
Lecture Notes in Computer Science 2320
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Tomas Sander (Ed.)

Security and Privacy
in Digital Rights
Management

ACM CCS-8 Workshop DRM 2001
Philadelphia, PA, USA, November 5, 2001
Revised Papers

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Tomas Sander
InterTrust STAR Lab. - New Jersey
821 Alexander Rd., Princeton, NJ 08540-6303, USA
E-mail: sander@intertrust.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Security and privacy in digital rights management : revised papers / ACM
CCS-8 Workshop DRM 2001, Philadelphia, PA, USA, November 5, 2001.
Thomas Sander (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2320)
ISBN 3-540-43677-4

CR Subject Classification (1998): E.3, C.2, D.2.0, D.4.6, K.6.5, F.3.2, H.5, J.1, K.4.1,
K.4.4, K.5

ISSN 0302-9743
ISBN 3-540-43677-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by DA-TeX Gerd Blumenstein
Printed on acid-free paper SPIN 10846660 06/3142 5 4 3 2 1 0

Preface

The ACM Workshop on Security and Privacy in Digital Rights Management
is the first scientific workshop with refereed proceedings devoted solely to this
topic. The workshop was held in conjunction with the Eighth ACM Conference
on Computer and Communications Security (CCS-8) in Philadelphia, USA on
November 5, 2001.

Digital Rights Management technology is meant to provide end-to-end solu-
tions for the digital distribution of electronic goods. Sound security and privacy
features are among the key requirements for such systems.

Fifty papers were submitted to the workshop, quite a success for a first-time
workshop. From these 50 submissions, the program committee selected 15 papers
for presentation at the workshop. They cover a broad area of relevant techniques,
including cryptography, system architecture, and cryptanalysis of existing DRM
systems. Three accepted papers are about software tamper resistance, an area
about which few scientific articles have been published before. Another paper
addresses renewability of security measures. Renewability is another important
security technique for DRM systems, and I hope we will see more publications
about this in the future. I am particularly glad that three papers cover economic
and legal aspects of digital distribution of electronic goods. Technical security
measures do not exist in a vacuum and their effectiveness interacts in a number
of ways with the environment for legal enforcement. Deploying security and anti-
piracy measures adequately requires furthermore a good understanding of the
business models that they are designed to support.

We felt there was a need for a workshop devoted to DRM in order to create
an interdisciplinary forum for the exchange of ideas from a number of relevant
areas. The lively discussions at the workshop suggest that we were not mistaken.

During the conference pre-proceedings were made available. Final versions
were prepared by the authors shortly after the workshop and have been included
in this volume without further review.

It is a great pleasure for me to thank everyone whose help and contribution
made the workshop a success. The 17 program committee members did a great
job in reviewing and selecting the papers within a tight schedule. Mike Reiter
was the General Chair of our host conference CCS-8 and took very good care of
all the organizational aspects of the workshop. I would like to thank Microsoft
Research for access to their committee software for the review process. Mike
Freedman helped with running the committee software. I would further like to
thank the ACM CCS-8 conference organizers and our sponsoring organization,
the ACM, for being such great hosts. Special thanks go to Stuart Haber, who
gave an invited talk introducing and surveying modern DRM technology.

As this goes to press the jury is still out about the practical effectiveness of
security measures in DRM systems. Much more real-world data and experience

VI Preface

are needed. Fortunately we will see the first mass deployments in 2002, and thus
we may reasonably hope to gain some insights from these deployments for future
workshops focusing on DRM.

February 2001 Tomas Sander

Conference Organizers

Program Chair

Tomas Sander, InterTrust STAR Lab

Program Committee

Eberhard Becker, University of Dortmund
Dan Boneh, Stanford University
Karlheinz Brandenburg, Fraunhofer Institute for Integrated Circuits IIS-A
Leonardo Chiariglione, CSELT
Drew Dean, SRI International
Joan Feigenbaum, Yale University
Edward Felten, Princeton University
Yair Frankel, eCash Technologies
Markus Jakobsson, RSA Laboratories
Paul Kocher, Cryptography Research
John Manferdelli, Microsoft Research
Kevin McCurley, IBM Research
Moni Naor, Weizmann Institute
Fabien Petitcolas, Microsoft Research
Pamela Samuelson, University of California, Berkeley
Hal Varian, University of California, Berkeley
Moti Yung, CertCo

General Chair, ACM CCS-8

Michael K. Reiter, CMU

Table of Contents

Renewability

Discouraging Software Piracy Using Software Aging . 1
Markus Jakobsson and Michael K. Reiter

Fuzzy Hashing

New Iterative Geometric Methods for Robust Perceptual Image Hashing . . . 13
M. Kıvanç Mıhçak and Ramarathnam Venkatesan

Cryptographic Techniques, Fingerprinting

On Crafty Pirates and Foxy Tracers . 22
Aggelos Kiayias and Moti Yung

Efficient State Updates for Key Management .40
Benny Pinkas

Collusion Secure q-ary Fingerprinting for Perceptual Content 57
Reihaneh Safavi-Naini and Yejing Wang

Privacy, Architectures

Privacy Engineering for Digital Rights Management Systems 76
Joan Feigenbaum, Michael J. Freedman, Tomas Sander,
and Adam Shostack

Secure Open Systems for Protecting Privacy and Digital Services 106
David Kravitz, Kim-Ee Yeoh, and Nicol So

MPEG-4 IPMP Extensions . 126
James King and Panos Kudumakis

Software Tamper Resistance

Dynamic Self-Checking Techniques for Improved Tamper Resistance 141
Bill Horne, Lesley Matheson, Casey Sheehan, and Robert E. Tarjan

Protecting Software Code by Guards .160
Hoi Chang and Mikhail J. Atallah

How to Manage Persistent State in DRM Systems . 176
William Shapiro and Radek Vingralek

X Table of Contents

Cryptanalysis

A Cryptanalysis of
the High-Bandwidth Digital Content Protection System192
Scott Crosby, Ian Goldberg, Robert Johnson, Dawn Song,
and David Wagner

Economics, Legal Aspects

Implications of Digital Rights Management for Online Music –
A Business Perspective . 201
Willms Buhse

From Copyright to Information Law – Implications of Digital Rights
Management . 213
Stefan Bechtold

Taking the Copy Out of Copyright .233
Ernest Miller and Joan Feigenbaum

Author Index .245

Discouraging Software Piracy

Using Software Aging

Markus Jakobsson1 and Michael K. Reiter2

1 RSA Labs
Bedford, MA, USA

mjakobsson@rsasecurity.com
2 Carnegie Mellon University

Pittsburgh, PA, USA
reiter@cmu.edu

Abstract. Most people consider frequent software updates a nuisance.
However, we show how this common phenomenon can be turned into
a feature that protects against software piracy. We define a protocol
for “drop-in” upgrades of software that renders a large class of software
piracy more traceable. A novel feature of our approach is a software aging
technique by which we force the updates to occur, or else the software
becomes decreasingly useful over time.

1 Introduction

According to a recent study [3], the computer industry loses $11 billion annually
to piracy, with 40 percent of all software programs pirated. Software piracy is
a crime that traditional legal and technical methods to a large extent fail to
prevent, much due to the low cost of the crime and the inherent impossibility of
preventing data copying. Still, and as we show in this paper, there are practical
methods that can be employed to discourage software piracy by making it less
economically viable. The threat that we address here is that in which a pirate
obtains, potentially alters, and then distributes copies of a piece of software in
order to make a profit. We do not consider the situation in which several mutually
trusting and coordinating users buy a piece of software together, although this
is also a major concern to the software industry. We also do not consider piracy
that is performed “for the fame of it”, but focus on the problem in which pirated
software is distributed for a profit.

Our protection method relies on periodic updates of software. Traditionally,
and independently of our proposal, users want to have their software updated,
typically in order to fix known bugs, to add security patches, to add new function-
ality, and to keep their software compatible with other programs. We consider
how these two seemingly independent issues, i.e., piracy protection and software
updates, can be addressed at the same time, giving us an improved system as
a result. We also introduce a novel method, software aging, for increasing the
dependence on updates.

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 1–12, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

2 Markus Jakobsson and Michael K. Reiter

Our software updating methods discourage piracy by benefiting legitimate
users while inflicting damage on illegitimate users. This differentiation of ser-
vice creates a situation in which illegitimate users—in order to avoid that their
software becomes incompatible to that of their surroundings—are forced to rely
on the pirate for updates. This increases the operating costs for the pirate, and
forces the pirate to keep in touch with its customers (which in turn increases
the risk of discovery by authorities). At the same time, it increases the amount
of trust the buyer of pirated software needs to place on the pirate (namely that
he will provide updates). This decreases the value of the pirated software to its
buyer, due to the risk that it may become incompatible if the updating service
is not kept running. It is interesting to note that the customers of the pirate
do not necessarily benefit from the pirate being successful; namely, the risks of
the pirate’s discovery increase with the number of customers the pirate needs to
update. (This is in contrast to the typical economy of large operations.)

In addition to inflicting the above disadvantage on pirates, our methods can
be used to shorten the life of pirate software below its current life span. Clearly,
necessary and frequent updates further lowers the value of pirated software and
further aggravates piracy by increasing the necessary updating frequency. (We
note that this must be done with the convenience of the legitimate user in mind,
as much as the inconvenience of his illegitimate counterpart, in order not to alter
the perception of the software for the legitimate users.)

Altogether, we believe our techniques will infringe upon the economical vi-
ability of piracy by raising the operating costs for the pirate, and lowering the
resale value of his merchandise. At the same time, the costs of maintaining the
updates are kept low for the distributor, assuming that the updates are per-
formed using an on-line protocol. This is a reasonable approach given that most
computer users also are modem owners.

We note that our methods work even under the pessimistic assumption that
the pirate is able to remove or alter any pieces of code and data that are used
to detect or prevent piracy, such as code-embedded watermarks, verification of
CPU identities, and similar. Also, in addition to defending against piracy, our
suggested model makes software rentals easier to administer (simply by charging
for the updates as opposed to providing these for free).

Outline: We begin by introducing our model in section 2, followed by a discussion
of our general goals and methods in section 3. Then, we review related work in
section 4, followed by a more precise description of our solution. One part of
our method is the updating protocol we suggest in section 5; another part is our
suggested methods to speed up “aging” of software (section 6). We conclude in
section 7 by stating and arguing the properties of our solution.

2 Model and Requirements

We consider a model with the following participants:

Discouraging Software Piracy Using Software Aging 3

– Distributor. The distributor sells software, keeps a list of registered users,
and maintains a service for software updates for legitimate users. The goal
of the distributor is to maximize his profit, and to discourage pirate versions
of his software from being used.

– Legitimate users. Legitimate users purchase software from the distributor,
and obtain updates from the same. The legitimate users want the piracy
protection to be transparent as far as possible, in the sense that it should
cause a minimum of negative side effects (such as delays and increases of
file sizes). In other words, in terms of the features offered to the users, the
legitimate users want their software to be as close as possible to the ideal of
the software (where we use the word “ideal” as done by Plato).

– Pirate. The pirate obtains the software sold by the distributor, and redis-
tributes (potentially altered) copies of the software for a charge. We make
the pessimistic assumption that the pirate has access to the source code of
the software he wants to redistribute, and that he is capable of altering (and
compiling) this in order to remove any protection mechanisms. The pirate
wants to maximize his profit and minimize the risks of discovery/prosecution.

– Illegitimate users. Illegitimate users obtain software from the pirate. Just
like the legitimate user, the illegitimate user wants the software he uses
to be as close as possible to the ideal of the software, again in terms of
the functionality offered to the user. Additionally, illegitimate users want
to maximize their profit (by buying software at a “piracy discount”) and
minimize the risks of failure. We assume that illegitimate users generally do
not cooperate with one another, nor permit their pirate software copies to
serve updates to other pirate copies (e.g., lest they be implicated as pirates
themselves).1 Rather, we assume that illegitimate users interact only with
the pirate for the purposes of obtaining software.

3 Approach

Goals. We want to force the pirate to be responsible for regularly updating its
customers’ software. We consider the link between pirate and customer as the
cost (in terms of risks of discovery) to the pirate, as opposed to the bandwidth
between them once a connection is made. Requiring a link therefore requires ei-
ther that the pirate can be contacted by its customer in some manner (preferably
electronically in order for the illegitimate user not to be inconvenienced) or that
the pirate can contact his customers2 (again, preferably electronically). Here,
the selection of the “meeting place” (which may be a public bulletin board) may
be fixed over time and the same for all users; unique for each user and chang-
ing according to some pseudo-random pattern; or somewhere between these two
extremes. In either case, we have that the need for communication increases the
1 Experience with anonymous file sharing systems such as Gnutella suggests that this

position is overwhelmingly the norm [1].
2 We note that the latter contact method allows the pirate to move around, at the

cost of forcing illegitimate users to register their location.

4 Markus Jakobsson and Michael K. Reiter

risks for legal action against the pirate, as it would allow “infiltrators” to dis-
cover the pirate and take action to trace him. This threat increases the risk of
the pirated software to its users, as these will be made to rely on updates from a
pirate that may either disappear to avoid tracing or be successfully traced and
taken out of business.

Method for forcing interaction. We achieve our goals by letting the distributor
supply software updates to registered, legitimate users. If an illegitimate user
were to contact the distributor for an update, he would have to give a registration
number. In case it is invalid, the distributor may supply a “random update”,
thereby efficiently corrupting the operation of the pirate software. In case it
is valid, it allows the distributor to partially trace the criminal (from software
distribution lists). He may also supply a random update in case he has already
updated the software for the given user in this time period (i.e., another clone
of it).

Therefore, a rational pirate would have to alter the portion of the software
that requests updates in a way that it either contacts the pirate (which would
hardwire a contract address for the pirate in every piece of pirate software sold)
or that awaits an update from the pirate. If this is not done, then illegitimate
users will be refused updates, which will lower the value of the pirated software
to them, and therefore also the possible profit to the pirate.

Means for communication. The software distributor supplies updates by either
the legitimate users contacting the distributor, or vice versa. Then, after con-
tact has been established, some identification scheme is run, and the update
is transmitted from the distributor to the user. The pirate has the same type
of communication channel available. In addition, we assume that he may use
(potentially anonymous) bulletin boards as a communication channel.

Limitations. In this paper we consider only programs that generate files or mes-
sages that may need to be interpreted by other instances of the same program;
hereafter, all such outputs are referred to as “files”. Numerous programs are of
this form, include word processors, spreadsheet packages, and networked games.
We do not consider software that works in perfect isolation, such as single-player
games for a PC. However, our methods can be extended to any program by a
hierarchical approach in which the operating system requires updates3, and the
operating system requires all programs it runs to be updated.
3 On the surface it may appear sufficient that the operating system requires the pro-

grams it runs to be updated, but that it does not have to be updated itself. This,
however, would allow a pirate to circumvent the protection by disabling the portion
of the operating system that forces the programs it runs to be updated. On the other
hand, in order for the attacker to avoid this from happening in a situation where the
operating system has to be updated is to supply illegitimate users with operating
system updates.

Discouraging Software Piracy Using Software Aging 5

Conflict resolution. In the above, we have only considered what happens in the
common case. There are two special cases of interest:

– Synchronization problems. It is not unlikely that sometimes, the con-
nection between a user and the distributor is interrupted during a transfer.
Whereas the typical approach to this in a standard setting is to execute the
same sequence of steps again (with the same input and random strings), we
note that such an approach is inadequate here. The reason is that this would
allow a pirate to clone software that “hangs up” after having received the
update, allowing another clone to claim that the connection was interrupted
right before the last step. On the other hand, legitimate users must not be
denied updates, creating an interesting new kind of fairness/synchronization
problem.

– Repentant illegitimate user. It may be of interest to allow illegitimate
users to become legitimate (by paying some fee closely corresponding to the
costs of acquiring the software to begin with). By doing this, the pirate is
used by the distributor much like an advertiser handing out samples that
work for a limited time period. This corresponds functionally to selling the
software using an on-line protocol, although it may require less information
to be transferred. We will not elaborate on this scenario.

Method for forcing frequent updates. Typically, updates to software are currently
done on roughly an annual basis, as there is not much need for more frequent
updates, and as the cost and inconvenience of more frequent updates is sub-
stantial (using currently employed updating methods). As the success of our
protection mechanism depends on the frequency with which updates are neces-
sary, we wish to increase the frequency. We may, for example, want weekly or
bi-weekly updates to be (automatically) made.

Note that it is not sufficient to force legitimate users to perform these updates.
(In fact, it is the illegitimate users we want to force to make updates.) It appears
that the only way to force illegitimate users to perform updates is to make these
necessary for smooth operation. We consider a method in which files output by
the software contain a version-dependent number that affects how the file should
be interpreted when read or written. In order for software of illegitimate users
to be compatible with that of legitimate users—or more specifically, for it to be
able to interpret files received from legitimate users—the illegitimate software
must be (roughly) as up-to-date as the legitimate user’s software that created
the file. To enforce this, the software contains a short secret that, together with
the version number of the software, allows interpretation of files that are older
or as old as the software (where age is measured in terms of version number).
We propose a method achieving this goal, while smoothly allowing new software
versions to interpret both old and new files.

We note that the functional changes embodied in updates must not be pos-
sible for an attacker to predict, since then the pirate could implement these
updates directly and thus avoid that the illegitimate users are forced to request
updates. Similarly, it must be infeasible for an isolated program (i.e., that of the

6 Markus Jakobsson and Michael K. Reiter

illegitimate user) to determine the functional updates (e.g., by observing files
from properly updated pieces of software). Our solution offers these properties.

4 Related Work

Requiring registration (see, e.g., [7]) is a common method of protecting against
piracy. However, this only protects software that has not been manipulated by a
pirate, and therefore aims more toward preventing copying between friends than
“professional piracy”. Here we show that interaction allows to defend against a
stronger type of adversary.

There are two classes of commercial products that work according to similar
principles as our solution, as they use interaction to control piracy. One such
product [5] allows registered users—but only these—to access a large repository
of clipart. It is likely that it is verified that the access frequencies for each
user remain at a reasonable level, thereby discouraging massive cloning of the
accessing software. Another commercial service [4] first gives users a free virus
detecting program, with a few free updates, after which the updating service
only becomes available per subscription.

Our scheme is also to some degree related to the problem of fair exchange of
signatures (see, e.g., [2]). Recall that we aim to obtain security of our scheme via
software updates. However, for each updating period, only one update should be
sent per software identifier (each corresponding to one sold software package). It
is possible that the transmission is interrupted during an update; that one of the
parties willfully terminates before the completion of the protocol; or that one
party claims to have been disconnected, while he was not. It is impossible for the
protocol participants to distinguish between accidentally dropped connections
and intentionally dropped connections, and impossible to determine whether the
transmission was interrupted before or after a certain transcript was received.
This causes a situation resembling that in exchange of signatures (that one entity
may interrupt the transmission in order to obtain some benefit). Our approach
to address this problem, though, is significantly different from that used for
exchange of signatures, as there is a very different adversarial model, and due
to the inherent asymmetry of the desired exchange in our setting.

A similar situation to that described above can also occur during the with-
drawal protocol for e-cash schemes. There, the solution is to repeat transcripts
identically to avoid extraction of a higher number of valid coins by a cheater;
in our setting, however, it is better to change the format of the transcripts for
“re-connecting” updates. This is done in a way that disrupts independent clones
from getting updates, while not complicating the re-transmission for legitimate
users, whether connecting or re-connecting.

5 Updating Method

Initialization. The distributor D assigns an identifier to each piece of software
he sells. This could be done either by incorporating this identity in the software,

Discouraging Software Piracy Using Software Aging 7

or as is often done, as a paper document from which the user copies the identity
at the time of installation. Identifiers are chosen by drawing (without repetition)
random elements from a sparse space.

Updating Protocol. At predetermined intervals, the user U updates his software
portfolio by sending in a list of program identifiers to the distributorD. D verifies
that these are valid identifiers, and that they have not been used for updates dur-
ing the current time period.4 Then, for each piece of software that is determined
to correspond to a valid update request (i.e., a legitimate user), D sends out a
correct update of this program. If the request is found not to be valid (i.e., if
there is no such identifier registered, or if the maximum number of updates have
already been performed for this time interval; both correspond to an illegitimate
user) then D may either refuse an update, or may send a “random update”.
What constitutes a “correct update” or “random update” is determined by our
software aging mechanism and thus will be described in Section 6. Intuitively,
however, a correct update, once applied to the user’s software, makes this soft-
ware functionally current with other updated copies of the software (i.e., files
produced by one can be read by the other) and partially backwards compatible
with out-of-date versions (i.e., it can read files produced by out-of-date software,
but out-of-date software cannot read files it produces). A “random update”, once
applied to the user’s software, renders that software ineffective in reading any
files created by other (current or out-of-date) copies of the program.

Remarks. In the above, we consider a setting with only one distributor. This
trivially generalizes to any number of distributors, who may then either op-
erate independently, or cooperate in updating user software. Also, we did not
address the communication protocol. Assuming a public communication chan-
nel, we would use some form of encryption for sending the transcripts. For this,
some form of symmetric encryption method may be employed. (The user iden-
tifier as used so far is a shared secret key for identification purposes, and may
be augmented with a portion used for encryption.)

Conflict Resolution. If the transmission is interrupted during an update, the
user has to request another update. In order for the distributor not to mistake
such a repeated request for a separate request made by a clone, we suggest a
variety of methods, potentially used in combination with each other:

– Failure counter. If both parties record in a local counter the number of
failed attempts by this user, and if the user transmits this at the beginning
of the update protocol, this allows the distributor to distinguish between a
repeated transmission and an independent transmission by a clone. (Recall
that illegitimate users are assumed to not cooperate with each other.)

4 If the distributor grants multiple licenses to one site, then the updating may either
be performed in a coordinated manner, or the distributor will allow a number of
updates corresponding to the number of licenses.

8 Markus Jakobsson and Michael K. Reiter

– Random nonces. The distributor may send a random nonce to the user
during his first move of a multi-move interactive protocol; this nonce has to
be transmitted by the user during the next connection (or re-connection).
Here, the distributor will know that the user received a nonce if the dis-
tributor receives a (potentially implicit) acknowledgement from the user.
Otherwise, he will accept both the current and last nonce during the next
(re-)connection.

– Extra updates. The distributor may allow a low number of (say five) re-
peated identifiers to get updates, thereby efficiently preventing against large-
scale piracy still, but without introducing problems related to interrupted
transmission (since it is unlikely that an update will fail more than five
times).

– Human involvement. The distributor may require the user to call a toll-
free number to “roll back” the state after a failed updating attempt. Here, the
distributor may verify from whom the call is made, etc., before the roll-back
is allowed. Moreover, if updates are sufficiently frequent, the inconvenience
imposed on illegitimate users by this mechanism would already decrease the
pirated software’s value.

Pirate Tracing. For each update request that is recorded as being initiated by
an illegitimate user, the distributor determines to what cluster of illegal copies
the copy belongs. This is indexed by the identifier of the user software, and other
available information. Similar methods are used for pirate software recovered by
other means. This allows the distributor to determine (with some accuracy) the
extent and source of the problem.

Avoiding Anonymous Pirates. In order to restrict the pirate to an approach in
which he needs to be in direct contact with each customer for each update, it
is important to limit the usefulness of bulletin boards, and in particular, anony-
mous bulletin boards. We note that if bulletin boards are used, the pirated
software must initiate the update (as the bulletin board will not). Therefore,
the software must carry with itself a description of where to look and for what,
starting with what bulletin boards to search. If law enforcement or a represen-
tative of the software distributor gets access to a piece of pirate software, they
can perform the same search. If an update is found on a bulletin board, the cor-
responding administrator can be pressured by legal means to remove the entry,
and if submitted anonymously, to aid a trace.

6 Software Aging

So far, we have only been concerned with how to make updates, and not how
to force the user to do these. To a certain extent, users will want to (and have
to) update software due to naturally occurring changes of the same. However,
since it is beneficial for us if frequent updates were necessary (as this makes life
more difficult for the pirate), we have an interest in making the software age, i.e.,

Discouraging Software Piracy Using Software Aging 9

decrease the time periods between necessary updates. Although this is contrary
to the interests of users in a traditional setting, we suggest that it does not cause
difficulties in our setting, where updates are made automatically, and without
human user involvement.

Additionally, if we allow a certain flexibility in terms of what phase a user is
in (e.g., any one out of the three most recent time periods) then we avoid syn-
chronization problems and potential difficulties due to failure of getting updates
(e.g., while traveling). If such a flexible timing is adapted (we address how to do
this below) then we may also allow updates to be performed in an overlapping
fashion (i.e., not all users need to update during the same short interval of time).

Aging. Our solution is for the software to encrypt all files5 it outputs using a
symmetric key common to all copies of that version of the software. Each file
also is labeled with the time interval in which it was last modified (in plaintext),
which indicates the key with which encryption was performed.

In order to avoid having to refresh all files when a key update is performed,
and in order to avoid storing all old keys, we propose a method in which old
keys can be computed from new keys (but not vice versa). More specifically,
let Kt = f(Kt+1), where t denotes a time interval, t+ 1 denotes the next time
interval, and f is a public one-way function that is infeasible to invert for the
pirate. The distributor either has a trap-door key allowing him to invert the
function f , or starts with a value KT from which all “earlier” values down to
an initial value K0 are computed.6 A “correct update” sent to a legitimate user
at the transition from interval t to t + 1 includes Kt+1, which the legitimate
user uses to replace his old key. The correct update may also include patches to
the software to add new features, fix newly-discovered security problems, etc. A
“random update” sent to a detected illegitimate user would contain a random
number in place ofKt+1. It may also include patches to the software that actively
corrupts the software, so that it will no longer execute. Note that even if the
illegitimate user detects the random update and prevents it from being applied
to his software, the utility of his software will continue to degrade because it
cannot read files output by later versions (and thus encrypted by Kt+1 or some
later key).

Remarks. For the software aging method we propose, any type of encryption
scheme may be employed as a building block. For maximum efficiency, we propose
using a symmetric cipher, such as DES [6]. We note that this is safe even if DES
is not considered to be safe in a general setting. The reason is that we only
need to protect against individual users from being able to decrypt messages or
establish the key from seen messages. We do not need to prevent a more powerful
5 A practical alternative is to only encrypt portions of the file, such as vital formatting-

related portions or compression tables.
6 Here, a value T exceeding the anticipated number of update periods is selected. For

example, assuming that no piece of software has a life exceeding one hundred years,
and assuming weekly updates, this corresponds to T = 5200.

10 Markus Jakobsson and Michael K. Reiter

adversary, such as the pirate himself, as if he determines the decryption key, he
would have to distribute it to all his customers anyway (which is, by the cost and
risk of doing this, a factor we base the security of our system on). We use the
encryption scheme in a somewhat unusual way, in that we distribute the same
encryption/decryption key to all legitimate users (allowing these to correctly
interpret each other’s files). Again, this is not a security flaw, even though it
will be very easy for the pirate to get the keys (he may even be one of the
legitimate users, and so, receive the key automatically). The reason for this is
to force the illegitimate users to receive the key via updates from the pirate, if
they cannot compute it themselves. Therefore, this unusual use of encryption
does not negatively affect the security of our solution.

We further note that f does not have to remain infeasible to invert over the
life of the software, but only require “too much” computational effort to invert
for it to be convenient to do every time period by the illegitimate users. Should,
however, an attack become known, allowing fast inversion of the function, then
a new function has to be selected and employed. All software needs then to be
updated to “refresh” all files of the old format, which can be performed by an
intermediary version with knowledge of both the old key and the new key, and
the corresponding one-way functions.

Allowing for flexible updates. In order to make new files readable to a software
version that is not updated to the same version, the following method may be
employed: Instead of using the most recently distributed key Kt for writing
files in time interval t, the software may instead use Kt−δ, where δ reflects the
updating frequency necessary for a piece of software to be able to read new files
from legitimate users. For example, we may set δ = 2, allowing programs to be
two updates “behind”.

7 Claims

Our scheme hinders a pirate in that it forces him to frequently distribute updates
to his clients. At the same time the piracy protection scheme is transparent
to legitimate users (under reasonable assumptions) in that they will not be
inconvenienced by the protection methods. We will now state these properties
more carefully.

We assume that the pirate does not collude with honest users. If some user
performs updates for another user, we consider the first user to be part of the
pirate organization. Recall that δ determines the frequency of updates needed to
ensure that a legitimate user’s software remains compatible. Let I1, . . . , IN be N
illegitimate users of the software in question. Let n be the number of updates
the distributor allows to one and the same software clone (where we typically
have n = 1), and finally, let c be the number of software packages the pirate has
legally purchased from the distributor.

Let us assume that it is infeasible for the adversary to compute the trap-door
of f (if there is one). We also assume that it is impractical for an illegitimate

Discouraging Software Piracy Using Software Aging 11

user to invert f , or to determine the encryption key for a given time period from
transcripts in his possession.

Claim 1: In order for the software of the illegitimate users to work without
a significant degradation of functionality at any time, and given the above as-
sumptions, the pirate needs to update at least N − cnδ of the users I1 . . . IN ,
and at least every δ time intervals on average.

Correctness Argument for Claim 1:
By assumption, the pirate has distributed N copies of the (potentially altered)
software. Assume that these users are not interacting with each other or with
the pirate (after a first interaction in which they receive the software from the
pirate). It is necessary for each user to get a software update at least every
δ time intervals. For each legitimate software package sold, the distributor is
willing to perform at most δn updates in this time period. Since honest users
by assumption do not collaborate with the illegitimate users, the illegitimate
users can get a maximum of cδn updates for the c licenses the pirate purchased
(if any). This leaves N − cδn illegitimate users without updates for at least δ
consecutive time intervals, considering only updates from the distributor.
By assumption, it is not feasible (neither for the pirate nor the illegitimate
users) to invert f , and so, it is not possible to determine new keys from old ones
by inverting f . Note that none of the trap-door information (if any) is made
part of the transcripts (such as files communicated), and so, access to such
transcripts cannot make the inversion easier. Finally, since we have assumed
that it is impractical for the illegitimate user to determine the current key from
transcripts (using standard methods for cryptanalysis in order to extract the
key), we have now exhausted the number of ways in which a user can obtain an
updated key. The only possibilities that remain are for these users not to get
updates as often as needed, or to get updates from the pirate. ✷

Remark: Note that software that was updated δ+i time periods ago only fails to
read files that were written in the last i time intervals – this allows us to expand
on this argument in terms of the “quality of service” of the illegitimate users.
Thus, a more general version of the above argument can be used to show the
minimum number of licenses for a minimum quality of service. However, here, we
have only considered “full” quality of service, corresponding to pirated software
that works identically to the corresponding legitimate software.

Claim 2: The software of a legitimate user will work without significant degra-
dation of functionality at any time as long as the user manages to connect to
the distributor at least every δ time periods.

Correctness Argument for Claim 2:
Legitimate users are eligible to receive updates each time interval. We assume
that the periodic interaction can be performed with a frequency of at least δ time
intervals (i.e., that the legitimate user can connect with this frequency, and that
the update protocol is not consistently interrupted after which no recovery action
is taken). As long as they succeed in receiving updates every δ time intervals,

12 Markus Jakobsson and Michael K. Reiter

they will have a key that can be used to decrypt files written by legitimate users
who have just updated their software, and therefore have the most recent keys
available. Older files can always be read since it is possible to compute an old
key from a new in polynomial time, given the chaining property of keys. ✷

Acknowledgments

Many thanks to Eran Gabber and Fabian Monrose for helpful discussions.

References

1. E. Adar and B. A. Huberman. Free riding on Gnutella. First Monday, October
2000. http://www.firstmonday.dk/issues/issue5 10/adar/index.html. 3

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic protocols for fair exchange. In
Proc. ACM Conference on Computer and Communications Security, pages 6–17,
1996. 6

3. The Business Software Alliance. www.bsa.org. 1
4. McAfee Secure Cast / Active Shield. www.McAfee.com. 6
5. Microsoft Clip Art Gallery Live. cgl.microsoft.com/clipgallerylive. 6
6. NBS FIPS Pub 46-1. Data Encryption Standard, U. S. Department of Commerce,

1988. 9
7. Sheriff Software Development Kit. www.sheriff-software.com. 6

New Iterative Geometric Methods

for Robust Perceptual Image Hashing

M. Kıvanç Mıhçak1 and Ramarathnam Venkatesan2

1 Beckman Institute and ECE Department, University of Illinois
Urbana-Champaign, Urbana, IL, 61801

mihcak@ifp.uiuc.edu
2 Microsoft Research
Redmond, WA, 98052
venkie@microsoft.com

Abstract. We propose a novel and robust hashing paradigm that uses
iterative geometric techniques and relies on observations that main ge-
ometric features within an image would approximately stay invariant
under small perturbations. A key goal of this algorithm is to produce
sufficiently randomized outputs which are unpredictable, thereby yield-
ing properties akin to cryptographic MACs. This is a key component for
robust multimedia identification and watermarking (for synchronization
as well as content dependent key generation). Our algorithm withstands
standard benchmark (e.g Stirmark) attacks provided they do not cause
severe perceptually significant distortions. As verified by our detailed ex-
periments, the approach is relatively media independent and works for
audio as well.

1 Introduction

An image hashing function HK(.) takes an image I as input and computes
a short vector h = HK(I) which is a random value (indexed by the secret
key K) in some large set. The hash value is required to be invariant under
small changes to I that are perceptually insignificant, whereas on perceptually
distinct inputs the hash values need to be approximately independent (and thus
different with high probability). Such a function will be useful in identification
of images in databases, with I possibly undergoing small non-malicious changes
(such as compression and format changes, common signal processing algorithms,
scanning, or watermarking). If h is binary, one may use the standard searching
and sorting methods for database applications. In this case, if the database
has size n, the search would take logn steps rather than n [1]. This task is
considerably harder if one is to weather malicious attacks (e.g. by a pirate) to I
that intentionally aim to foil identifying the image.

Robust image hashing algorithms can be used in multimedia protection ap-
plications, namely watermarking and authentication. From a security viewpoint,
using the same key for many images will introduce a weakness, since an attacker
may recover the single secret given a large number of images all watermarked

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 13–21, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

14 M. Kıvanç Mıhçak and Ramarathnam Venkatesan

with the same key as each image may leak some information about the key.
Instead, for each I, using an image dependent key s = HK(I) (with K secret)
would avoid this problem. If the hash value is invariant under watermarking
and small attacks, the decoder may compute s if K is known. Another use is of
synchronization in a stream where one searches for some specific position, skip-
ping all intentional insertions and deletions. Thus, one may watermark a video
stream and can synchronize against de-synch attacks. In particular hash values
could be used as pointers that indicate the location of the watermark. Such an
approach would also provide extra computational efficiency when the size of the
input stream to be watermarked is huge. These issues were also discussed in [2,3]
and form the basis of our approach in [5]. For the problem of image watermark-
ing, the hash values of different regions could be used to gain robustness against
Stirmark type de-synch attacks [4].

Note that conventional cryptographic hashing algorithms, such as MD5 and
SHA-1 would not be applicable in the aforementioned multimedia applications,
since changing even one bit of the input will change the outputs dramatically [6].

2 Problem Definition and Notation

We first outline the traditional approach to the hashing problem. Hash func-
tions, that are quite useful in various cryptographic, compiler, database search
applications, map long binary strings to short binary strings. The requirements
are uniform distribution on the output data and pairwise independence (i.e.
given any pair of outputs of the hash function, that should be independent of
each other). These requirements suffice to maximize the probability that a pair
of distinct inputs results in distinct hash values. In particular it can be shown
that collision probability of the output is minimized if the output distribution is
uniform.

Clearly, we need similar minimization of collision probabilities in the case of
image hashing. Furthermore, the constraint, that the output of the hash function
should be invariant under small perceptually insignificant modifications (unin-
tentional or malicious), forces us to follow an entirely new approach. This is
clearly not a well–defined notion; we will say that two images are “perceptu-
ally same” if a human eye cannot distinguish them. However, in general some
applications would need to tolerate a wider set of modifications; if two images
are approximately the same for all practical purposes, despite the fact that the
changes are visible, we wish to produce the same hash value for these two inputs.
A similar approach was taken in [2].

Let X denote a particular image, X̂ denote a modified version of this image
which is “perceptually similar to X for all practical purposes”. Let Y denote an
image that is “perceptually different” from X. Let L be the final length of the
hash, and let HK(.) represent a hashing function that uses the secret key K.
We use a normalized Hamming distance D(., .) for comparing two hash values
which is the ratio of the usual Hamming distance and the size of the inputs. Our
criteria can be stated as:

New Iterative Geometric Methods for Robust Perceptual Image Hashing 15

1. Randomization: Pr [HK(X) = α] ≈ 1
2L , ∀α ∈ {0, 1}L.

2. Pairwise independence for perceptually different inputs:
Pr [HK(X) = α|HK(Y) = β] ≈ Pr [HK(X) = α] , ∀α, β ∈ {0, 1}L.

3. Invariance under perceptual similarity:
Pr

[
HK (X) = HK

(
X̂

)]
≈ 1.

Hence, in addition to uniform distribution on the hash values, we want to
have D

(
HK (X) , HK

(
X̂

))
= 0, D (HK (X) , HK (Y)) > 0 for all possible

different images X,Y and for all possible acceptable modified versions of X,
represented by X̂. In order to simplify the problem, we propose to divide it into
2 stages:

1. Intermediate hash value: At the end of the first stage, we aim to obtain
hash values that are of length M , where M � L and have the following
separation property:

D
(
HK (X) , HK

(
X̂

))
< T1, D (HK (X) , HK (Y)) > T2, (1)

where 0 < T1 < T2 < 0.5.
2. Final hash value: Given the intermediate hash, we aim to use randomized

lattice vector quantization to get the final hash which has the properties
mentioned in the previous paragraph.

In this paper, we focus on producing intermediate hash values. We experi-
mentally showed that our algorithm achieves (1) for an extensive range of attacks
and different inputs. A solution has been proposed for the second stage of the
problem in [2]. The ongoing research targets more efficient solutions and using
hash functions in watermarking applications.

3 Proposed Algorithms

We propose two algorithms, Algorithm A and Algorithm B. We present Algo-
rithm A first as it is simpler and deterministic, and forms the backbone of the
main and second algorithm which uses randomization to increase the output
entropy and enhance robustness properties.

3.1 Algorithm A

Our task may be viewed as irreversible compression that dramatically shrinks
the input while keeping the essence of the input image. We employ discrete
wavelet transformation (DWT) since it compactly captures significant image
characteristics via time and frequency localization. Next we pick up the signifi-
cant regions by thresholding. In order to gain robustness against modifications,
we propose a simple iterative filtering technique that minimizes the presence of

16 M. Kıvanç Mıhçak and Ramarathnam Venkatesan

“geometrically weak components” and enhance the “geometrically strong com-
ponents” by means of region growing. A region which has isolated significant
components (geometrically weak) is a good candidate to be erased via modifi-
cations, whereas a region which has massive clusters of significant components
(geometrically strong) would probably remain though the location might be per-
turbed a little and the shape of the cluster could be varied slightly. The novelty
of this procedure is that we rely on the convergence of a self-correcting iterative
procedure. The number of potential limits for the set of all meaningful images is
large enough since the output is based on the geometric structure of the input
image. Due to the self-correcting nature of the algorithm, we conjecture that the
output of the proposed iterative filtering scheme is a stable attractive point for
the region of most possible slight modifications.

Let X represent the input image, L be the number of levels DWT that is
applied. Let W (x) be the normalized Hamming weight of any binary input x
which is the ratio of the usual Hamming weight and the size of the input.
For a given 2-dimensional matrix A, let A (i, j) represent the (i, j)-th entry
of A. Next, we define order-statistics filtering S[m,n],p(.): Given a 2-dimensional
input A, S[m,n],p (A) = B where ∀i, j, B (i, j) is equal to the p-th element
of the sorted set of {A (i′, j′)}, where i′ ∈ {i−m, i−m+ 1, . . . , i+m} and
j′ ∈ {j − n, j − n+ 1, . . . , j + n} (sorting is done in ascending order); here we
term S[m,n],p (.) as the order-statistics filter. Note that we require 1 ≤ p ≤
(2m+1)(2n+1) and for p = (2m+1)(2n+1)/2 order-statistics filtering is equiv-
alent to 2-dimensional median filtering with a window of size (2m+1)×(2n+1).
During geometric region growing, we also use linear shift invariant filtering via 2-
dimensional FIR filter f , which has low pass characteristics and achieves spatial
localization. Now, we present the step-by-step description of the algorithm.

1. Find the DWT of X up to level L. Let XA be the resulting DC subband.
2. Perform the following thresholding operation on XA to produce the binary

map M:

M (i, j) =
{
1 if XA (i, j) ≥ T
0 otherwise .

T is chosen such that the W (M) ≈ q where 0 < q < 1 is an algorithm
parameter.

3. (Geometric region growing) Let M1 =M, ctr = 1.
3.1 (Order-statistics filtering on M1)

M2 := S[m,n],p (M1) where m, n and p are algorithm parameters.
3.2 Apply 2-dimensional linear shift-invariant filtering on M3 via filter f

where M3 (i, j) = AM2 (i, j); f and A are algorithm parameters. Let
the output be M4.

3.3 Apply a thresholding operation on M4. This operation is similar to the
one explained in step 2. Let M5 be the output, such that W (M5) ≈ q.

3.4 If ctr ≥ C, terminate the iteration and go to step 4. If this is not the
case, find D (M5,M1); if it is less than ε terminate the iteration and go
to step 4; if not, set M1 =M5, ctr = ctr + 1 and go to step 3.1.

4. H (X) =M5.

New Iterative Geometric Methods for Robust Perceptual Image Hashing 17

Remarks:

A . We rely on our experimental observations that isolated significant compo-
nents are not robust. The non–linear filtering applied in step 3.1 eliminates
such “spike-like” components. On the other hand, around big masses of
significant data, steps 3.2& 3.3 introduce artificial ”blurred tolerance re-
gions” to gain stability (in shape and size) against small modifications. We
observed that in general attacks split, distort, bend, stretch, and trans-
late the smaller masses more than the larger ones, and our iterative and
convergent algorithm introduces a self-correcting mechanism. We hope to
formally model and analyze our algorithm in this aspect, namely the con-
jecture that there exists a stable fix point modulo small distortions. It is
important that there are such fix points, and indeed for a given image there
should be ample supply of them, one for almost every secret random keyK.
However it is not important exactly how these fix points visually relate to
the given input and indeed we exploit this aspect.

B. Our approach is generic, allowing the use of any transform, that achieves
robustness and compactly captures the image characteristics. For instance,
the shift-invariant and shape-preserving “complex wavelets” [7] and any
overcomplete wavelet representations or wavelet packets are good candi-
dates.

C. We contrast with Image halftoning algorithms that also produce a binary
version of the input image, but where visual quality and similarity of the
output is paramount (see remark A.). Indeed our outputs have very little
resemblance to the input. It is natural to ask if one may adapt some tools
of halftoning (e.g. dithering matrices or error diffusion techniques), but
meeting the robustness requirements may be non-trivial.

D. The use of randomness (derived from the secret key) is important not only
for robustness and security against malicious attacks, but also for scala-
bility (i.e. ability to work with large data sets without too many collisions
of hash values). As noted earlier, the goals are to achieve almost uniform
distribution of hash values in a large set and that the hash values of dis-
tinct inputs be (almost) pairwise independent. The aim is to minimize the
collision probability in a rigorous sense.
Algorithm A uses no secret key and hence there is no pseudo–randomness
involved (that is why we use H(.) instead of HK(.) in this section). This
motivates our next Algorithm B.

3.2 Algorithm B

Randomizing algorithm A while preserving its good properties turns out to be a
delicate problem and we first propose to apply algorithm A on randomly chosen
regions of an image (or its suitable transform). We use random rectangles for
this purpose.

Let N be the number of rectangles; let Ri be the i-th rectangle and let wi

and hi be the width and the height of Ri respectively, where i ∈ {1, 2, . . . , N}.

18 M. Kıvanç Mıhçak and Ramarathnam Venkatesan

Let Xi be the “sub-image” that is formed by taking the portion of X that is
in Ri, i ≤ N . The secret key K will be used as the seed of the random number
generator that will be employed for randomizing all steps below. We now describe
Algorithm B.

1. For each i, find randomly positioned rectangle Ri such that ws ≤ wi ≤ wl

and hs ≤ hi ≤ hl where ws, wl, hs and hl are algorithm parameters.
2. Apply Algorithm A on all Xi; the outputs are H (Xi), i ≤ N .
3. Convert each matrix H (Xi) into a 1-dimensional vector Ĥi by randomly

ordering it. Concatenate
{
Ĥi

}
, i ≤ N to produce Ĥ .

4. (Random Projection of Ĥ) Let M̂ be the length of Ĥ. Randomly choose a
set {i1, i2, . . . , iM} ⊆

{
1, 2, . . . , M̂

}
. Then HK (X) :=

[
Ĥ(i1), . . . , Ĥ(iM)

]
.

Note that if N is sufficiently large and {Ri} are sufficiently big, the geo-
metric robustness properties of Algorithm A hold for Algorithm B. The further
advantage is the decrease in the probability of collision and the increase in the
robustness against adverserial attacks due to randomization, but at the expense
of extra complexity, since Algorithm A is applied on each sub-image individually.

4 Experimental Results

We applied 3–level DWT using Daubechies, length–8 filters. For parameters of
Algorithm A, we used m = n = 5 with p = 13, f (i, j) = 1/9, i, j ∈ {1, 2, 3},
A = 255, C = 20, ε = 0.01 and q = 0.5. It can be shown that q = 0.5 maximizes
the separation betweenH (X,Y) andH

(
X, X̂

)
. For parameters of Algorithm B,

we used ws = hs = 192. wl = hl = 320 and N = 100. Prior to applying both
algorithms, we resize the input image to 512×512 via bicubic interpolation. For
colored images, we take intensity plane since most of the energy of the image is
concentrated on this plane.

We did tests for several different images, each of which was subject to 20–30
different attacks. The results of 3 of test images are shown here for illustra-
tive purposes. The performances were observed to be approximately the same
for both algorithms and on average a similar behavior was observed for all test
images for a fixed attack. The attacks considered were AWGN (additive white
Gaussian noise), histogram equalization, non-linear attacks on the distribution
of image samples and all Stirmark attacks[4]. A clear separation between the
hash values of different images and perceptually similar images has been ob-
served (we choose T1 = 0.25 and T2 = 0.35). Some of the sample results are
shown in Table 1. Except for rotation attacks larger than 5 percent, cropping
attacks larger than 10 percent, the goal stated in (1) has been achieved. As ex-
pected, the performances for both algorithms is approximately the same since we
are working on sufficiently many rectangles that cover approximately the whole
image. We believe that for various applications, including using hashing within
watermarking, large rotation and cropping attacks can be handled via a simple

New Iterative Geometric Methods for Robust Perceptual Image Hashing 19

search algorithm. Algorithm B would in particular be useful against malicious
attacks due to the presence of the secret key. Fig. 1 show one of the test images
“Lena” and its 3 different attack versions which are obtained using the Stirmark
software. Fig. 2 shows the results of algorithm A at different stages for the image
Lena and these attacked version. More extensive experimental results on larger
data sets are going to presented in the final version.

Table 1. Normalized Hamming distances between the hash values of original and

attacked images using Algorithm A

Attacks Baboon Goldhill Lena

AWGN, σ=40 0.03 0.04 0.03
Hist. equalization 0.01 0.02 0.02
3× 3 Gaussian filt. 0.00 0.01 0.00
3× 3 Sharpen. filt. 0.05 0.01 0.01
JPEG, QF=10 0.01 0.02 0.01
4× 4 median filt. 0.04 0.04 0.04
Scaling, 50 percent 0.01 0.01 0.01
Shearing, 5 percent 0.13 0.12 0.11
Rotation, 1 degree 0.06 0.06 0.05
Rotation, 2 degrees 0.09 0.08 0.08
Rotation, 5 degrees 0.21 0.17 0.21
Cropping, 2 percent 0.07 0.06 0.04
Cropping, 5 percent 0.12 0.10 0.10
Cropping, 10 percent 0.20 0.16 0.19
Random bending 0.07 0.05 0.04

5 Conclusions and Future Work

We propose novel image hashing algorithms that use perceptually significant
components of images via iterative filtering methods. We rely on empirically ob-
served facts that in case of attacks which produce perceptually similar images,
big masses of significant data in the transformation domain would be retained
though perturbed, whereas isolated significant data are more likely to be erased.
Our approach is media insensitive and can be applied to other sources [3]. In
all the experiments we have conducted, we observed robustness under Stirmark
attacks except for large rotation and cropping and that distances between the
hash values of perceptually similar images are clearly separated from the dis-
tances between different images. We intend to use randomized lattice vector
quantization algorithms on intermediate hash to produce the final hash. For
video watermarking applications see [5].

20 M. Kıvanç Mıhçak and Ramarathnam Venkatesan

Original image JPEG attack, QF=10

Cropping by 10 percent Rotation by 5 degrees and scaling

Fig. 1. Top left: original image Lena, top right: attacked version by JPEG com-
pression with quality factor 10, bottom left: attacked version by cropping by 10
percent, bottom right: attacked version by rotation by 5 degrees and scaling

References

1. D. E. Knuth, The Art of Computer Programming, Addison–Wesley, 1998. 13
2. R. Venkatesan, S.-M. Koon, M. Jakubowski and P. Moulin, “Robust image hash-

ing,” Proc. IEEE ICIP, Vancouver, Canada, September 2000. 14, 15
3. M. K. Mıhçak and R. Venkatesan, “A Perceptual Audio Hashing Algorithm,”

preprint, 2000. 14, 19
4. F. A. P. Petitcolas and R. J. Anderson, “Evaluation of copyright marking systems,”

Proceedings of IEEE Multimedia Systems’99, vol. 1, pp. 574–579, 7–11 June 1999,
Florence, Italy. 14, 18

5. M. K. Mıhçak and R. Venkatesan, “Video Watermarking Using Image Hashing,”
preprint, 2000. 14, 19

New Iterative Geometric Methods for Robust Perceptual Image Hashing 21

Fig. 2. The outcomes of different steps of Algorithm A for lena image and its
3 different attacked versions. The first column shows the results of the original
image, the second column shows the results after JPEG attack with the quality
factor 10 percent, the third column shows the results after cropping attack by
10 percent, the fourth column shows the results after rotation by 5 degrees and
scaling. The first row shows the resulting image after step 2; the second, third
and fourth rows show the resulting images after steps 3,4 and 5 respectively at
the first iteration. The bottom row show the intermediate hash that is obtained
after convergence of the iterative filtering algorithm

6. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of applied cryp-
tography, CRC Press, Boca Raton, FL, 1997. 14

7. N. G. Kingsbury, “Complex wavelets for shift invariant analysis and filtering of
signals,” submitted to Journal of Applied Computation and Harmonic Analysis,
June 2000. 17

On Crafty Pirates and Foxy Tracers

Aggelos Kiayias1 and Moti Yung2

1 Graduate Center
CUNY, NY USA

akiayias@gc.cuny.edu
2 CertCo, NY USA

moti@cs.columbia.edu

Abstract. Piracy in digital content distribution systems is usually iden-
tified as the illegal reception of the material by an unauthorized (pirate)
device. A well known method for discouraging piracy in this setting is
the usage of a traitor tracing scheme that enables the recovery of the
identities of the subscribers who collaborated in the construction of the
pirate decoder (the traitors). An important type of tracing which we deal
with here is “black-box traitor tracing” which reveals the traitors’ iden-
tity using only black-box access to the pirate decoder. The only existing
general scheme which is successful in general black-box traitor tracing
was introduced by Chor Fiat and Naor. Still, this scheme employs a pi-
rate decoder model that despite its generality it is not intended to apply
to all settings. In particular it is assumed that (1) the pirate decoder is
“resettable”, i.e. the tracer is allowed to reset the pirate decoder to its
initial state after each trial (but in many settings this is not possible: the
pirate decoder is “history-recording”), and that (2) the pirate decoder is
“available”, i.e. it does not employ an internal reactive mechanism that,
say, disables the tracing process (such as shutting down) — we will call
such reactive decoders “abrupt.”
In this work we discuss pirate-decoders of various types which we catego-
rize according to their capabilities: resettable vs. history recording, and
available vs. abrupt. These (crafty) pirate decoders of “enhanced capa-
bilities” (compared to the model of Chor et al.) appear in many plausible
piracy scenarios. We then present new (foxy) black-box traitor tracing
schemes which cope with such pirate decoders. We present a generic black
box traitor tracing technique against any abrupt/resettable decoder. This
generic tracing method can be implemented readily in a linear ciphertext
size traitor tracing scheme. By employing a new relaxation technique,
which we call list-tracing, we describe a traitor tracing scheme with sub-
linear ciphertext size that is successful against abrupt/resettable pirate
decoders. Finally, we present the first black-box traitor-tracing scheme
and techniques that are successful against abrupt/history-recording pi-
rate decoders (in the multimedia transmission setting).

1 Introduction

Consider the distribution of scrambled data to a set of subscribers who pay for
services, for example in a Cable-TV network. The Internet is currently providing

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 22–39, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Crafty Pirates and Foxy Tracers 23

a new venue for such applications to flourish and expand; undoubtedly in the
next few years such networks will be established in Web-based environments. A
well known shortcoming of such digital content distribution systems is the fact
that pirate devices that receive the scrambled content can be constructed and
even distributed to thousands of users via the Internet.

Hiding the decoding mechanism from the subscriber is of course a solution
but it is difficult to enforce since: (1) Software-based subscriber decoders are
desirable due to the need to cut-down costs on the part of the distributor and so
that decoders can be downloaded over the Internet. Using program obfuscation
to hide the subscriber key at present does not appear to be a reliable solution in
the cryptographic sense (see [2]); further (2) even if subscriber decoders are in
hardware, the secrecy of the descrambling key from a “nosy” subscriber is rela-
tive, since tamper-resistance comes at a cost (see [1]). This setting puts forth the
following important problem: assuming the subscriber decoders are “open” and
as a result the subscribers’ descrambling keys are readily available, is it possible
to eliminate (or discourage) piracy? In this case subscribers, using their personal
key information, may collude to generate pirate decoders that are able to receive
the scrambled data without paying. Chor et al. in [7] introduced and discussed
a solution to this problem. The distributor is using an encryption scheme that
allows traitor-tracing, i.e. there is a procedure that given the information con-
tained in the pirate decoder can trace back to one of the legitimate subscriber
keys that was used in its construction. This reveals the identity of a subscriber
that participated in the process of the pirate-decoder construction (henceforth
called a “traitor”). In such a system piracy would be reduced due to the fear of
exposure.

In many settings it is very important for the traitor tracing procedure to be
black-box. This allows tracing to work successfully using merely black-box access
to the pirate decoder. Black-box traitor tracing reduces tracing costs significantly
as there is no need to “reverse-engineer” the pirate-decoder (something that can
be infeasible in many cases) and even allows tracing to be performed remotely
without the physical availability of the pirate decoder. For example, feeding
signals to a device remotely and observing the reaction or the display of the
output (on a T.V. screen, say) may be the only way a tracer can access a device,
in which case black-box tracing is the only possible way to trace. The techniques
of [7] (see also [8]) apply to the black-box setting as well, provided that the
tracer has the capability to reset the pirate decoder to its initial state and the
decoder is “available” – a concept we formalize below.

Let us next briefly overview the previous work on Traitor Tracing. As men-
tioned above, the concept was introduced in [7,8], with the presentation of a
generic TTS. Explicit constructions based on combinatorial designs were given
in [21]. A useful variation of the [7] scheme is presented in [15]. Public key TTSs
were presented in [13,4]. These two schemes were shown to be inadequate in the
black-box traitor tracing setting when the pirate construction is general and has
a superlogarithmic (in the number of users) number of traitor keys at its dis-
posal [11]. In [16] a useful method of deterring piracy called “self-enforcement”

24 Aggelos Kiayias and Moti Yung

was discussed in the context of traitor tracing schemes together with user-key
revocation techniques. We note that in most settings (here as well) it is as-
sumed that the tracing authority is trusted. The case when the authority is not
trusted is considered in [17,18,19]. An “on-line” approach to preventing piracy
in Pay-TV like systems, called “Dynamic Traitor Tracing,” is taken in [9,20,3].
Further combinatorial constructions of traitor tracing schemes in combination
with revocation methods (cf. broadcast encryption) were discussed in [10,14].

Given that the area is relatively young and there are only a few works dedi-
cated to it, there are many issues yet to be studied and many new properties to
be desired from traitor tracing schemes. There are several parameters that are
involved such as the key-size (denoted by u), the ciphertext-size (denoted by v),
and the maximum traitor collusion size allowed by the tracing technique (de-
noted by t). Seen as functions in the number of subscribers n, the ideal would be
that key-size and ciphertext size are constant whereas the maximum traitor col-
lusion size allowed is large, close to n. The greatest problem perhaps is achieving
the highest possible t while keeping the ciphertext size v and key size u as small
as possible since v is directly related to the cost of data distribution, and u is
related to the cost of the user decoder. We note here that although constructing
a linear ciphertext size Traitor Tracing Scheme (TTS) is straightforward, it is
not equally straightforward to prove that such a scheme has black-box tracing
capability.

This paper concentrates on introducing new black-box traitor tracing schemes
against pirate decoders of various (enhanced) capabilities. To facilitate our ex-
position we will categorize pirate decoders according to two basic characteris-
tics: their memory capabilities (resettable vs. history-recording) and the usage
of self-protection reactive mechanisms that abort/react to the detection of the
tracing process (available vs. abrupt). We will not limit the process by which
the traitors produce the pirate device or the resources/techniques that they may
apply. Our results (which are the three traitor tracing mechanisms mentioned in
the abstract) are presented in section 2.5 after the proper background regarding
pirate-decoder types is introduced.
Organization.
First in section 2, we give the necessary background which explains in more

details the above enhanced capabilities of pirate decoders and explain our re-
sults in light of this background. Then, in section 3.1 we describe formally our
model of digital content distribution called a Multicast Encryption Scheme, and
we define non-black-box traitor tracing. In sections 3.3 and 3.4 we formalize the
concepts of black-box traitor tracing and coloring, and we describe the modeling
for the various types of pirate decoders. In section 4 we present our generic black-
box traitor tracing technique against abrupt/resettable pirate decoders. A new
relaxed form of tracing that we call “List-tracing” and allows more efficient con-
structions is discussed in section 5. Finally the black-box traitor tracing scheme
against abrupt/history-recording pirate decoders is presented in section 6.

On Crafty Pirates and Foxy Tracers 25

2 Background: Decoder Types and Our Results

Next, we will describe the various categories of decoders we consider and then
we will review earlier works and our results in light of the categorization.

2.1 Resettable vs. History Recording Pirate Decoders

Resettable decoders can be reset to their initial state by the tracer after each
descrambling. This gives the tracer the advantage of making independent tests
during the tracing process, something that prevents the decoder from using
previous querying information submitted by the tracer in order to decide its
present action.

Resettable pirate decoders constitute a natural model for black-box traitor
tracing since they can be encountered in a number of settings, mainly:

– Software pirate decoders. If the tracer possesses a software pirate decoder,
evidently we can assume that such a decoder is resettable, since the tracer
may restart the decoder at each trial using a previously stored copy.

– A hardware pirate decoder can also be considered resettable if the tracer can
flood its internal memory with data so that history recording between two
probings is eliminated.

Most previous work in black-box traitor tracing assumed the resettable pi-
rate-decoder model. In contrast, a History Recording pirate decoder “remembers”
the previous queries made by the tracer and because the tracing procedure is
public the history recording capability can be used by the decoder to evade
tracing. History-Recording pirate decoders can also be encountered in a number
of settings such as:

– A software pirate decoder that is only remotely accessible by the tracer, e.g.
the decoder runs in some server connected to the Internet and the tracer
may only probe it remotely.

– Hardware pirate decoders in general.

2.2 Available vs. Abrupt Pirate Decoders

Abrupt pirate decoders are those devices that may take some counter-actions
against the tracing process which can be “defensive” or “aggressive” in their
nature. More specifically, by a “defensive” action we refer to a “shutting down”
mechanism, a process by which the pirate decoder erases all internal key infor-
mation, thus making tracing impossible (and rendering itself useless at the same
time). Such defensive actions are mechanisms that can be implemented success-
fully only in hardware devices. On the other hand, an “aggressive action” (more
suitable for software decoders) could be crashing the host system, or releasing a
virus. This is particularly important in the case of an installable pirate-decoder:
even though the tracer is capable of resetting the decoder to its initial state

26 Aggelos Kiayias and Moti Yung

(by using a previously stored copy) this does not prohibit the pirate-decoder of
taking some “aggressive” counter-action to tracing, such as releasing a virus to
its working environment. Such aggressive counter-actions may not entirely pro-
hibit tracing but they can substantially increase its cost as well as its negative
consequences.

In both cases (software aggressive counter-actions or hardware shutting-down
mechanisms) we will assume that the tracer wants to avoid the occurrence of any
such reaction and if such reaction is triggered it is immediately detectable by the
tracer. On the other hand the pirate decoder does not want such a mechanism
to be triggered during normal operation. Since it is not possible to force the
pirate decoder not to use such reaction mechanisms if they are available, what
needs to be shown is that there are systems where the usage of such mechanisms
is detrimental to the pirate decoder itself (i.e. the triggering of the mechanism
leaks some information about the traitor keys or it significantly interferes with
the decoder’s data-reception capabilities).

An “available” pirate decoder is a device (software or hardware) that does
not possess such a reaction mechanism.

2.3 Types of Pirate Decoders

Depending on the capabilities of a given pirate decoder we will categorize it to
a certain type according to the diagram of figure 1.

Note that the four types are hierarchical: a black-box traitor tracing scheme
successful against decoders of a certain type is also successful against decoders
of a “smaller” type (where smaller is defined by the partial order revealed by
the arrows in figure 1).

Abrupt
History Recording

Available
History Recording

Abrupt
Resettable

Available
Resettable

Type 0

Type 1

Type 3

Type 2

Fig. 1. Types of Pirate Decoders

On Crafty Pirates and Foxy Tracers 27

These plausible “crafty” pirate decoder models have not been investigated
thoroughly in the literature and as they appear in many practical settings, new
black-box traitor tracing techniques are required.

2.4 Previous Work and Motivation in Light of the Decoder Types

A type-0 black-box traitor tracing scheme was presented in [7,8]. This system
(and its variants) is the only existing scheme that is capable of tracing general
type-0 pirate decoders in a black-box fashion. In [4], a type-0 scheme of a re-
stricted nature was introduced under the name “single-key pirates”: the pirate-
decoder uses a single key for decryption without any other side computation
(note though that this single key could be the combination of many users’ keys).
Nevertheless such a scheme is too restrictive (as pointed out in the same paper)
since there is no guarantee that a decoder will be constructed in this fashion.
In the same paper, a weaker mode of black-box traitor tracing was presented:
“black-box confirmation.” In this setting the tracer has a set of suspects and
wants to confirm that the actual traitors that constructed the pirate decoder are
indeed included in the set of suspects. Black-box confirmation can be used for
black-box traitor tracing by trying all possible subsets but this results in an in-
efficient (exponential-time) procedure. In [11] it was shown that it is impossible
for non-trivial schemes of the type of [4,13] to support efficient black-box traitor
tracing procedures against general type-0 decoders if the number of traitors is
superlogarithmic in the number of users.

A different mode of black box traitor tracing was considered in [5]: minimal
access black box tracing: for any query to the pirate decoder, the tracer does
not obtain the plaintext but merely whether the pirate-decoder can decrypt the
ciphertext and “play” it (e.g. the case of a pirate cable-box incorporating a TV-
set). This is in contrast with “full access black box tracing” where the tracer
obtains the actual data returned by the pirate decoder.

In [17] a restricted type-2 prevention method was briefly noted: if a pirate-
decoder shuts-down whenever an invalid ciphertext is broadcasted (which may
indicate tracing as we will see), then the authority may disperse invalid cipher-
texts in normal operation so that these decoders shut-down and therefore become
useless. In such a system, type-2 decoders can be “reduced” to type-0 decoders,
since shutting down renders them useless. Although Pfitzmann’s comment pro-
vides a simple yet powerful method for disabling abrupt decoders that shut down
it does not solve the problem completely. This approach raises the issue of how
the decoders used by the lawful subscribers should deal with invalid ciphertexts
since shutting down is a double-edge sword. Any method that would allow a law-
ful decoder to ignore the invalid (possibly malicious) ciphertexts, can be taken
advantage of by a pirate-decoder and used to avoid shutting down when it is
not needed. As a result this approach is not very stable in general. It is of great
interest to see if it possible to allow black-box traitor tracing of abrupt decoders
without affecting the normal operation of the system.

28 Aggelos Kiayias and Moti Yung

2.5 Our Results

We present three different designs for black-box traitor tracing schemes that
are successful against pirate decoders of various types. The black-box traitor
tracing methods for type-2 and type-3 pirate decoders that we present are, as
far as we know, the first of their kind in the literature. Our designs combine new
ideas with the known tracing methods for the basic decoders to achieve the new
capabilities. Specifically:

– We first present a generic black-box traitor tracing technique against type-2
pirate decoders. A direct implementation of our technique yields a linear
ciphertext size traitor tracing scheme of type-2 black-box traceability.

– By a new relaxation idea which allows some level of uncertainty in the
tracer’s part and results in an output of a list of suspects some of which
are guaranteed to be traitors, we construct a “list-tracing” scheme with sub-
linear ciphertext size that is successful against pirate decoders of type-2. The
tracing procedure, (building on ideas from [7]) exhibits a trade-off between
the size of the suspect list and the size of the ciphertexts. In the case of lin-
ear ciphertext size the scheme reveals at least one traitor with overwhelming
probability. By allowing the suspect list to be larger it is possible to lower the
ciphertext size. Our results on type-2 traceability also hold in the minimal
access model introduced in [5].

– Finally, extending the above with watermarking and ambiguous decryption
ideas, we present the first traitor tracing scheme successful against history-
recording decoders (i.e. type-3 pirate decoders) in the context of multimedia
transmission (as it was dealt with in [9,12]). In our method (which is based
on the [7]-scheme) the walking black-box traitor tracing argument of [8] is
substituted by “watermarking the walking space in parallel” resulting in
a new method that defeats the history-recording capabilities of the pirate-
decoder.

3 Preliminaries

3.1 Multicast Encryption Schemes

Any traitor tracing scheme is based on an underlying encryption mechanism
called a Multicast Encryption Scheme (MES) [11]. In this section we overview
this primitive.

Let U := {1, . . . , n} be the set of users, andM, C and D denote the message-
space, ciphertext-space and user-key space respectively. Without loss of gener-
ality we assume that each of these spaces contains objects of the same size. If
the elements of M have size w, thought of as a security parameter, we assume
that the elements of C,D have size wv(n) and wk(n) respectively. The functions
v(n), k(n) express the expansion factor of C and D respectively based on the
number of users n. A Multicast Encryption Scheme (MES) is a triple (G,E,D)
with the following properties:

On Crafty Pirates and Foxy Tracers 29

– Key Generation. G is a probabilistic algorithm that on input 1w and 1n,
G produces a pair (e,K) with K ⊆ D, |K| = n; the encryption key of the
system is e whereas the elements of K constitute the user-keys that are
distributed to the users.

– Encryption. E is a probabilistic algorithm that on input m ∈ M and e
it outputs an element c ∈ C: c ← E(1w,m, e). Note that the encryption
function is not thought to be a surjection over C and in fact this point is
crucial for black-box traitor tracing. In other words the space C includes
elements that do not correspond to “valid” encryptions of messages in M.

– Decryption. D is a deterministic algorithm that given c ← E(1w,m, e) and
a user-key d ∈ K so that (e,K)← G, it returns m. Note that D can also be
generalized to be a probabilistic algorithm.

A MES can be either public or secret key. It is easy to adapt the standard
notions of semantic security or chosen-ciphertext security for MESs. Let F be
the set of constructible non-decreasing functions of (IN→ IN), such that if f ∈ F
it holds that f(n) ≤ n for all n ∈ IN. We may occasionally suppress the “(n)”
when referring to a member of F . To facilitate traitor tracing, [11] pointed out
that some additional security requirements have to be imposed on the MES that
involve the population of subscribers; in the following let t ∈ F :
Impossibility of Keyless Decryption. The knowledge of a user-key (or a
combination thereof) is necessary for decryption.
Key-User Correspondence. Any collusion of up to t users is incapable of
producing a user-key of some other user. This property has also been referred
to in other contexts as the “frameproof” property. It guarantees that a user is
liable (passively or actively) when its key is being used for decryption.
Non-Ambiguity of Collusions. It should be infeasible for any two disjoint
collusions of up to t users to produce a common key in D that can be used for
decryption.

For a more formal treatment the reader is referred to [11]. A MES that
satisfies the above properties will be called “a MES suitable for collusions of up
to t users.” The existence of a traitor tracing algorithm transforms a suitable
MES into a traitor-tracing scheme:

Definition 1. Traitor Tracing Scheme (non-black-box). Given t, f, v ∈ F ,
a MES suitable for collusions of up to t(n) users with ciphertext expansion factor
v(n) is called a 〈t(n), f(n), v(n)〉-Traitor Tracing Scheme (TTS) if there exists
a probabilistic polynomial time algorithm B (tracing algorithm) s.t. for any set
T ⊆ K ← G(1w, 1n), with |T | ≤ t(n) and any probabilistic polynomial time
algorithm A that given T and all public information outputs an element of D, it
holds: Prob[t ∈ T : t← B(d,K), d← A(T)] ≥ 1/f(n).

Note that because of key-user correspondence, the recovery of t is equivalent
to exposing a traitor. In the non-black-box setting it is assumed that the decoder
is “open” and because of the impossibility of keyless decryption a decryption key
is available to the tracer. Black-Box Traitor Tracing Schemes are discussed in
subsection 3.4.

30 Aggelos Kiayias and Moti Yung

3.2 The Straightforward Scheme

The straightforward way to produce a TTS is the following: user i has a pair
of secret/public keys for some semantically secure encryption scheme fi, e.g. El-
Gamal encryption (note that symmetric encryption can also be used). The dis-
tributor of the message M , produces the vector-ciphertext 〈f1(M), . . . , fn(M)〉.
Each user receiving the ciphertext applies its own private key and obtains M .
Under the (plausible) assumption that the keys of the different instances of the
encryption scheme are not composable i.e. a collusion of users can decrypt a
vector-ciphertext only by applying one of the assigned secret user keys, we can
easily show that:

Proposition 1. The MES described above is a 〈n, 1, Θ(n)〉-TTS.

