
Lecture Notes in Computer Science 4165
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Willem Jonker Milan Petković (Eds.)

Secure
Data Management

Third VLDB Workshop, SDM 2006
Seoul, Korea, September 10-11, 2006
Proceedings

13

Volume Editors

Willem Jonker
Philips Research Europe
High Tech Campus 34
5656 AE Eindhoven
The Netherlands
E-mail: willem.jonker@philips.com

Milan Petković
Philips Research Laboratories
High Tech Campus 34
5656 AE Eindhoven
The Netherlands
E-mail: Milan.Petkovic@philips.com

Library of Congress Control Number: 2006931629

CR Subject Classification (1998): H.2.0, H.2, C.2.0, H.3, E.3, D.4.6, K.6.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-38984-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38984-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11844662 06/3142 5 4 3 2 1 0

Preface

Recent developments in computer, communication, and information technolo-
gies, along with increasingly interconnected networks and mobility have estab-
lished new emerging technologies, such as ubiquitous computing and ambient
intelligence, as a very important and unavoidable part of everyday life. However,
this development has greatly influenced people’s security concerns. As data is
accessible anytime from anywhere, according to these new concepts, it becomes
much easier to get unauthorized data access. As another consequence, the use
of new technologies has brought some privacy concerns. It becomes simpler to
collect, store, and search personal information and endanger people’s privacy.
Therefore, research in the area of secure data management is of growing impor-
tance, attracting the attention of both the data management and security re-
search communities. The interesting problems range from traditional ones such
as access control (with all variations, like role-based and/or context-aware), data-
base security, operations on encrypted data, and privacy preserving data mining
to cryptographic protocols.

The call for papers attracted 33 papers both from universities and indus-
try. The program committee selected 13 research papers for presentation at the
workshop. These papers are also collected in this volume, which we hope will
serve you as useful research and reference material.

The volume is divided roughly into four major sections. The first section
focuses on privacy protection addressing the topics of indistinguishability, sov-
ereign information sharing, data anonymization, and privacy protection in ubiq-
uitous environments. The second section changes slightly the focal point to pri-
vacy preserving data management. The papers in this section deal with search
on encrypted data and privacy preserving clustering. The third section focuses
on access control which remains an important area of interest. The papers cover
role-based access control, XML access control and conflict resolution. The last
section addresses database security topics.

Finally, let us acknowledge the work of Richard Brinkman, who helped in the
technical preparation of these proceedings.

July 2006 Willem Jonker and Milan Petković

Organization

Workshop Organizers

Willem Jonker (Philips Research/University of Twente, The Netherlands)
Milan Petković (Philips Research, The Netherlands)

Program Committee

Gerrit Bleumer, Francotyp-Postalia, Germany
Ljiljana Branković, University of Newcastle, Australia
Sabrina De Capitani di Vimercati, University of Milan, Italy
Ernesto Damiani, University of Milan, Italy
Eric Diehl, Thomson Research, France
Csilla Farkas, University of South Carolina, USA
Ling Feng, Twente University, Netherlands
Eduardo Fernández-Medina, University of Castilla-La Mancha, Spain
Elena Ferrari, Università degli Studi dell’Insubria, Italy
Simone Fischer-Hübner, Karlstad University, Sweden
Tyrone Grandison, IBM Almaden Research Center, USA
Ehud Gudes, Ben-Gurion University, Israel
Hacan Hacigümüş, IBM Almaden Research Center, USA
Marit Hansen, Independent Centre for Privacy Protection, Germany
Pieter Hartel, Twente University, The Netherlands
Dong Hoon Lee, Korea University, Korea
Mizuho Iwaihara, Kyoto University, Japan
Sushil Jajodia George Mason University, USA
Ton Kalker, HP Research, USA
Marc Langheinrich, Institute for Pervasive Computing ETH Zurich, Switzerland
Nick Mankovich, Philips Medical Systems, USA
Sharad Mehrotra, University of California at Irvine, USA
Stig Frode Mjølsnes, Norwegian University of Science and Technology, Norway
Eiji Okamoto, University of Tsukuba, Japan
Sylvia Osborn, University of Western Ontario, Canada
Günther Pernul, University of Regensburg, Germany
Birgit Pfitzmann, IBM Zurich Research Lab, Switzerland
Bart Preneel, KU Leuven, Belgium
Kai Rannenberg, Goethe University Frankfurt, Germany
Andreas Schaad, SAP Labs, France
Morton Swimmer, IBM Zurich Research Lab, Switzerland
Sheng Zhong, Stevens Institute of Technology, USA

VIII Organization

Additional Referees

Srikanth Akkiraju, University of Twente, The Netherlands
Richard Brinkman, University of Twente, The Netherlands
Ileana Buhan, University of Twente, The Netherlands
Lothar Fritsch, Johann Wolfgang Goethe University, Germany
Ludwig Fuchs, University of Regensburg, Germany
Bijit Hore, University of California at Irvine, USA
Ravi Chandra Jammalamadaka, University of California at Irvine, USA
Heiko Rossnagel, Johann Wolfgang Goethe University, Germany
Falk Wagner, Johann Wolfgang Goethe University, Germany
Lingyu Wang, George Mason University, USA
Chao Yao, George Mason University, USA
Xingbo Yu, University of California at Irvine, USA

Table of Contents

Privacy Protection

Indistinguishability: The Other Aspect of Privacy . 1
Chao Yao, Lingyu Wang, Sean X. Wang, Sushil Jajodia

Sovereign Information Sharing Among Malicious Partners 18
Stefan Böttcher, Sebastian Obermeier

Temporal Context Lie Detection and Generation . 30
Xiangdong An, Dawn Jutla, Nick Cercone

Secure Anonymization for Incremental Datasets . 48
Ji-Won Byun, Yonglak Sohn, Elisa Bertino, Ninghui Li

Privacy Preserving Data Management

Difference Set Attacks on Conjunctive Keyword Search Schemes 64
Hyun Sook Rhee, Ik Rae Jeong, Jin Wook Byun,
Dong Hoon Lee

Off-Line Keyword Guessing Attacks on Recent Keyword Search
Schemes over Encrypted Data . 75

Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, Dong Hoon Lee

Privacy Preserving BIRCH Algorithm for Clustering over Vertically
Partitioned Databases . 84

P. Krishna Prasad, C. Pandu Rangan

Access Control

Conflict of Interest in the Administrative Role Graph Model 100
Yunyu Song, Sylvia L. Osborn

Two Phase Filtering for XML Access Control . 115
Changwoo Byun, Seog Park

Hybrid Authorizations and Conflict Resolution . 131
Amir H. Chinaei, Huaxin Zhang

X Table of Contents

Database Security

Analysis of a Database and Index Encryption Scheme – Problems
and Fixes . 146

Ulrich Kühn

Information Disclosure by XPath Queries . 160
Stefan Böttcher, Rita Steinmetz

SPIDER: An Autonomic Computing Approach to Database Security
Management . 175

Hakan Hacıgümüş

Author Index . 185

Indistinguishability: The Other Aspect of
Privacy�

Chao Yao1,��, Lingyu Wang2, Sean X. Wang3, and Sushil Jajodia1

1 Center for Secure Information Systems
George Mason University
{cyao, jajodia}@gmu.edu

2 CIISE, Concordia University
wang@encs.concordia.ca

3 Department of Computer Science
The University of Vermont

xywang@cs.uvm.edu

Abstract. Uncertainty and indistinguishability are two independent
aspects of privacy. Uncertainty refers to the property that the attacker
cannot tell which private value, among a group of values, an individ-
ual actually has, and indistinguishability refers to the property that
the attacker cannot see the difference among a group of individuals.
While uncertainty has been well studied and applied to many scenarios,
to date, the only effort in providing indistinguishability has been the
well-known notion of k-anonymity. However, k-anonymity only applies
to anonymized tables. This paper defines indistinguishability for general
situations based on the symmetry among the possible private values as-
sociated with individuals. The paper then discusses computational com-
plexities of and provides practical algorithms for checking whether a set
of database views provides enough indistinguishability.

1 Introduction

In many data applications, it’s necessary to measure privacy disclosure in re-
leased data to protect individual privacy while satisfying application require-
ments. The measurement metrics used in prior work have mainly been based
on uncertainty of private property values, i.e., the uncertainty what private
value an individual has. These metrics can be classified into two categories:
non-probabilistic and probabilistic. The non-probabilistic metrics are based on
whether the private value of an individual can be uniquely inferred from the
released data [1,20,7,17,5,16] or whether the cardinality of the set of possible
private values inferred for an individual is large enough [26,27]. The probabilis-
tic metrics are based on some characteristics of the probability distribution of
the possible private values inferred from the released data [3,2,10,9,15,4] (see
Section 4 for more details).

� The work was partially supported by the NSF grants IIS-0430402, IIS-0430165, and
IIS-0242237.

�� Part of work of this author was done while visiting the University of Vermont.

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 C. Yao et al.

However, uncertainty is only one aspect of privacy and it alone does not
provide adequate protection. For example, we may reveal employee John’s salary
to be in a large interval (say, 100K to 300K annually). There may be enough
uncertainty. However, if we also reveal that the salaries of all other employees
are in ranges that are totally different from John’s range (say, all are subranges
of 50K to 100K), then John’s privacy may still be violated. As another example,
suppose from the released data we can infer that all patients in a hospital may
only have Cold or SARS except that John may have Cold or AIDS. Even
though the uncertainty of John’s sickness has the same “magnitude” as that of
the other patients, John may still feel his privacy is violated, since he is the only
one who possibly has AIDS.

To adequately protect privacy, we need to consider the other aspect, namely,
indistinguishability. Indeed, the privacy breach in the above examples can be
viewed as due to the fact that from the released data, an individual is different
from all other individuals in terms of their possible private values. In other words,
the examples violate a privacy requirement, namely, the “protection from being
brought to the attention of others” [11]. What we need is to have each individual
belong to a group of individuals who are indistinguishable from each other in
terms of their possible private values derived from the released data. In this
way, an individual is hidden in a crowd that consists of individuals who have
similar/same possible private values. For instance, in the above salary example,
to protect John’s privacy, we may want to make sure that attackers can only
derive from the released data that a large group of employees have the same
range as John’s for their possible salaries.

Uncertainty and indistinguishability are two independent aspects for provid-
ing privacy; one does not imply the other. From the above examples, we can see
that uncertainty cannot ensure good indistinguishability. Likewise, good indis-
tinguishability cannot ensure enough uncertainty. For instance, if in the released
data many employees have the same single possible salary value, then these em-
ployees are indistinguishable from each other in terms of their salaries, but there
is not enough uncertainty to protect their privacy (all their salaries are the same
and revealed!).

Our idea of indistinguishability is inspired by the notion of k-anonymization
[24,25,21,14,18] as it can be viewed as a generalization of anonymization. The
idea of k-anonymization is to recode, mostly by generalization, publicly available
quasi-IDs in a single released table, so that at least k individuals will have the
same recoded quasi-IDs. (Quasi-IDs are values on a combination of attributes
that can be used to identify individuals through external sources [24,25].) In
our view, this is an effort to provide indistinguishability among k individuals,
since the recoding makes the individuals indistinguishable from each other. (As
noted above, indistinguishability does not guarantee uncertainty. This is also true
for k-anonymization, which is illustrated by the improvement reported in [19].
The authors impose an additional requirement on anonymization, namely, by
requiring diverse private values among the tuples with the same recoded quasi-
ID, in order to achieve, in our view, both indistinguishability and uncertainty.)

Indistinguishability: The Other Aspect of Privacy 3

While k-anonymity is an interesting notion, it only applies to anonymized
tables. In this paper, we define two kinds of indistinguishability, and the corre-
sponding privacy metrics, that can be applied to general situations, including
anonymized tables and relational views. We show that k-anonymization is a
special case of one kind of indistinguishability under a certain assumption (see
Section 2.3).

Both notions of indistinguishability introduced in this paper are based on cer-
tain symmetry between individuals and their private values in the released data.
More specifically, the first definition requires symmetry for all possible private
values while the second definition bases on symmetry referring only to certain
subsets of possible private values. With the two kinds of indistinguishability de-
fined, we turn to study the problem of deciding whether a set of database views
provides enough indistinguishability. We study the computational complexity as
well as practical algorithms. We focus on checking for indistinguishability since
checking for uncertainty has been extensively studied [1,7,17,5,26,16,27].

We summarize the contributions of this paper as follows. (1) We identify in-
distinguishability as a requirement for privacy in addition to uncertainty, provide
formal definitions of different kinds of indistinguishability, and study their prop-
erties. (2) We analyze the computational complexity and introduce practical
checking methods for deciding whether a set of database views provides enough
indistinguishability.

The rest of paper is organized as follows. We give formal definitions of in-
distinguishability and privacy metrics in Section 2. We then focus on checking
database views against these privacy metrics in Section 3. In Section 4 we review
the related work. Finally, we conclude with a summary in Section 5.

2 Indistinguishability

2.1 Preliminaries

In this paper, we consider releasing data from a single private table Tbl with
schema D. The attributes in D are partitioned into two sets, B and P . The
set B consists of the public attributes; P consists of the private attributes. For
simplicity and without loss of generality, we assume P only has one attribute.

We assume that the projection on B, ΠB(Tbl), is publicly known. In the salary
example, this means that the list of employees is publicly known. We believe this
assumption is realistic in many situations. In other situations where this is not
true, we may view our approach as providing a conservative privacy measure.

Given a relation rB on B, we will use IB to denote the set {I|ΠB(I) = rB},
i.e., the set of the relations on D whose B-projection coincides with rB. The
domain of P is denoted by Dom(P). A tuple of an instance in IB is denoted by
t or (b, p), where b is in ΠB(Tbl) and p is in Dom(P). The set IB corresponds
to all possible private table instances by only knowing ΠB(Tbl).

Furthermore, we assume B is a key in D, which means that each composite
value on B appears at most once in the private table. We also assume B is
a quasi-ID, and hence, the tuples in Tbl describe associations of the private

4 C. Yao et al.

attribute values with individuals. (Recall that a quasi-ID is a combination of
attribute values that can be used to identify an individual.) Such associations
are the private information to be protected.

In Figure 1, our running example is shown. The public attributes in B are
Zip, Age, Race, Gender, and Charge. We use t1, ..., t12 to denote the tuples in
the table. By the assumption that B is a quasi-ID, ti[B] identifies a particular
individual for each i. In the sequel, we use ti[B] and the individual identified
by ti[B] interchangeably. The private attribute is Problem. Here, Problem is
drawn from a finite discrete domain. (In general the private attribute also can
be drawn from an infinite or a continuous domain; but it should not be difficult
to extend our study to infinite discrete or continuous domains).

We assume that the data in Tbl are being released with a publicly-known
function M . We also use v to denote the result of M() on the private table, i.e.,
v = M(Tbl). Examples of function M() include an anonymization procedure,
and a set of queries (views) on a single table on D.

Zip Age Race Gender Charge Problem
t1 22030 39 White Male 1K Cold
t2 22030 50 White Male 12K AIDS
t3 22030 38 White Male 5K Obesity
t4 22030 53 Black Male 5K AIDS
t5 22031 28 Black Female 8K Chest Pain
t6 22031 37 White Female 10K Hypertension
t7 22031 49 Black Female 1K Obesity
t8 22031 52 White Male 8K Cold
t9 22032 30 Asian Male 10K Hypertension
t10 22032 40 Asian Male 9K Chest Pain
t11 22033 30 White Male 10K Hypertension
t12 22033 40 White Male 9K Chest Pain

Fig. 1. A patient table (Tbl)

Zip Problem
t9 22032 Hypertension
t10 22032 Chest Pain
t11 22033 Hypertension
t12 22033 Chest Pain

Fig. 2. A released
view ΠZip,Problem(Tbl)
σZip=′22032′or′22033′ (Tbl)
provides 2-SIND

2.2 Symmetric Indistinguishability

As v = M(Tbl) is released, we denote by Iv the subset of possible instances in
IB that yield v. We introduce the definition of indistinguishability based on Iv.

Definition 1. (Symmetric Indistinguishability) Given a released data v
and two tuples bi and bj in ΠB(Tbl), we say bi and bj are symmetrically In-
distinguishable w.r.t. v if the following condition is satisfied: for each instance I
in Iv containing (bi, pi) and (bj, pj), there exists another instance I ′ in Iv such
that I ′ = (I − {(bi, pi), (bj , pj)}) ∪ {(bi, pj), (bj , pi)}.

We abbreviate Symmetric Indistinguishability as SIND. This definition requires
that for each possible instance in Iv, if two symmetrically indistinguishable
B tuples swap their private values while keeping other tuples unchanged, the
resulting new instance can still yield v. In the sequel, we say two B tuples t1[B]
and t2[B] can swap their private values in an instance, or simply t1[B] swaps
with t2[B], if the resulting instance can still yield v.

Indistinguishability: The Other Aspect of Privacy 5

Note that such a swap is required for all the instances yielding v, hence this
definition is in terms of v, not the current table Tbl (although we used the
projection ΠB(Tbl) in the definition, this projection is not Tbl itself and is
assumed publicly known). In other words, to be SIND is to be able to swap their
private values in all the possible instances, including Tbl.

For example, consider the released view v in Figure 2 on the table in Fig-
ure 1. The two B tuples t9[B] and t10[B] are SIND, because they can swap their
Problem values in any instance that yields v while still yielding the same v. Simi-
larly, the two B tuples t11[B] and t12[B] are also SIND. However, t9[B] and t11[B]
are not SIND, even though they have the same Problem value Hypertension
in the current private table. To show this, consider an instance obtained by
swapping the Problem values of t9 and t10 in Tbl (while other tuples remain
unchanged). So now t9 has ChestPain while t10 has Hypertension. Denote
the new instance Tbl′. Clearly, Tbl′ also yields the view v. However, in Tbl′,
if we swap the Problem values of t9 (i.e., ChestPain) with that of t11 (i.e.,
Hypertension), then both t9 and t10 will have Hypertension. Therefore, the
new instance obtained from Tbl′ does not yield v, and hence t9 and t11 are not
SIND.

The definition of SIND requires a complete symmetry between two B tuples
in terms of their private values. The sets of possible private values of the SIND
tuples are the same, because in each possible instance two SIND B tuples can
swap their private values without changing the views. Furthermore, the definition
based on swapping makes SIND between two B tuples independent on other B
tuples. That is, even if attackers can guess the private values of all other B
tuples, they still cannot distinguish between these two B tuples because the two
B tuples still can swap their private values without affecting the views.

We can also use a probability model to illustrate the indistinguishability by
SIND. If we assume each B tuple has the same and independent a priori distrib-
ution over its private values, then we can easily prove that the two B tuples have
the same a posteriori distribution over their private values after data released,
due to complete symmetry in terms of their private values.

The binary relation SIND is reflexive, symmetric and transitive. That is, SIND
is an equivalence relation. It is easy to see that it is reflexive and symmetric. We
prove the transitivity as follows. If a B tuple b1 can swap with another B tuple
b2 and b2 can swap with b3, then b1 can swap with b3 by the following steps: b1
swaps with b2; b2 swaps with b3; b2 swaps with b1; by the definition of SIND,
the final instance still yields v.

Thus, all the B tuples that are indistinguishable from each other form a
partition of the B tuples. Each set in the partition, which we call a SIND set, is
the “crowd” that provides individual privacy. The sizes of these crowds reflect
how much protection they give to the individuals in the crowd. So we have the
following metric.

Definition 2. (k-SIND) Given a released data v, if each SIND set has a car-
dinality of at least k, we then say v provides k-SIND.

6 C. Yao et al.

2.3 Relationship with k-Anonymity

In this subsection, we discuss the relationship between k-SIND and k-anonymity.
In the k-anonymity literature (e.g., [24,25,21,14,18]), the released data is an
anonymized table. Anonymization is a function from quasi-IDs to recoded quasi-
IDs, and the anonymization process (the function M in Section 2.1) is to replace
quasi-IDs with recoded quasi-IDs. We assume that the anonymization algorithm
and the input quasi-IDs are known. In fact, we make a stronger assumption,
called “mapping assumption”, which says that (1) each quasi-ID maps to one
recoded quasi-ID and (2) given a recoded quasi-ID, attackers know which set of
quasi-IDs map to it.

As an example, there is a table and an anonymized table as the following,
respectively. The tuples on (Zip, Race) are quasi-IDs. Under the mapping as-
sumption, attackers know which quasi-ID maps to which recoded quasi-ID. For
instance, (22031, White) maps to (2203∗, ∗) but not (220∗∗, White). (In con-
trast, without the mapping assumption, only from the anonymized table, (22031,
White) may map to either (2203∗, ∗) or (220∗∗, White).)

Zip Race Problem
22021WhiteCold
22031WhiteObesity
22032WhiteAIDS
22033Black Headache

Zip Race Problem
220∗∗WhiteCold
220∗∗WhiteObesity
2203∗ ∗ AIDS
2203∗ ∗ Headache

Under the above assumption, we have the following conclusion about the
relationship between k-SIND and k-anonymity. Here the attributes of quasi-IDs
are assumed to be exactly the public attributes B.

Proposition 1. Under the mapping assumption, if an anonymized table v pro-
vides k-anonymity, where k ≥ 2, then v provides k-SIND.

Intuitively, if v provides k-anonymity, then at least k quasi-IDs map to each
recoded quasi-ID in v. In any instance yielding v, suppose two quasi-IDs b1 and
b2 map to the same recoded quasi-ID. Then swapping the private values of b1
and b2 in the original table gives an instance yielding the same v. Therefore, v
provides k-SIND.

By definition, k-anonymity is applicable only to a single anonymized table,
but not to other kinds of released data such as multiple database views.

2.4 Restricted Symmetric Indistinguishability

Since SIND requires symmetry in terms of all possible private values, it is a
rather strict metric. We define another metric based on the symmetry in terms
of not all possible private values but only a subset that includes the actual private
values in the current private table. If B tuples are symmetric in terms of this
subset of private values, even though they are not symmetric in terms of other
values, we may still take them as indistinguishable. The intuition here is that
we intend to provide more protection on the actual private values.

Indistinguishability: The Other Aspect of Privacy 7

We associate each B tuple with a set of private values including its current pri-
vate value. These sets form a collection. More specifically, we call a collection P
of Dom(P) value sets P1, ..., Pn a private value collection, where n = |ΠB(Tbl)|
and ΠB(Tbl) = b1, ..., bn, if for each s, where s = 1, ..., n, ΠP σB=bs(Tbl) ∈ Ps.

If two B tuples are symmetric w.r.t. a private value collection, then we take
them as indistinguishable. More formally, we have the following definition. We
abbreviate restricted symmetric indistinguishability as RSIND.

Definition 3. (RSIND) Given a released data v on the current table Tbl and
a private value collection P1, ..., Pn, we say two B tuples bi and bj are RSIND
w.r.t. P1, ..., Pn if the following conditions are satisfied: (1) Pi = Pj and (2)
for each pi in Pi and each pj in Pj, if (bi, pi) and (bj , pj) are in an instance I
in Iv, I ′ is in Iv where I ′ = (I − {(bi, pi), (bj , pj)}) ∪ {(bi, pj), (bj , pi)}.

In this definition, unlike SIND, which swaps all possible private values, RSIND
only swaps private values in a subset including the current private values. RSIND
becomes SIND if Pi = Dom(P) for each i.

For example, consider the two views in Figure 3 (see caption) on the table
in Figure 1. From the view, we can deduce that in the private table Tbl, t1[B]
cannot take Obesity but can take Cold and AIDS, and t2[B] can take all the
three problems. Clearly, t1[B] and t2[B] are not SIND. But there exists a private
value collection P1, ..., P4 with P1 = P2 = {Cold, AIDS} and P3 = P4 =
{Cold, AIDS, Obesity}, we have t1[B] and t2[B] are RSIND w.r.t. this collection.
Indeed, P1 and P2 are identical, and they both include the current private values
of t1[B] and t2[B], Cold and AIDS. In any instance yielding the views, if t1[B]
and t2[B] have Cold and AIDS, or AIDS and Cold, respectively, then swapping
their private values results in an instance yielding the same views.

Problem
t1 Cold
t2 AIDS
t3 Obesity
t4 AIDS

t1[B]
t2[B]
t3[B]
t4[B]

(a)The first view (b)The SIND partition

t1[B] {Cold, AIDS}
t2[B] {Cold, AIDS}
t3[B] {Cold, AIDS, Obesity}
t4[B] {Cold, AIDS, Obesity}

(c) The RSIND partition w.r.t. a collection

Fig. 3. Two released views ΠProblem σZip=′22030′ (Tbl) and ΠProblem

σt1 and Problem=′Obesity′(Tbl) = ∅

Given a private value collection P1, ..., Pn, RSIND is also a binary equivalence
relation, hence induces a partition over the B tuples; and each set in the partition
is called an RSIND set w.r.t. P1, ..., Pn.

8 C. Yao et al.

Definition 4. (k-RSIND) Given a released data v, if there exists a private
value collection P such that each RSIND set in the induced partition has a car-
dinality of at least k, we then say v provides k-RSIND.

Obviously, if v provides k-SIND, we can let P1, ..., Pn be the collection of all
possible private values, i.e., Ps = {p|∃I ∈ Iv (bs, p) ∈ I}, where s = 1, ..., n. Then
each pair of SIND values are RSIND w.r.t. P1, ..., Pn, hence the SIND partition
is the RSIND partition w.r.t. P1, ..., Pn. Clearly, the cardinality of each set in
this RSIND partition is at least k since each set in the SIND partition is so.
Thus, we have the following proposition. In Figure 3, the second view makes t1
not have Obesity which others may have. The views do not provide 2-SIND, but
do provide 2-RSIND.

Proposition 2. k-SIND implies k-RSIND.

From the definition of RSIND, we have the following conclusion. Given a set of
tuples T in the current table Tbl, each private value collection w.r.t. which the
B tuples in ΠB(T) are RSIND from each other must include all of their current
private values, ΠP (T); ΠB(T) are RSIND from each other w.r.t. ΠP (T), if there
exists a collection such that ΠB(T) are RSIND from each other. More formally,
we have the following proposition.

Proposition 3. Given a private value collection P = P0, P1, ..., Pn, released
data v, and a set T of tuples in the current table, if the tuples in ΠB(T) are
RSIND from each other w.r.t. P, then we have the following two facts. First,
for each bi in ΠB(T), ΠP (T) ⊆ Pi. Second, for each bi in ΠB(T), if we replace
Pi with ΠP (T) to get a new private value collection P ′, then all the B tuples in
ΠB(T) are still RSIND w.r.t. P ′.

Consider the example in Figure 3. t3[B] and t4[B] are RSIND w.r.t. the private
value collection. Hence, in the collection, the corresponding sets of t3[B] and t4[B]
are identical and have both their current private values, Obesity and AIDS. If
we take their current private values as a collection, which means dropping Cold
from their corresponding sets, t3[B] and t4[B] are still RSIND.

Proposition 3 implies the following property of RSIND. If the tuples in ΠB(T)
are RSIND from each other, then by Proposition 3, the tuples in ΠB(T) are
RSIND from each other w.r.t. ΠP (T). By a repeated use of the definition of
RSIND, for each set of tuple T ′ such that ΠB(T ′) = ΠB(T) and the private
values in T ′ is a permutation of the private values (with duplicates preserved)
in T , we know there exists an instance I in Iv with T ⊆ I. This explains why
we say these tuples are indistinguishable in terms of the current private values.

For example, consider the SIND partition of Figure 3(b) as an RSIND partition
(note again that there are many RSIND partitions with difference private value
collections and the SIND partition is one of them). We have that t2[B], t3[B] and
t4[B] are RSIND from each other w.r.t. P2 = P3 = P4= {Obesity, AIDS}. Then
for each of the three different (repeated) permutations of t2[B], t3[B], and t4[B]
with Obesity, AIDS and AIDS values (i.e., 〈(t2[B], Obesity), (t3[B], AIDS),
(t4[B], AIDS)〉, 〈(t2[B], AIDS), (t3[B], Obesity), (t4[B], AIDS)〉, and 〈(t2[B],

Indistinguishability: The Other Aspect of Privacy 9

AIDS), (t3[B], AIDS), (t4[B], Obesity)〉), there exists at least one instance in Iv

that contains that permutation.
The size of each set in a private value collection matters in measuring privacy

disclosure, which is not reflected in k-RSIND. Generally, the more P values in the
collection, the better indistinguishability we achieve since we ignore the fewer
P values that may make B tuples distinguishable. Also, more private values
may mean better uncertainty. However, in this paper, we are not pursuing this
direction.

3 Checking Database Views

In this section, we focus on checking released data that are in the form of a
view set for indistinguishability. A view set is a pair (V, v), where V is a list
of selection-projection queries (q1, q2, ..., qn) on Tbl, and v is a list of relations
(r1, r2, ..., rn) that are the results, with duplicates preserved, of the corresponding
queries. We may abbreviate (V, v) to v if V is understood. In this paper, “view”,
“query” and “query result” are used interchangeably when no confusion arises.
Note all query results preserve duplicates, hence, are multisets and all relational
operations in this paper are on multisets.

3.1 Checking for k-SIND

In this subsection, we will show that checking for k-SIND is intractable. Then,
we will present a subcase where checking is tractable, before which the basic
checking mechanism is presented. Finally, we will also present a conservative
checking methods that always catch k-SIND violation, but may make mistakes
when a view set actually provides k-SIND.

Complexity. Checking for k-SIND is intractable. This is mainly because it is
intractable to know whether a private value can associate with a particular B
tuple by just looking at the view set.

Theorem 1. Given a view set v containing only selection and projection, it is
NP-hard to decide whether there exists an instance I ∈ Iv such that a tuple (b, p)
is in I.

The proof of the above theorem is by showing a reduction to our problem from
the following NP-hard Complement Boolean Auditing Problem (whose comple-
ment, Boolean auditing problem, has been shown as coNP-hard [17]).

Theorem 2. Given a view set v, whether v provides k-SIND is coNP-hard.

We reduce the complement of the problem in Theorem 1 (that is, determining if
a tuple (b, p) appears in at least one instance in Iv) to the problem of checking
k-SIND. Given any table Tbl and view set v, we construct another table Tbl′

and view set v′, such that v′ violates 2-SIND iff (b, p) appears in at least one
instance in Iv. Because it is NP-hard to determine the latter by Theorem 1, it
is coNP-hard to determine if v′ satisfies 2-SIND.

10 C. Yao et al.

Basic mechanism for checking. First, we introduce an important property
of SIND in Proposition 4. This property will be used in the subsequent checking
methods.

Proposition 4. Given a view set v and two tuples b1 and b2 in ΠB(Tbl), b1
and b2 are SIND w.r.t. v, iff for each pair of P values p1 and p2 associated with
b1 and b2, respectively, in an instance in Iv, and each query q in v, we have
q({(b1, p1), (b2, p2)}) = q({(b1, p2), (b2, p1)})

Assume b1 and b2 are SIND. Then for each view q in v, q({(b1, p1), (b2, p2)} ∪
Io) = q({(b1, p2), (b2, p1)} ∪Io) (all query results are multisets and relational
operations are multiset operations), where Io is an instance such that {(b1, p1),
(b2, p2)} ∪ Io ∈ Iv. Since q only contains selection and projection, q({(b1, p1),
(b2, p2)} ∪Io) = q({(b1, p1), (b2, p2)} ∪ q(Io) and q({(b1, p2), (b2, p1)} ∪ Io) =
q({(b1, p2), (b2, p1)} ∪ q(Io). Thus, we have q({(b1, p1), (b2, p2)}) = q({(b1, p2),
(b2, p1)}). The other direction holds for the same reason.

We call the equation in this proposition swap equation. This proposition sug-
gests SIND for selection-projection views has the property of being “local”. In-
deed, to check SIND between given two B tuples, we do not need to see other
B tuples.

More specifically, this proposition says that given v and two SIND B tuples b1
and b2, for each query q in v, if the tuples (b1, p1) and (b2, p2) are in an instance
that yields v, and we swap the private values of (b1, p1) and (b2, p2) to get the
two new tuples, i.e., (b1, p2) and (b2, p1), then we know that {(b1, p2), (b2, p1)}
yields the same result of q as {(b1, p2), (b2, p1)} does. This is a necessary and
sufficient condition.

As a simple example, given two B tuples b1 and b2, if in all the instances in
Iv, we know they associate either with p1 and p2, respectively, or p2 and p3,
respectively. Then b1 and b2 are SIND iff

q

(
(b1, p1)
(b2, p2)

)
= q

(
(b1, p2)
(b2, p1)

)
& q

(
(b1, p2)
(b2, p3)

)
= q

(
(b1, p3)
(b2, p2)

)

To satisfy swap equation

q

(
(b1, p1)
(b2, p2)

)
= q

(
(b1, p2)
(b2, p1)

)

there are only two possibilities: one is

q((b1, p1)) = q((b1, p2)) & q((b2, p2)) = q((b2, p1))

and the other is

q((b1, p1)) = q((b2, p1)) & q((b1, p2)) = q((b2, p2))

If a view has a projection on P and p1 is distinct from p2, we can easily prove
that we only need to check the latter condition. Moreover, if the projection of
q contains P , and b1 and b2 have at least two possible private values, then it is

Indistinguishability: The Other Aspect of Privacy 11

a necessary and sufficient condition for b1 and b2 being SIND that q((b1, p)) =
q((b2, p)) holds for each possible value p.

For example, consider the view q in Figure 2 with the projection on P . Clearly,
q((t9[B], H)) = q((t10[B], H)) and q((t9[B], C)) = q((t10[B], C)), where H =
Hypertension and C = ChestPain. Since H and C are the only possible values
by looking at the view, we know t9[B] and t10[B] are SIND.

In the rest of this subsection, we use Proposition 4 to decide whether a view
set v provides k-SIND.

Selection only on B attributes. This subcase is common, especially in
statistical databases, and hence is extensively studied with uncertainty mea-
sures [1,17,16]. In this subcase, each query in the view set has a selection con-
dition only on the attributes in B. If so, checking for k-SIND can be done in
polynomial time in the size of the private table and the number of views.

We assume the projection of each view contains P ; otherwise, no private
information is involved since the selection condition also does not have P and
the view may be removed from our consideration. By Proposition 4, we have
following conclusion for checking.

Proposition 5. Given a view set v with selection conditions only on the at-
tributes in B, two B tuples b1 and b2 are SIND if for each query q = ΠXσC(Tbl)
in v, we have ΠX−{P}σC(b1) = ΠX−{P}σC(b2). The inverse (“only if”) holds if
b1 and b2 have at least two distinct possible private values.

For each query q in v, if we have ΠX−{P}σC(b1) = ΠX−{P}σC(b2), then q(b1, p)
= q(b2, p) holds for each p in the domain. Because C does not contain p, we
can apply the conclusion from Proposition 4. Thus, each pair of possible tuples
(b1, p1) and (b2, p2) satisfies swap equation. Otherwise, q(b1, p) = q(b2, p) can
not hold, hence, swap equation can not be satisfied if b1 and b2 have at least two
distinct possible private values (if there is only one possible private value, the
swap results in the same instance, hence swap equation must be satisfied).

We assume that the set of k indistinguishable B tuples must have at least two
distinct possible private values; otherwise, it must not be safe. Thus, the condi-
tion of Proposition 5 is a necessary and sufficient condition. By this proposition,
we can present an efficient checking method through partitioning. The basic idea
is that for each view, we can partition tuples such that each set in the partition
are SIND w.r.t. this view, and we then intersect these partitions.

As an example of this procedure, consider the two views

ΠRace,Problem σZip=′22030′ (Tbl) and
ΠGender,Problem σRace=′White′ (Tbl).

We partition the B tuples as Figure 4 (a) by the first view and by the second view
as Figure 4 (b); the final result in Figure 4 (c) is the intersection of the two parti-
tions shown in (a) and (b). For each view, the selected tuples that have the same
values on the projection are grouped in the same set of the partition, (Zip, Race)
for the first and (Race, Gender) for the second; the tuples that are not selected

12 C. Yao et al.

(22030, White) t1[B], t2[B], t3[B]
(22030, Black) t4[B]

Others not selected t5[B], t6[B], ..., t12[B]

(a) By the first view

(White, Male) t1[B], t2[B], t3[B], t6[B],
t8[B], t11[B], t12[B]

(White, Female) t6[B]
Others not selected t4[B], t5[B], t7[B],

t9[B], t10[B]

(b) By the second view

t1[B], t2[B], t3[B]
t4[B]

t5[B], t7[B], t9[B], t10[B]
t6[B]

t8[B], t11[B], t12[B]

(c) The final partition

Fig. 4. The partition of B tuples by views

are grouped into another set in the partition. If two B tuples are in the same block
of the final partition, they are SIND. In this case, we only have 1-SIND.

Now we analyze the computational complexity of this checking procedure.
The partitioning for each view q in this procedure needs to search for the set of
B tuples yielding the same result of q. Such searching can be done using a hash
data structure, hence is constant time. And each partition needs to scan all the
B tuples in Tbl once. Thus the computing time is O(nS), where S is the size of
Tbl and n is the number of views in the view set.

Conservative checking. Because checking a view set for k-SIND is generally
intractable, we may want to perform a conservative-style checking that is poly-
nomial time and suitable for all cases. With a conservative algorithm, we always
catch k-SIND violation, but we may make mistakes when a view set actually
provides k-SIND.

First, we can use a conservative checking method for each single view q. The
basic idea is that if two B tuples have the same characteristics in the selection
condition and have the same value on the B attributes in the projection of q,
then they are SIND for q.

More specifically, if two B tuples b1 and b2 have the same values on the B
attributes in the projection of q, and after substitute B with b1 and b2, respec-
tively, in the selection condition, the two substituted conditions have the same
set of P values making the conditions true, then they are SIND. We can see
that this method does not look for the possible private values. Thus, it has the
similar procedure as the checking method for the case where v selects only B

Indistinguishability: The Other Aspect of Privacy 13

attributes in Subsection 3.1. That is, generate a partition for each view by the
corresponding attribute values of B tuples and intersect these partitions.

For example, consider the view ΠZipσCharge>Salary(Tbl) on the table Tbl.
Each distinct Charge value c has the different set of Salary values making the
selection condition true when you substitute Charge with c in the condition.
Thus, if two B tuples have the same (Zip, Charge) value, then we take them as
SIND; otherwise, we do not.

Clearly, this method for checking each single view is polynomial time. Then
we can use the following conclusion to check a set of views. We have that if two
b tuples are SIND w.r.t. each view in v, then then b1 and b2 are SIND w.r.t.
v. Therefore, we can generate a SIND partition for each view in v, and then
intersection these partitions to get a SIND partition for v. All the B tuples in
the same set of the partition for v must be SIND. Then if the cardinality of each
set of the final partition is at least k, the view set provides k-SIND. Otherwise,
it may not do.

Checking in this way can be done in polynomial time, and is a conservative
method to check the sufficient condition of SIND. We believe this conserva-
tive checking is practical, since we do not check what possible private values
each individual has. In fact, it has the similar idea as k-anonymization methods
[24,25,21,14,18]. Indeed, this checking does not look for the possible private val-
ues but looks at the public values while k-anonymization recodes only the public
values of tuples to achieve k-anonymity.

3.2 Checking for k-RSIND

In this section, we turn to checking whether there exists an RSIND partition such
that the cardinality of each set in the partition is at least k. By Proposition 3,
we can check whether there exists this kind of partition by looking for the B
tuples in each set that are RSIND from each other w.r.t. their current private
values.

To do this, given a set T of tuples in Tbl, we need to check whether for
each pair of B tuples b1 and b2 in ΠB(T), each pair of P values p1 and p2 in
ΠP (T), and each instance I in Iv that contains (b1, p1) and (b2, p2), there exists
an instance I ′ in Iv such that I ′ = (I − {(b1, p1), (b2, p2)}) ∪ {(b1, p2), (b2, p1)}.
Through the similar deduction as in Proposition 4, this swap is equivalent to that
for each query q in v, we must have q({(b1, p1), (b2, p2)}) = q({(b1, p2), (b2, p1)}).

For each pair of B tuples in ΠB(T) and each pair of private values in ΠP (T),
this swap equation needs to be checked. Then, for n tuples, it needs to be checked
O(n4) times (there are O(n2) pairs of B tuples and O(n2) pairs of private values),
where n is the cardinality of T . Obviously, this is costly.

However, in most cases, if each two B tuples in ΠB(T) can swap their current
values, then the two B tuples can swap each two private values in ΠP (T). For
instance, given T = {(b1, p1), {(b2, p2), {(b3, p3)}, if b1 and b2 can swap for p1
and p2, b2 and b3 for p2 and p3, and b3 and b1 for p3 and p1, then any two
B tuples, for example, b1 and b2, can swap for all pairs of the current private
values, p1 and p2, p2 and p3, and p3 and p1.

14 C. Yao et al.

For convenience, we introduce another concept. Given two B tuples b1 and
b2, and (b1, p1) and (b2, p2) in the current table, we say b1 and b2 are CSIND
(currently SIND) if for each query q in v, we have either (1) q contains the
projection on P , and q((b1, p1)) = q((b2, p1)) and q((b1, p2)) = q((b2, p2)), or
(2) q does not contain the projection on P , but q((b1, p1)) = q((b1, p2)) and
q((b2, p1))) = q((b2, p2)). Intuitively, if b1 and b2 are CSIND, we can swap their
private values in the current table without affecting the view set.

Clearly, if each two tuples in ΠB(T) are CSIND, then each two B tuples in
ΠB(T) satisfies swap equation for all the private values in ΠP (T), hence, ΠB(T)
are RSIND from each other. Indeed, if each q contains the projection on P , this
is a necessary and sufficient condition; otherwise, it is a sufficient condition.

Therefore, we apply the following checking method. If we can find a maximal
partition over the B tuples ΠB(Tbl) such that each pair of B tuples in each set
in the partition are CSIND, then this partition is an RSIND partition. Here,
“maximal” means that the union of any two sets in the partition cannot result
in a set in which each pair of B tuples are still CSIND. In this way, we can
find an RSIND partition by checking whether each pair of tuples in the current
table is able to swap their private values. This provides a conservative checking
algorithm for k-RSIND as follows.

Construct a graph G. Each tuple maps to a node. If two tuples are CSIND,
which can be easily checked based on the current private table, add an edge
between the corresponding nodes. Then a complete subgraph of G is a subset
of an RSIND set. Therefore, finding an RSIND partition can be transformed to
finding a maximal clique partition. If each query of v contains the projection on
P , the above checking algorithm is a precise (not conservative) algorithm.

It is known, however, that finding a clique partition with each block’s size of
at least k is NP-hard [13]. It is not difficult to prove that it is NP-hard to decide
whether v provides k-RSIND in the special case where each query of v contains
the projection on P . Therefore, given a released view set v, it is NP-hard to
decide whether v provides k-RSIND.

Nevertheless, we can use the heuristic algorithms in [13] to find a clique par-
tition with each block size at least k. This will result in a conservative algorithm
even for the special case where each query in v contains the projection on P .

For example, consider the views in Figure 3. We construct a graph as Figure 5.
Each edge represents that the B tuples corresponding to the two adjacent nodes
are CSIND. An RSIND partition maps to a maximal clique partition in the
graph.

t3[B]t1[B]

t2[B] t4[B]

Fig. 5. An RSIND partition for the views in Figure 3 maps to a maximal clique par-
tition

Indistinguishability: The Other Aspect of Privacy 15

4 Related Work

The most relevant work to indistinguishability is k-anonymization, which fo-
cuses on how to gain k-anonymity by recoding the quasi-IDs in a single view,
e.g., [24,25,21,14,18]. Recently, there is another work [19] aiming to achieve good
uncertainty while gaining k-anonymity by imposing additional requirements on
anonymization. But k-anonymity applies only to the case where released data is
an anonymized table. In our work, we introduced different definitions of indis-
tinguishability that apply to more general situations, and focused on checking
data base views against these indistinguishability metrics. We also discussed the
relationship between k-anonymity and indistinguishability.

Some work studies the privacy or secrecy disclosure by general database views.
The conditions of perfect secrecy are studied in [22,8] using probability model,
and in [28] using query conditional containment. In this paper, we addressed the
case where we intend to release data if some partial disclosure by database views
is tolerated, and hence the disclosure needs to be measured.

Except for the study of k-anonymity, the privacy metrics used in prior work
have mainly been based on uncertainty of private property values, i.e., the un-
certainty what private value an individual has. These metrics can be classified
into two categories: non-probabilistic and probabilistic.

The non-probabilistic metrics are mainly used in the fields of inference prob-
lem of statistical databases [1,17,16,26], multilevel databases [20,5] and general
purpose databases [7,5,27]. The most often used one is that if the private value
of an individual cannot be uniquely inferred, released data about the individ-
ual are considered safe [1,20,7,17,5,16]. The other one is the cardinality of the
set of possible private values for each individual, among which attackers cannot
determine which one is the actual one [26,27] (The metric used in [27] is an
uncertainty metric in spite of the notion of k-anonymity introduced).

In the above fields, some uncertainty metrics are based on probability. Authors
use the probability value associated with the actual value [12,16] or the variance
of the probability distribution of private values [1,23]. Most work in privacy-
preserving data mining uses probability-based metrics. Their metrics are based
on only the characteristics of the a posteriori probability distribution of private
values [3,2,10], or on both a priori and the a posteriori distribution [2,9,15,4]. The
work in [6] uses indistinguishability based on probability “distance” as privacy
metric.

In this work, we used symmetry-based indistinguishability metrics. And we
illustrated that uncertainty needs to be supplemented with indistinguishability.

5 Conclusions

In this paper, we identified a requirement of privacy in data release, namely
indistinguishability, in addition to uncertainty. We first gave two definitions of
indistinguishability, namely, SIND and RSIND. Then we focused on checking
database views against these indistinguishability metrics. Generally, checking

16 C. Yao et al.

for k-SIND is intractable. We presented a case where polynomial algorithms are
possible. Furthermore, we presented a conservative checking method. Checking
for RSIND is easy, but checking for k-RSIND is intractable and can be done in
a conservative way with heuristic polynomial algorithms.

References

1. N. R. Adam and J. C. Wortmann. Security-control methods for statistical data-
bases: a comparative study. ACM Computing Surveys, 21(4):515–556, December
1989.

2. D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-
serving data mining algorithms. In Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), 2001.

3. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD
Conference), pages 439–450, 2000.

4. S. Agrawal and J. R. Haritsa. A framework for high-accuracy privacy-preserving
mining. In Proceedings of the 21st International Conference on Data Engineering
(ICDE), pages 193–204, 2005.

5. A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference
channels, and monitoring disclosures. IEEE Transactions on Knowledge and Data
Engineering, 12(6):900–919, 2000.

6. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public
databases. In Theory of Cryptography, Second Theory of Cryptography Conference
(TCC), pages 363–385, 2005.

7. H. S. Delugach and T. H. Hinke. Wizard: A database inference analysis and detec-
tion system. IEEE Transactions on Knowledge and Data Engineering, 8(1):56–66,
1996.

8. A. Deutsch and Y. Papakonstantinou. Privacy in database publishing. In Database
Theory - ICDT 2005, 10th International Conference, pages 230–245, 2005.

9. A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in pri-
vacy preserving data mining. In Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages
211–222, 2003.

10. A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving
mining of association rules. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages 217–
228, 2002.

11. R. Gavison. Privacy and the limits of the law. In D. G. Johnson and H. Nissenbaum,
editors, Computers, Ethics, and Social Values. 1995.

12. J. Hale and S. Shenoi. Catalytic inference analysis: Detecting inference threats due
to knowledge discovery. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy, pages 188–199, 1997.

13. X. Ji and J. E. Mitchell. Branch-and-price-and-cut on clique partition problem
with minimum clique size requirement. In IMA Special Workshop: Mixed-Integer
Programming, 2005.

14. R. J. B. Jr. and R. Agrawal. Data privacy through optimal k-anonymization. In
Proceedings of the 21st International Conference on Data Engineering (ICDE),
pages 217–228, 2005.

Indistinguishability: The Other Aspect of Privacy 17

15. M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results violate
privacy? In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 599–604, 2004.

16. K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In Proceedings
of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 118–127, 2005.

17. J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Auditing boolean at-
tributes. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS), pages 86–91, 2000.

18. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain
k-anonymity. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD Conference), pages 49–60, 2005.

19. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. In Proceedings of the 22nd International Conference
on Data Engineering (ICDE), pages 24–35, 2006.

20. D. G. Marks. Inference in MLS database systems. IEEE Transactions on Knowl-
edge and Data Engineering, 8(1):46–55, 1996.

21. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In
Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages 223–228, 2004.

22. G. Miklau and D. Suciu. A formal analysis of information disclosure in data
exchange. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD Conference), pages 575–586, 2004.

23. K. Muralidhar and R. Sarathy. Security of random data perturbation methods.
ACM Transactions on Database Systems (TODS), 24(4):487–493, 1999.

24. P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

25. L. Sweeney. Achieving k-anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10(5):571–578, 2002.

26. L. Wang, D. Wijesekera, and S. Jajodia. Cardinality-based inference control in
sum-only data cubes. In Proceedings of 7th European Symposium on Research in
Computer Security (ESORICS), pages 55–71, 2002.

27. C. Yao, X. S. Wang, and S. Jajodia. Checking for k-anonymity violation by views.
In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB), pages 910–921, 2005.

28. Z. Zhang and A. O. Mendelzon. Authorization views and conditional query con-
tainment. In Database Theory - ICDT 2005, 10th International Conference, pages
259–273, 2005.

Sovereign Information Sharing
Among Malicious Partners

Stefan Böttcher and Sebastian Obermeier

University of Paderborn
Fürstenallee 11

33102 Paderborn, Germany
{stb, so}@upb.de

Abstract. A secure calculation of common data R ∩ S without disclos-
ing R or S is useful for many applications and has been widely studied.
However, proposed solutions assume all participants act “semi-honest”,
which means participants may neither stop the protocol execution nor
fake database content. In this contribution, we focus on a malicious par-
ticipant behavior and prove that an atomic exchange of common data
is not possible under the assumption of malicious participants. However,
we propose mechanisms that not only reduce the damage in case a par-
ticipant alters the exchange protocol, but also give a means to impede
database content faking.

1 Introduction

Enterprise information stored in databases is often confidential and should not
be accessed by other companies. However, there are situations in which two
companies want to know whether they have common data and which data this
is, but the parties are not willing to disclose any other data than that what
both have in common. We call this problem the sovereign information sharing
problem. In this contribution, we focus on protocols for the atomic exchange
of the common data without having a trusted third party. In particular, we
address the problem that participants may get an advantage by changing the
exchange protocol in such a way, that the party that receives and encrypts the
common data first can suppress the sending of the corresponding information
that is necessary for the other party.

In the context of enterprise information sharing, the interesting data is often
stored within database tables, say within database tables R and S of two dif-
ferent companies. The partners demand a protocol that returns the intersection
R ∩ S without disclosing any other information; it even should not disclose size
information like |R| or |S|.

For example, let us look at a company CR and its competitor CS doing busi-
ness in the service sector. Both companies want to know whether they have
common customers in order to check whether their customers play one company
off against the other. A customer of both companies may, for instance, pretend

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 18–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sovereign Information Sharing Among Malicious Partners 19

that one company has delivered a certain service cheaper than the other company
and demand a discount. Therefore, CR and CS want to examine their customer
databases for common customers. However, both parties are not willing to dis-
close any information about customers that the other party does not have, and
they do not want to disclose information about their number of customers, i.e.
about the sizes |S| and |R|.

Existing approaches and proposals that also address the sovereign informa-
tion sharing problem [1,2] either disclose f(R, S) to a single party only, or they
assume that participants will follow the protocol strictly and send – as the proto-
col’s last step – the information that the other party needs to calculate f(R, S).
In a world of mobile networks and growing evilness, there might be situations in
which the participant that has just decoded valuable information suppresses the
sending of information that is required by the other participant for decoding the
information as well. In addition, [1,2] require that the database sizes |R| and |S|
are disclosed, which may also be sensitive information. A sharing of these size
information may be not acceptable for companies, e.g. if |R| represents the num-
ber of a company’s customers. Even if a third party is available and only used for
message exchange, this third party can suppress messages and thereby prevent
one company from getting to know the intersection information. For this reason,
we focus on the problem that each participant may stop the protocol execution
whenever there is an advantage for him.

First, we prove that when no trustworthy third party is available, an atomic
exchange of the common data is not possible if participants may cheat in terms of
altering the protocol. Second, we provide a mechanism that allows participants
to exchange a bunch of information units like customer data or supplier infor-
mation without having the risk of being cheated by more than one information
unit.

Unfortunately, when “cheating” in terms of creating faked data is considered
as a possibility, theoretical boundaries arise. For example, one participant could
invent a lot of customer data in order to get the complete customer data set
of the other party as intersection. The only possibility to achieve that stored
data complies with reality, i.e., to prevent participants from faking data, is a
third-party auditing device that punishes participants for cheating [3]. Contrary
to this approach, we present a mechanism appropriate especially for practical
applications that makes it hard to create faked data that will not be identified
as such.

The remainder of the paper is organized as follows. We identify requirements
and assumptions to our protocol in Section 2. In Section 3.1, we prove that the
requirement of having an atomic data exchange cannot be fulfilled. However, in
Section 3.4, we introduce an exchange algorithm that reduces the amount of data
that is disclosed in case a party cheats to one independent information unit. The
concept of adding tuple-specific information to prevent participants from getting
advantage of data faking is explained in Section 3.2. Finally, Section 4 discusses
related work and Section 5 concludes the paper.

20 S. Böttcher and S. Obermeier

2 Basic Assumptions and Requirements

As we cannot guarantee that each party provides all its data for the computation
of an intersection R ∩ S, we assume that each partner contributes only that
data to the intersection computation, which it accepts to disclose if it is in the
intersection.

Besides the requirement to disclose only the intersection R ∩ S of two tables
R and S to their owners, namely CR and CS , we also need to guarantee that
no party can cheat within the disclosing process by suppressing messages or
manipulating them. We cannot tolerate that one company that receives the
intersection R ∩ S can actively prevent the other party from also receiving this
information. However, we do not demand a failure-free network, and distinguish
between message loss and active message suppression. We assume that each
participant acknowledges the received messages and a sender repeats the sending
of non-acknowledged messages until the network will finally deliver the message.

An additional requirement is, that size information like |S| or |R| should not
be disclosed to the opposite party.

There are business settings in which the partners do not want to rely on a
trusted third party that performs a significant part of an intersection computa-
tion for a varyity of reasons, e.g. a trusted third party may be too difficult or
too time-consuming to find, it may be too expensive or simply not wanted for
political reasons. Therefore, in our scenario, we assume that both parties will not
trust a third party. This especially means that protocols that disclose R∩S only
to one party (e.g. [4]) are not suitable since we cannot guarantee that the other
party will also receive the intersection if none of the companies trusts a third
party. Therefore, we need a protocol that guarantees atomicity for the exchange
of R ∩ S. Unfortunately, we can prove in Section 3.1 that a complete atomic
exchange of R ∩ S cannot be guaranteed. Therefore, we need a protocol that at
least reduces the suffered damage in the case that a company cheats.

The problem of cheating does not only concern the data exchange, there is
another way of cheating within the data exchange scenario: faked data. Although,
it may be difficult or even impossible to detect faked data in general (“is this
really a customer, or only a prospective buyer”), the detection of faked data is
relevant in practice and can be achieved under certain assumptions. We assume
that each data item contributed to the intersection problem is associated with
a unique information, which is visible only to the owner of the data item. For
example, in the introduced scenario, a company that wants to fake customer
data must get in real contact with the customer.

3 Solution

We first prove that an atomic exchange of the common data is not possible
if participants may cheat in terms of message suppression. However, for many
database and application scenarios, the algorithm proposed in Section 3.4 does
not require that the whole intersection must be disclosed at once and furthermore
allows to determine whether the other party is cheating.

Sovereign Information Sharing Among Malicious Partners 21

3.1 Impossibility of Atomic Data Exchange

Our proof that the atomic exchange of common data is not possible is based on
a proof idea of the two generals’ problem [5, 6], where two generals want agree
on an attack time by using an uncertain medium.

In our case, there might be a guaranteed message exchange, but the partic-
ipants may not behave correctly, i.e., they may suppress messages. Therefore,
we can reduce cheating in terms of suppression of messages to the problem of
having an uncertain medium that swallows some messages.

Definition 1. Let CR and CS be the owners of the data R and S. A sovereign
information sharing protocol IP is said to be intersection safe, if it fulfills the
following two conditions:

1. P discloses (R ∩ S) to CS exactly if it discloses (R ∩ S) to CR.
2. P discloses no tuple of R - (R ∩ S) to CS , and it discloses no tuple of

S − (R ∩ S) to CR.

A participant CR is called distrustful, if it will not send (R∩S) or the informa-
tion that is necessary to completely disclose (R ∩ S) to the other participant CS

without the guarantee that CR will also learn (R ∩ S).

