San Diego CA, 2001. 28

[18] Jon Finke, “An improved approach for generating configuration files from
a database”, Proc. LISA-XIV, USENIX Assoc., 2000. 28, 37

[19] J. Finke, “Generating Configuration Files: The Director’s Cut”, to appear in Proc.
LISA-XVII, USENIX Assoc., San Diego, CA, 2003. 28, 37

40 Alva Couch and Yizhan Sun

[20] P.A. Grillet, Semigroups: An Introduction to the Structure Theory, Marcel Dekker,
Inc, New York, NY, 1995. 34

[21] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, 1976. 34
[22] E. S. Ljapin, Semigroups, American Mathematical Society, Providence, RI, 1963.

34
[23] Mark Logan, Matthias Felleisen, and David Blank-Edelman, “Environmental Ac-

quisition in Network Management” Proc. LISA XVI, USENIX Assoc., Philadel-
phia, PA, 2002.

[24] M.D. Roth, “Preventing Wheel Reinvention: The Psgconf System Configuration
Framework”, to appear in Proc. LISA-XVII, USENIX Assoc., San Diego, CA,
2003. 28, 37

[25] Steve Traugott and Joel Huddleston “Bootstrapping an Infrastructure”, Proc
LISA XII, USENIX Assoc., Boston, MA 1998. 28

[26] Steve Traugott and Lance Brown, “Why order matters: Turing equivalence in au-
tomated systems administration” Proc. LISA XVI, USENIX Assoc., Philadelphia,
PA, 2002. 28

An Epidemic Protocol for Managing Routing

Tables in Very Large Peer-to-Peer Networks

Spyros Voulgaris and Maarten van Steen

Vrije Universiteit, Amsterdam
{spyros,steen}@cs.vu.nl

Abstract. Building self-maintained overlay networks for message rout-
ing has recently attracted significant research interest [5, 6, 7, 8, 9]. All
suggested solutions have a common goal: To build and maintain struc-
tures (routing tables) that can be used to route messages. Several of the
proposed algorithms focus on efficiency of bandwidth usage. However,
their behavior is uncertain in the presence of highly dynamic environ-
ments, or serious disasters (i.e. half of the nodes crashing). In this pa-
per we present an alternative approach to managing routing tables for
peer-to-peer routing overlay networks, based on the Newscast epidemic
protocol [1]. We substantiate our claims by presenting experimental re-
sults. We, therefore, demonstrate the potential of the Newscast epidemic
protocol to create highly robust, self-administered overlay networks, able
to sustain and adapt fast to severe network changes.

1 Introduction

The Internet has dramatically expanded over the past few years, proving the
traditional client-server model of communication inadequate for a number of
services in the large scale. The network research community has realized that
using centralized servers is not the way to go with respect to managing and
administering very large scale distributed systems, as well as for certain ap-
plications for such systems. As a result, considerable effort has been made in
designing peer-to-peer (P2P) overlay networks. These networks are highly (or
totally) decentralized distributed systems, where nodes are equal peers cooper-
ating to provide a service all together. The major advantage of such systems is
that they do not involve any central point of administration or control.

A significant part of the recent research in P2P systems has been in designing
overlay networks for routing. These networks operate in the application layer, on
top of an existing physically interconnected set of nodes (such as the Internet).
They assign each participating node an ID, and route messages to a node based
on that, rather than based on its IP address. Performance (in terms of routing
hops) is usually inferior compared to traditional IP routing. However, they offer
a number of other, attractive advantages, such as higher fault tolerance, flexi-
bility of deployment, adaptivity, as well as lack of central control. A number of
such P2P systems has been proposed, such as CAN [5], Chord [6], Pastry [7], and
Tapestry [8]. Their common property is that they all try to form and maintain

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 41–54, 2003.
c© IFIP International Federation for Information Processing 2003

42 Spyros Voulgaris and Maarten van Steen

some sort of structure across the large number of participating nodes, that is
then used to route packets among them.

Other P2P algorithms (such as Newscast [1]) fall in the category of epidemic
(or gossip) protocols. They aim at exploiting randomness to disseminate infor-
mation across a large set of nodes to keep that set of nodes highly connected
even in the event of major disasters, without keeping any static structures or
requiring any sort of administration. Connection between nodes in such systems
is highly dynamic. These systems are more adaptive to major network changes,
and appear to have a self-healing behavior with respect to major network dis-
asters. Their lack of structure, however, restricts them from carrying out some
types of services (i.e. routing) in an efficient way.

In this paper we combine the advantages of routing overlay networks with
those of highly fault tolerant, self-healing epidemic networks. In particular, we
investigate how to bootstrap and maintain structures used for peer-to-peer rout-
ing based on the highly dynamic emergent behavior of Newscast. Moreover, this
paper demonstrates the power of an epidemic protocol as simple as the Newscast
protocol, in managing structures across very large-scale distributed systems, in
a totally distributed and scalable way, with no need for external administration,
and with very high fault tolerance.

Section 2 provides a brief description of Newscast, concentrating more on its
epidemic protocol. Section 3 describes structures that can be used for peer-to-
peer routing. The architecture proposed for management of peer-to-peer routing
tables is presented in section 4. Section 5 describes the experiments we con-
ducted, and section 6 discusses the results obtained. Finally, we present conclu-
sions and directions for future research.

2 The Newscast Protocol

Newscast (introduced in [1]) is a model for information dissemination and mem-
bership management in large-scale, agent-based distributed systems. It deploys
a simple, peer-to-peer data exchange protocol. The Newscast protocol forms an
overlay network and keeps it connected by means of an epidemic algorithm. The
protocol is extremely simple: each agent knows only a (continuously changing)
small set of peers, and periodically picks randomly one of them to exchange
information with. In the following, we present a brief overview of the protocol’s
operation, and explore some properties of its emergent behavior.

In Newscast information is exchanged by means of news items. A news item is
a 4-field structure containing (a) the ID of the agent where it originated, (b) the
network address of that agent, (c) a timestamp of the moment it was generated,
and (d) some application-specific data. Each agent maintains a fixed-sized cache
of c news items (with typical value 20 to 40). The basic idea is that each agent
periodically picks a random peer from its cache and subsequently both agents
replace their cache entries with the c freshest news items of the union of their
original caches.

An Epidemic Protocol for Managing Routing Tables 43

More formally, but omitting specific details described in [1], each agent ex-
ecutes the following four steps once every ∆T time units (∆T is referred to as
the refresh interval)

1. Add a fresh (agent-specific) news item to the cache.
2. Randomly select a peer agent by considering the network addresses of other

agents as found in the cache.
3. Send all cache entries to the selected peer agent, and, in turn, receive all

that peer’s cache entries.
4. Out of the (up to) 2c cache entries, keep the c newest ones, and discard the

rest.

The selected peer from step 2 executes the last two steps as well, so that after
the exchange both agents have the same cache. Note that as soon as any of these
two agents executes the protocol again, their respective caches will most likely
be different again.

This algorithm resembles the traditional push-pull epidemic protocol [2].
A critical difference, however, is that no correspondent knows the complete mem-
ber list, but only a small, random fraction of it.

The protocol does not require that the clocks of the agents are synchronized,
but only that the timestamps of news items in a single cache are mutually consis-
tent. We assume that the communication time between two agents is negligible
compared to ∆T (which is generally in the order of minutes). When an agent A
passes its cache to B, it also sends along its current local time, TA. When B
receives the cache entries, it subsequently adjusts the timestamp of each entry
with a value TA−TB, effectively normalizing the time of each new entry to those
already cached.

As it turns out, this simple model of communication has desirable statistical
properties. To understand the behavior of newscasting, we consider the undi-
rected communication graphs Gt at different time instants t. Each such graph is
constructed as follows. The vertex set Vt of Gt contains the agents that are alive
at time t. A link between agents a, b ∈ Vt exists if and only if either a is in the
cache of b or b is in the cache of a at that time. The cache-exchange algorithm
leads to a series of graphs Gt, given an initial graph G0. Graph Gt expresses the
possibility of cache exchanges, and in essence information flow, at time t.

Now consider the series of graphsG0, G∆T , G2∆T , Note that during a time
interval ∆T each agent initiates the cache-exchange algorithm. In other words,
after ∆T time units, all agents will have added a fresh news item to their caches,
and will have exchanged and merged caches with at least one of their neighbors
(and possibly more). We say that a cycle of the Newscast protocol has completed.

We have conducted simulations with up to 50,000 agents [1] assuming an ide-
alized communication infrastructure with no communication delays and packet
losses, and emulations by deploying up to 128,000 actual Newscast agents on
a real wide-area network [4]. Both our simulations and emulations show that
even for small cache sizes (say, c = 20), each graph Gk∆T stays connected.
Moreover, it turns out that the average path length (average length of shortest

44 Spyros Voulgaris and Maarten van Steen

paths between any two nodes) converges to a very low value in just a few cy-
cles, and which is only slightly longer than the average path length in random
graphs. For real experiments with 128,000 nodes, and cache size of c=20, 30, and
40 entries, the average path length converges to 6, 5, and 4, respectively within
the first 30 cycles. Additional experiments showed insignificant dependence on
network latencies and packet losses, except when these were exceptionally high.

A more significant property of Newscast is, however, its strong connectivity.
Let G′

t be a subgraph of Gt, where a number of random nodes (and their links)
have been removed. Our simulations and emulations show that G′

t remains con-
nected even when more than half of the nodes are removed. This means that
when even half of the agents of a Newscast network are removed, the rest of
the nodes remain connected in a single cluster. In fact, Newscast’s connectivity
property is so strong that one needs to remove over 75% of the nodes to start
breaking up the remaining network into disjoint clusters. The nodes surviving
such a major disaster, quickly converge to an independent strongly connected
Newscast network, capable of sustaining further major disasters of similar sever-
ity.

Our experiments also show that we need only an extremely simple way of
handling membership, which is an important improvement in comparison to
other epidemic models, such as [3]. Consider the worst solution to handling
membership that could possibly disrupt the emergent behavior of our protocol:
an agent contacts the agent running on a well-known central server and simply
initiates the cache-exchange protocol with it. This approach systematically biases
the content of caches, which now all depend on what is stored at the central
server.

We conducted a simulation experiment in which we admitted 50 new agents at
every communication cycle until 5,000 agents had joined the network, after which
no new agents were allowed to join. By measuring the average path length again,
we saw that shortly (i.e. approximately 15 cycles) after the last agents had been
added, the average path length quickly converged to the one we would expect
in a stable graph. We can conclude that even this worst-imaginable membership
protocol does not affect the general properties of newscasting. In effect, when
a node wants to join, it needs to know only the address of a single other node
and can simply start executing the newscast protocol. Leaving is done by simply
stopping communication.

3 Peer-to-Peer Routing

One of the key issues in designing large-scale peer-to-peer overlay networks is to
provide an efficient way to do routing. Several architectures have been proposed
as peer-to-peer routing substrates, such as CAN [5], Chord [6], Pastry [7], and
Tapestry [8]. Such distributed systems that map “keys” onto “values” in a way
similar to hash tables, are referred to as distributed hash table (DHT) based
networks [9]. Two of the most popular of them, Pastry and Tapestry, employ
routing based on the same concept: incrementally matching the destination’s

An Epidemic Protocol for Managing Routing Tables 45

ID, digit by digit. In this section we present the structure and operation of the
principal structures used for routing, the routing tables.

Each node is assigned a unique numeric identifier, its nodeId, or simply ID.
When presented with a message and a numeric key, a node routes the message
towards the node whose ID is equal to the given key. NodeIds and keys are N-bit
integers, forming a nodeId space that spans from 0 to 2N − 1. N has a typical
value of at least 64 to provide a sufficiently large nodeId space to accommo-
date possibly billions of nodes. Nodes pick their nodeIds randomly with uniform
probability from the set of N-bit strings. We assume that the nodeId space is
large enough compared to the actual number of nodes, such that the probability
that nodes pick unique IDs is high. It is, therefore, assumed that nodeIds are
uniformly distributed across all geographic regions, multiple jurisdictions, and
various networks.

For the purpose of routing, nodeIds and keys can be thought of as a sequence
of digits in base 2b (b-bit long digits), where b is a configuration parameter
with typical value 4 (which implies hexadecimal digits). Routing a message to
its destination is achieved gradually, by matching one additional digit of the
message’s key at a time, say, from left to right. That is, in each step the message
is normally forwarded to a node whose ID shares with the key a prefix at least
one digit (b bits) longer than the prefix the key shares with the present node’s
ID, if such a node is known. If such a node is not known, routing of that message
fails.

To implement the logic described above in message routing, each node main-
tains its routing table. The routing table of a node consists of N/b rows of 2b

entries each. That is, the number of routing table rows grows logarithmically
with the size of the ID space supported. A routing table entry contains the ID
of a node, and its corresponding IP address. A given row of the routing table
contains 2b entries, and represents a matching prefix in the nodeId up to a digit
position. Entries in the rth row (r ∈ {1, . . . , N/b}) contain nodes whose IDs share
the same (r − 1)-digit prefix with the present node. The cth entry of the rth
row contains such a node, with the additional constraint that its ID’s rth digit
is equal to c. For instance, assuming b=4 (hexadecimal digits for the nodeId),
the 2nd entry of the 3rd row of the routing table for node 437BF52. . . (N/4 hex
digits in total) is some node whose ID starts with 432, while the 8th entry of its
5th row has a node whose ID starts with 437B8.

Upon receiving a message, a node compares the message’s key to its nodeId.
If they share a common prefix of i digits, it should forward it to a node whose ID
shares a prefix of i+1 digits with the key. To accomplish that, the present node
looks up the (i+1)th row of its routing table, which contains nodes sharing with
the key the same i first digits. Out of that row, it picks the kth entry, where k
is the value of the key’s (i + 1)th digit, and forwards the message to that node.
That node not only shares with the key the same first i digits, but also the
(i + 1)th one. This process continues either until the node whose ID matches
all digits of the message’s key is reached, or, else, until the message cannot be
forwarded any further.

46 Spyros Voulgaris and Maarten van Steen

4 P2P Routing Based on Newscast

An important issue in DHT-based peer-to-peer systems is managing the routing
tables. These tables are kept up-to-date by having nodes that join or leave the
system contact other nodes explicitly. To handle failures, heartbeat algorithms
are used to probe nodes and to take measures when a failure is detected.

We propose a different approach, namely to separate routing from table man-
agement, similar to the separation deployed in Internet routing protocols such as
OSPF or RIP. We believe such a separation often leads to a cleaner and simpler
design, although sometimes at the cost of performance.

Newscast can typically be used as a distributed background process by which
nodes are kept up-to-date in a lazy fashion. For DHT-based peer-to-peer systems,
we propose to deploy Newscast for maintaining routing tables. Our method
is completely decentralized, highly robust, and quickly adjusts itself to major
changes in the network. These advantages come at the price of continuous band-
width consumption.

4.1 The Principal Idea

Newscast’s epidemic protocol has a number of important properties, as described
in section 2. It maintains a strongly connected graph, it sustains disasters, it
adapts very fast to (possibly major) network changes, and it is highly scalable.
The idea is to combine the adaptivity strength of the Newscast epidemic protocol
with the efficiency of the routing scheme presented in section 3, to create a robust,
highly fault resilient, peer-to-peer overlay network for efficient routing.

Knowledge of peer nodes provided by Newscast can be used to populate the
routing tables. In each iteration of the Newscast protocol every node receives
references to c other nodes, randomly chosen among all the participating nodes.
Each node has to gather enough information to build and maintain all its N/b
rows.

Let us concentrate first on building the first row of a node’s routing table.
This requires references to nodes whose IDs differ from the present node’s ID in
the first digit, which makes a total of 2b−1 nodes. Seen differently, considering 2b

classes of nodes split according to their ID’s first digit, we require a reference to
an arbitrary representative from each class (excluding the present node’s class).
Assuming evenly distributed node IDs, each class contains roughly 1/2b of the
nodes. Therefore, with very high probability, a node will have learned about
at least one representative from each of the 2b − 1 classes when 2b (or a few
more) random nodes become known to it. Assuming 2b = 16 (for b = 4) and
cache size c = 20, this might happen even when a node executes the Newscast
cache-exchange protocol only once.

For the second row of a node’s routing table, we require references to 2b − 1
nodes of IDs with the same first digit, but different second digit than the present
node’s ID. Apparently, we are seeking for representatives of much narrower node
ID ranges, each containing roughly (1/2b)2 of the total nodes. In general, filling
up the kth row requires representatives of 2b − 1 classes, each containing just

An Epidemic Protocol for Managing Routing Tables 47

(1/2b)k of the total nodes. The narrower a node ID range gets, the more difficult
it becomes to find a representative from it by taking random samples across all
the nodes. Obviously it would be inefficient to rely on Newscast over the whole
set of nodes to find representatives of these narrow node ID ranges. A more
focused approach is required, described in the following subsection.

4.2 Multi-layer Newscast Scheme

As we mentioned, executing the Newscast protocol can be seen as running a dis-
tributed background process by which nodes are kept up-to-date. To efficiently
maintain routing tables, we run multiple instances of the Newscast protocol, each
node running several Newscast agents in parallel. In fact, each node runs exactly
N/b Newscast agents, each one being responsible for maintaining one of the rows
of the node’s routing table. The agent responsible for row r ∈ {1, . . . , N/b} of
node X will be referred to as agent #r of node X.

Note that a node’s agent #i deals only with nodes whose IDs share a common
prefix of length i− 1 with the present node’s ID, that is, it does not accept any
nodes with a different prefix in its cache. Moreover, a node’s agent #i interacts,
in terms of the Newscast protocol, only with agent #i of peer nodes, as shown
in figure 1. Apparently, agent #i of a peer node contacted by agent #i of the
present node, contains items whose node IDs share the same i−1 long prefix too.
What we are thus seeing, is that agent #i of node X maintains a small-world
network with some other nodes whose IDs are the same in the first i − 1 digits
as the ID of X . Agent #1 of all nodes maintain a single connected small world
of the whole set of nodes.

To collect all nodes with a particular prefix in a single connected small world,
we apply the following strategy. Peers that become known to a node’s agent #i
are also reported to the same node’s agent #(i+1). That agent, in turn, inserts
the peers that match its prefix requirement in its cache (by replacing the oldest

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Peer X

Peer W

Peer Y

Peer Z

Node A

Fig. 1. Communication of node A during one communication cycle

48 Spyros Voulgaris and Maarten van Steen

cache items), and further reports them to agent #(i + 2) of the same node, if
any. In other words, any peer that becomes known to a node’s agent #i, is also
made known to all the agents #j (j > i) of the same node that are potentially
interested.

An important observation is that once agents #i of all nodes that share the
same first i − 1 ID digits have formed a single small world, agents #(i + 1) of
the nodes among them that also share an arbitrary same ith digit form a single
connected small world very fast. Each agent #i learns about c random peers with
the same first i−1 digits every ∆T time units. Assuming evenly distributed node
IDs, we expect that on average c/2b of the peers that become known every ∆T
time units share the ith ID digit too with the present node, in addition to the
first i − 1 digits. Given typical parameter values of c = 20 and b = 2, one or
more peers sharing i digits become known every ∆T time units on average. This
partly explains why all agents of every node form small worlds quickly, as we
shall see later.

Notice that, initially, every node’s agent #(i+1) forms its own (trivial) small
world, disjoint from all the rest. Such a small world generally expands on each
cycle of agent #i, since a random peer satisfying the prefix requirement of agent
#(i + 1) is introduced. Moreover, two small worlds of n and m nodes unite if
any of the n nodes of the first happens to learn about the existence of any of
the m nodes of the other, respectively. Therefore, the larger disjoint small worlds
become, the more likely they will unite. What we are seeing, is an increasingly
accelerating behavior in the process of merging among disjoint small worlds. It
is therefore reasonable to state that agent #(i+1) of a set of nodes sharing the
same first #i digits form a small world in just a few cycles, provided agent #i
of nodes sharing the same first #(i − 1) digits form a small world too.

The set of all nodes’ agent #1 run a pure Newscast instance that guarantees
a single connected small world of all existing nodes. By induction, and based
on the claims of the previous paragraph, we expect all instances of Newscast
executed by all agents of all nodes, to quickly form the small worlds they are
designed for.

5 Experimental Setting

We implemented the architecture described in section 4.2 in Java and deployed it
on the DAS-2, a 400-processor cluster geographically distributed over a wide-area
network across the Netherlands. We carried out experiments with a set of 65,536
nodes, a number of them running on each DAS-2 processor simultaneously.

Regarding the parameters related to peer-to-peer routing, we considered node
IDs of length N = 16 bits, and digits of length b = 4 bits (hexadecimal digits).
This setting resulted in N/b = 4 rows and 2b = 16 columns per routing table.

As far as the Newscast parameters are concerned, each node was running 4
Newscast agents, one for each of its 4 routing table rows. A cache size of c = 20
was used for each Newscast agent. We ran our experiments with the same refresh
interval of ∆T = 10sec for all agents. That is, every 10 seconds each of the

An Epidemic Protocol for Managing Routing Tables 49

4 Newscast agents of each node initiated a cache exchange. We recorded and
analyzed the behavior of our architecture at intervals of 60 seconds, that is, we
logged the whole network’s state every 6 communication cycles.

Another facet of our experiments that is worth noting is the bootstrapping
mechanism. By bootstrapping we refer to the procedure of providing agents
with the information required to jump-start the overlay network’s formation. In
principle, a new agent joins by contacting any existing agent and exchanging
caches. When the whole network starts from scratch, a systematic way has to be
present to provide one or more initial communication points to each agent. In our
experiments, all nodes’ agents #1 were provided with the address of one single-
selected node’s agent #1. Providing agents with a choice of (possibly random)
agents to connect to initially, enhances the randomness of the network from the
early cycles. However, a bootstrapping mechanism as simple and centralized as
the one we chose further endorses our claims of our architecture’s fast convergent
behavior, as discussed in the following section.

Finally, we imposed a fake large-scale failure while the experiment was run-
ning, to observe and analyze the behavior of our system in such cases. In particu-
lar, we killed 50% of the nodes in the middle of the experiment. Our observations
of the experiments and their analysis are presented in the following section.

6 Experimental Results and Analysis

This section presents the output of our experiments with 65,536 agents. We
recorded and analyzed two aspects of the system’s behavior: dynamic forming
of the routing tables when bootstrapping, and following a large-scale failure.

6.1 Bootstrapping

The first part of our experiment aimed at observing the system’s behavior while
bootstrapping. Figure 2 presents the system’s fast convergence to a fully opera-
tive routing substrate. It shows the average number of routing table rows that
are completely filled per node, as a function of the number of cycles elapsed from
the experiment’s start. A node’s ith routing table row being completely filled
means that the node can route any message whose key shares i − 1 digits with
the node’s ID to a peer node whose ID additionally matches the ith digit of the
message’s key. Note that the system manages to fill all routing table entries in
all nodes in less than 30 cycles.

Figure 3 demonstrates the efficiency in routing messages to random desti-
nations. From each node we routed a number of messages to random nodes.
Figure 3 presents the average values. The left-hand diagram shows how many
routing steps messages took on average en route to their destination. Initially,
routing tables are empty, so messages cannot take any steps towards their des-
tinations. However, as routing tables are gradually formed, messages are cor-
respondingly routed through more steps. This diagram is similar to the one of

50 Spyros Voulgaris and Maarten van Steen

 4

 3

 2

 1

 0
 0 5 10 15 20 25 30

N
um

be
r

of
 fi

lle
d

ro
ut

in
g

ta
bl

e
ro

w
s

Cycles

of filled rows

Fig. 2. Average number of filled routing table rows

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30

A
ve

ra
ge

 r
ou

tin
g

st
ep

s
ta

ke
n

Cycles

Avg. # of routing steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

de
liv

er
ed

 to
 d

es
tin

at
io

n

Cycles

% of msgs delivered

Fig. 3. Left: Average routing steps taken. Right: Percentage of messages deliv-
ered

figure 2, as the number of routing steps a message takes is directly dependent
on the number of filled routing table rows.

The right-hand diagram of figure 3 shows what percentage of the messages
manage to actually reach their destinations, as a function of the number of cycles.
For the first 10 cycles few or none of the messages reach their destinations.
However, as routing tables are filled, more messages are routed all the way
through to their destinations. As it turns out, after the first 24 cycles 99.74% of
the messages are delivered to their destinations, and after 30 cycles, this fraction
increased to 99.998%.

6.2 Robustness to Large-Scale Failures

To test the system’s behavior in the face of large-scale failures, we intentionally
killed half of the agents after we knew that all nodes’ routing tables had been
completely filled, at cycle d.1 More specifically, we killed all nodes with an odd
1 This corresponded to approximately 10 minutes after the experiment’s start

An Epidemic Protocol for Managing Routing Tables 51

 4

 3

 2

 1

 0
d+30d+25d+20d+15d+10d+5d

N
um

be
r

of
 fi

lle
d

ro
ut

in
g

ta
bl

e
ro

w
s

Cycles

of filled rows

Fig. 4. Average number of filled routing table rows when recovering from a 50%
node crash that happened at cycle d

ID. As we shall see, the network remains connected after such a major disaster,
and adapts very quickly to the set of nodes that remain alive.

Figures 4 and 5 are analogous to the previous figures, 2 and 3. Figure 4 shows
the average number of routing table rows that are completely filled (with valid
entries), per node. Note that outdated entries of crashed nodes (the ones with
odd IDs) are not considered valid, and therefore are not counted. Immediately
after the crash none of the nodes’ rows are filled, which implies that all nodes’
routing rows also had some entries with odd node IDs. However, as can be seen
in the diagram, routing tables are filled very quickly. Within 30 cycles from the
crash all nodes’ first 3 routing table rows have been filled. Note that this is the
maximum number of rows that can be filled per node. Routing tables’ 4th rows
cannot be filled, as they would require nodes that match all possible cases for
the last digit of their IDs. Since nodes with odd IDs do not exist any more, it
is not possible to fill up these rows. This, however, does not affect routing, as
routing paths to all existing nodes (i.e. nodes with an even ID) do exist and are
complete.

The system’s capability to route messages can be seen in figure 5. The left-
hand diagram shows the average number of steps a message is routed through.
Initially, since half of the nodes have been removed, messages are routed on aver-
age half-way through to their destination. As routing tables adjust to the change
imposed by half the nodes crashing, messages are routed through more steps to
their destinations. The right-hand diagram of figure 5 shows the percentage of
messages that are successfully routed all the way through to their destination.
Just like in the bootstrapping case, routing tables are formed very fast. It takes
less than 20 cycles from the moment of the crash to form routing tables that can
route any message from any source to any destination.

6.3 Bandwidth Considerations

In this section we provide an estimation of the individual (per node) and aggre-
gate bandwidth used in our experiments, based on the number of bytes trans-

52 Spyros Voulgaris and Maarten van Steen

 0

 1

 2

 3

 4

d+30d+25d+20d+15d+10d+5d

A
ve

ra
ge

 r
ou

tin
g

st
ep

s
ta

ke
n

Cycles

Avg. # of routing steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

d+30d+25d+20d+15d+10d+5dP
er

ce
nt

ag
e

of
 m

es
sa

ge
s

de
liv

er
ed

 to
 d

es
tin

at
io

n

Cycles

% of msgs delivered

Fig. 5. Message routing while recovering from a 50% node crash that happened
at cycle d. Left: Average routing steps taken. Right: Percentage of messages
delivered

ferred by the application layer. Note that some additional overhead is induced by
the underlying network protocols (i.e. TCP/IP), which we do not consider here.
Despite the 16-bit node IDs we used in our experiments, we make the estimation
assuming node IDs of 64 bits, which would be the ID size in real operation.

A cache entry consists of 16 bytes: 8 bytes for the node’s 16-bit ID, 4 bytes for
its ip address, 2 bytes for the port, and 2 bytes for the entry’s timestamp. One
cache has c = 20 entries, which account for 320 bytes. A cache exchange involves
sending the cache to a peer and receiving the peer’s cache, therefore causes traffic
of 640 bytes. Every ∆T , each node initiates exactly one cache exchange, and also
participates on average in one cache exchange initiated elsewhere. Therefore,
two cache exchanges cause transfer of 1280 bytes. For running 4 agents, a single
node exchanges 4×1280 = 5120 bytes every ∆T = 10sec. That is, 512 bytes per
second, or 4096bps (4Kbps). This is the price to pay for achieving fully operative
routing tables in less than 30× 10 = 300 seconds, which is 5 minutes.

For the aggregate bandwidth we multiply the individual node bandwidth by
the number of nodes and divide by two, since the traffic caused by each cache
exchange has been counted twice, once for the exchange initiator and once for the
peer node. Therefore, we have a total bandwidth of 65, 536×4/2 = 131, 072Kbps,
which is 128Mbps. Note that even though this bandwidth seems too high, it is
in fact distributed across the whole (possibly world-wide) network.

In a real system, with 64-bit node IDs, and a digit length of 4 bits, we would
need 16 Newscast agents running per node. This would require the exchange of
16×1280 = 20, 480 bytes every ∆T per node. Note that the refresh interval, ∆T ,
is a configuration parameter. By setting a longer refresh interval, we can lower
the bandwidth used by each node, at the expense of slower completion of the
routing tables. For instance, a refresh interval of ∆T = 60sec would require a
bandwidth of 20, 480/60 � 341 bytes per second, or roughly 2.7Kbps. However,
in that case routing tables would take longer to be filled, around 30 minutes.

An Epidemic Protocol for Managing Routing Tables 53

7 Conclusions and Future Directions

This paper aimed at demonstrating the potential of the Newscast protocol in
building large-scale, self-managing communities. In particular, we dealt with the
application of managing routing tables for DHT-based peer-to-peer networks.
We introduced a Newscast-based architecture for this application, and analyzed
the system’s behavior through experimentation. We showed that the proposed
system forms routing tables fast, in a totally decentralized, self-organized man-
ner.

This research is very recent, and currently under development. The results
of the experiments suggest that our system can provide highly robust, non-
centralized routing table management. However, more research remains to be
done to discover potential optimizations for our architecture, such as in the field
of bandwidth consumption. Our architecture could possibly use significantly less
bandwidth if adaptive refresh intervals were applied. Also, each agent of a node
could have an individually optimized set of configuration parameters, such as
cache size and refresh interval. Future research aims at optimizing the current
approach.

Another goal for future research, in a broader sense, is exploiting Newscast
for a multitude of diverse peer-to-peer applications. We envision Newscast as
being a basic background process, supporting, organizing, and managing overlay
networks in a fully decentralized way.

The contribution of this paper is that it provides and analyzes a complete
solution to a specific problem, showing the potential of the Newscast protocol
to support such systems.

References

[1] M. Jelasity, M. van Steen. Large-scale newscast computing on the Internet. Tech-
nical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Sci-
ence, Amsterdam, The Netherlands, Oct. 2002. 41, 42, 43

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database manage-
ment. In Proc. 6th ACM Symp. Principles of Distributed Computing (PODC’87),
pp. 1–12, Vancouver, Aug. 1987. 43

[3] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Peer-to-peer membership man-
agement for gossip-based protocols. IEEE Transactions on Computers 52(2):139–
149, 2003. 44

[4] S. Voulgaris, M. Jelasity, M. van Steen. A Robust and Scalable Peer-to-Peer
Gossiping Protocol. In Agents and Peer-to-Peer Computing workshop, Melbourne,
Australia, July 2003. 43

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A scalable content-
addressable network. In Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.
41, 44

[6] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for Internet applications. In Proc. ACM SIG-
COMM’01, San Diego, CA, Aug. 2001. 41, 44

54 Spyros Voulgaris and Maarten van Steen

[7] A. Rowstron, P. Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems In Proc. IFIP/ACM Middleware 2001,
Heidelberg, Germany, Nov. 2001. 41, 44

[8] B. Zhao, J. Kubiatowicz, A. Joseph. Tapestry: An infrastructure for fault-
resilient wide-area location and routing. Technical Report UCB//CSD-01-1141,
U.C. Berkeley, CA, Apr. 2001. 41, 44

[9] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica Looking up
data in P2P systems In Comm. ACM, 46(2):43–48, 2003. 41, 44

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 55-67, 2003.
 IFIP International Federation for Information Processing 2003

Towards Peer-to-Peer Traffic Analysis Using Flows*

Myung-Sup Kim, Hun-Jeong Kang, and James W. Hong

Department of Computer Science and Engineering
POSTECH, Korea

{mount,bluewind,jwkhong}@postech.ac.kr

Abstract. One of the main problems with today's Internet traffic analy-
sis is caused by the large number of network-based applications whose
types and traffic patterns are more complicated than in the past. Today,
peer-to-peer (P2P), streaming media, and game traffic are continuously
increasing. The difficulty the traffic analysis is that this newly emerging
traffic is not as simple as past well-known port based traffic. This paper
focuses on analyzing P2P traffic, which is the most complicated traffic
among newly emerging Internet traffic. We describe the properties of
P2P traffic and explain why P2P traffic analysis is more difficult than
other types of Internet traffic analysis. Next, we propose a new algo-
rithm suitable for P2P traffic analysis. The main idea of our algorithm is
that flow grouping based on their relationships will increase the accu-
racy of P2P traffic analysis.

1 Introduction

There are two main problems in traffic monitoring and analysis of today's Internet
traffic compared to the past network environment. The first is how to capture and
handle the huge amount of traffic data in a real-time manner generated from high-
speed network links, such as 2.5 Gbps and higher. The second is how to analyze vari-
ous and complex types of traffic generated by many different types of network-based
applications, such as streaming media, P2P, and game applications.

On the first problem, there have been many efforts and good research results re-
ported. To increase the performance of capturing, network cards specialized for
monitoring purpose (for example, DAG card [1]) were developed. Flow formats such
as NetFlow [2] and sFlow [3] were created. Many routers now have a function to
export flow information with these popular formats. For real-time traffic monitoring
architecture, RTFM [4] was introduced and influenced the development of many traf-
fic monitoring systems [5, 6, 7]. We have also developed a real-time traffic monitor-

* This work was in part supported by the Electrical and Computer Engineering Division at

POSTECH under the BK21 program of Ministry of Education and HY-SDR Research Cen-
ter at Hanyang University under the ITRC program of Ministry of Information and Commu-
nication, Korea.

56 Myung-Sup Kim et al.

ing and analysis system called NG-MON [8], where a clustering and pipelining archi-
tecture has been applied for enhanced scalability.

The second problem, which this paper addresses, is caused by the high number of
network-based applications. So the types and patterns of current network traffic are
not simple as in the past. In the past network environment, HTTP, FTP, TELNET,
SMTP and NNTP traffic occupied almost all Internet traffic. Today, the proportion of
these well-known ports based traffic is decreasing. Instead P2P, streaming media and
game traffic are increasing. The difficulty with traffic analysis is that this newly
emerging traffic is not as straightforward as the well-known port based traffic. There-
fore, we need a new algorithm to analyze these new types of Internet traffic.

This paper focuses on P2P traffic that is the most complicated traffic among newly
emerging Internet traffic. A few years ago new types of network-based applications
emerged, which are different from traditional client/server based application architec-
ture, such as Morpheus [10], Gnutella [11], Soribada [9], etc. Soribada is a Korean
version of Napster. P2P applications have changed Internet traffic patterns and direc-
tions in many ways. These new types of applications require a new method to analyze
them. In this paper, for the analysis of P2P traffic we describe the properties of P2P
traffic and explain why P2P traffic is more difficult than other types of Internet traffic.
Next, we propose a new algorithm suitable for P2P traffic analysis. The main idea of
our algorithm is that flow grouping according to the relationship among flows will
increase the accuracy of P2P traffic analysis.

This algorithm is composed of four crucial steps. The first step is to make the Ap-
plication Port Table (APT) by off-line exhaustive search of existing P2P applications.
The second step is the Important Port Number selecting method from each flow rec-
ord, which is important in the decision of P2P applications. The third step is the use of
Flow Relationship information in the analysis phase. The last step is the decision of
P2P application name for each flow. For the validation of proposed algorithm we
designed and implemented a P2P traffic analysis system and present the result of P2P
traffic analysis in the Internet junction of our campus network.

The organization of this paper is as follows. The properties of P2P applications and
some other new traffic analysis efforts are described in Section 2. Section 3 describes
our proposed P2P traffic analysis algorithm. The design and implementation issues are
described in Section 4. In Section 5, we describe the analysis results using the pro-
posed algorithm. Finally, concluding remarks are given and possible future work is
mentioned in Section 6.

2 Related Work

In this section, we give a definition of P2P traffic and describe its properties. We also
describe the existing traffic analysis mechanisms.

2.1 Definition of P2P Traffic

For the analysis of P2P traffic, the first step is to define the nature of P2P traffic. In
this paper we define P2P traffic as traffic generated by P2P applications. Then what is

Towards Peer-to-Peer Traffic Analysis Using Flows 57

a P2P application? Figure 1 describes the critical difference between traditional cli-
ent/server applications and newly emerging P2P applications.

As seen in Figure 1, in the client/server architecture we can explicitly divide all
hosts into two groups: a server group and a client group. The client usually sends
requests for some services and the server replies for each request. Direct communica-
tion among clients never occurs. However, in the P2P architecture each host can act as
a server and a client simultaneously. In other words, direct communication between
peers is possible. A host sends a request to other peers to obtain a certain service, and
the same host simultaneously receives requests from other peers.

server

client client client peerpeer

peer

(a) Client/Server Architecture (b) P2P Architecture

Fig. 1. Client/Server Architecture and P2P Architecture

The traffic pattern is also different from that of the client/server architecture. The
traffic pattern in the client/server model is directional and downstream from server to
client. Otherwise, the P2P traffic is bidirectional. With these properties of P2P appli-
cations, P2P traffic can be defined.

2.2 Categorization and Properties of P2P Applications

We can categorize P2P applications into two types; they are instant messaging appli-
cations, such as MSN Messenger [12] and Yahoo Messenger [13], and file sharing
applications such as Morpheus [10], Soribada [9] and eDonkey [14].

The major functions of the instant messaging applications are message delivery,
single or multi-user chatting and file transfer. The major functions of file sharing ap-
plications are searching and file transfer. Besides these major functions many addi-
tional features are provided to differentiate themselves from other applications. There
are many P2P applications and their number will continuously increase in the future.
Figure 2 describes a detailed communication sequence of two P2P applications: MSN
Messenger [12] and Soribada [9], a Korean version of Napster. As Figure 2 shows,
almost all P2P applications create multiple connections according to their different
functions. Some applications use TCP and UDP simultaneously. These multiple con-
nections make P2P traffic analysis very challenging.

We can summarize the properties of P2P applications from the traffic analysis point
of view. First, there are many P2P applications. In Korea, the number of frequently
used P2P applications are more than 20. The worldwide number of P2P applications is
much greater than this number. Second, many P2P applications use multiple connec-
tions to support various functions. Some P2P applications use TCP and UDP simulta-
neously. Third, the protocol format or operation used in most P2P applications is

58 Myung-Sup Kim et al.

unknown. Fourth, the port numbers used by P2P applications are dynamically gener-
ated and many of them are not registered at IANA; sometimes they use port numbers
which are already registered at IANA for some other purposes.

peer Soribada Server

80Login
random

22321

File transfer

peer

22321

7674 7674

Exchange Hello

search

7675random

Message transfer 7677random

Chatting 7676random

unknown 22322random

TCP UDP

(b) Soribada Communication

client MSN Server

1863
Loginrandom

1863
Text Chatting

random

peer

6891
~

6900

File transfer

Voice Chatting
random

14954

random

(a) MSN Messenger Communication

unknown

random

Fig. 2. Communication Detail of P2P applications

2.3 Related Work on P2P Traffic Analysis

The analysis of P2P traffic is one of the important issues in the current Internet envi-
ronment. Until now a few researches on the architecture of P2P applications [15], the
traffic patterns and properties of some specific P2P traffic [16] have been performed.
However, the method to identify P2P traffic among all Internet traffic and decide the
application name of certain traffic is still very primitive. The only method currently
used is the traditional method that decides the P2P application name by the port num-
bers. Figure 3 (a) illustrates the traditional traffic analysis method. The architecture of
most traditional Internet applications is a client/server architecture. The traffic analy-
sis of these client/server applications is very simple. According to the port number less
than 1024 from the packet header information, we can decide the application name
generating that packet.

client server

801845

211964

234352

HTTP Traffic

FTP Traffic

201965 TELNET Traffic

client server

17551845

38971964

MMS Control Traffic
- well-known port

MMS Data Traffic
- dynamically
determined port

(a) Based on well-known port number (b) Based on payload examination

Fig. 3. Existing Traffic Analysis Methods

However, streaming media traffic is not as simple as traditional client/server traffic.
Streaming media applications also use client/server architecture but they usually es-

Towards Peer-to-Peer Traffic Analysis Using Flows 59

tablish two connections to communicate between hosts: one for control data transfer
and the other for video/audio data transfer. The port number used in a control session
is a well-known fixed port. But the port number used for the data session is decided by
the negotiation between the client and server. Mmdump[19] and SM-MON[20] intro-
duced a payload examination based analysis for streaming media traffic analysis. Fig-
ure 3 (b) illustrates the method used in mmdump and SM-MON for MMS [17] traffic.
They examine the payload of each control packet and detect the port number used in
the data session. This method makes some overhead in the packet capture and analysis
phase, because the entire packet should be captured and some processing is required
in the examination of payload. This method is possible because there are few stream-
ing media applications and protocols used worldwide, such as MMS [17] protocol and
the RTSP [18] protocol. Moreover, the format of the RTSP protocol and its operation
is open to the public.

Traditional well-known port based traffic analysis cannot be used in P2P traffic
analysis because the port number used in the P2P application is usually over 1024 and
they are using multiple connections. Further, for many P2P applications, port numbers
are dynamically determined during the communication setup between the peers in-
volved. The method of payload examination is not suitable because the number of P2P
applications is large and usually the packet format and operation is not open to public.
So we need a whole new method to analyze these multiple session and proprietary
protocol based P2P application traffic.

3 P2P Traffic Analysis Algorithm

In this section, we present a new algorithm for P2P traffic analysis, which solves the
problems that occur in the traditional well-known port number based analysis and
payload examination based analysis. The main idea of the proposed algorithm is that
flow grouping according to its corresponding applications will increase the accuracy
of P2P traffic analysis. For example, the Web traffic typically uses port number 80 or
8080 for HTTP and 443 for HTTPS. The groups of flows generated by the Web
server and client are obvious; the flows with port number 80, 8080, and 443 in the
source or destination port can be grouped as Web traffic. In the case of P2P traffic,
port number detection is more complex than Web traffic because P2P traffic applica-
tions are using port numbers over 1024 and the port number is often dynamically
generated. If all P2P traffic can be selected among the entire range of traffic and then
grouped according to its application name, then P2P traffic analysis will be performed
with high accuracy.

For this purpose our proposed algorithm consists of four main processes, as illus-
trated in Figure 4. These processes are the Application Port Table (APT), the Impor-
tant Port Selection, the Flow Relationship Map (FRM), and the P2P Application Deci-
sion. In our proposed algorithm we do not examine the payload of each packet; in-
stead, we use only the header information of each packet.

The first step of the proposed algorithm is to construct the Application Port Table
(APT). APT is constructed by the off-line exhaustive search of each P2P application
using packet analysis tools. APT contains the P2P application names, their frequently

60 Myung-Sup Kim et al.

used port numbers and protocol numbers. This information is used in the decision of
P2P application name of each flow in the P2P Application Decision process. The
second step is the Import Port Number Selection process. In this step, the flow infor-
mation is generated from the captured packets according to their 5-tuple information:
source IP address, destination IP address, source port number, destination port number
and protocol number. Then we select the important port number from the generated
flow information. Because both source and destination port numbers of P2P traffic
flow are usually over 1024, it is important to distinguish the important port number for
the decision of P2P application from the randomly generated port number.

The third step is to construct the Flow Relation Map (FRM). Most P2P applications
use multiple connections to support various functions so that it is possible to discover
relationships between flows that belong to the same P2P application. The final step is
to make group of flows according to the P2P application name using the results of the
previous three steps.

START

Packet Capture

Flow Generation

Important Port Selection

Flow Relationship Map

Application Port Table

Exhaustive Search
of P2P Application

First Flow Grouping

P2P Application Decision

STOP

off-line search

application-port info.

raw packet

packet header info

flow info

flow info

flow relationship info

flow group info.

tagged flow group info.

1

2

3

4

Fig. 4. P2P traffic Analysis Algorithm

3.1 Important Port Number Selection Method

This method comes from the fact that most of the Internet traffic is TCP traffic and
most P2P applications use TCP. Figure 5 shows a normal TCP communication se-
quence. To establish a connection between a client and a server, the three-way hand-
shaking mechanism is performed using SYN and SYN-ACK packets.

client server

SYN

SYN-ACK

ACK

connection establishment
three-way handshaking

listening portrandom port

listening
(passive open)

SYN_RCVD

ESTABLISHED

(active open)
SYN_SENT

ESTABLISHED

Fig. 5. TCP Communication Sequence

Towards Peer-to-Peer Traffic Analysis Using Flows 61

In TCP communication, usually the server port number is fixed and not changed,
but the client port number is randomly generated by operating system. Therefore, the
server listening port is the important port for analyzing traffic. How can the server's
listening port number be selected from the captured flow information? We utilize
SYN and SYN-ACK packets in the three-way handshaking mechanism. The destina-
tion port number in the SYN packet is the server listening port. Likewise, the source
port number in the SYN-ACK packet is the server listening port number. Using this
information, we can determine the important port number from all the TCP flows.

In case of UDP flows we cannot apply the same method because there is no three-
way handshaking mechanism like in TCP. Instead we can use the flow relationship
between UDP packets to decide the important port number. We know by experiments
that the patterns of UDP flows are very simple compared to TCP flows. So it is not so
difficult to find relationships among UDP flows.

3.2 Flow Grouping Using APT

To determine the P2P application name from the captured flow information we should
know the P2P application names widely used by users. Through the exhaustive search
of P2P applications using packet analysis tools such as tcpdump and ethereal [21] we
construct the APT which contains the information about each P2P application, as
illustrated in Table 1. The APT contains the P2P application names, frequently used
TCP/UDP port numbers and one representative port number for each. As Table 1
shows, most P2P applications use multiple port numbers that are not mostly registered
at IANA [22]. Some P2P applications use both TCP and UDP.

Table 1. An Example of Application Port Table

51905190AIM /ICQ

4661, 4662, 66674661eDonkey

22321, 76742232122322, 7675, 7676, 767722322Soribada

6388, 6733, 6777677763996399Shareshare

5101, 50505101Yahoo M essenger

1863, 6981-6990, 145941863M SN M essenger

well-known portsrepresentative portwell-known portsrepresentative port

UDPTCPApplication Nam e

We select one port number among the frequently used port numbers by each P2P
application and use it as the representative port number of that P2P application. If a
P2P application uses TCP and UDP then two representative port numbers are assigned
to each protocol respectively. This representative port number is used to indicate the
groups of flows belonging to the same P2P application. In the final step of the pro-
posed algorithm, the flows belonging to a P2P application are tagged with the corre-
sponding representative port number. Therefore, all P2P flows are grouped by the
tagged representative ports.

62 Myung-Sup Kim et al.

3.3 Flow Grouping Using Flow Relation Map

The Application Port Table (APT) and Important Port Selection cannot give 100% of
accuracy in the decision of P2P application name to all P2P flows. There are two
reasons for this. First, there are too many P2P applications around the world to exam-
ine. Also, the complete examination to discover all used port numbers is difficult. In
many cases, dynamically generated port numbers are the important port numbers. In
such cases APT cannot provide flow-grouping information for this P2P traffic. Sec-
ond, it is also possible that the same important port number is used by more than two
P2P applications. In this case, we cannot decide which P2P application generates this
flow without flow relationship information. Therefore, we propose the third step, the
Flow Relationship Map (FRM), to increase analysis accuracy.

Currently, we are using a basic and simple relationship method among flows. First,
the flows are grouped according to the combinations of source port, destination port,
and protocol. We give a priority value to each combination of these three flow prop-
erties according to the weight of dependency, as illustrated in Table 2 (a). For exam-
ple, the UDP flows with the source port number 22321 and destination port number
22321 are grouped with priority 100. This processing is called the property depend-
ency grouping.

After this property dependency grouping, all groups are linked with the weight. The
weight value is decided by the priority values in the location dependency table, which
is illustrated in Table 2 (b). The link weight between two groups is high when the
source and destination IP addresses of flows in the two corresponding groups are
highly dependent on each other. Otherwise, the weight is low. We call this processing
the location dependency grouping.

By these two steps in the grouping method, the flows related to each other are
grouped. And this group information is used in the P2P Application Decision process
to increase the accuracy of analysis.

Table 2. Flow Dependency Table

1

1

1

1

protocol

100117
5016
5015
04

50113
2012
2011
00

prioritydestination
port

source
port

1

1

source
ip

10013
102
1011
00

priority
destination

ip

(a) Property Dependency Table

(b) Location Dependency Table

Towards Peer-to-Peer Traffic Analysis Using Flows 63

4 Design and Implementation of P2P Traffic Analysis System

In this section, we describe the design and implementation of the P2P traffic analysis
system using the proposed method. The system was developed as a plug-in to the real-
time traffic monitoring analysis system called NG-MON [8].

4.1 Design of P2P Traffic Analysis System

Figure 6 illustrates the overall design of the P2P traffic analysis system, which con-
sists of three main modules. They are the APT module, the Important Port Selector
module, and the Flow Relations Mapper module.

The Important Port Number Selector module consists of a Packet Capturer, a Flow
Generator, and a SYN Packet Table. The Packet Capturer receives raw packets from a
network link and generates packet header information from each raw packet. The
packet header information is sent to the Flow Generator. If a packet is a SYN or SYN-
ACK packet, it is stored in the SYN Packet Table. The SYN Packet Table keeps the
TCP listening port information. To select an important port number from each flow,
the Flow Generator looks up the SYN Packet Table.

Flow Info.Packet
Capturer

Flow
Generator

Important Port Number Selector

Flow Relationship MapperFlow Relationship Mapper

Application Port Table
Manager

Application Port Table
Manager

P2P Traffic
Decider

P2P Traffic
Decider

N
etw

ork Link

SYN Packet
TableSYN Packet

SYN-ACK Packet

Packet Header Info.

Flow Info.

P2P App. Port Config.

Flow Relationship Info.

Port Group Info.

Fig. 6. P2P Traffic Analysis System Design

The important port determined flows are sent to the P2P Traffic Decider and the
Flow Relationship Mapper. The Flow Relationship Mapper module keeps track of the
flow relationship and the history of flows from each host and provides this information
to the P2P Traffic Decider Module.

Through the off-line search of each P2P application, we built a P2P port configura-
tion file with XML. We used XML because it is easy to use and many XML-related
libraries are provided in various languages, such as C/C++ and Java. The APT man-
ager reads this configuration file and keeps the port group information. When the P2P
Decider module receives a flow from the Important Port Number Selector module, it

64 Myung-Sup Kim et al.

looks up the Flow Relationship Map and Application Port Table to decide the P2P
application name where the flow belongs. Finally, the P2P Traffic Decider groups the
flows by tagging each P2P flow with the corresponding representative port number. If
the important port number of flow does not belong to a certain P2P application port
group but this flow has high relationship with other flows which belong to that P2P
application according to FRM, then the P2P Traffic Decider tags this flow with the
same representative port number and updates the APT.

4.2 Integration of P2P Traffic Analysis System with NG-MON

NG-MON [8] is a real-time Internet traffic monitoring system for high-speed net-
works, developed at POSTECH. The P2P traffic analysis module is implemented as a
plug-in module to NG-MON. Figure 7 illustrates the integration of the P2P traffic
analysis module with the current NG-MON system.

The components of the Import Port Number Selector module are separated into the
Packet Capturer, Flow Generator, and Flow Store phases. We use the Packet Capturer
module of NG-MON as it is. The SYN Packet Table is added into the Flow Generator
and the Second Level Important Port Number Selector is located in the Flow Store
system. The APT manager, Flow Relationship Mapper, and P2P Traffic Decider are
added in the Flow Store system. The P2P Traffic Decider Module is illustrated with
the flowchart-like diagram in Figure 7. As a result of the P2P traffic analysis system,
the tagged flow information with the representative port number is stored in the Flow
Store system. The traffic analyzer determines the corresponding P2P application name
of each P2P flow by the representative port number.

Packet Capturer Flow Generator Flow StoreNetwork
Device

raw packet packet header info. flow information

p2p.xml

exporter

p2p flow?

P2P-APT
manager

Tagging with
Representative

Port

YES

Loading

Flow
Relationship

Mapper

Packet Capture Flow
Generator

SYN
Packet
Table

Second
Level

Decider NO

Fig. 7. Integration of P2P traffic analysis system with NG-MON

5 Result of P2P Traffic Analysis

We have deployed NG-MON with the P2P traffic analysis module in the Internet
junction of our campus. Our campus Internet link is composed of two 100 Mbps

Towards Peer-to-Peer Traffic Analysis Using Flows 65

Metro Ethernet links. Considering the bi-directional traffic, the maximum amount of
traffic we analyze is 400 Mbps.

We can see the result of P2P traffic analysis at the application protocol view page
of the NG-MON Presenter system. Figure 8 (a) shows an example of P2P traffic
analysis results. NG-MON captures all the in/out Internet traffic and analyzes them
from various points of view, such as throughput analysis per host and subnet, time
series analysis of the throughput changes of each host and subnet. Figure 8 (b) and
Figure 8 (c) is a result of NG-MON analysis during one week. Figure 8 (b) shows a
time series graph of throughput and packet size changes during the tested period. The
total amount of captured data size is 11,493,562,602,529 bytes from 17,427,364,409
packets. The average bandwidth was 152.03 Mbps. The ratio of TCP and UDP among
total IP packets was 82.3% and 9.9%, respectively.

(a) Application protocol view page

(b) Time series graph of Internet traffic for one week

(c) Application layer traffic distribution for one week

Fig. 8. Analysis Result of P2P Traffic

Figure 8 (c) shows the application layer analysis result where our P2P analysis
mechanism is applied. HTTP traffic occupies the largest part of the pie chart; it is
30.73% of total IP traffic. But the second is not FTP data; the proportion of FTP traf-
fic is only 10.61% and the third. The second largest traffic is V-share P2P application
traffic [22]. The fourth and fifth largest traffic is generated by the MSN messenger
application [12] and the Soribada file sharing application [9]. We examined 20 popu-
lar P2P applications and made an Application Port Table (APT). The proportion of
these 20 P2P applications was 32.53% of total traffic. The percentage will increase if
we examine more P2P applications.

6 Conclusion

In this paper, we have presented a new algorithm for analyzing P2P traffic. First, we
explained the properties of P2P traffic and the reasons why the existing analysis
mechanism is unsuitable for P2P traffic analysis. The proposed algorithm consists of
four main components: the Important Port Number Selection, the Application Port
Table, the Flow Relationship Map and the P2P Traffic Decider. Using this proposed

66 Myung-Sup Kim et al.

algorithm we designed a P2P traffic analysis system and implemented it as a plug-in to
NG-NOM. Using this system we were able to analyze considerable amounts of un-
known traffic which could not be determined by the traditional analysis method. The
result of P2P traffic analysis on our campus Internet junction shows that the propor-
tion of P2P traffic is steadily increasing.
The proposed algorithm can be improved still further including the Flow Relationship
Map. By more experimental tests on our campus Internet junction, the efficiency of
the proposed algorithm will be validated. In addition to the validation of our algo-
rithm, we are going to apply proposed flow grouping algorithm to the analysis of other
types of Internet traffic, such as game and streaming media traffic.

References

[1] Ian D Graham and John G Cleary, "Cell level measurements of ATM traffic,"
Proc. of the Australian Telecommunications Networks and Applications Con-
ference, pp. 495-500, Dec. 1996.

[2] Cisco, White Papers, "NetFlow Services and Applications,"
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.htm

[3] P. Phaal, S. Panchen and N. McKee, "InMon Corporation's sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks", IETF RFC 3176,
September 2001.

[4] N. Brownlee, C. Mills and G. Ruth, "Traffic Flow Measurement: Architecture",
IETF RFC 2722, October 1999.

[5] N. Brownlee, "Traffic Flow Measurement: Experiences with NeTraMet", IETF
RFC2123, March 1997.

[6] Ken Keys, David Moore, Ryan Koga, Edouard Lagache, Michael Tesch, and k
claffy, "The Architecture of CoralReef: An Internet Traffic Monitoring Soft-
ware Suite," PAM Workshop 2001, April, 2001.

[7] Argus, http://www.qosient.com/argus/
[8] Se-Hee Han, Myung-Sup Kim, Hong-Taek Ju and James W. Hong, "The Ar-

chitecture of NG-MON: A Passive Network Monitoring System", LNCS 2506,
DSOM 2002, October 2002, Montreal Canada, pp. 16-27.

[9] Soribada, http://www.soribada.com/
[10] Morpheus,http://www.morpheus.com/
[11] Gnutella, http://gnutella.wego.com
[12] MSN Messenger, http://messenger.msn.co.kr/
[13] Yahoo Messenger, http://kr.messenger.yahoo.com/
[14] eDonkey, http://www.edonkey2000.com
[15] Matei Ripeanu, "Peer-to-Peer Architecture Case Study: Gnutella Network",

Technical Report TR-2001-26, University of Chicago, July, 2001.
[16] Subhabrata Sen and Jia Wang, "Analyzing Peer-to-Peer Traffic Across Large

Networks", IMW2002 Workshop, 2002, Marseille, France.
[17] Microsoft, Windows Media Technology,

http://www.microsoft.com/windows/windowsmedia/default.asp

Towards Peer-to-Peer Traffic Analysis Using Flows 67

[18] H. Schulzrinne, A. Rao, and R. Lanphier, "Real Time Streaming Protocol
(RTSP)," RFC 2336, April 1998.

[19] Jacobus van der Merwe, Ramon Caceres, Yang-hua Chu, and Cormac Sreenan,
"mmdump- A Tool for Monitoring Internet Multimedia Traffic," ACM Com-
puter Communication Review, Vol. 30, No. 5, 2000.

[20] Hun-Jeong Kang, Hong-Taek Ju, Myung-Sup Kim and James W. Hong, "To-
wards Streaming Media Traffic Monitoring and Analysis", APNOMS 2002,
September 2002, Jeju, Korea.

[21] Ethereal, http://www.ethereal.com/
[22] V-share, http://www.v-tv.co.kr/

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 68-81, 2003.
 IFIP International Federation for Information Processing 2003

MobiMan: Bringing Scripted Agents
to Wireless Terminal Management*

Venu Vasudevan, Sandeep Adwankar, and Nitya Narasimhan

Mobile Platforms and Services Department, Motorola Labs,
1301, E. Algonquin Road, ILO2-2240, Schaumburg, IL 60196

{venuv,adwankar,nitya}@labs.mot.com

Abstract. The increasing software complexity of wireless devices and
wireless data service provisioning motivates a wireless terminal man-
agement challenge. The systems management solution for this problem
needs to scale up to large device populations, while being lightweight
enough to be pragmatic for resource-constrained devices. The work in
this paper builds upon the emerging SyncML standard for wireless ter-
minal management in order to bring sophisticated policy-based man-
agement to large populations of wireless data devices. It is anticipated
that this technology will simplify the upgrade and management of wire-
less data devices substantially, thus encouraging the adoption of sophis-
ticated data terminals.

1 Introduction

The increasing complexity of wireless devices and services motivates an automated
terminal management challenge. Complex client-side wireless tools (e.g. WAP brows-
ers) need to be remotely configured upon service activation or upgrade. Mobile serv-
ice operators desire the ability to dynamically upgrade applications and services on a
mobile device, motivating the need for scalable software distribution capabilities.
Effectively supporting a complex palette of applications on a consumer-oriented de-
vice requires pro-active diagnosis and troubleshooting of both the devices and the
network. While these tasks can be done in an operator-assisted fashion, the absence of
a scalable, automated management infrastructure can contribute to a high total cost of
ownership. Early studies [KD99] estimate this number as being several times the retail
cost of the device

The goals of wireless terminal management resemble those of �classical� (wired)
systems management in terms of scaling and automation. However, achieving the
goals in a resource-constrained, intermittently connected environment presents unique
technical and business challenges. The pervasiveness of the Simple Network Man-

* We would also like to thank Kevin Cutts and Hung Tsang from Motorola�s PCS business

unit for many constructive discussions in this context.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 69

agement Protocol (SNMP) and its thick-manager, thin client-agent architecture make
it a logical first choice. However, while SNMP agents can be deployed on thin de-
vices, traditional client-server SNMP lacks the �elastic server� or delegation model
[GY95] that is required for effective management in intermittently connected envi-
ronments.

Advanced proposals within the SNMP community (such as the SNMP mid-level
manager architecture [SMLM, SNMX]) provided a standards-compliant basis for a
delegation model but failed to gain the widespread traction of core SNMP. Mobile
agent technology can provide a delegation model for systems management that is
agnostic to the management protocol. However, mobile agent infrastructure is too
heavyweight for mobile devices, requiring some programming features (e.g. dynamic
classloading) that are not supported by current mobile device application platforms
like J2ME.

From a pragmatic point of view, another problem with SNMP is its lack of uptake
in the mobile wireless space. The wireless industry, which seeks a single, integrated
standard to manage device-resident information as well as device operation, has ral-
lied around SyncML [SM02, JN01] and SyncML for Device Management (SyncML-
DM)1 [SD02] as the management standard of choice. SyncML caters to both the in-
formation management and device management needs of the wireless industry, while
supporting a lightweight architecture using an XML-based command language.

While SyncML-DM is best suited for simple request-response management opera-
tions (analogous to a single SNMP Get and Set), complex operator management func-
tions require richer predicates and procedures to capture the necessary semantics. For
instance, a network operator may want to run an automated management test on all
cell phones in the �847� area code. Furthermore, he may want this test to run during
off-peak hours and only on terminals with sufficient battery-power levels. Although
basic SyncML-DM provides the low-level mechanisms to collect the relevant teleme-
try, expressing such activation policies as a collection of primitive SyncML-DM inter-
actions could be prohibitively expensive.

1.1 The MobiMan Architecture

In the MobiMan architecture, we explore an alternative �embrace and extend� ap-
proach to bringing the benefits of scripted mobile agents to SyncML-based wireless
terminal management. MobiMan defines a SyncML-derived scripting language called
Symple (SYncML Programming LanguagE) that extends SyncML semantics in a
lightweight manner suitable for resource-constrained devices. The MobiMan archi-
tecture also extends the SyncML runtime framework with support for the scheduling,
evaluation and lifecycle management of Symple agents. To strike a balance between
capabilities and deployment costs, we designed Symple according to the following
principles:

• Embeddable within SyncML. Symple agents can be embedded within standard
SyncML packets, allowing us to reuse SyncML as an agent distribution protocol.