Obviously this scheme is inefficient as its ciphertext is proportional to the
population size. As a result the goal of any TTS design is to achieve sublinear ci-
phertext size and obviously the ideal would be the construction of an 〈n, 1, Θ(1)〉-
TTS. The straightforward scheme can serve as a measure of efficiency for other
more elaborate constructions. Note that when using asymptotic notation to ex-
press the order of the functions t, f, v we will suppress the dependency on the
security parameter w.

3.3 Colorings

The following formalism, introduced in [11], is a useful tool in describing the
interaction between the tracer and the pirate decoder. For some Multicast En-
cryption Scheme fix (e,K) ← G(1w, 1n). A coloring of the user population is a
partition {Ci}i of U . Given some s ∈ C, we define the following relation of the
set of user keys K: d ≡ d′ iff D(1w, d, s) = D(1w, d′, s) (if D is probabilistic the
definition can be amended accordingly). It is easy to see that ≡ is an equivalence
relation. By the property of key-user correspondence it is immediate that the
equivalence classes of ≡ for some s ∈ C define a coloring over the user population.
In this case we say that s induces a coloring over the user population U .

If c ← E(1w,m, e) for some m ∈ M then it holds that for all d, d′ ∈ K,
D(1w, d, c) = D(1w, d′, c) (by the definition of the encryption/decryption func-
tions) therefore there is only one equivalence class, i.e. all users are colored by
the same color. Let X1 be the subset of C s.t. ∀s ∈ X1, d, d

′ ∈ K : D(1w, d, s) =
D(1w, d′, s). Obviously the ciphertexts generated by E constitute a subset of X1.

We say that a MES can induce a family of colorings {{C(j)
i }i}j if there is

an algorithm that given 1j can produce s ∈ C that induces the coloring {C(j)
i }i

over the user population.
Given some s ∈ C, the set Ls := {D(1w, d, s) | d ∈ K} is called the set of color

labels that correspond to s. If s is a encryption of some message under E, the
set Ls is a singleton that contains only the appropriate decryption of s. In general
the number of elements of Ls will be equal to the number of different equivalence
classes in the coloring induced by s. Note that a decryption algorithm of some

On Crafty Pirates and Foxy Tracers 31

sort may not necessarily return one of the “color labels”. For example, this can
happen if the decryption algorithm operates with some “compound” decryption
key – that has been derived from combining more than one user keys).

For a given set of users U ⊆ U and a coloring {Ci}i we denote by {Ci}i ↓ U
the projection of the partition of the coloring over the set U , i.e. the partition
of U defined by {Ci ∩ U}i.

The above properties were sufficient for the “negative” results (impossibility
of non-trivial black-box traitor tracing schemes) of [11]. Here we are interested
in “positive” results and as a result additional properties of the underlying MES
are required in order to describe black-box traitor tracing techniques using the
coloring terminology. In particular the underlying MES should satisfy:

– (i) probabilistic encryption of tracing plaintexts: if a certain color-
ing is inducible in the MES then it can be induced by exponentially many
ciphertexts.

– (ii) no shortcut ciphertext-validity checks: ciphertexts do not have any
inherent validity structure checkable in polynomial-time by any group of
users (nevertheless coalitions of users may apply their keys individually to
check whether a ciphertext is valid).

These conditions are quite natural and are satisfied by all MESs proposed so
far (nevertheless one can produce artificial MES instantiations that fail them).

3.4 Black-Box Traitor Tracing Schemes

The algorithm employed by the pirate decoder will be denoted by B. The input
of B is an element s ∈ C (and will be called a “query”), and if s is a valid
encryption the output of B is necessarily the proper decryption of s as dictated
by the decryption algorithm D. In other words B, thought of as a probabilistic
polynomial-time Turing machine, incorporates a correct decoding algorithm. Due
to the impossibility of keyless decryption, B incorporates some of the user keys
or some combined form thereof, i.e. if e is the encryption key, B “contains”
some element(s) of D suitable for inverting the encryption procedure E. As
these elements were generated using some user keys without loss of generality
we assume that B incorporates a set of user keys denoted by T (the “traitor”
keys).

As a result and in the terminology of the previous section if all traitor keys
are colored in the same way the pirate decoder B is bound to return the single
color label that the traitor keys decrypt (by the “no shortcut ciphertext-validity
checks” property). If B, on the other hand, finds that something is wrong with
the encryption it may take measures to protect itself depending on its type: a
type-0,1 decoder can e.g. return a predetermined random output, and a type-2,3
(abrupt) decoder can additionally use its reaction mechanism (e.g. shut-down).

We formalize the additional capabilities of pirate decoders as follows:

– History recording pirate decoders B take as input, apart from the element s,
a polynomial number of previous queries made to the decoder, for some

32 Aggelos Kiayias and Moti Yung

predetermined polynomial function. This formalizes the notion of history-
recording as it allows B to take actions according to the transcript of the
communication between tracer and decoder. Note that a history-recording
B is not bound to decrypt properly even if it is given a valid ciphertext
provided that there is some invalid ciphertext in the previous queries.

– Abrupt pirate decoders use a polynomial-time deterministic predicate React
with domain the set of all possible partitions of the set T . Given some string
s ∈ C let {Ci}i be the coloring induced by s over the user population; the
pirate decoder computes the value of React({Ci}i ↓ T) and if true it activates
its reaction mechanism. In a history-recording abrupt pirate decoder React
may take as additional input the sequence of previous projections. Note that
the limitation of React to a deterministic predicate is done for brevity and
our results can be easily extended to the general probabilistic case. When
the predicate React becomes true the tracing process terminates “abruptly.”
Note that React({T }) = False (which corresponds to the case when all
traitors are assigned the same color, e.g. in normal operation).

The tracer algorithm R is a probabilistic polynomial-time Turing machine
that has oracle access to the pirate decoder B. R, if successful, returns (at least)
one of the elements of T which in turn (due to key-user correspondence) reveals
the identity of a traitor user. A list-tracer on the other hand returns a set of
users that is guaranteed to contain one of the traitor users. More formally:

Definition 2. If t, f ∈ F , we say that a probabilistic poly-time Turing machine
R is a
(i) 〈t(n), f(n)〉-tracer if for any T ⊆ U s.t. |T | ≤ t(n) and for any pirate-decoder
algorithm B containing the keys of T , RB, outputs a user with non-negligible
probability in n, who is a traitor with probability at least 1/f(n).
(ii) 〈t(n), f(n)〉-list-tracer if for any T ⊆ U s.t. |T | ≤ t(n) and for any pirate-
decoder algorithm B that was created using the keys of T , RB, outputs a list of
users with non-negligible probability in n, such that the size of the list is at most
f(n), and is guaranteed to contain at least one traitor.

The function f is called the uncertainty of the tracer. It is clear that for
any MES it is straightforward how to obtain a tracer with Θ(n) uncertainty:
merely output any user at random (similarly a trivial list-tracer merely outputs
the list of all users). The other extreme is a tracer with uncertainty 1, that no
matter what is the user population size it returns a traitor always. If tracing has
negligible probability of error σ(n) (a function σ(n) is called negligible if for all
c > 0 there is a n0 so that ∀n ≥ n0 σ(n) < n−c) then the uncertainty is “slightly
larger than 1” i.e. (1 − σ(n))−1. A list-tracer is a strengthened tracer that can
produce a list of suspects that can be used by the authority in an investigation.
It is straightforward that any 〈t(n), f(n)〉-list-tracer can be transformed to a
〈t(n), f(n)〉-tracer but the opposite does not hold necessarily.

It should be clear from all the above that the queries submitted by the
tracer to the decoder algorithm B should not be all drawn from the set X1 (i.e.
those that induce the trivial coloring over the user population) as this cannot

On Crafty Pirates and Foxy Tracers 33

distinguish between different sets of traitors. In many cases the specific queries
s ∈ C used by the tracer algorithm are not important and its description can
be done in terms of the colorings that the tracer wants to induce over the user
population. This allows a more abstract description of the tracing process that
brings us to the next definition:

Definition 3. For some t, f, v ∈ F , a 〈t(n), f(n), v(n)〉-Black-Box Traitor Trac-
ing Scheme (BBTTS), is a MES suitable for collusions of up to t(n) users with
ciphertext expansion factor v(n) such that there is an 〈t(n), f(n)〉-tracer so that
all colorings used by the tracer can be induced in the MES.

Depending on the type of pirate decoders a BBTTS is successful, we will
signify that the BBTTS is of type-i (list-)traceability, with i ∈ {0, 1, 2, 3}. By
the relations between the different types it is easy to establish relations such as
a BBTTS of type-3 traceability is also of type-0,1,2 traceability and so on (see
figure 1).

4 Hybrid Colorings: Generic Black-Box Traceability
of Abrupt/Resettable Pirate Decoders

In this section we present a generic technique against any resettable pirate de-
coder that can be abrupt. It is based on the capability of the underlying MES
to produce a family of colorings which we call “Hybrid Colorings” (see figure 2).
Hybrid Colorings: Consider the following collection of n+1 partitions of the set
of users: {{C(n,r)

1 , C
(n,r)
2 }}r=0,...,n with,

C
(n,r)
1 = {1, . . . , r} C

(n,r)
2 = {r + 1, . . . , n}

Theorem 1. If a MES can induce the Hybrid Colorings, is suitable for collu-
sions of up to t(n) users, and has ciphertext expansion factor v(n) then it is a
〈n, (1− σ(n))−1, v(n)〉-BBTTS of type-0,2 traceability, where σ(n) is negligible.

Proof. Let s0, s1, . . . , sn ∈ C be some ciphertexts that induce the hybrid col-
orings. It holds that s0, sn ∈ X1, i.e. they induce a single color over the user
population. Denote the color induced by s0 as “0” and the color induced by sn

as “1”.
Consider the following experiment Er: the tracer generates an sr ∈ C that

induces the r-th hybrid coloring, i.e. users {1, . . . , r} are colored by “0” and
users {r + 1, . . . , n} are colored by “1”. The tracer queries the pirate decoder
and records its answer in terms of 0 and 1.

Denote by αr the probability the decoder returns 1 in experiment Er. It
follows that α0 = 0 and αn = 1, and as a result αn − α0 = 1.

Suppose now that user j is not a traitor: it holds that the pirate-decoder can
distinguish between the coloring induced by sj−1 and the coloring induced by sj

only with negligible probability (this is because the key of the j-th user is not

34 Aggelos Kiayias and Moti Yung

xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

1 2 3 . . . n
Users

C
ol

or
in

gs

Fig. 2. Hybrid Colorings

among the keys used by the pirate-decoder). As a result it holds that |αj−1−αj |
is negligible in n. Since αn − α0 = 1 by the triangular inequality it follows that
there is an i0 ∈ {1, . . . , n} so that αi0 − αi0−1 ≥ 1/n. It follows that user i0 has
to be a traitor.

The tracer repeats each experiment Er independently a times for each r ∈
{0, . . . , n}. Let Nr denote the random variable that expresses the number of
1’s that were returned by the decoder during the a independent trials of experi-
ment Er. It follows that the expected difference between the random variableNi0

and the random variable Ni0−1 is at least a/n. To facilitate the recovery of i0
we have to make sure that the observed values of the variables Nr are suffi-
ciently close to their expected values µr := αr · a. Using the Chernoff bound:
Prob[|Nr − µr| ≥ λ] ≤ 2e−2λ2/a, it follows that Prob[|Nr − µr| ≥ a/6n] ≤
2e−a/18n2

which is negligible in n provided that a ≥ n2(logn)2. It follows that
with overwhelming probability (i) the difference between the observed value
of Ni0 and the observed value of Ni0−1 is at least 2

3a/n and (ii) if i is not a
traitor, the distance between the observed value of Ni and the observed value
of Ni−1 is at most 1

2a/n (this is due to the fact that |αi − αi−1| := σ′(n) is
negligible in n: as a result the expected value of |Ni −Ni−1| is a · σ′(n) which is
smaller than 1

6a/n for large enough n). This suggests the following method for
computing i0: collect all observed values NO

j making n2(logn)2 trials for each j,
for j = 0, . . . , n and then i0 will be the value so that NO

i0
−NO

i0−1 ≥ 2
3n(log n)

2.
This procedure has negligible probability of error.

Suppose now that the pirate decoder reacts at some step of the above
procedure. If user j is not a traitor it follows that the colorings induced
by sj and sj−1 are identical according to the view of the pirate decoder:
specifically {Cn,j−1

1 , Cn,j−1
2 } ↓ T = {Cn,j

1 , Cn,j
2 } ↓ T and as a result

React({Cn,j−1
1 , Cn,j−1

2 } ↓ T) = React({Cn,j
1 , Cn,j

2 } ↓ T). It follows that if the

On Crafty Pirates and Foxy Tracers 35

pirate-decoder reacts when given si1 , user i1 is a traitor with negligible proba-
bility of error. ��

From the above proof it follows easily that,

Corollary 1. The tracing procedure using the Hybrid Colorings has time com-
plexity O(n3 log2 n), and reveals a traitor with negligible probability of error.

Hybrid Colorings can be used in the straightforward TTS of 3.2 in order
to obtain a 〈n, (1 − σ(n))−1, Θ(n)〉-BBTTS that can trace any type-0 or type-2
decoder, where σ(n) is negligible in n. We point here that it is not clear how to
derive a sublinear TTS that can induce the hybrid colorings. Note that a history
recording pirate decoder can defeat the Hybrid Colorings strategy as follows:
upon detecting tracing, the decoder might continue to work by giving the color-
label “0” for a random number of trials and then start returning the color-label
“1”. This with great probability will result in framing an innocent user. We note
here that the technique of hybrid colorings was discovered independently for
type-0 decoders in [5] who also pointed at the difficulty of obtaining TTSs with
sublinear ciphertext size that induce the hybrid colorings. In the next section we
give a partial solution to this problem by introducing a new relaxation technique.

5 List-Tracing of Abrupt/Resettable Pirate Decoders
with Sublinear Ciphertext Size

As pointed in the previous section it is not clear how to derive a sublinear
ciphertext size MES that can induce the hybrid colorings. In this section we will
show how to use the MES of [8] and a new relaxation technique that yields a
generic BBTTS of type-0,2 list-traceability with sublinear ciphertext size.
Description. ([8]) Assume that n ≤ h(n)m(n) for some functions h,m ∈ F . A
set of m ·h keys are selected (we write m,h instead of m(n), h(n) for simplicity),
for some symmetric encryption scheme (note: public-key encryption can also be
used). The keys are indexed by Kj,l, j = 1, . . . ,m and l = 1, . . . , h. For each j,
each user is assigned one of the keys {Kj,1, . . . ,Kj,h} at random. Consequently
each user is assigned an m-tuple of keys, or one key from each row of the matrix
(Kj,l). In order to encrypt M we break it into m random “shares”: M = M1 +
. . . + Mm and then each Mj is encrypted under all keys {Kj,1, . . . ,Kj,h} (note
that modular arithmetic is assumed in the plaintext space). Since each user has
one key for each j upon receiving the ciphertext (of length mh) it can obtain all
shares of M and therefore compute it.
Tracing Type-2 Decoders. The tracing process proceeds as follows: a row j0 ∈
{1, . . . ,m} is chosen at random. For i = 0, . . . , h the tracer prepares an encryp-
tion of a plaintext M so that the first i positions of the j0-th row are changed
to random values. There will be an i0 ∈ {1, . . . , h} s.t. the pirate decoder will
either react (aborting tracing) or stop returning M (as in the type-0 tracing
technique of [8]); the tracer then concludes that there is at least one traitor in
the subset of users using the key Kj0,i0 . This yields a list of suspect users that

36 Aggelos Kiayias and Moti Yung

includes at least one traitor with very high probability. The size of this list is
approximately n/h which corresponds to the number of users that are assigned
a certain key Kj,i (recall that each user is assigned a key from row j uniformly
at random).

Proposition 2. If n ≤ h(n)m(n), the variant of the [8]-MES described above is
a 〈n, n/h(n), Θ(m(n)h(n))〉-BBTTS of type-2 list-traceability.

Proof. Suppose the tracing algorithm selects row j0. Let si be the ciphertext that
has the first i positions of the j0-th row randomized (where i ranges to 0, . . . , h).
The coloring induced by si induces i+ 1 classes as follows: {Ci

1, C
i
2, . . . , C

i
i , C

i}
where Ci

v includes all users that are assigned the key Kj0,v with v = 1, . . . , i
and Ci = {1, . . . , n} − ∪i

v=1C
i
v; note that |Ci

v| = n/h approximately. Suppose
that no traitor has the key Kj0,i. It follows that {Ci

1, C
i
2, . . . , C

i
i , C

i} ↓ T =
{Ci−1

1 , Ci−1
2 , . . . , Ci−1

i−1 , C
i−1} ↓ T . As a result if the pirate-decoder reacts when

given ciphertext si1 it follows immediately that Ci1
i1

includes a traitor (with very
high probability).

On the other hand if the pirate-decoder never reacts tracing proceeds as
described by [8]. Below we give a short description in our terminology: first
note that, there will be an si inducing a coloring {Ci

1, C
i
2, . . . , C

i
i , C

i} so that all
traitors will be assigned a color different than Ci (i.e. Ci ∩ T = ∅). It follows
that if all ciphertexts s0, . . . , sh are submitted in sequence the pirate decoder will
start by returning the color-label that corresponds to C0 (since C0 = {1, . . . , n})
and for some i0 and on it will be returning color-labels that do not correspond
to Ci0 , Ci0+1, . . . , Ch (i.e. Ci0+v ∩ T = ∅ for v = 0, . . . , h − i0). Now it is
easy to see that if j is not a traitor the behavior of the pirate-decoder when
given ciphertexts that induce the coloring {Cj−1

1 , Cj−1
2 , . . . , Cj−1

j−1 , C
j−1} and

ciphertexts that induce the coloring {Cj
1 , C

j
2 , . . . , C

j
j , C

j} is identical. As a result
if i1 is the smallest color index so that when given si1 the pirate decoder stops
returning the color-label that corresponds to Ci1 it follows that Ci1

i1
contains at

least one traitor with very high probability. ��

Tracing Decoders of Type-2 with Sublinear Ciphertext Size. Using
proposition 2 it is easy to construct traitor tracing schemes of type-2 black-
box list-traceability with sublinear ciphertext size that produce not very large
lists of suspects. It is interesting to note here that proposition 2 suggests a trade-
off between ciphertext size and uncertainty: the smaller the ciphertext size the
bigger the uncertainty becomes. A possible choice for h(n),m(n) is h(n) := n1−c,
for some constant 0 < c < 1, and m(n) := (1 − c)−1; then by proposition 2 we
obtain a 〈n, nc, (1− c)−1n1−c〉-BBTTS of type-2 list-traceability. Depending on
the application a suitable c can be chosen. The value of c that yields the smallest
value for uncertainty and ciphertext size at the same time is c = 1/2 that results
in a 〈n,√n, 2

√
n〉-BBTTS.

On Crafty Pirates and Foxy Tracers 37

6 Tracing Abrupt/History-Recording Pirate Decoders
in Multimedia Multicast

One of the basic assumptions in the TTSs studied in this work so far is that
all users decrypt in the same way in normal operation. In this section we show
that if we give up this condition it is possible to design BBTTSs successful
against abrupt history-recording pirate decoders in the context of multimedia
transmission.

Consider the following modification of the underlying MES: in the normal
operation of the multicast scheme the material is distributed in slightly varied
copies to the subscribers constantly. Watermarking techniques as those of [12,6]
aid the tracing process. Because of the fact that not all users are going to decrypt
in the same way, the MES cannot be used anymore for distribution of keys or
similar data. It can only be used for distributing digital content that is presented
by some device Dev (like a TV-set or a monitor screen) — and can be allowed
to be different from user to user (users are not affected by a slight modification
of a pixel in a figure or slight changes in spaces between words in text display).
The presentation of the content M through such a device will be denoted by
Dev(M). Formally, we restrict to devices and multimedia plaintext spaces for
which the following watermarking assumption is true:

Watermarking Assumption 1 There is a probabilistic algorithm W s.t. for
some h, given any M ∈ M it produces h “versions” of M , M1,M2, . . . ,Mh,
such that the following are true: (i) the Dev(Mi) are “adequate” presentations
of M (ii) there is an algorithm W ′ that for any algorithm A that generates
an M ′ given Mj1 , . . . ,Mjk

, W ′ given M ′ traces back to one of the Mj�
, provided

that Dev(M ′) is an adequate presentation of M , and that k is below a certain
threshold t.

We note that this assumption has also been used in [9], and can be achieved
in most audio or video streams. The normal operation of the new scheme, which
combines watermarking with the MES of [8], is described in figure 3 (where h,m
are as in section 5).

Repeat the following steps forever:
For i = 1, . . . , m
Get next M , and using W obtain M1, M2, . . . , Mh.
The encryption of M is: C := {〈EKj,1(sj,1), . . . , EKj,h(sj,h)〉}m

j=1

where for j = 1, . . . , m, j �= i, l = 1, . . . , h sj,l = rj ,
and for l = 1, . . . , h si,l = Ml −

∑
j �=i

rj .

Decryption is done by retrieving some sj,lj for j = 1, . . . , m
and summing them up so that one version of M is recovered.

Fig. 3. Operation of the Type-3 Traceability Scheme

38 Aggelos Kiayias and Moti Yung

Tracing Type-3 Decoders. The tracer sets i to 1 (see figure 3), and records
the outputsM (1), . . . ,M (m) of the pirate box; usingW ′ it obtains one of the orig-
inal watermarked versions for each M (i). If the original version that corresponds
to M (i) is M (i)

l then the tracer deduces that the keyKi,l was used for the decryp-
tion of the ciphertext. As a result the tracer collects a set of keysK1,l1 , . . . ,Km,lm

that are used by the pirate decoder. If h = 2t2, m > 4t2 logn (see [8]) and the
keys Kj,l were assigned to users as in [8] then the tracer can safely accuse the
user that holds most of the recovered keys as a traitor, provided that at most t
traitors colluded (cf. [8]).

Theorem 2. Given h,m ∈ F s.t. n ≤ h(n)m(n), h(n) = 2t2(n) and m(n) >
2h(n) logn, and provided that the watermarking assumption holds for h(n) with
threshold t(n), the MES described above is a 〈t(n), (1 − σ(n))−1,m(n)h(n)e〉-
BBTTS of type-3 traceability, where e denotes the expansion factor induced by
the watermarking assumption, and σ(n) is negligible.

Proof. First observe that the reaction capabilities of the decoder do not apply in
this setting since the tracing mode and normal operation coincide. Suppose now
that the tracing algorithm does not return a traitor with overwhelming probabil-
ity. Since the setting of parameters and the assignment of keys are as in [8] this
means that the set of keys collected from each row does not intersect maximally
with one of the traitors’ sets of keys but with some other innocent user. Pro-
vided that the watermarking tracing algorithm fails with negligible probability
it follows that the reply of the pirate-decoder for some rows was generated using
versions of the plaintext that do not correspond to the traitors’ keys. But with
overwhelming probability and independently of the history-recording capability
of the decoder these versions are not accessible by the pirate-decoder. This is
because every key in a row encrypts a different watermarked version of the trans-
mitted plaintext and all keys are distinct. ��

Note that the type-0 black-box tracing method of [8] cannot be used here be-
cause of the history-recording features of type-1,3 decoders: a history-recording
decoder can easily defeat the black-box tracing method of [8] by a standard
delaying technique (such as the one described in section 4). In the BBTTS we
present above, we substitute the step-by-step “walking” black-box tracing tech-
nique of [8] by using the watermarking assumption and generating h different
versions of the message which are transmitted in parallel. Reaction capabilities
of type-3 decoders are rendered useless since the tracing operation is identical
to normal operation.

Remark. Our approach of tracing type-3 decoders that combines tracing and
normal operation bears similarities to (and may also be used in) the dynamic
traitor tracing setting.

On Crafty Pirates and Foxy Tracers 39

References

1. Ross Anderson and Markus Kuhn, Low Cost Attacks on Tamper Resistant Devices,
Security Protocols, Springer LNCS 1361, 1997. 23

2. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan and Ke Yang, On the (Im)Possibility of Obfuscating Programs,
CRYPTO 2001. 23

3. Omer Berkman, Michael Parnas, and Jiri Sgall Efficient Dynamic Traitor Tracing,
11th SODA, 2000. 24

4. Dan Boneh and Matthew Franklin, An Efficient Public Key Traitor Tracing
Scheme, CRYPTO 1999. 23, 27

5. Dan Boneh and Matthew Franklin, An Efficient Public Key Traitor Tracing
Scheme, manuscript, 2001. 27, 28, 35

6. Dan Boneh and James Shaw, Collusion-Secure Fingerprinting for Digital Data,
CRYPTO 1995. 37

7. Benny Chor, Amos Fiat, and Moni Naor, Tracing Traitors, CRYPTO 1994. 23,
27, 28, 39

8. Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas, Tracing Traitors, IEEE
Transactions on Information Theory, Vol. 46, no. 3, pp. 893-910, 2000. (originally
appeared as [7,15]). 23, 27, 28, 35, 36, 37, 38

9. Amos Fiat and T. Tassa, Dynamic Traitor Tracing, CRYPTO 1999. 24, 28, 37
10. Eli Gafni, Jessica Staddon and Yiqun Lisa Yin, Efficient Methods for Integrating

Traceability and Broadcast Encryption, CRYPTO 1999. 24
11. Aggelos Kiayias and Moti Yung, Self Protecting Pirates and Black-Box Traitor

Tracing, to appear in the Proceedings of CRYPTO 2001. 23, 27, 28, 29, 30, 31
12. J. Kilian, F. T. Leighton, L. R. Matheson, T. G. Shamoon, R. E. Tarjan, and F.

Zane Resistance of Digital Watermarks to Collusive Attacks, Proceedings of the
1998 IEEE International Symposium on Information Theory pp.271, 1998. 28, 37

13. K. Kurosawa and Y. Desmedt, Optimum Traitor Tracing and Asymmetric
Schemes, Eurocrypt 1998. 23, 27

14. Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech Revocation and Tracing Schemes
for Stateless Receivers, CRYPTO 2001. 24

15. Moni Naor and Benny Pinkas, Threshold Traitor Tracing, CRYPTO 1998. 23, 39
16. Moni Naor and Benny Pinkas, Efficient Trace and Revoke Schemes , In the Pro-

ceedings of Financial Crypto ’2000, Anguilla, February 2000. 23
17. Birgit Pfitzmann, Trials of Traced Traitors, Information Hiding Workshop, Spring

LNCS 1174, pp. 49-63, 1996. 24, 27
18. Birgit Pfitzmann and Matthias Schunter, Asymmetric Fingerprinting, Eurocrypt

1996. 24
19. Brigitt Pfitzmann and M. Waidner, Asymmetric fingerprinting for larger collusions,

in proc. ACM Conference on Computer and Communication Security, pp. 151–160,
1997. 24

20. Reihaneh Safavi-Naini and Yejing Wang, Sequential Traitor Tracing, CRYPTO
2000. 24

21. Douglas R. Stinson and R. Wei, Combinatorial Properties and Constructions of
Traceability Schemes and Frameproof Codes, SIAM J. on Discrete Math, Vol. 11,
no. 1, 1998. 23

Efficient State Updates for Key Management

Benny Pinkas

STAR Lab, Intertrust Technologies
Princeton, NJ, USA

bpinkas@intertrust.com

Abstract. Encryption is widely used to enforce usage rules for digital
content. In many scenarios content is encrypted using a group key which
is known to a group of users that are allowed to use the content. When
users leave or join the group the group key must be changed. The LKH
(Logical Key Hierarchy) algorithm is a very common method of managing
these key changes. In this algorithm every user keeps a personal key
composed of log n keys (for a group of n users). A key update message
consists of O(log n) keys.
A major drawback of the LKH algorithm is that users must update
their state whenever users join or leave the group. When such an event
happens a key update message is sent to all users. A user who is offline
during t key updates, and which needs to learn the keys sent in these
updates as well as update its personal key, should receive and process
the t key update messages, of total length O(t log n) keys. In this paper
we show how to reduce this overhead to a message of O(log t) keys. We
also note that one of the methods that are used in this work to reduce
the size of the update message can be used is other scenarios as well.
It enables to generate n pseudo-random keys of length k bits each, such
that any successive set of t keys can be represented by a string log(t) · k
bits, without disclosing any information about the other keys.

1 Introduction and Motivation

Digital Rights Management (DRM) systems provide content which is accompa-
nied by rules or controls that define the ways in which the content can be used.
The rules are enforced by a governance mechanism that ensures that only le-
gitimate operations can be applied to the content. The most simple governance
mechanism is encryption: The content is encrypted and the decryption key is
only given to users which are allowed to use the content1.

To model this setting we consider the following simplified scenario. A group U
of n parties is receiving encrypted content from servers (or alternatively the par-
ties are exchanging encrypted communication between themselves). All parties
1 If the usage rules are of the type “User A can get the content and do anything he

wants with it” then encryption can be the only governance mechanism that is used.
If the rules are more complex. e.g. “User B can use the content at most three times”
then more complex mechanisms should be used (e.g. based on tamper resistance),
but typically encryption is used as a first line of defense.

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 40–56, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Efficient State Updates for Key Management 41

share a group key which is managed by a group controller (GC). We assume that
the GC can communicate with each of the other parties using secure one-to-one
channels, which are realized using standard encryption and authentication tech-
niques. In order to do so the GC typically shares a different key with each of the
users.

The content servers deliver the content encrypted with the group key, to
ensure that only group members can use it. The system therefore enforces the
rule “Group members are allowed to use content sent by content servers”, since
knowledge of the group key enables to decrypt the content. This system can
model a content subscription group, namely where members of the group U are
subscribers which are allowed to use the content.

In order to enforce the usage rules the group key must be changed when users
join or leave the group. This is essential in order to

– Prevent leaving members from decrypting content that will be sent to the
group in the future.

– Prevent joining members from decrypting content that was previously sent
to the group (namely, provide backward secrecy).

Joins are usually trivial to handle. When a user u′ wants to join U the GC
should pick a new group key, send a message to the group containing the new
key encrypted with the old group key, and also inform u′ of the value of the new
key. (There are many ways in which these messages can be sent, but they are
mostly irrelevant for the discussion of this paper.) All further content sent to
the group should be encrypted with the new key, until other members join or
leave the group. This procedure supports backward secrecy and prevents u′ from
decrypting old content that was sent to the group. (We note that in the LKH
key management scheme, which is the focus of this paper, the join operation is
more complicated. We discuss this issue below.)

The main design challenge is to efficiently handle events in which users leave
the group, or are forced by the GC to leave the group (say, because they violated
usage rules). When a user u leaves the group a new group key should be generated
by the GC and become known to every user remaining in the group. The keys
known to u should be revoked in a way which prevents u from learning any
information about messages encrypted with the new group key.

There is a trivial method for rekeying the group in the case of a leave: The
GC chooses a new group key k, and sends it independently and privately to each
of the users, except for the leaving member. For example, the GC can share a
different key with each user, and encrypt k using this key. The problem with
this approach is that the GC has to send a total of n−1 encryptions (the length
of each is of the same order as the length of the new key). The total length of
the messages it has to send is therefore O(n) keys (or O(n|k|) bits) and might
be too high if the number of group members n is large (say, a few millions).

42 Benny Pinkas

1.1 The LKH Scheme

A very appealing user revocation method was suggested in [13,14]. In this
method, commonly denoted as LKH (Logical Key Hierarchy), the GC associates
a binary tree with the group, and associates each user with a different leaf of this
tree. Therefore for a group of n users the tree is of depth d = log(n). The tree
is used for key management and is not used as part of the mechanism in which
messages are sent to users (in particular, it has no relation with distribution
trees used in multicast communication).

The GC associates a random key with each node of the tree, and therefore
knows the keys of all the nodes in the tree. The GC also provides each user with
all the keys in the path from the user’s leaf to the root. Since all these paths
converge at the root of the tree, every user knows the root key and therefore this
key can serve as the group key. In the example depicted in Figure 1, user U0 is
associated with the leftmost leaf and knows keys K,K0,K00 and K000. The root
key K is the group key.

When a user is removed from the group the GC must change all the keys in
the path from this user’s leaf to the root. All the users that remain in the group
must update their keys, namely change the keys in the intersection between the
path from their leaf to the root and the path from the removed user’s leaf and
the root. In particular, this means that every remaining user learns the new root
key. The new root key is then used as the new group key. The update of the users’
keys can be done by the GC sending a single message that contains an encryption
of 2 log(n)− 1 keys. (The details of this message appear in Appendix A and are
not important for understanding the rest of this manuscript.) Improved schemes

K000

K00

K0

K01

K010K001 K011 K100

K10

K101 K110 K111

K11

K1

U0 U1 U2 U3 U4 U5 U6 U7

Group Key
K

Fig. 1. The LKH key data structure (the keys of U0 are encircled)

Efficient State Updates for Key Management 43

in [3,10] reduce this overhead to a single message with log(n) encryptions of
keys, i.e. with total length of log(n)|k| bits.

If backward secrecy is required then a join operation is similar to a remove
operation in the sense that the keys that the joining user receives must be dif-
ferent than the keys previously used in the system. This is required in order
to prevent the joining user from learning previous messages that were sent to
group encrypted with the group key (it is not sufficient to change only the root
key because other keys in the path might have been used in previous revoca-
tion messages to encrypt the root key itself or information that reveals it). The
joining user is assigned a leaf, and all the keys in the path from this leaf to the
root must be updated, using the same method and the same overhead as in user
deletion.

1.2 The State Update Problem

The LKH method is quite efficient: each user has to keep a personal key with
logn keys, i.e. of length log(n)|k| bits, and the length of a key update message
is also log(n)|k| bits. The main drawback of the basic LKH method and its
variants is the requirement that group users update their state whenever users
join or leave the group. Suppose that t users join or leave the group and that
a user was offline when these updates took place. This user must now update
the keys in the path from its leaf to the root, in order to be able to process
future update messages. If the user also desires to decrypt content that was sent
during the period it was offline, it must also learn the t group keys that were
in effect during that period. The straightforward way for the user to learn this
information is for it to receive and process all t key update messages. The total
length of these messages is t log(n)|k| bits. Typical values for these parameters
are, say, n = 1, 000, 000, t = 1000, and |k| = 128. In this case the total overhead
is about 2, 500, 000 bits. The computation overhead is almost always negligible,
since it only involves efficient “private key” cryptographic operations.

The LKH method was suggested in the context of secure multicast, that
builds secure communication on top on the Internet’s multicast layer. In that
context the state update problem must be addressed since multicast commu-
nication is lossy and therefore the key update messages might not be received
by all users. Note though that in many scenarios the security is applied to live
broadcasting and then users who were offline are not interested in obtaining
group keys that were in effect during their offline period. This means that an
update message to a user can contain only the current keys in the path from its
leaf to the root.

The state update problem might be even more relevant in a digital rights
management setting. There might not be continuous communication between
the GC and the users, which can be offline most of the time. Content can be
delivered to users in separation from the rules and the cryptographic keys that
enable the use of the content. The content itself can be delivered in different
channels such as a webcast, web servers, a peer-to-peer network, or in static
devices such as CDs, DVDs, or other similar types of media. The rules are

44 Benny Pinkas

typically delivered to users when they connect directly with servers, such as the
GC.

In this setting it is natural that users do not have continuous communication
with the GC, but rather contact it from time to time. Users might acquire
content while being disconnected from the GC (e.g. by users “beaming” music
from one device to the other), and when they connect with the GC they should
obtain keys that enable access to that content2. Since key updates might occur
frequently, it is reasonable to assume that during the period in which a user is
offline there are several updates to the group key. Once the user is online again
it should get the group keys that were used since the last time it was connected.

A recent approach taken by Naor, Naor and Lotspiech [9] is to design a
system in which users can be completely stateless. That is to say that users
do not have to change their personal data when revocations or joins take place.
Instead of requiring users to change their state, the GC attaches to each message
a header which depends on the list of active users, and enables only these users to
decrypt the message (the header information is similar to the list of key update
messages that must be available to all users at all times if the LKH scheme is
used). They suggest two new key update algorithms, which require each user to
store a personal key of logn and 1

2 log
2 n keys, respectively. After t key updates

the length of the header information is t logn and t keys, respectively. The second
scheme is very efficient in terms of the length of the header information, which
does not even depend on n, at the cost of increasing the length of the personal
key. (Note however that the overhead analysis of this scheme requires n to be
an upper bound on the number of users throughout the lifetime of the system.)

Our approach: We take a different approach, of using the original LKH scheme
(and its immediate variants, such as [3]), and reducing the overhead of users who
were offline and need to update their state. Namely, the overhead of learning the
group keys that were sent in key update messages which were not received, and
also updating the personal keys.

This task can be accomplished by a “universal” solution that applies to all
users. For example by making all the key update messages of the LKH scheme
available on a web site or constantly retransmitted, or by using one of the state-
less methods of [9] and attaching a header to every message (or posting the
header on a web site).

We are able to make the update information much shorter by using a different
update message per user, depending on the period during which the user was
offline and the content which it is allowed to receive. In particular, the personal
key of every user contains only logn keys as in the LKH scheme, and the update
message is of length O(log t) keys.

2 “Beamed” content might have a rule that enables it to be used a few times for free,
but require that a user should get a key from the GC in order to use the content
more times.

Efficient State Updates for Key Management 45

1.3 Contributions

We address the problem of making state updates as efficient as possible, mostly
from the perspective of the communication between the GC and the user. Con-
sider a group U in which there are n users, that uses the LKH scheme for key
management. Consider now a user u who was offline during a period in which t
users were removed from the group. The length of a key is |k|. The trivial state
update message contains all the key update messages that were sent during the t
key updates, and its length is t log(n) keys or t log(n)|k| bits. A naive analysis
of the run time reveals also that given this message the user should perform
O(t log(n)) decryptions in order to update its state.

The first trivial improvement is to note that after being offline there is no
need for the user to learn the actual key update messages. The information that
it should learn consists of the group keys that were used while it was offline,
which are needed in order to decrypt messages that were sent when these keys
were in effect, and the current keys of the nodes in the path from the user’s leaf
to the root, which are required in order to process future key update messages.
The total is t group keys, and log(n) node keys, which can be sent in a message
of length t+ log(n) keys (this message is directed to a specific user, rather than
being a universal message that can be used by all users).

In the rest of the paper we present additional improvements:

– Group keys can be generated in a method that enables a concise represen-
tation of a sequence of consecutive keys. This enables a list of t consecutive
keys to be sent using a shorter message. Namely,
• t consecutive keys can be sent using a message of length O(1) keys (2|k|
bits). This method is not secure against collusions between users.

• t consecutive keys can be sent using a message of length O(log t) keys
(2 log t|k| bits). This method is secure against collusions between any
number of users.

– We observe that not all the keys in the path from the user’s leaf to the root
are changed by the update messages, but rather only keys that intersect
with the paths from the leaves of deleted or joining users. A probabilistic
analysis shows that in most cases only O(log t) of the logn keys in the path
should be updated. The expected number of keys that have to be changed
is log(t) + log log(n/t).

To sum up, the communication overhead of updating the state of a user which
was offline during t key updates is reduced for most users from O(t log(n)|k|) bits
to O(log t|k|) bits. If we do not care about security against collusions of users
then this overhead is composed of O(log t|k|) bits for updating the path, and
O(|k|) for sending old group keys. If security against user collusions is required,
the overhead is O(log t|k|) bits for each of these tasks.

1.4 Related Work

User revocation schemes can be traced back to the broadcast encryption scheme
of Fiat and Naor [4]. This system enables the removal of any number of users as

46 Benny Pinkas

long as a limited number of them collude (the number of colluding users must
be smaller than a system parameter which affects the overhead).

The Logical Key Hierarchy scheme (LKH), which was suggested indepen-
dently by Wallner et. al [13] and Wong and Lam [14], enables to revoke any
number of users with security against any number of colluding users. The mo-
tivation for this scheme was providing security for multicast groups. Since the
scheme requires users to change their keys (state) whenever other users leave or
join the group, the users must be connected most of the time. The communica-
tion overhead of the LKH scheme was improved in [3,10] by a factor of 2 (see
discussion in Appendix A).

In the information theoretic scenario, Luby and Staddon [8] provide lower
bounds for any revocation algorithm. Kumar et. al [6] design a one-time revo-
cation system for removing s users in which the message length is O(s log n)
and the length of the personal key is O(s2) and does not depend on n. Since
this system is good for a single revocation the question of updating the user’s
state does not exist. Other, more efficient systems for one-time revocation, based
on polynomial interpolation, were by suggested Anzai et. al [1] and Naor and
Pinkas [11]. In these schemes the length of the revocation message is s keys and
the personal key contains only a single key. The scheme of [11] can be generalized
for many revocations, and provides traitor tracing capabilities.

The MARKS system [2] is a key assignment method that addresses multicast
scenarios in which premature removal of users is rare and it is known in advance
what content each user is allowed to obtain. It is assumed that in these scenar-
ios there is no need for revocation messages. It is further assumed that users
subscribe in advance for a sequence of consecutive “content” events, e.g. for a
pay-TV movie (which is composed of consecutive minutes). Fine granularity is
achieved by dividing time into short “application data units”, ADUs, (e.g. an
ADU being a minute of a video) and providing a different key for every ADU.
A user should receive the keys of the ADUs which it is entitled to use. The key
assignment to ADUs is done using the same method we suggest in Section 2.2
(however, no proof of security or rigorous complexity analysis is given in [2]).

2 A Concise Representation of Keys

Let us denote the group key that is used between the ith and (i + 1)th key
updates as ki. A user which did not receive the t key update messages numbered
i, i+ 1, . . . , j, where j − i = t− 1, must learn keys ki, . . . , kj in order to decrypt
content that was sent during these periods. This can be trivially achieved using
a message containing these t keys. We show below two methods of reducing this
overhead to two keys and O(log t) keys, respectively.

The methods described in this section can be used in more general scenarios.
They enable to generate n pseudo-random keys in a way that enables short
representations of any subset of successive keys, while preserving the pseudo-
randomness of the other keys.

Efficient State Updates for Key Management 47

2.1 A Method with no Security Against Collusions

LetN be a predefined constant (say,N = 10, 000), and let F be a pseudo-random
generator with input length of |k| bits and output length of 2|k| bits. The system
uses a seed of length 2|k| bits that can be used to send update messages for N
key updates. Afterwards new seeds should be generated.

The system operates in the following way. The GC chooses in advance two
seeds, L1 and RN , each of length k. Denote by F0(x) and F1(x) the left and
right halves of the output of F . The GC defines the following values

Li = F0(Li−1) i = 2, . . . , N (1)
Ri = F0(Ri+1) i = N − 1, . . . , 1 (2)
ki = F1(Li)⊕ F1(Ri) i = 1, . . . , N (3)

The key ki is used as the group key after the ith key update3. Note that given Li

and Rj , with i < j, one can compute all the keys ki, . . . , kj . The update mes-
sage to a user that did not receive key update messages i through j consists
therefore of Li and Rj alone, is of length 2|k| bits, and enables the user to
compute ki, . . . , kj .

The following theorem shows that a user that receives the pair of keys
〈Li, Rj〉 (and no other L or R values) cannot use them to learn keys k� for
which � �∈[i, j].
Theorem 1. Given only Li and Rj, with i < j, the sequence of keys k�, � �∈[i, j]
is pseudo-random.

Proof: (Sketch) The proof uses a standard hybrid argument. Suppose that it is
possible to distinguish between the keys {k� | � �∈[i, j]} and a random sequence.
Namely there is a non-negligible difference (denoted by δ) between the proba-
bility that the user outputs 1 in each of these cases. We can then construct a
distinguisher between the output of F and random values. Our distinguisher is
given a pair (x0, x1) which is either F (y) for a randomly chosen y, or a random
2|k| bit string.

Suppose first that j = N . We construct N − t hybrids. Hybrid H� (for
1 ≤ � ≤ i) is defined in the following way:

– Set k1, . . . , k�−1 to random values.
– Set L� to a random value.
– Set RN to a random value, and define all other keys using L� and RN .

The distribution of keys (k1, . . . , ki−1) in H1 is identical to that generated by
the construction, whereas the distribution of these keys in Hi is random. The
difference therefore between the probability that the user outputs 1 given H1

and given Hi is δ. This means that there is an 1 ≤ � < i for which the difference
3 In the improvement of LKH described in [3,10] the root key is defined by a different

method and cannot be set to an arbitrary value. Therefore, the root key should be
used to encrypt ki, which should be used as the group key.

48 Benny Pinkas

between the probabilities associated with H� and H�+1 is at least δ/(N − t)
and is non-negligible. Our distinguisher algorithm for F picks a random location
1 ≤ �′ < i, and performs the following operations:

– Sets k1, . . . , k�′−1 to random values.
– Sets L�′+1 to x0, and defines Ls for s > �′ + 1.
– Sets RN to a random value, and defines Rs for �′ ≤ s < N .
– Sets k�′ to x1 ⊕R�′ .
– For �′ + 1 ≤ s ≤ N defines ks = Ls ⊕Rs.

With probability at least 1/(N − t), �′ = � for which the difference in probabili-
ties is δ/(N − t). Therefore our distinguisher succeeds with probability at least
δ/(N − t)2.

Assume now that j < N and i > 1. The argument used above can be used
with hybrids ranging over all the locations � �∈[i, j] and yield the same result.

✷

The method suggested here is not immune to collusions between two corrupt
users receiving update messages. For example consider user A which paid for
content during times [1, 100] and user B which paid for content during times
[201, 300]. Suppose now that user A was offline during times [50, 70], and user
B was offline during times [250, 270]. User A contacts the GC and receives L50

and R70, and user B contacts the GC and receives L250 and R270. Now the
two users can use L50 and R270 together to compute the keys k50, . . . , k270.
In particular, they can compute the keys k101, . . . , k200 which neither of them is
entitled to receive. The same attack can also be run by a single user that receives
two update messages (e.g. consider the above example with A and B being the
same user who did not pay for receiving the content during times [101, 200]). For
this reason the scheme must not send two or more updates to a single user, if
between two periods in which the user was offline there is a period in which it
is not entitled to obtain the group keys.

The communication overhead of the method consists of an update message
that contains two keys, namely of length 2|k| bits, as long as the sequence of keys
that the user should learn is within a single “block” of keys (i.e. generated from
the same seeds). If the sequence of keys contains keys from c blocks, then the
communication overhead is 2c|k| bits. (However, if n is sufficiently long then c
is typically very small, i.e. c = 1 or 2.)

2.2 A Method Secure Against Collusions

The following key generation method supports short update messages which are
secure against collusions of any set of corrupt users.

Let N be a predefined constant which is a power of 2 (say, N = 220). The
method enables to generate N group keys (of length |k| bits each) while enabling
to compute any t consecutive keys from at most O(log t) values of length |k|
each. If the GC generates the group using this method then a user which does
not receive t key update messages can receive a message of length O(log t) keys

Efficient State Updates for Key Management 49

from the GC and use it to reconstruct the t group keys that were sent in the key
update messages.

The keys are generated in the following way (similar to the Goldreich-Gold-
wasser-Micali [5] or the Naor-Reingold [12] constructions of pseudo-random func-
tions).

– Let F be a pseudo-random generator with input of length |k| bits and output
of length 2|k|, and denote by F0(x), F1(x) the left and right halves of the
output of F for the input x.

– Imagine a full binary tree of depth log(N) which has N leaves.
– The GC chooses a random key of length |k| for the root node, and defines
a key for every other node of the tree in the following way, going from the
root down: Let v be a node, and let v0, v1 be its two sons. Denote by kv the
key of node v. Then kv0 = F0(kv) and kv1 = F1(kv).

– The key of the ith leaf is used as the group key after the ith key update.

The construction ensures that a key of a node v enables to compute the keys
of all the leaves of the subtree rooted in v, using the same key computation
method that was used in the initial generation of the tree. (Generating the keys
in the leaves of the subtree requires keeping at most logn internal key values
in memory, and doing an amortized computation of O(1) applications of F per
key.)

Security: Theorem 2 shows that knowledge of any number of leaf keys, and of
the keys of any internal nodes that are the roots of these leaves (and of no other
leaves) reveals no information about the keys of other leaves.

Theorem 2. Given any set S of leaves, and the values of the keys of a set of
nodes R (either internal nodes or leaves) such that S is exactly the union of the
leaves of the subtrees rooted by nodes in R, the values of the other nodes of the
tree are pseudo-random.

Proof: (Sketch) The proof is based on the proof of the pseudo-randomness
of the GGM construction in [7]. It assumes that there is a distinguisher that
distinguishes between the values of the leaves of the tree and random values,
and constructs an adversary that distinguishes between the output of the pseudo-
random generator and random values, based on queries that it makes to values of
the leaves of the tree. The adversary first constructs a full binary tree, chooses
a random value to its root and sets the values of the nodes according to the
procedure described above. The values of the nodes in R and their descendants
are then fixed and will not be changed. The values of the other nodes are defined
during the interaction with the distinguisher, based on a hybrid construction,
as in the proof in [7]. Define the number of leaves of the subtrees rooted by R
as t. These subtrees have between t and 2t−1 nodes. The total number of nodes
is 2N − 1 and therefore there are at most 2N − t − 1 hybrids, where in the
first one (which is the tree defined by the construction) the probability that the
distinguisher outputs 1 is equal to this probability in the case the tree is built

50 Benny Pinkas

according to the construction, and in the last one (in which all the nodes except
the descendants of R have random values) the probability is the same as if the
tree (except the descendants of R) is random. Therefore if the difference between
these two probabilities is δ, there is a hybrid which distinguishes between the
output of the generator and a random value with probability at least δ/(2N− t).

✷

The key update method: Consider a user which did not receive the messages
of t successive key updates and needs to learn the keys of the t successive leaves
which were associated with the group keys sent in these key updates. Denote this
set of leaves as S. In order to enable the user to learn these keys it is sufficient
to provide it with the keys of a minimal set R of nodes, such that S is exactly
the union of the leaves of the subtrees rooted by the nodes in R. The GC should
therefore send to the user the keys of the nodes in R, and the user can use these
keys to compute the group keys.

Theorem 3 proves, using an inductive argument, that for every sequence S
of t successive leaves there is such a set R of at most O(log t) nodes. The length
of the message sent to the user is therefore O(log(t)|k|) bits.

In order to analyze the size of R we first prove the following lemma.

Lemma 1. Let T be a complete binary tree with N = 2n leaves. Then given any
set S of consecutive leaves, there is a set R of at most 2n− 2 nodes such that S
is exactly the union of the leaves of the subtrees rooted by the nodes in R.

Proof: The proof is by induction. Let Ti be a complete binary tree with 2i

leaves. Define the following two values for Ti:

– Ri is the maximum, taken over all sets S of consecutive leaves, of the size of
the minimal set of nodes R such that S is exactly the union of the leaves of
the subtrees rooted by the nodes in R.

– Ei is defined in a similar way, but taking the maximum over all sets S
that contain either the leftmost or the rightmost leaf of Ti. Namely, Ei is
the maximum, taken over all sets S of consecutive leaves that contain the
leftmost or the rightmost leaf of Ti, of the size of the set of nodes R such
that S is exactly the union of the leaves of the subtrees rooted by the nodes
in R.

It holds that

Ri = max(Ri−1, 2Ei−1) (4)
Ei = max(Ei−1, Ei−1 + 1) = Ei−1 + 1 (5)

Equation 4 holds since there are only two options for the sequence S that maxi-
mizes Ri: If it is contained in one half of the tree (e.g. in the left half rooted by
the left son of the root of Ti) it is actually a sequence of leaves in a tree of depth
i − 1 and the number of nodes in R is bounded by Ri−1. If S is contained in
both halves of the tree, it is a union of two sequences in two trees of depth i− 1,

Efficient State Updates for Key Management 51

where each of these sequences contains either the leftmost or the rightmost leaf
of its subtree. The size of R is then bounded by 2Ei−1.

Equation 5 holds since the sequence S that maximizes Ei is either contained
in one half the tree (in which case the size of R is bounded by Ei−1), or contains
one half of the tree and in addition a sequence of leaves from the other half. In
this case R contains the root of the first half, and at most Ei−1 additional nodes.

For a tree of depth 1 (namely with two leaves), R1 = E1 = 1. It therefore
holds that

Ri = 2Ei−1 = 2i− 2 (6)
Ei = i (7)

This proves the lemma. (Note that if instead of using a binary tree the tree has
more descendants per node, the overhead increases.) ✷

The lemma provides the same bound for any sequence S regardless of the
number of leaves it contains. The following theorem provides a bound which
depends on |S|.
Theorem 3. Given any set S of t consecutive leaves in a complete binary tree,
there is a set R of at most 2�log(t)
 + 1 nodes such that S is exactly the union
of the leaves of the subtrees rooted by the nodes in R.

Proof: Let N = 2n be the number of leaves in the tree. Let r = �log(t)
, namely
the largest power of 2 which is not greater than t. We consider the tree as a
collection of N/2r subtrees of depth r, with 2r leaves in each subtree.

Since it holds that t/2 < 2r ≤ t the sequence of leaves in S can span at most
three consecutive such subtrees. The leaves of the inner subtree are completely
contained in S, whereas some or all of the leaves of the outer subtrees are con-
tained in S. Applying lemma 1, the number of nodes that cover the leaves in S
is at most Er + 1 + Er = 2r + 1 = 2�log(t)
+ 1. ✷

3 Updating Keys on the Path from a Leaf to the Root

The fact that a user is offline during t key updates does not necessarily mean
that all the keys in the path from the user’s leaf to the root were changed by
the key updates. In fact, if the locations of the users that are leaving or joining
are random, then for each key update there is a 1/2 chance that only the root
key is affected, a 1/4 chance that two keys on the path to the root are affected,
and in general a 1/2i chance that i keys on that path are changed.

The update message from the GC to the user should contain only the keys
that need to be updated, rather than all the log n keys in the path from the
user’s leaf to the root. In this section we prove the following theorem:

Theorem 4. For any user, after t key updates of random leaf keys using the
LKH protocol,

– It holds with high probability that log t+O(1) keys need to be updated, and

52 Benny Pinkas

– The expected number of keys that have to be updated is log(t)+log log(n/t)+
O(1).

Proof: Fix a certain leaf (the leaf of the user who was offline), and assume
that the key updates are applied to randomly chosen users. The probability
that the intersection between the path from the user to the root, and the path
from a updated key to the root, contains exactly i nodes is 2−i. This is also the
probability that the length of the intersection is strictly greater than i.

Considering t key updates, the probability that the intersection with all the
paths from the leaves of the updated keys are of length at most �, is (1− 2−�)t.
Setting � = log t + c, yields that the probability of an intersection of length at
most � is (1 − 2−�)t = (1− 1

t2c)t ≈ e−2−c ≈ 1− 2−c. In particular, � = log t+ 2
yields a probability of (1 − 1

4t)
t = 0.78. Similarly setting � = log t + 3 and

� = log t+ 4 yield probabilities of 0.88 and 0.94, respectively. The length of the
intersection is therefore greater than log t + 4 nodes with probability at most
6%.

As for the calculation of the expected length of the intersection, let us again
set � = log t+ c, where c is a parameter whose value we will define below. The
probability that all the t intersections are of length � or less is (1 − 2−�)t =
(1 − 1

t2c)t = e−2−c

. The expected length of the intersection with all paths is
therefore bounded by

(log t+ c) · e−2−c

+ logn · (1− e−2−c

).

Assuming that 2c is large, we can use the following approximation

≈ (log t+ c) · (1− 2−c) + logn · 2−c

= log t+ c+ 2−c log(n/t)− 2−cc

Setting c = log log(n/t) cancels out the third element and reveals that the ex-
pectation is log t+ log log(n/t) +O(1). This is therefore the expected length of
the update message. ✷

Using the Revocation Protocol of Canetti et. al [3]: Further improvement can be
achieved if one employs the revocation method of [3], described in Appendix A.
See details in A.2.

References

1. J. Anzai, N. Matsuzaki and T. Matsumoto, A Quick Group Key Distribution
Scheme with Entity Revocation. Adv. in Cryptology – Asiacrypt’99, Springer-
Verlag LNCS 1716 1999, pp. 333–347. 46

2. B. Briscoe, MARKS: Zero side effect multicast key management using arbitrarily
revealed key sequences, Proc. First International Workshop on Networked Group
Communication (NGC’99), 1999. 46

3. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast
Security: A Taxonomy and Some Efficient Constructions, In Proc. INFOCOM ’99,
Vol. 2, pp. 708-716, New York, NY, March 1999. 43, 44, 46, 47, 52, 54, 55

Efficient State Updates for Key Management 53

4. A. Fiat and M. Naor, Broadcast Encryption, Advances in Cryptology – CRYPTO
’93, Springer-Verlag LNCS vol. 773, 1994, pp. 480–491, 1994. 45, 53

5. O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, J.
of the ACM, Vol. 33, No. 4, 1986, pp. 792-807. 49

6. R. Kumar, S. Rajagopalan and A. Sahai, Coding constructions for blacklisting
problems without computational assumptions, Adv. in Cryptology – Crypto ’99,
Springr-Verlag LNCS 1666, pp. 609–623, 1999. 46

7. M. Luby, Pseudorandomness and Cryptographic Applications, Princeton
Computer Science Notes, 1996. 49

8. M. Luby and J. Staddon, Combinatorial Bounds for Broadcast Encryption, Adv.
in Cryptology – Eurocrypt ’98, Springer-Verlag LNCS 1403, 1998, pp. 512–526. 46

9. D. Naor, M. Naor and J. Lotspiech, Revocation and tracing schemes for stateless
receivers, Adv. in Cryptology – Crypto ’01, Springer-Verlag LNCS 2139, 2001,
pp. 41–62. 44

10. D. McGrew, A. T. Sherman, Key establishment in large groups using one-way
function trees, submitted to IEEE Transactions on Software Engineering (May 20,
1998). 43, 46, 47, 55

11. M. Naor and B. Pinkas, Efficient Trace and Revoke Schemes, Proceedings of Fi-
nancial Crypto ’2000, February 2000. 46

12. M. Naor and O. Reingold, Number-Theoretic constructions of efficient pseudo-
random functions, Proc. 38th IEEE Symp. on Foundations of Computer Science,
1997, pp. 458–467. 49

13. D. M. Wallner, E. G. Harder and R. C. Agee, Key Management for Multicast:
Issues and Architecture, RFC 2627, June 1999. 42, 46, 53, 54

14. C. K. Wong and S. S. Lam, Digital Signatures for Flows and Multicasts, IEEE
ICNP ’98. Also, University of Texas at Austin, Computer Science Technical report
TR 98-15. 42, 46, 53

A LKH Based Schemes

A.1 The LKH Scheme

Tree based group rekeying schemes were suggested by Wallner et. al [13] (who
used binary trees), and independently by Wong et. al [14] (who consider the
degree of the nodes of the tree as a parameter). We concentrate on the scheme
of [13] since it requires a smaller communication overhead per user revocation.
When this scheme is applied to a group of n users it requires each user to store
logn + 1 keys. It uses a message with 2 logn − 1 key encryptions in order to
delete a user and generate a new group key. This process should be repeated for
every deleted user. The scheme has better performance than the Fiat-Naor [4]
scheme when the number of deletions is not too big. It is also secure against
any number of corrupt users (they can all be deleted from the group, no matter
how many they are). A drawback of the scheme is that if a user misses some
control packet relative to a user deletion operation (e.g., if it temporarily gets
disconnected from the network), it needs to ask for the missed control packets.
This also applies for a user who misses join operations if the scheme is set to
support backward secrecy.

54 Benny Pinkas

We now describe the scheme of [13]. Let u0, . . . , un−1 be n members of the
group (in order to simplify the exposition we assume that n is a power of 2).
They all share a group key k with which group communication is encrypted.
There is a single group controller, which might wish at some stage to delete a
user from the group and enable the other members to communicate using a new
key k′, unknown to the deleted user.

The group is initialized as follows. Users are associated with the leaves of a
tree of height logn (see Figure 1). The group controller (GC) associates a key kv

with every node of the tree, and sends to each user (through a secure channel)
the keys associated with the nodes along the path connecting the user to the
root. For example, in the tree of Figure 1, user u0 receives keys k000, k00, k0

and k. Notice that the root key k is known to all users and can be used as the
group key and encrypt group communication.

In order to remove a user u from the group the GC performs the following
operations. For all nodes v along the path from u to the root, a new key k′v is gen-
erated. New keys are encrypted as follows. Key k′p(u) is encrypted with key ks(u),
where p(u) and s(u) denote respectively the parent and sibling of u. For any other
node v along the path from u to the root (excluded), key k′p(v) is encrypted with
keys k′

v and ks(v). All encryptions are sent to the users. For example, in order
to remove user u0 from the tree of Figure 1 the following set of encryptions is
transmitted (see Figure 2): Ek001(k′

00), Ek′
00
(k′

0), Ek01 (k′
0), Ek′

0
(k′), Ek1 (k′). It is

easy to verify that each user can decrypt only the keys it is entitled to receive. If
backward secrecy is required then a user join operation is similar to user removal
(see Section 1.1). The update of the keys in the path from the leaf of the joining
user to the root is performed in a similar manner to the key update in the case
of user removal.

A.2 The Scheme of Canetti et. al [3]

This scheme reduces the communication overhead of [13] by a factor of two, to
only logn key encryptions.

The initialization of the scheme is as in the scheme of [13]. Let f be pseudo-
random generator which doubles the size of its input. The security of the user
deletion scheme can be formally reduced to the security of f . Denote by f0(x),
f1(x) the left and right halves of the output of f on an input x. To remove a user u
the group controller associates a value rv to every node v along the path from u
to the root: It chooses ru at random and sets rp(v) = f1(rv) for all other v. It
also defines for each v the new key k′p(v) = f0(rv) and encrypts rv with key ks(v).
The encryptions are sent to all users. For example, in order to remove user u0

from the tree of Figure 1, we send encryptions Ek001(r000), Ek01(r00), Ek1 (r0).
One can easily verify that each user can compute from the encryptions all and
only the keys it is entitled to receive.

Advantages: The construction in [3] halves the communication overhead of the
basic scheme to only logn, and its security can be rigorously proven based on the

Efficient State Updates for Key Management 55

U1 U2 U3 U4 U5 U6 U7

K001 K010 K011 K100 K101 K110 K111

K11

K1

K10K01
E(K001,K’00)

E(K01,K’0)
E(K’00,K’0)

E(K’0,K’)
E(K1,K’)

K’

K’00

New group key

K’0

Fig. 2. The delivery of new values to the keys surrendered to u0

E(K001,R) R

E(K1,f(f(R)) f(f(R))

f(R)E(K01,f(R))

K01

K001

K1

Fig. 3. The delivery of new key values to the keys in the scheme of [3]

widely used assumption of the existence of pseudo-random generators. Indepen-
dently, McGrew and Sherman [10] have presented a tree based rekeying scheme
which has the same overhead as [3]. However, the security of that scheme is
based on non-standard cryptographic assumptions and is not rigorously proven.

More Efficient Key Update The scheme of [3] enables to perform the key
update procedure of Section 3 more efficiently. The main idea is that in order to
enable a user to update the keys in the path from its leaf to the root a new key
should only be sent for nodes v for which

56 Benny Pinkas

– v is the intersection point between the path from the leaf of the ith revoked
user to the root, and the path from the user’s leaf to the root; and

– The paths to the root from the leaves of the users which were revoked after
the ith user do not intersect the path from the user’s leaf to the root in a
node which is in a lower layer than v.

A probabilistic analysis shows that in this case, too, the expected length of an
update message to the user is of length O(log(t)|k|) bits, although with a smaller
constant.

Collusion Secure q-ary Fingerprinting

for Perceptual Content

Reihaneh Safavi-Naini and Yejing Wang

School of Information Technology and Computer Science
University of Wollongong
Wollongong 2522, Australia
{rei,yejing}@uow.edu.au

Abstract. We propose a q-ary fingerprinting system for stored digital
objects such as images, videos and audio clips. A fingerprint is a q-ary
sequence. The object is divided into blocks and each symbol of the fin-
gerprint is embedded into one block. Colluders construct a pirate object
by assembling parts from their copies. They can also erase some of the
marks or cut out part of the object resulting in a shortened fingerprint
with some unreadable marks. We give constructions of codes that can
identify one of the colluders once a pirate object is found.

Keywords: Traceability, fingerprinting codes, watermarking schemes.

1 Introduction

Protecting digital media against illegal copying and redistribution is one of the
main concerns of the owners and distributors of digital objects. Access control
techniques such as encryption ensure that a digital object is only accessible to
the person who has a special piece of information, called ’key’. However when
the content is decrypted, no mechanism is left to prevent illegal copying and
re-distribution of the object.

Fingerprinting is a commonly used technique in which a unique sequence is
embedded in each copy of the object so that an illegal copy can be traced to
a buyer who has misused his privileges. Collusion secure fingerprinting [1,2,16]
ensures that a pirate copy can be traced to one of the colluders if the object is
constructed by a collusion of up to c buyers. To embed a fingerprint in an object
a watermarking system is used. A watermarking system embeds the fingerprint
into the object in an imperceptible way such that only an authorised person with
access to secure key information can recover the fingerprint.

Boneh and Shaw considered fingerprinting codes and did not concern them-
selves with the actual embedding process. According to their model the finger-
print is a string of marks over an alphabet Σ of size q. Each mark can take one
of the q values and is embedded into the content using an embedding system.
They assumed the place that a mark is embedded is unknown (otherwise a buyer
can remove the mark) and considered a collusion attack in which colluders con-
struct an illegal copy by comparing their copies of the object to detect the mark

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 57–75, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

58 Reihaneh Safavi-Naini and Yejing Wang

positions and then use one of the marks, or erase the mark (unreadable state)
in the detected positions. However an undetected position remains unchanged.
Colluders’ action is modelled by a marking assumption. Boneh and Shaw con-
sidered c-secure codes that allow tracing of one of the colluders if a pirate copy
is found. They proved that under the above assumption a totally c-secure code
which can always (deterministically) trace a colluder cannot exist. They also
gave constructions of binary c-secure code with ε-error in which the chance of
erroneous tracing is at most ε.

Guth and Pfitzmann [10] argued that Boneh and Shaw’s marking assumption
was strong and allowed the undetected positions to be erasable too but assumed
that the adversary can only erase a percentage of the marks. With this assump-
tion, called weak marking assumption, they modified a binary code proposed
in [1,2] to provide protection under the new marking assumption. Again tracing
is probabilistic and there is a small chance of falsely accusing an innocent user
or not identifying a colluder.

We consider q-ary fingerprinting for objects with perceptual content. Math-
eson et al noted [15] that Boneh and Shaw’s marking assumption reflects prop-
erties of representational watermarks used for text over natural languages or
programming languages and not watermarks used for perceptual content such
as still images, audio and video signals in which change to the media is contin-
uous. This observation is true if the embedding of the fingerprint is by using a
watermarking system. That is if the fingerprinting sequence is used as the key in
a watermarking algorithm, then the watermark signal is spread over the whole
object and construction of the pirate object cannot be modelled by Boneh and
Shaw’s model. In other words components of the fingerprinting sequence are not
linked to a small area in the object and so the pirate copy cannot be modelled
by an object whose embedded fingerprint is the combination of colluders’ fin-
gerprints, as proposed in [1]. This approach to fingerprinting does not offer any
protection against a ’cut and paste’ attack where colluders cut their objects into
parts and reassemble a pirate object by pasting parts from different colluders.
This is because in the pirate object each part is from a different watermarked
copy and so applying the verification method of the watermarking system will
not detect a watermark.

In our approach the object is broken into segments and a mark from the
fingerprint sequence is embedded in each segment. Collusion security is obtained
mainly through the design of the sequence and the underlying watermark. While
the marking assumption captures properties of the underlying watermarking
systems.

The basic idea of having a two tier system, that is, using watermarking to
embed a mark and a fingerprint sequence to provide collusion security, is not new.
It has been used by Boneh and Shaw (for non-perceptual content) and others
following their model, and also the work reported in [13]. However this latter,
as noted by the authors, has a different approach. Using an embedding method
similar to the one proposed in [5] will allow us to use a q-ary version of Boneh and
Shaw’s marking assumption for perceptual content. In particular, we consider

Collusion Secure q-ary Fingerprinting for Perceptual Content 59

the following embedding process. The object to be fingerprinted is divided into
segments, for example blocks of 8× 8 pixel in an image. Next a subset of these
segments are randomly chosen and one component of the fingerprinting sequence
is embedded in each chosen segment using a watermarking algorithm. The subset
of segments is fixed for all copies and is kept hidden. Watermarking a segment
creates one of the q versions of that segment. Watermarking algorithms that can
embed more than one bit information are studied by numerous authors [4,23].
As noted in [15] the main properties of perceptual contents is that the space of
possibilities is continual and ”has some relatively simple geometry”. This means
that two different versions of a segment are dis-similar and so are distinguishable.
However two copies of the same version of a segment (belonging to two colluders)
are similar. (The two copies will not be identical but will be very similar.)

In a collusion attack, colluders compare their copies of an object and con-
struct a pirate copy in which each segment is obtained from a corresponding
segment of one of the colluders. That is, when colluders detect a mark position,
they can use one of their versions but cannot construct a version that they do not
have and so the version of that segment in the pirate copy will be one of their
versions. They may also be able to make some of the detected marks unreadable:
that is modify the segment such that no mark can be extracted from it. This is a
reasonable way of modelling watermarking schemes that use a different random
sequence for embedding the q marks. A group of colluders have a number of
versions of a segment but do not know the actual random sequences used in the
embedding process and so cannot construct a version that they do not have.
However they can use attacks such as averaging (for example pixel values in a
segment) versions of a segment to make the embedded mark unreadable. The
effectiveness of the averaging attack will depend on the underlying watermarking
system and the number of colluders [15].

Using the above scheme for the fingerprinting sequence means that the pirate
sequence will be a q-ary sequence with some positions having ‘?’ representing on
unreadable mark.

We also allow the sequence recovered from the pirate copy to have deleted
positions and so have shorter length than the original fingerprint. This can hap-
pen because of modifications to the object geometry resulting from operations
such as cropping an image, or removing frames from a video clip. Deletions need
not be considered if we assume that the tracer always has an original copy of the
object and can recover the lost positions by comparing the pirate object with the
original one. However this could become very expensive and impractical for large
objects such as a video clip when there are a number of distribution centres for
the same object. In this case, each centre must either keep an original copy of the
object, or be able to securely access such a copy over the Internet, or send the
pirated copy to a central location for tracing. All these solutions have drawbacks
and weaknesses and so it is desirable to be able to trace without having access to
the original copy. We note that watermark recovery could be performed without
the original object and so if the original object is not required for recovering the

60 Reihaneh Safavi-Naini and Yejing Wang

deleted positions in the fingerprint of pirate object, tracing will be completed
with accessing the original object.