Lemma 1. Let CR and CS be the owners of the data sets R and S respectively.
Without a trusted third party, there is no intersection safe protocol if both par-
ticipants are distrustful.

Proof. By contradiction. Assume, there is an intersection safe protocol IP that
delivers R ∩ S to both distrustful participants CR and CS .

Then, there also exists a minimal protocol, i.e. a protocol that does not contain
a superfluous message, to let both parties learn R∩S, namely either the original
protocol, or an equivalent protocol in which all superfluous messages are left
out. To let the protocol compute and deliver the intersection, CS must receive
at least one message from CR, and CR must receive at least one message from
CS . Because each message that is received has been sent before, there must be
also at least one last message Mlast received by one partner after this partner has
sent his last message. As the situation is symmetric, let us assume that Mlast has
been sent from CR to CS . Since CR does not get something in return for sending
Mlast to CS , CR must have learned S ∩ R before Mlast could be send. Since our
protocol is minimal, Cs cannot have learned S∩R before Mlast is sent (otherwise
Mlast would not be necessary and the protocol would not be minimal). However,
in this case, CS must have sent the information that is necessary for CR to learn
S ∩ R although CS has not had the guarantee that it will also receive S ∩ R,
since the last message could be suppressed by CR.

This behavior of Cs is a contradiction to the assumption that both participants
act distrustful. �

The conclusion of this proof is that one party must take the risk of being cheated
and be the first who sends the information which is necessary to disclose R ∩ S.

22 S. Böttcher and S. Obermeier

Otherwise, there would be no exchange, since one party must be the first who
completely discloses information of R ∩ S.

However, although atomicity is not possible, we try to reduce the damage that
the one-sided disclosure of the common data involves by an approach outlined in
Section 3.4. Our idea is to send only a small part of the intersection R ∩ S, and
let the other party send the next part in return. In this case, if the other party
cheats, only a small part of the intersection is disclosed, which might reduce the
damage.

However, as we can see in the next section, we cannot make the disclosed
information parts, which we call information units, arbitrary small.

3.2 Information Units

Let R be arbitrary information of company CR and S be arbitrary information
of CS . If we partition R into several disjointed smaller parts j1 . . . jn, we call
each ji an information unit of R. The information units are those parts of the
common data of R and S that we want to disclose during one protocol exchange
step. Note that information units are only considered for exchange purposes, and
not for the calculation of the common data of R ∩ S, which is based on tuples
and not on the information units.

If we cannot conclude any unit ji that belongs to R∩S with |R|, |S| > |R∩S|,
as long as we do not have all information units of R ∩ S, we call the set j1 . . . jn

independent.

Example 1. Let R and S be customer database relations with |R|, |S| > |R ∩S|,
and j1 . . . jn information units of R, such that each information unit ji represents
a customer, and the customers occur in a randomized order. In this case, the set
{j1, ..., jn} is independent since we cannot clearly identify a customer jk ∈ R∩S
even if we know {jl | jl ∈ (R ∩S)∧ jl �= jk}, i.e. the complete intersection except
the missing customer, because there are at least two remaining customers who
might be jk due to |R| > |R ∩ S|.

Note that an independent information unit may contain more than one customer,
but an independent information unit cannot be made arbitrarily small, as the
next example shows.

Example 2. Let R and S be customer database relations and j1 . . . jn information
units representing characters occurring in customers of R. This means, each
customer is represented by several information units ji . . . jl. However, the set
j1 . . . jn is not independent for the following reason. If we can use R to identify
the customer cu that is represented partially by the characters ji . . . jk with
cu ∈ R ∩ S, we can conclude the next character of the customer. For example,
if ji...jk discloses the substring ”Miller, Flori” of a customer name and we
have only one Miller from Florida in our customer database R, we know that this
Miller belongs to R ∩ S and that further information units jk+1 and jk+2 will
disclose ”d” and ”a”. Therefore, the information units used during the exchange
process are not independent.

Sovereign Information Sharing Among Malicious Partners 23

For this reason, if non-independent information units are used, a party can some-
times conclude more than one information unit while the other party may not
necessarily know which data is meant. For example, if CR knows which data is
in the intersection and cheats by stopping the exchange of non-independent in-
formation units, the other party CS may have no chance to conclude any missing
information unit.

When exchanging only independent information units, we can reduce the ad-
vantage that a cheating party may get by altering the protocol to one indepen-
dent information unit (c.f. Section 3.4).

3.3 Cryptographic Basis

Our solution is based on commutative encryption, which means that given two
cryptographic encryption keys ek(r) used by CR and ek(s) used by CS , the
encryption order of applying an encryption function E is commutative:

Eek(r)
(
Eek(s)(d)

)
= Eek(s)

(
Eek(r)(d)

)
= cd

Since the order of applying the encryption functions Eek(r) and Eek(r) and the
corresponding decryption functions does not matter, we call this commutative
encryption.

Cryptographic functions and their implementation have already been dis-
cussed in various cryptographic publications [7, 8, 9, 10]. Therefore, we assume
that for the commutative encryption and decryption properly selected encryp-
tion functions and and decryption functions and secure algorithms are used, such
that keys cannot be broken even if plain and ciphered text are known.

3.4 Exchange Algorithm

Figure 1 summarizes our exchange algorithm that fulfills the requirement of
reducing the damage in case a party cheats.

We will explain what happens in each step, which is shown at the left side of
the sequence diagram.

1. The parties agree on the data field(s) that they want to check for common
data, and both parties suggest a common database size szi, of which the
following can be expected: szi > max (|R|, |S|). The parties can either send
szi in plain text and agree on the greater value sz = max(sz1, sz2), or they
can use Yao’s Millionaire Protocol [11] to conceal the smaller value of the two
szi values. Then, each party adds randomly created data to their databases
R and S until |R| ≈ |S| ≈ sz.

2. Each party hashes every tuple with the same hash function h(R), and en-
crypts the hashed values of the tuples with its commutative encryption func-
tion Eek(r) with encryption key ek(r) and Eek(s) with key ek(s) respectively.1

1 h(R) should not produce collisions and make the hashed values to “appear random”,
which means there should be no dependency between them to prevent attacks on
the encryption key if encrypted and decrypted hash values are known.

24 S. Böttcher and S. Obermeier

Fig. 1. Exchange Algorithm

3. The hashed and encrypted data is exchanged.
4. Every party encrypts the data it received in Step 3 with its own key. Thus,

the resulting data sets Rrs and Ssr are hashed and thereafter encrypted by
both partners, CR and CS .

5. The twice encrypted data is exchanged. Now every party owns two files that
were hashed and encrypted by each party.

Sovereign Information Sharing Among Malicious Partners 25

6. Due to commutative encryption, the intersection of the files Rrs and Ssr

represents the intersection of the original data R ∩ S. Both parties sort Rrs

and Ssr lexicographically and determine the tuples of the intersection.
7. The intersection is partitioned into independent information units, e.g. into

packages containing 5 tuples.
8. CR computes si1 by decrypting the first information unit j1 with its decryp-

tion key dk(r), and sends si1 to CS . CS analogously does the same, and
sends ri1 to CR.

9. CR decrypts ri1 with its key dk(r), and gets the plain hash value(s) Hash_ri1.
(For simplicity of the following presentation, we assume that an information
unit contains a single hash value). CS does the same with si1 and also gets the
plain hash value Hash_si1. Now both parties can identify the data associated
with the hash value, which is a part of the information both have in common.

10. However, in order to check that no participant cheated, CR sends Hash_ri1
to CS and demands the original data as proof that the data is in the database
of CS .

11. CS checks, whether the received hash value Hash_ri1 is equal to the value
that it decrypted itself in Step 9, namely Hash_si1. If this is the case, CS

sends the data belonging to the hash value to CR.
12. CR checks whether the received data from CS corresponds to the data of

Hash_ri1, which CR has in its own database.

This algorithm does not only hide the data of R and S, it also hides all size
information except |S ∩ R|, since each participant adds a bunch of random data
to its database. Therefore, e.g. CS cannot use |R| to conclude the number of the
real data inside the database of CR.

Furthermore, message manipulation can be detected directly after uncover-
ing a single information unit. If any message is manipulated before Step 6, e.g.
some data of the other party is altered before or after the encryption, the in-
tersection computation in Step 6 would not find two identical encrypted tuples
of the altered data, and would therefore neither disclose the altered data nor
any corresponding real data. If any data sii or rii is manipulated after Step 6,
the manipulating party cannot predict the hash value, to which the manipulated
data is decrypted. If, for example, CR sends manipulated data as si1 in Step 8, it
does not know the resulting Hash_si1 to which CS decrypts si1. Therefore, this
manipulation will be detected by CS in step 11, since the two hash values differ.
If, the other way round, CS cheats by sending an ri1 ∈ Rr, CR will decrypt this
to Hash_ri1, which is in the database of CR. However, in Step 11, CR demands
the data corresponding to Hash_ri1, and if CS does not have this data, it can-
not send it. If CS has this data and can send it, the manipulation of ri1 was no
manipulation at all since intersecting tuples are meant to be exchanged. This
means, any cheating in Step 8 can be detected.

Cheating in Step 10 can be detected as well, since no party knows the hash
value to which ri1 and si1 are decrypted.

Cheating in Step 11 is not possible as well if we assume the hash method to
be secure. This means, given a hash value Hash_ri1, we assume that it is not

26 S. Böttcher and S. Obermeier

possible to calculate the data which CR has in its database that leads to the
hash value.

Therefore, altering the protocol by suppressing or manipulating messages may
only prevent the other party from learning one information unit of the intersec-
tion, but does not disclose the complete set R ∩ S.

3.5 Impeding Tuple Faking

Although cheating in terms of message suppression and manipulation can be
detected by our algorithm and therefore the damage is reduced, one problem
remains, which is faking database tuples. In our example, an evil participant
can add a huge amount of telephone book entries to his customer database in
order to abuse the intersection computation to check which customers the other
side has. To prevent this kind of faking, the parties must agree to additionally
supply tuple-specific information that both parties have due to the real existence
of the tuple in their database.

data tuple tuple specific information

This tuple-specific information should not be of such a kind that it can not be
guessed or concluded from information that is available for public. An address
field, for instance, is no tuple-specific information since it can be easily obtained
from public resources.

Example 3. Consider the common customers example. Each party expands the
set of tuples that it wants be checked for being in R ∩ S with tuple-specific
information, i.e. the customers’ credit card details, such that the extended data
record may look like this:

name surname street place credit card number

Then this data fields is hashed, encrypted and sent to the other side. If faked
credit card data is generated, the customer belonging to the generated card
number will not match with the real customer, since both entries differ in their
hash values.

While we used the credit card number as an example, other scenarios will rely on
different tuple specific information, for example a social security number, income
tax number, student number, etc.

3.6 Exchange Speed Versus Trust

The efficiency of our intersection computation algorithm depends on given pa-
rameters like the intersection size, the connection speed, and on a choseable
parameter, i.e. the size of exchanged information units. As the exchange of small
information units needs more communication steps than exchanging larger ones,
we have a trade-off between trust and speed. When both parties do not expect

Sovereign Information Sharing Among Malicious Partners 27

a malicious behavior, an information unit may contain more data than it may
contain when two competing parties act. Whenever an application does not re-
quire a fast intersection computation, the use of information units containing
only a single data tuple can be preferred, which reduces the disadvantage in case
of cheating to the risk of disclosing only one data tuple.

4 Related Work

Within the sovereign information sharing scenario, two aspects are important
and have been studied: the secure computation of the intersection, and the fair
exchange of the data. The Secure Multiparty Computation problem, for instance,
focuses on a joint computation of f(r, s) without disclosing r or s. Examples of
functions f to be computed are cooperative scientific computations arising in
linear programming [12], or Yao’s Millionaire’s protocol [11], in which f returns
the information of whether or not r > s.

In an enterprise context where databases are used to store information, solu-
tions exist [4, 13] that focus on the multi-party computation problem within a
database context. The secure computation of the join-operator, for instance, can
be found in [4]. However, these solutions disclose not only size information like |R|
and |S|, they also assume an “semi-honest” behavior [14,15], which means that al-
though a party might analyze messages, it will not alter the protocol execution.

[16, 17] tackle the problem from a cryptographic point-of-view, and show
solutions where only one participant learns of the intersection, but not the other
one. In addition, the cryptographic approaches assume the data is drawn from a
large domain, and therefore participants that fake data will hardly get a match.
Although even in our example the domain from which the data is taken is large,
we consider this to be not sufficient for the following reason. This assumption
does not prevent the participants from faking data in order to get the knowledge
of whether the other participant has exactly this data (this customer) in its
database. In contrast, our solution focuses on a model where each participant
may act malicious and does not only stop the program execution, but may also
change messages or fake data. We introduce the term information unit and show
that no secure exchange protocol exists that can guarantee an atomic exchange
of a single information unit.

For the fair exchange of the data, some proposals rely on a trusted third party
[18, 19], while other proposals do not necessarily need this third party. [20, 21],
for example, describe an approach, which focuses on a fair exchange of items
by using a third party only if participants are dishonest. If a third party is
present but not trustable, [22] shows a solution in which this third party helps
to make an exchange fair. [20] classifies the type of the exchanged items, and can
guarantee an atomic exchange for items belonging to the categories revocable
or generatable, which is suitable for problems like contract signature or access
to webpages. However, enterprise information is in many cases neither revocable
nor generatable, and the approach to use a third party for collecting affidavits
and starting law suits in case of malicious participants is suitable for goods and

28 S. Böttcher and S. Obermeier

items, but cannot be used to revoke the reveal of sensible enterprise data. In
contrast, our approach does not rely on a certain item category; it is useful for
non-revocable and non-generatable items as well.

5 Summary and Conclusion

In this contribution, we have presented an application scenario where two parties
need a secure exchange of common information, although they do not trust each
other and assume malicious behavior. We have shown that atomicity for the
exchange of the common data is not possible if no third party is used for this
purpose. Furthermore, we have proposed a solution, which reduces the damage
that a party suffers in case the other party alters the exchange protocol to the
disclosure of one additional independent information unit. While the sending of
faked data within our proposed protocol can be effectively detected by means
of cryptography, the use and creation of faked database content has can be
impeded by extending the datasets that should be compared with tuple-specific
information. In addition, our solution conceals the database’s input sizes and
therefore does not allow to conclude important database properties, e.g. the
number of customers.

References

1. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC ’99:
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
New York, NY, USA, ACM Press (1999) 245–254

2. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: ACM Conference on Electronic Commerce. (1999) 78–86

3. Agrawal, R., Terzi, E.: On honesty in sovereign information sharing. In: 10th
International Conference on Extending Database Technology, Munich, Germany
(2006) 240–256

4. Agrawal, R., Evfimievski, A.V., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA. (2003) 86–97

5. Akkoyunlu, E.A., Ekanadham, K., Huber, R.V.: Some constraints and tradeoffs in
the design of network communications. SIGOPS Oper. Syst. Rev. 9 (1975) 67–74

6. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Ad-
vanced Course, London, UK, Springer-Verlag (1978) 393–481

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22 (1976) 644–654

8. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Proceedings of CRYPTO 84 on Advances in cryptology, New York,
NY, USA, Springer-Verlag New York, Inc. (1985) 10–18

9. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: STOC ’82: Proceedings of the fourteenth
annual ACM symposium on Theory of computing, New York, NY, USA, ACM
Press (1982) 365–377

Sovereign Information Sharing Among Malicious Partners 29

10. Shamir, A., Rivest, R., Adleman, L.: Mental poker. In: Technical Report LCS/TR-
125. (1979)

11. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 21st Annual
IEEE Symposium on the Foundations of Computer Science, Chicago, IEEE (1982)
160–164

12. Du, W., Atallah, M.J.: Secure multi-party computation problems and their ap-
plications: A review and open problems. In: New Security Paradigms Workshop,
Cloudcroft, New Mexico, USA (2001) 11–20

13. Clifton, C., Kantarcioglu, M., Lin, X., Vaidya, J., Zhu, M.: Tools for privacy
preserving distributed data mining (2003)

14. Goldreich, O.: Secure multi-party computation. Working Draft (2000)
15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:

STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory of
computing, New York, NY, USA, ACM Press (1987) 218–229

16. Kissner, L., Song, D.X.: Privacy-preserving set operations. (In: Advances in Cryp-
tology - CRYPTO 2005: 25th Annual International Cryptology Conference)

17. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. (In: Advances in Cryptology — EUROCRYPT 2004.)

18. Ajmani, S., Morris, R., Liskov, B.: A trusted third-party computation service.
Technical Report MIT-LCS-TR-847, MIT (2001)

19. Jefferies, N., Mitchell, C.J., Walker, M.: A proposed architecture for trusted third
party services. In: Cryptography: Policy and Algorithms. (1995) 98–104

20. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS ’97: Proceedings of the 4th ACM conference on Computer and communica-
tions security, New York, NY, USA, ACM Press (1997) 7–17

21. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy. (1998) 86–99

22. Franklin, M.K., Reiter, M.K.: Fair exchange with a semi-trusted third party (ex-
tended abstract). In: ACM Conference on Computer and Communications Security.
(1997) 1–5

Temporal Context Lie Detection and Generation

Xiangdong An1,2, Dawn Jutla2, and Nick Cercone1

1 Faculty of Computer Science
Dalhousie University

Halifax, NS B3H 1W5, Canada
{xan, nick}@cs.dal.ca

2 Finance and Management Science Department
Saint Mary’s University

Halifax, NS B3H 3C3, Canada
{xan, dawn.jutla}@smu.ca

Abstract. In pervasive (ubiquitous) environments, context-aware agents are used
to obtain, understand, and share local contexts with each other so that all re-
sources in the environments could be integrated seamlessly. Context exchanging
should be made privacy-conscious, which is generally controlled by users’ pri-
vacy preferences. Besides who has rights to get what true information about him,
a user’s privacy preference could also designate who should be given obfuscated
information. By obfuscation, people could present their private information in a
coarser granularity, or simply in a falsified manner, depending on the specific situ-
ations. Nevertheless, obfuscation cannot be done randomly because by reasoning
the receiver could know the information has been obfuscated. An obfuscated con-
text can not only be inferred from its dependencies with other existing contexts,
but could also be derived from its dependencies with the vanished ones. In this
paper, we present a dynamic Bayesian network (DBN)-based method to reason
about the obfuscated contexts in pervasive environments, where the impacts of
the vanished historical contexts are properly evaluated. On the one hand, it can
be used to detect obfuscations, and may further find the true information; on the
other hand, it can help reasonably obfuscate information.

Keywords: Privacy management, context inference, inference control, obfusca-
tion, pervasive computing, dynamic Bayesian networks, uncertain reasoning.

1 Introduction

A pervasive (ubiquitous) environment [1,2] is an intelligent space that senses, learns,
reasons and acts, where varied devices such as cell phones, PDAs (personal digital as-
sistants) and computers use a wide range of heterogeneous networks to provide diverse
services. There is also a lot of information (e.g. data about users and their activities)
in such an environment. To integrate these resources and information transparently so
that they are available for different tasks at all times and in all locations, contexts of
entities in the environment need to be exchanged properly [3,4,5]. Here, by context we
mean any information that can be used to characterize an entity in the environment,
which could be locations, time, capabilities, lighting, noise levels, services offered and
sought, activities and tasks engaged, roles, beliefs and the preferences [6,7]. Context-
aware agents have been developed to capture, interpret, reason about, and share such

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 30–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Temporal Context Lie Detection and Generation 31

information in pervasive (ubiquitous) environments [8,9]. An example of the pervasive
environment is like this: When Bob drives into a business site, his agent perceives his
location and reminds him that he needs to buy a pair of shoes of size 9.5. The store
agents detect (or are informed of) Bob’s presence and exchange information with Bob’s
agent. Then each store agent checks their repository’s catalog and tells Bob’s agent if
they have the right shoes and for how much they sell them. For another example, Bob’s
cell phone gets a text message about breakfast from a nearby restaurant when he ap-
proaches the restaurant in the early morning. By this, merchants advertise or promote
their products timely to potential customers and users could get relevant information at
proper times and places. Therefore, by context-perceiving and exchanging, an action-
able understanding of a space would be constructed.

A Fashionstore

A Shoestore

A Superstore

with 70% discount."
"We are on sale

"I need a pair of
shoes of size 9.5."

one and get one
for free sale."

"We are on buy

are cheapest."
"Our products

Bob drives into a business site.

Fig. 1. A context-aware environment

However, a user’s context may contain or imply his/her privacy. Privacy is the right
of individuals to determine for themselves when, how, and to what extent information
about them is communicated about [10], which can be divided into (1) bodily privacy,
(2) territorial privacy, (3) communication privacy, and (4) information privacy. A user’s
context may contain or imply his/her information privacy, which a user may not like
to unconditionally share with others [11]. For the example above, Bob’s location, car
driven, time arriving at the business site, goods bought, time spent at the site may all be
private or privacy containing. To control the disclosure of our private information, we
could specify privacy preferences [12]. In the privacy preferences, we may designate
who has rights to have what information about us (e.g. only superstore X can have ac-
cess to our location information when we enter a certain business site). In particular, we
may also designate when to present abstracted or falsified answers to the queries regard-
ing our contexts. The former is called access control rules, and the latter obfuscation
rules [4].

We obfuscate our answers to queries about us because we may not want to com-
pletely block some enquirers from some information, or may not like to appear we
are withholding some information. For example, Alice may have to tell her friend that
she is currently on campus since her friend is going to pick her up soon. However,
Alice may not necessarily tell her friend her current exact location (which room of
which building) since exact location may imply some private activities. This is called
obfuscation by abstraction. In some situations, Alice may not even want to tell her
friend her location in a coarsest granularity. For instance, she is currently in the US

32 X. An, D. Jutla, and N. Cercone

instead of Canada where she is supposed to stay because she is studying there. She
does not want anybody to know she is in the US for private issues. Nevertheless, to
the query from her friend about her location, Alice may have difficulty to say noth-
ing about it (refusal); Otherwise, her friend will know she is withholding some private
things [13]. At such situations, Alice may have to give a false answer (e.g. telling her
friend that she is eating in a restaurant far from her home). This is called obfusca-
tion by falsification. In [14], context obfuscated by abstraction is also said to be made
imprecise or vague, and context obfuscated by falsification is also said to be made
inaccurate.

However, we cannot obfuscate our answers randomly. Our answers should be reason-
able enough so that they are believable and will be treated seriously. For the examples
above, Alice should not tell her friend that she is in downtown (suppose her univer-
sity is in downtown) while asking her friend to pick her up from campus soon; Alice
should not tell her friend that she is at home (actually in the US) in the case her friend
is her roommate. This shows, on the one hand, we can reason about the possible ob-
fuscations by others, and on the other hand, we should ensure that our obfuscations are
inference-withstanding [15,16].

Since one’s contexts in pervasive environments are generally ambiguous [17,18], es-
pecially from the points of view of others, we propose to reason about obfuscations
probabilistically. We are bound to use probabilistic reasoning if we numerically repre-
sent uncertainty for a set of mutually exclusive and collectively exhaustive alternatives
and want a coherent numerical model of human reasoning [19]. Bayesian networks
(BNs) [20] have been widely accepted as an effective probabilistic inference formalism
in uncertain domains [21], but BNs assume the problem domains are static. They do not
have facilities to explicitly model temporal dependencies among domain events. That
is, the effects of historical domain events on the current domain state may not be prop-
erly absorbed using BNs. Nevertheless, context information is highly history-dependent
(e.g. Bob won’t go to a barber’s shop if he just got his hair cut). In this paper, we pro-
pose to use dynamic Bayesian networks (DBNs) [22] to detect obfuscation and to find
true information (de-obfuscation) if possible, or to help generate convincing obfusca-
tions. DBNs are extended from BNs for probabilistic inference in dynamic domains.
Compared to BNs, DBNs can capture richer and more realistic domain dependencies
[23], which have been applied in many areas such as domain state monitoring [24,25],
activity or plan recognition [26], forecasting [27], speech recognition [28], medical
diagnosis [29], and fault or defect detection [30]. To our best knowledge, this is the
first work to apply dynamic Bayesian networks to context inference in context-aware
systems.

The paper is organized as follows. We review related work in Section 2. In Section
3, we give an introduction to dynamic Bayesian networks. In Section 4, we present
an example to show how dynamic Bayesian networks can be applied to obfuscation
detection or obfuscation generation 1, and their effectiveness in the applications. Imple-
mentation details are discussed after the example. The two problems are then formally
described and the corresponding algorithms are presented. Concluded remarks are made
in Section 5.

1 Which can also be called obfuscation recommendation or obfuscation suggestion.

Temporal Context Lie Detection and Generation 33

2 Related Work

Inference has been applied in context-aware systems [5,9,6] to reason about new con-
text information (e.g. a user’s social relation), to check knowledge consistency, or to
find matched rules to support decision-making. In these systems, however, inference
is mostly done on rule-based knowledge-bases based on classical logic (e.g. first order
predicate logic). Probability [6] and fuzzy logic [9] are used in some way in the infer-
ence. However, details are not reported. BNs have been used to represent and reason
about uncertain contexts in pervasive environments [18]. Our paper introduces DBNs
to context obfuscation detection and generation in uncertain domains.

To preserve certain secrets in information systems, two query answering approaches
- refusal and lying - have been discussed [15,13,31]. Lying modifies the correct answer
by returning its negation, and refusal just does not give any answer. It is assumed that,
for an arbitrary sequence of queries, lyings or refusals are used only when they are
necessary to protect secrets; otherwise the true answers have to be provided. Security
policies for known potential secrets or known and unknown secrecies (secrets and their
negations) are investigated respectively. A security policy for known or unknown secre-
cies aims at returning answers that are consistent with both alternatives of the specified
secrecies (since both alternatives could reveal critical information), and a security pol-
icy based on known potential secrets aims at returning answers that are consistent with
the falsity of all secrets [13]. The security policies can be specified using lyings or re-
fusals uniformly [15,13] or their combination [31], depending on specific conditions
and requirements. Nevertheless, the policies are proposed based on the assumption that
the assumed initial belief of the enquirer is consistent by itself and does not imply any
of secrecies, secrets or disjunction of secrets, and requiring that each answer the en-
quirer obtains, combined with his current belief, does not imply any of the secrecies,
secrets or disjunction of secrets either. The assumption and requirement are sometimes
too strong in the real world, especially in problem domains with uncertainties. In par-
ticular, the answer to a major problem - whether secrecies, secrets or disjunction of
secrets are implied by a set of statements - are assumed to be known immediately, but
it is a constraint satisfaction or propositional theorem proving problem which is gener-
ally intractable [32,33]. In this paper, we investigate this problem in uncertain domains.
We show joint probability distribution (JPD) can be efficiently represented by exploring
dependency structures among domain variables.

In multilevel statistical databases [34,35], inference control [16,36,37] has been used
to protect information with a higher security level from being inferred. For exact in-
ference control, many restriction based techniques have been studied which include
restricting the size of query results [38,39], controlling the overlap of queries [40],
generalizing or suppressing sensitive data values [41,42,43], and auditing queries to de-
termine whether inference is possible [44,45]. For statistical inference control, some
perturbation based techniques have been proposed such as adding noises to source data
[46] or to the query results [47], swapping values among records [48], and sampling
data to answer queries [49]. Our work can be considered to be about inference control
when used for finding proper obfuscation for users’ personal data. Compared to the
statistical databases, users’ personal data are usually much smaller in size and only
correspond to a record in databases. Inference control techniques for databases are

34 X. An, D. Jutla, and N. Cercone

generally not applicable to personal data. Anyway, our work does not study how to
add noises to obfuscate data but studies how to find the most believable obfuscation.
Our work investigates how to audit queries to prevent the proposed obfuscations from
being detected in dynamic uncertain domains.

Anonymity [50] and/or unlinkability [51] have been sought to protect users’ identi-
ties, where information disclosed by users is processed in some way so that no private
data (identity or location, etc.) can be derived conclusively. When used for obfuscation
recommendation, our work seeks anonymity or unlinkability. Nevertheless, our work
makes lie recommendations in uncertain domains.

Masquerader detection (user substitution detection) problem has been approached
as an anomaly detection problem [52,53], which is close to our detection problem.
However, dependencies among users’ data are not explicitly modeled in the classifiers
in [52,53]. We propose to use DBNs to explicitly model the uncertainties in personal
data and their dependencies for lie detection.

3 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are graphical models for probabilistic inference
in dynamic domains, which are extended from Bayesian networks (BNs) for static do-
mains. DBNs provide us with an easy and compact way to specify the conditional in-
dependencies in dynamic domains.

A DBN consists of a finite number of BNs, each of which (called a slice of the DBN)
corresponds to a particular time instant (or interval). BNs corresponding to different
instants are generally assumed to be the same in their structures and parameters. BNs
corresponding to different instants are connected through arcs that represent how the
state of the domain evolves over time. Like BNs, the structures of DBNs are directed
acyclic graphs (DAGs), where each node represents a domain variable of interest at
some time instant, and each directed arc represents the causal dependency between
the two nodes it connects. The strength of dependencies is quantified by conditional
probability distributions (CPDs) specifying the probabilities of children taking specific
values given the values of their parents.

A DBN is generally assumed to be a first-order Markov process satisfying the
Markovian property: the state of the domain at time t + 1 is independent of the states
of the domain prior to time t, given the state of the domain at time t. That is, only
successive BNs are connected with each other by evolving arcs. In particular, like in a
BN, each node in a DBN is conditionally independent of its non-descendants given its
parents. These properties allow us to solve complex problems by cheaper local compu-
tations.

As mentioned above, in a DBN, we generally assume the structures and parameters
of slice i are identical to those of slice j, and in particular, the dependency and its
strength between a pair of nodes across two successive instants won’t change over time.
This is called time invariant assumption for DBNs. Base on time invariant assumption,
a DBN can be described by one and a half slices of the DBN (1.5TBN) and the entire
DBN can be obtained by unrolling the 1.5TBN: one slice is used to represent the first
slice of the DBN and a half slice is used to represent how the DBN evolves across

Temporal Context Lie Detection and Generation 35

consecutive slices. Below are the definitions of BNs and DBNs. We say a graph is a
pair G = (V, E), where V denotes a set of nodes (vertices), and E denotes a set of
edges. In a directed graph G = (V, E), we use π(v) to denote the set of parents of
v(∈ V) in G.

Definition 1. A Bayesian network (BN) is a triplet (V, G, P), where V is a set of
variables, G is a connected DAG, and P is a set of probability distributions: P =
{P (v|π(v) | v ∈ V }.

It can be shown that the joint probability distribution (JPD) of all variables in V can be
specified as:

P (V) =
∏

v∈V

P (v|π(v)). (1)

Definition 2. A dynamic Bayesian network (DBN) is composed of a finite number of
BNs {Bi=(Vi, Gi, Pi) | 0 ≤ i < n, n > 1 } corresponding to n time instants (inter-
vals). Bi−1 and Bi (0 < i < n) are connected by more than one edge directed from
nodes in Bi−1 to nodes in Bi. A DBN can be represented by a pair (B0, B→), where
B0 = (V0, G0, P0) and B→ is a BN representing how DBN evolves across Bi−1 and
Bi (0 < i < n). B0 and B→ define

P (Vi | Vi−1) =
∏

v∈Vi

P (v|π(v)), 0 < i < n.

In Definition 2, for those v ∈ Vi which has parents in Vi−1, P (v|π(v)) is defined by
B→, and for those v ∈ Vi which does not have parents in Vi−1, P (v|π(v)) is defined
by B0.

W1W0 W2

0A 2A1A

.
...

..

Fig. 2. A DBN about the weather and an old man’s activities

Consider an example where an old man named John lives in a city far from the town
his friend Peter lives. They talk with each other by phone every evening. John usually
walks around if the weather of his city is good, and stays home otherwise. Peter does
not know the weather condition of John’s city, but can judge it from John’s activities on
that day. The example can be represented by a DBN as shown in Figure 2.

In the DBN, each node represents a random variable, and each arrowed arc repre-
sents the causal dependencies between the two nodes connected. The subscript of a
variable indicates the corresponding time instant. Hence, in the DBN, each instant is
represented by two random boolean variables, Wi and Ai (i = 0, 1, 2, ...). The variable
Wi represents the weather condition of John’s city on day i, taking the value good when
the weather is good and bad otherwise. The variable Ai represents John’s activities on

36 X. An, D. Jutla, and N. Cercone

day i, taking the value out when John walks around, and in otherwise. Note that it is
possible that John walks around while the weather is bad and vice versa. Neverthe-
less, John’s activities are highly dependent on the weather conditions. The arrowed arc
between two successive slices represents the evolution of the weather condition. The
weather will very probably remain good next day if it is good today and bad if bad. The
parameters are specified in Tables 1 and 2. Note the parameters specified in Table 2 will
be repeated slice by slice. Hence, to describe a DBN, the first one and a half slices are
actually enough (i.e. 1.5TBN).

Table 1. The prior belief about the weather condition

W0 P(W0)
good 0.75
bad 0.25

Table 2. The prior belief about the relationship between the weather condition and John’s activi-
ties, and the evolution of the weather condition (i ≥ 0)

Wi Ai P(Ai|Wi) Wi Wi+1 P(Wi+1|Wi)
good in 0.10 good good 0.75
good out 0.90 good bad 0.25
bad in 0.80 bad good 0.65
bad out 0.20 bad bad 0.35

Each slice of the DBN is a BN which includes two variables and an arc. Each separate
BN can be used to reason about the weather condition based on John’s activities at that
day. However, historical dependencies on weather conditions are definitely lost if they
are not connected into a DBN.

In Bayesian probability theory, probabilities are subjective corresponding to the de-
gree of belief of reasoners in the truth of the statements. The degree of belief is different
from the degree of truth. People with different prior knowledge could correctly obtain
different results from Bayesian probability theory.

In the DBN as shown in Figure 2, variable Ai, representing the observation on day i,
is often called information, evidential or observable variable. Variable Wi, representing
the actual weather condition on day i, is called a hypothesis or unobservable variable.
DBNs can, based on evidence collected from information variables, help efficiently
evaluate the probabilistic state of hypothesis variables. In our case, with the help of the
DBN model, Peter is able to determine the probabilities of the weather condition on
some day given John’s current and past activities. For instance, by talking over phone,
Peter knows John’s activities in the last 3 days are as follows: walked around on day 0,
stayed at home on day 1, and walked around on day 2. By inference using the model,
Peter knows it is 88.29% that the weather on day 0 was good, 65.35% on day 1 bad,
and 78.52% on day 2 good. The model can also predict that the weather on day 3 will
be good by 66.41%, and John will walk around on day 3 by 66.48%.

Temporal Context Lie Detection and Generation 37

For the problem of context obfuscation detection and suggestion, information vari-
ables are associated with measurable contexts (e.g. one’s own location), and the hypoth-
esis variables are associated with unmeasurable (unobservable) contexts (e.g. somebody
else’s location).

4 Obfuscation Detection

People use context obfuscation to conceal and protect their privacy frequently. It could
happen anywhere and anytime. In different environments, the specific obfuscation de-
tection models could be different in variables used and dependencies among them.
However, the principles of DBN obfuscation detection or suggestion would be the same:
using DBNs to capture any anomalous events. In this section, we present a DBN model
for obfuscation suggestion or detection in a pervasive environment.

4.1 The Problem and the Method

In a pervasive environment, a user may have many contexts such as his location, the
food he likes, the local weather, the restaurants he often visits, how often he visits a
barber’s shop, etc. Some of these contexts could be disclosed to the others uncondition-
ally (e.g. the makes of cars or painters he likes), some of them could be disclosed to
the others conditionally (e.g. some of the diseases he has or had and how often he visits
hospitals), and some of them may not be disclosed (e.g. the professors he hates, some
of the diseases he has or had). The disclosed information could have been obfuscated.

We may be able or need to reason about obfuscation based on our prior knowledge
and new evidence we observe about a user. Our prior knowledge about one could come
from common senses (e.g. he is generally healthy), or from credible (verified) informa-
tion he discloses to us (e.g. he attends a class 3:30pm-4:30pm on every Wednesday).
New evidence can be observed (e.g. today’s weather, somebody is attending a confer-
ence, etc.), which is believed to be true in general. An example could be like this: We
know George attends some class 3:30pm-4:30pm every Wednesday in this term (prior
knowledge). Today is Wednesday (new evidence). We wait for him outside the class
room minutes before the class is over. However, we do not find him after the class is
over (new evidence). We call and ask him where he is. He tells us he is on campus for
attending the class. This is very probably a lie (it could be true if he had left before we
arrived at the class room). We should be very confident that he obfuscates his location
information for some reasons. With more evidence, say somebody saw his car parking
outside a hospital, we could conclude that he went to see his doctor at that time.

If our prior knowledge on all contexts about a person and the relationships among
them is accurate and certain, we would be able to reason about the state of the domain
deterministically. For the instance above, George will attend the class 3:30pm-4:30pm
today for sure if we assume our knowledge about this issue is accurate and certain.
However, this is not always true in the real world. There generally always exist some
exceptions to a rule or a statement. In this example, he may not attend the class today if
he is too sick or today is a holiday. For another example, one could still be considered
healthy if he is becoming thin due to his being on diet or his exercising. In particular,
there may exist some contexts we have very little knowledge about (e.g. how much cash

38 X. An, D. Jutla, and N. Cercone

he has in his accounts, how much investment he has done, etc.). We need to figure out
the credibility of any conclusions derived based on such uncertain knowledge.

On the other hand, contexts are generally time series data, which are developed over
time. For example, one’s social relationships will change each time his marriage status
changes. For another example, one won’t buy cars or houses too often. New contexts
are developed from the old. Hence, knowing old contexts could help us reason about
the new contexts and vice versa.

Dynamic Bayesian networks (DBNs), based on Bayesian probability theory, provide
a coherent framework for knowledge representation and reasoning in dynamic uncertain
domains. In next subsection, we, by an example, show how DBNs can be used to reason
about context lies.

4.2 An Example

Suppose a person named John could appear in several different places in the evening
after his getting off work: his home, a Gym, shopping malls, or restaurants. He almost
can always be reached by his home phone if he is at home, and mostly plays badminton
if he goes to the Gym. He usually visits the Gym or restaurants every other day (i.e. he
will highly probably visit the Gym or restaurants this evening if he did not last evening).
Most restaurants he visits are in downtown. He will very probably go shopping if the
weather is good. Shopping malls are generally located out of downtown. The weather
will more probably remain good next day if it is good today, and bad if bad.

The example can be modeled by a DBN whose first two slices are as shown in Fig-
ure 3, where each dotted box denotes one slice. As discussed in Section 3, we can unroll

bdmntn1

hm1

hmph1

shp1

rst1

dt1

wethr1

cst1

gym1

bdmntn0

hm0

hmph0

shp0

rst0

dt0

wethr0

cst0

gym0

Fig. 3. A DBN for a location-sensitive environment

Table 3. Probability distributions of variables without any parents: P (gym0), and P (wethr0)

gym0 P (gym0) wethr0 P (wethr0)
true 0.5 good 0.75
false 0.5 bad 0.25

Temporal Context Lie Detection and Generation 39

the two slices to get all slices of the DBN. In each slice, “bdmntn” represents “playing
badminton” (true or false), “gym” “in Gym” (true or false), “hm” “at home” (true or
false), “hmph” “reached by home phone” (true or false), “rst” “in a restaurant” (true
or false), “dt” “in downtown” (true or false), “shp” “shopping” (true or false), “wethr”
“weather condition” (good or bad), and “cst” “constraint parameter” (true or false). The
digit (’0’ or ’1’) following each label indicates the corresponding time instant. All vari-
ables are boolean. “cst” is a boolean constraint variable: it is true if and only if only one
of the four variables connected to it (gym, hm, shp, and rst) is true. Before performing
inference using the DBN, we set cst to be true so that John will not appear in more
than one place at the same time. Hence, cst is a constant in inference over all slices of
the DBN. Note “wethr”, “gym”, and “rst” are history dependent and evolve over time.
The corresponding conditional probability distributions are specified in Tables 3, 4, 5,
and 6 respectively. In Table 6, the dot ’.’ is the abbreviation of the corresponding condi-
tions for saving space. For example, P (rsti|.) represents P (rsti|gymi, rsti−1). These
parameters reflect our knowledge about John stated in the beginning of this subsection.

Assume one evening John and his boss Bob go to a restaurant located in quiet uptown
to have a dinner and discuss some issues within their company. Both John and Bob do
not want their meeting to be known by their colleagues. However, while in the meeting,

Table 4. Conditional probability distributions of hmi, hmphi, and bdmntni (i ≥ 0)

gymi hmi P (gymi|hmi) hmi hmphiP (hmphi|hmi) gymi bdmntni P (bdmntni|gymi)
true true 0.0 true true 0.95 true true 0.9
true false 1.0 true false 0.05 true false 0.1
false true 0.3 false true 0.0 false true 0.0
false false 0.7 false false 1.0 false false 1.0

Table 5. Conditional probability distributions of rst0, gymi, and wethri (i ≥ 1)

gym0rst0 P (rst0|gym0) gymi−1gymi P (gymi|gymi−1) wethri−1wethri P (wethri|wethri−1)
true true 0.0 true true 0.05 good good 0.75
true false 1.0 true false 0.95 good bad 0.25
false true 0.3 false true 0.9 bad good 0.35
false false 0.7 false false 0.1 bad bad 0.65

Table 6. Conditional probability distributions of rsti (i ≥ 1), shpi, and dti (i ≥ 0)

gymi rsti−1 rsti P (rsti|.) gymi wethri shpi P (shpi|.) shpi rsti dti P (dti|.)
true true true 0.0 true good true 0.65 true true true 0.99
true true false 1.0 true good false 0.35 true true false 0.01
true false true 0.0 true bad true 0.3 true false true 0.25
true false false 1.0 true bad false 0.7 true false false 0.75
false true true 0.2 false good true 0.9 false true true 0.9
false true false 0.8 false good false 0.1 false true false 0.1
false false true 0.4 false bad true 0.1 false false true 0.1
false false false 0.6 false bad false 0.9 false false false 0.9

40 X. An, D. Jutla, and N. Cercone

John gets a phone call from one of his colleagues named Alice. Alice is looking for
John and wonders where he is. John cannot tell her where he is (and hence what he is
doing) and has to provide an obfuscated answer.

Nevertheless, John cannot randomly pick an answer to respond Alice’s query. John
recalls that he has played badminton for two consecutive evenings, and he met Alice
in both evenings. With the fact considered, the model shows that this evening John is
5.59% in the Gym, 25% at home, 30.58% shopping, 38.84% at a restaurant, and 45.66%
in downtown.2 Hence, being in the Gym is not a good answer. The model shows that
this evening John is at home by 25%, which is close to the probability of John being
shopping (30.58%) or at a restaurant (38.84%). Is being at home a good obfuscation?
No, because Alice could have called his home. With the assumption entered, the model
indicates that John is 7.33% in the Gym, 1.64% at home, 40.10% shopping, 50.93%
at a restaurant, and 56.76% in downtown. Obviously being at home is also not a good
answer. Then, which of the last two options (being shopping or being at a restaurant)
is a better answer? The probability (40.10%) of John being shopping looks close to
the probability (50.93%) of his being at a restaurant. Nevertheless, John knows being
shopping is not a good answer because the weather of this evening is pretty bad. With
the evidence entered, the model shows that he is 8.11% in the Gym, 2.47% at home,
12.81% shopping, 76.61% at a restaurant, and 73.21% in downtown.

So, eating in a restaurant is the only reasonable and specific answer. Does John have
to tell Alice his real location and related activities? Not necessarily. The model shows
that he is in downtown with a pretty high probability (73.21%), where at this time he
could be shopping (though with a small probability), having a casual dinner (with a
large probability), or performing some other activities (with a small probability). With
the aid of the model, John believes being in downtown is a reasonable answer. John
is glad to tell Alice that he is in downtown, and Alice is satisfied with the answer.
The answer suggested by the model is an obfuscation by falsification (John is actually
in uptown now). However, from Alice’s perspective, the answer is pretty reasonable.
Without the model, John could present a not properly obfuscated answer (e.g. telling
Alice he is at home or in the Gym). With the model, these poorly obfuscated answers
could be detected by Alice.

With the aid of the model, both John and Alice can also predict that the weather will
be bad by 64.93% next day. Alice can predict that John will go to the Gym by 88.57%
next day. In particular, if somebody just came back from abroad, he can from the model
know that the weather on the yesterday was bad by 58.33%. Therefore, not only can the
model help automate the obfuscation suggestion and detection, but also can help predict
one’s future contexts or find out past domain states, where the past and current events,
and any uncertain factors in the domain are considered and modeled properly.

4.3 Discussion

In the example above, we assume a user processes answers or queries from the others.
In pervasive environments, however, it is intelligent agents which collect information,
perform inference, make decision and act on behalf of the respective users. To make
proper decisions, an agent needs to have a good understanding about the world. To get

2 Note downtown is not mutually exclusive with shopping malls or restaurants.

Temporal Context Lie Detection and Generation 41

a good understanding about the world, an agent not only needs to capture and reason
about the contexts of the represented user, but also needs to collect and reason about
the contexts of the other interested users. Querying is one way for an agent to obtain
more information about other users, but the interaction among agents may not be done
frankly due to privacy concerns of the respective users. Agents generally need to interact
with each other based on the respective users’ privacy preferences. To protect its user’s
privacy, an agent may need to obfuscate its answer to a query about the user. In this
paper, we present a DBN-based method to help an agent detect obfuscations or generate
reasonable obfuscations.

At an agent, the obfuscation detection model against another agent is generally dif-
ferent from the obfuscation suggestion model against the same agent. This is because
the two models are built and maintained based on different knowledge of different
agents on different users. Let agent Ak represent user Uk (0 ≤ k < n, n > 1). The ob-
fuscation suggestion model at agent Aa against agent Ab is constructed and maintained
based on the assumed knowledge of agent Ab on user Ua, whereas the obfuscation de-
tection model at agent Aa against agent Ab is built and maintained based on agent Aa’s
knowledge about user Ub. Also, the obfuscation suggestion models against an agent Ac

should be different at different agents {Ai | i �= c, 0 ≤ i < n} since such models repre-
sent the assumed knowledge of the agent Ac on different users {Ui | i �= c, 0 ≤ i < n}.
Since different agents may have different perspectives and knowledge about a same
user Uc, the corresponding DBN obfuscation detection models against the agent Ac at
different agents could be different. Some agents may have the same knowledge about a
same user in the beginning, but their belief about the user could change over time due
to the different evidence they may observe about the user 3. Hence, the DBN obfusca-
tion detection models against a same agent at different agents could eventually become
different. On the other hand, at an agent Aa, the obfuscation detection models against
other agents should be different since these models are made based on Aa’s knowl-
edge about different users. The obfuscation suggestion models against other agents at
agent Aa could be different since other agents may have different knowledge about Ua.
However, if agent Aa does not have too many levels of information to disclose, the ob-
fuscation suggestion models at agent Aa against the agents which are believed to have
the same information about Ua should be the same. For the similar reason, some of the
obfuscation detection models at different agents against the same agent could be the
same.

An agent could combine some of its obfuscation detection or obfuscation suggestion
models based on dependencies among the corresponding users. Model combination
would reduce the number of models to maintain. Especially, a combined model would
be able to sense the world with more channels, which helps obfuscation detection or
suggestion. For an example on obfuscation detection, I call Bob in a weekend and ask
where he is. He tells me he is in a meeting with his boss. I may have difficulty to judge
if this is a lie or not if I do not know his boss. Even I know his boss, it won’t help
if I do not examine his words against the activities of his boss. Nevertheless, I could
verify his words in some degree if I could inspect these words based on his boss’s
activities. I would be able to find that Bob lies if I know his boss is in a trip. For

3 Different agents may get different levels of information from the same agent.

42 X. An, D. Jutla, and N. Cercone

another example on obfuscation suggestion, I may tell my wife that I am in a meeting
with my boss. However, if my wife knows my boss, I should be careful in presenting
a lie involving my boss to her, since she could have chances to verify it. In particular,
the obfuscated answers presented to my wife may have to be consistent with those to
my boss. A combined model could produce better results than individual models in
obfuscation detection or generation, but this is achieved at the cost of the increase in
the computational complexity. The more the users modeled together are, the higher
the computational complexity of the model would generally be. We should try to take
advantage of as much conditional independencies among users’ contexts as possible in
modeling. Conditional independencies allow cheaper local computations. In particular,
we should focus on modeling stronger dependencies since weak dependencies may not
affect inference results much but increase computational complexity without mercy.

A DBN obfuscation detection or suggestion model against a user can be constructed
manually by experts in the corresponding problem domains or learned automatically
from the live data captured about the user. There is a lot of work about DBN learning
in literatures [54,55,56,57,58]. By DBN learning and inference, a DBN model can be
obtained and improved over time. DBN learning explores as much independencies as
possible among series data to make inference efficient. Note that Markovian assumption
in this paper regarding DBN representation of historical dependencies can be relaxed
so that higher order historical dependencies can be represented [54]. For obfuscation
detection, the more an agent knows about a user, the preciser the corresponding model
is, the more probably the lies from the user will be detected by the agent. However, for
obfuscation recommendation, an agent Aa needs a DBN model which represents and
reasons about the uncertain knowledge of the adversarial agent Ab about the user Ua.
The more Aa assumes Ab knows about Ua, the more conservative the obfuscation rec-
ommendation made by Aa would be. However, the assumed upper bound knowledge
Ab has about Ua is what Aa has about Ua, and the assumed lower bound knowledge
Ab has about Ua can be limited to some publicly known information about Ua. Hence,
a DBN model for obfuscation generation can be adjusted based on the assumed lower
and upper bound knowledge. An obfuscation recommendation can be made from most
conservatively to most imprudently depending on the degree of the concern on the pro-
tected context.

A probability threshold should be set for a DBN for obfuscation recommendation or
detection. If a statement could be true by a probability above the threshold, the statement
could be confidently considered true (e.g. a statement is considered a lie if the model
indicates that its negation could occur by 90%, which is above the threshold, say, 80%).

4.4 Formal Description

Problem statement 3 is a formal description of the obfuscation detection problem we
address in the paper.

Problem Statement 3. In a pervasive environment E, each context-aware agent Ai

(0 < i ≤ n, n ≥ 2) corresponds to a user Ui in E. Ai has access to all available
information4 about Ui, but only has some prior knowledge Kij about Uj (j �= i, 0 <

4 Which could be uncertain.

Temporal Context Lie Detection and Generation 43

j ≤ n). Ai could obtain more information Oij about Uj (j �= i, 0 < j ≤ n) by
its observation. Oij is certain and is believed to be true by Ai. Then the obfuscation
detection problem is if and how agent Ai, based on Kij ∪ Oij , can judge whether an
answer from Aj to its query is very probably, relative to a probability threshold, an
obfuscated answer.

For the problem described in Problem statement 3, when agents’ prior knowledge about
the domain is ambiguous or uncertain, a DBN-based solution is proposed as Algorithm
1, where agent Ai’s prior knowledge Kij about Uj is represented by a DBN.

Algorithm 1 (DBNobfuscationDec). An agent Ai receives an answer W from Aj to its
query about the context C of Uj . By the following operations Ai figures out if W should
be considered a lie about C using a DBN model M against user Uj based on observed
evidence Oij . Let T be the probability threshold for making confident judgment.

1 enter evidence Oij to M ;
2 M indicates that W could occur by a probability p;
3 if p ≥ T , W will not be considered as a lie and return;
4 otherwise, W will be considered as a lie;

Problem statement 4 is a formal description of the obfuscation recommendation prob-
lem we address in the paper.

Problem Statement 4. In a pervasive environment E, each context-aware agent Ai

(0 < i ≤ n, n ≥ 2) corresponds to a user Ui in E. Ai has access to all available
information about Ui, but only has some prior knowledge Kij about Uj (j �= i, 0 <
j ≤ n). Ai could obtain more information Oij (j �= i, 0 < j ≤ n) about Uj by
its observation. Oij is certain and is believed to be true by Ai. Then the obfuscation
suggestion problem is if and how agent Ai, based on its guess Gij about agent Aj’s
prior knowledge Kji and guess Hij about agent Aj’s new evidence Oji, can evaluate
if a lie to a query from Aj will be considered reasonable by Aj .

Algorithm 2 (DBNobfuscationRec). Before agent Ai sends Aj a lie Y to the query
about the context C of Ui, by the following operations, Ai evaluates if Y will be consid-
ered reasonable by Aj using a DBN model M constructed from Gij based on guessed
evidence Hij . Let T be the probability threshold for making confident judgment.

1 enter evidence Hij to M ;
2 M indicates that Y could occur by a probability p;
3 if p ≥ T , Y will not be considered a lie and send it over;
4 otherwise, Y will be considered a lie and another lie needs to be tested;

For the obfuscation recommendation problem described in Problem statement 4, when
agents’ prior knowledge about the domain is ambiguous or uncertain, a DBN-based
solution is proposed as Algorithm 2, where agent Ai’s guess Gij about prior knowledge
Kji of Aj is represented as a DBN.

44 X. An, D. Jutla, and N. Cercone

5 Conclusion

In pervasive (ubiquitous) environments, agents should be made privacy conscious so
that no private information will be disclosed improperly. Nevertheless, there exist some
situations when users may like to disclose their private information partially or falsely
through information obfuscation. The obfuscation should be made reasonable enough
so that the enquirers won’t be able to detect it. On the other hand, the enquirers should
be able to detect any poorly obfuscated answers to their enquiries.

The paper presents an approach to automate the private context obfuscation sugges-
tion and detection. Since one’s contexts are usually uncertain, in particular from the
points of view of the reasoners, and are highly history dependent, we propose to use
dynamic Bayesian networks to model and reason about users’ contexts. By an exam-
ple, we show how DBNs can be applied to the problems and their effectiveness in the
applications. Implementation details are discussed after the example. The obfuscation
detection problem and the obfuscation suggestion problem are then formally described.
Algorithms are proposed to solve these problems. To our best knowledge, this is the first
paper proposing using dynamic Bayesian networks to deal with temporal dependencies
and uncertainties in context inference. The method can also be used to predict future
contexts, and to find out past domain states.