1 Henceforth, the terms SyncML and SyncML-DM will be used interchangeably to mean

SyncML-DM.

70 Venu Vasudevan et al.

• Lightweight. Symple is easy-to-learn, requiring only a small amount of code to
define complex requirements that can be interpreted by a lightweight client-side
SyncML platform.

• Extensible. Devices can support different variants of Symple in accordance with
their resources and computing capabilities, with Synclets being discarded without
error by Symple-unaware, SyncML capable devices.

Given that the SyncML standard is of recent vintage, we provide a quick tour of
SyncML in Section 2, followed by an overview of the MobiMan architecture in Sec-
tion 3, with focus on the computing elements (Synclets) and the client-side runtime
�container� architecture (Micropods). Section 4 delves deeper into the structure of
Synclets, and their support for conditional execution. We conclude the paper with a
discussion of our experiences building a Synclet-based system on Motorola wireless
devices, future directions for our research, and comparisons of our work to related
ideas in distributed systems management.

2 SyncML: A Short Tour

The SyncML standard2 [SM02] was developed as XML-based information synchroni-
zation standard designed specifically for the needs of the wireless industry. Thus, the
SyncML protocol is lightweight to cater to device limitations, language-neutral and
protocol-neutral. To suit device limitations, SyncML language constructs are kept
fairly minimal, with the protocol not using some features (e.g., server sockets) that are
yet to become pervasive on mobile devices. Because SyncML is XML-based, it is
inherently language-neutral, and supports OEM-specific extensibility. In addition, the
SyncML �protocol� can run over a number of underlying transport protocols including
HTTP, WSP, and OBEX.

SyncML's popularity in information synchronization led to its scope being ex-
panded via SyncML-DM [SD02] to include device management. SyncML-DM allows
management actions to be performed on management objects, where a management
object might represent a device configuration or the run-time software application
environment. Actions taken against the former might include reading and setting pa-
rameter keys and values, while actions taken against the latter might include installing,
upgrading, or uninstalling software elements. The signatures of the Get and Set meth-
ods on a management object are type-specific and may vary substantially in complex-
ity. For instance, a management action for setting the device clock accepts a simple
textual MIME type (text/plain), while an action to change the WAP browser settings
requires new WAP provisioning �blobs� to be transmitted as part of the Set operation.
Software upgrades present another example of a management action with significant
payload complexity.

The SyncML-DM is a 2-phase protocol consisting of a setup phase for authentica-
tion and device information exchange, following by a management phase that can be

2 It was developed first in a separate standards body, which has since been merged with the

Open Mobile Alliance (OMA).

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 71

repeated multiple times to support complex manager-to-mobile sessions. A manage-
ment session may also start with Packet 0 (the trigger), where the trigger may be out-
of-band depending on the environment

While SyncML-DM significantly expands the scope and utility of SyncML to in-
clude device management, it is limited in the following ways :

1. SyncML-DM based device management is limited to terminal-at-a-time manage-
ment. It allows a cellular operator to run only one diagnostic operation at a time
on each terminal.

2. SyncML-DM does not support intelligent postponement of management opera-
tions (e.g. postpone terminal operation until battery level is above 50%), some-
thing which is necessary to scale terminal management to large terminal popula-
tions.

3. SyncML-DM does not allow operators to schedule coordinated terminal man-
agement operations across collections of terminals.

These limitations restrict the subset of �Opex� (operational expense) minimizing
management functions that a cellular operator can perform using SyncML. The goal of
MobiMan is to add a more powerful computing abstraction to SyncML-DM to facili-
tate more comprehensive, automated, scalable systems management

R A N

JN I to F irm w are

D iagn ostics
S yn cle t

M ob ile
D evice

M an ager

A sse t M an age m en t
S yncle t

J2 M E M ID P

X M L P arser

S yncM L P a rse r

S yncM L E n g ine

P o licy E n g ine

M ic ro p o d
 S ync
 A g e nt

 S ync
 A g e nt

Fig. 1. The MobiMan runtime architecture

3 MobiMan: Architecture and Runtime

As shown in Figure 1, MobiMan augments the standard SyncML-DM runtime frame-
work in terms of both the basic execution entities and the execution model. In doing
so, it extends the SyncML-DM framework with two elements: Synclets and Micro-

72 Venu Vasudevan et al.

pods. Synclets are scripted agents written in Symple, allowing complex sequences of
management instructions to be expressed in a single executable object. Micropods are
terminal-resident containers that have the ability to receive Synclets and manage their
lifecycle; for instance, micropods can activate and deactivate Synclets based on state.

The key to the MobiMan container model is to organically expand SyncML to sup-
port intelligently postponable computing objects, whose execution triggers are so-
phisticated. A cellular operator can exploit this sophistication to perform large man-
agement operations in a manner that conserves bandwidth, avoids terminal operations
when the terminal is in an unsuitable state, and coordinates complex multi-terminal
operations with complex orchestration policies. We describe Synclets and Micropods
in detail in the following sections.

3.1 Synclets and Synclet Bundles

Synclets are the basic unit of computation in MobiMan. A Synclet is an executable
script consisting of Symple commends, where Symple is an extension of SyncML..
A Synclet specification comprises of two parts: a policy and an action routine. The
Synclet policy specifies non-functional aspects of the Synclet such as if, when and
how often it should be executed. The action routine is the functional code that makes
up the Synclet. Synclets are interpreted and executed by the extended client-side
SyncEngine known as a Micropod.

Synclets are transported over the SyncML protocol, which in turn is bearer-
agnostic. Thus Synclets may be transported over HTTP, SMTP or other IP-based
protocols. To be compatible with Synclet unaware clients, Synclets are carried as the
payload � i.e., as nested tags � in a Synclet XML element within the SyncML body.
Standard SyncML engines that are not MobiMan-enabled will simply ignore the Syn-
clet scripts within the enclosing Synclet tags. As Synclet upload and execution are
decoupled, multiple Synclets with differing execution policies may be carried in a
single SyncML session, i.e. nested within the same MobiMan tag.

Synclet bundles are a convenience mechanism, analogous to Java packages or
modules in programming languages. The bundle mechanism allows a group of Syn-
clets to be loaded in a single SyncML session, and be henceforth accessed by the
remote operator using a single bundle name. The bundle notion facilitates packaging,
distribution and policy management of Synclets.

3.2 Micropods

Micropods are terminal resident containers layered over the standard client-side
SyncEngine. They host and manage Synclets that are dispatched to the terminal. Mi-
cropods perform functions relating to Synclet lifecycle management, and serve as
secure sandboxes for Synclet execution. Lifecycle functions include (de) activation,
multitasking between concurrently executing Synclets, and the suspension and the
revival of Synclets that were stopped due to adverse terminal conditions (e.g. deterio-
rating battery level). To avoid race conditions on the device, Micropods support
�virtual multitasking� where multiple terminal-resident Synclets might have partially
executed at any point in time, but only one Synclet is actually executing at any instant.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 73

As previously mentioned, Synclet specifications include a model of conditional,
policy-based execution analogous to the UNIX cron model. Micropods augment the
standard SyncEngine with a policy engine, which determines the subset of Activatable
Synclets based on evaluating individual Synclet policies. Policies could be based on
absolute time, invocation cardinality (number of times a Synclet should be run), and
device state. More sophisticated micropods could support the interleaved execution of
multiple synclets. These could include allowing a certain maximum number of concur-
rent synclets, deadlock avoidance or resolution between concurrent synclets, and fair-
ness policies for Synclet swap-out whereby idle synclets are swapped out for other
waiting synclets.

As with Java applet environment and J2EE servlet containers, micropods provide a
constrained environment to executing synclets, bounding and monitoring their access
to the underlying terminal. Synclets are privileged applications have limited access to
retrieving and modifying the device state via a special set of �closed classes� in Java.
Two factors simplify sandboxing in MobiMan. First, the Synclet dispatching capabil-
ity is accessible only to a small number of trusted parties (namely service operators).
So authentication solutions such as digital signatures can check the signature against a
very small universe of trusted sources. Secondly, the use of a scripting language al-
lows for language safety verifiers to be developed, and for sandboxes to suspend (and
resume) the script at arbitrary points in the program.

Synclets face the unique situation in executing on mobile wireless devices, namely
that the device may be powered off at any time without operator control. Micropod
lifecycle management techniques need to allow for script re-entrancy in such adverse
situations. Script re-entrancy might involve re-prioritizing Synclets when they are
restarted, to reflect the new environment (analogous to adjusting the nice value of
processes in Unix). This is handled by re-evaluating Synclet policies of awakening
Synclets in the changed environment.

4 More Synclet Anatomy

As described previously, Synclets consist of policy and action routine components.
The action routine is the body of what the Synclet does, and the policy is the trigger
condition for the Synclet. The policy, action routine separation allows the same func-
tional Synclet to be reused in different circumstances. This section elaborates on the
kinds of policies supported in Symple, and the SyncML extensions supported in an
action routine. SyncML is extended in two ways in the action routine language: the
addition of a few new commands, and support for conditional command execution
(aka guarded commands). environment.

4.1 Policies

Policies are specifiable at three levels of granularity: terminal, synclet bundle, and
synclet. Terminal level policies apply to all scripts that will execute on the terminal
from the time the policy is installed. For instance, a terminal policy may dictate that
only one Synclet shall be active at a time. Synclet bundle policies apply to a collection

74 Venu Vasudevan et al.

of synclets that were loaded as an aggregate, perhaps because they collectively per-
form a single cohesive task. Synclet policies govern the execution of the Synclet's
action routine, and may include the maximum time a Synclet is allowed to run, re-
sources that should be allocated before the Synclet should be activated, or recovery
actions when Synclet execution is interrupted. Terminal policies tend to be more static
and persistent than Synclet bundle and Synclet level policies.

4.2 Extended SyncML Command Set

SyncML provides a fairly minimal set of commands for device management, but is
missing some important primitives that are building blocks for device and service
management. Symple currently extends the SyncML command set with three com-
mands: assert, schedule, and perform. All these commands may contain a redirect
block (see section 4.3 below).

<Synclet>
<Guard>

<Attribute> Battery_level </Attribute>
<Condition> GREATER_THAN </Condition>
<Threshold> 5 </Threshold>

</Guard>
<Assert>

<Item>
<Target>

<LocURI>
./Sync/DM/WAP/WAPSTNG2/GRPS_APN

</LocURI>
</Target>
<Data>

internet2.voicestream.com
</Data>

</Item>
</Assert>

</Synclet>

Fig. 2. Synclets with guarded commands

1. Assert (see Figure 2) allows the Synclet to assert a certain device (or network)
condition, and take an exception action in case this isn't true. Assert is useful
where the absence of a condition (e.g. non-null values for WAP session parame-
ters) requires corrective action.

2. Schedule is used to represent timed and/or repetitive commands. Parameters in
the schedule command may specify the maximum number of times the command
is executed, the time interval between successive iterations, and the delay between
the loading of a Synclet and the first �run� of the scheduled command.

3. Perform performs a non-local service invocation (e.g. an http get) from the termi-
nal. Network operators can use this to measure service performance across a sta-
tistically significant number of terminals.

While our present extension to the SyncML command set is restricted to these op-
erations, we envisage future extensions to facilitate service management.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 75

4.3 Guarded Commands and Output Redirection

At the finest level of granularity are policies that govern the execution of individual
SyncML commands (or command blocks) within the action routine. However, we tend
to not view these in the same way as the policies described in the previous section, as
these are part of the functional definition of the action routine and cannot be viewed as
orthogonal to the script function. Commands governed by such policies are also re-
ferred to as guarded commands, and the policy pertaining to the command as the
guard. A battery-level guard might govern a command that fetches a number of ter-
minal attributes. This guard would prevent the command from executing if the battery-
level on the terminal is below a certain threshold. Figure 2 shows a guarded command
with a battery guard. The standard SyncML command is prefixed by a guard element
that constrains the GET to execute only when the battery level on the terminal is
above the threshold. Guards may be used to protect terminal or network resources, and
to coordinate with external events.

Traditionally, the results of a SyncML session are returned synchronously to the
caller when the command(s) are complete. In Symple, we allow a more flexible output
communication by allowing the results of partially executed scripts to be exported to
URLs external to the terminal, and by allowing commands within an action routine to
post their results to different URLs. Redirect is an output redirection primitive in
Symple that delivers the output of a command to the appropriate URL Redirect will
support a variety of standard protocol prefixes including http, sockets and RMI.
Allowing external access to partial script results allow the operator greater visibility
into script execution and greater flexibility in controlling the script. The operator may
decide to shut down an otherwise expensive and long-running script based on viewing
the partial results, or he might decide to take alternative actions based on what is ob-
served. Partial result availability is also useful in scaling the Symple paradigm to con-
current multi-terminal operations, where the partial results of a running script on one
terminal may cause side effects on another.

5 Implementation and Usage Experience

MobiMan has been used in a number of operator management scenarios, of which one
pertaining to wireless system performance management is described here. A wireless
network operator may be interested in performance metrics such as average latency
experienced by users in a particular geographic area, perhaps as a way to validate the
service level agreement with an enterprise customer.

Latency can be characterized by the time taken to download a HTML or WML
page from a remote server. To measure latency over multiple devices and a statisti-
cally meaningful period of time, the operator can compose guarded synclet (see Figure
3), and can push it to of the mobile device fleet.

The synclet will execute at the time specified by the date attribute and will connect
to specified URI to download HTML page. It will repeat this operation for times as
specified in repeat attribute. This synclet will average these latency measurements and
send it to operator server. The server correlates the values obtained from number of

76 Venu Vasudevan et al.

mobile devices over period of time at different times and can collate the data to make
decisions about re-provisioning the network.

<Synclet>
<Guard>

<Attribute> Signal_Strength </Attribute>
<Condition> GREATER_THAN </Condition>
<Threshold> 20 </Threshold>

</Guard>
<Schedule>

<Date> 01028526240000 </Date>
<Period> 1 </Period>
<Repeat> 20 </Repeat>
<URI> http://www.yahoo.com/index.html </URI>
<Item>

<Target>
<LocURI>

./Sync/DM/Performance/Network/Latency
</LocURI>

</Target>
</Item>

</Schedule>
</Synclet>

Fig. 3. Synclet with guarded commands for latency measurement

Table 1 details our experience in running performance management Synclets over a
GSM network on a Java-enabled mobile handset. The data shows a total time of about
30 seconds for Synclet loading and execution. While this number is acceptable, it
could benefit from improvement. Better networks will reduce this latency, while Syn-
clet bundling allows latency to be amortized across multiple management operations.
Synclets can be encoded in Wireless Binary XML (WBXML) instead of plain XML
representation that can significantly reduce size of data sent (and hence time) over
wireless network. WBXML is a binary format compact representation of XML that
encodes the structure and content of the document entities while removing meta-
information contained in document.

The Micropod, policy engine along with SyncML engine and parser occupy 100K
on MIDP KVM with peak runtime memory consumption of 230 K. Local runtime
operations on the mobile device (e.g. Synclet parsing) make up about 25% of the total
cycle-time, and will improve as Moore's law increases the horsepower dedicated on
handsets to data services. Overall, the numbers indicate the viability of a Synclet
based approach for today's handsets, and its growing value with handset and network
evolution.

Table 1. Synclet Execution. The phases, and some performance measurements

Synclet Operation flow
Size of data

sent
(bytes)

Time taken to
send data over
GSM network

(seconds)

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 77

1. Creation of SyncML package 1
Server initiates SyncML Engine on mobile
device (e.g.. by SMS push). SyncML Engine
creates SyncML package with capabilities
data such (e.g. Manufacturer/ Model name.
and credentials.

1185 3.3

2. Getting Synclet from Server
Mobile device sends SyncML package DM
Server. Server parses the package, checks for
credentials and synclets that need to be sent to
the device. Server returns new SyncML pack-
age containing synclet (HTTP reply).

1822 18.5

3. Invoking Synclet
SyncEngine parses/extracts Synclet transfers
to Policy Engine. Policy engine verifies syn-
clet safety and semantics, conditionally sched-
ules Synclet. Synclet reception status sent
back to server.

745 8.2

4. Status/Result of Synclet
Server responds to synclet receipt status mes-
sage.

595 11.3

5. Status of Synclet
Mobile device parses SyncML message and
continues to process synclet.

2

6. Synclet Execution
Scheduled Synclets are executed in separate
thread. For long-running synclets (e.g., latency
monitoring), steps 4 and 5 are repeated. Re-
sults sent back to server.

6 Intelligent Distribution of Tasks in MobiMan

Thus far, the MobiMan architecture has focused on the design and deployment of
Synclets as a means for intelligent scheduling of tasks at the targeted terminal. How-
ever, the richer predicates offered by Synclet-enhanced terminal management also
enables operators to define tasks that span multiple terminals and involve complex
orchestration policies for successful completion.

This functionality is supported by a SmartCloud extension [NA03] that integrates a
tuplespace-backend (provided by the Mojave3 system [VL01]) into the MobiMan
server infrastructure. The SmartCloud extensions provide three core mechanisms:

3 The Mojave System developed at Motorola Labs provides a tuple-space based agent archi-

tecture where task agents can dynamically clone/relocate to the agent container that best fa-
cilitates task completion.

78 Venu Vasudevan et al.

1. Intelligent TM Server Selection. Current TM operations assume the exis-
tence of a centralized server whose identity is known to the TM client. This
raises performance and reliability concerns as the server becomes both a bot-
tleneck and a single point of failure. Instead, we envision a �multi-server� ap-
proach where multiple TM servers exist, any of which are capable of deliver-
ing the task to the device. The TM servers could be co-located as part of a
�server farm� or could be in deployed as individual �kiosks� in high-traffic ar-
eas such cafeterias, banks and airports. Choice of server for task dispatch is
now based on opportunity, i.e., the association4 of a TM client with a particular
server causes that server to register with the SmartCloud as the dispatcher for
that TM client. If a client associated simultaneously with two dispatchers (cel-
lular and short-range), the dispatcher with better QoS criteria (e.g., higher
bandwidth) is chosen.

2. Task Dispatch Priority Escalation. Intelligent server selection raises the
question of how long the SmartCloud should wait for the right �opportunity�.
Operators (and users) may prefer the user of the quicker, more reliable short-
range network for TM operations; however, users may not always be within
range of a suitably equipped server. The SmartCloud extension solves this
problem by using an �escalation policy� for task dispatch. Operator submit
tasks with an appended deadline for task dispatch.. The SmartCloud will hold
on to tasks, waiting for the best dispatch opportunity; however if a specified
deadline is near expiry, the SmartCloud becomes more aggressive, opting to
use the first opportunity it sees.

3. Automated Coordination Through Aggregation. While the multiple-server
model improves the distribution of TM tasks, it can complicate the coordina-
tion of complex tasks that span multiple terminals (e.g. an operator request for
100 terminals in the �847� code to respond with bandwidth availability infor-
mation). Here, the single operator request actually translates into multiple ter-
minal-specific tasks � each being dispatched to the target over a potentially dif-
ferent server. Monitoring the tasks, coordinating follow-up actions and re-
turning a unified result to the operator can become a logistics nightmare. The
use of a SmartCloud backend alleviates this problem by providing a common
backend �shared memory� structure that can be used to aggregate results from
various tasks and automate the firing of follow-on tasks such as request-
termination, and result-display.

By integrating the SmartCloud backend into the MobiMan server infrastructure, we
achieve three objectives: flexibility, efficiency and ease-of-use. Operators are now
required only to design the task using Synclet semantics to define the appropriate
criteria for task execution. The MobiMan system ensures that the tasks are delivered
within deadline � and in the most effective manner � to the targeted terminal(s). It also
automates the monitoring and completion of coordinated multi-terminal tasks thereby
reducing the burden on the operator and minimizing opportunities for operator error.

4 An association (client-server communication) could happen over a wide-area (e.g. cellular)

or a short-range (Bluetooth, Adhoc WiFi) network.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 79

Furthermore, because the SmartCloud extensions are server-centric, they add minimal
resource or execution overhead to the resource-constrained mobile terminals.

7 Related Work

A number of lightweight programming languages [LL01] provide design examples
that Symple tries to emulate. SIMSpeak [KM01] aims to provide programmability to
devices whose only programmable component is an extremely limited �smart card�
supporting the Javacard specification. An on-card interpreter supports a simple stack-
based language that uses registers instead of variables to save space. Similar choices
of language primitives are made in 3GPP's USAT specification [3GPP]. Mobile code
is pushed to the device via the short-message service (SMS) and security is handled
partly in the device and partly in a network gateway. MobiMan supports an SMS
based script dispatch in a manner similar to SIMSpeak, but has the luxury of living in
a slightly less constrained Java environment than the Javacard.

The SNMP world has at least two proposals that augment the classic client-server
SNMP model with scripted agents. The SNMP mid-level manager [SMLM] proposal
includes a scripting language proposal called SNMPScript that is used to specify and
distribute scripted agents to managed nodes. SNMX [SNMX] is another script pro-
posal, although an SNMX interpreter weighs in at a �chunky� 400KB. A size that
would be somewhat taxing on today's J2ME powered mobile wireless devices.

Sloman [MS98] and others have made a case for policy-based systems management
as a means to change management policies without changes to management agents.
Some of their proposed primitives (e.g. positive obligation policies) resemble those
proposed in this paper. However, Symple adopts a lightweight policy framework to
cater to resource-constrained terminals, includes device states as policy predicates, is
tightly integrated with SyncML, and supports multi-terminal policies via a network-
resident coordination infrastructure.

Heidemann [HS00] proposes a Cron-derivative (based on Xcron [GK99], another
cron derivative) for intermittently connected laptops, and articulates intermittent con-
nectivity issues similar to those discussed by us. However, the policy language here
focuses on time-based policies, and has no support for policies based on device state.

8 Conclusions

MobiMan aims to provide complex scheduling primitives to wireless systems man-
agement, while operating within the limitations of resource-constrained Java devices.
So far our experience has been encouraging, showing that a fairly sophisticated set of
capabilities can be supported on a wireless terminal. Easy authoring of coordinated
operations across large sets of terminals (e.g. a cellular region) remains a challenge.
This requires application infrastructure support in the network and interaction primi-
tives to be defined for greater interplay between network controller objects and the
currently executing process on a particular terminal. Emerging smart wireless termi-

80 Venu Vasudevan et al.

nals that support pJava (or J2ME/CDC) provide another systems management inno-
vation opportunity, as they are substantially more resource-rich than the kJava
(J2ME/CLDC) devices targeted in this paper.

References

[GK99] G. Kuenning, A Cron Daemon for Portable Computers, UCLA Computer
Science Department Technical Report UCLA-CSD-990044, Sep 1999

[GY95] G. Goldszmidt and Y. Yemini, Distributed Management by Delegation, in
Proc. of the 15th ICDCS Conference, IEEE Computer Society, pp 333-340,
1995

[HS00] J. Heidemann and D. Shah, Location-Aware Scheduling with Minimal In-
frastructure, In USENIX Conference Proceedings, pp.131-138, Jun 2000

[JN01] A. Jonsson. and L. Novak, SyncML � Getting the mobile Internet in sync,
Ericsson Review No. 3-2001, pp. 110-115

[KD99] K. Dulaney, TCO for PDAs: Higher than Expected, Strategic Planning,
SPA-08-7900, Research Note, Gartner Group, July 1999

[KM01] R. Kehr and H. Mieves, SIMspeak � Towards an Open and Secure Appli-
cation Platform for GSM SIMs, in Proceedings of the Intl. Conference on
Smart Cards, E-smart 2001, Lecture Notes in Computer Science, pp. 135-
149, Springer 2001

[LL01] MIT Lightweight Languages Workshop, 2001, http://ll1.mit.edu/
[LS01] D. Levi and J. Schoenwaelder, Definitions of Managed Objects for the

Delegation of Management Scripts, IETF Network Working Group RFC,
Aug 2001, www.ietf.org/rfc/rfc3165.txt

[MS98] M. Sloman, Policy Based Management of Telecommunication Systems and
Networks, First UK Programmable and Telecommunications Workshop,
HP Labs, 1998

[NA03] N. Narasimhan, S. Adwankar and V. Vasudevan, SmartCloud: Automated,
intelligent task distribution in MobiMan, Internal Draft, Motorola Labs,
2003

[OS96] O. Shivers, A universal scripting framework, or Lambda: the ultimate �lit-
tle language�, in Concurrency and Parallelism, Programming, Networking
and Security, Lecture Notes in Computer Science, pp. 254-265, Springer
1996

[SD02] SyncML Representation Protocol Device Management Usage, version 1.1,
at http://www.openmobilealliance.org/syncml February 2002

[SM02] SyncML Data Synchronization and Device Management, official website
http://www.openmobilealliance.org/syncml

[SMLM] SNMP Research: Mid-Level Manager (MLM), White Paper, SNMP Re-
search, http://www.snmp.com/products/mlm.html

[SNMX] SNMP Frameworks, Inc., The Simple Network Management Executive
(SNMX) Scripting Language , http://www.snmx.com

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 81

[3GPP] 3GPP Technical Specification Group Services and System Aspects:
USIM/SIM Application Toolkit (USAT/SAT), Doc# 3G TS 22.038 v5.2.0
(2001-02)

[VL01] V. Vasudevan and S. Landis, Malleable Services, International Journal of
Software Engineering and Knowledge Engineering, Vol, 11, no. 4, pp. 389-
406, 2001

Dynamic Surge Protection: An Approach to

Handling Unexpected Workload Surges with
Resource Actions that Have Lead Times

E. Lassettre, D. W. Coleman, Y. Diao, S. Froehlich, J. L. Hellerstein,
L. Hsiung, T. Mummert, M. Raghavachari, G. Parker, L. Russell, M. Surendra,

V. Tseng, N. Wadia, and P. Ye

IBM Corporation
{edlass,xinu,diao,stevefro,hellers,larryh,mummert,raghavac,gkp,lancerus,

suren,vtseng,noshir,ye}@us.ibm.com

Abstract. Today’s information technology departments have signifi-
cantly varying demands for resources due to unexpected surges in sub-
scriber demands (e.g., a large response to a product promotion). Further
complicating matters is that many resource actions done in response to
surges (e.g., provisioning or de-provisioning an application server) have
substantial delays (lead times) between initiating the resource action
and its taking effect. This paper describes dynamic surge protection,
an approach to handling unexpected workload surges in systems that
have lead times for resource actions. Dynamic surge protection incorpo-
rates three technologies: adaptive short-term forecasting, on-line capacity
planning, and configuration management. The paper includes empirical
results from evaluations done on a research testbed, including favorable
comparisons with a threshold-based heuristic. The results from an ex-
tended test also show that service objectives can be maintained cost-
effectively.

1 Introduction

Today’s information technology (IT) departments are besieged with uncertainty.
New applications are deployed, but their resource demands are unknown. Tra-
ditionally, these situations have been addressed by over-provisioning IT re-
sources and/or manual resource re-allocations. Unfortunately, these approaches
are costly – the former in terms of equipment, license, etc and the latter in terms
of expert operators. Furthermore, many resource actions involve lead times,
such as server provisioning, which introduces delays between action initiation
and effect. We present an approach to moderate the effect of unexpected work-
load surges so as to preserve a service level objective (SLO) in a cost effective
way while taking resource actions with lead times.

Examples of subscriber overloads abound. On September 11, 2001, the CNN
web site was overwhelmed by traffic that doubled every 7 min to a peak of 20 ×
normal volume [7]. The Victoria’s Secret web site had a similar experience as a

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 82–92, 2003.
c© IFIP International Federation for Information Processing 2003

Dynamic Surge Protection 83

result of an advertising campaign during the 1999 Super Bowl [10]. Others have
noted that “sites such as Encyclopaedia Britannica, egg.com, and H&R Block
have suffered massive overload from subscribers” [17].

Many systems (e.g., [15], [11], [19], [13]) have been developed to adapt to
changes in workload. Sun’s N1 [15] and HP’s Utility Data Center (UDC) [11]
initiatives provide convenient ways for operators to move resources between ap-
plications. Underlying this is the ability to describe logical application topologies
and the physical configuration. However, no automation is provided to determine
when to move resources between applications. The MVS workload manager in-
corporates algorithms for adjusting resource allocations to achieve SLOs [1].
These algorithms assume that actions take effect immediately (e.g., changing
CPU priorities) and so do not address actions with substantial lead times. An-
other relevant technology uses load forecasting together with performance esti-
mation to balance file allocation across a network attached storage system to
meet a response time objective under varying load [9]. The ThinkProvision tech-
nology of Think Dynamics provides automation for model-based optimization of
dynamic resource provisioning [16], and the DynamicIT technology of Provision-
Soft uses long-term forecasts to anticipate time-of-day effects [14]. An important
difference between the the current work and approaches that use long-term fore-
casting is that the latter is appropriate for workloads with periodic variation.
Conversely, it is not suited for unexpected workload surges, which have no reg-
ular pattern.

As reported in [3], there is considerable benefit in rapidly adjusting resource
allocations to handle variable workload. This is a challenge if reallocating re-
sources has substantial lead times. One approach is to reduce the lead times,
but this may be of limited utility. A second incorporates long-term forecasting
to predict workloads and initiate resource actions sufficiently early to accomo-
date lead times. However, long-term forecasters can require substantial data to
learn patterns and thus work poorly for unexpected surges.

In line with IBM’s autonomic computing initiative for self-managing sys-
tems [6], we describe a system that has self-configuring characteristics. Our ap-
proach, which we refer to as dynamic surge protection, employs three tech-
nologies: adaptive short-term forecasting, on-line capacity planning, and config-
uration management. The forecasting approach we use is designed to be respon-
sive to rapid changes, yet robust. On-line capacity planning determines resources
needed to preserve service levels in a cost effective way (e.g., releasing resources
when not needed). Configuration management provides the means for adjusting
resources, such as by tuning, provisioning, and/or workload throttling to adapt
to the rise and decay of unexpected surges.

2 Architecture and Algorithms

The system is structured into three layers as shown in Figure 1. The Application
layer provides the business function. We use a two-tier web application with one
or more application servers and a database server. In general, we require that the

84 E. Lassettre et al.

Forecaster DecisionCapacity
Planner Logic

Monitoring Provisioner

Servers
Application Database

Server

DEPLOYMENT MANAGER

CONTROLLER

APPLICATION

SLOs

Fig. 1. Architectural layers for dynamic surge protection. The arrows show the
control and data flow

application tier scale horizontally (i.e. resources can be added/removed without
system shutdown).

The Deployment Manager provides a generic interface for monitoring and
configuring the application layer. In this work, transaction rates and response
times were monitored. Configuration management was focused on provisioning
(addition/removal of application servers). The architecture assumes that for each
resource type there is a provisioning function that manages a resource pool
that can be shared among applications. Longer-term configuration management
will also address configuration parameter (e.g., buffer pool sizes) and admission
control adjustment.

The Controller monitors the application layer state and initiates appropriate
actions if a SLO violation is anticipated or if the SLO can be satisfied in a more
cost-effective way. Figure 1 also depicts the control and data flow for dynamic
surge protection. Workload data from monitoring are input to the forecaster,
which predicts future workload. The capacity planner takes as input the predic-
tion and SLO to determine the resource requirements (e.g. number of servers).
The decision logic manages the information flow and determines the resource
adjustments (by comparing to the deployment state data). These adjustments
are effected by the provisioner. Note that this flow is straight through (not it-
erative) since the required inputs are known at each step. The system operates
based on six time intervals.

Dynamic Surge Protection 85

0

50

100

150

200

250

300

100 150 200 250 300 350 400 450 500 550 600

 interval

w
o

rk
lo

a
d

actual predicted with adaptive AR order predicted with fixed AR order

Fig. 2. Short term forecaster showing the comparison between an actual time
series and 1 min (6 interval) ahead predicted values. Note that spurious pre-
dictions (e.g. high flyers) occasionally resulting from the fixed order model are
greatly minimized with the adaptive order model

Fig. 3. Actual and 10000 min ahead predicted values of the workload

1. A measurement interval M chosen based on overhead and noise vs respon-
siveness concerns.

2. The control interval P (P ≥ M), between executions of the control flow in
Figure 1.

3. The lead time S, between initiating a resource action (e.g. add/remove
a server) and its completion.

4. The prediction horizon H , should be ≥ S. The trade-off is that a longer H
increases variability (∼ √

H).
5. The overflow interval O, between situations when resources need to be ad-
justed to avoid SLO violations. The control engine can respond if O ≥ P+S.

6. The underflow interval (U) between when a SLO can be met with fewer
resources and when the extra are removed. The control engine can handle
U ≥ P + S.

86 E. Lassettre et al.

Fig. 4. State and number of application servers

Fig. 5. Response time of application

We conclude that H ∼ P + S is reasonable. In our prototype (more details be-
low) S is∼ 30 sec, and we found thatM = P = 10 sec worked well. Incorporating
some “safety margin”, we use H = 60 sec.

The capacity planner provides both performance estimates and the ability to
determine resource requirements given the workload and the SLO. We used an
IBM internal tool [5] that has been widely used in service engagements over the
last two years. This tool uses analytic queueing approaches to estimate perfor-
mance and capacity of a web deployment based on workload patterns (predefined
or modeled by the user), performance objectives, together with hardware and
software specifications. Other approaches to online capacity estimation are de-
scribed in the literature [12].

We use a short term forecaster (or predictor) since our emphasis is on man-
aging unexpected surges. The short term forecaster needs to provide useful in-
formation about the leading edge of the surge. Key to this is the ability to learn
quickly, which is achieved by using short history data, and not relying on ex-
tensive training. In this work, the short term forecaster typically used 2 min
(12 points) of history to predict 1 min into the future. The short term predictor
is almost “memoryless” – it does not retain knowledge of past surges. This is
important since the occurence of one unexpected surge (or busy period) is not
assumed to provide information about when to expect the next surge. Analysis
of Web traffic [4] suggests that busy periods are not strongly auto-correlated

Dynamic Surge Protection 87

with idle periods (time between busy periods). Within a busy period there can
be reasonable auto-correlation [18], hence non-seasonal ARIMA (autoregressive,
integrated, moving average) models [2] are effective.

An undesirable effect of using a short history for prediction is increased in-
accuracy. Thus, we dynamically adjust the model order (the number of, AR, or
autoregressive terms) based on the stability of the estimates. The latter is deter-
mined by checking if the poles of the transfer function lie within the unit circle
in the complex plane, which is requirement for stability in discrete time systems.
This stability criterion is very related to checking if the AR model is stationary
(location of roots of the characteristic equation in relation to the unit circle) [8].
If the AR model with order p is deemed unstable (note that order 0 model is
stable), the model order is reduced and model coefficients are recalculated. The
advantage of the adaptive model order is shown in Figure 2. While most of the
predictions from a fixed AR order effectively track the actual time series, there
are occasions when spurious predictions occur. These spurious predictions, which
drive unnecessary control actions, are significantly minimized by adapting the
model order.

We note that the short term forecasting we discuss above has also been
used in conjunction with a long term forecaster [9] which is effective at cap-
turing cyclic variation. Currently, the training data of the long term forecaster
would include the unexpected surges since doing so simplifies data management.
However, this approach can increase forecast variability and result in predicting
phantom surges.

3 Results

Figure 3-Figure 5 show the results of experiments conducted on a research
testbed. The testbed consists of a workload driver, multiple application servers
running IBM’s Websphere Application Server (WAS) v5.0, a single database
server running IBM’s DB2 v8.1, and a manager machine that incorporates code
for the Controller and Deployment Manager. The provisioner leverages WAS
5.0’s cellular cluster capability and uses its startServer/stopServer commands to
add/remove servers. We note that both the Controller and Deployment Manager
incur minimal CPU load.

The application that we deployed on our two tier system simulates the sup-
ply chain management of a manufacturing company. Briefly, the application
processes injected order transactions and kicks off manufacturing transactions
internally. The total transaction (business operations) rate is the sum of the ac-
tual order and manufacturing rates, and is normally (no transaction rollbacks)
∼ 1.75× order injection rate. The workload driver can vary the order injection
rate, where the inter-arrival time is exponentially distributed. Large workload
surges (e.g. to mimic an influx of new users) are randomly triggered, and the
Controller’s SLO is to keep response time below 2 sec.

Figure 3 plots the actual (blue or darker line) and predicted 1 min into the
future (lighter or green line) business operations per second (BOPS), the met-

88 E. Lassettre et al.

0

50

100

150

200

250

1042703000 1042703500

tr
an

sa
ct

io
n

 r
at

e
(p

er
 s

ec
) Actual Bus Ops 1 min ahead pred Bus Ops Order Injection

0

1

2

3

4

5

1042703000 1042703500

W

A
S

 S
er

ve
rs

0

2

4

6

8

10

R
es

p
T

im
e

(s
ec

)

#WASActive #WASStarting Resp Time

Normal Operation

surge triggered

Fig. 6. Operation of system using dynamic surge protection

ric used to characterize workload. During the non-surge or normal periods (e.g.
8:52–8:59), BOPS has little variation. When a surge begins (e.g., 8:59, 9:11),
BOPS increase rapidly to a peak of 120, (∼ 6 × normal). Not surprisingly, pre-
dicted BOPS for the first 60 sec are significantly below actual BOPS since the
prediction is based on non-surge data. Within a few control intervals into the
surge, the prediction accuracy improves considerably. Note that prediction ac-
curacy during the surge (especially in regions of highest curvature) is not nearly
as good as during the non-surge periods. It is important to emphasize that while
the forecaster cannot predict the occurence of the surge, it can quickly recog-
nize the workload trend change, and thus provide information on the anticipated
evolution of the surge. Also, we reiterate that the forecaster essentially does not
retain any knowledge about past surges since the history used for prediction
(∼ 2 min) is less than the surge duration.

Figure 4 shows the changes of the state and the number of application servers
in response to the actual and predicted workload. When a rapid increase in
load is detected just after 9:00, a server is added (the leading dark or blue
section). This is about 40 sec before a server would have been added had the
decision been based on the actual BBOPS vs predicted BOPS. A second server
is added at 9:01 as the short-term forecaster anticipates the progression of the
surge. As the surge subsides around 9:04, servers are released (the trailing red
or less dark section). Note that while the decisions about adding resources is
made quite aggressively, the removal of servers is more gradual, due to damping
introduced by the Controller decision logic to minimize repeated add/remove
server operations.

Dynamic Surge Protection 89

0

50

100

150

200

250

1042704000 1042704500

tr
an

sa
ct

io
n

 r
at

e
(p

er
 s

ec
)

Actual Bus Ops 1 min ahead pred Bus Ops Order Injection

0

1

2

3

4

5

1042704000 1042704500

W

A
S

 S
er

ve
rs

0

2

4

6

8

10

R
es

p
T

im
e

(s
ec

)

#WASActive #WASStarting Resp Time

Reactive Operation

surge triggered

Fig. 7. Operation of system using a threshold-based heuristic

Figure 5 depicts the effect of these actions on response times. We see an initial
bump in response time around 9:00. In part, this is due to the increased load
that cannot be handled until the server has completed its startup phase. But
there is also some delay introduced by the action of adding a server. Nonetheless,
the SLO is not violated We note that because of the stochastics of the system,
the response times and control actions responding the different surges are not
identical.

Although in Figure 3 we show one type of surge, we have tested the system
with different types of surges (e.g. multi-peaked, different shapes, etc). For in-
stance the surge shown in Figure 6 has exponential rise/decay with a plateau
in between vs the half sine wave surge in Figure 3). In an effort to test the re-
sponsiveness of the system, we experimented with surges (peak = 8 × base) that
have different exponential rise rates (characterized by doubling time). While the
observations are dependent on the specifics of the deployment, we find that the
system can maintain the SLO when the doubling time is 60 sec, and even at
45 sec, but has trouble keeping up when it is 30 sec. We have also successfully
tested it with larger surges (20 × base @ 60 sec doubling time, which is similar
in relative size to the CNN surge, but at higher ramp rate [7]). We note that
size of the surge that handled with our approach is bounded by the capacity
of the database server. The online capacity planner used here is also capable
of providing the appropriate sizing of the database tier. Dynamially scaling the
database tier is, however, more complex than scaling the application tier.

90 E. Lassettre et al.

In addition, to estimate the efficiency of our approach, we ran a 10 hour
marathon with surges (about 60) initiated at random times (Figure 2 is a part
of this run). We then calculate the optimal deployment, which we define as
minimum number of servers required to handle the actual workload at any time
(see [3]), based on a server capacity of 60 BOPS. The average optimal deployment
over the run is 1.61 servers. Our approach used an average of 1.92 servers, which
is only 20% more than optimal. Conversely, a static deployment that can handle
all the surges would require 3 servers.

We also note that this approach has been successfully tested on several dif-
ferent deployments. The results in Figure 6 and Figure 7 are from different
hardware deployments.

For comparison, we explore a threshold-based heuristic (i.e. no forecasting,
no online capacity planning) as an alternative to dynamic surge protection. We
use the following threshold-based heuristic:

Increase number of servers by 1 if response time exceeds SLO and wait
60 sec (sufficient time for server to be taking load normally) before next
control action is considered.

Figure 7 displays results from this threshold-based approach, which can be
compared to the performance of the dynamic surge protection approach in Fig-
ure 6. It appears that the heuristic is set too high to accomodate the provisioning
lead time. By the time the heuristic reaction takes effect, response times have
already grown very large, and BOPS cannot keep up with the order injection
due to transaction rollbacks. (normally BOPS ∼ 1.75 × order injection). Also,
there needs to be a rule for releasing servers when they are no longer needed.
Choosing a lower thresholds for when to add (high water mark) and remove
(low water mark) servers could address these concerns. However, response time
is often quite noisy. On another hardware deployment where we did some char-
acterization of response time variability, we found that with 3 WAS servers and
order injection rate = 70 (which was about the capacity of 2 servers) the re-
sponse time ranged from 0.1–0.3 sec. However, on increasing the rate to 90 (still
below capacity for 3 servers – average CPU idle ∼ 30%) the range increased
significantly (0.2–0.9 sec). Choosing high and low (especially) water marks while
trying to avoid the possibility of cycling servers in and out in this situation can
be challenging. More robust high/low watermarks can be based on transaction
rate, but that would involve some form of capacity estimation.

4 Conclusions

This paper describes dynamic surge protection, a technique for handling unex-
pected subscriber surges in systems that have resource actions with lead times
(e.g. provisioning an application server). Dynamic surge protection incorporates
three technologies. Short-term forecasting provides a way to anticipate the tra-
jectory of workload demands of a surge. On-line capacity planning determines the

Dynamic Surge Protection 91

resources required to maintain a SLO based on the anticipated workload. Con-
figuration management via provisioning (adding/removing application servers)
is how the the onset and subsiding of unexpected surges is managed.

We have conducted a number of experiments on testbed systems to gain in-
sight into the characteristics of dynamic surge protection. Overall, we have found
it to be well behaved, and the performance compares favorably to a threshold-
based heuristic. In addition, the approach is cost effective – in one extended
test, we found that it uses only 20% more resources than a theoretical optimal
deployment and 35% less resources than a static deployment.

Our future work will address handling of multiple workloads, and resource
actions that include tuning and admission control. We also plan to leverage Grid
services.

References

[1] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillenberger. Adaptive
algorithms for managing a distributed data processing workload. IBM Systems
Journal, 36(2), 1997. 83

[2] G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, 1976. 87

[3] A. Chandra, P. Goyal, and P. Shenoy. Quantifying the benefits of resource mul-
tiplexing in on-demand data centers. Proceedings of the First ACM Workshop on
Algorithms and Architectures for Self-Managing Systems - to appear, 2003. 83,
90

[4] M. E. Crovella. Performance characteristics of the world wide web. Performance
Evaluation, LNCS, 1769, 2000. 86

[5] IBM. High volume web site performance simulator.
http://www7b.boulder.ibm.com/wsdd/library/techarticles/hvws/
perfsimulator.html, 2002. 86

[6] IBM. Autonomic computing. http://www.ibm.com/autonomic, 2003. 83
[7] Bill Lefebvre. Facing a world crisis. USENIX LISA, 2001. 82, 89
[8] G. G. Judge R. C. Hill W. E. Griffiths H. Lutkepohl and T. C. Lee. Introduction

to the Theory and Practice of Econometrics: Second Edition. Wiley, 1988. 87
[9] L. W. Russell S. P. Morgan and E. G. Chron. Clockwork: A new movement in

autonomic systems. IBM Systems Journal, 42(1), 2003. 83, 87
[10] Kathleen Ohlson. Victoria’s secret knows ads, not the web. Computer World,

February 1999. 83
[11] Hewlett Packard. HP utility data center. http://www.hp.com/go/hpudc, 2003. 83
[12] M. Goldszmidt D. Palma and B. Sabata. On the quantification of e-business

capacity. Proceedings of the 3rd ACM conference on Electronic Commerce, 2001.
86

[13] K. Appleby S. Fakhouri L. Fong M. K. G. Goldszmidt S. Krishnakumar D. Pazel J.
Pershing and B. Rochwerger. Oceano–SLA-based management of a computing
utility. Proceedings of the IFIP/IEEE Symposium on Integrated Network Man-
agement, 2001. 83

[14] ProvisionSoft. ProvisionSoft Home Page. http://www.provisionsoft.com, 2003. 83
[15] Sun Micro Systems. Sun N1. http://wwws.sun.com/software/solutions/n1, 2003.

83

92 E. Lassettre et al.

[16] ThinkDynamics. Thinkdynamics Home Page. http://www.thinkdynamics.com,
2003. 83

[17] Zeus. Why web technology is vital to your business. Computer World, 2003. 83
[18] M. S. Squillante L. Zhang and D. Y. Yao. Web traffic modeling and web server

performance analysis. Proceedings of the 38th IEEE Conference on Decision and
Control, 5, 1999. 87

[19] J. Rolia X. Zhu and M. Arlitt. Resource access management for a utility hosting
enterprise applications. Integrated Network Management VIII, 2003. 83

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 93-105, 2003.
 IFIP International Federation for Information Processing 2003

A Method on Multimedia Service Traffic Monitoring and
Analysis*

Hun-Jeong Kang, Myung-Sup Kim, and James Won-Ki Hong

Department of Computer Science and Engineering
POSTECH, Korea

{bluewind,mount,jwkhong}@postech.ac.kr

Abstract. The use of multimedia service applications is growing
rapidly on the Internet. These applications are generating a huge
volume of network traffic, which has a great impact on network
performance and planning. For various purposes, obtaining information
on multimedia service traffic is important. However, traditional analysis
methods based on well-known ports cannot be used to analyze such
traffic. Because the majority of multimedia service applications use
dynamically allocated port numbers, the traditional methods misidentify
multimedia service traffic as unknown traffic. This paper presents a
method for monitoring and analyzing multimedia service traffic. Our
method detects transport protocol and port numbers for dynamically
created sessions during a control session. We then use such information
to analyze traffic generated by the most popular multimedia service
applications, namely Windows Media, RealMedia, Quicktime, SIP and
H.323. We also present a system architecture that uses our method to
monitor and analyze multimedia service traffic.

1 Introduction

The use of streaming media and multimedia conferencing applications is growing
rapidly. Many Internet sites provide various rich media content of broadcast, movies,
and music. We call the network traffic generated by the streaming media and
multimedia conferencing applications as multimedia service traffic. This multimedia
service traffic is becoming increasingly dominant in IP networks and is affecting the
network performance and planning. Therefore, it is important to monitor and analyze
multimedia service traffic for acquiring information about the network usage.

However, most existing traffic monitoring systems cannot be used to analyze
multimedia service traffic. These systems use well-known port numbers for
identifying applications [1]. Most multimedia service applications make use of port

* This work was in part supported by the Electrical and Computer Engineering Division at

POSTECH under the BK21 program of Ministry of Education and HY-SDR Research
Center at Hanyang University under the ITRC program of Ministry of Information and
Communication, Korea.

94 Hun-Jeong Kang et al.

numbers that are not well-known but are dynamically allocated during set up sessions.
As a result, traffic to transfer multimedia service data is misidentified as unknown
traffic in these systems [2, 3].

This paper presents a method and a system architecture to monitor and analyze
multimedia service traffic. We have developed a dynamic session analyzer which
parses control protocols. This analyzer processes the payload of a packet associated
with a control protocol and extracts information such as transport protocol and port
numbers used for transferring multimedia service data. We then use this information
to analyze popular multimedia service traffic, namely Windows Media [4],
RealMedia [5], Quicktime [6], SIP [7], and H.323 [8] traffic.

This paper is organized as follows. Section 2 provides an overview of several
popular multimedia service protocols. Section 3 discusses related work on traffic
monitoring and analysis. Section 4 presents our analysis method for multimedia
service traffic. Section 5 describes the architecture of our multimedia service traffic
monitoring and analysis. Finally, Section 6 summarizes our work and discusses
possible future work.

2 Overview of Multimedia Service Protocols

This section describes backgrounds of multimedia service protocols and their
characteristics. In streaming media service, we are aiming to most popular services:
Windows Media Technology (WMT), RealMedia, and QuickTime. These services
differ in their protocols, as illustrated in Table 1. In Internet multimedia service
conferencing services, most applications are based on SIP (Session Initiation
Protocol) or H.323. Table 2 describes protocols used in these applications.

Table 1. Streaming Media Service Protocols

streaming media service control session protocol data session protocol
RealMedia RTSP RDT
QuickTime RTSP RTP
WMT MMS MMST/MMSU

Table 2. Multimedia Conferencing Protocols

application control session protocol data session protocol
based on SIP SIP RTP
based on H.323 Q.931, H.245 RTP

During a multimedia service, two types of sessions are created between a client and
a server: a control session and a data session. The control session is responsible for
setting up connection and controlling navigation, such as play and pause. This session
uses control protocols such as RTSP (Real Time Streaming Protocol) [9] and MMS
(Microsoft Media Server) [4]. The data session sends the multimedia service contents
to the client over the data session protocol, including RDT (RealNetworks Data
Transfer) [5], RTP (Realtime Transfer Protocol) [10], and MMST/MMSU (MMS

A Method on Multimedia Service Traffic Monitoring and Analysis 95

over TCP/UDP) [4]. We designate each packet related to the control session and data
session as a control packet and a data packet, respectively.

Figure 1 illustrates a client/server interaction for a control and data transfer session.
To begin, a control session is set up through a well-known port number. As described
in Figure 1 (a), streaming media services (e.g., RealMedia, QuickTime) or
applications based on SIP have one control session. On the other hand, H.323
applications have two control sessions: Q.931 [8] and H.245 [8] sessions. A control
session creates a new data session by negotiating a transport protocol and port
numbers. Then the data session transfers multimedia data through the dynamically
assigned transport protocol and port numbers. In this paper, we introduce a new term,
dynamic session, that makes use of the transport protocol and port numbers that are
dynamically negotiated by the control session, such as the data session and second
control session in Figure 1 (b).

client server

session
negotiation

RealMedia,QuickTime,
WMT, SIP

(a)

connect

disconnect

dynamic
session

control
data

client server

session
negotiation

H.323

(b)

connect (Q.931)

disconnect

dynamic
session

connect (H.245)
session

negotiation

well-known
port

dynamic
port

dynamic
port2

dynamic
port1

well-known
port

Fig. 1. Multimedia Service Control and Data Session

When a control session negotiates about a dynamic session, the packet payload of
the control session contains negotiation results such as a transport protocol and port
numbers used in the dynamic session. By selecting and analyzing the control packet,
we can discover information about the dynamical session, which is called the
dynamic session information in this paper.

The use of dynamic sessions in multimedia services causes disadvantages in
traffic monitoring, although the use benefits in delivering data. These services can
send multimedia data efficiently by changing appropriate protocols for streaming and
conferencing. On the other hand, new and not well-known port numbers appear after
the session negotiation. Because of these unknown port numbers, the traffic used by
dynamic session is misidentified as unknown traffic by most traffic monitoring
systems that use well-known port numbers for identifying applications. That is the
reason why we find dynamic session information and use it when determining
multimedia service traffic.

96 Hun-Jeong Kang et al.

3 Related Work

A flow represents a series of packets traveling between ‘‘interesting'' end points.
There are various definitions about the flow [13, 14, 15]. In this paper, we define a
flow as a sequence of packets with the same 5-tuple: source IP address, destination IP
address, source port, destination port, and protocol number. By aggregating related
packets into a flow, one can reduce system overhead to process data. Due to this
compressibility, many systems, such as NG-MON [16], analyze traffic based on
flows.

Flowscan [11] is also a flow-based traffic analysis system. Its monitoring target
related to multimedia service is the traffic using RTSP. It uses a heuristic method as
follows. The system records ongoing control sessions. When a flow is seen with an
unknown port number on two hosts, it checks to verify whether an active control
connection exists between the same hosts. If so, it assumes that the flow corresponds
to a dynamic session. However, this analysis may provide inaccurate information. The
reason is that traffic seen with an unknown port number may not be related to the
active control connection that exists between two connected hosts. Further, some
multimedia service data can be transferred from another source that does not
participate in the active control connection. In this case, this heuristic method
misidentifies the multimedia service traffic as unknown traffic, because no active
control connection exists between these hosts that transfer multimedia service data.

mmdump [3] is a tool for monitoring multimedia traffic on the Internet. This tool
is used to investigate the characteristics of multimedia service traffic over RTSP and
H.232. The tool contains a parsing module for the RTSP and H.323 protocol. It parses
the control messages to extract the dynamically assigned port numbers. The parsing
module then dynamically changes a packet filter to allow packets associated with
these ports to be captured. By changing the packet filter, this tool can capture only
packets that contain listed port numbers, while reducing the resource requirements
and capture overhead. However, it is also a burden to frequently compile and change
the packet filter. In addition, this tool reveals the following problems. First, it does not
analyze MMS [4] that is considered to be the most widely used streaming service in
the world. Next, it does not consider IP-fragmentation. We observed that about
40~70% of WMT packets are fragmented during our tests. Similarly, some
applications send large streams into the network, and these data are fragmented. The
port number of these fragmented packets cannot be identified without reassembly.
Because mmdump captures a packet by referencing only port numbers, it misses
fragmented packets, even though they are multimedia service packets. Further, it may
commit a false-rejecting error, where the real data packet is misidentified as not
associated with the multimedia service session. Consider a streaming data packet that
belongs to a data session but is not contained in the packet filter to be captured. Some
data packets pass the probing point after deletion of port numbers from the filtering
list. Then the packet may pass the probing point without being captured. In these
cases, the analysis results of mmdump are not accurate.

A Method on Multimedia Service Traffic Monitoring and Analysis 97

4 An Analysis Method for Multimedia Service Traffic

4.1 Analysis Procedure

In this section, we present our proposed method for analyzing multimedia service
traffic. Figure 2 is a flowchart to illustrate packets being captured and processed. The
overall procedure consists of three major parts: flow generation, dynamic session
analysis, and traffic analysis.

packet
capture packet

extract header information

generate flow information

flow
information

table

dynamic
session

table

control packet?

extract
dynamic session

information

Y

determine
dynamic

flow

traffic
information

table

Dynamic Session Analysis

Traffic Analysis
Network
Device

Flow Generation

analyze
traffic

Fig. 2. Flowchart for Multimedia Service Traffic Monitoring and Analysis

The flow generation part captures packets and analyzes their header. By collecting
and aggregating related packets, this part generates flow information. Based on this
flow information, the traffic analyzer generates various traffic information into the
traffic information table. However, it is insufficient to identify dynamic session traffic
with only a port number. The reason is that dynamic sessions do not use well-known
ports. Therefore, we need dynamic session information to decide whether or not a
flow with an unknown port number is related to multimedia service traffic. This
information can be extracted in the dynamic session analysis part. When a packet is
analyzed by the flow generation part, the control packet is sent to the dynamic session
analysis part. Next, the packet is analyzed to determine whether or not it contains
dynamic session information. In the following sections, we describe the dynamic
session analysis part in detail.

4.2 Dynamic Session Analysis

Figure 3 describes our algorithm to discover dynamic session information from the
control packet. The dynamic session analyzer receives a control message, including
packet header information, and a payload of the transport layer. First, the procedure
determines if the FIN flag is set to identify it as a session disconnect request. If not,

98 Hun-Jeong Kang et al.

the module analyzes whether the packet contains dynamic session information. We
can reduce the analysis overhead by selecting a packet, which is likely to contain
dynamic session information. The payload of the selected packet is parsed according
to each control protocol (line 6, 9, 11, 14, or 16). After parsing, the procedure
confirms if the dynamic session information is discovered (line 17). If so, this
information is stored into the dynamic session table that contains information on
active dynamic sessions (line 19).

1 Procedure DynamicSessionAnalyzer (Msg)
2 BEGIN
3 ifFIN Flag in Msg is NOT set
4 then if protocol in Msg = RTSP
5 then if SourcePort in Msg = RTSP server port number
6 then result = ParseRTSP (payload of Msg) ;
7 else if protocol in Msg = MMS
8 then if DestinationPort in Msg = MMS server port number
9 then result = ParseMMS (payload of Msg) ;
10 else if protocol in Msg =SIP
11 then result = ParseSIP (payload of Msg) ;
12 else if protocol in Msg = Q.931
13 then if SourcePort in Msg = Q.931 receiver port
14 then result = ParseQ931 (payload of Msg) ;
15 else if protocol in Msg = H.245
16 then result = ParseH245 (payload of Msg) ;
17 if result= TRUE then
18 create new dynamic session information;
19 insert dynamic session information into dynamic session table;
20 else
21 delete session information from dynamic session table;
22 END

Fig. 3. Multimedia service Traffic Analysis Algorithm

When a multimedia service is completed, information on the dynamic session must
be removed. This information is usually deleted from the dynamic session table (line
21) when the TCP FIN flag is set to disconnect the control session. However, the FIN
packet may never be captured because of such effects as packet losses or route
changes [3]. In such cases, the information is removed from the table by selecting a
session, which shows no activity for a certain period of time. Consequently, the traffic
analysis module can identify the application of dynamic flows by referencing the
dynamic session table.

4.2.1 Analysis of RTSP

RealMedia and QuikTime applications use RTSP as control protocol. Figure 4 (a)
illustrates messages of RTSP during negotiation of a dynamic session. A client sends
a SETUP request to a server, along with the candidates for a data transfer protocol
and port number (or a range of port numbers) to be used for receiving multimedia
service data. Next, the SETUP response contains the protocol and port numbers

A Method on Multimedia Service Traffic Monitoring and Analysis 99

chosen by the server. Accordingly, the procedure ascertains whether the source port
of the packet is an RTSP server port (i.e., 554) (line 5 in Figure 3), and whether the
packet from the server contains ‘RTSP RESPONSE Expression' in Figure 4 (b).
Then, the procedure parses the payload and searches for ‘TRANSPORT Expression':
“Transport:”, “;client_port=”, the number or range of numbers, and “;”.

setup

client server

data

(a) Dynamic Session
Negotiation

play

response

response

(b) Regular Expression

contain dynamic session information

(554)

(dynamic)

[Tt][Rr][Aa][Nn][Ss][Pp][Oo][Rr][Tt]:[a-
zA-Z]+([/-][a-zA-Z])*.*;client_port=[1-

9][0-9]{3,4}(-[1-9][0-9]{3,4}){0,1};.*

TRASNPORT Expression

[Rr][Tt][Ss][Pp]/[0-9]+\.[0-9]+200 OK.*

RTSP RESPONSE Expression

Fig. 4. Dynamic Session Construction in RTSP

4.2.2 Analysis of MMS

MMS is a control protocol of Windows Media Technology (WMT). Although its
specification is not publicly open, we have discovered by observing and analyzing
packets that the client's request in MMS contains the transport protocol and port
numbers used for transferring multimedia service data. Therefore, the destination port
number is checked to verify that it is the MMS server port number (i.e., 1755) (line 8
in Figure 3) for the purpose of choosing the client request packet. Among the client
request packets, the only SETUP packet, named for convenience in this paper,
contains dynamic session information. Accordingly, the procedure verifies the client
request packet contains ‘SETUP Expression' as illustrated in Figure 5 (a). Even
though we have not ascertained the specification of MMS, we can analyze by
searching for ‘TRANSPORT Expression': string of “MMS”, ‘URL-string format',
“TCP” or “UDP,” and the port number.

(a) Dynamic Session
Negotiation

(b) Message Expression

contain dynamic session information

\\\\[1-9][0-9]{1,2} \.\\[1-9][0-9]{1,2} \.\\[1-9][0-9]{1,2}

\.\\[1-9][0-9]{1,2} \\[([Tt][Cc][Pp])|([Uu][Dd][Pp])]
\\[1-9][0-9]{1,2}[0-9][0-9].*

TRANSPORT (Regular) Expression

9th 10th bytes (60 00)

SETUP (Hex.) Expression(setup)

client server

data

(play)

(response)

(response)

(1755)

(dynamic)

Fig. 5. Dynamic Session Construction in MMS

100 Hun-Jeong Kang et al.

4.2.3 Analysis of SIP

Figure 6 (a) illustrates messages of SIP during negotiation of a dynamic session.
A client sends an INVITE request to a server, along with the port number that is used
to for the client to receive multimedia service data. Then the server sends the
RESPONSE packet that contains port number through which the server receives data
from the client. For this reason, the procedure selects packets with 5060, SIP server
port (line 10 in Figure 3). Then, it verifies if they are invite or response message by
matching the payload of the selected packet with ‘INVITE Expression' or
‘RESPONSE Expression' in Figure 6 (b). After selecting, the procedure extracts
dynamic session information from a SDP (Session Description Protocol) [15] part of
the payload. It finds ‘MEDIA Expression', which consists of components, such as
“M=”, media type, port number, transport protocol, and payload type.

(a) Dynamic Session
Negotiation

(b) Regular Expression

contain dynamic session information

invite

client server

data

response (5060)

(dynamic)
MEDIA Expression

[Mm]= [a-zA-Z]+ [1-9][0-9]{3,4} [a-zA-Z]+([/-][a-zA-Z])*.*

[Ss][Ii][Pp]/[0-9]+\.[0-9]+ 200 OK.*

RESPONSE Expression

[Ii][Nn][Vv][Ii][Tt][Ee] [0-9a-zA-Z]+@ [0-9a-zA-Z]+

[Ss][Ii][Pp].*

INVITE Expression

Fig. 6. Dynamic Session Construction in SIP

setup

caller receiver

H.245

(a) Q.931

alerting

connect

terminal capability

caller receiver

terminal capability

(b) H.245

contain dynamic session information

(1720)

master/slave determination

master/slave determination

open logical channel

data

open logical channel ack
(dynamic)

(dynamic)

(dynamic)

Fig. 7. Dynamic Session Construction in H.323

A Method on Multimedia Service Traffic Monitoring and Analysis 101

4.2.4 Analysis of H.323

Services based on H.323 have two dynamic sessions, as illustrated in Figure 7 (a) and
(b). First, Q.931 uses a well-known receiver port, 1720. Because the information
about H.245 is contained in the connect message, the procedure checks if the source
port is the receiver port (line 13 in Figure 3) and if it is a connect message. In the case
of H.245, this session uses a port number that is dynamically allocated by a Q.931
session. Accordingly, we need to determine whether a captured packet is related to a
H.245 session by matching dynamic session information that generated by the Q.931
session (line 15 in Figure 3). Then the procedure selects an open logical channel or
open logical channel ack packet in the H.245 session.