Our approach to fingerprinting still images (or video data), provides protec-
tion against ’cut and paste’ attack as long as the number of errors generated
through this process is bounded. For example if averaging attack on all parts
is used then the quality of the pirate copy will be reduced but also many mark
positions will become unreadable in which case our systems will become ineffec-
tive.

Our Results

We first define and construct The tracing algorithm is by finding the minimum
Hamming distance between the pirate word and all the codewords in the code
and ensures that one colluder can be correctly identified.

Increasing protection against erasure is important because colluders can al-
ways average their versions of a segment to reduce the strength of the mark [15].
We show that higher resilience against erasure can be obtained by using repe-
tition and randomisation of the code. This is similar to the approach used by
Boneh and Shaw for constructing binary c-secure codes with ε-error and using
a different marking assumption. We will construct a c-secure code with ε-error
using n copies of a were n > logp0

(ε/L) and p0 is the probability of erasure of a
mark in the fingerprint. Guth and Pfitzmann used multiple copies of binary c-
secure codes for providing protection against erasure. Although compared to q-
ary case, the required number of copies for the same value of ε is higher but the
size of the segment to embed a q-ary mark is in general larger and so the total
size of the object in the two cases could be the same.

Finally we consider codes that can recover deleted marks, that is, when the
pirate sequence is shorter than the embedded fingerprint. We propose two solu-
tions. The first one uses a special mark, called ‘buffer mark’, used as a position
marker in the fingerprint. The second solution is by using Levenshtein distance
instead of the Hamming distance for tracing a colluder, and employing deletion
correcting codes with high minimum distance for providing protection against
deletion of the marks. This latter approach is particularly interesting and is in
parallel with using Hamming distance and error-correcting codes for tracing.

Related Work

There are a number of closely related works.
The aim of our work is to construct collusion secure fingerprinting schemes

for objects with perceptual content to protect digital content stored on media
such as CD and DVD.

In collusion-resistant watermarks, each buyer receives a watermarked copy
of the object. Ergun et al showed [6] an averaging attack that can defeat any
watermark system when enough watermarked copies (colluders) exists. However
for small number of copies the mark cannot be erased.

Collusion Secure q-ary Fingerprinting for Perceptual Content 61

Frame-proof codes [1,2] ensure that no collusion of up to c buyers can con-
struct a pirate copy that contains the fingerprint of another buyer. A number of
constructions for these codes are proposed in [21,20,18,26].

Boneh and Shaw studied totally c-secure, and c-secure codes with ε-error, un-
der strong marking assumption. Guth and Pfitzmann [10] constructed binary c-
secure with ε-error under weak marking assumption. Although Boneh and Shaw’s
definitions and existence results are for q-ary codes but all their constructions,
including the one modified by Guth and Pfitzmann, are for binary case.

Staddon et al [20] defined q-ary c-traceability codes. The allowable operations
for colluders is similar to our marking assumption but does not include erasure.
They gave a sufficient condition for an error-correcting code that can be used as
a traceability code.

Traceability systems are also studied in the context of broadcast encryption
schemes [3,21,22,12,9]. Broadcast encryption systems [7] allow targeting of an
encrypted message to a privileged group of receivers. Traceability schemes in
this context are also called key fingerprinting and a number of constructions are
proposed [3,21,12].

Other related works are dynamic tracing scheme proposed by Fiat and
Tassa [8] and sequential tracing proposed by Safavi-Naini and Wang [17]. Se-
quential tracing is particularly related because the mark allocation table is in
fact a static code similar to the fingerprinting codes considered here. The col-
luders’ attack can be modelled by a marking assumption similar to the one used
in this paper but without erasure. However the system operation is different in
the two cases and in particular in sequential tracing detected colluder will be
disconnected.

In the following section we give the model and construction of q-ary c-secure
codes that protects against erasure of the marks. In Section 3 we introduce se-
quence deletion attack and give two constructions that provide protection against
this attack. Section 4 concludes the paper.

2 q-ary c-Secure Codes

A c-robust watermarking system consists of a set of q marks Σ = {1, 2, · · · , q}
and a pair of algorithms (I, D). The insertion algorithm I takes a digital ob-
ject O, a symbol i and a key k and produces a version Oi of the object, wa-
termarked with i. The detection algorithm D takes an object O′, the key k and
produces an element of Σ′ = Σ∪{?} or produces F alse that indicates no water-
mark is present. The algorithm will produce ’?’ if it cannot decide if a watermark
is present. The c-robustness refers to the property that collusion of up to c col-
luders who have access to c versions of O cannot construct a different version of
the object, but they may construct an object such that the detection algorithm
produces a ’?’.

A q-ary fingerprinting system consists of a q-ary fingerprinting code and
watermarking system. The code is a collection of q-ary sequences. To embed a

62 Reihaneh Safavi-Naini and Yejing Wang

fingerprint (i1, i2, · · · , iL), where ij ∈ Σ, 1 ≤ j ≤ L, in an object O, the object
is first broken into basic segments. Next, a sequence of L basic segments O =
(o1, o2, · · · , oL), are chosen and the watermarking insertion algorithm is used to
embed ij in oj . When a pirate object is found, the watermark detection algorithm
is used to find the marks embedded in the basic segments of the sequence. The
resulting sequence is the pirate fingerprint and is a sequence over Σ′. We will
concentrate on the fingerprinting code and the recovered sequence.

Let C = {u1, u2, · · · , uc} be a set of c colluders, each having a copy of the
object O. The basic strategy for constructing a pirate object is to compare the
objects segment by segment, detect mark positions and construct a pirate object
in which the mark position is one of the colluders’ versions, or is unreadable.
Undetected position may also be averaged to become unreadable.

Let Our marking assumption is as follows

Marking Assumption: A collusion C = {u1, · · · , ub}, b ≤ c, is only capable of
creating an object whose fingerprint lies in the following set

P(C) = {x = (x1, · · · , xL) : xj ∈ {w
(i)
j : 1 ≤ i ≤ b} ∪ {?}, 1 ≤ j ≤ L}

This is a q-ary version of Guth and Pfitzmann’s marking assumption and allows
erasure to occur both in the detected and undetected positions.

We note that colluders might use other strategies. For example cutting their
objects into parts that are not aligned with the original segments and construct
the pirate object by re-assembling parts from colluders’ objects. In this strategy
as long as a part is bigger than a basic segment, the pirate object will have
complete basic segments of colluders. We assume there are enough large parts so
that the pirate fingerprint does not have too many basic segments with erased
mark.

Definition 1. Let ε > 0. A code Γ ∈ ΣL is called q-ary c-secure with ε-error if
there exists a tracing algorithm A such that for any pirate word x generated by
a colluding group C, |C| ≤ c, then

P r(A(x) ∈ C) > 1− ε.

A q-ary c-secure code with ε-error of length L and with N codewords, is
denoted by c-Sq(L, N ; ε).

We call the code q-ary c-secure to emphasise the similarity of the marking
assumption with that of [1] and [10].

2.1 Constructing c-Secure Codes from Error-Correcting Codes

Collusion attack on q-ary codes without erasure is studied in the context of
traceability codes. Staddon et al [20] defined traceability codes and proved the
following results.

Collusion Secure q-ary Fingerprinting for Perceptual Content 63

Definition 2. Let Γ ⊆ ΣL be a code, C = {u1, · · · , ub} ⊆ Γ be a collusion.
Define

desc(C) = {(x1, · · · , xL) : xj ∈ {w
(i)
j : 1 ≤ i ≤ b}, 1 ≤ j ≤ L}

Γ is called c-traceability code if the following condition is satisfied: for any
(x1, · · · , xL) ∈ desc(C), there is a ui ∈ C such that

|{j : xj = w
(i)
j }| > |{j : xj = wj}|

for any (w1, · · · , wL) ∈ Γ \ C.

A c-traceability code with number of codewords N and length L is denoted
by c-TAq(L, N). Let (L, N, D)q-ECC denote an error-correcting code of length L
with N codewords and with minimum Hamming distance D over an alphabet
of size q.

Theorem 1. ([20]) Let Γ be an (L, N, D)q-ECC, and c be an integer. If

D > (1 − 1
c2
)L (1)

then Γ is a c-TAq(L, N).

We can extend Theorem 1 to the case that there are erasures but tracing only
succeeds if the number of erasures is bounded. Let P(C; e) denote the subset of
P(C) with at most e erasures. That is

P(C; e) = P(C) ∩ {(x1, · · · , xL) : |{j : xj =?, 1 ≤ j ≤ L}| ≤ e}

Definition 3. Let Γ ∈ ΣL be a code and C = {u1, · · · , ub} ⊆ Γ , b ≤ c, be a
collusion. Γ is called a c-traceability code tolerating e erasures, and denoted by c-
TAq(L, N ; e), if the following condition holds: for any (x1, · · · , xL) ∈ P(C; e),
there is a ui ∈ C such that

|{j : xj = w
(i)
j }| > |{j : xj = wj}|

for any (w1, · · · , wL) ∈ Γ \ C.

Theorem 2. Let Γ be an (L, N, D)q-ECC, and c and e be integers. If D satisfies

D > (1− 1
c2
)L +

e

c2
(2)

then Γ is c-TAq(L, N ; e).

Proof. Let C = {u1, · · · , ub} be a collusion, and assume x ∈ P(C). If |C| ≤ c
then there exists ui ∈ C such that ui and x have at least (L − e)/c in common,
that is λ(ui, x) ≥ (L − e)/c.

64 Reihaneh Safavi-Naini and Yejing Wang

On the other hand, for any u ∈ Γ \ C

λ(u, x) ≤ λ(u, u1) + · · ·+ λ(u, ub) ≤ cλmax

Because of (2) we have c2(L − D) < L − e. Noting that L − D = λmax,
then c2λmax < L − e, and hence

λ(u, x) ≤ cλmax <
L − e

c
≤ λ(ui, x)

So λ(ui, x) > λ(u, x) for any u ∈ Γ \ C, and ui is identified correctly.

Theorem 2 shows that pirate words with not too many erasures can be de-
terministically traced. In the following we use multiple copies of the above code
to increase erasure tolerance, but tracing will be with a small error. A similar
approach is used by Boneh and Shaw [1,2] but for a different marking assump-
tion.

Increasing Erasure Tolerance

We start with a c-TAq(L, N ; e). The basic idea is to repeat the codeword enough
times so that at least one copy of u can be recovered. The chance of tracing for
the resulting code is the same as the initial code multiplied by the probability
of recovering a codeword.

We assume that the probability of erasing the mark in a segment is indepen-
dent of other segments and is at most equal to p0. That is, we do not make any
distinction between detected and undetected marks.

Theorem 3. Let ε > 0 and p0 > 0 be given. Suppose there exists a c-
TAq(L, N ; e), and an embedding system with erasure probability p0 for each sym-
bol. Then there exists a c-Sq(nL, N ; ε) where n is an integer satisfying,

n > logp0
(ε/L). (3)

Proof. Suppose we have a code Γ , c-TAq(L, N ; e). Repeating each mark n times
results in a new code consisting of L blocks denoted by B1, B2, · · · , BL, where Bi

consists of n copies of the same mark. For a block Bi, the probability that all
marks are corrupted is pn

0 , and so the probability that at least one mark is left
within Bi is 1 − pn

0 . We know that a sequence of L − e marks can detect one
of the traitors using the code Γ . The probability that there are L − e unerased
blocks with at least one correct mark in each is,

p =
(

L
e

)
(1− pn

0)
L−e. (4)

So p is the probability of correctly tracing one colluder. Let x = log(L/ε). Noting
that

1− (1 − 2−x)L ≤ L · 2−x, for x > 0,

Collusion Secure q-ary Fingerprinting for Perceptual Content 65

we have

ε = L · 2−x ≥ 1− (1 − 2−x)L ≥ 1− (1 − 2−x)L−e ≥ 1− (1− 2−x)L−e

(
L
e

)
.

So

1− ε ≤ (1 − 2−x)L−e

(
L
e

)
and

1− (1 − ε)1/(L−e)

(
L
e

)1/(e−L)

≥ 2−x

That is

− log

(
1− (1 − ε)1/(L−e)

(
L
e

)1/(e−L)
)

≤ x.

Since − log p0 > 0, we have

− log

(
1− (1− ε)1/(L−e)

(
L
e

)1/(e−L)
)

− log p0
≤ x

− log p0

If n satisfies (3), then n > x/(− log p0). So we have

1− (1− ε)1/(L−e)

(
L
e

)1/(e−L)

> pn
0 .

And finally,

1− ε <

(
L
e

)
(1− pn

0)
L−e.

The right-hand side is equal to (4), and so the probability of correctly tracing
one traitor is > 1− ε.

2.2 Bound for c-TAq(L, N) and c-TAq(L, N ; e)

One of the efficiency measures of a q-ary code is the size of the alphabet, q. The
higher value of q requires larger segments for embedding and so less number of
segments in the object. Theorems 5 and 6 can be used to bound q.

Theorem 4. (Plotkin bound) For an (L, N, D)q-ECC, if D > (1− 1/q)L, then

N ≤ D

D − (1− 1/q)L

Theorem 5. Let c and e be integers, and Γ be an (L, N, D)q-ECC with D
satisfying (1). If N > q > 2, then q > c2.

66 Reihaneh Safavi-Naini and Yejing Wang

Proof. Assume otherwise, that is c2 ≥ q. Then

1− 1
c2

≥ 1− 1
q

.

Condition (1) gives that D > (1 − 1/c2)L ≥ (1 − 1/q)L. Applying Theorem 4,
we have

N ≤ D

D − θ · L
=

D

D − (1 − 1
q)L

and so

D ≤
(1− 1

q)NL

N − 1
.

From (1) we have

(1− 1
c2
)L <

(1 − 1
q)NL

N − 1
and so when N > q > 2

c2 <
1

1− (1− 1
q)N

N−1

<
1

1− 2(1− 1
q)

=
1

1− 2 + 2 1
q

=
1

−1 + 2 1
q

< 0

This is a contradiction and so c2 < q.

Corollary 1. In a c-TAq(L, N) obtained from Theorem 1, q > c2.

Following a similar argument, Theorem 6 gives a bound on q for a c-
TAq(L, N ; e) obtained from Theorem 2.

Theorem 6. Let c be an integer, Γ be an (L, N, D)q-ECC with D satisfying
(2). If N > q > 2, then q > L

L−ec2.

Proof. Assume otherwise, that is L
L−ec2 ≥ q. Then L−e

c2 ≤ L
q . Now from condition

(2) we have

D > (1− 1
c2
)L +

e

c2
= L − L − e

c2
≥ (1 − 1

q
)L.

The theorem can be proved by using Theorem 4.

Corollary 2. In a c-TAq(L, N ; e) obtained from Theorem 2, q > L
L−ec2.

To give examples of (L, N, D)q-ECC with D satisfying (2) we use algebraic-
geometry codes (AG-codes). Let [L, k, D]q denote a linear error-correcting code
of length L, dimension k and minimum distance D over a q-ary alphabet. It is
known [25] that AG codes with parameters [L, k, L+ 1− k − g]q exists, if there
exists an algebraic curve of genus g over GF (q) having n rational points. For
g = 1, the curves of genus 1 are elliptic curves which are known to exist for any
L ≤ Nq(1) where q = pm and Nq(1) is defined as

Nq(1) =
{

q + �2√q�, p | �2√q�, and m ≥ 3 is odd
q + �2√q�+ 1, else (5)

Collusion Secure q-ary Fingerprinting for Perceptual Content 67

So an AG code exists for any k, 1 ≤ k ≤ L − 1. When g = 2, the curve of genus
2 exists for any L ≤ Nq(2), where q = pm and Nq(2) is given as follows.

If m ≡ 0 (mod 2)

Nq(2) =




q + 4
√

q + 1, q �= 4, 9
10, q = 4
20, q = 9

(6)

If m ≡ 1 (mod 2)

Nq(2) =




q + 2�2√q�+ 1, q is non-special
q + 2�2√q�, q is special and 2

√
q − �2√q� > (

√
5− 1)/2

q + 2�2√q� − 1, q is special and 2
√

q − �2√q� < (
√
5− 1)/2

(7)

here q is special means that either p | �2√q� or q is of the forms: q = +2 + 1,
q = +2 + ++1 or q = +2+ ++2 for some integer +. The corresponding code exists
for any k, 1 ≤ k ≤ L − 2.

In AG codes, the minimum distance is given by D = L + 1 − k − g. If D
satisfies (2) then we obtain a c-TAq(L, qk; e) with parameters,

L ≤ Nq(1), 1 ≤ k ≤ L − 1, 0 ≤ e ≤ L − 4L, c = �
√

L−e
k �, where g = 1,

L ≤ Nq(2), 1 ≤ k ≤ L − 2, 0 ≤ e ≤ L − 4k − 4, c = �
√

L−e
k+1 �, where g = 2.

(8)

2.3 Comparison and Trade-Offs

Theorem 3 gives a general method of constructing a c-Sq(L, N ; ε) code from a c-
TAq(L, N ; e) code. Suppose we use an AG code with parameters in row one of (8),
as a c-TAq(L, qk; e) code. In this code c2 = (L−e)/k, or equivalently, L = e+c2k.
Moreover, N = qk which gives k = logq N . So L = e+ c2 logq N > c2 logq N , and
the length of the c-Sq(nL, N ; ε) obtained from Theorem 3 is

n · L > logp0
(ε/L) · L >

log(L/ε)
log(1/p0)

· c2 logq N >
log(q/ε)
log(1/p0)

· c2 logq N

> c2 log(1/ε)
log(1/p0) log q

logN

That is the length of c-Sq(L, N ; ε) is of the form

O

(
c2 log(1/ε)
log(1/p0) log q

logN

)
(9)

Boneh and Shaw [1,2] constructed a binary c-secure code for ε > 0, with L of
the order

O

(
c4 · log N

ε
log

1
ε

)
. (10)

68 Reihaneh Safavi-Naini and Yejing Wang

Guth and Pfitzmann’s modification of Boneh and Shaw’s code to provide erasure
tolerance results in codewords that are slightly longer than (10), and so the
length of codes obtained from AG code is smaller than Guth and Pfitzmann’s
construction. This is not surprising because q-ary marks, rather than binary
ones, are used.

3 Removing Segments

A digital object can be shortened. For example the first 50 milliseconds of a
video clip may be removed without affecting its content, or an image might
be ’cropped’. In this section we consider pirate objects where the recovered
fingerprints is shorter than the fingerprint in the colluders’ copies. In this case
the recovered fingerprint sequence cannot be compared with the codewords in
the fingerprinting codes and so the previous tracing system will not work.

Let r be an integer, define

P(C; e, r) = {y = (y1, · · · , yL′) : y is a subword of some
x ∈ P(C; e), L′ ≥ L − r}

ΣL,r = {x ∈ (Σ ∪ {?})∗ : L − r ≤ |x| ≤ L}
Definition 4. Let e, r, c be integers, Γ ⊆ ΣL be a code, and C = {u1, · · · , ub},
b ≤ c, be a collusion.

1. Γ is c-TAq(L, N ; e, r) if there is a tracing function A : ΣL,r −→ Γ such that
A(x) ∈ C for any x ∈ P(C; e, r).

2. Γ is c-Sq(L, N ; r, ε) if there is a tracing function A : ΣL,r −→ Γ such that
P r(A(x) ∈ C) > 1− ε for any x ∈ P(C; e, r).

We give constructions for c-TAq(L, N ; e, r) and c-Sq(L, N ; r, ε), one by pro-
tecting symbols of a fingerprinting sequence using buffer blocks, the other by
using a deletion/insertion correcting code.

3.1 Constructing c-TAq(L, N ; e, r) Using Buffer Blocks

We construct a code, c-TAq+1(L̄, N ; e, r), using a c-TAq(L, N ; e) by employing a
’buffer’ mark. In the construction below we assume that the deleted segments are
consecutive. This assumption is removed in the construction given in section 3.2.
Assume the watermarking system has q + 1 marks, buffer mark 0. Let Γ (b) be
a (q + 1)-ary code, which is obtained from c-TAq(L, N ; e) by inserting b buffer
marks between any two normal marks. Tracing will have three steps: (i) recover
synchronisation, (ii) find a collection of at least L − e normal marks, and (iii)
identify a traitor using the tracing algorithm of the code c-TAq(L, N ; e).

In the recovered sequence, existence of i buffer marks between two normal
marks implies that b− i+m(b+1) segments are deleted (m is a positive integer).
Since the length of the recovered sequence is not shorter than L − r, so as long
as b+1 is bigger than r, consecutive segments will retain their correct positions.

Collusion Secure q-ary Fingerprinting for Perceptual Content 69

The following theorem shows that with appropriate choice of parameters it is
always possible to find the correct positions of all marks.

Theorem 7. Let Γ be a c-TAq(L, N ; e). Then Γ (b) is c-TAq+1(L+(L− 1)b, N ;
e, b). Furthermore, Γ (b) can trace x ∈ P(C; e, b) to u ∈ C provided that x satisfies
the following:

– there are at most e erasures among the normal mark positions, or at most b
erasures among the buffer mark positions;

– there are at most b deletions around two successive normal marks in every
non-cross intervals.

The proof can be found in a long version.

3.2 Using Deletion/Insertion-Correcting Codes

The construction in section 3.1 requires the deleted part of the object to be
contiguous. In the following we give a different approach that allows random
deletion, and reduce the problem of tracing to the construction of a special class
of codes.

Preliminaries Let Γ be a collection of codewords over an alphabet Σ. Denote
by Σ∗ the set of strings of finite length over Σ. A word x is a sequence

x = x1x2 · · ·xL, xi ∈ Σ

and its length L is denoted by |x|. A subword w of x is a string where

w = xi1xi2 · · ·xi|w| , 1 ≤ i1 < i2 < · · · < i|w| ≤ L.

A word w is said to be a common subword of x, y ∈ Σ∗ if w is a subword of
both x and y. For x, y ∈ Σ∗ define

ρ(x, y) = max{|w| : w is a common subword of x and y}

and denote by ρ(Γ) = maxx,y∈Γ,x �=y ρ(x, y). Suppose we have the words:

x = x1 · · ·xi−1 xi xi+1 xi+2 · · · xL−1xL, |x| = L
y = x1 · · ·xi−1 xi+1 xi+2 xi+3 · · · xL, |y| = L − 1
z = x1 · · ·xi−1 x′

i xi xi+1 · · · xL−2xL−1xL, |z| = L + 1

We use the following terms: a deletion is an operation that gives y from x; and

an insertion is an operation that gives z from x. We write x
(d,i)−→ y if there exists

a common subword w of x and y such that

d = |x| − |w|, i = |y| − |w|.

70 Reihaneh Safavi-Naini and Yejing Wang

The Levenshtein distance between two words x, y ∈ Σ∗ is defined as

Dl(x, y) = min
(d,i)

(d + i).

It has been shown [11] that

Dl(x, y) = |x|+ |y| − 2ρ(x, y). (11)

The minimum Levenshtein distance of a code Γ is denoted by Dl(Γ), and is
defined as follows

Dl(Γ) = min
x,y∈Γ,x �=y

Dl(x, y).

Tracing with Shortened Fingerprint To prove the main theorem of this
section (Theorem 8), we need the following lemma.

Lemma 1. Let e, r, c > 0 be integers, and Γ ⊆ ΣL be a code. If

ρ(Γ) <
L − e − r

c2
(12)

then the following property is satisfied: for any C ⊆ Γ , |C| ≤ c, and any x ∈
P(C; e, r), there exists a ui such that ρ(x, u) < ρ(x, ui).

Proof. Suppose a group {u1, · · · , ub} of colluders produces a pirate word x,

u1 : w11 · · ·w1a1 ∗ · · · · · · ∗ ∗ · · · ∗ ∗ · · · · · · ∗ ∗ · · · ∗ ∗ · · · ∗
u2 : ∗ · · · · · · ∗ w21 · · ·w2a2 ∗ · · · ∗ ∗ · · · · · · ∗ ∗ · · · ∗ ∗ · · · ∗
...

. . .
ub : ∗ · · · · · · ∗ ∗ · · · · · · ∗ ∗ · · · ∗ wb1 · · ·wbab

∗ · · · ∗ ∗ · · · ∗

x : w11 · · ·w1a1︸ ︷︷ ︸ w21 · · ·w2a2︸ ︷︷ ︸ · · · wb1 · · ·wbab︸ ︷︷ ︸ ? · · ·?︸ ︷︷ ︸ ︸︷︷︸
a1 a2 ab a t

where |x| = a1 + a2 + · · · + ab + a = L′ = L − t, t ≤ r and a ≤ e. Let ai =
max1≤i≤b(aj). Then

ai ≥ L − a − t

c
≥ L − e − r

c
.

Since w = wi1 · · ·wiai is a common subword of ui and x, so ρ(x, ui) ≥ ai. Let u
be another codeword, u ∈ Γ \ C, given by

a′
1 a′

2 a′
b

u :
︷ ︸︸ ︷
w11 · · ·w1a′

1
∗ · · · ∗︸ ︷︷ ︸ ︷ ︸︸ ︷

w21 · · ·w2a′
2
∗ · · · ∗︸ ︷︷ ︸ · · · ︷ ︸︸ ︷

wb1 · · ·wba′
b
∗ · · · ∗︸ ︷︷ ︸ ∗ · · · ∗︸ ︷︷ ︸ ∗ · · · ∗︸ ︷︷ ︸

a1 a2 ab a t

then

ρ(x, u) = a′
1 + a′

2 + · · ·+ a′
b ≤ ρ(u, u1) + ρ(u, u2) + · · ·+ ρ(u, ub) ≤ cρ(Γ)

Collusion Secure q-ary Fingerprinting for Perceptual Content 71

If ρ(Γ) satisfies condition (12), then

ρ(x, ui) < ρ(x, u) for ∀u ∈ Γ \ {u1, · · · , ub}.

Theorem 8. Let e, r, c > 0 be integers, and Γ ⊆ ΣL be a code with N codewords.
If

Dl(Γ) > 2
(
1− 1

c2

)
L +

2
c2
(e + r) (13)

then Γ is a c-TAq(L, N ; e, r).

Proof. Follows from Lemma 1 and (11).

Existence of Deletion/Insertion Correcting Codes

Consider a code Γ in which all codewords have the same length L. Let x, y ∈ Σ∗.
We write

x
(d,i)−→ y

if there exists a common subword w of x and y such that

d = |x| − |w|, i = |y| − |w|.

A code Γ is said to be t-deletion/insertion correcting code if, for each word
y ∈ Σ∗, there exists at most one codeword x0 ∈ Γ such that

x0
(d,i)−→ y, d + i ≤ t.

The following theorem is given in [11].

Theorem 9. (Theorem 4.1, [11]) A code Γ ⊆ Σ∗ is t-deletion/insertion cor-
recting code if and only if 2t < Dl(Γ).

For more about deletion/insertion correcting codes, see [11,19] and references
therein. It is not difficult to prove the following Lemma.

Lemma 2. Let Γ ⊆ ΣL. For any x, y ∈ Γ , Dl(x, y) ≤ 2t if and only if y can be
obtained from x by t deletions and t insertions, that is

Dl(x, y) ≤ 2t ⇐⇒ x
(t,t)−→ y. (14)

To construct a q-ary t-deletion/insertion correcting code we follow an ap-
proach proposed in [19]. The following algorithm gives a t-deletion/insertion-
correcting code for any t > 1. Suppose the size of Σ is q. Choose x0 ∈ ΣL and
let X0 = {x ∈ ΣL : Dl(x0, x) ≤ 2t}. (14) shows that each word in X0 can be
obtained from x0 by t deletions followed by t insertions. For t deletions, we can
choose arbitrary t positions from L positions, and delete the symbols at chosen

72 Reihaneh Safavi-Naini and Yejing Wang

positions. For the remaining L− t symbols, we choose L− t positions from L po-
sitions. Then we choose t symbols from Σ, and finally insert the chosen symbols
into the chosen positions. This means that X0 contains(

L
t

)
·
(

L
L − t

)
qt =

(
L
t

)2

qt

words. Using Stirling formula it is not difficult to see that when

qL

L2
> qt (15)

we have (
L
t

)2

qt < qL

Let B(x0; 2t) = {x ∈ ΣL : Dl(x0, x) > 2t}. Then B(x0; 2t) �=∅, and there is a
word x1 ∈ ΣL such that Dl(x0, x1) > 2t. We follow the same process. After i
steps, the word {x0, · · · , xi−1} are chosen. Let

B(x0, · · · , xi−1; 2t) = {x ∈ ΣL : Dl(x0, x) > 2t, · · · , Dl(xi−1, x) > 2t}.

If B(x0, · · · , xi−1; 2t) �=∅, then xi ∈ B(x0, · · · , xi−1; 2t) is chosen such that the
Levenshtein distance between any two of them is bigger than 2t. This step is
repeated N times where

B(x0, · · · , xN−1; 2t) = ∅.

This is essentially a brute force method. Constructions for t-deletion codes are
found in [14,24,19,27].

A c-Sq(L, N ; r, ε) can be constructed using a method similar to section 2.1
using a c-TAq(L, N ; e, r). We state the following theorem whose proof is similar
to Theorem 3.

Theorem 10. Let ε > 0, p0 > 0, r > 0 be given. Suppose there exists a c-
TAq(L, N ; e, r), and an embedding system which ensures an erasure probabil-
ity p0 for symbol. Then there exists a c-Sq(nL, N ; r, ε), where n be an integer
satisfying (3).

4 Concluding Remarks

In this paper we considered fingerprinting schemes for digital objects with per-
ceptual content, such as video clips and still images. Rather than embedding
a single watermark in the whole object we proposed a two tier system consist-
ing of a q-ary fingerprinting sequence, and a watermarking system that embeds
the marks of the fingerprinting sequence into the segments of the object. This
results in a fingerprinting model similar to Boneh and Shaw’s, but this time
for objects with perceptual content. We extended their marking assumption to

Collusion Secure q-ary Fingerprinting for Perceptual Content 73

capture properties of watermarking systems for perceptual contents and allowed
the marks to be erased in both detected and undetected segments. Using this
model, we defined q-ary c-secure codes and proved that a q-ary error-correcting
code with high enough minimum distance gives a c-secure code that can de-
tect one of the colluders. To increase resilience against erasure, we proposed a
repetition construction similar to Boneh and Shaw’s, but using a weaker q-ary
weak marking assumption and showed that the length of the code for the same
number of colluders is smaller than that of a binary code constructed by Guth
and Pfitzmann for the binary version of the same marking assumption.

We also allowed the mark positions in the pirate fingerprint to be completely
deleted. We proposed two constructions, one using a special buffer mark, and
the second one using a deletion/insertion code. An interesting open question
is the trade-off between efficiency parameters of a code, that is the number of
codewords, the length of the code, the number of colluders and the size of the
alphabets. Also efficient construction of deletion/insertion correcting codes will
be of high interest.

Acknowledgements

Authors would like to thank Takeyuki Uehara for interesting discussions.
This research is in part supported by Australian Research Council Grant

Number 227 26 1008.

References

1. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. In Advances
in Cryptology – CRYPTO’95, Lecture Notes in Computer Science, volume 963,
pages 453-465. Springer-Verlag, Berlin, Heidelberg, New York, 1995. 57, 58, 61,
62, 64, 67

2. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, Vol. 44, No. 5:1897-1905, 1998. 57, 58,
61, 64, 67

3. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Advances in Cryptology –
CRYPTO’94, Lecture Notes in Computer Science, volume 839, pages 257-270.
Springer-Verlag, Berlin, Heidelberg, New York, 1994. 61

4. I. Cox, J. Killian, T. Leighton, and T. Shamoon. Secure spread spectrum wa-
termarking for multimedia. IEEE Transaction on Image Processing, Vol. 6, No.
12:1673-1687, 1997. 59

5. J. Dittmann, A. Behr, M. Stabenau, P. Schmitt, J. Schwenk, and J. Ueberberg.
Combining digital watermarks and collusion secure fingerprinting for digital im-
ages. In Proceedings of SPIE, volume 3657, pages 171-182, 1999. 58

6. F. Ergun, J. Kilian, and R. Kumar. A note on the limits of collusion-resistant wa-
termarks. In Advances in Cryptology – EUROCRYPT’99, Lecture Notes in Com-
puter Science, volume 1592, pages 140-149. Springer-Verlag, Berlin, Heidelberg,
New York, 1999. 60

74 Reihaneh Safavi-Naini and Yejing Wang

7. A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology –
CRYPTO’93, Lecture Notes in Computer Science, volume 773, pages 480-491.
Springer-Verlag, Berlin, Heidelberg, New York, 1994. 61

8. A. Fiat and T. Tassa. Dynamic traitor tracing. In Advances in Cryptology –
CRYPTO’99, Lecture Notes in Computer Science, volume 1666, pages 354-371.
Springer-Verlag, Berlin, Heidelberg, New York, 1999. 61

9. E. Gafni, J. Staddon, and Y. L. Yin. Efficient methods for integrating traceabil-
ity and broadcast encryption. In Advances in Cryptology – CRYPTO’99, Lecture
Notes in Computer Science, volume 1666, pages 372-387. Springer-Verlag, Berlin,
Heidelberg, New York, 1999. 61

10. H. Guth and B. Pfitzmann. Error- and collusion-secure fingerprinting for digital
data. In Information Hiding’99, Lecture Notes in Computer Science, volume 1768,
pages 134-145. Springer-Verlag, Berlin, Heidelberg, New York, 2000. 58, 61, 62

11. H. D. L. Hollmann. A relation between Levenshtein-type distances and inser-
tionand-deletion correcting capabilities of codes. IEEE Transactions on Informa-
tion Theory, Vol. 39, No. 4:1424-1427, 1993. 70, 71

12. K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes.
In Advances in Cryptology – EUROCRYPT’98, Lecture Notes in Computer Sci-
ence, volume 1462, pages 502-517. Springer-Verlag, Berlin, Heidelberg, New York,
1998. 61

13. G. Langelaar, I. Setyawan, and R. Lagendijk. Watermarking digital and video data.
IEEE Signal Processing Magazine, Sept.:20-46, 2000. 58

14. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet physics – doklady, Vol. 10, No. 8:707-710, 1966. 72

15. L. R. Matheson, S. G. Mitchell, T. G. Shamoon, R. E. Tarjan, and F. Zane. Ro-
bustness and security of digital watermarks. In Financial Cryptography – FC’98,
Lecture Notes in Computer Science, volume 1465, pages 227-240. Springer-Verlag,
Berlin, Heidelberg, New York, 1998. 58, 59, 60

16. B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for large collusions.
In Proceedingsof 4thACM conference on computer and communications security,
pages 151-160, 1997. 57

17. R. Safavi-Naini and Y. Wang. Sequential traitor tracing. In Advances in Cryptology
– CRYPTO 2000, Lecture Notes in Computer Science, volume 1880, pages 316-332.
Springer-Verlag, Berlin, Heidelberg, New York, 2000. 61

18. R. Safavi-Naini and Y. Wang. New results on frameproof codes and traceability
schemes. IEEE Transactions on Information Theory, Vol. 47, No. 7:3029-3033,
2001. 61

19. L. J. Schulman and D. Zuckerman. Asymptotically good codes correcting inser-
tions, deletions, and transpositions. IEEE transactions on information theory, Vol.
45, No. 7:2552-2557, 1999. 71, 72

20. J. N. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of frameproof
and traceability codes. IEEE transactions on information theory, Vol. 47, No.
3:1042-1049, 2001. 61, 62, 63

21. D. Stinson and R. Wei. Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM Journal on Discrete Mathematics, 11:41-53,
1998. 61

22. D. R. Stinson and R. Wei. Key preassigned traceability schemes for broadcast
encryption. In Proceedings of SAC’98, Lecture Notes in Computer Science, volume
1556, pages 144-156. Springer-Verlag, Berlin, Heidelberg, New York, 1999. 61

23. M. Swanson, M. Kobayashi, and A. Tewfik. Multimedia data-embedding and wa-
termarking technologies. Proceedings of IEEE, Vol. 86, No. 6:1064-1087, 1998. 59

Collusion Secure q-ary Fingerprinting for Perceptual Content 75

24. G. Tenengolts. Nonbinary codes, correcting single deletion or insertion. IEEE
Transactions on Information Theory, IT-30, No. 5:766-769, 1984. 72

25. M. A. Tsfasman and S. G. Vladut. Algebraic-geometric codes. Kluwer Academic
Publishers, 1991. 66

26. Y. Wang. Contributions to traceability schemes. Ph.D Thesis, School of Informa-
tion Technology and Computer Science, University of Wollongong, Australia, 2001.
61

27. J. Yin. A combinatorial construction for perfect deletion-correcting codes. Designs,
Codes and Cryptography, 23:99-110, 2001. 72

Privacy Engineering

for Digital Rights Management Systems

Joan Feigenbaum1�, Michael J. Freedman2��,
Tomas Sander3, and Adam Shostack4

1 Computer Science Dept., Yale University
PO Box 208285, New Haven, CT 06520 USA

joan.feigenbaum@yale.edu
2 MIT Lab for Computer Science

200 Technology Square, Cambridge, MA 02139 USA
mfreed@lcs.mit.edu

3 InterTrust STAR Lab
4750 Patrick Henry Drive, Santa Clara, CA 95054 USA

sander@intertrust.com
4 Zero-Knowledge Labs

888 Maisonneuve East, Montreal, Quebec H2L 4S8 Canada
adam@zeroknowledge.com

1 Introduction

Internet-based distribution of mass-market content provides great opportunities
for producers, distributors, and consumers, but it may seriously threaten users’
privacy. Some of the paths to loss of privacy are quite familiar (e.g., mining of
credit-card data), but some are new or much more serious than they were in
earlier distribution regimes. We examine the contributions that digital-rights-
management (DRM) technology can make to both compromising and protecting
users’ privacy. We argue that the privacy-enhancing technology (e.g., encryption,
anonymity, and pseudonymity) that absorbs most of the attention of the security
R&D community cannot by itself solve the privacy problems raised by DRM,
although it can play a role in various solutions. Finally, we provide a list of
“privacy engineering” principles for DRM systems, some of which are easy to
implement and potentially quite effective.

The goal of DRM technology is distribution of digital content in a manner
that protects the rights of all parties involved, including (but not necessarily
limited to) copyright owners, distributors, and users. Appendix A below contains
a detailed description of a generic DRM system and its technical components.
Here, we give a high-level description that suffices for our purpose, which is
exploration of the interplay among DRM systems, user privacy, and business
and legal issues.

� Supported in part by ONR grants N00014-01-1-0795 and N00014-01-1-0447 and
NSF grant CCR-0105337.

�� This work was largely done while the author was visiting InterTrust STAR Lab.

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 76–105, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Privacy Engineering for Digital Rights Management Systems 77

The following is a list, adapted from Chapter 5 of [27], of some of the security
technologies that often play a role in DRM:

– Security and integrity features of computer operating systems include, for
example, the traditional file-access privileges enforced by the system.

– Rights-management languages express in machine-readable form the rights
and responsibilities of owners, distributors, and users, enabling application
programs to determine whether requested uses should be allowed.

– Encryption scrambles digital content so that it can be transmitted or stored
in an unusable form (and later decrypted and used, presumably by an ap-
plication that is authorized to do so and has legitimate possession of the
decryption key).

– Digital signatures provide assured provenance of digital content and nonre-
pudiation of transactions.

– Fingerprinting and other “marking” technology embeds (usually impercep-
tible) ownership or rights information in digital content so as to facilitate
tracking of copying, distribution, or usage.

DRM-system development consists of putting these pieces together into an
end-to-end system that serves the needs of owners, distributors, users, and all
other major stakeholders. For high-quality, popular content, this is a daunting
development task, and we are not claiming that it is a solved (or even solvable)
problem. Nor are we claiming that DRM technology alone can protect everyone’s
interests perfectly; laws, social norms, and (most importantly) business models
will play major roles in making mass-market distribution work, and it will prob-
ably never work perfectly. Our claim is simply that the use of these techniques
can affect user privacy and that this fact should be taken into account at every
stage of DRM-system design, development, and deployment.

At the risk of stating the obvious, we note that there can be inherent ten-
sion between the copyright-enforcement goals of owners and distributors who
deploy DRM systems and the privacy goals of users. Rights enforcement may
be facilitated by user tracking or by network control of users’ computers, but
both of these are potentially destructive of user privacy. One of the major ways
in which privacy can be compromised is through data collection by distributors
and network operators. We discuss typical DRM loci of collection in more detail
in Section 2 below.

Privacy engineering for DRM is made significantly more complicated by the
fact that there are legitimate reasons for distributors and network operators
to collect data about users and their activities. These include traffic modeling
for infrastructure planning and QoS enhancement; risk management; backup
and archiving; targeted marketing and recommendations; mining of aggregated,
depersonalized datasets for trend-spotting and (untargeted) marketing and ad-
vertising; and counting or statistical sampling (e.g., by clearinghouses like AS-
CAP/BMI for payments to artists). However, data collected for legitimate rea-
sons can also be used in illegitimate (or perhaps just distasteful or annoying)
ways. Furthermore, in today’s dynamic business environment, mergers, acquisi-
tions, bankruptcies, and other changes over the life-cycle of a corporation can

78 Joan Feigenbaum et al.

radically change who has access to what information and how that information
may be used and cross-referenced. The merger of DoubleClick and Abacus Direct
exemplified how changing access to data can have radical privacy implications [5].

It is our thesis that sound privacy engineering of content-distribution and
DRM systems can help defuse at least some of this inherent tension. If prop-
erly designed, implemented, and used, DRM can provide reasonable user-privacy
protection1 and simultaneously supply businesses with information necessary for
their basic functionality at a fair cost. We give a list of privacy-engineering prin-
ciples in Section 4 below; perhaps the most important overarching theme of these
principles is that data-collection procedures should be tailored very precisely for
the business purposes they serve and that personally identifying information
(e.g., names and addresses) should be omitted from all data collections whose
purposes don’t require it.

We focus our discussion on mass-market content. For niche-market content,
we believe that privacy issues are less pressing or at least are more easily solved
by technology, legal contracts, or some combination of the two.

The rest of this paper is organized as follows. In Section 2, we review the
ways in which DRM can impact user privacy. In Section 3, we explain why
this problem cannot be solved straightforwardly by the considerable number
of tools that have already been explored at length in the security and privacy
literature. In Section 4, we suggest a practical approach to privacy engineering
using the Fair Information Principles and privacy audits. We provide several
simple, yet effective principles that engineers should observe for privacy-friendly
system design. We conclude in Section 5.

2 How Digital Distribution
and DRM Affect User Privacy

In this section, we review how Internet content distribution and DRM can lead to
privacy loss. We also point out which of these paths to privacy loss are common to
all Internet-based commerce or to all forms of mass-market content distribution
and which are specifically created or exacerbated by DRM. In order to do this,
we must examine some of the ways in which commercial distributors might use
DRM to build profitable businesses.

First, consider a straightforward distribution model that does not involve
DRM. The user downloads a digital work from the distributor’s website; this
transaction may or may not involve payment, and, if it does, the user will provide
a credit-card number or some other information that allows the payment to work
its way through the financial system. Once the user has the digital content on
his computer, he is subsequently technologically untethered to the distributor
and may use the content in any way that he chooses (albeit at his legal risk if he
1 In this paper, we use the term “privacy” to mean end-user privacy, i.e., privacy of
the individual consumer. We acknowledge that other constituencies, e.g., content
owners and technology providers, have privacy concerns, but those concerns are the
subject of another paper.

Privacy Engineering for Digital Rights Management Systems 79

violates copyright or other laws). There are two main ways in which this type
of transaction can pose a threat to the user’s privacy. His Web activity can be
monitored (e.g., through client-side cookies, server-side logs, or a variety of other
means), and his credit-card or other payment data can be mined. The first threat
is common to all Web-based commerce (and to non-commercial Web activity,
for that matter) and has nothing to do with content distribution specifically.
The second is a long-standing concomitant of non-cash (or, more precisely, non-
anonymous) payment systems, and it has nothing to do with content distribution
or with Web-based transactions, except insofar as the migration of commerce to
the Web could greatly increase the extent to which payment data are mined.
Many more parties can collect and access payment data online than can do so
offline.

Our concern in this paper is the effect on privacy of introducing DRM to
this straightforward model. Before going on, it is worth asking why DRM is
needed. The standard answers are that owners and distributors need some post-
download control over their content (i.e., that the user in the basic DRM-free
transaction described above would copy, distribute, or modify the content in
ways that violate copyright), that users need a way to verify provenance and
authenticity of content, and that, in general, business models that are used for
physically embodied works such as books and CDs will break if the works are
embodied in digital files and sold through the type of straightforward purchase
described above. This hypothesis may be correct, but it has not been adequately
tested. Mass-market distributors have not yet put much high-quality content
online and tested the proposition that, if they offer it at a reasonable price
through an easy-to-use channel, their users will buy it rather than steal it. Some
niche-market distributors are doing so, and the results of these experiments will
be interesting. In the meantime, because DRM systems are under development
and will apparently be used by big distributors, their potential effects on user
privacy are important.

There are several different DRM strategies, and their potential effects on
privacy differ as well. We consider them in turn. Note that we are not claiming
that the DRM technology needed to implement these strategies would “work,”
in the sense that it could not be circumvented; we’re asking what its effect on
privacy would be if it did work.

One strategy is to distribute persistent, complete DRM metadata with digi-
tal content. In the basic transaction described above, each digital work available
on the distributor’s website would be formatted for use only by approved ap-
plication programs, and each of these applications would be able to interpret
the distributor’s DRM metadata as well as the content. Each file downloaded
by a user would include both the content and the metadata that describes the
“rights” that the user has acquired. Content and rights need not be downloaded
from the same website; the point is that, in this general DRM strategy, they
are each transferred once to the user’s computer (after payment if this is a com-
mercial transaction) and thereafter unmonitored by the distributor. Using an
approved application, the user could only access the content as specified by the

80 Joan Feigenbaum et al.

rights metadata. Approved actions for text, for example, might include viewing
and printing but not editing or redistributing via email. Promotional music or
video might be distributed free but restricted via DRM metadata to a fixed,
small number of plays. Under this strategy, rights metadata is added to the col-
lectible, minable information about a user. Otherwise, the strategy has no effect
on user privacy; in particular, actual use of the digital content, as opposed to
approved but not necessarily executed use, can take place in private, offline.

Another strategy is to tie downloaded content to a particular device or set
of devices. Before downloading a digital work, the user would have to provide
serial numbers (or other IDs) of the devices on which he intends to use it. The
DRM metadata distributed with the work would then have to include this set
of devices, and the set would thus become yet another type of user-specific in-
formation that can be collected and mined. In addition, this strategy requires
ongoing, periodic contact between user and distributor. Users who have pur-
chased content will insist on being able to continue to use it when they replace
old devices with new ones, e.g., because the old ones malfunctioned or because
the users bought more powerful devices or received them as gifts. Thus, the
rights server, which may or may not be the distributor, will have to save and
periodically update a record of the user and the device set. Users can thus be
“tracked” to some extent under this DRM strategy. This is a departure from
the previous scenarios in which a user downloaded some content and possibly
some metadata, paid for it if necessary, and from then on did not need to have
any further contact with the content distributor or rights server. Such tracking
for the purpose of tying content to a set of devices obviously puts at risk some
previously private information about the user.

A third DRM strategy involves tying the downloaded content to the user.
After downloading a digital work from a legitimate distributor (and paying for
it if necessary), the user would have the right to use the work on any device
at any time, after proving that he’s a legitimate user. Here, the amount of
user-tracking can be much greater than it is in other strategies. Potentially
collectible and minable information about a user includes his complete listening,
reading, and viewing history. This is a qualitatively more serious threat than
those previously described. Many people would be willing to risk others’ knowing
that they downloaded a pornographic video; fewer would want others to know
that they watched this video 1,000 times.2

Finally, a radical and interesting strategy consists of dispensing altogether
with content downloads. Some conventional wisdom has it that sale of digital
content can never be profitable (in part because users will expect to pay much less
for it than they have traditionally paid for physically embodied content, while
distributors’ costs will not be much lower than they are in the physical world)
but that subscriptions to content services may be. In the “content becomes a
service” scenario, paid-up subscribers to Internet content-delivery services can
get any of the content in their subscription package streamed to their devices
2 In a more realistic example, a friend of ours who is not a technology professional
said “All of the Barry Manilow fans out there would be blackmail victims.”

Privacy Engineering for Digital Rights Management Systems 81

whenever they want it, but they don’t actually acquire copies of the content. Such
subscriptions might be attractive to users if they are reasonably priced, but they
create the potential for massive collection of usage data and the resulting loss of
privacy.

These are not the only possible DRM strategies, but they illustrate the basic,
important point that some potential threats to user privacy derive from moni-
toring of content and rights acquisition, some from the need to update rights,
and some from the collection of usage data.

As we explained earlier, some of the potential threats to privacy are caused
by Web-based distribution and not by DRM per se. It is worth noting that there
are also ways in which Web-based distribution is potentially more conducive to
user privacy than older distribution channels. For example, because delivery is
done via a data network, there is no intrinsic need to supply identity-exposing
real-life information, such as a delivery or billing address, in order to complete a
transaction. Furthermore, certain digital distribution channels, such as decentral-
ized peer-to-peer systems, naturally make user-tracking harder than it is in other
channels and could thus lead naturally to more privacy. When DRM systems are
introduced in order to have fine-grained control over the usage of content, they
can also dispense fine-grained anonymous payment tokens, thus allowing usage
tracking (e.g., for the purposes of efficiently provisioning networks or accurately
compensating artists) without user tracking. More generally, DRM systems can
segregate personally identifying information (PII) such as names, addresses, and
phone and credit-card numbers into precisely the databases and operations sys-
tems of the distributor that actually need to make use of it, keeping it out of
digital credentials, tokens, and other objects that are used by content-rendering
applications and other system components that do not need PII.

3 Why Cryptography Is Insufficient

Twenty-five years of cryptographic research has yielded a vast array of privacy-
enabling technologies that support many types of two-party and multi-party
interactions. Thus, cryptographic researchers might wish to believe that user
privacy in content distribution and DRM is a solved problem. You pay for con-
tent with anonymous electronic cash. You connect to content providers and rights
lockers via an anonymizing mixnet. You authenticate yourself with anonymous
credential schemes or zero-knowledge identification protocols. You download con-
tent via private information retrieval or oblivious transfer. You use secure func-
tion evaluation when interacting with services that require some information.

Despite the apparent profusion of such technologies, few are in widespread
use. Furthermore, even if they were in widespread use, they would not necessarily
eliminate the user-privacy problems that we have described. In this section, we
seek to understand why this is so. We first examine this issue from a technical
perspective, then consider relevant economic and business aspects.

82 Joan Feigenbaum et al.

3.1 Technological Failures of Privacy Solutions

Privacy-enhancing technologies developed in the research community are not
stand-alone, adequate solutions to privacy threats. We claim that these tech-
nologies are insufficient: They solve only part of the problem and are open to
technical attacks, they are often difficult to integrate with the rest of the mass-
market content-distribution infrastructure, and they sometimes have unaccept-
ably high costs.

Our Abstractions Don’t Model Our Reality The cryptographic research
community models interactions and protocols in terms of very distinct enti-
ties and information. For instance, the traditional communication confidentiality
model is that Alice wants to communicate with her friend Bob without adver-
saries Eve and Lucifer being able to read her message. We may abstract gen-
eral privacy-enhancing protocols by saying that users try to hide information
by performing computations in some trusted private environment (the trusted
computing base, or TCB) and then using the results of these computations to
communicate with the outside world. We suggest that this model is inadequate
for commercial content distribution, where the clean dichotomies of good guy
vs. bad guy, trusted vs. untrusted, and private vs. public do not exist.

DRM comes into the picture because users want to obtain mass-market con-
tent online and commercial distributors want to sell it to them. Many users are
unconcerned about the commercial distributors knowing the details of the pur-
chases in which they participate directly and using this knowledge for straight-
forward business purposes (such as order fulfillment and billing), but many are
concerned about how such knowledge could be misused or shared. This problem
is further complicated by the fact that “misuse” is ill-defined; pairs of parties
that have some interests in common also have some conflicting interests. Al-
liances, partnerships, and commercial relationships are constantly in flux and
will remain so. Not only are users battling from the low ground, but it is diffi-
cult for them even to identity the enemy from whom they should hide all of their
private data. In a network where businesses bundle valuable content and per-
sonalization services, and users want anytime anywhere access from any number
of devices, who is Alice, who is Bob, who is the enemy, and what is the TCB?
Cryptographic research cannot answer these questions. Cryptographic protocol
specifications assume that one knows exactly what is “legitimate use” of data
and what is “misuse,” and they assume that there is a single, well-defined rela-
tionship between Alice and Bob.

Technical Limitations: Security Breaches and Usability Even if crypto-
graphic research could answer these questions, attackers are likely to find techni-
cal exploits and information leakage in a purely technical solution to user-privacy
problems. The research community is relatively good at designing secure pro-
tocols, but secure implementation is much harder, much more complex, and
not something over which the research community has complete control. Brady

Privacy Engineering for Digital Rights Management Systems 83

et al. argue in [3] that very moderate attackers will always find vulnerabilities in
large and complex systems: Statistics favor the attacker as such software systems
evolve.

One critical technical concern with privacy-enhancing technology is the ap-
parent tradeoff between ease-of-use and security. Even “simple” technology like
encrypted email, for which toolkits such as PGP were offered in the early 1990s,
is still confusing and difficult for the average consumer to use [34]. In DRM sys-
tems, managing separate pseudonyms for accessing content or interacting with
separate entities for content versus rights management may prove to be similarly
confusing.

Many ease-of-use issues relate to the problem of consumer authentication.
Most client authentication techniques, e.g., passwords and Web cookies, are rel-
atively weak and prone to attacks [24,14]. Furthermore, recovery techniques for
forgotten passwords are arguably weaker: They are often based on something
a user has (such as an physical or email address) or something he knows (such
as answers to Web-form questions). These techniques generally require a large
amount of PII and offer marginal security. In fact, privacy may turn out to be
infeasible in some information-theoretic sense if we also want to provide recov-
ery.3

These security weaknesses have privacy implications. Even ignoring business
misuse (accidental or otherwise), if PII is collected and an attacker compromises
a server, he may learn embarrassing or destructive information. For instance,
cracking a DRM rights locker and exposing that a CEO recently purchased
“How to survive after bankruptcy” will certainly not help the company’s stock
price. The distinction between “system security” and “user privacy” may be
increasingly hard to make.

Legacy System Integration Privacy considerations should be part of system
design from the beginning, as should security considerations. Privacy decisions
should be made when one maps out data flows and the format of data exchanges;
they are hard to change after standardization or wide acceptance. Unfortunately,
if businesses choose to engineer privacy at all, they will probably have to inte-
grate privacy solutions into legacy systems, because of switching costs. System
integration poses several difficulties:

– Dual operation: Legacy software may have to support dual modes for
backwards compatibility, one that supplies information, one that doesn’t.
There have been classic attacks (e.g., SSL version rollback [32]) against such
designs. What good are advanced privacy options if a vendor does not update
his software, and a user’s DRM client happily supplies full information? One
natural response to dual operation problems is forced updates for client
software, which has its own drawbacks with respect to security, privacy, and
consumer acceptance.

3 That is, the user can have no private input to the recovery procedure.

84 Joan Feigenbaum et al.

– Information: Legacy systems may expect more information than new pri-
vacy-friendly exchanges provide. It has been the experience of the authors
that businesses often do not fully recognize the purpose or effect of such
information. For instance, businesses may decide to replace social security
numbers (SSNs) with random numeric ids in a database, without realizing
until later that SSNs were used for risk management to reduce collection
costs. As usual, system documentation is often incomplete.

– Performance: Legacy systems may expect grossly different performance
from that offered by new privacy-enabling protocols. Fiddling with timers
may not be sufficient for complex, adaptive protocols, especially for multi-
party situations, multiple network layers, and many-node systems.

– Load: The increased computational and communication load of crypto-
graphic protocols may cause a congestive collapse of networking and routing
protocols, as well as client/server operations.

Excessive Technical Costs? There are two sets of costs in respecting customer
privacy. They are the cost of deploying and operating the privacy technology and
the opportunity cost of the activities rendered impossible by respect for privacy.
The latter business incentives are described in Section 3.2.

The direct costs of privacy solutions include development, operation, policy-
management, and performance problems caused by increased communication
and computationally more expensive protocols. We show how the costs of several
cryptographic technologies would apply to privacy solutions for DRM.

– Public-key crypto is slow: Most privacy-enabling protocols, e.g., blind-
ing or oblivious transfer, heavily use modular multiplications and exponen-
tiations for public-key operations. This creates a significant computational
load in comparison to basic symmetric primitives. Aging DES can process
13 MB per second, and the AES standard Rijndael can process 30 MB per
second. With 1024-bit RSA, we can perform only 98 decryption operations
per second [8].4 We recognize that cryptographic accelerators are becoming
inexpensive, with a $700 card from Cryptographic Appliances able to per-
form 1000 RSA operations per second. Still, users should certainly not be
expected to purchase additional hardware, and large server farms may still
find this cumulatively pricy.

– SSL is slow: Consider the cost of public-key operations in SSL. Network-
shop found that a typical Pentium server (running Linux and Apache) can
handle about 322 HTTP connections per second at full capacity but only 24
SSL connections per second. A Sun 450 (running Solaris and Apache) fell
from 500 to 3 connections per second [35].
Crypto often plays a large role in DRM system for content protection but
mostly through symmetric-key operations. If privacy technologies require

4 As reported in the Crypto++ 4.0 benchmarks, run on Win2000 on a Celeron 850
MHz chip.

Privacy Engineering for Digital Rights Management Systems 85

extensive use of public key primitives, i.e., do not use them only for initial-
ization, they might not only throttle the rate of new connections but also
greatly reduce the maximum number of simultaneous connections.

– Small devices are slow: Although one trend of computers is to faster and
cheaper, they also trend towards smaller and more mobile. Even if cryptog-
raphy is inexpensive (computationally and otherwise) on the server side, it
may add an unacceptable burden on devices in which grams of mass and
minutes of battery life are important engineering goals.

– Public-key infrastructures (PKIs) are a false panacea: The Gart-
ner Group reported that average in-house PKI development and installation
costs around $1 million, and 80% of PKIs today are in test pilot stages and
may never get off the ground [18]. These numbers refer mainly to business-to-
business applications. There are very few serious PKI pilots that are trying
to get certificates into the hands of consumers.
While DRM systems will likely require a PKI for vendors and distributors,
users themselves do not seem to need public keys. Privacy-enhancing tech-
nologies such as attribute certificates or private credentials [4] change all
this. One technical reason that SET failed was that it required a PKI for all
customers, not merely for vendors.

– Traffic analysis may vitiate anonymous cash and credentials: One
might wish to replace credit-card payments with anonymous tokens that
serve as proof of purchase. This may not work very well with practical ecash
schemes, because consumers will often buy a token and then immediately
redeem it for the rights or the content to which it entitles them. The compu-
tational expense of using blinding or some other cryptographic technique to
create the token will buy us nothing, because observers can link these two
actions by the consumer and learn exactly what they would have learned
from a credit-card transaction. Forcing the consumer to delay redemption
of the token would probably be a poor business decision. Convenience and
ease-of-use trump security for most consumers; there is little reason to ex-
pect that the same won’t be the case for privacy. The traffic-analysis problem
would be mitigated if ecash were widely used and accepted.

– Mixnets absorb bandwidth: Ignoring vulnerabilities to complex traffic-
analysis attacks or simple JavaScript and cookie exploits, mixnets are ill-
suited for mass-market content distribution for another reason: At best,
bandwidth use scales linearly with the number of hops. Even worse, widely
deployed mixnets may greatly randomize traffic patterns, as messages are
thrown across North America, Europe, Asia, and Africa in order to cross
jurisdictional lines. This randomization works counter to network-load bal-
ancing and current infrastructure deployment (e.g., the pipes to Africa are
much smaller). Protocol redesign is prohibitively expensive.

These are merely a few examples of the technical costs of privacy-enhancing
technologies. In describing them, we do not mean to suggest that these tech-
nologies can never be made efficient and cost-effective; on the contrary, we en-
courage R&D efforts to make them so (and we participate in such efforts our-

86 Joan Feigenbaum et al.

selves!). Rather, our goal is to point out the harsh reality of current gaps between
real-world efficiency requirements and real-world performance of techniques that
satisfy the definitions of “efficiency” given in the research literature.

3.2 Economic Aspects of Privacy Engineering

The major constituencies involved in a privacy-enabling protocol or system must
be willing to sacrifice the information that may normally be collected about
the other parties or their inputs. However, in e-commerce transactions, these
constituencies have conflicting interests and asymmetric power. Why should a
powerful content provider wanting to learn information about his users agree to
run a protocol that deprives him of this very information? The industry is likely
to the follow the “Know your customer” mantra.

Many of the problems facing privacy-technology adoption can be framed
in microeconomic terms: network externalities, asymmetric information, moral
hazard, and adverse selection. Shapiro and Varian expose the role of incentives
in the information economy in [28]. Ross Anderson poses a similar argument
in [1], relating the lack of information security to perverse economic incentives.

Network Externalities The utility of privacy technologies on the Internet
may be related to Metcalfe’s law, which states that the usefulness of a network
is proportional to the square of the number of nodes. The result is that networks
can grow very slowly at first but then rapidly expand once a certain size is
reached. This growth pattern is not limited to communication systems, such as
the telephone network or the Internet, but is applicable in many situations in
which a number of parties need to coordinate investments for a new system to
take off. Television, credit cards, and recently DVDs have faced such startup
difficulties.

It is easy to see that many privacy technologies obey Metcalfe’s law and
therefore exhibit network externalities – their marginal value to a user increases
with their expected number of users. Anonymous file-sharing systems will be-
come truly beneficial to users only when a large array of content can be readily,
easily accessed. Anonymous email is unidirectional (and therefore less useful)
unless both parties use the anonymizing network [23]. The anonymity offered by
such a network is bounded by the number of users. Similarly, electronic cash will
only become useful if many merchants will accept it. We may infer from this that
DRM systems are unlikely to push the acceptance of cryptographic ecash but
rather will continue with existing technologies, e.g., credit cards. As we design
DRM systems for practical use in the near term, we should therefore expect that
vendors will learn who is paying how much.

Several other features of network economics are of particular importance.
Technology often has high fixed cost and low marginal costs, and switching costs
for infrastructural technologies are also quite large, leading to lock-in. Assuming
that corporate entities using DRM systems make decisions motivated primarily
by profit (and that a good reputation for respecting customers’ privacy has a

Privacy Engineering for Digital Rights Management Systems 87

measurable positive impact on profitability), these entities should only switch
infrastructural technologies if the expected net present value of the benefits of
switching is greater than its costs. Experience shows that this makes infrastruc-
tural switching rare, slow, and painful. Consider, for example, the nonexistent
migration from IPv4 to IPv6.

Often, part of what makes a business an “Internet business” is that it can use
pre-existing Internet infrastructure to get a cost advantage over its competitors.
If privacy technologies require widespread infrastructure redesign, they vitiate
this principle of Internet business success, and content providers probably won’t
adopt them. If ubiquitous onion routing requires changing network protocols and
routers, and the only benefit is consumer privacy, we had better not have to wait
for onion routing to be in place in order to be able to buy and read e-books in
private!

Once again, we are not suggesting that Internet infrastructure will never
evolve to a state in which it seamlessly and efficiently incorporates privacy-
enabling protocols. Our point is that such a state is quite far from the state
we’re in now, that evolution will be slow, and that the desire for user privacy in
DRM may not be sufficient motivation to force infrastructural change. Interim
steps are needed to ensure reasonable privacy options in today’s infrastructure.

Asymmetries, Moral Hazard, and Demand An asymmetry of information
between entities in a DRM system makes privacy more difficult to achieve. Moral
hazard arises from the principal-agent problem, in which the principal (i.e.,
consumer) cannot observe the effort of the agent (i.e., content/service provider)
and thus has to incentivize the agent using something other than a payment
per unit of effort. The hazard arises when the results of the agent’s effort (i.e.,
the “amount” of privacy) cannot be measured accurately, and thus the agent is
tempted to slack off.

The obvious conclusion of this economic argument is that content providers
will be tempted not to provide privacy if providing it costs money (and we have
just argued that it does), and consumers cannot really measure their “units of
privacy” and make educated demands.

Consumers are largely unable to differentiate between privacy options, and
there are not even good methods for evaluating privacy. “Best practices” for pri-
vacy engineering have not yet been standardized. It is noticeable that Earthlink
launched a new $50 to $60 million ad campaign, focusing strongly on offering
“the totally anonymous Internet” [26]. In reality, this means they promise to
abide by their privacy policy and will not share individual-subscriber informa-
tion. What is the technical difference from many other ISPs? Likely none. How
does the average consumer differentiate this “trust me” approach from techno-
logical ones such as the Zero-Knowledge Freedom network [15], which provides
pseudonymity based on cryptographic onion-routing [29]? Likely poorly, notwith-
standing greater latencies. Even if businesses decide to offer privacy, this con-
sumer inability to differentiate motivates companies not to invest in expensive
technological options.

88 Joan Feigenbaum et al.

Business Incentives Two main issues face businesses that are considering
privacy practices: why they should collect information and why they should not
offer privacy.

There are legitimate reasons for businesses to collect data, such as cus-
tomer retention, statistics, risk management, customization, and billing. For
instance, network operations can (and perhaps should) collect usage data for
traffic-modeling and provisioning purposes. Lack of good Internet traffic models
is a big problem, and Internet-traffic modeling is a very active area of research; it
requires the collection of usage data. In the content-distribution and DRM space,
network operators would want to know which content is accessed from where,
especially in rich media formats, in order to distributively cache replicas for
bandwidth-saving, latency-reducing, and load-balancing purposes (an approach
taken by Akamai for dynamic content routing [20]). In a subscription-service
model, content providers would still need to know how often a song is accessed
in order to determine artist compensation. For risk-management purposes in
DRM systems, businesses want to be able to blacklist compromised devices or
revoke compromised public keys. Similarly, most payment mechanisms require
additional information to mitigate fraud, e.g., asking for billing address infor-
mation for online credit-card payments.

Businesses also have incentives not to offer privacy, in addition to the value of
the information itself. Information security is difficult and expensive. Businesses
still spend large amounts of money and many person-hours trying to achieve it,
because it protects their own interests. Information privacy seems to be compa-
rably difficult, similarly requiring secure design, implementation, and operation.
However, businesses do not have the same incentives for privacy, and this results
in little spending for technological innovation and development.

However, there are also motivations for minimizing the information collected.
One of the strongest reasons, regulation, is concerned with both compliance
and avoidance. Companies must comply with regulations such as the E.U. Data
Protection Directive, and a large number of laws have been proposed in the
U.S. Congress and state legislatures, as Americans grow increasingly concerned
about their privacy. Businesses are starting to see that collecting and correlating
data can present a public-relations risk. Lastly, extensive data collection and
distribution can substantially increase the cost and effort that a business must
undergo in order to be audited. We return to these issues in Section 4.3.

To summarize, it is likely that, in content distribution and DRM, as in many
other realms, businesses will fight tooth and nail for the right to collect in-
formation they deem necessary. Depending on the nature of the information,
consumers probably will not fight as hard to prevent them from collecting it.
One major consideration for practical privacy engineering is that information
collected for legitimate purposes may also be used in illegitimate ways, including
sharing it with third parties who do not have a need to know. In Section 4, we
recommend several steps that businesses and DRM-technology developers can
take to limit the extent of this sharing and the damage it can cause.

Privacy Engineering for Digital Rights Management Systems 89

4 Approaches to Practical Privacy Engineering

Our recommendations fall into two general categories: (1) Fair Information Prin-
ciples and ways to implement them and (2) the need for privacy audits and
privacy-policy enforcement.

4.1 The Fair Information Principles Approach

We have argued that definitions of “privacy” found in the cryptographic research
literature are inadequate for most real-world privacy-enhancing solutions. If one
accepts this claim, what should be the goals for practical privacy engineering?
The best general answer we can give today is the Fair Information Principles
(FIPs) [33], an early and commonly used framework for examining information-
collection practices in privacy-sensitive areas such as health care. The FIPs have
been widely accepted as describing desirable privacy goals. Variants of these
principles underlie most privacy-protection laws and principles, e.g., European
privacy legislation [12,13,31].

The OECD version [12] of the FIPs is the following:

– Collection Limitation
– Data Accuracy
– Purpose Disclosure
– Use Limits
– Security
– Openness
– Participation
– Organizational Accountability

These are useful guidelines, in part because they do not specify any techno-
logical approach but rather set general goals. This differs significantly from the
cryptographic approach, in which defining the terms of information-theoretic
privacy or computational indistinguishability almost automatically suggests a
technological approach, leading us to use expensive cryptographic tools such
as public-key encryption, blinding, zero-knowledge protocols, etc. The FIPs al-
low us to consider low-cost solutions for privacy-enhanced electronic-commerce
technologies.

This is important in light of many of the reasons that businesses have not
widely adopted privacy-enhancing technologies (as described in Section 3.2).
Even if the R&D community makes great strides on some of the problems pointed
out in Section 3.1, it is unclear how quickly this technology would be developed
and adopted; privacy may remain a low enough priority for the major constituen-
cies to make serious investment unlikely.

On the consumer side, privacy studies continually report that consumers are
very concerned about privacy. Yet today, we do not have evidence that consumers
have broadly adopted software to enhance their privacy, e.g., cookie blockers.
Asking consumers to install and learn new, privacy-respecting software has been

90 Joan Feigenbaum et al.

largely unsuccessful: The average user apparently does not want to pay for this
stuff, in the broad sense of the word “pay.” Rapid adoption of new technologies
on the Internet is driven by the next “killer app,” e.g., Napster has done a lot to
introduce consumers to digital music. Privacy does not fall into such an exalted
category.5

Therefore, we suggest an alternative approach to privacy engineering that
avoids some of these pitfalls:

1. The Fair Information Principles are an adequate notion of privacy.
2. Privacy enhancement should be built directly into the DRM technology

that powers consumer applications. Consumers should not be burdened with
needing to take additional steps to protect their privacy.

3. The business costs of introducing privacy enhancement into DRM should be
low.

4. The consumer costs of using privacy-enhanced DRM should also be low.
These costs include both the monetary cost of the service and the ease-of-
use, latency, and other “user-experience” issues.

Why the FIPs apply to DRM One may view DRM technology as security
middleware. It is typically targeted towards international markets, e.g., towards
European and Asian, as well as American, jurisdictions. One of the most com-
pelling arguments for the FIPs is that they already underlie most privacy-friendly
legislation and best-practice standards. Businesses that operate in (or plan to
expand into) these jurisdictions will minimize their compliance costs if DRM
technology can be easily configured to comply with these regulations. Further-
more, because the FIPs are emerging as the de facto measure for good privacy
practices, business PR needs may largely be satisfied by complying with them.