References

1. Abowd, G.D., Dey, A., Orr, R., Bortherton, J.: Context-awareness in wearable and ubiquitous
computing. Virtual Reality 3(3) (1998) 200–211

2. Davies, N., Gellersen, H.W.: Beyond prototypes: Challenges in deploying ubiquitous sys-
tems. IEEE Pervasive Computing 1(1) (2002) 26–35

3. Khedr, M., Karmouch, A.: Exploiting agents and SIP for smart context level agreements. In:
Proceedings of IEEE Pacific Rim Conference on Communications, Computers, and Signal
Processing, Victoria, BC, Canada (2003) 1000–1003

4. Gandon, F.L., Sadeh, N.M.: Semantic web technologies to reconcile privacy and context
awareness. Journal of Web Semantics 1(3) (2005)

5. Khedr, M., Karmouch, A.: Negotiating context information in context-aware systems. IEEE
Intelligent Systems 19(6) (2004) 21–29

6. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environ-
ments. Knowledge Engineering Review, Special Issue on Ontologies for Distributed Systems
18(3) (2004) 197–207

7. Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1) (2001)
4–7

8. Chou, S.C., Hsieh, W.T., Gandon, F.L., Sadeh, N.M.: Semantic web technologies for context-
aware museum tour guide applications. In: Proceedings of the 19th International Conference
on Advanced Information Networking and Applications (AINA’05), Vol. 2. (2005) 709–714

9. Khedr, M., Karmouch, A.: ACAI: Agent-based context-aware infrastructure for spontaneous
applications. Journal of Network and Computer Applications 28(1) (2005) 19–44

10. Westin, A.F.: Privacy and Freedom. Atheneum, New York (1967)
11. Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P.F.: Enabling context-aware and privacy-

conscious user data sharing. In: Proceedings of the 2004 IEEE International Conference on
Mobile Data Management (MDM’04). (2004) 103–109

Temporal Context Lie Detection and Generation 45

12. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The platform
for privacy preferences 1.0 (P3P 1.0) specification. Technical report, W3C Recommendation,
http://www.w3.org/TR/P3P (2002)

13. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data & Knowl-
edge Engineering 38 (2001) 199–222

14. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location pri-
vacy. In Gellersen, H.W., Want, R., Schmidt, A., eds.: Proceedings of the 3rd International
Conference on Pervasive Computing (PERVASIVE 2005). Volume 3468 of LNCS., Munich,
Germany, Springer-Verlag Berlin Heidelberg (2005) 152–170

15. Biskup, J.: For unknown secrecies refusal is better than lying. Data & Knowledge Engineer-
ing 33 (2000) 1–24

16. Denning, D.E., Schlörer, J.: Inference control for statistical databases. IEEE Computer 16(7)
(1983) 69–82

17. Dey, A., Mankoff, J., Abowd, G., Carter, S.: Distributed mediation of ambiguous context in
aware environments. In Beaudouin-Lafon, M., ed.: Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology (UIST’02), Paris, France, ACM
Press (2002) 121–130

18. Gu, T., Peng, H.K., Zhang, D.Q.: A Bayesian approach for dealing with uncertain contexts.
In: Proceedings of the Second International Conference on Pervasive Computing (Perva-
sive’04), Vienna, Austria, Austrian Computer Society (2004)

19. Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John
Wiley & Sons, Inc., New York, NY, USA (1990)

20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Franciso, CA, USA (1988)

21. Haddawy, P.: An overview of some recent developments in Bayesian problem solving tech-
niques. AI Magazine 20(2) (1999) 11–19

22. Dean, T., Kanazawa, K.: Probabilistic temporal reasoning. In: Proceedings of the 7th Na-
tional Conference on Artificial Intelligence (AAAI-1988), St. Paul, Minnesota, AAAI Press
(1988) 524–528

23. Dagum, P., Galper, A., Horvitz, E., Seiver, A.: Uncertain reasoning and forescasting. Inter-
national Journal of Forecasting 11(1) (1995) 73–87

24. Nicholson, A.E., Brady, J.M.: Dynamic belief networks for discrete monitoring. IEEE Trans-
actions on Systems, Man, and Cybernetics, special issue on Knowledge-Based Construction
of Probabilistic and Decision Models 24(11) (1994) 1593–1610

25. Li, X., Ji, Q.: Active affective state detection and user assistance with dynamic Bayesian net-
works. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
35(1) (2005) 93–105

26. Ardissono, L., Brna, P., Mitrovic, A., eds.: A comparison of HMMs and dynamic Bayesian
networks for recognizing office activities. In Ardissono, L., Brna, P., Mitrovic, A., eds.:
Proceedings of the 10th International Conference on User Modeling (UM-2005). Volume
3538 of Lecture Notes in Computer Science (LNCS)., Edinburgh, Scotland, UK, Springer
(2005)

27. Dagum, P., Galper, A., Horvitz, E.: Dynamic network models for forecasting. In Dubois,
D., Wellman, M.P., D’Ambrosio, B., Smets, P., eds.: Proceedings of the 8th Conference on
Uncertainty in Artificial Intelligence (UAI-1992), Stanford, CA, USA, Morgan Kaufmann
Publishers (1992) 41–48

28. Nefian, A.V., Liang, L., Pi, X., Murphy, K.: Dynamic Bayesian networks for audio-visual
speech recognition. EURASIP Journal on Applied Signal Processing 11 (2002) 1–15

46 X. An, D. Jutla, and N. Cercone

29. Hanks, S., Madigan, D., Gavrin, J.: Probabilistic temporal reasoning with endogenous
change. In Besnard, P., Hanks, S., eds.: Proceedings of the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI-1995), Montréal, Québec, Canada, Morgan Kaufmann
Publishers (1995)

30. Salem, A.B., Bouillaut, L., Aknin, P., Weber, P.: Dynamic Bayesian networks for classifi-
cation of rail defects. In: Proceedings of the Fourth International Conference on Intelligent
Systems Design and Applications (ISDA’04), Budapest, Hungary (2004)

31. Biskup, J., Bonatti, P.: Controlled query evaluation for known policies by combing lying and
refusal. Annals of Mathematics and Artificial Intelligence 40(1-2) (2004) 37–62

32. Dorndorf, U., Pesch, E., Phan-Huy, T.: Constraint propagation techniques for disjunctive
scheduling problems. Artificial Intelligence 122 (2000) 189–240

33. Cook, S.A.: The complexity of theorem-proving procedure. In Harrison, M.A., Banerji,
R.B., Ullman, J.D., eds.: Proceedings of the 3rd Annual ACM Symposium on Theorey of
Computing (STOC’71), Shaker Heights, OH, ACM Press (1971) 151–158

34. Jajodia, S., Sandhu, R.: Polyinstantiation integrity in multilevel relations. In: Proceedings
of the 1990 IEEE Computer Symposium on Research in Security and Privacy, Oakland, CA,
IEEE Computer Society (1990) 104–115

35. Cuppens, F., Gabillon, A.: Logical foundations of multilevel databases. Data & Knowledge
Engineering 29(3) (1999) 199–222

36. Yip, R.W., Levitt, K.N.: Data level inference detection in database systems. In: Proceedings
of the 11th IEEE Computer Security Foundations, Rockport, MA (1998) 179–189

37. Staddon, J.: Dynamic inference control. In Zaki, M.J., Aggarwal, C.C., eds.: Proceedings
of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD’03), San Diego, CA, ACM Press (2003) 94–100

38. Fellegi, I.: On the question fo statistical confidentiality. Journal of American Statistical
Association 67(337) (1972) 7–18

39. Denning, D.E., Denning, P.J., Schwartz, M.D.: The tracker: a threat to statistical database
security. ACM Transactions on Database Systems 4(1) (1979) 76–96

40. Dobkin, D., Jones, A., Lipton, R.: Secure databases: Protection against user influence. ACM
Transactions on Database Systems 4(1) (1979) 97–106

41. Cox, L.H.: Suppression methodology and statistical disclosure control. Journal of the Amer-
ican Statistical Association 75(370) (1980) 377–385

42. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings
of the 21st International Conference on Data Engineering (ICDE’05), Tokyo, Japan, IEEE
Computer Society (2005) 217–228

43. Narayanan, A., Shmatikov, V.: Obfuscated databases and group privacy. In Atluri, V., Mead-
ows, C., Juels, A., eds.: Proceedings of the 12th ACM Conference on Computer and Com-
munications Security (CCS’05), Alexandria, VA, USA, ACM Press (2005) 102–111

44. Chin, F.Y., Özsoyoglu, G.: Auditing and inference control in statistical databases. IEEE
Transactions on Software Engineering 8(6) (1982) 574–582

45. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing boolean attributes. In: Proceed-
ings of the 19th ACM SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’00), Dallas, TX, ACM Press (2000) 86–91

46. Traub, J.F., Yemini, Y., Woznaikowski, H.: The statistical security of a statistical database.
ACM Transactions on Database Systems 9(4) (1984) 672–679

47. Beck, L.L.: A security mechanism for statistical databases. ACM Transactions on Database
Systems 5(3) (1980) 316–338

48. Reiss, S.P.: Practical data-swapping: The first steps. ACM Transactions on Database Systems
9(1) (1984) 20–37

49. Denning, D.: Secure statistical databases with random sample queries. ACM Transactions
on Database Systems 5(3) (1980) 291–315

Temporal Context Lie Detection and Generation 47

50. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In Federath,
H., ed.: Proceedings of the 2nd Workshop on Privacy Enhancing Technologies (PET’02).
Volume 2482 of LNCS., San Francisco, CA, Springer-Verlag (2002) 54–68

51. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In Dingledine, R., ed.: Proceedings
of the 3rd Workshop on Privacy Enhancing Technologies (PET’03). Volume 2760 of LNCS.,
Dresden, Germany, Springer-Verlag (2003) 32–47

52. Mazhelis, O., Puuronen, S., Veijalainen, J.: Modelling dependencies between classifiers in
mobile masquerader detection. In López, J., Qing, S., Olamoto, E., eds.: Proceedings of
the 6th International Conference on Information and Communications Security (ICICS’04).
Volume 3269 of LNCS., Malaga, Spain, Springer-Verlag (2004) 318–330

53. Mazhelis, O., Puuronen, S.: Combining one-class classifiers for mobile-user substitution
detection. In: Proceedings of the 6th International Conference on Enterprise Information
Systems (ICEIS’04), Porto, Portugal (2004) 32–47

54. Ghahramani, Z.: Learning dynamic Bayesian networks. In: Adaptive Processing of Se-
quences and Data Structures. Volume 1387 of Lecture Notes in Artificial Intelligence.,
Springer-Verlag (1998) 168–197

55. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic net-
works. In Cooper, G.F., Moral, S., eds.: Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence (UAI-1998), Madison, WI, USA, Morgan Kaufmann Publishers (1998)

56. Boyen, X.: Inference and Learning in Complex Stochastic Processes. PhD thesis, Computer
Science Department, Stanford University, Stanford, CA, USA (2002)

57. Peña, J.M., Björkegren, J., Tegnér, J.: Learning dynamic Bayesian network models via cross-
validation. Pattern Recognition Letters 26(14) (2005) 2295–2308

58. Dojer, N., Gambin, A., Mizera, A., Wilczynski, B., Tiuryn, J.: Applying dynamic Bayesian
networks to perturbed gene expression data. BMC Bioinformatics 7 (2006)

Secure Anonymization for Incremental Datasets

Ji-Won Byun1, Yonglak Sohn2, Elisa Bertino1, and Ninghui Li1

1 CERIAS and Computer Science, Purdue University, USA
{byunj, bertino, ninghui}@cs.purdue.edu

2 Computer Engineering, Seokyeong University, Korea
syl@skuniv.ac.kr

Abstract. Data anonymization techniques based on the k-anonymity model have
been the focus of intense research in the last few years. Although the k-anonymity
model and the related techniques provide valuable solutions to data privacy, cur-
rent solutions are limited only to static data release (i.e., the entire dataset is
assumed to be available at the time of release). While this may be acceptable in
some applications, today we see databases continuously growing everyday and
even every hour. In such dynamic environments, the current techniques may suf-
fer from poor data quality and/or vulnerability to inference. In this paper, we an-
alyze various inference channels that may exist in multiple anonymized datasets
and discuss how to avoid such inferences. We then present an approach to se-
curely anonymizing a continuously growing dataset in an efficient manner while
assuring high data quality.

1 Introduction

A model on which recent privacy-protecting techniques often rely is the k-anonymity
model [22]. In the k-anonymity model, privacy is guaranteed by ensuring that any
record in a released dataset be indistinguishable (with respect to a set of attributes,
called quasi-identifier) from at least (k − 1) other records in the dataset. Thus, in the
k-anonymity model the risk of re-identification is maintained under an acceptable prob-
ability (i.e., 1/k). Another interesting protection model addressing data privacy is the
�-diversity model [16]. The �-diversity model assumes that a private dataset contains
some sensitive attribute(s) which cannot be modified. Such a sensitive attribute is then
considered disclosed when the association between a sensitive attribute value and a par-
ticular individual can be inferred with a significant probability. In order to prevent such
inferences, the �-diversity model requires that every group of indistinguishable records
contains at least � distinct sensitive attribute values; thereby the risk of attribute disclo-
sure is kept under 1/�.

Although the k-anonymity and �-diversity models have led to a number of valuable
privacy-protecting techniques [3,10,11,13,14,21], the existing solutions are limited only
to static data release. That is, in such solutions it is assumed that the entire dataset is
available at the time of release. This assumption implies a significant shortcoming, as
data today are continuously collected (thus continuously growing) and there is a strong
demand for up-to-date data at all times. For instance, suppose that a hospital wants
to publish its patient records for medical researchers. Surely, all the published records
must be properly anonymized in order to protect patients’ privacy. At first glance, the

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 48–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Secure Anonymization for Incremental Datasets 49

AGE Gender Diagnosis

21 Male Asthma
23 Male Flu
52 Male Alzheimer
57 Female Diabetes

Fig. 1. Initial patient records

AGE Gender Diagnosis

[21 − 25] Male Asthma
[21 − 25] Male Flu
[50 − 60] Person Alzheimer
[50 − 60] Person Diabetes

Fig. 2. 2-diverse patient records

AGE Gender Diagnosis

21 Male Asthma
23 Male Flu
52 Male Alzheimer
57 Female Diabetes
27 Female Cancer
53 Male Heart Disease
59 Female Flu

Fig. 3. New patient records

AGE Gender Diagnosis

[21 − 30] Person Asthma
[21 − 30] Person Flu
[21 − 30] Person Cancer
[51 − 55] Male Alzheimer
[51 − 55] Male Heart Disease
[56 − 60] Female Flu
[56 − 60] Female Diabetes

Fig. 4. New 2-diverse patient records

task seems reasonably straightforward, as any of the existing anonymization techniques
can anonymize the records before they are published. The challenge is, however, that
as new records are frequently created (e.g., whenever new patients are admitted), the
hospital needs a way to provide up-to-date information to researchers in timely manner.

One possible approach is to anonymize and publish new records periodically. Then
researchers can either study each released dataset independently or merge multiple
datasets together for more comprehensive analysis. Although straightforward, this ap-
proach may suffer from severely low data quality. The key problem is that small sets
of records are anonymized independently; thus, records may have to be modified much
more than when they are anonymized all together. Thus, in terms of data quality, this
approach is highly undesirable.

A better approach is to anonymize and publish the entire dataset whenever the dataset
is augmented with new records. In this way, researchers are always provided with up-to-
date information. Although this can be easily accomplished using existing techniques
(i.e., by anonymizing the entire dataset every time), there are two significant drawbacks.
First, it requires redundant computation, as the entire dataset has to be anonymized
even if only a few records are newly inserted. Another, much more critical, drawback is
that even though published datasets are securely anonymous independently (i.e., each
dataset is k-anonymous or �-diverse), they could be vulnerable to inferences when ob-
served collectively. In the following section, we illustrate such inferences.

1.1 Examples of Inferences

A hospital initially has a dataset in Fig. 1 and publishes its 2-diverse version shown
in Fig. 2. As previously discussed, in an �-diverse dataset the probability of attribute
disclosure is kept under 1/�. For example, even if an attacker knows that the record of
Tom, who is a 21-year-old male, is in the published dataset, he cannot be sure about
Tom’s disease with greater than 1/2 probability (although he learns that Tom has either

50 J.-W. Byun et al.

asthma or flu). At a later time, three more patient records (shown in Italic) are inserted
into the dataset, resulting the dataset in Fig. 3. The hospital then publishes a new 2-
diverse version in Fig. 4. Observe that Tom’s privacy is still protected in the newly
published dataset. However, not every patient is protected from the attacker.

Example 1. Suppose the attacker knows that Alice, who is in her late twenties, has
recently been admitted to the hospital. Thus, he knows that Alice is not in the old dataset
in Fig. 2, but in the new dataset in Fig. 4. From the new dataset, he learns only that Alice
has one of {Asthma, Flu, Cancer}. However, by consulting the previous dataset, he can
easily infer that Alice has neither asthma nor flu. He concludes that Alice has cancer.

Example 2. The attacker knows that Bob is 52 years old and has long been treated in the
hospital. Thus, he is sure that Bob’s record is in both datasets. First, by studying the old
dataset, he learns that Bob suffers from either alzheimer or diabetes. Now the attacker
checks the new dataset and learns that Bob has either alzheimer or heart disease. He
thus concludes that Bob suffers from alzheimer. Note that three other records in the
new dataset are also vulnerable to similar inferences.

1.2 Contributions and Paper Outline

As shown in the previous section, anonymizing datasets statically (i.e., without con-
sidering previously released datasets) may lead to various inferences. In this paper, we
present an approach to securely anonymizing a continuously growing dataset in an ef-
ficient manner while assuring high data quality. The key idea underlying our approach
is that one can efficiently anonymize a current dataset by directly inserting new records
to the previously anonymized dataset. This implies, of course, that both new records
and anonymized records may have to be modified, as the resulting dataset must satisfy
the imposed privacy requirements (e.g., k-anonymity or �-diversity). Moreover, such
modifications must be cautiously made as they may lead to poor data quality and/or en-
able undesirable inferences. We thus describe several inference attacks where attacker
tries to undermine the imposed privacy protection by comparing a multiple number of
anonymized datasets. We analyze various inference channels that attacker may exploit
and discuss how to avoid such inferences. In order to address the issue of data quality,
we introduce a data quality metric, called Information Loss (IL) metric, which mea-
sures the amount of data distortion caused by generalization. Based on our analysis on
inference channels and IL metric, we develop an algorithm that securely and efficiently
inserts new records into an anonymized dataset while assuring high data quality.

The remainder of this paper is organized as follows. We review the basic concepts
of the k-anonymity and �-diversity models in Section 2. In Section 3, we describe sev-
eral inference attacks and discuss possible inference channels and how to prevent such
inferences. Then we describe our algorithm that securely and efficiently anonymizes
datasets in Section 4 and evaluate our techniques in Section 5. We review some related
work in Section 6 and conclude our discussion in Section 7.

2 k-Anonymity and �-Diversity

The k-anonymity model assumes that person-specific data are stored in a table (or a
relation) of columns (or attributes) and rows (or records). The process of anonymizing

Secure Anonymization for Incremental Datasets 51

such a table starts with removing all the explicit identifiers, such as name and SSN, from
it. However, even though a table is free of explicit identifiers, some of the remaining
attributes in combination could be specific enough to identify individuals. For example,
as shown by Sweeney [22], 87% of individuals in the United States can be uniquely
identified by a set of attributes such as {ZIP, gender, date of birth}. This implies that
each attribute alone may not be specific enough to identify individuals, but a particular
group of attributes could be. Thus, disclosing such attributes, called quasi-identifier,
may enable potential adversaries to link records with the corresponding individuals.

Definition 1. (Quasi-identifier) A quasi-identifier of table T , denoted as QT , is a set
of attributes in T that can be potentially used to link a record in T to a real-world iden-
tity with a significant probability. �

The main objective of the k-anonymity problem is thus to transform a table so that
no one can make high-probability associations between records in the table and the
corresponding entity instances by using quasi-identifier.

Definition 2. (k-anonymity requirement) Table T is said to be k-anonymous with
respect to quasi-identifier QT if and only if for every record r in T there exist at least
(k − 1) other records in T that are indistinguishable from r with respect to QT . �

By enforcing the k-anonymity requirement, it is guaranteed that even though an adver-
sary knows that a k-anonymous table T contains the record of a particular individual
and also knows the quasi-identifier value of the individual, he cannot determine which
record in T corresponds to the individual with a probability greater than 1/k. The k-
anonymity requirement is typically enforced through generalization, where real values
are replaced with “less specific but semantically consistent values” [22]. Given a do-
main, there are various ways to generalize the values in the domain. Commonly, nu-
meric values are generalized into intervals (e.g., [12−19]), and categorical values into a
set of distinct values (e.g., {USA, Canada}) or a single value that represents such a set
(e.g., North-America). A group of records that are indistinguishable from each other is
often referred to as an equivalence class.

Although often ignored in most k-anonymity techniques, a private dataset typically
contains some sensitive attribute(s) that are not quasi-identifier attributes. For instance,
in the patient records in Fig. 3, Diagnosis is considered a sensitive attribute. For such
datasets, the key consideration of anonymization is the protection of individuals’ sen-
sitive attributes. Observe, however, that the k-anonymity model does not provide suf-
ficient security in this particular setting, as it is possible to infer certain individuals’
attributes without precisely re-identifying their records. For instance, consider a k-
anonymized table where all records in an equivalence class have the same sensitive
attribute value. Although none of these records can be matched with the corresponding
individuals, their sensitive attribute value can be inferred with a probability of 1. Re-
cently, Machanavajjhala et al. [16] pointed out such inference issues in the k-anonymity
model and proposed the notion of �-diversity.

Definition 3. (�-diversity requirement) Table T is said to be �-diverse if records in
each equivalence class have at least � distinct sensitive attribute values. �

52 J.-W. Byun et al.

As the �-diversity requirement ensures that every equivalence class contains at least
� distinct sensitive attribute values, the risk of attribute disclosure is kept under 1/�.
Note that the �-diversity requirement also ensures �-anonymity, as the size of every
equivalence class must be greater than equal to �.

3 Incremental Data Release and Inferences

In this section, we first describe our assumptions on datasets and their releases. We then
discuss possible inference channels that may exist among multiple data releases and
present requirements for preventing such inferences.

3.1 Incremental Data Release

We assume that a private table T , which contains a set of quasi-identifier attributes QT

and a sensitive attribute ST , stores person-specific records, and that only its �-diverse1

version ̂T is released to public. As more data are collected, new records are inserted
into T , and ̂T is updated and released periodically to reflect the changes of T . Thus,
users, including potential attackers, are allowed to read a sequence of �-diverse tables,
̂T0, ̂T1, . . ., where | ̂Ti| < | ̂Tj| for i < j. As previously discussed, this type of data
release is necessary to ensure high data quality in anonymized datasets.

As every released table is �-diverse, by observing each table independently, one can-
not gain more information than what is allowed. That is, the risk of attribute disclosure
in each table is at most 1/�. However, as shown in Section 1, it is possible that one
can increase the probability of attribute disclosure by observing changes made to the
released tables. For instance, if one can be sure that two (anonymized) records in two
different versions indeed correspond to the same individual, then he may be able to
use this knowledge to infer more information than what is allowed by the �-diversity
protection.

Definition 4. (Inference channel) Let ̂Ti and ̂Tj be two �-diverse versions of a private
table T . We say that there exists an inference channel between ̂Ti and ̂Tj , denoted as
̂Ti � ̂Tj , if observing ̂Ti and ̂Tj together increases the probability of attribute disclosure
in either ̂Ti or ̂Tj to a probability greater than 1/�. �

Thus, for a data provider, it is critical to ensure that there is no inference channel
among the released tables. In other words, the data provider must make sure that a
new anonymized table to be released does not create any inference channel with respect
to the previously released tables.

Definition 5. (Inference-free data release) Let ̂T0, . . . , ̂Tn be a sequence of previ-
ously released tables, each of which is �-diverse. A new �-diverse table ̂Tn+1 is said to
be inference-free if and only if � ̂Ti, i = 1, . . . , n, s.t. ̂Ti � ̂Tn+1. �

1 Although we focus on �-diverse data in this paper, one can easily extend our discussion to
k-anonymous data.

Secure Anonymization for Incremental Datasets 53

It is worth noting that the above definitions do not capture possible inference channels
completely. For instance, it is possible that some inference channels exist across more
than two versions of a private table (e.g., ̂Ti, ̂Tj � ̂Tk). Although such inferences are
also plausible, in this paper we focus on simple “pairwise” inference channels.

3.2 Inference Attacks

We first describe a potential attacker and illustrate how the attacker may discover infer-
ence channels among multiple anonymized tables. We then describe various inference
channels and discuss how to prevent them.

Attacker’s knowledge. Before discussing possible inference channels, we first describe
a potential attacker. We assume that the attacker has been keeping track of all the re-
leased tables; he thus possesses a set of released tables {̂T0, . . . , ̂Tn}, where ̂Ti is a
table released at time i. We also assume that the attacker has the knowledge of who
is and who is not contained in each table. This may seem to be too farfetched at first
glance, but such knowledge is not always hard to acquire. For instance, consider med-
ical records released by a hospital. Although the attacker may not be aware of all the
patients, he may know when target individuals (in whom he is interested) are admitted
to the hospital. Based on this knowledge, the attacker can easily deduce which tables in-
clude such individuals and which tables do not. Another, perhaps the worst, possibility
is that the attacker may collude with an insider who has access to detailed information
about the patients; e.g., the attacker could obtains a list of patients from a registration
staff. Thus, it is reasonable to assume that the attacker’s knowledge includes the list of
individuals contained in each table as well as their quasi-identifier values. However, as
all the released tables are �-diverse, the attacker cannot infer the individuals’ sensitive
attribute values with a significant probability. That is, the probability that an individ-
ual with a certain quasi-identifier has a particular sensitive attribute is bound to 1/�;
P (ST = s|QT = q) ≤ 1/�. Therefore, the goal of the attacker is to increase this
probability of attribute disclosure (i.e., above 1/�) by comparing the released tables all
together.

Comparing anonymized tables. Let us suppose that the attacker wants to know the
sensitive attribute of a particular individual, say Tom, whose quasi-identifier value is q.
There are two types of comparisons that may help the attacker: 1) comparison of table
̂Ti that does not contain Tom and table ̂Tj that does, and 2) comparison of ̂Ti and ̂Tj ,
that both contain Tom. In both cases, i < j. Let us call these types δ(¬ ̂Ti, ̂Tj) and
δ(̂Ti, ̂Tj), respectively. Note that in either case the attacker only needs to look at the
records that may relate to Tom. For instance, if Tom is a 57 years old, then records
such as 〈[10 − 20], F emale, F lu〉 would not help the attacker much. In order to find
records that may help, the attacker first finds from ̂Ti an equivalence class ei, where
q ⊆ ei[QT]. In the case of δ(¬ ̂Ti, ̂Tj), the attacker knows that Tom’s record is not in
ei; thus, none of the records in ei corresponds to Tom. Although such information may
not seem useful, it could help the attacker as he may be able to eliminate such records
when he looks for Tom’s record from ̂Tj . In the case of δ(̂Ti, ̂Tj), however, the attacker
knows that one of the records in ei must be Tom’s. Although he cannot identify Tom’s
record or infer his sensitive attribute at this point (as ei must contain at least � number of

54 J.-W. Byun et al.

Ti

Tj

ei1 ei2 ei3

ej2 ej3 ej4

(i) (ii) (iii)

Age

Age

ej1

Fig. 5. Compatible equivalence classes

records that are all indistinguishable to each other and also at least � number of distinct
sensitive attribute values), this could be useful information when he examines ̂Tj .

After obtaining ei, the attacker needs to identify in ̂Tj the records that possibly cor-
respond to the records in ei, that is, equivalence class(es) that are compatible to ei.

Definition 6. (Compatibility) Let Q = {q1, . . . , qm} be a set of quasi-identifier at-
tributes. Let e[qi] be the qi-value of an equivalence class e, where qi ∈ Q. We say that
two equivalence classes ea and eb are compatible with respect to Q if and only if any
of the following conditions holds.

1. ∀qi ∈ Q, ea[qi] = eb[qi]: the quasi-identifer values of ea and eb are identical to
each other; we denote it as ea

∼= eb.
2. ea � eb and ∀qi ∈ Q, ea[qi] ⊆ eb[qi]: the quasi-identifer value of eb is a more

generalized form of the quasi-identifier of ea; we denote it as ea ≺ eb.
3. ea � eb, ea ⊀ eb, and ∀qi ∈ Q, ea[qi] ∩ eb[qi] �= ∅: the quasi-identifier values of

ea and eb overlap with each other; we denote it as ea � eb. �

Example 3. Consider Fig. 5, where the records of two tables Ti and Tj are spatially
represented along the dimension of the quasi-identifier, Age. For simplicity, we do not
show their sensitive attribute values. Table Ti contains six records (shown as ‘�’), and
its 2-diverse version, ̂Ti, consists of three equivalence classes, ei1, ei2, and ei3. On the
other hand, table Tj contains four additional records (shown as ‘♦’), and its 2-diverse
version, ̂Tj , consists of four equivalence classes, ej1, ej2, ej3, and ej4. Given ̂Ti and
̂Tj , the following compatible equivalences can be found.

1. ei1 ∼= ej1 (Fig. 5 (i))
2. ei2 ≺ ej2 (Fig. 5 (ii))
3. ei3 � ej3 and ei3 � ej4 (Fig. 5 (iii))

The fact that two equivalence classes are compatible implies that there exist some
records present in both equivalence classes, although their quasi-identifiers may have
been modified differently. In what follows, we show how matching such records be-
tween compatible equivalence classes could enable the attacker to make high probabil-
ity inferences.

Secure Anonymization for Incremental Datasets 55

Inference channels between compatible equivalence classes. As previously discussed,
there are three cases of compatible equivalence classes. We now examine these cases
in conjunction with each of δ(¬ ̂Ti, ̂Tj) and δ(̂Ti, ̂Tj), illustrating how the attacker may
infer Tom’s sensitive attribute, sT .

1. ei
∼= ej or ei ≺ ej: In these cases, the attacker can reason that all the records in

ei must also appear in ej , and the attacker only needs to look at the sensitive at-
tribute values. Let ei[S] and ej [S] be the multisets (i.e., duplicate-preserving sets2)
of sensitive attribute values in ei and ej , respectively.

(a) In the case of δ(¬ ̂Ti, ̂Tj), the attacker knows that Tom’s sensitive attribute
value is not in ei[S], but in ej [S]; i.e., sT /∈ ei[S] and sT ∈ ej [S]. As he
knows that all the values in ei[S] must also appear in ej[S], he can conclude
that sT ∈ (ej[S] \ ei[S]). Therefore, the attacker can infer sT with a proba-
bility greater than 1/� if (ej[S] \ ei[S]) contains less than � number of distinct
values.

(b) In the case of δ(̂Ti, ̂Tj), sT ∈ ei[S] and sT ∈ ej [S]. However, as both sets are
�-diverse, the attacker does not gain any additional information on sT .

2. ei � ej1 and ei � ej2
3: In this case, the attacker reasons that the records in ei

must appear in either ej1 or ej2. Moreover, as the attacker knows Tom’s quasi-
identifier is q, he can easily determine which of ej1 and ej2 contains Tom’s record.
Let us suppose ej1 contains Tom’s record; i.e., q ⊆ ej1[QT]. Let ei[S], ej1[S],
and ej2[S] be the multisets of sensitive attribute values in ei, ej1, and ej2,
respectively.

(a) In the case of δ(¬ ̂Ti, ̂Tj), the attacker knows that Tom’s sensitive attribute
value is included in neither ei[S] nor ej2[S], but in ej1[S]; i.e., sT /∈ ei[S],
sT /∈ ej2[S], and sT ∈ ej1[S]. Note that unlike the previous cases, he cannot
simply conclude that sT ∈ (ej1[S] \ ei[S]), as not all the records in ei are in
ej1. However, it is true that Tom’s record is in ej1 ∪ ej2, but not in ei; thus
sT ∈ (ej1[S] ∪ ej2[S]) \ ei[S]. As Tom’s record must be in ej1, the attacker
can finally conclude that sT ∈ ((ej1[S] ∪ ej2[S]) \ ei[S]) ∩ ej1[S]. Therefore,
if this set does not contain at least � distinct values, the attacker can infer sT

with a probability greater than 1/�.
(b) In the case of δ(̂Ti, ̂Tj), the attacker knows that Tom’s sensitive attribute value

appears in both ei[S] and ej1[S]. Based on this knowledge, he can conclude that
(sT ∈ ei[S] ∩ ej1[S]). Thus, attacker can infer sT with a probability greater
than 1/� if (ei[S] ∩ ej1[S]) contains less than � distinct values.

We summarize our discussion on possible inference-enabling sets in Fig. 6. Intu-
itively, a simple strategy that prevents any inference is to ensure that such sets are all
�-diverse. Note that with current static anonymization techniques, this could be a daunt-
ing task as inference channels may exist in every equivalence class and also with respect

2 Therefore, set operations (e.g., ∩, ∪, and \) used in our discussion are also multiset operations.
3 It is possible that �Tj contains more than two equivalence classes that are compatible to ei.

However, we consider two compatible equivalence classes here for simplicity.

56 J.-W. Byun et al.

ei
∼= ej ei ≺ ej ei � ej1 and ei � ej2

δ(¬�Ti, �Tj) ej [S] \ ei[S] ej [S] \ ei[S] ((ej1[S] ∪ ej2[S]) \ ei[S]) ∩ ejk[S], k = 1, 2
δ(�Ti, �Tj) ei[S], ej [S] ei[S], ej [S] ei[S] ∩ ejk[S], k = 1, 2

Fig. 6. Summary of inference-enabling sets

to every previously released dataset. In the following section, we address this issue by
developing an efficient approach to preventing inferences during data anonymization.

4 Secure Anonymization

In this section, we present an approach to securely anonymizing a dataset based on pre-
viously released datasets. We first describe a simple �-diversity algorithm and propose
a novel quality metric that measures the amount of data distortion in generalized data.
Based on the algorithm and the quality metric, we then develop an approach where new
records are selectively inserted to a previously anonymized dataset while preventing
any inference.

4.1 �-Diversity Algorithm and Data Quality

Data anonymization can be considered a special type of optimization problem where
the cost of data modification must be minimized (i.e., the quality of data must be maxi-
mized) while respecting anonymity constraints (e.g., k-anonymity or �-diversity). Thus,
the key components of anonymization technique include generalization strategy and
data quality metric.

�-diversity algorithm. In [16], Machanavajjhala et al. propose an �-diversity algorithm
by extending the k-anonymity algorithm in [13] to ensure that every equivalence class
is �-diverse. In this paper, we present a slightly different �-diversity algorithm which
extends the multidimensional approach described in [14]. The advantage of the multidi-
mensional approach is that generalizations are not restricted by pre-defined generaliza-
tion hierarchies (DGH) and thus more flexible. Specifically, the algorithm consists of the
following two steps. The first step is to find a partitioning scheme of the d-dimensional
space, where d is the number of attributes in the quasi-identifier, such that each partition
contains a group of records with at least � number of distinct sensitive attribute values.
In order to find such a partitioning, the algorithm recursively splits a partition at the me-
dian value (of a selected dimension) until no more split is allowed with respect to the
�-diversity requirement. Then the records in each partition are generalized so that they
all share the same quasi-identifier value, thereby forming an equivalence class. Com-
pared to the technique based on DGH in [16], this multidimensional approach allows
finer-grained search and thus often leads to better data quality.

Data quality metric. The other key issue is how to measure the quality of anonymized
datasets. To date, several data quality metrics have been proposed for k-anonymous
datasets [3,10,14,11,21]. Among them, Discernibility Metric (DM) [3] and Average
Equivalence Class Size Metric [14] are two data quality metrics that do not depend
on generalization hierarchies. Intuitively, DM measures the effect of k-anonymization

Secure Anonymization for Incremental Datasets 57

a1 a2

w1

w2

Weight

 Age
a3 a4

w3

w4

a1 a2′

w1

w2

Weight

Age
a3 a4

w3

w4

e1

e2

e1′

e2

r

(i) Before inserting r (ii) After inserting r

Fig. 7. Generalization and data distortion

process by measuring how much records are indistinguishable from each other. How-
ever, DM does not consider the actual transformation of data values. For instance, sup-
pose that there are more than k records that already have the identical quasi-identifer
value and that they are all in the same equivalence class. Even though these records are
not generalized at all, DM penalizes each of these un-generalized records. The same
issue arises for the average equivalence class size metric, which measures the quality of
anonymization directly based on the size of the equivalence classes.

To address this shortcoming, we propose a data quality metric that captures the
amount of data distortion by measuring the expansion of each equivalence class (i.e., the
geometrical size of each partition). For instance, consider Fig. 7 (i), where the records
are spatially represented in 2-dimensional space for quasi-identifier, {Age, Weight}. In
the figure, the dotted regions group the records into two 3-diverse equivalence classes,
e1 and e2. Note that as all the records in an equivalence class are modified to share the
same quasi-identifer, each region indeed represents the generalized quasi-identifier of
the records contained in it. For instance, the generalized records in e1 may share the
identical quasi-identifier 〈[a1 − a2], [w1 − w2]〉. Thus, data distortion can be measured
naturally by the size of the regions covered by equivalence classes. Based on this idea,
we now define a new data quality metric, referred to as Information Loss metric (IL) as
follows.

Definition 7. (Information loss) Let e = {r1, . . . , rn} be an equivalence class where
QT = {a1, . . . , am}. Then the amount of data distortion occurred by generalizing e,
denoted by IL(e), is defined as:

IL(e) = |e| ×
∑

j=1,...,m
|Gj |
|Dj |

where |e| is the number of records in e, and |Dj | represents the domain size of attribute
aj . |Gj | represents the amount of generalization in attribute aj (e.g., the length of an
interval which contains all the attribute values existing in e). �

4.2 Updates of Anonymized Datasets

As previously described, our goal is to produce an up-to-date anonymized dataset by
inserting new records into a previously anonymized dataset. Note that in our discussion

58 J.-W. Byun et al.

below, we assume that all �-diverse tables are maintained internally as partitioned, but
unmodified tables. That is, each �-diverse table consists of a set of equivalent groups,
{e1, . . . , em}, which contain un-generalized records. This is a practical assumption as
generating actual �-diverse records for publication from a partitioned table is a relatively
simple task. Consequently, given such a partitioned table and a new set of records, our
insertion algorithm produces a new partitioned table which includes the new records.

Suppose that an anonymized table ̂T , which is an �-diverse version of a private ta-
ble T , has been published. Suppose that at a later time, a new set of records R =
{r1, . . . , rn} has been inserted into T . Let us denote the updated T as T ′. Intuitively, a
new �-diverse version ̂T ′ can be generated by inserting R into ̂T . The key requirements
for such insertions are: 1) ̂T ′ must be �-diverse, 2) the data quality of ̂T ′ should be
maintained as high as possible, and 3) ̂T ′ must be inference-free.

We now briefly describe such an insertion algorithm which ensures the first two
requirements. A key idea is to insert a record into a “closest” equivalence class so that
the necessary generalization is minimized. For instance, let us revisit Fig. 7, which (i)
depicts six records partitioned into two 3-diverse equivalence classes, and (ii) shows
revised equivalence classes after record r is inserted. Observe that as r is inserted into
e1 resulting in e′1, the information loss of the dataset is increased by IL(e′i) − IL(ei).
However, if r were inserted into e2, then the increase of the information would have
been much greater. Based on this idea, we devise an insertion algorithm that ensures
high data quality as follows.

1. (Add) If a group of records in R forms an �-diverse equivalence class which does
not overlap with any of existing equivalence classes, then we can simply add such
records to ̂T as a new equivalence class.

2. (Insert) The records which cannot be added as a new equivalence class must be in-
serted into some existing equivalence classes. In order to minimize the data distor-
tion in ̂T ′, each record ri is inserted into equivalent group ej in ̂T which minimizes
IL(ej ∪ {ri}) − IL(ej).

3. (Split) After adding or inserting all the records in R into ̂T , it is possible that
the number of distinct values in some equivalence class exceeds 2�. If such an
equivalence class exists, then we may be able to split it into two separate equiva-
lence classes for better data quality. Note that even if an equivalence class is large
enough, splitting it may or may not be possible, depending on how the records are
distributed in the equivalence class.

Clearly, the algorithm above do not consider the possibility of inference channels at
all. In the following section, we enhance this algorithm further to ensure that an updated
dataset does not create any inference channel.

4.3 Preventing Inference Channels

In Section 3, we discussed that in order to prevent any inference channel, all the
inference-enabling sets (see Fig. 6) must be �-diverse. We now discuss how to enhance
our unsecure insertion algorithm to ensure such sets are all �-diverse. Specifically, we
examine each of three major operations, add, insert, and split, and describe necessary
techniques to achieve inference-free updates.

Secure Anonymization for Incremental Datasets 59

Clearly, the add operation does not introduce any inference channel, as it only adds
new �-diverse equivalence classes that are not compatible to any previously released
equivalence class. However, the insert operation may introduce inference channels (i.e.,
ej [S] \ ei[S]). That is, if the new records inserted into an equivalence class contain less
than � number of distinct sensitive values, then the equivalence class becomes vulnera-
ble to inference attacks through δ(¬ ̂Ti, ̂Tj). Thus, such insertions must not be allowed.
In order to address this issue, we modify the insertion operation as follows. During
the insertion phase, instead of inserting records directly to equivalence classes, we in-
sert records into the waiting-lists of equivalence classes. Apparently, the records in a
waiting-list can be actually inserted into the corresponding equivalence class if they are
�-diverse by themselves; until then, they are suppressed from the anonymized dataset.
Note that as more records are continuously inserted into the table (and into the waiting-
lists), for most records, the waiting period would not be too significant. However, to
expedite the waiting period, we also check if the records in the waiting-lists can be
added as an independent equivalence class which does not overlap with any other exist-
ing equivalence class.

There are two kinds of possible inference channels that may be introduced when an
equivalence class ei is split into ej1 and ej2. The first possibility is: ((ej1[S]∪ ej2[S]) \
ei[S]) ∩ ejk[S], k = 1, 2. Clearly, if such sets are not �-diverse, then they become vul-
nerable to inference attacks through δ(¬ ̂Ti, ̂Tj). Thus, the condition must be checked
before splitting ei. The other possible inference channel is: ei[S] ∩ ejk[S], k = 1, 2.
This implies that if there are not enough overlapping sensitive values between the orig-
inal equivalence class and each of the split equivalence classes, then split equivalence
classes become vulnerable to inference attacks through δ(̂Ti, ̂Tj). Thus, unless such
condition is satisfied, ei must not be split. The tricky issue in this case is, however,
that inference channels may exist between any of the compatible equivalence classes
that were previously released. For instance, if there exists equivalence class e′i that was
released before ei, then the splitting condition must be satisfied with respect to e′i as
well. This means that the system needs to maintain the information about the previous
releases. Although this approach leads to extra computational overhead, it is necessary
to maintain data privacy. In order to facilitate this, we store such information for each
equivalence class; that is, each equivalence class keeps the information about its pre-
vious states. Note that it does not require a huge storage overhead, as we need to keep
only the information about the sensitive attribute (not all the records). We also purge
such information when any previous equivalence class becomes no longer compatible
to the current equivalence class.

Clearly, inference preventing mechanisms may decrease the quality of anonymized
data. Although it is a drawback, it is also the price to pay for better data privacy.

5 Experimental Results

In this section, we describe our experimental settings and report the results in details.

Experimental setup. The experiments were performed on a 2.66 GHz Intel IV proces-
sor machine with 1 GB of RAM. The operating system on the machine was Microsoft
Windows XP Professional Edition, and the implementation was built and run in Java

60 J.-W. Byun et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 15 20 25 30

N
u

m
b

er
 o

f
V

u
ln

er
a

b
le

 R
ec

o
rd

s

Table Size (unit = 1,000)

Incremented by 1,000

l = 5
l = 7

Fig. 8. Vulnerabilities

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

A
v
er

a
g
e

In
fo

rm
a
ti

o
n

 L
o
ss

Table Size (unit = 1,000)

l =7, Incremented by 1,000

Static I
Static II

Dynamic

Fig. 9. Data quality

2 Platform, Standard Edition 5.0. For our experiments, we used the Adult dataset from
the UC Irvine Machine Learning Repository [18], which is considered a de facto bench-
mark for evaluating the performance of anonymization algorithms. Before the experi-
ments, the Adult data set was prepared as described in [3,11,14]. We removed records
with missing values and retained only nine of the original attributes. In our experiments,
we considered {age, work class, marital status, occupation, race, gender, native coun-
try, salary} as the quasi-identifier, and education attribute as the sensitive attribute.

For the experiments, we implemented three different �-diversity approaches: Static
I, Static II, and Dynamic. Static I is an approach where the entire dataset is anonymized
whenever new records are inserted, while Static II anonymizes new records indepen-
dently and merges the result with the previously anonymized dataset. Dynamic im-
plements our approach, where new records are directly inserted into the previously
anonymized dataset while preventing inference channels.

Vulnerability. The first question we investigated was how vulnerable datasets were
to inferences when they were statically anonymized (i.e., Static I). In the experiment,
we first anonymized 10K records and generated the first “published” dataset. We then
generated twenty more subsequent datasets by anonymizing 1,000 more records each
time. Thus, we had the total of twenty-one �-diverse datasets with different sizes ranging
from 10K to 30K. After obtaining the datasets, we examined the inference-enabling sets
existing between the datasets. For instance, we examined the inference-enabling sets of
the 12K-sized dataset with respect to the 10K- and 11K-sized datasets. Whenever we
found an inference channel, we counted how many records were vulnerable by it. Fig. 8
shows the results where � = 5, 7. As expected, more records become vulnerable to
inferences as the size of dataset gets larger; for the 30K-sized dataset with � = 7, about
8.3% of records are vulnerable to inferences. Note that there were no vulnerable records
in datasets generated by Static II and Dynamic.

Data Quality. Next, we compared the data quality resulted by Static I, Static II, and
Dynamic. For each approach, we generated different sizes of �-diverse datasets, rang-
ing from 1K to 30K, with increment of 1,000 records. For the data quality measure, we
used the average cost of IL metric (described in Section 4.1). That is, the quality of an
anonymized dataset ̂T was computed as:

∑

e∈E IL(e) / |̂T |, where E is a set of all

equivalence classes in ̂T . Intuitively, this measure indicates the degree to which each

Secure Anonymization for Incremental Datasets 61

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
S

u
p

p
re

ss
ed

 R
ec

o
rd

s

Table Size (unit = 1,000)

Incremented by 1,000

l = 5
l = 7

Fig. 10. Suppression

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

E
x
ec

u
ti

o
n

 T
im

e
(u

n
it

 =
 s

ec
)

Table Size (unit = 1,000)

l =7, Incremented by 1,000)

Static I
Static II

Dynamic

Fig. 11. Execution Time

record is generalized. Our experiment results are shown in Fig. 9. Although Dynamic
results in lower data quality when compared to Static I, it produces much higher qual-
ity data than Static II. Moreover, the quality is maintained regardless of the data size.
Fig. 10 shows the number of suppressed records in Dynamic approach. Note that each
number shows the total number of suppressed records with respect to the entire dataset.
For instance, when � = 5, only 421 records needed to be suppressed for the 30K-sized
dataset.

Execution Time. Fig. 11 shows the execution times of anonymizing various sizes of
datasets. As shown, the execution time of Static I increases linearly with respect to the
size of the dataset, while Static II and Dynamic produce anonymized datasets almost
constantly. Note that in the cases of Static II and Dynamic, the reported numbers are
the total execution times which include the management of waiting-lists.

6 Related Work

In this section, we briefly survey existing literature that addresses data privacy. Instead
of providing a comprehensive survey, we discuss various aspects of data privacy. Note
that we do not include the k-anonymity or �-diversity work here as detailed discussion
can be found in Section 2.

Ensuring privacy in published data has been a difficult problem for a long time, and
this problem has been studied in various aspects. In [12], Lambert provides informa-
tive discussion on the risk and harm of undesirable disclosures and discusses how to
evaluate a dataset in terms of these risk and harm. In [4], Dalenius poses the problem
of re-identification in (supposedly) anonymous census records and firstly introduces
the notion of “quasi-identifier”. He also suggests some ideas such as suppression or
encryption of data as possible solutions.

Data privacy has been extensively addressed in statistical databases [1,5], which pri-
marily aim at preventing various inference channels. One of the common techniques is
data perturbation [15,17,23], which mostly involves swapping data values or introduc-
ing noise to the dataset. While the perturbation is applied in a manner which preserves
statistical characteristics of the original data, the transformed dataset is useful only for

62 J.-W. Byun et al.

statistical research. Another important technique is query restriction [6,8], which re-
stricts queries that may result in inference. In this approach, queries are restricted by
various criteria such as query-set-size, query-history, and partitions. Although this ap-
proach can be effective, it requires the protected data to remain in a dedicated database
at all time.

Today’s powerful data mining techniques [7,9,19] are often considered great threats
to data privacy. However, we have recently seen many privacy-preserving data mining
techniques being developed. For instance, Evfimievski et al. in [2] propose an algorithm
which randomizes data to prevent association rule mining [20]. There has also been
much work done addressing privacy-preserving information sharing [24,2], where the
main concern is the privacy of databases rather than data subjects.

7 Conclusions

In this paper, we presented an approach to securely anonymizing a continuously grow-
ing dataset in an efficient manner while assuring high data quality. In particular, we
described several inference attacks where attacker tries to undermine the imposed pri-
vacy protection by comparing a multiple number of anonymized datasets. We analyzed
various inference channels and discussed how to avoid such inferences. We also in-
troduced Information Loss (IL) metric, which measures the amount of data distortion
caused by generalization. Based on the discussion on inference channels and IL metric,
we then developed an algorithm that securely and efficiently inserts new records into an
anonymized dataset while assuring high data quality.

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. 0430274, the sponsors of CERIAS, and the Korea Research Foundation Grant
funded by the Korean Government (MOEHRD) under KRF- 2005-214-D00360.

References

1. N. Adam and J. Wortmann. Security-control methods for statistical databases: A comparative
study. ACM Computing Surveys, 21, 1989.

2. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private databases.
In ACM International Conference on Management of Data, 2003.

3. R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In the 21st
International Conference on Data Engineering, 2005.

4. T. Dalenius. Finding a needle in a haystack. Journal of Official Statistics, 2, 1986.
5. D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
6. D. Dobkin, A. K. Jones, and R. J. Lipton. Secure databases: Protection against user influence.

ACM Transactions on Database systems, 4, 1979.
7. X. Dong, A. Halevy, J. Madhavan, and E. Nemes. Reference reconciliation in complex

information spaces. In ACM International Conference on Management of Data, 2005.
8. I. P. Fellegi. On the question of statistical confidentiality. Journal of the American Statistical

Association, 1972.

Secure Anonymization for Incremental Datasets 63

9. I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 1969.

10. B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy
preservation. In the 21st International Conference on Data Engineering, 2005.

11. V. S. Iyengar. Transforming data to satisfy privacy constraints. In ACM Conference on
Knowledge Discovery and Data mining, 2002.

12. D. Lambert. Measures of disclosure risk and harm. Journal of Official Statistics, 9, 1993.
13. K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity.

In ACM International Conference on Management of Data, 2005.
14. K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity. In

the 22nd International Conference on Data Engineering, 2006.
15. C. K. Liew, U. J. Choi, and C. J. Liew. A data distortion by probability distribution. ACM

Transactions on Database Systems, 10, 1985.
16. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. �-diversity: Privacy

beyond k-anonymity. In the 22nd International Conference on Data Engineering, 2006.
17. S. P. Reiss. Practical data-swapping: The first steps. ACM Transactions on Database Systems,

9, 1980.
18. C. B. S. Hettich and C. Merz. UCI repository of machine learning databases, 1998.
19. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In ACM

International Conference on Knowledge Discovery and Data Mining, 2002.
20. R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables.

In ACM International Conference on Management of Data, 1996.
21. L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppres-

sion. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002.
22. L. Sweeney. K-anonymity: A model for protecting privacy. International Journal on Uncer-

tainty, Fuzziness and Knowledge-based Systems, 2002.
23. J. F. Traub and Y. Y. H. Wozniakowski. The statistical security of statistical database. ACM

Transactions on Database Systems, 9, 1984.
24. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned

data. In ACM International Conference on Knowledge Discovery and Data Mining, 2002.

Difference Set Attacks on Conjunctive Keyword
Search Schemes�

Hyun Sook Rhee1, Ik Rae Jeong2, Jin Wook Byun1, and Dong Hoon Lee1

1 Center for Information Security Technologies (CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

2 Electronics and Telecommunications Research Institute (ETRI),
Gajeong-dong, Yuseong-gu, Daejeon, Korea

1{math33, byunstar, donghlee}@korea.ac.kr, 2jir@etri.re.kr

Abstract. In a keyword search scheme a user stores encrypted data
on an untrusted server and gives a database manager a capability for
a keyword which enables a database manager to find encrypted data
containing the keyword without revealing the keyword to the database
manager. Conjunctive keyword search scheme enables a user to obtain
data containing all of several keywords through only one query. One of
the security requirements of conjunctive keyword search schemes is that a
malicious adversary should not be able to generate new valid capabilities
from the observed capabilities. In this paper we show that conjunctive
keyword search schemes are not secure. In particular, given two capabili-
ties corresponding two sets of keywords, an adversary is able to generate
a new capability corresponding to the difference set of two keywords sets.

Keywords: Privacy; keyword search; conjunctive keyword search; dif-
ference set attacks.

1 Introduction

As the amount of information to be stored and managed on the Internet rapidly
increases, the importance of storage system such as database is increasingly
growing. As a result, ensuring privacy for the stored data on the storage system
becomes one of the most urgent challenges in database research and industry.

A user of database systems such as e-mail and on-line storage systems nor-
mally believes that the managers of systems are trustworthy. However, serious
damages caused by the abuse of personal data have often occurred by the system
managers. Hence, the data need to be protected even from the system managers
if the database systems can not be trusted. When the storage system is not
trustful, users may ensure the privacy of their data by storing it in an encrypted
form. However, encryption makes it hard to find specific data in the encrypted
database. To resolve this hardness, various keyword search schemes have been

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 64–74, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Difference Set Attacks on Conjunctive Keyword Search Schemes 65

suggested in the various encrypted database systems such as web-based storage
system, e-mail system, and pay-per-view system [5,8,11,18,19,22,23].

The database systems may be classified into three types. The first type is
Storage system, where a user stores his encrypted data to an untrusted server,
and later searches data containing a keyword chosen by the user [8,11,13,23].
Song et al. studied an efficient and secure keyword search scheme by using a
symmetric cipher [23]. Goh suggested a keyword search scheme using a Bloom
filter [11].

The second type is Transfer system, where a data suplier may store encrypted
data with a user’s public key in the untrusted server, and later the user searches
data containing a keyword such as e-mail system. Boneh et al. suggested pub-
lic key encryption keyword search schemes in [5], and Park et al. suggested a
conjunctive keyword search scheme in [19].

The third type is Vendor system, where a database manager becomes a data
supplier and a user retrieves data containing a keyword without revealing to
the database manager which contents the user receives [18]. For this type of
database systems, Rhee et al. suggested a conjunctive keyword search scheme
using an oblivious transfer [22].

1.1 Our Work and Motivation

The naive approach for conjunctive keyword search is that a user iteratively
gives a capability for each keyword and receives data containing the keyword.
In this naive approach, a database manager searches the set of data containing
each keyword by executing a keyword search scheme for each keyword and finally
return the intersection of all the sets. This approach allows the database manager
to obtain the encrypted data containing a specific keyword.

For the more useful and secure conjunctive keyword search scheme, a user gives
only one capability and receives data containing all keywords. The usefulness of
this approach is from the followings: (1) If we do not query iteratively, the
computational and communicational complexity may be reduced. (2) In this
approach, a database manager can not know the encrypted data related to a
specific keyword.

Note that the database manager does not know keywords themselves directly
from given capabilities in both approaches. However, it may be still possible for
the manager to link data from the given capabilities.

For example, suppose that SIi(Alice) and SIj(Bob) are the randomized search-
able informations of keywords Alice and Bob, respectively. Dk is the encrypted
data. Assume that the database manager has the following encrypted database.

Keyword Field 1 Keyword Field 2
D1 SI1(Alice) ...
D2 ... SI1(Bob)
D3 SI2(Alice) ...
D4 ... SI2(Bob)
D5 SI3(Alice) SI3(Bob)

66 H.S. Rhee et al.

Let K1 = {Alice, Bob} and K2 = {Alice} be the sets of keywords, and C1 =
Cap(K1) and C2 = Cap(K2) be the capabilities of K1 and K2, respectively.
If the database manager has seen the capabilities C1 and C2, the manager can
know the fact that C1 is a capability which makes the manager search data {D5}
and C2 is a capability which makes the manager to search data {D1, D3, D5}.
The manger can know that K2 � K1 from {D5} � {D1, D3, D5}. Thus the
information which the database manager gets is as follows:

(1) K1 is related to {D5}.
(2) K2 is related to {D1, D3, D5}.
(3) K2 � K1

In a secure conjunctive keyword search scheme, the database manager should
not learn any more information except the above information. But in some con-
junctive keyword search schemes, the database manager can know that a dif-
ference set K1 − K2 is related to {D2, D4}. That is, some conjunctive keyword
search schemes do not provide “unlinkability” of data.

In this paper we show that the conjunctive keyword search schemes in [13,19,22]
do not satisfy unlinkability. The above attack, “difference set” attack, is general-
ized in the following definition.

Definition 1. Let A be a malicious database manager of a conjunctive keyword
search scheme CKS. Let (K1, ..., Kl) be the sets of keywords. Let (C1, ..., Cl) be
the capabilities of (K1, ..., Kl), respectively, which are given to A. If A can make
a new capability C for a set of keywords K = Ki − Kj, where K /∈ {K1, ..., Kl},
Kj ⊂ Ki, 1 ≤ i, j ≤ l(i �= j) then CKS is not secure against difference set
attacks.

In the following sections, we show that the conjunctive keyword search schemes
in [13,19,22] are not secure against the difference set attacks.

2 Attacks on Golle et al.’s Conjunctive Keyword Search
Schemes

Golle et al. proposed two conjunctive keyword search schemes for storage system
in [13]. For convenience, we call the first scheme as Golle I and the second scheme
as Golle II. In this section, we briefly review Golle I and Golle II and show that
they are not secure against difference set attacks.