Contrary to the above text-based protocols of RTSP, MMS, and SIP, the procedure
searches for the locations of port number in Q.931 and H.245 packets. In Q.931, the
dynamic session analyzer extracts a dynamically assigned port number from a port in
an User-User info Element information. It can discover the port number of H.245 in
tsap Identifier of a forwardLogicalChannel, reverseLogical Channel, or network
access parameter.

5 Architecture for Multimedia Traffic Monitoring and Analysis

We have developed a system for monitoring and analyzing multimedia service traffic.
We have adopted the system architecture of NG-MON [16] and integrated the
proposed method with NG-MON. As illustrated in Figure 8, traffic monitoring and
analysis tasks are divided into several phases, which are serially interconnected using
a pipelined architecture. One or more systems may be used in each phase to distribute
and balance the processing load. Each phase performs its defined role in the manner
of a pipelined system. This architecture can improve the overall performance and
scalability, with each phase configured with a cluster architecture for load
distribution. We have also defined a communication method between each pair of
phases. Each phase can be replaced with more optimized modules as long as they
provide and use the same interfaces. The divided architecture provides flexibility. By
assigning tasks to each phase, this architecture enables us to easily append or remove
modules for added work such as dynamic session analysis.

Packet
Capturer

Flow
Generator

Dynamic
Session

Information

Dynamic
Relation
Mapper

Presenter

Dynamic
Session
Analyzer

Netw ork
Device

Flo w Generatio n Traf f ic Analys is & p resentatio n

Dynam ic Sessio n Analys is

Flow
Store

Traffic
Analyzer

c ontro l p ac ket

packet data

flow data

dynamic session
information

Fig. 8. Multimedia Service Traffic Monitoring Architecture

102 Hun-Jeong Kang et al.

5.1 Flow Generation

The flow generation module consists of a packet capturer, a flow generator, and a
flow store. The packet capturer collects packets passing a probing point. Another
function of the packet capturer is to extract information from the packet header and to
send it to the flow generator. The format of the packet header information is also
shown in Figure 9. The time stamp represents the time when the packet is captured.

Packet Capturer Flow Generator Flow Store
Network
Device

raw packet

packet header information

flow information

existing f low?

flow lookup

update
existing

flow

create
new flow

information

No

Yes

packet size

protocol number

destination port

source port

destination IP address

source IP address

time stamp

total packet size

packet counts

protocol number

destination port

source port

destination IP address

source IP address

time stamp

Fig. 9. Flow Generation Module

The flow generator creates a flow by collecting a series of packets. Figure 9
illustrates the function and parameters of the flow generator. Whenever receiving
packet header information, the flow generator looks up the flow table to search for an
existing flow to which the packet belongs. If a matched flow exists, the packet is
added to the flow by updating the flow information by increasing the count and total
size of the packet. If not, a new flow is constructed from the packet header
information. Next, the flow is inserted into the flow table. Flows in the table are
periodically stored into a database. Here, the period can be configured according to
the flow time-out in order to aggregate flow information during the predetermined
time, such as one minute.

5.2 Dynamic Session Analysis

The dynamic session analysis module provides information for identifying
multimedia service traffic. If a packet is determined to be a control packet, the packet
capturer sends the packet to the dynamic session analyzer. By using the algorithm for
streaming analysis described in Figure 3, the dynamic session analyzer discovers the
information on the dynamic session. This information is stored into the dynamic
session table and referenced by the relation mapper in the traffic analysis module.

dynamic IP address dynamic port transport protocol
Control client address control client port control server address control server port

session start time session end time

Fig. 10. Dynamic Session Information

A Method on Multimedia Service Traffic Monitoring and Analysis 103

Figure 10 shows the format of the dynamic session information. In this format, the
control server address and control server port are IP addresses and the port number of
the server in the control session that created the dynamic session. Similarly, the
control client address and control client port are the IP address and the port number of
client in the control session. By making use of this information, the system is aware of
the relationship between the control and dynamic sessions. The session start time is
the time when the dynamic session information is newly created, and the session end
time is the time when the control session is disconnected. The session end time is set
either when a TCP FIN flag of a control packet is set, or when no packet in the same
session is captured during a predetermined threshold time. These time fields are used
to determine whether a dynamic session is active or inactive.

dynamic
flow?

control
flow?

Traffic Analyzer

flow info. + control session info.

flow info. + control session(own flow) info.

Dynamic
Session

Analyzer

flow info.

Y

Y

N

N

Dynamic Relation Mapper

Flow
Store

c lient IP address, port o f c ontro l session

server IP address, port o f c ontro l session

match
flow*

pro toc o l
number

destination (or sourc e)
po rt

destination (or sourc e)
address

transport
p ro toc o ldynamic c lient po rtdynamic c lient add ress

*Information Matching

dynam ic
session info.

flow
info.

flow info.

dynamic
session info.

Fig. 11. Dynamic Relation Mapping

5.3 Traffic Analysis

The dynamic relation mapper decides the relation between a dynamic flow and a
control flow. This module identifies whether a flow with unknown port number is
related to a dynamic session. As illustrated in Figure 11, this module matches flow
information with dynamic session information. Tuples to be compared are as follows:
destination (or source) IP address and dynamic client address, destination (or source)
port and dynamic client port, and protocol number and transport protocol. If the
compared tuples are equal, some fields are added to the flow information, such as the
IP address and port number of the control session. By adding these fields, we can map
the dynamic flow and the control flow that creates the dynamic flow. In the case of
control flows, the control server and client information are filled up with its own IP
address and port number. Otherwise, only flow information is sent to the traffic
analyzer without an addition of fields.

104 Hun-Jeong Kang et al.

The traffic analyzer performs an analysis of traffic by querying the flow data
stored in the database. It can analyze multimedia service traffic at the session level. It
is possible for a multimedia service to open several sessions. The traffic analyzer can
discover and analyze sessions separately. In addition, it integrates the information of
sessions which belong to the same multimedia service. For example, it can analyze
the traffic volume exchanged in the control and data sessions related to the same
multimedia service.

6 Conclusion and Future Work

In this paper, we presented a method and system architecture for monitoring and
analyzing multimedia service traffic. This method analyzes control protocol messages
and extracts information on dynamic sessions. The extracted information includes
dynamically selected protocol and port numbers, which are used to determine whether
or not the unknown traffic is multimedia traffic. This approach makes it practical to
monitor previously unknown multimedia service traffic, as well as other services.

This method boosts the analysis of traffic from the packet level to the session level.
It does not simply extract header information of a packet, but makes it possible to
analyze traffic per session by acquiring session information. In addition, it overcomes
the problems with existing approaches that use only well-known port numbers of TCP
or UDP for identifying the application of traffic. By analyzing application messages,
this method discovers the status of the application and raises the analysis application
level.

We are currently integrating our multimedia service traffic analysis method with
NG-MON. We plan to analyze the multimedia service traffic on our campus network
and then use our system to monitor and analyze ISP networks in Korea. We are
planning to extend the proposed analysis method to other types of traffic that creates
and use dynamic sessions.

References

[1] Internet Assigned Numbers Authority, http://www.iana.org/
[2] James W. Hong, Soon-Sun Kwon and Jae-Young Kim, “WebTrafMon: Web-

based Internet/Intranet Network Traffic Monitoring and Analysis System,”
Computer Communications, Elsevier Science, Vol. 22, No. 14, Sept. 1999, pp.
1333-1342.

[3] Jacobus van der Merwe, et. al., “mmdump - A Tool for Monitoring Internet
Multimedia Traffic,” ACM Computer Communication Review, 30(4), October
2000.

[4] Microsoft, WMT,
http://www.microsoft.com/windows/windowsmedia/default.asp

[5] Real Networks, Real Media Technology, http://www.realnetworks.com/
[6] Apple, QuickTime, http://www.apple.com/quicktime

A Method on Multimedia Service Traffic Monitoring and Analysis 105

[7] M. Handley, H. Schulzrinne, E.Schooler, J. Rosenberg, “SIP: Session Initiation
Protocol,” RFC 2543, March 1999.

[8] ITU-T, “Recommendation H.323: Visual Telephone Systems and Equipment
for Local Area Networks Which Provide a Non-guaranteed Quality of Service,”
1996.

[9] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol
(RTSP),” RFC 2336, April 1998.

[10] H. Schulzrinne, S. Casner, R. Frederick, V, and Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” RFC1889, January 1996.

[11] Dave Plonka, FlowScan, http://net.doit.wisc.edu/~plonka/FlowScan/
[12] Siegfried Lifler, “Using Flows for Analysis and Measurement of Internet

Traffic,” Diploma Thesis, University of Stuttgart, 1997.
[13] J.Quittek, T. Zseby, B. Claise, K.C. Norsth, “IPFIX Requirements,” Internet

Draft, http://norseth.org/ietf/ipfix/draft-ietf-ipfix-architecture-00.txt
[14] CAIDA, “Preliminary Measurement Spec for Internet Routers,”

http://www.caida.org/tools/measurement/measurementspec/
[15] M. Handley, V. Jacobson, “SDP: Session Description Protocol,” RFC 2327,

April 1998.
[16] S. H. Han, M. S. Kim, H. T. Ju and J. W. Hong, “The Architecture of NG-

MON: A Passive Network Monitoring System”, DSOM 2002, Montreal, Oct.,
2002, pp. 16-27.

Traffic Measurements for Link Dimensioning

A Case Study

Remco van de Meent, Aiko Pras, Michel Mandjes,
Hans van den Berg, and Lambert Nieuwenhuis

University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

r.vandemeent@utwente.nl

Abstract. Traditional traffic measurements meter throughput on time
scales in the order of 5 minutes, e.g., using the Multi Router Traffic
Grapher (MRTG) tool. The time scale on which users and machines
perceive Quality of Service (QoS) is, obviously, orders of magnitudes
smaller. One of many possible reasons for degradation of the perceived
quality, is congestion on links along the path network packets traverse.
In order to prevent quality degradation due to congestion, network links
have to be dimensioned in such a way that they appropriately cater
for traffic bursts on time scales similarly small to the time scale that
determines perceived QoS. It is well-known that variability of link load
on small time scales (e.g., 10 milliseconds) is larger than on large time
scales (e.g., 5 minutes). Few quantitative figures are known, however,
about the magnitude of the differences between fine and coarse-grained
measurements. The novel aspect of this paper is that it quantifies the
differences in measured link load on small and large time scales. The
paper describes two case studies. One of the surprising results is that,
even for a network with 2000 users, the difference between short-term
and long-term average load can be more than 100%. This leads to the
conclusion that, in order to prevent congestion, it may not be sufficient
to use the 5 minute MRTG maximum and add a small safety margin.

1 Introduction

Some believe that QoS in networks will be delivered by the use of technologies
such as DiffServ and IntServ, which ensure the “right” allocation of available re-
sources among different requests. Concerns about deployment, operational com-
plexity and, in the case of IntServ, scalability, give rise to alternative approaches
of providing QoS. One of these alternatives is overprovisioning [1]. The idea
behind overprovisioning is to allocate so many resources that users no longer
experience a QoS improvement in case additional resources get allocated. This
paper focuses on the bandwidth overprovisioning of individual network links.
An example of such link is the access line between an organization’s internal
network and its Internet Service Provider.

Since bandwidth may be expensive, managers who rely on overprovisioning
as mechanism for delivering QoS need to know the amount of traffic that users of

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 106–117, 2003.
c© IFIP International Federation for Information Processing 2003

Traffic Measurements for Link Dimensioning 107

a specific link may generate at peak times. To find this figure, managers usually
use tools like MRTG [2]. Such tools are able to measure the average load of network
links by reading the Interface Group MIB counters every 5 minutes (by default),
and plot the results in a graph. The peaks in these graphs, plus a certain safety
margin, or often used to dimension the specific link.

In cases where overprovisioning is used as mechanism to provide QoS, load
averages of 5-minutes may not be adequate to properly dimension network links.
With web browsing, for example, traffic is exchanged in bursts which last be-
tween parts of a second and several seconds. If, within these seconds, the link
gets congested, the user will not perceive an acceptable QoS. Also distributed
computer programs, which interact without human intervention, “perceive” QoS
on time scales smaller then seconds. The traditional 5 minute figures of MRTG do
not give any insight in what happens on these small time scales. It is therefore
important to increase of the time-granularity of the measurements, i.e., to de-
crease the size of the time-window that is used to determine the link load. To
overprovision, load figures are needed on the basis of seconds, or even less.

1.1 Contribution

The goal of this paper is to quantify the differences in measured link load at
various time scales. For this purpose, two case studies have been performed.
In the first study traffic was measured on the external link of a university’s
residential network; this link was used by thousands of students. Because of this
high number, we expected that the differences between the long- and short-term
averages would be relatively small. To get some stronger differences, the second
study was performed on the access line of a small hosting provider, which served
some tens of customers.

The outcome of the measurements came as a surprise. On the university’s
link, with thousands of users, the differences between long- and short-term av-
erages could be more than hundred percent. In the case of the hosting provider,
the differences could even be thousands of percents.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 describes the
two networks on which the measurements were performed, the measurement
equipment that was used, as well as the way this equipment was connected.
Section 3 discusses some factors that influence the achievable granularity of
our measurements. Section 4 discusses the tools that were used for processing,
analyzing and visualizing the gathered data. Section 5 presents the analysis of
the measurements and determines the ratio of peak versus average throughput
on the links of our case studies. The conclusions are provided in Section 6.

108 Remco van de Meent et al.

access
network

switch

measurement pc

Internet

Fig. 1. Measurement Setup

2 Measurement Setup

In this study we have concentrated on network technologies that are common
in both production and academic environments. We assume such networks to
consist of (normal, Fast and Gigabit) Ethernet links, which are connected by
hubs, switches and routers. In general it is important that normal network oper-
ation should not be disturbed by the measurements. For example, it may not be
acceptable to interrupt network operation to install optical splitters that copy
all network traffic to a measuring device. It will often be better to rely on the
“mirror” facilities provided by current middle- to high-end switches, and copy
all traffic that should be monitored to one of the free interfaces of that switch.
The measurement device can than be connected to that interface, and all traffic
can be analyzed without disturbing the network. See Figure 1 for a schematic
representation of the measurement setup.

To validate whether it is practically feasible to measure throughput on small
time scales, and to compare traditional MRTG measurements to throughput mea-
surements with fine granularity, two case studies have been performed.

The first case study measures throughput on a backbone link that is used by
thousands of users. With this large number of users it is expected that the traffic
generated by a single user will have limited impact on the traffic aggregate; it is
therefore expected that the difference in “long-term” and “short-term” through-
put averages will be relatively low. The second case study measures throughput
on a link that is used by some tens of users. With this small number of users it
is anticipated that the results will differ much more.

2.1 Campus Network

The Campusnet [3], a residential network of the University of Twente, connects
about 2000 students to the Internet. Each student has a 100 Mbit/s full duplex
connection to the network. The network is hierarchically structured, and has
a full-duplex 300 Mbit/s backbone link to the rest of the world. This link, with
a 5-minute average load of about 50%, has been monitored in the first study.
The question whether or not this link is overprovisioned, is hard to answer
beforehand, given the expected variability of the throughput on smaller time
scales.

Traffic Measurements for Link Dimensioning 109

Table 1. Measurement PC Configuration

Component Specification

CPU Pentium-III 1 GHz
Mainboard Asus CUR-DLS (64 bit 66 MHz PCI)
Hard disk 60 + 160 Gigabyte, UDMA/66
Operating system Debian Linux, 2.4.19-rc1 kernel
Network interface 1 x Gbit/s Intel Pro/1000T
Main memory 512 MB reg. SDRAM

2.2 Hosting Provider Network

The second case study involves the network of a small hosting company in The
Netherlands. This network connects some tens of customers over a switched 100
Mbit/s network to the Internet. The link to the Internet, with a 5-minute average
load of 5–10%, has been monitored in the second study. As this link is only mildly
loaded, we anticipate that it can be regarded as being overprovisioned.

2.3 Measurement Device

An important requirement for this study is to use as much as possible common
hardware and software. For the measurement device it was decided to take an off-
the-shelf PC; the software was based on Linux. The details of the measurement
device are shown in Table I.

The advantage of using off-the-shelf hardware and commodity software, is the
low price of the measurement device and the simplicity of the software installa-
tion and maintenance. A potential drawback is the possible poor performance
and scalability. In particular problems may occur because of limited CPU and
I/O (e.g., network, disk) speed. To avoid such problems, we selected a Gigabit
Ethernet card and a motherboard with a 64 bit bus. It turned out that this PC
could easily capture hundreds of Mbit/s.

If, in future measurements, performance and scalability becomes problematic,
it should be possible to migrate to some alternative measurement setup, such as
TICKET [4], NG- MON [5] or IPMon [6].

There are also hardware based solutions for very fine-grained measurements,
such as the DAG cards [7], but these are very expensive. One could also argue
that measurements on time scales smaller than 10 milliseconds, as offered by
alternative solutions, do not add to the notion of perceived QoS.

3 Time-Granularity

The choice for a specific measurement device and setup imposes certain con-
straints on the achievable time scales for metering. In this section we will discuss

110 Remco van de Meent et al.

four factors that determine which time granularity is practical for our specific
measurement setup.

A first factor is that the switch should copy all traffic from the ports to
be monitored to the port to which the measurement device is connected. This
switch, like all network devices, contains buffers to temporarily store packets that
cannot be transmitted immediately. The switch that was used for our case studies
was able to buffer frames for some tens of milliseconds. Since the capacity of the
link that connected the switch to our measurement device could easily handle
all monitored traffic, delays remained short and buffer overflow did not occur.

A second factor plays a role whenever a full-duplex link is monitored. On
such links packets flow in two directions. If both directions of traffic should be
copied to a single outgoing link, delays are introduced since only one packet can
be copied at a time. As long as the link to the measurement device supports at
least twice the speed of the full-duplex link, the delay will be less than the time
it takes to transmit a single packet. For Gigabit Ethernet links, this delay will
be a fraction of a millisecond.

A third factor is that it takes some time between forwarding a packet within
the switch, and timestamping the packet within the measurement device. With-
out special equipment, it is hard to exactly determine this time, but it is at most
a fraction of a millisecond, and the same for all packets.

The fourth factor, which is the most important one, is the resolution of
the timestamp itself. This resolution depends on the software that runs on the
measurement device. With standard Linux/x86, which was used in our case
studies, this resolution is 10 milliseconds (100 Hz). For each packet that the
network card delivers to the Linux kernel, a timestamp is added by the network
driver in the netif rx() routine. The resolution can be improved by the use of
the Time Stamp Counter (TSC) feature that is present on modern x86 CPUs.
It is also expected that the granularity can be further improved by using the
mmtimer feature that will probably be around in future chipsets. This feature is
designed for multimedia purposes, but can be used for measurement purposes
as well. Both TSC and mmtimer give nanosecond time precision, but are not fully
used in current Linux kernels.

From the above considerations it can be concluded that a safe value for the
reasonably achievable time-granularity is 10 ms (100 Hz). In the next sections
we will use this value as the minimum measurement interval.

4 Measurement Tools

The measurement process can be divided into three stages: 1) capturing, 2) pro-
cessing and analyzing, and 3) visualizing network traffic. These steps are de-
scribed in more detail below.

For our case studies we chose to process, analyze and visualize the gathered
data “off-line”, i.e., network data is stored to disk, and further processing is done
afterwards. The reason to do this “off-line”, is that we want to experiment with

Traffic Measurements for Link Dimensioning 111

analyzing and visualizing the data. In principle, however, throughput-evaluation
can be done “on-line”, e.g., by using simple counters.

4.1 Capturing

The measurement PC receives all traffic from the monitored network link via
a Gigabit Ethernet interface. The traffic is captured using tcpdump [8] and the
associated libpcap library. For the throughput analysis performed in this study,
it is not necessary to store the complete contents of all frames; for our purpose it
is sufficient to store only the first 66 octets of each frame. These octets contain
all header information up to the transport layer (e.g., TCP port numbers, if
available); this is sufficient to perform, for example, flow arrival analysis. To
improve performance and to avoid potential privacy problems, the rest of the
payload is ignored. For each frame that is captured, libpcap also adds to the
capture file: 1) a timestamp (as provided by the Linux kernel), 2) the size of the
captured fraction of the frame (i.e., 66 in this study), and 3) the total size of the
original frame. Note that capturing results in a huge amount of data, particularly
on high-speed networks; a measurement period of 15 minutes can involve multiple
gigabytes of data. To handle capture files bigger than 2 gigabytes, it is important
to compile tcpdump and libpcap with Large File Support enabled.

4.2 Processing and Analysis

The second step involves preparation for, and the actual analysis of, the gath-
ered data. In studies that focus on throughput, this step is relatively simple:
anonymization of the data (if required) and grouping of the captured packets
according to the required granularity.

Although from a technical point not a required part of the measurement
process, anonymization should be done for privacy reasons. Various tools, im-
plementing different anonymization schemes, are around. In this study the
tcpdpriv [9] utility has been used, which can be configured for different levels of
protection (scrambling of only parts of the IP address, scrambling of transport
port numbers, etc.).

For throughput analysis, all packets in the capture file should be grouped.
Every group consist of all the packets captured within a certain time interval.
In accordance with the discussion in Section III, we chose the minimum time
interval to be 10 milliseconds. Depending on the network load, a single group can
consist of hundreds of packets. Obviously, the throughput of each interval can be
calculated by summing up the sizes of all packets within the associated group,
and dividing the resulting number by the length of the time interval (10 ms).

4.3 Visualization

From the interim-results of the analysis step, graphs can be plotted. In our case
studies, the GD [10] library has been used to create images, using Perl scripts.

112 Remco van de Meent et al.

 120

 140

 160

 180

 200

 220

 240

 260

 300 350 400 450 500 550 600

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

time (sec)

1 sec avg
30 sec avg
5 min avg

Fig. 2. Campusnet - Time-Granularity < 5 min

A problem with visualization is that the amount of information may be too
large to properly display in a single graph. Therefore a reduction may be re-
quired, e.g., by plotting only the highest 10 ms average throughput value of
a longer, for example 10 seconds time interval. The analysis and visualization
tools that have been developed as part of this research, are available online
from [11].

5 Measurement Results

The main goal of this study is to get quantitative figures showing the difference
between the traditional 5 minutes traffic measurements of MRTG, and finer-grained
measurements with time scales up to 10 ms. This section presents the results.

Figure 2 shows, for the Campusnet scenario, the difference between common
MRTG statistics and measurements on smaller time scales. The time-granularity is
increased from 5 minute throughput averages, to 30 second averages and finally
1 second averages. Note that the 5 minute average is around 170 Mbit/s. From
the picture it is clear that, within that interval, the average throughput in the
first minute is considerably higher than the 5 minute average. This is true for
both the 30 seconds as well as the 1 second averages. Some of the measured
1 second average throughput values are even 40% higher than the traditional
5 minute average value. It should be noted that all measurements span 15 min-
utes; for visualization reasons, the graphs show only part of that interval.

Figure 3 zooms in on the first half second of the measurement of Figure
2. Time-granularity is further increased from 1 second, to 100 ms and finally
10 ms. It should be noted that each 10 millisecond interval still contains hundreds
of packets. The graph shows that the 100 ms averages are relatively close to
the 1 second average throughput. This is not a general rule, however; other
measurements on the same network have shown differences of up to tens of
percents. It is interesting to see spikes of over 300 Mbit/s for the 10 ms averages
– almost twice the value of the 5-minute average. Note that the figure shows the
aggregation of traffic flowing in and out of the Campusnet, hence the possibility
of values higher than 300 Mbit/s.

Traffic Measurements for Link Dimensioning 113

 100

 150

 200

 250

 300

 350

 300 300.05 300.1 300.15 300.2 300.25 300.3 300.35 300.4 300.45 300.5

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

time (sec)

0.01 sec avg
0.1 sec avg

1 sec avg

Fig. 3. Campusnet - Time-Granularity: < 1 sec

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 150 200 250 300 350 400 450

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

time (sec)

highest 10 msec peak
99-percentile (10 msec)
95-percentile (10 msec)

10 sec avg

Fig. 4. Hosting Provider’s Network: Average, Peak and Percentiles

Figure 4 shows throughput statistics for the hosting provider’s network. The
utilization of this network is relatively low, with some tens of concurrent users
at the most. The 5 minute average throughput (not in the graph) for this in-
terval is around 2 Mbit/s. The lowest line shows the average throughput with
a time-granularity of 10 seconds. The figure shows that for the 190th till 250th
second, the 10 second average throughput values are a multiple of the traditional
5 minute average. The top line in Figure 4 shows the highest 10 ms average within
each 10 second interval – thousands of percents higher than the 5 minute aver-
age. The other two lines are the 95th and 99th percentile of all 10 ms averages
within each 10 second interval. These percentiles are regarded to be a better
performance measure than the absolute peak value, as they better describe user-
perceived QoS. Also these values are considerably higher than the longer term
average throughput. An explanation for the huge differences in “short-term” and
“long-term” averages, is the combination of a small number of users, and the
high speed at which a single user can send – a modern server can easily saturate
a 100Mbit/s LAN. Hence a single user can have, when he sends traffic, a big
impact on the traffic aggregate.

To compare between the hosting provider’s network and the Campusnet, Fig-
ure 5 shows for the Campusnet scenario the same kind of information as Figure 4.

114 Remco van de Meent et al.

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

time (sec)

highest 10 msec peak
99-percentile (10 msec)
95-percentile (10 msec)

10 sec avg

Fig. 5. Campusnet: Average, Peak and Percentiles

Note that the 95/99-percentiles of the 10 ms measurements are also well above
the “long-term” averages. The (relative) fluctuations, compared to the longer
time averages are less, however, than for the hosting provider’s network. This is
probably caused by the fact that an increase in the number of concurrent users
and related link load, in general leads to a decrease in burstiness of the traffic
aggregate [12]. But still, the percentiles of the 10 millisecond measurements are
tens of percents higher than the 10 second averages. It is important to take this
into account while dimensioning a network.

In order to get a better idea on how the (peak) throughput averages increase
with a decreasing time window size, we split the measurement data (900 seconds)
in partitions, see Figure 6 for the Campusnet scenario, and Figure 7 for the
hosting provider scenario. After 0 splits, the average throughput of the entire
900 seconds time window is plotted. After 1 split, we look at the first 450 seconds
and the second 450 seconds time window, after 2 splits, we have 4 windows of
225 seconds, etc. After 14 splits, we have time windows of approximately 50
milliseconds. For each different window size, we can now determine the maximum
throughput of all windows of a certain size, the standard deviation, and the
95/99-percentiles.

It is obvious that the maximum (average) throughput increases when the
time-window size is split in half. It can also be seen, by looking at the deviation
plots, that the fluctuations increase when the time window size becomes smaller.
It is interesting to see that the maximum, as well as the 95/99 percentiles grow
steadily, up to approximately 12 splits, i.e., a window size of about 200 millisec-
onds; from that point on, the “growth rate” increases. Other measurements on
the same networks also show an increasing “growth rate”, but the window size
at which this change happens varies per measurement.

6 Conclusions

In this paper we have quantified the difference between the traditional 5 minutes
traffic measurements of MRTG, and finer-grained measurements with time scales
up to 10 ms. We have performed two case studies, one on the external link of

Traffic Measurements for Link Dimensioning 115

 50

 100

 150

 200

 250

 300

 350

 400

900 450 225 112 56 28 14 7 3.5 1.8 0.9 0.4 0.2 0.11 0.05

M
bi

t/s
ec

window size (sec)

max
p99
p95

avg+stddev
avg

Fig. 6. Campusnet: Throughput vs. Time Window

 0

 5

 10

 15

 20

 25

 30

900 450 225 112 56 28 14 7 3.5 1.8 0.9 0.4 0.2 0.11 0.05

M
bi

t/s
ec

window size (sec)

max
p99
p95

avg+stddev
avg

Fig. 7. Hosting Provider’s Network: Throughput vs. Time Window

a university’s residential network, and one on the access line of a small hosting
provider.

The access line of this hosting provider served some tens of customers. With
such small number of customers, we expected major differences between the
10 ms load figures and the traditional 5 minutes figures. Our measurements
showed that these differences could be thousands of percents.

Because the university link served thousands of students, we expected that
the differences between the long- and short-term averages would be relatively
small. The outcome of our measurements came as a surprise, however. It turned
out that, even with this number of users, an overdimensioning of about 100% is
required to cater for 99% percent of the “peaks”.

Our graphs show the limitations of using MRTG figures to overprovision net-
work links. In case bandwidth overprovisioning is the approach to ensure QoS,

116 Remco van de Meent et al.

it may be better to base decisions on finer-grained measurements, which corre-
spond to the time scale that determines perceived QoS.

We assume that the increasing variability of the throughput on small time
scales is influenced by a number of parameters, e.g., the number of concurrent
users, the users’ access rates, and other traffic characteristics such as file size
distributions. In future work we expect to quantitatively investigate the influ-
ence of each of these factors, and to derive simple dimensioning rules related to
intelligent overprovisioning.

As a side-result, this paper showed that, without any special hardware or
software, it is possible to perform traffic measurements with a granularity of up
to 10 milliseconds, on network links carrying hundreds of Mbit/s. The tools that
we’ve used to perform these measurements, as well as the tools that were used
to analyze the results, can be downloaded from the web.

Acknowledgements

The authors would like to thank the ITBE, the university’s network managers,
for the opportunity to meter traffic on the network of the University of Twente
and for providing assistance whenever necessary.

The authors would also like to thank Virtu Secure Webservices BV for pro-
viding access to its networking infrastructure and support in the measurement
efforts.

The research presented in this paper is sponsored by the Telematica Instituut,
as part of the Internet Next Generation (ING) project and the Measurement,
Modelling and Cost Allocation (M2C) project.

References

[1] C. Fraleigh, F. Tobagi and C. Diot, Provisioning IP backbone networks to support
latency sensitive traffic. In Proceedings IEEE Infocom 2003, San Francisco CA,
USA, 2003.

[2] T. Oetiker. MRTG: Multi Router Traffic Grapher.
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

[3] R. Poortinga, R. van de Meent and A. Pras. Analysing campus traffic using the
meter-MIB. In Proceedings of Passive and Active Measurement Workshop 2002,
pp. 192–201, March 2002.

[4] E. Weigle and W. Feng. TICKETing High-Speed Traffic with Commodity Hardware
and Software. In Proceedings of Passive and Active Measurement Workshop 2002,
pp. 156–166, March 2002.

[5] S. Han, M. Kim and J. W. Hong. The Architecture of NG-MON: A Passive
Network Monitoring System for High-Speed IP Networks. In Proceeding of 13th
IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, pp. 16–27, October 2002.

[6] Sprint ATL, IP Monitoring Project, http://www.sprintlabs.com/Department/
IP-Interworking/Monitor/

[7] Endace Measurement Systems. http://www.endace.com

Traffic Measurements for Link Dimensioning 117

[8] Lawrence Berkeley National Laboratory Network Research. TCPDump: the Pro-
tocol Packet Capture and Dumper Program. http://www.tcpdump.org/

[9] Ipsilon Networks. tcpdpriv.
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

[10] Boutell.com, Inc. GD Graphics Library. http://www.boutell.com/gd/
[11] R. van de Meent. Homepage. http://wwwhome.cs.utwente.nl/~meentr/
[12] J. Cao, W. Cleveland, D. Lin and D. Sun, Internet traffic tends to Poisson and

independent as the load increases, Bell Labs Technical Report, 2001.

Automating Enterprise Application Placement

in Resource Utilities

J. Rolia1, A. Andrzejak2, and M. Arlitt1

1 Hewlett Packard Laboratories
Palo Alto, CA 94304, USA

{jerry rolia,martin arlitt}@hp.com
2 Zuse Institute Berlin (ZIB)

Takustraße 7, 14195 Berlin-Dahlem, Germany
andrzejak@zib.de

Abstract. Enterprise applications implement business resource man-
agement systems, customer relationship management systems, and gen-
eral systems for commerce. These applications rely on infrastructure that
represents the vast majority of the world’s computing resources. Most of
this infrastructure is lightly utilized and incurs high operations manage-
ment costs. Server and storage consolidation are the current best prac-
tices for decreasing costs of ownership in such environments. However,
capacity related decisions about which applications should be placed on
a consolidated server are often made informally. This paper presents
an approach for automating such exercises. We characterize the com-
plex time varying demands of such applications and then assign them to
a small number of servers such that their capacity requirements are sat-
isfied. The approach can be repeated on an on-going basis to ensure the
continued efficient use of resources. A case study using data from 41 data
center servers is used to demonstrate the effectiveness of the technique.

1 Introduction

Today’s enterprise infrastructure is lightly utilized. Computing and storage re-
sources are often cited as being less than 30% busy. This is in significant contrast
to most large scientific computing centers which run at much higher utilization
levels. Unfortunately, the complex resource requirements of enterprise applica-
tions, and the desire to provision for peak demand are reasons for such low
utilization.

Infrastructure consolidation is the current best practice for increasing asset
utilization and decreasing operations costs in enterprise environments. Storage
consolidation replaces disks within hosts with virtual disks supported by storage
area networks and disk arrays. This greatly increases the quantity of storage
that can be managed per operator. Server consolidation identifies groups of
applications that can execute together on an otherwise smaller set of servers
without causing significant performance degradations or functional failures. This
can greatly reduce the number, heterogeneity and distribution of servers that

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 118–129, 2003.
c© IFIP International Federation for Information Processing 2003

Automating Enterprise Application Placement in Resource Utilities 119

must be managed. For both forms of consolidation, the primary goal is typically
to decrease operations costs.

Recent advances in utility computing make it possible for resource utili-
ties to offer secure server and storage resources to enterprise applications on-
demand [1][12]. Each resource utility requires a Resource Management System
(RMS) to govern access to and automate the configuration of its resources [13].
Ideally, such an RMS should also automate the process of assigning applications
to servers. A set of RMS may then cooperate as part of a grid for enterprise
applications. By supporting more applications on fewer servers, such a grid can
help to decrease operations and infrastructure costs.

In this paper, our focus is on a specific class of enterprise applications. We
define an application of this class as a group of operating system processes that
are assigned to the same server. These applications operate continuously and
have time-varying demands but often require only a fraction of the capacity of
their server.

Our contributions in this paper are as follows. We describe the workload
characteristics of the above class of enterprise applications and a model for
characterizing their resource demands. We then introduce two techniques for
assigning applications to a consolidated set of servers. The first is based on a lin-
ear integer programming model, the second on a genetic algorithm. We apply
the techniques in a case study involving data from 41 data center servers. Our
results indicate that the genetic algorithm behaves well with respect to the in-
teger programming approach, requires less computation, and provides greater
opportunities for enhancement.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. Section 3 describes our system under study, our workload model,
and our experimental design. Assignment algorithms are introduced in Section 4.
A case study is given in Section 5. Section 6 offers concluding remarks.

2 Background and Related Work

Virtualization features are becoming common within today’s enterprise infras-
tructures. Examples of virtualization features include: virtual Local Area Net-
works, Storage Area Networks and disk arrays that support virtual disks, and
virtual machines and other partitioning technologies the enable resource sharing
within servers. These features make it possible for resource management systems
to offer joint, secure, and programmatic configuration and control for computing,
networking and storage infrastructure [7][12].

The above technologies help to enable a control-loop that can continuously
re-evaluate and realize assignment alteratives. To close the loop, applications
must provide interfaces that support their migration from one server to another
while maintaining their qualities of service.

Assignment must deal with both the long term and short term consequences
of consolidating applications on a server. Long term issues pertain to capacity
planning. Shorter term issues deal with arbitration, for example, who should

120 J. Rolia et al.

get access to resources when demand exceeds supply. Long term consequences
include interactions and correlations between the time varying demands of the
applications. The demands are correlated if they tend to move together within
their demand ranges. Short term consequences deal with the scheduling of re-
sources to applications at specific times in a manner that best meets the goals
of the resource utility. Short term decisions typically operate on time scales of
tens of seconds to hours [3][11]. In this paper, our focus is on long term issues.

There is a substantial literature on the use of optimization methods for re-
source management problems in computing systems. This includes the seminal
work by Chu that uses zero/one integer programming for task and file alloca-
tion [4]. This is known to be an NP-hard problem. The model we consider is
most closely related to the zero/one multiple knapsack problem which is also
NP-hard. [8] demonstrates that genetic algorithms can be used to find good
solutions for such problems. We prefer to apply genetic algorithms over other
knapsack heuristics [2][10] as they appear to be more robust with respect to fu-
ture enhancements to our problem definition. Dick et al. use a genetic algorithm
to schedule embedded system specifications consisting of multiple periodic task
graphs [5]. Our problem differs but we aim to exploit the same properties of
genetic algorithms. In particular, the ability to consider multiple objectives and
to consider general functions when evaluating the merit of an assignment.

3 Methodology

This section describes our system under study, the characteristics of the workload
we examine, and the experimental design for our study.

3.1 System under Study

For the purpose of our study we were able to obtain CPU utilization information
for 41 servers in a data center. The data was collected between September 2, 2001
and October 24, 2001. For each server, the average CPU utilization across all
CPUs in the server was recorded for each five minute interval. This information
was collected using HP OpenView Performance Agent. We consider the work
on each server as a single application and model per-interval CPU demand as
the product of the number of CPUs on the server and their reported aggregate
average utilization.

Table 1. Server Groups

Group Number of Servers Server Class CPU per Server MHz Memory (GB)

1 10 K-class 6 240 4
2 8 N-class 2-6 550 4-8
3 16 N-class 2-8 440 2-10
4 7 L-class 2-4 440 2-8

Automating Enterprise Application Placement in Resource Utilities 121

0

25

50

75

100

Sun Mon Tue Wed Thu Fri Sat

C
P

U
 U

til
. (

%
)

0

25

50

75

100

Sun Mon Tue Wed Thu Fri Sat

C
P

U
 U

til
. (

%
)

(a) (b)

0

25

50

75

100

Sun Mon Tue Wed Thu Fri Sat

C
P

U
 U

til
. (

%
)

0

25

50

75

100

Sun Mon Tue Wed Thu Fri Sat

C
P

U
 U

til
. (

%
)

(c) (d)

Fig. 1. One Week Traces of Application CPU Utilizations

We identified four groups of servers that had similar hardware configurations.
We treat these groups separately. Table 1 provides a breakdown of the groups of
servers. The most homogeneous is Group one, where all 10 servers have the same
number (six) and speed (240 MHz) of CPUs, and the same amount of memory
(4 GB). The other groups consist of servers from the same family with the same
CPU speed, but vary in the number of CPUs and the amount of memory per
server.

For the purpose of our study, we treat the demand of each server as the
demand of one enterprise application. We characterize each application using
its trace of per interval CPU utilization. In general, we can also consider other
attributes such as measures of bandwidth to and from the server and the amount
of real memory used.

Figure 1 illustrates the per-CPU utilization of four applications, each over
a one week period. These applications portray the kinds of behavior we have
observed. Figures 1(a) and (b) illustrate clear time of day effects. The utilizations
are similar for the other weeks of data. The first has some constant background
load, the other’s utilization drops to near zero levels at certain times of day.
Figure 1(c) shows the behavior of an application that is less predictable. It
has a surge of work towards the end of the week. For this application, some
other weeks were basically idle, and others had surges that were more or less
pronounced. Figure 1(d) illustrates a server with a flat CPU utilization. There
were several of these, some with higher and some with lower CPU utilizations.

Traces provide us with a historical view regarding application behavior. They
must be long enough to capture behavior that is representative. We assume that
such behavior will repeat itself; therefore we use the traces as input for our
assignment algorithms.

When consolidating applications, we assume that an application from a server
group is assigned to a consolidated server with a similar configuration. We also
assume that the consolidated server has sufficient memory to support the aggre-
gate demand of its assigned applications.

122 J. Rolia et al.

3.2 Experimental Design

This section describes our experimental design. In each case the goal is to mini-
mize the number of servers needed for the entire time under study. Our design
explores the sensitivity of assignment to several experimental factors as described
below.

We consider the following scenarios for assignment:

A. Large multi-processor server: we assume that the target server is a single
server with a large number of CPUs (e.g., 32, 64). Each CPU’s worth of
load from an application is assigned to a CPU for exactly one measurement
interval. We assume processor affinity, i.e. the load cannot be served by any
other CPU in this measurement interval. However, the CPU hosting the load
is re-evaluated at the boundaries of measurement intervals.

B. Small servers without fast migration: here the target is a cluster of identical
servers with a small number of CPUs (e.g., 8). Each application is assigned
to one server for the whole computation, but we do not assume processor
affinity, i.e. the load might receive concurrent service from its server’s CPUs.

C. Small servers with fast migration: this case is the same as case B, but the
applications are assigned to the target servers for each separate measurement
interval. This implies that an application may migrate between servers at
the measurement interval boundaries. We do not consider the overhead of
migration in our comparison.

For the above cases, we consider several additional factors.

– Target utilization M per CPU. We assign the applications to CPUs or servers
in such a way that a fixed target utilization M of each CPU is not exceeded.
The value of M that we use is either 50% or 80%, so each CPU retains an
unused capacity that provides a soft assurance for quality of service. Since
our input data is averaged over 5-minutes intervals, the unused capacity
supports the above-average peaks in demand within an interval. M can also
be specified to set aside resources for expected server virtualization over-
heads. Finally, if per-CPU input utilization data exceeds the value of M for
a measurement interval, it is truncated to M . Otherwise the mathematical
programs can not be solved since no allocation is feasible. With our assign-
ment algorithms, if a utilization is truncated, the application gets assigned
to its own server but doesn’t fully benefit from the 1−M in soft assurance.

– Interval duration D. In addition to the original data with measurement in-
tervals of 5 minutes duration, we average the CPU demands of three consec-
utive intervals for each original server, creating a new input data set with
measurement interval length of 15 minutes. This illustrates the impact of
measurement time scale and, for the case of fast migration, the impact of
migrating applications less frequently.

– s, the number of CPUs in each small server. For cases B and C, we assume
that the number s of CPUs of a single server is 6, 8 or 16.

Table 2 summarizes the factors and levels, and indicates when they apply.

Automating Enterprise Application Placement in Resource Utilities 123

Table 2. Summary of Factors and Levels

Factor Symbol Level Applicable Cases

Target Utilization M 50%, 80% A, B, C

Interval Duration D 5 min, 15 min A, B, C

Fast migration - false, true B, C

of CPUs per server s 6, 8, 16 B, C

4 Assignment Methods

This section presents two assignment methods. The first is a linear integer pro-
gramming approach. It takes traces of application demand as input and packs
them onto as small a set of servers as is possible with a limited computation
time. This is a compute intensive process but gives us a baseline set of results
that can be used for comparison. Our second approach is a genetic algorithm.

4.1 Linear Integer Programming Approach

Our goal is to assign the offered applications to as small a set of CPUs or
servers as is possible. To encode constraints for this goal, we introduce an idle
application. Each CPU or server either hosts an idle application or at least one
of the offered applications. The demand of the idle application is set to M for
case A and s · M for cases B and C.

We designate:

I = {0, 1, . . .} as the index set of applications, where 0 is the index of the idle
application, these are the applications under consideration;

J = {1, . . .} as the index set of CPUs (case A) or target servers (cases B and
C);

T = {1, . . .} as the index set of measurement intervals (with durations of either
5 or 15 minutes); and,

ui,t as the demand of an application with index i ∈ I for measurement interval
with index t ∈ T . As mentioned above, for all t ∈ T we set u0,t = M for case
A and u0,t = s · M for cases B and C.

Furthermore, for i ∈ I and j ∈ J let xi,j be a 0/1-variable with the following
interpretation: 1 indicates that the application with index i is placed on a CPU or
server with index j, 0 when no such placement is made. Note that x0,j = 1, j ∈ J
indicates that the CPU or server with index j is hosting the idle application, i.e.
it is unused.

The following class of 0/1 integer programs cover our cases. The objective
function is:

– Minimize the number of CPUs (case A) or servers (cases B and C) used by
maximizing the number of idle applications:

maximize
∑

j∈J

x0,j .

124 J. Rolia et al.

With the following constraints:

– Let the unused CPUs (case A) or servers (cases B and C) be those with
highest indices. For each j ∈ J\{1}:

x0,j−1 ≤ x0,j ,

where \ denotes removal from a set.
– Each non-idle application i ∈ I is assigned to exactly one CPU (case A) or
server (cases B and C). For all i ∈ I\{0}:

∑

j∈J

xi,j = 1.

– For case A, each target CPU must not exceed target utilization M in each
time interval t. Each t ∈ T gives rise to a new integer program to be solved
separately. For all j ∈ J: ∑

i∈I

ui,txi,j ≤ M.

– For case B, each target server must not exceed target utilization M for each
CPU for all measurement intervals t ∈ T simultaneously. For all j ∈ J and
all t ∈ T : ∑

i∈I

ui,txi,j ≤ sM.

– For case C, each target server must not exceed target utilization M for each
CPU for each measurement interval t. Each t ∈ T gives rise to a new integer
program. For all j ∈ J : ∑

i∈I

ui,txi,j ≤ sM.

As mentioned above, for cases A and C we solve one integer program for each
measurement interval. Case B requires one integer program that includes all
time intervals.

4.2 Genetic Algorithm Approach

We rely on the GALib genetic algorithm library as our genetic algorithm
solver [9]. It is an extensible and mature C++ library for genetic algorithm opti-
mization capable of general representations and extensible genetic operators. To
use the library, it is necessary to prepare an initial assignment for the solver, to
provide an objective function that is called by the solver to evaluate the utility
of a next assignment, and to provide a mutation function and crossover method
that are called by the solver to generate alternative assignments.

The encoding of a genome, a single assignment, is based on a one-dimensional
array where a value v at position imeans that application i is assigned to server v.
For the initial assignment, we simply place all applications on a first server.

Automating Enterprise Application Placement in Resource Utilities 125

The solver aims to minimize an objective function. In our case, the objective
is to minimize the number of servers used. When an assignment is presented
to the objective function we compute the peak of aggregate demand on each
server. To compute the peak of aggregate demand, we traverse the traces of all
applications under consideration. By re-visiting these traces for each possible
assignment, we take into account both interactions and correlations as described
in Section 2. If the peak demand exceeds M per CPU for any server, then the
assignment, i.e. the genome, is invalid. To correct the genome, we use a greedy
algorithm that starts with the first server. The algorithm simply keeps a subset
of applications on the first server such that the peak of their aggregate demand
does not exceed M per CPU. Those applications that must be moved are moved
to the next server, possibly causing a server to be added. We note that the
crossover method, described later, does not change the number of servers. This
process is repeated with the remaining servers until all applications are assigned.
The objective function returns the number of servers used. If an individual ap-
plication requires more capacity than a server can offer, we mark the result of
the optimization as infeasible and exit.

The solver invokes mutation and crossover routines to perturb the current
assignment and arrive at the next assignment. Our code for the mutation routine
implements three kinds of mutations. The first is to take a number of applications
and re-assign them to the next higher server. This tends to add servers to the
system. The second randomly swaps pairs of applications. The last takes all
the applications from the last server and randomly assigns them to the other
servers. This last step tends to decrease the number of servers used. As a result
our approach both adds and removes servers to increase coverage of the solution
space and avoid local minima.

We rely on the solver’s built in uniform crossover method to generate next
assignments based on earlier assignments. With this approach, the assignment
of each application to a server is taken from one of two parents, each with
probability 1

2 .
Finally, we describe the termination criteria used by the solver. The solver

generates a population with sixty members (assignments); each member starts
with the initial solution. The population is permitted forty generations (itera-
tions). The solver returns the best assignment observed. When generating as-
signments, we specified that 80% of an assignment should be perturbed from one
iteration to the next. The crossover probability and mutation probability were
set to 0.75 and 0.1, respectively. These values offered good solutions without
excessive running time.

For the B cases, the assignments in the initial solution are based on the peak
of the aggregate demand as computed over the traces. For the C cases, we take
into account the ability of applications to migrate after each measurement in-
terval. Our problem is to deduce how many servers are needed to support the
applications in the presence of such migration. To do this, we consider a daily
profile of demand. Time of day is partitioned into slots and each slot has a dura-
tion equal to that of a measurement interval D. We create an initial solution for

126 J. Rolia et al.

0

10

20

30

40

50

60

6 8 16 Large

T
ot

al
 N

um
be

r
of

 C
P

U
s

ne
ed

ed

Number of CPUs in Each Server

Original System: 60 CPUs

Lin Lin+FM Gen Gen+FM

0

10

20

30

40

50

60

6 8 16 Large

T
ot

al
 N

um
be

r
of

 C
P

U
s

ne
ed

ed

Number of CPUs in Each Server

Original System: 60 CPUs

Lin Lin+FM Gen Gen+FM

(a) D = 5, M = 50% (b) D = 15, M = 50%

Fig. 2. Numbers of CPUs Required for Group 1

each slot and apply the solver to each slot separately. When computing peak de-
mands for an assignment for a slot, we consider only the subset of measurement
intervals from the traces that apply to the slot. To compare the solution with
the results of the linear integer programming approach, we report the maximum
number of servers that are needed over all slots.

5 Case Study

This section presents the results of the assignment methods for the experimental
design. Due to space constraints, a subset of results for cases A, B, and C are
presented. We note that there is no guarantee that either of the assignment
algorithms offers an optimal assignment.

Figure 2 presents results for Group 1 with D = 5 minutes and M = 50%.
Case A is the Large server case as identified on the x-axis. Cases B and C cor-
respond to the six, eight, and sixteen CPUs per server cases, without and with
fast migration, respectively. Squares in the figure identify the number of CPUs
required on the y-axis versus the number of CPUs per server, as shown on the
x-axis. The quadrants of each square show whether a solution method/fast mi-
gration scenario combination corresponds to that number of CPUs. For example,
the upper-left most square in Figure 2(a) shows that for the six CPU per server
case, without fast migration, both the linear integer program and genetic algo-
rithm found an assignment with forty two CPUs. The squares below it show that
for the fast migration case, the genetic algorithm’s assignment required thirty
six CPUs while the linear integer program’s assignment required thirty CPUs.

As the number of CPUs per server increases, we expect consolidation to be
more effective. However, as Figure 2(a) shows, each server, in particular the last
server, isn’t always well utilized. For this reason, the sixteen CPU per server case
shows a jump in the required number of CPUs. The Large case required only
thirty CPUs. It has the least waste. The results for the Large case were computed
using the linear integer program in a manner similar to the fast migration case.

Automating Enterprise Application Placement in Resource Utilities 127

0

10

20

30

40

50

60

70

80

90

6 8 16 Large

T
ot

al
 N

um
be

r
of

 C
P

U
s

ne
ed

ed

Number of CPUs in Each Server

Original System: 82 CPUs

Lin
Lin+FM

Gen
Gen+FM

Gen
Gen+FM

0

10

20

30

40

50

60

70

80

90

6 8 16 Large

T
ot

al
 N

um
be

r
of

 C
P

U
s

ne
ed

ed

Number of CPUs in Each Server

Original System: 82 CPUs

Lin
Lin+FM

Gen
Gen+FM

Gen
Gen+FM

(a) D = 5, M = 50% (b) D = 5, M = 80%

Fig. 3. Numbers of CPUs Required for Group 3

Figure 2(b) shows the impact of increasing D to fifteen minutes. This smooths
reported bursts in utilization, in some cases, letting us pack more work onto
fewer CPUs. For example, we report fewer CPUs as required for the six CPU
per server case without fast migration, and the sixteen CPU per server case
without fast migration.

Figure 3(a) and (b) show results for Group 3 with D = 5 minutes and
M = 50% or M = 80%, respectively. As the utilization threshold increases,
clearly more work can be added to each server. We note that in both Figure 3(a)
and (b), solutions were not possible for the six CPU per server cases. This is
because some applications required more than six CPUs even after truncation of
demand with respect to M . These are identified as squares at y = 0 (i.e. 0 CPUs).
Note that given a limited computation time, the linear integer program did not
return a valid solution for the eight CPU per server case without fast migration
in Figure 3(a). The genetic algorithm was able to find a solution. Computation
times are discussed in the next subsection.

The results for Groups 2 and 4 were nearly identical for both the linear
integer program and the genetic algorithm. Valid solutions were found for all
cases in Groups 1, 2, and 4.

From our case study, we find that the genetic algorithm typically finds that
the same number of servers are required as the linear integer programming ap-
proach. In some cases an additional server is required. These cases usually re-
quired an additional CPU or two that force the addition of an entire server.

5.1 Computation Times

The linear integer program computations were performed on a server with a
440 MHz PA-RISC processor and 16 GB of memory running HP-UX. We relied
on the AMPL 7.1.0 modeling environment and CPLEX 7.1.0 optimizer [6]. CPU
time limits were established for each run of the CPLEX tool. For each run, we
report the best solution found within its time limit. For scenarios in cases A
and C, time limits were generally 128 seconds. Case B scenarios had limits of

128 J. Rolia et al.

4096 seconds. There were a few scenarios in B that did not yield good allocations.
These were cases where we deemed the bounds for the solution, as reported by
CPLEX, to be too wide. They then received 131072 seconds of computation
time. As illustrated in Figure 3(a), the eight CPU per server case without fast
migration did not return a valid solution at all. Several case C scenarios received
2048 seconds of processing time. Unfortunately, we only had limited access to
the modeling environment; some runs did not lead to satisfactory allocations.
We note that knapsack heuristics [2][10] or a more sophisticated formulation of
the linear integer program may reduce its solution time.

The genetic algorithm was performed on a laptop with a 2GHz Pentium IV
processor. It typically required tens of seconds per solution, and never required
more than two minutes. Solutions were found for each scenario. Even after tak-
ing into account differences in processor speeds between the laptop and server,
the genetic algorithm performed quickly, especially with respect to the time
consuming case B scenarios.

6 Summary and Conclusions

In this paper, we describe two assignment algorithms for assigning a class of
enterprise applications to servers in resource utilities. The first is a linear in-
teger programming approach, the second is based on a genetic algorithm. The
algorithms are used in a case study involving data from 41 data center servers.

For our data set, the linear integer programming approach offers the best
solutions but had relatively large solution times. It seems most appropriate as
an off-line algorithm. The genetic algorithm offered solutions that were nearly as
good as the programming approach. However solution times were much lower.
It appears to be a good candidate for an on-line assignment algorithm that can
be used in a control-loop that automates the assignment and re-assignment of
applications. The genetic algorithm permitted us to compute peak aggregate
demands as assignments were considered. This helped to reduce the problem
size with respect to the linear integer programming approach. With the latter
approach, the same strategy is not possible. Furthermore, the genetic approach
can be easily enhanced. For example, the objective function can be modified to
consider features of assignments that can not be expressed in a linear integer
program.

We intend to extend our work in several ways. We plan to collect data from
additional data centers for greater periods of time. With longer traces, we can
use parts of the traces for deciding assignments and the remainder for valida-
tion. In addition to collecting measures of CPU utilization, we intend to collect
information on network and storage utilization, in order to get a more com-
plete picture of data center usage. We also plan to extend these techniques to
consider multiple demand attributes and classes of service regarding access to
resources [13]. Finally, we plan to explore more efficient linear programming
strategies and improve our use of the genetic algorithm paradigm.

Automating Enterprise Application Placement in Resource Utilities 129

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments.

References

[1] K. Appleby, S. Fakhouri, L. Fong, M. Goldszmidt, S. Krishnakumar, D. Pazel,
J. Pershing, and B. Rochwerger. Oceano – SLA based management of a computing
utility. In Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management, May 2001. 119

[2] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms
for knapsack problems with cardinality constraints. European Journal of Opera-
tions Research, 123:333–345, 2000. 120, 128

[3] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy
and server resources in hosting centers. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP), October 2001. 120

[4] W. Chu. Optimial file allocation in a multiple computer system. IEEE Transac-
tions on Computers, C-18:885–889, Oct 1969. 120

[5] R. Dick and N. Jha. Mogac: A multiobjective genetic algorithm for hardware-
software co-synthesis of distributed embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17(10):920–935, 1998.
120

[6] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press / Brooks/Cole Publishing Company,
1993. 127

[7] Hewlett-Packard. HP utility data center architecture.
http://www.hp.com/solutions1/infrastructure/solutions

/utilitydata/architecture/ 119
[8] S. Khuri, T. Bäck, and J. Heitkötter. The zero/one multiple knapsack problem and

genetic algorithms. In Proc. of the 1994 ACM Symposium of Applied Computation,
pages 188–193, 1994. 120

[9] Illinois Genetic Algorithms Laboratory. Galib.
http://www-illigal.ge.uiuc.edu/index.php3 124

[10] E. Lawler. Fast approximation algorithms for knapsack problems. Mathematics
of Operations Research, 4(4):339–356, 1979. 120, 128

[11] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef.
Performance management for cluster based web services. In Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management, pages
247–261, March 2003. 120

[12] J. Rolia, S. Singhal, and R. Friedrich. Adaptive Internet Data Centers. In SS-
GRR’00, L’Aquila, Italy, July 2000. 119

[13] J. Rolia, X. Zhu, and M. Arlitt. Resource access management for a resource
utility for enterprise applications. In Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management, pages 549–562, March 2003. 119,
128

Managing the Performance Impact

of Administrative Utilities

Sujay Parekh1, Kevin Rose2, Joseph Hellerstein1, Sam Lightstone2,
Matthew Huras2, and Victor Chang2

1 IBM T.J. Watson Research Center
Hawthorne, NY, USA

{sujay,hellers}@us.ibm.com
2 IBM Toronto Lab

Toronto, ON, Canada
{krrose,light,huras,vicchang}@ca.ibm.com

Abstract. Administrative utilities (e.g., filesystem and database back-
ups, garbage collection in the Java Virtual Machines) are an essential
part of the operation of production systems. Since production work can
be severely degraded by the execution of such utilities, it is desirable to
have policies of the form “There should be no more than an x% degra-
dation of production work due to utility execution.” Two challenges
arise in providing such policies: (1) providing an effective mechanism
for throttling the resource consumption of utilities and (2) continuously
translating from policy expressions of “degradation units” into the ap-
propriate settings for the throttling mechanism. We address (1) by using
self-imposed sleep, a technique that forces utilities to slow down their pro-
cessing by a configurable amount. We address (2) by employing an online
estimation scheme in combination with a feedback loop. This throttling
system is autonomous and adaptive and allows the system to self-manage
its utilities to limit their performance impact, with only high-level policy
input from the administrator. We demonstrate the effectiveness of these
approaches in a prototype system that incorporates these capabilities
into IBM’s DB2 Universal Database server.

1 Introduction

The day-to-day operation of many important software systems involves the ex-
ecution of administrative utilities needed to preserve the system’s integrity and
efficiency. These administrative actions are distinct from the functions provided
by that system for its users. For example, services provided by database man-
agement systems to users are SQL parsing, construction of query plans, query
execution, and run time management of database resources. The administrative
utilities address recoverability (backup/restore), data reorganization and statis-
tics collection (among other things). In UnixTMsystems, cron jobs are often used
to do batch tasks such as recycling of log files. In Java Virtual Machines, garbage
collection is an asynchronous administrative utility. In distributed applications,

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 130–142, 2003.
c© IFIP International Federation for Information Processing 2003

Managing the Performance Impact of Administrative Utilities 131

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18

T
hr

up
ut

 (
tx

/s
ec

)

Time (sec)

WL only
WL + BACKUP
t = 600s

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

R
es

po
ns

e
T

im
e

(s
ec

)

Time (sec)

WL only
WL + BACKUP
t = 600s

Fig. 1. Performance degradation due to running utilities. Plots show time-series
data of throughput and response time measured at the client, averaged over a 60s
interval

there are “heart beats” that are used to verify that application components are
alive.

Such administrative utilities have the following characteristics: (1) their exe-
cution is essential to the integrity of the system; (2) however, they can severely
impair the performance of the user work (hereafter, referred to as production
work) if executed concurrently with that work. Hence, administrators typically
use overnight periods, holidays or scheduled downtimes to execute such tasks.
With the advent of 24×7 operation, such administrative windows are disappear-
ing, creating a significant problem for the system administrator. Therefore, it is
highly desirable to provide enforceable policies for regulating the execution of
utilities.

Fig. 1 demonstrates the dramatic performance degradation from running
a database backup utility while emulated clients are running a transaction-
oriented workload against that database. (Details of the testbed are discussed in
Sect. 4.1.) The throughput of the system without this backup utility (i. e. , work-
load only) averages 15 transactions per second (tps). When the backup utility
is started at t=600sec, the throughput drops to between 25–50% of the original
level, and a corresponding increase is seen in the response time. Moreover, over
the duration of the utility execution, its impact on the workload decreases (indi-
cating that the resource demands of the utility decrease). Thus, enforcing policies
for administrative utilities faces the challenge of dealing with such dynamics.

How should the impact of administrative utilities be managed? Low-level
approaches, such as assigning per-resource quotas or priorities for utilities (e. g. ,
I/O bandwidth quotas) are problematic, since it is a non-trivial problem to
determine the appropriate setting of these values. The required values may be
different for different resources, and also for different utilities. A higher-level
interface is required. Based on our understanding of the requirements of database
administrators, we believe that they are interested in policies which are expressed
in terms of degradation of production work. One form for such a policy is

132 Sujay Parekh et al.

Administrative Utility Performance Policy: There should be no more than
an x% performance degradation of production work as a result of executing
administrative utilities.

In these policies, the administrator thinks in terms of “degradation units” that
are normalized in a way that is fairly indepedent of the specific performance
metric (e.g., response time, transaction rate). It is implicit that the utilities
should complete as early as possible within this constraint, i. e. , the system
should not be unnecessarily idle.

There are two challenges with enforcing such policies.

Challenge 1: Provide a mechanism for controlling the performance degra-
dation from utilities.

We use the term throttling to refer to limiting the execution of utilities in
some way so as to reduce their performance impact. One example of a possible
throttling mechanism is priority, such as nice values in Unix systems (although
this turns out to be a poor choice, as discussed later).

Challenge 2: Continuously translate from degradation units (specified
in the policy) to throttling units (understood by the mechanism), even
when the system and load characteristics are changing.

Such translation is essential so that administrators can work in terms of their
policies, not the details of the managed system. The translation should be done
by the managed system itself so as to meet the administrative goals. Unfortu-
nately, accomplishing this translation is complicated by the need to distinguish
between performance degradation of the production work caused by contention
with the administrative utilities and changes in the production work itself (e.g.,
due to time-of-day variations).