The Fair Information Principles clearly stress the notion of the purpose for
which information is collected and used. This is particularly well suited for rel-
atively complex systems like DRM, in which there are a number of legitimate
purposes for collecting and using information, as pointed out in Section 3.2.

4.2 Simple Principles for Privacy Engineering

Although the FIPs are well understood, the technological literature has said
relatively little on how to translate them into engineering principles. In this sec-
tion, we describe some system-architectural, system-engineering, low-tech, and
no-tech principles that begin to allow one to meet these goals for content distri-
bution and DRM.

Customizable Privacy Many businesses may deploy DRM middleware, with
possibly different preferred information-collection and privacy policies. This
makes DRM systems different from specific, unilaterally deployed e-commerce
5 An analogous phenomenon has been observed in the security field.

Privacy Engineering for Digital Rights Management Systems 91

solutions. A DRM system should therefore offer customizable privacy, within
which system participants can easily configure the system to accommodate their
preferred information-collection and handling procedures.

This customization principle has several simple consequences. A system
should work with minimal data exchanges, and personally identifying informa-
tion should not be included by default. Creating additional channels for informa-
tion flow is significantly easier than trying to remove existing information flows.
A first step in privacy-aware system design is to analyze the need for informa-
tion, to graph flows among the various system participants, to analyze how the
information flow can be minimized, and to design the message formats accord-
ingly. This point further demonstrates the following, of no surprise to security
engineers:

Privacy considerations should be part of the initial system design phase.
They should not be considered a property that can be added on later.

As the only widely available payment mechanism on the Internet is cur-
rently credit cards purchasing of electronic goods, and for that matter any type
of goods, on the Internet is effectively non-anonymous. Purchases happen at
web retailers, which use the currently available non-anonymous ecommerce in-
frastructure. However on the DRM layer no PII needs to be collected. Simple
pseudonyms appear to be sufficient to allow for most DRM functionalities in-
cluding user account management and risk management tasks, such as, individ-
ualization of client software or devices and revocation. This is an interesting
observation as it shows that a lot of the privacy intrusive behavior that has been
attributed to DRM does in fact happen on the ecommerce layer and not on the
DRM layer itself. It comes from the fact digital goods are sold online and is quite
independent of the copyright protection measures that are taken. Clearly from
an privacy engineering viewpoint system designers can and should disassociate
the non-anonymous ecommerce and payment layer from the DRM layer by not
passing PII from the Web retailer to the DRM servers that manage rights and
keys and the rest of the DRM infrastructure.

Collection Limitation A business needs to determine which information is
necessary for business practices and legacy-system integration, as well as the pur-
pose for this information. For example, credit-card security requires the transfer
of billing address information. However, many applications may not require PII.
In DRM systems, one should give special consideration to collection-limitation
issues for the activation and individualization of DRM clients, during which these
clients are endowed with public/secret key pairs. (One main purpose of individ-
ualization is to ensure that compromised devices can be identified and revoked;
this does not necessarily mean that individual users must be identified.) Statis-
tical purposes, e.g., user profiling, recommendation services, and customization,
similarly do not require full disclosure of PII. A unique identifier or pseudonym
can be used to link the appropriate information together.

92 Joan Feigenbaum et al.

A business should only collect information that it really needs and should
disclose how this information will be used.

A business can avoid a “vacuum cleaner” approach to information collection
by analyzing its real importance. Certainly this analysis is difficult, especially
within the realm of a new technology such as DRM. But, as The Economist
points out in [11], “Firms are more likely to collect information sensibly and
thoughtfully if they know why they want it.”

Database Architecture and Management Database design offers a prime
opportunity to provide a layer of data-privacy technology. In fact, database de-
sign will affect the set of privacy choices businesses can offer their customers.
Data may be segmented according to the different groups that are interested
in it – a principle of split databases and separation of duty. For example, ac-
counting needs customer names and billing addresses, and customer service may
need some proof of purchase to verify warranty validity. Marketing and risk-
management departments, which may require usage data, can function with only
a pseudonym. This weak pseudonymization is likely to be a simple pointer into
another database, but this separation may aid privacy audits, simplify sharing
arrangements, and provide an easy means for access control within an organiza-
tion.

A DRM system should provide easy pseudonymization that can be used
to key databases.

According to good collection-limitation practices, some DRM systems may
not require a user’s name.6 In those systems that do not require full PII dis-
closure, splitting usage data from billing data is even simpler; there may be no
need to manage a secure mapping between separate databases.

Indeed there are already laws that explicitly prescribe that user profiles
should only be collected in pseudonymized profiles, like the German Teleser-
vices Data Protection Act [21] and the “Gesetz zu dem Staatsvertrag uber
Mediendienste”[22]. These laws likely apply to DRM systems (among other on-
line services). One noticeable fact is here that these laws also make requirements
about the internal technical workings of a system, such as, that pseudonymiza-
tion techniques should be used. These laws have been enacted already in 1997.
So why have the technical provisions not been widely implemented in Germany
since then for a variety of Internet services? Firstly their need to be parties
who actively work on their enforcement. Secondly and more importantly the law
requires the implementation of certain privacy protecting measures, if they are
“feasible and reasonable”. Thus we believe that a big contribution the R&D com-
munity could make would be to demonstrate that the deployment of some basic
6 In fact, given that experienced or professional troublemakers are likely to engage in
identity theft before buying their devices or services, not requiring a name prevents
anyone from laboring under the false expectation that they can track down and
punish troublemakers.

Privacy Engineering for Digital Rights Management Systems 93

privacy protecting measures are both technologically and economically feasible
and reasonable in real world commercial contexts. This may create the foun-
dation for data protection agencies and others to effectively demand that these
measures will actually be implemented.

The practice of data erasure should also be performed as a privacy-friendly
data-management technique. Data fields that contain PII should be erased after
their immediate need has been fulfilled. The removal of PII from usage records
before those records are inserted into a long-lived data warehouse can definitely
be done efficiently on a massive scale; in fact, it is already done efficiently on a
massive scale.7

Purpose Disclosure (Notice) Several considerations must be taken into ac-
count for purpose disclosure: a means to express the relevant practices in an
understandable way, a channel to transport these various choices to the user at
the proper time, and a channel to transport the user’s decision to other sys-
tem participants that need to observe these choices. For example, banks have
complied with the letter of the Gramm-Leach-Bliley Financial Services Modern-
ization Act, but not its spirit, by sending out notices that are densely worded
and incomprehensible [19].

Notices should be easily understandable and thoroughly disseminated.

In the DRM world, a consumer should be notified about privacy practices
that accompany a certain content offer before any actual purchase. In the current
DRM world, content acquisition typically occurs through a Web retailer. This
provides an easy channel for notification, either by linking to a privacy policy
in HTML or by automating tools for notice such as P3P [7]8. A DRM system
may want to enable several different information-collection practices, with some
requiring usage-data collection and others not requiring it. For server-side data
collection, a user’s decision should be transferred to the rights-fulfillment server
and/or content provider. For client-side data collection, we should prevent any
reporting (through simple access control) to usage-clearinghouse servers unless
the user has been notified – and has agreed – to such practices.

After this paper was accepted, a lawsuit was filed against Fahrenheit En-
tertainment and Music City Records for distributing a CD whose content was
not amenable to standard “ripping” techniques. Among the major claims of the
suit are that listening to the music was no longer anonymous and that this was
improperly disclosed [9].

Choice One of the most difficult challenges for FIPs compliance is giving users
reasonable choices for information collection. One of the reasons for this is that
7 We have personal experience with the responsible use of depersonalized telephone
calling records for traffic modeling and other information-sciences research purposes.

8 We consider P3P in greater depth in Section 4.4.

94 Joan Feigenbaum et al.

businesses may not wish to give consumers real choices; they may want to collect
more information than what is actually needed to complete transactions.

Businesses should attempt to minimize bias when presenting consumer pri-
vacy choices. In public policy, there is a known and studied phenomenon whereby
a planning organization presents a set of options that are all roughly similar, thus
allowing the appearance of debate (respecting choice) while knowing what the
outcome will be. The consequences of various choices should be made readily
apparent. We note that businesses already seem to think that simplicity is an
effective differentiator in the service industry: Advertisements for “$0.05 any-
time, anywhere” long-distance phone service arose from consumer frustration
with hidden and exploding phone rates.

Another wrong way to approach privacy is to offer no reasonable choice at
all, such as offers for “(1) free subscription service with usage-data collection, (2)
gold-star privacy service for $20 per month,” or worse, “(1) no privacy, (2) no
service.” The majority of consumers will seek the cheapest type of service, leading
to no real privacy enhancements, and businesses will still incur the capital costs
of implementing and deploying privacy-protected service for the small minority.
On the Internet, there have been few situations in which consumers have been
willing to pay for privacy.

Client-Side Data Aggregation Client-side data aggregation can provide low-
tech privacy enhancement for statistics-based services, as in profiling or recom-
mendation services. The granularity of reported usage data will automatically
affect the amount of privacy that a user enjoys. If profiling can be based on
categorization and “binning” techniques9, then users can aggregate data accord-
ing to simple categorization criteria: “Last week, accessed 30 blues albums, 16
classical; played 14 hours rock, 16 hours hip-hop . . . ”.

Transferring Processed Data Many of the data flows in a DRM system will
not need to be “complete.” For example, an organization such as ASCAP does
not need to know who listened to a given song in order to distribute royalties,
only that an aggregator will properly pay. There may be audit requirements
to ensure that all payments flow through, but those can be accomplished in a
number of ways that do not require the sharing of personal information. This
is similar to the client-side aggregation suggestion, but the disclosure of data
from the consumer to a counterparty makes it qualitatively weaker and requires
greater trust.

Competition of Services Competition in the content-provider and distribu-
tion market generally motivates service providers to offer better services to con-
sumers, the traditional argument for a free market economy. Thus privacy could
become a distinguishing feature among the offers of various service providers.
9 For example, a Beatles, Gerry and the Pacemakers, or Kinks album can all be placed
in one “British Rock” bin, which similarly protects our Barry Manilow-loving friends.

Privacy Engineering for Digital Rights Management Systems 95

Unfortunately, content ownership is largely restricted to a few organizations:
80% of music is controlled by five parties, and a few huge Hollywood studios
control most of U.S. (and world) video. We believe that a liberal licensing model
to competing content distributors would best suit consumer needs.

Keeping Business Interests in Mind DRM demonstrates another impor-
tant phenomenon for privacy engineering. There are many components in the
system – Web retailers, content servers, rights-fulfillment servers, lockers, usage
clearinghouses, etc. – that may be operated by different entities. A user interact-
ing with various participants will disclose different types of information and PII.
The overall privacy that such a system provides is upper-bounded by the pri-
vacy that any one entity provides: The overall privacy is as strong as the privacy
offered by the “weakest” link. To make privacy-engineering efforts effective, it is
essential to understand the business interests of the various system participants.
Misguided privacy efforts may simply not improve the level of overall privacy. If
a party’s business model is based largely on datamining, that party will reject
restrictions on its data-collection practices.

This phenomenon demonstrates that system privacy is as much a policy issue
as a technological one. Certainly, a DRM technology provider can make privacy
standards mandatory for parties involved, but their effectiveness will depend
upon the leverage that this technology provider can exercise. It is much more
likely that overall privacy features of a DRM system will be determined by the
powerful interest groups, e.g., the content providers and large distributors on
the one side, and consumers (or, more precisely, consumer-interest groups and
privacy-activist groups that have effective media leverage) on the other side.

This leads to our key argument about how DRM may become a key enabler
of privacy in the content-distribution space. DRM is conceived to support “real”
content business: the exchange of money for access to and usage of content. This
provides payment for content creators and other parties in the value chain, with-
out their having to resort to “free” business models that are typically supported
by targeted advertising and datamining revenues that most likely involve privacy
intrusions.

4.3 Enforcement and Auditability of Privacy Solutions

One may argue that the FIPs approach is “weaker” than cryptographic privacy.
This is certainly true in a purely theoretical sense; it is not “provably strong.”
Adherence to the FIPs indeed requires honest behavior by the party obtaining
the information, as well as the initial goodwill decision to offer a strong privacy
policy, although this is certainly coupled with a concern for reputation and legal
compliance. However, we note that running cryptographic protocols also requires
the goodwill of the parties involved. Cryptography only enforces practice after
this goodwill decision to run the relevant cryptographic protocol has been made.
Thus, the (only) essential parts we are missing in a relatively “cryptography free”
implementation of the FIPs are effective mechanisms to enforce information-
collection practices that have been agreed upon.

96 Joan Feigenbaum et al.

The combination of notice and auditability is strong. Arguably the worst
thing U.S. companies can do with regards to handling customer information is to
be exposed violating their advertised privacy policies. In some cases, this has trig-
gered class-action law suits and Federal Trade Commission investigations [10].
Along these lines, we believe that the FIPs do actually provide consumers with
relatively strong privacy assurances. Requiring or incentivizing companies to
make their privacy policies public – already mandatory under European privacy
law – is an important step towards providing users with strong privacy. Some
companies are already taking such a privacy-friendly approach: All websites on
which IBM advertises are required to post a privacy policy, as are all sites that
use Microsoft Passport authentication services.10 The integration of P3P into
Internet Explorer 6.0 may turn out to be another driver for websites to post
privacy policies.

The combination of notice and auditing would certainly be stronger if tools
were available to more effectively ensure that companies actually follow their
privacy claims. For this purpose, we describe some useful principles for the en-
forcement and auditing of privacy practices. At the low end of the auditing so-
lutions (actual costs to businesses that are below $10,000 [2,30]), we have trust
seals such as BBBOnLine and TRUSTe for privacy policies themselves. These
services rate privacy policies and ensure that they simply and understandably
state which PII is gathered, how this information will be used, with whom it is
shared, which choices are available to users, etc. At the high end, major audit-
ing firms audit the privacy practices of corporations. These auditing costs have
reportedly been in the $2M to $5M range for large corporations [25].

We note that virtually all of these large corporations fail these rigorous au-
dits [17]. Many of the problems result from “process” issues. The collected in-
formation is used by many separate parts of the company; tracking where and
how information moves around is difficult. Enterprise privacy auditing would
be facilitated by keeping comprehensive access logs for databases containing
PII. Logging itself must be carefully designed, however, to not reveal PII, and
it should be similarly secure. These failures support our points that PII flow
should be simple and minimized. Cryptographic approaches alone are unlikely
to solve these process issues.

In fact, facilitating and standardizing qualified audit methods could lead to
cost savings for businesses. This is another example of how businesses currently
lack (and need) a good understanding of how PII should be handled, both in-
ternally and externally.

We expect that privacy-auditing technologies will fit into any satisfying and
practical solution for user-privacy concerns. The purpose for which data is used
is at least as important as whether it is collected. Auditing practices have proven
successful and adequate in other sensitive business areas, such as financial con-
trols. And selling privacy audits and supporting technologies may be much easier
10 We do not try to address here the privacy problems posed by a service like Microsoft
Passport itself.

Privacy Engineering for Digital Rights Management Systems 97

than selling cryptographic protocols, because upper management in large corpo-
rations is much more familiar with audits than with cryptography.

4.4 Adding Higher Tech Solutions

Although we devoted Section 3.1 to pointing out the limitations of cryptographic
technologies, we revisit some simple higher-tech approaches that may make FIPs
compliance easier.

Proxies Straightforward third-party data proxying can be used to regulate and
enforce data-collection practices. We can already note such “trust me” solutions,
with Anonymizer.com and SafeWeb for anonymized Web surfing. The important
property is a clear separation of duty and enforcement procedure. The proxy can
verify that the user received notice and agreed to provide such information before
passing the data (or some subset of it permitted by the privacy-policy agreement)
on to the requester. Similarly, we can help ensure that relevant data are disclosed
only to an appropriate party through the use of proxied serial connections, e.g.,
via HTTP posts and redirects. This collection-limitation approach (through a
trusted third party that provides some seal of approval) may be preferable and
more justifiable than audits that happen after data collection.

P3P While notice and choice principles sound simple and straightforward, they
are relatively difficult to engineer in an easy-to-use, transparent fashion. In a
general sense, we wish to create an abstract framework that allows one to map the
plethora of privacy practices into some standard framework that can be handled
in an automated, integrated fashion. The Platform for Privacy Preferences (P3P)
is attempting to achieve this very goal. We should consider such an approach
from two different viewpoints: system capability and language expressibility.

A tool’s capabilities affect the complexity and type of system that one can
handle with it. The P3P specification indeed appears to be sufficiently capable
to handle privacy notice within even complex DRM systems: Privacy-policy ref-
erences can be dynamically generated, including references to external partner
sites. Consider the desired property that users be given notice at a proper time
of all policies that may apply for the lifecycle of a transaction. One (advanced)
implementation of the P3P spec is the following: A user downloads the list of
relevant policies (included in the Web retailer’s HTML page), his browser au-
tomatically contacts the relevant rights-fulfillment and content servers for their
policies, then his P3P-enabled browser performs some logical inferences to de-
termine whether the policies comply with his expressed privacy preferences. One
large downside of this P3P model is that the complexity devolves onto the client.
One alternative is for the Web retailer to prefetch all the relevant privacy poli-
cies, compute their privacy impact itself, and present only one unified policy to
the user. While this level of indirection would simplify P3P client requirements,
it would add complexity and policy-synchronization requirements to the system
backend.

98 Joan Feigenbaum et al.

Language expressibility impacts how deeply or granularly specific privacy
practices can be represented in some standard form. Relevant to this paper:
Can P3P adequately express DRM data collection and usage? Indeed, many of
the possible uses of DRM data (as listed in Appendix A.2) map well into P3P
purpose classifications. One major difference, however, is that P3P is precisely
built for Web-based activity, not hybrid systems such as DRM. Usage data and
other information generated on the client-side, as opposed to on-site, do not
have any obvious coverage under the P3P statement and purpose disclosures.
Furthermore, we can only classify third-party recipients of data into rough groups
according to the equivalence of their data practices. We cannot easily identify
recipients in a machine-readable format, even though we may wish to express
very specific relationships between business entities in a DRM system. In short,
P3P’s expressive capabilities are somewhat inadequate for our needs.

Microsoft’s adoption of the platform in IE 6 is a step in the right direction,
as consumers do not have to take substantial steps to protect their own pri-
vacy, especially given default settings that block third-party cookies that use
PII without explicit consent. However, Microsoft’s implementation only consid-
ers compact policies, which in P3Pv1 only contain policy information related to
cookies. Not supporting full privacy policies with rich user preferences, this de-
ployment might mislead users into believing that their privacy is already being
adequately protected.

P3P seeks to automate and integrate privacy-preference notice into normal
Web activity. While P3P may be sufficient for DRM from a systems-engineering
perspective, various sources have challenged its ability to provide real privacy
protections. For instance, EPIC and Junkbusters have criticized P3P for not
complying with fair information practices, for providing only a “take it or leave
it” flavor of choice, and for not establishing privacy standards [6]. We remain
hesitant to believe that P3P in its current incarnation will lead to actual im-
provements in privacy, either for DRM systems or for Web privacy in general. We
fully admit general-purpose standardization is a hard problem; perhaps one may
conclude that DRM languages should themselves include privacy expressibility.

Monitoring Tools Note that the Fair Information Principles put a high em-
phasis on monitoring and restricting how collected information is actually used.
Recently, companies such as IBM, Zero-Knowledge, and Watchfire have begun to
build tools that help automate portions of the FIPs. For example, IBM’s Tivoli
SecureWay Privacy Manager is designed to monitor and enforce security and pri-
vacy policies, Zero-Knowledge’s PRM Console discovers and analyzes databases
containing personal information, and Watchfire analyzes websites, where much
data collection takes place. We believe such tools will play an important role in
privacy-policy enforcement and auditing in the future.

Privacy Engineering for Digital Rights Management Systems 99

5 Outlook

The technical community widely accepts that building secure systems is difficult.
However, there has been an enormous amount of practical and theoretical work
done in the last 25 years to improve this situation. An organization that wishes
to build a secure system has a large pool of resources and a number of options
at its command: educating its engineers through books and professional courses,
hiring experienced consultants and contractors, buying and integrating existing
security products, or using standard security solutions.

Privacy engineering does not enjoy this wealth of available resources. There
is great interest in privacy, but most work to date has focused on theoretical
research; most actual solutions exist only in a lab context and have not been
tested in large-scale deployments. A system designer building a privacy-enhanced
system is very much on his own. There is no good and practical book to use;
most privacy consultants focus on policy issues rather than technology; and
standard software solutions or tools for development and system integration are
not available.

We believe that the R&D community could make its largest contribution
through the development of a practical methodology for privacy engineering,
involving procedures for the analysis of privacy-relevant aspects of a system.
This paper shows that developing such a methodology even for the subproblem
of DRM systems is quite challenging. This methodology should involve a list of
dos and don’ts for privacy engineering, guiding principles for white-board design,
standard suggestions about how naming and pseudonymization can be handled,
and the tradeoffs among various design decisions.

However, such a methodology may be a long way away. There are complex
technical and social questions that are implied by the phrase “practical methodol-
ogy for privacy engineering.” The social issues revolve around the need to define
privacy so that the engineering issue can be judged. However, there are multi-
ple definitions, many of which are mutually incompatible (i.e., information self
determination vs fair information practices). Privacy is a highly emotional and
important topic for many people, and what information is considered private
may differ substantially from person to person. Designing a practical engineer-
ing methodology that addresses all of these issues is challenging indeed. Because
privacy means different things to different people in different situations, design-
ing a single technical set of recommendations for handling all of them may be
an unachievable goal.

The difficulty of defining requirements aside, we claim in section 3 that not
all of the issues that prevent the deployment of privacy are technical. However,
many engineers and technologists are deeply concerned about privacy issues. As
such, the first and perhaps most achievable value of such a methodology could
be in helping those concerned address the real issues preventing us from building
systems with privacy.

This paper takes a step in this direction, in the context of DRM technology
and system engineering.

100 Joan Feigenbaum et al.

References

1. Ross Anderson. Why information security is hard - an economic perspective, Jan-
uary 2001. http://www.cl.cam.ac.uk/˜rja14/. 86

2. BBBOnLine. Privacy seal. http://www.bbbonline.com/privacy/. 96
3. R.M Brady, R.J. Anderson, and R.C. Ball. Murphy’s law, the fitness of evolving
species, and the limits of software reliability. Technical Report 476, Cambridge
University Computer Labority, 1999. 83

4. Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates;
Building in Privacy. The MIT Press, Cambridge, MA, August 2000. 85

5. Jason Catlett, Marc Rotenberg, David Banisar, Ed Mierzwinski, Jeff Chester, and
Beth Givens. Open letter to Kevin Ryan, June 2001.
http://www.junkbusters.com/doubleclick.html. 78

6. Electronic Privacy Information Center and Junkbusters. Pretty poor privacy: An
assessment of p3p and internet privacy, June 2000.
http://www.epic.org/reports/prettypoorprivacy.html. 98

7. Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall,
and Joseph Reagle. The Platform for Privacy Preferences 1.0 (P3P1.0) Specifica-
tion, W3C Candidate Recommendation, December 2000.
http://www.w3.org/TR/P3P/. 93

8. Wei Dai. Crypto++ 4.0 benchmarks.
http://www.eskimo.com/˜weidai/benchmarks.html. 84

9. Complaint, DeLise vs. Fahrenheit Entertainment, No CV-014297, Sup. Ct. Cal.
Marin County, September 2001. http://www.techfirm.com/mccomp.pdf. 93

10. John D. Dingell, Edolphus Towns, and Edward J. Markey. Letter by House
Democrats asking FTC to investigate TiVo, March 2001.
http://www.house.gov/commerce democrats/press/107ltr30.htm. 96

11. Economist. Keeping the customer satisfied, July 2001. 92
12. Organisation for Economic Co-operation and Development. Guidelines on the

protection of privacy and transborder flows of personal data, September 1980.
http://www.oecd.org/dsti/sti/it/secur/prod/PRIV-EN.HTM. 89

13. FTC advisory committee on online access and security: Final report, May 2000.
http://www.ftc.gov/acoas/. 89

14. Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and don’ts of client au-
thentication on the web. In Proceedings of the 10th USENIX Security Symposium,
Washington, D.C., August 2001. 83

15. Ian Goldberg and Adam Shostack. Freedom network 1.0 architecture, November
1999. http://www.freedom.net/. 87

16. Carl Gunter, Stephen Weeks, and Andrew Wright. Models and languages for
digital rights. Technical Report STAR-TR-01-04, InterTrust STAR Lab, March
2001. http://www.star-lab.com/tr/. 102

17. Dana Hawkins. Gospel of privacy guru: Be wary; assume the worst. USNews.com,
June 2001. 96

18. Kelly Jackson Higgins. PKI: DIY or outsource? InternetWeek.com, November
2000. 85

19. Mark Hochhauser. Lost in the fine print: Readability of financial privacy notices,
July 2001. http://www.privacyrights.org/ar/GLB-Reading.htm. 93

20. David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matt Levine, and
Danny Lewin. Consistent hashing and random trees: Distributed caching proto-
cols for relieving hot spots on the world wide web. In Symposium on Theory of
Computing, 1997. 88

Privacy Engineering for Digital Rights Management Systems 101

21. German Legislator. German Teleservices Data Protection Act. 92
22. German Legislator. Gesetz zu dem Staatsvertrag über Mediendienste. 92
23. David Mazieres and M. Frans Kaashoek. The design, implementation and oper-

ation of an email pseudonym server. In 5th ACM Conference on Computer and
Communications Security, 1998. 86

24. R. Morris and K. Thompson. Password security: A case history. Comm. of the
ACM, 22(11), November 1979. 83

25. Stefanie Olsen. Accounting companies tackle online privacy concerns. CNET
News.com, September 2000. 96

26. Stefanie Olsen. Earthlink promises ’anonymous’ web surfing. CNET News.com,
March 2001. 87

27. National Research Council Panel on Intellectual Property (R. Davis chair). The
Digital Dilemma: Intellectual Property in the Information Age. National Academy
Press, Washington, D.C., 2000. 77

28. Carl Shapiro and Hal R. Varian. Information Rules: A Strategic Guide to the
Network Economy. Harvard Business School Press, Boston, 1999. 86

29. P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and
onion routing. In Proceedings of the 1997 IEEE Symposium on Security and Pri-
vacy, May 1997. 87

30. TRUSTe. Seal programs. http://www.truste.org/programs/. 96
31. The European Union. Directive 95/46/ec on the protection of individuals with

regard to the processing of personal data and on the free movement of such data,
July 1995. 89

32. David Wagner and Bruce Schneier. Analysis of the ssl 3.0 protocol. In 2nd USENIX
Workshop on Electronic Commerce, 1996. 83

33. Willis W. Ware. Records, computers, and the rights of citizens. Advisory Com-
mittee on Automated Personal Data Systems, July 1973. 89

34. Alma Whitten and J.D. Tygar. Why johnny can’t encrypt. In USENIX Security,
1999. 83

35. Tim Wilson. E-biz bucks lost under ssl strain. InternetWeek.com, May 1999. 84

A A Generic Architecture
for a DRM Content-Distribution System

In this section, we describe a generic DRM ecommerce architecture, shown in
figure 1. We focus on giving an overview of properties and operations that are
relevant for DRM operation and are important for our privacy considerations,
but we do not optimize this generic architecture for privacy. Instead, we simply
describe some of the key components of a DRM system and how they interact,
in order to provide readers with some intuition for the terms and notions used
throughout the paper.

A.1 Basic Architecture and Extensions

Before content is actually distributed to a user, content is prepared by a Pack-
ager. This process involves encoding the content in a certain media format and
encrypting it under a (symmetric) content key. The Packager also adds a content

102 Joan Feigenbaum et al.

Locker

RFS

(content) key

Packager Distributor

(content) key

CSWR

UCH

$

{rights}, key

{rights}

token

User

key content

token

data
usage

Fig. 1. Generic DRM architecture for content distribution

header to the file that contains metadata that specify the content (e.g., specify
the name and the artist of a song) and also hold additional information such as
a URL from which the content key can be retrieved (or where the rights to play
the content can be obtained). The Packager sends the content key to the Rights-
Fulfillment Server (RFS) and the packaged content to a content distribution
server.

A fundamental concept underlying DRM systems is the separation of the
(encrypted) content file from the rights. Rights express what a user is allowed
to do with a content file and may be specified in a Rights Management Lan-
guage (for examples, see [16]). Business models that are currently commercially
relevant and that a DRM system should therefore support include the download
and purchase of individual content, subscription models (e.g., to a whole music
catalog), pay per play (or pay per view), and a limited number of plays for pre-
view purposes. A simple rights language could specify timeouts, the number of
times that a song is allowed to be played, etc.

A user needs to install DRM client software on his machine. This client
decrypts content and manages access to and usage of the content as specified in
the rights it has received.

More precisely, this process could work as follows. A consumer retrieves pack-
aged content from a Content Server (CS). To access the content, a user will
need to retrieve the rights and the content key. In a Web-based system, a user
purchases a certain offer and receives a token from a Web retailer (WR), e.g.,
Amazon.com. At the RFS, a user can redeem this token (that proves his pur-
chase) against “digital rights” and the cryptographic content key. After having
received the (encrypted) content, the rights, and the keys, the DRM client will
unlock and render the content as specified in the rights.

Privacy Engineering for Digital Rights Management Systems 103

Optionally, there may be a Usage Clearing House (UCH). The UCH may col-
lect usage data from certain clients; this may include the time and the frequency
with which content was accessed or other data that relate to actual content
consumption. Many of our privacy considerations focus on such usage-data col-
lection.

There are various extensions of this basic DRM model that enhance its func-
tionality and value to users:

– Portable Devices: Users may have various portable devices to which they
wish to transfer the content from a PC. These may include portable music
players, wireless phones, or PDAs. The number of portable devices to which
content can be transferred may or may not be limited.

– Rights Locker: A rights locker is a storage system that contains the dig-
ital rights purchased by a user. The rights locker could simply be local to
devices, but could also be implemented in some centralized way for anytime,
anywhere access. Many devices may wish to interact with these central rights
repositories, such as wireless phones, PDAs, etc.

– Peer-to-Peer systems: The basic architecture described above is client-
server. Clearly content could be searched for and retrieved also in a P2P
fashion, i.e., the CS would be replaced by a P2P content-distribution service.
Additionally, one may also wish to distribute rights and content keys (or
implement a distributed rights locker) in a P2P fashion. Distributed rights
and key management has inherent security risks from a content-protection
viewpoint in a P2P architecture, likely requiring high tamper resistance on
the end-points and other difficult security-engineering requirements. We do
not study this architecture further in this paper.

A.2 Basic Protocols and Operations to Support

Installation and Initialization of the DRM Client A user needs to install
a DRM client on a device, such as a PC. The activation process may involve
an individualization step for generating a unique public/secret key pair for this
device, which may also involve taking hardware fingerprints to tie the client to
a particular device. A user may also open an account with a rights locker, and
he may register using his real-world identity or some digital pseudonym.

Searching for Content and Content Delivery The operation of searching
for DRM-protected media is not much different from a privacy perspective from
using a typical search engine to find other content. When a user downloads con-
tent from a Content Server, the CS could certainly log user IP addresses. Users
who may wish to protect their privacy from the CS may connect to the CS via
an anonymizing network. Packaged content is typically freely superdistributable
so that an anonymizing step should not violate the security of a DRM system.

104 Joan Feigenbaum et al.

Content Acquisition A users needs to purchase “subscription” or “pay-per-
use” tokens from some vendor, typically a Web retailer. Credit cards dominate
Internet ecommerce payments, and thus the Web vendor will usually learn the
real-world identity of the user. The token is transferred from the Web retailer
to the RFS via the user. Note that the token is supposed to be a secure proof of
purchase, and so it may specify the terms of the purchase and contain a unique
serial number to prevent “double spending” of the token. However, the token
does not need to involve the identity of the user.

Rights Delivery The user redeems his token at the RFS to receive the corre-
sponding rights and the cryptographic key to unlock the content. For security
reasons, the rights should not be easily transferable to another user. To prevent
this, the DRM client should send its public key to the RFS, under which the
RFS digital signs the (rights, UID) pair and returns the signed pair to the client.
This UID could be specific per user or per device, thereby targeting rights to
a particular user or device. The content-decryption key is similarly delivered to
the client encrypted under its public key. The RFS does not necessarily learn the
user’s identity during rights delivery, because a user may only pseudonymously
identify himself via the public key. However, the RFS could link or log these
transactions and thereby obtain pseudonymous profiling.

For simplicity, we view a rights locker as a central database that stores the
digital rights of users, to which a user has to authenticate himself to access
his rights. Note that authentication mechanisms to a locker should be non-
transferable, so that a user cannot publish his user name and password (or
public/secret key pair) and thereby enable thousands of people to access the
subscription rights that a single user has purchased. A good deterrence mecha-
nism is to ensure that some high-value secret is also accessible through the rights
locker, e.g., the authentication mechanism also allows access to a user’s credit
card information, name, or other information that users may be unwilling to
share.

Accessing and Playing Content When a user attempts to access content,
the DRM client determines whether the necessary keys and rights are present
and, if so, renders the content. Because this process occurs on the user’s local
device, it does not present any privacy risks.

Risk Management One main goal of a DRM system is to keep unauthorized
access to content, or “privacy,” under a tolerable threshold. Charged with this
goal, a risk management (RM) system participant, most likely connected to the
RFS, would be useful to monitor activities in a DRM system to detect misuse
or anomalous activities. In particular, there should be a mechanism to revoke
compromised devices, e.g., by having the RFS maintain a blacklist of the public
keys of compromised devices. Furthermore, the RM should have a method for
renewing user software, in order to update security features on the DRM client.

Privacy Engineering for Digital Rights Management Systems 105

The RM should be able to identify suspicious patterns in the download be-
havior of users, especially with massive overuse, or crawl popular websites for
compromised keys. Clearly, the former approach of log analysis has some privacy
implications. However, we note that revocation does not require user PII, but
only the public key to be revoked or blacklisted. Still, for legal remedy or simply
fraud deterrence, the RM may wish to have the ability to resolve a pseudonym
to a real-world identity.

Data Collection in DRM Systems We give some examples as to what infor-
mation can be collected in a DRM system and for what purposes it may be used.
Collected information may include data about content retrieval, rights retrieval,
content accessing, frequency, times, access locations, etc. This information can
be obtained by logging server-side information, or by having client-side DRM
software store relevant usage data that may be later sent to a central Usage
Clearing House server.

The purposes for collecting data may include the following:

– personalized use for direct marketing
– quality of service enhancement (by network operator)
– backup and archives
– aggregate (depersonalized) usage of info for marketing, e.g., to discover

trends in the data set, to perform datamining
– profiling (de)personalized records, e.g., the RIAA (ASCAP) may wish to

collect data from a subscription service, such as how often a song is listened
to, in order to properly compensate artists.

– customer service and retention
– recommendation services

Secure Open Systems for Protecting Privacy and

Digital Services

David Kravitz, Kim-Ee Yeoh, and Nicol So

Wave Systems Corp.

Abstract. This paper describes and analyzes a system architecture that
enables consumers to access services and content from multiple providers
without jeopardizing the privacy interests of consumers or the intellec-
tual property rights of providers. In order to satisfy these highly desirable
objectives, we argue for the necessity of a Trust Server that mediates the
conferral and revocation of trust relationships between consumers and
providers. The system also calls for the deployment of programmable
security coprocessors at vulnerable sites requiring protection, namely at
the Trust Server and at each consumer. We define the specific require-
ments of consumer-side Coprocessors, and their server-side counterparts
denoted as Hardware Security Modules (HSMs). A single Coprocessor
serves multiple providers by allocating to each of them a virtualized
trusted computing environment for software execution and data manip-
ulation. Bearing in mind that the tamper-resistance offered by Coproces-
sors is subject to more stringent economic pressures than that offered by
HSMs, we include in our architecture containment capabilities that pre-
vent compromised Coprocessors from causing damage disproportionate
to their numbers. We explain the specific challenges faced with providing
containment capabilities while protecting consumer privacy, given that
a single Coprocessor must serve the needs of multiple providers. The
simultaneous attainment of these goals is one of the highlights of our
architecture.

1 Introduction

... [The] strongest intellectual property protection requires embedding pro-
tection mechanisms throughout the computer hardware and software at all
levels ...

The Digital Dilemma: Intellectual Property in the Information Age

The biggest battleground is not the personal computer, where many DRM
solutions can run side by side, but consumer electronics, where only one
DRM solution will be implemented per device.

Bill Bernat, Cover Your Assets, Streaming Media, July/August 2001

Recognition is growing that protection of digital intellectual property must
involve the use of consumer-situated hardware [7,9,11,13,15,18]. At the same
time, recent work has also pointed to the potentially enormous role that such

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 106–125, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Secure Open Systems for Protecting Privacy and Digital Services 107

hardware may play in protecting the end-user [4,19], where such hardware is
already being deployed in the form of smart cards and other personal tokens
to achieve safer access-authentication. In the case of providers, dongles may be
pointed to as examples of simple consumer-situated hardware that has achieved
some success within its circumscribed objective of software copy protection.

Such hardware, however, has almost no impact whatsoever on the Internet
economy, where the lack is especially acute in the area of networked digital media.
The Napster case, a study in how the costly, traditional recourse of litigation was
forced to fill a vacuum of non-existent technological solutions, albeit not before
millions of MP3 files had been swapped, spotlights the golden opportunity in
harnessing the Internet as a ground-breaking distribution channel if only it could
be tamed. The currently unsurmounted challenges have been well articulated as
follows:

It is expensive to design, manufacture, and mass market such a special-
purpose device, and an entire content-distribution business based on
such a device would necessitate cooperation of at least the consumer-
electronics and content-distribution industries, and possibly the banking
and Internet-service industries as well. A particular business plan could
thus be infeasible because it failed to motivate all of the necessary par-
ties to cooperate or because consumers failed to buy the special-purpose
device in sufficient numbers. ([5], p.168)

One possibility for reducing the cost and increasing the appeal of such a
consumer-situated security device is by opening up access to more than one
provider. In fact, if such hardware rather than serving multiple providers in a
preprogrammed and narrowly defined manner instead does so flexibly by incor-
porating open programmability at its core, barriers preventing widespread con-
sumer deployment could well be substantially reduced. Open hardware would
loosen the difficult close-coupling among disparate business entities otherwise
necessary in order to actualize a fixed-purpose product. Successful accommoda-
tion of rival economic interests motivates the desirability of provider-independent
manufacturers specializing in the comprehensive facilitation of security devices
(see [19] for related arguments).

But multi-use, provider-independent security hardware brings a fresh set of
system-design challenges to the fore, especially when consumer privacy enters the
picture. The literature on anonymous service access mainly focuses on the use
of tokening systems [1,3,6,10,12], but anonymity on a multi-application trusted
execution environment remains very much an open research topic [16]. An impor-
tant concern that has not been addressed is the fact that a particular system’s
infrastructural information may be shared among providers to form comprehen-
sive profiles of each consumer. For example, in [19], the certified public key of a
consumer’s security module is distributed to all providers with whom the con-
sumer wishes to transact. The certified public key may be then shared among an
unscrupulous subset of providers to create a revealing profile of the consumer’s
purchasing habits. Such a weakness in privacy protection could be judged un-
acceptable. We describe in this paper how privacy may be protected. Note that

108 David Kravitz et al.

such features of the system design, while necessary, cannot be sufficient to meet
this stringent privacy requirement if the underlying communication transport
does not support anonymity features.

Another issue that deserves greater attention is the fact that a coprocessor
may be compromised by an adversary with sufficient resources. The trust infras-
tructure supporting all the goals of the above should feature resilience in such
a scenario. A simple example is the prevention of an arbitrary number of clones
of a compromised coprocessor from infiltrating the system. However, the con-
text of a shared-usage, high-privacy system described above makes the problem
of architecting containment- and damage-limitation- capabilities much harder.
Sections 2.3 and 2.4 below explain what can be deployed to achieve these goals.

2 Architectural Components

Each of the sections below explains a core component in Fig. 1, which gives an
overview of the entire application and trust framework.

Trust Server
(TS)

HSM

App Server
(AS) #n

Optional
HSM

App Server
(AS) #1

Optional
HSM

(Non-Secure)
Consumer
Computing

Host

Coprocessor
(Cp)

Public Network
(e.g. the Internet)

6HFXUH $SSOLFDWLRQ

&RPSRQHQW �6$&�

6$&

LQGLYLGXDOL]DWLRQ

GDWD

+DUGZDUH 6HFXULW\

0RGXOH

Fig. 1. Application framework

2.1 The Coprocessor

We restrict the use of the term coprocessor here to its use at the level of con-
sumers. We denote its server-class counterpart by the term Hardware Security
Module (HSM). While previous work [17] categorizes secure coprocessors into
several types, the coprocessor we envision to support the secure open system pro-
posed in this paper overlaps several of these categories. An open programming
environment is clearly mandatory, which appears to place such a coprocessor

Secure Open Systems for Protecting Privacy and Digital Services 109

in the same category as that of an HSM, namely, high-end secure coprocessors.
On the other hand, the coprocessor may well have to serve within resource-
constrained consumer appliances, reminiscent of the category of cryptographic
accelerators. In summary, a coprocessor, as used here, is a low-cost microproces-
sor that enables trusted execution in resource-constrained, possibly embedded,
environments that support open programming.

2.2 The SAC

A typical service or application delivered by a provider in this model would in-
volve three entities, namely, (i) an application server (AS), (ii) the conventional,
non-secured consumer-situated host device, and (iii) a coprocessor’s trusted exe-
cution environment. With respect to (iii), we call the component running within
this client-side trusted execution environment a Secure Application Component
(SAC).

2.3 The Trust Server

We motivate this component by studying the two degenerate cases corresponding
to relaxation of either the privacy or the containment objective.

Privacy without Containment. Where containment is not necessary, ensur-
ing that coprocessors are formally indistinguishable coprocessors coupled with
any of a number of anonymous access schemes [1,3], is sufficient to ensure pri-
vacy. Note that this result is independent of the feature set of the trusted execu-
tion environment; code can be transported confidentially and with both origin
authentication and integrity checks to any particular coprocessor. The only re-
quirement is that coprocessors, if indeed cryptographic key material has to be
preloaded into them, all obtain the same such data.

Containment without Privacy. Conversely, if only containment is desired,
then the problem is easy and has already been solved. For example, the work
of [19] uses unique certified public keys for each coprocessor to allow the provider
to track billing and revoke trust in detectably compromised hardware.

Trust Server Rationale. When both containment and privacy are required, a
trusted intermediary is necessary to broker the conferral and revocation of trust
relationships between consumers and providers. It is this intermediary which we
call the Trust Server. Knowledge of the association between a coprocessor and
an instance of a SAC must be confined to the Trust Server in order to maximally
protect the privacy of the consumer using the coprocessor.

110 David Kravitz et al.

2.4 Individualization

The necessity of coprocessor individualization is obvious from the preceding
discussion. The requirement for individualization of a SAC follows from the
necessity of a provider to keep track of its separate instances across coprocessors.
Two methods for individualizing a SAC are given: Sect. 6 below describes SAC
individualization by a provider’s Application Server, whereas Sect. 7 describes
the process conducted by the Trust Server instead.

A subtle question occurs on the issue of uninstallation and reinstallation
of a SAC. After such a cycle, should it be provided with fresh individualization
data? On the one hand, by issuing the same data, the provider could unilaterally
revoke an instance of a SAC that is behaving suspiciously, possibly indicating the
coprocessor on which it runs has been compromised. However, honest consumers
should be allowed to break the linkage of individualization if they so desire in the
interests of privacy. Fresh individualization for every installation, whether it is
new or a repeat, is therefore necessary. This changes the process of revocation of
a SAC on a particular coprocessor by the provider responsible for that SAC. The
Trust Server, to whom the provider submits the request, must now arbitrate the
revocation process. The dual and complementary responsibilities of protecting
consumer privacy and of serving provider needs rests on the Trust Server.

3 Notation

Table 1 summarizes the notation used in the rest of the paper.

4 Assumptions Regarding the Trust Server

The HSM within the Trust Server is assumed to act as a slave to its master host,
but runs its own secured code and can securely retain static values, such as its
private key and a secret for local authentication of data retrieved from the Trust
Server databases. The HSM is not assumed to possess dynamic state memory,
although to the extent such memory is available (and effectively utilized [2]), it
can be used to help secure the Trust Server against containment attacks which
involve large-scale cloning of successfully compromised coprocessors. There are
several advantages of exploring which aspects of processing and communications
can be secured without being dependent on such memory. Effective backup of a
dynamically changing HSM, and determination of the appropriate responses to
hardware failure versus sabotage can be thorny issues to resolve. Although we
present the Trust Server here as a monolithic host/HSM combination, there can
be convincing justification to split up such a server into separate components
according to functionality. As an example, there could be a single server that
interacts with Application Servers in order to handle SAC publishing and bulk
individualization. Such a server could act as an interface between Application
Servers and multiple device-servers which each relate to a distinct population
of client-side coprocessor users. Examples will be given to show that seemingly

Secure Open Systems for Protecting Privacy and Digital Services 111

Table 1. Notation used in this paper

Symbol Meaning

〈〉 Delimiters for an n-tuple or a finite sequence
AS Application Server pertaining to a provider

AS.ID Identifier for an Application Server. It may be assumed that there is a one-
to-one correspondence between (application) providers and Application
Servers

AS.key Symmetric key generated by an Application Server and associated with a
SAC-series

AS.privKey The private key of an Application Server. The corresponding public key
is either well-known or authenticated with a public key certificate, with
identifier AS.ID

AS.track Secret information generated by an Application Server. Used to prove
continuity of identity to the TS

blob Individualization data for an instance of a SAC. Generally secret
blobTag Non-secret information associated with a blob. Contains identifying in-

formation for a blob

certID Identifier for an anonymous public key certificate (or coupon)
Cp Coprocessor (to consumer computing device)

Cp.ID Identifier for a coprocessor (to a consumer computing device)
CTblob SAC individualization data in encrypted form

Enc(pt,pubKey) Public key encryption of plaintext pt using public key pubKey

H(m) One-way hash function
HSM Hardware Security Module

msgKey Message key
privKey Private key (of a key pair)
pubKey Public key (of a key pair)

SAC Secure Application Component. A software component that executes on
the (secure) coprocessor to a consumer computing device. A SAC is pro-
tected by physical security

SAC.assign A cryptographically protected data structure maintained by the TS that
binds together different pieces of information associated with a SAC-series

SAC.exe The representation of the executable for a particular SAC
SAC.ID Identifier for a particular version of a SAC
SAC.key Symmetric key generated by an Application Server to encrypt a particular

version of a SAC for public distribution, or generated by the TS for a
SAC-series

SAC.number Identifier for a series of versions of a SAC
SAC.src Representation of the source of a SAC. The executable of a SAC can be

derived from SAC.src

SAC.version Version identifier for a particular version of a SAC
SAC-series A series of versions of a SAC sharing the same SAC.number

seqAS A sequence of SAC individualization data blobs together with their asso-
ciated blobTags

Sign(m,k) Digital signature operation with message m and signature key k

SymEnc(pt,k) Symmetric encryption operation with plaintext pt and key k

TS Trust Server
TS.local A secret value used by the HSM of the TS to secure local storage

TS.privKey The private key of the Trust Server.
TS.pubKey Public key of the Trust Server. Either well-known or authenticated with

a public key certificate

112 David Kravitz et al.

small modifications of protocol design can greatly impact the security profile of
the overall system. Securing a subsystem under reduced hardware expenditure
and maintenance requirements can be particularly important if that subsystem is
run remotely from others that already have access to more significant resources.

5 Minimal Assumptions on Secure Communications
between Coprocessors and the Trust Server

Any data passing between coprocessors and the Trust Server must be protected
by authentication and encryption. Care must also be taken to hide evidence of
identity of the coprocessors involved. For example, a known structure of cipher-
text with an appended signature over the ciphertext would violate this require-
ment because armed with an exhaustive list of coprocessor public keys, one could
attempt signature verifications. The methods presented here, under the rubric
of “Secure Communications” will specifically require that any data encrypted
by a coprocessor for the HSM cannot be decrypted by an insider at the Trust
Server; any data encrypted for a coprocessor by the HSM cannot be decrypted
by a Trust Server insider; a message cannot successfully be spoofed to a copro-
cessor as coming from the HSM without accessing data currently held in the
Trust Server; a message cannot successfully be spoofed to the HSM as coming
from a coprocessor without accessing data currently held in the Trust Server.
We do not assume that a Trust Server insider cannot successfully spoof data to
the HSM as if it came from a coprocessor. Similarly, we do not assume that a
Trust Server insider cannot successfully spoof data to a coprocessor as if it came
from the HSM.

6 Method 1: SAC Individualization
by Application Server

The private key (privKey) corresponding to pubKey is intended to be a coproces-
sor-level secret that does not leak out of coprocessors that have not been suc-
cessfully tampered with. Consequently, Application Servers must incorporate
the prescribed interactions with coprocessors into their communications code,
rather than be given the flexibility to determine the methodology by which al-
leged coprocessors prove their legitimacy as a condition of successful acquisition
of services or content. An unscrupulous application provider might otherwise
configure its Application Server to attempt to take advantage of oracles such
as those based on the equivalence of Rabin decryption (i.e., the computation of
modular square roots) to factoring of the modulus [14], or on small-subgroup
attacks against Diffie-Hellman related protocols [8]. Such remote acquisition of
private keys corresponding to anonymous certificates could potentially be used
on a wide scale if such a protocol flaw were to go undetected.

Note that the SAC will not be able to be installed on a compliant coprocessor
unless (in Fig. 3, step 11) the AS signature verifies properly and the decrypted

Secure Open Systems for Protecting Privacy and Digital Services 113

Appl icat ion Server (AS)

Assign new ident i f ier SAC.ID to SAC
Generate symmetr ic key SAC.key

1:
2:

Make publicly available
<AS. ID, SAC. ID, SymEnc(SAC.exe, SAC.key) ,
Sign(<SAC.ID, SAC.exe>, AS.pr ivKey)>

3:

Fig. 2. SAC self-publishing

message yields the key (SAC.key) that was originally used by the Application
Server to encrypt the SAC prior to public distribution (in Fig. 2, step 3). The
AS.ID is acquired by the coprocessor from the Application Server’s public key
certificate. Even if the AS chooses to ignore the validity test of the receipt that
the coprocessor obtains in exchange for redeeming the coupon with the Trust
Server (in steps 12–16 of Fig. 3), the AS.ID has been noted by the TS, so that
this information can be logged for tracking (as well as potentially for billing)
purposes.

If fresh evidence of a coupon redemption receipt were not made available to
Application Servers, coupons corresponding to successfully tampered coproces-
sors could be “multiply spent.” While compliant coprocessors can be tethered to
the Trust Server by having them programmed to lose critical functionality if they
have not called home after some specified limit on time (or other metric) has
been exceeded, successfully tampered coprocessors may avoid such report-back.
If they need to report back in order to obtain new keying material, say, they
may be able to successfully lie about past activity logs. Note that dependence
on the “blob” in the receipt issued by the Trust Server, makes it infeasible for
even a tampered device to stockpile usable receipts, where a blob is acquired by
a coprocessor from an Application Server during the exchange depicted in steps
7–10 of Fig. 3.

The assumptions on Secure Communications (in Sect. 5) between coproces-
sors and the Trust Server together with the atomicity of operations performed by
the HSM make it infeasible for a Trust Server insider acting without collusion of
tampered coprocessors to acquire coupons for which it knows the corresponding
private keys.

The SAC individualization process enacted through coupon collection and
redemption effectively extends coprocessor individualization into the SAC layer.
However, the method intentionally does not specify how the (SAC-level) “blobs”
(of SAC individualization data) shared between a compliant coprocessor and an
Application Server should be used in SAC-level communications between the

114 David Kravitz et al.

Application Server (AS) Coprocessor (Cp) Trust Server (TS)

Generate one-time key pair
(pubKey, privKey)

pubKey

Performed inside HSM & with atomicity:
Compute Sign(<certID, pubKey>, TS.privKey);

Sign(<certID, pubKey>, TS.privKey)SAC.ID, certID, pubKey
Sign(<certID, pubKey>, TS.privKey)

Verify TS signature;
Generate SAC individualization data "blob" &
non-secret identifying info for "blob", "blobTag";
Record <certID, blob, blobTag>

Verify AS signature;
Decrypt message

certID, AS.ID, SAC.ID, H(blob)

Performed inside HSM & with atomicity:
Compute Sign(<certID, AS.ID, H(blob)>,
TS.privKey);

Sign(<certID, AS.ID, H(blob)>,
TS.privKey)

blobTag, Sign(<certID, AS.ID,
H(blob)>, TS.privKey)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

Assign new certID

Record <certID, pubKey, Cp.ID>

Verify TS signature
Mark blob as activated

17:

18:

(QF��EORE� EORE7DJ� 6$&�NH\!� SXE.H\��

6LJQ�(QF��EORE� EORE7DJ� 6$&�NH\!� SXE.H\��

$6�SULY.H\�

Verify that certID has not been assigned
before;
Record <certID, AS.ID, SAC.ID, H(blob)>

19:

Fig. 3. Coupon collection & redemption

Secure Open Systems for Protecting Privacy and Digital Services 115

coprocessor and the Application Server. Potential “misuse” of this data does
not affect the security of any independently administered SAC.

From a consumer-privacy perspective, a tampered coprocessor alone should
not be able to undermine users’ confidence that they are communicating with
an Application Server in possession of knowledge of the AS private key corre-
sponding to the certified AS public key.

The following attack could be mounted if the signed encryption of step 10
of Fig. 3 as computed by the Application Server were replaced by a separate
signature and encryption on the data 〈blob,blobTag,SAC.key〉: A tampered
coprocessor could collect coupons and use them at Application Servers with-
out completing the transaction (in order to prevent the coupons from being
marked as redeemed at the TS). The tampered coprocessor would presumably
be able to extract knowledge of each 〈blob,blobTag,SAC.key〉 based on knowl-
edge of the corresponding Enc(〈blob,blobTag,SAC.key〉,pubKey) and its as-
sociated privKey. Since Sign(〈blob,blobTag,SAC.key〉,AS.privKey) has no
dependence on coprocessor-related input, the tampered coprocessor would be
able to reuse the 〈blob,blobTag,SAC.key〉 encrypted under the target’s pubKey
value, in order to masquerade as the legitimate Application Server to an un-
suspecting target coprocessor user. While the adversary in possession of the
tampered coprocessor would have access to the plaintext executable through
acquisition of SAC.key, he could, however, be foiled by code within the SAC
which expects, say signatures on data randomly generated by the target copro-
cessor’s instance of the SAC. If the adversary had not aborted its use of the
coupons before executing step 12, namely coupon redemption with the Trust
Server, the target coprocessor would not unwittingly attempt to communicate
any potentially confidential information to the adversary following completion of
the process in Fig. 3. This is because the reuse of the coupon would be detected
at the Trust Server in step 14 thus canceling the transmission of the message in
step 16 to the target coprocessor. In any case, this type of attack is thwarted in
the actual protocol design, because the signature is over the encryption, which
varies based on the particular coprocessor through use of pubKey.

Stepping back from the specific details of the process with respect to a gen-
eral design criterion relative to privacy, the consumer as user of the client-side
coprocessor should be involved in the determination of whether the particular
transaction warrants the disclosure of information to the Application Server re-
garding certificate status, where the authenticity of such information is assured
by the Trust Server acting as an anonymizing server. Since this assurance proce-
dure can be designed to be (computationally) unforgeable, such assurances can
be requested of the Trust Server by the coprocessor user, and the responses from
the Trust Server can be delivered to the Application Server by the coprocessor
user as well. If the Application Server does not receive a satisfactory indica-
tion of assurance by some self-specified juncture (which may be a function of
time, accumulated access to services, or other metric(s)), the Application Server
may elect to sever its relationship with the particular coprocessor user. The Ap-
plication Server can determine the freshness of any assurances it receives, by

116 David Kravitz et al.

including appropriate information in the Application Server-specific data that it
associates with the coprocessor public key, which it expects to see reflected in
the assurances produced by the Trust Server. This procedure has the additional
advantage, if so constructed, of exhibiting proof of possession of the private key
corresponding to the coprocessor public key, as well as assurance of certificate
trustworthiness.

In the particular protocol presented here, server-specific data (namely, blob,
blobTag, and SAC.key) is recovered (in step 11 of Fig. 3) by the coprocessor
using the private key to decrypt, where some function of the recovered data
(namely, H(blob)) is forwarded to the Trust Server with the ID of the Applica-
tion Server (AS.ID, along with SAC.ID). By having the coprocessor user, rather
than the Application Server, handle the request for assurance, this enables in-
creased versatility in billing models. If the Application Server is to be charged for
use of a client-side certificate, it could otherwise opt out of requesting assurance
in order to hide from the Trust Server its use of the certificate.

By restricting the relationship of a coprocessor to only a single Trust Server
at any point in time, this allows for more meaningful tracking of certificate usage.
While it is common practice to incorporate expiration dates into certificates, this
does not indicate to what extent a certificate has been relied upon and whether it
should be considered trustworthy. The use of certificate revocation lists (CRLs)
does not satisfactorily address the potential concerns of an Application Server:
In addition to the usual problems associated with CRLs, such as guaranteed
delivery of latest versions, and scalability, the incorporation of coprocessor user
privacy may undermine the effectiveness of CRLs.

The method presented here allows for a different approach to revocations,
namely one that uses a Trust Server as arbiter: At the advance request of an
Application Server which specifies a list of certificate IDs, a future coprocessor
user-request for assurance which is associated with Application Server-specific
data relative to the Application Server in question, may be denied if the particu-
lar coprocessor is marked at the Trust Server as having been associated with one
of the suspect certificate IDs. If these Application Server-initiated requests are
properly authenticated, an Application Server will not influence the assurance
process relative to other Application Servers.

The suitability of the arbitrated revocation technique is predicated on the
fact that there are instances of electronic commerce where an Application Server
may be in a better position to catch seemingly fraudulent activity on the part
of a coprocessor user than would be a Trust Server, because the Trust Server
may not witness the actual electronic commerce transactions such as logging
and billing for access to content or services. Furthermore, such transactions may
be blinded from the Trust Servers because they may be secured based on secret
data shared between the coprocessor and the Application Server as enabled
by the present method. One element that may be tracked by an Application
Server is the amount of incoming transaction traffic apparently originating from
a particular coprocessor, where a suspiciously high volume may indicate possible
cloning. The Application Server cannot itself recognize whether two certificate

Secure Open Systems for Protecting Privacy and Digital Services 117

IDs correspond to the same coprocessor if user privacy is enforced. Unlike a Trust
Server, an Application Server may not be able to directly influence coprocessor
behavior, even if it can influence the behavior of applications running on the
coprocessor that are under control of the particular Application Server.

7 Method 2: SAC Individualization by Trust Server

An important containment goal is achieved for this method on the basis of the
minimal assumptions on Secure Communications between coprocessors and the
Trust Server, and on the state-invariant HSM: SAC individualization data with
respect to an Application Server AS1 legitimately served to an uncompromised
coprocessor Cp1, is safe from the combination of an unscrupulous Trust Server
insider, a compromised coprocessor Cp2, and a cheating Application Server AS2.
Furthermore, if Cp2 can (with the help of a Trust Server insider) get its SAC
individualization data instance replayed to unwitting Cp1, the result is a po-
tential attack on the privacy of Cp1’s user, but not an attack on containment.
Under proper implementation of revocation of Cp2, coprocessor Cp1 should also
be revoked, even if it is an unwitting party to abuse the system rather than a
direct clone.

In this method, SAC individualization data is delivered in bulk to the Trust
Server and stored for the purpose of dispensing to coprocessors during SAC in-
stallation and individualization. This procedure is somewhat analogous to the

Application Server (AS) Trust Server (TS)

Assign new SAC.number;
Record SAC.number

SAC.number

Generate SAC-series symmetric key AS.key;
Generate SAC-series tracking secret AS.track;
Record <SAC.number, AS.key, AS.track>

SAC.number,
Enc(<AS.track, AS.key, SAC.number>, TS.pubKey)

Performed inside HSM & with atomicity:
Generate SAC-series symmetric key SAC.key;
Compute SAC.assign = Enc(<TS.local,
SAC.number, AS.track, AS.key, SAC.key>,
TS.pubKey)

Verify that SAC.number has not been assigned
before;
Record <SAC.number, SAC.assign>

1:
2:

3:

4:
5:
6:

7:

8:

9:

10:

11:

1RWH� 6$&�QXPEHU LV SDUW

RI 6$&�,'�

6$&�,' �6$&�QXPEHU�

6$&�YHUVLRQ!

Note: TS.local is a
secret secured by
T S H S M

Fig. 4. SAC-series initialization

118 David Kravitz et al.

Appl icat ion Server (AS) Trust Server (TS)

Generate symmetr ic key msgKey

AS. ID, SAC. ID, Enc(<H(SAC.exe) , msgKey>, TS.pubKey) ,
SymEnc(SAC.exe, msgKey)

If optional authorization step is
performed, replace both
occurrences of SAC.exe wi th
SAC.src (source code of SAC)

Sent with authenticat ion of or igin:

Per formed ins ide HSM:
Decrypt , and then ver i fy hash & output SAC.src

Review SAC.src for pol icy compl iance;
Generate SAC.exe f rom SAC.src ;
Generate symmetr ic key msgKey' ;
/HW &7� (QF��+�6$&�H[H�� PVJ.H\
!� 76�SXE.H\��

Let CT2 = SymEnc(SAC.exe, msgKey ')

Performed atomical ly inside HSM:
Decrypt CT1 & CT2, and then ver i fy hash;
Using SAC.ass ign, compute: S ign(<AS. ID, H(SAC.key) ,
SymEnc(H(<SAC. ID, SAC.exe>) , AS.key) , H(<SAC. ID,
SAC.exe>)>, TS.pr ivKey) , SymEnc(SAC.exe, SAC.key)

Sign(<AS. ID, H(SAC.key) , SymEnc(H(<SAC. ID, SAC.exe>) ,
AS.key) , H(<SAC.ID, SAC.exe>)>, TS.pr ivKey),

SymEnc(SAC.exe, SAC.key) , SAC. ID, H(SAC.key)

Ver i fy message using knowledge of
SAC.exe and AS.key

Make publicly available:
<AS. ID, SAC. ID, SymEnc(H(<SAC. ID,
SAC.exe>, AS.key) , S ign(<AS.ID,
H(SAC.key) , SymEnc(H(<SAC. ID,
SAC.exe>) , AS.key) , H(<SAC.ID,
SAC.exe>)>TS.pr ivKey) ,
SymEnc(SAC.exe, SAC.key)>

/HW &7� (QF��+�6$&�H[H�� PVJ.H\!� 76�SXE.H\��

/HW &7� 6\P(QF�6$&�H[H� PVJ.H\��

Opt ional SAC-publ ish ing
authorizat ion step;
included or excluded per
business arrangement

1:

2:

3:
4:

5:

6:
7:
8:
9:

10:
11:

12:

13:

14:

Fig. 5. SAC publishing

filling of a PEZ r© candy dispenser followed by the dispensing of one candy tablet
at a time, each served up once and consumed. Each individualization-data packet
dispensed to a coprocessor may comprise a blob of data, as well as a blobTag
which can be used for tracking purposes by the Trust Server and to identify
to the Application Server which blob value is purportedly held by any partic-
ular coprocessor with which it communicates. Successful delivery of content or
services to a client platform may be made contingent upon knowledge of the
appropriate blob value as accessed by the SAC within the coprocessor’s secure
environment. Effective digital rights management (DRM) requires that correct
code runs on the client, so that logging of viewed content is not surrepetitiously

Secure Open Systems for Protecting Privacy and Digital Services 119

Application Server (AS) Trust Server (TS)

Generate and record a sequence of SAC
individualization data pairs (blobTag_i, blob_i),
(where i = 1, ..., n);
Let seqAS=<(blobTag_1, blob_1), ...,
(blobTag_n, blob_n)>;
Generate symmetric key msgKey

SAC.number, Enc(<AS.track, SAC.number, H(seqAS),
msgKey>, TS.pubKey), symEnc(seqAS, msgKey)

Performed atomically inside HSM:
Input SAC.assign: verify consistency with
AS.track and SAC.number in the request;
Extract (blobTag_i, blob_i), where i = 1, ..., n;
For i = 1, ..., n, compute

CTblob_i = Enc(<SAC.number, SAC.key,
blobTag_i, blob_i>, TS.pubKey)

Record <SAC.number, blobTag_i, CTblob_i>
for i = 1,...,n

1:

2:

3:

4:

5:

6:
7:

8:

Fig. 6. SAC-series bulk individualization

Coprocessor (Cp) Trust Server (TS)

SAC. ID

Performed atomically inside HSM:
From storage, get encrypted record
Enc(<SAC.number, SAC.key, blobTag, blob>,
TS.pubKey) that has not been used before;
Decrypt and verify that SAC.number matches

Record <SAC.ID, blobTag, Cp.ID>
(to mark blob as used, and for tracking Cp)
Delete encrypted record from storage

SAC.ID, SAC.key, blobTag, blob

With SAC.key, decrypt SymEnc(SAC.exe,
SAC.key), which is publicly available;
Verify SAC.exe against publicly available
signature (by TS);
Instal l SAC;
Store <blobTag, blob> if this is a fresh
installation (i.e. not an upgrade)

1:

2:

3:

4:

5:

6:

7:

8:

9:

Fig. 7. SAC permissioning (into coprocessors): installation and individualization

120 David Kravitz et al.

removed or altered. In particular, in this model of permissioned-hardware DRM,
software emulation are to be rejected.

The bulk transferal of individualization data may be associated with coordi-
nation between the Application Server and Trust Server regarding which portions
of the data will be deemed to connote which collections of client-side coprocessor
attributes, so that the individualization data grouped by coprocessor class may
be securely distributed to coprocessors accordingly.

Since all versions or upgrades of a SAC corresponding to a given SAC.number
are designed to work off the same (replenishable) pool of bulk individualization
data, it is not sufficient (although necessary) to protect this data from attack
during bulk delivery from the Application Server, during processing and stor-
age by the Trust Server, and during individualization of a SAC instance being
permissioned into a coprocessor. The SAC publishing process must be protected
as well, in order to effect the desired level of security. The issue corresponding
to this immediate goal is not one of ensuring the authenticity of the Applica-
tion Server (or provider) requesting that the SAC be published, but rather one
of ensuring that once a SAC series is initialized, a strategy has been put into
place which denies intruders, whether legitimate Application Servers or not, the
ability to get rogue SACs published. A rogue SAC can misappropriate a target
Application Server’s individualization data by misusing it or exposing it.

Recall that the first method, discussed earlier, handled both the publish-
ing and signing of SACs outside of the Trust Server. Suppose that we han-
dled SAC-series bulk individualization and SAC permissioning as in the current
method, but that the Application Server (AS) did its own signing of the SAC
and its own publishing, where the AS would generate its own value of SAC.key
and send SAC.number, Enc(〈AS.track,SAC.key,SAC.number〉,TS.pubKey) to
the Trust Server for SAC-series initialization. A compromise of a single copro-
cessor would then enable an adversary to publish a rogue SAC using the same
value of SAC.number as the target AS and the same (compromised) value of
SAC.key. The attack would not require the complicity of a TS insider, since the
adversary need not submit a SAC-series initialization vector. His goal is not to
submit his own bulk individualization data, but to hijack the target’s.

Consider next, if we used all the documented protocols, but allowed an AS to
choose its own value of SAC.key rather than having it generated randomly by the
TS HSM. Then an attack of a coprocessor yielding the target’s value of SAC.key,
could be combined with a TS insider attack in which the adversary chooses the
same value of SAC.key as did the target, with a forced replay of the same value
of SAC.number. The adversary performs the standard SAC-series initialization
step with this value of SAC.number, enabling him to have a rogue SAC published
which can successfully install and access the target’s individualization data, since
it shares the same values of SAC.number and SAC.key. Hence, allowing an AS to
choose its own value of SAC.key gets around the protection which was offered
by including TS.local in SAC.assign (as specified in Fig. 4) in order to prevent
insider substitution with an encryption of chosen values.

Secure Open Systems for Protecting Privacy and Digital Services 121

In order for the actual current method to achieve its resistance against the
two-pronged attack of coprocessor compromise and TS insider, a critical aspect
of the protocol design is that AS.key is never made available to coprocessors
and is thus not subject to compromise in this way. Without knowledge of the
target AS.key, an adversary can not provide the missing argument necessary
to “finally” publish, i.e., provide a verifiable signature. It is also critical that
there is an unspoofable binding between the signature and the presentation of
SAC individualization data to the coprocessors. One way to bind a parameter
to an existing signature is to input a function of the parameter as an additional
argument of the signature. We discuss appropriate choices of parameter below.

The association of AS.track with the bulk individualization data transferal,
as indicated in the message of step 4 of Fig. 6, serves to unambiguously designate
which encryption-key value of SAC.key should be appended to SAC individu-
alization values 〈blobTag,blob〉 as each is delivered to a coprocessor in the
message of step 5 of Fig. 7. The association of the SAC.key value to the SAC
individualization values is done as part of bulk individualization in steps 5, 6 and
7 of Fig. 6, based on access by the TS HSM to SAC.assign, as originally com-
puted in step 9 of Fig. 4 during initialization of the given SAC-series. Note that
maintaining the secrecy of AS.track prevents an adversary from using knowl-
edge of this value in order to resubmit it under the reused SAC.number together
with a value of AS.key which he knows, during SAC-series initialization. Such
a maneuver, if successful, would allow an adversary to reroute SAC individual-
ization data to a rogue version of the SAC. For the purpose of preventing this
rerouting of data for use by a rogue SAC, it would actually suffice to use a non-
secret value unambiguously indicative of (but not causing leakage of) the secret
value of AS.track (such as H(AS.track)) during bulk individualization, since
knowledge of the value of AS.track is necessary in order to submit AS.track
together with a known value of AS.key during SAC-series initialization.

Having thus designed a means to securely link individualization data to the
correct SAC.key for secure distribution to coprocessors, and having designed a
means to thwart the successful usable publishing of rogue SACs under a tar-
get’s secret value of AS.key, it remains to provide a means of securely binding
SAC.key to the signature generated by the Trust Server during SAC publishing.
The use of SAC.number or SAC.ID does not suffice for this purpose since a TS
HSM without sufficient state memory may not be able to track the fraudulent
reuse of these values, and these are not intended to be randomly generated each
time. The approach taken in the current design is to input H(SAC.key) as an
argument of the signature. Within the secure execution environment of the co-
processor, the value of SAC.key is used to decrypt the ciphertext form of the
SAC and as an input to the signature verification process. This design uses the
plaintext- (i.e., SAC.key-independent-) version of the SAC within the signature
to allow coprocessor-independent verification of the signature by the Applica-
tion Server making a determination as whether to make publicly available the
missing argument of the signature that it computes during signature verifica-

122 David Kravitz et al.

tion based on its knowledge of AS.key. The explicit (although non-secret) use
of H(SAC.key) provides the necessary linkage to effect the binding.