2.1 Difference Set Attacks on Golle I Scheme

We first briefly review Golle I. A user manages his own data in the database. A
user sends the following message:

E(mi) ‖ CSIi = {Ii, CSIi,1(Wi1, ρ, K), ..., CSIi,m(Wim, ρ, K)}
where mi is a message, E is a secure encryption algorithm, and m is the number
of the keyword fields. CSIi does not reveal any information about the message,
whereas it enables the database manager to search for a set of keywords. The
protocol works as follows:

Difference Set Attacks on Conjunctive Keyword Search Schemes 67

• Param(1k) : It takes as an input a security parameter k, and outputs pa-
rameters ρ = (G, g, f(·, ·), h(·)), where G is a group of order q in which
decisional Diffie-Hellman (DDH) problem is hard, g is a generator of G,
f : {0, 1}k × {0, 1}∗ −→ Z∗

q is a keyed function and h is a hash function.
• KeyGen(1k) : It takes as an input a security parameter k, and outputs a

secret key (sk = K) for the function f , and we denote f(K, ·) by fK(·).
• CSI(ρ, K, {Wi,1, ..., Wi,m}) : It takes as inputs ρ, K and {Wi,1, ..., Wi,m}, and

outputs conjunctive searchable information CSIi = {Ii, CSIi,1(Wi,1, ρ, K), ...,
CSIi,m(Wi,m, ρ, K)}. Let Vi,j = fK(Wi,j) for 1 ≤ j ≤ m. Let ai be a value
randomly chosen from Z∗

q . The output CSIi is:

CSIi = (gai , gaiVi,1 , ..., gaiVi,m)

where Ii is an additional information needed for conjunctive keyword search,
and CSIi,j(Wi,j , ρ, K) is the corresponding searchable information of Wi,j for
1 ≤ j ≤ m.

• TCK(ρ, K, p1, ..., pl, Ql) : For 1 ≤ l ≤ m, it takes as inputs a secret key sk, a list
of names of target keyword fields in the database, and the corresponding l con-
junctive keywords {Wp1 , ..., Wpl

}. It outputs a query Tl = {Q, C, p1, ..., pl},
where Q = (h(ga1s), ..., h(gans)) and C = s +

∑t
ω=1 fK(Wjω).

• Test(CSIi, T) : It takes as inputs the conjunctive searchable information
CSIi and query T . It outputs “yes” if the condition (Wi,p1 = Wp1) ∧ ... ∧
(Wi,pl

= Wpl
) holds, and “no” otherwise. The server computes Ri = gaiC ·

g−ai(
�t

ω=1 Vijω)), and returns “true” if h(Ri) = h(gais) or “false” otherwise.

Lemma 1. Golle I scheme is not secure against difference set attacks.

Proof. We show that a malicious database manager SA can make a new ca-
pability from the two queried capabilities if some conditions hold. SA works as
follows:

• Step 1.Assume that SA has been asked with two queries, T1 ={Q1, C1, 1, 2, 3}
and T2 = {Q2, C2, 1, 2}, such that:

Q1 = {h(ga1s1), ...h(gans1)}
C1 = s1 + fK(W1) + fK(W2) + fK(W3)
Q2 = {h(ga1s2), ..., h(gans2)}
C2 = s2 + fK(W1) + fK(W2)

Note that SA can not know the secret information s1 and s2 which are
randomly selected from a querier, but can know that the keyword fields of
the first query are (1, 2, 3) and the keyword fields of the second query are
(1, 2).

• Step 2. Suppose that a set of data collected from the first query is {D1}
and a set of data collected from the second query is {D1, D2}. Since two
sets contain the same data D1 and {1, 2} ⊂ {1, 2, 3}, SA can know that the
keywords of two queries T1 and T2 are same in the keyword fields 1 and 2,

68 H.S. Rhee et al.

respectively. From this fact, SA can make a new capability T3 = {Q3, C3, 3}
using T1 and T2 as follows:

C3 = C1 − C2 = s1 − s2 + fK(W3)

Ri =
gaiC1

gai(Vi1) · gai(Vi2) · gai(Vi3)

R′
i =

gaiC2

gai(V ′
i1) · gai(V ′

i2)

Q3 = (h(
R1

R′
1
), ..., h(

Rn

R′
n

))

SA makes a new valid query T3 = {C3, Q3, 3}, and thus can find the en-
crypted data related to an unknown keyword W3 by using Test algorithm.
For every 1 ≤ i ≤ n, SA computes as follows:

h(gai C3/gaiVi3) = h(gai (s1−s2))

= h(
Ri

R′
i

)

Hence, this scheme is not secure against difference set attacks. �

2.2 Difference Set Attacks on Golle II Scheme

Golle II Scheme works as follows.

• Param(1k) : It takes as an input a security parameter k, and outputs para-
meters ρ = (G1, G2, ê, g, f(·, ·)), where G1 and G2 are two groups of order
q, g is a generator of G1, ê : G1 × G1 → G2 is an admissible bilinear map
and a keyed function f : {0, 1}k × {0, 1}∗ −→ Z∗q . The security parameter k
is used implicitly in the choice of the groups G1 and G2.

• KeyGen(1k) : It takes as an input a security parameter k, and outputs a
secret value α and a secret key (sk = K) for the function f , and we denotes
f(K, ·) by fK(·), and {fK(·)}K forms a pseudorandom function family.

• CSI(ρ, K, Di): It takes as inputs ρ, K and document Di={Wi1, ..., Wim}, and
outputs conjunctive searchable information CSIi = {Ii, CSIi,1(Wi,1, ρ, K), ...,
CSIi,m(Wi,m, ρ, K)}. Let Vi,j = fK(Wi,j) for 1 ≤ j ≤ m. Let ai be a value
chosen uniformly at randomly at random from Z∗

q . The output CSIi is:

CSIi = (gai , gai(Vi,1+Ri,1), ..., gai(Vi,m+Ri,m), gaiαRi,1 , ..., gaiαRi,m)

• TCK(ρ, K, j1, ..., jt, Ql) : For 1 ≤ l ≤ m, it takes as inputs a secret key sk, a
list of names of target keyword fields in the database, and the corresponding
l conjunctive keywords Qt = {Wj1 , ..., Wjt}. It outputs a trapdoor Tt =
{Q, C, H, j1, ..., jt}, where Q = gαr and C = gαr(

�t
ω=1 fK(Wjω) and H = gr.

Difference Set Attacks on Conjunctive Keyword Search Schemes 69

• Test(ρ, CSIi, T) : It takes as inputs the conjunctive searchable information
CSIi and the trapdoor T . The algorithm checks whether the following equal-
ity holds:

ê(gαr(
�t

ω=1 fK (Wjω), gai) =
∏t

k=1
ê(gαr ,g

ai(Vi,jk
+Ri,jk

))
ê(gr ,g

aiαRi,jk)

and returns “true” if the equality holds, and “false” otherwise.

Lemma 2. Golle II scheme is not secure against difference set attacks.

Proof. The environment of Golle II scheme is the same as Golle I scheme. SA
works as follows:

• Step 1. SA first captures two valid trapdoor T1 = {Q1, C1, H1, 1, 2, 3} and
T2 = {Q2, C2, H2, 1, 2} as follows:

Q1 = gαr1 , H1 = gr1 , C1 = gαr1(fK(W1)+fK(W2)+fK (W3))

Q2 = gαr2 , H2 = gr2 , C2 = gαr2(fK(W1)+fK(W2))

SA cannot know the secret information r1 and r2 which are randomly selected
from Z∗

q , but SA sufficiently can know the fact that the keyword fields of
first capability are (1, 2, 3) and the keyword fields of second capability are
(1, 2).

• Step 2. For every 1 ≤ i ≤ n, SA computes Vi and V ′
i and Vi/V ′

i as follows:

Vi = ê(gαr1(
�3

ω=1 fK(Wω), gai)

V ′
i = ê(gαr2(

�2
ω=1 fK(Wω), gai)

Vi

V ′
i

=
ê(gαr1(fK(W1)+fK(W2)+fK (W3)), gai)

ê(gαr2(fK(W1)+fK(W2)), gai)

• Step 3. Suppose that the result data from the first Test algorithm is a
D1 and the resulted data from the second Test algorithm are D1, D2. Since
two results simultaneously contain the data D1 in the common keyword
fields 1and 2 and {1, 2} ⊂ {1, 2, 3}, SA sufficiently can know the fact that
the keyword fields of first capability are (1, 2, 3) and the keyword fields of
second capability are (1, 2). From this fact, SA makes a new valid query
T3 = {Q3 = Q1, C3 = V̄i, H3 = H3, 3}. For every 1 ≤ i ≤ n, SA computes V̄i

as follows:

V̄i =
Vi

V ′
i

×
2∏

k=1

ê(gαr2 ,gai(Vi,k+Ri,k))
ê(gr2 ,gaiαRi,k)

ê(gαr1 ,gai(Vi,k+Ri,k))
ê(gr1 ,gaiαRi,k)

• Step 4. Let’s define dsQ as follows. For every 1 ≤ i ≤ n, SA compares V̄i

with dsQ as follows:

dsQ = ê(gαr1 ,gai(Vi,3+Ri,3))
ê(gr1 ,gaiαRi,3)

70 H.S. Rhee et al.

SA can find the encrypted data related to an unknown keyword W3 by using
Test algorithm:

V̄i = dsQ

Hence, this scheme is not secure against difference set attacks �

3 Attack on Park et al.’s Conjunctive Keyword Search
Scheme

In this section, we briefly review Park et al.’s CKS scheme and show that it is
not secure against difference set attacks. Park I scheme is as follows:

• KeyGen(1k) : It takes as an input a security parameter k, and determines
two groups G1 and G2, and chooses s1, s2 ∈ Z∗

q and a generator P of G1. It
outputs are a public key pk = (P, y1 = s1P, y2 = s2P) and the corresponding
secret key sk = (s1, s2).

• CSI(pk, D) : It selects a random number r ∈ Z∗
q , and outputs S = (A1, ...,

Am, B, C) = [e(rH(W1), y1), e(rH(W2), y1), ..., e(rH(Wm), y1), ry2, rP].
• TCK(sk, p1, ...pt, Qt = {W1, .., Wt}) : It takes as an input sk, p1, ...pt, Qt =

{W1, .., Wt} and chooses a random u ∈ Z∗
q and outputs TQ =[T1, T2, p1, ..., pt]

where T1 = (s1
s2+umod q)(H(Wi,p1) + ... + H(Wi,pt)), T2 = u, and p1, ..., pt

are positions of keyword fields.
• Test(pk, S, Tt) : It checks the equation AI1 ×AI2 × ...×AIt = e(T1, B+T2C).

If so, outputs “yes”. Otherwise, outputs “no”.

Lemma 3. Park I scheme is not secure against difference set attacks.

Proof. We show that a malicious database manager SA can make a new capa-
bility from the two queried capabilities if some conditions hold, and thus a new
valid query. SA works as follows:

• Step 1. SA first captures two valid trapdoor {T1, T2, 1, 2, 3} and {T ′
1, T

′
2, 1, 2}

as follows:

T1 = {(
s1

s2 + u
)(H(W1) + H(W2) + H(W3))}

T2 = u

T ′
1 = {(

s1

s2 + u′)(H(W1) + H(W2))}

T ′
2 = u′

• Step 2. For 1 ≤ i ≤ n, SA can get the following information.

ê(T1, Bi + T2Ci) = Ai1 × Ai2 × Ai3

ê(T ′
1, Bi + T ′

2Ci) = Ai1 × Ai2

Difference Set Attacks on Conjunctive Keyword Search Schemes 71

• Step 3. Suppose that the first search result is D1 and the second search
result is D1, D2. SA can know the fact that the first and the second capability
has the same keyword in 1 and 2 keyword fields, respectively. Although SA
cannot know the fact that the third keyword is W3, he can search data related
keyword W3 without Test algorithm using the capabilities {T1, T2, 1, 2, 3} and
{T ′

1, T
′
2, 1, 2}. This is because:

ê(T1,Bi+T2Ci)
ê(T ′

1,Bi+T ′
2Ci)

= ê(H(W3), P)ris1

• Step 4. For every 1 ≤ i ≤ n, SA compares Ai3 with ê(H(W3), P)ris1 . SA can
get the data related keyword W3. Hence, this scheme is not secure against
difference set attacks. �

4 Attack on Rhee et al.’s Conjunctive Keyword Search
Scheme

In this section, we briefly review Rhee et al.’s scheme and show that it is not
secure against difference set attacks. Rhee et al.’s OCKS scheme is as follows:

• [Commitment Phase] T generates a public key (N, e) and a secret key d
of RSA. We assume that the value ki is a decryption key of encrypted data
ci = Eki(Di), where Di = {wi1, ..., wim}. Let keygeni(x) = (x − ri1) × · ·
· × (x − rim) + ki be a key generation function which provides a decryption
key ki corresponding to data ci, where m is the number of keyword fields.
Let leng : ZN −→ Zq is an ideal hash function and fk : ZN −→ ZN is a
pseudo random function. For every i = 1, ..., n and j = 1, ..., m, T computes
the followings.
(Step 1) T randomly chooses r′i ∈ ZN .
(Step 2) T makes OCSIij = fk(wi,j)dr′i mod N , where OCSIij is the obliv-
ious conjunctive keyword searchable information for wij .
(Step 3) T computes leng(r′ji) = rij and sets yij = grij .
(Step 4) T constructs Bi = ci ‖ yi1, yi2, ..., yim‖ keygeni(x) ‖ OCSIi1, ...,
OCSIim. T commits B1, B2, · · ·, Bn.

• [Transfer Phase] The transfer phase consists of k subphases. U learns a
conjunctive keyword search result

⋂dj

t=1 search(w∗
jt

) as follows.
(Step 1) U choose dj keywords w∗ = w∗

j1
, w∗

j2
, ..., w∗

jdj
on W adaptively

(Step 2) U chooses a random element r ∈ ZN and computes Y as follows.
U sends Y to T .

Y = re × fk(w∗
j1) × · · · × fk(w∗

jdj
).

(Step 3) T computes K ′ = Y d mod N and sends it to U .
(Step 4) U computes K = K ′/r.
(Step 5) For every i from 1 to n, U computes ridj as follows.

{
OCSIij1 × · · · × OCSIijdi

/K =⇒ (r′i)
dj

leng((r′i)
dj) =⇒ ridj

72 H.S. Rhee et al.

If the following equation (1) is satisfied, then we determine that the data Di

contains the keywords w∗
j1, w

∗
j2, ..., w

∗
jdj

.

gridj = yidj (1)

And U can get a decryption key ki for ci by the equation (2).

ki = keygeni(ridj) (2)

User U can get data Di as decrypting the data ci with ki.

Lemma 4. Rhee et al.’s OCKS scheme is not secure against difference set at-
tacks.

Proof. We show that a malicious user UA can make a new capability from the
two queried capabilities if some conditions hold. UA works as follows:

• Step 1. If UA got the data related keywords {W1, W2} and a data related
keywords {W1, W2, W3, W4} then the user can get an extra information that
is a data related keywords {W3, W4} without the transfer phase with the
database supplier. UA randomly picks r1, r2 and computes the followings
and transfers to the database supplier:

Y1 = re
1 · (fK(W1) + fK(W2) + fK(W3) + fK(W4))

Y2 = re
2 · (fK(W1) + fK(W2))

• Step 2. The database supplier computes the followings and sends them to
UA:

Y d
1 = r1 · (fK(W1)d × fK(W2)d × fK(W3)d × fK(W4)d)

Y d
2 = r1 · (fK(W1)d × fK(W2)d)

• Step 3. UA computes the followings and can get the following extra infor-
mation EI:

Y d
1 /r1 = (fK(W1)d × fK(W2)d × fK(W3)d × fK(W4)d)

Y d
2 /r2 = (fK(W1)d × fK(W2)d)

EI = Y d
1 /r1

Y d
2 /r2

= fK(W3)d × fK(W4)d

• Step 4. For 1 ≤ i ≤ n, UA computes the following values and compares gri2

and yi2:

OCSIi3 × OCSIi4/EI =⇒ (r′i)
2

leng((r′i)
2) =⇒ ri2

If gri2 = yi2 is satisfied, then ki = keygeni(ri2) is the decryption key and so
UA can get the data related keywords W3, W4 without processing the transfer
phase. Hence, this scheme is not secure against difference set attacks. �

Difference Set Attacks on Conjunctive Keyword Search Schemes 73

5 Conclusion

In this paper, we have reviewed Golle et al.’s scheme, Park et al.’s scheme, and
Rhee et al.’s scheme and showed that these schemes are vulnerable to difference
set attacks. It would be a good future work to design a security model considering
difference set attacks and a secure conjunctive keyword search scheme to be
secure against such attacks.

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Catalano, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, Haixia Shi,“Searchable Encryption
Revisited: Consistency Properties, Relation to Anonymous IBE, and Extions.”,
Crypto’05, LNCS Vol3621. , pp205-222 , 2005.

2. R. Agrawal and R. Srikant,“Privacy-Preserving Data Mining”, In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, pp.
439-450, 2000.

3. M. Balze, “A Cryptographic file system for UNIX.”, Processings of 1st ACM Con-
ference om Communications and Computing Security, 1993.

4. S. Bellovin , W. Cheswick, “Privacy-enhanced searches using encrypted bloom
filters”, Cryptology ePrint Archive, Report 2004/022, Feb 2004.

5. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key Encryption
with Keyword Search”, EUROCRYPT’04, 2004.

6. D. Brassard, C. Crepeau, and J. M. Robert, “All-or-Nithing Disclosure of Secrets”,
Crypto’86, Springer-Verlag, 1987, pp. 234-238.

7. M. Bellare, C. Namprempre, and D. Pioncheval,“The Power of RSA Onversion
Oracles and the Security of Chaum’s RSA-Based Blind Signature Scheme”, Proc.
of Finandcial Cryptography 2001, LNCS vol. 2339, pp. 319-338.

8. Y. C. Chang, M. Mitzenmacher, “privacy preserving keyword searches on remote
encrypted data”,ePrint, October 7th 2003.

9. G. Cattaneo, G. Persiano, A. Del Sorbo, A. Cozzolino, E. Mauriello, and R. Pisapia,
“Design and implementation of a transparent cryptographic file system for UNIX”,
Techincal Report, University of Salerno, 1997.

10. S. Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for Signing Con-
tracts”, comm. of ACM, 28:637-647, 1985.

11. E. J. Goh, “secure index”, ePrint, October 7th 2003.
12. P. Golle, M. Jakobsson, A. Juels, and Paul Syverson, “Universal Re-encryption for

Mixnets”, In proceedings of CT-RSA 2004, 2004.
13. P. Golle, J. Staddon and B. Waters, “Secure Conjunctive Keyword Search

Over Encrypted Data”, Proceedings of the Second International Conference on
ACNS:Applied Cryptography and Network Security, 2004.

14. J. Hughes and D. Corcoran, “A nuiversal access, smart-card-based, secure fiel sys-
tem.”, Atlanta Linux Showcase , October 1999.

15. A. John , R. Peter, “Electric Communication Development”, Communications of
the ACM ,40,May 1997, pp. 71-79. 48-63, 2002.

16. K. Kurosawa, “Multi-recipient Public-Key Encryption with Shortened Ciphertext”,
In proceedings of PKC 2002, LNCS 2274, pp. 48-63, 2002.

17. M. Noar and B. Pinkas, “Efficient Oblivious trnasfer protocols”, 12th Annual Sym-
posium on Discrete Algorithms(SODA), pp 448-457(2001).

74 H.S. Rhee et al.

18. W. Ogata and K. Kurosawa, “Oblivious Keyword Search”, Journal of complex-
ity’04, Vol 20. April/Jun 2004.

19. D. Park, K. Kim, and P. Lee, “Public key Encryption with Conjunctive Field
Keyword Search”, WISA’04, LNCS 3325, pp73-86, 2004.

20. D. Pointcheval and J. P. Stern, “Provably secure blind signature schemes”, Proc.
of Asiacrypt’96, LNCS Vol. 1163, pp 252-265, 1996.

21. M. Rabin, “How to exchange secrets by oblivious transfer”, Technical Report TR
81, Aiken computation Lab, Harvard University.

22. H.S. Rhee, J. W. Byun, D. H. Lee, J. I. Lim, “Oblivious Conjunctive Keyword
Search”, WISA 2005, LNCS Vol3786. , pp318-327 , 2005.

23. D. Song, D. Wagner, and A. Perrige, “Practical Techniques for searches on En-
crypted Data”, In Proc. of the 2000 IEEE Security and Privacy Symposium, May
2000.

24. B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an Encrypted
and Searchable Audit Log”,11th Annual Network and Distributed Security Sympo-
sium (NDSS ’04); 2004.

25. E. Zadok, I. Badulescu, and A. Shender, “Cryptfs : A stackable vnode level en-
cryption fiel system.”, Technical Report CUCS-021-98 : 1998.

Off-Line Keyword Guessing Attacks on Recent
Keyword Search Schemes over Encrypted Data�

Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee

Center for Information Security Technologies (CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea
{byunstar, math33, kokokzi, donghlee}@korea.ac.kr

Abstract. A keyword search scheme over encrypted documents allows
for remote keyword search of documents by a user in possession of a
trapdoor (secret key). A data supplier first uploads encrypted documents
on a storage system, and then a user of the storage system searches
documents containing keywords while insider (such as administrators of
the storage system) and outsider attackers do not learn anything else
about the documents.

In this paper, we firstly raise a serious vulnerability of recent keyword
search schemes, which lies in the fact that keywords are chosen from
much smaller space than passwords and users usually use well-known
keywords for search of document. Hence this fact sufficiently gives rise
to an off-line keyword guessing attack. Unfortunately, we observe that
the recent public key-based keyword search schemes are susceptible to
an off-line keyword guessing attack. We demonstrated that anyone (in-
sider/outsider) can retrieve information of certain keyword from any cap-
tured query messages.

Keywords: Keyword search on encrypted data, off-line keyword guess-
ing attack, database security and privacy.

1 Introduction

With rapid developments of Internet technologies, the amount of personal in-
formation to be stored and managed on web-based storage systems rapidly
increases. Thus, protecting personal data stored on the database from out-
sider/insider has been hot issues in a secure storage system. The most instinctive
solution to prevent theft and misuse of personal data from an outsider/insider
attacker is that a user of database system simply encrypts personal data with
his own private key, and stores the encrypted results on the storage system.
The user should also manage his encryption and decryption keys securely with-
out revealing it to the outsider/insider attackers. However, secure encryption
makes be unreadable to anyone other than the users holding the encryption

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 75–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

76 J.W. Byun et al.

keys, hence the server is unable to determine which encrypted documents con-
tain specific keywords. Thus, in recent years, efficient and secure search of data
using user’s specific keywords has received a lot of attentions in the litera-
ture [1,3,5,6,8,9,11,12,13,14].

A keyword search protocol over encrypted documents consists of three enti-
ties: a data supplier, a storage system such as database, and a user of storage
system. A data supplier uploads encrypted documents on a storage system, and
then a user of the storage system searches documents containing keywords. For a
more practical scenario, let’s consider a common e-mail system such as hotmail.
In this e-mail system, a data supplier is an e-mail sender, a storage system is an
e-mail server, and a user of storage system is a user of an e-mail server. An e-mail
sender first encrypts an e-mail with user’s (receiver’s) public key and sends the
encrypted e-mail to an e-mail server. Actually, e-mails are encrypted by secure e-
mail protocol such as PGP (pretty good privacy) protocol [15]. A legitimate user
of e-mail server logs in the system, and searches for the encrypted e-mails by us-
ing specific keywords. In this setting, recently, Boneh et al. firstly proposed public
key encryption keyword search (for short, PEKS) schemes and formally proved
its security under the random oracle model [3]. However, as mentioned in the
literature [8,13], the PEKS schemes are inappropriate for conjunctive keywords
search such as searching on the conjunction of “Urgent”, “Bob” and “Finance”.
Very recently, Park et al. presented two conjunctive keyword search protocols
[13] based on the PEKS, and showed the protocols are secure under the random
oracle model [2].

1.1 Our Contributions

Generally, off-line guessing or dictionary attacks arise when an attacker exploits
the fact that certain weak secrets (such as passwords) may have low entropy,
i.e. stem from a small set of values. Our main motivation of this paper starts
from a simple fact that keywords are also chosen from much smaller space than
passwords and users usually use well-known keywords (low entropy) for search
of document.

In particular, let’s suppose an e-mail system which is a major application
area of keyword search scheme based on public key encryption [3,13]. In the
e-mail search system, users are interested to search for their e-mails sent by
“Supervisor” or “Lover” in the From field or they may concern well-known
keywords such as “Urgent”, “Exam”, and “Hello” in the Title fields. Usually,
when users fill in a title of e-mail, they use a simple and representative sentence
composed of very short keywords to make receivers easily grasp the content of
e-mail. Sufficiently, this fact can give rise to keyword guessing attacks where
an malicious attacker is able to guess some candidate keywords, and verify his
guess is correct or not in an off-line manner. By performing this off-line keyword
guessing attack, malicious outsider/insider attacker can get relevant information
of encrypted e-mail, and intrude on a users’ e-mail privacy.

Actually, keywords are chosen from much smaller space than the space of
passwords. Surprisingly, we note that the latest Merriam-Webster’s colegiate

Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes 77

dictionary contains only 225000 (≈ 218) keyword definitions [7,10], hence the
probability of guessing a correct keyword in a brute force way is 1

218 . However,
the probability of guessing a correct password is (1

62)8 ≈ 1
248 if we assume that

every password has 8 character length and consists of alphabetic characters (52
characters : ‘a’ to ‘z’ and ‘A’ to ‘Z’) and numeric characters (10 characters : 0 to
9). Thus, we should give more careful attention on an off-line keyword guessing
attack when we design a keyword search scheme, as we have carefully designed
password-based authentication scheme to be secure against off-line password
guessing attack.

In this paper, we firstly point out security vulnerabilities on recent key-
word search schemes [3,13] by performing off-line keyword guessing attacks. We
demonstrate that anyone (insider/outsider) can retrieve information of certain
keyword from any captured query message of the protocol.

1.2 Organization

In Section 2, we explain security models of keyword search schemes. In Section
3,4 we overview two public key-based keyword search schemes and perform off-
line keyword guessing attacks on the schemes, respectively. In Section 5, we
conclude and present future works.

2 Keyword Search Schemes and Their Security
Definitions

2.1 Keyword Search Schemes

[Single Keyword Search Scheme]. Let’s consider a following setting where a
sender encrypts its documents with a user’s (i.e., the intended receiver’s) public
key and stores it on database of an untrusted server. First, a sender encrypts
his e-mail (or sensitive document) with a user’s public key (pk) and appends
searchable information (SI) to the encryption, and then sends the appending
result to the database of the untrusted server. We assume that the documents
are encrypted by a standard public key encryption which is semantically se-
cure against chosen ciphertext attacks. The user makes a trapdoor query for a
keyword (TQ) using his private key, and sends the query to the server. After
receiving the value of TQ from the user, the server is able to determine which
encrypted documents contain queried keyword by checking the received TQ and
all the values of SI in the database, but without learning anything else about
the document from the received TQ and the SI. The server sends the corre-
sponding encrypted documents (for example, Epk(D1), .., Epk(Dl), for l ≤ m)
to the requesting user. The keyword search protocols based on the public key
encryption consists of the following polynomial time algorithms. We illustrate
the framework of single keyword search scheme in Fig. 1.

• Key generation algorithm KeyGen(1k) : Takes as an input a security para-
meter k, and outputs a public/private key pair (pk, sk).

78 J.W. Byun et al.

• SI(pk,W) : Takes as inputs a user’s public key pk and a keyword W , and
outputs searchable information.

• Trapdoor generation algorithm TQ(sk, W) : Takes as inputs a secret key sk
and a keyword W, outputs a trapdoor TW for W .

• Test algorithm Test(pk, S, TW) : Takes inputs as searchable information
S = SI(pk, W ′), and trapdoor TW , and outputs ‘Yes’ if W = W ′, and ‘No’
otherwise.

Sender Database User

Epk(D1)||SI1−−−−−−−−−−−→ Epk(D1)||SI1 TQ(sk,W)←−−−−−−−
...

Epk(Dn)||SIn−−−−−−−−−−−→ Epk(Dn)||SIn Epk(D1),..,Epk(Dl)−−−−−−−−−−−−−−−→

Fig. 1. The framework of single keyword search protocol

[Conjunctive Keyword Search Scheme]. A conjunctive keyword search scheme
allows users to search on the conjunction of multiple keywords, hence searchable
information generation and trapdoor generation algorithms of the scheme require
the several keywords. To deal several keywords, we consider an actual database
which has several records, each of which contains fields. Let n be the total num-
ber of documents, and we have n rows and m keyword fields in the database.
For each row Ri (1 ≤ i ≤ n), we define i-th document by Di = {Wi,1, ..., Wi,m}.
The row Ri consists of encrypted document Epk(Di) and conjunctive searchable
information CSIi where CSIi = {CSIi,1(Wi,1), ..., CSIi,m(Wi,m)} for m keyword
fields. For 1 ≤ j ≤ m, the CSIi,j(Wi,j) is the corresponding searchable infor-
mation of the Wi,j and it is stored on the j-th keyword field of i-th row in the
database.

• Key generation algorithm KeyGen(1k) : Takes as an input a security para-
meter k, and outputs a public/private key pair (pk, sk).

• CSI(pk,Di) : Takes as inputs a user’s public key pk and a document Di, and
outputs conjunctive searchable information CSIi.

• Trapdoor generation algorithm for conjunctive keywords queries TCK(sk,
p1, ..., pt, Qt) : For 1 ≤ t ≤ m, takes inputs as a secret key sk, a list of names
of target keyword fields such as “Name”, “Date”, and “address” (for simplic-
ity, we denote these names by p1, .., pt), and the corresponding t conjunctive
keywords Qt = {W1, ..., Wt}. Output is a trapdoor Tt for conjunctive Qt.

• Test algorithm Test(pk, CSIi, Tt) : Takes inputs as the public key pk, conjunc-
tive searchable information CSIi = {CSIi,1(Wi,1, pk), ..., CSIi,m(Wi,m, pk)},
and trapdoor Tt=TCK(sk, p1, ..., pt, Qt = {W1, ..., Wt}), and outputs ‘Yes’
if the condition (Wi,p1 = W1) ∧ ... ∧ (Wi,pt = Wt) holds, and ‘No’ otherwise.

We illustrate the framework of conjunctive keyword search scheme in Fig. 2.

Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes 79

Sender Database User

Epk(D1)||CSI1−−−−−−−−−→ R1 = {Epk(D1)||CSI1} TCK(sk,p1,..,pl,Qt={W1,..,Wl})←−−−−−−−−−−−−−−−−−−
...

Epk(Dn)||CSIn−−−−−−−−−→ Rn = {Epk(Dn)||CSIn} Epk(D1),..,Epk(Dt)−−−−−−−−−−−−−→

Fig. 2. The framework of conjunctive keyword search protocol

Definition 2.1 [Bilinear Maps]. Let G1 and G2 be two groups of order q for
some large prime q. A bilinear map is defined ê : G1 × G1 → G2. The map has
the following properties: (1) Bilinearity : ê(ga, gb) = ê(g, g)ab where a, b ∈ Z∗

q ;
(2) Non-degeneracy : ê does not send all pairs of points in G1×G1 to the identity
in G2. If g is a generator of G1 then ê(g, g) is a generator of G2; (3) Computation
: for all P, Q ∈ G1, the map ê(P, Q) is efficiently computable.

3 Keyword Guessing Attacks on Boneh et al.’s Scheme

Boneh et al. firstly suggested a single keyword search scheme based on the iden-
tity based public key encryption scheme [4]. In this section, we show that the
scheme is susceptible to an off-line keyword guessing attack.

3.1 A Brief Description of Boneh et al.’s Scheme

Two hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}log2 q are used in
the scheme.

• KeyGen(1k) : Takes a security parameter k, and determines two groups G1
and G2, and chooses α ∈ Z∗

q and a generator g of G1. Outputs are a public
key pk = (g, y = gα) and the corresponding secret key sk = α.

• SI(pk, W) : Computes t = e(H1(W), hr) for a random r ∈ Z∗
q , outputs

S = (A, B) = (gr, H2(t)).
• TQ(sk, W) : Outputs TW = H1(W)α.
• Test(pk, S, TW) : Checks whether H2(e(TW , A)) is B or not. If so, outputs

‘Yes’. Otherwise, outputs ‘No’.

3.2 Security Vulnerability

Lemma 1. Boneh et al.’s scheme is vulnerable to an off-line keyword guessing
attack.

Proof. An attacker As performs the following steps.

• Step 1: As first captures a valid trapdoor H1(W)α. As guesses an appro-
priate keyword W ′, and computes H1(W ′)

• Step 2: As checks whether e(y, H1(W ′)) is e(g, H1(W)α) or not. If so, the
guessed keyword is a valid keyword. Otherwise, go to Step 1. �

80 J.W. Byun et al.

4 Keyword Guessing Attacks on Park et al.’s Schemes

Park et al. suggested two conjunctive keyword search schemes Park I and Park
II. For a conjunctive keyword search, CSI(pk, D) algorithm is used to gener-
ate conjunctive keyword searchable information. D is a document consisting of
m keywords {W1, ..., Wm}. A hash function H : {0, 1}∗ → G1 is used in the
protocol.

4.1 A Brief Description of Park et al.’s Scheme I

• KeyGen(1k) : Takes as an input a security parameter k, and determines two
groups G1 and G2, and chooses s1, s2 ∈ Z∗

q and a generator P of G1. Outputs
are a public key pk = (P, y1 = s1P, y2 = s2P) and the corresponding secret
key sk = (s1, s2).

• CSI(pk, D) : Selects a random number r ∈ Z∗
q , outputs S =(A1, ..., Am, B, C)

= [e(rH(W1), y1), e(rH(W2), y1), ..., e(rH(Wm), y1), ry2, rP].
• TCK(sk, p1, ...pt, Qt = {W1, .., Wt}) : Chooses a random u ∈ Z∗

q and outputs

TQ = [T1, T2, p1, ..., pt] where T1 =
(

s1
s2+u

)
(H (Wi,p1) + ... + H (Wi,pt)),

T2 = u, and p1, ..., pt are positions of keyword fields.
• Test(pk, S, Tt) : Checks the equation AI1 × AI2 × ... × AIt = e(T1, B + T2C).

If so, outputs ‘Yes’. Otherwise, outputs ‘No’.

4.2 Security Vulnerability

Lemma 2. Park et al.’s scheme I is vulnerable to an off-line keyword guessing
attack.

Proof. An attacker Ac performs the following steps.

• Step 1: When the number of queries is one (i.e., the number of keyword
fields is one), an attacker Ac captures the trapdoor T1 = (s1

s2+u)(H(Wi,pl
)),

T2 = u, pl for some position l.
• Step 2: Ac guesses an appropriate keyword W ′, and computes H(W ′).
• Step 3: Ac computes y2 · uP = (s2 + u)P from public key and trapdoor.
• Step 4: Ac first computes λ = e(y1, H(W ′)), and checks the equality as

follows.

e ((s2 + u)P, T1) = e

(
(s2 + u)P,

(
s1

s2 + u

)
H (Wi,pl

)
)

= e (P, s1H (Wi,pl
))

= e (s1P, H (Wi,pl
))

= e (y1, H (Wi,pl
))

= λ

If so, the guessed keyword is a valid keyword. Otherwise, go to Step 2. �

Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes 81

4.3 A Brief Description of Park et al.’s Scheme II

Two hash functions H1 : {0, 1}∗ → {0, 1}log2 q and H2 : {0, 1}∗ → {0, 1}log2 q are
used in the protocol.

• KeyGen(1k) : Takes as an input a security parameter k, and determines two
groups G1 and G2, and chooses s1, s2, ..., sm+1, sm+2 ∈ Z∗

q and a generator
P of G1. Outputs are a public key pk = (P, y1 = s1P, y2 = s2P, ..., ym+1 =
sm+1P, ym+2 = sm+2P) and the corresponding secret key sk =
(s1, s2, ..., sm+1, sm+2).

• CSI(pk, D) : Chooses m random numbers r0, r1, r2, ...rm ∈ Z∗
q , and out-

puts S = (A1, ..., Am, B1, ..., Bm, C, D)=[r0(y1+H1(W1)P)+r1P, ..., r0(ym+
H1(Wm)P) + rmP, r1ym+1, ..., rmym+1, r0ym+2, H2(gr0)].

• TCK(sk, p1, ...pt, Qt = {W1, .., Wt}) : Chooses a random u ∈ Z∗
q and outputs

TQ = [T1, T2, T3, p1, ..., pt] where p1, ..., pt are positions of keyword fields and

T1 =
1

sp1 + ... + spt + H1(Wi,p1) + ... + H1(Wi,pt) + sm+2u
P,

T2 =
(

1
sm+1

)
T1,

T3 = u.

• Test(pk, S, Tt) : Checks the following equation.

H2

(
e (Ap1 + ... + Apt + T3C, T1)

e (Bp1 + ... + Bpt , T2)

)
= D

If so, outputs ‘Yes’. Otherwise, outputs ‘No’.

4.4 Security Vulnerability

Lemma 3. Park et al.’s scheme II is vulnerable to an off-line keyword guessing
attack.

Proof. An attacker Ac performs the following steps.

• Step 1: When the number of queries is one, an attacker Ac captures the
trapdoor T1 =

(
1

spl
+H(Wi,pl

)+sm+2u

)
P, T2 =

(
1

sm+1

)
T1, T3 = u, pl for some

position l.
• Step 2: Ac guesses an appropriate keyword W ′, and computes H(W ′).
• Step 3: Ac computes λ = ypl

+ H1(W ′)P + u · ym+2

• Step 4: Ac checks the following equation.

e(T1, λ) = 1

If so, the guessed keyword is a valid keyword. Otherwise, go to Step 2. �

82 J.W. Byun et al.

5 Conclusion and Open Problem

Up until now, there have been a great deal of research related to the privacy
of database. Especially, in recent years, efficient and secure search of encrypted
documents using keywords have received a lot of attentions in the literature.
However, all the schemes have not taken account of a simple fact that keywords
have low entropy and are chosen from much smaller size than the size of pass-
words. In this paper, we demonstrated vulnerabilities on the recent keyword
search schemes by performing off-line keyword guessing attacks. We have the
following future works.

• [Designing a scheme secure against off-line keyword guessing attacks].
The vulnerabilities of keyword guessing attack come from that trapdoors are
simply generated by just combining keywords and secret key. That is, any
insider/outsider attacker can relate the combination with the public keys by
using pairing operation, which finally cause off-line keyword guessing attack.
It is not an easy task to remove a redundancy from trapdoor queries and
public keys to be strong against off-line keyword guessing attacks still keeping
its original security.

• [Security Model]. Over the years, keyword search schemes based on public
key encryption have been studied in viewpoint of how to efficiently design sin-
gle or conjunctive protocols with provable security [7,8,9,11,12,13,14]. How-
ever, all works have not taken account of any security definition against an
off-line keyword guessing attack. It still remains to establish a new security
model including an off-line keyword guessing attack.

Acknowledgement

The authors would like to thank anonymous reviewers of SDM 2006 for their
invaluable comments and suggestions.

References

1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi, “Encryption with keyword search, revisited:
consistency conditions, relations to anonymous IBE, and extensions”. This paper
will be appear in Crypto05.

2. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for design-
ing efficient protocols”, In Proceedings of the First ACM Conference on Computer
and Communications Security, ACM, 1995

3. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public Key Encryption
with Keyword Search”, In Proceedings of Eurocrypt ’04, LNCS Vol. 3089, pp. 31-45,
Springer-Verlag, 2004.

4. D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing”,
SIAM J. of Computing, Vol. 32, No. 3, pp. 586-615, 2003.

5. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private Information Re-
trieval”, In Proceedings of 29th STOC, 1997.

Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes 83

6. G. Di. Crescenzo, Y. Ishai, and R. Ostrovsky, “Universal Servie-providers for
Dtabase Private Information Retrieval”, In Proceedings of 17th PODC, 1998.

7. Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on re-
mote encrypted data”, This paper will be appeared in ACNS 2005. An early
version of this paper is appeared on Cryptology ePrint Archieve. Availabe at
http://eprint.iacr.org/2004/051

8. P. Golle, J. Staddon, and B. Waters, “Secure Conjunctive keyword search over
encrytped data”, In Proceedings of ACNS ’04, LNCS Vol. 3089, pp. 31-45, Springer-
Verlag, 2004.

9. E. Goh, “Secure Indexes”, In Cryptology ePrint Archieve on March 16, 2004, This
paper is availabe at http://eprint.iacr.org/2003/216

10. F. Mish, “Merriam-Webster’s Collegiate Dictionary”, 11th edition, Merriam-
Webser, Inc., 2003. Refer to http://www.m-w.com/help/

11. R. Ostrovsky and W. Skeith, “Private keyword search on streaming data”, This
paper will be appear in Crypto05.

12. W. Ogata and K. Kurosawa, “Oblivious keyword search” Journal of Complexity
Vol. 20, Issues 2-3, pp. 356-371, 2004.

13. D. J. Park, K. Kim, and P. J. Lee, “Public Key Encryption with Conjunctive
Field Keyword Search”, In Proceedings of WISA ’04, LNCS Vol. 3325, pp. 73-86,
Springer-Verlag, 2004.

14. D. Song, D. Wagner, and A. Perrig, “Practical Techniques for Searches on En-
crypted Data”, In Proceedings of IEEE sysmposium on Security and Privacy, 2000.

15. P. R. Zimmermann, “The official PGP User’s Guide”, MIT Press, Cambridge,
Massachusetts, 1995.

Privacy Preserving BIRCH Algorithm for
Clustering over Vertically Partitioned Databases

P. Krishna Prasad and C. Pandu Rangan

Department of Computer Science and Engineering
Indian Institute of Technology - Madras

Chennai - 600036, India
pkp@cse.iitm.ernet.in,
rangan@iitm.ernet.in

Abstract. BIRCH algorithm, introduced by Zhang et al. [15], is a well
known algorithm for effectively finding clusters in a large data set. The
two major components of the BIRCH algorithm are CF tree construction
and global clustering. However BIRCH algorithm is basically designed
as an algorithm working on a single database. We propose the first novel
method for running BIRCH over a vertically partitioned data sets, dis-
tributed in two different databases in a privacy preserving manner. We
first provide efficient solutions to crypto primitives such as finding min-
imum index in a vector sum and checking if sum of two private values
exceed certain threshold limit. We then use these primitives as basic
tools to arrive at secure solutions to CF tree construction and single
link clustering for implementing BIRCH algorithm.

1 Introduction

Due to explosive growth in the volume of digital data, there is a need for auto-
mated tools to analyze and extract useful information from very large volumes of
data. Data Mining is “the non trivial extraction of implicit previously unknown
and potentially useful information from data.” Data mining includes various al-
gorithms for classification, association rule mining, and clustering. In this paper
we focus on clustering.

Definition 1. (Clustering Problem) Given a database D = {ti}n
i=1 of tuples

and an integer value k, the clustering problem is to define a mapping f : D →
{1, 2, · · · , k} where each ti is assigned to one cluster Kj , 1 ≤ j ≤ k. A Cluster
Kj contains precisely those tuples mapped to it; that is, Kj = {ti|f(ti) = Kj , 1 ≤
i ≤ n, and ti ∈ D}.

Most of the classical clustering algorithms such as k−means, assume that suffi-
cient main memory exists to hold the data to be clustered and the data struc-
tures needed to support them. With large databases containing thousands of
items(or more), these algorithms are not realistic. In addition, performing I/Os
continuously through the multiple iterations of an algorithm is too expensive.
Because of these restrictions, these types of algorithms do not scale up easily

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 84–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Privacy Preserving BIRCH Algorithm 85

for large data bases. In data mining literature there are some clustering meth-
ods like CLARANS, BIRCH, DBSCAN, CURE etc., which scale well for large
databases. BIRCH is considered to be superior to CLARANS [15].

The data of interest is often distributed across several parties. Due to privacy
rules and regulations such as HIPAA, GLBA and SOX [10], the data owning
site is not supposed to give its data to other parties. Here the key challenge is
to design clustering algorithms in a privacy preserving manner when the data is
distributed in several databases. This issue was pointed by Agrawal and Srikant
[2] and Lindell and Pinkas[9]. In this paper we consider vertically partitioned
data which is also known as heterogeneously distributed data. This means that
different sites gather information on different feature sets about the same set of
entities [16].

Some of the applications of privacy preserving clustering of vertically parti-
tioned data bases, are :

– Imagine two databases, one contains medical records and another contains
cell phone data of the same set of people. Mining the joint global data-
base may provide insight to questions such as “Do cell phones with Lithium
batteries lead to brain tumors in diabetics patients?”

– Two organizations, an Internet marketing company and an on-line retail
company, have datasets with different attributes for a common set of indi-
viduals. These organizations decide to share their data for clustering to find
the optimal customer targets so as to maximize return on investments. How
can these organizations learn about their clusters using each other’s data
without learning anything about the attribute values of each other?

In this paper we give a method for securely obtaining clusters by using BIRCH
clustering method when the data is vertically partitioned between two parties.
This is a first attempt in giving the solution for privacy preserving clustering for
large databases when partitioned vertically.

Organization of the paper. In Section 2 we briefly survey the existing tech-
niques for privacy preserving clustering. In Section 3 we discuss preliminaries
that are used in developing the secure protocols. In Section 4 we give the build-
ing blocks that are used for finding the clusters securely. In order to keep the
exposition self contained, we briefly describe BIRCH algorithm in Section 5. In
Section 6 we give the method of obtaining clusters in secure way when the data
is vertically partitioned.

2 Related Work

Privacy preserving data mining, introduced by Agrawal and Srikant [2] and Lin-
dell and Pinkas [9] allows certain data mining computations to take place, while
providing some protection for the underlying data. In general, there are two
approaches for privacy preserving data mining algorithms. The first approach
is, perturb the data and share the perturbed data for data mining applications.
The other approach is based on multi-party computation which is based on

86 P.K. Prasad and C.P. Rangan

cryptographic primitives. In perturbation approach, the idea of reconstructing
the data distribution itself gives information about the original data values [1]
. Our work is based on secure multi-party computation approach where there
is a guarantee of privacy. In privacy preserving data mining people have looked
into privacy preserving association rule mining [16], privacy preserving decision
tree construction [9] and recently privacy preserving clustering [17,11,14,7] in
vertically or horizontally or arbitrarily partitioned database.

Jagannathan and Wright [7] introduced the concept of arbitrarily partitioned
data and they gave an efficient privacy preserving protocol for k-means clus-
tering in the setting of arbitrarily partitioned data and it works only for small
databases.

Jha et al. [14] gave a distributed privacy preserving algorithm for k− means
clustering when the data is horizontally partitioned. This algorithm works only
for small databases when partitioned horizontally.

Vaidya and Clifton [17] introduced the problem of privacy preserving cluster-
ing when the data is vertically partitioned data. Their algorithm directly follows
the standard k − means algorithm. At each iteration of the algorithm, every
point is assigned to the proper cluster by securely finding out the minimum
distance for each point to the clusters formed in the previous iteration. They
used Yao’s circuit evaluation protocol to find the closest cluster. The number
of database scans is dependent on the termination criteria. As the k − means
algorithm works only for small databases, their algorithm too suffers from the
same limitation.

To our knowledge, till now there is only one privacy preserving algorithm
which works for large databases. This is recently proposed by Jagannathan et
al. [6]. This algorithm is known as Recluster . It works for horizontally partitioned
databases. Their algorithm works based on divide, conquer, and combine fashion.

Till now there is no privacy preserving clustering algorithm which works for
large databases when the database is vertically partitioned. In this paper we
present a privacy preserving protocol for BIRCH clustering, which works for
large databases when the data is vertically partitioned.

3 Preliminaries

In this paper we assume the participants who run the protocol are semi honest.
A semi honest adversary is also known as passive adversary who follows correctly
the protocol specification, yet attempts to learn additional information by ana-
lyzing the transcript of messages received during the execution. This assumption
is often a realistic one [9].

Theorem 1. (Composition theorem for the semi honest model): Suppose
that g is privately reducible to f and that there exists a protocol for privately
computing f . Then, the protocol defined by replacing each oracle-call to f by a
protocol that privately computes f , is a protocol for privately computing g.

Our protocol finds the clusters over vertically partitioned databases by run-
ning many invocations of secure computation of simpler functionalities. Loosely

Privacy Preserving BIRCH Algorithm 87

speaking, consider a hybrid model where the protocol uses a trusted party
that computes the functionalities f1, f2, · · · , fl. The secure composition theo-
rem states that we may replace the calls to the trusted party by calls to secure
protocols computing f1, f2, · · · , fl, and still have a secure protocol. [9].

Homomorphic encryption scheme: The limitation of an ordinary encryption
system is that an information system can only store and retrieve encrypted data
for users. Any other operation on data requires decryption, and once the data
is decrypted, Its privacy is lost. Rivest et al., [13] proposed a new encryption
scheme that enables direct computation on encrypted data without decryption,
which is called privacy homomorphism. We denote the encryption of a message
m byEkp(m) and decryption of a cipher text c by Dks(c) where kp and ks are
the public key and secret key respectively. A public-key crypto system is homo-
morphic when Ekp(m1) ·Ekp(m2) = Ekp(m1 +m2) where + is a group operation
and · is a groupoid operation. This means that a party can add two encrypted
plain texts by doing simple computations with cipher texts, even without the
knowledge of the secret key. One of the most widely used semantically secure
homomorphic cryptosystem is Paillier cryptosystem [12] or improved version
proposed by Damgard and Jurick [5].

Millionaire Problem: We use this primitive in one of our protocols. The pur-
pose of this primitive is to compare two private numbers and decide which one is
larger. This problem was first proposed by Yao in 1982 [18] and is widely known
as Yao’s Millionaire problem. Essentially the problem is Alice and Bob are two
millionaires who want to find out who is richer without revealing the precise
amount of their wealth. Cachin [4] proposed a solution based on the φ-hiding
assumption. The communication complexity of Cachin’s scheme is O(l), where l
is the number of bits of each input number and the computation complexity is
also linear on the number of bits used to represent both the numbers.

Secure Scalar Product: We use this primitive in two of our protocols. The
purpose of this primitive is to find securely

−→
X · −→

Y where Alice has the private
vector

−→
X = (x1, x2, · · · , xn) and Bob has the private vector

−→
Y = (y1, y2, · · · , yn)

and
−→
X · −→Y =

∑n
i=1 xiyi. We use the private homomorphic dot product protocol

given by Goethals et al. [3].

4 Building Blocks

In this section we give two protocols that are used as building blocks for obtaining
secure BIRCH algorithm. These protocols are used in,

1. constructing CF tree securely (ie., in secure CF tree insertion given in sec-
tion 6.1),

2. secure single link clustering for global clustering and
3. labeling the data points securely.

Protocol 1. Party A has private input X = (x1, x2, · · · , xn) and party B has
private input Y = (y1, y2, · · · , yn). They wish to securely find out the index i

88 P.K. Prasad and C.P. Rangan

such that xi + yi = min(x1 + y1, x2 + y2, · · · , xn + yn) without A knowing Y and
B knowing X.
Private inputs : Private vectors X, Y ∈ IRn. That is X = (x1, x2, · · · , xn) and
Y = (y1, y2, · · · , yn)
Output : index i such that xi + yi = min(x1 + y1, x2 + y2, · · · , xn + yn)

1. Party A does:
Generate a private and public key pair ks, kp for homomorphic cryptosys-
tem and send kp to Bob.

2. Party A does :
Encrypt X ie., Ekp(X) = (Ekp(x1), Ekp(x2), · · · , Ekp(xn)) and send Ekp(X)
to B.

3. Party B does:
Generate a random value r and add r to each element of its vector Y .
Y ′ = (y′

1, y
′
2, · · · , y′

n) = (y1 + r, y2 + r, · · · , yn + r).
Find Ekp(Y ′) = (Ekp(y′

1), Ekp(y′
2), · · · , Ekp(y′

n)).
Find Ekp(X)Ekp(Y ′)
= (Ekp(x1)Ekp(y′

1), Ekp(x2)Ekp(y′
2), · · · , Ekp(xn)Ekp(y′

n))
= (Ekp(x1 + y′

1), Ekp(x2 + y′
2), · · · , Ekp(xn + y′

n)).
Use random permutation π to permute Ekp(X)Ekp(Y ′) and
Send π(Ekp(X)Ekp(Y ′)) to A.

4. Party A does:
Decrypt π(Ekp(X)Ekp(Y ′))
Dks(π(Ekp (X)Ekp(Y ′))) = π(x1 + y′

1, x2 + y′
2, · · · , xn + y′

n).
Find index j such that xj + y′

j = min(π(x1 + y′
1, x2 + y′

2, · · · , xn + y′
n)).

Send j to B.
5. Party B does:

Send π−1(j) to A, where π−1(j) is the required index i.

Theorem 2. Protocol 1 gives the index i such that xi + yi = min
j ({xj + yj}).

Proof. In Step 4 of the protocol 1, A gets all the decrypted values xj +y′
j. Which

is equal to xj + yj + r. As the same r is added to all xj + yj , the index for
min(π({xj + yj})) is same as the index for min(π({xj + y′

j})). Thus, party A
can obtain the min index. Party B knows the permutation order. In Step 5, party
B gets the original index corresponding to the permuted index, from which B
can also obtain the min index. ��

Security analysis of Protocol 1
Security for A: B has the knowledge of only A’s encrypted values while B doesn’t
have access to A’s secret key. Hence A’s privacy is preserved. Security for B: B
uses a random value r and adds it to all of its values. A has access to only the
random permutation of {xj + y′

j} where only B knows the random permutation
π. At the end of the protocol A knows the min index i. Using min index i, A
can obtain only y′

i which is yi + r. A can not obtain yi because r is known only
to B. Hence the protocol is secure with respect to both A and B.

Privacy Preserving BIRCH Algorithm 89

Computation and communication analysis: Vaidya and Clifton [17] and
Jagannathan and Wright [7] gave a general solution for securely finding the
index for minimum sum by using Yao’s circuit evaluation protocol [19]. This
approach is impractical for large inputs. In our approach the communication
complexity is 2n + 2 values. The computation complexity is n encryptions at
both sides and n decryptions at A.

Protocol 2. Party A has value a and party B has value b and they both know
the value T . They both wish to find out securely whether a + b > T . The con-
dition here is party A should not know the value b and B should not know the
value a.

1. B generates a random value r.
2. A constructs its vectors as (a

T , 1) and B constructs its vector as (r, r(b
T)).

Now A invokes the secure scalar product protocol[3] and gets the scalar
product of (a

T , 1)(r, r(b
T))T = r(a+b

T) without B knowing the result.
3. Now A has the value r(a+b

T) and B has the value r. They both run Millionaire
protocol to decide whether r(a+b

T) > r

4. If r(a+b
T) > r then they decide that (a + b) > T else they decide (a + b) ≤ T

The Protocol 2 uses secure scalar product and Cachin’s protocol for Yao’s
Millionaire Problem which are proved to be secure. Hence by composition
theorem the Protocol 2 is secure. The communication complexity for Protocol
2 is 4l bits for secure scalar product and O(l) bits for protocol for Yao’s Mil-
lionaire Problem where l is the number of bits required to represent a number.
Hence the total communication complexity is O(l) bits.

5 Overview of BIRCH

In this section we give a brief review of distance metrics for clustering and
BIRCH algorithm for clustering. The distance metrics are used for similarity
measure for clusters. Given N, d−dimensional data points in a cluster: {−→

Xi}
where i = 1, 2, · · · , N , the centroid

−→
X0, radius R and diameter D of the cluster

are defined as:
−→
X0 =

�N
i=1

−→
Xi

N , R =

(�N
i=1

�−→
Xi−−→

X0

�2

N

) 1
2

and D =

(�N
i=1

�N
j=1

�−→
Xi−−→

Xj

�2

N(N−1)

) 1
2

.

Given the centroids of two clusters:
−→
X 01 and

−→
X 02 , the centroid Euclidean dis-

tance D0 and centroid Manhattan distance D1 of the two clusters are defined
as:

D0 =
((−→

X 01 − −→
X 02

)2
) 1

2

and D1 =
∣
∣
∣
−→
X 01 − −→

X 02

∣
∣
∣ =

∑d
i=1

∣
∣
∣
−→
X

(i)
01

− −→
X

(i)
02

∣
∣
∣

Given N1, d-dimensional data points in a cluster: {−→
Xi} where i = 1, · · · , N1

and N2, d-dimensional data points in another cluster: {−→
Xj} where j = N1 +

1, N1+2, · · · , N1+N2, the average inter-cluster distance D2, average intra-cluster

90 P.K. Prasad and C.P. Rangan

distance D3 of two clusters and variance increase distance D4 of two clusters are
defined as:

D2 =

⎛

⎜
⎝

∑N1
i=1

∑N1+N2
j=N1+1

(−→
Xi − −→

Xj

)2

N1N2

⎞

⎟
⎠

1
2

(1)

D3 =

⎛

⎜
⎝

∑N1+N2
i=1

∑N1+N2
j=1

(−→
Xi − −→

Xj

)2

(N1 + N2)(N1 + N2 − 1)

⎞

⎟
⎠

1
2

(2)

D4 =
N1+N2∑

k=1

(
−→
Xk −

∑N1+N2
l=1

−→
Xl

N1 + N2

)2

−
N1∑

i=1

(
−→
Xi −

∑N1
l=1

−→
X l

N1

)2

−
N1+N2∑

j=N1+1

(
−→
X j −

∑N1+N2
l=N1+1

−→
X l

N2

)2

(3)

The concepts of Clustering Feature and CF Tree are core of the BIRCH’s
incremental clustering. Here we give brief description of these concepts and For
complete information on CF Tree construction and BIRCH algorithm, refer [15].
A clustering feature is a triple summarizing the information that we maintain
about a cluster and it is defined as follows:

Definition 2. Given N d-dimensional data points in a cluster: {−→
Xi} where i =

1, 2, · · · , N , the clustering feature (CF) vector of the cluster is defined as a triple:
CF = (N,

−→
LS, SS) where N is the number of data points in the cluster,

−→
LS is

the linear sum of the N data points, i.e.,
∑N

i=1
−→
Xi and SS is the square sum of

the N data points, ie.,
∑N

i=1
−→
Xi

2.