We address the two challenges described above as follows. Our approach to
throttling employs a technique that we refer to as self-imposed sleep (SIS). By
SIS, we mean that the utility algorithm is modified to include points at which
the utility invokes an API that removes the utility from the dispatch queue for
a prescribed period of time. Our experience has been that it is relatively easy to
make these modifications to administrative utilities and that SIS is very effective
in practice. Our approach to translating degradation units into throttling units
uses a feedback-driven approach. This allows us to generate suitable throttling
values without a-priori knowledge of the mapping. Further, it allows the system
to adapt to changes in this mapping between the units.

There is a wide range of literature on scheduling and enforcing policies for
quality of service (QoS) or differentiated service. For example, reservation based
schedulers [1, 2] allocate fractions of bandwith on resources to applications. Such
schedulers may allow the administrative policy to be implemented, but these are
not readily available in popular commercial OSes. The solution we suggest here is
purely at the application level, and since it does not require any changes to the
OS, it can be “retrofitted” in most systems. The IBM workload management
(WLM) system [3] enforces performance policies for absolute response times

Managing the Performance Impact of Administrative Utilities 133

and velocity according to workload classes, by adaptively tuning allocations of
multiple resources. However, it is also deeply embedded in the OS, so it is not
generally usable.

The theme of our work is similar to the cycle-stealing work of Ryu &
Hollingsworth [4] who discuss mechanisms to allow “guest” applications to ex-
ecute on user workstations without a high performance penalty to the nor-
mal users. However, their mechanisms are focused mainly on CPU scheduling,
whereas the problem we face involves a multitude of resources. Our proposed
administrative policy has a similar form to that often used for real-time garbage
collection[5], which is that the application should be able to use the CPU for
a given fraction of the time (at some timescale). Again, this is a single-resource
scheduling problem, which is difficult to generalize to multiple resources. In [6],
the authors describe a time-based scheduler that uses fixed quanta for alternat-
ing GC and application execution, as opposed to work-based schedulers that
run the GC based on the amount of allocation. This scheme is similar in some
ways to our proposed SIS mechanism, except that in their case the quanta sizes
are fixed, whereas we seek to find the optimal quantum size to meet the policy
requirement.

The approach of using feedback control for administrative policies has also
been discussed in the literature. The work of Lu et al.[7] supports a policy of
maintaining relative performance levels between different classes of work for a
web server, and therefore the classes must share common performance units. In
our case, the utility work is not end-user oriented, so its performance metrics
are quite different than (and not comparable to) the production workload. The
current paper is a continuation of our previous work [8] in enforcing performance
policies by using feedback control to translate from high-level policy units into
system-level configuration settings. In this paper, the novel ideas include firstly
the design of a practical yet general control mechanism (the SIS scheme) and
secondly handling the problem where the policy is defined in terms of a quantity
which is not directly measurable.

The remainder of the paper is organized as follows. Sect. 2 describes the
SIS approach to throttling administrative utilities. Sect. 3 details the feedback
control techniques we use to translate from degradation units (as specified in
policies) to throttling units (as used to control administrative utilities). Sect. 4
presents the results of experiments using IBM’s DB2 Universal Database server
and an emulated user workload. Our conclusions are contained in Sect. 5.

2 Throttling Mechanism

The purpose of utilities throttling is to regulate the resource consumption of
utilities. It is desirable that the mechanism be sufficiently general so that it
applies to different operating systems and to utilities with different resource
consumption profiles (e.g., CPU bound, I/O bound).

One approach is to use operating system (OS) priorities, an existing capabil-
ity provided by all modern operating systems. Throttling could be achieved by

134 Sujay Parekh et al.

FUNCTION Utility()
BEGIN

WHILE (NOT done)
BEGIN

... do some work ...
SleepIfNeeded()

END
END

(a) Inserting SIS point

FUNCTION SleepIfNeeded()
BEGIN

(workTime, sleepTime) = GetThrottlingLevel() ;
timeWorked = Now() - workStart ;
IF (timeWorked > workTime)

SLEEP(sleepTime) ;
workStart = Now() ;

ENDIF
END

(b) SIS implementation

Fig. 2. High-level utility structure and sleep point insertion

making the utility threads less preferred than threads doing production work.
In principle, such a scheme is appealing in that it does not require modifications
to the utilities. However, it does require that the utility executes in a separate
dispatchable unit (process/thread) to which the OS assigns priorities. Also, a
priority-based scheme requires that access to all resources be based on the same
priorities. Unfortunately, the priority mechanisms used in most variants of Unix
and Windows only affect CPU scheduling. Such an approach has little impact
on administrative utilities that are I/O bound (e.g., backup).

Our approach is to use self-imposed sleep (SIS). SIS relies on another OS
service: a sleep system call which is parameterized by a time interval. Most
modern OSes provide some version of a sleep system call that makes the process
or thread not schedulable for the specified interval. Fig. 2 describes a throttling
API that uses this sleep service.

To elaborate, many administrative utilities are structured as an outer loop
that iterates over some object. For example, in DB2 BACKUP, the outer loop
iterates over low-level storage units to be written to the backup device; in garbage
collection [5], iteratation is done across memory addresses. Fig. 2(a) depicts how
this flow can be augmented by inserting a sleep point called SleepIfNeeded().
This is the first main piece of our throttling API.

As shown in Fig. 2(b), the control of utilities is regulated by two variables:
a workTime and a sleepTime. These values are in turn obtained by calling
GetThrottlingLevel(), which is discussed in Sect. 3.2. The sleep point ensures
that when it has been at least workTime seconds since the thread was last forced
to sleep, the thread sleeps for the prescribed sleepTime. In order to get the max-
imum benefit from this API, the sleep point must be inserted in each place where
some basic work unit is processed. Care must be taken that highly contended
resources (eg, locks) are not held during the execution of this API.

The sum of workTime and sleepTime constitutes the time between taking
actions that affect utility execution. We refer to this as the action interval.
Our approach forces the action interval to be a constant that is large enough
to encompass several iterations of the work loop of the utility. This value can
be either fixed by the system developer or determined at runtime. With a fixed

Managing the Performance Impact of Administrative Utilities 135

Baseline
Estimator

Compute
Impact

Baseline

Controller

Throttle Manager

Actual
Impact

+

–

Error

Degradation Estimator

Target
Utilities

Sensor

Admin Degradation
Limit

Throttling Level

Performance

Users

Fig. 3. Throttle Manager architecture details

action interval, the throttling level can now be described by one parameter: the
sleep fraction, defined as sleepTime

action interval , which will be a value between 0 and 1.
That is, if the sleep fraction is 0, the utility is unthrottled. If the sleep fraction
is 1, the utility is fully throttled.

3 Feedback Control for Policy Enforcement

The throttling mechanism by itself does not provide enforcement of any throt-
tling policy. The purpose of the feedback control system described here is to
translate degradation units (specified in the policy) into throttling units. More-
over, this system should also adapt quickly to changes in the resource require-
ments of utilities and/or production work. The system described here is targeted
towards supporting policies in the form of “x% performance degradation”.

The overall operation of our proposed automated throttling system is illus-
trated in Fig. 3. Administrators specify the degradation limit, which corresponds
to the x in the policy described in Sect. 1. The main component is the Throt-
tle Manager, which determines the throttling levels (i. e. , sleep fraction) for the
utilities based on the degradation limit as well as performance metrics from the
target system.

The internal architecture of the Throttle Manager is also shown in Fig. 3.
It consists of two main pieces: a Degradation Estimator and a Controller, which
are described below. The Throttle Manager operates in a loop starting with the
collection of performance metrics from the target system, and ending with the
computation of a new throttling level for the utilities. This loop is executed
periodically, at an interval which is related to the desired responsiveness of the
Throttle Manager. This interval is called the control interval.

3.1 Degradation Estimator

The Degradation Estimator component is used to continually estimate the perfor-
mance degradation due to utilities. It works in two stages, first utilizing a Baseline

136 Sujay Parekh et al.

Estimator to estimate the baseline, which is the performance of the system if
there were no utilities running. The baseline value is compared to the most recent
performance feedback to calculate the current degradation (as a fraction):

Degradation = 1− performance
baseline

A straightforward way to determine the baseline is to suspend all utilities for
a brief period and measure the performance during that period as the baseline.
This procedure may be repeated periodically to adjust for changing user work-
loads. Clearly, the responsiveness of the system to a sudden surge in workload
will be limited, since the throttling system may not be aware of an underlying
baseline change until the next measurement period. Moreover, the abrupt paus-
ing and resumption of the utilities may lead to undesirable short-term end-user
performance. Finally, such pauses during idle periods may be unnecessary and
hence lead to underutilized system resources.

Alternatively, we can leverage the SIS mechanism to provide a more respon-
sive Throttle Manager. The key observation is that at sleepTime=100%, the
system should behave as if the utility were not present. We collect datapoints
of the form < sleepTime, performance >. We will see below in Sect. 4.2 that for
BACKUP, sleepTime affects performance in a nearly linear fashion. This is true
of all utilities we have studied to this date. Hence, we perform adaptive curve
fitting to find the parameters θ of a static linear model (shown in Eqn. 1) of the
effect of sleepTime on the selected performance metric ; however, more complex
models (e. g. , autoregressive or non-linear) may be used if simple linear models
are not adequately accurate.

performance = f(sleepTime) = θ1 ∗ sleepTime+ θ0 (1)

Such a model can be projected to sleepTime=100% to yield an estimate of
the baseline. Since this estimate can be updated every action interval, it results
in a much more responsive system. We have found that using recursive least
squares with exponential forgetting provides reasonable results for the model fit.
Exponential forgetting allows the estimator to adapt when either the workload
changes or the impact of the utility on the workload changes (as for BACKUP).
Details on recursive least squares and similar techniques can be found in the
literature[9].

3.2 Controller

Given the current degradation level, the Throttle Manager must calculate throt-
tling levels for the utilities. Consider these observations

1. current degradation ≤ degradation limit , which is merely the semantics of
the throttling policy.

2. However, if current degradation < degradation limit , it means that resources
are not being used maximally since a larger degradation could be tolerated,
i. e. , utilities could be throttled less.

Managing the Performance Impact of Administrative Utilities 137

Together, they imply that to balance utility degradation and system utilization,
we want current degradation = degradation limit . As shown in Fig. 3, we define
the error as degradation limit − current degradation .

Because of the relatively straightforward effects of sleepTime on perfor-
mance, we use a standard Proportional-Integral (PI) controller from linear con-
trol theory[10] to drive this error quantity to zero, thereby enforcing the throt-
tling policy. A PI control structure is proven to be very stable and robust and is
guaranteed to eliminate any error in steady-state. It is used in nearly 90% of all
controller applications in the real world. A new throttling value at time k+1 is
computed as follows:

throttling(k + 1) = KP ∗ error(k) +KI ∗
k∑

i=0

error(i) (2)

In our implementation, this value is posted to shared memory, which is then
accessed by SIS implementation using the GetThrottlingLevel() call. This in-
terface allows the maximum flexibility to implement the Throttle Manager either
as an OS service, as an asynchronous thread within the target application, or as
a separate application.

This controller requires that we calibrate the two parameters KP and KI ,
which affect the aggressiveness of the controller. We choose a fixed KP and KI

for all utilities for the experiments in this paper, and we use a control interval
of 20 seconds. Using standard control-theoretic analysis, we can show that the
values we have used result in a theoretically stable system under the workloads
we have studied. We omit this discussion due to space constraints. In principle,
the values of these constants could also be determined at runtime. For example,
the policy may be augmented by including a desired reliability or variability
parameter, which can be combined with online system identification to determine
appropriate values for KP , KI and the control interval. These auto-tuning issues
will be explored in future work.

4 Empirical Assessments

4.1 Testbed Description

Our target system is a modified version of the IBM DB2 Universal Database v8.1
running on a 4-CPU RS/6000 with 2GB RAM, with the AIX 4.3.2 operating
system. To emulate client activity, we apply an artificial transaction processing
workload which is similar to the industry-standard TPC-C database benchmark.
This workload is considered our “production” load. The database is striped over
8 physical disks connected via an SSA disk subsystem. The utility we focus on
is an online BACKUP of this database. This backup is parallelized, consisting
of multiple processes that read from multiple tablespaces, and multiple other
processes that write to separate disks.

For most of the measurements shown here, the workload is run for an initial
warm-up period of 10 minutes to populate the buffer pools and other system

138 Sujay Parekh et al.

70 75 80 85 90 95 100 105 110 115 120
0

5

10

15

Priority

T
hr

ou
gh

pu
t

data
linear fit

(a) OS Priorities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Sleep Fraction

T
hr

ou
gh

pu
t

data
linear fit

(b) Sleep fraction

Fig. 4. Average performance at different throttling levels

structures. After this, the utility is invoked under various conditions. The number
of emulated users is kept constant for the duration of the run. We measure
performance metrics such as throughput, average transaction times, and system
utilizations for the entire run.

4.2 Comparing OS Priorities and SIS

Two throttling mechanisms are considered: OS priorities and SIS. To study their
effectiveness, we altered several database utilities. The details required to imple-
ment SIS are described in Sect. 2. To evaluate OS priorities, we use the same sleep
point concept as for SIS, except that instead of using workTime and sleepTime,
the process priority is set to the desired value.

In Fig. 4, we show the average throughput for the same workload (25 emu-
lated users) while BACKUP is run at different throttling levels. Each datapoint
represents the average performance over a 20-minute run where the throttling
level was kept constant at the indicated level. In Fig. 4(a), we study the effect
of using different OS priorities for the utility processes. On AIX, processes with
smaller priority values receive higher preference for scheduling. Accordingly, the
range of priorities for the utilities is varied between the priority of the production
processes (70) up to the system maximum (120). Thus, the utility is always given
less preference than the production work. In Fig. 4(b), we use the SISmechanism,
varying the sleep fraction from 0.0 to 1.0 across runs.

We see that OS priorities do not have much of an effect on throughput. To
understand why, we look at other metrics. On average, the system spends around
80% of its CPU cycles waiting for I/O, indicating that the system is not starved
for CPU cycles, and therefore lowering CPU priorities of I/O-bound processes
does not help.

On the other hand, SIS has a nearly linear effect in reducing the degradation
of the utility on the workload. Note further that at a sleep fraction of 1, the

Managing the Performance Impact of Administrative Utilities 139

0 500 1000 1500 2000 2500
0

5

10

15

20

T
hr

ou
gh

pu
t

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6
0.8

1

C
on

tr
ol

Time (sec)

Fig. 5. Effect of dynamically varying sleep fraction settings

utility is maximally throttled, hence the workload performance is close to the
no-utility case of Fig. 1. This justifies the extrapolation carried out in the Baseline
Estimator.

In Fig. 5, we study the dynamic effect of the control mechanism. This allows
us to understand factors like delays in effecting a new control value, and transient
behaviors like overshoot. The utility is started at 600sec, after which we vary the
throttling level in a sinusoid pattern, where each throttling level is maintained
for 60 seconds. We see that the sleep fraction is a nice effector for throttling
since it has an effect on the utility impact with almost no delay.

From an implementation standpoint, the SIS mechanism requires the admin-
istrative utility to be modified. Thus, it is usable mainly by the developers of the
utility or software system. In order to insert the SIS points, the main work phase
of the utility should be identifiable. This may prove problematic in cases of some
legacy systems where the source code is not available or not well understood.
However, for current or new software, the SIS mechanism gives developers the
ability to build a general and effective throttling capability into their systems.
The runtime overhead of this scheme (in terms of its effect on the workload)
is not detectable, especially since any amount of throttling is better than no
throttling at all.

4.3 Effectiveness of Feedback Control

We now evaluate whether the feedback control approach can effectively translate
an administrative degradation policy of 30% into appropriate settings for SIS.

We first show in Fig. 6(a) that the throttling system follows the policy limit
in the case of a steady workload generated by 25 emulated users. For comparison,
the workload performance as well as the effect of an unthrottled utility (from
Fig. 1) are also shown. While the average throughput without the BACKUP
running is 15.1 tps, the throughput with a throttled BACKUP is 9.4 tps –
a degradation of 38%, which is close to the desired 30%. Note how the throt-
tling system compensates for the decreasing resource demands of the utility by
lowering the sleep fraction (Fig. 6(c)), resulting in a throughput profile that is
more parallel to the no-utility case.

140 Sujay Parekh et al.

Steady Workload Workload surge

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18

T
hr

up
ut

 (
tx

/s
ec

)

Time (sec)

Workload only
Throttled BACKUP
Unthrottled BACKUP

(a) Throughput

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

T
hr

up
ut

 (
tx

/s
ec

)
Time (sec)

No BACKUP
Throttled BACKUPUtility starts

More work
arrives

(b) Throughput

0 500 1000 1500 2000 2500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
le

ep
 fr

ac
tio

n

Time(sec)

(c) Throttling

0 500 1000 1500 2000 2500 3000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
le

ep
 fr

ac
tio

n

Time(sec)

(d) Throttling

Fig. 6. Effect of throttling a utility under a steady workload and a workload
surge with a 30% impact policy. The throughput data shown is averages over 1
minute intervals

To highlight the adaptive nature of this system, we consider a scenario where
there is a surge in the number of users accessing the database system while the
BACKUP utility is executing. We start with a nominal workload consisting
of 10 emulated users, and start the utility at 300 sec. At time 1500 sec, an
additional 15 users are added (thus, resulting in a total of 25 users). Fig. 6(b)
shows the throughput data for the surge, with the no-utility case (in the same
scenario) shown for reference. We see that the throttling system adapts when the
workload increases, reaching a new throttling level within 600sec. For this case,
the pre-surge average throughputs are 13.1 (workload only) and 8.37 (throttled
BACKUP) – a degradation of 36%. Analogously, the post-surge degradation is
19%. Note that the sleep fraction used (and the resultant throughput) towards
the latter half of the run is similar to the value seen for the steady-workload
case, indicating that the models learned by the Baseline Estimator are similar.

The responsiveness offered by the projection-based Baseline Estimator comes
at a cost of a small error (typically within 10% in our tests) in exactly satis-

Managing the Performance Impact of Administrative Utilities 141

fying the degradation policy. This error arises to a large degree from the er-
rors due to the real-time estimation in the Baseline Estimator. First, there is
some inherent inaccuracy in the projection method, as is evident from the pro-
jected value of 13.2 tps seen in Fig. 4(b), compared to the actual unthrottled
throughput of 15.1 tps. Second, the system stochastics cause the estimation of
degradation to be incorrect. As seen by the temporary drop in the sleep fraction
near t=1800sec in Fig. 6(c), this can cause the controller to violate the policy
requirements for a short time window. However, the adaptive estimation cor-
rects itself fairly quickly, so the longer-term behavior is still correct. If such
short-term violations are not desirable, we can adjust the forgetting factor in
the online estimator to increase the robustness at the expense of its adaptation
speed.

5 Conclusions and Future Work

Running utility functions against a production system can prove to be an ad-
ministrative nightmare. In this paper, we have provided one example of the
dramatic performance degradation from performing system maintenance tasks
while users are active on the system, a situation which is increasingly prevalent
in today’s 24x7 operations. We argue that the management burden can be eased
by a policy-based execution of utilities, based on limiting their performance im-
pact on the production workload. Our proposed SIS throttling mechanism proves
to be a convenient, portable and effective mechanism for throttling utilities. We
also demonstrate how a feedback control loop can be used to translate the policy
specification into actions in terms of the throttling mechanism. This throttling
system is autonomous and adaptive and thus allows the system to self-manage
its utilities to limit their performance impact, with only high-level policy input
from the administrator. Our prototype system implemented for utilities running
in the DB2 Universal Database achieves within 10% of the desired degradation
policy, both when workloads are steady and when they change. This is quite
reasonable given the stochastics in the system.

The architecture shown here can be easily adapted for use in other systems;
it is not specific to database management systems. The main requirement is that
the core of the work phase of the utility should be identifiable, so that the sleep
point can be inserted there. A secondary requirement is that the performance
metric of interest should be available to be measured; ideally it should be a server-
side metric which can be collected at frequent intervals without much overhead.

The results in this paper have focused on a single utility. While we cannot
claim that the specific controller proposed here would apply across all instances
of all utilities in all systems, we plan to investigate this generality further. The
solution we have described here computes a single throttling value for all utilities,
which may not be the most efficient. In the case of multiple utilities, it may
be advantageous to throttle utilities separately according to their individual
impacts on the workload. Our future work will address this issue as well. Finally,
while we have shown particular instantiations for the individual components of

142 Sujay Parekh et al.

our architecture (e. g. , a PI algorithm for the controller, recursive least squares
estimator, etc) which work well in combination, the exact choices of algorithms
and their parameterizations may need to be adjusted based on the target system.
We plan to investigate procedures to automate these steps as well, in particular
the determination of the controller parameters (since they can be dependent on
the target system).

References

[1] Bruno, J., Gabber, E., Özden, B., Silberschatz, A.: The Eclipse operating sys-
tem: Providing quality of service via reservation domains. In: Proceedings of the
USENIX 1998 Annual Technical Conference, New Orleans, LA (1998) 235–246 132

[2] Banga, G., Druschel, P., Mogul, J.C.: Resource containers: A new facility for re-
source management in server systems. In: Proceedings of the Third Symposium on
Operating Systems Design and Implementation (OSDI), New Orleans, LA (1999)
45–58 132

[3] Aman, J., Eilert, C.K., Emmes, D., Yocom, P., Dillenberger, D.: Adaptive algo-
rithms for managing a distributed data processing workload. IBM Systems Journal
36 (1997) 132

[4] Ryu, K.D., Hollingsworth, J.K.: Exploiting fine-grained idle periods in networks of
workstations. IEEE Transactions on Parallel and Distributed Systems 11 (2000)
683–698 133

[5] Wilson, P.R.: Uniprocessor garbage collection techniques. In: Proceedings of the In-
ternational Workshop on Memory Management, Springer-Verlag (1992) 1–42 133,
134

[6] Bacon, D.F., Cheng, P., Rajan, V.T.: A real-time garbage collector with low over-
head and consistent utilization. In: Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM Press (2003)
285–298 133

[7] Lu, C., Abdelzaher, T.F., Stankovic, J.A., Son, S.H.: A feedback control architec-
ture and design methodology for service delay guarantees in web servers. Technical
Report CS2001-06, University of Virginia, Department of Computer Science (2001)
133

[8] Diao, Y, Gandhi, N., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO
feedback control to enforce policies for interrelated metrics with application to
the Apache web server. In: Proceedings of Network Operations and Management.
(2002) 133

[9] Astrom, K.J., Wittenmark, B.: Adaptive Control. 2nd edn. Addison-Wesley Pub-
lishing Company (1994) 136

[10] Ogata, K.: Modern Control Engineering. 3rd edn. Prentice Hall (1997) 137

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 143-154, 2003.
 IFIP International Federation for Information Processing 2003

Policy-Based Autonomic Storage Allocation

Murthy Devarakonda, David Chess, Ian Whalley, Alla Segal, Pawan Goyal, Aamer
Sachedina, Keri Romanufa, Ed Lassettre, William Tetzlaff, and Bill Arnold

IBM Corporation

Abstract. The goal of autonomic storage allocation is to achieve man-
agement of storage resources, including allocation, performance moni-
toring, and hotspot elimination, by specifying comparatively high-level
goals, rather than by means of low-level manual steps. The process of
automation should allow specification of policies as administrator speci-
fied constraints under which the resources are managed. This paper de-
scribes the system design and implementation experiences from a pro-
totype autonomic storage manager being developed in IBM Research.
The prototype is being developed for a storage network that includes a
SAN switch, an IBM Enterprise Storage Subsystem, and AIX servers.
Our early experience from this prototype implementation is that there
are a large number of mundane manual steps in storage management and
it is feasible to automate them such that the automation is driven by
higher-level goals under policy control. However, to manage heteroge-
neous storage a standard ontology is needed for specification of goals
and how to achieve them.

1 Introduction

Today storage allocation and management of allocated storage is an incredibly manual
process. This is especially true in networked storage, where many choices exist and
several elements need to be configured and managed. In allocating network storage,
administrators have to determine resource availability, use a methodology for alloca-
tion of resources, and execute several commands or use graphical user interfaces to
implement the allocation decisions. Once storage is allocated it is necessary to monitor
for performance hotspots and capacity, determine how to alleviate these problems, and
then carry out appropriate actions to alleviate the problems. The monitoring needs to
be an ongoing process to assure acceptable levels of service.

This need for manual involvement in storage allocation and management signifi-
cantly increases the real cost of storage, is a source of serious errors, often results in
significant delays in deployment of applications, and is the root cause of general dis-
satisfaction with the state of the art of storage management. Therefore, storage ven-
dors are working on automating these processes. At IBM Research, we have been
exploring a management automation methodology based on autonomic computing
principles [1] and policy-based management [2]. Specifically, the goal of policy-

144 Murthy Devarakonda et al.

based, autonomic storage allocation is to achieve allocation of storage resources, their
performance monitoring, and hotspot elimination by specifying comparatively high-
level goals, rather than by means of low-level manual steps. This process of automa-
tion should allow specification of policies as constraints under which the resources are
managed.

In this paper, we describe the design and implementation of a policy-based auto-
nomic storage allocation manager prototype, called ALOMS-Tango, being built at
IBM Research. ALOMS-Tango allows administrators to define classes of service for
storage in terms of performance and space metrics, set up alerts to be generated if the
actual performance of the allocated storage comes within a given fraction of violating
the requirements of the class of service, and visualize the configuration of the storage
system for the allocated storage and identify performance bottlenecks.

We modified IBM's database management system (DB2) to enable a user to request
a database tablespace container in terms of the class of storage service it requires,
forward such requests to ALOMS-Tango, and use the storage allocated as policy-
managed autonomic storage.

In response to a request for the creation of policy-managed storage in a particular
service class, ALOMS-Tango automatically performs computations and low-level
configuration operations necessary to create required storage, monitors the perform-
ance of the allocated storage, and produces alerts if the trigger conditions (as specified
through the user interface) are met.

The prototype implementation demonstrates the potential that autonomic systems
have for reducing the workload on administrators by allowing them to specify their
requirements in comparatively high-level terms and by automating routine low-level
allocation and monitoring operations. One of the key lessons we learned from the
present prototype is the need for a standard ontology to support different types of
storage systems. Storage Management Initiative-Specification (SMI-S) [3] is a great
start in this direction but our preliminary analysis of SMI-S indicates that further stan-
dardization is needed for autonomic storage allocation.

Previous work in the area of storage management dates back to IBM DFSMS on
mainframes [4], which provided policy-based allocation of storage and life cycle man-
agement of data. More recently, several efforts from the HP Labs have developed
tools for automated storage allocation [5][6]. Our work is the same spirit as DFSMS
but it extends the ideas to open systems as well as incorporating a feedback loop into
the management process (which is absent in DFSMS). Unlike the HP labs work, our
allocation management system has been designed for handling dynamic environments
that require on-demand storage allocation and management of changes in the storage
system status or its usage.

The ALOMS-Tango prototype fits into the larger vision of Autonomic Computing
first articulated by Paul Horn [15] and later elaborated upon by Kephart and Chess
[1]. Kephart and Chess see new autonomic managers of traditional computing ele-
ments such as data base systems and storage systems. These autonomic managers take
on tasks that were previously done by administrators. Policy is key to this process as a
way to codify the actions and goals of the administrator so that autonomic managers
can independently carry them out. The ALOMS-Tango prototype has been careful to

Policy-Based Autonomic Storage Allocation 145

create functions that are well defined with respect to whether they would be in the
autonomic data base manager or the autonomic storage manager.

The rest of the paper is organized as follows. Section 2 gives a functional descrip-
tion of our prototype. Section 3 describes design and operation of ALOMS-Tango.
Section 4 provides prototype implementation specifics. Section 5 concludes the paper
with an overview of what we have learned from the prototype development.

2 Functional Description

With the current storage management tools, when a storage-critical application such as
a database requires storage, the process that administrators go through can be time
consuming, tedious, and error prone, and can thus result in significant deployment
delay. A methodology for allocating and managing storage for database applications is
described in this tutorial from IBM [7]. First, administrators determine the perform-
ance and availability needs of the application, based on previous experience, a proto-
type installation, or even using mere guesswork. Next, they determine capabilities of
the storage systems they have at their disposal, how the storage systems are connected
to application host systems, present storage resource commitments, and the available
capacity. Tools available for these purposes are at best inconsistent and often non-
uniform across multiple vendor products. Next, administrators use a resource alloca-
tion strategy to decide on how to configure the storage systems for the application.
The strategy can range from ad hoc to the best current practice depending on the ex-
perience of the administrative staff and the time available for this purpose. Next, the
administrators have to configure the storage infrastructure according to the decisions
made in the previous step. Usually, different graphical user interfaces are provided for
various elements of the infrastructure as well as for products from different vendors.
Therefore, this step is prone to serious human errors. Once these steps are successfully
carried out, the administrators are ready to use the allocated storage in an application,
such as the database. For example, a database administrator may type a command such
as,

create tablespace fast1 managed by database using (de-
vice ‘/dev/rlv23' 20000),

to make use of storage that has been created as a logical volume named /dev/rlv23 in
an AIX server. Note that many installations use 100s and even 1000s of tablespace
containers. From this description the tedious, error prone, and time-consuming aspects
of storage allocation should be clear.

Furthermore, regular monitoring of storage performance is critical to assure that the
allocated storage meets application requirements. If the initial assumptions about the
application requirements are incorrect or the requirements change, the process of
reconfiguration is as daunting as or even worse than the initial configuration.

The ALOMS-Tango prototype supports performance goal specification as a named
service class that can be later used in a storage allocation request. When a storage
consumer, such as the database application, requires storage, it can obtain that storage
simply by making a request to ALOMS-Tango, specifying an initial size and a service

146 Murthy Devarakonda et al.

class name. ALOMS-Tango also allows setting monitoring policies such that it can
automatically detect if a certain storage allocation is missing its service goals by a
margin observed over a certain time period. As an example, the following service
class can be defined in ALOMS-Tango:

Service Class “Gold”
 Maximum size = 100Gbytes
 Throughput = 20 Mbytes/Sec
 Response Time = 5 ms/4K block
 Seq/rand access ratio = 100%

The attributes used in the service class definition represent requirements from an
application point of view rather than the capabilities of storage hardware. This dis-
tinction is quite important and has been discussed in the context of a conceptual
framework for policy-based storage management, in earlier publications [4][8]. DB2
can request a storage container of class �Gold� using the following SQL statement:

create tablespace fast1 managed by database using
(device ‘/policy/Gold' 20000)

In general, we have considered two interfaces between the database and the storage
system; one used when a table space is created and the other when all of the storage
backing a table space has been filled. Today, both the Data Base Administrator
(DBA) and the Storage Administrator (SA) do part of the storage administration in
both of these cases. In order to do automatic storage allocation and administration, the
system must be primed with policies that will cause the system to act as the SA and the
DBA would have. To accomplish this we have the storage administrator create a num-
ber of named storage service classes. The Storage Administrator conveys the available
storage service classes to the DBA. When the DBA creates a table space, the policy
name is associated with the table space. This allows a DBA to create a table space by
only specifying the name of the policy that is to be used when storage space is needed.

The other key moment is when allocated storage has been completely filled. Fur-
ther data insertion normally results in an out of space error condition, which would
impact applications using the database (causing them to roll back). We have defined
an interface that the database can use to request more storage. The data base system
keeps certain metadata about the storage objects that are being used to back table
spaces. This metadata mainly consists of the names of policy-managed logical vol-
umes (in the terminology used in AIX, for example) or files that back a table space. If
this association between table spaces and storage objects is kept in both the database
and storage there would be potential problems of consistency between them, which
would have to be resolved with two-phase commits and logs. In order to avoid this,
the interface chosen calls for the data base to hold the association, and present the
necessary information across the interface when storage is needed. Thus when storage
is needed the database presents the storage policy name and the storage objects cur-
rently in use. It is left up to the storage manager to provide more storage either in the
form of new storage objects or by extending the size of existing storage objects. This
is done in a way that is consistent with both the policy and past allocations.

Note that ALOMS-Tango storage allocation requests can be made without DB2, by
using its graphical user interface, command line interface, or the C/XML based pro-

Policy-Based Autonomic Storage Allocation 147

gramming interface. In other words, while we cite DB2 as an important user of this
prototype, ALOMS-Tango is neither dependent on DB2 nor limited to it.

An alert policy can be set to monitor throughput on allocated storage, as in:

generate an alert, if [throughput] for [a container]
falls below [95%] of the value specified in its service
class definition, in a 10-minute period.

In the future, ALOMS-Tango will be extended to support hotspot detection, reme-
diation of the hotspot problems through re-allocation of storage, and a richer set of
policies that will automatically select service classes based on requester (i.e. customer,
applications, and workload) and usage patterns.

One can clearly see the difference between the present manual process of storage
allocation and the automation provided in ALOMS-Tango. The administrators are
freed from the tedious and error-prone tasks of determining resource capabilities,
bookkeeping of the present usage, resource allocation strategies, and execution of
configuration operations. Instead the administrators are given the tools to specify
high-level goals in the form of a comparatively small number of service classes, re-
quest storage by specifying service classes, and monitor deviations from service deliv-
ery through policies. As mentioned earlier, the future plan is to extend this framework
with richer policies that include automatic assignment of service classes to storage
requests based on the usage patterns and/or requester characteristics.

3 ALOMS-Tango System Operation

Figure 1 shows the system view of the ALOMS-Tango prototype. An application or an
administrative user can invoke ALOMS-Tango functions. In our prototype, as stated
earlier, we are using a modified version of IBM DB2 as the user of storage. The modi-
fied DB2 makes storage allocation requests via a shared library developed for this
purpose, and the shared library sends these requests to the ALOMS-Tango Manage-
ment Unit (ATMU), the box in the right, lower quadrant of Figure 1. The current
prototype supplies allocated storage as raw logical volumes, for use as DMS (data-
base-managed storage) tablespace containers in DB2; we also have a variation of the
prototype that provides files or file systems for use as SMS (system-managed storage).

While the control flows via the shared library to the ATMU for storage allocation,
actual I/O requests go directly from the application using storage to the relevant com-
ponent of the storage infrastructure, just as they do in the absence of the autonomic
storage allocation manager. DB2 has also been modified to send a signal to an ex-
tender agent when a tablespace becomes full, which in turn sends a request to the
ATMU to enlarge the corresponding container.

The ATMU is responsible for resource provisioning and re-provisioning, collection
of configuration information and performance metrics, policy management and en-
forcement, and user interface support. The ATMU interfaces with the storage infra-
structure via sensors and effectors. Sensors help the ATMU in collecting configuration
information about the storage infrastructure. They also help in obtaining performance
metrics.

148 Murthy Devarakonda et al.

Fig. 1. A system view of the ALOMS-Tango design

The effectors, on the hand, carry out configuration commands as instructed by the
provisioning logic in the ATMU. The storage infrastructure includes all elements that
enable storing and retrieving of data, such as the operating system, file systems, vol-
ume managers, storage subsystems, disks, and tape. Specific infrastructure supported
in the prototype is described later.

The UI (user interface) manager component of the ATMU allows the administrator
to define the service classes that were introduced in Section 2. A storage administrator
can define several service classes, each with a descriptive name. In most environ-
ments, service class definitions will be done infrequently relative to the frequency of
storage allocation. While these service classes are currently defined in terms of maxi-
mum size, response time, throughput, and the ratio of sequential and random accesses
in the current prototype, it will be possible in the future to specify additional attrib-
utes, such as an availability metric. The UI manager enables alerts to be created, such
that they will be generated if the actual performance of a storage container comes
within a given fraction of violating the requirements of the class of service. Lastly, the
UI manager also helps to visualize the configuration of the storage system and identify
performance bottlenecks.

The provisioner component of the ATMU embodies a large portion of the man-
agement intelligence and often orchestrates the overall functioning of the management
software. At the system initialization time, it builds a logical model of the storage

Policy-Based Autonomic Storage Allocation 149

infrastructure based on the configuration information collected via sensors. This logi-
cal model includes information such as the storage space available, whether disks are
configured in a RAID format, how many physical paths exist from storage subsystem
to the host, and how the physical storage is mapped into the operating system sup-
ported data access abstractions (i.e. logical volumes).

The provisioner accepts requests for creation and enlarging of policy-based storage
containers in particular service classes, and automatically performs computations and
low-level configuration operations necessary to create and enlarge the required con-
tainers. The logical model of the storage infrastructure coupled with the knowledge of
how to configure each element of the model enables the provisioner to automatically
perform the low-level configuration operations. The logical model, capabilities of the
elements in the model, and capacity management algorithms enable the provisioner to
determine the �best� allocation strategy to meet a given creation or enlarging request.

The policy manager makes use of both a policy repository and a policy execution
environment. The policy repository validates and stores policies and policy schemas.
The policy execution environment has been carefully designed as an extensible system
so that when new policies are introduced into this prototype in the future they can be
supported with relative ease. In the current prototype, the policy manager monitors the
performance of the storage containers based on the measurements available in the
configuration information and measurements component, and produces alerts if the
trigger conditions (as specified through the user interface) are met. The policy execu-
tion environment is such a key element for extensibility of our system in order to sup-
port richer policies; the next section will describe it greater detail.

The configuration information and measurements component is a local repository
of the static and dynamic information collected from the storage infrastructure using
the sensors. The provisioner as described uses the configuration information earlier.
The configuration information also includes information about storage allocations that
have already been made. The UI manager component uses this information to present
a visualization of the configuration of the storage system, and then in combination
with the aggregated measurements it is also used to identify performance bottlenecks.
The dynamic information, which is a time series of measurements from the storage
infrastructure, is aggregated for the use in the policy-based alert management.

The ATMU is designed and implemented as an autonomic computing element, as
outlined in [9]; it presents itself to other systems as a Grid Service conforming to the
Open Grid Services Architecture [10] for the purposes of management requests (such
as setting a policy or requesting a new data container be allocated). All inter-module
and external communication in ALOMS-Tango is via the exchange of XML docu-
ments through standard transport protocols.

Policy Execution Environment

The policy execution environment in ALOMS-Tango has been built with concepts and
the framework developed in IETF/DMTF policy work [11][12]. It has three subcom-
ponents: a policy agent, a translator, and a rule engine. The policy agent retrieves
relevant policies from a policy repository (in an XML schema) and uses the translator

150 Murthy Devarakonda et al.

to convert them into a form that is suitable for the rule engine. Rules are executed
either in a periodic mode or in a request-response mode, as appropriate.

When the policy manager in the present prototype is initialized, its policy agent
sends a request to the policy repository, and in response obtains alert policies that are
valid, in-force, and applicable. In addition, the policy agent subscribes to receive
updates for future changes to the alert policies.

The policy agent then submits the retrieved policies to the policy-to-rule translator,
which performs translation-time checks on the policies. If there are no errors, it cre-
ates a set of rules that can be executed by the rule engine. Translation-time checks
typically involve range checks and checks to ensure that the policies expressed are
ones that the rule engine can execute.

With the generated rules, the policy manager, through the policy agent, invokes the
rule engine to evaluate the rules at regular intervals or in response to events, using a
new set of measurements for each invocation. If the conditional part of a rule evalu-
ates to true, then the action indicated by the action part is carried out. The rule engine
used in ALOMS-Tango is from an intelligent agent construction framework called
ABLE [13].

The rule engine references certain variables and functions in evaluating the condi-
tion part of a rule, and (when necessary) in carrying out the action part. These typi-
cally represent input values received from sensors, and actions such as creating an
entry in a log. For example, the alert policy shown in Section 2 may result in the fol-
lowing rule:

if (observedValue(“pmdo1”, “throughput”, “minutes”, 10)
< 95% of expectedValue(“pmdo1”, “throughput”)) then
(createAlert(“logEntry”, “pmdo1 throughput is below 95%
of specified value…”))

This rule states that if the measured throughput on a policy managed storage object
called pmdo1, measured in ten-minute intervals, falls below 95% of its expected value,
then an entry should be created in the alert log.

In this rule, the functions observedValue and expectedValue provide access to
measurements of the storage infrastructure and service class definitions respectively.
The function createAlert produces the alert.

Since we wish to use a general-purpose rule engine and to design the policy man-
ager for extensibility, we cleanly separate the rule engine from the rest of system by
providing a well-defined interface for resolving rule engine references to variables and
functions. This interface consists of callbacks and mapping functions.

For example, for the alert policy above, observedValue, expectedValue, and cre-
ateAlert calls become callbacks into the alert management part of ATMU, where
they are mapped to the appropriate methods in the sensors, the service class definition
repository, and the alerting system. This clean separation of policies, rule execution,
and variable/function mapping from one another, easily extend the policy execution
environment to support new policies, as described in [14].

Policy-Based Autonomic Storage Allocation 151

4 The Prototype

The ALOMS-Tango prototype has been implemented to support several storage infra-
structure configurations including IBM SSA drives attached to an AIX server and
IBM Enterprise Storage Subsystem (ESS) connected to an AIX server via a SAN
switch. Here we will describe the support for the SAN-based configuration.

Figure 2 shows the SAN-based configuration we used for the prototype. An AIX
server hosting DB2 is connected to a SAN switch and the IBM ESS is also connected
to the SAN switch. The ALOMS-Tango management unit (ATMU) runs in a separate
Linux server.

Fig. 2. The SAN-based ESS configuration

The provisioner needs to build a logical model of this SAN-based ESS infrastruc-
ture configuration. In the current prototype this building of a logical model is imple-
mented statically by writing a customized �SAN-based ESS� module in the provi-
sioner component of the ATMU that understands this configuration. In the future we
hope to develop a generic module that can discover and build a logical model based
on standardized management interfaces such as the SMI-S.

For this configuration there are two sets of sensors and effectors, one set for the
storage infrastructure in the AIX server, and another set for the IBM ESS. We did not
manage the SAN switch hence we did not require sensors and effectors for it. The
logical model built for this configuration can be best seen in a screen shot of the con-
figuration of a policy managed data object allocated in this configuration (Figure 3).

Figure 3 shows how a policy managed data object (�PMDO_2�) is built from the
elements of the storage infrastructure, including the lowest level disk resources. At the
bottom of the tree are these physical disks, which are aggregated into a disk group

152 Murthy Devarakonda et al.

called dg8, from which a RAID5 array called vs0 is configured. From this RAID5
array a logical disk (�LUN�) called 1000 was created and was provided to the AIX
server as a physical volume named hdisk2. This physical disk is configured under a
pseudo-device called vpath0 to mask multiple paths to the logical disk (Figure 3
shows only one data path). A volume group called tVG_0 is created on this pseudo-
device, from which an AIX logical volume named tLV_3 is created as the realization
of the policy-managed data object pmdo_2. The dashed line shows the separation
between the ESS and the AIX server. The construction of this logical model is per-
formed in a module in the provisioner that is specialized for this configuration.

Fig. 3. A logical model of the storage infrastructure for the SAN-based ESS configuration

Having built this logical model, the provisioner then develops a capacity manage-
ment strategy using this model. In the present prototype, the provisioner creates a
fixed number of storage pools (or �bins�), from which it allocates resources to meet
incoming creation requests.

To broadly apply this strategy, in the present prototype we create these storage
pools at the AIX volume group level (i.e. at the tVG_0 level in Figure 3). Each vol-
ume group is assumed to have certain performance and space capacity based on how
they are built from the infrastructure elements below it. Figure 4 shows creation of
four volume groups each corresponding to a RAID5 array in the IBM ESS.

Logical volumes are created out of these volume groups so as to meet service class
goals specified in storage allocation request. These logical volumes are the actual data
handles using which the requesting applications can make use of the storage resources.
How different requested allocations are assigned to different bins is at the heart of an
allocation algorithm. We used a simple �worst-fit� algorithm by which each of the
incoming requests is distributed as well as possible across the four bins. In Figure 4,
we show how two �Fast� (premium) class storage allocations and five �Slow� (ordi-
nary) class allocations are distributed among the storage pools. Note that the �size� of
each allocation, as shown in Figure 4, represents performance requirements, not the
more traditional size requirement.

Policy-Based Autonomic Storage Allocation 153

Fig. 4. A capacity allocation strategy used in the prototype

Both the capacity planning strategy and the request allocation algorithm could be
improved significantly. For example, the �worst-fit� algorithm is prone to local min-
ima, which may be sub optimal.

5 Conclusion

From this early but complete prototype we make the following observations:

1. The tedious, error prone, and mundane tasks in the storage allocation process
can be automated;

2. The ability to build a common logical model of storage for heterogeneous stor-
age subsystems requires a common way of describing many elements in a typi-
cal storage infrastructure, including the operating system support;

3. There is a need to characterize important architectural characteristics of a stor-
age subsystem using a standard model so that it can be properly configured,
using management software, to achieve desired quality of service. Alterna-
tively, storage subsystems may directly support quality-of-service, by virtue of
having internal policy-based autonomic systems. The latter only changes the
location of where the autonomic manager runs (i.e. inside rather than the out-
side of a storage subsystem), and therefore the need for an explicit description
of the storage subsystem architecture remains.

Acknowledgements

The authors wish to thank Norm Pass and Jai Menon (both from IBM Almaden Re-
search Center), Lorraine Herger, Steve White, Dinesh Verma, and Hoi Chan (all from
IBM Watson Research Center); Jack Gelb and Jimmy Strickland (both from IBM
Systems Group) for their invaluable guidance and technical help. Special thanks are
due to Al Stuart (IBM Systems Group) for support and for facilitating acquisition and
set up of our test environment.

154 Murthy Devarakonda et al.

References

[1] Jeffrey O. Kephart and David M. Chess, �The Vision of Autonomic Comput-
ing,� Computer Magazine, IEEE, Jan 2003.

[2] Dinesh C. Verma, �Policy-Based Networking: Architecture and Algorithms,�
New Riders Publishing, 2001.

[3] SNIA (Storage Networking Industry Association), �SMI-S Specification, Public
Review Draft (v. 1615),� 15 Apr 2003, available at
http://www.snia.org/tech_activities/SMI/bluefin

[4] Jack P. Gelb, �System-Managed Storage,� IBM Systems Journal, Vol 28, No
1, 1989.

[5] Guillermo A. Alvarez, John Wilkes, Elizabeth Borowsky, Susie Go, Theodore
H. Romer, Ralph Becker-Szendy, Richard Golding, Arif Merchant, Mirjana
Spasojevic, and Alistair Veitch, �Minerva: An automated resource provisioning
tool for large-scale storage systems,� ACM Transactions on Computer Systems,
Vol. 19, No. 4, pp 483-518, November 2001.

[6] Eric Anderson, et al, �Hippodrome: running circles around storage administra-
tion,� Proc. of USENIX FAST '02 conference, June 2002.

[7] Barry Mellish, John Aschoff, Bryan Cox, and Dawn Seymour, IBM ESS and
IBM DB2 UDB Working Together, IBM Redbook SG24-6262-00, IBM Inter-
national Technical Support Organization, October 2001 (available on the Inter-
net at ibm.com/redbooks).

[8] Murthy Devarakonda, Jack Gelb, Avi Saha, and Jimmy Strickland, �A Frame-
work for Policy-Based Storage Management,� in Proceedings of Policy 2002
(Intl Workshop on Policies for Distributed Systems and Networks), Monterrey,
CA, June 2002.

[9] David W. Levine et al, �A Toolkit for Autonomic Computing,� IBM Devel-
operworks Live, 2003.

[10] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman; �Grid
Service Specification,� Open Grid Service Infrastructure WG, Global Grid Fo-
rum, Draft 2, 7/17/2002.

[11] DMTF, �IETF/DMTF policy framework,� http://www.dmtf.org/download/
presentations/junedev01/track/0613-01_policy.pdf

[12] DMTF, �CIM Core Policy Model white paper,� DSP0108, February 2001,
http://www.dmtf.org/education/whitepapers.php

[13] Joseph P. Bigus, Jennifer Bigus, �Constructing Intelligent Agents Using Java,�
Second Edition, John Wiley & Sons, Inc., 2001.

[14] Murthy Devarakonda, Alla Segal, and David Chess �A Toolkit-Based Ap-
proach to Policy-Managed Storage,� in Proceedings of Policy 2003 workshop
(Intl Workshop on Policies for Distributed Systems and Networks), Lake Como,
Italy, June 2003.

[15] Paul Horn, �Autonomic Computing: IBM's Perspective on The State of Infor-
mation Technology�, IBM Corporation,
http://www.research.ibm.com/autonomic/manifesto, October 2001.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 155-168, 2003.
 IFIP International Federation for Information Processing 2003

Visual-Based Anomaly Detection
for BGP Origin AS Change (OASC) Events

Soon-Tee Teoh1, Kwan-Liu Ma1, S. Felix Wu1, Dan Massey2, Xiao-Liang Zhao2,
Dan Pei3, Lan Wang3, Lixia Zhang3, and Randy Bush4

1 Computer Science Department, University of California
Davis, CA 95616, USA

{teoh,ma,wu}@cs.ucdavis.edu
2 Networking Group � East (NGE), USC/ISI

 Arlington, VA, 22203, USA
{masseyd, xzhao}@isi.edu

3 Computer Science Department, UCLA
 Los Angelos, CA, 90095, USA

{peidan,lanw,lixia}@cs.ucla.edu
4 IIJ, Bainbridge Island, WA 98110, USA

randy@psg.com

Abstract. To complement machine intelligence in anomaly event analy-
sis and correlation, in this paper, we investigate the possibility of a hu-
man-interactive visual-based anomaly detection system for faults and
security attacks related to the BGP (Border Gateway Protocol) routing
protocol. In particular, we have built and tested a program, based on
fairly simple information visualization techniques, to navigate interac-
tively real-life BGP OASC (Origin AS Change) events. Our initial expe-
rience demonstrates that the integration of mechanical analysis and hu-
man intelligence can effectively improve the performance of anomaly
detection and alert correlation. Furthermore, while a traditional repre-
sentation of OASC events provides either little or no valuable informa-
tion, our program can accurately identify, correlate previously unknown
BGP/OASC problems, and provide network operators with a valuable
high-level abstraction about the dynamics of BGP.

1 Introduction

A statistic-based anomaly detection system is designed to detect any significant differ-
ences statistically between a long-term historical profile and a short-term behavior.
We need to apply some mathematical models both to produce the long-term profiles
and to compare them with short-term behaviors. On the other hand, a �visual-based�
anomaly detection system is to utilize human's cognitive visualization capability to
detect any significant differences visually between the particular human user's mental
model [1] of the long-term behavior and his/her short-term visual observation. In

156 Soon-Tee Teoh et al.

short, a visual anomaly is something that catches his/her eyes. While the idea of vis-
ual-based anomaly detection is certainly not new � we have been doing it in our daily
life for thousands of years, the focus here is to report our results in applying this con-
cept to detect potential security problems due to OASC (Origin AS Change) events
under the BGP routing protocol.

With the popularity of the Internet technology, unintentional faults and intentional
intrusions directly on network protocols, such as routing protocols, have become a
serious threat to our Internet-connected society. In 1997, a buggy BGP (Border Gate-
way Protocol) [2] router falsely de-aggregated thousands of network addresses which
disabled the Internet in the entire US east coast for up to 12 hours. In 2001, worm
attacks such as CodeRed and Nimda were spread around the Internet, while the Rene-
sys report [3] discussed a possible correlation between worm attacks and routing pro-
tocol stability. In [4], a different interpretation of the Renesys observation indicated
that the large increase in the number of BGP messages was mainly due to the behavior
of the measurement points, and probably not related to the BGP routing stability.

Driven by these faulty or intrusive instances on the Internet infrastructure, many re-
search teams have studied how to either design new protocols and/or enhance existing
protocols such that the Internet can be more robust and fault/intrusion-tolerant. For
instance, the Secure BGP (S-BGP) [5] protocol utilizes the PKI infrastructure to
authenticate and authorize the route update messages in an inter-domain environment.
In [6], a program is developed to statistically profile the �stable� BGP paths leading to
critical DNS servers and to filter out �unusual� routes potentially being falsely in-
jected by attackers or simply misbehaving BGP routers.

Another complementary approach to handle these Internet vulnerabilities is via an
interactive process between network administrators/operators and network manage-
ment systems with visualized network/security information. We believe that, at least in
the short term, a network system with machine intelligence alone will have certain
limitations in detecting and responding to novel attacks/faults targeting on the Internet
infrastructure itself. For instance, given a colorful image of some BGP routing data, an
experienced human operator might discover numerous facts about the Internet in-
stantly, while an analysis program must already have the mechanisms built in to
achieve the same results. One of the most difficult tasks in intrusion detection is
�event correlation,� but via human visualization, this task may be much more plausi-
ble. Furthermore, due to the complexity and size of the Internet, it is already a very
difficult task to evaluate Internet's �health� and clearly identify the root causes of
some observed symptoms. Without a comprehensive understanding of the Internet, it
is not certain that some new Internet protocols, architecture, or enhancements will be
effective in responding to the problems we have today.

This paper describes our design, implement, and evaluate an experimental visual
anomaly detection system for BGP OASC (Origin AS Change) events. In the follow-
ing section, we will describe our visualization design for the BGP/OASC events in
Sections 2, 3, and 4. Then, in Section 5, we will report our results in using our visual-
based anomaly system to detect non-trivial BGP/OASC problems.

Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events 157

2 Visualization Design

Information visualization [7] has emerged as one of the most active areas of computer
science research in recent years due to the explosive growth of the World Wide Web.
In contrast to scientific visualization, which is primarily about transforming numerical
data defining physical structures or phenomena in three spatial dimensions into pic-
tures, information visualization generally maps very large amount of textual, symbolic,
or relational data into spatial forms that can be displayed graphically. Data visualiza-
tion exploits the human vision system to help us explore and better communicate with
others particular aspects of the data under study. The process of visualization is an
inherently iterative one consisting of multiple steps. A standard visualization process
is depicted in the following figure:

Fig. 1. a standard visualization process

In this research work, we pay special attention to the filtering and mapping steps,
which prepare the collected data for rendering and viewing. Generally, the filtering
step: removes �noise� from the raw data, reduces the data to a more manageable size,
or enhances particular aspects of the data.

For visual anomaly detection, it extracts and organizes particular aspects of the data
(e.g., the Origin AS changes in BGP routing) for the subsequent steps. The mapping
step transforms the filtered data into a collection of graphics entities with appropriate
properties (e.g., colors, transparency, and texture) for rendering.

To summarize, our visualization design has the following four advantages. First,
our system integrates the capability of cognitive pattern matching (i.e., utilizing hu-
man's capability in recognizing special �possibly previously unknown� patterns). Sec-
ond, the visual/graphical information from our program may trigger the human's intel-
ligence and memory to reason and analyze the observed situation. A human operator
will obtain experience via this process and be trained to more accurately identify the
problems quickly. Third, the interactive monitoring and analysis process provides a
feedback loop from the human back into our program. Finally, the human expert can
provide an in depth explanation about the potential problems using the annotated
images and/or animations derived. In the following section, we will demonstrate these
advantages via the example of BGP/OASC.

3 OASC (Origin AS Change) Events in BGP

In this section, we very briefly describe the BGP routing protocol and the definition of
OASC events.

The Internet is made of thousands of Autonomous Systems (ASes), loosely defined
as a connected group of one or more IP prefixes which have a single and clearly de-
fined routing policy. BGP (Border Gateway Protocol) [2] is the standard inter-AS

158 Soon-Tee Teoh et al.

routing protocol. A BGP route lists a particular prefix (destination) and the path of
ASes used to reach that prefix. The last AS in an AS path is the origin of the BGP
routes (or the origin AS). The concept of origin AS is critical for the consideration of
routing protocol security as it implies the ownership of the IP address prefix (destina-
tion). An OASC (Origin AS Change) event [9,10] occurs if we observe any change in
the IP address ownership.

 One example of OASC events, called MOAS (Multiple Origin AS), is when sud-
denly we observe multiple ASes simultaneously claiming the ownership of the same
address prefix. More precisely, suppose prefix d is associated with AS paths asp1 =
(p1, p2, �, pn) and asp2 = (q1,q2, �, qm), and pn is not equal to qm.

An OASC event can be either valid or invalid. The MOAS example described
above is legitimate if each originating AS can directly reach the prefix. On the other
hand, if one of the origin ASes cannot reach the prefix, then it is an invalid MOAS
conflict and may be due to some malicious attacks. The problem of detecting invalid
OASC events is further complicated by BGP operational practices. RFC1930 [8] only
recommends (not requires) that each prefix originate from a single AS. In general, we
have no way to determine whether an OASC event is the result of a fault, an attack, or
a legitimate operational policy.

Faulty aggregation or de-aggregation may cause invalid OASC events. For in-
stance, an AS advertises an aggregated prefix, even though some of more specific
prefixes are not reachable by the AS, while there are no other more specific routes
available to reach those more specific prefixes. On the other hand, as an example of
de-aggregation, on April 25th, 1997, a severe Internet outage occurred when one ISP
falsely de-aggregated most of the Internet routing table and advertised the prefixes as
if they originated from the faulty ISP. The falsely originated prefixes resulted in many
invalid OASC events, which had a serious impact on Internet routing.

For producing OASC events, we used the raw data from the Oregon Route Views
server (peering with 54 BGP routers in 43 different ASes) to obtain the BGP routes
and AS paths. The Oregon Route Views data is particularly attractive because it pro-
vides data from a number of different vantage points. Overall 38225 MOAS events
were observed over 1279 days, and there is a significant increase from 683 events (in
average) in 1998 to 1294 events (in average) in 2001 as shown in the following �tra-
ditional 2D� figure.

Fig. 2. MOAS events in the Internet from 1998 to 2001

Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events 159

Via the above 2D figure about OASC events, we can spot some event
spikes/anomalies in the past. For instance, in early 2001, one single AS caused 9177
OASC events in one day. However, from the figure itself (or the raw data), it is not
easy to derive more valuable information about the problem. Neither could we tell
what was the response or reaction from this or other ASes after this particular BGP
problem instance.

4 The Design of Our Visual-Based Anomaly Detection System

We have designed and prototyped a visualization program to support an interactive
process for analyzing BGP OASC events. Via our initial experiments, we have clearly
observed some great advantages in using information visualization techniques to ana-
lyze and correlate a large number of BGP/OASC events. In this section, we will first
briefly describe our design. Then, in the next section, we will show a few scenarios of
using our program to not only detect the problem but also quickly nail down the root
cause to the detected problem.

4.1 Types of Origin AS Changes in BGP

As mentioned before, from the raw BGP data collected, we can produce a set of �Ori-
gin AS Change (OASC)� events. Each Origin AS Change (OASC) event contains the
following five attributes:

Prefix is the IP prefix whose Origin AS has changed.
AS-before is a list of the associated AS(es) before the change.
AS-after is a list of the associated AS(es) after the change.
Date is the date on which the change occurred.
Type is the type of a OASC change event.

Furthermore, OASC events are classified into 4 main types and then further classi-
fied into 8 types in total. The 4 main classes are:

B-type: An AS announces a more specific prefix out of a larger block it already
owns.

H-type: An AS announces a more specific prefix out of a larger block belonging
to another AS. In other words, this AS �punches a hole� on prefix ad-
dresses of others.

C-type: An AS announces a prefix previously owned by another AS.
O-type: An AS announces a prefix previously not owned (and therefore owned by

ICANN by default).

The C-type and O-type changes are further classified by whether they involve Sin-
gle Origin AS (SOAS) or Multiple Origin ASes (MOAS):

CSM: C-type change from SOAS to MOAS
CSS: C-type change from SOAS to SOAS
CMS: C-type change from MOAS to SOAS

160 Soon-Tee Teoh et al.

CMM: C-type change from MOAS to MOAS
OS: O-type change involving SOAS
OM: O-type change involving MOAS
H: H-type change always involving another AS (being punched a hole)
B: B-type change always involving itself only

In the visualization, different colors are associated with each of the eight types.
While this paper is black and white only, a colorful version of this paper can be
downloaded from our web site.

4.2 Representing IP Address Prefixes

In representing BGP/OASC events, 2 key concepts are IP address prefix and Autono-
mous systems. We will first describe our quad-tree representation of IP address pre-
fixes.

In our prototype, each IP prefix maps to one pixel on a square. The mapping is
done in a traditional quad-tree manner as shown on the left. In a quad-tree, a square is
repeatedly subdivided into 4 equal squares. In mapping a 32-bit prefix to a square, we
start with the first two most significant bits of the address to place the IP address in
one of the 4 squares in the second level of the quad-tree. We then use the next two
most significant bits to place the IP prefix in the appropriate third level square within
this square. We do this repeatedly until we can place the prefix in a square the size of
a single pixel. The prefix is mapped to that pixel.

Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events 161

As an example, the following is the visualization of data for 416 days up till Febru-
ary 19, 2001. The main window shows the quad-tree mapping of the entire space of
32-bit IP address. A pixel is colored yellow if an Origin AS Change occurred on the
current day (February 19, 2001), and colored brown to green if a change occurred on a
previous day (January 1, 2000 through February 18, 2001). In the windows showing
detail, a square is used to depict each change, with hue determined by the type of the
change, brightness determined by how long ago the change occurred (present day data
shown the brightest), and size determined by the mask of the prefix. The background
of the main window is shaded according to the IP prefix the pixel represents. The
brighter the pixel, the larger the IP prefix represented.

Due to the limitations of a computer screen space, we use a 512x512 pixel square
to represent the entire 32-bit IP prefix space. With only 512x512 pixels, even though
many IP prefixes map to the same pixel, we found that this is sufficient in spreading
out the IP addresses in BGP/OASC events. IP prefixes sharing similar more signifi-
cant bits would be in close proximity on the screen. With an additional level of
zooming into a portion of the data, we can view individual IP prefixes as shown
above. In the detail windows, each IP prefix is shown as a square or a rectangle. The
size of the rectangle indicates the size of the block of IP addresses; a prefix with a
smaller mask gets mapped to a larger rectangle.

4.3 Relationship Between Prefix and AS

To represent the relationship between IP address prefix and different ASes, we
place 4 lines surrounding the IP square, and an AS number is mapped to a pixel on
one of the 4 lines. A line is then drawn from an IP address to an AS number if there is
an Origin AS change involving that IP address and that AS number. This mapping
takes advantage of the user's acute ability to recognize position, orientation and length.
This figure shows visually the IPAddrPrefix-AS relationship of Origin AS Changes of

162 Soon-Tee Teoh et al.

�a typical day� (April 5, 2001). The color of each line represents one of the eight
different OASC types.

Since there are more AS numbers than pixels, more than one AS numbers map to a
single pixel. Again, we provide zooming features for the user to differentiate between
AS numbers, which map to the same pixel in the main display. The lines representing
changes for the AS in focus is shown with brighter and more saturated colors than
other changes. This effectively highlights the AS, fading the other changes into the
background.