The atomic processing of the signature generation during SAC publishing
prevents, in particular, insider substitution of a previously published (legitimate)
SAC for which SymEnc(H(〈SAC.ID,SAC.exe〉),AS.key) is known, juxtaposed
with a different (rogue) SAC for use in computing the unencrypted argument of
the signature, H(〈SAC.ID,SAC.exe〉).

An alternative means of securing the handling of SAC individualization data,
which (unlike the SAC.key-based technique) is independent of encryption of the
SAC for the purpose of confidentiality, could proceed as follows: H(SAC.key) as
it appears as an argument of the signature in the message transmitted during
step 12 of Fig. 5 (SAC publishing), is replaced by H(AS.track). H(AS.track)
does not need to be sent along with the signature to the Application Server
since, unlike SAC.key (generated by the Trust Server in step 8 of Fig. 4), the
appropriate value of AS.track is assumed known by the Application Server that
generated it in step 5 of Fig. 4 (SAC-series initialization). While SAC.key in its
raw form is transmitted to the coprocessor in step 5 of Fig. 7 (SAC permissioning)
for use by the coprocessor, it is important that a non-secret value indicative of
AS.track such as H(AS.track), rather than AS.track itself, be communicated
to the coprocessor during the step analogous to this one, since the value of
AS.track must not be obtainable through coprocessor compromise. Note that
SAC.key may be sent along with H(AS.track) to a coprocessor which needs the
value of SAC.key in order to decrypt SymEnc(SAC.exe,SAC.key) in the event
that this is the form in which it receives the SAC executable, SAC.exe.

Note that during SAC permissioning, an install by a coprocessor of an up-
grade versus a fresh install of a SAC (which is characterized by the absence
of any currently installed SAC corresponding to that SAC.number), rejects ab-
sorption of new individualization data. This attribute makes the system DRM
(digital rights management)-friendly in that digital rights data somehow tied to
or protected by individualization data, can be maintained across upgrades.

This method addresses legacy provider infrastructure issues, allowing the
Application Servers to communicate with multi-application coprocessor users
alongside users of already existing client-side devices. No preparatory steps are
needed to convert over to a secret shared between the Application Server and
the coprocessor, as was necessary in the first method. Furthermore, even if Ap-
plication Servers never communicate with the coprocessors, instances of a given
SAC or mutually trusted SACs can “peer-to-peer” communicate using SAC-level
encryption and/or authentication. This can be achieved by having the blobTag
include a certificate which corresponds to a private key within blob.

Although not explored further here, there is a potential hybrid approach,
which (as in the first method) does not require coordination of SAC individu-
alization data values between the Trust Server and the Application Server, but
which handles SAC publishing and installation of SACs through the Trust Server
(as in the second method).

Secure Open Systems for Protecting Privacy and Digital Services 123

The consumer’s privacy is protected from an attack in which an impostor
outside of the Trust Server gets a SAC published under a targeted Application
Server’s identity, to the extent that the Trust Server enforces authentication of
the origin of the executable/source code. In the case where an optional SAC-
publishing authorization procedure is followed, there may be additional review
of out-of-band documentation supporting the origin of the SAC source code, as
well as examination of the source code itself for compliance. The authentica-
tion of the origin can be brought directly into the HSM if there is no need for
the SAC publishing authorization process. Of course, even if the HSM verifies
digitally signed code against a certified signature key, the registration process
that that certificate authority (CA) used to authenticate identity before issuing
a certificate is also potentially subject to attack [20].

Undetectably replacing SAC individualization data inside of the Trust Server
with known values is potentially an attack against consumer privacy, and not an
attack against the provider’s goal of containment. Collusion between compro-
mised coprocessors and Trust Server insider attack can result in such substitu-
tion by illicitly repeating the dispensing of values of 〈blobTag,blob〉 to target
coprocessors during SAC permissioning, where such values correspond to those
extracted from compromised coprocessors. Because of the assumptions on Secure
Communications (as described in Sect. 5) between coprocessors and the Trust
Server, and because the input of encrypted bulk individualization data requires
authorization (via consistent input of AS.track) by the entity that initialized
the SAC series, TS insider attack or compromise of coprocessors alone does not
enable such attack.

8 Conclusion

We have introduced two distinct architectures geared toward the same goal of
achieving containment of damage to the business of content and service providers
while protecting the privacy interests of consumers who participate in the sys-
tem. These conflicting requirements are best mediated by the introduction of
programmable security coprocessors on the consumer end and a Trust Server
which can directly access these devices and so offer permissioning of providers’
applications into them while still maintaining user privacy. Users have a legiti-
mate right to change their personas with respect to activities conducted over the
Internet in order to restrict the amount of valuable information that others can
glean, often with no commensurate benefit to the consumer. The Trust Server
can deny the permissioning of further services to users who are suspected of
noncompliant usage of such services in the analogous way individual providers
could handle their relationships with customers who are known to them. We have
shown that a considerable degree of defense against both insider attacks and con-
sumer fraud can be achieved by careful protocol design and the measured use
of hardware security resources on both the consumer and server end. The first
of our two methods is characterized by a strong PKI (public-key infrastructure)
flavor which leans toward making minimal use of Trust Server involvement in

124 David Kravitz et al.

the process. The second approach is capable of handling legacy infrastructures,
although it is adaptable to hybrid approaches which can individualize coproces-
sors with keying material which is able to support both peer-to-peer PKI and
coprocessor-to-Application Server shared-secret based cryptography.

Acknowledgements

We thank Aram Perez and Jon Callas for helpful discussions.

References

1. B. Askwith, M. Merabti, Q. Shi, and K. Whiteley. Achieving user privacy in mo-
bile networks. In Proceedings of the 13th Annual Computer Security Applications
Conference, 1997. 107, 109

2. M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correct-
ness of memories. Algorithmica, 12(2/3), pp. 225–244, 1994. 110

3. L. Buttyán and J.-P. Hubaux. Accountable Anonymous Access to Services in Mo-
bile Communication Systems. In Proceedings of SRDS ’99, 1999. 107, 109

4. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology: Crypto ’92, E. F. Brickell, Ed., Lecture Notes in Computer Science
740, pp. 89-105, Springer-Verlag, 1992. 107

5. Committee on Intellectual Property Rights in the Emerging Information Infrastruc-
ture. The Digital Dilemma: Intellectual Property in the Information Age. Wash-
ington, D. C., National Academy Press, 2000. 107

6. G. Horn and B. Preneel. Authentication and payment in future mobile systems. In
Proceedings of ESORICS ’98, 1998. 107

7. B. Kaliski. New Challenges in Embedded Security. Consortium for Efficient Em-
bedded Security, Symposium on Embedded Security, Security Ownership and Trust
Models, July 10, 2001 (www.ceesstandards.org). 106

8. C. H. Lim and P. J. Lee. A Key Recovery Attack on Discrete Log-based Schemes
Using a Prime Order Subgroup. In Advances in Cryptology: Crypto ’97, B. S.
Kaliski, Jr., Ed., Lecture Notes in Computer Science 1294, pp. 249-263, Springer-
Verlag, 1997. 112

9. J. Manferdelli. Digital Rights Management (“DRM”). Consortium for Efficient
Embedded Security, Symposium on Embedded Security, Security Ownership and
Trust Models, July 10, 2001 (www.ceesstandards.org). 106

10. K. Martin, B. Preneel, C. Mitchell, H. Hitz, A. Poliakova, and P. Howard. Secure
billing for mobile information services in UMTS. In Proceedings of IS&N’98, 1998.
107

11. R. Mori and M. Kawahara. Superdistribution: the concept and the architecture.
Technical Report 7, Inst. of Inf. Sci. & Electron (Japan), Tsukuba Univ., Japan,
July 1990. 106

12. B. Patel and J. Crowcroft. Ticket based service access for the mobile user. In
Proceedings of Mobicom’ 97, 1997. 107

13. S. Pugh, The Need for Embedded Security. Consortium for Efficient Embedded Se-
curity, Symposium on Embedded Security, Security Ownership and Trust Models,
July 10, 2001 (www.ceesstandards.org). 106

Secure Open Systems for Protecting Privacy and Digital Services 125

14. M. O. Rabin. Digitalized Signatures and Public-key Functions as Intractable
as Factorization. MIT Laboratory for Computer Science Technical Report 212
(MIT/LCS/TR-212), 1979. 112

15. M. Rotenberg. Consumer Implications of Security Applications. Consortium for
Efficient Embedded Security, Symposium on Embedded Security, Security Owner-
ship and Trust Models, July 10, 2001 (www.ceesstandards.org). 106

16. S. Smith. Secure coprocessing applications and research issues. Los Alamos Un-
classified Release LA-UR-96-2805, August 1996. 107

17. S. W. Smith, E. R. Palmer, S. H. Weingart. Using a High-Performance, Pro-
grammable Secure Coprocessor. In Proceedings, Second International Conference
on Financial Cryptography. Springer-Verlag LNCS, 1998. 108

18. M. Stefik. Trusted Systems, Scientific American 276(3), March 1997, pp. 78-81.
106

19. U. Wilhelm, S. Staamann, and L. Buttyán. On the problem of trust in mobile
agent systems. In Proceedings of NDSS ’98, 1998. 107, 109

20. http://www.verisign.com/developer/notice/authenticode/ 123

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 126-140, 2002.
 Springer-Verlag Berlin Heidelberg 2002

MPEG-4 IPMP Extensions

James King and Panos Kudumakis

Multimedia Department, Central Research Laboratories
Dawley Road, Hayes, Middlesex UB3 1HH, England

pkudumakis@crl.co.uk

Abstract. MPEG has further progressed its specification for
interoperable Intellectual Property Management and Protection (IPMP)
to Committee Draft. This paper describes the MPEG IPMP Extensions
as a mapping into an MPEG-4 player. In the future there will also be
mappings to both MPEG-7 and MPEG-2. The concepts explained in
this paper are to be the basis for content protection throughout the
whole of the MPEG family of standards. Detailed within are the reasons
for their implementation by MPEG, how these extensions integrate into
the current MPEG-4 IM-1 IPMP �hooks� and the functionality they add
to the current standard.

1 Introduction

Today�s networks provide the opportunity for media content to be downloaded and
distributed with ease. While this has meant that access for legitimate users has
increased, it has also lead to a rise in illegal users. Within MPEG it was recognised
that content has value to both the user and owner, to ensure that this value is
preserved, it must be protected.

MPEG-4 has integrated the concept of the Intellectual Property Management
Protection framework into the IM-1 player project to provide this security. The IM-1
player is a collaborative project aimed at creating a reference MPEG-4 compliant
player. The framework integrated into the IM-1 player uses the concept of �hooks�
into the content at several stages of the decoding chain.

This technology has matured and it has become necessary to extend the IPMP
framework into a system, which can support flexible and secure protection systems.
This document explains the current IPMP �hooks� implementation, the reasons for the
proposed IPMP Extensions and how this will be achieved.

This paper contains the following sections:

• The MPEG-4 IM-1 IPMP �hooks�
A short description of the current IPMP �hooks� implementation. It examines
how they provide an interface between proprietary IPMP systems and the player
through a normative interface.

MPEG-4 IPMP Extensions 127

• Why the �hooks� need to be extended?
An explanation of what is missing from the current implementation. This section
contains a section from the call of proposals stating the exact nature of the
problem.

• How the IPMP Extensions work?
This contains a short walkthrough of a typical scenario involving the IPMP
Extensions and the sequence of events that occur.

• The components involved in the IPMP Extensions
A short description of each of the new components that will be added as a result
of the IPMP Extensions. These involve adjustments to the content and the
addition of both an IPMP Tool Manager and a Message Router.

• Messages
Describes the mechanism that will provide the communications framework of the
new IPMP Extensions.

• A comparison with an implementation of Open Platform Initiative for
Multimedia Access (OPIMA)
Compares the new IPMP Extensions with the OCCAMM implementation of
OPIMA. The Open Components for Controlled Access to Multimedia Materials
(OCCAMM) is a specific implementation of the OPIMA specification.

2 The MPEG-4 IM-1 IPMP �hooks�

MPEG-4 version 1 saw the introduction of Intellectual Property Management
Protection framework into the IM-1 player. An extensible framework was provided
that allowed developers to integrate protection systems into the IM-1 project.

The developer derives their own IPMP system from this framework. This
proprietary IPMP system communicates with the IM-1 player through a normative
interface known as the IPMP �hooks�. Each IPMP system is allocated an
objectTypeIndication value. The objectTypeIndication is used as an index into the
registry to find the corresponding IPMP dll location. Once located the IM-1 player
creates the IPMP system and begins deciphering the content.

The IM-1 player provides �hooks� into the content at different points in the
decoding chain, as shown by Figure 1. This allows a multitude of different protection
mechanisms access through a generic interface to content in the state they require.

In Figure 1 each oval represents a point at which the IPMP system can process
content in its current state. Currently only the pre- and post-decode �hooks� (control
points) are implemented. Pre-decoded data would be used for encryption, digital
signatures and bitstream watermarking.

Post-decoded data would be used for raw Audio and Video watermarking. Pre- and
post- decoding systems can be used in conjunction, this allows for in the case of
audio, protection in the digital domain through encryption and protection in the
analogue domain through watermarking.

128 James King and Panos Kudumakis

Audio DB
Audio

Decode

IPMP DB

Video DB
Video

Decode Video CB
C

om
posite

Elementary Stream Interface

BIFS DB

Audio CB

IPMP System(s)

OD DB OD
Decode

BIFS
Decode

IPMP-ES

Decoded
BIFS BIFS Tree

IPMP-Ds

DMIF

D
M

U
X

Possible IPMP
Control Points

R
ender

Fig. 1: The MPEG-4 IM-1 IPMP hooks [3]

In MPEG-4 Elementary Streams deliver content to the terminal. Each Elementary
Stream provides a distinct part of the content such as an audio track. Each Stream is
delivered to the terminal in terms of Access Units (AUs). Each Access Unit should be
a self-contained entity that can be decoded without need for the previous or next AU
being present. The size of each AU is arbitrary and decided by the properties of the
content.

Elementary Streams are grouped into entities known as Object Descriptors. An
Object Descriptor is made from one or more Elementary Streams delivering a specific
piece of media. For instance take scaleable AAC which has two streams, each one
adds a layer of quality to the audio. Each one would have its own Elementary Stream
but both would be within the same Object Descriptor. Depending on the available
bandwidth the user will receive the Elementary Stream(s) as appropriate.

Access Units are synchronised using timestamps for decoding and for composition.
Extra data can be associated with the media called IPMP Information. This allows
information such as encryption keys to be passed to the IPMP tool for initialisation.
This data is transmitted in an IPMP Elementary Stream providing the data in Access
Units to the IPMP System.

IPMP Elementary Streams are associated with the media they protect by IPMP
Descriptors pointers or via declaration within the same Object Descriptor. An IPMP
Descriptor pointer is placed within the Object Descriptor it is to protect. The actual
IPMP Descriptor is declared outside of the protected Object Descriptor. The other
case is where they are associated by declaration of the IPMP Elementary Stream
within the protected Object Descriptor.

MPEG-4 IM-1 is a collaborative project involving many different entities. As with
any standard there will be many implementations of both players and protection

MPEG-4 IPMP Extensions 129

systems. Therefore it is important that to provide a usable system to the consumer the
protection systems from multiple companies are interoperable and in some cases
interchangeable.

3 Why the �hooks� Need to Be Extended?

The following extract is taken from the 2000 IPMP Extensions call for proposals [7]:
�In 1997, MPEG issued a Call for Proposals for technology in the area of

Intellectual Property management and Protection (IPMP). After receiving the
proposals and the ensuing discussions, MPEG and the experts drawn to MPEG by the
Call decided, in 1998, that it would not be appropriate to standardise complete
systems, but that just providing the right interfaces (or �hooks�) would be were
standardisation should stop. In 1998 and 1999, technology has matured, requirements
for these systems have become clearer, and also MPEG�s understanding of the role of
IPMP technologies in building interoperable devices and services has evolved. Also,
it became clear that not all parties represented in MPEG were convinced that only
providing the interfaces would be enough. Particularly, some parties were concerned
about interoperability between different products, often for similar services, as
developed within the IPMP framework of the MPEG-4 Standard. Also, with
convergence becoming a reality, e.g. through the deployment of broadband Internet
access and the start of new services on mobile channels, interworking between
different types of devices and services becomes a more important requirement. It is
the belief of these parties, that the current MPEG-4 IPMP Framework does not
provide the necessary infrastructure to meet their interoperability requirements. It is
MPEG policy to support legitimate requests to standardise on a technology, knowing
that those not interested in that particular standard technology have no obligation to
adhere to it because of conformance obligations.

This Call requests submission of proposals that would allow interworking between
different devices and services designed to play secure digital MPEG-4 content from
multiple sources in a simple way, e.g. without the need to swap physical modules.�

4 How the MPEG-4 IPMP Extensions Work?

4.1 User Requests Specific Content

The manner in which content is requested is out of scope of this standard. However,
the following recommendations are made for the order in which different parts of the
content are received and used:

1. IPMP Requirements on the Terminal should be placed with or before media
requirements on the Terminal.

2. Access Information and/or restrictions should precede Content Stream download
information.

130 James King and Panos Kudumakis

TOOL LIST

IOD

TOOL ID

ALTERNATE
TOOL(S)

CONTENT
STREAM

MPEG-4
CONTENT

STREAM(s)

IPMP CONTENT
STREAM(s)

TERMINAL - IPMP MESSAGE ROUTER / TOOL MANAGER

AUDIO
DECODE

VIDEO
DECODE

BIFS
DECODE

AUDIO DB

VIDEO DB

OD DB

BIFS DB

AUDIO CB

VIDEO CB

BIFS CB

DMIF

D
E

M
U

X

IPMP DB

OD
DECODE

R
EN

D
ER

CONTENT
REQUEST

CONTENT
DELIVERY

IPMP
MESSAGE

IP
M

P
D

E
S

C
R

BIFS
TREE

C
O

M
PO

S
IT

O
R

T
O

O
L

LI
S

T

TERMINAL MESSAGE ROUTER INTERFACE

IPMP
TOOL A

IPMP
TOOL B

IPMP
TOOL C

IP
M

P
 T

O
O

L
M

E
S

S
A

G
E

S

TERMINAL

PARAMETRIC
DESCRIPTION(S) IPMP Tool Manager Interface

Obtain Missing IPMP
Tool(s)

Missing IPMP
Tools

Fig. 2: The MPEG-4 IPMP extensions [2]

4.2 IPMP Tools Description Access

1. The terminal accesses the IPMP Tool List.
2. Using the IPMP Tool List, the Terminal determines the IPMP Tools required

to consume the content.

4.3 IPMP Tools Retrieval

1. If the tools are available locally at the terminal, proceed to section 4.4.
2. The terminal attempts to obtain the Missing IPMP Tools. Some Missing Tools

may be carried in the Content itself. Otherwise, the Tool must be obtained
remotely. The following procedure may be followed for such retrieval:

1. The terminal accesses an implementation specific database for a location for
the missing Tool.

2. A communication channel is set-up between the terminal and the Tool
location.

3. The terminal implementation provides information about its platform and the
Tool database identifies a compatible Tool implementation.

4. The IPMP Tool Manager accesses/acquires the missing IPMP Tools.
5. The newly acquired tools are made available for use by the terminal.

MPEG-4 IPMP Extensions 131

4.4 Instantiation of IPMP Tools

1. The Terminal instantiates the IPMP Tool(s) locally or remotely.
2. The instantiated Tools are provided with initial IPMP Information from the

Content.
3. One or more Tools, identified in the Content, may use IPMP Information to

determine security requirements for content access, and monitor and facilitate
the establishment and maintenance of these security requirements in inter-Tool
communication.

4.5 IPMP Initialisation and Update � In Parallel with Content Consumption

1. The Message Router routes IPMP Information to the IPMP Tools.
2. The terminal consumes the content if allowed by the requisite IPMP Tool.
3. During content consumption, the complete walkthrough can be requested

again. Requests for content consumption are implicit within the process, or are
requested by the User.

Specific IPMP Information can be made normative outside this architecture. This
architecture supports both transparent and opaque IPMP Information. An IPMP
Information ID will be part of the IPMP Information, such ID will be assigned by a
Registration Authority.

5 The IPMP Extension Components

5.1 The Content

5.1.1 class IPMP_ToolListDescriptor

The content contains the list of tools required for the presentation of the content. The
tool list contains the unique identifiers of the required tools. This contains an 8 bit
identifier which is unique within its namespace. An 8 bit field containing the number
of tools in the list and the list of tools themselves.

5.1.2 class IPMP_Tool

Describes a tool that may be used to decode this content. This contains the unique
identifier for the IPMP Tool. It also contains bit flags that identify whether it is an
alternate tool or a parametric tool. These are explained in the following sections.

5.1.3 Alternate Tools

There may be instances where several tools can be used to decode a particular piece
of content. If this is the case a set of descriptors can be provided in the
IPMP_ToolListDescriptor. Anyone of these can be used depending on their
availability.

132 James King and Panos Kudumakis

5.1.4 Parametric Tools

There are cases where a more flexible approach to tool selection is required. For
instance in the case of an encryption algorithm such as Rijndael where there are
potentially many implementations on many different platforms.

There may also be the case where sets of tools can be used in tandem to render the
content. This process is known as parametric aggregation and allows for flexible
complex groups of IPMP tools to be established.

The parametric tools need a well known set of standard interfaces so they can be
used transparently. A simple language will be used to query the fitness of a tool for
the required purpose. Then the parametric configuration would be used to initialise
the tool.

5.1.5 Parametric Aggregation

The grouping of several tools, known as aggregation units, requires them to be linked
in the correct sequential order. This is achieved by using input and output codes, tools
with matching input and output codes are linked together to form the decoding chain.
Tools may have multiple inputs and outputs. The first tool in the chain is known as
the entry point and is identified as such.

Two distinct types of tools can be identified in the role of Parametric Aggregation.
The content management tools and the utility tools. The content management tools
would be used to co-ordinate and instantiate the utility tools. They would also be
responsible for making a decision as to the users privileges to use the content.

The utility tools would be much simpler, providing a service using a particular
algorithm, for instance a DES decoder. These would be similar to the IPMP systems
in use with the current IM-1 �hooks�.

5.1.6 Parametric Description

The information about the parametric configuration will be stored in
IPMP_ParametricDescriptors. The data stored will be generic and non-specific to
allow for transparent usage. A simple schema would follow the following model:

Version 1,2,3 etc�
Tool Class Watermarking, Decryption, Digital Signature
Sub Class RSA, Rijndael
Specific information block size, CBC, ECB

5.1.7 IPMP Information

This can come from a number of sources:

The content stream Data carried in the IPMP Elementary Stream associated
with the protected Media. This is the only means to
provide IPMP information in the current IPMP hooks
design.

The terminal Data from the terminal the content is being rendered on.
Remote resources A remote location.
A fellow IPMP tool Allows inter-communication between tools to allow for

complex interactions.

MPEG-4 IPMP Extensions 133

Two categories of IPMP information will be specified. Generic information that
can be understood by both the terminal and the tool, and information specific to the
tool receiving it.

5.2 IPMP Tool Manager

5.2.1 Overview

The Tool Manager is responsible for selecting and instantiating the IPMP tools from
the given tool list, whether normal, parametric or alternative tools.

5.2.2 Acquiring Tools via Content

The packaging of tools with the content gives a means of delivering the appropriate
tools the terminal is missing. The tool would be carried in a new type of associated
Elementary Stream, IPMPToolStream. The downloading of tools is handled by the
Tool Manager.

The descriptor for the tool stream should be placed in the Initial Object Descriptor
to ensure all the tools are present before decoding begins.

The tool would be described in terms of an identifier unique to that class of tool. It
would also have a field that identifies the binary form of the tool. ie. .dll, jar file, unix
shared library. The final field would describe how the tool is packaged, for instance in
zip format.

Missing tools can also be downloaded from a remote source when they are not sent
with the content.

5.2.3 Tool Creation

Tools can be created by one of two methods. The first is by a piece of protected
content, this is the scenario that occurs in the current IPMP �hooks� design. Secondly
a tool may be instantiated by another tool. This gives the possibility of creating
complex protection systems.

Because of the inter-dependant possibilities tools may register themselves for
notification on the creation of another specific tool. Each instance of a tool must
register the context and scope of protection they will offer. This is the first action for a
tool on creation.

Tools will use messages to communicate with one another, so on creation they
must first register themselves with the Message Router.

5.3 Message Router

5.3.1 Authentication

One of the missing components of the current IM-1 �hooks� implementation is the
ability to ensure that an IPMP system is authentic. To ensure that security is not
compromised, tools and the terminal require the ability to authenticate one another.
This mechanism should allow varying levels of trust to be established between tools
and between tools and the terminal.

134 James King and Panos Kudumakis

The level of trust is indicated by the tool initiating the authentication process, it is
likely that this is one of the more complex management systems rather than a utility
IPMP system. The two systems involved in the authentication process then agree
common protocols and parameters dependent on the trust level.

5.3.2 Certification

IPMP tools and terminals can use certificates such as X.509 to provide information
about themselves and also use trust and security metadata to authenticate themselves.
There is an interface called TrustSecurityMetadata, which can be sub-classed to
provide this functionality.

5.3.3 Routing

To ensure the delivery of the IPMP Information an entity called a Message Router
will provide the transport layer. Clearly the Message Router interfaces need to be
normative to ensure compatibility.

Each message will contain the source and destination Ids of the tools. A timestamp
indicating when the data is to be delivered to the target tool. Whether the delivery
method is synchronous or asynchronous. The route and sequence of tools the message
is being sent to, and the context under which the message is being sent.

It will be necessary to Synchronize IPMP messages with the content using the
timestamps field. This will be important for security methods like encryption that will
require synchronized key changes. This synchronization will be specified in the
future.

6 Messages

6.1 Function Structure [1]

Messages are defined in Interface Descriptor Language (IDL), this allows for a
platform independent representation. The message consists of the following fields:

IPMP_ReceiveMessage(
[in] short Sender, // Tool ID
[in] short Recipient, // Tool ID
[in] long MsgSize, // Size in bits
[in] octet Msg[] // The message
[in] IPMP_MsgMode MsgMode, // Async/Sync
[in] long MsgID) // ID of msg

return IPMP_ToolMsgStatus ; // OK or Error

enum IPMP_ToolMsgStatus
{
IPMP_MSG_STATUS_MSG_POSTED = 0,
IPMP_MSG_STATUS_INVALID_SENDER_ID,
IPMP_MSG_STATUS_INVALID_RECIPIENT_ID,
IPMP_MSG_STATUS_MSG_MODE_NOT_SUPPORTED,
IPMP_MSG_STATUS_GENERIC_ERROR
};

MPEG-4 IPMP Extensions 135

enum IPMP_MsgMode
{
IPMP_MSG_MODE_SYNC = 0,
IPMP_MSG_MODE_ASYNC
};
The receive message method is called by the message router on the IPMP tool

when a message is passed to it from the sender IPMP tool. The return value of the
method indicates the result for synchronous methods. For asynchronous messages the
MsgID can be used to identify the response for a particular message.

6.2 Creation and Notification Messages

This group of messages provides the ability to create and be notified about the
creation of tools. Used by tools to gain access to one another and for tools to spawn
other tools.

IPMP_CreateNewToolInstance Signals the creation of a specified
new tool

IPMP_RequestInstTools Returns a list of all tools running on
the terminal

IPMP_AddToolInstNotificationListener Register for notification of tool
creation

IPMP_RemoveToolInstNotificationListene
r

Remove registration for tool
creation notification

IPMP_ToolInstNotification Notification message containing
details of tool created, is passed to
registered listeners

IPMP_RequestToolContextID Requests ID�s of other tools in the
same protection chain

IPMP_SupplyToolContextID Replies to above with ContextID

6.3 IPMP Information Delivery Messages

Provides the tool with information about its bit stream. Includes messages to provide
IPMP information to the tool and decoder information .

IPMP_ DecConfigFromBitstream Delivers the decoder information from the
ES to the tool

IPMP_ DecConfigFromBitstream Delivers the decoder information from the
ES to the tool

IPMP_DescriptorFromBitstream Delivers the IPMP Descriptor to the tool
IPMP_DataTerminate Updates or deletes a descriptor when an

update or remove is read from the stream

136 James King and Panos Kudumakis

6.4 Processing Messages

The messages providing the tool with the content to be deciphered. Content is
processed and then passed back to the terminal in a reply message.

IPMP_ProcessData Delivers data in a similar fashion to the current
IPMPManagerImp::Decrypt() method.

IPMP_ProcessDataReturn Returns the data processed by above message.

6.5 Intent Messages

The tool uses these messages to notify the terminal that they wish to process a piece
of content. The message destination signals its authorisation or rejection in its reply.

IPMP_IntentRequest Declares an intent to process some data
IPMP_IntentResponse Yes/No response to above message
IPMP_IntentTerminate Terminate intent
IPMP_IntentRevoke Deny access to a part of the content

6.6 User Messages

These messages provide a way for the IPMP tool to query the user. A variety of
responses can be made and are sent back to the IPMP tool via a reply message.

ToolToUserMessage Displays a message and can ask for a response from the
user

UserToToolMessage Contains the reply text from the user or the result of
options offered to the user

6.7 Authentication Messages

A normative message interface for authentication between tools and the terminal.

IPMP_InitAuthentication Initiates an authentication process with the tool
specified in the context ID. Different levels of
security can be specified

7 A Comparison with OPIMA (Open Platform Initiative
for Multimedia Access)

This section provides a comparison with a specific implementation of OPIMA namely
the Open Components for Controlled Access to Multimedia Materials
(OCCAMM)[6]. This is one of the first implementations of OPIMA and the reader
should be aware that other alternatives may exist. Many of the concepts behind the
IPMP Extensions can be seen in the OCCAMM implementation of OPIMA.

MPEG-4 IPMP Extensions 137

7.1 Message Routing vs. Scheduler

In OCCAMM operations are handled by the Scheduler, which spawns a thread to
handle each individual message. The proposed IPMP extensions use a message-based
scheduler called the Message Router, which passes messages between the IPMP tools
and terminals.

Both methods allow for asynchronous and synchronous operation, however
OCCAMM uses interfaces whereas the IPMP Extensions use messages.

7.2 IPMP Tools vs. OPIMA IPMPS

The OCCAMM IPMPS provides the decision making engine of the OCCAMM
platform. Importantly it contains no algorithms, the separation of algorithms and
decision making is a fundamental aim of OCCAMM for reasons of security.

OCCAMM provides algorithms fixed within the OPIMA Virtual Machine (OVM),
when the algorithms change a new OVM must be downloaded. This is done for
security and to limit the complexity of having large amounts of algorithms code in
use. OCCAMM specifies the algorithms a terminal supports in terms of
compartments. Each compartment supports a certain set of algorithms. This allows for
different classes of terminal, there could be a compartment for PDA�s, a compartment
for PC�s etc.

In the IPMP Extensions IPMPS tools can be a decision maker like the IPMPS in
OCCAMM and they can also be algorithms. The decision making IPMP tools then
spawn and use the algorithm tools to process the content. Unlike OCCAMM both of
these components can be downloaded, the security mechanism is provided by mutual
authentication. Therefore the IPMP Extensions rely heavily on the fact that this
mutual authentication is secure.

In OCCAMM the IPMPS can get IPMP information from the content, which is
passed by the MPEG-4 player. And it can also access a remote server through a
Secure Access Channel (SAC). It can use this SAC to gain extra usage rules about the
user.

7.3 Manufacturer and Consumer-Interoperability vs. Limited Complexity

OCCAMM ensures interoperability with vendors by limiting the amount of
algorithms in use. IPMPS decision engines can be downloaded for the specific vendor
to enforce their usage rules. In the IPMP Extensions consumer interoperability is
more complex as both algorithms and decision engines can be downloaded and these
can be combined in many different configurations. This extra complexity can be
alleviated slightly by combining the IPMP tools with the content thus ensuring the
user has the correct tools.

Manufacturer interoperability is enforced in OCCAMM by pre-defining the
algorithms of the OVM, thereby ensuring that the IPMPS can always use the
algorithms provided. A balance between interoperability for both the user and
manufacturer whilst limiting complexity to a manageable level is a key aim of
OCCAMM.

138 James King and Panos Kudumakis

In the IPMP Extensions alternative and parametric tools give a greater amount of
interoperability for both the vendor and consumer than tools selected by unique ID.
Tools already in local storage can be selected over those requiring download.
Similarly parametric tools may give a greater chance of a suitable tool already being
present on the terminal.

7.4 Similarities and Differences

OCCAMM provides an example of how a system similar to the IPMP Extensions can
and does work. Although the implementations differ in the way they are assembled,
the system architecture remains similar even at object level.

OCCAMM MPEG-4 IPMP Extensions
Scheduler Message Router
IPMPSDownloadManager IPMP Tool Manager
IPMPS IPMP Tool (Decision making)
Algorithm IPMP Tool (Utility)

In OCCAMM these components, with the exception of the IPMPS, are statically
linked into the OVM for security. Whereas the MPEG-4 IPMP Extensions are
comprised of distributed objects that use authentication for security and verification.

Importantly, OCCAMM provides the OVM for use by multiple applications rather
than the MPEG player, which is a stand-alone application. This allows application
developers to use the features of the OVM within their own software.

7.5 Interoperability between OCCAMM and the IPMP Extensions

Within OCCAMM an MPEG-4 player provides the content rendering capabilities.
This means that in essence all the functionality in the MPEG-4 player is also available
to OCCAMM platform. Therefore OCCAMM can be seen as a value added system.

OCCAMM interfaces with the MPEG-4 player using two IPMP tools, the
opima.dll for pre-decoded content and the postwrap.dll for post-decoded content.
Instead of containing algorithms, these are proxy dlls, which pass content to the OVM
for secure processing.

The opima and postwrap tools contain no algorithms of their own. They are loaded
by the player when specified in the IPMP Tools List. They then pass the OVM
content as it is passed through the decoding chain to them. The OVM then processes
the content and places it into the buffers given by the opima and postwrap tools.

There are two key areas where compatibility is required, the algorithms used to
protect the content, and the IPMP information that contains the content rules. If both
systems can interchange these then there is no problem with interoperability.

Most algorithms in use are standardised so as long as the same one is present in the
OVM and in MPEG-4 IPMP Extensions there will be no incompatibility. The OVM
compartment can be periodically updated to take into account any algorithm updates
or changes.

IPMP information could be standardised into a universal content management
language. This could express both the rules under which the content is to be used, and
algorithm parameters.

MPEG-4 IPMP Extensions 139

It could even be possible to have OCCAMM interact with other MPEG-4 IPMP
tools through IPMP Information passed to and from the opima and postwrap dlls.

7.6 A Walkthrough in an OCCAMM System Using MPEG-4 IPMP Extension
Capable Player

The following walkthrough shows how content aimed at an MPEG-4 IPMP
Extension player can be played through the OVM. This is done by adding the opima
and postwrap tools to the IPMP Tool List, in this case as alternatives. The content
could easily have the postwrap and opima tools as the main tools in the IPMP Tool
List.

1. User loads the application of their choice
2. The application requests the OVM to open the content
3. The OVM requests the MPEG-4 player to load the content
4. In the MPEG-4 player the IPMP Tool List is loaded
5. From the alternative tools � opima tool and postwrap tool selected
6. Terminal loads opima and postwrap tools
7. Authentication of opima tool, postwrap tool and terminal
8. IPMP Information routed to the corresponding opima and postwrap tools
9. Tools pass IPMP Information to the OVM
10. OVM instantiates the appropriate OCCAMM IPMPS
11. OVM passes IPMP Information to the OCCAMM IPMPS
12. OCCAMM IPMPS initialises the algorithms according to the IPMP

Information
13. The tools pass the incoming media data to the OVM for processing and the

results are passed to the OCCAMM IPMPS for evaluation
14. Decoding continues

The walkthrough above shows how content can be shared by both, a stand-alone
IPMP Extension compliant MPEG-4 player, or a system using OPIMA/OCCAMM.
By using the alternative tools list the opima and postwrap tools can be loaded, passing
control of the content to the OVM.

8 Conclusions

MPEG has further progressed its specification for interoperable Intellectual Property
Management and Protection (IPMP) to Committee Draft. The term IPMP is used by
MPEG to describe Digital Rights Management. This paper has described the MPEG
IPMP Extensions as a mapping into an MPEG-4 player. In the future there will be
mappings to both MPEG-7 and MPEG-2. The concepts explained in this paper are to
be the basis for content protection throughout the whole of the MPEG family of
standards.

140 James King and Panos Kudumakis

References

1. ISO/IEC JTC1/SC29/WG11 MPEG, Text of ISO/IEC 21000-4/CD, N4269,
(MPEG-21 Part-4: IPMP), Sydney, July 2001.

2. ISO/IEC JTC1/SC29/WG11 MPEG, Text of ISO/IEC 14496-1/PDAM3, N4270,
(MPEG-4 Part-1: Systems), Sydney, July 2001.

3. ISO/IEC JTC1/SC29/WG11 MPEG, �MPEG-4 Intellectual Property
Management & Protection (IPMP) Overview & Applications�, N2614, Rome,
Dec. 1998.

4. ISO/IEC JTC 1/SC 29/WG11 MPEG, International Standard ISO/IEC 14496-1.
Information Technology � Generic Coding of Moving Pictures and Associated
Audio, Part 1: Systems, 2001.

5. �Open Platform Initiative for Multimedia Access (OPIMA) specification 1.1�,
http://www.cselt.it/opima/

6. OCCAMM EC project http://sharon.cselt.it/projects/occamm/publicmaterial.htm
7. ISO/IEC JTC1/SC29/WG11 MPEG, �Call of Proposals for IPMP solutions�,

N3543, Beijing, July 2000.

Dynamic Self-Checking Techniques

for Improved Tamper Resistance

Bill Horne, Lesley Matheson, Casey Sheehan, and Robert E. Tarjan

STAR Lab, InterTrust Technologies
4751 Partick Henry Dr., Santa Clara, CA 95054

{bhorne,lrm,casey,ret}@intertrust.com

Abstract. We describe a software self-checking mechanism designed to
improve the tamper resistance of large programs. The mechanism con-
sists of a number of testers that redundantly test for changes in the
executable code as it is running and report modifications. The mech-
anism is built to be compatible with copy-specific static watermarking
and other tamper-resistance techniques. The mechanism includes several
innovations to make it stealthy and more robust.

1 Introduction

There are many situations in which it is desirable to protect a piece of software
from malicious tampering once it gets distributed to a user community. Examples
include time-limited evaluation copies of software, password-protected access to
unencrypted software, certain kinds of e-commerce systems, and software that
enforces rights to access copyrighted content.

Tamper resistance is the art and science of protecting software or hardware
from unauthorized modification, distribution, and misuse. Although hard to
characterize or measure, effective protection appears to require a set of tam-
per resistance techniques working together to confound an adversary.

One important technique is self-checking (also called self-validation or in-
tegrity checking), in which a program, while running, checks itself to verify that
it has not been modified. We distinguish between static self-checking, in which
the program checks its integrity only once, during start-up, and dynamic self-
checking, in which the program repeatedly verifies its integrity as it is running.

Self-checking alone is not sufficient to robustly protect software. The level of
protection from tampering can be improved by using techniques that thwart re-
verse engineering, such as customization and obfuscation, techniques that thwart
debuggers and emulators, and methods for marking or identifying code, such as
watermarking or fingerprinting. These techniques reinforce each other, making
the whole protection mechanism much greater than the sum of its parts.

In this paper we describe the design and implementation of a dynamic self-
checking mechanism that substantially raises the level of tamper-resistance pro-
tection against an adversary with static analysis tools and knowledge of our al-
gorithm and most details of our implementation. Our threat model is described

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 141–159, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

142 Bill Horne et al.

in detail in Section 3. Our overall goal is to protect client-side software running
on a potentially hostile host.

We begin in Section 2 with a brief discussion of related work. In Section 3
we address our threat model and the design objectives we used to create tech-
niques to oppose these threats. Section 4 presents an overview of our self-checking
mechanism and its components. Section 5 describes the design, performance and
placement of the testing mechanism. Section 6 discusses the design and inter-
connection of the tested intervals of code. Finally, Section 7 concludes with a
summary and a brief discussion of directions for future improvements.

The authors of this document were primarily responsible for the design and
implementation of the self-checking technology. Throughout its evolution, how-
ever, many important contributions came from others, including Ann Cowan,
Chacko George, Jim Horning, Greg Humphreys, Mike MacKay, John McGinty,
Umesh Maheshwari, Susan Owicki, Olin Sibert, Oscar Steele, Andrew Wright,
and Lance Zaklan.

2 Related Work

There has been a significant amount of work done on the problem of execut-
ing untrusted code on a trusted host computer [10,11,12]. The field of tamper
resistance is the dual problem of running trusted code on an untrusted host. Al-
though of considerable practical value, there has been little formal work done on
this problem. Most of the work reported in the literature is ad hoc. It is not clear
that any solutions exist that have provable security guarantees. In addition, the
field suffers from a lack of widely recognized standards to measure effectiveness.
With these disclaimers in mind, we present a brief survey of some important
work related to our self-checking technology.

Obfuscation attempts to thwart reverse engineering by making it hard to
understand the behavior of a program through static or dynamic analysis. Ob-
fuscation techniques tend to be ad hoc, based on ideas about human behavior
or methods aimed to derail automated static or dynamic analysis. Collberg, et
al. [6,7,8] presented classes of transformations to a binary that attempt to confuse
static analysis of the control flow graph of a program. Wang, et al. [15,16,17]
also proposed transformations to make it hard to determine the control flow
graph of a program by obscuring the destination of branch targets and making
the target of branches data-dependent. Wang, et al. present a proof that their
transformations make the determination of the control graph of a transformed
program NP-hard. Theoretical work on encrypted computation is also related
to obfuscation. For example, Sander and Tschudin [14] propose a theoretical ob-
fuscation method that allows code to execute in an encrypted form for a limited
class of computations. Other work on obfuscation appears in [3,13].

Customization takes one copy of a program and creates many very different
versions. Distributing many different versions of a program stops widespread
damage from a security break since published patches to break one version of
an executable might not apply to other customized versions. Aucsmith uses this

Dynamic Self-Checking Techniques for Improved Tamper Resistance 143

type of technique in his IVP technology [1]. Each instantiation of a protected
program is different.

Software watermarking, which allows tracking of misused program copies,
complements both obfuscation and customization by providing an additional
deterrent to tampering. Many software watermarking methods have been pro-
posed, but none of them appear to be in widespread use. Collberg and Thom-
borson [4] classify software watermarks as either static or dynamic and provide a
survey of research and commercial methods. They make the distinction between
software watermarking methods that can be read from an image of a program
and those that can be read from a running program. Static methods include
a system described by Davidson and Myhrvold [9] in which a program’s basic
blocks are shuffled to create a unique ordering in the binary, which serves as a
unique identifier for that version of the program.

Self-checking, also referred to as tamper-proofing, integrity checking, and
anti-tampering technology, is an essential element in an effective tamper-resis-
tance strategy. Self-checking detects changes in the program and invokes an
appropriate response if change is detected. This prevents both misuse and repet-
itive experiments for reverse engineering or other malicious attacks. Aucsmith [1]
presents a self-checking technology in which embedded code segments verify the
integrity of a software program as the program is running. These embedded code
segments (Integrity Verification Kernels, IVK’s) check that a running program
has not been altered, even by one bit. Aucsmith proposes a set of design criteria
for his self-checking technology including interleaving important checking-related
tasks for stealth (partial computation of the check sum), obfuscated testing code,
non-deterministic behavior, customization of testing code (non-unique installa-
tions) and distributed secrets. We adhere to similar design criteria.

Chang and Atallah [2] propose a method in which software is protected by a
set of guards, each of which can do any computation. In addition to guards that
compute checksums of code segments (analogous to our testers), they propose
the use of guards that actually repair attacked code. Their emphasis is on a
system for automatically placing guards and allowing the user of the system to
specify both the guards and the regions of the program that should be guarded.
In emphasizing these issues, their results are somewhat complementary to ours.

Collberg and Thomborson [5] provide a view of the nature of these classes
of tamper-resistance technologies. Unfortunately, little research into the comple-
mentary aspects of these kinds of technologies can be found.

3 Design Objectives and Threat Model

The fundamental purpose of a dynamic program self-checking mechanism is to
detect any modification to the program as it is running, and upon detection
to trigger an appropriate response. We sought a self-checking mechanism that
would be as robust as possible against various attacks while fulfilling various non-
security objectives. In this section we summarize our threat model and design
objectives.

144 Bill Horne et al.

3.1 Functionality

– Comprehensive and Timely Dynamic Detection The mechanism
should detect the change of a single bit in any non-modifiable part of the
program, as the program is running and soon after the change occurs. This
helps to prevent an attack in which the program is modified temporarily and
then restored after deviant behavior occurs.

– Separate, Flexible Response Separating the response mechanism from
the detection mechanism allows customization of the response depending
upon the circumstances, and makes it more difficult to locate the entire
mechanism having found any part.

– Modular Components The components of the mechanism are modular
and can be independently replaced or modified, making future experimenta-
tion and enhancements easier, and making extensions to other executables
and executable formats easier.

– Platform Independence Although the initial implementation of our self-
checking technology is Intel x86-specific, the general mechanism can be
adapted to any platform.

– Insignificant Performance Degradation The self-checking mechanism
should not noticeably slow down the execution of the original code and
should not add significantly to the size of the code. Our goal is to have no
more than a 5% impact on performance.

– Easy Integration We designed our self-checking technology to work in
conjunction with copy-specific static watermarking and with other tamper-
resistance methods such as customization. Embedding the self-checking tech-
nology in a program relies on source-level program insertions as well as object
code manipulations.

– Suitable for a Large Code Base Our test-bed executable was several
megabytes in length.

3.2 Security

The two general attacks on a software self-checking mechanism are discovery
and disablement. Methods of discovering such a mechanism, and our approaches
for preventing or inhibiting these methods, follow.

Discovery

– Static Inspection We made the various components of the self-checking
mechanism as stealthy and obfuscated as we could, to make detection by
static inspection, especially automated inspection (by a program) hard.

– Use of Debuggers and Similar Software Tools Off-the-shelf dynamic
analysis tools such as debuggers and profilers pose a significant threat to our
self-checking technology. Self-checking requires memory references (reads)
into executable code sections. These can be detected with a debugger, al-
though any debugger that relies on modifying the code will be defeated by

Dynamic Self-Checking Techniques for Improved Tamper Resistance 145

the self-checking mechanism. Our mechanism is enormously strengthened by
the addition of a mechanism that detects standard debuggers and responds
appropriately. (The design of such a mechanism is beyond the scope of this
paper.) Homemade debuggers also pose a threat but require a substantial
investment by an attacker.

– Detection of Reads into the Code We attempted to thwart both static
and dynamic detection of reads into the code sections by obfuscating the
read instructions, so that the code section addresses targeted by such reads
were never in single registers. Detection of such reads thus requires noticing
that such a read has actually occurred; inspecting the code or monitoring
the registers will not reveal this fact.

– Generalization The self-checking mechanism consists of a large number
of lightweight code fragments called testers, each testing a small contiguous
section of code. An attacker, having discovered one such tester, could look for
others by searching for similar code sequences. We customized the testers, so
that generalizing from one to others is difficult: not only are there multiple
classes of testers, each class performing a different test (computing a different
hash function), but within each class the testers use different code sequences
to do the same job.

– Collusion Our self-checking mechanism is designed so that it can be used
on statically-watermarked code. If copy-specific watermarks are used, an at-
tacker might be able to locate the tester mechanism by obtaining two differ-
ently marked copies of the code and comparing them. The differences might
reveal not only the watermarks but also any changes needed in the self-
checking mechanism to compensate for different watermarks. In our mech-
anism, the bits that vary in order to compensate for the watermarks are
called correctors. These correctors are separated from the testers and the
response mechanism. Therefore, neither the testers nor the response mech-
anism can be detected by collusion. In addition, detection of the correctors
by collusion provides an attacker with very little information. Knowing the
correctors and their values does not facilitate discovering or disabling the
rest of the mechanism. The use of customization, in which there are many
radically different copies of the code, would also foil this kind of attack since
everything in the program looks different in every copy.

– Inspection of Installation Patches The final step of the watermarking
and self-checking initialization process that we propose here relies on using
a patch file to modify a previously obfuscated, non-functional executable.
Inspection of the patch file might reveal some parts of the self-checking
mechanism. With our method, the only parts of the self-checking mechanism
that are in the patches are the correctors, not the testers or the response
mechanism. If copy-specific watermarking is not used, this patching process
is not required.

Disablement In general, our goal was to eliminate single points of failure and to
require discovery and modification of all or most of the self-checking mechanism
for an attacker to succeed.

146 Bill Horne et al.

– Modifying the Testers One possible disabling attack is to modify one
or more testers so that they fail to signal a modification of the tested code
section. Our testers are designed to provide redundant, overlapping coverage,
so that each tester is tested by several others. Disabling one or more of the
testers by modifying them will produce detection of these changes by the
unmodified testers. All or almost all of the testers must be disabled for this
kind of attack to succeed.

– Modifying the Response Mechanism Another disabling attack is to
modify the response mechanism. Again, because of the redundant testing
mechanism, substantially all of the response functionality must be disabled
for such an attack to succeed. In our current implementation we used direct
calls to a tamper-response mechanism. Future possible work is to build a
stealthier, more robust tamper-response mechanism, including variably de-
layed response and multiple paths to the response code.

– Modifying Correctors Another possible attack is to modify the code so
that it behaves incorrectly and still does not trigger the testers. With our
use of multiple overlapping hash computations, such an attack is unlikely
to succeed without discovery of all or most of the testers. Such discovery
would allow a successful tester-disabling attack. Thus, the former attack is
no greater a threat than the latter.

– Temporary Modifications A dynamic attack might modify the code so
that it behaves anomalously and then restore the code to its original form
before the self-checking mechanism detected the change. Our use of dynamic,
redundant self-checking minimizes this threat.

4 Algorithm Design

In this section we provide an overview of our self-checking mechanism, including
some discussion of our design decisions and possible alternatives and extensions.
In subsequent sections we discuss various aspects of the mechanism in more
detail.

4.1 Components and Embedding Process

The self-checking mechanism consists of a collection of two kinds of components,
testers and correctors, discussed in Sections 4.2. and 4.4, respectively. These com-
ponents are embedded into an executable in a three-step process:

Step 1 Source-code processing Insert a set of testers, coded in assembly
language, into the source code of the executable.

Step 2 Object-code processing

Step 2A Shuffle groups of basic blocks of the object code, thereby randomizing
the tester distribution.

Dynamic Self-Checking Techniques for Improved Tamper Resistance 147

Step 2B Insert correctors, at least one per tester, into the object code.
Step 2C Associate a corrector and a tester interval with each tester, in such

a way as to provide redundant coverage of the executable and so that the
correctors can later be set in an appropriate order to make the testers test
correctly.

Step 3 Installation-time processing

Step 3A Compute watermark values.
Step 3B Compute corrector values given the watermark values.
Step 3C Form patches containing the watermark and corrector values.
Step 3D Install the program by combining the patches with a pre-existing, non-

functional executable to prepare a watermarked, self-checking, fully func-
tional executable.

Testers are inserted into source code instead of object code. If instead we
were to insert the testers into the object code it would be difficult to insure that
the registers used by the testers do not conflict with the registers being actively
used by the object code at the insertion point. By inserting the testers in the
source code, the compiler will do the appropriate register allocation to avoid
any conflicts. This insertion method also affords us more control over the run-
time performance of the self-checking mechanism, since we can more easily place
testers in code segments with desired performance characteristics. On the other
hand, we do not have fine-grained control over the placement of testers in the
executable. Object-level placement of the correctors gives us great control over
their static distribution, which is their most important attribute. The issues of
where and when to insert the testers, correctors and other security components
deserve further study.

Our self-checking method is designed to work in combination with water-
marking. Since copy-specific watermarking must be done at installation time,
the self-checking mechanism must either avoid checking the watermarks or must
be modified at installation time to correct for the watermark values. We chose
the latter course as being more secure. Our installation mechanism uses an “in-
telligent patching” process, in which both watermarks and correctors for the
self-checking mechanism are placed into a set of patches on the server side. These
patches are sent to the client, which patches the code to produce a working exe-
cutable. The patches contain no information about the code outside the patches.
This minimizes security risks on the client, time and space transferring the patch
lists, and time and space on the server, for maintaining and computing patch
lists. This design led to a choice of linear hash functions for the self-checking
mechanism. If copy-specific watermarking is not used, or an entire copy of the
executable can be delivered at installation time, then the patching mechanism
is not needed.

148 Bill Horne et al.

4.2 Testers

The heart of the self-checking mechanism is a collection of testers, each of which
computes a hash (a pseudo-random many-one mapping) of a contiguous section
of the code region and compares the computed hash value to the correct value.
An incorrect value triggers the response mechanism.

To set the testing frequency and the size of the code tested by each tester,
we need to balance performance, security, and stealth objectives. Experiments
on a set of Pentium processors for a variety of linear hashes suggested that
performance is relatively invariant until the size of the code interval being tested
exceeds the size of the L2 cache. With our Pentium II processors we observed
a marked deterioration of performance when the code interval size exceeded
512 kilobytes. Breaking the computation into pieces also addresses our threat
model and meets our design objectives. It makes the self-checking mechanism
stealthier. The testers execute quickly, without observable interruption to the
program execution. Each of our testers, therefore, tests a contiguous section
that is a few hundred kilobytes long.

A single tester, when executed, completely computes the hash value for its
assigned interval and tests the result. We considered more distributed alterna-
tives, in which a single call of a tester would only partially compute a hash value.
Aucsmith promotes this type of design in his Integrity Verification Kernel, a self-
checking mechanism proposed in [1]. He promotes the use of interleaved tasks
that perform only partial checking computations. With such an alternative, ei-
ther a single tester or several different testers are responsible for the complete
computation of the hash of an interval. We rejected such alternatives as being
more complicated and less stealthy, in that they require storage of extra state
information (the partially computed hash function).

An important design decision was where to store the correct hash values.
One possibility is with the testers themselves. This poses a security risk. Because
the self-checking mechanism tests the entire code and watermarks differ among
different copies of the code, many of the hash values will differ among copies. In
the absence of code customization (which creates drastically different versions of
the code), the hash values can be exposed by a collusion attack, in which different
copies of the code are compared. Storing the hash values with the testers thus
potentially exposes the testers to a collusion attack. Another difficulty is the
circularity that may arise if testers are testing regions that include testers and
their hash values: there may be no consistent way to assign correct hash values,
or such an assignment may exist, but be very difficult to compute.

Another possibility that avoids both of these problems (revealing the testers
by collusion and circularity of hash value assignments) is to store the hash values
in the data section. But then the hash values themselves are unprotected from
change, since the self-checking mechanism does not check the data section. We
could avoid this problem by dividing the data section into fixed data and variable
data, storing the hash values in the fixed data section, and testing the fixed data
section, but this alternative may still be less secure than the one we have chosen.

Dynamic Self-Checking Techniques for Improved Tamper Resistance 149

We chose a third alternative, in which each hash interval has a variable word,
called a corrector. A corrector can be set to an arbitrary value, and is set so that
the interval hashes to a fixed value for the particular hash function used by
the tester testing the interval. Collusion can reveal the correctors, but does not
reveal the testers. Since the correctors are themselves tested, changing them is
not an easy job for an attacker. Each tested interval has its own corrector, and
is tested by exactly one tester. Aucsmith’s testers (IVK’s), although encrypted,
are vulnerable to discovery by collusive attacks because the testers themselves
are unique in each different copy of the protected software.

We experimented with multiple testers testing the same interval but rejected
this approach as being overly complicated and not providing additional security.

Another important design decision is how to trigger the execution of the
testers. We chose to let them be triggered by normal program execution, sprin-
kling them in-line in the existing code. Alternatives include having one or more
separate tester threads, or triggering testers by function calls, exceptions, or some
other specific events. We rejected the latter mechanisms as being insufficiently
stealthy. Having separate tester threads in combination with an in-line triggering
mechanism deserves further study, as it may provide additional security through
diversity.

A third design decision was the choice of hash functions. We used chained
linear hash functions: linearity was important to make installation easy. Because
the actual hash values are not known until installation time, partial hash values
had to be pre-computed and later combined with the values of the software
watermarks. We chose to use multiple hash functions, so that knowing a hash
interval and a corrector site is still not enough information to set a corrector
value to compensate for a code change.

4.3 Testing Pattern

We cover the entire executable code section with overlapping intervals, each of
which is tested by a single tester. The overlap factor (number of different testing
intervals containing a particular byte) is six for most bytes. The testers are
randomly assigned to the intervals. The high overlap plus the random assignment
provide a high degree of security for the testing mechanism: changing even a
single bit requires disabling a large fraction of the testers to avoid detection,
even if some of the testers are ineffective because they are executed infrequently.

4.4 Correctors and Intervals

Each interval requires its own corrector, whose value can be set so that the
interval hashes to zero. In our current implementation, each corrector is a single
32-bit unsigned integer. We place correctors in-between basic code blocks using
post-compilation binary manipulation. Everything between basic blocks is dead
code; control will never be transferred to the correctors. An alternative would be
to insert correctors as live code no-ops. We chose the former approach as being
simpler and possibly stealthier, but this issue deserves further study.

150 Bill Horne et al.

Correctors are inserted as uniformly as possible throughout the code. Inter-
vals are then constructed based on the desired degree of interval overlap, using
randomization to select interval endpoints between appropriate correctors. This
construction is such that it is possible to fill in corrector values in a left-to-right
pass to make each of the intervals hash to zero. That is, there are no circu-
lar dependencies in the equations defining the corrector values. Since our hash
functions are linear, an alternative approach is to allow such circularities and
to solve the resulting (sparse) system of linear equations to compute corrector
values. This alternative deserves further study.

Computing corrector values requires invertible hash functions, since we must
work backwards from the desired hash value to the needed corrector value. This
issue is discussed further below.

4.5 Tamper Response

A final component of our self-checking technology is the mechanism that invokes
action if tampering is detected. In our current implementation each tester calls
a tamper response mechanism directly via a simple function call.

We considered several alternative, indirect response mechanisms that appear
to be promising. One of our primary objectives for the response mechanism is
to avoid passing the execution of a response through a single point of failure.
One of our primary integration objectives, however, was to make our mechanism
easy to combine with other software protection mechanisms. Thus in our initial
implementation we opted to use a simple direct response mechanism. Stealthier,
more robust response mechanisms would use multiple access paths with a vari-
able number of steps and running time. Such mechanisms are a subject of future
work.

5 Tester Design and Placement

The function of a tester is to map a large interval of the executable (several
hundred kilobytes) into a relatively small set of values (32 bits) by an easy-to-
compute but “scrambling” map, a hash function. The idea is that any change to
the interval being hashed will change the value returned by the tester and hence
result in detection if the tester output is compared to the correct hash value. Of
course, there is some probability of a changed interval mapping to the correct
value, but with a good choice of hash function this chance will be vanishingly
small (2−32).

In this section we describe the design of our testers, including the objectives
that went into the design. We also describe the approach we used to place the
testers in the code.

5.1 Design Objectives

Our tester design was based on the following objectives.

Dynamic Self-Checking Techniques for Improved Tamper Resistance 151

– Lightweight Hash Functions Part of our design goal was that executing
the tester mechanism should not have a substantial impact on program per-
formance. This suggested the use of lightweight hash functions, combining
an additive chaining mechanism with a simple 32-bit mapping that uses a
few arithmetic or logical operations. In addition to being fast, simple hash
functions were judged to be stealthier than standard hash functions such as
CRC32 or SHA, since they consist of very short sequences of instructions.

– Multiple Hash Functions As a defense against an attack based on know-
ing the hash function, we thought it valuable to have multiple hash functions,
randomly selected. A multiplicity of lightweight hash functions was judged to
be sufficiently secure for our needs; cryptographically strong hash functions
buy us little or nothing here.

– Summarizable Hash Functions Because watermark values and corrector
values are computed in a final pass, at installation time, performance consid-
erations dictated that partial hash functions be easily summarizable. This
issue, which arose because of installation constraints, is discussed in more
detail in Section 5.2.

– Stealthy Testers We wanted the testers to be hard to find by manual or
automatic code inspection. In particular, they should look like any other part
of the executable. Obfuscation techniques applied to the executable could
conceivably help hide the testers. Short testers were judged to be stealthier
than long testers.

– Resistance to Auto-collusion In an auto-collusion attack, the finding of
one tester is used to help find others, based on their similarity to the first. To
make an auto-collusion attack harder, we favored short customized testers.
Ideally, each tester should be as different from the others as possible.

– Obfuscated Address Calculation A vulnerability of testers is that they
load bytes from the code, which “normal” code does not do. We required
that code-section addresses never appear in any general-purpose register
during the calculation, thus complicating a “sampling” attack, in which the
contents of the registers and the stack are monitored for suspicious values
such as code-section addresses. Complex addressing modes provide one way
of implementing this idea.

– Harmless to Development Testers are inserted into the source code and
later (post-compilation) “stamped” with the start and end addresses of the
intervals to be hashed. Unstamped testers should not trigger the response
mechanism, so that unstamped testers are harmless to program development.

5.2 Linear Hash Functions

We did performance-testing with several lightweight hash functions built from
one or more arithmetic or logical operations. We compared the performance of
each hash function with CRC32, a standard 32-bit chained hash function. Our
sample hash functions ran 8-10 times faster than CRC32. We built “debug”
testers using an “exclusive-or” chained hash function. The debug testers ran in
1-2 milliseconds per 128k bytes on a 200Mhz Pentium. This is an upper bound on

152 Bill Horne et al.

the expected performance of production testers, since the debug testers gathered
extra information for use in our development. The debug testers were certainly
fast enough that adding our self-checking mechanism to a program would not
significantly impact its performance.

The requirements of invertibility and summarizability led us to the use of
chained linear hash functions. In particular, given an interval of data d, consisting
of the words d1, d2, . . . dn, the value hn(d) of the hash function on d is defined
recursively by h0(d) = 0, hi(d) = c ∗ (di + hi−1(d)) for 0 < i ≤ n, where c is a
suitably chosen non-zero multiplier that defines the hash function. Such a hash
function is easily invertible, since we have h(i−1)(d) = hi(d)/c− di for 0 < i ≤ n
,which can be used recursively to compute hi(d) for any value of i, given hn(d).

Furthermore, the hash function is easily summarizable in the following sense.
If we generalize the recurrence defining h to h0(x, d) = x, hi(x, d) = c ∗ (di +
hi−1(x, d)), and view d as a constant vector and x as a variable, then hn(x, d)
is a linear function of x. Namely, hn(x, d) = an(d)x + bn(d), where an and bn

are defined recursively by a0(d) = 1, b0(d) = 0, ai(d) = c ∗ ai−1(d), bi(d) =
c ∗ (di + bi−1(d)), for 0 < i ≤ n. Finally, the inverse function of hn is also linear,
and can be defined recursively in a similar way.

Invertibility and summarizability mean that, given an interval that is mostly
constant but has certain variable words (watermark slots) and a single “correc-
tor” word, we can precompute a representation of the hash function that requires
space linear in the number of watermark slots. Given values for the watermark
slots, we can then compute a value for the corrector that makes the entire in-
terval hash to zero, in time proportional to the number of watermark slots. The
precomputation time to construct the summary of the hash function is linear
in the length of the interval. This computation is the final step in activating
the testers. One problem in the actual corrector computation for Intel x86 ex-
ecutables is that the corrector is not necessarily aligned on a word boundary
relative to the start and end of the hashed interval. This can, however, be han-
dled, at a cost of complicating the calculation. Another possibility, which we did
not choose, is to explicitly align the correctors, if necessary by providing 7-byte
corrector slots rather than 4-byte slots.

The constant multipliers used to define our hash functions were chosen from a
small set that allowed the hash computation to be performed without an explicit
multiply instruction. Our particular construction resulted in a collection of 30
possible hash functions, corresponding to different multipliers. To expand the
set of possible hash functions, we could have included an additive constant in
the hash function (either by redefining the initial condition to be h0(d) = r or
by redefining the recurrence to be hi(d) = c ∗ (di + hi−1(d) + r), for 0 < i ≤ n).
This would increase the set of possible hash functions to 30 ∗ 232 and might be
something to explore in the future. For now, having 30 different hash functions
was judged to be sufficiently secure, because an attacker must know not only
the hash function but the start and end of the hashed interval, which seems as
hard to determine as finding the tester itself.

Dynamic Self-Checking Techniques for Improved Tamper Resistance 153

5.3 Tester Construction and Customization

To help make our testers stealthy, we implemented a tester prototype in C
and compiled it to get an assembly-language tester prototype. By doing this,
we hoped to minimize the presence of unstealthy assembly-language constructs,
specifically those that would not be generated by a compiler. However, in order
to make the resulting testers practical, we made three modifications to this com-
piled tester prototype. First, we modified the prototype so that an unstamped
tester would not call the response mechanism. Second, we added an obfuscation
variable to the address calculations to guarantee that no code-section address
would ever appear in a general-purpose register during the running of a tester
(indicating a read of a code-section address). Third, we simplified the tester
slightly.

Then, we applied a variety of customizations to guarantee that each tester
had a unique code sequence, thus increasing the difficulty of an auto-collusion
attack. These customizations included changing the multiplier defining the hash
function and the exact instructions used to compute the hash function, shuffling
the basic blocks of the tester, inverting the jump logic of conditional jumps,
reordering instructions within basic blocks, permuting the registers used, and
doing customization of individual instructions. The result was a set of 2,916,864
distinct tester implementations, each occupying less than 50 bytes.

5.4 Tester Placement

As discussed in Section 4.2, we chose to place testers in-line in the code and
have them fire as they are reached during normal execution. Our goal for tester
firing is that testers execute frequently enough that most or all of the code is
tested often during normal execution, but not so often that tester firing causes
a significant efficiency degradation. In order to place testers most effectively to
realize these conflicting performance goals, we used source-level tester placement.
Our tester placement strategy required significant manual effort. With more
advanced software tools, the process could become more automated.

Our goal was to insert the various individual testers in source program func-
tions so that the testers executed to meet coverage objectives in what we deemed
to be typical program runs. To achieve this we used profiling tools to count func-
tion executions during runs of a several-megabyte test executable. We discarded
functions not run at least once during start-up and at least once after start-up.
We ordered the remaining functions in increasing order by execution frequency,
and inserted testers into the functions in order, one tester per function, until the
desired number of testers, around 200, were inserted.

This placement of testers, when combined with our method of interval con-
struction and tester-to-interval connection, resulted in acceptable dynamic test-
ing coverage, as we discuss in Section 6. A significant drawback, however, is that
the testers are bunched in the executable, because they tend to be inserted into
library functions that appear together in the executable. To overcome this prob-
lem, we relied on block-shuffling of the executable to disperse the testers more
uniformly.

154 Bill Horne et al.

A straightforward analysis, which we omit here, shows that random shuffling
of code blocks, assuming uniform block size and at most one tester per block,
results in a maximum gap between testers that exceeds exactly equal spacing by
a logarithmic factor. We deemed this adequate to provide the desired amount
of testing robustness. (See Section 6.) We could achieve much more uniform
spacing of testers by taking the location of the testers into account when doing
the shuffling, or inserting the testers into the object code instead of the source
code. This is a subject for future investigation.

6 Interval Construction

In addition to the testers, the other component of the self-checking mechanism
is the code intervals over which the testers compute hash functions. Recall that
we desire these intervals to provide uniform, redundant coverage of the entire
executable and to be hard to discover. Also, each interval requires its own cor-
rector, which must be able to be set so that the interval hashes to zero. Finally,
there must be a global ordering of the correctors that allows them to be set
sequentially, without circular dependencies.

We chose to base the interval construction on corrector placement. With this
approach, interval construction consists of three steps: corrector placement, in-
terval definition, and assignment of testers to intervals. We discuss these three
steps in Sections 6.1–6.3. In Section 6.3 we also discuss the robustness of the re-
sulting overlapping checking mechanism. In each section, we discuss alternatives
to our current approach, both those we did and those we did not try.

6.1 Corrector Placement

We need one interval, and hence one corrector, per tester. Since we want the
intervals to be approximately of equal size and approximately uniformly spaced,
we want the correctors to be approximately uniformly spaced as well. Our cur-
rent method of corrector placement is a second-generation design that inserts
correctors as dead code (between basic blocks) once basic block shuffling is com-
pleted.

It is illuminating to consider our original design, which used source-code
insertion, to understand the virtues of the current method. In our original design,
and our original implementation, a very large number of correctors, consisting
of obfuscated NOPs, were inserted into the source code by including them in
appropriately chosen source-language functions. In the absence of basic-block
shuffling, the distribution of these correctors is extremely non-uniform; indeed,
the correctors are often clumped closely together. We therefore relied on shuffling
of basic blocks to provide a much more uniform distribution of correctors in the
executable. Even random shuffling does not produce uniformly spaced correctors;
the corrector gaps have a Poisson distribution, which implies that the expected
maximum gap size is a logarithmic factor greater than the average gap size. To
overcome this problem we inserted many more correctors than needed (at least

Dynamic Self-Checking Techniques for Improved Tamper Resistance 155

a logarithmic factor more) and used a “pruning” step to select a small subset of
correctors that we actually used.

Although we implemented this method and demonstrated its effectiveness in
practice, it has at least three drawbacks: the insertion of many more correctors
than needed, the extra computation step of corrector pruning, and the need
to carefully place correctors in replicated functions in the source code to make
sure there are enough correctors in the executable. It was the last drawback
that made us replace this corrector insertion method with the one described
below. In the course of our experiments, we discovered that the correctors were
being inserted into code that was never executed. Eliminating this dead code
significantly shrank the size of our test executable but left us with no convenient
place in the source code to put the correctors.

We therefore replaced our corrector insertion method with an executable-
based insertion method. Specifically, the correctors are inserted after the blocks
are shuffled. This approach has some significant advantages over the source-code-
based insertion scheme. It gives us fine-grained control over the positioning of the
correctors in the executable. We can insert correctors as dead code (between basic
blocks) instead of, or in addition to, as obfuscated NOPs. Dead-code correctors
can consist just of the 32 correction bits, rather than forming valid instructions
or instruction sequences. We also can dispense with the corrector pruning step
(although we left this step in our current implementation: it provides possibly
redundant smoothing of the corrector distribution).