Theorem 3. (CF additivity theorem): Assume that CF1 = (N1,
−→
LS1, SS1),

and CF2 = (N2,
−→
LS2, SS2) are the CF vectors of two disjoint clusters. Then the

CF vector of the cluster that is formed by merging the two disjoint clusters is:
CF1 + CF2 = (N1 + N2,

−→
LS1 +

−→
LS2, SS1 + SS2).

From Definition 2 and Theorem 3 , the CF vectors of clusters can be stored
and calculated incrementally accurately as clusters are formed and merged. Given
the CF vectors of clusters , the corresponding

−→
X 0, R, D, D0, D1, D2 and D3, as

well as the usual quality metrics can all be calculated easily. For example, The
radius R of a cluster CF can be calculated as,

R =

⎛

⎝
SS − 1

N

(−→
LS

−→
LST

)

N

⎞

⎠

1
2

(4)

Privacy Preserving BIRCH Algorithm 91

The diameter D of the cluster is,

D =

(
2N(SS) − 2

−→
LS

−→
LST

N(N − 1)

) 1
2

(5)

The centroid Manhattan distance D1 for two clusters is calculated as,

D1 =

∣
∣
∣
∣
∣

d∑

i=1

1
N1

−→
LS

(i)
1 − 1

N2

−→
LS

(i)
2

∣
∣
∣
∣
∣

(6)

The inter-cluster distance D2 for clusters CF1 and CF2 can be calculated as,

D2 =

(
N2(SS1) − 2

−→
LS1

−→
LST

2 + N1(SS2)
N1N2

) 1
2

(7)

The average intra-cluster distance D3 can be calculated as

D3 =

⎛

⎝
2(N1 + N2)(SS1 + SS2) − 2

(−→
LS1

−→
LST

1 +
−→
LS2

−→
LST

2

)

(N1 + N2)(N1 + N2 − 1)

⎞

⎠

1
2

(8)

The variance increase distance D4 of two clusters can be calculated as,

D4 =
−→
LS1

−→
LST

1

N1
+

−→
LS2

−→
LST

2

N2
−

−→
LS1

−→
LST

1 +
−→
LS2

−→
LST

2

(N1 + N2)2
(9)

where CF1 = (N1,
−→
LS1, SS1) and CF2 = (N2,

−→
LS2, SS2).

Thus, the CF summary is not only efficient because it stores much less than
the all the data points in the cluster, but also accurate because it is sufficient for
calculating all the measurements that we need for making clustering decisions
in BIRCH [15].

Given below is the definition of CF tree and the procedure for inserting an
entry into the tree.

Definition 3. A CF tree is a balanced tree with a branching factor (maximum
number of children a node may have) B. Each internal node contains CF triple
for each of its children. Each leaf node also represents a cluster and contains a
CF entry for each sub cluster in it. A sub cluster in a leaf node must have a
diameter no greater than a given threshold value T .

Given below is an algorithm for inserting an entry into a CF Tree:

1. Identify the appropriate leaf.
2. Modify the leaf.
3. Modify the path to the leaf.
4. A Merge refinement.

92 P.K. Prasad and C.P. Rangan

Phase 2(optional): Condense into desirable range
 by building a smaller CF tree

Phase1: Load into memory by building a CF tree

Data

Initial CF tree

Smaller CF tree

Good Clusters

Better Clusters

Phase 4:(optional and offline) Cluster refining

Phase 3 : Global clustering

Fig. 1. Overview of BIRCH in single database case

The internal details of the steps of above algorithm can be found in [15]. Figure 1,
gives an overview of the BIRCH algorithm in single database case [15].

6 Secure BIRCH Algorithm

Assume that the database DB is vertically partitioned between two parties A
and B, where A has database DBA with dA attributes and B has database DBB

with dB attributes.
The problem of clustering the vertically partitioned database is defined as

follows:

Definition 4. Given a vertically partitioned database DB = DBA||DBB =
{t1A ||t1B , t2A ||t2B , · · · , tnA ||tnB} of tuples and an integer value k, the clustering
problem in vertically partitioned data base is to define a mapping f : DA||DB →
{1, 2, · · · , k} where each tiA ||tiB is assigned to one cluster Kj, 1 ≤ j ≤ k. This
mapping should be done by both parties, without A knowing DBB and without
B knowing DBA. cluster Kj, contains precisely those tuples mapped to it; that
is, Kj = {tiA ||tiB | f(tiA ||tiB) = Kj, 1 ≤ i ≤ n, and tiA ||tiB ∈ DBA||DBB}.

The clustering feature (CF) vector for vertically partitioned database is defined
as follows :

Definition 5. Given N d−dimensional points partitioned between two parties A
and B where dA dimensions are at party A and dB dimensions are at party B and

Privacy Preserving BIRCH Algorithm 93

dA +dB = d are in a cluster : {−→
X iA ||−→X iB} where i = 1, 2, · · · , N , the partitioned

Clustering Feature (CF) vector of the cluster is defined as a triple: CFA||CFB =
(N,

−→
LSA||−→LSB, SSA+SSB), where N is the number of data points in the cluster,−→

LSA||−→LSB is the linear sum of the N data points, ie.,
∑N

i=1(
−→
X iA ||−→X iB), and

SSA + SSB is the square sum of the data points, ie.,
∑N

i=1(
−→
X iA ||−→X iB)2.

Theorem 4. (CF additivity theorem for partitioned data): Assume that
CF1A ||CF1B = (N1,

−→
LS1A ||−→LS1B , SS1A + SS1B) and CF2A ||CF2B =

(N2,
−→
LS2A ||−→LS2B , SS2A + SS2B) are the CF vectors of the two disjoint clus-

ters. Then the CF vector of the cluster that is formed by merging the two disjoint
clusters is: CF1 + CF2 = (CF1A ||CF1B) + (CF2A ||CF2B) = (N1 + N2, (

−→
LS1A +

−→
LS2A)||(−→LS1B +

−→
LS2B), (SS1A + SS2A) + (SS1B + SS2B)).

Proof.

CF1 + CF2 = CF1A ||CF1B + CF2A ||CF2B

= (N1,
−→
LS1A ||−→LS1B , SS1A + SS1B)

+(N2,
−→
LS2A ||−→LS2B , SS2A + SS2B)

= (N1 + N2, (
−→
LS1A ||−→LS1B) + (

−→
LS2A ||−→LS2B),

(SS1A + SS1B) + (SS2A + SS2B))

= (N1 + N2, (
−→
LS1A +

−→
LS2A)||(−→LS1B +

−→
LS2B),

(SS1A + SS2A) + (SS1B + SS2B))

��

Now we give the distance metrics similar to the metrics (4), (5), (7), (8) and (9)
for vertical partitioned data base case.

R =

⎛

⎝
SSA − 1

N

(−→
LSA

−→
LST

A

)

N
+

SSB − 1
N

(−→
LSB

−→
LST

B

)

N

⎞

⎠

1
2

(10)

D =

⎛

⎝
2N(SSA) − 2

(−→
LSA

−→
LST

A

)

N(N − 1)
+

2N(SSB) − 2
(−→
LSB

−→
LST

B

)

N(N − 1)

⎞

⎠

1
2

(11)

D1 =
dA∑

i=1

∣
∣
∣
∣

1
N1

−→
LS

(i)
1A

− 1
N2

−→
LS

(i)
2A

∣
∣
∣
∣ +

dB∑

i=1

∣
∣
∣
∣

1
N1

−→
LS

(i)
1B

− 1
N2

−→
LS

(i)
2B

∣
∣
∣
∣ (12)

D2 = (
N2(SS1A

)−−→
LS1A

−→
LST

2A
+N1(SS2A

)
N1N2

+

N2(SS1B) − −→
LS1B

−→
LST

2B
+ N1(SS2B)

N1N2
)

1
2 (13)

94 P.K. Prasad and C.P. Rangan

D3 = (
2(N1+N2)(SS1A

+SS2A
)−2(

−→
LS1A

−→
LST

1A
+
−→
LS2A

−→
LST

2A
)

(N1+N2)(N1+N2−1) +

2(N1 + N2)(SS1B + SS2B) − 2(
−→
LS1B

−→
LST

1B
+

−→
LS2B

−→
LST

2B
)

(N1 + N2)(N1 + N2 − 1)
)

1
2 (14)

D4 =
−→
LS1A

−→
LST

1A

N1
+

−→
LS2A

−→
LST

2A

N2
−

−→
LS1A

−→
LST

1A
+
−→
LS2A

−→
LST

2A

(N1+N2)2
+

−→
LS1B

−→
LST

1B

N1
+

−→
LS2B

−→
LST

2B

N2
−

−→
LS1A

−→
LST

1B
+

−→
LS2B

−→
LST

2B

(N1 + N2)2
(15)

We use the function dist2(CFiA ||CFiB , CFjA ||CFjB) for the metrics (12), (13),
(14) to reduce the square root effect.

For example, dist2(CFiA ||CFiB , CFjA ||CFjB) for the metric D2 is, D2
2. The

function dist2(CFiA ||CFiB , CFjA ||CFjB) gives the metric in the form of a + b
where a can be calculated by A without the knowledge of the data of B and b
can be calculated by B without the knowledge of the A’s data. They have to
share a and b to get the actual distance.

Below we give an algorithm to securely distribute the entries of a leaf node of
CF tree.

Algorithm: NodeSplit
Input : Two private vectors of partitioned CFs of size p, X = {CF1A , CF2A , · · · ,
CFpA} and Y = {CF1B , CF2B , · · · , CFpB } by parties A and B respectively,
where CFiA ||CFiB = CFi

Output: Two sets node1 and node2 of CF s based on minimum distance criteria.

1. Calculate distance for each pair of CF s.
Get shares of dist2(CFiA ||CFiB , CFjA ||CFjB) for i = 1, 2, · · · , p, for j =
1, 2, · · · , p and i �= j. The shares for all the distance pairs for A is SX =
{a1, a2, · · · , a((p−1)p)/2} and the corresponding shares of distances for B is
SY = {b1, b2, · · · , b((p−1)p)/2}.

2. Invoke Protocol 1 with maximum index as the criteria instead of mini-
mum index for the private input SX from party A and for the private input
SY from party B to get the index. Let (CFmA ||CFmB , CFnA ||CFnB) be
the pair of partitioned CF s corresponding to the index. CFmA ||CFmB and
CFnA ||CFnB are the two farthest clusters in the input.

3. For i = 1, 2, · · · , p,

(a) Get the shares for party A and party B
for dist2(CFiA ||CFiB , CFmA ||CFmB).
Let the share of party A be a1 and the share of party B be b1. (ie.,
a1 + b1 = dist2(CFiA ||CFiB , CFmA ||CFmB)).

(b) Get the shares for party A and party B
for dist2(CFiA ||CFiB , CFnA ||CFnB). Let the share for party A be a2 and
the share for party B be b2.
(ie., a2 + b2 = dist2(CFiA ||CFiB , CFnA ||CFnB)).

Privacy Preserving BIRCH Algorithm 95

(c) Now A has S = {a1, a2} and B has T = {b1, b2} Now invoke Protocol
1 with private inputs S and T . If the index is 1 put CFiA ||CFiB in
the set node1 (ie., put CFiA in A’s node1 and CFiB in B’s node1) else
put CFiA ||CFiB in node2 (ie., put CFiA in A’s node2 and CFiB in B’s
node2).

6.1 Secure CF Tree Insertion

We now give the procedure for how to insert a new Ent securely in the CF tree
in the partitioned case. The secure CF Tree insertion procedure is similar to
the insertion procedure in single data base case but with invocation of secure
protocols. Here the new entry Ent is partitioned into EntA and EntB where
Ent = EntA||EntB where A has EntA and B has EntB .

Both the parties learn the tree structure but the entries in the tree will be
different for each party. Party A inserts its partitioned share of CF in its tree
and at the same time party B inserts its partitioned share of CF in its tree at
the corresponding node in its tree. Given below is the algorithm for inserting a
new partitioned entry in to the CF tree securely.

1. Identifying the appropriate leaf : This step is same as the actual insertion in
the tree for single database case. But choosing the closest child node is done
as follows : (1) apply dist2() for EntA||EntB to the entries of the current
node to get the shares of distances for A as X = {a1, a2, · · · , ap} and for B
as Y = {b1, b2, · · · , bp}, where {dist2(EntA||EntB , CFiA ||CFiB) = ai + bi}
for i = 1, 2, · · · , p where p is the number of entries in the current node, (2)
invoke Protocol 1 with the input X by A and with the input Y by B to get
the index j which is the closest child index for the new entry EntA||EntB
in the current node, and (3) both the parties share the index j and they
descend through the corresponding branch from the current node at their
respective trees.

2. Modifying the leaf : When the new entry EntA||EntB reaches the leaf node,
it finds the closest leaf entry say LiA ||LiB by using the same procedure
described in the Step 1. The threshold violating condition is checked by the
following procedure :
(a) Let LinewA ||LinewB = LiA ||LiB + EntA||EntB . A has LinewA and B has

LinewB

(b) Calculate D2 by the formula (11) and let the shares of D2 for A and B
be a and b respectively.

(c) Invoke Protocol 2 with private inputs a and b and the threshold T 2 to
check securely whether a+ b is greater than T 2 or not. (ie., if a+ b > T 2

then D > T else D ≤ T).
(d) If D ≤ T , then LiA ||LiB ← LinewA ||LinewB . That is A updates LiA with

LinewA and B updates LiB with LinewB . If D > T , then a new entry for
EntA||EntB is added to the leaf. If there is a space for this new entry,
we are done, otherwise we have to split the leaf node. Splitting is done
by the algorithm for NodeSplit with the shares of leaf entries as inputs.

96 P.K. Prasad and C.P. Rangan

3. Modifying the path to the leaf : After inserting ′′EntA||Ent′′B into a leaf, we
must update the CF information for each non leaf entry on the path to the
leaf. In absence of split it simply involves adding partitioned CF vector at
each party in its tree to reflect the addition of EntA||EntB. If there is a
leaf split, we have to insert a new non leaf entry in its parent node. If there
is space in the parent node for this newly created leaf, at all higher levels
we only need to update the shared CF vectors to reflect the addition of
EntA||EntB. That is party A updates its share of CF vectors in its tree and
party B updates its share of CF vectors in its tree. If there is no space for
the new leaf in its parent, we have to split its parent as we did to split the
leaf node and this change should be propagated up to root. If root is split,
the tree height increases by one.

4. A Merging Refinement : Merging refinement has three main steps,
(a) Identify node Nt such that the propagation of split of leaf stops.
(b) Find the two closest entries in Nt as follows:

Each party calculates its shares of distances for all the pairs of CF s in
the node Nt: {dist2(CFiA ||CFiB , CFjA ||CFjB)} for i �= j. If there are p
such pairs, shares of A is X = {a1, a2, · · · , ap} and the shares of B is
Y = {b1, b2, · · · , bp} where ai+bi = dist2() for the ith pair. Use Protocol
1 to find the minimum distance index and let the corresponding pair be
(CFmA ||CFmB , CFnA ||CFnB).

(c) If the pair (CFmA ||CFmB , CFnA ||CFnB) is not the pair corresponding
to the split, merge them and corresponding child nodes (Each party can
merge its share of CF entries in its corresponding tree). If there are more
entries in the two child nodes than one page can hold, split the merging
result again by using the NodeSplit algorithm.

Given below is the secure BIRCH clustering algorithm for vertically partitioned
databases.

Algorithm: Secure BIRCH

Phase 1: Agree on the parameters (B, T, L) where B is the branching factor, T is
the threshold factor and L is the maximum number of leaf entries in a leaf.

Phase 2: Load into each party’s memory the CF tree of shared CF ’s that are
formed by using the procedure secure CF tree insertion given in Section
6.1.

Phase 3: Condense the CF tree. This phase is same as the phase 2. Each party
scans the leaf entries in the initial CF tree to rebuild a smaller CF tree by
using the procedure secure CF tree insertion given in Section 6.1.

Phase 4: Use hierarchical clustering such as the single link clustering given in
section 6.2 for the clusters formed in phase 2 or phase 3.

Phase 5 For each point in the partitioned database calculate the dist2() to the
clusters formed in phase 4. Use Protocol 1 to find out the minimum distance
cluster and label the point with that cluster.

In phase 4 of the the above algorithm, we can use any secure clustering
algorithm such as Secure Single Link Clustering Algorithm given in section
6.2 that can work for CF s [15].

Privacy Preserving BIRCH Algorithm 97

6.2 Secure Single Link Clustering

In this subsection we give the details of single link clustering which is used in
phase 4 of the secure BIRCH algorithm. The input to this algorithm is the
shares of CF s by A and by B that are the output of phase 2 or phase 3 of the
Secure BIRCH algorithm.

Single link clustering uses threshold graph G(v) [8]. A threshold graph G(v)
is defined for each dissimilarity level v by inserting an edge (i, j) between nodes
i and j if object i and j are less dissimilar than v. That is, (i, j) ∈ G(v) if and
only if dist(i, j) ≤ v.

Algorithm: Secure Single Link Clustering for vertically partitioned
CF s.
Input : Shared CF s from phase1 or phase 2 of the secure BIRCH algorithm. If
there are N such shared CF s, (CF1, CF2, · · · , CFN) where, CFi = CFiA ||CFiB

then, party A’s input is X = {CF1A , · · · , CFNA} and party B’s input is Y =
{CF1B , · · · , CFNB} .

1. Begin with disjoint clustering implied by threshold graph G(0) which con-
tains no edges. Each party will have G(0) with its share of CF s. That is
node i of G(0) at A is CFiA where as node i of G(0) at B is CFiB . Set k ← 1

2. Form threshold graph G(k) at each site. (Each party knows the graph struc-
ture of G(k − 1) that is each party knows the indices of CF s in each of the
components of the graph. Each component of the graph G(k−1) is a cluster
formed at (k − 1)th iteration.

Find the components in the graph with distance ≤ k. This can be done
securely as follows :
(a) Take two components of the graph.
(b) Each party gets its shares of distance from these two components by

getting the shares of distances between each CF in one component with
CF in other component. Use dist2() to get the shares for square of the
length of the distance and use Protocol 2 with k2 as the threshold to
check if this is the pair with inter cluster distance ≤ k then list these
two components as a single component.

(c) Each party on its own checks whether the number of components in G(k)
is less than the number of clusters in the current clustering. If it is true,
re define the current clustering by naming each component of G(k) as a
cluster.

3. If G(k) consists of a single connected graph, stop. Else set k ← k + 1 and go
to Step 2.

Communication and computation analysis of secure BIRCH algorithm
Communication complexity: In phase 2 of the secure Birch algorithm, Protocol
1 is executed n logB K times, Protocol 2 is executed n times and the procedure
NodeSplit is executed K times. Therefore the total communication complexity
for phase 2 is (O(nB logB K) + O(n) + O(KL2)) values. Phase 4 requires K2

executions of Protocol 2. Therefore the communication complexity for this phase

98 P.K. Prasad and C.P. Rangan

is O(K2) values. Phase 5 requires n executions of Protocol 1. Therefore the
communication complexity for this phase is O(ng) values. In the above discussion
n is the total number of records in the database, B is the branching factor of the
CF tree, L is the number of leaf entries in a leaf node, K is the total number
of leaf nodes in the CF tree and g is the total number of global clusters formed
in phase 4. The total communication complexity for secure BIRCH algorithm
is O(nB logB K) + O(KL2) + O(K2) + O(ng) values. In reality the values for
B, K, L, g are very small compared to the value for n.

Computation complexity: The major computation overhead is the computation of
the encryption. Now we will see the total number of encryptions that are required
for this algorithm. In phase 2 each party does n logB K +2n+2KL encryptions,
in phase 4, each party does 2K2 encryptions and in phase 5 each party does
ng encryptions. In total each party does n logB K + n(g + 2) + 2KL + 2K2

encryptions.

Security analysis: In secure BIRCH algorithm we use Protocols 1 and 2.
At any point of time, each party knows the min index or checks the threshold
nothing more than that by using those two protocols. The Protocols 1 and
2 are proved to be secure. Therefore by composition theorem [9] the proposed
BIRCH algorithm is secure.

7 Conclusion and Future Work

While most existing privacy preserving algorithms work only on k-means algo-
rithm which is suitable only for small data, our technique is applicable for large
dataset. In k-means, for each iteration the database is scanned at least once. In
entire BIRCH clustering the database is scanned at most two times which is less
I/O. In our future work we wish to look into how this protocol can be extended
to arbitrarily partitioned data. Also we wish to look into privacy preserving
BIRCH or any clustering method for large databases either in horizontally or
arbitrarily partitioned data.

References

1. Dakshi Agrawal, Charu C. Aggarwal. On the Design and Quantification of Pri-
vacy Preserving Data Mining Algorithms. In Proceedings of the Twentieth ACM
SIGACT - SIGMOD - SIGART Symposium on Principles of Database Systems,
pp. 247–255, Santa Barbara, CA, May 21-23 2001. ACM.

2. R. Agrawal and R. Srikant. Privacy preserving data mining. InProceedings of the
2000 ACM SIGMOD Conference on Management of Data , Dallas, TX, May 14-19,
2000. ACM.

3. Bart Goethals and Sven Laur and Helger Lipmaa and Taneli Mielikainen. On pri-
vate scalar product computation for privacy-preserving data mining. InProceedings
of the 7th Annual International Conference in Information Security and Cryptology
(ICISC 2004) , December 2-3, 2004.

Privacy Preserving BIRCH Algorithm 99

4. C. Cachin. Efficient private bidding and auctions with an oblivious third party.
InProceedings of 6th ACM Computer and communications security , pages 120-127.
SIGSAC, ACM Press, 1999.

5. Ivan Damgard and Mads Jurik. A Generalisation, a Simplification and Some Appli-
cations of Paillier’s Probabilistic Public-Key System. InProceedings of Public Key
Cryptography 2001 , volume 1992 of Lecture Notes in Computer Science, pages
119-136, Cheju Island, Korea, 13-15 February 2001. Springer-Verlag.

6. Geetha Jagannathan, Krishnan Pillaipakkamnatt and Rebecca N. Wright. A New
Privacy-Preserving Distributed k-Clustering Algorithm. InProceedings of the 2006
SIAM International Conference on Data Mining (SDM) , 2006.

7. Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-
means clustering over arbitrarily partitioned data. InProceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2005 , Chicago, Illinois, USA., August 21-24 2005. ACM.

8. Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Chapter 3.
Prentice-Hall Inc, 1988.

9. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. InProceedings
of Advances in Cryptology - CRYPTO 2000 , pages 36-54. Springer-Verlag. Aug.
20-24 2000.

10. Ron Ben Natan. Implementing Database Security and Auditing, chapter 11. EL-
SEVIER, 2005.

11. S. Oliveira and O.R. Zaiane. Privacy preserving clustering by data transformation.
InProceedings of the 18th Brazilian Symposium on Databases ,pages 304-318, 2003.

12. Pascal Paillier. Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. InProceedings of Advances in Cryptology - EUROCRYPT’99 , volume 1592
of Lecture Notes in Computer Science, pages 223-238, Prague, Czeck Republic, 2-6
May 1999. Springer-Verlag.

13. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. InFoundations of Secure Computation , pages 169-178. Academic Press,
1978.

14. Somesh Jha, Luis Kruger and Patrick McDaniel. Privacy Preserving Clustering.
InProceedings of ESORICS 2005 , volume 3679 of Lecture Notes in Computer
Science, pages 397-417, Milan, Italy, September 2005.

15. Tian Zhang, Raghu Ramakrishnan and Miron Livny. BIRCH: An efficient Data
Clustering Method of Very Large Databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data , pages 103-114, Montreal, Canada, June 1996.

16. Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. InProceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining , pages 639-644, Edmonton,
Alberta, Canada, July 23-26 2002. ACM.

17. Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over ver-
tically partitioned data. InProceedings of the 9th ACM SIGKDD International
Conference on knowledge Discovery and Data Mining , Washington, DC, USA,
August 24-27 2003. ACM.

18. A. C. Yao. Protocols for secure computation. InProceedings of 23rd IEEE Sym-
posium on Foundations of Computer Science , pages 160-164. IEEE Computer
Society Press, 1982.

19. A. C. Yao. How to generate and exchange secrets. InProceedings of the 27th IEEE
Symp. on Foundations of Computer Science , pages 162-167, Toronto, Ontario,
Canada, October 27 - 29, 1986.

Conflict of Interest in the Administrative Role
Graph Model

Yunyu Song and Sylvia L. Osborn

Dept. of Computer Science
The University of Western Ontario

London, ON, Canada N6A 5B7
ysong7@csd.uwo.ca, sylvia@csd.uwo.ca

Abstract. The original role graph model for role-based access control
assumed a centralized administrative model. Conflict of interest for the
centralized model was previously discussed by Nyanchama and Osborn.
More recently, a decentralized administrative model for role graphs has
been introduced by Wang and Osborn. This paper investigates how con-
siderations of conflict of interest interact with the decentralized admin-
istrative model, and the resulting impact on role graph operations.

Keywords: role-based access control, access control administration, con-
flict of interest.

1 Introduction

Role-based access control (RBAC) has been discussed since the mid 1990s [4,2,7].
There is now an ANSI standard for RBAC [1]. The role graph model [5] is one
of the prominent RBAC models. In the role graph model there are three distinct
entities: users, roles and privileges which are viewed as forming three planes. A
group is a set of users who need to be considered as a unit, e.g. a department or a
committee.. The user/group plane is where user and group subset relationships
are modeled [6]. The role hierarchy or role graph is given on the role plane.
Each node of the role graph represents a role, r, which consists of a name,
rname, and set of privileges, rpset. The edges show the is junior relationship:
when r1.rpset ⊂ r2.rpset, we say r1 is-junior to r2. The presence of an edge
also indicates that all the privileges of the junior role are inherited by the senior
role. Each role has direct privileges, which are the privileges directly assigned
to the role, and effective privileges, which are the union of the direct privileges
and the privileges inherited from the junior roles. We have given algorithms for
operations on the role graph such as role addition and deletion [5]. Unlike the
NIST or Sandhu models, our role graph algorithms add an edge from role ri to
rj if the privilege set of ri becomes a proper subset of the privilege set of rj , say
because of a privilege addition. All of the algorithms on role graphs must restore
the Role Graph Properties, which are:

1. There is a single MaxRole, which inherits the privileges of all the roles in
the role graph.

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 100–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Conflict of Interest in the Administrative Role Graph Model 101

2. There is a single MinRole, which represents the minimum set of privileges
available to the roles in the system. It can have an empty privilege set.

3. The role graph is acyclic.
4. For any two roles, ri and rj , in the graph, if ri.rpset ⊂ rj .rpset then there

must be a path from ri to rj .

We display a role graph with MaxRole at the top, MinRole at the bottom, and
redundant edges removed. Privileges are modeled as a pair (x, m) where x refers
to an object, and m is an access mode for object x. Implications can exist among
privileges [3]. Figure 1 shows a role graph.

Progrmr

is-junior

LabClerk

Clerk

Payroll

HeadFinance

MaxRole

ResAsst

Researcher

LabMgr

R&D-Mgr

MinRole

Fig. 1. Example Role Graph

1.1 Conflict of Interest in the Centralized Role Graph Model

In discussing access control, an important aspect is defining conflict of interest
or separation of duty [9,2,8]. Conflict of interest is an inherent part of the ANSI
RBAC standard [1]. In [5], several types of separation of duty (SOD) constraints,
also called conflict of interest constraints, are identified with respect to the role
graph model. They are: static SOD, dynamic SOD, user-role assignment conflict,
and object-based SOD. The main conflicts are role-role conflicts and privilege-
privilege conflicts. The algorithms given in [5] take these conflicts into account,
assuming a centralized administration paradigm for the role graph.

In [5], it was observed that a role-role conflict (denoted by ri <<>> rj) is
used to model static separation of duty, in that no user should be assigned to
both roles. Privilege-privilege conflict (denoted pi <> pj), on the other hand,
means that the two conflicting privileges should never be assigned to a single
user. This has the implication that if two such privileges should appear in the
same role, this role should not be assigned to any user. Since privileges are
inherited in the role graph from junior to senior roles, all privileges are inherited
by MaxRole. This gave the:

102 Y. Song and S.L. Osborn

Privilege Conflict of Interest Constraint: No role (except MaxRole) may
contain two privileges which have been declared to conflict.

There is a relationship between role-role conflicts and privilege-privilege con-
flicts. Indeed, privilege-privilege conflicts are a finer grained expression of the
security policy. If two roles are defined to conflict, without any other informa-
tion, we must assume that all the privileges of one of the roles are a problem if
assigned to a user who can activate the other conflicting role. If this causes a
problem, then the design of the roles should be modified so that a minimal set
of privileges is present in roles declared to conflict. As noted in [5], if two roles
are declared to conflict, then a user authorized to one of the roles must not be
authorized to any of the privileges of the other role. The following theorem was
proved, which we will call here the
Role Conflict of Interest Constraint: Conflicting roles must have no com-
mon seniors other than MaxRole.
The final constraint was:
User-Role Conflict of Interest Constraint: No user should be authorized
to two roles which have been declared to conflict.

As just noted, if role-role conflict is to be used, then roles with the minimum
conflicting privileges should be the ones declared to be in conflict, as all the
seniors of one role will also be in conflict with the other and all of its seniors. If
conflicting privileges are used, and, say pi and pj are assigned to roles r1 and r2
respectively, then r1 and r2 cannot be assigned to the same user.

1.2 Decentralized Administration in the Role Graph Model

A decentralized administrative model for role graphs has been proposed in [12].
The most important concept in the administrative role graph model (ARGM)
is the administrative domain. An administrative domain is a set of roles that
contains a top-most role, d, called the domain identifier or domainID, and all
roles in the role graph, s, such that s is-junior d, except MinRole [12]. The
domainID plays the rôle of MaxRole in a simple role graph, in that it is used
to collect all the privileges that will be in any of the roles in the domain. A
domain administrator can create arbitrary new roles within a domain using only
the privileges present in the domainID. They cannot introduce new privileges to
the domain; this is done by an administrator in a surrounding domain adding
the new privileges to the domainID. In this way, domain administrators cannot
create roles where edges must be added (in restoring role graph properties) going
outside of the domain, which would possibly alter roles in another domain not
under the control of this administrator.

An example role graph with administrative domains is given in Figure 2.
In it, the domainIDs are R&D-Mgr, LabMgr, HeadFinance, R&DAdmin and
MaxRole. The domain containing the whole graph, called the default domain,
contains MinRole and MaxRole, and is administered by the highest adminis-
trative role, which we assume is the system security officer (SSO). Note that
there is a many-to-many relationship between administrative roles and admin-
istrative domains. Administrative roles are treated as part of the role graph.

Conflict of Interest in the Administrative Role Graph Model 103

Administrative privileges include adding/deleting roles, adding/deleting edges,
adding/deleting privileges, and adding/deleting users[12]. All but the last two
dealing with user-role assignment can potentially alter the role graph. It is pos-
sible that administrative roles have only a subset of the administrative privileges
governing an administrative domain; as we see in the example, LabHR can have
the privileges governing user-role assignments, whereas LabRoles can deal with
the role hierarchy and assignment of privileges. Also, by the inheritance (is-
junior) edges shown in this example, SSO has no application privileges in the
R&D domain nor in the Finance domain. In this example, only the SSO can
alter the privileges in FinAdmin, MaxRole and MinRole, since they are all in
the default domain. The design of the required administrative roles is ultimately
under the control of the SSO, but the SSO can also design a situation where the
control of domains and their structure is decentralized to subordinate adminis-
trative roles.

Progrmr

administrates

Administrative Domain

LabRoles

is-junior

SSO

FinAdmin
LabHR

Researcher

HeadFinance

Payroll

Clerk

R&DAdmin

LabMgr

LabClerk

ResAsst

R&D-Mgr

MaxRole

MinRole

Fig. 2. Role Graph with Administrative Domains

With administrative domains added into the role graph model, dealing with
conflicts must be revisited. In this paper, we will discuss how conflict of interest
should be handled in the ARGM. Operations on administrative domains may
also affect the conflicts, so we will also provide solutions for this.

The paper proceeds as follows: Section 2 discusses conflicts in a general way
with respect to the administrative role graph model. Section 3 looks at changes

104 Y. Song and S.L. Osborn

required to the role graph algorithms. Section 4 considers operations on adminis-
trative domains and how they need to be modified to deal with conflict of interest
constraints. Section 5 considers administration of constraints. Conclusions and
suggestions for future work are found in Section 6.

2 Conflicts in the ARGM

In the ARGM, static separation of duty is modeled as a role-role conflict, privilege-
privilege conflict or static user-role assignment conflict. Dynamic separation of
duty is modeled by a dynamic user-role activation, and object-based separation
of duty is modeled as a dynamic role-privilege assignment conflict [5]. Dynamic
conflicts occur at run time, when there is a notion of sessions or workflow; this is
beyond the scope of this paper. In the remainder of the paper, we will focus on de-
sign time conflicts, specifically role-role conflicts and privilege-privilege conflicts;
since they are at design time, they represent static SOD.

In order to enforce declared conflicts, we need to consider which administrator
controls the operations such as adding an edge, user-role assignment, etc. We also
need to consider the relationship between administrative domains and conflict
of interest. There are three different cases to consider for conflicting roles or
privileges in the administrative role graph model:

1. The conflicting roles or privileges are in the same administrative domain.
The local administrator can manage these conflicts.

2. The conflicting roles or privileges are in different administrative domains and
their only common senior is MaxRole. The SSO must handle this conflict.

3. The conflicting roles or privileges are in different administrative domains
which have common seniors besides MaxRole. Any higher level administrator
who has administrative rights on all the domains in question can control
these conflicts.

Any algorithms for operations on roles and privileges must check for and
enforce the conflicts in all the situations above. With administrative domains
in the role graph model, the constraints defined in [5] concerning conflict of
interest need to be modified. They are all based on the premise that if a role r
contains privileges that conflict, then r should not be assigned to a user. In the
original formulation, if there are any conflicts, MaxRole would inherit conflicting
privileges as it is senior to all roles in the role graph, and thus inherits conflicting
privileges either from privilege-privilege conflicts or role-role conflicts. In the
ARGM, domainIDs play the rôle of MaxRole within their domain, i.e. they
collect privileges which are inherited from the junior roles in their domain, and
really do not need to be assigned to a user. If there are any role-role or privilege-
privilege conflicts within a domain, then the domainID will not be assignable to
any users.

Based on this discussion, the constraints from [5] need to be modified; we
restate them here with the necessary modifications in bold:

Conflict of Interest in the Administrative Role Graph Model 105

Privilege Conflict of Interest Constraint: No role (except MaxRole and
other domain identifiers) may contain two privileges which have been defined
to conflict.
Role Conflict of Interest Constraint: Conflicting roles must not have com-
mon seniors except domain identifiers and MaxRole.
User-Role Conflict of Interest Constraint: (This is the same as in [5].) No
user should be authorized to two roles which have been declared to conflict.

3 Conflicts Arising from Role Graph Operations

An administrator of an administrative domain has the authority to perform
operations on roles and privileges within his/her controlled domain. In this sec-
tion, we will discuss how conflicts arise in performing role addition/deletion and
privilege addition/deletion.

3.1 Role Addition

There are two algorithms given in [5] for role addition. The first algorithm takes
as input the role graph, a new role with its direct privileges, its proposed immedi-
ate junior and senior roles and the set of privilege conflicts. The second algorithm
takes the role graph, the effective privileges of the new role and the privilege con-
flicts as input; the algorithm determines the new role’s immediate seniors and ju-
niors. In both cases the role graph properties are restored (which means that edges
may be added, and direct and effective privileges may be adjusted; after this, re-
dundant edges are removed, which means that proposed immediate seniors and
juniors may no longer be adjacent to the new role). In all the algorithms, if any
properties would be violated, such as acyclicity or one of the conflict of interest
properties, the algorithm aborts and no change is made to the role graph.

In Figure 3, conflicts Researcher <<>> Progrmr and LabClerk<<>> Head-
Finance have been defined. The first conflict may arise because of the employ-
ment contract; the latter because the LabClerk prepares salary, expense forms,
etc. which the HeadFinance role must approve. Figure 3 shows that role Pro-
jMgr can be added into the administrative domain whose domainID is LabMgr
between roles Researcher and LabMgr by someone in the LabRoles role (or by
someone assigned to R&DAdmin or SSO). This operation follows the role conflict
constraints and is permitted. Suppose R&DAdmin tries to add role ResSuper-
visor between roles LabMgr and R&D-Mgr. Roles R&D-Mgr and LabMgr are
both domain identifiers; they can contain conflicting privileges. However, ResSu-
pervisor which is not a domain identifier will inherit conflicting privileges from
roles Researcher and Progrmr. This is not allowed, so this operation is aborted.

3.2 Role Deletion

Role deletion is another operation that may affect conflict of interest defined
in the administrative domains. In the original role graph model, roles can be
deleted with propagation or without propagation. As well, the rules defined in

106 Y. Song and S.L. Osborn

LabRoles

is-junior

administrates

Administrative Domain

Progrmr

ResSupervisor??

Conflicting
Roles

ProjMgr

R&D-Mgr

Researcher FinAdmin

SSO

LabClerk

LabHR

HeadFinance

Payroll

Clerk

R&DAdmin

LabMgr

ResAsst

MaxRole

MinRole

Fig. 3. Adding roles ResSupervisor and ProjMgr to the role graph

[11] still remain: if the role is a domain identifier, the deletion of the role is not
allowed. A higher level administrator has to delete the domain first. For role
deletion with propagation, the algorithm deletes the direct privileges of this role
along the path of its senior roles until it reaches the domainID. For role deletion
without propagation, the privileges of this role are passed to its immediate senior
roles. If this role is defined to have a conflict with other roles, the algorithm
will initiate a user dialog to let the domain administrator decide whether to
keep the constraint or not. We take Figure 3 as an example to see what will
happen if role Researcher is deleted from the role graph. If the operation is
role deletion with propagation, the direct privileges of role Researcher will be
removed from ProjMgr (its immediate senior) and remain in LabMgr which is
the domainID. If the administrator performs the deletion without propagation,
the direct privileges of role Researcher will remain in role ProjMgr, now as direct
privileges rather than inherited privileges. The conflict between Researcher and
Progrmr no longer exists; however the administrator can decide if the privilege
conflicts still exist between their privileges.

3.3 Privilege Administration

Privilege-privilege conflicts can exist within the same domain or across different
domains. We must emphasize that the local administrator is allowed to add the
privileges which are contained in the domainID to a role within the domain. Only

Conflict of Interest in the Administrative Role Graph Model 107

LabRoles

is-junior

Administrative Domain

Progrmr{p12}

p3 <> p5administrates

HeadFinance {p11}

LabHR

SSO

LabMgr {p7,p8}

FinAdminResearcher {p3,p4}

R&D-Mgr {p9,p10}

ResAsst {p1}

Payroll {p5,p6}

Clerk {p2}

R&DAdmin
LabClerk {p4,p5}

MaxRole{}

MinRole {}

Fig. 4. Role Graph showing Direct Privileges

the administrator of a surrounding domain can add or delete the privileges in a
domainID. Figure 4 shows the example with some direct privileges displayed, and
with a privilege-privilege conflict between p3 and p5. There are several situations
where privilege-privilege conflict needs to be checked by the algorithms such as
role addition, privilege addition etc. We examine the cases here using the example.

– Adding a new role: suppose the administrator of domain LabMgr creates
a new role ProjMgr which contains privilege p3 and p5 as its direct privi-
leges. Suppose p3 is (equipment, order) and p5 is (equipment, approve), and
they have been declared to conflict. The proposed role contains conflicting
privileges, so the operation has to be aborted.

– Adding a privilege to an existing role: suppose an administrator of the do-
main with ID LabMgr tries to add privilege p5 to role Researcher. Since
Researcher contains p3 which conflicts with p5, the operation is aborted.

– Adding an edge between two roles: suppose, the administrator of the domain
with ID LabMgr tries to add an edge between ResAsst and LabClerk. There
are no conflicts between them and no roles inherit conflicting privileges as a
result. The operation is successful.

– Deleting an existing privilege from a role may change the conflict of interest
defined in the domain. There are two cases: deletion with propagation and
deletion without propagation. For example, suppose the local administrator
of the domain with ID LabMgr deletes privilege p3 from role Researcher with-
out propagation. Privilege p3 will remain in the senior role LabMgr since it is

108 Y. Song and S.L. Osborn

a domainID, and only the administrator of a surrounding domain can delete
privileges from domainIDs. The algorithm will prompt the administrator to
decide if privilege p3 still conflicts with privilege p5.

The basic role graph algorithms have thus been modified to work with ad-
ministrative domains and conflicts. Details can be found in [10].

4 Conflicts and Operations on Administrative Domains

In [12], the authors presented several new operations to administer adminis-
trative domains. In order to maintain separation of duty in the administrative
role graph model, we need to consider these operations as well. These opera-
tions include domain creation, domain deletion, domain modification, splitting
a domain, merging domains and testing for the overlap of two domains. We will
discuss domain creation and domain deletion in this section.

4.1 Creating a Domain

Every role in the administrative role graph model belongs to at least one do-
main; the administrator who controls this domain or any surrounding domain
has the right to define separation of duty constraints in this domain. When
creating an administrative domain, domain overlapping must be checked [12].
Domain creation may cause a change with respect to what conflicts are allowed.
The conflicting roles originally in one domain may sometimes be split into two
different domains. However, creating a new domain will not lead to new conflicts.

Administrative Domainadministrates

is-junior

Progrmr

MaxRole

SSO

Researcher

HeadFinance

Payroll
LabClerk

Clerk

LabMgr

ResAsst

R&D-Mgr

MinRole

Fig. 5. Original Role Graph

Conflict of Interest in the Administrative Role Graph Model 109

Progrmr
??

is-junior

role-role conflictadministrates Administrative Domain

LabRoles FinAdmin

MaxRole

SSO

Researcher

LabClerk

HeadFinance

Payroll

Clerk

LabMgr

ResAsst

R&D-Mgr

MinRole

Fig. 6. Role Graph with domains LabMgr and HeadFinance created

Figure 5 shows the original role graph with only the default administrative
domain controlled by the SSO. The SSO would like to define LabClerk and
HeadFinance to be conflicting roles. Their only common senior role is MaxRole
which satisfies the constraints for conflicting roles in the role graph, so this op-
eration is successful. When the SSO wants to define conflicting roles between
Researcher and Progrmr, the operation is aborted since their common senior
roles are LabMgr, R&D-Mgr and MaxRole, and LabMgr and R&D-Mgr are not
domainIDs, which would violate the Role Conflict of Interest Constraint. After
the domain for LabMgr has been created, as shown in Figure 6, the conflict
between Researcher and Progrmr can still not be created since R&DMgr is not
a domainID. Finally, when the domain is created with ID R&DMgr, as shown
previously in Figures 2 or 3, this conflict can be created since all the common
seniors of Researcher and Progrmr are now domainIDs or MaxRole. The con-
flicting roles LabClerk and HeadFinance defined by the SSO are now in two
different domains; the conflict still exists and is controlled by an administrator
higher than LabMgr and HeadFinance (SSO in this case).

4.2 Deleting a Domain

Deleting a domain involves removing the domain but not any of the roles con-
tained in the domain. If we delete a domain D but try to retain a role-role conflict
which has domain D’s domainID as a common senior of the two roles in conflict,
such a domain deletion must be rejected. Thus, going back to Figure 3, delet-
ing the domain for HeadFinance would be allowed with the role-role conflicts
defined, but deleting either R&DMrg or LabMgr domains would be rejected. If

110 Y. Song and S.L. Osborn

Progrmr

administrates

Administrative Domain

LabRoles

is-junior

SSO

FinAdmin
LabHR

Researcher

HeadFinance

Payroll

Clerk

R&DAdmin

LabMgr

LabClerk

ResAsst

R&D-Mgr

MaxRole

MinRole

Fig. 7. After creating domain R&D-Mgr

we delete both domains LabMgr and R&D-Mgr at the same time, the operation
will be successful. An alternative is to delete the conflict between Researcher
and Progrmr first.

4.3 Other Operations on Administrative Domains

Other operations on administrative domains, defined in [11], are splitting of a
domain, and merging two domains. Splitting a domain makes other roles become
domainIDs; it cannot create new problems with respect to existing conflicts.
Merging domains involves constructing a new domainID for the two domains
which will be the domain identifier of the new domain. The operation for merging
two domains includes deleting the old domains and creating a new domain. We
can follow the rules defined for creating and deleting domains to enforce the
separation of duty in the domains.

The algorithm to remove a domain is given in [10]. Since domain creations
does not introduce new conflicts, a revised algorithm is not needed.

5 Administration of Constraints

Since we have introduced conflict of interest constraints into the administrative
role graph model, we need to discuss operations on constraints. These operations

Conflict of Interest in the Administrative Role Graph Model 111

Algorithm DefinePrivilegeConstraint(RG, Privilege P1, Privilege P2)
input: a role graph RG, Privilege P1 and P2 (P1 �= P2)
output: true if successful, false otherwise
Begin:

ConstrainPairList PConstraintList
←− get the privilege constraintList of the role graph

ConstraintPair pconstraint
←− create new privilege constraint with P1 and P2

if find pconstraint in PConstrainList
Display “the constraint is already in the constraintList”
return false

v1 ←−get all the roles in RG which contain privilege P1
v2 ←−get all the roles in RG which contain privilege P2
v ←−get the common roles in v1 and v2
for every role ri in v

if ri is not a DomainID
Display “conflicting privileges are together in non-DomainID”
return false

add pconstraint to PConstraintList
return true

End

Fig. 8. Algorithm to Define Privilege-privilege Constraint

include defining and removing a constraint. The constraints are modeled as lists
of pairs; one contains privilege-privilege constraints and the other stores role-role
constraints. Administrators who have control over an administrative domain can
perform the operations on constraints within that domain.

When a role-role conflict is introduced, say r1 <<>> r2, we assume that all
the privileges of r1 and r2 conflict. This has two implications: first that we need
to add derived privilege-privilege conflicts between all the privileges of r1 and r2.
The second is more subtle. If, for example, r1’s privileges are {p1, p2} and r2’s are
{p3, p4}, we need to add derived privilege-privilege conflicts p1 <> p3, p1 <> p4,
etc. Suppose somewhere in the graph there is a role r with privilege set {p1, p3}.
All of our algorithms abort if the new thing being done to the graph creates a
situation which would not be allowed with respect to the existing graph. Since
adding this role-role conflict makes another role violate the Privilege Conflict
of Interest Constraint, this new operation must be rejected. This logic is found
in the algorithm in Figure 9, which also shows the derived privilege-privilege
conflicts being constructed.

To enforce the Privilege Conflict of Interest Constraint, the algorithm for
defining a privilege-privilege constraint checks if two privileges which will be de-
fined as conflicting privileges exist in the same roles other than MaxRole or other
Domain identifiers. The algorithm to remove a privilege-privilege constraint re-
moves the constraint from the list. The algorithm for defining a role-role con-
straint is based on the Role Conflict of Interest Constraint. It uses a breadth
first search to generate a senior role list of the given two roles. The common
senior roles of the two role lists are generated next. The algorithm checks if

112 Y. Song and S.L. Osborn

Algorithm DefineRoleConstraint (RG, Role r1, Role r2)
input: a role graph RG, Role r1 and r2 (r1 �= r2)
output: true if successful, false otherwise
Begin:

effr1 ←− get all effective privileges of r1
effr2 ←− get all effective privileges of r2
seniorr1 ←− get all senior roles of r1
seniorr2 ←− get all senior roles of r2
commonsenior ←− take intersection of seniorr1 and seniorr2
for every ri in commonsenior

if ri is not a DomainID
Display “ri, not a domainID, contains conflicting privileges”
return false

/*check if other roles become invalid because of derived
privilege constraints*/

for every pi in effr1
for every pj in effr2

for every ri in R, not equal to r1 or r2

if both pi and pj are in ri

Display “conflicting privileges are in role ri”
return false

add r1 <<>> r2 to role constraintList of the role graph
for every pi in effr1

for every pj in effr2
add pi <> pj to the derived privilege conflicts list

return true
End

Fig. 9. Algorithm Define Role-role Constraint

every role in the common senior role list is a domain identifier. If not, the op-
eration is aborted and an error message is returned. The algorithm to remove a
role-role constraint removes the constraint of the two given roles in the role-role
constraint list. Since the role-role constraint between the two roles no longer
exists, the privilege-privilege constraints derived by the role-role constraint need
to be removed from the privilege-privilege constraint list of the role graph. The
algorithms for defining/removing a role-role constraints and adding a privilege-
privilege constraint are given in Figures 8 to 10. Removing a privilege-privilege
constraint is very straightforward and can be found in [10].

6 Conclusions

In this paper we have added conflict of interest into the administrative role graph
model. The relationship between conflict of interest and administrative domains
has been explored. We have discussed role-role conflict, and privilege-privilege
conflict in detail. We discussed revised algorithms for role addition, role dele-
tion, privilege addition and privilege deletion that take into account the above
conflicts. Operations on administrative domains such as administrative domain

Conflict of Interest in the Administrative Role Graph Model 113

Algorithm removeRoleConstraint (RG, Role r1, Role r2)
input: a role graph RG, Role r1 and r2 (r1 �= r2)
output: true if successful, false otherwise
Begin:

ConstraintPairList RConstraintList
←− get the Role constraintList of the role graph

ConstraintPairList PConstraintList
←− get the Privilege constraintList of the role graph

if constraint r1 <<>> r2 is not in RConstraintList
Display message that no such constraint in the role constraintlist
return false

else
/* remove derived privilege-privilege Constraints caused by r1 <<>> r2
effr1 ←− get all effective privileges of r1
effr2 ←− get all effective privileges of r2
for every pi in effr1

for every pj in effr2
update derived Privilege Constraint pi <> pj

/*update Role ConstraintList*/
remove role constraint r1 <<>> r2 from role ConstraintList
return true

End

Fig. 10. Algorithm Remove Role-role Constraint

creation and deletion which involve the conflicts have been discussed. Algorithms
for dealing with constraints directly have been given. These, and the other re-
vised algorithms mentioned, which appear in [10], all run in time polynomial
in the number of roles, number of privileges and number of constraints. Future
work would include adding more constraint types.

References

1. American National Standards Institute, Inc. Role-Based Access Control. ANSI
INCITS 359-2004. Approved Feb. 3, 2004.

2. D. Ferraiolo, J. Cugini, and D. Kuhn. Role-based access control (RBAC): Features
and motivations. In Proceedings 11th Annual Computer Security Applications Con-
ference, 1995.

3. C. M. Ionita and S. L. Osborn. Privilege administration for the role graph model.
In Research Directions in Data and Applications Security, pages 15–25. Kluwer
Academic Publishers, 2003.

4. M. Nyanchama and S. L. Osborn. Access rights administration in role-based secu-
rity systems. In J. Biskup, M. Morgenstern, and C. E. Landwehr, editors, Database
Security, VIII, Status and Prospects WG11.3 Working Conference on Database Se-
curity, pages 37–56. North-Holland, 1994.

5. M. Nyanchama and S. L. Osborn. The role graph model and conflict of interest.
ACM TISSEC, 2(1):3–33, 1999.

6. S. Osborn and Y. Guo. Modeling users in role-based access control. In Fifth ACM
RBAC Workshop, pages 31–38, Berlin, Germany, July 2000.

114 Y. Song and S.L. Osborn

7. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. IEEE Computer, 29:38–47, Feb. 1996.

8. R. S. Sandhu. Transaction control expressions for separation of duties. In Pro-
ceedings of 4th Annual Computer Security Application Conference, pages 282–286,
Orlando, FL, December 1988.

9. R. Simon and M. Zurko. Separation of duty in role-based environments. In Pro-
ceedings of 10th IEEE Computer Security Foundations Wo rkshop, pages 183–194,
Rockport, Mass., June 1997.

10. Y. Song. Conflict of interest in the administrative role graph model. Master’s
thesis, Dept. of Computer Science, The University of Western Ontario, Apr. 2006.

11. H. Wang. Role graph administration in an enterprise environment. Master’s thesis,
Dept. of Computer Science, The University of Western Ontario, 2003.

12. H. Wang and S. Osborn. An administrative model for role graphs. In Data and
Applications Security XVII, Status and Prospects. De Capitani di Vimercati, S, I.
Ray and I. Ray, eds. Estes Park, Colorado, Kluwer, pages 302–315, 2004.

Two Phase Filtering for XML Access Control

Changwoo Byun and Seog Park

Department of Computer Science, Sogang University,
Seoul, 121-742, South Korea

{chang, spark}@dblab.sogang.ac.kr

Abstract. We propose two phase filtering scheme to develop an efficient
mechanism for XML databases to control query-based access. An access
control environment for XML documents and some techniques to deal
with fine-grained authorization priorities and conflict resolution issues
are proposed. Despite this, relatively little work has been done to enforce
access controls particularly for XML databases in the case of query-based
access. The basic idea utilized is that a user query interaction with only
necessary access control rules is modified to an alternative form which is
guaranteed to have no access violations using tree-awareness metadata of
XML schemas and set operations supported by XPath 2.0. The scheme
can be applied to any XML database management system and has several
advantages such as small execution time overhead, fine-grained controls,
and safe and correct query modification. The experimental results clearly
demonstrate the efficiency of the approach.

1 Introduction

As XML [1] is becoming a de facto standard for distribution and sharing of
information, the need for an efficient yet secure access of XML data has become
very important[4-13, 16-18]. Despite this, relatively little work has been done
to enforce access controls particularly for XML databases in the case of query
access.

We propose two phase filtering scheme for access control enforcement mech-
anism. The first phase filtering is to abstract only necessary access control rules
based on a user query. The traditional access control enforcement mechanism
for XML documents uses all access control rules corresponding to a query re-
quester. In contrast, our scheme uses only the necessary access control rules that
are related to an ancestor-or-self (or parent) or a descendant-or-self (or child)
relation against the user query. As a result, these necessary access control rules
are used in rewriting unsafe query into a safe one.

The second phase filtering is to modify an unsafe query into a safe one. Query
modification is the development of an efficient query rewriting mechanism that
transforms an unsafe query into a safe yet correct one that keeps the user access
control policies. In NFA approaches [16,18], the process of rewriting queries may
be particularly slower and incorrect because more states are being traversed to
process ”*” and ”//”.

We conducted an extensive experimental study, which shows that our ap-
proach improves access decision time and generates a more exact rewritten query.

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 115–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 C. Byun and S. Park

The rest of the paper is organized as follows: Section 2 briefly reviews related
works and describes their weaknesses. Section 3 gives the metadata of the Doc-
ument Type Definition (DTD) and the basic notations for two phase filtering
scheme. In Section 4, we present two phase filtering scheme and the construc-
tion algorithms used. Section 5 presents the results of our experiments, which
reveal the effective performance compared to the Q-Filter [18]. Finally, Section
6 summarizes our work.

2 Related Works

Traditional authorizations for XML documents should be associated with protec-
tion objects at different granularity levels. In general, existing XML access control
models assume access control rules, which are identified as quintuple (Subject, Ob-
ject, Access-type, Sign, Type) [4-13]. The subject refers to the user or user group
with authority, the object pertains to an XML document or its specific portion,
access-type means the kind of operations, the sign could either be positive (+) or
negative (-), and the type shows ’R(ecusive)’ or ’L(ocal)’. S. De Capitani et al.
[19] propose an access control model handling the XQuery and an query rewriting
process by using EXCEPT operation. The access control enforcement mechanism
of these authorizations is view-based enforcement mechanism. The semantics of
access control to a user is a particular view of the documents determined by the rel-
evant access control rules. It provides a useful algorithm for computing the view
using tree labeling. However, aside from its high cost and maintenance require-
ment, this algorithm is also not scalable for a large number of users.