4.4 Animation and Other Features

For the time dimension, our program shows one day's data at a time, and allows the
user to animate the visualization (each frame showing consecutive day's data). With
this ``movie'' display, the user can build up a mental long-term profile in his/her mind,
and detect temporal patterns. To assist our memory of patterns from previous days, we
allow a user-defined window of a certain number of days prior to the currently shown
date. Data from these previous days are displayed, but with darker, less saturated
colors, so that the current day's data stands out.

For the convenience of the user, we also provide textual display of the IP address or
AS number represented by the pixel clicked by the user. Another feature for conven-
ience is a slider bar to tell the date of the current data shown. The user can click on the
bar to choose the date to show. A simple plot of the total number of changes of each
type on each day is shown with the bar.

By choosing parameters like what IP prefixes to zoom in on, which AS numbers to
focus on, which type of changes to view etc., the user follows an interactive process to
navigate abstract information in different levels of details. Depending on the combi-
nation of chosen parameters, the user can see the overall pattern of the data, or the
user can focus attention on very specific parts of the data. Different choices would
reveal different anomalies and information.

5 Detecting and Analyzing OASC Anomalies Visually

A simple �counter-based� 2D figure for historical OASC events, as shown earlier, can
represent some simple OASC related anomalies. But, the value of the information is
relatively inadequate to the system administrators dealing with the network instances.
In this section, we present two examples of using our visualization program interac-
tively to identify and analyze OASC problems. With our program, the system admin-
istrators can easily move deep into the data and discover critical and abstractive facts
above a large set of low-level network events. In reading this part of paper, please use
a color viewer or printer.

Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events 163

5.1 Interactive Visual Analysis: �What Went Wrong on August 14, 2000?�

On August 14, 2000, when we turned on all eight OASC types and monitored on all
ASes, we visually observed an abnormally large number of blue-colored lines (H-type
OASC events). Since the amount of H type OASC events was large to catch our atten-
tion, our initial hypothesis was that, due to configuration errors possibly, one or more
ASes punched a large number of holes on the IP address prefixes belonging to other
innocent ASes.

Immediately, to verify our hypothesis, we used the �AS detail� feature in our pro-
gram to select only one single H type OASC event and displayed the ASes being in-
volved. The rationale is that, if a very small number of ASes are the root causes for the
aggressive Hole-punching problem, selecting one of such event would lead us to one
of the �trouble makers.�

The figure above on the left shows that after we selected one AS randomly (AS-

11724 in our example). In the same figure, the solid line connects the victim AS (AS-
11724) and the prefix address (207.50.48.0/21) being hole-punched, while the dash
line connects the attacking AS (AS-7777) and a subset of the prefix address
(207.50.53.251/32). In other words, AS-7777 would attract all the traffic toward
207.50.53.251 from AS-11724, which supposed to be the true owner. Immediately, we
know that the potential attacker (or faulty BGP router) was from AS-7777. Now, we
can use the features in our program to only select the OASC events related to AS-
7777, and we have the middle snapshot. In fact, after focusing on AS-7777, we can
easily validate that this AS was the only AS causing H type events on August 14,
2000. However, in the rightmost picture above, we also isolated the pink-colored lines
(OS type OASC events), and interestingly, it seems to us that the pattern of OS type

164 Soon-Tee Teoh et al.

events was regularly distributed across a region of IP address prefixes that has never
been used or allocated in Internet as in the right figure.

To validate further about what exactly is going on, we used our 3D representation
to analyze all the OS type OASC events. With the left figure, from the left middle part
(circled by a thick dash line), it is very clear and interesting that AS-7777 announced
prefix addresses forming a grid in the unused IP address space. Based on the location
and shape of the grid and the raw events, we concluded that AS-7777 falsely an-
nounced from 65.0.0.0/8 to 126.0.0.0/8 plus many others.

Please note that the discovery of the OS type OASC event grid is trivial by human,
if the visual orientation is right. However, the same task would be very difficult for a
fully automated intrusion detection system to reveal this type of facts unless the pat-
tern matching mechanism for grids has been included in advance. Certainly, this case
shows the limitation of the traditional intrusion detection systems in detecting �un-
known/new/novel� attacks, while our visual-based anomaly detection system has a
very good chance to catch them. In the case of August 14, 2000, with a few clicks
interactively, our system not only helped detect the problem, but also, quickly nailed
down the trouble source, AS-7777. Furthermore, via visualization, it even can tell the
details about the errors from AS-7777.

5.2 Interactive Visual Correlation:
�What Was AS-15412 Doing in April 2001?�

Earlier we showed that on April 5, 2001, things looked �normal�. But, on April 6, the
next day, we observed an unusual amount of skyblue-colored lines (i.e., CSM-type
OASC events). A CSM event indicates that a particular IP address prefix was origi-
nated by one AS the previous day, but more than one ASes are claiming it on the cur-
rent day. With the possibility of multi-homing and private AS numbers, a small
amount of CSM events is probably acceptable, but the snapshot on the left below is
visually abnormal.

Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events 165

Again with a simple interactive analysis process, very quickly we identified that

AS-15412 is the only AS injecting all the CSM OASC events on April 6, 2001. In the
middle snapshot above, it shows that AS-15412 is conflicting with a victim AS-10132,
which is the Eastar Technology Center in Hongkong. (We randomly picked one of the
victims and we used the �whois� program to find out more information from the whois
server, whois.radb.net.) Furthermore, after we animated the data only related to AS-
15412, we found something interesting: AS-15412 not only injected thousands of
CSM-type OASC events on April 6, but also, from April 7 to 12, it introduced thou-
sands of yellow-colored lines, which are CMS-type OASC events. This indicates that,
right after the CSM mistakes on April 6, 2001, the system administrator responsible
for the AS-15412 problem started to �correct� the problems by withdrawing the bad
announcements, which caused a storm of CMS events during next 6 days. The trouble
AS was a small ISP (Internet Service Provider) called FLAG Telecom Global Internet
in London, UK.

However, a few days later, on April 18, 2001 (4 days later), AS-15412 caused (at
least, it seems to us visually) exactly the same mistake again, and the �shape� is ex-
actly the same as the one on April 6 (possibly reloaded an old copy of BGP configu-
ration file). The difference though is that this time it only took them one day to fix all
the problems. The two pictures on the left below show the CSM-type OASC events on
April 18, 2001, while the right two pictures are CMS-types events on April 19, 2001.

Please note that, via this example, we again observe the big advantage of integrat-

ing machine and human intelligence. From human's point of view, the correlation
between CSM and CMS events is very clear. After watching the animation and inter-
actively identifying the AS causing the problem, we will not consider, for example, the
large number of CMS events on both April 12 and 19 as errors probably because we
know AS-15412 over at UK was trying to fix the problems they created. On those two
days (April 12 and 19 in 2001), without the right correlation as we shown here, thou-
sands of false alarms might have been reported.

166 Soon-Tee Teoh et al.

5.3 How about France Telecom?

When we first studied the instance in April 6-19, 2001, we believed, visually, that AS-
15412 made �exactly� the same mistake on both April 6 and 18 of 2001 because the
shapes visually look exactly the same. We reached this conclusion based on purely
visual correlation. Earlier this year (2003), one of our colleagues from France Tele-
com came to us with their own AS numbers (AS-3215 and AS-5511). They would like
to find out how many OASC events were related to their own ASes. While we quickly
realized, using our Elisha BGP visualization tool, that France Telecom's ASes have
been affected in relatively small number of OASC events, we also found out that
France Telecom's ASes were not affected on April 6, but they were indeed part of
some OASC events on April 18. This implies that, although the graphs on 6th and 18th

look the same, they are different in a minor ways. It turned out that only a very small
portion of ASes behave differently between 6th and 18th.

6 Remarks

In a large complex system, it is impossible to rely on any single mechanism, however
powerful may it be, to detect all possible attacks or faults. It is also very difficult to
pre-design and pre-implement a set of mechanisms to detect and respond to problems
not being seriously considered before. However, while human intelligence (such as the
security instance response team) can certainly complement an intrusion detection
system, we need to have an effective interaction process to follow in order to resolve
problems correctly and quickly.

With a traditional 2D representation (i.e., counting BGP/OASC events), relatively
little information can be derived and we need to dig into the raw BGP data to analyze
the problem instances. For the instance of August 14, we might be able to marginally
spot the anomaly. But, with our visualization program, we can not only detect the H-
type OASC anomaly but also go deep into the information using different representa-
tion methods with only a few clicks to identify the OS-type OASC anomaly as well.
As a result, we identify the possible error made by the AS-7777. Please note that our
system was designed and built BEFORE we were aware of the AS-7777 instance in
August 14, 2000 or other similar instances.

In handling millions of events from a large complex distributed system such as
Internet, �false alarms� and �event correlation� become two most critical issues (or
technical bottlenecks). Our visual representation for the OASC events here provides a
global and abstract picture about the BGP/OASC activities in the Internet. Therefore,
the human operator will be given not only a huge set of events but also the context and
the relations among the events graphically. An experienced human operator can then
use our system to justify the validity of a reported attack instance based on his/her
comprehensive awareness of the target system. On the other hand, if he/she is not
certain about the situation, then the interactive process should guide him/her to navi-
gate more information to reduce the potential false positive. Second, as demonstrated
in Section 6.2, our system provides the capability of visual event correlation such that

Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events 167

a human operator can quickly correlate a set of reported events and provide a valid
explanation about what is going on.

In the 2D counter-type figure (Figure 2 in Section 3), we can see big spikes in April
2001, but to completely understand what was going on is a very difficult task. If not
correlating events correctly, the system administrator would have to digest more than
tens of thousands of events over a two-week period. And, hopefully some correct
abstraction of these events can be discovered. But, again, with our program's anima-
tion features, the right, short/compact, and abstractive conclusion can be drawn
quickly for all these events.

Via the experience in using our programs to analyze the BGP routing data on the
Internet (we have another visualization program for BGP route path stability, which
has not been described in this paper), we have demonstrated the great potential in
applying information visualization techniques to critical problems in fault and intru-
sion detection on network routing protocols such as BGP. We believe that the integra-
tion of human and machine intelligence via the technique of information visualization
may provide yet another important avenue to enhance the performance, security, and
fault tolerance of the Internet.

Acknowledgements

This research is supported in part by DARPA (under the FTN program) and NSF
under Grant No. 0220147. We appreciate valuable information and comments re-
garding the OASC problem from Herve Debar (France Telecom), Jason Coit (UC
Davis), and anonymous reviewers of this paper.

References

[1] Dedre Gentner and Albert L. Stevens (editors), �Mental Models�, Cognitive
Science, 1983.

[2] Y. Rekher and T. Li, �A Border Gateway Protocol 4 (BGP-4)�, rfc1771, IETF.
[3] James Cowie, Andy Ogielski, BJ Premore and Yougu Yuan, �Global Routing

Instabilities during Code Red II and Nimda Worm Propagation� NANOG,
09/19/2001.

[4] Lan Wang, Xiaoliang Zhao, Dan Pei, Randy Bush, Daniel Massey, Allison
Mankin, S. Felix Wu, Lixia Zhang, �Observation and Analysis of BGP Behav-
ior under Stress�, by in ACM SIGCOMM IMW (Internet Measurement Work-
shop), Marseille, France, November 2002.

[5] Stephen Kent, Charles Lynn, and Karen Seo, �Secure Border Gateway Protocol
(Secure-BGP)� in IEEE Journal on Selected Areas in Communications Vol. 18,
No. 4, April 2000, pp. 582-592.

[6] Dan Massey, Lan Wang, Xiaoliang Zhao, Dan Pei, Randy Bush, Allison Man-
kin, Felix Wu, Lixia Zhang, �Protecting the BGP Routes to Top Level DNS
Servers� in NANOG 25, June, 2002, Toronto, Canada.

168 Soon-Tee Teoh et al.

[7] Ivan Herman, Guy Melançon, M. Scott Marshall, �Graph Visualization and
Navigation in Information Visualization: a Survey� in IEEE Transactions on
Visualization and Computer Graphics, Vol. 6, No. 1, pp. 24-43, 2000.

[8] John Hawkinson and Tony Bates, �Guidelines for creation, selection, and reg-
istration of an Autonomous System (AS)� rfc1930, IETF.

[9] X. Zhao, D. Pei, L. Wang, L. Zhang, D. Massey, A. Mankin, S. F. Wu, �Detec-
tion of Invalid Route Announcement in the Internet� in International Confer-
ence on Dependable Systems & Networks, 2002.

[10] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S.F.Wu, L. Zhang, �An
Analysis of BGP Multiple Origin AS (MOAS) Conflict� in ACM SIGCOMM
Internet Measurement Workshop, pp.31-35, November 1-2, 2001, San Fran-
cisco.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 169-180, 2003.
 IFIP International Federation for Information Processing 2003

Context Driven Access Control to SNMP MIB Objects in
Multi-homed Environments

R. State, O. Festor, and I. Chrisment

INRIA-LORIA
615, Rue du Jardin Botanique, 54600 Villers-les-Nancy, France

{state,festor,ichris}@loria.fr

Abstract. The advent of multi-technology networks offering the service
continuum over multiple network infrastructures implies new chal-
lenges to integrated management. One of these challenges is the auto-
configuration of the management plane needed to allow dynamic rela-
tionships among several managers and one management agent. This pa-
per proposes the use of provisional policies in order to dynamically
auto-configure the access control part of a management agent. This al-
lows simple management based on agent location and time as well as
the cooperative behavior of several managers.

1 Introduction

Recent advances in providing multiple services over heterogeneous networks demand
a new approach for constructing the management plane. The management paradigms
used in today networks are based on the manager agent model (designed in the mid
80') which defines a protocol for exchanging management information, specified ac-
cording to an information model and stored in a conceptual repository, called Man-
agement Information Base (MIB).

In this approach and for the last decade, the management plane was configured in a
static manner. For instance a basic configuration of the management protocol estab-
lished at agent boot time is always assumed to exist. Such an assumption does not
hold any more when we are trying to manage nomadic equipment, multi-homed sites
and dynamic service infrastructures. In this paper we address the issue of providing a
management approach which extends the SNMPv3 framework allowing the dynamic
configuration of the access control to MIB objects using a context specific access
control. The automatic configuration of the management plane is an essential step to-
wards fully integrated management. Including self-management features within the
management plane is important for plug and play type of management, where mini-
mal human interactions are requested. On the other hand, existing management
frameworks should be easily extended/integrated without demanding a total concep-
tual and implementation change. Our paper is structured as follows: section 2 de-
scribes the business case and motivates our work. An introduction to provisional
authorizations and their usage for the configuration of the management stack is given

170 R. State et al.

in section 3. The management framework is described in section 4, while pointers to
related work are given in section 5. Section 6 concludes the paper by highlighting fu-
ture work.

2 The Business Case for Self-Configuration of MIB Access

This section presents two simplified business cases (see figure 1) motivating the po-
tential of the self-configuration of the management stack. In this first case, Bob own-
ing a WIFI enabled laptop uses his laptop both at home and work. While Bob is at the
office, his laptop is under the management responsibility of the enterprise manage-
ment platform (EMP). For instance, Bob might not even be allowed to auto-
administer his laptop. However, as soon as Bob leaves the office and gets home, the
same laptop which is connected to the home network should be considered under the
management responsibility of the home management platform (HMP). At this mo-
ment, the enterprise management platform should not be allowed to perform any
management operations on Bob's laptop. An extension to the previous case consists in
adding some additional constraints. Bob's laptop is owned by the enterprise. If Bob is
working at the office then his laptop is under the total control of the enterprise man-
agement applications. However, when Bob connects his laptop to his home network,
the home network management application might perform management operations if
and only if the enterprise network management platform approves it.

Fig. 1. Simplified Business Case

Looking at the two scenarios in order to abstract the fundamental requirements we
can claim the following requirements:

Context Driven Access Control to SNMP MIB Objects in Multi-homed Environments 171

1. Management needs to be context driven. A context can be defined as the overall
ensemble of parameters characterizing the instant connectivity. For instance the
context can be the collection of network interfaces, their IP addresses, netmask,
and the DNS used.

2. Dynamic interactions among several managers need to be supported. It should be
possible to a manager to approve or deny operations performed between an agent
and another manager, without requiring direct manager to manager communica-
tion.

Does the current management SNMP framework meet these requirements? The an-
swer is definitely not. For instance, the most advanced SNMP version (SNMP v3) [6]
[17] allows to offer several views and access rights to the MIB, but these ones are de-
fined statically independent of the context. This is done using an enhanced access
control module, also known as the View Based Access Control Model (VACM) [6].
In the case of the simple scenario presented above, using the current VACM model
defined by SNMPv3, would imply that the EMP could perform some management
operations even when Bob is connected from home. This is based on the assumption
that Bob will not manually configure the VACM every time he connects to a network.
The extended scenario (where the EMP must authorize management requests per-
formed by HMP) is definitely more complicated and can not be implemented with
current management paradigms. In the following section we will introduce provi-
sional policies and show how an extension of the current VACM can be based on
provisional authorizations in order to meet the requirements. Two more additional re-
quirements must be addressed:

1. Backward compatibility with SNMP [5].
2. Whatever works right now, should also work in the future. That is, existing man-

agement applications should be valid and fully working.

3 Provisional Authorizations
for Dynamic Access Control to MIB Objects

Provisional authorizations have been introduced in [7] and [8] as a solution towards
additional semantics for controlling access requests. Traditional access control sys-
tems considered that access requests can be modeled as a demand to authorize a par-
ticular action (read/write/delete) made by a subject within a given context on a par-
ticular object. A provisional authorization is a generalization of this scheme, modeling
a conditional authorization, ie, an access request is granted if and only if additional
conditions hold. This approach can be applied at the agent side. MIB objects are enti-
ties to which read/write requests are made. Provisional authorizations are stored on
the agent and regulate the access to the MIB objects. The provisional framework for
management can be described as follows:
1. The set S represents all possible subjects requesting access to objects. In our case,

these are all managers: For instance in terms of the previously described simple
scenario { }HMPEMPS ,=

2. The set of all possible objects is O. This corresponds to all OIDs in the MIB.

172 R. State et al.

3. A is the set of access modes permitted on objects. { }setgetA ,=
4. There is the notion of context, c, representing time and location. The set of con-

texts is C. A particular context is given by the collection of ipad-
dress/netmask/DNS used on each network interface. In this paper, we will use the
term context having this definition in mind. The VACM aware reader should not
confuse this term with the one used to specify a MIB view in SNMPv3.

5. A permission is either to grant or to deny access. The set of permissions is Perm
= {grant, denied}

6. A set FM of formulas. An individual formula f is a logical conjunction of equali-
ties and/or inequalities. For instance t>18 means current time after 18h. An
equality or inequality is constituted of constant terms (string or numbers) as well
system accessible variables. System accessible variables are all variables in the
MIB. Other system specific variables might also be presented. If a formula holds,
then the authorization policy is active (see in the following for the definition of
an authorization policy). Examples of formulas could be :

• �1.3.6.1.2.1.ip.ipInAddrErrors>1000”, allowing a manager to
get/set values in a subtree, whenever the number of datagrams errors due to
address errors is higher than a threshold. While visiting a foreign network,
Bob could allow management access to his machine, if and only if it's start-
ing to have functioning errors.

• “1.3.6.1.2.1.interfaces.ifTable.ifEntry.ifIndex.1.i
fOperStatus==”down�. This formula expresses the fact that the first
network interface of an agent's node does not work. For a multihomed node,
one can use this formula to allow a manager connecting via the second inter-
face to fully manage the agent if the first network interface is not working.
As a typical business case, let us consider an access router with two inter-
faces, used by a home network. Two managers do exist. The first one be-
longs to the Internet Service Provider, while the second one is used on the
home network. Such a formula could be used to allow the home manager full
control over the access router whenever no connection to the ISP's manager
is possible.

7. A set of provisional actions PRV. A provisional action is used to add new se-
mantics on an authorization policy. We provide one single extension verify,
meaning that another subject agrees with this operation. For instance ver-
ify(HMP) means that HMP has to agree with a particular request in order to
authorize this access. We can model the agreement of several managers using a
list of provisional actions. Several comma separated verify clauses are equivalent
to a conjunction of authorizations. All subjects must authorize the request. Semi-
colon separated list of provisional actions represent the fact that at least one en-
tity must authorize the request. These types of actions are used in situations when
a subset of managers must all agree on a set of actions. The second case is used
when any manager out of a subset has to authorize a request.

Context Driven Access Control to SNMP MIB Objects in Multi-homed Environments 173

The configuration of the access control scheme is based on providing a set of
authorization policies : *Pr PRVFMPermCASOAuth ××××××⊂

An authorization policy, for instance is:

AuthPRHMPverifytimegrant
dnsnetmaskaddresscontext

getEMP

∈>
===

))(,18,
),1.3.224.195,0.255.255.255,23.3.224.194(

,,.*,1.6.3.1(

modeling the fact that : Manager HMP is allowed to read all elements under the sub-
tree 1.3.6.1, if the agent is connected with IP address 194.2234.3.23, netmask
255.255.255.0 and DNS server 194.224.3.1, and current time is past 18h, provided
that EMP agrees.
An authorization request is a 4 tuple : CASOcasoar ×××∈=),,,(meaning that action
a in context c is to be performed by s on object o. For the previous example, such a
request might look like:

))1.3.224.195,0.255.255.255,23.3.224.194(
,,.*,1.6.3.1(

===
=

dnsnetmaskaddresscontext
getEMPar

This request models the read operation on OID starting with 1.3.6.1, performed by
manager EMP, where the current connectivity configuration of the laptop is given by
the address, netmask and DNS. For every authorization request, an authorization deci-
sion is computed based on the set of authorization policies. Basically, a decision is to
either grant or deny an action. Allowing an action can be either unconditionally or
conditionally. A conditional allow is associated to a list of provisional actions. These
actions must be performed in order to fully allow the operation. An example based on
the previous scenario is the following decision:

))(,
),1.3.224.195,0.255.255.255,23.3.224.194(

,,.*,1.6.3.1(

HMPverifygrant
dnsnetmaskaddresscontext

getEMPdecision
===

=

This decision allows the access for EMP to read all objects in the subtree 1.3.6.1, if
the agent is on a network (ip address of the agent=194.224.3.23 with netmask
255.255.255.0) if and only if HMP agrees.

The provisional action can include several actions. �verify(HMP), verify(Bob)� is
equivalent to both Bob and HMP must agree with this decision, while �ver-
ify(HMP);verify(Bob)� means that at least one of them must agree. This framework is
a generalization of the SNMPv3 VACM architecture. However, this generalized ap-
proach allows us to model context driven and conditional management, as well as
more advanced interactions between managers as described in the two business cases.
Another applicability of this framework lies in providing a potential solution towards
autonomous management.

For the moment, we postpone the presentation of the management architecture
needed to support this authorization framework, and focus on the semantic expres-
siveness of this model.

Let us first see if the two described scenarios can be implemented by the model.
Obviously, for the fist scenario, we can use the following four authorization policies:

174 R. State et al.

1.
),

),1.3.224.152,255.255.255.255,23.3.224.152(
,,(*,

nullgrant
dnsnetmaskaddresscontext

getEMP
===

2.
),

),1.3.224.152,255.255.255.255,23.3.224.152(
,,(*,

nullgrant
dnsnetmaskaddresscontext

setEMP
===

3.
),

),1.3.224.195,255.255.255.255,23.3.224.194(
,,(*,

nullgrant
dnsnetmaskaddresscontext

getHMP
===

4.
),

),1.3.224.195,255.255.255.255,23.3.224.194(
,,(*,

nullgrant
dnsnetmaskaddresscontext

setHMP
===

Policies 1 and 2 state that the enterprise management platform in allowed to get/set
any object in the MIB as long as Bob's laptop is on the enterprise network. Policies 3
and 4 model the equivalent for the home network. Obviously, dealing with dynamic
allocated addresses is done by using wildcards in the specifications. For this scenario,
no formulas are requested. It's also easy to see that Bob's terminal cannot be managed
by his office manager, when Bob is at home.

The second scenario, in which Bob's enterprise manager must agree with the home
management application, is already presented when we have introduced the provi-
sional authorizations.

Without detailing an implementation specific verification mechanism, let us con-
sider the following authorization policy:

))(,,*),*,*,(,,*,2.1.4.1.6.3.1(Bobverifynullgrantdnsnetmaskaddresscontextread ===

This policy models the fact that Bob must be asked by the management agent
whenever a get request is made on the subtree 1.3.6.1.4.1.2. Such flexibility is inter-
esting in the management of mobile devices, in which users could be prompted to ex-
plicitly authorize operations performed on their terminals (like for instance reading
their configuration/agenda by a foreign management application). It could be consid-
ered as an user-interactive SNMP agent.

Finally, it's natural to ask if such an authorization policy based approach can be
used for total self management. Without pretending to have a clear definition of total
self management, we argue that at least it might give you illusion of self management.
Imagine the very simple case of one authorization policy:

))(,,*),*,*,((*,*,*, managerverifynullgrantdnsnetmaskaddresscontext ===

The intelligence or auto-configuration feature is actually hidden by the existence of
a manager who authorizes every request. An agent using such a policy can be easily
plugged into any network and provide the illusion of being auto-configurable. The
auto-configuration in this case is actually outsourced and delegated. This is obviously
an extreme case, having a lot of overhead in terms of management communication,
but it shows that provided the existence of an authorization manager and a convenient
set of authorization policies, a relative degree of autonomy can be achieved. Such a

Context Driven Access Control to SNMP MIB Objects in Multi-homed Environments 175

mechanism is very useful for the management of nomadic equipment. The manage-
ment platform to which the equipment belongs can specify limited management op-
erations allowed whenever the equipment is not on the home network and might agree
to extended management provided it is consulted. As far as we know, no previous
management framework is capable of similar features.

4 Implementation Framework

This section describes the management framework based on the authorization poli-
cies. One of the requirements was not to depend on a new management protocol.
Taking SNMPv3 as a major building block, our approach consists in providing a new
Access Control subsystem and an optional extension within an SNMP agent. Figure 2
(adapted from [6], [19]) shows where the new access control subsystem and the op-
tional extension fit into the block functional architecture of an SNMP agent. One is-
sue that was not addressed in this paper yet relates to the dynamic interactions among
an agent and one or several managers. The issue is how do managers and agents dis-
cover reciprocally, and how to provide a security model for such a framework.

The existing security model defined in SNMPv3 is implemented in the USM (User
Security Model) [18] allowing the authentication of the manager as well as the op-
tional privacy of the communication. For the authentication and privacy, two secret
keys are shared between the agent and the manager. The first one is used to authenti-
cate the manager, while the second one is used to encrypt/decrypt the SNMP opera-
tions. While the existence of these two keys can be assumed by an off-line exchange
among the managers, we consider that full autonomy for the management plane is
based on a dynamical manager to agent secret key exchange. Figure 2 shows two ad-
ditional components and their interactions. The first one is a Manager Discoverer. Its
main functionality is to discover network managers. Several choices are possible:

1. The manager learns through topology monitoring/DHCP the existence of a new
node, and checking UDP port 161 on the node, discovers the agent.

2. The address of the manager is included in an extension of the DHCP configura-
tion 10. An IETF proposition [15] suggests the use of DHCP to detect a list of IP
addresses to which notifications have to be sent.

3. The agent uses the DNS to look for a manager located in the same domain.
4. A management service containing the description of the manager location is ad-

vertised over SAP (Session Announcement Protocol) [12].
5. The agent discovers via the Service Location Protocol (SLP) [11] the manager.

The information about the manager contains also a public key Public(M) on which the
latter is listening. The manager uses the RSA (Rivest, Shamir, Adleman algorithm)
[13] with the public key Public(M) and an associated private key Private(M).

As soon as a new manager is discovered, two secret keys authk, privk are generated
by the agent and stored in the MIB of the agent. Although, the existing SNMPv3
standard discourages the storing of secret keys in the MIB, we consider that proper
access control performed by the agent can assure the required security. The Manager
obtains the two keys by issuing a Get Request. This Request must be encapsulated in

176 R. State et al.

a SNMPv3 packet having msgSecurityModel equal to 4. This field describes the secu-
rity model to be used by the agent. Normally, 1 is used for SNMPv1, 2, SNMPv3 uses
the value of 3 and SNMPv2c uses 2 [6].

The value 4 corresponds to our PK security model. This PK security model checks
the authenticity of the issued requester using the manager's public key Public(M). In
fact, our extension provides a possible public key exchange facility to a SNMPv3
agent. The assumption is here, that the manager discovery process detects a genuine
trusted service.

If authentication is valid (this process is based on the fact that only the legitimate
manager has the key used for encryption: Private(M)), the two keys (authk, privk) are
sent to the manager. The response is encrypted using the public key of the manager:
Public(M).

The next following interactions between the manager and the agent are performed
using the traditional security model (msgSecurityModel=3), which is based on sym-
metric keys (authk, privk) and therefore more efficient.

The second extension consists in a new Access control subsystem, which is used
by a SNMP engine to check that particular request is authorized.

Fig. 2. SNMP agent architecture

A functional block decomposition of the Authorization based Access control is
shown in figure 3.

Authorization Policies are stored in a Policy store. This store is implementation
specific. A policy management console pushes authorization on this store. This con-
figuration can be either based on SNMP, similar to the VACM configuration in
SNMP3. In this case an extended MIB containing tables corresponding to the formu-
las and the provisional actions are needed. Note, that for the address and netmask
variables used in the context, the existing MIB2 entries can be used.

Context Driven Access Control to SNMP MIB Objects in Multi-homed Environments 177

Another configuration of these policies can be done using COPS-PR [4]. One of
the advantages of COPS-PR lies in its working over TCP. If the self-management ca-
pable agent is connected to a distinct network then the one containing the policy con-
sole, most firewalls will drop SNMP traffic, leaving however TCP connections origi-
nating from the agent.

The Policy Validator is responsible to check the coherence of deployed policies. Its
main objective is to resolve conflicting authorizations.

A Request Processor is the entity where an access request is made. The request
processor uses the policy store and computes the authorization decision. If access is
either granted without any provisional actions, or denied, this decision is returned to
the SNMP engine.

To summarize, authorization policies are configured in the Policy Access Control
module of the SNMP engine. When such a policy is triggered, an authorization might
be requested from an authorization manager. This request can be implemented via
COPS, in which a explicit accept decision is requested from a PDP. Therefore, the
concept of policy is twofold. We have authorization policies regulating the access
rights to the SNMP agent and we have authorization requests and replies triggered by
an authorization policy.

Fig. 3. Functional Architecture of the Access Control Subsystem

One interesting example consists in a management approach for a multi-homed
host. This case, (shown in figure 4) assumes that both managers trust a third manager
T. The latter is responsible to assure that requests issued by one manager do not al-
ter/expose sensible management information. For requests issued to particular OIDs,
T must explicitly approve them. The assumption that a common trusted manager ex-
ists might be relatively optimistic. If this assumption does not hold, both A and B
should be asked to allow these requests. This can be expressed in a provisional action
might be �verify(A), verify(B)�. This means, that both manager have to approve this
request. Obviously, this implies an overhead, but provides a solution for either not
disclosing A's confidential monitoring information to B, or allowing B to configure
A's related entities.

178 R. State et al.

Fig. 4. Management of a Multi-homed host

To see the usage of COPS for authorization checking, assume that A issues a Set
on a OID and that the Control Subsystem decides to grant it, provided T confirms.

The Control subsystem issues a COPS Request Message [3] to T. The COPS-
context in this message is set to �Set�, (it would have been �Get� for a Get Request).
Additional COPS-type objects in this message, called ClientSI (client specific infor-
mation object) represent the OIDs and the snmpEngineId of the requester.

If T decides that the request is granted, it replies with a COPS-Decision having a
command INSTALL. From now one, whenever A issues the same request, (within the
same context and formulas still holding), this is granted by the agent. If after some
time, T issues a Remove Decision, the grant decision of the agent, must be re-
confirmed as previously explained.

5 Related Work

We started our work based on the general management agent security configuration
proposed in the SNMPv3 [6], [19] specifications. The View Access Control Model
[17] allows the definition of view and allowed operations for a set of managers. Its
user security model USM [18] provides the supporting mechanisms for manager-
agent privacy and authentication. These mechanisms must be configured statically
and are difficult if management of nomadic or multi-homed equipments has to be per-
formed. These approaches are extended by our work with context driven and condi-
tional management as well as a security model configurable dynamically. One of the
first initiative towards simplified and automatic host configuration was started by the
zero-configuration group at the IETF [9], where individual (private network) ad-
dresses are automatically assigned without requesting static configuration or DHCP
[10] support. Policy based network management has been applied for QoS manage-
ment in both Diffserv as well as Intserv [1] types of networks, without however ad-
dressing the self-management issue. A policy based approach for the auto-
configuration of networks is proposed in the Nestor [14] platform used to manage an
active network platform. Change operations are managed via policy rules and inte-
grated within a larger network self configurability architecture. The research commu-
nity working in access control mechanisms proposed a large variety of security ar-

Context Driven Access Control to SNMP MIB Objects in Multi-homed Environments 179

chitectures and policy specification methods. However, no direct applications towards
extending the management functionality based on these concepts have been proposed.
Our approach is different with respect to the previously mentioned work in several
aspects. We start with the main objective to use SNMPv3 the standard management
protocol in an autonomic way. We propose a novel architecture for an SNMP agent
capable to integrate within existing deployed networks and without requiring a com-
plex additional infrastructure at the network site. We have not yet decided to use a
specific policy specification framework. Our current prototype uses a proprietary so-
lution. We are looking into applying the PONDER specification framework [16] for
this purpose. PONDER provides an extremely powerful language which could be ca-
pable to express management authorizations as well as context related information.

6 Conclusions

We addressed in this paper the issue of flexible network management, respectively
self-management. We started with the observation that current standardized network
management frameworks do not offer enough support for enhanced agent autonomy.
The simple observation is that an already configured SNMPv3 agent, taken out from
his home network and put under the management control of one or several foreign
management applications without any additional human interaction is not functional.
This is due to several factors. Firstly, a fixed security Model (USM) and a fixed Ac-
cess Module (VACM) are incapable to configure on their own. A second factor,
which is more conceptual, is related to the existing management paradigm, in which a
manager interacts directly with an agent. We extend this paradigm by allowing other
parties (managers) to express their agreement within such an interaction. We provide
a framework allowing context/location driven management and conditional manage-
ment. We argue that current SNMPv3 specifications provide an excellent authoriza-
tion and access control mechanism for a fixed environment. This is the case with most
existing target environments. However, nomadic environments where more and more
users are mobile require new management frameworks. We addressed this issue by
assuming the standard management protocol SNMPv3 and we proposed an extension
of the SNMPv3 management framework. A new security model and an access control
are proposed. The proposed security model allows the exchange of the authentication
and privacy keys. These keys are used by the SNMPv3 user security model. Our man-
agement framework is based on authorization policies and provisional actions in
which context driven management can be performed. The context is defined by the
network connectivity properties used on the managed equipment site. Our approach
generalizes the View based Access Control subsystem proposed in the SNMPv3 ar-
chitecture, without requiring changes at the SNMP protocol level. Thus, our extension
is transparent for already existing management applications. Existing management
agents should be easily modified in order to enable dynamic access control to MIB
objects. We consider that self-management is strongly related to the auto-
configuration of the management plane. Management of mobile devices as well as
environments where multiple management applications interact dynamically are the
primary immediate business targets. Our approach is based on managing the man-
agement stack within a policy based solution. This integration shows also the com-

180 R. State et al.

plementary nature of these two types of management and motivates the necessity of
having both of them within a single management stack. We are currently implement-
ing the proposed architecture within a Net-SNMP framework. It will be validated
within our IPv6 testbed.

References

[1] D. Verma. Policy-Based Networking. New Riders Publishing.2000.
[2] RFC 3159. Structure of Provisioning Information (SPPI). IETF. 2001
[3] RFC 2748. The COPS (Common Open Policy Service). IETF. 2000
[4] RFC 3084. COPS Usage for Policy Provisioning (COPS-PR). IETF.2001.
[5] W. Stallings. SNMP, SNMPv2, SNMPv3 and RMON1 and 2 Addison-Wesley

Pub Co; 3rd edition 1998)
[6] W. Stallings. Network Security Essentials, Prentice Hall, 2nd edition 2002.
[7] M. Kuda , S.Hata. XML Document security based on provisional authorization

Proc. 7th ACM Conference on Computer and Communication Security (CCS
2000), Nov. 2000.

[8] S. Jajodia, M. Kuda, V.S. Subrahmanian. Provisional authorizations. Workshop
on Security and Privacy in E-Commerce (WSPEC), Nov. 2000, Recent Ad-
vances in Secure and Private E-Commerce, published by Kluwer Academic
Publishers in 2001.

[9] E. Guttman. Autoconfiguration for IP Networking: Enabling Local Communi-
cation, IEEE Internet computing. 2001.

[10] R. Droms. �The DHCP Handbook�. Sams. 2nd edition. 2002.
[11] RFC 2608. Service Location Protocol , Version 2. IETF 1999.
[12] RFC 2974. Session Announcement Protocol. IETF 2000.
[13] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in

C, Second Edition. John Wiley and Sons. 1995
[14] V. Konstantinou, Y. Yemini, and D. Florissi. Towards Self-Configuring Net-

works. DARPA Active Networks Conference and Exposition (DANCE), May
2002, San Franscisco, CA.

[15] M. Bakke. DHCP Option for SNMP Notifications. draft-bakke-dhc-snmp-trap-
01.txt. Internet draft IETF. Work in progress 2003.

[16] N. Damianou. A Policy Framework for Management of Distributed Systems.
Ph.D thesis. Faculty of Engineering of the University of London and Diploma
of the Imperial College of London. London. December 2002.

[17] RFC 3415. View Based Access Control Module (VACM) for the Simple Net-
work Management Protocol. IETF 2002

[18] RFC 2274. User-based Security Model (USM) for version 3 of the Simple
Network Management Protocol (SNMPv3). IETF 2002

[19] RFC 3411. An architecture for describing simple network management proto-
col (SNMP) Management Frameworks. IETF 2002

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 181-193, 2003.
 IFIP International Federation for Information Processing 2003

A Policy-Based Framework for RBAC

Ricardo Nabhen, Edgard Jamhour, and Carlos Maziero

Pontifícia Universidade Católica do Paraná, PUCPR, PPGIA
Rua Imaculada Conceição 1155, CEP 80215-901, Curitiba, Brazil

{rcnabhen,jamhour,maziero}@ppgia.pucpr.br

Abstract. This paper presents a PCIM-based framework for storing and
enforcing RBAC (Role Based Access Control) policies in distributed
heterogeneous systems. PCIM (Policy Core Information Model) is an
information model proposed by IETF. It defines a vendor independent
model for storing network policies that control how to share network
resources. PCIM is a generic core model. Application-specific areas
must be addressed by extending the policy classes and associations pro-
posed by PCIM. In this context, this paper proposes a PCIM extension,
called RBPIM (Role-Based Policy Information Model), in order to rep-
resent network access policies based on the RBAC model. A RBPIM
implementation framework based on the PDP/PEP (Policy Decision
Point/Policy Enforcement Point) approach is also presented and evalu-
ated.

1 Introduction

The Policy Core Information Model (PCIM) is an information model proposed by
IETF and DMTF [5]. PCIM is based on the Common Information Model (CIM), pro-
posed by DMTF (Distributed Management Task Force) [4]. The CIM information
model permits to represent both, network resources and policies definitions for man-
aging these resources. PCIM can be considered as a sub-set of the CIM model, which
comprises only the policy information. PCIM is a generic model. Application-specific
areas must be addressed by extending the policy classes and associations proposed by
PCIM. For example, QPIM (QoS Policy Information Model) is a PCIM extension for
describing quality of service polices [12].

This paper describes a PCIM extension for role-based access control, called
RBPIM (Role Based Policy Information Model), which permits to represent network
access control policies based on roles, as well as static and dynamic constraints, as de-
fined by the proposed NIST RBAC standard [1]. RBPIM is an open framework for
supporting the development of applications that shares a common set of RBAC poli-
cies. In the RBPIM approach, the RBAC policies refers to objects represented in a
CIM repository. The RBPIM framework is implemented using a PDP/PEP approach
[10]. The PDP (Policy Decision Point) is a network policy server responsible for sup-
plying policy information (or policy decisions) for network devices and applications.
The PEP (Policy Enforcement Point) is the policy client (usually, a component of the

182 Ricardo Nabhen et al.

network device/application) responsible for enforcing the policy. The motivation for
defining RBAC in PCIM terms can be summarized as follows. First, there are several
situations where the same set of access control policies should be available for het-
erogeneous applications in a distributed environment. This feature can be achieved by
adopting the PDP/PEP framework. Second, an access control framework requires
having access to information about users, services and applications already described
in a CIM/PCIM repository. Implementing access control in PCIM terms permits to
leverage the existing information in the CIM repository, simplifying the task of
keeping a unique source of network information in a distributed environment.

The remaining of this paper is organized as follows: Section 2 reviews some re-
lated works. Section 3 presents the RBPIM information model. Section 4 presents the
RBPIM framework implemented using the outsourcing model, as defined by the
COPS standard [11]. Section 5 presents the performance evaluation results of a pro-
totype of the RBPIM framework under various load conditions. Finally, the conclu-
sion summarizes the main aspects in this project and points to future works.

2 Related Works

Recent works explore the advantages of the PDP/PEP approach for implementing an
authorization service that could be shared across a heterogeneous system in a com-
pany. An interesting work in this field is the XACML (eXtensible Access Control
Markup Language), proposed by the OASIS consortium [13]. XACML is a XML
based language that describes both an access control policy language and a re-
quest/response language. The policy language is used to express access control poli-
cies. Policies are written in XACML by policy administrators and made available for
PDP servers. The request/response language is used for supporting the communica-
tion between PEP clients and PDP servers. A PEP queries a PDP whether a particular
access should be allowed using XACML, and the PDP describes answers to those
queries also using XACML. The RBPIM framework described in this paper also uses
the PDP/PEP approach. However, our approach differs from XACML from several
points. First, the RBPIM uses a standard COPS protocol for supporting the PEP/PDP
communication. Second, the information model used for describing policies is based
on a PCIM extension. Third, RBPIM has been implemented to support a specific ac-
cess control method, the RBAC. That permits to define a complete framework that in-
cludes the algorithms in the PDP especially conceived for evaluating policies that in-
cludes hierarchy of roles and both, dynamic and static separation of duties.

Most of the research efforts found in the literature refer to the use of the PCIM
model and its extensions for developing policy management tools for QoS support
[12]. However, a pioneer work for defining a PCIM extension for supporting RBAC,
called CADS-2, has been proposed by BARTZ, L.S. [3]. The CADS-2 is a review of a
previous work, called hyperDRIVE, also proposed by BARTZ [2]. The hyperDRIVE
is a LDAP schema for representing RBAC. This schema can be considered as a first
step for implement RBAC using the PDP/PEP approach. However, hyperDRIVE was
elaborated before the PCIM standard, and has been discontinued by the author. As
hyperDRIVE, CADS-2 defines classes suitable to be implemented in a directory-
based repository, such as LDAP. In the CADS-2 approach, the permissions are ex-

A Policy-Based Framework for RBAC 183

pressed in terms of �having access to services�. A service has subordinated objects
called ServiceAccessPoint (SAP), which are, in fact, the protected objects in the
RBAC model.

The RBIM model described in the section 3 uses the idea of mapping roles to users
using Boolean expressions, proposed by the CADS-2 model. Note that this approach
offers an additional degree of freedom for creating RBAC policies because the rela-
tionship between user and roles can be expressed through Boolean expressions instead
of a direct mapping. However, the RBPIM work differs from the CADS-2 model from
several points. Many features have been introduced in order to support the other ele-
ments of the RBAC model, such as hierarchy of roles, DSD (Dynamic Separation of
Duty) and SSD (Static Separation of Duty), defined in the proposed NIST standard
[1], but not present in the CADS-2 model. Also, in the RBPIM, Boolean expressions
are built using the PCIM extensions proposed in RFC 3460, not available in the origi-
nal release of the CADS-2 model.

3 RBPIM: The Role-Based Policy Information Model

Fig. 1 shows the PCIM model, and the proposed RBPIM extensions for supporting
RBAC policies. In the PCIM approach, a policy is defined as a set of policy rules
(PolicyRule class). Each policy rule consists of a set of conditions (PolicyCondition
class) and a set of actions (PolicyAction class). If the set of conditions described by
the class PolicyCondition evaluates to true, then a set of actions described by the class
PolicyAction must be executed. A policy rule may also be associated with one or
more policy time periods (PolicyTimePeriodCondition class), indicating the schedule
according to which the policy rule is active and inactive. Policy rules may be aggre-
gated into policy groups (PolicyGroup class) and these groups may be nested, to rep-
resent a hierarchy of policies.

In a PoliceRule, rule conditions can be grouped by two different ways: DNF (Dis-
junctive Normal Form) or CNF (Conjunctive Normal Form). The way of grouping
policy conditions is defined by the attribute ConditionListType in the PolicyRule
class. Additionally, the attributes GroupNumber and ConditionNegated, in the asso-
ciation class PolicyConditionInPolicyRule (the attributes are not shown in the Fig. 1)
helps to create condition expressions. In DNF, conditions within the same group
number are ANDed and groups are ORed. In CNF, conditions within the same group
are ORed and groups are ANDed.

The RFC 3460 proposes several modifications in the original PCIM standard.
These modifications are called PCIMe (Policy Core Information Model Extensions)
[6]. PCIMe solves many practical issues raised after the original PCIM publication. In
the PCIMe, PolicyCondition have been extended in order to support a straightforward
way for representing conditions by combining variables and values. This extension is
called SimplePolicyCondition. The strategy defined by SimplePolicyCondition is to
build a condition as a Boolean expression evaluated as: does <variable> MATCH
<value>? Variables are created as instances of specializations of PolicyVariable. The
values are defined by instances of specializations of PolicyValue. The MATCH ele-
ment is implicit in the model. PCIMe defines two types of variables: explicit (Policy-
ExplicitVariable) and implicit (PolicyImplicitVariable). Explicit variables are used to

184 Ricardo Nabhen et al.

build conditions that refer to objects stored in a CIM repository. Implicit variables are
used to represent objects that are not stored in a CIM repository. They are especially
useful for defining filtering rules with conditions based on protocol headers, such as
source and destination addresses or protocol types. For supporting filtering rules,
PCIMe defines several specializations of PolicyImplicitVariable, such as PolicySour-
ceIPv4Variable, PolicySourcePortVariable, etc. Please, refer to the RFC 3460 for
more details about this approach.

-ConditionGroupNumber
PolicyCondition PolicyAction (abstract)-TimePeriod

PolicyTimePeriodCondition

* ** *
-RoleName
-InheritedRoles[]

RBACRole **

-PermissionName
RBACPermission **

RBACPolicyGroup **

-AssignedRBACPermission
AssignerRBACPermission **

-DSDName
-RoleSet[]
-Cardinality

DSDRBAC **

-AssignedOperation[]
AssignerOperation **

-SSDName
-RoleSet[]
-Cardinality

SSDRBAC **

**

*

*

SimplePolicyCondition

+ConditionListType
-RulePriority

PolicyRule

*

*

*

*

PolicyVariable

PolicyValue

*
1

*

1

**
RBPIM
classes

PolicyCondtionInPolicyRule

Fig. 1. PCIM/PCIMe class hierarchy and RBPIM extensions

The RBPIM class hierarchy is also shown in the Fig. 1. The following classes have
been introduced: RBACPermission and RBACRole (specializations of PolicyRule),
AssignerPermission and AssignerOperation (specializations of PolicyAction),
DSDRBAC and SSDRBAC (specializations of Policy , not shown in the figure). The
RBACPolicyGroup class (specialization of PolicyGroup) is used to group the infor-
mation of the constrained RBAC model. As shown in Fig. 1, the approach in the
RBPIM model consists in using two specializations of PoliceRule for building the
RBAC model: RBACRole (for representing RBAC roles) and RBACPermission (for
representing RBAC permissions). RBACRole and RBACPermission follows the same
semantic proposed by the standard class PoliceRule, i.e., if the set of the conditions
associated to the class are evaluated true, than the corresponding set of actions are
executed. This approach offers a flexible method for representing the relationship
between user and roles and between roles and permissions using DNF or CNF expres-
sions. RBACRole can be associated to lists of SimplePolicyCondition, Assign-
erRBACPermission and PolicyTimePeriodCondition instances. The instances of Sim-
plePolicyCondition are used to express the conditions for a user to be assigned to a
role (UA relationship). The instances of AssignerRBACPermission are used to express
the permissions associated to a role (PA relationship). The instances of PolicyTime-
PeriodCondition define the periods of time a user can activate a role. RBACPermis-
sion can be associated to a list of SimplePolicyCondition and AssignerOperation in-
stances. The instances of SimplePolicyCondition are used to describe the protected
RBAC objects and the instances of AssignerOperation are used to describe approved
operation on these objects. The SSDRBAC and DSDRBAC classes permit to describe
static and dynamic separation of duty constraints. The RBPIM model defines SSD
and DSD with two attributes: a roleSet[] that includes two or more roles, and a cardi-

A Policy-Based Framework for RBAC 185

nality greater than one indicating the maximum combination of roles in the set a user
can be assigned (SSD) or activate within a session (DSD), e.g., for constraining a user
to assume the roles �r1� and �r2�, one must define a set {r1, r2} with cardinality 2
(the user can assume cardinality-1 roles in the set).

The example in Fig. 2 to illustrates the use of the RBPIM model. The RBACRole in
the figure was called �role1�. The attribute InheritedRoles is used for expressing the
Hierarchical RBAC, i.e., the role �role 1� inherits the permissions of roles �role2� and
�role3�. The UA relationship for �role1� is defined as:

IF �PolicySourceIPv4Variable MATH 192.168.10.0/24� AND �Per-
son.BusinessCategory MATCH CT*� AND �PolicyTimePeriodCondition MATCH
[20020701,20020831]�.

The PA relationship is defined by the reference to the permission object
�App_Directory�, shown in the Fig. 2. This permission defines the operations {R,W}
are approved when Directory.Name MATH �/etc/application�. Observe how the use
of explicit variables permits leveraging the information of existing CIM repositories.
As well as PCIM, the RBPIM model is implementation neutral. RBPIM mapping to
LDAP schema has been implemented according to the IETF standard PCLS [9].
Please, refer to [9] for a detailed description of the PCIM and LDAP mapping.

ConditionListType = DNF
RulePriority = 1
RoleName = role1
InheritedRoles[] = {role2,role3}

obj : RBACRole **

ConditionGroupNumber = 1
obj : SimplePolicyCondition

obj : PolicySourveIPv4Variable

IPv4AddrList[] = 192.168.10.0/24
obj : PolicyIPv4AddrValue

ConditionGroupNumber = 1
obj : SimplePolicyCondition

ModelClass = Person
ModelProperty = BusinessCategory

obj : PolicyExplicitVariable

StringList[] = CT*
Object1 : PolicyStringValue

AssignedRBACPermission = App_Directory
obj : AssignerRBACPermission **

ConditionListType = DNF
RulePriority = 1
PermissionName = App_Directory

obj : RBACPermission **

StringList[] = /etc/application
obj : PolicyStringValue

ModelClass = Directory
ModelProperty = Name

obj : PolicyExplicitVariable

AssignedOperation[] = {R,W}
obj : AssignerOperation **

ConditionGroupNumber = 1
TimePeriod = 20020701/20031201

obj : PolicyTimePeriodCondition

Fig. 2. Object instances of the RBPIM model

4 RBPIM Framework

The RBPIM Framework follows the PDP/PEP approach [10]. The IETF defines that
the PEP and the PDP communicates using the COPS (Common Open Policy Service)
protocol [11]. The COPS protocol defines two models of operation: outsourcing and
provisioning. In the outsourcing model, the PDP receives policy requests from a net-
work node (PEP), and determines whether or not to grant these requests. By the other
hand, in the provisioning model, rather than responding to PEP events, the PDP pre-
pares and "pushes" configuration information to the PEP. This takes place as a result
of external events (unrelated to the PEP) such as change of applicable policy, time of
day, expiration of account quota, or information from third party (non-PEP) signaling.
In the provisioning approach, a PEP can answer to events based on the locally stored
policy information. Fig. 3 illustrates the main elements in the RBPIM framework.
RBPIM framework adopts the PDP/PEP model using a �pure� outsourcing approach,
i.e., the PDP carries most of the complexity and the PEP is comparatively light.

186 Ricardo Nabhen et al.

Network Node

RBAC API

application

Network Node

RBAC API

application

RBPEP RBPEP

RBPDP

State Base

RBAC
Outsourcing
Algorithms

CIM/Policy
Repository

(LDAP)

Policy Management
Tool

LDAP

LDAP

COPS
(protocol)

TCP PORT
(3288)

Fig. 3. RBPIM Framework Overview.

In the RBPIM framework, the PEP is called Role-Based PEP (RBPEP). The Role-
Based PDP (RBPDP) is a specialized PDP responsible for answering the RBPEP
questions. The RBPDP has an internal database (called State DataBase) used for
storing the state information of the RBPEP. The CIM/Policy Repository is a LDAP
server that stores both: objects that represent network information such as users,
services and network nodes and objects that represents policies (including the RBPIM
model described in the section 3). The Policy Management Tool is the interface for
updating CIM/Policy repository information and for administrating the PDP service.

The RBPEP is basically a software library that simplifies the task of building
�RBAC-aware� applications. It offers a high level programming interface for map-
ping the RBAC APIs to COPS messages addressed to the RBPDP. The RBAC API's
used in the RBPIM framework are based on the RBAC functional specifications de-
scribed in the proposed NIST standard [1]. The NIST standard defined five supporting
system functions1: CreateSession (user, session): creates the user session and pro-
vides the user with a default set of roles. The session identifier is supposed to be gen-
erated by the underlying system. AddActiveRole(user, session, role): adds a role as an
active role for the current session. DropActiveRole (user, session, role): deletes a role
from the active role set for the current session. CheckAccess (session, operation, ob-
ject, out: result): determines if the session subject has permission to perform the re-
quested operation on an object. The result is BOOLEAN. DeleteSession(user, ses-
sion): deletes a given session with a given owner user. Based on the NIST supporting
system functions proposed by NIST, the RBPIM framework defines a set of five
API's:

• RBPEP_Open ()
• RBPEP_CreateSession(userdn:string; out session:string, roleset[]:string, uses-

sions:int)
• RBPEP_SelectRoles(session: string, roleset[]:string; out result:BOOLEAN)
• RBPEP_CheckAccess(session: string, operation:string, objectfilter[]:string; out

result:BOOLEAN)
• RBPEP_CloseSession(session:string)

As mentioned before, RBPEP maps the RBPEP calls to COPS messages. The
COPS for outsourcing model defines several messages, but the most important are
REQ (Request) and DEC (Decision), which are used to encapsulate the

1 In the NIST standard, supporting system functions refer to the process of creating a session,

activating roles and checking access permissions.

A Policy-Based Framework for RBAC 187

RBPEP_CreateSession, RBPEP_SelectRoles and RBPEP_CheckAccess API's. The
REQ message encapsulates the parameters passed by the PEP to the PDP, and the
DEC message encapsulates the messages returned by the PDP to the PEP.

The RBPDP module implements a set of algorithms triggered by the COPS mes-
sages sent by the RBPEPs. These algorithms interpret the RBAC policies stored in the
CIM/Policy repository and the state information of the RBPEP sessions (stored in a
relational state-database), and answer the RBPEP using the COPS protocol. Note that
the state-database is a database internal to the RBPDP and its information is not de-
scribed in the RBPIM model. The RBPEP API and the respective PDP algorithms are
described next in this section. The most important algorithms implemented by the
RBPDP are those related to the RBPEP_CreateSession, RBPEP_SelectRoles and
RBPEP_CheckAccess. Some obvious error treatment have been omitted in order to
simplify the presentation of the algorithms.

RBPEP_Open. The Open is the only API not related to RBAC. It establishes the con-
nection between the PEP and the PDP. The API could be used by an application to
ask the RBPEP to initiate the RBAC service. The RBPEP will process the API only if
it is not already connected to the PDP.

RBPEP_CreateSession. The CreateSession API establishes a user session for the user
and returns the set of roles assigned to the user that satisfies the SSD constraints
(roleset[]). This approach differs from the standard CreateSession() function because
it does not activate a default set of roles for the user. Instead, the user must explicitly
activate the desired roles in a subsequent call to the RBPEP_SelectRoles API. This
modification avoids the need of the user to drop unnecessarily activated roles in order
to satisfy DSD constraints. In order to call the CreateSession API, an application must
specify the user through a DN (distinguish name) reference to a CIM Person object
that represents the user (userdn). The RBPIM framework does not interfere in the
authentication process. It supposes the application have already authenticated the user
and mapped the user login to the corresponding entry in the CIM repository.

Because the DSD constraints are imposed only within a session, the CreateSession
API also returns the number of sessions already opened by the user (usessions). The
application can abort the CreateSession process by calling DeleteSession, if it does
not desire to serve a user with sessions already open. Finally, the session parameter is
a unique value generated by the RBPEP and returned to the application in order to be
used in the subsequent calls. Presently, the approach defined by the RBPIM frame-
work consists in using a RBACPolicyGroup object for grouping the RBAC objects. In
the CIM/Policy repository, the RBACPolicyGroup objects are associated to �organi-
zation units� by DIT containment. By using the attribute organizational unit (�OU�)
in the CIM Person object, the algorithm determines the corresponding RBACPolicy-
Group object associated to the user. The algorithm for the RBPEP_CreateSession API
is defined as follows:

1. If the session already exists in the state database then returns a <Error> object in
the DEC message. Otherwise, go to Step 2.

2. Determine Ra as the list of �candidate� roles (RBACRoles objects) associated to
the RBACPolicyGroup object in the organization unit of the user.

188 Ricardo Nabhen et al.

3. Determine Rb as the list of RBAC roles, subset of Ra, which conditions are satis-
fied by the CIM Person object pointed by userdn.

4. Determine Rc as the list of RBAC roles, subset of Rc, that satisfy the time con-
straints defined by the PolicyTimePeriodCondition.

5. Determine Rd as the list of inherited roles indicated by the attribute Inherit-
edRoles of all RBACRole objects ∈ Rb.

6. Determine Re as the disjoint union: Rc ∪* Rd.
7. Determine SSD as the list of SSDRBAC objects associated to the RBACPolicy-

Group object in the organization unit of the user.
8. Determine Rf by removing from Re the roles that are constrained by SSD. The

roles with lowest priority (RulePriority attribute inherited by RBACRole from
PolicyRule) are removed first, until the Cardinality attribute of all SSD con-
straints is satisfied.

9. Create in the state database a record with the session, userdn, the roleset[] de-
fined by Rf and status=Phase1 and sends a DEC message with the parameters
roleset and usessions encapsulated in <Decision> objects.

RBPEP_SelectRoles. The SelectRoles API activates the set of roles defined by the
roleset[] parameter. This API evaluates the SSD constraints in order to determine
whether the set of roles can be activated or not. If all roles in the set roleset[] can be
activated, the function returns result=TRUE.

The SelectRoles API, differently from the standard AddActiveRole function, can be
evocated only once in a session. Also, in the RBPIM approach, the standard function
DropActiveRole was not implemented. We have evaluated that allowing a user to drop
a role within a session would offer too many possibilities for violating SSD con-
straints. The RBPEP_SelectRoles API activate in a session the set of roles defined by
the roleset[] argument. The SelectRoles API will activate the roles only if all roles in
roleset[] are presented in the session database and all of them are free of DSD con-
straints. The algorithm for the RBPEP_SelectRoles API is defined as follows:

1. If the session already exists in the state database with status=Phase1 go to Step 2.
If it doesn't, then returns a <Error> object in the DEC message.

2. Determine R as the list of references to roles (RBACRoles) objects associated to
the session in the state database.

3. If roleset[] ⊄ R then sends a DEC message indicating the operation has been de-
nied. Otherwise, go to Step 4.

4. Determine DSD as the list of DSDRBAC objects associated to the RBACPolicy-
Group object in the organization unit of the user.

5. If roleset[] violates the DSD constraints then sends a DEC message indicating
the operation has been denied. Otherwise, go to Step 6.

6. Update the state database by storing roleset[] as the list of active roles in the ses-
sion and define status=Phase2. Then, sends a DEC message with result=true en-
capsulated in a <Decision> object.

RBPEP_CheckAccess. The CheckAccess API is similar to the standard CheckAccess
function proposed by the NIST. This API evaluates if the user has the permission for
executing the operation on the set of objects specified by the filter objectfilter[].

A Policy-Based Framework for RBAC 189

The objectfilter[] is a vector of expressions of type �PolicyImplicitVari-
able=PolicyValue� or �PolicyExplictyVariable=PolicyValue� used for discriminating
one or more objects. In the current RBPIM version, the expressions in objectfilter[]
are ANDed, i.e., only the objects that simultaneously satisfy all the conditions in the
vector are considered for authorization checking. The explicit variables expressions
are evaluated independently, and must belong to the same object class in order to
avoid an empty set of objects. To consider association between the CIM classes is a
complex issue let for future studies. As an alternative, a condition �DN=value�, based
on the distinguished-name of an object, can be passed in the object filter to uniquely
identify a CIM object, leaving to the application the responsibility of querying the
CIM repository. Explicit variable conditions may define one or more CIM objects.
For example, {�DataFile.Readable=true�, �DataFile.Name=*.doc�} will probably
define a set of objects instead of a single object. Say Φ as the set of objects defined by
the objectfilter[] in the RBPEP_CheckAccess API. The CIM objects in the Φ can be
retrieved by a single LDAP query which filter is based on the objectfilter[] condi-
tions. By the other hand, the RBACPermission objects associated to the roles activated
by the user may also contain conditions based on implicit and explicit variables and,
therefore, define another set of CIM objects, say ψ, also retrieved by a single LDAP
query. The RBPEB_CheckAccess API will return true if Φ ⊆ ψ. Because ψ can be
very large, the condition Φ ⊆ ψ is replaced by the equivalent expression Φ ⊆ θ, where
θ = ψ ∩ Φ. The θ set can also be determined by a single LDAP query, by defining a
LDAP filter that combines the conditions presented in the objectfilter[] and the
RBACPermission associated conditions. The implicit variables conditions such as
{�PolicyDestinationIPv4Variable=192.168.2.3�} are not used for creating the LDAP
queries, because implicit variables doest no correspond to objects in the CIM reposi-
tory. Instead, they are used for eliminating the RBACPermission objects that does not
satisfy the implicit variables in the objectfilter[] vector. The algorithm for the
RBPEP_CheckAccess API is defined as follows:

1. Verify if the session exists in the state database with status=Phase2. If it doesn't
than returns an <Error>. Otherwise, go to Step 2.