In detail, the corrector placement process works as follows. Word-length (32
bit) corrector slots are inserted at the end of basic blocks (after unconditional
jump instructions). We chose a gross number of corrector slots to insert (before
pruning). To determine where to insert the correctors, we count the total number
of usable basic blocks for insertion and divided by the number of correctors. If
the result is k, we insert a corrector after each k basic blocks.

We then prune the correctors down to the set actually used, as follows. While
we have too many correctors, we apply the following step to remove a corrector:
find the two adjacent correctors closest together (in bytes) and eliminate the one
whose removal creates the smallest new gap. This algorithm can be implemented
efficiently using a heap (priority queue) data structure to keep track of the gap
sizes, at a logarithmic cost per deleted corrector. In our current performance
run, we use 1000 as the gross number of correctors and about 200 as the number
of testers and net number of correctors.

An improved design, which we leave for future work, is to space the correctors
using a byte count (instead of a block count) and to eliminate the pruning step
entirely. We also would like to investigate whether insertion of testers inside
basic blocks, rather than just between basic blocks, provides sufficient additional
uniformity as to be worthwhile. (Since basic blocks are extremely small compared
to interval lengths, we doubt it.) An interesting research question is to devise an
efficient algorithm to insert k correctors among n basic blocks so as to minimize
the maximum gap (in bytes) between correctors (assuming dummy correctors
exist at the start and end of the code).

156 Bill Horne et al.

s1 e1

s2 e2

s3 e3

s4 e4

s5 e5

I1

I2

I3

I4

I5

c1 c2 c3 c4 c5 c6 c7

code section

(discarded)

Fig. 1. Illustration of interval construction for n=5 and k=3

6.2 Interval Definition

We define the intervals to be tested based on the placement of the correctors,
using random choice of interval endpoints between appropriate correctors to help
make it hard for an attacker to determine these endpoints. In addition we use
a overlap factor k ≥ 1 , such that most bytes in the executable will be covered
by k intervals. Currently, we use an overlap factor of 6.

Suppose we desire n test intervals Ii, 1 ≤ i ≤ n. Then we will use n + k − 1
correctors, of which k−1 will be discarded. Label the correctors c1, c2, ..., cn+k−1

in the order they occur in the executable. We choose a start si and end ei for
each of the intervals, as follows. Start s1 is at the beginning of the code section,
and end en is at the end of the code section. For i in the range 1 < i ≤ k, we
choose si uniformly at random between ci−1 and ci and en−i+2 uniformly at
random between cn+k−i and cn+k−i+1. For i in the range k < i ≤ n, we choose
two points uniformly at random between ci−1and ci. The smaller point is si and
the larger point is ei−k. We then associate corrector ck+i with interval Ii, and
discard the first k − 1 correctors. The construction is illustrated in Figure 1.

This choice of intervals has two important properties. Except near the be-
ginning and end of the code section, every byte of the code is contained in k (or
possibly k+1) test intervals. The first corrector in test interval Ii is ci+k−1, which
means that we can set corrector values in the order ck, ck+1, . . . cn+k−1 to make
successive intervals I1, I2, . . . , In hash correctly without having later corrector
settings invalidate earlier settings. That is, there are no circular dependencies.

The ends of the code section are not covered as redundantly as the rest of the
code. We do not think this affects the robustness of the testing mechanism in any
significant way. It is easy to modify the interval construction scheme so that the
corrector setting works from the two ends of the code toward the middle, so that
the non-redundant coverage occurs in the middle. We could choose the region
of non-redundant coverage randomly, or to be unimportant code. Also, as noted
in Section 4.4, we could modify the interval construction to allow circularities

Dynamic Self-Checking Techniques for Improved Tamper Resistance 157

and solve the resulting system of linear equations to get corrector values. Such
a method would be even more robust. Modifying our scheme along these lines is
a topic for future research.

6.3 Assignment of Testers to Intervals

Once intervals are constructed, the next step is to assign testers to the intervals.
The objectives of this assignment are coverage and security. We want each byte
to be tested often as the code is running, and we want to force an attacker to
disable many or most testers to successfully modify even a single byte of the
program without detection. Our approach to accomplishing these goals is to
harness the power of randomization: we assign each tester to a different interval
using a random permutation to define the assignment.

Both experimental and theoretical evidence suggest that a random assign-
ment is a good one. Our theoretical evidence is based on our intuition and on
theorems about random graphs in the literature. An interesting area for future
research is to develop a mathematical theory, with proofs, about the performance
of random tester assignment. For now, we rely on the following observations.

First, almost every byte in the code is covered by k testing intervals and hence
tested by k testers. With random assignment, the most important bytes will be
redundantly tested, even if a significant fraction of the testers are ineffective
because of infrequent execution.

Our second and third observations concern a graph, the tester graph, that
models the pattern of testers testing other testers. The vertices of the graph
are testers. The graph contains an edge from tester A to tester B if tester B is
contained in the interval tested by tester A. (Our construction of intervals allows
the possibility that an interval boundary might be in the middle of a tester. In
such a case the graph would not contain the corresponding edge. We could easily
modify our interval construction to move interval boundaries outside of testers.
Whether this is worth doing is a subject for future research.)

Suppose that all testers are effective (i.e., they execute frequently when the
program is running normally). Suppose further that an attacker modifies a byte
of the program that is in an interval tested by tester X. Then, to avoid detection,
the attacker must disable every tester Y such that there is a path from Y to X
in the tester graph. Suppose the tester graph is strongly connected ; that is, there
is a path from every vertex to every other vertex. Then a successful attack,
changing even a single byte, would require disabling every tester.

We thus would like the tester graph to be strongly connected. With our
method of interval construction and random tester assignment, the tester graph
is strongly connected with high probability. This is true as long as the intervals
are sufficiently uniform and the redundancy factor k is sufficiently high. Exper-
iments confirmed that the number of components drops rapidly as k increases.
For small values of k, there is one large component and a small number of single
node components. (Thus it is close to strongly connected.)

If strong connectivity were the only desired property of the tester graph,
random assignment would not be necessary. We could, for example, guarantee

158 Bill Horne et al.

strong connectivity by embedding a large cycle in the tester graph. Strong con-
nectivity is not enough to guarantee the robustness of the testing mechanism,
however. For example, if the tester graph consists only of one big cycle and some
testers are ineffective (meaning they are in parts of code that do not get executed
during an attack), then the effective tester graph consists of disconnected pieces,
and (hypothetically) certain parts of the program may be attacked by disabling
only a few testers.

A stronger connectivity property is that, even if a fraction of the testers are
ineffective, a single byte change would require disabling many or most of the
effective testers to avoid detection. This kind of robust connectivity is related to
the expansion property, which is possessed by certain random graphs. “Expan-
sion” means that there is a constant factor α > 1, such that for any subset X of
at most a constant fraction of the vertices, at least α|X | other vertices have edges
into X . Expansion implies both strong and robust connectivity, depending on α.
The possession of this property by random graphs is the main reason we used
random tester assignment. The expansion property is hard to test empirically
(doing so takes exponential time), so we have not verified that our tester graphs
possess it. Nor have we done a careful theoretical analysis (which would yield
very conservative constant factors). This is future research. We are confident,
however, that our tester graphs possess sufficiently robust connectivity, and we
hope to investigate this issue further.

7 Summary and Future Work

We have designed and built a dynamic software self-checking mechanism suitable
to protect client-side software running in a potentially hostile environment. It
is designed to be used in conjunction with other tamper-resistance techniques,
and integrated with static copy-specific software watermarking.

Directions for future research include building a stealthier response mecha-
nism that would add an additional layer between response detection and response
reporting, doing further experimental and theoretical work on the coverage and
robustness of the self-checking mechanism, modifying and simplifying the cor-
rector insertion step, and developing additional hash functions, customizations,
and obfuscations for the testers. A more speculative but potentially interesting
direction is to investigate non-hash-based checking, in which, for example, the
testing mechanism checks that correct values are stored in certain registers at
certain times. Other directions include exploring other triggering mechanisms
for the testers, e.g., executing some of them as separate threads, investigating
temporally-distributed testers, and studying hash-based methods that do not
use correctors.

Dynamic Self-Checking Techniques for Improved Tamper Resistance 159

References

1. D. Aucsmith. Tamper resistant software: An implementation. In R. J. Anderson,
editor, Information Hiding, Lecture Notes in Computer Science 1174, pages 317–
333. Springer-Verlag, 1996. 143, 148

2. H. Chang and M. Atallah. Protecting software by guards. This volume. 143
3. S. T. Chow, Y. Gu, H. J. Johnson, and V. A. Zakharov. An approach to the

obfuscation of control–flow of sequential computer programs. In G. I. Davida and
Y. Frankel, editors, ISC 2001, Lecture Notes in Computer Science 2200, pages
144–155. Springer-Verlag, 2001. 142

4. C. Collberg and C. Thomborson. Software watermarking: Models and dynamic
embeddings. In Principles of Programming Languages, San Antonio, TX, pages
311–324, January 1999. 143

5. C. Collberg and C. Thomborson. Watermarking, tamper-proofing, obfuscation –
Tools for software protection. Technical Report 2000–03, University of Arizona,
February 2000. 143

6. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-
tions. Technical Report 148, University of Auckland, 1997. 142

7. C. Collberg, C. Thomborson, and D. Low. Breaking abstractions and unstructur-
ing data structures. In IEEE International Conference on Computer Languages,
Chicago, IL, pages 28–38, May 1998. 142

8. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient and
stealthy opaque constructs. In Principles of Programming Languages 1998, San
Diego, CA, pages 184–196, January 1998. 142

9. R. Davidson and N. Myhrvold. Method and systems for generating and auditing a
signature for a computer program, September 1996. US Patent 5,559,884. Assignee:
Microsoft Corporation. 143

10. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528–
569, May 1999. 142

11. G. C. Necula. Compiling with proofs. PhD thesis, Carnegie Mellon University,
September 1998. 142

12. G. C. Necula and P. Lee. Safe kernel extensions without run–time checking. In
Proceedings of the Second Symposium on Operating Systems Design and Imple-
mentation, Seattle, WA, pages 229–243, October 1996. 142

13. J. R. Nickerson, S. T. Chow, and H. J. Johnson. Tamper resistant software: ex-
tending trust into a hostile environment. In Multimedia and Security Workshop at
ACM Multimedia 2001, Ottawa, CA, October 2001. 142

14. T. Sander and C. Tschudin. Protecting mobile agents against malicious hosts. In
Mobile Agents and Security, Lecture Notes in Computer Science 1419. Springer–
Verlag, 1998. 142

15. C. Wang. A security architecture of survivable systems. PhD thesis, Department
of Computer Science, University of Virginia, 2001. 142

16. C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software–based sur-
vivability mechanisms. In IEEE/IFIP International Conference on Dependable
Systems and Networks, Goteborg, Sweden, July 2001. 142

17. C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper resistance: Obstruct-
ing the static analysis of programs. Technical Report CS–2000–12, Department of
Computer Science, University of Virginia, 2000. 142

Protecting Software Code by Guards�

Hoi Chang and Mikhail J. Atallah

1 CERIAS, Purdue University
1315 Recitation Building, West Lafayette, IN 47907, USA

2 Arxan Technologies, Inc.
3000 Kent Ave., Suite 1D-107, W. Lafayette, IN 47906, USA

{changh,mja}@cerias.purdue.edu

Abstract. Protection of software code against illegitimate modifica-
tions by its users is a pressing issue to many software developers. Many
software-based mechanisms for protecting program code are too weak
(e.g., they have single points of failure) or too expensive to apply (e.g.,
they incur heavy runtime performance penalty to the protected pro-
grams). In this paper, we present and explore a methodology that we
believe can protect program integrity in a more tamper-resilient and flex-
ible manner. Our approach is based on a distributed scheme, in which
protection and tamper-resistance of program code is achieved, not by a
single security module, but by a network of (smaller) security units that
work together in the program. These security units, or guards, can be
programmed to do certain tasks (checksumming the program code is one
example) and a network of them can reinforce the protection of each
other by creating mutual-protection. We have implemented a system for
automating the process of installing guards into Win32 executables1.
It is because our system operates on binaries that we are able to ap-
ply our protection mechanism to EXEs and DLLs. Experimental results
show that memory space and runtime performance impacts incurred by
guards can be kept very low (as explained later in the paper).

1 Introduction

Software cracking is a serious threat to many in the software industry. It is the
problem in which a cracker, having obtained a copy of the software he wants to
attack, succeeds in breaking the protection that comes built into it. Typically,
crackers would create modified versions of the software, or crackz, whose copy
protection or usage control mechanisms have been disabled. Cracked software
can then be illegally redistributed to the public, exacerbating the software piracy
problem. With commerce and distribution of copyrighted multi-media rapidly
moving online, the need for software protection is even more urgent than before:
� Portions of this work were supported by sponsors of CERIAS and the Purdue Trask

fund.
1 A US patent on the technology has been filed by Purdue University and licensed to

Arxan Technologies, Inc.

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 160–175, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Protecting Software Code by Guards 161

client software code running on untrusted machines has to be secured against
tampering.

What makes software cracking so widespread is in part caused by the simplic-
ity of direct inspection and modification of binary program code with existing
software debugging and editing tools. Here is an example of how a program
requiring online registration can typically be cracked. The program would nor-
mally go through a long sequence of procedures asking for a registration serial
number from its user, and then in a stealthy manner, comparing a function of the
true serial number with the same function of the entered one. After comparing
these two items, however, the program then ends up deciding the authenticity
of the software user with one single instruction, typically a conditional branch
that decides whether the software can henceforth be used. To defeat the entire
registration scheme, one only needs to replace that single instruction in the bi-
nary file with an unconditional jump (that jumps to a desired location), or by a
sequence of smaller no-ops (that do nothing except letting the execution flow to
the desired location naturally). The problem with this protection scheme is that
the branch instruction is a single point of failure. With sophisticated program
debuggers and hex editors (such as SoftICE [8] and HIEW), attackers are able to
trace targeted parts of the program, pinpoint the code they need to compromise,
and finally apply changes to the program files.

Many commercial protection schemes employ what we call monolithic pro-
tection schemes, in which protection is enforced by a single code module in the
program but which is loosely attached to the program and thus can be disen-
gaged easily (using methods similar to the above example).

How can software be perfectly secured against cracking? This looks like an
impossible task if one interprets “cracking” as “eventually cracking”, i.e., after a
long time. The fact that crackers have huge cracking resources makes successful
attacks possible after a long enough time (because they could rewrite the software
from scratch after sufficient analyses of the code). However, it is possible to “raise
the bar” for attackers and make it sufficiently secure. Because many software
developers only hope for a minimum length of time during which they could sell
a large enough number of a newly released product, securing software code until
the end of the period is cost-effective.

Protection mechanisms that can effectively protect software running in un-
trusted environments should have the following properties:

– Resilience: The protection has no single points of failure and is hard to
disable.

– Self-defense: Able to detect and take actions against tampering (i.e., code
modification).

– Configurability: Protection is customizable and can be made as strong as
one needs.

– White-box security: Because any scheme for protection is likely to become
publicly known over time, its strength should not be based on its secrecy but
rather on the knowledge of a secret key used at protection-install time (but
not stored anywhere within the protected program).

162 Hoi Chang and Mikhail J. Atallah

This paper describes a security framework and system (having the above de-
sirable properties) for protecting program code against tampering. We extend
the traditional ideas of having code check and modify itself to a general set-
ting, in which a program is protected by a multitude of such functional units
(called guards) integrated with the program. To defend themselves against at-
tacks, guards form a network by which they protect each other in an interlocking
manner. The network of guards is harder to defeat because security is shared
among all the guards, and each of them is potentially guarded by other guards.
The fact that there are many ways to form a guards network, makes it hard for
attackers to predict its form. Furthermore, more guards can always be added to
the program if a greater level of protection is desired.

We believe that this guarding framework can advance the state of software
protection by making protection schemes derived from it more sophisticated
than existing schemes, and easier to apply. Using our system, we show that
protecting programs using this guarding framework is possible. Also, we show
that the guarding process can be automated (so that it will become unnecessary
for one to go through a laborious and error-prone process of manually guarding
the program code).

The paper is organized as follows. Section 2 provides some related work in
this field. In section 3, we describe the protection framework and discuss its
security issues. In section 4, we introduce the system we built. This is then
followed by experimental results in section 5. The final section concludes and
describes enhancements to the system that are currently being implemented.

2 Related Work

The protection mechanisms for software protection involve two main approaches
to the problem: hardware-based protection (which relies on secured hardware
devices for protection), and software-based protection (which only relies on soft-
ware mechanisms for protection).

One hardware solution is the use of secure coprocessors (or processors)
[18,19,15]. In secure coprocessors, programs or portions of them can be run
encrypted, so their code is never revealed in untrusted memory. Thus secure
coprocessors can provide the programs isolated execution environments that are
difficult to tamper with. Although tamper-resistant, this approach requires the
use of special hardware for executing programs, which may not be cost-effective
for widespread use (say, in typical home-user environments).

Using smart cards for software protection is another solution [2,10]. Since
smart cards contain both secure storage and processing power (although some
only provide secure storage), security-sensitive computations and data can be
processed and stored inside the cards. A major difference between smart cards
and secure coprocessors is that the former are resource-tight (i.e., limited storage
space and processing power), and can be used to protect only small fragments
of code and data.

Protecting Software Code by Guards 163

Dongles have long been in use by the industry for software protection. They
are the hardware keys plugged in the computer, without which the programs
that came with the dongles cannot execute. The major drawback of dongles is
that each dongle-enabled software usually requires a different dongle. Moreover,
the protection can often be bypassed because the communication traffic between
dongles and their programs can be intercepted and modified.

One software-based approach for protection is code obfuscation, which
“scrambles up” program code so that it results in some executable code that
has the same functionality as the original but is difficult to understand and
analyze [11,5,6,4,12,13,7,17]. This form of protection is more flexible than the
hardware-based one because it does not require special execution environments.
But exactly how secure it is is still a matter of debate [3].

There are other software-based approaches to the problem as well. These
include the use of self-modifying code [9] (code that generates other code at
run-time) and code encryption and decryption [14] (partially encrypted code
self-decrypting at run-time). A hybrid approach of the above has been proposed
by Aucsmith [1], which involves the use of cryptographic means to decrypt and
encrypt a window of security-sensitive program instructions before and after each
execution round of those instructions. One of the problems with this approach
is that it does not scale well as the size of the above-mentioned “window” gets
large (because of the time taken by encryption and decryption).

3 The Guarding Framework

In this section, we describe our guarding framework and explore some of its
security issues on an informal basis.

3.1 Guards

In our guarding framework, protection is provided by a network of execution
units (or guards) embedded within a program. Each guard is a piece of code
responsible for performing certain security-related actions during program exe-
cution. Guards can be programmed to do any computations, and the following
are two useful ones:

– Checksum code 2: Checksum another piece of program code at runtime
and verify its integrity (i.e., check if it has been tampered with). If the
guarded code is found altered, the guard will trigger whichever sequence
of actions is desired for the situation, ranging from the mildest of silently
logging the detection event, to the extreme of making the software unusable
(e.g., by halting its execution, or better yet, causing an eventual crash that
will be hard to trace back to the guard). If no code changes are detected, the
program execution proceeds normally. Programs guarded by checksumming
guards are made, in some sense, “self-aware” of their own integrity.

2 In this paper, “code” refers to both the runtime data and executable code of a
program.

164 Hoi Chang and Mikhail J. Atallah

– Repair code: Restore a piece of damaged code to its original form before it is
executed or used (as data). One way to achieve code repairing is to overwrite
tampered code with a clean copy of it stored elsewhere. This repairing action
effectively eliminates the changes done to the code by an attacker, and allows
the program to run as if unmodified. Repairing guards provide a program
with “self-healing” capabilities.

3.2 Guards Network

A group of guards can work together and implement a sophisticated protection
scheme that is more resilient against attacks than a single guard. For example, if
a program has multiple pieces of code whose integrity needs to be protected, then
it can deploy multiple checksumming guards for protecting the different pieces.
Besides sharing the load of protection, guards have the flexibility to protect
one another. Figure 1 shows a possible guarding scenario in which two security-
sensitive regions of a program, C1 and C2, are protected by both checksumming
and repairing guards. Figure (a) shows the memory image of the guarded pro-
gram, in which C1 and C2 are guarded by guards G1, . . . , G5 in an interlocking
manner. The corresponding guarding relationships can be more clearly depicted
by a guard graph in Figure 1 (b), where C1 is repaired by G3 before C1 exe-
cutes, and the repaired C1 will subsequently be also checksummed by G1 and G5

(but G2 will repair G5 before G5 executes).
In order to perform their duties, a network of guards need to be placed

into the program and hooked to its execution flows in an appropriate way. For
example, a repairing guard has to be inserted into a point in the control flow that
is to be reached first (in execution order) before the guarded code is reached; i.e.,
a repairing guard has to dominate the target code in their control-flow locations.
On the other hand, a checksumming guard must be installed at a point at whose
execution time the code to be checksummed must be present in the program
image. Figure 2 (a) shows a graph that depicts the dominance relationships
between different pairs of the nodes in Figure 1 (e.g., G3 → G1 means location
of G3 dominates that of G1).

Figure 2 (b) shows two possible scenarios in which the network of guards
can be installed into the control flow graph of a program without violating the
partial ordering of their executions specified in (a). As seen from the figure, the
larger a program, the more ways there are to deploy the network of guards.

3.3 Security

Contrary to monolithic protection schemes in which security is enforced by single
security modules, protection by guards enjoys the following advantages:

– Distributedness. There is no single point of entry (exit) into (out of) the
guards network because its individual components (i.e., guards) are invoked
at different points at runtime. This makes it much harder for an attacker to
detach the network from the program. To defeat the guards, their locations

Protecting Software Code by Guards 165

G3

C1

G1

C2 G4

G5

G2

checksums

checksums

checksums

repairs

checksums

repairs

checksums

checksums

checksums

(a) Memory layout of the guarded program

G1 C2 G2 C1 G4G3 G5. . .

checksumschecksums

repairs
checksums

repairs

(b) The corresponding guard graph

Fig. 1. Program image guarded by five guards and the corresponding guard
graph

and guarding relationships need to be identified (an even more difficult task
if the program is large and complex).

– Multiplicity. Multiple guards can be used to guard a single piece of code,
providing it a variety of protection at different times.

– Dynamism. There are many ways in which a guards network can be con-
figured. For example, a group of ten guards can form different types of for-
mations, ranging from simple trees to general directed graphs with cycles.
Even if one knows the general mechanism for guarding programs, one is still
faced with the actual deployment scheme in the program. Furthermore, a
fixed formation can be installed in various ways because parameters such
as the physical locations of guards and the exact ranges of code they guard
could vary from installation to installation. (Consider that each installation
is driven by a different random number.)

– Scalability. It is easy for the levels of guarding to be scaled up for larger
or more security-critical programs by adding to them more guards.

166 Hoi Chang and Mikhail J. Atallah

C2

C1

G4

G3

G2

G5

G1

C2

C1

G3

G2

G1

G4

G5

Legend

Control flow

Repairing action

Checksumming
action

C2

G3

C1

G1

G4

G5

G2

(b) Two possible placements of the guards in a CFG

(a) Partial execution ordering of the guards

Fig. 2. Guards network installed into a program CFG

Protecting Software Code by Guards 167

Strengthening the Guards Network A guard cycle is a circular chain of
guards each of which protects its next neighbor, forming a cycle of guarding
relationships in the guard graph. Such a formation allows each guard in the cycle
to be protected without any “loose ends” (i.e., unprotected guards). Defeating
a guard cycle requires all of the guards to be disabled at the same time. How to
implement checksumming in guard cycles is itself an interesting problem, because
the checksumming function should have a 1-way property (we have solved the
problem but due to page limitation, we omit the discussion in this paper).

The above property of guard cycles leads to a more general guards strength-
ening scheme: Connect any disconnected components in a guard graph in such a
way that each guard in the graph can be reached by the rest of the guards (i.e.,
the resulting guard graph is strongly connected). As a result, strong connectivity
forces the amount of attack efforts to be scaled up proportionally to the total
number of the guards deployed in a program.

Strengthening Individual Guards The level of difficulty in locating guards
and understanding their semantics depend on how “stealthy” and tamper-resis-
tant the guards are.

– Stealthiness. Guard code should have no recognizable signatures (e.g., fixed
set of instructions) that an attacker can statically scan for. Also, their ac-
tions should be made as inconspicuous as possible. For example, instead
of instantly sounding an alarm upon detection of an attack, guards should
delay such an action until a later time when it is unclear why and how it
has taken place. To thwart sophisticated runtime program analyzers from
identifying the checksumming or repairing actions of guards, logical bound-
aries between the executable code and runtime data of a program should be
blurred. For example, the code sections are made to contain runtime data,
and conversely, the data sections are made to contain executable code.

– Tamper-resistance. In situations where the location of a guard has been
identified, it is important to have the guard protect itself (besides having
other guards protect it). One effective way to achieve this is to obfuscate the
guard code. There are many ways to do so. A simple way would be to rear-
range its instructions and mix them with dummy code [12]. More aggressive
obfuscating transformations are possible and can make the resulting code
very difficult to reverse-engineer. Such transformations involve both con-
trol and data flow obfuscations. Some particular techniques are discussed in
[17,7,5,6].

4 Description of System

We have built Version 1.0 of a system for guarding Win32 executables. It takes an
EXE program file as input and inserts into it guards that can perform functions
such as checksumming and repairing program code. The guard installation is
an automated process guided by a user-provided guarding script that specifies

168 Hoi Chang and Mikhail J. Atallah

 (Unguarded)

Guard graph specification

pgm.exe
(Guarded) pgm.exe

Installation
Guard

System

Fig. 3. The guarding system

what and how guards will protect the program code and themselves (i.e., the
description of a guard graph). Figure 3 gives an overview of our system.

Our system processes binary code directly because high-level code lacks much
binary information that guards need (such as memory addresses and binary
contents of the program code). Also, manipulating code at the binary level makes
it easier to transform program code to whatever form is desired without typical
structural restrictions imposed by high-level languages.

Guard installation by our system involves inserting a guard into the program
and parameterizing it appropriately. We call this guard instantiation, in which
guards are instantiated from predefined guard templates, which are object code
and stored in a database (of course these are “polymorphic” in the sense that
even if two of them have the same functionality they look different; this prevents
attacks based on pattern matching techniques). Below is a simple example of a
guard template, which is programmed to corrupt stack frame pointer ebp if the
computed checksum is different from checksum. 3

guard:
add ebp, -checksum
mov eax, client_addr

for:
cmp eax, client_end
jg end
mov ebx, dword[eax]
add ebp, ebx
add eax, 4
jmp for

end:

During instantiation of the guard, the system initializes client addr and
client end with the addresses of the target code range that the guard needs
to protect. The other parameter, checksum, is later patched to the guard code
3 The sample template is shown in the NASM assembler language [16].

Protecting Software Code by Guards 169

0

32

64

96

C8

FA

00
40

02
B

8

00
40

16
40

00
40

29
C

8

00
40

3D
50

00
40

50
D

8

00
40

64
60

00
40

77
E

8

00
40

8B
70

00
40

9E
F

8

00
40

B
28

0

M
em

or
y

ad
dr

es
se

s
m

od
ul

ar
 0

x1
00

Memory addresses of the program code

Memory layout of the guarded program

Orig exe code Guard code Guarded code

Fig. 4. The memory image of a program heavily guarded by 307 guards

 Before guarding After guarding (without increasing file size)
File size # instructions File size # instructions # guards installed Avg guard size

gzip 172 KB 38348 172 KB 38897 25 76 bytes
disasm 376 KB 54931 376 KB 56456 70 75 bytes

avi2mpg 380 KB 51647 380 KB 54913 144 78 bytes

Fig. 5. Statistics of the guarded programs and their guards

when the checksum value of the target range has been obtained by the system.
This illustrates why it is convenient to operate at the binary level: Had we
attempted this at the source code level, we would not have had the needed
address information (because it is not possible for us to precisely predict the
effect of the subsequent compilation on that source code).

Figure 4 shows the memory image of a program after it has been installed
with 307 guards. (Its linear address space is represented by a two-dimensional
space for easy interpretation of the image contents.) Shown in dark colors are
the four executable regions of the program. (The white regions are file format-
ting and data areas of the program.) These four regions include three types of
code: original (executable) program code, the inserted guard code, and the code
protected by the guards (which includes portions of the program code and guard
code).

It is important that guard installations be automated. If done manually, it
is a very laborious and error-prone process, as it requires one to deal with bi-
nary information in the program files directly (consider implementing by hand

170 Hoi Chang and Mikhail J. Atallah

a function that checksums its own code). The manual task will become more
difficult and time-consuming as the number of guards and complexity of their
inter-locking relationships increase. Furthermore, programs with “hand-patched”
checksumming guards would be very hard to maintain because one cannot change
the code without recomputing checksums of the modified code. Our system
streamlines the guarding process by separating the task of software development
from that of software protection (which is now done post-compilation).

5 Experimental Results

In this section, we examine how much program resouces guards would need from
several software applications. By program resources we mean increases in pro-
gram size and program execution time. We applied our system to three software
applications: disasm, gzip, and avi2mpg. disasm is an Intel x86 disassembler
that is branch-intensive; gzip is a GNU file compressing and decompressing tool
that has a mixed use of branches and loops; and finally, avi2mpg is a Win32 ap-
plication which converts an AVI video file into an MPEG one. Our experiments
were conducted on a Pentium III 600MHz machine running Windows NT.

5.1 Impacts on Program Size

The amount of program space required for storing guard code is proportional
to the number of installed guards and their average size. But sometimes, Win32
executables can accommodate a number of guards without needing more file
space. To illustrate this, we ran our system on the test programs and installed
into each as many guards (of the same size) as possible (while keeping their file
sizes unchanged). Figure 5 shows the maximum numbers of guards that can fit
into each program without increasing its size. For the sake of this experiment,
the guards inserted into each program were instantiated from the same guard
template (of size 62 bytes), which is similar to the one shown previously. The
instantiated guards need more bytes because extra instructions are needed to
hook their code to the program flows (of course in a “production run” of our
system we would use guards having a variety of sizes).

We believe the issue of storage space does not pose a problem to guarding.
As storage media such as hard disks are getting more spacious and cheaper,
software applications also tend to expand in size (because more functionality
can be included). Increasing the size of a program by a few kilobytes (as a result
of guarding) does not even show up on the radar screen when compared to the
natural increase in the size of software.

5.2 Impacts on Program Performance

In this section we examine how guarding affects program performance. In par-
ticular, we want to answer the basic question: Would guards impose prohibitive
time-performance penalty on programs?

Protecting Software Code by Guards 171

We tested the performances of disasm, gzip, and avi2mpg as follows. For
each program, its original performance (before guarding) was measured. Then
we created a set of guarded versions of each program, each version executing
a different number of guards. Inserted into the program at random locations,
the guards were invoked every time the execution flow reached them. All of the
guards performed checksumming on some piece of code of 0x50 bytes long using
the same checksumming algorithm. The execution times of this set of guarded
programs are keyed as “uncontrolled guard invocations” in Figures 6, 7, and 8.

These performance results (and many others that we ran) show that if guards
are placed within highly repetitive loops and execute as many times as they
iterate, the performance would suffer. But the results also suggest that if the
execution frequency of guards is restricted to a small number, then the programs
would likely perform well without much degradation in speed. Indeed, in many
cases, guards do not need to execute over and over again if all they do is to repeat
the same checksumming or repairing actions that they have repeated many times
already.

To test how controlled invocations of guards affect program performance, for
each test program we created another set of guarded versions of it, which were
exactly the same as the set created earlier except that in this case each guard
executed once only (no matter where it was located in the CFG). The execution
times of these guarded programs are shown in the same figures as “controlled
guard invocations.” Clearly, the new results indicate only slight increase in exe-
cution times, as compared to the previous results.

In situations where one could avoid installing guards within performance-
sensitive code, the performance results are expected to be better than those
reported here. (Our system includes a graphical user interface that makes it easy
to highlight portions of program code where guard-installation is recommended,
and portions where it is not recommended, in addition to highlighting which
portions of the program code should be guarded.) The reason we decided to
not use this facility in our experiments is the difficulty in quantifying what
“good guard-placement hints” are, and in accounting for their variability from
one test application to the next. Instead, we ran our system in “random guard-
installation” mode, because it makes comparisons easier between one protected
application and another.

6 Conclusion and Further Remarks

We have explored a software-based methodology for making program code
tamper-resilient by using guards. Guards are special code segments in the pro-
gram which, when deployed collectively, can make the following possible:

– Distributed protection. Spreading the load of protection among guards
essentially eliminates the “single point of failure” problem.

– Variety of protection schemes. There are many ways to group the guards
together. As a result, a software developer can have different copies of its

172 Hoi Chang and Mikhail J. Atallah

disasm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Fig. 6. Comparison between the runtime performances of disasm in two scenarios

gzip

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Fig. 7. Comparison between the runtime performances of gzip in two scenarios

Protecting Software Code by Guards 173

avi2mpg

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Fig. 8. Comparison between the runtime performances of avi2mpg in two sce-
narios

0 5 10 15 20 25

 0 (0%) 2 (40%) 4 (40%) 6 (40%) 10 (50%) 13 (52%)
% increase Uncontrolled guard invoc. (bad) 0.0% 23.5% 21.2% 22.4% 20.6% 21.7%
in exe time Controlled guard invoc. (preferable) 0.0% 1.1% 1.6% 3.4% 1.4% 4.1%

0 14 28 42 56 70

0 (0%) 10 (71%) 21 (75%) 30 (71%) 41 (73%) 50 (71%)
% increase Uncontrolled guard invoc. (bad) 0.0% 6.7% 3.3% 4.8% 5.7% 32.2%
in exe time Controlled guard invoc. (preferable) 0.0% 0.5% 2.1% 3.1% 4.3% 4.9%

0 27 55 82 109 136

0 (0%) 2 (7%) 4 (7%) 6 (7%) 10 (9%) 12 (9%)
% increase Uncontrolled guard invoc. (bad) 0.0% -0.1% 5.4% 5.5% 5.5% 5.7%
in exe time Controlled guard invoc. (preferable) 0.0% 0.0% 0.5% 0.6% 0.7% 0.7%

No. (%) of guards executed in a typical run

 gzip
Total no. of installed guards

No. (%) of guards executed in a typical run

 disasm
Total no. of installed guards

No. (%) of guards executed in a typical run

 avi2mpg
Total no. of installed guards

Fig. 9. Increases in execution time under the scenarios of controlled and uncon-
trolled guard invocations

174 Hoi Chang and Mikhail J. Atallah

software applications protected differently so that successful attacks against
one of the copies would not work for the others (i.e., no “wholesale” attacks).
We have developed techniques for preventing “diff” attacks that would com-
pare two differently protected copies of the same software.

– Configurable tamper-resistance. The guarding approach makes it flex-
ible for a software developer to control the levels of protection (e.g., how
many guards) its software applications need, allowing configurable tamper-
resistance with little performance degradation. That our system works after
compilation makes it unnecessary to recompile if we later modify the pro-
tection scheme (like the number of guards, the guarding network, etc).

We have implemented a system that automates the process of installing
guards in Win32 executables in a configurable manner. Our experiences have
convinced us that it is possible to easily guard software which is difficult to
“unguard”—i.e., asymmetry in the efforts (small effort to protect, large effort to
attack).

Our results show that if configured appropriately, guards cause only slight
impacts on the performance of guarded programs. We believe that such impacts
are insignificant in most situations, and that they are reasonable tradeoffs for
the levels of protection received.

We are currently in the process of completing Version 1.1 of our system.
This version has the convenience of a graphical user interface integrated with
Microsoft Visual C++ 6.0, and will extend the obfuscation capabilities of the
current Version 1.0. Although the paper[3] gives theoretical evidence of the dif-
ficulty of absolute obfuscation, “practical” obfuscation (in the sense of delaying
attacks on the software by substantially “raising the bar” for an attacker) are
still a worthwhile endeavor in many practical situations. In our case what we
really need out of obfuscation is limited to “code entanglement”, that is, the
binding of guard code with the original program’s code so it is hard to disen-
tangle them, that is, difficult to distinguish binary-level guard code from the
original binary code (as mentioned in Section 2, there are many ways to achieve
such binding, ranging from the use of artificially introduced dependencies and
“dummy code”, to the use of complex mathematical identities, etc). What we
need is more limited, and experiments performed at Purdue and elsewhere lead
us to believe that it is achievable in a practical sense. This implies that even
if the regions of code containing guards were roughly located by an attacker, it
would still be very difficult to “separate” and remove the guard code from the
code needed by the program’s functionality.

Additional work is also under way to port the system to other platforms, and
to develop a facility that allows efficient and safe software patch distributions
using the scheme described in this paper; here “efficient” is in the sense that the
patch can have a small size compared to the total program, and “safe” in the
sense that it is does not compromise the guarding network.

Protecting Software Code by Guards 175

References

1. David Aucsmith. Tamper-resistance software: an implementation. In Ross Ander-
son, editor, Information Hiding – Proceedings of the First International Workshop,
volume 1174 of LNCS, pages 317–333, May/June 1996. 163

2. T. Aura and D. Gollman. Software licence management with smart cards. In
Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard ’99),
pages 75–85, May 1999. 162

3. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
CRYPTO 2001, August 2001. 163, 174

4. Clark Thomborson Christian Collberg. Watermarking, tamper-proofing, and ob-
fuscation – tools for software protection. 163

5. Christian Collberg, Clark Thomborson, and Douglas Low. Breaking abstractions
and unstructuring data structures. In IEEE International Conference on Computer
Languages, ICCL’98, Chicago, IL, USA, May 1998. 163, 167

6. Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report 148, Department of Computer Science,
The University of Auckland, Private Bag 92019, Auckland, New Zealand, 1998.
163, 167

7. Cloakware Corporation. Introduction to cloakware tamper-resistant software (trs)
technology, March 2001. http://www.cloakware.com/pdfs/TRS intro.pdf. 163,
167

8. Compuware Corporation. Numega softice. 161
http://www.numega.com/drivercentral-/components/softice/si features.shtml.

9. H. G. Joepgen and S. Krauss. Software by means of the ‘protprog’ method. ii.
Elektronik, 42(17):52–56, Aug. 1993. 163

10. O. Kommerling and M. Kuhn. Design principles for tamper-resistant smartcard
processors. In Proc. USENIX Workshop on Smartcard Technology, Chicago, IL,
May 1999. 162

11. Josh MacDonald. On program security and obfuscation. 163
12. Masahiro Mambo, Takanori Murayama, and Eiji Okamoto. A tentative approach

to constructing tamper-resistant software. In New Security Paradigms Workshop.
Proceedings, pages 23–33, New York, NY, USA, 1998. ACM. 163, 167

13. Landon Curt Noll, Jeremy Horn, Peter Seebach, and Leonid A. Broukhis. The
International Obfuscated C Code Contest, 1998. http://www.ioccc.org/. 163

14. A. Schulman. Examining the Windows AARD detection code. Dr. Dobb’s Journal,
18(9):42,44–8,89, Sept. 1993. 163

15. S. Smith and S. Weingart. Building a high-performache programmable secure
coprocessor. Computer Networks, 31:831–860, 1999. 162

16. Simon Tatham and Julian Hall. Netwide Assembler. http://www.web-
sites.co.uk/nasm. 168

17. Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical Report CS-2000-12,
12 2000. 163, 167

18. Steve R. White and Liam Comerford. ABYSS: An architecture for software pro-
tection. IEEE Transactions on Software Engineering, 16(6):619–629, June 1990.
162

19. Bennett Yee and J. D. Tygar. Secure coprocessors in electronic commerce appli-
cations. pages 155–170, 1995. 162

How to Manage Persistent State

in DRM Systems

William Shapiro and Radek Vingralek

STAR Lab, InterTrust Technologies Corporation
4750 Patrick Henry Drive, Santa Clara, CA 95054

bill shapiro@yahoo.com

radek.vingralek@oracle.com

Abstract. Digital Rights Managements (DRM) systems often must
manage persistent state, which includes protected content, an audit trail,
content usage counts, certificates and decryption keys. Ideally, persistent
state that has monetary value should be stored in a physically secure
server. However, frequently the persistent state may need to be stored in
a hostile environment. For example, for good performance and to sup-
port disconnected operation, recent audit records may be stored on a
consumer device. The device’s user may have an incentive to alter the
audit trail and thus obtain content for free. In this paper we explain the
need for persistent state in DRM systems, describe several methods for
maintaining persistent state depending on the system requirements, and
then focus on the the special case of protecting persistent state in hostile
environments.

1 Introduction

Digital Rights Management (DRM) enables secure binding of digital content
(such as software, music, video, e-books or email) to a contract. The contract
is a program, which is executed each time the content is released to a user
application. The contract grants the user the right to access the content and
it enforces consequences to granting the right. Examples of contracts include
“grant read access to user X and generate an audit record,” “grant read and
write access to user X , if the contract executes on a platform Y and the user has
paid a fee,” “grant execute access to user X if the content has not been accessed
more then n times or the user paid a fee,” or “grant read access to the user X
if she holds a valid subscription certificate”.

DRM systems are typically distributed, with access to content granted to
applications executing on clients and the content delivered from servers. Both
DRM clients and servers may need access to persistent data, which includes:

– The content itself.
– Certificates used for authentication and authorization in the DRM system.
– Account balances or usage counters.
– Start dates used by subscription contracts.

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 176–191, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

How to Manage Persistent State in DRM Systems 177

– Auxiliary data used to support efficient or disconnected operation of clients
(such as content decryption keys).

Independent of their location, persistent data must be protected against both
accidental and malicious corruption. For example, in a video-on-demand appli-
cation, the user may be motivated to reset a view counter to zero to obtain the
movie for free or to extract a decryption key from an application in order to
remove the copy-protection from a movie.

In this paper, we survey possible solutions for managing persistent data in
DRM systems and discuss their tradeoffs. In particular, we concentrate on mech-
anisms for protecting data from malicious corruption on the client, which may
be hostile.

The paper proceeds as follows. Section 2 describes the system security model
that we assume throughout the paper. Section 3 lists the persistent state manage-
ment requirements of DRM systems. Section 4 surveys mechanisms for managing
persistent state, and the requirements from Section 3 that each satisfies. Finally,
in Section 5 we provide a retrospective on our own efforts.

2 System Model

A DRM system typically consists of client and server components, with varying
levels of security and available resources. Servers generally perform the bulk of
the DRM functionality, which includes serving the content, clearing financial
transactions and executing (parts of) contracts. They typically run on main-
frames, workstations or high-end PC’s and have high-throughput connectivity.
They are generally located in physically secure environments and, therefore, they
can be trusted to perform the operations for which they have been certified.

Clients may execute (parts of) contracts and release content to applications.
Client devices vary greatly and may include desktop PC’s, set-top boxes, game
consoles, portable MP3 players, PDA’s, mobile phones, smartcards or secure co-
processors. Compared to servers, such devices frequently have limited computing
and communication resources. For example, a typical client device may contain
a 74 MHz ARM7 chip, a few tens of kilobytes of on-chip SRAM and tens of
megabytes of flash RAM, EEPROM or battery-backed DRAM for stable storage.
Its connectivity may be intermittent and have a low throughput (e.g., 14.4 kb/s
using a wireless connection).

Unlike servers, clients are completely under the control of the user, who may
have an incentive to compromise the DRM system and obtain content for free.
While it is difficult to secure the client environment, it is possible to provide
an acceptable level of security. By acceptable, we mean that the gain resulting
from breaking into a DRM system should be less than the cost of the effort
required to break the system. A system that is unbreakable would be ideal –
however, it is neither practical nor necessary. Commercial banks, for example,
must protect highly valuable assets and, therefore, employ very sophisticated
security mechanisms (such as surveillence systems, vaults, guards, etc.). Indi-
viduals, on the other, hand generally have much less value to protect in their

178 William Shapiro and Radek Vingralek

homes and, therefore, rely on much simpler security systems (such as door locks,
burglar alarms, etc.). The same range should exist for digital content. For low-
valued content, simple software security mechanisms may be sufficient, whereas
with highly valuable content, it may be necessary to apply additional hard-
ware security mechanisms, such as manufacturing devices on a single die, using
tamper-resistant or tamper-detecting packaging, automatic memory-zeroization
when tampering has been detected, power-analysis resistant crypto implemen-
tation and bus encryption [19,5,23,18,6,22].

Some devices are also more secure than others by virtue of their intended
functions. General purpose PCs are among the least secure devices, because the
are intended to execute arbitrary user-loaded programs and hardware peripherals
can be easily removed, swapped, examined, etc. On the other hand, devices
such as set-top boxes, MP3 players and mobile phones do not (yet) load user-
provided code and can only be compromised by tampering with hardware, which,
in general is harder to reproduce on a massive scale than software attacks.

processor

volatile memory

read-only memory

one-way counter

stable storage

security perimeter

Fig. 1. Client system model

We assume that the hardware architecture of the client comprises a proces-
sor, volatile memory, read-only memory, a one-way counter and stable storage as
shown in Figure 1. We assume that the processor is secure, i.e., an attacker can-
not modify the semantics of its operations. We assume that the volatile memory
is secure, i.e., the attacker cannot read or write its content. The secure volatile
memory can be implemented using on-chip SRAM. Although it is possible to se-
cure the volatile memory using mechanisms similar to those used for protection
of the stable storage [9], it would result in excessive overhead on existing pro-
cessor architectures. The read-only memory, which is persistent and cannot be
read by an attacker, contains the code of the DRM client and a secret (e.g., 128
bit string). The read-only memory can be implemented using on-chip EEPROM
or ROM. If the client platform allows loading of user code, access to the volatile
and read-only memories should be limited to trusted code. The one-way counter
is a counter that cannot be decremented and whose value persists. However, we
assume the attacker can increment the counter. We also assume that the counter

How to Manage Persistent State in DRM Systems 179

is sufficiently long that its wraparound is unlikely (e.g., 64 bits). The one-way
counter can be implemented using either a special-purpose microcontroller[21]
or on-chip EEPROM1.

We assume that the large stable storage is insecure, i.e., the attacker can
arbitrarily read and update the values stored in it. Unlike the volatile memory
or read-only memory, several factors make it difficult to physically secure the
stable storage:

– Many technologies used for manufacturing bulk stable storage are hard to
integrate on the same die as the processor.

– If the storage is separate, it is possible to power off the device, remove the
stable storage and analyze it offline.

– Given its size, it may take a long time to erase the entire stable storage in
the short time between detecting tampering and the attacker disabling the
zeroization circuitry.

We assume that the stable storage is read and written in units of variable-sized
records. If the underlying hardware is organized into fixed size pages, an extra
software layer (such as a file system) is required to perform the translation. The
stable storage can be implemented using a hard drive, a flash RAM, EEPROM
or battery-backed RAM.

3 Persistent State Management Requirements

DRM systems place several requirements on the management of persistent state,
many of which are similar to many database systems, but some are unique to
DRM systems.

3.1 Fault Tolerance

Like database systems, DRM systems often manage data that has monetary
value. Consequently, it is important to protect the data against accidental cor-
ruption, which may be a result of a software bug or a hardware failure. The
methods for implementing fault tolerant database systems are well understood
and include the use of error detecting or correcting codes, data replication, back-
ups and transactions. A transaction is a program execution that is guaranteed
by the database system to have the properties of atomicity, isolation and dura-
bility [8]. Atomicity provides recovery from fail-stop faults by guaranteeing all-
or-nothing semantics for database updates; i.e., the database cannot reflect the
effects of a partial execution of a transaction that was interrupted by a fault.
Isolation guarantees that a transaction is isolated from concurrent updates of
other transactions. The database system creates the illusion for each transaction
that it is executing alone in the system. Durability guarantees the persistence
1 Since the counter value in EEPROM can be decremented, the EEPROM must be
protected from untrusted writes on platforms that load user code.

180 William Shapiro and Radek Vingralek

of updates once a transaction has successfully terminated. If transactions are
correct serial programs (i.e., they transform the database from one consistent
state to another), atomicity guarantees consistency of the database in presence
of hardware or software fail-stop faults.

3.2 Security

Client DRM systems typically reside in hostile environments. Users may have an
incentive to tamper with persistent state to circumvent the DRM system. There-
fore, unlike database systems, DRM systems must provide protection against
malicious data corruption. Some persistent state used in DRM systems (such as
encryption keys) also needs to be protected against unauthorized reading. We
formalize these requirements in two properties:

– Secrecy. Persistent state can only be read through the interface of the DRM
system.

– Tamper-detection. The DRM system raises an exception if it reads a data
value that is different from the one it most recently wrote2.

DRM systems typically cannot guarantee tamper-resistance (i.e., a guarantee
that each data value read by the system is the value most recently written by
the system) because the client platform is often under a complete control of the
user. For example, it may be difficult to prevent the user from swapping a hard
drive on her PC.

It is fairly straightforward to provide data secrecy by encrypting the data
with a secret key stored in the read-only memory. Some tamper-detection could
be provided by attaching a Message Authentication Code (MAC) to each data
record based on a secret key. However, this mechanism does not detect the replay
attack, where a user takes a snapshot of the current state on stable storage,
performs one or more transactions and, finally, restores the snapshot, removing
all record of any transactions since the snapshot. The attack is simple, because
the user does not need to understand the structure of the data or the algorithms
used for its protection. Unfortunately, the replay attack is also one of the most
difficult to prevent.

3.3 Performance

Client DRM systems must deliver performance that is acceptable to the user.
Typically, this means that the entire DRM transaction should not take more
than one second. If the persistent state is resident on the client, it is typically
not difficult to satisfy such a requirement and the DRM system does not need
to be optimized for performance.

If, on the other hand, the persistent state resides on the server, the network
latency may often exceed the delay acceptable to most users (e.g., on wireless
networks or on the Internet). In such cases the design of the DRM system should
2 By which, we mean the most recently committed value.

How to Manage Persistent State in DRM Systems 181

aim to perform network communication asynchronously whenever possible. For
example, the DRM system may optimistically grant a user access to content
and asynchronously execute the contract on the server. If the contract execution
denies access to the content, the DRM system may generate an audit trail so
that it can detect abuse.

3.4 Resource Consumption

Client DRM systems typically run on devices with limited resources, such as
portable MP3 players, mobile phones, PDA’s, smartcards or secure co-processors.
Therefore, it is important that client DRM systems minimize the consumption
of critical resources. Memory and power are typically among the most critical
resources on most platforms: smartcards and secure co-processors frequently
have less than 10 KB of RAM and most portable devices have a battery life of a
few hours. Memory consumption can be reduced by shrinking the code footprint
(which can be achieved by a combination of code modularity, elimination of
unnecessary features and use of simple algorithms) and minimizing buffering of
data in memory. Power consumption can be reduced by avoiding unnecessary
I/O and computation. Frequently, the two requirements conflict and the design
must aim at achieving an acceptable tradeoff. For example, reducing memory
consumption by buffering less data leads to higher power consumption due to
increased I/O.

3.5 Scalability

Server DRM systems must be scalable because they may support large numbers
of users. Client DRM systems, on the other hand, would typically support only
one or a few users. Consequently, their design can be simplified by providing little
or no concurrency control. The client persistent state is also likely to be small
(i.e., less than 1 MB). Consequently, the storage organization of client DRM
systems does not need to scale up and its design can rely heavily on in-memory
caching (e.g., by implementing no-steal buffer management or by implementing
non-clustered storage organization). Such design simplifications often lead to a
smaller code footprint and thus reduced main memory usage.

4 Mechanisms for Managing Persistent State

Architectures of DRM systems can vary from entirely server-based to largely
client-based. At the server-based end of the spectrum are universal data repos-
itories (often called locker services) that store all persistent state required for
execution of contracts, such as content subscriptions, account balances or usage
counters. When a client wishes to consume content, it must first contact the
locker service in order to execute the contract and obtain access to the con-
tent. The primary benefit of the locker service is that it allows ubiquitous access
to the persistent state for clients connected to the network. Additionally, it is

182 William Shapiro and Radek Vingralek

simpler to ensure secrecy and tamper-detection for the persistent state because
servers can be physically secured. Even the threat of accidental corruption is
reduced because servers are generally more reliable than client devices and are
more likely to keep frequent backups of the persistent state and use transactions
to update the state.

However, there are also several drawbacks to executing contracts in the locker
service. First, the performance penalty of contacting a server each time content is
consumed is often unacceptable. For example, a user may have to wait a second
or more after pressing the play button before the DRM system obtains an access
right from the locker service to play the song. The performance penalty may be
alleviated by caching some of the persistent state on the client or by executing
the contracts asynchronously.

The second, and more fundamental, drawback of the locker service is that
it does not support offline content consumption. A client must have an active
network connection to the locker service at the time of content purchase. Offline
transactions generally require persistent state stored on the client. For example,
in a video distribution application, a user may receive movies asynchronously
(e.g., via satellite or radio broadcast) and be able to watch them without having
to connect to a server to obtain an access right each time. Audit records for the
number of movies viewed are stored on the client device and can be periodically
sent to the server. In the extreme case, a client may be able to perform transac-
tions without ever having to connect to a server. For example, a user may receive
a promotional DVD in the mail that she is permitted to preview a fixed number
of times (say twice). The client DRM software persistently stores the preview
counter to determine when the DVD expires.

In the rest of this section we survey several mechanisms for managing per-
sistent state in a hostile environment.

4.1 Secure Memories

Blum, et al., study the problem of protecting RAM against tampering given a
small amount of secure memory. They consider both an off-line detector, which
detects tampering using a trace of all accesses (including values read or written,
locations accessed and times of access) and an on-line detector, which detects
tampering immediately after an operation has been executed [3]. The on-line de-
tector is based on the Merkle tree [12], which is schematically shown in Figure 2.
The Merkle tree serves as a basis for protecting the persistent state in most of
the systems we survey in this section.

Each node in the Merkle tree contains one-way hashes of its children. The
leaves of the tree contain hashes of the memory locations. The hash of the root of
the tree is stored in the secure memory. Each time a memory location is updated,
all hash values on the path from the leaf corresponding to the updated memory
location to the root are updated. Each time a memory location is read, the path
must be verified by recomputing the hash values.

Although our system model assumes that the volatile memory resides in-
side of the security perimeter, there exist mechanisms for protecting program

How to Manage Persistent State in DRM Systems 183

d e gf

b c

a h(b) h(c)

h(d) h(e) h(f) h(g)

h(a)

insecure memory

secure memory

Fig. 2. Merkle tree

instructions and data in an insecure volatile memory [9]. However, the design
assumes that the processor support special instructions that are not supported
by most existing processors. Secrecy of the data written to the volatile memory
is guaranteed by encryption with a symmetric key stored within the security
perimeter. Tampering with the data is detected by attaching a MAC to every
memory location. However, the MAC cannot detect replay of old values. The
time and space overhead is most likely prohibitive on most existing processors
(each memory reference results in one pass through a symmetric cipher and a
MAC computation, and a 16 byte MAC is added to every cache line). There-
fore, we assume in our model that the volatile memory is inside of the security
perimeter.

Even when the volatile memory lies within the security perimeter, it may be
still paged to insecure stable storage by the virtual memory subsystem. Provos
describes a mechanisms for securely paging to insecure stable storage by encrypt-
ing all pages swapped out to the stable storage [13]. The encryption key, which
is stored in pinned volatile memory, is randomly generated by the virtual mem-
ory subsystem and destroyed once all references to the page are removed (i.e.,
all processes using that page terminate). A solution that also detects tampering
would be to swap pages out to any of the secure file systems described below.

4.2 Secure Audit Logs

One mechanism for protecting persistent state on the client is to log user transac-
tions in a local secured log. Schneier and Kelsey [16] describes how to implement
secure audit logs on host machines to aid in intrusion detection. This could be
adapted to provide secure persistent storage on a client. The goal of this work
is to secure a log that could aid in detecting that a host has been compromised.
Once the host has been compromised, it is under the control of the attacker, who
has full control over the host. However, in the process of attacking a machine, the
attacker is likely to trigger events that would suggest intrusion (e.g., becoming
a super user). If such events can be securely logged, the log can be a powerful
aid in detecting intrusions.

184 William Shapiro and Radek Vingralek

The secure logs use encryption to provide data secrecy and a linear chain of
hash links, which is a linear form of the Merkle tree, to every element in the log
to provide tamper detection. The hash of the end of the log, which protects the
entire log through hash links, is periodically sent to a remote server for tamper
detection. This mechanism could be adapted to provide secure persistent storage
locally by storing the hash of the end of the log and the encryption key in local
secure storage.

Bellare and Yee [1] propose a different mechanism for securing audit logs.
In this scheme, the key used to compute the MAC over audit entries is periodi-
cally changed such that an attacker cannot modify historical entries, even if the
current key is compromised. Periodically, a new key is computed by applying a
one-way hash to the old key and the old key is erased. Sequence numbers in the
log are used to prevent the replay attack. The mechanism does not detect trun-
cation of the log (for example deleting the most recent transactions). However,
as described above, the most recent sequence number could be periodically sent
to a remote server to limit the amount of truncation that could go undetected.

Secure logs may be sufficient for applications that store a small amount of
append-only persistent state. For example, client devices with intermittent net-
work access can store audit records locally in a secure log and send them to a
DRM server when the device connects to the network. However, this approach
would be indeficient for applications that require random read and write access
to persistent data because entries in the log can be verified only in time linear
in the size of the log.

4.3 Secure File Systems

Many contracts require random read and write access to persistent data. For
example, they may need to efficiently locate a counter, read its value and incre-
ment it. In the case where random read and write access to persistent data is
required on the client, a secure file system may be used.

Secure file systems generally fall into two categories: those that provide se-
crecy and those that provide tamper-detection.

Encrypted File Systems Several file systems have been developed that pro-
vide secrecy by encrypting file system data and meta-data [2,14,26]. Encrypting
persistent data is fairly straightforward in DRM systems and most of the work on
encrypted file systems involves integration with legacy network file systems (such
as NFS) and user authentication, which are not relevant for local file systems.

Tamper Detection File systems that provide tamper-detection are more rel-
evant to the design of DRM systems. Fu et. al. developed SFS-RO to allow a
large number of users to access public read-only files, which may be replicated
on untrusted servers, and verify their authenticity [7]. SFS-RO uses a tree of
hashes to verify the contents of the file system. In an SFS-RO file system, each
inode is referred to by a handle, which is a cryptographic hash of its contents.

How to Manage Persistent State in DRM Systems 185

Groups of handles are hashed recursively to form a tree of hashes. The root in-
ode, which through the hash links of its children can be used to verify the entire
file system, is signed with the private key of the file system. Any client that has
the public key of the file system can then verify the file system’s authenticity by
first verifying the root inode and then verifying the path from the root to each
file to be read. SFS-RO is not directly usable for DRM systems, because they
must be able to update data. However, the signed root inode could be kept in
the local storage and updated when the underlying inodes change.

Stein et. al. designed the Protected File System (PFS) to verify file system
data and meta-data blocks without requiring any changes to the file system
interface or storage organization [20]. It uses cryptographic hashes over all data
and meta-data blocks to detect any tampering with file system blocks. The block
hashes are written to the same write-ahead log as the meta-data updates. PFS
does not provide protection against replay attacks.

SUNDR [11] is a network file system designed to run on untrusted servers. It
supports both data encryption and verification using hash trees similar to SFS-
RO. TCSF [4] also supports both encryption and verification, but calculates a
message digest on each block and cannot detect replay attacks.

The primary benefit of a secure file system is that it exports the familiar
file system interface. However, it may not be appropriate for DRM systems
that require efficient access to named records. Moreover, the file systems do not
support transactional update semantics.

Secure file systems are also not suitable for a number of clients. Clients,
such as set-top-boxes, whose operating systems are not exposed to the user,
can install a secure file system on a separate partition. However, it is generally
unacceptable to require a user of a general-purpose PC to install a separate file
system in order to use a DRM system. Furthermore, the size of a file system
implementation makes it inappropriate for use in small devices.

4.4 Secure Database Systems

Although secure file systems detect data corruption (which may be accidental
or malicious), they use backups as the only mechanism for recovering user data
after data corruption has been detected. Since backup creation is a relatively
heavy-weight operation, it is typically performed infrequently and, therefore, a
large number of updates can be lost during a backup restore.

Secure database systems such as the Trusted Database (TDB) [10,25] and
GnatDb [24] combine the mechanisms for implementing secrecy and tamper-
detection described in Section 4.3 with fine-grained recovery based on trans-
actions. The database system recovers a consistent database state after a fail-
stop fault by rolling back all partial updates. The design of both database sys-
tems demonstrates that similar storage mechanisms can be employed to imple-
ment both transactions and security (secrecy and tamper-detection). TDB and
GnatDb are both based on log-structured storage organization[15], which im-
plements data updates by appending new versions of the data to the end of a
log. The relocation of the data requires a location map that maps each data

186 William Shapiro and Radek Vingralek

item to its current location in the log. Like SFS-RO, the location map can be
hierarchically organized and contain hash values in the pointers to child nodes.
Transactional atomicity is reduced to atomic updates of the location map (or of
a pointer to its root).

The main differences in the design of TDB and GnatDb stem from the plat-
forms they target. TDB is geared toward devices similar to the modern PC (such
as set-top boxes or game consoles), while GnatDb is geared toward devices with
very limited resources (such as secure co-processors, smartcards, portable music
players and mobile phones).

TDB TDB’s architecture is modular so that it is possible to configure the
system based on the resources available on a given platform. The lowest layer,
the Chunk Store implements atomic updates to untyped strings of bytes called
chunks. The Object Store implements transactional access (including isolation of
transactions) to typed C++ objects on top of the Chunk Store. The top layer,
the Collection Store, implements iterator-based access to collections of objects.
TDB also provides a Backup Store that creates and restores backups of the
database.

The Chunk Store implements all storage management and guarantees secrecy
and tamper-detection. The storage organization of TDB is shown in Figure 3. It
maintains a location map, which is organized for scalability as a tree of chunks.
Each node in the tree contains an array of secure pointers, each of which consists
of the child location in stable storage and a one-way hash of the child’s content.
The leaves point to the user data chunks. To prevent snooping, all chunks are
encrypted with a secret key stored in the read-only memory. The user chunks and
the nodes of the tree are protected against tampering, including replay attacks,
similar to the inodes of SFS-RO.

Unlike SFS-RO, TDB stores a signed secure pointer to the root of the tree
at the tail of the log in a commit chunk. The commit chunk is signed with the
secret key stored in the read-only memory. The signature prevents forging of
the commit chunks. Its replay is prevented by signing the current value of the
one-way counter along with the secure pointer. Writing the commit chunk to the
stable storage constitutes a commit point of the transaction (i.e., any updates
up to this point would be rolled back at recovery).

Since chunk updates are always written to the end of the log, the location of
a chunk changes every time it is updated. Therefore, the entire path from the
node pointing to the updated chunk to the root of the location map must be
updated in the stable storage along with the chunk. TDB reduces the overhead by
updating the path (except for the root pointer) only in the volatile memory. The
volatile copies are synchronized with the stable storage during a checkpoint. At
recovery, the location map nodes are brought up-to-date by redoing all updates
to user chunks since the last checkpoint. The unchekpointed part of the log
(which contains user data chunks and signed pointers to the location map root)
is protected against tampering using a chain of hash values anchored in the
commit chunk similar to the secure log described in Section 4.2. Because data

How to Manage Persistent State in DRM Systems 187

C.C
34

location

map

log

residual log

hash links

34

one-way counter

Fig. 3. TDB storage organization

chunks are always relocated when they are modified, a log cleaner is used to
garbage collect obsolete chunk versions.

The Chunk Store divides the database into partitions, each of which consists
of both user chunks and meta chunks. Partitions may be configured to use sep-
arate cryptographic keys and algorithms for encryption and hashing (or to not
encrypt or hash). The meta chunks describing a partition (including the secret
key) are stored in a system partition, which is protected using the secret key
in the read-only memory. Partitions can be dynamically created and copied us-
ing copy-on-write, which serves as a basis for fast backups. The backups can be
either full or incremental. Their secrecy is guaranteed by encryption with the
partition secret key. Tampering is detected using a signature with the partition
secret key (the protection also includes verifying that incremental backups are
restored in a well-formed sequence). A backup restore must be authorized by a
trusted module external to TDB to ensure that the backup is not too old and the
number of requests for backup restores is reasonable (because a backup restore
is a controlled form of the replay attack).

Despite the security features TDB provides over other embedded database
systems, its performance is quite good. TDB outperforms a popular embedded
database system, the BerkeleyDB, on the TPC-B benchmark on average by a
factor of 1.8 [25]. The code footprint of the ChunkStore on the x86 is 142 KB,
the Backup Store 22 KB and the rest of the modules 86 KB.

GnatDb GnatDb’s architecture consists of two layers: the Secure Device and
the Store. The Secure Device implements page-oriented access to a virtual device
that provides secrecy and tamper-detection. The Store implements a proper
subset of the Chunk Store interface of TDB (without support for partitions),
which allows atomic updates of chunk sets.

Unlike TDB, which uses a hierarchical location map, GnatDb organizes its
location map as an array (indexed by chunk id), which is written as a single
unit (i.e., the entire map forms a single chunk). Although this organization is
not scalable, its performance is satisfactory for the small databases that GnatDb
is expected to manage and, at the same time, significantly simplifies the imple-

188 William Shapiro and Radek Vingralek

mentation, which results in a code footprint reduction. The storage for GnatDB
is statically divided into two logs, one for the location map and the other for
pages holding user data chunks (the data log). Unlike TDB, GnatDb writes both
logs round-robin, which simplifies the implementation of the Store at the cost of
performance (it would be possible to reduce the volume of cleaning by selecting
for cleaning pages that contain mostly “dead” chunks).

The Secure Device provides secrecy by encrypting all pages with a secret
key stored in the read-only memory. It detects tampering by appending a MAC
to each page, computed over the page contents and location using a key stored
in the read-only memory3. Unlike other storage systems, GnatDb does not rely
on building a Merkle tree to thwart the replay attack. Instead, it relies on the
regular pattern of writes to both logs. The Secure Device includes a version
number in each page, which contains the value of the one-way counter. The one-
way counter is incremented each time a page is written to the data log. Since the
data log is written round-robin, the version number of any page can be easily
computed given the version number of log tail. The version numbers of all pages
holding the most recently written location map chunk are identical and match
the version number of the log tail, which in turn must match the current value
of the one-way counter. The version number assignment is shown in Figure 4.
Therefore, knowing the current value of the one-way counter and the current
location of log tail, its is possible to verify the correctness of the version number
of any page.

location map log data log

v

v
-

1

v
-

2

v

v v v

current location map chunk

log tail

one-way counter

Fig. 4. GnatDb storage organization

GnatDb’s design trades off performance for memory consumption. The code
footprint of GnatDb is 7.1 KB on the x86 and its total memory consumption
(including the space allocated for the stack and the heap) is below 11 KB.
Its performance on a typical small device platform using flash-RAM for stable
storage remains acceptable (less than 0.6 s) for database utilizations below 50%
on a synthetic workload that models a typical DRM transaction [24].
3 If the read-only memory has a limited size, it is possible to securely derive both
the encryption key and the MAC key from a single secret stored in the read-only
memory.

How to Manage Persistent State in DRM Systems 189

5 A Retrospective on DRM Database System Design

In this section, we summarize the experience we gained by designing and imple-
menting TDB and GnatDb.

The management of persistent state on clients is much more complex and
less secure than on the server. Therefore, the designers of DRM systems should
carefully consider whether the contracts supported by the system indeed require
persistent state and, if so, whether it can be stored on the server. For example,
subscription contracts do not require updatable persistent state on the client
and DRM systems with client that have fast and reliable connectivity to the
server generally do not require storage of persistent state on the client.

We found that secure file systems such as SFS-RO or PFS are not suitable for
persistent storage in DRM systems. In particular, typical DRM systems require
access to named records and transactional semantics for updates. However, if the
footprint of the DRM client is not an important constraint and its installation
can require creation of a new file system, it is possible to run an embedded
database system, such as BerkeleyDB [17], on top of a secure file system.

Ideally, we wanted to be able to use a database system that provided both
secrecy and tamper detection, but were unaware of any such systems. Therefore,
we implemented TDB to provide these features as well as typical database system
functionality. We later found that DRM systems often ran on small devices and
with very limited resources, which precluded the use of TDB. GnatDB, was the
result of scaling down TDB to provide only the functionality and scalability
required on small devices, while still providing secrecy and tamper-detection.

In designing TDB and GnatDB, we found that log-structured storage or-
ganization has several benefits for design of secure database systems. First, it
nicely integrates with implementation of tamper-detection mechanisms. Second,
it greatly simplifies implementation of atomic updates. Third, it allows an effi-
cient creation of copy-on-write snapshots, which serve as a basis for fast backups.
Fourth, by concentrating all writes in a few blocks or pages on the stable stor-
age, it reduces the overall I/O costs on some platforms (e.g., the stable storage
based on flash RAM, where the cost of block erase, required to precede each
write, dominates all I/O). Fifth, it makes traffic analysis harder because hot
records are never overwritten in place. At the same time, the loss of clustering
of semantically related data is not significant for DRM databases, which tend to
be small and thus frequently cacheable in volatile memory.

We also found that the cryptographic operations represent a relatively small
overhead (less than 10%) on modern PC’s or similar platforms [10]. On the other
hand, on embedded platforms with slower CPUs (such as an ARM-based pro-
cessor) and faster I/O (flash RAM or EEPROM) the cryptographic operations
dominate the overall costs (more than 70% of the total overhead) [24]. Con-
sequently, the efficiency of tamper-detection and secrecy implementations is as
important as the efficiency of the stable storage management.