To remedy view-based problem, M. Murata et al. [16] simply focused on filter-
ing out queries that do not satisfy access control policies. J. M. Jeon et al. [17]
proposed access control method that produces the access-granted XPath expres-
sions from the query XPath expressionby using access control tree (XACT), where
the edges are structural summary of XML elements and the nodes contain access
control XPath expressions. Since XACT includes all users’ access control rules
it is very complicated and leads to computation time overhead. B. Luo et al. [18]
took extra steps to rewrite queries in combination with related access control poli-
cies before passing these revised queries to the underlying XML query system for
processing. However, the shared Nondeterministic Finite Automata (NFA) of ac-
cess control rules is made by a user (or a user role). Thus, the shared NFA involves
many unnecessary access control rules from the user query point of view, which
further result in a time-consuming decision during which the user query should
have already been accepted, denied, or rewritten. In addition, although the pro-
posed NFA-based algorithm is useful for rewriting queries with path expressions
starting from the root, this approach is very inefficient for rewriting queries with
the descendant-or-self axis(”//”) because of the exhaustive navigation of NFA.
The many queries on XML data have path expressions with ”//” axes because
users may not be concerned with the structure of data and intentionally make
path expressions with ”//” axes to get intended results. The NFA-based method
results in performance degradation and the generation of unsafe queries.

Two Phase Filtering for XML Access Control 117

3 Background

3.1 XPath and Access Control Rule

XML specification defines two types of document: well-formed and valid ones. A
well-formed document must conform to the three rules [1]. Valid documents, on
the other hand, should not only be well-formed; they should also have a Docu-
ment Type Definition (DTD) or XML Schema, which the well-formed document
conforms to. Although we use a valid XML with a DTD, the following content
may be applied to a valid XML with an XML Schema or a well-formed XML.

To enforce the fine-level granularity requirement, in general, authorization
models proposed for regulating access to XML documents use XPath expressions
to delineate the scope of each access control rule. XPath is a path expression
language of a tree representation of XML documents. A typical path expression
consists of a sequence of steps. Each step works by following a relationship
between nodes in the document: child, attribute, ancestor, descendant, etc. Any
step in a path expression can also be qualified by a predicate, which filters the
selected nodes.

[Assumption 1]. We consider XPath expressions with predicates for describing
query and object parts of XML access control rules, which specify elements (in-
cluding wildcard (’*’) and a sequence of parent-child (’/’) and ancestor-descendant
(’//’) steps.

Meanwhile, XPath 2.0 [2] supports operations (i.e., UNION, INTERSECT, and
EXCEPT) that combine two sets of node. Although these operations are tech-
nically non-path expressions, they are invariably used in conjunction with path
expressions, so they are useful in transforming unsafe queries into safe queries.
We confirm these operations by using XML spy 2006 version1.

3.2 Access Control Policies

In general, some hierarchical data models (e.g., Object-Oriented Data Model,
XML Data Model, and etc.) exploit implicit authorization mechanism combin-
ing positive and negative authorizations [3]. The propagation policy by implicit
authorizations leads to the situation that a node is defined as ’access-granted’
and ’access-denied’ at the same time. In addition, the decision policy determines
when a node is neither access-granted nor access-denied. Open policy grants a
query for a node whose access control information is not defined. Closed policy,
on the other hand, denies a query for a node whose access-control information
is not defined.

[Assumption 2]. For the strict data security, we use ’most specific precedence’
for the propagation policy, ’denials take precedence’ for the conflict resolution
policy, and ’closed policy’ for decision policy to keep data in safety.

1 http://www.altova.com

118 C. Byun and S. Park

Recall the implicit authorization mechanism combining the positive and neg-
ative authorizations. The combination of a negative authorization with positive
authorizations allows the definition of positive authorizations as exceptions to
a negative authorization at a higher level in granularity hierarchy. M. Murata
et al. [16] calls this combination ’valid read accessibility views’. Similarly, the
combination of a positive authorization with negative authorizations specifies
exceptions to a positive authorization. This combination calls ’invalid read ac-
cessibility views’.

In this paper, we select ’valid read accessibility views’. To ensure that an
access control policy is ’valid read accessibility views’ in a positive/negative
authorization mechanism we propose a new concept of generating access control
rules. We define this as ’Integrity Rules of Access Control Rules’.

Definition 1. [Three Integrity Rules of ACRs]:

1. It is impossible for any node to have both a negative and a positive ACR.
2. If a conflict occurs between positive and negative ACRs, the negative ACR

takes precedence.
3. We also assume ”denial downward consistency” 2 [16].
4. It is impossible for any node, which is not in the scope of positive ACRs, to

have negative ACRs.

Integrity rules 1 and 2 of ACRs are the result of ’denials take precedence’. In-
tegrity rules 3 and 4 of ACRs are newly added into an XML access control policy.
Any security specification model must ensure that access control policies are en-
forced correctly and efficiently. Given a query over a secured XML document
tree, it is important that returned answers do not contain any data that violate
access control policies. They are called safe answers [18].

Definition 2. [Safe Query]: If a query is assured to retrieve only safe answers,
it is called a safe query, otherwise, it is an unsafe query.

Generally speaking, an XPath expression [2] declares the query requirement by
identifying the node of interest via the path from the root of the document to
the elements which serve as the root of the sub-trees to be returned [20]. The
QFilter [18] defines these semantics as ’answer-as-sub-trees’. We call the root of
sub-trees to be returned as target nodes.

Definition 3. [Target Node]: A target node of a given XPath is the last node
except for the predicates.

For example, the target node of an XPath, /site/people/person is a person node.
Another example, the target node of an XPath, /site/regions/aisa/item[@id =
”xxx”] is an item node.

2 The combination of a negative authorization with positive authorizations allows the
definition of positive authorizations as exceptions to a negative authorization at a
higher level in granularity hierarchy.

Two Phase Filtering for XML Access Control 119

site

regions people open_auctions

america
person

emailaddress
phone

name

open_auction

current seller annotation quantity

@person

closed_auctions

closed_auction

seller itemref

price

asia

item

location

quantity

name
payment

description

text

creditcard

@featured

@id

item

location

quantity

name
payment

description

text

@featured

@id

@id

@id

author description

@person text

@person

buyer

@person @item

quantity

(0, 50)

(1, 20)

(2, 9)

(3, 8)

(4, 0)

(5, 1)

(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 7)

(11, 6)

(12, 19)

(13, 18)

(14, 10)

(15, 11)
(16, 12)

(17, 13)

(18, 14)

(19, 15)

(21, 16)

(20, ,17)

(22, 27)

(23, 26)

(24, 21)

(25, 22)

(26, 23)
(27, 24)

(28, 25)

(29, 39)

(30, 38)

(31, 28)

(32, 29)
(33, 31)

(34, 30)

(36, 33)

(37, 32)
(39, 34)

(38, 35)

(35, 36) (40, 37)

(41, 49)

(42, 48)

(43, 41)

(44, 40) (46, 42) (48, 44)

(45, 43)(47, 45)

(49, 46)

(50, 47)

site

regions people open_auctions

america
person

emailaddress
phone

name

open_auction

current seller annotation quantity

@person

closed_auctions

closed_auction

seller itemref

price

asia

item

location

quantity

name
payment

description

text

creditcard

@featured

@id

item

location

quantity

name
payment

description

text

@featured

@id

@id

@id

author description

@person text

@person

buyer

@person @item

quantity

(0, 50)

(1, 20)

(2, 9)

(3, 8)

(4, 0)

(5, 1)

(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 7)

(11, 6)

(12, 19)

(13, 18)

(14, 10)

(15, 11)
(16, 12)

(17, 13)

(18, 14)

(19, 15)

(21, 16)

(20, ,17)

(22, 27)

(23, 26)

(24, 21)

(25, 22)

(26, 23)
(27, 24)

(28, 25)

(29, 39)

(30, 38)

(31, 28)

(32, 29)
(33, 31)

(34, 30)

(36, 33)

(37, 32)
(39, 34)

(38, 35)

(35, 36) (40, 37)

(41, 49)

(42, 48)

(43, 41)

(44, 40) (46, 42) (48, 44)

(45, 43)(47, 45)

(49, 46)

(50, 47)

(a)

person

person

person

person

person

people

site

…

description

item

iem

item

item

item

item

item

asia

regions

site

Parent

253028creditcard

243027phone

233026emailaddress

223025name

500500site

21

26

27

…

6

7

5

4

3

2

1

0

8

9

20

post

3

2

1

…

5

4

4

4

4

4

4

4

3

2

1

level

0

5

6

…

0

1

0

0

0

0

0

0

8

9

20

size

24@id

23person

22people

……

11text

10description

9payment

8name

7quantity

6location

5@featured

4@id

3item

2asia

1regions

PreTag-Name

person

person

person

person

person

people

site

…

description

item

iem

item

item

item

item

item

asia

regions

site

Parent

253028creditcard

243027phone

233026emailaddress

223025name

500500site

21

26

27

…

6

7

5

4

3

2

1

0

8

9

20

post

3

2

1

…

5

4

4

4

4

4

4

4

3

2

1

level

0

5

6

…

0

1

0

0

0

0

0

0

8

9

20

size

24@id

23person

22people

……

11text

10description

9payment

8name

7quantity

6location

5@featured

4@id

3item

2asia

1regions

PreTag-Name

closed_auction

…

closed_auction

seller

closed_auction

closed_auctions

site

open_auction

description

annotation

author

annotation

open_auction

seller

open_auction

open_auction

open_auction

open_auctions

site

Parent

473050quantity

……………

433145buyer

3911129open_auctions

3821030open_auction

283031@id

293032current

313133seller

304034@person

363435annotation

334136author

4 40

41

48

49

37

34

35

32

post

3

2

1

3

5

4

5

level

0

1

8

9

0

0

1

0

size

44@person

43seller

42closed_auction

41closed_auctions

40quantity

39text

38description

37@person

PreTag-Name

closed_auction

…

closed_auction

seller

closed_auction

closed_auctions

site

open_auction

description

annotation

author

annotation

open_auction

seller

open_auction

open_auction

open_auction

open_auctions

site

Parent

473050quantity

……………

433145buyer

3911129open_auctions

3821030open_auction

283031@id

293032current

313133seller

304034@person

363435annotation

334136author

4 40

41

48

49

37

34

35

32

post

3

2

1

3

5

4

5

level

0

1

8

9

0

0

1

0

size

44@person

43seller

42closed_auction

41closed_auctions

40quantity

39text

38description

37@person

PreTag-Name

(b)

Fig. 1. (a) DTD PRE/POST Structure of auction.dtd, (b) Relational Storage of (a)

3.3 PRE/POST Structure

In this section, we introduce our proposed metadata of a DTD, PRE/POST
structure.

Figure 1(a) shows that the nodes of the DTD3 tree are assigned with
PRE(order) and POST(order) ranks, as seen when parsing the DTD tree se-
quentially. We adopt the PRE/POST plane concept of the query processor
for the XML query language [14,15]. We call this as PRE/POST Structure
(PPS) of the DTD tree. Figure 1(b) shows the actual relational DTD repre-
sentation. LEVEL refers to a DTD tree level, and SIZE is the sub-tree size
of any node. This PRE/SIZE/LEVEL encoding is equivalent to PRE/POST
since POST = PRE + SIZE − LEV EL [14,15]. PARENT refers to the par-
ent node of the Tag-Name node in the DTD tree. We avoid any unnecessary
ACRs through PPS information. PARENT information enable efficient finding
the nodes for XPath expressions with ”//” axes. Further details are provided in
Section 4.

3 It is a portion of an auction.dtd source extracted from the XMark [21], which we
consider as a running example in our paper.

120 C. Byun and S. Park

4 Two Phase Filtering

The objective of Two Phase Filtering is to select only the necessary ACRs for
processing a user query, and to rewrite the unsafe query into a new safe query.
Before describing each filtering technique in detail, we introduce information of
a user query and access control rules.

(R1): /site/regions/*/item[location=“LA”]

(R2): /site/people/person[name = “chang”]

(R3): /site/open_auctions/open_auction

(R4): //open_auction[quantity]/seller

Positive ACRs

(R5): /site/regions/*/item/payment

(R6): /site/people/person/creditcard

(R7): /site/*/open_auction[@id>50]/seller[@person=“chang”]

Negative ACRs

//open_auction[quantity]/seller

/site/open_auctions/open_auction

/site/people/person

/site/regions/*/item

path

p3

P2

P1

P_link

33

30

23

3, 13

Pre

31R4

38R3

8, 18R1

26R2

Postrule

//open_auction[quantity]/seller

/site/open_auctions/open_auction

/site/people/person

/site/regions/*/item

path

p3

P2

P1

P_link

33

30

23

3, 13

Pre

31R4

38R3

8, 18R1

26R2

Postrule

ACR+-base

50>@id30P4

chang=@person33p5

chang=name23P2

LA

value

=

operator

30

3, 13

Parent-PRE

quantity

location

property

P1

P3

P-id

50>@id30P4

chang=@person33p5

chang=name23P2

LA

value

=

operator

30

3, 13

Parent-PRE

quantity

location

property

P1

P3

P-idPREDICATES-base

/site/*/open_auction[@id>50]/seller[@person=“chang”]

/site/people/person/creditcard

/site/regions/*/item/payment

path

p4, p5

P_link

33

28

9, 19

Pre

31R7

5, 15R5

25R6

Postrule

/site/*/open_auction[@id>50]/seller[@person=“chang”]

/site/people/person/creditcard

/site/regions/*/item/payment

path

p4, p5

P_link

33

28

9, 19

Pre

31R7

5, 15R5

25R6

Postrule

ACR--base

(a)

(b)

Fig. 2. (a) Sample positive/negative ACRs, (b) Sample ACRs and PREDICATES
databases

After a security officer determines the ACRs of which each object part uses an
XPath expression in Figure 2(a), each ACR information is stored into ACRs and
PREDICATES databases in Figure 2(b) at compile time. Note that the entity of
PRE and POST columns may be more than two. For example, the target node
of R1 is item. The (PRE, POST) value set of the item is (3, 8) and (13, 18). This
value set is stored into the PRE and POST columns, respectively. Moreover, R1
has one predicate ([location=”xxxx”]). The parent element of the predicate is
item. The entity of Parent-PRE column is (3, 13), and the entities of property,
operator, and value columns are ’location’, ’=’, and ’xxxx’, respectively. Finally,
P1 as Predicate ID is stored into the P link column in the ACRs database.
In a similar way, other ACRs are stored into the ACRs and PREDICATES
databases.

Meanwhile, if a user query is inputted, we get some information about the
user query. Given a query Q1, the target node of Q1 is phone node.

Q1 : /site/people/person[name=”chang”]/phone/

We looks up the PPS(in Figure 1(b)) and gets the (27, 24) value of the target
node phone. We also obtains the predicate information of Q1. Note that there may

Two Phase Filtering for XML Access Control 121

also be more than two (PRE, POST) pairs. However, all (PRE, POST) pairs may
not be the (PRE, POST) pairs of the user’s query. Let a user’s query be footnote-
size/site/regions/america/itemfor example. The target node of the user’s query
is the item node. Although the (PRE, POST) pairs of the item are (3, 8) and (13,
18), (3, 8) is not a suitable (PRE, POST) pair of the given query. Only (13, 18) is a
child node of (12, 19) of the america node. Its main idea is that the preorder (pos-
torder) value of each node of a user’s query is less (greater) than that of the target
node of the user’s query. Figure 3 shows the pruning algorithm that eliminates the
unsuitable (PRE, POST) pairs of a user’s query.

Input : a user’s query
Output : suitable (PRE, POST) values of the target node of the query

BEGIN
1. for each (PREtn, POSTtn) value of projection node of the query
2. { for (PREstep, POSTstep) value of each step of the query
3. If (!(PREstep < PREtn and POSTstep > POSTtn))
4. break;
5. suitable_(PRE, POST) set := (PREtn, PREtn)
6. }
END

Fig. 3. The Prune-TNs Algorithm

4.1 First Phase Filtering: Rule Filter

The objective of the Rule Filter is to extract the necessary ACRs out of the ACRs
database. As shown in Figure 4, namely, the PRE/POST plane of ACRs, the tar-
get node of a user query induces four partitions of the plane. Each partition has a
special relation with the user query.

Let (PrQ, PoQ), (PrACR, PoACR), and (PrQ′ , PoQ′) pairs be (PRE, POST)
values of a user query Q, an ACR, and a safe modified query Q’, respectively.

Definition 4. [upper-right partition: FOLLOWING ACR] FOLLOWING
ACR means that the preorder and postorder values of an ACR are greater than
those of a user query: PrQ < PrACR, PoQ < PoACR.

Definition 5. [lower-left partition: PRECEDING ACR] PRECEDING
ACR means that the preorder and postorder values of an ACR are less than those
of a user query: PrQ > PrACR, PoQ > PoACR.

The FOLLOWING and PRECEDING ACRs have no connection with the query
Q. Thus, we can put aside the ACRs for processing the query Q.

Definition 6. [upper-left partition: ANCESTOR ACR] ANCESTOR
ACR (including PARENT ACR) means that the preorder (postorder) value of
an ACR is less (greater) than that of a user query, respectively. In this case, the
(PRE, POST) value of the target node of the modified query Q’ is equal to that
of the target node of the user query Q: PrQ > PrACR, PoQ < PoACR, P rQ′ =
PrQ, PoQ′ = PoQ.

122 C. Byun and S. Park

Definition 7. [lower-right partition: DESCENDANT ACR] DESCEN-
DANT ACR (including CHILD ACR) means that the preorder (postorder) value
of an ACR is greater (less) than that of a user query, respectively. In this case,
the (PRE, POST) value of the target node of the modified query Q’ is equal to
that of the target node of the ACR: PrQ < PrACR, PoQ > PoACR, P rQ′ =
PrACR, PoQ′ = PrACR.
Definition 8. [SELF ACR] SELF ACR means that the (PRE, POST) pair of
an ACR is equal to that of a user query. In this case, the (PRE, POST) value of
the target node of the modified query Q’ is equal to that of the target node of the
user query Q (or ACR): PrQ′ = PrQ = PrACR, PoQ′ = PoQ = PoACR.

Recall Q1 in Figure 2(b). The (PRE, POST) value of the target node phone is (27,
24). Only R2 is necessary for Q1 because the target node of R2 is an ANCESTOR
ACR of Q1. R1 and R5 (R3, R4, R6, and R7) are a PRECEDING (FOLLOW-
ING) ACRs of the query in Figure 4(a). They are identified as unnecessary ACRs
for Q1. Figure 4(b) shows the Rule Filter algorithm which finds DESCENDANT -
or-SELF (or ANCESTOR-or-SELF) ACRs that correspond to a user’s query.

Input: (PrQ, PoQ) := QA(query), ACRs
Output: suitable ACRs’
BEGIN
for each rule R1 in ACRs
if ((PrQ ≥ PrR1 and PoQ ≤ PoR1) or // ACENSTOR
(PrQ ≤ PrR1 and PoQ ≥ PoR1)) // DESCENDANT
ACRs’:= R1;
END

ancestor

preceding descendant

following

PRE/POST of a query Q1

(27, 24)

PRE of DTD

P
O

ST
 of D

T
D

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

R6ancestor

preceding descendant

following

PRE/POST of a query Q1

(27, 24)

PRE of DTD

P
O

ST
 of D

T
D

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

R6

PRE of DTD

P
O

ST
 of D

T
D

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

PRE of DTD

P
O

ST
 of D

T
D

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

R6

(a)

(b)

Fig. 4. (a) Semantics of PRE/POST Plane of Positive ACRs, (b) The Rule Filter Al-
gorithm

Theorem 1. The Rule Filter algorithm abstracts all access control rules related
to a user query.

Proof. The Rule Filter algorithm abstracts the ANCESTOR (Definition 6), DE-
SCENDANT (Definition 7), and SELF ACRs (Definition 8), accordingly we see
that the FOLLOWING and PRECEDING ACRs have no connection with the user
query.

Let (PrTN , PoTN) be the (PRE, POST) value of the target node of a user query
Q. Suppose that SN is any node in sub-nodes of Q. Then the (PRE POST) value
of SN is as follows:

PrTN < PrSN < PrTN + SIZE(TN), P olast−sibling−node−of−TN < PoSN < PoTN

(1)

Two Phase Filtering for XML Access Control 123

Suppose that FN is any node in following nodes of Q. Then the (PRE, POST)
value of FN is as follows:

PrTN < PrF N , P oTN < PoF N (2)

Especially the (PRE, POST) value of the first following node (first FN) of Q is as
follows:

PrfirstF N = PrTN + SIZE(TN) + 1 (3)

Thus, by (1) and (2), PoSN < PoTN < PoFN , and by (1) and (3), we obtain (4).

PrSN < PrTN + SIZE(TN) < Prfirst−F N = PrTN + SIZE(TN) + 1 (4)

The inequality (4) means that the preorder value of any node (SN) in sub-nodes of
Q is less than that of the first following node (first FN) of Q. Therefore, PrSN <
PrFN . So we can obtain PrSN < PrFN and PoSN < PoFN . That is, the FOL-
LOWING ACRs have no connection with the user query, as was to be proved. The
same is the case with PRECEDING ACRs.

4.2 Second Phase Filtering: Query Filter

The goal of the Query Filter is to make a safe query by extending/eliminating
query tree nodes and combining a set of nodes by the operators.

The positive and negative access control rules passed by the Rule Filter are
classified into three groups (SELF, ANCESTOR, and DESCENDANT ACRs).
The process of the Query Filter is as follows:

1. Compares the user query with each negative access control rule and produces
a modified query.

2. Combine each modified query by UNION operation.
3. Compares the user query with each positive access control rule and produces

a modified query.
4. Combines each modified query by UNION operation.
5. Combines each result query of 4 and 2 by EXCEPT operation.
6. Outputs the final result query of 5.

Before describing our method in detail, we give sample queries as follows:

(Q2): /site/people/person/creditcard/
(Q3): //open auction[@id<100]

4.2.1 Assistant Functions
Before describing the process of the Query Filter, we introduce two functions. The
REFINE function focuses on replacing a wild card ”*” with an actual node name
(element tag) and removing superfluous ”//” axes. A ”*” element is superfluous
if the DTD shows an actual element from the element (i.e., parent node) before
”*” to the element (i.e., child node) after ”*”. In addition, the ”//” axis is also

124 C. Byun and S. Park

superfluous if the DTD shows that there is a single path from the element before
”//” to the element after ”//”. If so, the ”//” axis is replaced with the determin-
istic sequence of ”/” steps. For example, the REFINE function gets the XPath
expression:

/site/regions/*/item.

Since the (PRE, POST) value set of the target node (item) of the XPath is (3,
8) and (13, 18), the REFINE function begins first (3, 8). In the reverse order, once
the REFINE function meets the ”*” node, it obtains item before the node. The
(PRE, POST) value of item is (3, 8). The REFINE function gets the parent node
(asia) of the item as shown in Figure 1(b). Finally, the REFINE function gives
the output /site/regions/asia/item(Line (5) - (9) in Figure 5). In the case of (13, 8)
value, the REFINE function results in /site/regions/america/item.

Another example is /site/people//name. Although the (PRE, POST) value set
of the target node (name) of the XPath is (8, 4), (18, 14) and (25, 22), only (25,
22) is selected by the Prune TNs algorithm as shown in Figure 3 . Once the RE-
FINE function meets the ”//” node, it obtains name before the node and the next
node (people). As shown in Figure 1(b), each LEVEL of name and people is 3 and
1, respectively. LEV ELname − LEV ELpeople = 2. In this case, it is the same as

Input: PPS, an original XPath, and (Prp, Pop) of the target node of the XPath
Output: Refinedpath //Refined XPath expression
BEGIN
1. Refinedpath := null string;
2. for reverse order of path
3. { if node is not * and $ // $ means “//” axis
4. Refinedpath := concatenate(“/node”, Refinedpath);
5. else if node is *
6. { find (Prbefore-node, Pobefore-node) value set before “*” node;
7. for each (Prbefore-node, Pobefore-node) value
8. if ((Prbefore-node ≤ Prp) and (Pobefore-node ≥ Pop))
9. Refinedpath := concatenate(Get_parentnode(Prbefore-node, Pobefore-node),

Refinedpath));
10. }else if node is $ // $ means “//” axis
11. { while(1)
12. { find (Prbefore-node, Pobefore-node) value set before “//” node;
13. for each (Prbefore-node, Pobefore-node) value
14. if ((Prbefore-node ≤ Prp) and (Pobefore-node ≥ Pop))
15. {next-node := get the next node of “//” node
16. find (Prnext-node, Ponext-node) value set of next-node;
17. for each (Prnext-node, Ponext-node) value
18. if ((Prnext-node ≤ Prp) and (Ponext-node ≥ Pop))
19. if(Levelbefore-node – Levelnext-node = 1)
20. pass;
21. else if(Levelbefore-node – Level next-node = 2)
22. Refinedpath := concatenate(Get_parentnode(Prbefore-node, Pobefore-node),

Refinedpath));
23. else
24. { Refinedpath := concatenate(Get_parentnode (Prbefore-node, Pobefore-node),
Refinedpath));
25. break while;
26. }
27. }
28. }
29. }

Fig. 5. The REFINE function

Two Phase Filtering for XML Access Control 125

Input : nodeACR, nodeQ
Output : RefinePredicate
BEGIN
1. ACR_simple_predicate = getsimplepredicate(nodeACR); // array
2. ACR_path_predicate = getpathpredicate(nodeACR); // array
3. Q_simple_predicate = getsimplepredicate(nodeQ); // array
4. Q_path_predicate = getpathpredicate(nodeQ); // array

5. if(Q_path_predicate != null && ACR_path_predicate != null)
6. Refinedpredicates := concatenate path_predicate by Path- MERGE function;
7. else if(Q_path_predicate != null)
8. Refinedpredicates := concatenate Q_path_predicate;
9. else if(ACR_path_predicate != null)
10. Refinedpredicates := concatenate ACR_path_predicate;
11. if(Q_ simple _predicate != null && ACR_ simple_predicate != null)
12. Refinedpredicates := concatenate simple _predicate by Simple-MERGE

function;
13. else if(Q_ simple _predicate != null)
14. Refinedpredicates := concatenate Q_ simple _predicate;
15. else if(ACR_ simple _predicate != null)
16. Refinedpredicates := concatenate ACR_ simple _predicate;
END

Fig. 6. The pseudo-code of PREDICATE function

people/*/name. Finally, the REFINE function results in /site/people/person/name.
If the difference between LEVELs of two nodes is equal to 1, the two nodes are
a parent-child relation. If the difference between LEVELs of two nodes is more
than 3, the two nodes are an ancestor-descendant relation (Line (17) - (26) in
Figure 5).

In addition, we introduce the PREDICATE function. From the query rewrit-
ing point of view, it is desirable to keep the predicate’s position of a user query
or ACRs in the process of refining the user query. At compile time, each predi-
cate content and position information of the ACRs is stored in the PREDICATES
database as shown in Figure 2(b). When the Query Filter prompts the REFINE
function, the latter subsequently prompts the PREDICATE function which adds

[@id < “3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

[@id = “3”][@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

[@id > “1” and @id < ”3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

reject[@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

OptimizationPredicate of a
negative ACR

Predicate of a
positive ACR

Predicate of
a query

[@id < “3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

[@id = “3”][@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

[@id > “1” and @id < ”3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

reject[@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

OptimizationPredicate of a
negative ACR

Predicate of a
positive ACR

Predicate of
a query

Fig. 7. Examples of Predicates Optimizations in simple-MERGE function

126 C. Byun and S. Park

predicates of ACRs into the user query. Figure 6 shows the PREDICATE function
whose core is the two MERGE functions. The Path-MERGE function performs
to merge path predicates in the ACR and the user query. The Simple-MERGE
function performs to merge simple predicates in the ACR and the user query. The
simple-MERGE function also considers some optimizations in Figure 7. Further-
more, with the EXCEPT operation, a returned answer will not include the unau-
thorized part of an XML instance. Accordingly, we think that the optimized pred-
icates between a query and a negative ACR are the same with predicates of the
negative ACR. In the future, we will consider some other optimizations.

4.2.2 Query Filter Algorithm
Step 1. (Handling negative ACRs)

– Case 1.1 (SELF ACR). SELF means that the (PRE, POST) pair of a user’s
query is equal to that of an ACR. If a negative ACR is a SELF rule related
to a user query, the output of the Query Filter is that the query is rejected.
The (PRE, POST) pair of Q2 is (28, 25). As shown in Figure 2(b), R6 (in the
negative ACRs database) has a value of (28, 25). In this case, the Query Fil-
ter rejects Q2. However, when predicates exist in negative ACRs, the output
range part of the user query is disallowed access. As a result, the Query Filter
transforms the query except the region of the negative ACR.

– Case 1.2(ANCESTOR ACR). If a negative ACR is an ANCESTOR rule
related to a user query, it is similar to Case 1.1.

– Case 1.3 (DESCENDANT ACR). If a negative ACR is a DESCENDANT
rule related to a user query, the Query Filter rewrites the query except the
region of the negative ACR. For example, R7 (33, 31) is a DESCENDANT
rule related to Q3 (30, 38) by the ACR-FINDER algorithm. Thus, the Query
Filter prompts the REFINE function, and Q3 is transformed as follows:
Q3’ : Q3 EXCEPT
(/site/open auactions/open auction[@id>50]/seller[@person=”chang”]).
Then R4 (go to Step 2) should be taken for granted.

– Case 1.4 (Null). If any negative ACR does not exist against a user’s query,
the Query Filter proceeds to Step 2.

Step 2. (Handling positive ACRs)

– Case 2.1 (SELF ACR). If a positive ACR is a SELF rule related to a user
query, the Query Filter prompts the REFINE function.

– Case 2.2 (ANCESTOR ACR). It is similar to Case 2.1.
– Case 2.3 (DESCENDANT ACR). If a postive ACR is a DESCENDANT

rule related to a user query, the user query may contain the unsafe parts of
an XML document. Thus, the user query should be transformed into a safe
query. R4 (33, 31) is also ANCESTOR rule related to Q3 (30, 38). First, the
Query Filter prompts the REFINE function whose output is
/site/open auctions/open auction[quantity][@id<100]/seller .
Second, the Query Filter combines the refined query of positive ACRs with

Two Phase Filtering for XML Access Control 127

those of negative ACRs as shown in Case 1.3 of Step1 by injecting the EX-
CEPT operation between them:
(/site/open auctions/open auction[quantity][@id<100]/seller)
EXCEPT
(/site/open auactions/open auction[@id>50]/seller[@person=”chang”])

5 Experiments

We compared the performance of our work with the QFilter [18] according to syn-
tactic data sets generated by the publicly available XMark [21]. We present two
experiments4 based on this implementation. To estimate the effectiveness and ef-
ficiency of our work, we generated 25 ACRs (7 positive and 18 negative) for each
experiment. We implemented the 2PF (Two Phase Filtering), 2PF-NFA (combin-
ing 2PF with the NFA technique) and QFilter in the Java programming language
using the Eclipse v.3.1.1 development tool.

20 20 2020 20 2020

0 0
0

5

10

15

20

25

Rejection Query
with "/" axis

Rejection Query
with "//" axis

Rejection Query
starting with "//"

axis

Kinds of Queries

Nu
mb

er
of

Qu
rie

s

2PF_NFA

2PF

Qfilter

Fig. 8. The number of rejecting prohibited queries corresponding to various query types

5.1 Experiment 1: Correctness of Detecting Rejection Queries

Rejection query is a user query that is always denied. First, we made 20 intentional
rejection XPath queries for each query type, and actually measured the number of
filtering the rejection queries. The result is shown in Figure 8. From this, we can see
that the 2PF and the 2PF-NFA completely filter the rejection queries. However,
the QFilter does not. If there is more than one ACR starting with ”//” axis in
positive ACRs, rejection queries are never filtered by the QFilter. In particular,
the QFilter’s rate of filtering rejection queries starting with the ”//” axis is 0%.
If a user’s query contains //-child and a shared NFA does not contain /-child or
//-child state, the navigation of the shared NFA runs to each final state. If answer
model is ”answer-as-nodes”, the query is rejected. However, if answer model is
”answer-as-subtrees”, the QFilter appends //-child to each final state so that the
query is not rejected.
4 The experiments were performed on a Pentium IV 2.66GHz platform, with an MS-

Windows XP OS and 1 GB of main memory.

128 C. Byun and S. Park

5.2 Experiment 2: Estimating the Average Processing Time

We measured the average processing time for the output (rejection, re-written
query) of the 2PF, 2PF-NFA, and QFilter per 30, 50, 100, 200, 300, and 500 ran-
dom XPath queries. Before estimating the average processing time, we measured
the speed of each filter construction. The 2PF or the 2PF-NFA construction time
means hash table generation time of a DTD as shown in Figure 1(b). QFilter con-
struction time means two shared NFA generation time (i.e., negative and positive
ACRs). Figure 9(a) shows each construction time. From this, the metadata of a
DTD has minimal overhead. By the Rule Filter in Section 3.1, the 2PF and the
2PF-NFA use fewer ACRs than the QFilter. By the PPS as shown in Figure 1(b),
the SQ-Filter and the SQ-NFA can rewrite queries with the ”*” wildcard and the
”//” axis faster than the QFilter. The result is shown in Figure 9(b). Each process-
ing time includes the construction time as shown in Figure 9(a). From this, we can
also see that the 2PF and the 2PF-NFA can better degrade the processing time
than the QFilter can.

(a)

63 63

78

0

10

20

30

40

50

60

70

80

90

2PF-NFA 2PF QFilter
Kinds of Filter Systems

C
on

st
ru

ct
io

n
T

im
e

(m
se

c)

(b)

94 115

188

94 115

188

282
243220

295258
235

500

406
359

281
187

156

0

100

200

300

400

500

600

30 50 100 200 300 500
Number of Xpath Queries

pr
oc

es
si

ng
 ti

m
e(

m
se

c)

2PF_NFA

2PF

Qfilter

Fig. 9. (a) The Construction Time of each Filter System, (b) The Processing time of
the security check on XPath queries

6 Conclusion

Our XML access control enforcement mechanism exploits the tree properties en-
coded in the PRE/POST plane to eliminate unnecessary access control rules for a
user query, and to reject unauthorized queries ahead of rewriting. In addition, we
exploits the simple hash tree of a DTD to find an actual node of a ”*” node and
a parent node of a node with the descendant-or-self axis (”//”), and to rewrite
an unsafe query into a safe one by receiving help from operations combining the
two sets of node. Our experiments demonstrate the Rule Filter algorithm and the
Query Filter algorithm to be more effective and efficient and show how to modify
an unsafe query into a safe one.

We note that our work is the first to explore this important area of a secure
yet efficient access of XML data using only the necessary access control rules of a

Two Phase Filtering for XML Access Control 129

user in an XML document. It establishes the foundation for correct yet safe query
rewriting from the access control point of view.

In the future, we are going to take into consideration the scalability of our ap-
proach and some optimizations(i.e., value-based predicates optimization and
nested path optimization) of a returned safe query to save query processing cost.
In addition, the techniques proposed in this paper can be applied to any XML
database management system. We are looking forward to applying our work to
any real XML database management system. we are going to plan to progress our
XML access control system combined with some access right models.

Acknowledgements

This work was supported by grant No. (R01-2006-000-10609-0) from the Basic
Research Program of the Korea Science and Engineering Foundation.

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensi-
ble Markup Language (XML) 1.0, World Wide Web Consortium (W3C), 2004.
(http://www.w3.org/TR/REC-xml)

2. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Ro-
bie, and J. Siméon. XPath 2.0, World Wide Web Consortium (W3C), 2005.
(http://www.w3.org/TR/xpath20/)

3. F. Rabitti, E. Bertino, W. Kim and D. Woelk, ”A Model of Authorization for Next-
Generation Data-base Systems”, ACM Transaction on Database Systems, Vol 126,
No 1. March 1991, PP. 88-131.

4. E .Damiani, S.Vimercati, S.Paraboschi, and P.Samarati, ”Securing xml docu-
ment”, Proc. of the 2000 International Conf. on Extending Database Technology
(EDBT2000), Konstan, Germany, March, 2000, pp.121-135.

5. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati, ”XML Access Control
Systems: A Compo-nent-Based Approach”, Proc. IFIP WG11.3 Working Confer-
ence on Database Security, The Nether-lands, 2000. 8.

6. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati, ”Design and Implemen-
tation of Access Control Processor for XML Documents”, Computer Network, 2000.

7. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati, ”A Fine-grained Access
Control System for XML Documents”, ACM Trans. Information and System Sec.,
Vol.5, No.2, May 2002.

8. E. Bertino, S. Castano, E. Ferrari, M. Mesiti, ”Specifying and Enforcing Access Con-
trol Policies for XML Document Sources”, WWW Journal, Baltzer Science Publish-
ers, Vol.3, N.3, 2000.

9. E. Bertino, S. Castano, E. Ferrai, ”Securing XML documents with Author-x”, IEEE
Internet Comput-ing, May.June, pp.21-31, 2001.

10. E. Bertino and E. Ferrari, ”Secure and Selective Dissemination of XML Docu-
ments”, TISSEC, 5(3), pp. 237-260, 2002.

11. E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti, ”Author-X: A Java-
Based System for XML Data Protection”, Proc. IFIP WG11.3 Working Conference
on Database Security, Netherlands, 2002. 8.

130 C. Byun and S. Park

12. A. Gabillon and E. Bruno, ”Regulating Access to XML Documents”, Proc. IFIP
WG11.3 Working Conference on Database Security, 2001.

13. A. Stoica and C. Farkas, ”Secure XML Views”, Proc. IFIP WG11.3 Working Con-
ference on Data-base and Application Security, 2002.

14. T. Grust, ”Accelerating XPath Location Steps”, Proc. of the 21st Int’l ACM SIG-
MOD Conf. on Management of Data, pages 109-120, Madison, Wisconsin, USA,
June 2002.

15. T. Grust, M. van Keulen, and J. Teubner, ”Staircase Join: Teach a Relational DBMS
to Watch its Axis Steps”, Proc. of the 29th VLDB Conference, Berlin, Germany,
September 2003.

16. M. Murata, A. Tozawa, and M. Kudo, ”XML Access Control using Static Analysis”,
ACM CCS, Washington D.C., 2003.

17. Jae-Myeong Jeon, Yon Dohn Chung, Myoung Ho Kim, and Yoon Joon Lee, ”Filter-
ing XPath expres-sions for XML access control”, Computers & Security, 23, pp.591-
605, 2004.

18. B. Luo, D. W. Lee, W. C. Lee, P. Liu, ”Qfilter: Fine-grained Run-Time XML Access
Control via NFA-based Query Rewriting”, Proc. of the Thirteenth ACM Conference
on Information and Knowledge Management 2004 (CIKM’04), November 8, 2004,
Washington, USA.

19. S. De Capitani, S. Marrara, P. Samarati, ”An Access Control Model for Querying
XML Data”, Proc. of the 2005 ACM Workshop on Secure Web Services, pages 36-42,
Nov. 11, 2005, Fairfax, Virginia, USA.

20. S. Mohan, A. Sengupta, Y. Wu, J. Klinginsmith, ”Access Control for XML - A Dy-
namic Query Rewriting Approach”, Proc. of the 31st VLDB Conference, Trondheim,
Norway, 2005.

21. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and
R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI, April
2001.

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 131 – 145, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Hybrid Authorizations and Conflict Resolution

Amir H. Chinaei and Huaxin Zhang

David R. Cheriton School of Computer Science, University of Waterloo,
200 University Ave. W, Waterloo, ON, N2L3G1, Canada

{ahchinaei, h7zhang}@uwaterloo.ca

Abstract. Numerous authorization models have been proposed in recent years.
While some models support either positive or negative authorizations, hybrid
models take advantage of both authorizations simultaneously. However,
resolving authorization conflicts is quite a challenge in such models due to the
existence of sophisticated hierarchies and diversity of types of resolution
strategies. There are works that have addressed conflict resolution for tree-
structured subject hierarchies. Yet, no widespread framework has been
proposed for graph-based structures. A widespread resolution framework ought
to provide several resolution strategies and to support sophisticated structures.
Our attempt is to define such a framework. In particular, our framework
resolves conflicts for subject hierarchies that form directed acyclic graphs. It
also unites major resolution policies in a novel way by which thirty-two
combined strategies are simultaneously expressed. We also provide parametric
algorithms to support the strategies and to justify the framework with our
analysis and experiments.

Keywords: Access Control, Conflict Resolution, Combined Strategies.

1 Introduction

With the fast growth of information systems, many enterprises require efficient and
effective access control mechanisms. In such systems, it is extremely important to
determine if a user (or any subject such as application, process, etc.) who is trying to
access data (or any object such as programs, resources, etc.) is authorized or not.
Proposed access control models deal in various ways with such a problem. Some
models based on a closed (or open) world assumption support positive (or negative)
authorizations only [6, 11]. Some other models, hybrid models, support both positive
and negative authorizations [2, 7, 8].

On the other hand, access control data is potentially quite large (the product of the
number of subjects and the number of objects), yet sparse. Researchers have exploited
the existing hierarchy among subjects, where users belong to one or more groups and
groups can contain other groups as members, to improve the required space by storing
raw access controls (explicit authorizations) only, and propagating explicit
authorizations recursively from groups to members to derive the rest of the
authorizations. For example, the user hierarchy of UNIX can be exploited to define an
explicit mode for a group to access a file, and then members of that group are
implicitly authorized to access the file.

132 A.H. Chinaei and H. Zhang

Defining a hybrid model that exploits the subject hierarchy to derive implicit
authorizations from explicit ones may cause conflicts, for example if a user is in two
groups, one of which is authorized to access the data and the other which has been
assigned negative authorization. An authorization conflict is defined as either no
authorization or both positive and negative authorizations for a given subject. Such
models need a conflict resolution component to decide whether to grant access to such
a subject. Yet, none of the existing models has proposed a resolution component that
simultaneously supports a variety of policies for graph-based nesting structures. We
should emphasize that the conflict resolution problem is quite a challenge in graph-
based structures because a node may have multiple parents.

In this work, we propose a conflict resolution framework for hybrid authorization
models in which the subject hierarchy is an arbitrary directed acyclic graph. Our
framework provides a suite of conflict resolution models that are of interest in a
variety of different applications, from more restricted environments such as military
organizations to relaxed systems such as commercial Web-based information
services. One contribution of this work is the unification of common yet distinct
conflict resolution policies introduced by other researchers. Our framework builds on
four practical conflict resolution policies, and consequently brings together thirty-two
strategies under one umbrella. Therefore, security providers can use our framework
and, by changing a few parameters, design the type of the resolution model demanded
by a particular client. Thus, this work demonstrates preliminary steps of combining
different strategies in a single framework; one can extend our framework to include
additional conflict resolution policies too. We also provide efficient algorithms both
to implement our framework and to demonstrate the similarity of selected strategies.
We assume applications in which there are significantly more objects than subjects,
and there are sufficiently many authorizations that they must be stored on secondary
storage. Our algorithms have small footprints and are based on common data
structures, thus they can be implemented and maintained cost-effectively.

This paper is organized as follows. Section 2 restates major resolving policies
exploited in our framework. Section 3 defines all legitimate conflict resolution models
based on the resolving policies. Section 4 provides details of algorithms applicable to
our most practical model. Section 5 explains how our algorithms can be extended to
cover other models, and our experiment results are shown in Section 6. Section 7
discusses related works and Section 8 summarizes with future research directions.

2 Conflict Resolution Framework

In this section, we outline the four main conflict resolution policies underlying our
framework: preferred authorization, locality/globalization, majority, and default
authorization. As stated in Section 1, these policies are articulated by other
researchers and appear in various real world applications. Here, we restate each policy
briefly and independently of other policies, as well as providing some examples of
their applicability. Then, in Section 3, we explain how legitimate combinations of
these policies lead us to define five conflict resolution models and thirty-two
consequent strategies.

 Hybrid Authorizations and Conflict Resolution 133

Our framework assumes that the subjects for whom authorizations are to be
determined are structured as a directed acyclic graph. Individuals are represented as
leaf nodes; a group of individuals is represented by a node with outgoing edges to
each member of the group; a group of groups is represented by a node with outgoing
edges to each subgroup member of that group In general, a group can have zero or
more subgroups and zero or more individual nodes. However, we do not restrict the
subject hierarchy to form a tree.

A member of a group enjoys all authorizations of that group. Recall from Section 1,
propagating explicit authorizations to derive effective authorizations of the group
members may cause conflicts. Here, we outline popular conflict resolution policies that
we exploit in our framework.

Preferred Authorization Policy. Preferred authorization (either positive or negative)
is determined by the system installer at configuration time. This policy states which
authorization wins when at least one of each exist for a particular subject. Precedence
of negative authorization (known as closed policy) is preferred in more restricted
systems such as military; and, precedence of positive authorization may be preferred
in more open applications such as public information systems.

Locality Policy. This policy states that the most specific authorization takes
precedence. It applies to distributed organizations whose local branches may
recognize an exception to a general rule. For instance, a department in a university
may admit an outstanding applicant although the general admission requirement is not
completely met. Thus, when for a given subject, both positive and negative
authorizations can be derived from different ancestors, the one that is closer to the
subject wins. Note that the distance between two nodes (subjects) in a directed acyclic
graph is measured by computing the shortest directed path. The locality policy is not
deterministic since no authorization wins when the distances are equal.

Globalization Policy. In contrast to the locality policy, globalization states that the
most general authorization takes precedence. One application of this policy is in
distributed organizations whose headquarters makes the final decision on a pre-
approved task by a local office. For instance, a supreme court may override the
appealed decision. When, for a given subject, both positive and negative
authorizations can be derived from different ancestors, the one that is farther from the
subject wins. Similar to the locality policy, the distance between two nodes is
measured by computing the shortest path, and globalization is not deterministic since
no authorization may win.

Majority Policy. This policy states that the conflict can be resolved based on votes,
and the authorization that has the majority wins. The application of this policy is
where several parties have different opinions of giving or not giving the authorization
to a particular member; then, the decision is made by votes. For instance, GATT’s
current members vote to determine if a new application can get into the group. By
applying this policy, the dominant authorization takes precedence. This policy is also
non-deterministic since it can result in a tie.

134 A.H. Chinaei and H. Zhang

Default Authorization Policy. This policy is applied only to root subjects for which
no authorization has been defined. Closed systems, such as in the military, require
negative authorization by default; however, open systems, such as public information
applications, initially allow any subject to enjoy a positive authorization. This policy
is deterministic, but applies to root subjects only.

3 Conflict Resolution Models

Having defined several popular conflict resolution policies, we are able to introduce
five different conflict resolution models namely DLP, DLMP, DP, DMLP, and DMP,
in which D, L, M, and P indicate Default, Locality/globalization, Majority, and
Preferred authorization policies, respectively; see Figure 1. Recall that only the
Preferred authorization policy is deterministic, we guarantee two facts: first, none of
the policies are redundant, and second, there is no conflict after applying the last step.
Moreover, Figure 1 illustrates that the Default and Preferred authorization policies are
always the first and the last applicable policies, respectively, in our framework; the
other two policies, the Locality/globalization policy and the Majority policy, are
optional. Furthermore, since the Default, Locality/globalization, and Preferred
authorization policies can take two modes each, in total, there are thirty-two different
strategies derived from our conflict resolution models. (Paths a, b, and d generate eight
instances each, and paths c and e generate four instances each.) We chose the Default
authorization policy as the first step of our framework since explicit and implicit
authorizations have equal priorities in our model. However, as an alternative, one may
choose the Default authorization policy as the last step in order to give more priority to
explicit authorizations. This will produce another yet very similar set of thirty-two
strategies, which we refrain from discussing in this work due to the space limit.

Figure 2 depicts how the above models resolve different cases of conflicts.
Hierarchies are directed acyclic graphs in which, for simplicity, the direction is
assumed from higher nodes (parents) to lower nodes (children), and dash-dot lines
between two nodes means that their distance is more than one node. In all cases, we
are interested in resolving the authorization of the subject that is at the bottom of the
hierarchy. Moreover, explicit authorizations are shown by regular fonts while derived
authorizations are shown in bold italics. We have labeled nodes with special names to
emphasis the role of each node in the graph; nodes with no label have no role in the
conflict resolution.

In particular, Figure 2(a) illustrates the DLP model in which Locality has the
highest priority. (The Default authorization policy is only applied to root subjects.)
Therefore, regardless of authorizations of other nodes, the effective authorization will
be the same as authorization of L that is the immediate ancestor of the node.
Similarly, Figure 2(a’) illustrates an instance of the DLP model in which globalization
has the highest priority. Therefore, regardless of authorizations of intermediate nodes,
the effective authorization will be the same as authorization of G that is the most
global ancestor of the node. Figure 2(b) (and 2(b’)) illustrates the DLMP model in
which Locality (or globalization) has more priority than Majority. Therefore, we only
look at the most local (global) ancestors, and whichever authorization is in majority
will be assigned to the node. In Figure 2(b’), we assume that distances of three root

 Hybrid Authorizations and Conflict Resolution 135

subjects (-, +, and GM) from the leaf subject are the same. In Figure 2(c), we describe
the case in which neither the locality nor the majority is important. Therefore, in case
of conflict, the preferred authorization (P) will be assigned to the node; this is the DP
model. Figure 2(d) (and 2(d’)) illustrates the DMLP model in which Majority has
more priority than Locality (or globalization). Therefore, in case of a tie on the
majority of conflicting authorizations, the one that is closer to (farther from) the node
will be the winner. Figure 2(e) illustrates the DMP model in which Majority has the
highest priority. Therefore, regardless of the distance of other nodes, the authorization
in majority will be the winner.

a
b

c

d
e

Default

Locality /
Globalization

Majority

Preferred

Majority

Locality /
Globalization

Fig. 1. Access control conflict resolution models

L

L

G

(a)

G

G

L

(a’) (b)
LM

LM

G

+-

GM

GM +-

(b’)

ML

ML

ML

(d)

MG

MG

MG

(d’)

P

+

-

(c)

+ -

M

M

(e)

Fig. 2. Resolving conflicts by applying (a) the DLP model, (a’) the DGP instance of DLP, (b)
the DLMP model, (b’) the DGMP instance of DLMP model, (c) the DP model, (d) the DMLP
model, (d’) the DMGP instance of DMLP, and (e) the DMP model

4 Algorithms for Conflict Resolution in the DLP Model

In this section, we provide algorithms for conflict resolution in the DLP model in
which the most significant authorization takes precedence. The Default and Preferred
authorization policies are set to positive or negative by parameters of the model. The
closed DLP model, in which both Default and Preferred authorizations are negative, is
the most practical resolution model demanded by real world applications. Later in
Section 5, we show how to extend these algorithms for all other models.

Throughout the rest of the discussion, we assume that the subject hierarchy is
stored in a table of <parent, child> edges, and also the authorizations are kept as
<subject, object, authorization-annotation> tuples, denoting that subject has been

136 A.H. Chinaei and H. Zhang

positively (or negatively, according to authorization-annotation) authorized to access
object. We assume the number of objects is overwhelming, and the explicit
authorizations must be stored at secondary storage. Therefore, giving an object o and
a leaf-subject (user) u, the procedure of computing compute u’s accessibility to o
involves loading the explicit authorizations from disk (disk IO) and resolving the
conflicts from the set of explicit authorizations (CPU operation). In the following, we
use “authorization” to denote “explicit authorization” if not otherwise specified. We
list in Table 1 the symbols used throughout the rest of the discussion.

Table 1. Symbols

Symbol Representation
S All subjects
O All objects
Su Subjects that are ancestors of subject u
So Subjects that are authorized with object o
Os Objects that are authorized to subject s
Su,o Ancestors of u that are authorized with object o

We first show two semi-naive algorithms that compute the accessibility from user
u to an object o. Both of them need to load all authorizations from disk having o as its
object attribute, and resolve conflicts within O(|Su|

3) and O(|Su,o|
2 +|So|) time,

respectively. We will then introduce the Dominance algorithm (Section 4.3), which
only need to load partial authorizations from disk, and outperforms both semi-naive
algorithms in CPU time. All three algorithms take space quadratic in the size of the
subject hierarchy.

4.1 Bottom-Up Algorithm

This algorithm first loads all authorizations for So, then it first checking user u's
authorization, and annotating u accordingly (``+''/``-'' or blank, depending if u is
positively/negatively authorized with object o or no authorization is specified). After
that, the annotation of the u is propagated to its parent (if the subject is blank
annotated, it does not propagate to its parents). Then each parent in turn propagates its
annotation to its own parents in the same manner (if that parent is not already
annotated from its child, it tries to load its annotation from the explicit access controls
stored on secondary storage). This process goes on until the annotations on the subject
hierarchy stabilize. At this moment, if none of the ancestors is annotated, and the
Default authorization policy of DLP is positive (or negative), the user may (not)
access the object. If at least one of the ancestors is annotated positively (or
negatively), and none of the other ancestors is annotated negatively (or positively),
the user may (not) access the object. Otherwise, if the Preferred authorization policy
of DLP is positive (or negative), this user may (not) access the object. The pseudo
code is shown in Algorithm I. We have the following theorem on the algorithm’s
correctness. For readability of the proof, and without loss of generality, we assume
both Default and Preferred authorizations are negative:

 Hybrid Authorizations and Conflict Resolution 137

Theorem 1. Bottom-Up algorithm correctly computes the semantics specified by DLP
model. Particularly, this is true regardless what in order the children override their
common parent’s annotation at Line 9.

PROOF (sketch): Both the policy combination and the algorithm compute well-
defined access controls for each <subject, object> pair. Therefore, we only need to
show they agree on the “negative” decisions. If the algorithm returns negative, either
there are no authorization annotations after running the algorithm (Line 13), or there
is at least one negative ancestor (Line 17). For the first situation, no explicit annotated
subjects from the table of explicit authorizations must exist, since the algorithm will
never decrease the number of annotations in the subject hierarchy. Similarly, if there
are no explicit annotated subjects from the table of explicit authorizations, this
algorithm will not generate any new annotated subjects. For the second situation when
there is at least one explicit annotated subject, we observed that the user is not
accessible to the object if and only if there exists at least one negative subject that has
no positive descendants (NNPD for short) as the user’s ancestor. We show that the
algorithm generates at least one negatively annotated subject (NA subject for short) if
and only if there exists a NNPD subject before running the algorithm. For the “only
if” direction, our proof uses induction on the number of NNPD subjects and omitted
here for brevity. For the “if” direction, we show that if every negative subject has
positive descendant(s), the algorithm will not generate a NA subject. Assume there
exist NA subject(s) after running the algorithm. We pick the NA subject that does not
have any other NA children. Apparently, this NA subject gets its negative annotation
from the table of explicit authorizations, and all its descendants are not positively
annotated after running this algorithm. However, this NA subject should have an
explicit positively annotated descendant before running this algorithm according to
our assumption. This positive descendant will not lose its annotation after running this
algorithm (since our algorithm will not decrease the number of annotations), hence a
contradiction. ■

The number of lookups in the explicit authorizations table in the algorithm (the IO
operations) is bounded by O(Su,o). The number of annotation propagations (the
dominant CPU time in this algorithm) is bounded by (1+dout+dout

2+…+dout
l-1), where

dout is the maximum fan-out among the ancestors of user, and l is the length of the
longest path in the sub-hierarchy consisting of these subjects. The above procedure
can be optimized by Lines 10 and 11 to ensure that no subject appears more than once
in the queue (this can be done by using a hash table on the content of the queue). This
optimization is valid since a subject’s previous occurrence in the queue will be
overridden anyway. Thus, the number of enqueue operations is bounded by (Su.l), and
checking if a parent exists in the queue is bounded by (E.l), where E is the number of
edges between all subjects in Su. It is easy to verify that (E.l) is in turn bounded by
Su

3, which is the algorithm’s time complexity. The above algorithm only requires a
queue, a hash table on its content, and a placeholder for the ancestors’ authorizations
on the object. All these data structures grow linearly in Su. We have the following
space requirement:

Proposition 1. Bottom-Up algorithm requires O(Su) space (excluding the edge table
representing the subject hierarchy). Moreover, the subject hierarchy table can be
transitively reduced [1] to save space, while keeping the accuracy of the algorithm.

138 A.H. Chinaei and H. Zhang

With this nice property, the Bottom-Up algorithm is particularly suitable for memory-
constrained computing environments where there are significantly more objects than
subjects, and the explicit authorizations must be stored on secondary storage.