2. Determine Ra as the list of active roles in the session (references to objects
RBACRoles).

3. Determine Rb as the subset of Ra where the roles satisfy the time constraints
(PolicyTimePeriodCondition objects).

4. Determine Pa as the list of permission (RBACPermission) objects associated to
the roles ∈ Rb.

5. Determine Pb as the subset of Pa that includes only the permission objects
which implicit variables conditions satisfy the implicit variables conditions in the
objectfilter[] vector passed by the RBPEP API.

6. Determine O as the list of operations (AssignerOperation) objects associated to
the permission object ∈ Pb .

7. Determine Pc as the subset of Pb that include only the permission objects where
the operation passed by the RBPEP API ∈ O.

190 Ricardo Nabhen et al.

8. Determine θθθθ as the list of CIM objects that simultaneously satisfy the conditions
defined by the explicit variables in the objectfilter[] and the list of conditions
(SimplePolicyCondition) associated to the permission objects ∈ Pc.

9. Determine ΦΦΦΦ as the list of CIM objects that satisfy the explicit variables in the
objectfilter[].

10. Sends a DEC message with result = true if ΦΦΦΦ ⊆ θθθθ, otherwise, sends result=false.

RBPEP_CloseSession. The CloseSession API terminates the user session, and in-
forms to the PDP that the information about the session in the �state database� is no
longer needed.

The RBPEP_APIs are currently implemented in Java, and throws exceptions for in-
forming the applications about the errors returned by the PDP. Examples of excep-
tions are: �RBPEP_client not supported�, �non-existent session�, �userdn not valid�,
etc.

5 Evaluation

There are some important questions to evaluate in the RBPIM model. First, the strat-
egy adopted for representing UA (User Assignment) and PA (Permission Assign-
ment) relationship, based on implicit and explicit variables, is very flexible, but can
lead to a long policy decision response time. Other important issue is determining if
the outsourcing model is capable of a reasonable response time.

In order to evaluate the performance the RBPIM framework, a Java based RPPDP
and a RBPEP scenario simulator was implemented. This prototype is available for
download in [14]. In the evaluation scenario, twenty RBPEP clients request the
RBPIM policy service provided by a single PDP. Each RBPEP keep a distinct
COPS/TCP connection with the PDP. Several user sessions were created in the con-
text of each RBPEP connection. In order to simulate different load scenarios, we have
introduced a random delay between each API call evocated by the RBPEP client. By
varying the range of the random delay, we have created six load scenarios as shown in
Fig. 4. The figure also presents the results obtained using a Pentium IV 1.5 Ghz 256
Mb RAM for hosting the PDP, and other identical machine for hosting the 20 RBPEP
clients. Initially, we defined a small set with five role objects hierarchically related
and six permission objects, corresponding to a small set of departmental policies
grouped in a single RBACPolicyGroup object. Each role and permission object has
been defined considering a small set of three or four conditions combining implicit
and explicit variables. Also, three SSD constraints and one DSD constraint were con-
sidered. The result of this simple scenario is presented in Fig. 4. One observes from
the results that the RBPEP_CreateSession API correspond to the longest decision
time. This is justified by the fact that this API prepares the state database by retrieving
the list of the roles assigned to the user, free of SSD constrains.

After this initial test, the number of RBPIM objects has been increased. Each
RBPIM object affects differently the response time of the RBPEP_APIs. Because of
the flexibility introduced in the UA relationship by the RBPIM approach, the number
of roles objects significantly affects the RBPEP_CreateSession API. Increasing the

A Policy-Based Framework for RBAC 191

number of roles from five to twenty has almost doubled the average response time. By
the other hand, the effect of increasing the number of SSD objects is not important.
The response time of other APIs are not affected because the roles assigned to the
user are saved in the state database for subsequent calls. The RBPEP_SelectRoles is
almost imperceptible affected by the number of DSD objects and the other RBPIM
objects do not affect it. By analyzing the algorithms described in section 4, one could
suppose the number of permission objects associated to the roles should affect the
RBPEP_CheckAccess. However, our tests shown that increasing the average number
of permissions per role from two to ten has no significant effect in the response time.
The justification for this result is that steps 8 and 9 in the CheckAccess algorithm are
solved with a single LDAP query that creates a complex filter combining the condi-
tions of all permission objects. Similarly, in all APIs, increasing the number of condi-
tions associated to a role or permission object has no significant effect, because the
DNF or CNF conditions are transformed in a single LDAP query.

After this initial test, the number of RBPIM objects has been increased. Each
RBPIM object affects differently the response time of the RBPEP_APIs. Because of
the flexibility introduced in the UA relationship by the RBPIM approach, the number
of roles objects significantly affects the RBPEP_CreateSession API. Increasing the
number of roles from five to twenty has almost doubled the average response time. By
the other hand, the effect of increasing the number of SSD objects is not important.
The response time of other APIs are not affected because the roles assigned to the
user are saved in the state database for subsequent calls. The RBPEP_SelectRoles is
almost imperceptible affected by the number of DSD objects and the other RBPIM
objects do not affect it. By analyzing the algorithms described in section 4, one could
suppose the number of permission objects associated to the roles should affect the
RBPEP_CheckAccess. However, our tests shown that increasing the average number
of permissions per role from two to ten has no significant effect in the response time.
The justification for this result is that steps 8 and 9 in the CheckAccess algorithm are
solved with a single LDAP query that creates a complex filter combining the condi-
tions of all permission objects. Similarly, in all APIs, increasing the number of condi-
tions associated to a role or permission object has no significant effect, because the
DNF or CNF conditions are transformed in a single LDAP query.

 Average RBPDP Decision Time (ms)

0
50

100
150
200
250
300

1 2 3 4 5 6

Load Scenario

Load Scenario:
1. Delay Range: 5 to 10 s
 (2.7 API calls per second)
2. Delay Range: 4 to 8 s
 (3.3 API calls per second)
3. Delay Range: 3 to 6 s
 (4.4 API calls per second)
4. Delay Range: 2 to 4 s
 (6.7 API calls per second)
5. Delay Range: 1 to 2 s
 (13.3 API calls per second)
6. Delay Range: 0 to 1 s
 (40.0 API calls per second)

RBPEP_CreateSession
RBPEP_SelectedRoles
RBPEP_CheckAccess

Fig. 4. Average Time RBPDP decision x API calls

192 Ricardo Nabhen et al.

6 Conclusion

This paper has presented a complete policy based framework for implementing
RBAC policies in heterogeneous and distributed systems. This framework, called
RBPIM, has been implementing in accordance with the IETF standards PCIM and
COPS, and also, the proposed NIST RBAC standard. The framework proposes a
flexible RBAC model, which permits specifying the relationship between users, roles,
permissions and objects by combining Boolean expressions. The performance
evaluation of the outsourcing model indicates that this approach is suitable for sup-
porting RBAC applications that requires decisions based on user events. This paper
does not discuss the problems that could rise if the PDP breaks. Future works must
evaluate alternative solutions for introducing redundancy in the PDP service. Also,
additional specifications are required for assuring a secure COPS connection between
the PDP and the RBPEPs. These studies will be carried out in parallel with the
evaluation of provisioning and hybrid approaches for implementing the RBPIM
framework. Finally, some studies are being developed for evaluating the use of the
RBPIM framework for QoS management based on RBAC rules.

References

[1] D.F. Ferraiolo, R.S. Sandhu, G. Serban: A Proposed Standard for Role-Based
Access Control. ACM Transactions on Information System Security, Vol. 4,
No. 3, (2001) 224-274.

[2] L.S. Bartz: LDAP Schema for Role Based Access Control, IETF Internet Draft,
expired, (1997).

[3] L.S. Bartz: CADS-2 Information Model, not published. IRS: Internal Revenue
Service (2001).

[4] Distributed Management Task Force (DMTF), Common Information Model
(CIM) Specification, URL: http://www.dmtf.org (2003).

[5] B. Moore, E. Elleson, J. Strasser, A. Weterinen: Policy Core Information
Model. IETF RFC 3060, February 2001.

[6] B. Moore, E. Elleson, J. Strasser, A. Weterinen: Policy Core Information
Model Extensions. IETF RFC 3460, February 2001.

[7] W. Yeong, T. Howes, S. Killie: LightWeight Directory Access Protocol. IETF
RFC 1777, March, 1995.

[8] Distributed Management Task Force (DMTF): Guidelines for CIM-to-LDAP
Directory Mappings. whitepaper, May 8th, 2000, URL: http://www.dmtf.org

[9] J. Strassner, E. Ellesson, B. Moore, R. Moats: Policy Core LDAP Schema.
IETF Internet Draft, January 2002.

[10] R. Yavatkar, D. Pendarakis, R. Guerin: A Framework for Policy-based Admis-
sion Control. IETF RFC 2753, January 2000.

[11] D. Durham, Ed., J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry: The COPS
(Common Open Policy Service) Protocol, IETF RFC 2748, January 2000.

[12] Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, B. Moore: Policy QoS Informa-
tion Model. IETF internet-draft, November 2001.

A Policy-Based Framework for RBAC 193

[13] OASIS: eXtensible Access Control Markup Language (XACML) -Version
1.03. OASIS Standard, February 2003, URL: http://www.oasis-open.org

[14] RBPIM Project WebSite. URL:http://www.ppgia.pucpr.br/~jamhour/RBPIM,
(2003).

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 194-196, 2003.
 IFIP International Federation for Information Processing 2003

Management += Grid

Sven Graupner, Vijay Machiraju, Akhil Sahai, and Aad van Moorsel

HP Laboratories
1501 Page Mill Road, Palo Alto CA 94304, USA
{svgr,vijaym,asahai,aad}@hpl.hp.com

State of the art management products have until now focused on monitoring of re-
sources such as networks, systems, servers and applications. Management usually does
not deal with handling the complete resource life-cycle, i.e., of providing resources
on-demand to application providers, matching and allocating resources to users so that
application requirements are best met, providing guarantees through service level
agreements, and monitoring and assuring these SLAs. Grid aims to provide seamless
access to computational resources. In Grid based systems and the latest initiative of
Open Grid Service Infrastructure (OGSI) [3] concepts related to discovery of network
topology, allocation based on farms, monitoring towards certain goal (as specified in
SLAs), and control to assure these goals are missing. However, there are parallels
between grid and traditional management systems. A grid just like traditional man-
agement systems is comprised of grid nodes each of which manages a group of re-
sources. The management+ [1] system that we propose, will be able to manage the
complete life-cycle of resources assigned to applications, provided, Grid technologies
are used for reserving, allocating, and handing over resources to applications and
traditional management functionalities are incorporated that deal with monitoring and
control.

A management+ system will be comprised of grid nodes that communicate with
each other to coordinate the tasks of resource allocation and management. The man-
agement+ system may be used for managing a resource pool inside the enterprise or
spanning multiple enterprises. In order to do so, the management+ system needs ca-
pabilities to discover the resources so as to create a resource pool, maintain & model
the resource information, be able to provide resources to application providers on
receiving requests, be able to provide guarantees as agreed upon through Service-
Level Agreements, and by monitoring and assuring them. This poses the following
requirements for the management+ system:

Resource Discovery: Under the realm of each grid node are collections of resources
that are allocatable and manageable by that grid node, that need to be registered and
discovered. The registration information may be maintained in a central repository
that may be LDAP based (as in traditional Grid) or in a UDDI based registry. The
other approach is to let each of the grid nodes manage their own repository, but to
have protocols similar to p-2-p systems for searching resources amongst grid nodes.

Management += Grid 195

Resource Modeling: Resources that are managed by the grid or those even within a
grid node are heterogeneous in nature. They are of different types, potentially distrib-
uted in different geographic locations and administrative domains (e.g., consolidated
in racks vs. located on desktops). Modeling is therefore an important task for the man-
agement+ system. A relevant resource model is CIM.

Requesting Resources and Guarantees: Application providers need to specify their
requests to the management+ system in some form. The specification of the request
may be done in terms of application level metrics (e.g. throughput, transactions/sec) or
at a low-level, an enhanced RSL may be used. The guarantees may be provided in
terms of reliability, availability, security, timeliness through SLA[5].

Resource Allocation and Deployment: Resource requests are sent to the manage-
ment+ system that then undertakes resource reservation, allocation and deployment.
Resource reservation is done when the resources are not immediately required. The
management+ system has to keep a note of all the competing reservations and of en-
suring that the resource pool is being properly utilized. As the reservations become
current, requests for resources are satisfied through match-making [3].

Monitoring Guarantees: Traditionally, applications are installed and operated on a
fixed set of associated, physical hardware. In management+ system, resources virtual-
ize the physical hardware. This virtualization provides the capability of transparently
switching the physical hardware (in case of degradations/failures) while maintaining
the transparency of a continually running application. The metrics specified on the
resources in SLAs have to be monitored and aggregated into higher-level metrics that
business manager(s) may relate to.
Assuring Guarantees: Once the SLA violations are detected, it is important for the
management+ system to take corrective actions. Analysis tools are employed to ana-
lyze the violation data so as to decide on corrective action(s). The corrective action
may range from taking one of the control actions like fail-over, reboot/rejuvenation of
the resources to transparently switching the failed resources with new set of resources
out of the resource pool. These new resources are obtained through the same resource
allocation and deployment mechanisms as discussed earlier. This may enable closed-
loop management.

Conclusion

Management+ system combines traditional management and grid technologies.

References

[1] Sahai A, Machiraju v, van Moorsel A. A System that combines Grid and Man-
agement technologies for Closed Loop Enterprise IT Management. HPL Inven-
tion disclosure #200310038 (patent pending).

[2] Platform Computing . http://www.platform.org

196 Sven Graupner et al.

[3] Raman R, Livny M, Sloman. M . Match-Making: Distributed Resource Man-
agement for High Throughput Computing. Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, July
28-31, 1998, Chicago, IL.

[4] Foster I., Kesselman C, Nick J.M., Tuecke S. The Physiology of the Grid.
http://www.globus.org/research/papers/ogsa.pdf

[5] Sahai A, Graupner S, Machiraju V, van Moorsel A. Specifying and Monitoring
Commercial Grids through SLA. CCGrid, May 2003.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 197-199, 2003.
 IFIP International Federation for Information Processing 2003

A Web Services Signaling Approach over Optical
Networks for SAN Applications

Omar Cherkaoui1, Nathalie Rico2, T. Dieu Linh Truong1,
Halima Elbiaze1 and Viet Minh Nhat Vo1

1Université du Québec à Montréal,
C.P. 8888 succ. A., Montréal, H3C-3P8, Canada

2 Université de Montréal

Abstract. Storage Area Network (SAN) promise both a single source
of data and improved performance and availability. SAN are extended
to a WAN infrastructure to offer easier sharing over multiple locations.
This created a need for bandwidth which can be provided by the un-
derlying optical transport network. In this paper, we propose a policy-
based lightpath signaling approach based on the OpenGrid architecture
allowing SAN applications to dynamically establish and provision
lightpaths over an optical network.

1 SAN Management Architecture

The storage industry is undergoing a revolution. The emerging technologies such as
the SAN promise both a single source of data and improved performance and avail-
ability. A SAN is a means to allow multiple servers to have direct access to common
storage devices or storage pool. Today, SAN are deployed over a LAN infrastructure.
The increasing need to share information across organizations led companies to ex-
tend the SAN over WAN. IETF and other organizations proposed different solutions
for realizing a SAN over the IP network. SAN applications need to have access to the
required bandwidth provided by the underlying optical transport network to obtain
adequate performance. We propose a lightpath signaling approach based on the
OpenGrid architecture allowing SAN applications to establish and control lightpaths
over an optical network. To address the admission control and scalability issues, we
use a policy-based approach providing a flexible means to control the set-up of opti-
cal lightpaths.

VSAN (Virtual SAN) is like a virtual private network dedicated to exchange stor-
age traffic. The network architecture for VSAN is composed of SANs interconnecting
through the Internet WANs. To facilitate the management and control, a policy server
in each SAN store the service policies. It is used to activate a service, to reserve the
storage units and to configure the FC switches to build routes from the hosts to the
storage units. A service provider who has available VSAN services advertises them
on a web site. The web site may be located locally or on a common web server such
as an UDDI (Universal Description, Discovery and Integration) database server.

198 Omar Cherkaoui et al.

The proposed signaling approach is based on the Open Grid Services Architecture
(OGSA) [2]. The architecture incorporates a policy framework to control the estab-
lishment of lightpaths on high-speed networks (see Figure 1). The OGSA integrates
Grid technologies with Web service mechanisms to create a distributed system
framework based around the Grid Service. Grid services conform to WSDL inter-
faces for such purpose as discovery of characteristics, notification, etc. OGSA intro-
duces registration interfaces for creating and discovering services. The availability of
lightpaths and cross connects is advertised through standards based registry services
such as UDDI and WSIL (WSIL (Web Services Inspection Language). LPO (Light-
Path Object) registries contain all the services for creating the end-to-end lightpath.
The LPO Factories are independent abstract components, which discover and register all
provisioned end-to-end lightpaths for a given domain with dedicated Grid service registry.
Network reachability information is exchanged between systems to construct the
paths, allowing the creation and control of lightpaths. The solution allows communi-
cation with source and destination routes to create a new forwarding path along es-
tablished lightpath and provides the capability to control the state of the lightpath.
Interfaces have been developed to offer services for SAN application, which will
query the lightpath registry services and establish an end-to-end lightpath. A policy
manager is used to control user access. SAN needs can be translated in a policy con-
dition. End-to-end lightpath are created according to a specified policy rule or defined
network management policies. The policy server provides service for specifying and
saving policies. The policy registry allows advertising the policy services. The sig-
naling approach uses WSDL-based policy services for admission control and other
policy services. The Grid resource management model is based on CIM (Common
Information Model) [3] and its policy extension PCIM, allowing an efficient ex-
change of policy information. The preliminary implementation experiments demon-
strate the Web-based signaling approach for creating and controlling the lightpath
according to different policy conditions. The policy approach helps achieve an opti-
mal utilization of network resources required by SAN applications.

User

Policies

LPO Factory

LPO I/F

light path
creation

WSIL

LPO Factory

LPO I/F

Policies

LPO Factory
LPO I/F

 Publish service
of creating policies

WDSL
Policies and Request plan

Policy Creaction
Agent

Policy
Service

Registries
consult service

WSIL

Policy
Registries

Network Equipement (NE) NE

LPO
Registries publish

service
WSDL

NE NE

Policy
Registries

LPO
Registries

Policy server

Policy Decision
Point

LPOServer
LPOSFacto
ry Resolver

Central
PolicyEditor

Central Control

WSIL

publish
service
WSDL

Policy server

Policy Decision
Point

LPOServer
LPOSFacto
ry Resolver

Fig. 1. Architecture

A Web Services Signaling Approach over Optical Networks for SAN Applications 199

We proposed a signaling approach based on the Open Grid architecture to dynami-
cally provision lightpaths for end-to-end high volume SAN data transfers. SAN ap-
plications that need large high-speed bandwidths can use the policy services for con-
trolling the access, set-up and tearing down the lightpaths based on policy conditions.

References

[1] Ravi Kumar Khattar et al, Introduction to Storage Area Network (SAN),
Redbooks.

[2] I. Foster and al., “The Physiology of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration”, OGSI WG, Global Grid Forum,
June 22, 2002.

[3] CIM Schema, version 2.x. DMTF,
http://www.dmtf.org/standards/standard_cim.php

A Self-Configuring Sensing System

for Data Centers

Malena Mesarina, Cyril Brignone, Tim Connors, Mehrban Jam, Geoff Lyon,
Salil Pradhan, and Bill Serra

Hewlett-Packard Laboratories
Palo-Alto, CA 94304, USA

Abstract. Wiring sensors in a data center is extremely expensive in
comparison to the wiring of computing equipment. This is due to the
central architecture of traditional sensing systems, which requires long
wires to be connected between racks and a central box. In addition,
a re-layout of the racks after the sensor wires are deployed is practi-
cally impossible. We propose using a wireless self-configuring network
of smart sensing nodes to alleviate these problems. We explore how to
design the sensor control software to be self-reconfiguring when nodes
relocate. The software is divided in three layers: network organization,
data aggregation and visualization. In this paper, we identify several in-
sights into the thermal monitoring requirements, design issues and initial
design solutions for these layers.

1 Introduction

We propose a self-configuring, wireless sensing network to eliminate the labor
cost of wiring a sensor1 and facilitate the re-layout of racks. The nodes in the
network are able to locate themselves, using a time-of-flight method, with a pre-
cision of less than 5 cm [1]. The thermal monitoring software is structured in lay-
ers of network, data aggregation and visualization functions. Self-configuration
means automatic adaptation of these layers to node moves or failures. The net-
work layer adapts by updating data routes; the aggregation layer by reselecting
clusters of sensors and the visualization layer by relocating objects in its model.
The adaptive algorithms are distributed for the network and centralized for the
aggregation and visualization layers. In this report on a first experimental im-
plementation, we identify requirements, design problems, tradeoffs, and provide
insights into initial algorithmic solutions.

2 Software Layers

The layers mentioned above should meet the application’s requirements: to avoid
IP address assignment to sensors, the wireless and IP networks should be sepa-
rate and bridged by access points. Sensor reading is periodic or event triggered.
1 $1000 according to customers

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 200–201, 2003.
c© IFIP International Federation for Information Processing 2003

A Self-Configuring Sensing System for Data Centers 201

The data flows from sensors to access points, and between immediate neighbor
sensors. Data bit rate is low (5-10 kbps) and sensor density is high (5-7/m3).
The following assumptions are made: a node knows its location and its neigh-
bors’ locations and ids; nodes report their locations to access points, and the
radio has a fixed transmission power.

2.1 Network Configuration, Data Aggregation and Visualization

The network layer solves three problems: determining the number of access
points, finding routes from sensors to access points, and updating routes when
nodes move or fail. The number of access points depends on the maximum
number of sensors that talk to an access point, bandwidth, and cost. We use
a source routing approach for route discovery. The access points broadcast dis-
covery packets to nodes within a delineated area. A receiving node appends its
IDs and location and forwards the packet. Nodes construct multipaths using in-
formation from the discovery packets. Updating routes consists of deleting paths
from memory when a neigbor sensor moves or fails, and adding a new path when
a new neighbor node appears. The underlying localization algorithms in the node
detect when a node has moved or failed and notifies the network layer. A node
computes a new path with the new node as an intermediate node based on the
new node’s location and existing knowledge of paths.

The network aggregates packets to reduce the number of packet transmis-
sions, saving power and bandwidth. We use a 1-hop clustering scheme, where
a cluster-head acts as the data aggregator. The problems to solve are: cluster
formation, cluster-head selection, de-synchronization of data collection between
channel sharing clusters, and selection of non-colliding paths from cluster-heads
to access points. Cluster formation should be based on proximity, line of sight
between sensors, and historical data correlation. The cluster formation and clus-
ter algorithms are centralized and controlled by the access points, since they
require global knowledge of nodes locations and failures.

Given the location of sensors, our visualization tool, Geoview, creates a ge-
ometric model of the room in 3D, allowing the user to program the sensors by
clicking on the display.

2.2 Conclusions

We propose a self-configuring sensing infrastructure and control software that
adapts to sensor mobility. We identify several system requirements, design prob-
lems, tradeoffs and initial solution approaches. We plan to deploy our system
in a data center at HP Labs in Palo Alto in the fourth quarter of 2003. Low
implementation costs and reonfiguration latency will validate the efficiency of
our design in comparison to traditional methods.

References

[1] Brignone, C., Lyon, G.: Smartlocus: A location aware system for adaptive envi-
ronments, hpl-2003-41. Technical report, Hewlett-Packard (2003) 200

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 202-203, 2003.
 IFIP International Federation for Information Processing 2003

Towards Autonomic Business Activity Management

Jun-Jang (JJ) Jeng and Henry Chang

IBM T.J. Watson Research Center
Yorktown Heights, New York

Business activities can be highly complicated and dynamic. This complexity lies in the
number of activities and organization, and many business relationships between the
things that make up a business activity and its business environment. The dynamism of
business activities comes from the needs of continuously measuring, monitoring, con-
trolling and improving business activities. The systems providing this type of func-
tions and services are coined as Business Activity Management (BAM) systems. A
BAM system enables an enterprise to respond to emerging problems at right time.
Right time does not equal to real time though, in many cases, real-timeliness is one of
the requirements. Traditional techniques for building BAM systems are proven to be
inadequate in dealing with the aforementioned complexity. It is not uncommon for
some minor perturbation in some remote corner of the system to have unforeseen, and
at times catastrophic, global repercussions. In addition to being fragile, many situa-
tions arising from the extreme dynamism of these systems require manual intervention
to keep distributed applications functioning correctly. In our opinion, BAM systems
should possess the characteristics of confronting the high degree of complexity and
enabling the construction of robust, configurable, scalable, self-organizing and self-
managing distributed systems.

A typical electronics value chain consists of retailers, manufacturers and
parts/capacity suppliers. These value chain partners collaborate in the context of busi-
ness operations to deal effectively with dynamic changes in the marketplace. These
collaborative relationships enable synchronization of the orders, production schedule,
and parts supply plan. Traditional workflow management can help automate the busi-
ness activities that make up this scenario. The state-of-the-art involves modeling the
business processes and executing these models in an appropriate workflow engine.
The behavior of the resulting system is static in the sense that it cannot accommodate
any business situations not explicitly modeled at build-time. Therefore, a workflow
approach tend to create an infrastructure that will not be capable of handling business
related deviations or exceptions or evolutionary changes.

We propose using an adaptive entity named BABot (Business Activity Bot) as the
cornerstone of the BAM systems. Since the relationships among business activities
and entities are dynamic, the bindings between BABots at run time are dynamic as
well. A BABot consists of seven perspectives. The context perspective describes the
contextual information for the existence and behavior of a BABot. Being aware of
business contexts is essential for driving effective development of BABots. The intent
perspective describes the goal of a BABot and relates the goal to other goals, capa-

Towards Autonomic Business Activity Management 203

bilities, and values. The value perspective is the value-exchange view of the con-
cerned business activities. This uses the monitoring process heavily to sample and
analyze the operations of target business activities. The capability perspective speci-
fies and links what a BABot can do, from the strategy level to operation, to execution
level, and to the resource level. The constraint perspective regulates the logical rela-
tionships among values, capabilities, intents, and contexts. Constraints impose a set of
configurable commitments and rules upon designated BABots. The resource perspec-
tive specifies the resources governed by the enclosing BABot. Resources can be
shared among multiple BABots. The processes perspective describes how BABots
cooperate with one another and harness passive resources in order to execute capa-
bilities and to desired outcomes. Events trigger the commencement of processes. Five
processes are identified in BABot-based BAM systems, i.e., metric calculation, situa-
tion detection, situation analysis, decision making, and decision enforcement.

Consider the supply chain example. A conventional management system for supply
chain often consists of two layers: a planning layer and an execution layer, where the
planning layer allows business condition to be periodically analyzed in order to make
adjustment of work scheduling, supplier contract, or crucial resource allocations. The
execution layer is the daily operational process to carry out business functions by
following the preset rules and policies set up by the planning layer. Our approach
inserts a reactive layer between the planning and execution. Since the planning layer
has to be done periodically to avoid thrashing and destabilizing the execution system,
there will be process exceptions, special situations not responded well in the execution
layer. To provide real-time adjustment, the reactive management layer would predict,
localize and classify the situation. If the situation warrants a big adjustment of plan-
ning, an alert would be sent to the planning layer to ask for urgent rep-planning, such
as the disruption of goods supply during the event of war or market crash. The fol-
lowing diagram shows the sense-and-response support of a supply chain through the
BAM system. If the situation is repairable, the BAM system may resort to automatic
analytic algorithms to assess the damage and trigger an appropriate autonomic recov-
ery process.

Autonomic BAM system represents a natural evolution of the policy-based real-
time monitoring and reactive recovery functions of a complex system. A percentage
of the detected situations may be amendable for self-healing, self-management, and
self-optimization with minimal human interventions. Others may definitely need hu-
man involvement. Such being the case, the mathematical modeling techniques re-
quired for a autonomic business process is not far away from that needed for a IT
component such as storage subsystem. In the BAM domain, we believe that the auto-
nomic functions will emerge by adopting better prediction and optimization algo-
rithms for specific business domains, such as inventory replenishment in supply chain,
risk containment in finance. We are developing BABot-based BAM system as the
endeavor towards an enabling infrastructure for self-managing BAM systems. We will
investigate cloning, versioning, and mobility of BABots with an eye towards non-
functional requirements such as performance, availability, fail-over, and migration that
are critical to the success of BABot in practice. This infrastructure is being applied to
real-world scenarios including supply chain, logistics, finance, insurance, and manu-
facturing.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 204-206, 2003.
 IFIP International Federation for Information Processing 2003

Idiosyncratic Signatures
for Authenticated Execution of Management Code

Mario Baldi1, Yoram Ofek2, and Moti Yung3

1 Torino Polytechnic, Computer Engineering Department
Torino, Italy

mario.baldi@polito.it
www.polito.it/~baldi

2 Synchrodyne Networks, Inc.
New York, NY

ofek@synchrodyne.com
3 Columbia University, Computer Science Department

New York, NY
moti@cs.columbia.edu

Abstract. TrustedFlow� is a software solution to the problem of
remotely authenticating code during execution. A continuous flow of
idiosyncratic signatures assures that the software from which they have
emanated is not changed prior to and during execution. TrustedFlow�
can be used to create a run-time trust relationship between the
components of a distributed management system.

Software, especially in the context of data networks, suffers from some inherent
problems. These include modifications by an either malicious or inadvertent attacker,
malware distribution (e.g., viruses and �Trojan horses�), and the use of malicious
software remotely for penetration, intrusion, denial-of-service (DoS), and distributed
DoS (DDoS). Management software is particularly critical from this point of view
since it is used to monitor and, especially, to control network devices. Hence,
malicious modification and use of management code can be particularly harmful to
the network and advantageous for the attacker. Moreover, distributed, possibly self-,
management software, which is spread on various systems and possibly dynamically
downloaded, is particularly exposed to manipulations.

The presented software solution aims at overcoming the above mentioned
problems and at assuring (in many typical scenarios) that management operations are
executed by a trusted software source. The solution is based on continuous
authentication, ensuring at run-time that the correct software has been employed. This
unique method for continuous authentication is based on a continuous flow of
idiosyncratic signatures that are constantly being generated and emanated during
execution. With reference to the architecture shown in Figure 1, the idiosyncratic
signatures are generated by a secret function called Trusted Flow Generator (TTG)
that is hidden (e.g., obfuscated) in the software and whose execution is subordinated

Idiosyncratic Signatures for Authenticated Execution of Management Code 205

to the proper execution of the software being authenticated. The flow of signatures is
validated at a remote trusted component called Trusted Tag Checker (TTC).
Consequently, this method guarantees that the correct software modules are used at
run time, i.e., the authenticity of the executed software can be trusted. An explanation
of the TrustedFlow� architecture and the basic principles of the the TrustedFlow�
protocol can be found in [1].

The TrustedFlow� protocol is an add-on software protection component intended
to be included within other protocols, such as those, for example, of distributed
computation (e.g., grid computing), traffic generation (e.g., TCP), and management
(e,g., SNMP). In essense, the TrustedFlow� protocol provides run-time continuous
(multi-factor) authentication, certifying the authenticity of software modules that were
used to compute, generate, and send messages. As such, it becomes evident that the
TrustedFlow� protocol has broad applications in both networking and computing for
military and commercial environments including, besides trusted network
management.

Messages with
Sequence of

Tags
(Idiosyncratic Signatures)

Dynamic Modifications
of Pseudo-Random

GeneratorTrusted Flow
Generator (TFG)

Software

Untrusted
Computing

Environment

Trusted
Tag

Checker
(TTC)

(Verifies
Tags

before
Mapping &
Forwarding

Packets)

Second Computer
e.g., Network

Interface
First

Computer

Fig. 1. TrustedFlow� architecture

The TrustedFlow� protocol is complementary to many of the current
enhancements for secure computing and networking protocols, including the security
extensions to the Internet management model defined in SNMPv3. In fact, (to the best
of our knowledge) no other authentication method certifies the software continuously
during run-time by emanating idiosyncratic signatures. In other words, while other
approaches provide privacy and authentication protecting from the attacks of a man in
the middle, TrustedFlow� protects from the attacks of a man at the edge. The
TrustedFlow� protocol has broad synergistic implications on various computing and
networking protection means, as discussed in more detail the related work section
of [1]. A prototype of the TrustedFlow� architecture sponsored by Microsoft
Research is under development at Torino Polytechnic.

In general, network management involves actions that are critical for proper
network operation. SNMPv3 defines security mechanisms that enable authentication
of management messages. However, these mechanisms do not protect from modified,
possibly malicious, code that has access to proper authentication information. For
example, by running on a network management station, the malicious code could get
a hold of the certificates used for authentication with the management agent. The
TrustedFlow� protocol could be used to complement SNMP security mechanisms by
including a TFG and a TTC in the management entity and in the management agent.

206 Mario Baldi et al.

• A TFG in the management entity and a TTC in the management agent enables the
latter to trust the management code requesting to store information in the MIB or
to pass along information contained in the MIB.

• A TFG in the management agent and a TTC in the management station enables
the latter to trust the agent code generating a trap or sending MIB information
previously requested.

Embedding both a TFG and TTC in both the management entity and the
management agent enables the creation of mutual trust in the execution of the other
component. Hence, the TrustedFlow� protocol can be used, possibly together with
SNMP security mechanisms, to create a trusted run-time network management
distributed environment. The resulting benefits increase with the degree of
distribution and code mobility.

References

[1] M. Baldi, Y. Ofek, M. Yung, "Idiosyncratic Signatures for Authenticated
Execution - The TrustedFlow�� Protocol and its Application to TCP,"
IASTED CSN 2003, Benalmadena, Spain, 2003.

Effects of Wavelength Conversion

on Self-healing Optical Networks

Hoyoung Hwang

Digital Media Engineering Dept., Anyang University
Anyang 430-714, South Korea
hyhwang@aycc.anyang.ac.kr

Abstract. This paper studies the effects of wavelength conversion on
backup routing and spare capacity utilization in optical networks. The
efficiency of spare wavelength utilization is proportionally increased as
the wavelength conversion capability increases, different from the call
blocking probability for which about 30% of wavelength conversion ca-
pability shows nearly the same performance as full wavelength conversion
capability. The spare resource utilization efficiency can be improved by
using alternate routing and wavelength assignment algorithms.

1 Motivation

Wavelength division multiplexing (WDM) optical networks can be implemented
in all-optical manner without wavelength conversion, or in opaque manner with
full wavelength conversion. A hybrid implementation is also possible with limited
number of O-E-O conversion switches that provide partial wavelength conver-
sion capability. In all-optical networks with only transparent switches, a single
wavelength should be assigned to a lightpath throughout the optical route thus
shows inflexibility in routing. The wavelength conversion capability can relieve
this inflexibility by assigning different wavelengths to different links of an optical
route. It is known that about 25-30% of partial or sparse wavelength conversion
capability can provide nearly the same call blocking probability as that of full
wavelength conversion networks [1]. However, the effects of wavelength conver-
sion capability on the network protection/restoration aspects and on the spare
resource utilization have not been studied enough.

This paper studies the effects of wavelength conversion on the spare resource
utilization, and proposes an alternate backup connection provisioning method
using semi-lightpath [2]. A set of one or more consecutive lightpaths to connect
a source-destination pair is called semi-lightpath, and each lightpath segment to
build a semi-lightpath is called sub-lightpath. An optical path can be divided into
several sub-lightpath segments, and those sub-lightpath segments may have dif-
ferent wavelengths from others and can be shared among backup semi-lightpaths,
thus wavelength conversion effect can be achieved.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 207–208, 2003.
c© IFIP International Federation for Information Processing 2003

208 Hoyoung Hwang

0 20 40 60 80 100
Wavelength Conversion Ratio (%)

40

60

80

100

120

140

Spa
re C

apa
city

 Ov
erh

ead
 (%

)

NJ LATA
ARPANET
NSFNET
EURONET

Fig. 1. Conversion ratio vs. Capacity
overhead for single link failure

NJ LATA ARPANET NSFNET EURONET
0

50

100

150

Spa
re C

apa
city

 Ov
erh

ead
 (%

)

Working
Dedicated
Shared
Semi

Fig. 2. Semi-lightpath vs. Other con-
figurations

2 Wavelength Conversion and Semi-lightpath

Simulations were performed to see the effects of wavelength conversion on self-
healing optical networks. Four mesh topology networks are used assuming a net-
work link has bidirectional fibers and each fiber had 40 wavelengths. Fig. 1
shows the spare capacity overhead versus wavelength conversion capability using
disjoint shortest backup path provisioning. The wavelength overhead decreases
almost linearly as the wavelength conversion ratio increases, which is different
from the curve of call blocking probability mentioned earlier. This result comes
from the probability of spare wavelength sharing according to the wavelength
conversion capability.

In Fig. 2, the semi-lightpath based backup configuration was compared
with dedicated capacity restoration in all optical networks and shared capacity
restoration in opaque networks. The semi-lightpath configuration shows substan-
tially better capacity efficiency compared with the dedicated path restoration,
51.1% to 94.1%, and a little bit better capacity efficiency compared with the
shared path restoration, 0.4% to 6.2%. In this simulation, about 30% of network
nodes were selected as wavelength conversion nodes based on ’higher degree
node first’ policy, and then updated manually considering even distribution in
the network topology. Sub-lightpaths were configured between those selected
nodes and the source/destination nodes of working lightpaths, and backup semi-
lightpaths were configured to maximize the sharability of spare wavelengths on
sub-lightpaths.

In summary, the semi-lightpath based backup path provisioning provides an
improved way of spare wavelength utilization and routing, especially for hy-
brid optical networks with limited wavelength conversion capability. Analytical
approach and detailed design method for semi-lightpath based backup path pro-
visioning are to be studied.

References

[1] G. Shen et al. Operation of WDMNetworks with Different Wavelength Conversion
Capabilities. IEEE Communications Letters, 4(7):239–241, Jul. 2000. 207

[2] I. Chlamgtac et al. Lightpath Routing in Large WDM Networks. IEEE Journal
on Selected Areas in Communications, 14(5):909–913, Jun. 1996. 207

Efficient and Transparent Instrumentation

of Application Components
Using an Aspect-Oriented Approach

Markus Debusmann1 and Kurt Geihs2

1 Fachhochschule Wiesbaden, University of Applied Sciences
Department of Computer Science, Distributed Systems Lab
Kurt-Schumacher-Ring 18, 65197 Wiesbaden, Germany

debusmann@informatik.fh-wiesbaden.de
2 Berlin University of Technology

Intelligent Networks and Management of Distributed Systems
Einsteinufer 17, 10587 Berlin, Germany

geihs@ivs.tu-berlin.de

Abstract. The increasing significance of Service Level Management
(SLM) strongly requires an appropriate instrumentation of application
components in order to monitor compliance with the defined Service
Level Objectives (SLOs). The manual instrumentation of application
components is very costly and error-prone and thus rather inefficient.
This paper presents an approach for using aspect-oriented program-
ming techniques for efficiently and transparently instrumenting appli-
cation components. The approach is applied to the interference sensitive
area of performance monitoring using the Application Response Mea-
surement (ARM) API. Experiments with a prototype have revealed that
our aspect-oriented approach fits well to the integration of instrumenta-
tion code into application components and that the runtime overhead is
only slightly higher than the overhead of a manual instrumentation.

1 Motivation and Related Work

Over the past years, economic pressure has forced enterprises to outsource many
IT services and purchase them from external service providers. Quality-of-Service
(QoS) parameters agreed on by service providers and their customers are laid
down in a contract, called service level agreement (SLA) [1, 2, 3]. Typical QoS
parameters specified in SLAs define availability criteria and performance-related
metrics, e.g. response times. The fulfilment of such an SLA has to be monitored
at run-time by both the customer and the service provider. Customers are pri-
marily interested in short end-user response times and high service availability.
Providers are interested in a more fine-grained view of the interrelated perfor-
mance metrics of the components constituting their services, especially when
using the same service infrastructure for different customers at the same time.

For computing high-level SLA parameters, such as service response times
and availability, the application components within the service provider domain

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 209–220, 2003.
c© IFIP International Federation for Information Processing 2003

210 Markus Debusmann and Kurt Geihs

have to be instrumented appropriately for management purposes. Instrument-
ing applications incurs additional cost since instrumentation is a non functional
requirement that is not part of the business logic interface. Often, instrumenta-
tion is added on top of existing applications in an ad-hoc manner as described
in [4]. In [5] an integrated software development process for applications and
their management infrastructure is described. The development of the manage-
ment functionality runs in parallel to the development of the normal software.
For implementing management solutions based on CIM [6], developers are addi-
tionally supported by a design patterns catalogue that contains reusable patterns
for CIM models.

Alternative approaches aim for realising instrumentation in a transparent
manner, e.g., by instrumenting middleware components and platforms. [7] pre-
sents an approach for modifying an EJB server in a way that EJBs are in-
strumented automatically while they are deployed. Response times of method
invocations are automatically monitored using the Application Response Mea-
surement (ARM) API defined by the OpenGroup [8]. In addition, EJBs are in-
strumented via Java Management Extensions (JMX) [9] to expose configuration
information. In [10] CORBA applications are instrumented based on CORBA
Portable Interceptors which allow to insert any kind of instrumentation code
that is executed at certain points of method invocations. The insertion of the
Portable Interceptor code into the application causes only minimal effort for the
application developer. He only has to add two additional lines of code to the
source code of the component which is to be instrumented. [11] presents an ap-
proach for an automated instrumentation of component-based applications. The
approach is limited to measuring and correlating response times similar to the
Application Response Measurement (ARM) API defined by the OpenGroup.

The examples described above show that there is a certain tradeoff between
the degree to which the instrumentation can be automated and the level of
detail obtained by the instrumentation. The more generic the instrumentation
approach the more abstract is the achievable data. On the other hand, the more
specific information shall be extracted the higher the instrumentation costs for
the application developer. Obviously, if fine-grained monitoring is the goal, then
the instrumentation needs to be woven into the code of the application compo-
nents. This is where aspect-oriented programming (AOP) can help.

This paper presents an aspect-oriented instrumentation approach for appli-
cation components. Aspect-orientation helps to solve the shortcomings of the
existing instrumentation approaches by providing transparency for the applica-
tion developer and furthermore offering the opportunity to monitor management
data at any level of detail. In addition, it is not limited to monitoring a single
environment like CORBA or EJB.

The paper is structured as follows: Section 2 gives a brief introduction to the
concepts of aspect-oriented programming and introduces AspectJ as an example
of an aspect-oriented development environment. In Section 3 we present how
the aspect-oriented paradigm can be applied to simplify the monitoring of dis-
tributed applications. Section 4 discusses performance measurements that under-

Efficient and Transparent Instrumentation of Application Components 211

line the efficiency of the aspect-oriented instrumentation compared to a manual
instrumentation. Section 5 concludes the paper and gives an outlook to future
work.

2 Aspect-Oriented Programming (AOP) and AspectJ

The design of large applications is arduous since decisions made in early mod-
elling stages influence later phases, i.e. implementation and maintenance. Hence
much effort in the past has been made to employ proper software analysis and
design methods. Typically these methods are tied to a distinct programming
paradigm, e.g. imperative or object-oriented, and they attempt to structure
the model accordingly. The aspect-oriented programming paradigm (AOP) [12]
claims that although conventional analysis and design methods try to partition
a given problem into self-contained, encapsulated entities, this kind of partition-
ing is not always feasible. Dependencies between modelled entities break the
desired encapsulation and thus make the design hard to deploy and even harder
to reuse. AOP aims at a conceptual understanding of the ”cross-cutting” of re-
sponsibilities through separate entities. For that purpose, the AOP distinguishes
aspects and components.

A component is an entity which encapsulates a distinct responsibility. Com-
ponents can be combined with other components to achieve a distinct behaviour.
They interact through well defined interfaces.

In contrast to components, aspects are not encapsulated. They cross-cut each
other, preventing clear encapsulation. Aspects typically reflect non-functional
issues of a system, e.g., error handling, performance tuning, or synchronisation.

The proposed solution to the coexistence of aspects and components in a sys-
tem is the introduction of aspect languages and a corresponding aspect weaver.
Aspect languages are specialised languages, suitable for modelling and express-
ing the distinct properties of an aspect and its connection with other aspects.
The aspect weaver is a tool which takes all aspect specifications of a system and
generates a corresponding program.

So far, most aspect-oriented approaches dealt with distribution and syn-
chronisation aspects in distributed systems. Recently, the integration of QoS
management in distributed applications has become a target for AOP-based
systems [13, 14].

AspectJ [15], originally developed at Xerox Parc, is an implementation of
aspect-oriented programming paradigm for the Java language. In the following,
a short overview of the AspectJ’s basic concepts and constructs is given; details
are provided in [16]. AspectJ defines the concept of a join point which represents
a well-defined point within the program flow, e.g., a method call, a constructor
call, referencing of a field, etc. Pointcut designators, or simply pointcuts, are
used to identify certain join points within the program flow. Pointcuts can also
be combined using filters to define more complex expressions. For example the
pointcut

pointcut foo() : call (void ClassA.methodA (int)) ||

call (* ClassB.get* (..));

212 Markus Debusmann and Kurt Geihs

identifies every invocation of methodA in ClassA as well as every invocation
of ClassB’s methods that start with get, regardless of its return type and its
parameter list.

Advices define the additional code, typically implementing the cross-cutting
concern, that should be executed when a join point is reached. Pointcuts are used
within the definition of an advice to identify the join point. Three different advice
types are distinguished: before advice run when their joint point is reached, after
advice run after their joint point, and around advice run in place of their join
point. For example the advice

before() : foo

{

System.out.println ("After pointcut foo");

}

prints out a simple message when the pointcut foo is reached and before the
computation of the original code proceeds.

Pointcuts are able to expose the execution context at their join point. This
context information can be used in advices.

pointcut setX(ClassA a, int x) :

{

call (void ClassA.setX(int))

&& target (a)

&& args (x);

before(ClassA a, int x)

{

System.out.println ("New value for x: " + x);

}

}

This pointcut setX exposes the two values from calls to method setX of
ClassA: the instance of ClassA that receives the call and the new value for x.
The advice prints out the new value of x before the setX method is invoked.

Introductions are used to modify classes and the hierarchy by adding new
members and changing relationships between classes. Introductions change the
declarations of classes. Since these changes are inherited they effect the rest
of the program. Introductions are static, i.e., they take place at compile time
whereas advices operate during runtime.

The definition of aspects is very similar to classes. Aspects define the units for
implementing cross-cutting concerns using pointcuts, advices, and introductions.

aspect Count

{

private int count = 0;

pointcut CountSetX () : call (ClassA.setX (int));

before() : CountSetX ()

{

count++;

}

}

Efficient and Transparent Instrumentation of Application Components 213

The aspect Count introduces count as a new member of ClassA and defines
a pointcut for the setX method of ClassA. The before advice increments the
newly introduced count variable every time the setX method is invoked.

3 Monitoring Distributed Applications with AOP

Managing distributed systems requires knowledge about the status of the con-
stituting components. Their status can be deduced from information gained by
monitoring the components. This is realised by inserting instrumentation code
into the managed system. Here, two basic approaches can be distinguished: First,
an intrinsic instrumentation approach where code is inserted into the component
under monitoring. Second, an extrinsic instrumentation approach which uses ad-
ditional components, either hardware or software to monitor components of the
system, e.g., by analysing the log files of a Web server. Typically, the intrinsic
approach is able to provide more fine-grained data, since component internals
can be used. The extrinsic approach typically provides more coarse-grained infor-
mation since it has to rely on information exported by the component. However,
the latter approach is less intrusive.

Our approach based on aspect-oriented programming can be characterised
as an intrinsic instrumentation approach since it inserts the instrumentation
into the code of the component. In the following sections we describe how our
approach helps to make components more manageable.

3.1 Measuring Servlet Response Times Using ARM

In the area of Service Level Management, Service Level Objectives (SLOs) defin-
ing availability criteria and performance-related metrics, e.g., response times,
are the key issues of many Service Level Agreements. The fulfilment of an SLA
has to be monitored to prove compliance with the defined SLOs. In the terms
of AOP, response time is a non-functional requirement and its measurement
a cross-cutting concern since many parts of a component are involved. Even fur-
ther, several components may be involved and their measurements have to be
correlated.

For response time measurements the ARM API is a well accepted approach
for instrumenting applications at the source code level. The API supports exe-
cution time measurements of source code fragments termed ARM transactions
within a distributed application. ARM provides ways of correlating nested mea-
surements, even across host boundaries. For this purpose the API provides cor-
relators that identify ARM transactions. Correlators can be supplied on creating
a nested transaction for relating this to the enclosing transaction. However, pass-
ing of correlators between application components, which might prove difficult
especially in distributed systems, is the task of the application developer.

214 Markus Debusmann and Kurt Geihs

3.2 Scenario

In the future, application service providers will offer a wide range of different
services from simple web hosting to complex e-business applications. These com-
plex applications are typically realised in a Web-based e-business environment
consisting of a Web server as central entry point and a web container to provide
Java server pages and servlets. Most of the business logic is implemented by
Enterprise Java Beans (EJB) that live in an EJB container. CORBA is used to
implement business logic as well as an integration middleware for legacy com-
ponents. A relational database ensures the persistent storage of the enterprise
data.

Our previous research has revealed that instrumenting such a complex en-
vironment using ARM is a difficult task [17]. Since the ARM specification does
only specify the format of the ARM correlator which is used for correlating
nested transactions, but not the mechanism to transfer them between process
boundaries, this task is up to the software developer.

Infrastructure components like a Web server and a Web container can be
instrumented transparently for the application developer. However, application
components, such as Servlets, should also be instrumented transparently for
the application developer in order to ensure cost effectiveness. In addition, an
automatic instrumentation guarantees a consistent instrumentation of all appli-
cation components which is the prerequisite of comparable measurements. The
following section describes our aspect-oriented instrumentation for transparently
measuring Servlet response times using the ARM API.

3.3 Aspect-Oriented Instrumentation Approach

A typical task of a Servlet is the retrieval of records from a database system.
Thus, the duration of a database query is an important unit of work to be
measured. Listing 3.1 shows the code of a simple Servlet that queries a number
of records from a database and subsequently transforms the result set into a Web
page. For the clarity of the code all try and catch clauses are not shown in the
listing.

The init method of the Servlet, which is executed only once during the
initialisation of the Servlet, is responsible for setting up the connection to the
database. The destroy method closes the database connection when the Servlet
is destroyed. The database query is performed as part of the doGet method.
Finally, the results of the query are transformed into HTML and sent back to
the client.

An application developer who has to instrument the Servlet with ARM man-
ually would place code for initialising the ARM environment into the init
method, and code for shutting down the ARM environment into the destroy
method. Within the doGet method the application developer has to check if
a parent correlator was handed over to the Servlet. Afterwards, a new ARM
transaction must be created and appropriate start and end points for the mea-
surements have to be identified in the application code. In our example, start
and stop commands were placed around the execution of the database query.

Efficient and Transparent Instrumentation of Application Components 215

Listing 3.1 Servlet for querying a database

public class MyDB extends HttpServlet {
final String url = ”jdbc :mysql://dbhost:3306/mysql”;
final String driver = ”com.mysql . jdbc .Driver”;
final String query = ”select host , user from user”;

5 Connection conn ;

public void init (ServletConfig config) throws ServletException {
super . init (config);
Class .forName(driver);

10 conn = DriverManager.getConnection(url , ”dbuser” , ””);
conn.setReadOnly(true);

}

public void destroy () {
15 i f (conn != null && !conn. isClosed ())

conn. close ();
}

public void doGet(HttpServletRequest request , HttpServletResponse response) throws . . . {
20 Statement stmt = conn .createStatement ();

ResultSet rs = stmt.executeQuery(query);
java . lang .Thread. sleep (20);
response .setContentType(”text/html ; charset=ISO−8859−1”);
PrintWriter out = response .getWriter ();

25 out . println(”<HTML><BODY>”);
. . .
out . println(”</BODY></HTML>”);
rs . close ();
stmt. close ();

30 }
}

In this simple example the manual instrumentation is considerably simple.
Nevertheless, the application developer has to handle all the complexity of the
ARM environment in order to achieve useful measurements, i.e., the application
developer has to understand the business requirements of the application to
correctly implement the functionality as well as the management requirements
to support the management of the application component later on. In addition,
the manual instrumentation leads to enormous costs since many code pieces have
to be instrumented. This work is monotonous and distracts from implementing
the business logic. Using inheritance does not really solve the problem since it
mainly simplifies the initialisation and destruction of the Servlet. Furthermore,
it requires a refactoring of the existing code which is again a potential source of
errors.

The aspect-oriented approach does not require modifications of the existing
code. Here, the instrumentation code is encapsulated as an aspect which may be
done by a different developer who is familiar with ARM environments, while the
application developer can concentrate on the application logic. The application
code is simply recompiled using a special compiler, the aspect weaver, which
connects the aspect code with the application code. Thus, instrumentation can
also easily be integrated into an existing application.

Listing 3.2 depicts the aspect code for measuring the duration of database
queries. (Again, try and catch clauses are not shown in the listing.) First,
a number of local variables are defined that are used within the aspect for the
ARM measurements. Thereafter, the first pointcut identifies the init method
of the Servlet, the second pointcut identifies the doGet Servlet method, and
the third pointcut identifies all invocations of the executeQuery method of the

216 Markus Debusmann and Kurt Geihs

Listing 3.2 Aspect for instrumenting JDBC calls with ARM

aspect MyDBAspect {
ArmTransactionFactory tranFactory ;
ArmTransaction dbTransaction;
HttpServletRequest request ;

5 byte [] myByteUuid = null ;

pointcut arm init () : call (void ∗. init (. .)) ;

pointcut arm doGet(HttpServletRequest request , HttpServletResponse response)
10 : call (void ∗.doGet(HttpServletRequest , HttpServletResponse))

&& args (request , response);

pointcut execQuery(String content)
: call (ResultSet Statement .executeQuery(String)) && args (content);

15
void around() : arm init () {

Class tranFactoryClass ;
tranFactoryClass = Class .forName(tranFactoryName);
tranFactory = (ArmTransactionFactory)tranFactoryClass .newInstance();

20 myByteUuid = new byte [] { (byte)0x6c , . . . , (byte)0xf1 };
proceed ();

}

void around(HttpServletRequest request , HttpServletResponse response)
25 : arm doGet(request , response) {

ArmUUID uuidDbTransaction ;
this . request = request ;
uuidDbTransaction = tranFactory .newArmUUID(myByteUuid);
dbTransaction = tranFactory .newArmTransaction(uuidDbTransaction);

30 proceed(request , response);
}

before(String content): execQuery(content) {
dbTransaction. start ((ArmCorrelator)request . getAttribute (”CORRELATOR”));

35 ArmCorrelator corr = dbTransaction.getCorr ();
}

after (String content) returning ():execQuery(content) {
dbTransaction. stop(ArmConstants.ARMGOOD);

40 }
}

Statement class. The second and the third pointcut also expose variables from
their context.

The instrumentation code of the aspect is defined in its advices. The arm init
advice is an around advice that traps the execution of its join point (initmethod
of Servlet), i.e., the code of the advice will be executed in place of the original
code. By including the proceed statement at the end of the advice the original
code of the init method will also be executed. The advice initialises the ARM
environment.

The arm doGet advice traps the execution of doGet Servlet method and
handles the initialisation of a new ARM transaction for measurement. By using
the proceed statement the original code is executed.

The ARM measurements are performed by using a before and an after
advice for the execQuery pointcut. These advices place ARM start and stop
statements around the execution of the database query. When starting a mea-
surement the instrumentation code tries to extract a parent correlator from
the CORRELATOR attribute of the the request object. This parent correlator will
then be used as basis for the measurements within the Servlet and later enables
a management application to correlate measurements of different components.

Efficient and Transparent Instrumentation of Application Components 217

4 Performance Evaluation

To evaluate the efficiency of the aspect-oriented instrumentation approach we
performed a series of measurements under lab conditions. The goal was to de-
termine the runtime overhead caused by the aspect-oriented instrumentation
approach.

Our prototype involved the Tomcat Web container in version 3.21 which
was instrumented using the tang-IT ARM library [18]. The Servlet code was
developed using the Sun Java Development Kit (JDK) 1.4.0; we used AspectJ
Version 1.0.6 as aspect-oriented programming environment. The experiments
were performed on a AMD Athlon XP 1880+ with 512 MB RAM running SuSE
Linux 7.3 with Kernel version 2.4.16. The Servlet performed a query on a local
MySQL database in version 3.23.55.

The measurements consisted of a client sending 1000 consecutive requests to
the Servlet. The think time between two requests was 100 ms. Three indepen-
dent experiments were performed using a uninstrumented Servlet, a manually
instrumented Servlet, and a Servlet instrumented using our aspect-oriented ap-
proach. The results of the measurements are shown in figure 1. The values are
based on measuring the overall processing time of the Servlet within the Tomcat
Web container.

At first glance, the overhead of the instrumentation (manual and aspect-
oriented) is quite high especially for performance measurements. The overhead
is caused by the additional instrumentation code that was inserted into the
Servlet. Since the functionality of the Servlet is minimal, as indicated by the
mean response time of about 1 ms, the execution time proportion of the in-
strumentation code is considerably high. Therefore, the measurements can be
regarded as representing the worst case. In real world Servlets with more com-
plex application logic, the overhead will be considerably smaller. The overhead
of the aspect-oriented instrumentation is slightly higher than the manual in-
strumentation. However, the aspect-oriented instrumentation offers a number of
advantages such as cost effectiveness, no code pollution of application code, and
separation of concerns. These advantages outweigh the slightly higher overhead.

We also determined the overhead from an end-user perspective, i.e., the re-
sponse time as seen by the client (see figure 2). Here, the overhead of the instru-
mentation code went down to about 7% for manual instrumentation and about
8% for the aspect-oriented instrumentation. This overhead is within acceptable

(1) without (2) with manual (3) with
instrumentation instrumentation aspects

mean (ms) 1.145 1.473 1.536

std. dev. (ms) 0.954 1.247 1.274

% increase 28.646 % 34.148 %

Fig. 1. Processing times of the Servlet code

218 Markus Debusmann and Kurt Geihs

(1) without (2) with manual (3) with
instrumentation instrumentation aspects

mean (ms) 4.059 4.176 4.426

% increase 7.203 % 8.063 %

Fig. 2. Client side response times

boundaries for performance measurements. Again, these values reflect a worst
case scenario, since the Servlet contains only minimal application functionality.

The results of the performance evaluation show that the aspect-oriented ap-
proach is very appropriate for performance instrumentation since its overhead
is only slightly higher than the overhead caused by a manual instrumentation.
The higher overhead of the aspect-oriented approach is due to the fact that it
involves more instrumentation code than the manual instrumentation. The As-
pectJ environment generates a class representing the code of the aspect. In the
class that has to be instrumented, hooks to this aspect class are added.

In principle, the number of measurement points within a component should
be as minimal as necessary in order to keep the overhead as low as possible.
Alternatively, the implementation of the ARM library and the AOP environment
could be optimised which would require modifications of their source code. This
was not the focus of our work.

5 Conclusions and Future Work

The increasing importance of Service Level Management implies a strong de-
mand for management instrumentation of application components.

In this paper, we presented an aspect-oriented approach for instrumenting
application components. The instrumentation code is encapsulated as an as-
pect and woven into the application code during compile time. Except for the
use of a different compiler, the aspect weaver, the instrumentation process is
completely transparent to the application developer. Thus, he is relieved from
the burden of manual instrumentation and can concentrate on the application
logic. We achieve separation of concerns by decoupling the application logic from
the management logic. Thus, the efficiency of the overall software development
process is increased, since separate concerns can be treated in separate tasks
performed by different experts. An additional strong advantage of our approach
is, that the aspect code can be reused in other applications. This is usually
impossible in conventional instrumentation approaches.

For demonstrating our approach we chose the performance instrumentation
of a Servlet in a typical e-business application scenario. Concretely, the duration
of JDBC database queries was measured using the ARM API. The efficiency
of the aspect-oriented instrumentation is demonstrated by a series of measure-
ments. The instrumentation approach has been compared to an uninstrumented
Servlet and a manually instrumented Servlet. The results show that in a worst
case scenario the overhead of the aspect-oriented approach is only slightly higher

Efficient and Transparent Instrumentation of Application Components 219

than the overhead of a manual instrumentation. This demonstrates that clarity
of program structure and support for code reuse can be achieved without a sub-
stantial loss of efficiency.

Since our aspect-oriented instrumentation approach has demonstrated its vi-
ability and effectiveness, we are optimistic to apply the approach successfully to
other management problems as well. So far, we also used AOP for instrument-
ing Web Services with ARM. There we chose a dual approach, i.e., we manually
instrumented the Web Services platform and used AOP to instrument the Web
Service itself. The results are comparable to the results published in this paper.
Our future work will concentrate on using AOP to tackle management problems
other than ARM instrumentation, e.g., we are working on a transparent integra-
tion of JMX instrumentation into EJBs. We expect to gain general insights into
the use of AOP in management applications and to understand the limitations
of the approach.

Acknowledgements

The authors like to express their gratitude to Alexander Hoffmann, member
of the Distributed Systems Lab at Fachhochschule Wiesbaden - University of
Applied Sciences, Germany, for his helpful discussions and implementation work.