190 William Shapiro and Radek Vingralek

References

1. Mihir Bellare and Bennet Yee. Forward integrity for secure audit logs. Technical
report, Computer Science and Engineering Department, University of California
at San Diego, November 1997. 184

2. M. Blaze. A cryptographic file system for unix. In In Proceedings of the First ACM
Conference on Computer and Communication Security, November 1993. Fairfax,
VA. 184

3. M. Blum, W. Evans, P. Gemmel, S. Kannan, and M. Naor. Checking the correct-
ness of memories. In In Proceedings of the IEEE Conference on Foundations of
Computer Science, 1991. San Juan, Puerto Rico. 182

4. G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The design and imple-
mentation of a transparent cryptographic file system for unix. In Proceedings of
the FREENIX Track: USENIX Annual Technical Conference, June 2001. Boston,
MA. 185

5. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards sound approaches to coun-
teract power-analysis attacks. In In Proceedings of the 19th Annual International
Cryptology Conference, 1999. Santa Barbara, CA. 178

6. Dallas Semiconductor. DS5002FP Secure Microprocessor Chip, July 2001. 178
7. K. Fu, F. Kaashoek, and D. Mazieres. Fast and secure distributed read-only file
system. In Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, 2000. San Diego, CA. 184

8. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993. 179

9. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In
In Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000. Cambridge, MA. 178, 183

10. U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database
system on untrusted storage. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation, 2000. San Diego, CA. 185, 189

11. D. Mazieres and D. Shasha. Don’t trust your file server. In In Proceedings of the
8th Workshop on Hot Topics in Operating Systems, May 2001. Schloss Elmau,
Germany. 185

12. R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE
Symposium on Security and Privacy, 1980. Oakland, CA. 182

13. N. Provos. Encrypting virtual memory. In Proceedings of the 9th USENIX Security
Symposium, August 2000. Denver, CO. 183

14. P. Reiher, T. Page, S. Crocker, J. Cook, and G. Popek. Truffles—a secure service
for widespread file sharing. In In Proceedings of the The Privacy and Security
Research Group Workshop on Network and Distributed System Security, February
1993. 184

15. M. Rosenblum and J. Ousterhout. The design and implementation of a log-
structured file system. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles, 1991. Pacific Grove, CA. 185

16. B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted ma-
chines. In In Proceedings of the USENIX Security Symposium, 1998. San Antonio,
TX. 183

17. M. Seltzer and M. Olson. Challenges in embedded database system administration.
In Proceeding of the Embedded System Workshop, 1999. Cambridge, MA (software
available at www.sleepycat.com). 189

How to Manage Persistent State in DRM Systems 191

18. Dallas Semiconductor. Java-powered cryptographic iButton.
www.ibutton.comibuttonsjava.html, July 2001. 178

19. S. Smith, E. Palmer, and S. Weingart. Using a high-performance, programmable
secure coprocessor. In Proceedings of the International Conference on Financial
Cryptography, 1998. Anguilla, British West Indies. 178

20. C. Stein, J. Howard, and M. Seltzer. Unifying file system protection. In Proceedings
of the USENIX Annual Technical Conference, 2001. Boston, MA. 185

21. Infineon Technologies. Eurochip II - SLE 5536. available at www.infineon.com/
cgi/ecrm.dll/ecrm/scripts/prod ov.jsp?oid=14702&cat oid=-8233, 2000. 179

22. InterTrust Technologies. Rightschip. available at www.intertrust.com/main/

products/rightschip-fs.html, July 2001. 178
23. J. Tual. MASSC: A generic architecture for multiapplication smart cards. IEEE

Micro, 19, 1999. 178
24. R. Vingralek. GnatDb: A small footprint, secure database system. Technical

Report STAR-TR-01-05, InterTrust Technologies, 2001. available at
www.star-lab.com/tr/star-tr-01-05.html. 185, 188, 189

25. R. Vingralek, U. Maheshwari, and W. Shapiro. TDB: A database system for digital
rights management. Technical Report STAR-TR-01-01, InterTrust Technologies,
2001. available at www.star-lab.com/tr/star-tr-01-01.html. 185, 187

26. E. Zadok, I. Babulescu, and A. Shender. Cryptfs: A stackable vnode level encryp-
tion file system. Technical Report CUCS-021-98, Computer Science Department,
Columbia University, June 1998. 184

A Cryptanalysis of the

High-Bandwidth Digital Content
Protection System

Scott Crosby1, Ian Goldberg2, Robert Johnson3,
Dawn Song3, and David Wagner3

1 Carnegie-Mellon University
2 Zero Knowledge Systems

3 University of California at Berkeley

Abstract. We describe a weakness in the High Bandwidth Digital Con-
tent Protection (HDCP) scheme which may lead to practical attacks.
HDCP is a proposed identity-based cryptosystem for use over the Digi-
tal Visual Interface bus, a consumer video bus used to connect personal
computers and digital display devices. Public/private key pairs are as-
signed to devices by a trusted authority, which possesses a master secret.
If an attacker can recover 40 public/private key pairs that span the mod-
ule of public keys, then the authority’s master secret can be recovered
in a few seconds. With the master secret, an attacker can eavesdrop on
communications between any two devices and can spoof any device, both
in real time. Additionally, the attacker can produce new key pairs not
on any key revocation list. Thus the attacker can completely usurp the
trusted authority’s power. Furthermore, the protocol is still insecure even
if all devices’ keys are signed by the central authority.

1 Introduction

The High-bandwidth Digital Content Protection (HDCP) scheme is a crypto-
graphic extension to the Digital Visual Interface (DVI) designed to prevent the
copying of video data transmitted over the DVI bus. DVI is already commonly
used between personal computers and display devices such as LCD monitors. If
the HDCP enhanced DVI standard is also adopted by monitor and television
manufacturers, then it could serve as the last leg of a secure channel for the
online distribution of television, movies, and other video data. Online content
distributors would like to build this channel to prevent perfect digital copies by
never exposing the digital video signal as plaintext in the receiver’s computer.

Because DVI devices from many different manufacturers need to interoperate
and perform key exchange with no user intervention, the HDCP authors chose
to use an identity-based cryptosystem. It appears that the authors wanted the
implementation of the scheme to be extremely low cost, and so avoided any of
the conventional public-key schemes in the literature [1,2,3,4,5]. In personal com-
munication with the HDCP authors, we learned that they designed HDCP to be

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 192–200, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Cryptanalysis of the High-Bandwidth Digital Content Protection System 193

implementable in fewer than 10,000 gates[6]. This stringent design requirement
led the HDCP authors to develop custom algorithms which are insecure.

In the HDCP scheme, device manufacturers purchase HDCP licenses from
a trusted authority. A license includes, for each device A, a public vector vA,
called the Key Selection Vector (KSV), and a private vector, uA. When devices A
and B wish to communicate, they exchange vA and vB . Device A computes
the dot product uA · vB and B computes uB · vA, and they use this as their
shared secret for the rest of their interactions. The trusted authority uses some
secret information to choose vA, vB, uA, and uB so that the above computations
will produce the same answer. This protocol is used in both the Upstream and
Downstream versions of HDCP. The Upstream version of HDCP is designed for
the communication link between software running on a personal computer, such
as a user friendly video playback utility, and the HDCP devices attached to that
computer. The Downstream protocol is used between HDCP devices. Since the
cryptographically relevant portions of these protocols are identical, our attack
applies to both.

Our purpose in presenting these results is not to enable illegal copying.
Rather, we hope to advance the cryptographic science, to help systems designers
build more secure systems in the future, and to help users assess what level of
security they can reasonably expect from these technologies.

We observe that attackers can exploit a well-known cryptographic design
mistake: the shared secret generation is entirely linear. The attack only needs 40
public/private key pairs such that the public key pairs span M ⊂ (Z/256

Z)40, the
module generated by all public keys. Since HDCP devices divulge their public
keys freely, one can easily test whether a set of 40 devices have public keys
spanning M before expending the effort to extract their private keys. With
these keys, the authority’s secret can be recovered in only a few seconds on any
desktop computer.

The consequence of these flaws is that, after recovering the private keys of 40
devices, one can attack every other interoperable HDCP device in existence: an
attacker can decrypt eavesdropped communications, spoof the identity of other
devices, and even forge new device keys as though he were the trusted center.
Note that this allows an attacker to bypass any revocation list or “blacklisting”:
such mechanisms are rendered completely ineffective by these flaws in HDCP.
We also describe several further attacks on the HDCP protocol (see Section 6).
Therefore we recommend that the current HDCP cryptosystem should be aban-
doned and replaced with standard cryptographic primitives.

The HDCP cryptosystem is also unusual in that it can be broken without
fully understanding its operation. The HDCP specification does not describe
the key generation process used by the center but, based solely on the proper-
ties of generated keys, we can characterize all possible key generation strategies
and show that they are all insecure. In other words, we can prove, given just
the interface, that every possible implementation that follows this interface is
insecure.

194 Scott Crosby et al.

Table 1. The HDCP Authentication Protocol

A → B : vA, nA

B : K′ = vA · uB , R′ = h(K′, nA)

B → A : vB , R′

A : K = vB · uA, R = h(K, nA)

A : Verifies R = R′

2 Related Work

Blom described a scheme very similar to HDCP as an alternative to the emerging
public-key schemes of the time[7,8]. He realized immediately the danger of collud-
ing users, and tried to maximize the number of traitors required to compromise
the scheme while minimizing the storage requirements placed on the system’s
users. We should note that since HDCP is closely related to Blom’s protocol, it
achieves the same storage lower-bound he presented in his paper. Blom’s analysis
considered only information-theoretic security; we show that with only a small
number of colluding users, the scheme is computationally insecure, as well.

Other researchers have looked at HDCP, too. An author of the present pa-
per informally published similar results[9]. Irwin independently discovered this
attack, and pointed out several other weaknesses in HDCP[10]. Niels Ferguson
has discovered weaknesses in HDCP, but has not published them because of the
Digital Millennium Copyright Act[11].

3 The HDCP Authentication Protocol

The HDCP protocol is described completely in [12]. We present an abstracted
version that captures the cryptographically relevant portions of both the Up-
stream and Downstream versions of HDCP. A trusted authority assigns to each
device, A, a public vector vA ∈ (Z/256

Z)40, called the Key Selection Vector
(KSV), and a private vector, uA ∈ (Z/256

Z)40. The vector vA consists of 20
zeros and 20 ones. The vector uA must be kept in tamper-proof hardware or, in
the case of a software implementation, obscured by code obfuscation techniques.
When devices A and B wish to communicate, they exchange vA and vB. A com-
putes K = uA · vB and B computes K ′ = uB · vA. The trusted authority has
used some secret information to choose vA, vB , uA, and uB so that K = K ′.

In HDCP, one device is the transmitter and one is the receiver. To verify that
the key agreement process has been successful, the transmitter A also sends a
nonce nA, and the receiver replies with the 16-bit value R′ computed by R′ =
h(K ′, nA). The transmitter performs the analogous computation and verifies that
the results are the same. The non-invertible function h is completely described
in the specification, but the details of its operation are not important here. We
assume that all DVI transmitters can interoperate with all DVI receivers, an
assumption that seems to be implied by the specification.

A Cryptanalysis of the High-Bandwidth Digital Content Protection System 195

HDCP also supports revocation of certain KSVs. Transmitters are required
to check that their peer’s KSV is not on the current revocation list. According to
the HDCP license, KSVs can be placed on the KRL if the corresponding private
key has been leaked, or if requested by the National Security Agency.

Table 2. Summary of HDCP Protocol Variables

Name Size Comment

vA, vB 40 bits Must have Hamming weight 20

uA, uB Vector of 40 56-bit numbers

nA 64 bits

K, K′ 56 bits K = vB · uA,K
′ = vA · uB

R, R′ 16 bits R = h(K, nA), R
′ = h(K′, nA)

4 Linear Algebra over Z/256
Z

Computations in HDCP are done in the ring Z/256
Z. Since Z/256

Z is not a field,
not all the basic facts from linear algebra hold in this setting. Nonetheless, much
of our intuition carries over with not too many changes. In this section we set
down the few results we need. These results are not new, but some of them are
a bit obscure, so we include them here. Let R = Z/pn

Z, where p is prime. The
following fact is used without proof.

Fact 1. The standard determinant function, det, is multiplicative, and a ma-
trix T is invertible if and only if detT is a unit in R. Since R = Z/pn

Z, this
implies T is invertible if and only if gcd(det T, pn) = 1.

R has exactly one chain of ideals, (0) = (pn) ⊂ (pn−1) ⊂ . . . ⊂ (p1) ⊂ (p0) =
R. This makes Gaussian elimination work almost as well as over a field.

Proposition 1. Any m× n matrix A over R can be transformed, via invertible
row operations, into an upper triangular matrix such that if the leading nonzero
term of row i is in column j, then the leading nonzero term of row i + 1 is in
column j + 1 or later. Furthermore, the leading terms will all be powers of p.

Proof. The Gaussian elimination algorithm need only be modified slightly.

A =




a1,c1

0
. . .

...

0

ak,ck

0 ak+1,ck+1 ∗ · · · ∗
∗ · · ·

...
... · · ·

0 ∗ · · · ∗




196 Scott Crosby et al.

Let c1 be the first non-zero column. Let r1 be a row such that, for all r, (ar,c1) ⊆
(ar1,c1). By dividing row r1 by a unit, we can transform ar1,c1 into pe1 for some e1.
We then interchange row r1 with row 1. We can now use row 1 to cancel all the
other non-zero terms below a1,c1 , since the column c1 entries of all the other
rows now lie in (a1,c1). We now repeat with column c2, the first column with a
non-zero entry in rows 2, . . . , m, and so on. If, after swapping, entry ak,ck

= 1,
then we may optionally use row k to cancel the non-zero terms above ak,ck

. It
is a standard fact that the row operations used here are invertible.

Define σ : (Z/256
Z)40 → Z/256

Z by σ(v1, . . . , v40) =
∑40

i=1 vi. Then, since
KSVs have Hamming weight 20, for any KSV v, σ(v) = 20. Since σ is linear, σ
applied to any linear combination of KSVs will be in the ideal (4) ⊂ Z/256

Z.
Since not all vectors α in (Z/256

Z)40 have σ(α) ∈ (4), no set of KSVs will
ever span (Z/256

Z)40. Let M be the module spanned by all possible KSVs. The
following proposition tells us when a set of KSVs spans M .

Proposition 2. A set of KSVs v1, . . . , v40 spans M if and only if the matrix V
whose rows are v1, . . . , v40 has gcd(det V, 256) = 4.

Proof. Let V ′ =
[
v′ij

]
be the result of applying the above Gaussian elimina-

tion algorithm to V . Since the Gaussian elimination is invertible, there exists
a matrix U , with gcd(detU, 256) = 1, such that V ′ = UV . Thus detU−1 detV ′ =
detV . Since detU−1 is coprime to 256, we must have gcd(detV ′, 256) =
gcd(detV, 256) = 4. Since V ′ is upper triangular, detV ′ =

∏40
i=1 v′ii. But v′ii

is a power of 2 for each i, so detV ′ =
∏40

i=1 v′ii = 4. Since the only nonzero entry
in row 40 is v′40,40, we must have v′40,40 a multiple of 4 by σ considerations. Since
detV ′ = 4, V ′ has the following form.

V ′ =




1 0 0 ∗
0

. . . 0 ∗
0 0 1 ∗
0 0 0 4




Let v′i be the ith row of this matrix. If w = (w1, . . . , w40) is a KSV, then put w′ =
w−∑39

i=1 wiv
′
i = (0, . . . , 0, w′

40). As we observed above, σ(w′) = w′
40, lies in (4) ⊂

Z/256
Z. So there exists a c such that w′

40 = 4c. Hence w =
∑39

i=1 wiv
′
i+cv′40. Note

that this does not prove the existence of a KSV matrix V with gcd(detV, 256) =
4, but such matrices can easily be found experimentally. Thus the rows of the
matrix V ′ above do lie in M .

If, on the other hand, v1, . . . , v40 span M , then there exists a matrix U such
that V ′ = UV . Thus, by the multiplicativity of det, gcd(detV, 256) is at most
4. By a σ argument similar to the above, gcd(det V, 256) is at least 4. Thus
gcd(detV, 256) = 4.

It will also be useful to know the probability that 40+m KSVs contain a set
of 40 KSVs that span M . The following table was created by generating 10000

A Cryptanalysis of the High-Bandwidth Digital Content Protection System 197

sets of 40 + m random KSVs and testing whether the set contained a spanning
subset of 40 KSVs.

Number of KSVs 40 42 44 46 48 50
Prob. of Spanning M .295 .773 .940 .982 .997 .999

5 The Authority’s Secret

We now prove that the authority’s secret information can be recovered by an
attacker. The main insight is that the secret can be captured in a 40 × 40 ma-
trix, and hence techniques from linear algebra suffice to recover it. Before we
proceed, we must note that the center may choose to issue only KSVs from a
submodule, N , of M , the module spanned by all KSVs.

Observation 1. Let v be a KSV, and suppose u1 and u2 are both valid private
keys for v. Then u1 − u2 ∈ N⊥.

Proof. Let (v′, u′) be any other valid key pair. Since v′ · u1 = v · u′ = v′ · u2, we
have v′ · (u1 − u2) = 0 for all v′ ∈ N .

The content of this observation is that, if two different key vectors, uA and u′
A,

form valid key pairs with the same KSV, then K = K ′ = uA · vB = u′
A · vB for

all devices B. Hence uA and u′
A are functionally indistinguishable.

Corollary 1. The map T : M → (Z/256
Z)40, mapping public keys to private

keys, is well defined mod N⊥.

We can now prove that the map S has a particularly nice form.

Observation 2. T can be represented by a 40× 40 matrix, S.

Proof. To show that a map can be represented by a matrix, we only need to
show that it is linear. So let v = cv1 + v2. Then (cT (v1) + T (v2)) · v′ = cT (v1) ·
v′+T (v2) ·v′ = cT (v′) ·v1 +T (v′) ·v2 = T (v′) ·v = T (v) ·v′, for arbitrary v′ ∈ N .
Thus T (v) = cT (v1) + T (v2) mod N⊥.

Recovering S is now straightforward. First collect a set of key pairs (vi, ui)ni=1

such that the vi span N . Then use any standard technique to solve the systems of
equations U = SV . For example, the Gaussian elimination algorithm of Section 4
can be applied here. This allows an attacker to recover all of the trusted center’s
secret, no matter how the center picks keys.

6 Forging Key Pairs

Let G be a matrix recovered as in Section 5. Then G and S agree on the sub-
module spanned by the recovered vectors v1, . . . , vn, and quite probably disagree
everywhere else. If v1, . . . , vn span M , then G is equivalent to S. In other words,

198 Scott Crosby et al.

Gv = Sv for all valid KSVs v. Thus, to forge a new key pair, one can simply
pick a random KSV, v, and compute the corresponding private key u = Gv.

The authority may try to prevent the total recovery of S by only assigning to
devices key pairs with KSVs in a submodule of N ⊂ M . If 〈v1, . . . , vn〉 = N �= M ,
then attackers using linear algebra can only forge key pairs (v, u) where v ∈ N .
Finding new KSVs in the span of the recovered KSVs may be difficult.1 This
could be a problem if the attacker wishes to build a device that interoperates
with other HDCP devices and if the authority has placed all recovered KSVs on
the key revocation list.

However, the HDCP protocol does not require devices to check that their
peer’s key is not the same as their own, and so a “parroting” attack is possible.
To build an interoperable receiver, we can simply embed the matrix G in the
device, and program it to reply to all authentication challenges with the KSV it
just received from the transmitter. It can compute the corresponding private key
on the fly and proceed with the authentication protocol. We note that an attacker
could use essentially the same trick to build an interoperable transmitter, but the
transmitter will have to perform two authentications. The first time, it will send a
random KSV and collect the KSV of its peer. The transmitter will then abort the
authentication and restart it using the KSV it just learned from the receiver.
This attack only works if the authority uses the same mapping, T , for both
transmitters and receivers. For reasons of clarity, we have made this assumption
in our presentation of HDCP and our other attacks. The other claims in this
paper hold in the more general setting, but the parroting attack does not.

One might be tempted to correct the defects in HDCP by signing the KSVs
with a private key known only to the central authority. Then, when two devices
execute the authentication protocol, they exchange the certificates containing
their KSVs, verify each others’ certificates using the authority’s public key, and
proceed as before. This change accomplishes very little. Eavesdropping would
still be possible since the certificates, and hence the KSVs, of each device would
be available to the eavesdropper who could then compute the corresponding
private keys needed to decrypt the traffic. Devices would still be clonable by
embedding the victim’s certificate and private key in the clone. The paroting
attack above is still available, too. The only thing certificates prevent is forg-
ing new keys. The Digital Transmission Content Protection (DTCP) standard
includes a Restricted Authentication protocol that may be just such a certificate-
enhanced variant of HDCP [13]. The information needed to fully evaluate the
security of DTCP is not publicly available, but what little is public gives reason
to be sharply concerned that DTCP’s restricted authentication protocol may be
susceptible to similar attacks.
1 It’s not hard to reduce the subset-sum problem to the problem of finding a new
KSV in the span of some other KSVs. However, since the dimension is only 40, an
attacker could brute-force this problem if necessary.

A Cryptanalysis of the High-Bandwidth Digital Content Protection System 199

7 Conclusion

These attacks are very powerful and very flexible. To recover the center’s master
secret, an attacker needs 40 key pairs, and we point out a variety of ways to get
them. An attacker can reverse engineer 40 different HDCP video software utili-
ties, he can break open 40 devices and extract the keys via reverse engineering, or
he can simply license the keys from the trusted center. According to the HDCP
License Agreement, device manufacturers can buy 10000 key pairs for $16000.
Given these 40 spanning keys, the master secret can be recovered in seconds.
So in essence, the trusted authority sells a large portion of its master secret to
every HDCP licensee. With the master secret in hand, one can eavesdrop on
all device communications, spoof any device, and clone any device, all in real
time. One can produce a device that, by parroting back the KSVs of its peers,
cannot be disabled by any blacklist. With a reasonable amount of computation,
an attacker can also produce new device keys not on any key revocation list. For
these reasons, we recommend that HDCP be abandoned in favor of conventional
cryptographic schemes.

The HDCP design requirements called for an implementation in less than
10,000 gates. The fact that the designers chose a custom cryptosystem instead
of off-the-shelf algorithms shows that there is work to be done in the area of
efficient, secure hardware design. A brief search for the state-of-the art turned up
an RSA implementation in 18,000 gates[14] 2, and the KASUMI cryptosystem,
which can be implemented in 3,000 gates[15]. 3 Coupling these with a generous
9,000 gates of HDCP state machine would give a secure authentication and
encryption subsystem in under 30,000 gates, but building a secure system in
10,000 gates is still a challenge.

Acknowledgements

We would like to gratefully acknowledge Intel and Digital Content Protection,
LLC for helpful comments on this paper and for pointing us to Blom’s work on
key distribution systems. We thank Adrian Perrig for suggesting identity-based
cryptosystems as a secure alternatve to HDCP.

References

1. A. Shamir. Identity-based cyrptosystems and signature schemes. In Crypto’84,
1984. 192

2. Y. Desmedt and J. Quisquater. Public-key systems based on the difficulty of
tampering. In Crypto’86, 1986. 192

2 The cited RSA design supports up to 2048-bit keys. We imagine the gate count could
be cut substantially without compromising security by using only 768-bit keys.

3 We have not evaluated KASUMI’s ability to achieve the data rates required for
uncompressed video.

200 Scott Crosby et al.

3. H. Tanaka. A realization scheme for the identity-based cryptosystem. In Crypto’87,
1987. 192

4. S. Tsuji and T. Itoh. An ID-based cryptosystem based on the discrete logarithm
problem. In IEEE Journal of Selected Areas in Communication, volume 7, 1989.
192

5. Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pair-
ing. In CRYPTO’2001, 2001. 192

6. David Barth. Personal communication. September 2001. 193
7. Rolf Blom. An optimal class of symmetric key generation systems. In T. Beth,
N. Cot, and I. Ingemarsson, editors, Proc. EUROCRYPT 84, pages 335–338.
Springer-Verlag, 1985. 194

8. Rolf Blom. Non-public key distribution. In R. L. Rivest, A. Sherman, and
D. Chaum, editors, Proc. CRYPTO 82, pages 231–236, New York, 1983. Plenum
Press. 194

9. Scott Crosby. Apparent HDCP authentication protocol weaknesses.
http://cryptome.org/hdcp-weakness.htm, May 2001. 194

10. Keith Irwin. Four simple cryptographic attacks on HDCP.
http://www.angelfire.com/realm/keithirwin/HDCPAttacks.html, July 2001.
194

11. Niels Ferguson. Censorship in action: Silenced by the DMCA.
http://www.macfergus.com/niels/dmca/index.html, August 2001. 194

12. Intel Corporation. High-Bandwidth Digital Content Protection System, 1.00 edi-
tion, February 2000. 194

13. Hitachi, Ltd. and Intel Corporation and Matsushita Electronic Industrial Co., Ltd.
and Sony Corporation and Toshiba Corporation. Digital Transmission Content
Protection System, Volume 1, July 2001. 198

14. Semiconductor Design Solutions. RSA2048A RSA coprocessor data sheet.
http://www.sidsa.com/datasheets/RSA/ds rsa2048a short.html. 199

15. 3GPP Security Algorithms Group of Experts. 3GPP KASUMI evaluation report.
Technical report, 3rd Generation Partnership Project, Oct 2000. 199

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 201-212, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Implications of Digital Rights Management
for Online Music � A Business Perspective

Willms Buhse

Dept. of General and Industrial Management, Technical University of Munich
Germany

Abstract This paper will examine and categorize potential business
model scenarios for online music. The virtualization of music leads to
market uncertainties. On the supply side, the offering party might not be
able to sufficiently privatize online music by using digital rights
management technologies. On the demand side, with a changing cost
structure for digital goods, consumers might not be willing to pay
directly for digital goods so that revenues would have to be collected
indirectly by public or private entities. As a result, business models for
online music can be categorized into four scenarios. In the first
scenario, online music is used to promote the traditional offline
business while in the second scenario, consumers are willing to pay for
additional services to access online music. The third scenario is
significantly different from the first two scenarios as music providers
are expected to be able to protect their content by using digital rights
management technology. In the fourth scenario peer-to-peer
technologies allow consumers to use a mechanism called super
distribution with which they can share and recommend songs. The
paper concludes with a recommendation to music companies regarding
privacy and strategic positioning.

1 The Need for Digital Rights Management
in the Evolving Online Music Industry

This paper will examine and categorize potential business model scenarios for online
music. In this article, online music is defined as commercially available digital music
that is distributed over networks like the Internet. Thereby music has become the ideal
case study for digital commerce with its unique availability in digital form on billions
of CDs.

Regarding privacy, monitoring usage behavior of music consumers can potentially
create a vast amount of usage data. Playlists made of songs with about three min title
length can generate comprehensive sets of data over time, provided 4 hours of daily
music consumption, usage data from 80 songs might be collected on a daily basis
almost automatically.

202 Willms Buhse

From the beginning online distribution became an underground phenomenon.1 The
music industry, though small in its market size, has become a prominent case study
for new technology concepts, introduced by companies like Napster for peer-to-peer
file sharing, RealNetworks for streaming media, InterTrust for digital rights
management and others. Forecasts from analysts regarding the market size for online-
music, vary significantly between 7.8b US $ (Forrester), 2.6b US $ (Jupiter) and 1.9b
US $ (Market Tracking International).2

Though much literature can be found prognosticating a significant change in the
competitive environment of the music industry, little research exists on the
combination of revenue models and property rights in the field of online music.3 The
starting point for this analysis is the assumption that the basic principle of the
electronic market as an efficient allocation mechanism works. But uncertainties on
both the supply and demand side of the electronic market are leading to
insufficiencies. In the following, two significant consequences regarding the business
models caused by the virtualization of music are analyzed: first the cost structure for
the delivery is structured differently and thereby revenues might be affected. Second
the protection of copyrights has become more difficult in today�s networks.
Combining these two uncertainties into a scenario matrix, case studies will be given
for each of the resulting four categories. Concluding remarks are made about possible
positioning of companies in the music industry.

2 The Demand-Side Perspective:
Influences on Cost Structure and Revenue Models

According to Forsa, the majority of the Internet users (69 percent) in Germany are not
willing to pay for information or entertainment on the net.4 One reason that may limit
the willingness to pay for online-music may lie in the loss of a physical representation
of the artist�s work, which has become a collectible good with comprehensive artwork
associated with it.5

Information goods are characterized by having high fixed costs, or first-copy costs,
but very low incremental costs.6 In the case of the music industry, the production of
the master-copy accumulates a high amount of costs, while the production of
additional copies can be estimated as marginal costs.7 A study conducted in England,
Germany, Italy and France by Doglio/Richeri found that in the music industry, the
first-copy cost amounts to an average of 21.1 percent, followed by manufacturing
costs of 8.5 percent. The highest per-unit cost is attributable to marketing and sales
with 49.9 percent, with the remaining 20.5 percent allocated to label costs and

1 Pettauer, Richard (2000)
2 Becker, A.; Ziegler, M. (2000) p. 14
3 Zerdick, A. et al. (1999) p. 53
4 Forsa-Study conducted from October, 26th � 29th, 2000 with 1005 internet users in Germany
5 In fact, a trend similar to the times of the LP, when printing costs for booklets increased in

contrast to the production cost of the CD itself
6 Skiera, B. (1999), p. 97
7 Kelly (1998), p. 54

Implications of Digital Rights Management for Online Music 203

margin.8 Cost elements, which might be affected are not only limited to
manufacturing costs, but retail obsolesce, returns, physical distribution and transport.
On the other hand, costs for technology, bandwidth and customer service have to be
factored in. Consequently, the benefits of digital distribution do not significantly
change the per-unit cost at current volumes. It does however offer the possibility to
distribute in much larger quantities than in the physical world.

As a result, the Internet seems to have a significant impact on the music industry�s
revenue model and thereby on the competitive environment. In the literature, revenues
are divided into two main categories: direct revenues, which result from the
consumer, and indirect revenues, which are refinanced through associated products
via public or private entities.9 While in the literature a separation between different
revenue streams seems possible, in the business environment, a wide spectrum of
combinations can be found just like a newspaper might have revenue streams from
advertising, subscription and single transactions. Additionally, in the television
market, which closely resembles the music industry, the revenues tend to grow
towards direct revenues. Ten years ago, direct and indirect revenues were split equal,
while today, direct revenues mainly from subscriptions increased to 58 percent,
compared to 42 percent for advertising based indirect revenues.10 The possible reason
for this is consumer preferences regarding the allocation of their limited time.11 Also,
indirect revenues are merely based on costumer information and data mining e.g. for
personalized advertising. Nevertheless, at this time security concerns regarding
registration and credit card payments seem to be higher than privacy concerns. Over
time though, rising privacy concerns on an individual basis might start to influence
buying behavior. This phenomenon then would lead to an additional increase in direct
revenues as consumers become willing to pay an add-on for privacy.

3 The Supply-Side Perspective: Differentiation between
Public and Private Goods through Digital Rights Management

The theory of public goods holds that goods have different characteristics whether or
not there is rivalry or non-rivalry in using them. Public goods are non-excludable and
non-rivalrous in consumption while private goods are sold to those who can afford to
pay the market price.

In the music market, broadcasting as a public good is used to promote songs while
CDs function as a container for music sold as private goods.12 Copyrights are a means
of establishing the boundaries between who is allowed to use a particular good and
under which conditions, and who is not allowed to use it. Developments in technology
seem to take away the grounds for these boundaries. Burke has shown how
technological developments in the past gave rise to changes in copyright.13 At the
same time, piracy has always had a significant share in the music market. In 1999,

8 Doglio, D.; Richeri, G. (1996), p. 33ff.
9 Zerdick, A. et al.(1999), p. 25f.
10 Veronis Suhler & Associate (1998), p. 39
11 Berman, S., McCelellan, B. et al (2000) p. 27
12 Tschmuck, P. (2000)
13 Burke, A.E. (1996) p. 51

204 Willms Buhse

according to IFPI about 1.9b units of illegal copies were found with a value of 4,1b
US $ leading to a hypothetical market share of 36 percent.14 On the Internet, piracy
has become an even larger mass phenomenon due to the availability of perfect digital
copies. With non-excludable online-music, end consumers become free riders, which
are not willing to pay the market price for music as long as others might be accessing
the music for free.15

Traditionally, the distribution of music is dominated by an oligopoly of five major
labels. For these music labels, the economic value lies in their artist contracts and in
the exclusive distribution for recordings, which enables promotional distribution
channels like free TV or radio.16 Statistically, infrequent consumption of music
albums as private goods accounts for about one hour, with revenues of 68 US $ per
music listener per year. On the other hand, public broadcast amounts to frequent but
superficial consumption of 3 hours a day. This results in 58 US $ in advertising
revenues for the broadcast stations per year, from which music labels receive a much
smaller percentage than from the album sales.17 As a result, the music industry shows
high interest in privatizing the music in order to generate higher revenues not only
from traditional products but also from the online market. Increasing online piracy
challenges the privatization of online music; therefore the music industry has started a
number of legal, marketing, educational, and technology initiatives.

Law suits from the RIAA against MP3.com, Scour and Napster and others in the
U.S. demonstrate the music industry�s efforts to minimize copyright infringement.
Though the industry might reach successes in certain countries, concepts like
�Offshore-Web-Hosting� from companies like HavenCo.Com or Offshore.com.ai and
de-central file sharing systems like Gnutella and FreeNet might well continue to
operate despite law suits and even drive consumers to �underground� systems.18

From a technology point of view, the music industry started the Secure Digital
Music Initiative (SDMI) to develop specifications jointly with technology companies
like Microsoft, IBM, InterTrust and many others. Many doubt that the music industry
can successfully introduce security mechanisms that are either unbreakable or at least
can raise the barrier for piracy without creating unproportional high costs.19 Many
examples in other media industries like currently the DVD-protection scheme have
shown failures of secure protection mechanisms.20 Additionally, on the Internet only a
single copy (even by re-digitizing from analog versions) made available is sufficient
to be globally distributed in a short period of time leading to a total loss of control by
the owner. But it is quite possible that the biggest challenge the music industry is
facing is not hackers but instead infrastructure. Today�s infrastructure with 200m
multimedia PCs, 1b CD- audio-devices and 17b unprotected audio CDs with 150.000
different titles will be very difficult to replace.21

14 IFPI (2000) p.2
15 Heinrich, J. (1994), p.26
16 Thurow, N. (1994), p. 81f.
17 Bertelsmann internal research
18 Schreirer, E. (2000), p. 9
19 Albers, S.; Clement, M.; Skiera, B. (1999), p. 83
20 DeCSS
21 Gurley, W. (2000), p. 268f.

Implications of Digital Rights Management for Online Music 205

4 Four Business Model Scenarios

The goal of using scenarios is to categorize various business models according to
several case studies involving new distribution mechanisms like file sharing, digital
rights management and super distribution. As in the previous chapters described, the
virtualization of music has two significant consequences regarding the business
models: first the cost structure for the delivery is structured differently and thereby
revenues might be affected. Second the protection of copyrights has become more
difficult in today�s networks.

Table 1. Scenario matrix for online music

Public Good Private Good

Indirect Revenues Open-Source-Filesharing Subscription Systems

Direct Revenues Music Service Provider Superdistribution

Four scenarios can be deduced by combining these two uncertainties into a matrix,
which represents both, supply and demand. In this article, for each of the scenarios,
one case study is described and possible revenue models are given.

4.1 Assumptions

These four business model scenarios are subject to the following assumptions:

� in the mid- to long-term, no business models will be viable which infringe on
copyright laws. However, there might be systems without commercial interest
that face no legal consequences for enabling illegal copies. Open-source-file
sharing systems belong to this category.

� revenue models are based on rational entrepreneurial decisions, excluding
artistic, voluntary or otherwise motivated scenarios.

� most importantly, these scenarios anticipate a slow migration towards online
technologies. Meaning, traditional media companies maintain distribution control
over physical storage media like CD and DVD. The hypothesis from Zerdick et
al. states that electronic markets do not lead to an immediate substitution of the
existent value chain. Nevertheless it is leading to a constant erosion of traditional
value chains and the orientation towards the demand side.22

4.2 First Scenario: Open Source File Sharing Systems

Within less than two years, Napster became the largest music library ever with about
1b titles, without economic incentive, marketing activities, and even more important
without involvement of the music industry.23 At a very high level, file sharing systems

22 Zerdick, A. et al. (1999) p. 177
23 Becker, A.; Ziegler, M. (2000) p. 14

206 Willms Buhse

or peer-to-peer-networks (P2P) aggregate and distribute information. With either
central or de-central listings, files be can searched for, transferred and stored locally.
The main challenge for content owners is its mass phenomena. Since its launch,
Napster attracted almost 70 Million users who knowingly violate copyright laws.

While Napster through its partnership with Bertelsmann plans membership fees
and the compensation of content owners, other open-source-file-sharing systems are
developed without any commercial purpose. Their purpose is to freely distribute
information beyond any control. Examples are Gnutella developed by Gene Kan and
FreeNet designed by Ian Clarke. Both are designed to run de-centralized, which
makes it almost impossible to control or shut down their operations. As a result,
besides music files, other illegal content like children pornography and terrorist
instructions can be found. The main challenge of these systems is that they only can
scale with resources like content, bandwidth and storage from their users. As their
content can be viewed as public goods, these systems attract free riders not willing to
give any contribution in return. During a study of the Gnutella Network, it was found,
that 70 percent of the users don�t give any contribution to the system, and that half of
the searches were answered by just one percent of the participants.24 Apart from
significant loss of system performance with longer search and download times, it adds
vulnerability to the system as it might collapse with the shut down of few peers. On
the other hand, there are concepts like seti@home with users voluntarily contributing
resources in exchange for prestige and reputation. As a result, file-sharing systems
seem to be able to overcome today�s challenges and will play an important role in the
distribution of online music.

How can the music industry embrace such systems to generate revenues? Revenues
can be generated indirectly from online music in return for the value of consumers�
attention.25 This can be used to promote either the physical album or the artist in order
to reach more popularity and thereby earn higher merchandising and advertising
revenue. As a result, with online music being a public good, the combination of online
and offline business by integrating online-music and traditional marketing and
distribution seems a profitable business model.26 Despite legal battles from RIAA
arguing that illegal copies cannibalize album sales, market studies are inconclusive at
this point. Jupiter identified Napster usage as one of the most important factors for
increased music purchases.27 On the other hand, VNU found album sales decreasing
in record stores close to universities, where file sharing supposingly reaches high
usage among students.28 Creed offered their hit song in 1999 from 100 web sites for
free downloads, and in the process stimulated their album sales. Coincidentally their
album �Human Clay� reached the top of the billboard charts.29 A recent example is
the partnership between the online retailer CDNow and Napster, where the file
sharing system receives a commission of about 15 percent for every album sale.

24 Adar, E.; Huberman, B. (2000)
25 Seidel, N. (1993), p. 87
26 Tomczak et al (2000) p. 234; Zerdick et al. 1999, p. 187
27 Sinnreich et al. (2000), p. 1
28 VNU Entertainment Marketing Solutions (2000), p. 2f.
29 Committee on Intellectual Property Rights and the Emerging Information Infrastructure

(2000), p. 80f

Implications of Digital Rights Management for Online Music 207

Nevertheless, substitution of traditional media like CDs and DVD-Audio might
increase as soon as a comparable infrastructure for online music exists. Physical
goods have always served as �containers� for services. For example, a CD has no
intrinsic value, only the value of delivering music. In the age of downloadable music,
though, the CD loses its value as a container for music.30

4.3 Second Scenario: Music Service Provider

Provided online music is a public good, collecting direct payments seems almost
impossible unless, the value lies primarily in the functionality and services, rather
than in the content itself.31 In this scenario, instead of copy protection, service-
oriented new business models are developed that prevent the motive to copy. Besides
content, these services offer convenience, reliability and fast access to music almost
anywhere and at anytime and are referred to as the celestial jukebox. This services
sector is expected to grow from 2.5m today to 12.3m in 2003 in the U.S.32 Ultimately,
those companies would have to combine content, community, application services,
context and search functionality. Personalization plays a crucial role in attracting
consumers and providing lock-in.33 In the networked economy, these versions and
even individual products and services are achievable due to smaller transaction and
production/service costs.34 Using a feedback loop mechanism for online-music,
personal playlists can be generated, recommended, updated and shared among other
users. Large description databases like Moodlogic analyze relationships among titles
and artists according to rhythm, instruments, contextual information and even mood.

It might be easy to maintain a piracy site with some illegal copies, but to provide
access, payment mechanisms and customer service to many thousand people
simultaneously is a more complex task. Which companies might position themselves
in the role of music service providers? First, relationships, such as those established
by radio or television stations, emphasize repeat visits. They have already proven
their ability for selection and aggregation of music.35 Second, those with existing
billing and services relationships like ISPs and Telcos, e.g. AOL TW. Third, there are
companies with a link to end devices, like hardware-, OS-software-, and CE-device-
manufacturers, though they might as well bet on copy protection technologies, as they
are able to choose and set standards. Nevertheless, under current copyright law, most
companies might have to negotiate licenses either directly with the music labels, their
syndication partners or through royalty collecting entities, in order to be able to offer
these services.

4.4 Third Scenario: Digital Rights Management-Based Subscription Models

Protection technologies play an important role in determining whether a media
product is a public or a private good. In scenarios three and four, online music is

30 Rifkin, J (2000)
31 Deutsche Bank (2000) p. 14
32 Black, L. (2000)
33 Heinrich, J. (1999) p.32
34 Piller, F. (1998) p. 16
35 Hull, G.; Greco, A.; Martin, S. (2000), p. 129

208 Willms Buhse

considered a private good, as content owners are able to restrict access to the content
and thereby introduce the possibility to exclude free riders and charge for their online
music. To securely protect online music, all major labels incorporate digital rights
management technologies, which basically fall into four categories: first the access is
controlled with authentication and/or encryption mechanisms. Second, the usage is
controlled according to rules that are set by the distributor of the music. This
determines how the user can interface with the information, e.g., listen-only rights,
where the user is unable to save or distribute the music. Third a tracking mechanism
allows the information provider to track subsequent use with watermarking and digital
footprints. Fourth and last, payment systems enable the information provider to
generate revenue for the rights granted to the user. As a result of inefficient micro
payment systems, subscription models are viewed as a method to overcome high
transaction costs.36

For subscription models watermarking can provide important contributions to the
field of intellectual property protection within a more extensive security framework
for identification and proof of ownership, which is comparable to IRSC-Codes used
by the GEMA for recognition of CD-Audios.37 By embedding a watermark into the
compressed audio signal during delivery, the customers are aware that a watermark
may identify them.38 Hence, they can be made responsible if the signal is found
outside the legal domain by a trigger technology, even in a decompressed and analog
representation.39 In contrast to encryption technologies, watermarks could be used
with today�s infrastructure for CD-Audio as well as MP3-devices. Subscriptions
bundle a large number of information goods for a fixed price. In a variety of
circumstances, a multi-product monopolist can extract substantially higher profits by
offering one or more bundles of information goods than by offering the same goods
separately.40 At the same time, bundling can be used to introduce new artists and titles
as a strategy to overcome the information paradox, which states that the value of an
information can�t be determined a priori of consumption.

In this scenario, for the first time in their history, music labels have the opportunity
to create a continuous relationship with the end consumer. This relationship offers a
foundation on which music labels can generate revenues. The subscription model may
represent a mix between indirect and direct revenues with the option of consumption
combined with transparent pricing.41 Forrester expects additional revenues from
subscriptions of 3.3b US $.42 A premium membership might offer a flatrate,
eventually combined with services from the second scenario, while an advertising-
based membership might limit access in quantity, time or actuality.

36 Picot, A.; Reichwald, R.; Wigand, R. (2001) p. 372
37 Goldhammer, K.; Zerdick, A. (1999), p. 96
38 Tang, Puay (1998) p. 24
39 Specifications for such an infrastructure is currently designed by the Secure Digital Music

Initiative. www.sdmi.org SDMI, Document Nr. pdwg99070802, �SDMI Portable Device
Specification Part 1, Version 1.0�, p. 21

40 Bakos, Brynjolffson (1999), p. 2f
41 Zerdick, A. et al.(1999), p. 26; Sinnreich, A. (2000), p. 12.
42 Schreirer, E. (2000), p. 12

Implications of Digital Rights Management for Online Music 209

4.5 Fourth Scenario: Super-Distribution

In 1990, a visionary architecture was developed for the distribution of digital goods.
The Japanese Ryoichi Mori coined the term Superdistribution for this new concept of
licensing information.43 The fundamental idea is to allow free distribution of digital
content, while controlling access to usage and changes with the content owner
defining the terms. According to his prototype, called Software Service System (SSS),
which was implemented as a peer-to-peer-architecture, the following components
must be available:44

� a persistent cryptographic wrapper must stay in place when the digital property is
used, copied, redistributed, etc.

� a digital rights management system with a trusted tool that tracks the deals and
the usage associated with the access to the digital property

� payment information have to be exchanges securely among the parties

After securely encrypting the music with a key, the package can be digitally
delivered to the consumers end device.45 There, the locally installed trusted tool gains
access to the digital content with an unlock key which leaves the file locally
encrypted and streams the digital content into the memory for �on the fly� decryption.
The user, who has agreed to the terms and conditions of use, has now the license to
access the content. His usage is recorded and the transaction is reported to a
clearinghouse to initiate payments and backup system information. Using the
superdistribution concept, consumers can recommend and share files among each
other via email, FTP, physical media and even file sharing networks. Still the
copyright is being protected and the content owner maintains control and determines
payment collection.

Under the third scenario, bundling was mentioned as being attractive for content
companies to extract higher profits. In the music industry, this has always been the
case with album sales, where only one or two hits from an entire album initiate the
purchase. Digital products possess optimal de-bundling capability, which in return
can be re-bundled again for custom-mixes.46 With digital downloads and
superdistribution, consumers might start �cherry picking� their hits and thereby
endanger the traditional revenue model of album sales. In this scenario, using digital
rights management and superdistribution, major labels maintain control over the
distribution of music - they might even be able to enforce their copyrights more than
in the traditional world.

5 Conclusions Regarding Positioning and Privacy
In this paper scenarios for online business models that depend on uncertainties on the
supply and demand side of the music industry were examined. It was argued that on

43 Mori, R. (1990); Cox, Brad (1996); Morin, Jean-Henry (1999) p. 22. It seems as if in

parallel Brad Cox has developed a similar system, that is documented in 1994 with his
system, CopyFree Software

44 Morin, Jean-Henry (1999) p. 21
45 Tang, Puay (1998) p. 23
46 Albers; Clement; Peters (1998) p. 275; Kulle, Jürgen (1998) p. 80

210 Willms Buhse

the one hand, online music could either be a public or a private good, due to
insufficiencies in absolute content protection using digital rights management
technologies. On the other hand, the willingness for consumers to pay for digital
goods might determine the nature for direct or indirect revenue streams. As a result,
consistent business models in all four scenarios were developed. The scenarios have
shown that there is a spectrum of potential revenue streams for online music both as
public and private goods. Therefore, the main distinction between the scenarios
depends on the supply side, where copyright for online music can either be protected
by technical means or not. At the same time, decisions regarding the usage of
consumer data and privacy policies are made.

Although online music distribution has been in place for some time, it is too early
to determine which scenarios will evolve. Nevertheless, it is quite possible for all
these scenarios to exist in parallel under certain market conditions. In this case, it is
assumed that all four scenarios can come into affect during the life cycle of an online
music release. Starting with the secure superdistribution concept (scenario 4) at the
time of release, followed by a time lag for subscription based accessibility (scenario
3). Over (short or long) time, the value might decrease and with pirates distributing
illegal copies, the release might become widely accessible as a public good. Then
services might be offered (scenario 2) and at the same time additional value from the
user�s attention and usage data for promotion and advertising might be extracted
through data mining (scenario 1).

One of the key difficulties in data mining are insufficiently prepared usage data
leading to wrong conclusions and decisions. By giving the consumers the option to
manage their own usage data, inaccurate, irrelevant or personal data sets can be
deleted or corrected. Thereby, the music label�s interest in high quality conclusions
and the consumer�s interest in privacy can be matched. Then, improved usage data
can be used to expand services and revenues in all four scenarios.

As a result, the music labels should prepare themselves to claim strategic positions
in all four scenarios, otherwise their traditionally dominant role in the music market,
and the barrier-to-entry that currently prevents external competition will diminish.
Therefore, the optimal strategy is not only to reduce the motives for copy
infringement, but at the same time to increase the accessibility for consumers to
digital products and services.

References

1. Adar E., Huberman B. (2000) Free Riding on Gnutella,
http://www.firstmonday.org/issues/issue5_10/adar/index.html, viewed at
December 10th, 2000

2. Albers S., Clement M., Peters K. (1998) Marketing mit Interaktiven Medien.
Strategien zum Markterfolg, Frankfurt am Main

3. Albers S., Clement M., Skiera B. (1999) Wie sollen die Produkte vertrieben
werden? � Distributionspolitik. In: Albers S., Clement M. et al. E-Commerce �
Einstieg, Strategie und Umsetzung im Unternehmen. Frankfurt, pp. 79-94

4. Bakos Y., Brynjolffson E. (1999) Bundling information Goods: Pricing, profits
and Efficiency, Working Paper

Implications of Digital Rights Management for Online Music 211

5. Becker, A.; Ziegler, M. (2000) Wanted: A survival plan for the music industry �
Napster and the consequences, Diebold Study

6. Benjamin, Robert; Wigand, Rolf (1995) Electronic Markets and Virtual Value
Chains on the Information Superhighway. In: Sloan Management Review, winter,
pp. 62 - 72.

7. Berman, S., McCelellan, B. et al. (2000) The Future of the Entertainment and
Media Industries: 2005, PriceWaterhouseCoopers, New York

8. Black, L. (2000) Understanding Consumer Demand to create business models
that work, Webnoize research, SGAE, Madrid, 25. 10. 2000

9. Burke, A.E (1996) How Effective Are International Copyright Conventions in the
Music Industry? Journal of Cultural Economics, volume 20, number 1, pp. 51-66

10. Choi, S.Y., D.O. Stahl, and A.B. Whinston (1997) The Economics of Electronic
Commerce. Macmillan Technical Publishing

11. Committee on Intellectual Property Rights and the Emerging Information
Infrastructure (2000) The Digital Dilemma � Intellectual Property in the
Information Age. National Academy Press, Washington

12. Cox, Brad (1996) Superdistribution: Objects as Property on the Electronic
Frontier, Addison-Wiley

13. Deutsch Bank (2000) New Media Mechanics - Value of Content Online
14. Doglio, D.; Richeri, G. (1996) The Economics of Publishing: Prospects for

Online Distribution, Centro Studi Salvador, Telecom Italia, Venice
15. Evans, P.; Wurster T. (1999) Blown to Bits - How the new economics of

information transforms strategy. Harvard Business School Press, Boston,
Massachusetts

16. Forsa-Study (2000) viewed at
http://www.berlinonline.de/wissen/computer/internet/.html/200011/net01105.html

17. Goldhammer, K.; Zerdick, A. (1999) Rundfunk Online � Entwicklung und
Perspektiven des Internets für Hörfunk- und Fernsehanbieter, Berlin

18. Gurley, W. (2000) Digital music: The real law is Moore�s law, Fortune; New
York; Oct 2, 2000;; Volume: 142, Issue: 7 pp. 268f.

19. Heinrich, J. (1994) Medienökonomie, Vol. 1 Opladen Westdt. Verlag
20. Heinrich, J. (1999) Medienökonomie, Vol. 2 Opladen Westdt. Verlag
21. Hull, G.P.; Greco, A.P.; Martin, S. (2000): The Structure of the Radio Industry,

in: Greco, A. (2000): The Media and Entertainment Industries. Readings in Mass
Communications, Boston, pp. 122-156

22. IFPI (2000) Piracy Report 2000, June 2000
23. Kelly, K. (1998) New Rules for the New Economy. 10 Radical Strategies for a

Connected World. Viking Press, New York
24. Kulle, Jürgen (1998) Ökonomie der Musikindustrie: Eine Analyse der

körperlichen und unkörperlichen Verwertung von Musik mit Hilfe von
Tonträgern und Netzen, Frankfurt a. M.

25. Morin, Jean-Henry (1999) Commercial Electronic Publishing over Open
Networks: A Global Approach Based on Mobile objects (Agents). Dissertation
University of Geneva

26. Mori, R. (1990) Superdistribution: The Concept and the Architecture. The
Transactions of the IEICE E73, No 7.

212 Willms Buhse

27. Pettauer, Richard (2000) Die Blitzkarriere von MP3. Micafocus 1: Reales
Musikschaffen Für Einen Virtuellen Markt, March 18th 2000,
http://www.mica.at/mf_pettau_p.html, viewed at 10.10.2000

28. Picot, A.; Reichwald, R.; Wigand, R. (2001) Die grenzenlose Unternehmung, 4.
Ed., Wiesbaden

29. Piller, F. T. (1998) Kundenindividuelle Massenproduktion. Die Wettbewerbs-
strategie der Zukunft, München.

30. Rifkin, J. (2000) The Future of Digital Music: Is There an Upside to
Downloading? Hearing Statements U.S. Senate Committee on the Judiciary,
viewed at http://www.senate.gov/~judiciary/7112000_jg.htm

31. Schreirer, E.(2000) Content out of Control, The Forrester Report, Cambridge,
MA

32. SDMI (2000) SDMI Portable Device Specification Part 1, Version 1.0,
Document Nr. pdwg99070802, p. 21

33. Seidel, N. (1993) Rundfunkökonomie: Organisation, Finanzierung und
Management von Rundfunkunternehmen, Wiesbaden

34. Shapiro, C.; Varian, H.R. (1998) Information Rules. A Strategic Guide to the
Network Economy, Boston

35. Sinnreich, A. (2000) Digital Music Subscriptions: Post-Napster Product Formats,
Jupiter Studie

36. Skiera, B. (1999) Wie teuer sollen die Produkte sein? � Preispolitik. In: Albers,
S.; Clement, M. et al. (Hrsg.) E-Commerce � Einstieg, Strategie und Umsetzung
im Unternehmen. Frankfurt, pp. 94-108

37. Tang, Puay (1998) How Electronic Publishers are Protecting against Privacy:
Doubts about Technical Systems of Protection The Information Society Vol. 14,
n. 1, pp. 19-31

38. Thurow, N. (1994) Die digitale Verwertung von Musik aus der Sicht von
Schallplattenproduzenten und ausübenden Künstlern, in: Becker, Jürgen / Dreier,
Thomas, Urheberrecht und digitale Technologien, Vortragssammlung der Sitzung
des Instituts für Urheber- und Medienrecht, UFITA-Schriftenreihe, Baden-Baden,
p. 77

39. Tomczak, T. et al. (2000) Online-Distribution als innovativer Absatzkanal. In:
40. Tschmuck, P. (2000) Internetökonomie und Musikwirtschaft. During: Micafocus

1: Reales Musikschaffen Für Einen Virtuellen Markt, March 18th, 2000,
http://www.mica.at/mf_tschmuck_p.html, viewed at 10.10.2000

41. Veronis Suhler & Associate (1998), Communications Forecast
42. VNU Entertainment Marketing Solutions (2000) Measuring the Influence of

Music File Sharing, New York
43. Zerdick, A. et al.. (1999) Die Internet-Ökonomie � Strategien für die digitale

Wirtschaft. Springer, Berlin, Heidelberg (u.a.)

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 213-232, 2002.
 Springer-Verlag Berlin Heidelberg 2002

From Copyright to Information Law �
Implications of Digital Rights Management∗

Stefan Bechtold

Stanford Law School
559 Nathan Abbott Way, Stanford, CA 94305-8610, USA

stef@n-bechtold.com
http://www.jura.uni-tuebingen.de/~s-bes1

Abstract. Digital Rights Management (DRM) promises to enable a se-
cure electronic marketplace where content providers can be remuner-
ated for the use of their digital content. In the last few years, countless
research efforts have been devoted to DRM technologies. However,
DRM systems are not only technological phenomena: they pose com-
plex legal, business, organizational and economic problems. This article
tries to show that from a lawyer�s perspective some of the innovative-
ness and potential of DRM can only be understood when one looks at it
from a multidisciplinary viewpoint. The article gives an overview of the
various ways by which digital content is protected in a DRM system.
The intertwining protection by technology, contracts, technology li-
censes and anti-circumvention regulations could lead to a new �prop-
erty right� making copyright protection obsolete. However, there is a
danger of over-protection: questions of fair use and other limitations to
traditional copyright law have to be addressed. If competition is not
able to solve this tension between the interests of content providers and
the interests of users or the society at large � which seems to be doubt-
ful at least � it is the law that has to provide a solution. The legislators
in the U.S. and Europe use different approaches to address this prob-
lem. By looking at DRM in this way, several patterns can be observed
which are characteristic of many areas of Internet law.

1 Introduction
Digital Rights Management (DRM) promises to offer a secure framework for distrib-
uting digital content (music, video, text, rare data etc.). DRM enables an electronic
marketplace where previously unimaginable business models can be implemented. At
the same time, DRM ensures that content providers � particularly copyright owners �

∗ This article is based on an extensive treatise on Digital Rights Management written in Ger-

man by the author at the University of Tübingen Law School, Germany (1999�2001),
see [1].

214 Stefan Bechtold

receive adequate remuneration for the creation of the content that is distributed over
the DRM system.

From a technological perspective, DRM poses intricate problems that have led to
large research efforts at technology companies, universities and research centers
worldwide. However, DRM systems are not only technological phenomena. From an
organizational perspective, DRM interoperability and standardization remain open
problems to a large extent. From a business perspective, it is intriguing to look at the
new business models which DRM systems could enable. From an economic perspec-
tive, DRM could challenge � jointly with other technologies surrounding the Internet
� some aspects of the standard economic theory taken for granted hitherto. From a
sociological perspective, DRM could have an influence on the distribution of infor-
mation and therefore power in a society. From a legal perspective, DRM creates a
whole assemblage of problems ranging from copyright, contract, privacy, patent and
antitrust problems to freedom of speech issues.

This article intends to provide an overview of the copyright-related parts of the le-
gal framework in which DRM systems operate. It intends neither to give a compre-
hensive overview of DRM in general nor to provide an in-depth analysis of all the
questions being raised. It is the firm belief of the author that some of the real innova-
tion and potential of DRM can only be understood if one looks at several disciplines
engaged in the creation or analysis of DRM systems at the same time. There is a clear
lack of interdisciplinary work in the DRM field. Therefore, while this article ulti-
mately has a legal argument, it will describe some technical and economic aspects of
DRM and correlate these aspects with the legal discussion of DRM systems. As used
in this article, the term �Digital Rights Management� has a broad scope. It not only
covers a great number of different technologies by which digital content can be se-
cured. It also covers the protection of digital content offered by various legal instru-
ments as well as business and economic aspects of DRM.

The article proceeds as follows. Sections 2 to 4 give an overview of the various
means of protection (both technical and legal) available in a DRM system. Section 5
correlates those means with each other both from a legal and a law and economics
perspective. Section 6 asks what role copyright law still plays in a DRM system. Sec-
tion 7 gives an overview of how the legislators in the U.S. and Europe have responded
to some of the challenges to copyright law created by DRM systems. Finally, sec-
tion 8 puts the results of this article in the broader context of Internet law.

2 Protection by Technology

2.1 Overview

In order to ensure that consumers pay for using digital content and that content pro-
viders are adequately remunerated, DRM systems intend to control access to and use
of digital content. This can be achieved by implementing various technological pro-
tection measures. Encryption techniques are especially important; �digital containers�
enable the durable encryption of distributed content. Copy control technologies such
as the �Copy Generation Management System� (CGMS) used in DVD players or the

From Copyright to Information Law � Implications of Digital Rights Management 215

�Serial Copy Management System� (SCMS) used in DAT and Minidisc players con-
trol the number of copies of digital content a user is able to make.

In order to facilitate the automated trading of digital content and associated digital
rights, DRM systems use metadata to formally describe digital content and related
parameters. Thereby, the content provider is able to control automatically in a very
fine-grained way when and where which consumer uses a particular content for what
purpose. Metadata systems use standards that enable the description of digital content
(e.g. DOI, ISBN, ISRC, ISWC and PII), its rights holders (e.g. CAE/IPI) and its ac-
companying usage terms (so-called �usage rules� defined in �rights management
languages� such as XrML or ODRL).1 Either metadata can be stored in special head-
ers of a digital content format, or they can be embedded directly into the digital con-
tent by using digital watermarking techniques.

DRM systems employ different techniques to identify consumers and trace back
illegally copied content (e.g. serial numbers, digital fingerprints, traitor tracing). In
order to provide a uniformly high level of security, various techniques are used that
ensure the integrity and authenticity of digital content, its accompanying metadata and
the hardware and software components of a DRM system (e.g. digital signatures,
fragile watermarks, challenge-response protocols). Furthermore, security attacks are
complicated by tamper-proof hard- and software (e.g. smart cards, code obfuscation).
In order to prevent the copying of protected content after it has been transformed into
an analog format, special analog protection systems and digital watermarks intend to
make such copying more difficult at least.

DRM systems not only provide passive protection mechanisms. They also can em-
ploy various means that prevent or respond actively to security breaches. Specialized
filters and �audio fingerprinting� or �robust hash� techniques can block access to
pirated content. Fair-exchange protocols ensure technically that the consumer receives
access to protected content only after having paid the appropriate price. If the DRM
system detects a security breach, it can revoke and disable compromised consumer
devices.

In order to be successful on the mass-market, DRM technologies have to be inte-
grated into consumer devices in a standardized way. Various working and standardi-
zation groups try to coordinate the development process of DRM technology.2 Today,
various media systems available on the market use one or the other DRM technology.
DRM components can be found in pay TV systems, DAT and Minidisc players as
well as some videocassettes. The DVD system employs various technological protec-
tion measures, e.g. the �Content Scramble System� (CSS), the regional code playback
control and the aforementioned CGMS. Other important DRM standards include the
�Content Protection for Recordable and Prerecorded Media� (CPRM/CPPM), the
�Digital Transmission Content Protection� (DTCP, protecting IEEE 1394 bus sys-
tems) and the �High-bandwidth Digital Content Protection� (HDCP, protecting digital
video outputs). Furthermore, DRM solutions are being integrated into standard audio

1 This is not an exhaustive listing of existing metadata standards, of which there are dozens, if

not hundreds. Besides, there are numerous proprietary metadata systems.
2 Two of the most well-known groups include the �Copy Protection Technical Working

Group� (CPTWG) and the �Secure Digital Music Initiative� (SDMI).

216 Stefan Bechtold

and video software players, ebook reading software, operating systems and mobile
devices.

In summary, DRM is a general term for a set of intertwining technologies that can
be used to establish a secure distribution channel for digital content. The specific
elements used vary from DRM system to DRM system. As understood in this article,
DRM ranges from simple copy-prevention technologies to comprehensive secure
distribution systems.

2.2 Supporting Protection by Anti-circumvention Regulations

Although DRM systems promise to provide a high level of technical security, no
commercially viable system will be technically 100% secure. Technological protec-
tion measures have been hacked in the past and this will not change in the foreseeable
future. In order to increase the overall security of a DRM system, over the last few
years special legal regulations have been created that outlaw the circumvention of
technological protection measures as well as the manufacturing and distribution of
devices which can be used to circumvent such measures (�preparatory activities�).

On the international level, such provisions can be found in two treaties adopted in
1996 under the aegis of the World Intellectual Property Organization (WIPO Copy-
right Treaty and WIPO Performances and Phonograms Treaty). In the U.S., Congress
enacted complex anti-circumvention regulations as part of the Digital Millennium
Copyright Act of 1998 (17 U.S.C. §§ 1201-1205). Additionally, provisions of the
Audio Home Recording Act of 1992 (17 U.S.C. §§ 1001-1010), of communications
law (47 U.S.C. § 553 and § 605) and of trade secret law can apply. In the European
Union, article 6 of the recently adopted Copyright Directive of 2001 [2] contains a
detailed provision outlawing the circumvention of technological protection measures
and certain preparatory activities. Furthermore, the European Conditional Access
Directive of 1998 [3] protects a wide variety of conditional-access-based services
against preparatory activities (e.g. pay TV, but also Internet-based services). Addi-
tional prohibitions can be found in the laws of the member states of the European
Union (e.g. copyright, criminal, unfair competition, telecommunications, broadcasting
and tort law).

Another set of regulations outlaw the manipulation of DRM metadata. Such provi-
sions can be found in the aforementioned WIPO treaties, the U.S. Digital Millennium
Copyright Act (17 U.S.C. § 1202) and in article 7 of the European Copyright Direc-
tive [2]. Usually, these regulations protect metadata identifying the digital content, its
rights holders and its usage rules. In contrast, metadata identifying the individual
consumers (e.g. by digital fingerprints or traitor tracing) are not covered by this pro-
tection due to privacy concerns.

All these provisions have little to do with traditional copyright law. They are part
of an emerging body of information law regulating the access to and use of informa-
tion.

From Copyright to Information Law � Implications of Digital Rights Management 217

3 Protection by Contracts

3.1 Overview

In a DRM system, content providers are not protected by technology and anti-
circumventions regulations alone. Rather, they can use contracts to oblige consumers
to use the protected content only in certain ways. In such a contractually protected
DRM system, consumers are required to enter into a contractual agreement either at
the time they acquire some DRM-enabled hardware or software device or at the time
they want to access an individual content within the DRM system (by entering into
so-called �click-wrap contracts�).

Such DRM contracts may be used to protect digital content and the DRM system
itself. For instance, they may include terms obligating consumers to download the
content only to DRM-secured devices, not to burn it onto CD-ROMs or DVD-ROMs,
not to copy and paste it and not to print out images or text. They also may define how
often, when and where the protected content may be used (�usage rules�). Other terms
may protect the security of the DRM system itself. Consumers may be forbidden from
reverse engineering system software or from circumventing the technological protec-
tion measures used in the system (cf., e.g., [4]).

This contractual protection is only helpful if the contracts are legally enforceable.
Similarities to �shrink-wrap licenses� used in the software business could suggest that
DRM consumer contracts are invalid. However, at least in the U.S. a tendency within
courts and legislators to consider shrink-wrap licenses as valid contracts is observ-
able.3 Furthermore, the legal problems of shrink-wrap licenses greatly depend on the
specific design of the licenses and the accompanying business model (e.g. when and
how the contract is concluded and who the parties to the contract are). The validity of
consumer contracts in DRM systems raises complex legal problems that are beyond
the scope of this article. However, no basic obstacles exist for content providers to
contractually protect their content in a DRM system. It is possible to design a DRM
system and its business models in a way that such contracts are legally enforceable.

3.2 Supporting Protection by Technology

As described above, DRM consumer contracts contain usage rules defining the ways
in which the consumer is authorized to use the content. These usage rules can be ex-
pressed as metadata in rights management languages (see above at section 2.1). From
a legal perspective, this is a very important feature of DRM systems as compliance to
the contractual terms not only can be controlled by law, but also by technology: if the
contract and the metadata of a digital content allows a user only to make two copies,
any further copy will be prevented by the technological measures of the DRM system.
This shows that the contractual protection is supported by a technological protection:
Technology makes it harder or even impossible to disobey contractual obligations.

3 Cornerstones of this development are a decision by the 7th Circuit Court of Appeals (see

[5]) and the �Uniform Computer Information Transactions Act� (UCITA), see [6].

218 Stefan Bechtold

3.3 Supporting Protection by Anti-circumvention Regulations

However, this technological protection of DRM contracts is not failsafe. Once in a
while, attackers will succeed in altering or deleting usage metadata. Against this at-
tack, the law provides regulations which specifically prohibit the manipulation or
deletion of metadata (see above at section 2.2). This shows the intertwining of the
means of protection in a DRM system: content providers may protect their content by
contracts, which can be protected themselves by various technological protection
measures which are in turn legally protected against circumvention.

4 Protection by Technology Licenses

Many DRM technologies are protected by a patent or kept as a trade secret. For in-
stance, the developer of a symmetric DRM encryption system keeps the decryption
keys secret due to security reasons.4 If a computer or consumer electronics manufac-
turer wants to enable his devices to process content that is protected by this DRM
technology, he has to enter into a technology license agreement with the developer of
the technology. Thereby, the manufacturer gains knowledge of the decryption keys
and of other details of the technology. Licensees of DRM technologies include manu-
facturers of consumer electronics, computers, storage media and other DRM-enabled
devices or components as well as content providers.

DRM technology license agreements can be used to protect the interests of content
providers although the content providers typically are not the licensors of the DRM
technology. In long lasting negotiations between the content, computer and consumer
electronics industry, the content industry has made clear that it would be willing to
distribute its content in a digital format only if an adequate level of security could be
assured. As no DRM system will be successful on the market without an appropriate
amount of content accessible within this system, every technology developer of a
DRM solution has vital commercial interests that his technology be implemented in
consumer devices in the most secure way. Therefore, DRM developers license their
technology only on the condition that the interests of content providers are preserved
when the technology is implemented in consumer devices. Thereby, DRM technology
licenses indirectly serve the interests of content providers (see also [7, at 15, 27]).

So far, this close connection between DRM technology licenses and copyright
protection has not been discussed a great deal among legal scholars. Only the U.S.
Federal Communications Commission has looked at a specific DRM technology li-
cense in the pay TV sector from this angle (cf. [7]).5 This article cannot describe any
DRM technology license in detail. However, it gives an overview of some common
license terms.6

4 If consumer devices need the symmetric key for decryption, it is regularly stored in a tam-

per-proof environment.
5 The FCC examined the validity of the �POD Host Interface License Agreement�, a technol-

ogy license of the OpenCable initiative, [8].
6 The technology licenses analyzed for this purpose are publicly available from the respective

licensing administrators or other websites. They include: the CSS License Agreement and

From Copyright to Information Law � Implications of Digital Rights Management 219

It is crucial for commercial success that content is protected at every stage within
the DRM system. However, a DRM system is not a monolithic technology, but con-
sists of a large number of different technologies. Therefore, numerous protection
measures have to be combined to provide a continuous level of high security. To
achieve this goal, technology licenses tie together several DRM technologies by re-
quiring that the licensor of one specific DRM technology also use another DRM tech-
nology in his implementation.7 For instance, the CSS License Agreement requires that
the manufacturer of stand-alone DVD players also incorporate the region coding
technology into his players. Furthermore, the players are only allowed to transmit
analog video data in a format protected by analog copy protection technologies of
Macrovision and equipped with CGMS copy control signals. Digital video data may
only be transmitted to outputs which are equipped with copy-protection technologies
(either DTCP or HDCP, see above section 2.1). Similar provisions can be found in
other technology license agreements.

DRM technology licenses also require that DRM-enabled devices obey the usage
rules of digital content that are determined by the content provider in metadata.
Sometimes, the licenses contain default usage rules (e.g. by determining that content
can only be copied once). DRM technology licenses also contain provisions to ensure
that consumer device manufacturers implement the DRM technology in a robust way.
For this reason, manufacturers are required to use security technologies such as en-
cryption, self-checking and tamper-proof hard-/software in their DRM implementa-
tions. Technology licenses require that it be difficult at least to defeat the DRM pro-
tection by using professional tools such as logic analyzers, chip disassembly systems
or in-circuit emulators. If the licensed DRM technology is defeated nevertheless, the
licensee is required to redesign or replace its affected products within clearly defined
time frames. Finally, technology licenses prohibit manufacturers of DRM-enabled
consumer equipment to produce devices or software that can be used to circumvent
the DRM protection.

In summary, DRM technology licenses are used to establish a comprehensive
DRM environment that enables secure transmissions from the content provider to
each consumer. They contain numerous terms that indirectly serve the copyright and
security interests of the content providers.