Algorithm I. Bottom-Up algorithm

BOTTOM-UP(u, o)
 ¤ To check if u has access to o

 ¤ default and preferred authorizations have been set by the DLP model
1: Q ← u
2: while Q is not empty do
3: s = dequeue(Q)
4: if s is not annotated
5: then if <s, o, +/-> is in raw AC table
6: then annotate s accordingly
7: for each parent p of s do
8: if s is annotated
9: then put s’s annotation on p
10: if Q already contains p
11: then remove p from Q
12: enqueue(Q, p)
13: if no ancestors of u is annotated
14: then return default
15: if no ancestor of u is annotated by authorization
16: then return authorization
17: return preferred

4.2 PairWise Algorithm

The Bottom-Up algorithm needs to check each ancestor of user even if that ancestor
is not authorized with object. This causes a lot of overhead when the subject hierarchy
is sparsely authorized. Moreover, it is likely that a parent subject gets
enqueued/dequeued multiple times, each time being overridden with an annotation
from one of its children, resulting in a huge amount of overhead. The PairWise
Algorithm overcomes these disadvantages by directly overriding ancestors’
annotations from its descendants. It does so by keeping in memory the ancestor-
descendant relationship of the whole subject hierarchy (i.e., a materialized transitive
closure of the subject hierarchy as a lookup table), which can be shared by subsequent
queries. After loading authorizations on object, the algorithm first picks the ones that
are authorized for the ancestors of the user. This step takes (So) time with the help of
the ancestor-descendant table. If there is no annotated ancestor, the algorithm returns
the Dfault authorization. Otherwise, the algorithm checks if at least one of the
ancestors is annotated positively (or negatively) without any negative (positive)
descendant, and none of the other ancestors is annotated negatively (or positively)
without any positive (negative) descendant, the user may (not) access the object.
Otherwise, the algorithm returns the Preferred authorization.

The correctness of the algorithm is directly derived from the definition of the DLP
model and closed world assumptions. Although the PairWise algorithm loads slightly
more explicit tuples than the Bottom-Up algorithm (Su rather than Su,o), it only needs
to check Ancestor-Descendant relationship between Su,o subjects. Furthermore, in the

 Hybrid Authorizations and Conflict Resolution 139

closed world assumption where both Default and Preferred authorizations are
negative, it may not need to check all pairs of negative and positive subjects before it
returns “non-accessible”; also, one can state a similar argument for the open world
assumption. These are accomplished at the cost of computing the transitive closure of
the subject hierarchy beforehand and caching it in memory. We found from real
applications [16] that transitive closure is moderately large for a hierarchy consisting
of several thousands of subjects.

4.3 Dominance Algorithm

In this section, for the sake of readability, we assume both Default and Preferred
authorizations are negative; one can easily extend the argument and algorithm to
cover the other three cases too. In the closed world assumption, if a user has only one
parent subject, and that parent is negatively authorized for object, we can conclude
that the user may not access the object no matter how its ancestors are authorized.
However, the PairWise algorithm will still compare its negative parent with each
positive ancestor. The dominance algorithm overcomes this disadvantage and further
improves query performances. We first introduce the concept of dominating subjects:

Definition 1. (Dominating Subject): Given a pair of <user, object>, in which user has
two ancestors A and B that are both authorized with object, yet their annotations are
different. Then, A dominates B (w.r.t. user and object) if A is on any path from B to
user; or A is negative, B is positive, and B is not on any path from A to user.

Intuitively, a dominating ancestor will have a “stronger” effect on deciding
accessibility for its descendant. Using such a property, we have the following result:

Lemma 1. If there exists an annotated ancestor X that is not dominated by any other
annotated ancestor w.r.t. user and object, X’s annotation decides accessibility from
user to object.

Therefore, the existence of such a subject immediately tells the accessibility from user
to object. However, sometimes we cannot find such a subject, e.g., where four
annotated subjects dominate one another in a chain (B+ →dominates A- →dominates C+
→dominates D- →dominates B+). Nonetheless, we have the following special property of
negative subjects:

Lemma 2. A negative subject dominates all its successor positive subjects in (any)
reverse topological ordering of the subject hierarchy. It can be dominated only by its
preceding positive subjects.

This lemma suggests that we scan the annotated subjects in a reverse topological
order: for each positive subject encountered, we store it (in P-Set). For each negative
subject encountered, we check if it is ancestor to any subjects in the P-Set. We stop
scanning once we encounter a negative subject that is not an ancestor of (dominated
by) any positive subjects in the P-Set. We call such negative subject a frontier subject.
We only need to look at the subjects before the frontier subject if there exists such a
frontier subject. Moreover, we only need to check the ancestor-descendant
relationship between positive subjects with their successor negative subjects (This also

140 A.H. Chinaei and H. Zhang

requires keeping the transitive closure of the subject hierarchy in memory), reducing half of
the ancestor descendant checks required by the PairWise algorithm. The complete
procedure based on this idea is shown in Algorithm II. Its correctness follows directly
from Lemma 2. Note that the sort operation Algorithm II is not necessary if tuples of
explicit authorizations are clustered on objects and sorted in reverse topological order
of the subjects inside each cluster. By this data layout, we do not even need to load all
tuples of explicit authorizations on the object.

It is clear that Algorithm II can be easily parameterized to support all eight
strategies of the DLP model at once. In next section, we show the similarity of DLP to
other models such as DLMP, as well as to prove the efficiency of our approach by
experiments.

5 Extending the Algorithms to Other Models

Algorithms for the DLP model can be exploited to define corresponding algorithms
for other models illustrated in Figure 1. In particular, in this section, we provide
Algorithm III to implement the Dominance algorithm for the DLMP model in which
the most significant authorization (locality) takes precedence; however, if there are
both positive and negative authorizations with the same locality, the one that is in
majority wins. Similar to Algorithm II, we assume both Default and Preferred
authorization are negative.

Algorithm II. Dominance algorithm for the closed DLP model

DOMINANCE1(user, obj)
 ¤ To check if user has access to obj
 ¤ default and preferred authorizations have been set to negative by the DLP model
1: locate explicit authorizations tuples with object=obj
2: sort them by subject’s reverse-topological order
3: P-Set ← ∅

4: for each tuple <s, o, annotation> in sorted order with best
locality do

5: if s is not ancestor of user
6: then continue
7: if annotation=“-” and none of s’∈P-Set is descendant of s
8: then return non-accessible
9: if annotation is “+”
10: then P-Set ← s
11: if P-Set is not empty
12: then return accessible
13: return non-accessible

Algorithm III is similar to Algorithm II except for the followings: Line 3’
initializes a counter to count number of negative authorizations; Line 8’ increases the
number of negative authorizations; in Line 11’, the algorithm returns “accessible” if
majority of authorizations are positive; otherwise, it returns “non-accessible”.

 Hybrid Authorizations and Conflict Resolution 141

Algorithm III. Dominance algorithm for the closed DLMP model

DOMINANCE2(user, obj)
 ¤ To check if user has access to obj
 ¤ default and preferred authorizations have been set to negative by the DLP model
1: locate tuples of explicit authorizations with object = obj
2: Sort them by subject’s reverse-topological order
3: P-Set ← ∅

3’: negativeCnt =0
4: for each tuple <s, o, annotation> in sorted order with

best locality do
5: if s is not ancestor of user
6: then continue
7: if annotation=“-” and none of s’∈P-Set is descendant of s
8’: then inc(negativeCnt)
9: if annotation is “+”
10: then P-Set ← s
11’: if negativeCnt < |P-Set|
12: then return accessible
13: return non-accessible

Having defined algorithms for models DLP and DLMP, and recall from Figure 1
the similarity of these models to the DMP and DMLP models, respectively, interested
readers can easily define corresponding algorithms for the rest of our framework.
(Note that the DP model is a trivial case of other models.) Using the parameterized
algorithms, security providers can define the type of the resolution model demanded
by a particular client.

6 Experiments

Our experiments are conducted using JDK1.5 on a Sun workstation (sun4u, SunOS
5.8), with 512 Megabytes memory. We have compared Algorithms Bottom-Up,
PairWise, and Dominance1, using the subject hierarchy of a practical system called
LiveLink with random authorizations on 2000 objects. We have applied varying
authorization ratio (the percentage of subjects explicitly authorized to access an
object) of 0.1% (sparse), 0.7% (medium), and 5% (dense), and accessibility ratio
(percentage of positive authorizations) from 10% to 90%. The explicit authorizations
are stored on disk using BerkeleyDB (available at http://www.sleepycat.com). We
store two copies for the explicit authorization tuples: one copy is clustered on the
object attributes and secondarily sorted on subjects (according to reverse topological
order of the subject hierarchy); the other copy is clustered on subjects and secondarily
sorted on the objects. Each copy has an index on its clustering attribute.

We have run ten queries for each authorization ratio and accessibility ratio
configuration. Each query corresponds to a random <object, leaf-subject> pair.
Figures 3(a), 3(b), and 3(c) show the wall clock times for the ten queries using our
three algorithms. The Dominance1 algorithm outperforms the other two under all
authorization/accessibility ratios. The superiority of the Dominance1 algorithm is
most significant when the authorization ratio is high (i.e., more authorized ancestors
for each user for a given object). When the authorization ratio decreases, the gap

142 A.H. Chinaei and H. Zhang

between Dominance1 and PairWise becomes smaller. The reason is that when
authorization is sparse, the number of authorized subjects per object is low, and
around 30% of the users (leaf-subjects) do not have a single authorized ancestor for
the object. In this case all three algorithms instantly returned non-accessible. For
users with a few authorized ancestors, a single disk page read will load all authorized
subjects for the object, therefore the I/O cost between Dominance1 and PairWise are
the same. Figure 3(d) compares disk reads between Dominance1 and the two other
algorithms (Bottom-Up and PairWise algorithms always load the same amount of
data). The y-axis is the ratio of disk reads of Dominance1 algorithm to the ones of the
PairWise algorithm (remember that the PairWise and Bottom-Up algorithms have the
same amount of disk reads). We noticed that even when the I/O difference is under
3% between Dominance1 and PairWise for sparse authorization (0.1%), the
Dominance1 algorithm still outperforms PairWise by around 10% from CPU time
saving. The accessibility ratio does not affect the Bottom-Up algorithm, but it affects
both Dominance1 and PairWise algorithms, since these two algorithms both rely on
raw negatively authorized subjects to reach a non-accessible decision early-on. We
conclude that Dominance1 algorithm is the best choice if we can sort the access
control data on disk a priori. If the data is not sorted, PairWise algorithm is the right
choice when the accessibility ratio is low. Bottom-Up algorithm suits the best when
we do not have memory to hold the transitive closure of subject hierarchy.

(a) 5% authorization ratio (b) 0.7% authorization ratio

(c) 0.1% authorization ratio (d) Disk I/O

Fig. 3. Performance of Dominance, PairWise, and Bottom-Up algorithms

 Hybrid Authorizations and Conflict Resolution 143

7 Related Work

Bertino et al. [2] propose an authorization mechanism for relational models in which
conflicts are mainly resolved based on the negative takes precedence rule, and the
concept of weak and strong authorizations which is equivalent to one strategy instance
of our DLP resolution by which eight different strategies are covered. Jajodia et al [8]
use Datalog programs to model access controls of hybrid authorizations with a wide
range of conflict prevention/resolving policies. Their modeling stores the raw
authorizations and computes the effective authorizations for a <subject, object> pair in
time linear to the size of the Datalog program (rules and ground facts). However, their
ground facts include the transitive closure of the subject hierarchy (otherwise it is not
linear time to infer ancestor descendant relationship between subjects, which is
required for conflict resolution) plus all the raw authorizations. Taking into account the
gigantic size of the ground facts, even a linear time solution is not efficient (e.g.,
consider searching a tuple using a sequential scan on the table). One approach to
efficiently compute access control queries is by materializing (memorization of) the
entire effective access control, as suggested by Jajodia et al. [8]. The accessibility
check for a given <subject, object> pair is thus equivalent to checking the materialized
effective (implicit) access control table (constant time). However, considering the
formidable size of the effective access controls, which is the product of the number of
objects and the number of subjects, this approach is not practical for very large
systems. Moreover, the materialized effective access controls are not self-maintainable
with respect to updating the explicit authorizations, and even a slight modification to
the raw access controls (explicit authorizations) would possibly result in a drastic
modification to the effective ones, making the maintenance task very expensive.

Some existing solutions on computing effective authorizations typically assume
that the raw authorizations are propagated on tree-structured data [4, 13, 15, 16].
Propagation on a tree path makes conflict resolution trivial since there is only one
path between all ancestors to a leaf. Moreover, the number of ancestors for a leaf is
bounded by the depth of the tree, which is usually a small value in real world data
[12]. However, when the raw access controls are propagated on a DAG subject
hierarchy, a leaf subject would potentially have all subjects as its ancestors, and each
ancestor may have several paths reaching to that leaf. Therefore, none of the
approaches for tree-structured data are appropriate in this setting. We must emphasize
that real world subject hierarchies are mostly DAG-structured rather than trees. E.g.,
the UNIX file system allows a user to be member of several groups at the same time;
in role-based access control systems, a user can be assigned several roles while each
role can be assigned to multiple parent roles [5].

Cuppens et al [3] propose a conflict resolution model for documents containing
sensitive information. They solve the problem of downgrading the classification of
these documents when their contents become obsolete. Their approach basically
suggests a strict order of preference between rules. They do not exploit any hierarchy
among subjects or objects other than the object classification. Koch et al [10] provide
a systematic graph-based conflict detection and resolution based on two properties
namely, rule reduction and rule expansion. Using these properties, they transform a
conflicting graph into a conflict-free one. However, their approach is applicable only

144 A.H. Chinaei and H. Zhang

to the rules that are related to one another, whereas our approach addresses
independent policies. Finally, our approach is also different than the combining
algorithms in XACML [13], in which the resolution model relies on the data
hierarchy rather than the subject hierarchy.

8 Conclusions and Future Works

In this work, we have designed a conflict resolution framework for hybrid
authorizations. Our framework includes a variety of resolution models, including
DLP, DLMP, DP, DMLP, and DMP, to support both closed an open systems as well
as both restricted and relaxed applications. Using these models, security providers can
choose, among thirty-two different instances yet extensible, the type of the resolution
strategy demanded by a particular client. We have also presented a suite of algorithms
for resolving access controls for subject hierarchies of form directed acyclic graph
under DLP and DLMP rules. In addition to providing the correctness proof of our
algorithms, we have experimented with different sets of data layouts. Our pilot
experiments show the superior performance of the Dominance algorithm.

We propose several directions for continuing this research. First, our algorithms
serve as the building blocks towards a flexible yet efficient hierarchical multi-user
access control system. It would be interesting to extend the framework by adding
more conflict resolving rules to our model. In particular, separation of duties and
conflict of interest [9, 14] are among challenging properties that significantly affect
the conflict resolution problem. Another possible direction to extend this framework
to support more sophisticated subject hierarchies, such as graphs, as well as resolving
conflicts in mixed hierarchies of subjects and objects.

Acknowledgements

We gratefully acknowledge the Natural Science and Engineering Research Council of
Canada, Communications and Information Technology Ontario, Open Text
Corporation, and the University of Waterloo for their financial support. We would
also like to express sincere thanks to Professors Frank Wm. Tompa and Kenneth
Salem for their advices.

References

1. A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed Graph.
SIAM Journal on Computing, vol. 1, pp. 131–137, 1972.

2. E. Bertino, S. Jajodia, and P. Samarati. A Flexible Authorization for Relational Data
Management Systems. ACM Transactions on Information Systems, vol. 17, no. 2, pp.
101–140, April 1999.

3. F. Cuppens, L. Cholvy, C. Saurel, and J. Carrere. Merging Security Policies: Analysis of a
Practical Example. In Proceedings of the 11th Computer Security Foundations Workshop,
pp. 123–136, 1998.

 Hybrid Authorizations and Conflict Resolution 145

4. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A Fine-Grained
Access Control System for XML Documents. ACM Transaction on Information and
System Security, vol. 5, no. 2, pp. 169–202, May 2002.

5. D. F. Ferraiolo, and D. R. Kuhn. Role Based Access Control. In Proceeding of the 15th
NIST-NCST National Computer Security Conference, pp. 554–563, October 1992.

6. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.
Communications of ACM, vol. 19, no. 8, pp. 461–471, August 1976.

7. J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Side-
botham, and M. J. West. Scale and Performance in a Distributed File System. ACM
Transactions on Computer Systems, vol. 6, no. 1, pp. 51–81, 1988.

8. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible Support for
Multiple Access Control Policies. ACM Transactions on Database Systems, vol. 26, no. 2,
pp. 214–260, 2001.

9. J. Joshi, E. Bertino, B. Sahfiq, and A. Ghafoor. Dependencies and Separation of Duty
Constraints in GTRBAC. In Proceeding of the 8th ACM Symposium on Access Control
Models and Technologies, pp. 51–64, June 2003.

10. M. Koch, L. V. Mancini, F. Parisi-Presicce, Conflict Detection and Resolution in Access
Control Specifications, In Proceedings of the 5th International Conference on Foundations
of Software Science and Computation Structures, pp. 223–237, 2002.

11. B. W. Lampson. Protection. In Proceedings of the 5th Annual Princeton Conference on
Information Sciences and Systems, pp. 437–443, March 1971.

12. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: A First Study. In Proceedings of the
International World Wide Web Conference, pp. 500–510, 2003.

13. T. Moses. eXtensible Access Control Markup Language Version 2.0, Technical Report,
OASIS, February 2005.

14. M. Nyanchama, and S. L. Osborn. The Role Graph Model and Conflict of Interest. ACM
Transaction on Information Systems Security, vol. 2, no. 1, pp. 3–33, 1999.

15. T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V. Jagadish. Compressed Accessibility
Map: Efficient Access Control for XML. In Proceeding of the 28th International
Conference on Very Large Data Bases, pp. 478–489, 2002.

16. H. Zhang, N. Zhang, K. Salem, and D. Zhuo. Compact Access Control Labeling for
Efficient Secure XML Query Evaluation. In Proceedings of the 2nd International
Workshop on XML Schema and Data Management, April 2005.

Analysis of a Database and Index Encryption
Scheme – Problems and Fixes

Ulrich Kühn

Deutsche Telekom Laboratories
Technische Universität Berlin, Germany

ukuehn@acm.org

Abstract. The database encryption scheme of Elovici et al. [3] uses
encryption of individual cells in a data base table to preserve the database
structure. A suitable index encryption scheme is also given for prevention
of information leakage from the index. An updated and improved method
for index encryption is described by the same authors in [12].

The security goals of these schemes are privacy and authenticity of
the cell data at the given position in the table. Furthermore, the en-
crypted index data shall not have any correlation to the table column
data to avoid information leakage. The index shall be protected against
unauthorised modification of the index data.

In the present paper we cryptanalyse these schemes with respect to
possible instantiations and give counter-examples, i.e. give instantiations
of these schemes with usual components that are insecure. These counter-
examples highlight that the schemes involve assumptions about crypto-
graphic primitives that do no necessarily hold.

Furthermore, we show how to modify the schemes so that the original
basic ideas of [3] and [12] lead to secure database and index encryption.

Keywords: Database Security, Applied Cryptography, Cryptanalysis.

1 Introduction

When a database holds sensitive information appropriate protection measures
must be taken. Access control schemes are put in place to protect the database
contents from unauthorised access. However, this still leaves the data vulnerable
to a database administrator or other person with high privileges, or even a
machine administrator without database privileges. Furthermore, anyone with
physical access to the machine or storage system holding the actual data can
copy or modify it.

Therefore, some threat scenarios require to protect the actual database con-
tents with regard to privacy as well as authenticity. This can be achieved by a
database encryption scheme. Here typical security goals are protection of data
privacy and data authenticity against adversaries that have access to the data-
base on a low enough level to bypass the access control scheme.

A scheme to achieve these goals is presented by Elovici et al. [3], which works
on a granularity of individual table cells. Additionally they provide an encryp-
tion scheme for index tables that allows separation of structural data (which

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 146–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of a Database and Index Encryption Scheme 147

is left unencrypted) from database contents. Their encryption schemes preserve
the structure of the database, i.e. change only the contents of table cells. Fur-
thermore, they are flexible with respect to which columns to protect or leave in
clear. An improved version of the index encryption scheme is presented by the
same authors in [12].

The security goals of these schemes are privacy and authenticity of the cell
data at the given position in the table. Furthermore, the encrypted index data
shall not have any correlation to the table column data to avoid information
leakage. The index shall also be protected against unauthorised modification of
the index data.

Contribution. In this paper we analyse this database and index encryption
schemes of [3] and [12] with respect to their security goals. We show that pos-
sible instantiations of these schemes with usual schemes like encryption in CBC
mode are not secure. By giving counter-examples we show that the underlying
assumptions made on the cryptographic functions are not necessarily met by
standard cryptographic methods.

Based on an analysis of the requirements of the basic ideas of [3] and [12] we
propose fixes to the schemes that achieve the security goals. We show that au-
thenticated encryption with associated data leads to secure schemes where proofs
of security carry over to the database and index encryption case. We examine
the storage and performance overhead necessary for these renewed database en-
cryption schemes.

2 Description of the Database and Index Encryption
Scheme

In [3] two encryption schemes are presented that we will describe briefly below:
One for encrypting table cell data and a second for encrypting parts of an index.
The index encryption scheme allows searches with knowledge of the key only,
but preserves the structure of the index. Furthermore, in [12] an updated and
improved index encryption scheme is presented which we will also briefly describe
in this section.

Notation. Let x||y denote the concatenation of the bit strings x and y. Let x⊕y
denote the bitwise exclusive-or operation of the bit strings x and y; if x and y
have different lengths, the shorter string is extended by implicitly appending
0-bits.

2.1 Threat Model

The threat model of [3] and [12] assumes that the database storage is not trusted.
Therefore encryption and authentication is applied. Furthermore, the server the
DBMS runs on is temporarily trusted: During a secure session the encryption
keys are handed over to the DBMS server, and securely removed at the end of
the session. See [12] for a detailed description, including methods to implement

148 U. Kühn

discretionary access control. Thus the schemes assume a partially-trusted server
and untrusted storage.

This way the server is in a position where it can efficiently execute queries on
the database using the encrypted indexes. No data is returned that does not be-
long to the answer to the query and has to be sorted out by the querying client.
It is helpful here that the database and index encryption schemes presented in
[3] and [12] preserve the structure of the database resp. index. A rogue stor-
age or machine administrator however cannot obtain the plaintexts of database
contents, as long as they are prohibited from compromising the server software.

Remark 1. Note that handing over the key to the DBMS server might be avoided
at the cost of additional running time and logarithmic many additional commu-
nication rounds between client and server. When searching in the index tree
structure the node data is retrieved on the server and sent to the client. The
client decrypts the index data and returns a decision (left/right in the case of a
binary tree) to the server, until the leaf level of the index tree is reached. Such
a scheme might be worthwhile if the index uses d-nary B+-trees with d � 2.
Instead of the client, a trusted component in the server or in an intermediate
system can also do this query-support work. However, moving the cryptographic
operations away from the DBMS server severely changes the threat and trust
model of the schemes.

2.2 Table Cell Encryption Scheme

The encryption scheme encrypts each attribute value V in a table’s cell individ-
ually, but includes a cell address in the plaintext. The cell address is a triple
(t, r, c) of table id t, row r, and column c. The scheme employs a function μ
to convert the cell address triple before inclusion in the plaintext. Then the
encryption scheme is either

C = Ek(V ⊕ μ(t, r, c)), or (1)
C = Ek(V ||μ(t, r, c)) (2)

where Ek(.) denotes symmetric encryption under key k. Here E is a fully deter-
ministic encryption function, i.e.

∀k : (x = y) ⇒ (Ek(x) = Ek(y)) . (3)

As examples DES[8] and AES[9] are mentioned. The form (2) is used whenever
there is not enough redundancy in the allowed type of data for the specific
column, however no specific threshold is given in [3]. It is suggested that the
function μ is instantiated with a cryptographic hashfunction to obtain collision
resistance.

Notation. We will call the scheme (1) the XOR-Scheme, the scheme (2) the
Append-Scheme.

Analysis of a Database and Index Encryption Scheme 149

The schemes shall achieve (among others) the following security goals (see [3,
Sect. 2]:

– Protection against pattern matching,
– Prevention of substituting encrypted values by values from other cells, and
– Data and position authentication, such that unauthorised modification or

relocation of data should be noticed at decryption time.

2.3 Index Encryption Scheme of [3]

The index encryption scheme proposed in [3] encrypts the indexing key, but not
the structural part of the index. That way managing the structure of the index
shall still be possible.

The description of the index encryption scheme starts from a table represen-
tation of a B+-tree. The table rows contain structural elements and index keys.
The structural elements are left and right child nodes for inner nodes, and the
right sibling for leaf nodes. The index keys are data elements of the indexed
table column.

In [3] the index keys are the only encrypted parts. This works as follows. Given
a row rI in the index containing data V held in row r of the indexed table, it is
stored in encrypted form as

Ek(V ||rI) for inner nodes, resp. (4)
Ek((V, r)||rI) for leaf nodes. (5)

The security goals of this index encryption scheme are (see [3, Sect. 4]):

– No information about the plaintext value can be learned from the index.

Furthermore, index integrity is a goal of the encryption scheme of (4), (5).

2.4 Improved Index Encryption Scheme of [12]

The scheme of [12] is an improved version of the index encryption scheme de-
scribed above. To describe it we need some notation: Let Vtrc denote the data
entry in the indexed table at the cell given by address (t, r, c). Let further

– RefI denote internal references between index entries, e.g. for building a
B+-tree,

– RefT denote references to the indexed table, i.e. the table row the data entry
comes from,

– RefS denote self-references, e.g. the address of the entry in question, like rI
for the index encryption scheme described above in Sect. 2.3.

Furthermore, different cryptographic functions are used, i.e. a nondeterministic
encryption function Ẽ, another encryption function E′ which is described as
“ordinary”, which obviously shall mean “deterministic”, and a message authen-
tication scheme MAC.

150 U. Kühn

The nondeterministic encryption function Ẽ is suggested to be implemented
based on a deterministic encryption function E, with a key k, as

Ẽk(x) := Ek(x||a), (6)

where a is a fixed-size random number.
Based on the assumption that a standard index entry consists of a triple

(Vtrc, RefI, RefT), the encrypted index entry is proposed, given key k, as

(Ẽk(Vtrc), RefI, E′
k(RefT), MACk(Vtrc||RefI||RefT||RefS)). (7)

The security goals of this scheme are

– Prevention of information leakage arising from linkage leakage, i.e. correla-
tion between entries in the index and the indexed table.

– Protection against unauthorised modification: Replacing ciphertexts or parts
of ciphertexts by generated, copied, or old values.1

3 Attacking the Schemes

We will show here that all schemes described above fail to achieve the security
goals when instantiated with usual efficient cryptographic components. By giving
concrete counter-examples we show that the schemes involve some subtle implicit
assumptions about the cryptographic schemes that are not necessarily met.

Instantiation of Ek(.). For illustration of the problems with the cell encryp-
tion scheme it should be noted that standard block ciphers like AES[9] operate
on a fixed number of bits at one time, i.e. 128 bits or 16 octets for AES. Longer
data requires multiple applications of the block cipher, a mode of operation. Sev-
eral such modes are defined [2]. We chose AESwith the widely-used CBC mode
of operation to instantiate E.2 This mode requires an initialisation vector IV.
In [3] determinism of E is explicitly assumed, see (3). Thus, to construct our
counter-examples, we use a constant IV = (0, . . . , 0) for all encryptions. Note
that this is not secure, see the pattern matching attack, but we argue that the
description of the encryption function in [3] and [12] could easily lead to such an
implementation3(a purely deterministic mode like ECB which does not need an
1 In [12] pseudo-code is given to illustrate how queries are evaluated on the encrypted

index. However, this code contains two bugs: While it checks the integrity of the
data in inner nodes during the tree-walk, it fails to do so on the leaf-level, both for
finding the right starting place for the answer, and for generating the answer from
the list of right-sibling references. Both bugs can be easily fixed.

2 Stream ciphers and streaming modes for blockciphers like OFB or counter mode
would be insecure due to the reuse of the same key-stream resulting from the assumed
determinism (3). This would be easily breakable if the attribute in question contain
some redundancy.

3 Note that the encryption scheme from [4] uses a zero IV for CBC mode. This has
similar consequences for the security as in the pattern matching attacks shown here.

Analysis of a Database and Index Encryption Scheme 151

IV would be even worse). Input data with a length not being a multiple of the
block size is padded according to some padding scheme, e.g. PKCS#5 [11].

By ENCk(x) we will denote the encryption of a single block x under key k,
by DECk(y) the decryption, e.g. a single application of AESen- resp. decryption.
We instantiate Ek(.) as Ek(x) = CBC[ENCk, IV](x): Given a padded plaintext
P with blocks P = P1||P2|| . . . ||Ps, its encryption C = C1||C2|| . . . ||Cs = Ek(P)
is computed as

C1 = ENCk(P1 ⊕ IV) = ENCk(P1) (8)
Ci = ENCk(Pi ⊕ Ci−1), 1 ≤ i ≤ s. (9)

3.1 Attacks on the Cell Encryption Scheme

Here we present attacks on the cell encryption schemes. We assume here that the
basic encryption function Ek(.) is implemented according to the general method
described above.

Pattern Matching Attack on the Append-Scheme. Assume that a table
column contains attributes comprised of strings that are possibly much longer
than the blocksize of the cipher (e.g. 16 octets for AES). Assume further that
two cells at t, r, c and t, r′, c store attributes V, V ′ that share a common prefix
of –for illustration– two blocks, i.e. decomposed into blocks

V = M1||M2||M3|| . . . ||Mp (10)
V ′ = M1||M2||M ′

3|| . . . ||M ′
q. (11)

Encrypting these values under the same key with the scheme defined above will
result in

C = Ek(V ||μ(t, r, c)) = C1||C2||C3|| . . . (12)
C′ = Ek(V ′||μ(t, r′, c)) = C1||C2||C′

3|| (13)

Thus, common prefixes in the plaintext (longer than one block) will result in
common prefixes in the ciphertext, clearly violating the goal of protection against
pattern matching.

Attack on Authentication of the Append-Scheme. Assume a cell with
address t, r, c that contains the encrypted attribute

C = C1|| . . . ||Cs−1||Cs||Cs+1|| . . . ||Cs+u. (14)

Let P denote the corresponding plaintext (unknown to any adversary) with

P = P1|| . . . ||Ps−1||Ps||Ps+1|| . . . ||Ps+u = V ||μ(t, r, c). (15)

where we know from public information about the output length of μ according
to (2) that μ(t, r, c) is contained in the address checksum blocks Ps+1, . . . , Ps+u,
whereas P1, . . . , Ps do not contain any bits of μ(t, r, c).

152 U. Kühn

For the attack we replace C by a modified ciphertext

C′ = C′
1|| . . . ||C′

s−1||Cs||Cs+1|| . . . ||Cs+u, (16)

where for at least one 1 ≤ i ≤ s− 1 we have C′
i �= Ci. Note that in C′ the blocks

s, . . . , s + u are the same as in C. By decrypting C′ we obtain P ′

P ′ = P ′
1|| . . . ||P ′

s−1||P ′
s||Ps+1|| . . . ||Ps+u. (17)

Note that the plaintext of all checksum blocks s + 1, . . . , s + u is the same as for
the original plaintext, because Pj = DECk(Cj)⊕Cj−1 for s+1 ≤ j ≤ s+u, and
blocks s, . . . , s+u are the same in C and C′.4 Therefore μ(t, r, c) is found intact
in the plaintext P ′, so P ′ is accepted as valid. We have produced an existential
forgery, thus breaking the authentication of data and cell address.

Furthermore, an attack using partial ciphertext substitution is possible which
changes blocks C1, . . . , Cs−1, i.e. blocks that precede the block before the address
checksum blocks, However, in this case the plaintext block following the last
replaced block is destroyed during decryption, as it cannot be controlled by an
adversary.

Substitution Attack on the XOR-Scheme. We follow the suggestion in
[3, Sect. 6.2] and implement μ(.) by

μ(t, r, c) = h(t||r||c)

with a cryptographic hash function h, if necessary shortened to the block size
of the blockcipher underlying Ek(.). Assume that this block size is b octets.
Further assume that an attribute V consists of b characters chosen from the
ASCII character set and represented as a single octet each, i.e. for each character
x we have 0 ≤ x ≤ 127. Here V fits into a single block.

We show here that the data can be moved to certain other cells without
detection. When moving C = Ek(V ⊕ μ(t, r, c)) to another cell with address
t′, r′, c′, we would obtain V ′ = Dk(C) ⊕ μ(t′, r′, c′) after decryption. In order to
be accepted as valid all octets in V ′ must be in the range given above. This gives
a condition on the most significant bit every octet, so in total a b-bit condition.

An adversary can try to impose this condition on the result of μ, so that only
certain cell addresses are possible. Here all those t′, r′, c′ are possible where in
μ(t, r, c) ⊕μ(t′, r′, c′) the high bits of every octet is zero. The adversary can find
such cell addresses offline. After about 2b trials such a partial-second-preimage
(where only the high bits are of concern) can be expected to be found. Further-
more, partial collision attacks are possible, and yield a result with about 2 · 2b/2

work on average. Such a partial collision indicates cells where the contents can
be moved from one cell to the other.

To illustrate this in practice we ran an experiment with a blocksize of 16
octets (suitable for AES) and SHA1 for h (truncated to the first 128 bits).

4 This is well-known error propagation of CBC-decryption, where a changed ciphertext
block affects only its own and the next block’s decryption.

Analysis of a Database and Index Encryption Scheme 153

Among 1024 trial addresses (same t and c, running r) we found 6 collisions,
i.e. (truncated) hashes where for all octets the corresponding high bits were
the same. Exchanging the ciphertexts of those cells yields, after decryption, an
allowed output which is valid at a different position than the original one.

3.2 Attacks on the Index Encryption Scheme in [3]

Here we show that the index encryption scheme does not achieve its security
goals when instantiated with the encryption function described above.

Pattern Matching Attack. Assume again that the table column for which
an index is held according to the scheme described in Sect. 2.3 contains long
strings of characters, typically much longer than the block size of the employed
blockcipher. Further assume that the Append-Scheme of (2) is used for the
encryption of cell data.

The observation used in Sect. 3.1 for the pattern matching attack will again
be used here. Let V be an attribute in the indexed column with address t, r, c
that shows up as a key in the index in row rI. Then the input to the encryption
function for the cell encryption will be

PT = PT
1 || . . . ||PT

p = V ||μ(t, r, c),

and in the index table either

P I = P I
1 || . . . ||P I

q =

{
V ||rI for an inner node, or
(V, r)||rI for a leaf,

all including suitable padding to the block size of the cipher.
In case of an inner node PT and P I have a common prefix that, depending on

V ’s length, can span several blocks. Thus their encryption will contain a common
prefix. Depending on the representation of P I for a leaf this property might also
extend to the leafs of the tree. As a consequence an adversary succeeds with a
partial pattern matching between the index tree and the table data, allowing
to derive information on ordering between table elements or classes of table
elements.

Attacking Index Integrity. A partial substitution of key entries in the
index table might be possible along the same lines as explained in Sect. 3.1 in
the attack on the data integrity of the append-scheme. If an adversary can use
this successfully depends on the specific implementation and the type of data
in the table. However, if an adversary can successfully mount such an attack,
observation of access patterns as reaction to adaptively triggered queries can
leak information on table data.

3.3 Attacking the Improved Index Encryption Scheme in [12]

Here we show that, although a non-deterministic encryption function is em-
ployed, pattern matching attacks are still possible. Further we describe potential
problems with the authentication of the scheme.

154 U. Kühn

Pattern Matching Attack. This attack works similar to the one given in
the last section. We assume here again that the indexed column in the table
contains (possibly) long strings of data that span more than one block of the
underlying blockcipher (16 octets for AES), and, without loss of generality, that
the fixed-size random numbers a according to (7) fit into one block, e.g. have
bitlengths |a| < 128. We also assume that for cell encryption the append-method
(2) is used. Let Vt,r,c be a cell entry that spans several blocks. Then the index
ciphertext is computed by Ek(Vt,r,c||a). Decomposing the plaintext input to E
into blocks we get

P I = Vt,r,c||a = P I
1 || . . . ||P I

s || . . . ||P I
s+v , (18)

where s is such that P I
s is the last block not containing parts of a; because of

the bitlength of a we have 1 ≤ v ≤ 2.
On the other hand, the corresponding cell ciphertext is Ek(Vt,r,c||μ(t, r, c)).

Also decomposing the input to E into blocks we have

PT = Vt,r,c||μ(t, r, c) = PT
1 || . . . ||PT

s || . . . ||PT
s+u, (19)

where again the block PT
s does not contain parts of μ(t, r, c), and u is determined

by the length of μ’s output.
Then we know that P I

1 = PT
1 , . . . , P I

s = PT
s , and thus the corresponding

ciphertexts resulting from Ek(.) are also the same. This allows partial pattern
matching attack resp. partial correlation of index and table values. In fact, ap-
pending randomness to the plaintext does not prevent this.

Unauthorised Modification. We notice that in the scheme of (7) the mes-
sage authentication covers the plaintext plus some additional data, so that we
have a variant of the encrypt-and-MAC method in the sense of [6]. This has been
shown to not be necessarily secure.

We further notice that in (7) the same key k is used for encryption as well as
for the MAC algorithm. This may lead to insecure interaction of the encryption
and MAC algorithms. The following example is pathological, but shows that the
original specification in [12] leaves too much room form interpretation.

Given our choice for the encryption function E above (CBC mode with zero
IV), instantiating the MAC with a CBC-MAC variant like OMAC [5] – that
itself is secure for variable-length inputs – results in a loss of authenticity. The
essential point about CBC-MAC is that it works basically the same way as CBC
mode encryption (see the beginning of Sect. 3), but the intermediate ciphertexts
are not made public, only the final one is used as authentication tag. The details
where OMAC deviates from this rough description are irrelevant for the attack.

The attack works as follows: Let Vtrc be the cell data in the index node, and
P = Vtrc||a = P1|| . . . ||Ps|| . . . ||Ps+q the input to Ek(.) in the first component in
(7). Here we assume that P1, . . . , Ps do not contain any bits of a, and that s > 2.
Let the corresponding ciphertext be C = C1|| . . . ||Cs|| . . . ||Cs+q . In the compu-
tation of MACk(Vtrc|| . . .) in (7) we have the same plaintext inputs P1, . . . , Ps

followed by additional blocks. Thus, during the computation of the CBC-MAC

Analysis of a Database and Index Encryption Scheme 155

of these plaintext blocks the first s intermediate ciphertext block will again be
C1, . . . , Cs due to the same key being used.

Now replacing the ciphertext in the first component in (7) by

C′ = C′
1|| . . . ||C′

s−1||Cs|| . . . ||Cs+q (20)

results in a decryption P ′ = P ′
1|| . . . ||P ′

s−1||P ′
s||Ps+1|| . . . ||Ps+q (from the error

propagation in CBC decryption). Note that the removal of the random bits of
a takes place in block Ps+1 which is left unchanged. Computing again a CBC-
MAC (using the same key k) on these values results in the intermediate chaining
values C′

1, . . . , C
′
s−1, followed by Cs, so that the further computation will be the

same as for the original plaintext, yielding the same authentication tag as before.
Thus the scheme fails to to detect this modification of the ciphertext.

4 Fixing the Schemes

We have seen above that the successful pattern matching attacks result from
determinism in the encryption process (despite appended randomness) and the
way in which long plaintexts are decomposed into blocks before encryption.
Furthermore, we have seen that encryption schemes do not necessarily provide
authenticity to prevent substitution. The reason is that usual modes of operation
provide only limited error propagation during decryption. Here strong message
authentication is required.5

In the following we will highlight how to repair the schemes such that the
original security goals are reached. Proofs of security for the employed crypto-
graphic schemes carry over to our proposal. Furthermore we will describe the
cost in terms of performance and storage overhead imposed by our proposal.

Requirements. We notice that there is no need to explicitly store the cell
address or other self-references along with the cell or index contents. However,
such position information needs to be authenticated along with the cell’s con-
tents. Thus, the security goal “authentication of data and position” to prevent
partial substitution or modification of data or moving data to a different place
in the table requires schemes which explicitly provide authentication. This is
typically not provided by encryption alone.

Regarding the privacy of cell data an encryption scheme needs to produce
ciphertext that cannot be distinguished from random values. In fact, such a
scheme automatically ensures that there is no correlation between encrypted cell
or index contents that an adversary can derive information from. This requires
a nondeterministic encryption scheme.

Preferably the encryption and authentication schemes come with proofs of
security, i.e. results on the concrete strengths against powerful attacks.

5 Thus, explicitly adding a MAC in [12] is the right move, however, we have seen that
there is still room for fatal interaction between components.

156 U. Kühn

Authenticated Encryption with Associated Data. To achieve the goals
identified above we employ an authenticated encryption scheme with associated
data (AEAD). Examples for such schemes are EAX [1], OCB · PMAC [10], or
CCFB [7]; see also [7] for an overview over recent developments regarding AEAD
schemes. Such encryption schemes provide confidentiality of the data, and explic-
itly provide authenticity of the ciphertext along with other unencrypted informa-
tion – the associated data. The schemes describe all necessary details, e.g. how
to chose initialisation vectors as well as keys for encryption and authentication.

Formally, an AEAD scheme is a triple (Key-Gen, AEAD-Enc, AEAD-Dec) con-
sisting of a key generation algorithms and two algorithms for encryption and
decryption

AEAD-Enc : K × N × M × H → C × T (21)
AEAD-Dec : K × N × C × T × H → M ∪ {invalid} (22)

with a key space K, a nonce space N , a space H of associated data, the plaintext
resp. ciphertext space M resp. C, and an authentication tag space T . Note that
neither the nonce nor the header data is included in the ciphertext, they must
be handled separately.

No plaintext will be available if invalid is returned by AEAD-Dec. In this
case we know that the key is not correct, the cell address is wrong, or the
nonce, ciphertext, or authentication tag have been tampered with. There is no
possibility to distinguish which of these cases has occurred.

Notation. For convenience and to distinguish between keys and data, we use
AEAD-Enck(.) resp. AEAD-Deck(.) to denote the encryption resp. decryption
under a key k ∈ K.

Formally, we require that the AEAD scheme is secure under the strongest avail-
able security notions (see [1]):

– The ciphertext shall be indistinguishable from random under adaptive chosen
plaintext attacks.

– The authenticity of the associated data and the plaintext shall be protected
against existential forgery under adaptive chosen message attacks, i.e. adap-
tive chosen plaintext / chosen ciphertext attacks6 .

Fixing the Database Encryption Scheme. The associated data part is typ-
ically used for header data, but we place the cell address here, so there is no need
to store it explicitly. Nevertheless, it’s integrity is guarded by the authentication
tag.

For encrypting (under a key k ∈ K) a value V for a cell with address RefT =
(t, r, c), a unique nonce N is generated, and we store

(N, C, T) with (C, T) = AEAD-Enck(N, V, RefT). (23)
6 Some models make the decryption oracle only available for checking that an forgery

attempt succeeds, not for regular oracle queries by the adversary. This is polynomi-
ally equivalent.

Analysis of a Database and Index Encryption Scheme 157

For decryption of (N, C, T) at cell address RefT = (t, r, c) we compute

AEAD-Deck(N, C, T, RefT) (24)

and raise a decryption error if invalid is returned.

Fixing the Index Encryption Scheme. The index encryption scheme, i.e.
encrypting the attributes from the indexed table, can be repaired in much the
same way as the cell encryption. However, some differences arise because the
column is fixed in an index table, and because the reference into the indexed table
needs to be encrypted and authenticated. Furthermore, some binding between
the table column and its index should be provided.

We now describe how to encrypt/decrypt (under a key k ∈ K) an index entry
for a cell address (t, r, c) with data value Vtrc. Let the index be implemented as a
table identified by tI, and let rI be the row number of the entry to be encrypted.
Then we use the following references:

RefT = r

RefI = index-internal references, e.g. left child / right child / next sibling
RefS = (tI, t, c, rI)

Note that tI, t, c are fixed for a given index, and rI is also known. On encryption
a unique nonce N is generated, and we store

(Ref I, (N, C, T)) with (C, T) = AEAD-Enck(N, (V, RefT), (RefS, RefI)). (25)

For accessing an encrypted index entry (RefI, (N, C, T)) we first derive RefS and
compute

AEAD-Deck(N, C, T, (RefS, RefI)), (26)

and raise an error if invalid is returned. Otherwise we obtain the pair (Vtrc, RefT)
from the decrypted plaintext.

Security Analysis / Proofs. The security properties of the schemes pro-
posed above directly relate to the security properties of the used AEAD scheme:

– The confidentiality of the encrypted data can be reduced to the privacy
protection of the AEAD scheme, i.e. indistinguishability from random. This
guarantees that no efficient adversary can derive any information from the ci-
phertexts, match patterns, correlate data and index, etc. with non-negligible
probability.

– For the database encryption scheme the authentication of the data and
the cell address can be reduced to the authenticity provided by the AEAD
scheme. This prohibits any modification, substitution, relocation, etc.
For the index encryption scheme the authentication of the data, its table
reference, the index structure, i.e. RefI, and the position of the entry in the
index, i.e. RefS, can be reduced to the authenticity provided by the AEAD
scheme. Thus modification, substitution, relocation, etc. are prevented.

158 U. Kühn

Some AEAD schemes come with proofs for their security properties under the
assumption that the underlying blockcipher is secure. See e.g. [1], [10], or [7] for
details. Based on our analysis of the requirements such proofs directly carry over
to our proposals.

Storage Overhead. The AEAD schemes require a nonce that must be stored
in addition to the ciphertext itself. Furthermore, the authentication tag must
also be stored. The analysis here assumes a 128-bit blockcipher like AESas the
basis for the AEAD scheme. Then using nonces and tags of 128 bits each appears
a good choice. For CCFB matters are slightly different, as the nonce and the tag
fit into one block, e.g. using a 96-bit nonce and a 32-bit tag as suggested in [7].

The associated data, containing the cell address resp. references, is not stored
explicitly. As our example schemes EAX, OCB · PMAC, as well as CCFB do not
require additional padding of the plaintext data, the storage overhead thus is
limited to the nonce and the tag, i.e. 256 bits or 32 octets for EAX and OCB ·
PMAC, per cell resp. index entry, and 128 bits or 16 octets for CCFB.

Performance Overhead. The existing AEAD schemes vary a great deal in
performance: Some schemes like EAX make two passes over the to-be-encrypted
data, while others like OCB · PMAC make only one; CCFB is, depending on
parameters, somewhere in between. Therefore we assess the overhead in terms of
blockcipher invocations, depending on the size of the attribute to be encrypted,
for EAX and OCB · PMAC. Let n be the number of blocks needed to cover
the plaintext P to be encrypted, and m the number of blocks to cover the
associated data. With a nonce of one block EAX needs 2n + m + 1 blockcipher
invocations (plus 6 for precomputations that can be reused), while OCB · PMAC
needs n + m + 5 blockcipher invocations.

5 Summary

In the present paper we have shown instantiations of the encryption function
that result in the schemes of [3] and [12] being insecure. The most prominent
reason for these counter-examples is the handling of data larger than one block
of the underlying blockcipher.

We have shown that the basic ideas of [3] and [12] for encrypting cell and
index data can achieve the desired security goals when implemented with suit-
able cryptographic methods. We have proposed to employ an authenticated en-
cryption scheme with associated data that provides explicitly both privacy and
authenticity. Proofs of security for such schemes carry over to the database and
index encryption case. Furthermore, we have briefly analysed the performance
and storage impact of possible choices for such schemes.

Acknowledgements

Thanks are due to Ehud Gudes and Stefan Lucks for helpful discussions.

Analysis of a Database and Index Encryption Scheme 159

References

[1] M. Bellare, P. Rogaway, and D. Wagner. The EAX Mode of Operation. In B. Roy
and W. Meier, editors, Proceedings of the 11th International Workshop on Fast
Software Encryption, volume 3017 of Lecture Notes in Computer Science, pages
389–407. Springer-Verlag, 2004.

[2] M. Dworkin. Recommendation for Block Cipher Modes of Operation – Methods
and Techniques. NIST Special Publication 800-38A.

[3] Y. Elovici, R. Waisenberg, E. Shmueli, and E. Gudes. A structure preserving
database encryption scheme. In W. Jonker and M. Petković, editors, Proceedings
of Secure Data Management: VLDB 2004 Workshop, volume 3178 of Lecture Notes
in Computer Science, pages 28–40. Springer-Verlag, 2004.

[4] T. Fanghänel. Using Encryption for Secure Data Storage in Mobile Database
Systems. Diplomarbeit, Friedrich-Schiller-Universität Jena, 2002.

[5] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In T. Johansson, editor,
Proceedings of the 10th International Workshop on Fast Software Encryption,
volume 2887 of Lecture Notes in Computer Science, pages 129–153. Springer-
Verlag, 2003.

[6] H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: how secure is SSL?). In J. Kilian, editor, Advances in Cryptology
– CRYPTO ’2001, volume 2139 of Lecture Notes in Computer Science, pages
310–331. Springer-Verlag, 2001.

[7] S. Lucks. Two-pass authenticated encryption faster than generic composition.
In H. Gilbert and H. Handschuh, editors, Proceedings of the 12th International
Workshop on Fast Software Encryption, volume 3557 of Lecture Notes in Com-
puter Science, pages 284–298. Springer-Verlag, 2005.

[8] National Institute of Standards and Technology (NIST). Data Encryption Stan-
dard (DES). Federal Information Processing Standards Publication (FIPS PUB)
46-3, Oct. 1999. (Withdrawn May 19, 2005).

[9] National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES). Federal Information Processing Standards Publication (FIPS
PUB) 197, Nov. 2001.

[10] P. Rogaway. Authenticated-encryption with associated-data. In Proceedings of the
9th ACM Conference on Computer and Communications Security, pages 98–107,
Washington, DC, USA, Nov. 2002. ACM Press.

[11] RSA. PKCS #5: Password-based encryption standard. Technical report, RSA
Laboratories, Nov. 1993. Version 1.5.

[12] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes. Designing secure indexes
for encrypted databases. In S. Jajodia and D. Wijesekera, editors, Proceedings of
Data and Applications Security, 19th Annual IFIP WG 11.3 Working Conference,
volume 3654 of Lecture Notes in Computer Science, pages 54–68. Springer-Verlag,
2005.

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 160 – 174, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Information Disclosure by XPath Queries

Stefan Böttcher and Rita Steinmetz

University of Paderborn (Germany)
Computer Science

Fürstenallee 11
D-33102 Paderborn

stb@uni-paderborn.de, rst@uni-paderborn.de

Abstract. Hospitals, organizations and companies are responsible keeping data
and information about their customers private even if many internal employees
have access to this data or information. When accused of an unauthorized dis-
closure of private information, it is important for the hospital to know which
employees had the opportunity to disclose concrete private information. Our
approach describes secret information in form of a secret query and performs
two steps to detect which employees have used ‘suspicious’ queries, i.e., que-
ries the result of which allows the user to derive secret information. First, we
analyze the structure of queries and of the secret query to exclude non-
suspicious queries. Second, we derive a formula from user query, query result
and secret query, which is satisfiable if and only if the query is non-suspicious.

1 Introduction

1.1 Motivation

Whenever a hospital or a company that has to store sensitive information of its cus-
tomers is suspected that this information was disclosed to a third party by one of its
employees, it may be crucial for this company to uncover and close this privacy leak.
We focus on the case that multiple employees have an access right to secret informa-
tion and a company wants to identify who accessed the disclosed secret information.

One scenario for such a problem is the following: A patient – Alice – has been in a
hospital – HealthCo – for a few days. During her stay there, it was discovered by a
bloodtest that Alice suffers from diabetes. Some weeks later, Alice gets a letter on
some sweets for diabetics. Alice therefore suspects HealthCo that they have disclosed
her name and the fact that she suffers from diabetes to a third party. HealthCo’s secu-
rity specialists know that they have a well working security system such that no in-
truder from the outside could have accessed the database; the privacy leak has to be
within HealthCo’s employees: someone who had the right to access Alice’s data has
disclosed her data to a third party. Now HealthCo either wants to prove Alice, that no
one has accessed her data – and thus no one was able to disclose it – or to find the
employee responsible for this privacy leak and to call this employee to account.

The approach presented in this paper is completely independent of any existing ac-
cess control system, i.e., we assume that each database user can only access that part
of the database, he is allowed to according to his access rights. In contrast to access

 Information Disclosure by XPath Queries 161

control systems, our approach allows the company to check ex post, which user had
had sufficient database access to get knowledge of the secret information.

1.2 Paper Organization

This paper is organized as follows: The remainder of the first section summarizes the
underlying assumptions and the problem definition, and it outlines the audit language.
Section 2 gives an overview of the audit system architecture of our approach. The
third section gives the fundamental definitions and theorems used in Section 4 to de-
velop the algorithm checking for suspicious queries. This algorithm is then optimized
by three pre-tests. Section 5 gives an overview on related work on this topic. The pa-
per concludes with a summary and conclusions.

1.3 Audit Language

Secret information involves more than just stored values of private data: it includes
that data values are in certain ranges and it includes associations of some values and
their relation within the XML database. For the above-described scenario, the secret is
the association of two (node,value)-pairs, i.e., “the name Alice” and “the diagnosis
diabetes”. Both (node,value)-pairs regarded isolated do not form a secret, i.e., neither
“the name of a patient is Alice” nor “one of the patients suffers from diabetes” is a se-
cret. Therefore, in our system, we model a secret in form of an XPath query that
represents the association of the values.

Secret queries are defined in the EBNF grammar given below, where
SecretQuery is the start symbol.

SecretQuery ::= DuringTo ‘audit’ cxp
DuringTo ::= ‘during’ time ‘to’ time
cxp ::= locationpath | ‘/’ locationpath
locationpath ::= locationstep (‘/’ locationstep)*
locationstep ::= x ‘::’ Σ | x ‘::’ Σ ‘[’ pred ‘]’
pred ::= cxp | cxp comp constant
comp ::= ‘=’|‘<’|‘≤’|‘>’|‘≥’|‘≠’

time is a timestamp, Σ is the set of elements and attributes specified by the DTD of
the XML database, and constant is a constant of some standard type, such as String,
Long or Integer. x is one of the following axis specifiers: 'ancestor', 'ancestor-or-self',
'child', 'descendant', 'descendant-or-self', 'following', 'following-sibling', 'parent', 'pre-
ceding', 'preceding-sibling', 'self'. Note that besides the grammar rule for pred, our
supported subset of XPath expressions corresponds to Core XPath as defined in [13].

Consider the example of Alice given in Section 1.1, and assume that “diabetes”
means a glucose value of 200 mg/dL or more, an audit query specified for Alice is:

S=during 3pm,05/05/06 to 11am,05/17/06
audit /descendant-or-self::Patient[Name=”Alice”]
[./descendant-or-self::Glucose≥”200”]

The DuringTo-clause is used to specify a time period during which the query must
have been answered in order to be considered further.

162 S. Böttcher and R. Steinmetz

The set of XPath queries supported by our system is defined by starting with the
start symbol cxp in the grammar given above.

1.4 General Assumptions and Problem Definition

We assume that some technical and some general requirements are met, because oth-
erwise, the leak may lie outside of the system and cannot be detected by our approach.

First, we assume that the private data is only stored in an XML database with a
known schema description, e.g., defined by a DTD. Second, we assume that the an-
swer to an XPath query only returns the selected node itself, and not a complete sub-
tree of selected elements stored in the XML database with the following exception. If
the child of a selected node is a text node, this child is included in the answer as well.

Third, we assume that a security and access control system is working correctly
within the company providing the following: No intruder from the outside can access
the data, and the employees can only access that fragment of the XML database which
they have an access right to, according to the access control system. Fourth, we as-
sume that an employee, who communicates sensitive information e.g. by fax or phone
or stores it outside of the database e.g. as printouts, is responsible to care that no un-
authorized party can access the information. In other words, we search for employees
who accessed the uncovered secret information from the database, as these employees
will be interviewed at first to reconstruct the flow of uncovered secret information.

Whenever these assumptions are met, our approach solves the following problem:
Given a user query Q, and a secret information specified by a secret query S, our ap-
proach decides whether the employee can derive the secret (i.e., the answer to the se-
cret query S) from the pair (Q,R), where R is the answer to Q.

2 Audit System Architecture

Our system architecture consists of an XML database, combined with a query log and
a backlog that are defined as follows:

Query log: The query log is a table consisting of three attributes. It stores for each
query submitted to the XML database the user ID, the query itself and a timestamp of
when the query was answered. Furthermore, a query is computed and stored together
with a user ID and a timestamp in the query log for each write operation, where the
query describes the part of the database which has been read by the write operation.
Due to space limitations, we skip the details on how to compute such a query here.

Backlog: The backlog is used for a later restoration of the database state valid at a
certain time and stores information about write operations in a table consisting of 4 at-
tributes. For each write operation (i.e., delete, insert or update) the index number of
the changed node, an identifier for the write operation (delete, insert, update), the new
value, and the timestamp representing the time when the operation was performed are
stored. If the operation is an insert operation, the new value is the subtree inserted, if
the operation is a delete operation, the value is the deleted subtree. An update opera-
tion is stored as a deletion followed by an insertion of a new subtree with the same in-
dex number and a new value.

 Information Disclosure by XPath Queries 163

3 Basic Definitions and Concepts

3.1 Secret Information and Suspicious Queries

In order to define when a query should be called suspicious, we first have to define
what secret information and what a secret query are - besides from that the informa-
tion shall not be disclosed.