References

[1] Lewis, L.: Managing Business and Service Networks. Kluwer Academic Publishers
(2001) 209

[2] Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management.
SAMS Publishing (2000) 209

[3] Verma, D.: Supporting Service Level Agreements on IP Networks. Macmillan
Technical Publishing (1999) 209

[4] Katchabaw, M.K., Howard, S. L., Lutfiyya, H. L., Marshall, A.D., Bauer, M.A.:
Making Distributed Applications Manageable Through Instrumentation. In:
2ndSecond International Workshop on Software Engineering for Parallel and Dis-
tributed Systems (PDSE’97). (1997) 210

[5] Mehl, O., Becker, M., Köppel, A., Paul, P., Zimmermann, D., Abeck, S.: A
Management-Aware Software Development Process Using Design Patterns. In:
8th IFIP/IEEE International Symposium on Integrated Network Management
(IM 03). (2003) 579–592 Colorado Springs, USA 210

[6] Distributed Management Task Force: Common Information Model (CIM) Speci-
fication. (1999) Version 2.2. 210

[7] Debusmann, M., Schmid, M., Kröger, R.: Generic Performance Instrumentation
of EJB Applications for Service-Level Management. In Stadler, R., Ulema, M.,
eds.: 8th IEEE/IFIP Network Operations and Management Symposium (NOMS).
(2002) Florence, Italy 210

[8] The Open Group: Systems Management: Application Response Measurement
(ARM). (1998) Open Group Technical Standard, Document Number: C807 210

[9] Sun Microsystems, Inc.: The Java Management Extensions Instrumentation and
Agent Specification, v1.0. (2000) 210

220 Markus Debusmann and Kurt Geihs

[10] Debusmann, M., Schmid, M., Kröger, R.: Measuring End-to-End Performance
of CORBA Applications using a Generic Instrumentation Approach. In: 7th

IEEE Symposium on Computers and Communications. (2002) Taormina/Giar-
dini Naxos, Italy 210

[11] Hauck, R.: Architecture for an Automated Management Instrumentation of Com-
ponent Based Applications. In: 12th International Workshop on Distributed Sys-
tems: Operations & Management (DSOM’2001). (2001) 210

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: European Conference on
Object-Oriented Programming (ECOOP), Springer (1997) 211

[13] Becker, C., Geihs, K.: Generic QoS Support for CORBA. In: 5th International
Symposium on Computers and Communications (ISCC 2000), Antibes, France,
Springer (2000) 211

[14] Hauck, F. J., Becker, U., Geier, M., Meier, E., Rastofer, U., Steckermeier, M.:
AspectIX: A quality-aware, object-based Middleware Architecture. In: New De-
velopments in Distributed Applications and Interoperable Systems (DAIS’01),
Kluwer (2001) 115–120 211

[15] The AspectJ Team: AspectJ. Xerox Corporation. (2002)
http://www.eclipse.org/aspectj/ 211

[16] The AspectJ Team: The AspectJ Programming Guide. Xerox Corporation. (2002)
http://download.eclipse.org/technology/ajdt/aspectj-docs-1.0.6.tgz 211

[17] Debusmann, M., Schmid, M., Schmidt, M., Kröger, R.: Measuring Service Level
Objectives in a complex Web-based e-Business Environment. In: 10th HP Open-
View University Association Workshop (HPOVUA). (2003) Geneva, Switzerland
214

[18] tang-IT Consulting GmbH: tang-IT Application Response Measurement (ARM).
(2003) http://arm.tang-it.com/ 217

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 221-233, 2003.
 IFIP International Federation for Information Processing 2003

Discovering Dynamic Dependencies
in Enterprise Environments for Problem Determination

Manish Gupta1, Anindya Neogi1, Manoj K. Agarwal1, and Gautam Kar2

1IBM India Research Lab., New Delhi
{gmanish,anindya_neogi,manojkag}@in.ibm.com

2IBM Watson Research Center, New York
gkar@us.ibm.com

Abstract. In order to reduce mean time to recovery (MTTR) in hetero-
geneous enterprise environments it should be possible to easily and
quickly determine the root cause of a problem detected at a higher level,
e.g. through response time violation of a transaction category, and re-
solve it. Many problem determination applications use a component de-
pendency graph to pinpoint the root cause. However, such graphs are
often manually constructed. This paper introduces a simple non-
intrusive technique based on mining of existing runtime monitored data,
to construct a dynamic dependency graph between the components of
an enterprise environment. The graph is traversed to identify nodes that
are the cause of response time related problems.

1 Introduction

Typically dependency models of system hardware and software are analyzed for
problem determination and impact analysis in complex enterprise environments. Prior
work talks about explicit middleware instrumentation [5], or internal instrumentation
of the components (via ARM [2]) for obtaining system dependencies. These methods
are time consuming and are difficult to apply in legacy environments. The main con-
tribution of this paper is in showing how existing performance monitoring infrastruc-
ture available in middleware, such as web application servers and database servers,
can be used in discovering dependencies between the various components of a sys-
tem. Management clients can poll the middleware for performance metrics, such as
total number of requests to a component, average response time of a component, etc.
This paper proposes a data-mining algorithm that uses this performance data for ob-
taining �probabilistic� dependencies between components. An online algorithm for
discovering and updating these dependencies between components is provided. Be-
cause of the probabilistic nature of these dependencies, �false� dependencies may
arise and therefore we show how a problem determination application can use the de-
pendencies effectively. Dependencies can be of various types [17], but this paper fo-
cuses on finding runtime software/service dependencies among the following compo-
nents: URLs, servlets, EJBs, and SQLs in a web application.

222 Manish Gupta et al.

The rest of the paper is organized as follows. Section 2 compares our work with
related research in dependency extraction. Section 3 presents the overall prototype
system setup for dependency extraction, storage, and usage by management apps. In
Section 4, we provide an algorithm for computing dependencies from the manage-
ment data obtained from the managed resources and show how to use these depend-
encies for problem determination. Section 5 provides experimental validation of the
algorithm on our testbed. Section 6 concludes the paper.

2 Related Work

A dependency graph of a system may be obtained using direct or indirect methods [3].
Direct methods rely on a human or a static analysis program to analyze system con-
figuration, installation data, and application code to compute dependencies. However,
it is unsuitable to apply such methods in large and heterogeneous systems because
they are system specific and do not provide runtime dependency information. Indirect
methods operate at runtime, and may be intrusive, semi-intrusive, or non-intrusive
with respect to the operational system in the manner they extract dependencies.

An example of an intrusive technique is one that relies on code instrumentation
such as ARM [2]. Dependencies are calculated by correlating data gathered during the
flow of transactions through various components. eWLM [1] is a workload manager
that uses ARM to instrument the underlying components and extract a component de-
pendency graph. PinPoint [5] is a problem determination framework, where coarse-
grained client requests are tagged as they travel through and discover the components
of an enterprise system. Tagging requires middleware-level instrumentation to pass
the request ID between components, similar to ARM. There are certain other ap-
proaches [12], [15], and [18] that use instrumentation of application to get dependen-
cies. They instrument the application code such that some probes or hooks are avail-
able to management application to get the data out of managed object and to exert
control over the managed object.

A key problem with the above approaches is that they may be unusable in situa-
tions where multi-vendor components are used and in places where even transaction
correlation code cannot be inserted into the system for security, licensing, or other
technical constraints. Unless all components adhere to standards, such as ARM, in-
strumentation based approaches cannot be deployed on a large scale. This motivates
the requirement of semi or non-intrusive approaches. An example of a semi-intrusive
approach is Active Dependency Discovery [4], where perturbation/fault-injection is
used to obtain dependencies.

In addition, Ensel [8] has also suggested using Neural Networks technology to
automatically generate dynamic and cross-machine dependency graphs while moni-
toring is active. The technique however does not provide any evidence of causality
and only detects correlation. However, at the time of this writing, there are no details
available regarding the training of such networks and experimental or theoretical
analysis of the accuracy and precision of the method. Steinder et al. [19] have also
used the concept of belief networks for fault localization in network services built on
complex communication topologies. The technique is specific to network services and
the bipartite graph is developed specifically for problem determination.

Discovering Dynamic Dependencies in Enterprise Environments 223

Our approach falls in the non-intrusive category because we do not instrument any
application and use whatever instrumentation is provided by the vendor of the mid-
dleware for generating dependencies between various monitored resources. We rely
on the fact that most vendors provide some built-in instrumentation for monitoring
statistics primarily for accounting and performance tuning purposes. The statistics, at
a minimum, include invocation and average execution time counters for the moni-
tored resources. In Section 4 we will see that, in order to compute a probabilistic de-
pendency between any two monitored resources, knowing at least the above two sta-
tistics is sufficient. Also in Section 4 we will see that our technique is independent of
the actual �type� of the resource such as servlets, EJBs, SQLs, and database tables
and therefore can be applied to other resources.

There are several papers that talk about problem determination and root cause
analysis using dependency graphs [2][6][8][10][16][22]. Yemini et.al. [22], Choi et.al.
[6], and Gruschke [10] assume the existence of a dependency graph and show how in-
coming alarms and events may be mapped to nodes of the graph and how the graph
may be used to identify dependent nodes, which are the likely root cause of problems.
Katker [16] also uses the graph for systematic analysis of a problem to identify the
root cause in the network fault management domain. Once we obtain the basic prob-
abilistic dependency graph with potentially large number of edges, we propose a
technique to traverse it to quickly identify the root cause of response time related
problems in generic systems.

Hellerstein and Ma [13] have applied data-mining algorithms for discovering use-
ful patterns in historical system event data. They discuss how data-mining can be used
to identify actionable patterns and in particular they present algorithms for three kinds
of frequently occurring patterns in event data. Thoenen et al. [20] have developed an
event management and design methodology that has been widely used. The core of
this methodology is a graphic representation of the roles and dependencies or rela-
tionships between events.

3 System Architecture and Design Issues

We have built a prototype system to demonstrate the effectiveness of the algorithm
proposed in this paper. The prototype system development is guided by two princi-
ples: reuse of existing monitoring information and separation of management inter-
face from the business interface. The first principle is motivated from the fact that
most of the existing enterprise code (including legacy code) is not ARM-instrumented
and its owners may be averse to introducing instrumentation code in their applications
as well. But the middleware that runs this code may provide performance data that
can be used to �guess� dependencies between the various components. Furthermore,
our technique can come handy to obtain dependencies between components running
on middleware from different vendors. The second principle is motivated by the gen-
eral trend [9] in the industry to separate the management interface from the business
one and DMTF's CIM [7] is one such popular effort to achieve this.

The system consists of three tiers as shown in Figure 1. The bottom layer is the
managed system, which currently consists of WAS and DB2 running a TPC-W book-
store application. Both the WAS and DB2 have a monitoring API through which run-

224 Manish Gupta et al.

time statistics (such as performance-monitoring counters) can be extracted by a local
agents A1 and A2, respectively, and sent to a correlation engine (CE) in the central
management layer. The data-mining algorithm implemented in CE takes this moni-
toring data to compute the dependencies between the monitored components. The top-
most layer consists of management applications that pull raw dependency data from
the repository through CIMOM for various uses. In our test-bed, the application and
the database servers run on the same machine and hence both A1 and A2 send data
that is time stamped using the same clock. In our next prototype version we will run a
distributed system where the issues of clock synchronization will be handled.

WAS
DB2

with TPC-W data

CIM Object Manager CIM repository

TPC-W app

CE

Impact analysis

PMI

events

TPC-W request
generator

Root cause analysis
Visualization

Provisioning Problem
resolution Management

clients

Centralized
management
layer

Managed
system

A1 A2
Machine A

Machine B

Machine C

Fig. 1. Prototype System Setup: The IBM WAS v4.0 and IBM DB2 UDB v7.1 are installed on
machine B (2GHz, 1GB). WAS v4.0 runs the TPC-W (see [21]) bookstore application con-
sisting of 14 servlets and 46 SQLs and a database of 10,000 books. Machine A (600MHz,
512MB) is used to run the remote browser emulator (RBE) or the TPC-W request generator
and sends URL requests (consisting of 50% buy and 50% browse) to machine B, which also
runs the IBM HTTP server. On Machine C (2GHz, 1GB) runs the CIMOM and the CE. All
Machines are connected over a 100 Mbps Ethernet

The current prototype monitors only a small subset of the objects/resources per-
taining to WAS and DB2, namely, the URLs, servlets, EJBs, and SQLs1. In other
words, the agent A1 provides events for URLs, servlets, and EJBs only, and A2 pro-
vides the events for SQLs. Each of the URLs, servlets, and EJBs are modeled using
the CIM schema in the J2EE Management Specification [14]. The SQLs are modeled
using the CIM_UnitOfWorkDefinition class in the CIM Metrics Model [7]. In order to
capture the dependency information between the above objects, as for example the
dependency between a servlet and an EJB, we introduced additional association
classes, which derived from CIM_dependency. As and when the instances of the CIM

1 In an enterprise system the web transactions (or URLs) are typically serviced by servlets

which in turn may invoke EJBs or directly execute SQLs. The TPC-W bookstore application
[21], on which we have tested our technique, comprises a collection of servlets each of
which issues SQLs directly to the database. Also, the WAS� and DB2�s monitoring API al-
lows us to obtain the performance metrics that are sufficient for computing the probabilistic
dependencies.

Discovering Dynamic Dependencies in Enterprise Environments 225

classes pertaining to the URLs, servlets, EJBs, SQLs, and their dependencies are dis-
covered, the CIM repository in the middle layer in Fig. 1 is populated with them.

4 Dependency Graph Extraction and Its Usability

This section presents the algorithm to extract dependency relationships from existing
monitoring data. It also describes how the algorithm may produce false dependencies
and the manner in which a problem determination application may cope with them.

Dependency Definitions. Consider any two components, say A and B, where A, for
example, may be a servlet, and B an EJB. In the general case, A is said to be depend-
ent on B, if B's services are required for A to complete its own service. A weight may
also be attached to the directed edge from A to B, which may be interpreted in various
ways, such as a quantitative measure for the extent to which A depends on B or how
much A may be affected by the non-availability or poor performance of B, etc. Any
dependency between A and B thus arises from an invocation of B from A, which may
be synchronous or asynchronous. Note that the algorithm described in this paper han-
dles synchronous invocations only.

Corresponding to each servlet, EJB, or SQL request an event, carrying the essential
statistics such as the number of requests and average response time so far to the com-
ponent, is received by the CE (in Fig. 1). Associated with each such event is an activ-
ity period, which for the purposes of the discussion here can be taken to be a time in-
terval with its start time and end time being the start time and end time, respectively,
of the request to the component represented by the event (see [11] for more detail).
We say that an activity period [b1, b2] of the component B is contained in an activity
period [a1, a2] of the component A if a1 ≤ b1 and b2 ≤ a2. Finally, our definition of de-
pendency between two the components A and B is as follows: we say that A depends

on B with strength p (or BpA → 2) if the probability that a given activity period of
A contains an activity period of B is p.

The above definition of containment of an activity period into another captures the
following dependency type that we are interested in.

• A invokes the services of B, directly or indirectly, and A finishes only after the
invocation of B returns. An example of A invoking B directly is: A calls a method
of B and waits for the call to return. On the other hand, we say A invokes B indi-
rectly if A directly invokes some component C, which in turn can either directly
or indirectly (a recursive definition) invoke B.

A dependency of the above type is what we call a true dependency, and any other
type of dependency that is captured by our dependency definition is what we term as a
false dependency. The motivation for choosing the definition for p given above is that
we believe that the number p comes very close to the probability that a given execu-
tion of A invokes, directly or indirectly and at least once, the component B, and fin-

2 For expositional simplicity we occasionally omit the strength value on the arrow and simply

say A!B.

226 Manish Gupta et al.

ishes only after the invocation to B returns. If A calls B's methods on each request to A
then, as per our definition, p is 1.0. If only 20% of the requests to A result in calls to B
then p is 0.2. Note that multiple calls or containment of activity periods of B per re-
quest to A are counted as a single call to B. In Fig. 2 in [11] we provide another ex-
ample to describe this concept of containment that not only captures the notion of true
dependencies but also of false ones.

In the following subsection, we present an algorithm for computing the dependen-
cies (based on our definition above) for any given component, say A. The true de-
pendencies for the component A include all the components that are directly and indi-
rectly invoked by A. Furthermore, we expect that this algorithm, in the process, also
computes false dependencies. A natural two-level dependency graph, resulting out of
the above definition of a dependency, has a node at level one with all its true and false
dependencies situated at the second level. Fig. 3 in [11] shows a two-level depend-
ency graph. Looking at only the two-level graph of a component suffices because all
the monitored components that are dependencies of the component are captured at the
second level of the graph and there is no need to traverse the two-level graphs of any
of the dependencies (i.e., the two-level graphs of the antecedent nodes). Furthermore,
as the transitive property (see [11]) of dependencies may not hold in general, a two-
level graph helps us to consider only the true dependencies of a component.

The number �p' in BpA → (hereafter, referred to as the p-value) depends on the
business logic in A and the workload applied to the enterprise environment containing
the component A. As the logic and the workload change so will the p-value. Assum-
ing that the logic and the workload do not vary with time, we now show how CE (see
Fig. 1) estimates p-value from the event traces. From the definition of p-value given
above, the straightforward way of estimating it is to calculate the fraction of the num-
ber of activity periods of A that contain some activity period of B from the event
traces received for both A and B. That is, let #A denote the total number of activity pe-
riods of A seen so far, and #(B, A) denote the total number of activity periods out of
#A that contain at least one activity period of B. Then the number #(B, A)/#A is an es-
timate of the p-value. It is desirable that as new events are received at the CIM re-
pository (see Fig. 1) our algorithm (to be given in the next subsection) generates and
updates the dependency graph online.

Online Dependency Extraction Algorithm. We will present the algorithm infor-
mally. Consider only a pair of event types; say servlet and SQL events, for exposi-
tional simplicity of the algorithm. Let Σsql denote the set of all SQLs and Σservlet denote
the set of all servlets in a given web application. Let A ∈ Σservlet. The goal is to dis-

cover and update all the dependencies BpA → where B ∈ Σsql. A key property that
our algorithm uses that satisfied by the system in Fig. 1 is that the events from a given
component (say servlet A) are received at CE (in Fig. 1) in the increasing order of
their time stamps where the time stamp of an event is defined as the end time of the
activity period represented by the event (see Section 4 in [11]). This also implies that
SQL events received at CE are in the increasing order of their time stamps.

Discovering Dynamic Dependencies in Enterprise Environments 227

A few definitions are in order before we present the algorithm. We say that a
servlet event is fully processed if all the SQL events that are contained3 in the servlet
event have been identified; otherwise we say that the servlet event is partially proc-
essed. The following event lists are maintained: antecedentList comprises events re-
ceived for SQLs in Σsql, dependentList comprises events received for the servlet A,
and dependencyList maintains the list of dependencies, of A, obtained so far. The de-
pendencyList variable, essentially, keeps the list of all those SQLs in Σsql for which
dependencies have been detected so far. We define LPP as an event pointer that at
any time holds reference to the currently lowest time stamped partially processed
event in dependentList. We also define HSQ as an event pointer that at any time holds
reference to the currently highest time stamped event in antecedentList subject to its
time stamp being less than or equal to the time stamp of the servlet event referenced
by LPP. A counter #A (initialized to zero) keeps the count of the number of fully
processed servlet A events so far. For each SQL B in the dependencyList we set a
counter #(B, A) (initialized to 1) that counts the number of servlet A events so far that
contain at least one SQL B event. For any event pointer e the notation e.id,
e.timestamp, e.starttime, e.next, and e.prev, respectively, refer to the following attrib-
utes of the event referenced by e in an event list, viz., the identifier, the time stamp,
start time, reference to the event immediately after the event referenced by e, and ref-
erence to the event immediately before the event referenced by e. Both LPP and HSQ
are initialized to null (see [11] for a complete description).

Dependency Algorithm (an outline): The main algorithm preserves the following
property at all times: all servlet events in the dependentList having time stamps less
than LPP.timestamp are fully processed and the rest are partially processed, and HSQ
always points to the highest time stamped SQL event, currently in the antecedentList,
having timestamp less than or equal to LPP.timestamp. In the non-boundary case, i.e.,
when both LPP and HSQ are non-null, on an arrival of an SQL event with time stamp
less than LPP.timestamp we set HSQ to this event, otherwise LPP is set to LPP.next,
i.e., to the next servlet event, whenever it becomes available, and the count #A is in-
cremented by one. In the latter case, we continue to scan the SQL events to the left of
HSQ until we reach an SQL event whose end time is less than the start time of the
new servlet event pointed to by LPP; thereafter we scan the SQL events on the right
to HSQ and compute the new value for HSQ. Each time we compare an SQL event
with the servlet event pointed to by the LPP we also check for containment of the ac-
tivity period of the SQL event into the servlet event, updating the dependencyList and
corresponding frequency counts if required. This process is repeated with the new
LPP and HSQ. The algorithm outputs estimates of p-values by computing for each
SQL B in the dependencyList the number #(B, A)/#A.

It is easy to see that the algorithm has the desirable property that the number of
event comparisons needed in order to ascertain all the events contained in another
event is minimum. In other words, if n is the number of activity periods contained in a
given activity period then the algorithm finds that out in O(n).

3 An event is contained in another event if the former�s activity period is contained in the lat-

ter�s.

228 Manish Gupta et al.

Problem Determination (PD) Using Probabilistic Graph. The presence of false de-
pendency edges in a two-level graph complicates the traversal order of edges in the
two-level graph of a component. Note that the edge weights (or strength), in a sense,
correspond to the �likelihood� of A depending on B. False dependencies may be
caused by false containment generated due to concurrency of transactions flowing
through the server components. Clearly, traversal of false dependencies reduces the
performance of the PD algorithm and increases the MTTR.

We introduce another statistic of a dependency A!B called, r-value, which we use
along with the p-value to achieve an improved ordering of the dependencies of a node
A. We define r-value as the probability that a given activity period of the component
B is contained in an activity period of the component A, where the definition of con-
tainment is as described earlier. We estimate r-value as follows. Let, ϕ(A, B) denote
the number of activity periods of B, seen so far, which were found to be contained in
at least one activity period of A. Finally, let #B be the total number of activity periods
of B seen so far. We take the number ϕ(A, B)/#B as an estimate of r-value. To see the
difference between p-value and r-value, consider the earlier example in which A in-
vokes B only 5% of the time A is active. Suppose A is the only component that in-
vokes B in the application, then the p-value will be close to 0.05 whereas the r-value
will be close to 1.0. Another illustration of the difference between p and r-values is
given in Table 1 in [11]. The algorithm for computing p-values given earlier an be
easily tailored to compute the r-values as well.

We now introduce a heuristic that uses the two statistics, the p-value and the
r-value, to order the dependencies of a node: we sort the dependencies of a node A in
the non-increasing order of max(p, r) + pr. The rationale for choosing the heuristic is
the following. The first term coarsely sorts the dependencies of a node so that edges
with high p- or high r-values are catapulted up in the order. A dependency is more
likely to be true if at least one of these is high. The product term performs finer grain
sorting among equals. A dependency is more likely to be true if both p- and r-values
are high compared to the case when only one of the values is high. In this heuristic the
true dependencies, which have low p- and r-values, will be penalized. For example, if
a servlet X executes an SQL Y rarely, but the SQL Y is frequently executed by some
other servlets in an application, then the dependency Y of X will appear lower down in
the sorted list of dependencies of X, because both p and r values will be small. How-
ever, there is an increased likelihood that if the problem in X is due to Y, then other
servlets that more frequently call Y also have the same problem and we are able to
identify Y through one these servlets.

5 Experimental Evaluation

This section presents an experimental evaluation of the dependency algorithm de-
scribed in Section 4 on the testbed, which consists of the three machines as described
in Figure 1.

Discovering Dynamic Dependencies in Enterprise Environments 229

Fig. 2. The variation in (a) Accuracy and (b) Mean Precision with time for a particular load of
50 customers. Accuracy and precision values stabilize as the entire graph is discovered. They
remain stable with the workload, thus the computed graph can be used for long stable periods.
It can be observed that the method is 100% accurate (Fig. 2 (a)) as expected, however precision
stabilizes to around 98% (Fig. 2 (b)). The convergence time is also within a few minutes and
closely tracks workload stabilization

Definition of Accuracy and Precision. The aim of the experiments is to discover the
dependencies between servlets and SQLs. In our testbed, there are 54 true servlet-to-
SQL dependencies out of the potential set of 644 dependencies. So if we discover all
54 true dependencies then the accuracy is 100%. Accuracy is defined as the percent-
age of the true dependencies discovered. Precision is defined based on the two-level
graph traversal order in Section 4. In the sorted dependency list of a node having n
edges, the edges are numbered (starting from the first edge) from 1 to n with m (≤ n)
being the last true dependency in the list. We assign a weight of m-i to the depend-
ency labeled i, where 1 ≤ i ≤ m-1. The sum of the total weights from 1 to m-1 is there-
fore wtot := m(m-1)/2. Out of wtot the total contribution of weight coming from false
dependencies is defined as ∑

<

−=
Dependency false a is ,

)(:
imi

f imw . Finally, we define percentage

node-precision as)1(100
tot

f

w
w

− . Observe that this definition penalizes a false de-

pendency more if it occurs higher in the list. The precision value reported in the fol-
lowing experiments is the mean percentage node-precision over the 14 servlets.

Accuracy and precision are measured on the testbed as follows. We have instru-
mented the TPC-W application with an in-house developed transaction correlation
code to find the actual set of the dependencies that should be discovered at each point
in time as user transactions flow through the system. Thus accuracy and precision can
be computed at each time point by comparing the dependency information generated
by our dependency algorithm with the accurate information generated by instru-
mented transaction correlation code in the same experiment. For illustration see
Fig. 4 for an experiment run with 50 simultaneous customers.

230 Manish Gupta et al.

Table 1. Precision and Accuracy with Load for traffic mix: 50% buy and 50% browse. The
WAS is configured to fork threads on demand with a minimum of 25 pre-forked threads. As
customer load is increased, the number of simultaneously active threads grows, and the thread
pool size is also automatically increased by the system beyond 25, if needed. The number of
customers is increased till a significant percentage of URL requests timed out due to load. The
WAS machine can support up to 200 customers. Hence, the experiments have been run only up
to 200 customers as a high load case. Each experiment was run for one-hour duration. If we run
them for longer duration, we expect precision values to go up

Load:
#Customers

#Avg active threads
(Avg thread pool size)

Mean Precision %
(std dev σσσσ)

Accuracy %

5 2.2 (25.0) 100 (0) 100
25 3.5 (25.0) 99.94 (0.22) 100
50 4.6 (25.0) 98.33 (3.12) 100

100 10.6 (25.0) 81.86 (21.00) 100
150 17.1 (26.4) 71.52 (32.43) 100
200 20.0 (31.9) 62.62 (26.82) 100

Table 2. Effect of polling rate on precision and accuracy with a fixed load of 100 customers.
Precision is more sensitive to polling rate than accuracy. At lower polling rates, even though
accuracy is 100% and the management overhead drops, the precision also goes down. At higher
load, high polling rate is required to maintain high precision, however it also increases the
overhead, which is undesirable at high load

Polling interval in millisecs Mean Precision % (std dev σσσσ) Accuracy %
50 88.71 (18.75) 100

100 81.86 (21.00) 100
500 77.03 (29.82) 100

Table 3. Overhead Measurement in terms of percentage increase in throughput and response
time by varying polling interval and customer load. Each reading corresponds to an experiment
that was run for 3 hours

Polling Interval (milliseconds)
100 500Simultaneous

Customers
(load) Throughput

(%)
Response
Time (%)

Throughput
(%)

Response
Time (%)

10 2 10 0 3
200 9 33 8 25

Accuracy and Precision for TPC-W Bookstore Application. As more multiple
transactions proceed simultaneously, it is harder to separate true dependencies from
false ones using containment relationship. The degree of concurrency of transactions
on WAS may be increased by increasing the number of simultaneous customers or
browser emulators, thus keeping more threads in the thread pool simultaneously ac-
tive. Table 1 shows the variation of accuracy and precision values with increasing
customer load and concurrency. The algorithm shows 100% accuracy under all loads.
Precision values decrease with increasing load. The standard deviation (σ) for preci-
sion is low at low loads but rises at higher loads. Thus dependency extraction can be

Discovering Dynamic Dependencies in Enterprise Environments 231

performed at low to medium loads and stopped, if the precision level of the graph is to
be maintained. Table 2 shows that a higher polling rate4 leads to increased manage-
ment overheads. Table 3 suggests that higher load implies higher overhead of polling.

6 Conclusion
In this paper we propose a new method for discovering dependencies between system
components using non-intrusive techniques. To demonstrate the usability of the
method we performed extensive experimentation on an e-business setup that mimics
the operation of a typical storefront system using the TPC-W benchmark. The algo-
rithm for computing the dependencies is experimentally shown to perform well with
accuracy being 100% both at low and high loads, and precision decreasing with in-
creasing load. For instance the bookstore application the precision is around 98% for
a load of 50 simultaneous customers.

The nature of the algorithm is such that in addition to discovering all the true de-
pendencies, it also discovers false dependencies. To preclude usage of the false de-
pendencies we proposed a sorting heuristic, which increases the probability of placing
the true dependencies higher in the sorted list. As expected, our experiments show
that the precision increases as load decreases. A decrease in load causes a decrease in
concurrency in the system and hence decreases the chance of discovering a false de-
pendency. Thus, false dependencies can be artificially minimized if sufficient time
gap exists between two successive transactions. In order to present various views of
the dependencies to a system administrator, the dependencies of a component can be
sorted in a manner that also uses the execution time or the frequency of invocation, or
any other attribute of the antecedent components. We intend to look into such issues
in future. Last but not the least, we intend to explore how to relax the containment as-
sumption and capture dependencies in an asynchronous transaction environment.

Acknowledgements

The authors like to thank Yuan Feng (IBM Watson Research Center), Sugata Ghosal
(IBM India Research Lab.) and Parviz Kermani (IBM Watson Research Center) for
critical feedback of the paper.

References

[1] J. Aman, C.K. Eilert, D. Emmes, P. Yocom, D. Dillenberger, �Adaptive Algo-
rithms for managing a distributed data processing workload,� IBM Systems
Journal, vol.36, no.2, 1997.

[2] �Systems Management: Application Response Measurement (ARM),� Open-
Group Technical Standard C807, UK ISBN 1-85912-211-6 July 1998,
http://www.opengroup.org/products/publications/catalog/c807.htm

4 Management data from WAS is obtained through polling at regular intervals. See [11].

232 Manish Gupta et al.

[3] S. Bagchi, G. Kar, J.L. Hellerstein, �Dependency Analysis in Distributed Sys-
tems using Fault Injection: Application to Problem Determination in an e-
commerce Environment,� 12th International Workshop on Distributed Systems:
Operations & Management 2001.

[4] Brown, G. Kar, and A. Keller, �An Active Approach to Characterizing Dy-
namic Dependencies for Problem Determination in Distributed Environment,�
International IFIP/IEEE Symposium on Integrated Network Management,
2001.

[5] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, �Pinpoint: Problem
Determination in Large, Dynamic Internet Services,� International Conference on
Dependable Systems and Networks (DSN'02), June 2002.

[6] J. Choi, M. Choi, and S. Lee, �An Alarm Correlation and Fault Identification
Scheme Based on OSI Managed Object Classes,� In 1999 IEEE International
Conference on Communications, Vancouver, BC, Canada, 1999, pp. 1547�51.

[7] CIM: http://www.dmtf.org/standards/standard_cim.php
[8] Ensel, Christian, �New Approach for Automated Generation of Service De-

pendency Models,� Second Latin American Network Operation and Manage-
ment Symposium, LANOMS, 2001.

[9] J. A. Farrell and H. Kreger, �Web services management approaches,� IBM
Systems Journal, VOL 41, NO 2, 2002.

[10] Gruschke, �Integrated Event Management: Event Correlation using Depend-
ency Graphs,� Proceedings of 9th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations and Management (DSOM 98), October 1998.

[11] M. Gupta, A. Neogi, M. K. Agarwal, and G. Kar, �Discovering Dynamic De-
pendencies in Enterprise Environments for Problem Determination,� IBM Re-
search Report, RI03010, 2003.

[12] P. Hasselmeyer, �Managing Dynamic Service Dependencies,� Proceedings of
12th International Workshop on Distributed Systems: Operations & Manage-
ment (DSOM) 2001.

[13] J.L. Hellerstein and S. Ma, �Mining Event Data for Actionable Patterns,� The
Computer Measurement Group, 2000.

[14] Java 2 Platform, Enterprise Edition, http://java.sun.com/j2ee
[15] M. J. Katchabow et al., �Making Distributed Applications Manageable Through

Instrumentation,� Journal of Systems and Software, Vol. 45, 1999.
[16] S. Katker and M. Paterok, �Fault Isolation and Event Correlation for Integrated

Fault Management,� Integrated Network Management V, Chapman and Hall,
May 1997.

[17] Keller and G. Kar, �Classification and Computation of Dependencies for Dis-
tributed Management,� 5th IEEE Symposium on Computers and Communica-
tions (ISCC), July 2000.

[18] F. Kon and R.H. Campbell, �Dependence Management in Component-Based
Distributed Systems,� IEEE Concurrency, Vol. 8, No. 1, pp. 26-36, Jan-Mar
2000.

[19] M. Steinder and A.S. Sethi, �Multi-layer Fault Localization using Probabilistic Infer-
ence in Bipartite Dependency Graphs,� Technical Report 2001-02, CIS Dept.,
Univ. of Delaware, Feb 2001.

Discovering Dynamic Dependencies in Enterprise Environments 233

[20] Thoenen, J. Riosa, and J. L. Hellerstein, �Event Relationship Networks: A
Framework for Action Oriented Analysis for Event Management,� Proceedings
of the IFIP/IEEE International Symposium on Integrated Network Manage-
ment, Seattle, WA, May 2001, IEEE, New York (2001), pp. 593-606.

[21] TPC-W Wisconsin website, http://www.ece.wisc.edu/~pharm/tpcw.shtml
[22] S. Yemini, S. Kliger et al., �High Speed and Robust Event Correlation,� IEEE

Communications Magazine, vol. 34, no. (5), pp. 82�90, May 1996.

Bringing AgentX Subagents

to the Operating System Kernel Space

Oliver Wellnitz and Frank Strauß

Technical University of Braunschweig
Institute of Operating Systems and Computer Networks
Mühlenpfordtstraße 23, 38106 Braunschweig, Germany

{wellnitz,strauss}@ibr.cs.tu-bs.de

Abstract. SNMP agents on conventional operating system platforms
are mostly monolithic and implement Managed Objects in a single pro-
gram. The concept of subagents makes it possible to delegate the im-
plementation of Managed Objects to several subagents located close to
the managed subsystems. All subagents are managed by a master agent.
While this concept is well accepted for hardware subsystems of modu-
lar devices and for host services running in the user space, it is not yet
applied for components of conventional operating systems.
This paper examines to what extent the IETF standard subagent pro-
tocol AgentX is suitable for the management of kernel components. For
this purpose, on the Linux platform two subagents have been imple-
mented within the kernel subsystems they manage. They communicate
with a master agent in user space. The implemented software contains a
generic intermediate layer which carries out AgentX protocol operations
and access to Managed Objects. Based on this layer, the network in-
terface subsystem and the Netfilter subsystem have been enhanced with
management extensions.

1 Introduction

Network management is essential for the operation and supervision of medium
to large computer networks and the Simple Network Management Protocol
(SNMP) is the standard network management protocol of the Internet [3]. Cur-
rent implementations of SNMP agents on conventional operating system plat-
forms are mostly monolithic and rarely extensible. They run in user space and
cover a broad spectrum of management information from high-level service man-
agement to low-level hardware device management. In many cases they have to
gather information from the operating system kernel through different means
such as system calls, device driver input/output control functions (ioctls) or
special filesystems. These kernel interfaces can be difficult to handle because,
for example, on many Unix systems the agent has to parse files from the /proc
filesystem which have a structure that is likely to change in subsequent kernel
revisions. These interfaces can in many cases also be incomplete in respect to
the MIB which is to be implemented, e.g., they may lack attributes to uniquely

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 234–245, 2003.
c© IFIP International Federation for Information Processing 2003

Bringing AgentX Subagents to the Operating System Kernel Space 235

identify instances of Managed Objects. Furthermore, in many cases SNMP no-
tifications cannot be created efficiently because there is no mechanism in the
methods mentioned above to notify user space processes upon certain events
that occur in kernel space. So whenever an SNMP agent handles notifications,
it has to use a polling strategy to gather information and detect changes it-
self. If the polling interval is set too small, polling data from the kernel wastes
CPU time. On the other hand, setting the polling interval too large, the data in
question may change two or more times during that time so that changes can-
not be detected accurately. Another problem is that aside from the maintainer
of a component the author of an SNMP agent must also know specific details
about the managed component. If we could minimize the necessary amount of
knowledge that a component maintainer needs to have about network manage-
ment, he could provide a network management interface for his component all
by himself, so that it is much more likely to keep the management plane in sync
with the component.

A kernel implementation of AgentX subagents may overcome theses prob-
lems. Inside the kernel, a subagent has access to every available data struc-
ture. Additionally, it also can be synchronously and accurately triggered upon
changes because it can call notification functions directly at the point where
data is altered. Finally, a simple thus complete management interface for kernel
subsystems would enable developers to implement and maintain any network
management extension to their subsystem.

This paper is structured as follows: The next Section gives some background
information about the subagent protocol AgentX. Section 3 describes the design
and implementation of the kernel subagent architecture. It also gives some ex-
amples. Section 4 explains the implemented MIB modules and Section 5 gives
a short evaluation of the presented architecture. Finally, Section 6 concludes the
paper.

2 Agent Extensibility Protocol

Developed as a protocol to dynamically extend SNMP agents, Agent eXtensibil-
ity (AgentX) was published in January 2000 as an IETF Proposed Standard [4]
and advanced to Draft Standard in 2002. The AgentX framework splits the role
of an agent into two separate entities: A master agent, which is a traditional
SNMP agent but with little or no direct access to management information,
and a set of subagents, which have access to a mostly disjunct set of manage-
ment information and no knowledge about SNMP. Master agent and subagents
communicate through the AgentX protocol. The master agent thereby acts as
a multiplexer and SNMP/AgentX protocol translator for the subagents. AgentX
is transparent to SNMP managers and SNMP independent, which means that
AgentX subagents can be combined with SNMPv1, SNMPv2c and SNMPv3
master agents. The upper half of Figure 2 illustrates this concept.

236 Oliver Wellnitz and Frank Strauß

[varbinds ok]
/ send OK [commit failed]

/ send ERROR

recv CleanupSet
/ finish successful transaction

recv UndoSet
/ rollback transaction

recv CleanupSet
/ abort transaction[varbinds not ok]

/ send ERROR

recv TestSet

recv CommitSet

/ send OK
[commit ok]

test failed

commit failed
test ok

commit ok

Fig. 1. AgentX Set transaction

The design of a single master agent to which one or more subagents con-
nect requires that the master agent is already running when the subagents are
initialized.

The AgentX architecture was designed to be simple in respect of authoriza-
tion, privacy and encoding. It completely leaves the first two points to the master
agent, which has to ensure that only allowed mangers can access or change man-
agement information. Because subagents usually reside on the same machine as
the master agent a native byte-order encoding is used instead of the BER/ASN.1
encoding of SNMP.

While it was tried to keep AgentX simple, it offers full support for data re-
trieval (Get, GetNext and GetBulk) and data modification operations (Set) as
well as notifications (Traps). AgentX uses a multiphase-commit so that SNMP
Set operations remain atomic even if the Set request comprises objects located
at several subagents. Figure 1 shows the different states in an AgentX set trans-
action.

AgentX transport mappings are specified for Unix domain sockets and TCP.
Any other transport mechanism is likewise conceivable. Every AgentX connec-
tion is split up into several sessions, which in turn can convey several transac-
tions.

There are also other subagent protocols: The SNMP multiplexing protocol
SMUX [7] and the Distributed Program Interface DPI [2, 11] can be regarded as
predecessors of AgentX. Furthermore, there are proprietary agent toolkits, such
as EMANATE by SNMP Research Inc., that use their own master/subagent
architecture.

3 Design and Implementation

Similar to traditional user space AgentX subagent toolkits such as NET-
SNMP [1] and JAX [8], we propose a kernel subagent architecture which com-
prises two major parts: (a) a generic AgentX layer, which is MIB-unaware but
omniscient in regard to the AgentX protocol and its variable types and (b) one or
more management entities (kernel subagents) which implement the Managed Ob-
jects. There are no requirements for the master agent, thus any existing AgentX
master agent that runs on the target platform can be used. Figure 2 gives an

Bringing AgentX Subagents to the Operating System Kernel Space 237

overview of the SNMP/AgentX framework with kernel space extensions. In the
following, we focus on the kernel elements in the lower right part of the figure,
the master agent and user space subagents are not regarded any further.

3.1 The AgentX Layer

The AgentX layer is a mediator between the master agent and the kernel sub-
agents. It implements the AgentX protocol to talk to the master agent in user
space and it maintains the knowledge of all available kernel subagents which
supply management information. The general idea is to put everything into the
AgentX layer that can be done in a generic way. The AgentX layer is divded
into the following three parts, which are also shown in the grey box of Figure 2.

session layer

protocol layer

socket layer

AgentX AgentXAgentX

kernel subsystemkernel subsystem kernel subsystem

kernel subagent kernel subagent

kernel space
function calls

user space

kernel space

managers

master agent

subagent
user space

subagent
user space

/proc filesystem,
/dev/kmem device driver,

ioctl() interface, etc. AgentX

layer

managed system

SNMP

Unix domain socket

Fig. 2. SNMP/AgentX architecture with kernel space subagents

238 Oliver Wellnitz and Frank Strauß

The socket layer forwards all AgentX PDUs between the protocol layer and
the master agent. Its interface is very small and can easily be exchanged or
modified to support other AgentX transport mappings.

The protocol layer is able to parse AgentX PDUs received from the master
agent and to create AgentX PDUs, which are then sent through the socket layer
to the master agent.

The session layer decides which kernel subagent is responsible for a request
that has been parsed by the protocol layer. Similarly, the session layer assigns
responses and notifications from kernel subagents to the right AgentX sessions
and passes them up to the protocol layer. For this purpose, every kernel subagent
has to register with the session layer prior to any AgentX communication. These
registrations result in AgentX registrations.

When the master agent sends an AgentX request to the kernel, it is received
by the socket layer and passed to the protocol layer which divides it into smaller
pieces, which are simpler to process by the subagents. E.g., a GetNext request
may contain more than one SearchRange so that multiple object instances can be
retrieved by one request. This is handled as follows: The protocol layer creates an
empty Response PDU. Then it takes the first SearchRange and dispatches it via
the session layer to the corresponding kernel subagent. The response is appended
to the Response PDU. This procedure is repeated until all SearchRanges were
processed.

In contrast to userspace subagents where it is easy to ensure that the mas-
ter agent is started first, the kernel and many of its subsystems are obviously
initialized before the master agent program can be started. The implemented
solution to this problem is to decouple the registration of kernel subagents to
the AgentX layer from the AgentX registration to the master agent. This allows
the kernel AgentX layer to delay the AgentX connection. Once the master agent
is running a signal has to be sent to the kernel AgentX layer in order to setup
the connection. The upper part of the sequence diagram in Figure 3 illustrates
this procedure.

3.2 Kernel Subagents

Kernel subagents are closely attached to the kernel subsystems for which they
implement the Managed Objects. Figure 2 shows the two different approaches
of kernel subagents: The subagent can either be closely integrated within the
kernel subsystem code, or the kernel subagent can be implemented separated
from the kernel subsystem, e.g., as a separate kernel module, if the subsystem
supports appropriate kernel level interfaces.

In both variants, a kernel subagent contains notification emitting functions
and request callback functions. The notification emitting functions are called by
other kernel functions upon certain events, so that they can construct a noti-
fication message and pass it to the AgentX layer. If the subagent is integrated
with the managed kernel subsystem, notifications can easily be triggered from
those functions that actually process kernel data in a way that should raise a

Bringing AgentX Subagents to the Operating System Kernel Space 239

Table 1. AgentX PDU type to method translation

AgentX PDU method parameters

Get GET & EXACT

GetNext GET or GET & INCLUDE

GetBulk GET or GET & INCLUDE

TestSet TESTSET

CommitSet COMMITSET

UndoSet UNDOSET

CleanupSet CLEANUPSET

notification. On the other hand, if the kernel subagent is implemented as a sep-
arate module, it depends on the kernel subsystem to offer hooks so that the
subagent can register for events that potentially raise notifications. However,
such hooks are more likely to be available within kernel space than for feedback
to traditional user space agents.

As described in Section 3.1, callback functions are registered with the AgentX
layer at startup. They are called for all Get and Set requests. The signature of
a callback function is defined as follows:

errorcode Callback(in oid, in method, in context, out result)

A callback function gets a single request oid, a method specifier (which is
a set of named flags) and the SNMP context as input arguments. A buffer in
which the callback functions returns a result is passed as the fourth argument.
Every callback function returns an errorcode. The oid is the starting OID of a
SearchRange or the exact OID of a variable binding (varbind). It always lies
within the range for which the callback function was registered to the AgentX
layer. When the AgentX layer receives an AgentX GetNext PDU and dispatches
a SearchRange, it compares the starting OID of the SearchRange to the callback
functions’ registration points. If the starting OID is a lexicographical predecessor
compared to the registration point of a callback function, it uses the registration
point as the value for the oid argument and sets the INCLUDE flag in the
method argument.

Callback functions are called with one out of five different methods, which is
specified by an according flag in the method argument. There is one GET method
for Get, GetNext and GetBulk requests, and four methods for the phases of Set
transactions (TESTSET, COMMITSET, UNDOSET, and CLEANUPSET). Ad-
ditionally, the method argument can hold two flags which describe the interpre-
tation of the oid argument: The flag INCLUDE signals that the search range
includes oid itself, if it is not set oid is excluded. The flag EXACT signals that
the request is for the exact oid and not for any successor. AgentX GetBulk re-
quests with Repeaters are split by the AgentX layer into several invocations of
callback functions. This streamlines and simplifies the architecture, because for
GetBulk Repeaters the results may come from different callback functions. It is

240 Oliver Wellnitz and Frank Strauß

not a performance issue, since it affects only neglectable local function calls and
not PDUs that would have to be transmitted. Table 1 shows how all AgentX
request PDUs are translated into method parameters to callback functions.

3.3 Processing Get/GetNext/GetBulk Requests

The middle part of Figure 3 shows a sequence diagram that illustrates the pro-
cessing of a GetNext request which is similar to the processing of Get or GetBulk
requests. Some details of the socket layer and the protocol layer are omitted here.

The function ax dispatch getnext() in the protocol layer dispatches every
SearchRange contained in the GetNext request. It then forwards the request
for every single SearchRange to ax dispatch sr() in the session layer. This
function now iterates over all callback functions for the session and compares
their registration OIDs to the starting and ending OID in the given SearchRange.
Every matching callback function is invoked until a callback returns a valid
result.

layer
session

subagent
kernel

layer
protocol socket

layer

AgentX layer

initialization

setup AgentX connection, session, and registration

signal startup

[for all varbinds]

registration

agent
master

GetNext PDU

Response PDU

callback *
ax_dispatch_sr() *

ax_dispatch_getnext()

until AX_SUCCESS]
[for matching search ranges

event
any signaled

ax_createpdu_notify()

ax_addvar_*()

ax_send_pdu() Notify PDU

ax_destroy_pdu()

*

Fig. 3. Sequence diagrams: (a) startup procedure, (b) processing a GetNext
request, (c) emitting a notification

Bringing AgentX Subagents to the Operating System Kernel Space 241

3.4 Processing Set Transactions

The AgentX protocol accomplishes a successful Set transaction in three phases
(see Figure 1). This is done to preserve the atomic nature of an SNMP Set re-
quest that may span multiple objects even at multiple subagents. However for
the AgentX layer, Set transactions are very similar to Get requests, because
varbinds are dispatched in the same way as SearchRanges. In case of success,
a Set transaction consists of three request PDUs: a TestSet PDU to prepare the
write access, a CommitSet PDU to actually write the data and a CleanupSet
PDU to complete the transaction. The next example describes how set transac-
tions are safely dispatched to the kernel subagents.

An AgentX TestSet PDU initiates a Set transaction. Every varbind from
the TestSet PDU is dispatched to callback functions as explained before for
SearchRanges in Get requests. Please notice that varbinds from the TestSet PDU
may be dispatched to different callback functions. The callback functions check
the varbinds for valid write access, type correctness, and legal values. When the
checks have been succeeded, the AgentX layer saves all varbinds from the TestSet
PDU because they are needed later. In the second phase, the master agent sends
a CommitSet PDU to actually trigger the data change. Because the CommitSet
PDU does not contain any varbind data, the AgentX layer refers to the previously
saved varbind list to dispatch the CommitSet PDU to all corresponding callback
functions. Finally in the third phase, the master agent sends a CleanupSet PDU.
Similar to the commit phase, it is dispatched to the callback functions based on
the saved varbind list to release any remaining temporary data of the transaction.

3.5 Sending Notifications

While Get and Set requests are handled by callback functions, notifications are
initiated by kernel subagents. Hence, the AgentX protocol layer provides func-
tions to kernel subagents to create a Notify PDU, to add an arbitrary number of
varbinds of specific base types to the PDU, and to send the PDU to the master
agent. Finally the kernel subagent has to release the PDU data from the protocol
layer. This procedure is illustrated in the lower part of Figure 3.

4 Implemented MIB Modules

In order to evaluate the feasibility of the presented kernel subagent architecture
it was implemented for the open-source Linux operating system. In addition
to the AgentX layer, two MIBs were partially implemented: The ifTable and
ifXTable of the Interfaces Group MIB [6] and a newly defined MIB [9] for the
Linux Netfilter subsystem [5, 10].

4.1 The Interfaces Group MIB

The Interfaces Group MIB (IF-MIB) defines objects for managing network in-
terfaces. Our implementation accesses existing kernel data structures directly or

242 Oliver Wellnitz and Frank Strauß

through functions already provided by the Linux networking code. It can no-
tice changes of network interfaces through an already existing notification hook,
which makes the design of a separated subagent module (see the left part of the
grey box in Figure 2) feasible. Hence, the kernel IF-MIB subagent was imple-
mented as a Linux kernel module.

However, there are two objects for which no equivalent variables exist in the
kernel: a timestamp for the last status change of an interface (ifLastChange)
and the value of ifLinkUpDownTrapEnable. The latter is to specify whether to
send a notification if an interface changes its status. Because a kernel module
cannot extend existing data structures, the IF-MIB module introduces an in-
terface shadow list where these values are stored. The elements of this list are
created on demand so that the list contains only interfaces which have non-
default values on any of these two objects. In addition to readable objects, this
module implements the linkUp and linkDown notifications and write access to
the ifLinkUpDownTrapEnable and ifAdminStatus objects.

Figure 4 gives an example of a callback function. It covers the table row
ifMtu, the Maximum Transfer Unit. The IF-MIB defines this as a read-only
object, hence this function returns an error on Set transactions. The function
get ifid() finds the correct interface ID for the requested OID. The function
getmtu() is called to retrieve the MTU of the interface. Finally the full instance

int if_mtu(ax_oid *oid,

ax_method method,

char* context,

ax_variable *res)

{

u_int32_t ifid;

const ax_oid IFMTU =

{10, {1, 3, 6, 1, 2, 1, 2, 2, 1, 4}};

if (!(m & GET))

return AX_NOTWRITABLE;

ifid = get_ifid(oid, method, 4);

if (!ifid)

return AX_NOSUCHOBJECT;

res->oid = ax_oid_addint(IFMTU, ifid);

res->type = AX_VB_INT;

res->value.integer = getmtu(ifid);

return AX_SUCCESS;

}

Fig. 4. IF-MIB: Callback function for ifMtu

Bringing AgentX Subagents to the Operating System Kernel Space 243

OID, the type and the value are stored to the result structure, before the callback
function is terminated successfully.

4.2 The Netfilter MIB

The second implemented MIB is the experimental TUBS IBR Linux Netfilter
MIB [9]. Netfilter is the Linux subsystem for packet filtering, mangling and
network address translation (NAT).

The Linux Netfilter subsystem consists of so called tables. As of Linux 2.4.20
there are three tables in the Linux kernel: The packet filtering table, the net-
work address translation table and a mangle table for packet alteration. Each
table contains a number of built-in chains and may additionally have user-
defined chains. The Netfilter subsystem currently has five hooks at five different
points where an IP packet can traverse (INPUT, FORWARD, OUTPUT, PRE-
ROUTING and POSTROUTING). So each table has up to five different built-in
chains. Every chain consists of a list of rules where each rule consists of one or
more conditions (matches) and an action (target). If a packet matches all con-
ditions, the according target is applied. Each built-in chain has a default policy
which decides the fate of an IP packet that does not match any rule.

The Linux Netfilter subsystem is divided into several modules, which are
responsible for different tasks. One module handles all table and chain manage-
ment (ip tables.c) so that the according network management functionality
has been implemented there. This module defines data structures for Netfilter
tables and chains but it, e.g., lacks methods to access a specific chain. This is
done in user space by the Netfilter configuration tool iptables(1). This approach
is usually preferred because it keeps the kernel code small, but on the other hand,
it makes the task of adding network management code to the kernel more diffi-
cult. So existing user space functions had to be rewritten and put into the kernel.
Furthermore, the Netfilter MIB contains ”LastChange” timestamp objects for
all Netfilter elements, which the original Netfilter subsystem does not support.
For this reason the data structures for Netfilter tables and chains had to be
extended. This raised a problem, because as mentioned before, these data struc-
tures are used by the user space tool as well, so that adding timestamps to tables
and chains breaks compatibility with the Netfilter user space tool. The solution
to this problem is either to recompile the user space tool with the new structure
definitions or to drop the ”LastChange” objects. Finally, both approaches were
implemented and the system administrator can decide at kernel compile time.

5 Evaluation

A brief evaluation was done in order to see if the presented kernel subagent ar-
chitecture has measurable impact on the performance in contrast to a monolithic
SNMP agent. For this purpose we used a Pentium 200MMX host with 64 MB
memory running either a standalone NET-SNMP agent or the presented kernel

244 Oliver Wellnitz and Frank Strauß

kernel subagent monolithic agent
mean std.dev. mean std.dev.

snmpwalk ifTable 323 ms 11 ms 351 ms 7 ms

10× snmpget ifNumber 737 ms 20 ms 739 ms 34 ms

Fig. 5. Performance comparison

AgentX prototype with a NET-SNMP daemon as the AgentX master agent. All
SNMP requests were issued by a remote manager over a local area network.

Figure 5 shows the results of the evaluation which presents no distinctive
difference in performance. However, the implementation of ifTable is not equiv-
alent in both approaches: the NET-SNMP implementation of ifTable supports
17 columnar objects while the kernel subagents supports 20 columns. Therefore
in the snmpwalk test the kernel implementation returned 81 object instances for
four table rows compared to 69 in case of the NET-SNMP implementation.

The implementation costs for kernel subagents turned out to be relatively
small. E.g., the ifTable and ifXTable implementation presented in Section 4.1
comprise of about 900 lines of C code.

6 Conclusion

This paper states that the concept of distributed SNMP agent implementation by
means of the AgentX subagent architecture is well applicable not only to modular
devices and host services in user space, but also to kernel space subsystems. It
has been argued that this allows MIB implementors to retrieve and manipulate
data that lives in kernel space without the indirection of a potentially changing
and limited kernel interface. Furthermore, this way it is easier to handle events
in the kernel space in order to emit notifications for which user space agent
implementations would often need to poll data frequently from the kernel due
to the lack of appropriate trigger mechanisms.

To evaluate the concept of kernel AgentX subagents, two MIBs have been
implemented for the Linux 2.4.x kernel: the IETF IF-MIB and a newly designed
MIB module for the Linux packet filtering subsystem Netfilter. It has been shown
that the effort to instrument typical kernel subsystems with subagent functional-
ity is low and that the intervention to the existing kernel code could be restricted
to a small interface. Furthermore it has been proved that the performance is at
least comparable to traditional agent implementations.

The downside of implementing management agent functionality inside the
kernel is the increased size of static kernel code and the general fact that kernel
level code development is a delicate task, because bugs affect system stability
more severely than user space programs.

The major benefit of the presented approach is the fact that the develop-
ment of a kernel subsystem and its management instrumentation can be closely
integrated. The development of a MIB implementation is put in the hands of

Bringing AgentX Subagents to the Operating System Kernel Space 245

the maintainer of the subsystem which is to be managed through the MIB. This
expertise helps to ensure more accurate MIB implementations and eases to keep
track of changes in a subsystem which affect the management portion. At the
same time the AgentX layer releases the developer from the necessity to know
SNMP in detail.

References

[1] The NET-SNMP home page. WWW Page. http://www.net-snmp.org 236
[2] G. Carpenter and B. Wijnen. SNMP-DPI: Simple Network Management Protocol

Distributed Program Interface. RFC 1228, T. J. Watson Research Center, IBM
Corp., May 1991. 236

[3] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction to Version 3 of the
Internet-standard Network Management Framework. RFC 2570, SNMP Research,
TIS Labs at Network Associates, Ericsson, Cisco Systems, April 1999. 234

[4] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco. Agent Extensibility
(AgentX) Protocol Version 1. RFC 2741, Digital Equipment Corporation, IBM
T. J. Watson Research, Ellison Software Consulting, Cisco Systems, January 2000.
235

[5] Pat Eyler. Networking Linux: A Practical Guide to TCP/IP. New Riders Profes-
sional Library, 2001. 241

[6] K. McCloghrie and F. Kastenholz. The Interfaces Group MIB. RFC 2863, Cisco
Systems, Argon Networks, June 2000. 241

[7] M. Rose. SNMP MUX Protocol and MIB. RFC 1227, Performance Systems
International, May 1991. 236

[8] F. Strauß, J. Schönwälder, and S. Mertens. JAX - A Java AgentX Subagent
Toolkit. In Proc. 1st IEEE Workshop on IP-oriented Operations & Management,
Cracow, September 2000. 236

[9] F. Strauß and O. Wellnitz. The experimental TUBS-IBR Linux Netfilter MIB.
http://www.ibr.cs.tu-bs.de/arbeiten/strauss/kagentxd/

TUBS-IBR-LINUX-NETFILTER-MIB, 2002. 241, 243
[10] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler. Linux Network

Architecture. Prentice Hall, 2004. 241
[11] B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, and G. Waters. Simple Network

Management Protocol Distributed Protocol Interface Version 2.0. RFC 1592, IBM
T. J. Watson Research Center, Bell Northern Research Ltd., March 1994. 236

Management Challenges of Context-Aware

Services in Ubiquitous Environments

Heinz-Gerd Hegering, Axel Küpper,
Claudia Linnhoff-Popien, and Helmut Reiser

Munich Network Management Team, University of Munich, Dept. of Informatics
Oettingenstr. 67, D-80538 Munich, Germany

{hegering,kuepper,linnhoff,reiser}@informatik.uni-muenchen.de
http://wwwmnmteam.informatik.uni-muenchen.de

Abstract. Ubiquitous environments facilitate the collection of informa-
tion pieces from sensors, databases, or mobile devices in order to compose
the context of entities like users, places, or things. The context obtained
in this way can be used to automatically adapt the behavior of services,
which results in the new paradigm of context-aware services (CASs).
In recent years, a lot of research has covered the functional aspects of
CASs. However, CASs in ubiquitous environments impose new manage-
ment challenges, which has not been considered so far. The goal of this
paper is to identify new challenges on CAS management and thus to
provide a roadmap for further research in this area.

Keywords: Context Aware Service, Quality of Context, Federative Or-
ganization Model, Context Information Model, Context Value Chain

1 Introduction

MarkWeiser’s vision of ubiquitous computing of the year 1991 [18] gains more and
more momentum as miniaturization and integration of computing and wireless
communication facilities evolve. The Internet has been the enabling infrastruc-
ture behind services for individualized information retrieval and new forms of
interactivity during the last decade. Now ubiquitous computing is the driving
force behind the new service paradigm context-awareness.
According to Dey [5] “context is any information that can be used to char-

acterize the situation of an entity: an entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, includ-
ing the user and application themselves”. A service then becomes a context-aware
service (CAS) if its behavior or the content it processes is adapted to the context
of one or several entities in a transparent way. This adaptation process will be
called contextualization in the following. However, before a CAS can be contex-
tualized the context of relevant entities needs first to be obtained from various
context sources like sensors or databases, which is called context procurement.
In recent years, several platforms have been developed for realizing context pro-
curement and contextualization, for example Parctab [14], CAPEUS [13], the

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 246–259, 2003.
c© IFIP International Federation for Information Processing 2003

Management Challenges of Context-Aware Services 247

ContextToolkit [5], and the Technology for Enabling Awareness (TEA) [15], to
name only a few of them.
Many research projects have concentrated on functionality aspects of CAS

and mostly regard device-centric applications. However, ubiquitous computing
implies the interconnection of many local environments and devices and thus
makes it possible that users share their context (and that of other entities)
among each other. As a consequence, several actors like users, network operators,
service and content providers are involved in context procurement, contextual-
ization, and CAS provisioning. Because ubiquitous computing comes along with
highly heterogeneous and distributed environments, our idea is that of an in-
tegrated approach of CAS management. Real-time requirements, high dynamic
and automation are typical for CASs and evolve new management challenges.
But management issues have been neglected or even left unconsidered in former
platforms for context-awareness. Therefore, this paper identifies new challenges
on a CAS management and thus to provide a contribution for further work in
this area.
The remainder of this paper is structured as follows: section 2 introduces an

application scenario that outlines the complexity of CASs and serves as a ref-
erence example for subsequent sections.To identify management challenges and
structure the complex processes of context procurement and contextualization we
adopt traditional management concepts[8]. Accordingly, we propose information
and organization models dedicated to the special aspects of context awareness
and, based on these models, derive the challenges within the functional areas of
management. Section 3 covers the information model and introduces a process-
oriented value chain to describe context procurement and contextualization in
a structured way. The necessity of extending information models with the value
chain and context description will be shown. Section 4 covers the organizational
model and proposes a role model that identifies the different roles the actors of
a CAS infrastructure may adopt according to their functional tasks. This role
model is used to identify manager relationships across organizational boundaries.
Based on the value chain and the role model, section 5 derives management chal-
lenges according to the known functional model, i.e., from the point of view of
fault, configuration, accounting, performance, and security management. Finally,
section 6 concludes the paper and presents further work.