5 Paradigm Shift in Protection

As this article has shown so far, the protection of digital content in a DRM system is
based on various means of protection: (1) protection by technology with supporting
protection by anti-circumvention regulations, (2) protection by contracts with sup-
porting protection by technology and anti-circumvention regulations and (3) protec-
tion by technology licenses (see figure 1).

CSS Procedural Specifications, the HDCP License Agreement, the POD Host Interface Li-
cense Agreement, the CPRM/CPPM License Agreement and the DTCP License Agreement.

7 In principle, such tying arrangements could raise antitrust concerns. An analysis of this
aspect is beyond the scope of this article. However, such an analysis is likely to lead to the
result that the license agreements are valid to a large extent.

220 Stefan Bechtold

Fig. 1. Different means of protection in a DRM system (1)

In the following section, the implications of these different means of protection will
be analyzed from both a legal and a law and economics perspective.

5.1 Legal Perspective

5.1.1 Intertwining Means of Protection

One of the most prominent features of the protection by DRM systems is that the
various means of protection do not exist independently of each other. Only when one
looks at DRM protection as a whole can one see some of the innovativeness and po-
tential of DRM systems. The following two examples should clarify this proposition:

1. In order to prevent large-scale piracy, content providers have strong interests to
hinder consumers from making unlimited copies of digital content. A fully devel-
oped DRM system provides numerous ways to realize these interests: encryption
and other technologies can be employed to control the uses a consumer can make
of a digital content (protection by technology). If an attacker is able to circumvent
these technologies, he may violate legal circumvention prohibitions (legal pro-
tection of the technological protection). Furthermore, consumers can be required
by contract to make only a specified number of copies (protection by contracts).
Such usage rules can be expressed in metadata which are the basis for copy-
control technologies such as SCMS or CGMS. Thereby, it is ensured technologi-
cally that users obey the terms of their usage contracts. Metadata can be embed-
ded in the content by using robust digital watermarks (in each case a technologi-
cal protection of the contractual protection). If an attacker succeeds in altering or
deleting the metadata, anti-circumvention provisions may apply again (legal
protection of the technological protection of the contractual protection). Finally,
manufacturers of DRM-enabled hardware and software are obliged by technol-
ogy licenses to ensure that their products obey the metadata determined by the
content providers (protection by technology licenses).

2. A DRM system should provide the highest security that is technically possible
but still commercially viable. This can be achieved by different means of protec-

From Copyright to Information Law � Implications of Digital Rights Management 221

tion: from a technical viewpoint, this involves tamper-proof hardware and soft-
ware as well as technologies to check the inegrity and authenticity of DRM com-
ponents and to revoke compromised devices (protection by technology). If these
technologies are circumvented, anti-circumvention provisions may apply (legal
protection of the technological protection). At the same time, users are forbidden
by contract from circumventing the technological measures (protection by con-
tracts). Finally, manufacturers of DRM-enabled devices are prohibited by tech-
nology license agreements from producing devices or software that can be used
to circumvent the technological protection (protection by technology licenses).

These and many other examples show that in a DRM system, the content provider is
always protected simultaneously by several means of protection. Each of these means
is not 100% secure: technological protection can be circumvented, statutory prohibi-
tions can be disobeyed, contracts can be breached. However, it is one of the most
interesting features of DRM systems that these means of protection do not operate
independently. If one of the means fails, another means steps in which sustains the
overall protection level of the DRM system. The security of a DRM system is not
accomplished by technology, law or market forces alone. Rather, it is a result of nu-
merous different, but intertwining means of protection. This common feature of many
DRM systems has often been underrepresented in the scholarly discussions. Regu-
larly, critics of DRM assert that DRM ultimately will fail because it is impossible to
create a technically secure DRM system. However, this criticism misses the point
because it only regards one dimension of DRM protection.

5.1.2 Creation of a Privatized �Property Right�

The intertwining protection by technology, contracts, anti-circumvention regulations
and technology licenses in a DRM system raises the question what the implications
for traditional copyright protection are.

In a DRM system, it is possible to require that each consumer enters into a contract
before accessing DRM-protected content (see above section 3.1). In principle, each of
these contracts only binds the parties of the contract, i.e. the content provider and one
consumer. However, if every consumer must enter into such a contract before ac-
cessing the content, no consumer exists who is not in privity with the content pro-
vider. In the U.S. legal literature, this has led many commentators to the conclusion
that the contractual protection in a DRM system resembles a property right which is
good against all the world.8 The law has regularly already granted a property right to
content providers: copyright law. As such, the copyright owner is entitled to exclude
unauthorized persons from reproducing, distributing or performing his works. Ac-
cording to these commentators, the sum of consumer contracts in a DRM system
leads to a similar level of protection because every consumer in a whole mass market
is contractually bound to the usage terms set by the content provider.

However, this point of view captures only parts of the potential of DRM systems,
as it underestimates the intertwining means of protection in a DRM system. If the
content provider could only rely on a myriad of contracts to protect his digital content,

8 This discussion has been fueled by a decision of the 7th Circuit Court of Appeals dating

from 1996, [5].

222 Stefan Bechtold

this protection would have severe weaknesses. For instance, a consumer who obtained
a pirated copy of the digital content would not be bound to any DRM contracts at all;
the contractual protection would fail whereas copyright protection would still suc-
ceed. However, one has to keep in mind that in an idealized DRM system such a case
would never arise: Normally, the DRM system grants access to protected content only
after the consumer has agreed to a contractual agreement (protection by technology).
If the consumer circumvents this procedure, he may violate anti-circumvention provi-
sions (legal protection of technology). Furthermore, this procedure may be secured by
appropriate technology license agreements. Through a combination of technological
and legal protection a DRM system tries to ensure that a digital content can never be
accessed or used without having agreed to the appropriate usage terms. The inter-
twining means of protection try to inextricably knit together content and usage terms.

Therefore, from a legal viewpoint the real innovation of DRM systems is not the
protection of content by technology or unilateral contracts which bind every con-
sumer. It is the combination of this protection with other supporting means that cre-
ates a level of protection commonly found only with traditional property rights. As
with the protection by a property right, no consumer of DRM content exists who is
not subject to the DRM protection. If one views this conglomerate of protection as a
whole, the terms �privatized property right� and �private legislation� seem appropri-
ate. Overall, a trend from protection by copyright law to protection by the intertwin-
ing means of technology, contracts, anti-circumvention regulations and technology
licenses can be observed. This new conglomerate of protection has the potential to
supplant copyright law as the primary means of protection in the digital environment.

5.2 Law and Economics Perspective

A law and economics analysis of the protection in DRM systems leads to similar
results. Like any information, digital content is (to some extent) a public good char-
acterized by its non-rivalry and non-exclusivity.9 Because it is impossible to exclude
non-paying consumers from the consumption of the content, no consumer will pay for
using the content. Hiding his real preferences, every consumer hopes that another
consumer will buy the content and that he can use this content as well due to its non-
exclusive and non-rivalrous nature (�free rider� problem). As a result, nobody would
create content in the first place, as the costs of creation could never be recouped (cf.
[9]). To eliminate this market failure, the law grants the content producer a property
right known as copyright. Through copyright law, the content producer is able to
exclude non-paying consumers and copyists from using his content. Copyright law
artificially raises the costs of copying content, thereby enabling the content producer
to recover his costs of creation. To a certain extent, copyright law eliminates the non-
exclusivity of content.

As was shown above, the intertwining means of protection in a DRM system en-
able the content provider to exclude unauthorized consumers from using protected
content as well. Just as copyright law, the DRM protection eliminates the non-

9 A good is non-rivalrous when the consumption of this good by one consumer does not di-

minish its availability for others to use. A good is nonexclusive if it is (nearly) impossible to
exclude consumers from consuming it.

From Copyright to Information Law � Implications of Digital Rights Management 223

exclusivity of content to a certain extent. This could have far-reaching implications
for the necessity of copyright law: the market failure which copyright law was estab-
lished to remedy does not seem to exist any more in DRM systems. Seen from a law
and economics perspective, the protection by DRM systems could replace the protec-
tion by copyright law to a certain extent.

6 Necessity of Copyright Law

The analysis of the previous section seemingly leads to the result that copyright pro-
tection could become useless in DRM systems. However, such a proposition would
ignore several objections, some of which will be depicted in this section. Firstly,
copyright law could still be needed to limit the protection offered by DRM systems
(see supra 6.1). Secondly, copyright protection could serve as a kind of safety net
protection (see supra 6.2).

6.1 Limitations to DRM Protection

Copyright protection has never been unlimited. Some of the most noticeable limita-
tions to copyright protection are the fair use defense and the limited duration of copy-
right protection. In contrast, the protection by DRM systems is potentially unlimited.
DRM systems may protect digital content that is not copyrightable or restrict acts that
are exempted from copyright protection. It is a complex question whether and to what
extent copyright limitations should also apply to the different means of protection in a
DRM system.

6.1.1 Law and Economics Perspective

From a law and economics perspective, one has to ask what the justifications for
copyright limitations are and whether these justifications are valid also in the DRM
context.

There is no single economic explanation of copyright limitations. One way of ex-
plaining is to view copyright as a sort of monopoly (which is a severe oversimplifica-
tion, however). According to this view, copyright law � like any monopoly � allows
the copyright owner to raise the price for his work above marginal costs.10 Thereby,
fewer consumers buy the work compared to a perfectly competitive market. This can
lead to a social welfare loss due to the underutilization of the work (for a detailed
explanation, see [10, chapter 10], [11, at 301-305]). From this perspective, it is the
goal of copyright law and its limitations to reconcile two possible welfare losses: the
welfare loss due to the underproduction of content (leading to copyright protection,
see section 5.2) and the welfare loss due to the underutilization of the produced con-
tent (leading to copyright limitations). This analysis can be applied to DRM systems
as well. Just like copyright law, DRM systems allow the content provider to charge
prices above marginal costs. Therefore, DRM systems can lead to a socially wasteful

10 Marginal costs are the costs to produce one additional unit of a good.

224 Stefan Bechtold

underuse of the protected content as well.11 From this perspective, the protection by
DRM systems should be limited just as copyright protection should be limited.12

Another way to look at copyright law � which in the last few years has continu-
ously gained support � views copyright protection not so much as a tool to induce the
creation of new works, but rather as an instrument to facilitate a market for the ex-
change of rights to creative works that can move to their highest socially valued uses.
From this viewpoint, copyright law enables copyright owners to charge consumers for
access not so much to give an incentive as to determine what creative works are worth
and thus to create a guide for resource allocation (cf. [15, at 309-310]). For this line of
thought, copyright limitations are far less important, as the allocation of rights should
be left to the market to the largest extent possible. If one applies this theory to the
protection by DRM systems, limitations could play only a minor role.

Another way of justifying copyright limitations is to view them mainly as an an-
swer to high transaction costs. If the costs involved in forming and enforcing a con-
tract between the copyright owner and the consumer are higher than the value of the
transaction, the transaction will never occur and the consumer will not use the work.
In such cases, it can be more efficient to limit copyright protection so that the con-
sumer does not have to ask for permission to use the work. As DRM systems could
lead to lower transaction costs (search engines could lower search and information
costs, metadata could lower negotiation and enforcement costs, the latter of which
could also be lowered significantly by technological protection measures), the neces-
sity to limit DRM protection could diminish.

It is far beyond the scope of this article to analyze the conflicting economic theo-
ries concerning the necessary limitations to copyright and DRM protection in detail.
The economic explanation of such limitations and their implications on the dynamic
innovation process remain one of the great puzzles of the economic analysis of copy-
right law. For the purposes of this article it suffices to realize that even among the
proponents of a very broad copyright and DRM protection, it is a widespread opinion
that the protection should be limited at least in some respects (see, e.g., [16, at 135]).
External effects and other factors still require the limitation of copyright and DRM
protection (see [17, at 1056-1058]).

If one accepts the notion that the protection by DRM systems should be limited in
some respects � whatever those respects may be � the question arises who should
determine those limits. In principle, this can be accomplished either by market forces
or by the law. According to one view, DRM systems whose technological or contrac-
tual protection is biased too much towards the interests of content providers and do
not take appropriate limitations into account will not be successful on the market

11 The reason for this parallelism lies in the fact that the welfare loss due to underproduction,

which justifies both copyright and DRM protection, results from the non-rival nature of
digital content. This is not changed by the way content is protected.

12 Some commentators argue that the DRM protection should not be limited if the content
provider can engage in nearly perfect price discrimination in a DRM system. Generally, the
intertwining of technological and contractual protection in a DRM system offers numerous
means to engage in price discrimination. However, it is a highly contested issue whether
such price discrimination would really render limitations to the protection unnecessary; see
[12-14].

From Copyright to Information Law � Implications of Digital Rights Management 225

because consumers simply will not buy them. Therefore, no action by the legislator or
the courts has to be taken to limit DRM protection because it is the competition
among vendors how consumers are protected in the DRM field (see [5, at 1453]).

However, this view assumes that well-functioning competition between different
DRM systems or producers of DRM-protected content exists. This is questionable at
least. Within DRM systems, information asymmetries, indirect network effects and
lock-ins can occur, leading to market failures and thereby preventing well-functioning
competition. Therefore, many commentators argue that it is the law that has to limit
the protection of DRM systems in order to preserve fair use and other public values in
the DRM field.

6.1.2 Legal Perspective

From a strictly legal perspective, the necessity to limit the protection by DRM sys-
tems becomes even more obvious. Copyright limitations such as the fair use defense
in the U.S. or the more differentiated provisions in Continental Europe serve impor-
tant societal goals. They preserve the free flow of information, freedom of speech and
functioning competition. They induce the creation of new works, serve educational
and cultural purposes, enable criticism, comment, parody, news reporting and other
uses in the public interest and sometimes even protect privacy interests.

The justifications for these limitations are valid in DRM systems as well. Basically,
DRM systems enable the content provider to create his own copyright law and deter-
mine the scope of protection by himself. Thereby, content providers tend to protect
their own interests in DRM systems without paying adequate attention to interests of
users or the society at large. And in fact, recent examples in the ebook sector demon-
strate that DRM systems currently available prevent uses that would be permissible
under traditional copyright limitations.

Nevertheless, some commentators argue that it is not necessary to limit the protec-
tion by DRM systems because the content is always available in other, less-protected
formats: If it is impossible to extract a movie clip from a DRM-protected DVD for
educational purposes, the consumer can still use a much-less protected VHS version
for extraction. However, this argument is flawed in two ways. Firstly, there will be
more and more content which is only available in a DRM-protected format. Secondly,
in numerous jurisdictions it is highly questionable whether such a �fair use defense of
inferior quality� could be legally constructed.

In summary, the intertwining means of protection in a DRM system have the po-
tential to supplant copyright protection. However, no real reason seems to be in sight
why the limitations to copyright protection may become obsolete as well. While the
content provider is able to protect himself by the means of protection in a DRM sys-
tem, the protection of the consumers and the society at large still depends on the law.
Therefore, copyright law might transform itself from a body of law that protects
creators to a consumer-protection statute. As Lawrence Lessig puts it: �The problem
will center not on copy-right but on copy-duty � the duty of owners of protected prop-
erty to make that property accessible� ([18, at 127]).

226 Stefan Bechtold

6.2 Copyright Law as a Safety Net

Besides limiting the protection offered by a DRM system, copyright law can have
some other purposes as well in the DRM context. It is an oversimplification that a
content provider can effectively protect himself by using technology and contracts.
There will be numerous instances in a real-world DRM system where the technologi-
cal and/or contractual protection fails: Contracts can be void or unenforceable. Tech-
nological protection can be defeated; the supporting circumvention prohibitions do
not cover every attack and every person involved in an attack. In such situations, a
right is useful that is effective against all the world: the protection of content provid-
ers by copyright law could fill protection gaps left open by the DRM protection.
However, copyright law will not serve as the primary means of protection for content
providers, but will only step in as a safety net when all other means of protection in a
DRM system fail (see figure 2).

7 Law as a Limitation to the Paradigm Shift in Protection

As section 6 has shown, it seems to be necessary to limit the protection of DRM sys-
tems by law. As the different means of protection are interchangeable to a large extent
(see above, section 5.1), this applies to all means of protection used in a DRM system.
Overall, this analysis leads to the following completed interaction of different means
of protection in a DRM system (see figure 2):

Fig. 2. Different means of protection in a DRM system (2)

From Copyright to Information Law � Implications of Digital Rights Management 227

In the following section, a short overview is given concerning whether and how leg-
islators in the U.S. and Europe have responded to this need to restrict the different
means of protection in a DRM system.

7.1 Limitation of the Protection by Contracts

In a DRM system, the content provider could in principle override copyright limita-
tions such as the fair use defense by employing a contractual protection scheme. In
the software sector, contractual terms forbidding the reverse engineering of software
have been known for years. This raises the question whether the balance between the
interests of copyright owners and the public as determined by copyright law can be
altered by contractual arrangements. In the U.S., the tension between copyright and
contract has attracted a significant amount of attention among legal scholars. The
discussion reached its summit with an important decision by the 7th Circuit Court of
Appeals ([5]) and the drafting of the public policy provision of the �Uniform Com-
puter Information Transactions Act� (UCITA, see [6]). Under current U.S. law, DRM
contract terms can be unenforceable if they are found to be unconscionable, in viola-
tion of public policy or of basics of the federal intellectual property scheme. Never-
theless, the scope of permissible DRM contract terms is still unclear under U.S. law
and will probably remain so for some time.

In Europe, until now astonishingly the tension between copyright limitations and
contractual arrangements has not been discussed a great deal. The European directives
in the copyright area contain only very isolated provisions that prohibit the overriding
of copyright limitations by contract. The recently adopted Copyright Directive of
2001 states explicitly that copyright limitations as defined in the directive should not
prevent �contractual relations designed to ensure fair compensation for the rights
holders� ([2, at 14]). In some member states of the European Union, blanket provi-
sions of consumer protection statutes can limit the contractual freedom.

7.2 Limitation of the Protection by Technology Licenses

Copyright limitations can be invalidated by technology license agreements. If a hard-
ware manufacturer is obliged by a technology license to manufacture only devices
that do not allow the consumers to make personal copies of DRM-protected content,
such a license term in fact abrogates copyright limitations. So far, this aspect of tech-
nology licenses has not been addressed at all in the legal discussion of DRM sys-
tems.13

7.3 Limitation of the Protection by Technology

Copyright limitations can be overridden by technological protection measures as well.
In order to reconcile both in DRM systems, several regulatory options are available
(see [19]).

13 Only the U.S. Federal Communications Commission dealt with this aspect in its examina-

tion of the �POD Host Interface License Agreement�, see [7, at 15, 19, and the separate
statement of Commissioner Gloria Tristani].

228 Stefan Bechtold

7.3.1 Direct Influence on the Design of Technological Protection Measures

The first regulatory option for a legislator is to enact provisions that directly affect the
design of technological protection measures. For instance, the legislator could man-
date by law that technological measures must allow a certain number of copies for
private or educational purposes without any additional permission by the content
provider. Worldwide, the legislators only rarely take this approach. In Europe, article
3 (a) of the revised Television Directive of 1997 [20] requires that certain �events of
major importance for society� (e.g. sports events such as the Olympic Games) be
available not only on technologically protected pay TV channels. Whereas this statu-
tory limitation of technological protection measures is not based on copyright consid-
erations, it uses the same regulatory approach as described in this subsection.

7.3.2 Limiting the Anti-circumvention Protection

The second regulatory option to solve the tension between technological protection
measures and necessary limitations to this protection is to restrict the legal protection
of technological protection measures. The legislator could deny the protection by anti-
circumvention provisions in certain cases. Without legal protection, there is no reason
why the user should not be allowed to circumvent the technological protection. Basi-
cally, this approach gives the user a �right to hack� technological protection measures
in certain cases specified by law.

This approach has been taken by the U.S. �Digital Millennium Copyright Act�
(DMCA) of 1998. The very broad protection of technological access and usage con-
trol measures in 17 U.S.C. § 1201 (a) and (b) is limited by several very specific ex-
ceptions in § 1201 (d)-(j) (protecting libraries, law enforcement, reverse engineering,
encryption research, privacy and security testing). Nevertheless, the DMCA has pro-
duced lots of legitimate criticism (see [21]). Firstly, several of the exceptions to the
anti-circumvention provisions do not authorize the creation of tools necessary for
benefiting from the exception. Essentially, this makes the exceptions meaningless.
Secondly, there is no exception to the anti-circumvention protection that is as broad as
the fair use defense to copyright law. There are numerous uses that are lawful under
traditional copyright law but not under DMCA�s anti-circumvention provisions. It is
difficult to see a good reason for this differentiation. Finally, the relationship between
the anti-circumvention provisions and the protection of free speech under the First
Amendment to the U.S. Constitution remains a complex and unresolved problem.
Basically, these are the issues that lie beneath many of the current legal quarrels con-
cerning the DMCA, especially the DeCSS, Felten, Ferguson and Sklyarov cases.

7.3.3 �Key Escrow� Approach

A third regulatory option tries to evade some of the disadvantages of the approaches
aforementioned. Under this approach, a consumer who benefits from a limitation to
DRM protection would not be allowed to develop or distribute circumvention devices
as it is the case under the precedingly described approach. Rather, he would be enti-
tled to obtain appropriate means (circumvention devices, decryption keys etc.) from
some instance in order to circumvent the technological protection (see [22, at 99-104],
[19]). This approach resembles the �key escrow� approach taken in the crypto debate

From Copyright to Information Law � Implications of Digital Rights Management 229

as in both cases encrypted communications can be decrypted with appropriate tools
that are legally available under certain circumstances from a specified authority.14

In the DRM context, this authority could be placed in the hands of either the con-
tent providers themselves or a trusted third party. As was shown above, copyright
limitations serve public interests that are very often not congruent with the content
providers� interests. Therefore, it would be a much better idea to charge an independ-
ent trusted third party with the administration of such a key escrow system. Other-
wise, the content providers could unjustifiably refuse access to circumvention tools
when the circumvention ran contrary to their own interests.

In the European Union, the Copyright Directive of 2001 [2] basically employs a
modified �key escrow� approach. According to the lengthy and hardly understandable
article 6 (4) of the directive, under certain circumstances content providers can be
required by law to make circumvention devices or services available to consumers
who benefit from some copyright limitation.15 However, the provision itself severely
restricts the scope of this �key escrow� approach in several ways. The most important
restriction is that the possibility for the legislator to establish a key escrow system
depends on the business model the content provider chooses: If the content provider
offers his DRM-protected content over the Internet and if he conditions the access to
the content on the prior formation of a contract (e.g. by using click-wrap contracts),
the legislator is not allowed to establish any �key escrow� system at all (see article 6
(4) (4) of the directive). By choosing a specific business model, content providers can
dispose of all copyright limitations � a highly questionable development.

Moreover, the �key escrow� approach has some general flaws as well (see [19, at
16-17]). Before benefiting from a limitation, a consumer would have to contact a �key
escrow agency� in order to obtain the appropriate circumvention devices. Due to
considerable transaction costs, this could have chilling effects significantly diminish-
ing the total number of fair uses made in a society. The �key escrow� approach could
lead to a centralization of copyright limitations where only a few actors determine
who benefits from such limitations for what purposes.

Ultimately, one will have to get used to the fact that no silver-bullet solution exists
for reconciling technological protection measures with necessary limitations to this
protection. Each approach has some drawbacks. The current regulations in the U.S.
and the European Union each are overly complex and inconsistent. Unfortunately, we
are far away from a coherent solution of the tension between technology and public
interests in the DRM field.

8 Conclusion

Within DRM systems, content providers protect their interests by the combination of
technology, contracts, anti-circumvention regulations and technology license agree-

14 The idea of the �key escrow� or �key recovery� approach was to establish trusted third

parties that keep copies of the users� private decryption keys (or at least of parts thereof).
Thereby, the prosecution authorities and intelligence services would have the ability to in-
tercept encrypted communications and decrypt them properly.

15 However, this does not seem to be the only approach allowed under article 6 (4).

230 Stefan Bechtold

ments. The protection by traditional copyright law plays only a minor role as a safety
net. Rather, the intertwining of the different means of protection mentioned could
supplant copyright protection to a large extent. Legislators support this development
by enacting anti-circumvention regulations that protect the content provider only
indirectly and by treating shrink-wrap licenses as enforceable contracts. There are
some dangers to this development, however. Firstly, it is far from clear that content
providers really need the combination of five different means of protection (technol-
ogy, contracts, technology licenses, anti-circumvention regulations and copyright law)
instead of one (copyright law). Unfortunately, the assumption that such a �hyperpro-
tection� is necessary is rarely challenged. Secondly, in DRM systems the control over
the design of informational rights is shifted into the hands of private parties, who may
or may not honor the interests of third persons or the society at large. It is the law that
has to react to this �overprivatization� and limit the different means of protection in a
DRM system.

These features of DRM regulation � an increasing protection by technology and
contracts, an increasing privatization of protection, the statutory limitation of this
privatization to preserve public values as well as the retreat of the legislators to mere
indirect regulations � are common to many areas of Internet law. For instance, in the
privacy field, discussions are going on as to whether consumers can protect their
privacy interests by contractual licenses or privacy-enhancing technologies (protec-
tion by contract or technology). Concerning the tension between domain names and
trademarks, the �Internet Corporation for Assigned Names and Numbers� (ICANN)
has established a dispute resolution mechanism (Uniform Dispute Resolution Policy,
UDRP). It enables trademark holders to challenge the registrant of a domain name
and potentially gain control over the name. By a pyramid of contracts, ICANN �
which is a private entity � obliges every domain name registrant to participate in such
dispute resolutions. Some commentators have criticized this as the creation of a new
body of international, but private trademark law (privatization of protection). Statisti-
cal analyses of the cases decided so far under the UDRP also suggest that public val-
ues (e.g. the use of domain names for criticism or parody purposes) might not be
adequately preserved in this system (tension between private ordering and public
values). Concerning the protection of minors on the Internet, private companies have
developed filtering software that deny minors access to harmful content (protection by
technology). It is no longer the state that provides this protection, but rather private
software companies (privatization of protection). Many commentators have criticized
such filtering software as means of �private censorship� (tension between private
ordering and public values).

In such a context, it is no longer the role of the law alone to solve the regulatory
problems at stake. Rather, the law has to provide a framework in which other regula-
tors (e.g. technology or market forces) can evolve securely and effectively. The role
of the law diminishes to a structural and backup responsibility. Questions of how to
regulate self-regulation become vitally important.

Confronted with the myriad of problems in the DRM context, the solutions offered
by the different disciplines appear disillusioning. The technological development of
DRM systems is not yet complete. Large problems remain in the area of system secu-
rity, interoperability and system integration. The economic analysis of DRM systems,
e-commerce and the information society in general still poses numerous unresolved

From Copyright to Information Law � Implications of Digital Rights Management 231

problems. From a business perspective, it is an open question which business model
for distributing digital content will prevail and what level of security measures and
usability restrictions the consumers will be willing to accept in a DRM system. In the
legal area, the situation is no better by any means. Difficult legal questions remain
unresolved. Legislators enact overly complex statutes the implications of which no-
body can really foresee.

This article did not try to solve these problems. Instead, it tried to give an overview
of some of them and to show that they can be grasped much better when one looks at
them from a multidisciplinary perspective. Furthermore, this article did not cover all
aspects of DRM. While it viewed DRM systems mainly as tools to prevent consumers
from unauthorized copying and to control the use of digital content, DRM systems
can be also viewed as instruments to enable digital distribution platforms where inno-
vative business models can be implemented. A comprehensive analysis of DRM sys-
tems would need to take such business aspects as well as social implications into
account and interweave the results with other parts of the analysis of Digital Rights
Management.

References

1. Bechtold, Stefan: Vom Urheber- zum Informationsrecht � Implikationen des
Digital Rights Management, Munich 2002

2. Directive 2001/29/EC of the European Parliament and of the Council of 22 May
2001 on the harmonization of certain aspects of copyright and related rights in
the information society. Official Journal of the European Communities L 167,
June 22, 2001, pp. 10-19

3. Directive 98/84/EC of the European Parliament and of the Council of 20 No-
vember 1998 on the legal protection of services based on, or consisting of, con-
ditional access. Official Journal of the European Communities L 320, November
28, 1998, pp. 54-57

4. Universal Music Group/InterTrust Technologies Corporation: Bluematter End
User License Agreement, http://offers.bluematter.com/sniffer/terms.htm (visited
Dec. 11, 2001)

5. ProCD, Inc. v. Zeidenberg, 86 F.3d 1447-1455 (7th Cir. 1996)
6. UCITA online, http://www.ucitaonline.com (visited Dec. 11, 2001)
7. Federal Communications Commission: In re Implementation of Section 304 of

Telecommunications Act of 1996, 15 F.C.C.R. 18,199 (Sep. 18, 2000)
8. OpenCable Initiative, http://www.opencable.com (visited Dec. 11, 2001)
9. Landes, William M./Posner, Richard A.: An Economic Analysis of Copyright

Law, 18 Journal of Legal Studies 325-363 (1989)
10. Pindyck, Robert S./Rubinfeld, Daniel L.: Microeconomics, 5th edition, Upper

Saddle River 2001
11. Posner, Richard A.: Economic Analysis of Law, 5th edition, New York 1998
12. Fisher, William W.: Property and Contract on the Internet, 73 Chicago-Kent

Law Review 1203-1256 (1998)

232 Stefan Bechtold

13. Boyle, James: Cruel, Mean, or Lavish? Economic Analysis, Price Discrimina-
tion and Digital Intellectual Property, 53 Vanderbilt Law Review 2007-2039
(2000)

14. Gordon, Wendy J.: Intellectual Property as Price Discrimination: Implications
for Contract, 73 Chicago-Kent Law Review 1367-1390 (1998)

15. Netanel, Neil Weinstock: Copyright and a Democratic Civil Society, 106 Yale
Law Journal 283-387 (1996)

16. Merges, Robert P.: The End of Friction? Property Rights and Contract in the
�Newtonian� World of On-Line Commerce, 12 Berkeley Technology Law
Journal 115-136 (1997)

17. Lemley, Mark A.: The Economics of Improvement in Intellectual Property Law,
75 Texas Law Review 989-1084 (1997)

18. Lessig, Lawrence: Code and Other Laws of Cyberspace, New York 1999
19. Burk, Dan L./Cohen, Julie E.: Fair Use Infrastructure for Copyright Manage-

ment Systems, 2000, http://papers.ssrn.com/abstract_id=239731 (visited Dec. 11,
2001)

20. Directive 97/36/EC of the European Parliament and of the Council of 30 June
1997 amending Council Directive 89/552/EEC on the coordination of certain
provisions laid down by law, regulation or administrative action in Member
States concerning the pursuit of television broadcasting activities. Official Jour-
nal of the European Communities L 202, July 30, 1997, pp. 60-71

21. Samuelson, Pamela: Intellectual Property and the Digital Economy: Why the
Anti-Circumvention Regulations Need to Be Revised, 14 Berkeley Technology
Law Journal 504-566 (1999)

22. Stefik, Mark: The Internet Edge. Social, Legal, and Technological Challenges
for a Networked World, Cambridge 1999

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 233-244, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Taking the Copy Out of Copyright

Ernest Miller1 and Joan Feigenbaum2∗

1 Information Society Project, Yale Law School, PO Box 207286, New Haven, CT,
USA 06520

ernest.miller@aya.yale.edu
2 Computer Science, Yale University, PO Box 208285, New Haven, CT, USA

06520
joan.feigenbaum@yale.edu

Abstract. Under current U.S. law and common understanding, the
fundamental right granted by copyright is the right of reproduction � of
making copies. Indeed, the very word �copyright� appears to signify
that the right to control copying must be a fundamental part of any
system of copyright. Nonetheless, we claim that this assumption is
incorrect. The advent of digital documents has illuminated this issue: In
the digital realm, copying is not a good predictor of intent to infringe;
moreover, copying of digital works is necessary for normal use of those
works. We argue that the right to control copying should be eliminated
as an organizing principle of copyright law. In its place, we propose as
an organizing principle the right to control public distribution of the
copyrighted work.

1 Copyright Is Not About Copying

Under current U.S. law and common understanding, the fundamental right granted by
copyright is the right of reproduction � of making copies. Certainly, the first
�exclusive right� granted to the owner of a copyright under Section 106 of the
Copyright Act1 is the right to reproduce the copyrighted work �in copies or
phonorecords� or to authorize such reproduction. Indeed, the very word �copyright�
appears to signify that the right to make copies must be a fundamental part of any
system of copyright. Nevertheless, we believe that the primacy given to the right of
copying, while seemingly intuitive, is both illogical and counterproductive,
particularly when one considers its application to digital documents. We base our
analysis on both the nature and characteristics of the digital realm and on a historical
and instrumental understanding of the law of copyright.

Our examination of whether reproduction should play a central role in copyright
law is motivated in part by the question of security in digital rights management

∗ Supported in part by ONR grants N00014-01-1-0795 and N00014-01-1-0447 and NSF grant

CCR-0105337
1 17 U.S.C. §106.

234 Ernest Miller and Joan Feigenbaum

(DRM). Many designers of DRM technology seek to enforce copyright by controlling
copying. Consequently, there is careful attention paid in the security and cryptology
literature to the question of whether such control is technologically feasible and, if so,
at what cost to our computing and networking environments. Experience to date with
fielded DRM systems is limited, but it seems to indicate that copy control is at best
quite difficult in a world of networked general-purpose PCs. We believe that it would
be far more productive to organize copyright law around something other than the
right to control copying than it would be to change the fundamental designs of PCs
and networks.

The purpose of copyright is instrumental. In the United States, copyright is not a
right of the author by reason of his creation. Copyright is not a Lockean �natural
right� but is a limited right granted to authors in order to further the public interest.
This principle is explicitly expressed in the U.S. Constitution, which grants the power
to create a system of copyright to Congress in order to further the public interest in
�promoting progress in science and the useful arts.�2 This point cannot be
overemphasized: Copyright has a purpose � to further the public good by promoting
the creation and dissemination of knowledge. Thus, copyright is structured to create
incentives for authors to create and publishers to distribute new works � that authors
and publishers benefit from these rights is the means and not the end of copyright.

By granting certain exclusive rights to authors, copyright seeks to ensure that
authors will be able to recoup the costs associated with their ingenuity and publishers
the costs of distribution. The paradigmatic example of this is the book publishing
industry, where an author grants a publisher the right to print and vend a work in
return for payment. The payment from publisher to author is recompense for the
author�s creativity. The publisher then sells instances of the work instantiated in a
physical medium (copies) to recoup not only the author�s payment but manufacturing
and distribution costs (plus profit). Obviously, if a pirate press is able to publish its
own edition of the work with impunity, the (legitimate) publisher will suffer
economically, and authors will not be properly compensated for their creativity. Thus,
as the conventional history would have it, was born the right of reproduction.

Unfortunately for the conventional history, in the Copyright Act of 1790,
reproduction was not one of the rights granted to the author. This first federal
copyright statute did not mention copying at all. Instead, the statute spoke of
�publishing, printing, and vending.� All three of these terms mean something other
than the simple reproduction of a work � they imply distribution.3 After all, it is the
distribution of copies to the public that cause the publisher to suffer economically.
The publisher cannot be harmed by copies that are never distributed and, for example,
sit moldering in a warehouse.4 Conversely, one cannot distribute what one does not

2 U.S.C.A. Const. Art. 1, § 8, cl. 8.
3 While it may seem that �printing� does not necessarily entail distribution, the �right to print�

was subordinate to the right to publish. Although the right to print might be held by a party
other than the one that held the right to publish, the right to print did not exist without a
corresponding right to publish.

4 This is not to say that an individual found with hundreds of unauthorized copies of Microsoft
Windows XP in a warehouse should be free of liability. Certainly, the creation of such a large
number of copies of a commercially valuable copyrighted work would be a strong indication

Taking the Copy Out of Copyright 235

have. Distribution to the public is the necessary condition for harm to the publishers�
economic interests.5 Distribution, in the broad sense, can occur with or without
copying. Thus, it is not surprising that the original Copyright Act failed to mentioning
�copying� per se as an exclusive right.

Furthermore, since the purpose of copyright is to provide the opportunity for
exploitation as an incentive to innovation, presumably the rights in copyright should
be capable of exploitation independently. This is not the case for reproduction, which
cannot be exploited independently of the right to distribute. What value does the right
of reproduction have absent the right of distribution?6

Historically, the fundamental object of copyright law was not a copy or copies of a
work but rather publication of the work. The meaning of �copy,� as used in the word
copyright, was a reference to the manuscript. The �copyright� was certain exclusive
rights with regard to the manuscript, in particular the right to publish � not an
exclusive right of reproduction. The etymology of the term �copy� (from the Oxford
English Dictionary) as used within the copyright is clear:

IV. That which is copied
8. a. The original writing, work of art, etc. from which a copy is made.
�
9. a. Printing. Manuscript (or printed) matter prepared for printing. (Now always

without a and pl.)
Formerly used in a sense nearer to 8: a MS. [Manuscript] or other exemplar
which is printed from, or serves as �copy�, though not specially prepared for
that purpose.

 b. Property in �copy�; = COPYRIGHT. Obs.
In its beginnings, only contextually differing from 9: the registration and
licensing of the �copy� or �copies� proposed to be printed, conferred the
�right�.7

Copyright is not about the right of reproduction per se but rather the licensing and
registration of the �copy,� in other words, the work (or, as the U.S. Constitution refers
to it, �writings�) for publication. Indeed, it is unlikely that the idea of an independent
right of reproduction would have been conceivable when the term copyright was
developed. Although early copyright did distinguish between the right �to publish�
and the right �to print,� printing was clearly subordinate to the publishing right, which

of intent to distribute. Harm to Microsoft, however, would not occur until the copies actually
were distributed.

5 Comm. on Intellectual Property Rights and the Emerging Information Infrastructure,
National Research Council, The Digital Dilemma: Intellectual Property in the Information
Age 141 (National Academy Press 2000) [hereinafter The Digital Dilemma].

6 Of course, one might claim that the right of reproduction governs the making of copies for
personal use (where there is no distribution) and that personal uses may thus be economically
exploited. For example, a publisher might charge a higher price for an e-book from which
text could be cut-and-pasted than an e-book from which text could only be manually copied.
This, however, would turn copyright into a mandatory licensing scheme. Either a right would
be explicitly granted or it would only exist within the vagaries of implied license or fair use.
Such a result is unsatisfactory for reasons explained below.

7 Oxford English Dictionary (2nd ed. 1989) (italics in original)

236 Ernest Miller and Joan Feigenbaum

was the right to have the copy reproduced for distribution to the public. The idea of a
right to print without an associated right to publish would have been inconceivable at
the time.

As a matter of fact, the term �copying� did not enter the copyright statutes until the
Copyright Act of 1909. The term was used as a generic addition to the original
�publishing, printing, and vending� in order to take into account the various new
forms of mechanical reproduction that were proliferating at the turn of the century.
After all, it does not necessarily seem appropriate to speak of �printing� or
�publishing� statuary. The addition of the term �copying,� then, was not the creation
of a new right but an extension of the existing regime to ensure coverage of the new
technologies of the era.

Once the term �copying� entered the statute, it is easy to see how it could
eventually come to be interpreted as granting a right to reproduction. In the first
decades of the twentieth century, this was actually sensible. After all, prior to the
advent of electronics, making copies of a work was difficult and rather expensive. It is
not simple to set hot lead for a printing press or to transfer a motion picture to
negative in order to develop new positives. Accordingly, reproduction was a good
predictor of an intention to distribute as well. There are few legitimate reasons, for
example, to set lead type in order to make one or two copies of a book for personal
use.8 In a world in which works are embodied in difficult-to-reproduce physical
objects, it is reasonable to assume that, if someone goes to the trouble of making
multiple copies, he intends to distribute them.

Indeed, under current law, the fixation requirement for copying requires that a
�copy� be �sufficiently permanent or stable to permit it to be perceived, reproduced,
or otherwise communicated for a period of more than transitory duration.�9 One of the
reasons for the fixation requirement is that transitory �copies� will not last long
enough to be distributed, certainly not long enough to be distributed to the public in
such a way as to undermine the incentive structure of copyright. If copying alone
were harm to the incentive structure of copyright, it would be hard to justify the
fixation requirement. The fear, then, is not of reproduction itself, but of subsequent
distribution of the resulting copies. Undeniably, the statutory exceptions to the right
of reproduction are numerous (making of ephemeral copies,10 backups and runtime
copies of computer software,11 and some digital sound recordings12). One has to
wonder when the exceptions are so numerous whether the underlying rule is the
appropriate one.

However, in the networked, general-purpose computer world, digital documents
are not hard to copy at all, whether fixed or transitory. Reproduction, then, is not a
good predictor of whether there will be distribution to the public in the digital world.
For example, web pages are copied into temporary caches so that browsers can
display them quickly, programs are copied from hard drive to RAM so that they can
be run, and entire file systems are copied onto back-up stores to ensure that they are

8 We cannot think of any plausible reasons for such an action.
9 17 U.S.C. § 101
10 17 U.S.C. § 112
11 17 U.S.C. § 117
12 17 U.S.C. § 1008

Taking the Copy Out of Copyright 237

protected from user errors, software bugs, and malicious intruders. Digital music may
be among the most versatile media. Music on CD is copied from disk to hard drive in
order to be used by jukebox software, transported to school or office via laptop, or
copied into an MP3 player to listen to while jogging. In these and numerous other
ordinary circumstances, digital files are �copied� in the literal sense, but in none of
them is there an intention to distribute to the public that would undercut the
publisher�s ability to benefit from the work.

The point is that, in computers and networks, copies are made constantly, often
without explicit instruction by or even knowledge of a particular user. Surely there is
a better conceptual starting point for the development of copyright law than to define
each of the copies as presumptively infringing.

More important is the fact that copies are not only frequently and continuously
made in the computer world but moreover are necessary in order to make use of a
work -- any use. This is something entirely new in the realm of copyright.
Reproduction is not necessary to access a work embodied in a physical artifact. No
copying is required to read a book or watch a movie. However, copying is necessary
in order to read an e-book or watch a DVD. In the digital world, the right to control
copying becomes tantamount to a right to control access to a work for purposes of
normal use, such as reading, viewing, and listening.13 In the digital world, the right to
control copying means that actually reading an e-book is presumptively a violation of
the copyright owner�s rights.

Of course, it is very unlikely that a court would decide that reading was not a right
granted by purchase of a digital book. However, the decision in such a case would
have to rest on some other aspect of copyright law, such as fair use or implied license.
Such reliance on alternative doctrines is less than satisfactory. For example, it would
be strange indeed for a court to conclude that reading an e-book is only justified by
the affirmative defense of fair use or that reading is permissible as an implied license
and thus occurs at the sufferance of the copyright owner, who may disavow such a
use.

Our proposed approach to this problem of the right to reproduce in the digital age
is a radical one: Eliminate the right to control copying as a fundamental aspect of
copyright and as an organizing principle of intellectual-property law. We believe that
efforts to accommodate the right of reproduction in copyright of digital works will
fail. For example, attempts to distinguish between �permanent� and �transient� copies
will fail because of the truly vast number of circumstances in which computers and
networks makes copies. Attempting to make such fine technological distinctions
would cause the resulting law to be far too complex, even by the Byzantine standards
of copyright law. Furthermore, the rapidity of technological evolution would seem to
counsel strongly against adopting a decision-making process so dependent upon
technologically specific circumstances.14

Our solution lies in a return to the original understanding of and principles behind
copyright, principles that are more appropriate in the digital realm than the �copy-
centric� view of current copyright law. In our view, copyright should return to its

13 The Digital Dilemma, 141-4.
14 For example, in the case of �permanent� and �transient� copies, how would law adapt to a

major shift in technology, for example, from volatile to non-volatile RAM?

238 Ernest Miller and Joan Feigenbaum

focus on distribution to the public. The rights of distribution, public performance, and
display are all examples of distribution (broadly defined) to the public and reflect
early copyright law�s focus on publishing, printing, and vending. We do not address
the issue of derivative works. Copying, absent distribution to the public, should not be
considered a violation of copyright at all.15

We now analyze two key doctrines of copyright law in light of our position.

1.1 First Sale Doctrine � Physical Property Only

The history of the first sale doctrine is coterminous with the history of copyright itself
and developed as case law16 prior to statutory codification. Formalized by legislation
in 1976 as Section 109 of the Copyright Act, the doctrine is framed as a limitation on
the copyright owner�s exclusive right to distribute works; it entitles the owner of a
particular copy of a work to �sell or otherwise dispose of� that particular copy
without the permission of the copyright holder. The first sale doctrine does not restrict
the copyright owner�s exclusive right to make copies or to authorize the making of
copies. The first sale doctrine also incorporates certain other restrictions; for example,
it only applies to lawfully made (authorized) copies and only to the �owner� of such
copies. In other words, one cannot sell or loan what one does not own. It is this
doctrine that enables the existence of libraries, used book stores, and video rental
stores.17

With regard to works in digital format, the first sale doctrine is an anachronism; it is
essentially concerned with copyrighted works embodied in physical objects. Indeed,
the doctrine is actually an element of property law that prevents copyright from
running roughshod over other areas of law. Without the first sale doctrine, a copyright
owner might claim, for example, that you were not permitted to resell a book for less
than its original value or could not throw it away without the publisher�s permission.
If this �right� were accepted, imagine the consequences that would result if all items
of manufacture had copyrighted material embodied in them, such as a haiku poem
stamped on the bottom of a lamp. Suddenly, questions of personal property and
normal trade would become questions of copyright.18 Such control would be at

15 Others have also advocated jettisoning the focus on the right of reproduction. See Jessica

Litman, Digital Copyright 177-80 (Prometheus Books, 2001) [hereinafter, Digital
Copyright]. Litman has offered, as an alternative organizing and fundamental principle, the
right of the copyright owner to prevent others from commercially exploiting the work. Our
alternative organizing principle is simply to emphasize the right of public distribution.

16 Bobbs-Merrill Co. v. Straus, 210 U.S. 339, 350-51 (1908).
17 Note, however, that lending, leasing, and rental have certain limitations with regard to

phonorecords (or sound recordings) and computer software in the statute.
18 Nimmer on Copyright. Sec. 8.l2[A] (p. 8-150.4): [T]he right to prevent unauthorized

distribution at that point [after first sale] (although no doubt still desired by the copyright
owner) is no longer a necessary supplement [to fully protect the owner]. In such
circumstances, continued control over the distribution of copies is not so much a supplement
to the intangible copyright, but is rather a device for controlling the disposition of the
tangible personal property that embodies the copyrighted work. Therefore, at this point, the
policy favoring a copyright monopoly for authors gives way to the policy opposing restraint
of trade and restraints on alienation.

Taking the Copy Out of Copyright 239

variance with common law, which disfavors restrictions on the free alienation of
property.

Similar reasoning appears to apply to other areas of copyright law. For example,
owners of a copy of a protected work are permitted �to display that copy publicly,
either directly or by the projection of no more than one image at a time, to viewers
present at the place where the copy is located.�19 Thus, for example, one may place
lawfully purchased statuary (such as a garden gnome) on the front lawn where it will
be displayed to the public. However, one may not broadcast the image of the gnome
via television. Again, the focus seems to be on permitting an owner of physical goods
to dispose of the physical property as desired without overly many restrictions.

Of course, while the first sale doctrine expresses elements of property law, it does
point out some fundamental characteristics of copyright law. First, it shows that
maximizing the return to authors and publishers is not, in fact, the ultimate aim of
copyright. Through the first sale doctrine, among other things, individuals can gain
access to copyrighted works through a number of means, many of which create no
direct financial benefit for the copyright owner. After all, if you borrow a book from a
friend, you are potentially depriving the publisher of a sale. Second, it shows that
copyright owners do not have the right to regulate use (other than uses explicitly
governed by copyright law itself) once the work is released into public channels.
Once a member of the public acquires a particular copy of a work, he can use it in any
legal manner he desires. If a reader desires to read the last chapter of the mystery
novel first, he can do it, regardless of the copyright owner�s desires. This shows that,
traditionally, use-control has not been an exclusive right of the copyright owner.

The first sale doctrine applies to particular copies embodied in physical objects.
Books, CDs, and videotapes are all examples of such physical embodiment. Such
copies can only be possessed by one individual at a time, and transferring such an
instance of the work does not involve reproduction. These characteristics are not
shared by digital works on a computer or network. In the digital realm, there is no
technologically sensible way to give a buyer of a particular instance of a digital work
the right to redistribute that instance but withhold from him the right to copy it.

Our conclusion then is a radical one. The first sale doctrine simply does not apply
in the realm of digital objects, though it remains applicable with regard to free
alienation of physical copies. The values of more open access embodied in the rule
are attainable but only by avoiding the copy-centrism of current law. In our argument,
a violation occurs only if there is public distribution of a work not granted by the
copyright owner.

Alternative proposals with regard to the first sale doctrine are even more radical.
Some copyright absolutists argue that, because no one but the copyright owner has the
right to make copies under existing law, no one but the copyright owner should be
permitted to lend, trade, or sell digital objects at all, because doing so always entails
making copies. Since, in the future, many forms of information will be available only
in digital form, the alternate means of access to works that the first sale doctrine
enabled would be virtually eliminated. Others propose systems that would force
digital objects to behave like physical objects. One example of this �trusted-systems�
vision is described in The Digital Dilemma:

19 17 U.S.C. § 109(c)

240 Ernest Miller and Joan Feigenbaum

In these systems, when a merchant sells a digital object, the bits encoding the
object would be deposited on the buyer�s computer and erased from the
merchant�s computer. If the purchaser subsequently �loaned� this digital
object, the access control and rights management systems on the lender�s
computer would temporarily disable the object�s use on that computer while
enabling use on the borrower�s computer. These changes would be reversed
when the object is returned by the borrower to the lender.20

We share the skepticism of the authors of The Digital Dilemma that such systems
will enjoy successful technical development and market adoption in the near future.21

Moreover, we reject the trusted-systems vision on the grounds that it vitiates the
nature of digital documents. Transformative social benefits of the switch from analog
to digital publication, if they are to occur at all, will derive in part from the fact that
digital documents have fundamentally different characteristics from analog physical
documents. If we were to try to ensure that digital documents behave like physical
ones, we would eliminate the incentive to innovate. Finally, it is unlikely that such
trusted systems would be acceptable to copyright holders themselves. If such a trusted
system were both effective and economical, it would likely have devastating
consequences for copyright owners, because lending of digital objects would become
extremely efficient. In this scenario, large groups of like-minded individuals,
neighborhoods, entire dorms, or apartment complexes would be able to share one
digital object, such as a song, because all they would need to do in order to be in
compliance with the law is use the trust-systems technology to ensure that no two
people use the object at exactly the same time.

1.2 Fair Use

Prior to its codification in the Copyright Act of 1976, fair use was a judicially created
doctrine governing the use of one work in the work of another.22 It was analogous to
fair competition law. There were fair uses (uses by one author, such as a reviewer, of
another author�s work, the subject of the review), and there were unfair uses, such as
out-and-out plagiarism. But there was another category of use, use that was not
competitive at all and thus not subject to fair use analysis. This might be called
�normal use,� use by the consumer.

This makes sense. When a consumer obtains access to a copy of a work, i.e., a
copy embodied in a physical medium such as a book or CD, the consumer is actually
obtaining the ability to make use of the work (an intangible object). The physical
medium itself is largely irrelevant.23 This ability to make use of the work accrues

20 The Digital Dilemma, 167-8.
21 However, we do agree that such a system, if effective, should protect its users under both

current law and our proposal from conviction for copyright infringement.
22 Sony Computer Entertainment America, Inc. v. Bleem, LLC, 214 F.3d 1022, 1025-26 (9th

Cir. 2000).
23 It is possible for a publisher to create physical obstacles to certain uses � but that does not

mitigate this right. For example, a publisher might print a book on paper that disintegrates in
sunlight, hoping to prevent individuals from reading outside for some unfathomable reason.

Taking the Copy Out of Copyright 241

simply through gaining access to the work. It is not an implied license from the
publisher. For example, if one borrows a book from a library, one has the ability to
read the work regardless of the desires of the publisher (who may be opposed to the
loss of a potential sale). What the individual obtains is the ability to use the intangible
work itself. Thus, when an individual accesses (by whatever means) the work by
making personal use of it, no issue of competition is raised.

The very concept underlying fair use, the rules governing the use of one work in
the work of another, does not apply to personal uses. After all, if an individual merely
transfers a work to which she already has legitimate access from one physical medium
to another physical medium, in what way is that using one work in the work of
another? By photocopying a page from a book, does one suddenly become the author
of a new work � one which incorporates the work of another? Mere copying for
personal use should not raise a question of either fair or unfair use. Moreover, one of
the early tests of fair use was whether the questionable use supplanted the market for
the original. Personal uses do not supplant the market for the original. After all, if a
user already has legitimately obtained a copy of the work, how can any copying
supplant that copy absent distribution? The user may have altered the physical
characteristics of the particular embodiment, but that has not supplanted the user�s
need for access to the work in the first place.

Unfortunately, the law of copyright has been transformed so that normal use by the
consumer is not always permissible; rather, the permissibility of any use that
incorporates copying must be decided on a case-by-case basis, usually under the
rubric of fair use. While it is unlikely that a court would hold a single personal-use
copy of a work to be infringing (even granting a plaintiff would bring such a case),
the court would still have to apply fair use analysis to the copy, because fair use is an
affirmative defense. Under current law, every copy is presumptively infringing, and
copying may only be justified under the fair use doctrine. This is the case even when
the original question underlying fair use analysis, whether or not the use is one that
competes with the copyright owner, is not relevant.

This is important, because, in the transition to the digital world, copying has
become much easier. When copying is difficult, it is likely that only commercial
entities and those similarly situated would be making copies. Thus, copying per se
could be enough to trigger a fair use analysis, because the relevant presumption was
that copying would only take place in a commercial context with intent to distribute
the work publicly. However, in the digital world, copying becomes necessary to make
normal use of works. In order to watch a (lawfully-acquired) Shrek DVD on the video
equivalent of an MP3 player, the movie must be copied from the DVD. This act of
copying should not require, should the consumer be challenged, the mounting of an
affirmative defense of fair use in which the copying is presumptively unfair. This act
of copying should not be actionable at all.

Of course, the current state of affairs is that any copying is presumptively illicit.
This being the case, it is lawful for copyright owners to inhibit all copying of their
works. Unfortunately, because it is necessary to copy a digital work in order to make
use of it, the prohibition against copying means that the copyright owner may

However, while the right of distribution allows the publisher to make such choices of
printing materials, it would not prevent a clever reader from circumventing such limitations.

242 Ernest Miller and Joan Feigenbaum

determine which uses are permissible and which are not. The doctrine of fair use, as it
is now codified, completely undermines its own purpose in the context of digital
works.

1.3 The Right of Public Distribution

To this point, we have been making the case that the idea that the right of
reproduction as an exclusive right granted to the copyright owner is illogical and
improper as applied to digital works. What, then, should the alternative principle be?
We argue that the alternative principle is already part of existing law; it is public
distribution of instantiations of a work that is the key right granted to a copyright
holder. As we stated above, what harm to the copyright holder can come from copies
that sit moldering in a warehouse? Harm can only occur if there is distribution to the
public.

Indeed, Section 106 of the Copyright Act already limits the exclusive right of
distribution to distributions made �to the public.�24 The right to make private
distributions is not an exclusive right of the copyright owner. Furthermore, the
concept of a public/private distinction is reinforced by the fact that it is only public
performance and display of works that is a right of the copyright owner. In our
analysis, both performance and display are forms of instantiation of a work.
Performance is an instantiation of the work in action, and display is an exhibition of a
physical instantiation of a work. Thus, performance and display imply forms of
distribution. If it is public distribution that is the exclusive right, then performance,
which is a form of distribution, only infringes when the performance is to the public.
Both the rights of performance and display are unlike the right of reproduction,
which, although an instantiation of a work, does not necessarily entail distribution.

This private/public distinction is very familiar in the realm of performance and
display. After all, anyone who has ever invited friends over in order to watch a
videotape or DVD has engaged in a private performance of a work. Playing a
copyrighted song on the piano for friends, if anyone still does that, is also a private
performance. An exclusive right to private distribution with regard to performance
would be absurd. It would imply, for example, that it is presumptively infringing for a
parent to read a copyrighted book to a child.

Some have argued that the right distinction in such cases is not private vs. public
distribution but rather distribution that has limited effects on the commercial market
(which would not be infringing) vs. distribution that has major effects on the
commercial market (which would be infringing).25 Indeed, it is argued that this
distinction would be useful even in situations in which one person�s acting on his own
did not have major commercial effects, but the widespread and similar activities of

24 Under current law, this right is odd in light of the prior right of reproduction, which makes

the right of distribution redundant. After all, how can one distribute works to which this third
exclusive right applies without first making copies? If making copies is a violation of the
copyright owner�s first exclusive right, there is no need for a right of public distribution,
because any such distribution presupposes that copies have been made.

25 Digital Copyright 180.

Taking the Copy Out of Copyright 243

others would have commercially devastating effects.26 In other words, posting a
copyrighted song to a website would be permissible, as long as there were not too
many downloads. According to this theory, there would be no problem if the practice
was widespread, as long as each individual site did not have too many downloads.
Such a result seems odd. Yet it is required unless one accepts the alternative economic
test that certain forms of distribution are permissible unless the widespread practice of
such forms of distribution would be commercially significant. This, of course, would
be no test at all, because nearly every type of distribution would have commercially
significant effects if practiced widely enough.

Moreover, the distinction between public and private fits very well with what is
actually enforceable. After all, one of the major elements of private distribution is that
it is private; it takes place where copyright owners will not be able to police it. Public
distribution, on the other hand, takes place in public, where copyright owners will be
able to monitor and patrol. For example, if a teenaged girl emails an MP3 to her
father, this is a private distribution and one that the recording industry will likely
never find about. The law might give the recording industry the right to prohibit this,
but this law would be essentially unenforceable. However, if the teenage girl posts the
MP3 on a website, it is possible for the recording industry to take appropriate action
either against the girl or, ultimately, her ISP. There are any number of technical
options to track, subvert, or otherwise interfere with public distributions of
copyrighted works.

Fundamentally, it is extremely difficult for copyright owners to determine when
the right of reproduction has been violated, unlike theft of physical property.
Furthermore, the fact that the right of reproduction is very difficult to enforce is likely
to lead to disrespect for the law. Of course, no law is perfectly enforced, but a law that
can almost never be enforced independently is of questionable benefit.

Finally, reliance on public distribution will not substantially change the existing
balance of economic incentives. To the extent that the right of reproduction is
essentially unenforceable, copyright owners will be able to achieve the same amount
of economic incentive through enforcement of the distribution right � which is
essentially the status quo.

2 Conclusion

Today, it is commonly assumed that the right of reproduction, the right to control
copying, is and always has been a fundamental element of copyright law. However,
that assumption is incorrect.

Historically, the right of reproduction is of relatively recent provenance. Prior to
the Copyright Act of 1909, there was no exclusive right to control copying. Indeed,
even in the Copyright Act of 1909, which first mentioned the word �copy,� it is more
than arguable whether there was any intention to create a right of reproduction, rather
than merely to extend existing rights of distribution to new subject matter.

Logically and theoretically, the right of reproduction is not fundamentally required
to be part of a system of copyright. After all, copies per se do not harm any of the

26 Id., nn. 32.

244 Ernest Miller and Joan Feigenbaum

interests that copyright is intended to support. The fact that the right to make copies is
considered to be an essential element of copyright is the result of both
misinterpretation of the origin of the word �copyright� and the fact that, for many
years, the making of copies was a good predictor of intent to infringe.

However, digital technology has illuminated the issue and demonstrated that the
traditional assumptions about the right of reproduction are false. In the digital age,
copying is not a good predictor of intent to infringe. Moreover, copying is necessary
for normal use of a work. Allowing normal use is a principle that copyright is
supposed to support. To that extent, digital technology has revealed the illogic and
inconsistency of the traditional view of the right of reproduction.

Of course, it is possible to attempt to write and interpret laws that uphold two
inherently contradictory principles at once. Unfortunately, the results will be
confusing and incoherent. The Digital Millennium Copyright Act is a good example
of this. The DMCA purports to support the right of reproduction while maintaining
existing rights of fair use. First, the concept of fair use codified in the Copyright Act
of 1976 is itself incoherent as shown above. Second, the DMCA as interpreted by the
courts does not protect fair use at all, except for those with a high level of technical
skills. Third, the DMCA is confusing even by the standards of previous copyright
laws.

Because the DMCA attempts to uphold two contradictory interests at once, it has
numerous exceptions and exceptions to the exceptions.27 Such messiness will always
be necessary in order to harmonize, at least partially, two fundamentally opposed
principles. This is not unlike the case of Ptolemaic cosmology, in which Ptolemy
attempted to reconcile two opposing principles: the assumption that planets moved in
perfect circles and the observed motion of the planets. Current copyright law, with its
exceptions and exceptions to exceptions, is not very different from Ptolemy�s
epicycles and epicycles within epicycles.

In order for progress to occur, Copernicus abandoned the principle of circular
motion in favor of observed motion � despite the widely and strongly held assumption
that celestial motion must be �perfect.� Just so, copy-centrism should be abandoned in
favor of the right of public distribution.

27 For example, a library may circumvent digital-rights-management software (which is

otherwise prohibited) in order to determine whether to purchase access to a work, but not if
an identical copy of the work is available in another format. 17 U.S.C. §1201.

Author Index

Atallah, Mikhail J.160

Bechtold, Stefan 213
Buhse, Willms 201

Chang, Hoi . 160
Crosby, Scott 192

Feigenbaum, Joan 76, 233
Freedman, Michael J. 76

Goldberg, Ian192

Horne, Bill . 141

Jakobsson, Markus 1
Johnson, Robert 192

Kiayias, Aggelos 22
King, James 126
Kravitz, David106
Kudumakis, Panos 126

Matheson, Lesley 141
Miller, Ernest233

Mıhçak, M. Kıvanç 13

Pinkas, Benny 40

Reiter, Michael K. 1

Safavi-Naini, Reihaneh 57
Sander, Tomas 76
Shapiro, William176
Sheehan, Casey 141
Shostack, Adam 76
So, Nicol . 106
Song, Dawn 192

Tarjan, Robert E.141

Venkatesan, Ramarathnam13
Vingralek, Radek 176

Wagner, David 192
Wang, Yejing 57

Yeoh, Kim-Ee 106
Yung, Moti . 22

	Front matter
	Security and Privacy in Digital Rights Management
	Preface
	Conference Organizers
	Table of Contents

	Chapter 1
	Discouraging Software Piracy Using Software Aging
	Introduction
	Model and Requirements
	Approach
	Related Work
	Updating Method
	Software Aging
	Claims

	Chapter 2
	New Iterative Geometric Methods for Robust Perceptual Image Hashing
	Introduction
	Problem Definition and Notation
	Proposed Algorithms
	Algorithm A
	Algorithm B

	Experimental Results
	Conclusions and Future Work

	Chapter 3
	On Crafty Pirates and Foxy Tracers
	Introduction
	Background: Decoder Types and Our Results
	Resettable vs. History Recording Pirate Decoders
	Available vs. Abrupt Pirate Decoders
	Types of Pirate Decoders
	Previous Work and Motivation in Light of the Decoder Types
	Our Results

	Preliminaries
	Multicast Encryption Schemes
	The Straightforward Scheme
	Colorings
	Black-Box Traitor Tracing Schemes

	Hybrid Colorings: Generic Black-Box Traceability of Abrupt/Resettable Pirate Decoders
	List-Tracing of Abrupt/Resettable Pirate Decoders with Sublinear Ciphertext Size
	Tracing Abrupt/History-Recording Pirate Decoders in Multimedia Multicast

	Chapter 4
	Efficient State Updates for Key Management
	Introduction and Motivation
	The LKH Scheme
	The State Update Problem
	Contributions
	Related Work

	A Concise Representation of Keys
	A Method with no Security Against Collusions
	A Method Secure Against Collusions

	Updating Keys on the Path from a Leaf to the Root
	LKH Based Schemes
	The LKH Scheme
	The Scheme of Canetti et. al me
	More Efficient Key Update

	Chapter 5
	Collusion Secure q-ary Fingerprinting for Perceptual Content
	Introduction
	q-ary c-Secure Codes
	Constructing c-Secure Codes from Error-Correcting Codes
	Bound for c-TAq(L,N) and c-TAq(L,N;e)
	Comparison and Trade-Offs

	Removing Segments
	Constructing c-TAq(L,N;e,r) Using Buffer Blocks
	Using Deletion/Insertion-Correcting Codes
	Preliminaries
	Tracing with Shortened Fingerprint

	Concluding Remarks

	Chapter 6
	Privacy Engineering for Digital Rights Management Systems
	Introduction
	How Digital Distribution and DRM Affect User Privacy
	Why Cryptography Is Insufficient
	Technological Failures of Privacy Solutions
	Our Abstractions Don't Model Our Reality
	Technical Limitations: Security Breaches and Usability
	Legacy System Integration
	Excessive Technical Costs?

	Economic Aspects of Privacy Engineering
	Network Externalities
	Asymmetries, Moral Hazard, and Demand
	Business Incentives

	Approaches to Practical Privacy Engineering
	The Fair Information Principles Approach
	Why the FIPs apply to DRM

	Simple Principles for Privacy Engineering
	Customizable Privacy
	Collection Limitation
	Database Architecture and Management
	Purpose Disclosure (Notice)
	Choice
	Client-Side Data Aggregation
	Transferring Processed Data
	Competition of Services
	Keeping Business Interests in Mind

	Enforcement and Auditability of Privacy Solutions
	Adding Higher Tech Solutions
	Proxies
	P3P
	Monitoring Tools

	Outlook
	A Generic Architecture for a DRM Content-Distribution System
	Basic Architecture and Extensions
	Basic Protocols and Operations to Support
	Installation and Initialization of the DRM Client
	Searching for Content and Content Delivery
	Content Acquisition
	Rights Delivery
	Accessing and Playing Content
	Risk Management
	Data Collection in DRM Systems

	Chapter 7
	Secure Open Systems for Protecting Privacy and Digital Services
	Introduction
	Architectural Components
	The Coprocessor
	The SAC
	The Trust Server
	Privacy without Containment.
	Containment without Privacy.
	Trust Server Rationale.

	Individualization

	Notation
	Assumptions Regarding the Trust Server
	Minimal Assumptions on Secure Communications between Coprocessors and the Trust Server
	Method 1: SAC Individualization by Application Server
	Method 2: SAC Individualization by Trust Server
	Conclusion

	Chapter 8
	Introduction
	The MPEG-4 IM-1 IPMP ‘hooks’
	Why the ‘hooks’ Need to Be Extended?
	How the MPEG-4 IPMP Extensions Work?
	User Requests Specific Content
	IPMP Tools Description Access
	IPMP Tools Retrieval
	Instantiation of IPMP Tools
	IPMP Initialisation and Update – In Parallel with Content Consumption

	The IPMP Extension Components
	The Content
	IPMP Tool Manager
	Message Router

	Messages
	Function Structure [1]
	Creation and Notification Messages
	IPMP Information Delivery Messages
	Processing Messages
	Intent Messages
	User Messages
	Authentication Messages

	A Comparison with OPIMA (Open Platform Initiative �for Multimedia Access)
	Message Routing vs. Scheduler
	IPMP Tools vs. OPIMA IPMPS
	Manufacturer and Consumer-Interoperability vs. Limited Complexity
	Similarities and Differences
	Interoperability between OCCAMM and the IPMP Extensions
	A Walkthrough in an OCCAMM System Using MPEG-4 IPMP Extension Capable Player

	Conclusions
	References

	Chapter 9
	Dynamic Self-Checking Techniques for Improved Tamper Resistance
	Introduction
	Related Work
	Design Objectives and Threat Model
	Functionality
	Security
	Discovery
	Disablement

	Algorithm Design
	Components and Embedding Process
	Testers
	Testing Pattern
	Correctors and Intervals
	Tamper Response

	Tester Design and Placement
	Design Objectives
	Linear Hash Functions
	Tester Construction and Customization
	Tester Placement

	Interval Construction
	Corrector Placement
	Interval Definition
	Assignment of Testers to Intervals

	Summary and Future Work

	Chapter 10
	Protecting Software Code by Guards
	Introduction
	Related Work
	The Guarding Framework
	Guards
	Guards Network
	Security
	Strengthening the Guards Network
	Strengthening Individual Guards

	Description of System
	Experimental Results
	Impacts on Program Size
	Impacts on Program Performance

	Conclusion and Further Remarks

	Chapter 11
	How to Manage Persistent State in DRM Systems
	Introduction
	System Model
	Persistent State Management Requirements
	Fault Tolerance
	Security
	Performance
	Resource Consumption
	Scalability

	Mechanisms for Managing Persistent State
	Secure Memories
	Secure Audit Logs
	Secure File Systems
	Encrypted File Systems
	Tamper Detection

	Secure Database Systems
	TDB
	GnatDb

	A Retrospective on DRM Database System Design

	Chapter 12
	A Cryptanalysis of the High-Bandwidth Digital Content Protection System
	Introduction
	Related Work
	The HDCP Authentication Protocol
	Linear Algebra over Z/256Z
	The Authority's Secret
	Forging Key Pairs
	Conclusion

	Chapter 13
	The Need for Digital Rights Management �in the Evolving Online Music Industry
	The Demand-Side Perspective: �Influences on Cost Structure and Revenue Models
	The Supply-Side Perspective: Differentiation between �Public and Private Goods through Digital Rights Management
	Four Business Model Scenarios
	Assumptions
	First Scenario: Open Source File Sharing Systems
	Second Scenario: Music Service Provider
	Third Scenario: Digital Rights Management-Based Subscription Models
	Fourth Scenario: Super-Distribution

	Conclusions Regarding Positioning and Privacy
	References

	Chapter 14
	Introduction
	Protection by Technology
	Overview
	Supporting Protection by Anti-circumvention Regulations

	Protection by Contracts
	Overview
	Supporting Protection by Technology
	Supporting Protection by Anti-circumvention Regulations

	Protection by Technology Licenses
	Paradigm Shift in Protection
	Legal Perspective
	Law and Economics Perspective

	Necessity of Copyright Law
	Limitations to DRM Protection
	Copyright Law as a Safety Net

	Law as a Limitation to the Paradigm Shift in Protection
	Limitation of the Protection by Contracts
	Limitation of the Protection by Technology Licenses
	Limitation of the Protection by Technology

	Conclusion
	References

	Chapter 15
	Copyright Is Not About Copying
	First Sale Doctrine – Physical Property Only
	Fair Use
	The Right of Public Distribution

	Conclusion

	Back matter
	Author Index