Definition 1 (secret information and secret query). secret information is informa-
tion about the existence of a combination of nodes and their axis-relation within an
XML database DB that can be expressed by a Boolean XPath expression S, where
S(DB)=true. The XPath expression S is called secret query.

For the user, the concrete database state Dt at the time when his query was answered
is like a black box. The user gets only that knowledge of the concrete database state
that can be derived from his query and the answer to the query. The concrete database
state is replaceable by another database state DB as long as the result to the user’s
query stays the same. This leads us to our definition of suspicious queries:

Definition 2 (Suspicious Queries). Let Q be a user query, R the result of the query Q
and S be a secret query. The pair (Q,R) has uncovered the secret information if and
only if for each database state DB holds:

Q(DB)=R ⇒ S(DB)=true

In this case, we call the pair (Q,R) suspicious; otherwise we call it non-suspicious.

The goal of our algorithm is to systematically classify as many queries as possible as
being non-suspicious queries. For this purpose, we use an equivalent characterization
of non-suspicious queries, which is a given in Corollary 1:

Corollary 1 (Non-suspicious Queries). Let Q be a query, Dt be the XML database at
the time t when the query Q was answered, and R be the result to the query Q,
Q(Dt)=R. Let S be a secret query with S(Dt)=true. A pair (Q,R) is non-suspicious
if and only if there exists a database state DB2 such that

Q(DB2)=R ∧ S(DB2)=false

This corollary means that if at least one database state DB2 can be guessed (or con-
structed) with S(DB2)=false, but which leads to the same query result R of Q as the
database state in which the query was answered, the query is non-suspicious.

3.2 Normalized XPath Expressions and Binary XML Trees

In order to reduce the number of different XPath axes for our algorithm, we normalize
each XPath expression (user queries as well as secret queries). The normalization is
similar to the rewriting of XPath axes into the primitive axes ‘first-child’ and ‘next-
sibling’ and their inverse and reflexive and transitive closure as proposed in [13]. In
contrast to [13], we compute the normalization nested with the elimination of inverse
axes as shown in [18], so that we only get the axes ‘child’ and ‘next-sibling’ and their
reflexive and transitive closure. In other words, the axes remaining after this normaliza-
tion step are the ‘child’-axis and its reflexive and transitive closure ‘descendant-or-self’,

164 S. Böttcher and R. Steinmetz

the ‘next-sibling’-axis and its reflexive and transitive closure ‘following-sibling’, and
the ‘self’-axis.

For example, the user query Q1=//Name[ancestor-or-self::Patient//
Glucose≥”200”] is normalized to an equivalent query: Q=/descendant-or-
self::Patient[/child::*/descendant-or-self::Glucose≥”200”]/
descendant-or-self::Name.

Similar to our normalization of XPath queries, we regard the XML database tree as
a binary tree XML bX, i.e., the binary XML tree bX representing the XML database
only contains the axes ‘first-child’ and ‘next-sibling’. Note that we regard the binary
representation of an XML document in order to simplify the presentation of our ap-
proach (especially the embedding of Definition 5), however, our approach is applica-
ble to non-binary XML document trees as well.

3.3 Minimal Readset Fragments

Our final algorithm tries to construct a database state DB2 for a given pair (Q,R),
such that Q(DB2)=R and the secret does not hold in DB2, i.e., S(DB2)=false. If we
can construct such a database state DB2, we can be sure that according to Corollary 1,
(Q,R) is non-suspicious. In order to explain how we construct such a database state
DB2, we introduce graph patterns and embeddings to define minimal readset frag-
ments, which are the atomic fragments read by a query (a minimal readset fragment in
the XML context is similar to a tuple in the relational context).

Definition 3 (Graph Pattern [17, 9]). Let Σ be the set of element names and attrib-
utes defined by the underlying DTD. A graph pattern is a directed graph G, the nodes
of which are labeled with symbols of Σ, with five distinguished subset of edges, and
four distinguished subsets of nodes.

The five distinguished subsets of edges are the set of child edges (), the set of
descendant-or-self edges (⇒), the set of next-sibling edges (arrow with a rhomb at the
end), the set of following-sibling edges (double arrow with a rhomb at the end) and
the set of self edges (single line).

The first distinguished subset of nodes contains only the root node, which corre-
sponds to the root element of the DTD. The second distinguished subset of nodes is
called the set of element nodes. Each element node is denoted by a circle. The third
distinguished subset of nodes is called the set of output nodes. Each output node is
denoted by a double circle. The set of output nodes is empty if a pattern represents a
Boolean valued query. The fourth distinguished subset of nodes is called the set of
comparison nodes. Each comparison node is denoted by a rectangle. The label of a
comparison node is either a comparison operator (i.e., =, <, ≤, >, ≥, ≠) followed by a
constant or it is ‘=*’.

Definition 4 (Tree Pattern). Let G be a graph pattern according to Definition 3. G is
called a tree pattern, if each node of G is reachable from the root node by exactly one
path.

The tree pattern TS for secret query S of section 1.3 can be seen in Fig. 1(a) and the
tree pattern TQ for the query Q of section 3.2 can be seen in Fig. 1(b).

 Information Disclosure by XPath Queries 165

Fig. 1. (a) tree pattern for secret query S (b) tree pattern for query Q (c) graph pattern of query
Q, computed using the DTD

Definition 5 (Embedding of a Tree Pattern in an XML database). An embedding
of a tree pattern T of an XPath expression XP into a binary tree bX representing an
XML database is defined to be a function e:Nodes(T) Nodes(bX) with

1. e(root(T)) = root(bX)
2. ∀ x ∈ ElementNodes(T) : Label (x) = Label(e(x))
3. ∀x,y ∈ ElementNodes(T):
a) if(x,y) is a child edge in T then (e(x),e(y)) is a first-child edge or a path of

one first-child edge followed by any number of next-sibling edges in bX
b) if (x,y) is a descendant-or-self edge in T then there exists a path of arbitrary

length of first-child edges and next-sibling edges in bX
c) if(x,y) is a next-sibling edge in T then (e(x),e(y)) is a next-sibling edge in

bX
d) if(x,y) is a following-sibling edge in T then(e(x),e(y)) is a path of arbi-

trary length of next-sibling edges in bX
e) if(x,y) is a self edge in T then e(x)=e(y) in bX
4. ∀x ∈ ElementNodes(T) ∀y ∈ ComparisonNodes(T): if(x,y) is a

child edge in T, then e(x) has to fulfill the condition stated in Label(y).

Definition 6 (Minimal readset fragment and Readset of an XPath query within
an XML database). Let XP be an XPath expression and bX be a binary tree represen-
tation of an XML database. Let e be an embedding of the tree pattern T of XP in bX.
The minimal readset fragment mrf(XP,bX) = {N, E, O} of Q within bX induced
by e is that subtree of bX that contains all nodes nT, nT ∈ e(T), all nodes x on
paths from root(bX) to a node nT, nT∈e(T) and the set E of all incident edges, i.e.
N := {nT ∈ bX | nT ∈ e(T)} ∪ {x ∈ bX | exists path from root(bX) to x

166 S. Böttcher and R. Steinmetz

and from x to a node nT, nT ∈ e(T)} ,
E := {(x,y) ∈ bX | x ∈ N and y ∈ N} , and
O := {n ∈ N | n = e(oT) and oT is an output node of T} .

ReadSet(XP,bX) is the set of all minimal readset fragments mrf(XP,bX) for all
possible embeddings e of the tree pattern T of XP in bX.

4 Algorithms

4.1 Replaceable Minimal Readset Fragments

In order to show that a pair (Q,R) with Q(Dt)=R is non-suspicous in a given data-
base state Dt, we try to construct an XML database state DB2 from Dt, such that
Q(DB2)=R, but S(DB2)=false. DB2 is constructed from Dt by replacing each mini-
mal readset fragment mrf(Q,Dt)∈ReadSet(Q,Dt) of Q in Dt by a fragment
mrf’(Q,DB2) which is a minimal readset fragment of Q in DB21. Whether or not a
minimal readset fragment is replaceable, such that the replacing fragment provides an
answer to the query but does not provide an answer to the secret, depends on three
conditions outlined in the following definition.

Definition 7 (Replaceable). Let Q be a query, S be a secret query and Dt be a data-
base state. A minimal readset fragment mrf(Q, Dt) is called replaceable, if a mini-
mal readset fragment mrf’(Q,DB) of any (virtual) database state DB exists s.t.:

a) there exists an embedding e of the tree pattern TQ of Q in mrf’(Q,DB)
b) there exists no embedding of the tree pattern TS of S in mrf’(Q,DB)
c) O(mrf(Q,Dt)) = O(mrf’(Q,DB)).

Proposition 1. Each minimal readset fragment mrf(Q,Dt)∈ReadSet(Q,Dt)
\ReadSet(S,Dt) is replaceable.

Proof Sketch: As condidtions (a), (b), and (c) of Definition 7 hold for each minimal
readset fragments mrf(Q,Dt)∈ReadSet(Q,Dt)\ReadSet(S,Dt), mrf(Q,Dt) is
replaceable by itself. 

If all minimal readset fragments mrf(Q,Dt)∈ReadSet(Q,Dt) are replaceable, the
database state DB2 that is constructed by replacing each minimal readset fragment
mrf(Q,Dt)∈ReadSet(Q,Dt) has exactly the desired property Q(DB2)=R and
S(DB2)=false. But if at least one minimal readset fragment
mrf(Q,Dt)∈ReadSet(Q,Dt) is not replaceable, we know that for each database
state DB with Q(DB)=R the secret holds, S(DB)=true, i.e., according to Definition 2,
the pair (Q,R) is suspicious. This is stated in Theorem1.

Theorem 1. Let Q be a query and S be a secret query and Dt be the XML database at
the time t when the query Q was answered and R be the result of the query Q,
Q(Dt)=R. The pair (Q,R) is non-suspicious if and only if each minimal readset frag-
ment mrf (Q,Dt)∈ReadSet(Q,Dt)∩ReadSet(S,Dt) is replaceable.

1 Only those database states DB2 are considered that are valid according to the given DTD.

 Information Disclosure by XPath Queries 167

Proof sketch: (a) First, assume that the pair (Q,R) is non-suspicious. According to
Corollary 1, there exists a database state DB2 such that Q(DB2)=R∧S(DB2)= false.
Choose any minimal readset fragment mrf(Q,Dt)∈ReadSet(Q,Dt)∩Read-
Set(S,Dt). As Q(DB2)=R there exists a minimal readset fragment mrf’(Q,DB2)
with O(mrf(Q,Dt))=O(mrf’(Q,DB2)). As S(DB2)=false, there does not exist an
embedding of S in DB2, and as mrf’(Q,DB2) is a subtree of DB2, there does not exist
an embedding of S in mrf’(Q,DB2). Therefore, the minimal readset fragment
mrf(Q,Dt) is replaceable by the minimal readset fragment mrf’(Q,DB2).

(b) Now, assume that each minimal readset fragment mrf(Q,Dt)∈Read-
Set(Q,Dt)∩ReadSet(S,Dt) is replaceable. As according to Proposition 1, each
minimal readset fragment mrf(Q,Dt)∈ReadSet(Q,Dt)\ReadSet(S,Dt) is re-
placeable, and as (ReadSet(Q,Dt)\ReadSet(S,Dt))∪(ReadSet(Q,Dt)∩
ReadSet(S,Dt))=ReadSet(Q,Dt), each minimal readset fragment mrf(Q,Dt)∈
ReadSet(Q,Dt) is replaceable. According to Definition 7, for each minimal readset
fragment mrf(Q,Dt)∈ReadSet(Q,Dt) there exists a minimal readset fragment
mrf’(Q,DB) of a (virtual) database state DB such that the conditions (a), (b), and (c)
of Definition 7 hold. Let DB2 be the database state that contains only the union of all
those minimal readset fragment mrf’(Q,DB). Then, Q(DB2)=R holds because of
conditions (a) and (c), and S(DB2)=false holds because of condition (b). According
to Corollary 1, the pair (Q,R) is non-suspicious. 

In general, this leads us to the following algorithm to decide, whether or not a user
query Q and its result R are suspicious:

1. Use the backlog to reconstruct the database state Dt at the time when the query
was answered. This step can be performed in O(|bl|*log(width(db))*
depth(db)) time [8], where |bl| is the number of entries in the backlog,
width(db) is the maximum number of children that one node of the XML data-
base has, and depth(db) is the depth of the XML database.

2. Check whether each minimal readset fragment mrf(Q,Dt)∈ReadSet(Q,Dt)
∩ReadSet(S,Dt) is replaceable.

3. If all minimal readset fragments mrf(Q,Dt)∈ReadSet(Q,Dt) ∩Read-
Set(S,Dt) are replaceable, return ‘suspicious’; otherwise, return ‘non-
suspicious’.

Step 2 is performed as follows. The goal of this step is to check whether each
minimal readset fragment mrf(Q,Dt) can be replaced by a minimal readset fragment
mrf’(Q,DB2), i.e., whether mrf’(Q,DB2) exists with Q(mrf(Q,Dt))=

Q(mrf’(Q,DB2)) ∧ S(mrf’(Q,DB2))=false. Let eQ be an embedding of Q in Dt
which induces mrf(Q,Dt). Assume that there exists an embedding eS of S in Dt with
eS∩N(mrf(Q,Dt))≠∅. To check whether mrf’(Q,DB) exists with
Q(mrf(Q,Dt))=Q(mrf’(Q,DB2)) ∧ S(mrf’(Q,DB2))=false means that the
following three conditions must hold:

a) Each node eQ(nQ) of Dt which is an embedded node of a node nQ, where nQ is
the parent node of a comparison node cQ of TQ, can be changed only in such a
way that the condition of the comparison node is not violated. We can express

168 S. Böttcher and R. Steinmetz

this as a Boolean formula fqi=x op value, where x is the label of nQ and op
value is the label of the comparison node cQ.

b) At least one node eS(nS) of Dt which is an embedded node of a node nS, where
nS is the parent node of a comparison node cS of S must be changed in such a
way that the condition of the comparison node does not hold any more. This can
be expressed as a Boolean formula fsj=not x op value, where x is the label
of nS and op value is the label of the comparison node cS.

c) Each node eQ(oQ) of Dt which is an embedded node of an output node oQ of the
tree pattern TQ of Q must not be changed. This can be expressed as a Boolean
formula fqi=x = value, where x is the label of the element eQ(oQ) and
value is the value of the element eQ(oQ) found in the XML database.

Let n be the number of comparison Nodes of the tree pattern of Q. The atomic for-
mulas fqi, 1≤i≤n generated by the rules (a) and (c) are combined to a single for-
mula FQ, i.e. FQ = (fq1 ∧ … ∧ fqn). Similar, we combine all formulas fsj,
1≤j≤k, where k is the number of comparison nodes of the tree pattern of S generated
by the rule (b), to a single formula FS = (fs1 ∧ … ∧ fsk). Then, meeting all
conditions (a), (b) and (c) means that the formula (FQ ∧ not FS) is satisfiable. Let
Fj=(not fsj ∧ FQ) for 1≤j≤k. Then (FQ ∧ not FS)=(F1∨ … ∨ Fk). If at
least one of the formulas Fj, 1≤j≤k, is satisfiable, we can be sure, that we can con-
struct a pattern mrf’(Q,DB2) to replace mrf(Q,Dt), i.e., for which conditions (a),
(b) and (c) of Definition 7 are met. As each formula Fj consists of n+1 atomic formu-
las and of at most n+1 different variables x, each formula Fj can be tested for satisfi-
ability in O(n²) using the single source shortest path algorithm [10]. Thus, the total
runtime of Step 2 is O(k*n²).

So the overall runtime is polynomial.

<Hospital>
 <Patient>
 <Name>Alice</Name>
 <Bloodtest>
 <Glucose>264</Glucose>
 </Bloodtest>
 </Patient>
</Hospital>

Fig. 2. Example fragment of a Hospital XML database Dt

For example, consider the query Q of Section 3.2 applied to the fragment of an
XML database Dt shown in Fig. 2. The tree pattern TQ of Q shown in Figure 1(b) con-
tains an output node pQ with label ‘Name’ and a comparison node cQ with the label
‘=*’ and the parent pQ. Since the result R of Q applied to Dt is
<Name>Alice</Name>, e(pQ) has the value ”Alice”. Additionally, TQ contains a
comparison node with label ≥200 and a parent node that has the label ‘Glucose’.
Therefore, the formula FQ computed for the minimal readset fragment of query Q in
Dt above is FQ=(Name=”Alice” ∧ Glucose≥”200”). Similarly, the formula

 Information Disclosure by XPath Queries 169

FS=(Name=“Alice” ∧ Glucose≥”200”) is computed for the secret S. Because FQ
∧ not(FS) is insatisfiable, the minimal readset fragment mrf(Q,Dt) is not replace-
able, thus the pair (Q,R) is suspicious.

However, if we consider a second secret query

S2= during 3pm,05/05/06 to 11am,05/17/06
audit /descendant-or-self::Patient[Name=”Alice”]
[./descendant-or-self::Glucose=”264”]

and the same user query Q applied to the same database state Dt, the formula FS2
computed for S2 is FS2=(Name=”Alice”∧Glucose=”264”), i.e., FQ ∧ not(FS2)
is satisfiable, and the minimal readset fragment mrf(Q,Dt) is replaceable for exam-
ple by a database fragment

 <Patient>
 <Name>Alice</Name>
 <Bloodtest>
 <Glucose>260</Glucose>
 </Bloodtest>
 </Patient>

4.2 Identifying Proper Candidate Queries

Although checking whether (Q,R) is suspicious in a given database state Dt requires
only polynomial time, it can be avoided in three situations by applying tests based on
the query strings only, i.e., without access to the database. Therefore, we apply these
tests to identify non-candidate queries, before testing the remaining queries for suspi-
ciousness.

The first test is based on the during-to interval specified by the secret query and
the time stamp of the user query. If the time stamp of the user query does not lie
within the during-to interval, the query is not a candidate for having accessed the
uncovered private information, even when it were suspicious according to our defini-
tion. Therefore, the query does not need to be examined further.

A further test, called candidate test, compares the tree pattern TS of the secret
query S with the graph pattern GQ of the user query Q with the following idea. If TS
contains subtrees and comparisons that neither occur in nor can be deduced from the
structure of GQ, then TS depends on conditions not reflected by GQ. Therefore, the da-
tabase can be modified in a way that violates the secret S without changing the result
R of Q, i.e. (Q,R) is non-suspicious. This kind of non-suspicious queries shall be ex-
cluded by the candidate test.

In order to regard what can be deduced from the structure of GQ, we replace all re-
cursive edges (i.e. ‘descendant-or-self’ and ‘following-sibling’) in GQ, as recursive
edges GQ represent a path of several nodes. Recursive edges are replaced by a DTD
graph as follows.

1. For each right-hand2 side of a DTD rule, we build a non-deterministic finite
automaton. The transitions of the NFA are ‘next-sibling’ edges.

2 For the rule <!ELEMENT a (b,(c|d), e)*> the right-hand side is: ’(b,(c|d), e*)’.

170 S. Böttcher and R. Steinmetz

2. From each node of the NFA representing an element, we draw a ‘first-child’
edge to each start-node of the NFA representing the right-hand side of this ele-
ment definition.

Altogether, GQ is built by replacing all ‘descendant-or-self’ axes within the tree
pattern TQ of Q by the sub-graph of DTD graph that contains all paths from the start
node to the end node of the ‘descendant-or-self’ edge. However, the ‘following-
sibling’ edges of TQ are replaced by the set of ‘next-sibling’ paths within the DTD
graph from the start node to the end node of the ‘following-sibling’ edge.

After this step, GQ contains only the primitive edges ‘child’ and ‘next-sibling’.
An example for a DTD and its DTD graph can be seen in Fig. 3.

<!ELEMENT Hospital (Patient*)>
<!ELEMENT Patient (Name, Bloodtest*, Treatment*)>
<!ELEMENT Bloodtest (Date,(Cholesterol | Glucose))>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Cholesterol (#PCDATA)>
<!ELEMENT Glucose (#PCDATA)>

Fig. 3. DTD and DTD graph

This DTD graph was used to construct the graph pattern GQ of the query Q of Sec-
tion 3.2, which can be seen in Fig. 1(c).

Definition 8 (Homomorphism). Let GQ be the graph pattern of the query Q, and let
TS be the tree pattern of the secret query S. The homomorphism is a function
h:Nodes(TS) Nodes(GQ) such that

1. h(root(TS)) = root(GQ)
2. ∀ x ∈ ElementNodes(TS) : Label (x) = Label(h(x))
3. ∀ x ∈ ElementNodes(TS):

a. if (x,y) is a child edge in TS then (h(x),h(y)) is a child edge or a path of
one child edge followed by any number of next-sibling edges in GQ

 Information Disclosure by XPath Queries 171

b. if (x,y) is a descendant-or-self edge in TS then there exists a path from h(x)
to h(y) in GQ.

c. if(x,y) is a next-sibling edge in TS then (h(x),h(y)) is a next-sibling edge
in GQ

d. if(x,y) is a following-sibling edge in TS then (h(x),h(y)) is a path of next-
sibling edges in GQ

4. ∀ x ∈ ComparisonNodes(TS): Either (a) Label(h(x)) = ”=*” or (b) if cS
is the comparison operator of x and cQ is the comparison operator of h(x) then
the constants v(x) of x and v(h(x)) of h(x) fulfill the condition given in row
cQ and column cS in Table 1.

Table 1. Conditions for a homomorphism between Comparison nodes

cQ\
cS

< ≤ = ≥ > ≠

< v(h(x)) ≤
v(x)

v(h(x)) ≤
v(x)+1

false false false v(h(x)) ≤
v(x)

≤ v(h(x)) <
v(x)

v(h(x)) ≤
v(x)

false false false
v(h(x)) >
v(x)

=
v(h(x)) <
v(x)

v(h(x)) ≤
v(x)

v(h(x)) =
v(x)

v(h(x)) ≥
v(x)

v(h(x)) >
v(x)

v(h(x)) ≠
v(x)

≥ false false false v(h(x)) ≥
v(x)

v(h(x)) >
v(x)

v(h(x)) >
v(x)

> false false false v(h(x)) ≥
v(x)-1

v(h(x)) ≥
v(x)

v(h(x)) ≥
v(x)

≠ false false false false false
v(h(x)) =
v(x)

The idea behind searching for a homomorphism is the following: If no homo-
morphism is found, there exists at least one node nS within TS that is not contained in
GQ. Thus, each minimal readset fragment mrf(S,Dt)∈ReadSet(S,Dt) contains a
node e(nS) that is not part of any minimal readset fragment
mrf(Q,Dt)∈ReadSet(Q,Dt). Therefore, we can delete this node or change its
value, such that the result R of query Q is not changed, but the secret holds no longer
for the generated database state DB2.

For example, the homomorphism from the tree pattern TS of the secret query S
shown in Fig. 1(a) to the graph pattern GQ of query Q shown in Fig. 1(c) is h={(1,1),
(2,3), (3,7), (4,4), (5,9), (6,8)}.

In a second test, i.e., a test that is performed prior to the candidate test, we check,
whether each label lS∈LS of the set LS of the labels of the tree pattern of S is con-
tained in the set LQ of the labels of the graph pattern of Q, i.e., whether LS⊆LQ. If
one label lS∈LS of a node nS of the tree pattern TS of S is not contained within LQ,
there can not exist a node h(nS) in the graph pattern GQ of Q which is homomorph
to nS.

172 S. Böttcher and R. Steinmetz

5 Relation to Other Works

The hospital database as used as an example in our paper is a typical case of Hippo-
cratic databases for which [2] lists 10 key principles. Our work mainly contributes to
two of them: it provides database support, known as “compliance” [2], to identify ex
post, who accessed private data (known as “Limited Disclosure” according to [2]).

An audit system for relational databases is provided in [3]. In contrast, we focus on
XML trees and XPath expressions instead of on 2-dimensional tables and SQL que-
ries. Thus, we solved a different set of problems ranging from embedding XPath que-
ries into restored XML database content to checking for structural query similarities
to more complex suspicious tests.

Note however that our approach avoids the following weakness of previous ap-
proaches. While previous approaches, e.g. [3], work correctly for select-project-join
queries using only =-comparisons in selections, they do not work correctly when the
secret query contains =-comparisons, but the query contains <, >, <= or >= compari-
sons. For example, when we submit the relational counterparts to user query Q and
secret query S2 of Section 4.1 to the audit system described in [3], that audit system
would call the query suspicious, although the information specified by S2 cannot be
derived from the answer to the query. In comparison, our approach excludes Q from
the set of suspicious queries with respect to S2.

In our algorithm, a containment test on the structure of the XPath queries is used to
detect candidate queries. As our test for candidate queries uses a containment test on
the structure of XPath expressions, in this paper, we propose an approach that com-
bines and extends ideas presented in [4] and [17]. Our contribution goes significantly
beyond previous approaches like e.g. [8] or [9], as we support all the axes of Core
XPath (in comparison to e.g. [9] which only supported the two axes ‘child’ and de-
scendant). Furthermore, the problem solved in this paper is fundamentally different
from the containment problem, as we have to consider the database state given for
each query, i.e., whether a query is suspicious depends on the given database state.

Although the problem of k-anonymity looks similar to the problem solved in this
paper, the two problems are completely different. Contributions that aim to provide k-
anonymity (as e.g., [1],[15],[16],[19],[22],[23]) change the data in published views to
be more fuzzy, so that no sensitive information of concrete individuals can be derived.
In our case, we are not allowed to change the data, so we cannot avoid returning
query results from which a secret information can be derived, we can only detect ex
post, who had access to the secret information.

The contributions [24] and [20] present approaches to prove violation of 2-
anonymity from published views. However, to prove the violation of 2-anonymity for
a set of published views is not sufficient to prove that the given secret information can
be derived from this view set. For example, 2-anonymity can be violated for a con-
crete association of values (a1,b1), whereas the secret information consists of the as-
sociation of values (a2,b2) for which 2-anonymity is not violated.

Our approach is fundamentally different to the field of access control techniques for
XML data sources, as presented e.g. in [5], [6], [11], [12], [14] and [21], which range
from policies, to user groups, to document location, to access control on fragments of
XML databases are applied to the database system. We assume that our system is well
protected against attacks from outside, but in contrast to access control systems, our

 Information Disclosure by XPath Queries 173

system does not restrict the employees’ access to data. Instead, each employee is al-
lowed to access the secret information, which he needs to do his work properly, but he
is not allowed to disclose the information. In contrast to the previously mentioned con-
tributions, the goal of our paper is to detect ex post, which query accessed the secret in-
formation, i.e., which user had the possibility to expose the secret information.

6 Conclusions

Whenever a company has to handle sensitive information of its customers and when-
ever multiple employees of this company have to access these private information, it
is crucial for the company to have a mechanism to detect privacy violations in order
to prevent the abuse of the information.

In this paper, we have presented an approach on how to detect ex post, which em-
ployee had the opportunity to disclose private information. The algorithm first con-
siders time constraints and then analyzes the structure of the user’s query and the
secret query to check whether the user’s query has accessed all the information speci-
fied by the secret query. In the last step, the algorithm checks, whether all minimal
readset fragments of the secret query are replaceable, which can be decided in
O(k*n²) time by checking satisfiablity of formulas.

In order to keep our presentation as simple as possible, we have restricted it to
XPath. However, as XPath forms the major part to describe data access in other query
languages like XQuery and XSLT, we believe that our approach will be easily adapt-
able to these query languages.

References

[1] Charu C. Aggarwal: On k-Anonymity and the Curse of Dimensionality. In: Klemens
Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, Beng
Chin Ooi (Eds.): Proceedings of the 31st International Conference on Very Large Data
Bases. VLDB 2005, Trondheim, Norway, 2005

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Hippocratic Data-
bases. In: Philip A. Bernstein, Yannis E. Loannidis, Raghu Ramakrishnan (Eds.): Pro-
ceedings of 28th International Conference on Very Large Data Bases. VLDB 2002, Hong
Kong, 2002

[3] Rakesh Agrawal, Roberto J. Bayardo Jr., Christos Faloutsos, Jerry Kiernan, Ralf Rant-
zau, Ramakrishnan Srikant: Auditing Compliance with a Hippocratic Database In: Mario
A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley,
K. Bernhard Schiefer (Eds.): (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases. VLDB 2004, Toronto, Canada, 2004

[4] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, Divesh Srivastava: Minimi-
zation of Tree Pattern Queries In: Timos Sellis (Ed.): Proceedings of the 2001 ACM
SIGMOD international conference on Management of data. SIGMOD Conference 2001,
Santa Barbara, California, United States, 2001

[5] Elisa Bertino, Silvana Castano , Elena Ferrari: On specifying security policies for web
documents with an XML-based language In: In Proceedings of the 6th ACM Symposium
on Access Control Models and Technologies. SACMAT 2001, Chantilly, Virginia, USA,
2001.

174 S. Böttcher and R. Steinmetz

[6] Elisa Bertino, Elena Ferrari: Secure and selective dissemination of XML documents. In:
ACM Transactions on Information and System Security. TISSEC, Volume 5, Number 3,
pp 290–331, 2002

[8] Stefan Böttcher, Rita Steinmetz: Detecting Privacy Violations in Sensitive XML Data-
bases In: Jonker, Willem; Petkovic, Milan (Eds.): Secure Data Management - SDM 2005,
2nd VLDB Workshop on Secure Data Management, Trondheim, Norway, 2005

[9] Stefan Böttcher, Rita Steinmetz: Finding the Leak: A Privacy Audit System for Sensitive
XML Databases. Second International Workshop on Privacy Data Management (PDM),
Atlanta, USA, 2006

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction
to Algorithms. MIT-Press, Cambridge, 2nd Edition, 2001.

[11] Ernesto Damiani, Sabrina di Virmercati, Stefano Paraboschi, Pierangela Samarati: Secur-
ing XML Documents In: Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl, Torsten
Grust (Eds.): Advances in Database Technology - EDBT 2000, 7th International Confer-
ence on Extending Database Technology, Konstanz, Germany, 2000

[12] Wenfei Fan, Chee Yong Chan, and Minos Garofalakis: Secure XML Querying with Se-
curity Views In: Gerhard Weikum, Arnd Christian König, Stefan Deßloch (Eds.): Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
SIGMOD Conference 2004, Paris, France, 2004

[13] Georg Gottlob, Christoph Koch, Reinhard Pichler: Efficient Algorithms for Processing
XPath Queries. VLDB 2002

[14] Michiharu Kudo, Satoshi Hada: XML document security based on provisional authoriza-
tion In: In Sushil Jajodia, Pierangela Samarati (Eds.): Proceedings of the 7th ACM Con-
ference on Computer and Communications Security. CCS 2000, Athens, Greece, 2000

[15] Kristen LeFevre, David J. DeWitt, Raghu Ramakrishnan: Incognito: Efficient Full-
Domain K-Anonymity. In: Jennifer Widom, Fatma Ozcan, Rada Chirkova (Eds.): Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
SIGMOD Conference 2005, Maryland, USA, 2005

[16] Adam Meyerson, Ryan Williams: On the Complexity of Optimal K-Anonymity. In: Alin
Deutsch (Ed.): Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. PODS 2004, Paris, France, 2004

[17] Gerome Miklau, Dan Suciu: Containment and Equivalence for an XPath Fragment. Jour-
nal of the ACM, Volume 51, 2004

[18] Dan Olteanu, Holger Meuss, Tim Furche, François Bry: XPath: Looking Forward. EDBT
Workshops 2002

[19] Pierangela Samarati: Protecting Respondents' Identities in Microdata Release. IEEE
Transactions on Knowledge and Data Engineering, Volume 13, 2001

[20] Kilian Stoffel, Thomas Studer: Provable Data Privacy. In: Kim Viborg Andersen, John
Debenham, Roland Wagner (Eds.): Database and Expert Systems Applications. DEXA
2005, Copenhagen, Denmark, 2005

[21] Stonebraker, M.: Implementation of Integrity Constraints and Views by Query Modifica-
tion In: W. Frank King (Ed.): Proceedings of the 1975 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD Conference 1975, San Jose, California, 1975

[22] Latanya Sweene: Achieving k-Anonymity Privacy Protection Using Generalization and
Suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, Volume 10, 2002

[23] Latanya Sweene: k-Anonymity: A Model for Protecting Privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, Volume 10, 2002

[24] Chao Yao, Xiaoyang Sean Wang, Sushil Jajodia: Checking for k-Anonymity Violation
by Views. In: Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten,
Per-Åke Larson, Beng Chin Ooi (Eds.): Proceedings of the 31st International Conference
on Very Large Data Bases. VLDB 2005, Trondheim, Norway, 2005

SPIDER: An Autonomic Computing Approach
to Database Security Management

Hakan Hacıgümüş

IBM Almaden Research Center, USA
hakanh@acm.org

Abstract. The system management complexity is exponentially increa-
sing for the computing systems by even threatening their viability. Re-
searchers and practitioners are scrambling to significantly simplify the all
aspects of system management complexity. One of the most notable ef-
forts towards this direction is the autonomic computing initiative, which
is inspired by how the human body works to manage itself. In this pa-
per, we focus on the database security management. We approach the
security management issues from the autonomic computing perspective.
We consider situations where the database is damaged by successful ma-
licious attacks. Our goal is to design the system in such a way that the
database system should be able to isolate the damaged parts of the sys-
tem and to keep the other parts of the system functioning as the damage
is being repaired.

1 Introduction

The ever-increasing complexity of managing computing systems is becoming a
prohibitive factor for the growth, cost-effectiveness, and adoption of those sys-
tems and new technologies. Researchers and practitioners have been venturing
on significantly reducing the complexity in all aspects by introducing new ap-
proaches and solution paradigms. Arguably, autonomic computing is one of the
most prominent approaches to address increasing computing systems manage-
ment problems [9,14]. In essence, autonomic computing is inspired by how the
human body works to manage itself without external intervention in many cases.
Through various channels, the human body identifies the problems, necessary
solutions, and resources to realize those solutions without requiring directions
from outside and without disturbing the other parts of the body that are not
related to the problem. The autonomic computing initiative aims at creating
“self-managing” computing systems by following the similar model. The four
main functional areas of autonomic computing are defined as: self-configuring,
self-optimizing, self-healing, and self-protecting [9,14]. In this paper, we mainly
focus on the self-healing and self-protecting aspects from the database systems
security perspective.

The database systems are not immune to the management complexity prob-
lems we stated above as it is evident from the recent research work to make
database system management simpler, more automated, and more autonomous

W. Jonker and M. Petkovic (Eds.): SDM 2006, LNCS 4165, pp. 175–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 H. Hacıgümüş

[6,3,16,19,15,17]. One of the biggest challenges that database systems face today
is ensuring the security and privacy of the data stored in the databases [5,18,2].
The new computing models that are made viable by the Internet revolution,
mounting amount of data, and more importantly the increasing value of infor-
mation hidden in the data that is stored in the databases across the globe even
further intensify the security and privacy issues in databases [11,10,7].

First, potential attacks to breach the database security need to be identified.
This is mostly done by the Intrusion Detection Systems (IDSs). The Intrusion
Detection is an active area of research [4,8,13] and we will not provide the details
of IDSs as it is outside of the scope of this work. We will assume that there is an
IDS available, such as [1], in the system and discuss the minimum requirements
for the IDS in the following sections. IDSs aim to defend the whole computing
system by using combination of detection and data analysis techniques. Most
of the IDSs systems are built on two major principals, namely; anomaly detec-
tion and signature detection [4,13]. The anomaly detection tries to model the
normal behavior of the system components and the users, and to identify and
interpret deviations from this normal behavior. The signature detection tries to
identify any behavior that is similar to previously known pattern signature of
an intrusion.

Once an intrusion is detected, the system should take certain actions to stop
the attack and to recover from the possible damage that is caused by the attack.
If we consider this situation from a database management system perspective, an
obvious and naive action is that the database system stops accepting new query
requests until all of the affected transactions are rolled-back and the database is
returned to a consistent state by applying re-do operations on the valid trans-
actions. Although this solution might work, it would severely affect the systems
availability even for the unrelated parts of the system. By drawing the analogy
from the human defense and healing systems, the database system should be
able to isolate the damaged parts of the system and to keep the other parts
of the system functioning as the damage is being repaired. This is the guid-
ing principle for our system design for the Self-ProtectIng DatabasE Research
(SPIDER) project.

The remainder of the paper is organized as follows. Section 2 presents the
overall system architecture and explains main architecture components. Section 3
describes the query processing protocol to achieve our design goals. We conclude
the paper in Section 4.

2 System Architecture

The overall system architecture is shown in Figure 1. We explain each component
of the architecture below.

Query Monitor: The user queries, which are submitted against the database,
are first captured by the Query Monitor. The Query Monitor is responsible for
two main tasks: 1) Formatting and annotating the queries to allow comparison
with the Alert Log, which is available from the IDS and 2) Testing the queries to

SPIDER: An Autonomic Computing Approach 177

Queries
IDS

Database
Tables

Backlog
Tables

Query Log

Alert Log

Query
Monitor

Fig. 1. SPIDER system architecture

decide whether a particular query should be granted an access to the database
records.

Intrusion Detection System (IDS): We assume that an IDS is available in
the system, such as [1]. The only assumption we make is that the IDS is able
to provide the information items that the Query Monitor and the Alert Log
need for policy enforcement. We will describe these items in Section 3 where we
illustrate the query testing protocol.

We follow the attacks classification presented in [8] for the IDS. We consider
the following attack types: 1) A successful break-in, where the attacker gains
an access to the database through an unauthorized account, e.g., masquerading
some other users identity, and 2) penetration by a legitimate user, where the
attacker, who is a legitimate user in the system, tries to gain access to the parts
of the system to which he/she is not entitled. These attack types are the most
severe ones because in these types of attacks the malicious user may both execute
read and update queries. The update queries change the state of the database,
thus they may affect the outcome of the subsequent transactions. Therefore, for
every new incoming query, we need to identify whether the query involves the
records that have possibly been compromised by the detected attack.

Alert Log: The Alert Log keeps the list of queries that are identified by the IDS
as malicious queries. The Alert Log maintains the unique query ids to identify
those queries and those query ids are used by the Query Monitor.

Query Log: The Query Log keeps the log of all of the queries that change the
state of the database. Select queries do not change the state of the database,
however, update queries (update, insert, delete) change the state of the database.

Backlog Tables: We record all of updates in the Backlog Tables. Thus, the
Backlog Tables are used to capture the state of the database at a particular
point in time. Select queries do not insert any record in the backlog tables. In
practice, there are far more select queries than update queries and select queries

178 H. Hacıgümüş

do not create any overhead for the query log and backlog tables. We will explain
the schema details of the backlog tables in Section 3.2. Another observation is
that even the malicious attackers avoid executing excessive number of updates
against the database in order not to create a suspicious situation that can be
detected by the system monitors.

3 Query Processing Protocol

In this section we present our solution to improve system availability based on
the autonomic computing model. The process consists of series of tests on the
submitted queries by leveraging the system components described in Section 2.
Our goal is to maximize the system availability for the new incoming selection
queries, while the system is recovering from the damage caused by the identi-
fied malicious queries. To achieve this goal, we try to determine what database
objects are affected from the malicious transactions. After this, we try to verify
whether a new user query could be executed even though the system is in recov-
ery process. At this point, the critical question is that do the damaged database
objects have any impact on answering the new query accurately? If we figured
that the new query could be answered accurately, then the system could allow
the execution of the query thereby improving the availability of the database
system. We illustrate the process first by using examples and subsequently we
will give a formal control flow that describes the query testing process.

3.1 Initial Query Testing

The most straightforward test is based on the columns names that are mentioned
in the submitted query and is the malicious query from the Query Log. Let us
assume that the system has been identified a malicious query, MQ and there
is a new user query (or query, in short) Q submitted to the system. Simply, if
CMQ ⊆ CQ, where CMQ is the set of column names that are mentioned anywhere
in MQ and CQ is the set of column names that are mentioned anywhere in Q,
then there is a possibility that the query results could be inaccurate due to the
modifications of the malicious query on the database records. If CQ and CMQ

are disjoint, then the malicious query could not have any affect on the query
results, consequently the query can be executed safely. Although this test is
efficient and can be quickly performed, it may create overly pessimistic results
by blocking the processing of entire column (or multiple columns) because the
test does not check individual records to determine whether they could impact
the query results. This situation is illustrated in detail below.

Let us assume that we have a table Customer in the database, whose schema
is given as < ID, Name, Age >, where ID is the unique primary key for the
table. Let us consider a query σAge>25(Customer), where σ is the relational
selection operator. The initial content of the table is shown in Table 1. Let us
assume that a malicious query changed the value of Age column for the ID = 1
from 20 to 28 as shown in Table 2. In this case, the query would select the first
record, ID = 1, as it is qualified for the query predicate Age > 25. Obviously,

SPIDER: An Autonomic Computing Approach 179

Table 1. Table Customer, the
initial state

ID Name Age
1 John 20
2 Mary 29

Table 2. Table Customer, after
the malicious update

ID Name Age
1 John 28
2 Mary 29

Table 3. Table Customer, the
initial state

ID Name Age
1 John 20
2 Mary 29

Table 4. Table Customer, after
the malicious update

ID Name Age
1 John 24
2 Mary 29

this is an inaccurate result because the original value, 20, which would not have
been qualified, has been altered by the malicious query and now the record
is a qualified record for the query. If the malicious query is detected by the
IDS, it is recorded in the Alert Log. The Query Monitor combines the Alert Log
information, which provides Query IDs for the malicious queries, with the Query
Log, and performs the test to check whether the query and the malicious query
share a common column mane(s). In this case as the Age column is mentioned in
both of the queries the new user query is blocked until the changes that have been
made by the malicious query are rolled-back. As a result, the test successfully
prevents inaccuracy in the query results.

However, consider another case that is illustrated in Table 4. Let us consider
that the malicious query changed the value of Age column for the ID = 1 from
20 to 24. In this case, neither the original value, 20, nor the (maliciously) changed
value, 24, is qualified for the query predicate Age > 25. Therefore, although the
system is still recovering the damage caused by the malicious query, the new
query could safely be executed as the query results would not be affected. How-
ever, the first level test does not allow us to continue with the query processing
causing an unnecessary blockage. We devise further levels of testing to overcome
this issue and to allow for greater query processing flexibility by exploiting the
backlog table structure.

3.2 Backlog Table Structure

For each table T in the database, we create a backlog table BT . BT has the
schema that has the same set of columns of the schema of T and three additional
columns; timestamp, TS, Operation, OP , and QueryID, QID. This structure is
somewhat akin to the approach presented in [12]. Note that the unique key of
the table T is not a unique key for BT . A new record is inserted in a BT only
if there is an update operation executed against the table T . Update operations
are identified by one of the Insert, Update, Delete statements, hence Operation
column stores one of these values depending on the update operation. After
an Insert operation, a new record in BT is created with the identical column

180 H. Hacıgümüş

Table 5. Table Customer Backlog, after the malicious update

ID Name Age Op TS QID
1 John 20 Insert 10:23:32 12
2 Mary 29 Insert 10:24:30 13
1 John 24 Update 11:30:45 35

values in T . After an Update operation, a new record in BT is created with the
updated values of the record in T and we retain the previous records for the
corresponding record. After a Delete operation, a new record in BT is created
with the values of the record that exist before the delete in T and we retain the
previous records for the corresponding record. TS is the timestamp of the update
operation, and QID is the identifier for the update query. A sample backlog table
table for Customer is shown in Table 5 based on the database status for the
previous case. The first two records show the initial insert operations for John
and Mary. The third record is the update by the malicious query, altering the
Age value from 20 to 24 for John.

3.3 Advanced Query Testing

We can now describe the second level testing that exploits the backlog tables.
If the first level test gives a positive answer, – i.e, the query and the malicious
query have common column names– then we first look at whether the malicious
query has actually changed the values for the common columns. In our example
that is Age. This test is useful because even though Age column is mentioned
in the malicious query, the column value might not have been altered by the
malicious query at all. We can conduct this test by comparing the column value
with the previous column value that is created by a non-malicious query in the
backlog table. Formally, to obtain the column value, malV , that is updated by
the malicious query πC,TSσQID=mid(BT), where C is the common column name
between the query and the malicious query, mid is the query ID of the malicious
query, and π is relational projection operator. Once the value of C is retrieved
we can check the previous value, pV , that is updated by a non-malicious query
by πCσQID�=mid∧TS<ts(BT), where ts is the timestamp value for the malicious
query. If the column value for Age has not been changed, – i.e., malV = pV –
then the system may allow the query execution. Otherwise, we need to check
if pV is qualified for the query predicate. If pV is qualified, then the system
blocks the query. Because, at this point, we know that the malicious query has
been altered the column value and the original valid value was a qualified value.
Therefore, the new query request needs to wait until the affects of the malicious
query are rolled-back.

To continue the process, if pV is not qualified then we need to check the altered
value, malV against the query predicate. The new Age value is 24, which does
not qualify the query predicate. Therefore, even the malicious query changed the
column value the system may allow the query execution instead of blocking the
execution thereby introducing greater execution flexibility.

SPIDER: An Autonomic Computing Approach 181

Table 6. Table Customer Backlog, after the malicious update

ID Name Age Op TS QID
1 John 20 Insert 10:23:32 12
2 Mary 29 Insert 10:24:30 13
1 John 24 Update 11:30:45 35
1 John 26 Update 11:30:45 50

To illustrate the last level of testing consider the following case, which is also
shown in Table 6. This can be thought of the continuation of the previous case
from the database state perspective. After the execution of – malicious but then
legitimate query – QID = 35, there was another legitimate query QID = 50 in the
system. Let us assume that the IDS could not detect the malicious query, QID =
35, before the execution of QID = 50, accordingly the system allows the execution
of the query QID = 50. Let us assume that the query QID = 50 selects the
record where Name = “John” and updates his age by adding 2, thereby making
the Age = 26. Let us assume that the IDS detects the malicious query after this
point and triggers the roll-backprocess for all of the affected transactions including
QID = 50. In this case, the record is qualified for the new querys predicate Age >
25 and the system would allow the query execution based on the tests described
earlier.Because the tests explained above do not check the records that have a later
timestamp than that of the malicious query. Obviously, allowing the execution of
the new query will create inaccurate results. Note that, had the IDS detected the
malicious query before the execution of QID = 50, the Age value would have been
22, which is actually is not qualified for the new query, instead of 26. Therefore,
the system needs to conduct additional testing for the queries that updated the
columns that are included in a new query and executed after the malicious queries.

We can conduct this test by comparing the column value with the next column
value that is created by a non-malicious query in the backlog table after the
malicious query. Formally, to obtain the column value, malV , that is updated
by the malicious query πC,TSσQID=mid(BT), where C is the common column
name between the query and the malicious query and mid is the query ID of the
malicious query. Once the value of C is retrieved we can check the next value, nV ,
that is updated by a non-malicious query by πCσQID�=mid∧TS>ts(BT), where ts
is the timestamp value for the malicious query. If the column value for Age has
not been changed, i.e., nV = malV , the system may allow the query execution.
Otherwise, the system blocks the execution of the new query until the affected
transactions are first rolled-back and legitimate transactions are re-done.

The steps and the control flow for the testing process are shown in Figure 2.
In the examples and in the process flow we assumed there is a single query for
previous, next, and malicious queries. However, the techniques we describe can
be extended to the cases where there are multiple instances of those queries in a
straightforward manner. We follow the same notation we used in the examples
where, malQ is malicious query, malV is the column value after the execution
of the malicious query, pQ is the previous query that is executed immediately
before the malicious query, pV is the column value after the execution of the

182 H. Hacıgümüş

Y

CMQ⊆CQ Allow
N

MQ changed values Allow
N

pV is qualified Block
Y

malV is qualified Block
Y

Y

Is there nQ ? Allow
N

nQ changed values Allow
N

Block

N

N

Y

Y

Start

Fig. 2. Control flow for the query testing protocol

previous query, nQ is the next query that is executed immediately after the
malicious query, nV is the column value after the execution of the next query.

4 Conclusions

We have presented our design approach to database security management from
the autonomic computing perspective. The guiding principle for the approach is
to enable a database system to isolate the damaged parts of the system and to
keep the other parts of the system functioning as the damage is being repaired,
if there is a successful break-in that have damaged parts of the system. We
have presented the system architecture to reach this goal and illustrated query
processing protocols to isolate the damaged parts of the system from the intact
parts thereby keeping the undamaged parts of the system functioning. This work
is based on our design experiences from a continuing project in the subject area.

References

1. IBM Tivoli Risk Manager. Info Available at
http://www-306.ibm.com/software/tivoli/products/risk-mgr/.

2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In Proc.
of VLDB, 2002.

SPIDER: An Autonomic Computing Approach 183

3. S. Agrawal, S. Chaudri, and V. R. Narasayya. Automated Selection of Materialized
Views and Indexes for SQL Databases. In Proc. of VLDB, 2000.

4. S. Axelsson. Intrusion Detection Systems: A Taxomomy and Survey. Technical re-
port, Dept. of Computer Engineering, Chalmers University of Technology, Sweden,
2000.

5. S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison-
Wesley Publishing Company, 1995.

6. S. Chaudhuri, E. Christensen, G. Graefe, V. R. Narasayya, and M. J. Zwilling. Self-
tuning technology in microsoft sql server. Data Engineering Bulletin, 22(2):20–26,
1999.

7. E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.
Balancing confidentiality and efficiency in untrusted Relational DBMSs. In Proc.
of 10th ACM Conf. On Computer and Communications Security, 2003.

8. D. Denning. An Intrusion-Detection Model. IEEE Transactions on Software En-
gineering, 13(2), 1987.

9. A. G. Ganek and T. A. Corbi. The Dawning of the Autonomic Computing Era.
IBM Systems Journal, 42(1):5–18, 2003.

10. H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted
Data in Database Service Provider Model. In Proc. of ACM SIGMOD, 2002.

11. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Providing Database as a Service. In Proc.
of ICDE, 2002.

12. C. S. Jensen, L. Mark, and N. Roussopoulos. Incremental Implementation Model
for Relational Databases with Transaction Time. IEEE Transactions on Knowledge
and Data Engineering, 3(4):461–473, 1991.

13. R. A. Kemmerer and G. Vigna. Intrusion detection: a brief history and overview.
IEEE Computer, 35(4), 2002.

14. J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE
Computer, 36(1):41–50, 2003.

15. E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic Configuration for IBM
DB2 Universal Database. Available at
http://www.redbooks.ibm.com/redpapers/pdfs/redp0441.pdf.

16. G. Lohman and S. Lightstone. SMART: Making DB2 (More) Autonomic. In Proc.
of VLDB, 2002.

17. G. Lohman, G. Valentin, D. Zilio, M. Zuliani, and A. Skelly. DB2 Advisor: An
optimizer Smart Enough to Recommend Its Own Indexes. In Proc. of ICDE, 2000.

18. T. Lunt and E. B. Fernandez. Database Security. ACM SIGMOD Record, 19(4),
1990.

19. J. Rao, C. Zhang, G. Lohman, and G. Megiddo. Automating Physical Database
Design in a Parallel Database System. In Proc. of ACM SIGMOD, 2002.

Author Index

An, Xiangdong 30

Bertino, Elisa 48
Böttcher, Stefan 18, 160
Byun, Changwoo 115
Byun, Jin Wook 64, 75
Byun, Ji-Won 48

Cercone, Nick 30
Chinaei, Amir H. 131

Hacıgümüş, Hakan 175

Jajodia, Sushil 1
Jeong, Ik Rae 64
Jutla, Dawn 30

Kühn, Ulrich 146

Lee, Dong Hoon 64, 75
Li, Ninghui 48

Obermeier, Sebastian 18
Osborn, Sylvia L. 100

Park, Hyun-A 75
Park, Seog 115
Prasad, P. Krishna 84

Rangan, C. Pandu 84
Rhee, Hyun Sook 64
Rhee, Hyun Suk 75

Sohn, Yonglak 48
Song, Yunyu 100
Steinmetz, Rita 160

Wang, Lingyu 1
Wang, Sean X. 1

Yao, Chao 1

Zhang, Huaxin 131

	Front matter
	Chapter 1
	Introduction
	Indistinguishability
	Preliminaries
	Symmetric Indistinguishability
	Relationship with k-Anonymity
	Restricted Symmetric Indistinguishability

	Checking Database Views
	Checking for k-SIND
	Checking for k-RSIND

	Related Work
	Conclusions

	Chapter 2
	Introduction
	Basic Assumptions and Requirements
	Solution
	Impossibility of Atomic Data Exchange
	Information Units
	Cryptographic Basis
	Exchange Algorithm
	Impeding Tuple Faking
	Exchange Speed Versus Trust

	Related Work
	Summary and Conclusion

	Chapter 3
	Introduction
	Related Work
	Dynamic Bayesian Networks
	Obfuscation Detection
	The Problem and the Method
	An Example
	Discussion
	Formal Description

	Conclusion

	Chapter 4
	Introduction
	Examples of Inferences
	Contributions and Paper Outline

	k-Anonymity and -Diversity
	Incremental Data Release and Inferences
	Incremental Data Release
	Inference Attacks

	Secure Anonymization
	-Diversity Algorithm and Data Quality
	Updates of Anonymized Datasets
	Preventing Inference Channels

	Experimental Results
	Related Work
	Conclusions

	Chapter 5
	Introduction
	Our Work and Motivation

	Attacks on Golle et al.'s Conjunctive Keyword Search Schemes
	Difference Set Attacks on Golle I Scheme
	Difference Set Attacks on Golle II Scheme

	Attack on Park et al.'s Conjunctive Keyword Search Scheme
	Attack on Rhee et al.'s Conjunctive Keyword Search Scheme
	Conclusion

	Chapter 6
	Introduction
	Our Contributions
	Organization

	Keyword Search Schemes and Their Security Definitions
	Keyword Search Schemes

	Keyword Guessing Attacks on Boneh et al.'s Scheme
	A Brief Description of Boneh et al.'s Scheme
	Security Vulnerability

	Keyword Guessing Attacks on Park et al.'s Schemes
	A Brief Description of Park et al.'s Scheme I
	Security Vulnerability
	A Brief Description of Park et al.'s Scheme II
	Security Vulnerability

	Conclusion and Open Problem

	Chapter 7
	Introduction
	Related Work
	 Preliminaries
	Building Blocks
	Overview of BIRCH
	Secure BIRCH Algorithm
	Secure CF Tree Insertion
	Secure Single Link Clustering

	Conclusion and Future Work

	Chapter 8
	Introduction
	Conflict of Interest in the Centralized Role Graph Model
	Decentralized Administration in the Role Graph Model

	Conflicts in the ARGM
	Conflicts Arising from Role Graph Operations
	Role Addition
	Role Deletion
	Privilege Administration

	Conflicts and Operations on Administrative Domains
	Creating a Domain
	Deleting a Domain
	Other Operations on Administrative Domains

	Administration of Constraints
	Conclusions

	Chapter 9
	Introduction
	Related Works
	Background
	XPath and Access Control Rule
	Access Control Policies
	PRE/POST Structure

	Two Phase Filtering
	First Phase Filtering: Rule Filter
	Second Phase Filtering: Query Filter

	Experiments
	Experiment 1: Correctness of Detecting Rejection Queries
	Experiment 2: Estimating the Average Processing Time

	Conclusion

	Chapter 10
	Introduction
	Conflict Resolution Framework
	Conflict Resolution Models
	Algorithms for Conflict Resolution in the DLP Model
	Bottom-Up Algorithm
	PairWise Algorithm
	Dominance Algorithm

	Extending the Algorithms to Other Models
	Experiments
	Related Work
	Conclusions and Future Works
	References

	Chapter 11
	Introduction
	Description of the Database and Index Encryption Scheme
	Threat Model
	Table Cell Encryption Scheme
	Index Encryption Scheme of ElWaSh2004
	Improved Index Encryption Scheme of ShWaEl2005

	Attacking the Schemes
	Attacks on the Cell Encryption Scheme
	Attacks on the Index Encryption Scheme in ElWaSh2004
	Attacking the Improved Index Encryption Scheme in ShWaEl2005

	Fixing the Schemes
	Summary

	Chapter 12
	Introduction
	Motivation
	Paper Organization
	Audit Language
	General Assumptions and Problem Definition

	Audit System Architecture
	Basic Definitions and Concepts
	Secret Information and Suspicious Queries
	Normalized XPath Expressions and Binary XML Trees
	Minimal Readset Fragments

	Algorithms
	Replaceable Minimal Readset Fragments
	Identifying Proper Candidate Queries

	Relation to Other Works
	Conclusions

	Chapter 13
	Introduction
	System Architecture
	Query Processing Protocol
	Initial Query Testing
	Backlog Table Structure
	Advanced Query Testing

	Conclusions

	Back matter