2 Application Scenario

To outline the complexity of CASs in ubiquitous environments, but also to pro-
vide a reference example for discussing management challenges, we introduce the
application scenario Medical Advice and Emergency System (MAES). MAES is
intended for persons with critical diseases or medical disabilities (patients). The
system gives medical advice to these patients and, in case of emergency, supports
the workflow of the rescue crew. Different users of MAES, like patients, physi-
cians, or the ambulance staff, use either conventional mobile consumer devices
or special-purpose devices. They are connected to the system via heterogeneous

248 Heinz-Gerd Hegering et al.

Fig. 1. Users and context information in MAES

wireless and wired infrastructures. Thus, from this point of view MAES can
be seen as a conventional IT service which is implemented by composing inter-
dependent and layered sub-services of different actors like network operators,
service and content providers. However, usage of medical IT services like MAES
impose very high requirements such as promptness, simplicity, and reliability on
the underlying service infrastructure. It is therefore obvious to make these ser-
vices context–aware in order to reduce awkward interactions between the users
and the system, to automate workflows, and to adapt these workflows as well
as the service’s behavior and appearance towards the users according to current
circumstances. To achieve this goal, MAES incorporates an extensive set of het-
erogeneous context information which cover medical, spatial, environmental, and
technical aspects. Figure 1 gives an overview of the different types of users and
the context information processed by MAES. An important input for MAES is
the patient’s medical situation, which comprises her current vital functions and
her medical profile. Vital functions are derived by sensors which are worn by
patients [9] and which deliver information about consciousness, respiration, cir-
culation, and metabolism. The medical profile contains diagnostic findings made
by physicians as well as prescribed medicaments and therapies. Depending on
the current patient’s vital functions and under consideration of her medical pro-
file MAES may trigger the medical advice function or the emergency handling
function.
The medical advice function notifies the patient or a remote medical con-

trol center about the current medical state and proposes remedial actions, for
example to take certain medicaments or to consult a physician. These recommen-
dations are combined with a list of nearby pharmacies and physicians, thus it is
necessary to derive the current location of the patient. Weather conditions like
temperature, precipitation, and atmospheric pressure, as well as environmen-

Management Challenges of Context-Aware Services 249

tal influences like air pollution, pollen loading, and ozone concentration may
be considered in addition. Based on this environmental information, MAES can
recommend to avoid exhausting activities.
Emergency handling is a workflow starting with the receipt of an emergency

call and terminating with hospitalizing the patient. Upon receipt of an emergency
call, the operator receives the patient’s vital functions and medical history and
can select an appropriate hospital with free capacities and in close proximity to
the patient. Afterwards, MAES notifies an ambulance which is equipped with the
required personal and material configuration (derived from the patient’s medical
profile) and which can reach the patient as fast as possible. The latter requires to
derive the shortest path between ambulance and patient and to consider current
traffic conditions along that path. The ambulance is supplied with the patient’s
medical profile and, if the patient has not been reached yet, with her latest vital
functions.
From this application scenario several features of CASs can be derived that

impose high requirements on management tasks. The following list itemizes the
most important of these features:

– CASs obtain data from a very heterogenous set of context sources, e.g., sen-
sors, mobile devices, and databases, which are highly distributed in the ubiq-
uitous environment and which are located in the domains of different actors
like operators of sensor networks or content providers.

– Data delivered by different context sources is consequently also very hetero-
geneous and usually varies in its update frequency (if any), its accuracy, and
its format of representation.

– Context information is not only the output of some context sources, but the
result of service and user specific context procurement, i.e., the processing
and distribution of data delivered by context sources.

– CASs are characterized by a higher level of mobility. Not only users are
mobile but even parts of the technical infrastructure, e.g., context sources.
A CAS should even work if its mobile users leave the service area of her
original provider or the coverage area of a certain context source. There
are roaming challenges not only for users and services, but also for context
information delivered by different actors.

– A context information may have a spatial and temporal validity. Due to the
mobility of users, it might be necessary to locate relevant context sources
during service usage and to identify resources needed for context procure-
ment in an ad-hoc manner.

Provisioning of CASs will therefore be a new challenge for involved actors and
their management systems. CASs will only be accepted at the market if they
are easy to use, easy to configure and if the organizational and management
boundaries are absolutely transparent from the customers’ point of view. This
means that realization and management of CASs require a completely new kind
of interworking and cooperation between independent actors.

250 Heinz-Gerd Hegering et al.

3 Context Information Model

Context-awareness implies the procurement of context and the contextualization
of CAS components according to this context. Recent approaches have been
dealing with these issues, for example, [5], [15], and [14], slightly differing from
each other in the proposed structuring and terminology of these processes.
To automate the context procurement and contextualization we introduce the

concept of a value chain which covers all steps happening between sensors and
CAS components. Classical information models must be extended with a formal
description of context and they must represent the value chain to make context
procurement and contextualization manageable. We call these extensions context
information model, which will be presented in the following.
Figure 2 shows an example of such a value chain which describes the pro-

curement of medical profiles, vital functions, location and weather information
as required for the contextualization of the medical advice function of MAES.
Clearly, the universal value chain approach applies to other CAS scenarios, too.
The context of an entity may be derived from very different sources, e.g.,

sensors checking the patient’s vital functions, positioning methods like GPS for
obtaining her current location, or databases containing her medical profile. Cap-
turing data from these context sources is a process we call sensing. However,
sensing merely provides the “raw material” of context, which is referred to as
low-level context information in [5], and which is often not interpretable by the
requesting CAS. Usually, one or several steps of refinement have to be performed
in order to derive high-level context information as required by the respective
CAS. Among other things, refinement comprises the transformation between dif-
ferent formats of representation (e.g., from GPS coordinates to street names and
numbers), the extension of context information with attributes (e.g., to express
its accuracy), or the combination of context information to derive another one
(e.g., calculating the distance between patient and ambulance by using their lo-
cations). After refinement, all the required context information which is related
to a particular entity and which is of relevance for a particular CAS needs to be
allocated, a process which is called aggregation. Figure 2 shows possible context
information of a patient required for the medical advice function. Finally, the
aggregated context is used to contextualize the CAS, which represents the last
step of the value chain.
It must be stressed that a value chain may comprise several sequences of

sensing, refinement, aggregation, and contextualization, one for each context
information to be considered. These sequences might be executed in a prescribed
order or in parallel, either entirely independent from each other or with need for
synchronization. The exact coordination of the various sequences depends on
a lot of circumstances like the requirements of the CAS, the range of context
information to be processed, interdependencies between context information, the
availability of context sources, etc. Each step of a sequence may be executed in
an iterative manner and may comprise several sub-steps. Furthermore, the steps
of a sequence may be triggered on demand or they may be event-triggered, i.e.,
if the value of a context information exceeds a pre-defined threshold. Thus, the

Management Challenges of Context-Aware Services 251

Fig. 2. The Context Value Chain

description given here is, due to simplicity, rather a coarse-grained representation
of the value-chain concept.
Building a context chain and selecting the most appropriate context sources

is a federative process. Automation of contextualization and using context in-
formation across organizational boundaries can only be done if all participants
have the same notion of how to interpret the data. Therefore the management
information model has to be extended with a Context Description Language
(CDL) to formalize the specification of context. Without such a formal and au-
tomatically evaluable description of provided context information selection of
context sources and brokerage of such information is infeasible. A starting strat-
egy on the way to a uniform notion of context is to build context categories,
i.e., device-specific, environment-specific and user-specific context [2]. However
existing models within these categories are focused mostly on the considered
application scenario, e.g., [19] concerns human computer interaction and mod-
els context within a hierarchical model which is optimized for database storage
with quite few context-classes. A quite narrow and static model for device spe-
cific context for resource detection in ad-hoc networks is presented in [12]. An
all-embracing model for all context categories is still missing, but nevertheless
needed. Therefore a comprehensive CDL had to be specified and information
models like the Common Information Model (CIM) should be enhanced with it.
Even if an unambiguous context description exists, it will be not fully sufficient
for selecting context sources.A formal notion of Quality of Context (QoC) as
an integral part of each context description is needed to build an appropriate
value chain in terms of quality and price of their aggregated context. Examples
for such QoC parameters are accuracy, availability, timeliness, validity period,
system of units, conversion factors, etc. [3].
As there are high timing constraints in CAS the process of context pro-

curement might not contain any procedure which requires human interaction.
Automation can only be achieved if all sub-processes of the value chain can be

252 Heinz-Gerd Hegering et al.

automated. One of our ideas to investigate in the future will be the modeling
of each sub-process of the value chain as a managed object. The management
system has to regard the formal context description with actual QoC as in-
put parameters to select the appropriate sub-process(es) with its “best” context
source.

4 Federative Organization Model

A nontrivial CAS can only be realized in an interorganizational manner. As
seen in section 2 the MAES provider can only offer its service by composing
sub-services of various other actors (e.g., operators of sensor networks, mobile
network operators, information system providers, traffic management systems,
ambulances, hospitals, etc.). Thus, several actors must establish a federation in
order to establish the value chain presented in the last section by composing their
sub-services. To classify the actors according to their roles they play in such
a federation, and thus to structure management tasks from an organizational
point of view, we propose a role model for CAS.

Fig. 3. The Role Model of a Context-
Aware System

In this model, an actor denotes
an individual, organization, depart-
ment, or enterprise, which offers
services to other actors, which con-
sumes services from other actors, or
which does both of them. From a
system’s point of view, each actor
autonomously operates and con-
trols its own administrative tech-
nical domain, consisting for exam-
ple, of a network infrastructure,
a server farm, or only a single mo-
bile device. An actor may adopt
one or several roles. A role repre-
sents a certain field of activity of an
actor and is associated with a cer-
tain set of sub-service components for realizing and controlling the value chain.
Figure 3 shows our approach of a role model for a CAS infrastructure. Note
that our understanding of a role model is in accordance with that of business
models that have been proposed for telecommunication systems like TINA [17],
UMTS [1], or the MNM service model [7]. However, we prefer to define a dedi-
cated role model in order to be independent of a particular network technology
and to highlight the special problems and tasks of context-awareness.
The central role of our model is the CAS provider, which creates and de-

ploys CASs like MAES and offers and sells them to a CAS customer. The CAS
customer interacts with the CAS provider in order to negotiate service level
agreements and to control customer service management on behalf of one or
several CAS users. The CAS provider obtains context information for contextu-

Management Challenges of Context-Aware Services 253

alization of its services from a context provider, which is usually the operator of
context sources. For example, a context provider may be the operator of a cel-
lular network, which tracks a CAS user and delivers that user’s current location
to the CAS provider. In some cases more rules can be adopted by the same
actor, e.g., the roles of context provider and CAS user are adopted by the same
actor. For example, a patient uses the MAES and simultaneously delivers her
vital functions to the system.
Due to the heterogeneity and diversity of context information, it is unlikely

that a certain context provider is able to deliver all context information required
for a CAS. Also, a context provider may only cover a limited geographic area, and
due to the mobility of CAS users the relevant context providers are not known in
advance, but must be identified during CAS usage. The context broker supports
this identification. It maintains a directory for registering context descriptions
of information a context provider is able to deliver together with its QoC. This
directory can then be requested by CAS providers in order to find appropriate
context providers.
For many services it would be desirable that a CAS user has access to con-

text information which is related to another actor. For example, in the MAES
scenario the emergency control center requires the patient’s vital functions and
medical profile in order to decide about the right ambulance configuration. From
a security point of view, this a very sensitive matter, because an actor must al-
ways have control about the processing and accessing of her context by other
actors. It is therefore inevitable to establish the role of a context owner, which
represents an entity context is related to and which is able to specify access
restrictions regarding its context.
The value chain presented in the previous section is realized by the inter-

actions between different context providers on the one hand as well as between
context providers and a CAS provider on the other. The exact mapping of sens-
ing, refinement, aggregation, and contextualization onto the roles is a point for
further discussion. However, it is obvious at least that context providers always
performs the sensing, whereas CAS providers are responsible for the contextu-
alization. Whereas the value chain is directly realized by the roles of context
and CAS providers, the remaining roles have nevertheless a significant impact
on the value chain, which is to be discussed within the scope of the management
functional areas in section 5.
As can be derived from this role model, each actor will have its own technical

infrastructure and management system(s), and there is no ”leader” which can
intervene regulatively. Enterprise management concepts with the aim to build an
integrative management umbrella on top of various different management sys-
tems is infeasible, because in such a federative environment there will be no actor
prominent enough to establish and operate such an umbrella system. Most of the
participating actors will not allow deep influence within their own sense-making
process. Therefore, managing CAS will only work in a federative and not in
any kind of hierarchical organization model, i.e., operation and management of
a CAS infrastructure will only be achieved in an interorganizational cooperation

254 Heinz-Gerd Hegering et al.

between the various actors. The managers of different actors need to interact
among each other in order to establish and control the value chain according
to the management functional areas. However, in such a federation each actor
may deploy its own management system, including actor-specific representations
of resources and sub-services (managed objects) as well as management proto-
cols. Thus, management gateways are required at the boundaries of each actor’s
technical domain in order to mediate between the heterogeneous management
systems.

5 Management Functional Areas

In contrast to conventional, non-context-aware IT services the realization of
management functions including the inter-organizational mediation process is
a hard and troublesome matter. The mobility of users in combination with the
availability of appropriate context sources forces a high degree of flexibility and
automation on management functions during CAS provisioning. In addition,
these management functions may be subject to hard real-time requirements.
The impact of these requirements is discussed in the subsequent sections for
each of the functional management areas separately.

Configuration The concept of context value chains raises the question how
to establish them if a certain context information is needed. Obviously, its con-
figuration depends on the context information itself, whether or not it is based
on other context information, and the requirements of the CAS. Whereas there
are some static aspects, configuration is frequently based on dynamic criteria,
above all the mobility of users. For example, the availability of context sources
depends on the user’s location, i.e., if the user moves, the set of available context
sources may change accordingly. Furthermore, a context information can usually
be derived by different value chains, differing from each other. Establishing the
most suitable value chain for each individual user — taking into account her
current situation — will be the main configuration management challenge for
the CAS provider. For this purpose the CAS provider needs an integrated con-
figuration mechanism across heterogeneous systems and across various context
providers. This means that each context provider has to make available an auto-
mated configuration interface for its CAS providers. Beneath building the value
chain its automatic adaptation to a constantly changing infrastructure, e.g., if
sensors vanish, will be another challenge. The CAS provider itself must support
its customers with a customer service management (CSM) interface [10]. A CAS
must be easy to use and easy to configure. The configuration simplicity will be
the most important aspect for CSM.
The service lifecycle as presented in [7] is feasible for establishing a CAS in-

frastructure in the long term. However it does not cope with the ad-hoc creation
of an user individual peculiar instance of a certain CAS regarding the current
context of the context owner. Therefore during the usage phase of each CAS a

Management Challenges of Context-Aware Services 255

micro-lifecycle has to be established and traversed for building each individual-
ized service instance. This micro-lifecycle contains all phases of the long term
life cycle, i.e., design (resp., adaptation), negotiation, provisioning, usage and de-
installation (resp., de-allocation). Constitution and cycling the micro life cycle
must be supported by configuration management functions.

Fault The challenges in fault management cover two areas: faults in sensing
and faults in the procurement of context. Context sensors are often proprietary
highly specialized devices with their own raw data format, limited usage in-
terfaces, limited CPU as well as limited memory, and without management or
alarming functions. Fault detection and recovery in sensor networks therefore is
not trivial. Management mechanisms have to cope with e.g., power managment,
radio energy management, sensor location, (collaborative) signal processing, sen-
sor synchronization, etc. [6]. Context sensing within CAS is characterized by
highly dynamic and short-term update cycles of context information. Especially,
for sensor networks self-healing and self management mechanisms are needed
to be able to cope with dynamics and the technical deficiencies of sensor net-
works — beneath their pure sensing functionality — must be compensated by
the management system.
Sensing — capturing data from context sensors — does not always work; this

is a technique intrinsic fact within context sensing. A simple example for that
is the impossibility of GPS localization without a direct line of sight to some
satellites. For localization in CAS this means that a GPS sensor is useless indoor.
The effect of such technical restrictions for the process of building a value chain is
the same as loosing a certain sensor. The fault management system must be able
to detect this (temporary) absence of sensors and must support the configuration
management as well as activate the micro–lifecycle to build an alternative value
chain with nearly the same QoC.

Accounting The accounting management of CAS must be able to deal with the
fact that each user gets its own and unique service which will be individually
customized for her. In the worst case such a service will only be used once.
Developing of fair tariffs for a user individual CAS which will be used only
a few times is an unsolved problem. From the customer’s point of view the
predictability of tariffs and keeping the costs of CAS under control is mandatory.
The accountable units, the mechanisms, the measurement points for gaining

them and their exchange within an interorganizational CAS infrastructure have
to be defined. Both sides — customer and CAS provider — need a concept for
conservation of evidence for the CAS usage and accordant accountable units. The
CAS provider needs new cost and charging models for context information and
for CASs. These models must then be deployed between different (sub-)providers
which contribute information to the context value chain.
Concepts of calculating costs, negotiating them with the customer, and con-

cluding them in an agreement before actually using the CAS will not work in such
highly dynamic environments. For CAS ad-hoc agreements and ad-hoc pricing

256 Heinz-Gerd Hegering et al.

are necessary. It can not be assumed that each customer will apply and subscribe
before actually using a service. Rather, a customer would like to define a price
ceiling for a certain CAS and awaits best possible service delivery within her
price range. From management point of view this connotes a complete inver-
sion: not the service defines the price but the price causes the type of service
provisioning. QoS based pricing concepts can be a starting point (for a review
cf., [16]), however concepts for a price-driven service adaptation, building the
value chain and price-driven service-provisioning are fundamentally needed.
Besides the classical roaming in cellular phone networks CAS users will claim

for ”service roaming” which enables a seamless CAS usage even if the user leaves
the service area of its CAS provider. For that purpose and to follow the principle
”one face to the customer” an inter-provider accounting system is necessary.

Performance A CAS ”performs well” if its user will always get appropriate
QoS. A CAS provider must be able to build and even update value chains with
appropriate QoC. In provisioning of CAS, in procurement and update of context
information real time requirements can not be eliminated. For building a certain
context value chain this implies concepts for optimizing this process in terms of
response times. Therefore notions for optimal context caching and context reuse
can be helpful. Reuse of sensor data, context or of a preliminary stage within
a value chain, can shorten allocation process. A basic QoC–attribute therefore
will be the validity period of each context information. Without this caching is
not feasible. Because of the frequently changing circumstances during CAS usage
and as changes in the actual environment of a context owner might change its
context a predefinition of a validity period is not that simple.

Security Providing context aware services requires foremost the same security
mechanisms — e.g. for identification, authentication, and authorization of par-
ticipating authorities, non repudiation, etc. — as traditional services. However
there are some new aspects respectively tighten requirements especially regard-
ing confidentiality, integrity, availability (CIA), informational self-determination,
privacy, and trust level management.
Context information and according profiles might be highly sensitive and

private information for each user; e.g., medical profile or current medical sta-
tus in the MAES scenario. It may be disastrous for the context owner if even
parts of this information came to wrong hands, would be manipulated, or if the
context sources the service depends on would be unavailable. Existing confiden-
tiality mechanisms do not scale well for CAS, because protect-able data might
be generated by a huge amount of context sources under responsibility of lots
of different context providers and transmitted via various communication mech-
anisms. Classical confidentiality mechanisms cope with a manageable group of
beforehand known communication partners or they are designed for certain com-
munication channels (e.g. IPSec, ssh, WEP). In CAS none of this prerequisites
are entirely fulfilled. There are contractual relations between the context owner
and some CAS providers, but normally there is no such contract between her

Management Challenges of Context-Aware Services 257

and the various context providers. Even worse, the context owner often does
not even know context providers which generates information about her. The
information flow is unknown and uncontrollable for her. Data is transmitted via
heterogeneous channels (BAN, WLAN, 3G Networks, TCP/IP Networks, etc.).
Therefore integrated and interorganizational security mechanisms are which can
cope with and configure different heterogeneous security mechanisms on different
and heterogeneous infrastructures in a consistent manner.
Similar problems arise regarding integrity, accuracy, and availability. The

CAS user must be absolutely sure that context information about a context
owner delivered by herself, by the CAS provider, or even directly by the con-
text providers are reliable, accurate, and on time. For proper CAS operation not
only the availability of servers or network components are critical, but also the
availability of context sources. However sensors are not designed to have high
availability and it is easy to disturb them physically. Mechanisms for automat-
ically selecting and querying alternative context sources with similar QoC are
essential for the CAS provider in case of unavailability. All participating roles
must be able to verify the integrity-aspects (reliability, accuracy, timeliness) of
received data independently of other roles.
For the context owner the most important security requirements are her in-

formational self-determination, her privacy, and controlling the hazards of per-
sonalized context information. Obtaining condensed context information might
enable serious misuse. Potential dangers are user tracking and sophisticated user
profiling. Concepts for the context owner are necessary to specify and perhaps
even control information flows and to determine who can see or use her actual
and historical context information. This means that the context owner must be
enabled to authorize and prohibit access to data which is not under her own con-
trol. For privacy aspects within web-services a privacy policy solution has been
presented in [4, 11]. Parts of these concepts might be applicable or enhanced for
CAS. But specification of such access rules must be done easily and indepen-
dently of arbitrary access control models used at the provider side. Protectable
data is produced by a huge amount of different providers. Even worse for the
context owner, there are unknown context providers which are known only by
the CAS provider. In such cases, and in order to relief herself, the context owner
might delegate the informational self-determination tasks to the CAS provider
or to a security provider. Therefore and as a basic security service, a formal trust
model and its implementation within a trust level management system could be
helpful. Today, trust is mostly defined implicitly and in a ”make-or-break” man-
ner. If it is feasible to define, specify, and check the level of trust, then it will
be calculable and automatically processable. For services which need the user
context without personalized information a concept for anonymous service usage
should be available to avoid user profiling.

258 Heinz-Gerd Hegering et al.

6 Conclusions and Future Work

In this paper new challenges caused by CAS have been identified and presented.
No doubt, more questions and problems are raised than can be answered at the
moment. Some approaches to cope with this challenges have been presented.
Within CAS scenarios with real time requirements, i.e., with short time and
user-individual service adaption needs and with different organizational domains
there is an urgent necessity for self-management concepts. In coping with sensor
networks and their management deficiencies concepts for self–healing will be
helpful.
This work is intended as a starting point for lots of research which must

be done in the future. Our next steps in this area will be the observation of
further CAS application scenarios to identify the functional building blocks for
CAS–specific FCAPS. A deeper investigation of interorganisational aspects is
planned regarding the interactions which are relevant for management purposes.
Furthermore we are building managed object classes for the role model, the
processes contributing to the value chain and for context information. We are
working on the specification of a CDL and as QoC will be a prominent part we
try to identify universal QoC parameters for the different context categories.

Acknowledgement

The authors wish to thank the members of the Munich Network Management
(MNM) Team for helpful discussions and valuable comments on previous versions
of the paper. The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is
a group of researchers of the University of Munich, the Munich University of
Technology, and the Leibniz Supercomputing Center of the Bavarian Academy
of Sciences. For more information see
http://wwwmnmteam.informatik.uni-muenchen.de.

References

[1] 3GPP Technical Specification Group Services and System Aspects. Service As-
pects; Stage 1 Service Requirements for the Open Service Access (OSA) - Release
4. Technical report, 3rd Generation Partnership Project (3GPP), March 2002.
252

[2] N. Anerousis. Pervasive Computing. Tutorial at the 8th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2003), March 2003. 251

[3] T. Buchholz, A. Küpper, and M. Schiffers. Quality of Context Information: What
it is and why we need it. In Proceedings of the 10th HP–OVUA Workshop, volume
2003, Geneva, Switzerland, July 2003. 251

[4] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall,
and Joseph Reagle. The Platform for Privacy Preferences 1.0 (P3P1.0) Specifica-
tion. W3C Recommendation REC-P3P-20020416, W3C, April 2002. 257

[5] Anind K. Dey. Providing Architectural Support for Building Context-Aware Ap-
plications. PhD thesis, Georgia Institute of Technology, November 2000. 246,
247, 250

Management Challenges of Context-Aware Services 259

[6] D. Estrin, A. Sayeed, and M. Srivastava. Wireless Sensor Networks. Tutorial at
the Eighth ACM International Conference on Mobile Computing and Networking
(MobiCom 2002), September 2002. 255

[7] M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, M. Langer, M. Nerb,
I. Radisic, H. Rölle, and H. Schmidt. Towards generic Service Management Con-
cepts — A Service Model Based Approach. In G. Pavlou, N. Anerousis, and
A. Liotta, editors, Proceedings of the 7th International IFIP/IEEE Symposium
on Integrated Management (IM 2001), pages 719–732, Seattle, Washington, USA,
May 2001. IFIP/IEEE, IEEE Publishing. 252, 254

[8] H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked
Systems — Concepts, Architectures and their Operational Application. Morgan
Kaufmann Publishers, ISBN 1–55860–571–1, January 1999. 651 p. 247

[9] C. Kasabach, C. Pacione, J. Stivoric, A. Teller, and D. Andre. Why the Up-
per Arm? Factors Contributing to the Design of an Accurate and Comfortable,
Wearable Body Monitor. Technical report, BodyMedia, 2002. 248

[10] M. Langer, S. Loidl, and M. Nerb. Customer Service Management: A More Trans-
parent View To Your Subscribed Services. In A. S. Sethi, editor, Proceedings of
the 9th IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management (DSOM 98), Newark, DE, USA, October 1998. 254

[11] Marc Langheinrich. A Privacy Awareness System for Ubiquitous Computing En-
vironments. In G. Borriello and L. E. Holmquist, editors, 4th International Con-
ference on Ubiquitous Computing (UbiComp2002), number 2498 in Lecture Notes
in Computer Science (LNCS), pages 237–245. Springer, 2002. 257

[12] G.-C. Roman, C. Julien, and A. L Murphy. A Declarative Approach to Agent-
Centered Context Aware Computing in Ad Hoc Wireless Environments. In The
1st International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS’2002), May 2002. 251

[13] M. Samulowitz, C. Michaehelles, and C. Linnhoff-Popien. Adaptive Interaction for
Enabling Pervasive Computing Services. In 2nd ACM International Workshop on
Data Engineering for Wireless and Mobile Access (MobiDE 01), Santa Barbara,
Califonia, USA, May 2001. ACM. 246

[14] B.N. Schilit. System Architecture for Context-Aware Mobile Computing. PhD
thesis, Columbia University, New York, 1995. 246, 250

[15] A. Schmidt and K. van Laerhoven. How to Build Smart Appliances. IEEE Per-
sonal Communication, pages 66–71, August 2001. 247, 250

[16] B. Stiller, P. Reichl, and S. Leinen. A practical review of pricing and cost re-
covery for internet services. In Netnomics – Economic Research and Electronic
Networking, volume 3. Baltzer, The Netherlands, March 2001. 256

[17] TINA Business Model and Reference Points - Version 4.0. Technical report, TINA
Consortium, May 1997. 252

[18] Mark Weiser. The Computer of the 21st Century. Scientific American, September
1991. 246

[19] H. Wu, M. Siegel, and S. Ablay. Sensor Fusion for Context Understanding. In
Proceedings of IEEE Instrumentation and Measurement Technology Conference,
Anchorage, AK, USA, May 2002. 251

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 260-272, 2003.
 IFIP International Federation for Information Processing 2003

Aggregation of Composite Location-Aware Services
for Mobile Cellular Networks

Alvin Yew, Audun Strand, Antonio Liotta, and George Pavlou

Centre for Communication Systems Research, University of Surrey
Guildford, Surrey, GU2 7XH, United Kingdom

{K.Yew,A.Liotta,G.Pavlou}@eim.surrey.ac.uk
audun@audunstrand.com

Abstract. The introduction of context-aware services through service
frameworks such as Open Service Access gateways in 3rd Generation
networks has coincided with the increasing popularity of Business to
Business (B2B) solutions such as Web Services. It is envisioned that
B2B characteristics, such as service aggregation will play a part in
deploying location-aware services in 3G networks. This paper examines
and explores the suitability of service integration models, possible
business models, the technical requirements, and suggests a framework
for the aggregation and deployment of aggregated composite location-
aware services. A prototype of the framework was developed and
experiments involving J2EE based and Web Services/SOAP based
composite services were conducted and elaborated in the paper. An
analysis of the experimental results is presented at the end of the paper.

1 Introduction

The deployment of 3rd Generation (3G) mobile communication networks has
provided a wealth of service provisioning possibilities for service providers through
new service infrastructures, frameworks, and architectures. Advanced service
concepts such as the Virtual Home Environment (VHE) can assist a user in
circumventing the difficulties relating to accessibility of personalized services during
roaming that were characteristic of past mobile networks generations. A new category
of services which can adapt to a user's context, i.e. physical and service operation
environment, has been steadily gaining prominence in research. Location-aware
services, which can provide service functionality and content relevant to the user's
location, belong to that (now often dubbed as context-aware services) category. The
discovery of a user's context in 3G networks by context-aware services will be
possible through Open Service Access (OSA) and Parlay gateways owned by network
operators[1,2]. These gateways encapsulate context determining technologies in the
core network such as the Location Service (LCS) for user location determination and
other core network capabilities and functionalities[3]. Advances in Business to
Business (B2B) service frameworks and middleware have also been progressing

Aggregation of Composite Location-Aware Services for Mobile Cellular Networks 261

steadily over the years as previous state-of-the-art technologies, such as CORBA,
have been superceded by more developer-friendly alternatives such as Java 2
Enterprise based architectures, and Web Services using the Simple Object Access
Protocol (SOAP)[4]. It is foreseeable that B2B interactions will have some part in
delivering location-aware services to 3G users in the future.

It is common in B2B interactions to combine different, possibly autonomous,
services together to form a whole new service. In this paper, we refer to this new
service as an aggregated service, the individual services that existed before the
aggregated service as a composite service, and the process of combining the
composite services as service aggregation.

The study of service composition techniques, requirements, and issues has been
identified as a research priority by the World Wireless Research Forum (WWRF)[5].
There is a need to evaluate how service composition may affect the operation and
performance of future 3G services such as location-aware services. For example, how
do we aggregate composite location-aware services with different requirements (e.g.
level of location accuracy)? New possible business models for such scenarios may
also be needed and thus require research. This paper aims to tackle and answer the
issues concerned with the aggregation of composite location-aware service as well as
the characteristics and deployment of aggregated location-aware services.

The format of the paper is as follows: Section 2 introduces the four main models
that can be used to integrate composite services. Section 3 analyzes the technical
requirements associated with the aggregation of composite location-aware services,
and aggregated location-based services operating over mobile cellular networks with
a particular emphasis on 3G networks. Section 4 highlights our work on defining a
reference framework for aggregating and deploying aggregated location-aware
services. It also examines how future business models for 3G networks can have an
impact the manner in which our framework is deployed. Section 5 presents an
overview of the implemented prototype, details the experiments performed, and
evaluates the results of the experiments. The paper concludes by examining the
related work done in the area, reiterates the main contributions of our research, and
presents potential future work to be done in the area.

2 Overview of Composite Service Integration Models

The development of models for integrating composite services is somewhat similar to
that of grid computing. The aggregated service represents the combined service
output of all composite services from the user's point of view and is usually in charge
of initiating the invocation of the various composite services. Therefore, there are two
types of message flows in an integration model; a control-flow and a data-flow.
A control-flow is used to control the composite services and can include service
initiation, service suspension, and service resumption. A data-flow represents the
exchange of service-related and service-specific data, such as localized content,
between entities in the model. Figure 1 shows the four main models that are available
for integrating composite services[6]. We concentrate our explanations on the first
two models as they allow the reader to easily comprehend the operation and purposes
of the other two. The models in figure 1 are numbered in the order of their description

262 Alvin Yew et al.

below. The four available models for the aggregated service to integrate composite
services are:

1. Centralized Control-flow Centralized Data-flow � This is the predominant model
that is currently documented in literature. The aggregated service is in charge of
controlling each composite service, and receives data-flows directly from them as
well. This model is used when it is required to have no dependencies between
different composite services, and when the aggregated service requires total
control in managing the composite services. A disadvantage of using this model
is that there will be an obvious bottleneck at the aggregated service in terms of
traffic and processing.

2. Centralized Control-flow Distributed Data-flow � This model tries to alleviate
some of the bottleneck experienced by the previous model by allowing composite
services to exchange data-flow messages between themselves. The model is
particularly useful when the output data-flow of a composite service is required
as the input data-flow of another composite service, e.g. the aggregated service
performs sequential invocation of two or more composite services. This model
allows the aggregated service to control a composite service to send its output
data-flow directly to the next composite service, which then sends its output data-
flow back to the aggregated service, saving both time and network traffic in the
process.

3. Distributed Control-flow Centralized Data-flow � Distributed Control-flow
models are particularly useful when composite service invocations do not need to
be sequential. They are also useful when deploying autonomous mobile code
such as mobile agents and in active networks. The usage of a centralized data
flow in this particular model allows service data integrity as the service data will
not be passed between different composite service provider competitors.

4. Distributed Control-flow Distributed Data-flow � This model inherits a
combination of the characteristics inherent in models 2. and 3.

Fig. 1. Integration models for service aggregation

3 Requirements Analysis

3.1 Accommodating Different Types of Aggregated Location-Aware Services

There are three methods of aggregating composite location aware services. Any
proposed framework must accommodate these three types of aggregated location-
aware services, which are:

Aggregation of Composite Location-Aware Services for Mobile Cellular Networks 263

1. Aggregating services of different service categories for a particular location �
CnL1 aggregated service. For example, an aggregated service is charged with
finding a list of restaurants in the area with automated on-line reservation
capabilities, a list of car parks in the area including the available capacity at the
moment, and a traffic update on the roads in the area as well. This example
combines three different independent service categories to provide an aggregated
location-aware service.

2. Aggregating services of the same service category over a range of locations �
C1Ln aggregated service. For example, a user may want to take a bus from his
current location to another location but there is no single bus route or operator
that covers this trip. He/She uses an aggregated service that determines his/her
current location, contacts different bus operators' timetables and routes to
coordinate an inter-change within a reasonable transit period, and displays to the
user the location of the bus stops to board the bus at each transit point via a map.
An additional benefit provided to the user by such a service is that a composite
service's dynamic information and functionalities, such as bus route detours and
cancellations, are incorporated into the aggregated service thus alleviating the
user of such concerns. In this situation, the aggregated service may be seen as a
single location-aware service whose locality is the union of each composite
location-aware service's locality.

3. Aggregating services of different service categories over a range of locations �
CnLn aggregated service. This type of aggregated service combines the
characteristics of the previous two. The locality of a CnLn aggregated service is
also the union of each composite location-aware service's locality.

3.2 Recovering from Limitations of the Overlaid Service Infrastructure

Location-aware services form a service infrastructure overlaid on top of a
geographical location. They are, however, different from other service infrastructures
because service locality is of primary importance to the functionality of the location-
aware service. Figure 2 shows a fictitious service infrastructure available to an
aggregated service provider superimposed on a map of London and its surrounding
counties. The letters in figure 2 denote the various different service provider
localities. Let us consider that this is a service network of bus operator services in the
South-East of England, and that a user wants to travel from central London to
Eastbourne for the sake of highlighting our requirements. The following observations
can be derived from the figure:

• There is only one bus operator in central London.
• In between central London and the edge of the service network near Eastbourne,

the number of competing bus operators in a single location can vary from one to
greater than one.

• The service network does not extend to Eastbourne.

It is evident that the aggregated service cannot perform optimally and give the user
complete instructions and information on the choice of bus routes from central
London to Eastbourne. This is due to the fact that the service network does not extend
to Eastbourne. More interestingly, there are two possible reasons for the lack of a

264 Alvin Yew et al.

service network at Eastbourne. Firstly, there is no actual bus route to Eastbourne and
therefore it is impossible to get to Eastbourne by bus. Secondly, a bus route does
exist but the bus operator in that area does not offer its services to the aggregated
service provider.

The two possible reasons highlighted in the previous paragraphs implicitly impose
a requirement on the transactional nature of aggregating composite location-aware
services. A non-transactional best effort type of aggregated location-aware service
with suboptimal performance can be suitable for CnL1 aggregated services. For the
example in subsection 3.1 of a CnL1 aggregated service, the user may not mind not
knowing the available car parks in the area as long as he is provided the list of
restaurants. For the bus operator service discussed earlier in this subsection, which is
a C1Ln aggregated service, a transactional approach may be more suitable if it was
impossible to get to Eastbourne by bus. However, a best effort type of service may be
considered if the service was theoretically possible but undeliverable due to a lack of
a service network and infrastructure. These possibilities and alternatives highlight the
need for the transactional characteristic requirement to be considered on a case to case
basis for each deployed aggregated service.

Fig. 2. A service network/infrastructure overlaid on geographical locality

3.3 Accuracy of the User's Location

There are various methods available to ascertain a user's location in current cellular
networks. These methods vary widely in the accuracy of determining the location, and
the environmental characteristics that are required for a specific positioning method
and technology to be available and accurate. The latter usually affects the results of
the former in most location-tracking technologies. For example, the Global
Positioning System (GPS) requires the user to be mainly outdoors so as to receive a
Line of Sight (LOS) signal from the Low Earth Orbit satellites and its accuracy
increases as the number of satellites over the user's location increases. While many
positioning methods and technologies do exist, e.g. Round-Trip Time, Angle of
Arrival, Reference Node Based Positioning, 3GPP has standardized three methods for
the Location Services (LCS) functionality in 3G mobile networks. They are Cell ID

Aggregation of Composite Location-Aware Services for Mobile Cellular Networks 265

based positioning, Observed Time Difference of Arrival (OTDOA) positioning
(which is based on Time Difference of Arrival positioning), and Assisted GPS
positioning (which essentially is GPS positioning). OTDOA works well indoors and
provide reasonable accuracy when more than two neighboring base stations are used
in determining the user's location. GPS is the most accurate but requires LOS between
the user and three or more satellites to perform well. Cell ID based positioning is the
least accurate and its accuracy is inversely proportionate to the size of the cell that the
user is in.

It can be easily deduced that the accuracy of the user's location is a major factor
when provisioning location-aware services. Inaccurate location positioning of the user
can result in providing the user with services that he/she does not want or need, thus
decreasing user satisfaction and service reputability. The importance of this factor
increases when various location-aware services are aggregated together. Although all
aggregated services would suffer to some extent from positioning inaccuracy, a CnL1
aggregated service would be more likely to be affected than a C1Ln or a CnLn
aggregated service as its overall service locality is smaller than that of the other two
(assuming that the area of each composite service locality is equal and exclusive) � a
small inaccuracy would constitute a greater percentage of error over a small area than
a large area. However, this may not be the case for an aggregated service with
functionalities that has strict positioning accuracy requirements regardless of
aggregation type, e.g. a service involving the location of the nearest hospital or
24-hours emergency medical clinic. Therefore, the requirement for positioning
accuracy from an aggregated service depends on both the type of aggregated service,
and the aggregated service functionality.

4 Design of the Proposed Framework

4.1 Design Considerations and Features

Figure 3 gives a functional overview of our proposed framework for accommodating
aggregated location-aware services using composite services. We stress that the
proposed framework should not be seen as a �one solution fits all' approach for
deploying such services as we focus only on issues and functionalities that are
specific to location-aware services, and do not describe other features such as
accounting, user authentication and session management in this paper.

A huge factor in the design of the framework is that it must fit within a sensible
and realistic business model. During the course of our research leading to this paper,
we visited a major UK network operator, as well as an independent investment
banker, for consultations on future viable business models for deploying location-
aware services in 3G mobile communication service frameworks. The framework
design accounts for a key point that they raised during our meetings � information
about a user's location is extremely private, and will not be released to any service
provider that requests for it through the OSA interfaces. The access to such
information through OSA is negotiated through off-line service level agreements, and
they predicted that only a few privileged service providers will be considered
trustworthy and reliable enough to gain such access. The network provider ultimately

266 Alvin Yew et al.

has a responsibility to its customers to protect their privacy as well as its own
reputability.

Fig. 3. High-level functional view of the framework

We do not include interactions with an OSA/Parlay gateway in figure 3, as our
framework places the emphasis on the network operator to initiate and control the
service aggregation process. We do, however, acknowledge the possibility that
composite services may also be aggregated services themselves � i.e. they use other
composite services to perform and operate their services. By placing the service
aggregation process within the responsibilities of the network operator, it is also
possible to conceal the location of a specific user from composite location-aware
services. The latter would not require the user's identity for billing or authentication as
the network operator would be charging the user on the composite service provider's
behalf. A network operator controlling the service aggregation process also implies
ease of control over the choice of positioning methods and technologies used in
ascertaining the user's location, thus providing some flexibility in satisfying
requirements on positioning accuracy from various aggregated location-dependent
services. It is, however, still possible to deploy our framework within the domain of a
value-added service provider (to a 3G network operator). This would mean
interpreting the interface between the service mediator and the 3G network
capabilities/functionalities functional components to be that of OSA's (refer to
figure 3).

We also designed the framework to incorporate flexibility in as many aspects of
service provisioning and management as possible, and therefore the following
features are present in the framework:

a) The framework interoperates with a range of service deployment technologies
available such as Enterprise Java Beans, Web Services/SOAP etc., allowing
composite service developers flexibility in choosing service deployment
middleware technologies.

b) The framework allows more than one service access point to the aggregated
service so as provide flexibility in service delivery to the service consumer. E.g.

Aggregation of Composite Location-Aware Services for Mobile Cellular Networks 267

Java 2ME midlets with Java RMI clients, SOAP clients, HTTP-
XHTML/HTML/WML.

c) The framework design allows service aggregation using any of the four service
integration models presented in section 2.

4.2 High-Level Component Description

This subsection explains the functionalities of each major component in the
framework as shown in figure 3.

• Composite Service Client: This component serves two purposes. Firstly, it acts as
an adapter (design pattern) between the composite service and the service
mediator, allowing the possibility of heterogeneous service deployment
technologies between the two[7]. E.g. Java EJB communicating to a SOAP agent.
It also acts as a facade (design pattern) by providing a consistent control and
service data model to the service mediator[7] It does this through adapting the
control and service data to match that expected by the composite service.

• Service Mediator: The service mediator contains the core logic of the service
aggregation process. It acts as a proxy (design pattern) for all the other significant
components in the framework[7]. Its main responsibilities are to control and
collect service data from the composite services via the composite service client,
determine and request the appropriate positioning technique used in the 3G
network based on the location accuracy required, construct and aggregate the
composite services, and deliver the service to the consumer client application via
the consumer client adapter. It is assisted in the aggregation process by the
service provider selector component.

• Consumer Client Adapter: This component acts as an adapter between the
consumer client application and the service mediator. It receives the aggregated
service data from the service mediator, transforms it to the correct presentation
format if necessary (e.g. HTML or WML), and delivers it to the consumer client
application in a protocol that the latter understands (e.g. HTTP/SOAP etc). It is
acts as a service access point by allowing the consumer application client to
request and initiate the aggregated service.

• Location/Service Provider Mappings: This is actually a database table that
provides a list of Service Providers within a geographical locality (e.g. Radio
Access Network Cell, City, Town etc.) for a specific service category. A table
entry also states if a service is not available in a locality because of a lack of
service providers or it is theoretically impossible to provide the service.

• Static Service Provider Link Tables: This is actually a database table that
represents a service network/infrastructure for a specific service category in
tabular form. Table entries include the number of �hops' required for a service
provider to get to each other service provider within the service network. This
table will be used mainly for selecting a list of available service providers for
C1Ln and CnLn aggregated services. It is also used to determine if the service
network/infrastructure can support the required service, and thus influence the
operation of both transactional and best effort aggregated services.

268 Alvin Yew et al.

• Service Provider SLAs: Service Level Agreements (SLA) are a key part of
service management and deployment. They contain information about
Acceptable Service Response Time, Guaranteed Network QoS between the
aggregated service and the composite service, cost of using the service, Unit of
Work definitions etc.[8,9,10]. They are used in the framework to ensure that the
performance of any single composite service does not hinder the overall
performance of the aggregated service.

• User Profile and Preferences: The user profile and preferences houses a list of
service specific user preferences, such as cost of using the aggregated service
(this can be partly determined from the Service Provider SLAs), location
accuracy and response time, for a particular aggregated service.

• Service Provider Selector: This component contains the logic of selecting
multiple service providers that will form the aggregated service according the
user preferences, and other aggregated service requirements discussed earlier.

5 Implementation, Experiment Results and Analysis

We implemented our framework on a Sun ONE Application Server 7 in an Intel
Pentium III 1.0 GHz server and used a Sun PointBase database server. Most of the
components in the framework were written in Java, and the service mediator and
service provider selector components were implemented as session EJBs. The LCS in
the 3G core network was simulated by a Java application triggering location
information using the data model specified in [11].We decided on, and developed,
a road traffic router aggregated service to perform our experiments on the framework.
This aggregated service provides a user with a choice of routes from the current
location to his/her stipulated destination according to the user's preference (e.g.
distance, journey duration etc.). Every composite service involved in constructing the
aggregated service, e.g. a private toll-paying highway company, provides the routing
functionality and traffic monitoring functionality for its own locale in the journey.
The road traffic conditions within different locales can influence the routing between
the user's embarkation and destination points, and all of the composite services
collectively provide a C1Ln aggregated service via a Centralized Control-flow
Centralized Data-flow integration model. We chose road traffic router service because
the UK Highway Agency and the Transport Research Laboratory were researching on
providing a similar service in the UK[12]. A traffic monitoring system also constitutes
as a valid value-added service as the monitored roads may be owned by a private
company, e.g toll-based roads. Furthermore, our framework can be easily adapted into
their business model, thus conceptualizing such a service is realistic and non-
idealistic. The routing application in the composite traffic router service used an
algorithm based on Dijkstra's algorithm, with the improvements and modifications
detailed by Gutman[13], and incorporated distance, average speed, and journey
duration as road cost attributes.

Aggregation of Composite Location-Aware Services for Mobile Cellular Networks 269

5.1 Analysis of Prototype Experiments

We decided to examine two deployment scenarios in aggregating the road traffic
composite services by implementing all the composite services as EJBs, and as Web
Services (SOAP). To build the Web Services version, we used Sun Microsystems'
Java Web Services Developer's Pack v1.1, and its JAX-RPC APIs. For the EJB
version of the service, we used the Sun ONE Application Server 7 and the associated
J2EE 1.3 APIs. Method calls between EJBs were performed through Java's Remote
Method Invocation over Internet Inter-ORB Protocol (RMI/IIOP). We performed all
our experiments on a single computer as there were no intentions in our experiments
to analyze delays caused by network traffic and latency due to network QoS issues.
Although the size of the network traffic from control and data SOAP messages for
Web Services depends on the design of the Web Service interface, the service data
model, and the schema used, we designed them to be similar to those in the EJB
scenario in our experiments for comparison purposes. In our experiments, we were
more interested on how the choice of a service middleware platform for composite
services, e.g Web Services and J2EE, can affect the service response time of the
aggregated service, which can be due to the traffic size of the control and data
messages, without the effects of delays in the network. We scrutinize the level of
response times because it is a metric that will explicitly affect the user's enjoyment of
the aggregated service. When performing the experiment, we assume that a service
level agreement between the aggregated service provider and the composite service
provider has been pre-established, and the relevant data models have been agreed on.
We also developed the respective composite service client components (an EJB and a
JAX-RPC/SOAP version) for each scenario. To complete the entire scenario, we
developed both a Java RMI/IIOP based, and a Java 2ME midlet with SOAP agent
based consumer client application each for the EJB and Web Services scenarios
respectively. We measured the response times using appropriate time stamps in the
programming code and for each scenario, we invoked the aggregated service for five
different routes of similar complexity involving three separate composite service
providers with different service locality area size. We measured the response time for
each route 10 times, excluding the discarded first run � mandatory when testing Java
code reliably (a practice attributed to the idiosyncrasies of the Java Virtual Machine).
Table 1 shows the response times measured in milliseconds.

Table 1. Response times of the experiments (millisecs). WS = Web Service Scenario, EJB =
Enterprise Java Beans Scenario

Client Aggregated
Service

Composite
Services

Total

Client
Overheads

Aggregated
Service

Overheads

Service Architecture WS EJB WS EJB WS EJB WS EJB WS EJB
Route 1 700 802 423 431 174 303 277 372 249 128
Route 2 715 679 407 346 186 247 308 333 221 99
Route 3 510 560 242 296 130 181 267 264 112 115
Route 4 478 701 242 415 108 281 237 286 134 134
Route 5 482 463 270 205 117 99 212 258 153 106
Average 557 641 317 338 143 222 260 303 174 116

270 Alvin Yew et al.

The �Composite Services Total' column in table 1 represents the total time taken
for all the composite services to compute an optimum traffic route in its locality
without including the time needed to serialize, un-serialize, parse, and un-parse data
and control messages. The �Aggregated Service' column shows the time elapsed
between the consumer client adapter in the framework initiating the aggregation
process through the service mediator, and the consumer client adapter having the
aggregated service data ready for transmission back to the consumer client
application. This too does not measure the time required to serialize, un-serialize,
parse, and un-parse data and control messages. The �Client' column shows the total
time taken in milliseconds from the sending of the aggregated service request to the
receipt of the aggregated service response (inclusive of processing all control and data
messages) by the consumer client application. The �Client Overheads' column
represents the time taken to serialize, un-serialize, parse, and un-parse control and
data messages between the consumer client application and the consumer client
adapter. The �Aggregated Service Overheads' column shows the total time taken to
serialize, un-serialize, parse, un-parse control and data messages between the
composite service clients and the associated composite services. The interesting result
in table 1 is the comparison between the web service and the EJB scenarios for
�Aggregated Service Overheads'. This is mainly the overheads incurred when
collaborating with the different composite services. We can see that EJB's RMI/IIOP
incurs lower overheads than the Web Service's JAX-RPC/SOAP on the average. This
is because when objects and value objects are serialized in RMI/IIOP, they are also
compressed before being sent through the network, whereas JAX-RPC/SOAP
messages are not compressed. Therefore, the size of RMI/IIOP messages sent and
received is less than that of JAX-RPC/SOAP. Furthermore, the parsing and un-
parsing of SOAP's XML based messages require more processing power and time
than Java's RMI/IIOP.

6 Related Work and Conclusions

Though there are many documented service middleware and frameworks developed
for location-aware services, our work is most closely related to the IST MOBIVAS
project which was a recent EU funded project[14]. Their middleware resides on top of
an OSA/Parlay gateway and caters primarily to providing a full service support
platform for context-aware value-added service providers. However, their platform
differs from our framework by not considering issues concerning service aggregation,
and the significance of location accuracy in service performance. [15,16] both cover
platforms for service aggregation that emphasizes on dynamicity. These platforms are
extremely suitable for on-the-fly B2B transactions and on-demand service SLAs. Our
research differs in approach as our business model assumes that B2B relationships
and SLAs are negotiated off-line.

The standardization and impending implementation of the LCS technology in 3G
mobile communications is indicative that location-aware services will soon play a
significant role in the design of future service architectures and frameworks. As the
influx of B2B oriented service architectures such .Net and Web Services grows, the
integration and aggregation of composite location-aware services will seem evermore

Aggregation of Composite Location-Aware Services for Mobile Cellular Networks 271

attractive to service providers. In this paper, we attempt to identify the main hurdles
that aggregated location-aware services will face and suggest a reference framework
based on our informed and calculated prediction on the future business model for such
services. Nevertheless, our framework can also operate on top of an OSA/Parlay
gateway if required.

We identified the three main types of aggregated location-based services, and
examined their requirements and possible dependencies on location accuracy and
transactional behavior. We have also presented on the various service integration
models available for aggregating location-aware services, their benefits pertaining to
location-aware services, and ensured that our framework allow flexibility in
deploying any of the models available. The experiments conducted with our
framework highlighted the subtle differences when aggregating composite services
using two well received service middleware architectures: the current predominant
favorite J2EE Enterprise Java Beans, and the up and coming Web Services/SOAP
based architecture.

There are two certain avenues in which we would further pursue the research
detailed in this paper. It would be interesting to perform a more detailed analysis on
the size of the control and data messages, so as to find the correlation between the
time lost on serialization/parsing overheads and the control and data message size.
Another intriguing experiment that we have planned for the near future is to examine
the performance of our framework in a Centralized Control-flow Distributed Data-
flow integration model, as we feel that this may yield some gains in response times.

We would like to acknowledge that the work presented in this paper has been
developed in the context of the POLYMICS project, funded by the UK Engineering
and Physical Sciences Research Council (EPSRC) - Grant GR/S09371/01. Alvin Yew
would also like to thank Mr. Harry Chang for his insightful comments and advice
about business models for the 3G mobile communications market.

References

[1] 3rd Generation Partnership Project: Open Service Access (OSA); Application
Programming Interface (API); Part 1-12. 3GPP TS 29.198.

[2] Parlay Group: Parlay API Specifications 4.0. Available at
http://www.parlay.org/specs/index.asp, (current May 2003).

[3] 3rd Generation Partnership Project: Location Services (LCS); Service
Description Stage 1. 3GPP TS 22.071.

[4] M. Champion, C. Ferris, E. Newcomer, D. Orchard: Web Services
Architecture. W3C working draft dated 14 Nov. 2002, available at
http://www.w3.org/TR/2002/WD-ws-arch-20021114/ (current May 2003).

[5] R. Popescu-Zeletin et al: Service architectures for the wireless world. Computer
Comms., vol. 26, no. 1, Jan. 2003, pp. 19-25.

[6] D. Liu, K.H. Law, G. Wiederhold: Analysis of Integration Model for Service
Composition. Proc. Wkshp on Software and Performance (WOSP'02), ACM
Press, Rome, Italy, 2002, pp. 158-65.

[7] E. Gamma et al: Design Patterns: elements of reusable object-oriented
software. Addison-Wesley, Reading, Mass, 1994, pp. 139-50, 185-94, 207-22.

272 Alvin Yew et al.

[8] L. Lewis, P. Ray: On the Migration from Enterprise Management to Integrated
Service Level Management. IEEE Network, Jan-Feb 2002, pp. 8-14.

[9] Keller, A. Koppel, K. Schopmeyer: Measuring Application Response Times
with the CIM Metric Model. Proc. 13th IFIP/IEEE Int'l Wkshp Distributed Sys
(DSOM 2002), Montreal, Canada, 2002, pp. 66-81.

[10] M. Debusmann, A. Keller: SLA-Driven Management of Distributed Systems
using the Common Information Model. Proc. 8th IFIP/IEEE Int'l Symp. on
Integrated Network Mgmt (IM 2003), IEEE Press, Colorado Springs, CO,
2003, pp. 563-76.

[11] European Telecommunications Standards Institute: Open Service Access
(OSA) API; Part 6: Mobility SCF. ETSI ES 202 915-6v1.1.1, Jan. 2003.

[12] M. Yearworth et al: A CORBA Service for Road Traffic Information on the
Internet. Proc. Int'l Symp Dist. Objects and Applications (DOA'00), IEEE CS
Press, Antwerp, Belgium, 2000, pp. 231-41.

[13] R. Gutman: Priority Queues for Motorists. Dr. Dobb's Jrnl, Sept. 2002, pp. 89-
92.

[14] MOBIVAS: Downloadable Mobile Value-Added Services through Software
Radio and Switching Integrated Platforms. Home page at
http://mobivas.cnl.di.uoa.gr, (current May 2003).

[15] G. Piccinelli, G. Di Vitantonio, L. Mokrushin: Dynamic service aggregation in
electronic marketplaces. Computer Networks, vol. 37, no. 2, Oct. 2001, pp. 95-
109.

[16] D-R Liu, M. Shen, C-T Liao: Designing a composite e-service platform with
recommendation function. Computer Standards & Interfaces, vol. 25, issue 2,
May 2003, pp. 103-117.

	Front matter
	Chapter 1
	Orchestrating Self-Managing Systems for Autonomic Computing: The Role of Standards

	Chapter 2
	Generic Online Optimization of Multiple Configuration Parameters with Application to a Database Server
	Introduction
	System Architecture
	Optimization Technique
	Experimental Assessment
	Testbed Setup
	Experimental Results

	Conclusions

	Chapter 3
	Eos: An Approach of Using Behavior Implications for Policy-Based Self-Management
	Motivation
	Problem Statement
	Terminology
	Bird's Eye-View of Eos
	Eos Concepts
	Behavior Implications
	Self-Learning
	Automated Decision-Making

	Example: A Self-Managing Distributed File-System
	Implementation Details
	Specification Template for Behavior Implications
	Implementation of Self-Learning
	The Eos Framework

	Related Work
	Conclusion
	References
	Appendix: Specification Grammar

	Chapter 4
	On the Algebraic Structure of Convergence
	Introduction
	Semigroups of Actions
	Sequences of Actions
	Convergent Actions
	Equivalent Actions
	Value of Idempotence
	Meaning of Commutativity
	Implications for Configuration Management Tools
	Convergence and File Editing
	Rethinking File Editing
	Generative Management
	Imperative Management

	Conclusions

	Chapter 5
	An Epidemic Protocol for Managing Routing Tables in Very Large Peer-to-Peer Networks
	Introduction
	The Newscast Protocol
	Peer-to-Peer Routing
	P2P Routing Based on Newscast
	The Principal Idea
	Multi-layer Newscast Scheme

	Experimental Setting
	Experimental Results and Analysis
	Bootstrapping
	Robustness to Large-Scale Failures
	Bandwidth Considerations

	Conclusions and Future Directions

	Chapter 6
	Towards Peer-to-Peer Traffic Analysis Using Flows
	Introduction
	Related Work
	Definition of P2P Traffic
	Categorization and Properties of P2P Applications
	Related Work on P2P Traffic Analysis

	P2P Traffic Analysis Algorithm
	Important Port Number Selection Method
	Flow Grouping Using APT
	Flow Grouping Using Flow Relation Map

	Design and Implementation of P2P Traffic Analysis System
	Design of P2P Traffic Analysis System
	Integration of P2P Traffic Analysis System with NG-MON

	Result of P2P Traffic Analysis
	Conclusion
	References

	Chapter 7
	MobiMan: Bringing Scripted Agents to Wireless Terminal Management
	Introduction
	The MobiMan Architecture

	SyncML: A Short Tour
	MobiMan: Architecture and Runtime
	Synclets and Synclet Bundles
	Micropods

	More Synclet Anatomy
	Policies
	Extended SyncML Command Set
	Guarded Commands and Output Redirection

	Implementation and Usage Experience
	Intelligent Distribution of Tasks in MobiMan
	Related Work
	Conclusions
	References

	Chapter 8
	Dynamic Surge Protection: An Approach to Handling Unexpected Workload Surges with Resource Actions that Have Lead Times
	Introduction
	Architecture and Algorithms
	Results
	Conclusions

	Chapter 9
	A Method on Multimedia Service Traffic Monitoring and Analysis
	Introduction
	Overview of Multimedia Service Protocols
	Related Work
	An Analysis Method for Multimedia Service Traffic
	Analysis Procedure
	Dynamic Session Analysis
	Analysis of RTSP
	Analysis of MMS
	Analysis of SIP
	Analysis of H.323

	Architecture for Multimedia Traffic Monitoring and Analysis
	Flow Generation
	Dynamic Session Analysis
	Traffic Analysis

	Conclusion and Future Work
	References

	Chapter 10
	Traffic Measurements for Link Dimensioning
	Introduction
	Contribution
	Organization

	Measurement Setup
	Campus Network
	Hosting Provider Network
	Measurement Device

	Time-Granularity
	Measurement Tools
	Capturing
	Processing and Analysis
	Visualization

	Measurement Results
	Conclusions

	Chapter 11
	Automating Enterprise Application Placement in Resource Utilities
	Introduction
	Background and Related Work
	Methodology
	System under Study
	Experimental Design

	Assignment Methods
	Linear Integer Programming Approach
	Genetic Algorithm Approach

	Case Study
	Computation Times

	Summary and Conclusions

	Chapter 12
	Managing the Performance Impact of Administrative Utilities
	Introduction
	Throttling Mechanism
	Feedback Control for Policy Enforcement
	Degradation Estimator
	Controller

	Empirical Assessments
	Testbed Description
	Comparing OS Priorities and SIS
	Effectiveness of Feedback Control

	Conclusions and Future Work

	Chapter 13
	Policy-Based Autonomic Storage Allocation
	Introduction
	Functional Description
	ALOMS-Tango System Operation
	The Prototype
	Conclusion
	Acknowledgements

	Chapter 14
	Visual-Based Anomaly Detection for BGP Origin AS Change (OASC) Events
	Introduction
	Visualization Design
	OASC (Origin AS Change) Events in BGP
	The Design of Our Visual-Based Anomaly Detection System
	Types of Origin AS Changes in BGP
	Representing IP Address Prefixes
	Relationship Between Prefix and AS
	Animation and Other Features

	Detecting and Analyzing OASC Anomalies Visually
	Interactive Visual Analysis: inWhat Went Wrong on August 14, 2000?l1
	Interactive Visual Correlation: itWhat Was AS-15412 Doing in April 2001?lA
	How about France Telecom?

	Remarks
	Acknowledgements
	References

	Chapter 15
	Context Driven Access Control to SNMP MIB Objects in Multi-homed Environments
	Introduction
	The Business Case for Self-Configuration of MIB Access
	Provisional Authorizations for Dynamic Access Control to MIB Objects
	Implementation Framework
	Related Work
	Conclusions
	References

	Chapter 16
	A Policy-Based Framework for RBAC
	Introduction
	Related Works
	RBPIM: The Role-Based Policy Information Model
	RBPIM Framework
	Evaluation
	Conclusion
	References

	Chapter 17
	Management += Grid
	Conclusion
	References

	Chapter 18
	A Web Services Signaling Approach over Optical Networks for SAN Applications
	SAN Management Architecture
	References

	Chapter 19
	A Self-Configuring Sensing System for Data Centers
	Introduction
	Software Layers
	Network Configuration, Data Aggregation and Visualization
	Conclusions

	Chapter 20
	Towards Autonomic Business Activity Management

	Chapter 21
	Idiosyncratic Signatures for Authenticated Execution of Management Code
	References

	Chapter 22
	Effects of Wavelength Conversion on Self-healing Optical Networks
	Motivation
	Wavelength Conversion and Semi-lightpath

	Chapter 23
	Efficient and Transparent Instrumentation of Application Components Using an Aspect-Oriented Approach
	Motivation and Related Work
	Aspect-Oriented Programming (AOP) and AspectJ
	Monitoring Distributed Applications with AOP
	Measuring Servlet Response Times Using ARM
	Scenario
	Aspect-Oriented Instrumentation Approach

	Performance Evaluation
	Conclusions and Future Work

	Chapter 24
	Discovering Dynamic Dependencies in Enterprise Environments for Problem Determination
	Introduction
	Related Work
	System Architecture and Design Issues
	Dependency Graph Extraction and Its Usability
	Experimental Evaluation
	Conclusion
	Acknowledgements
	References

	Chapter 25
	Bringing AgentX Subagents to the Operating System Kernel Space
	Introduction
	Agent Extensibility Protocol
	Design and Implementation
	The AgentX Layer
	Kernel Subagents
	Processing Get/GetNext/GetBulk Requests
	Processing Set Transactions
	Sending Notifications

	Implemented MIB Modules
	The Interfaces Group MIB
	The Netfilter MIB

	Evaluation
	Conclusion

	Chapter 26
	Management Challenges of Context-Aware Services in Ubiquitous Environments
	Introduction
	Application Scenario
	Context Information Model
	Federative Organization Model
	Management Functional Areas
	Conclusions and Future Work

	Chapter 27
	Aggregation of Composite Location-Aware Services for Mobile Cellular Networks
	Introduction
	Overview of Composite Service Integration Models
	Requirements Analysis
	Accommodating Different Types of Aggregated Location-Aware Services
	Recovering from Limitations of the Overlaid Service Infrastructure
	Accuracy of the User's Location

	Design of the Proposed Framework
	Design Considerations and Features
	High-Level Component Description

	Implementation, Experiment Results and Analysis
	Analysis of Prototype Experiments

	Related Work and Conclusions
	References

