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Chapter 1
Introduction

Recent years have seen increasing use of wireless technologies in diverse applica-
tions such as in environment monitoring, health care, and industrial monitoring and
control. The convenience and cost savings due to the elimination of the need for
wiring are readily apparent, for instance, the ease nowadays of setting up wireless
networks in the home. Due to advances in micro-electro-mechanical technology,
small and low-cost sensors with sensing, computation and wireless communication
capabilities have become widely available. Such wireless sensors and actuators can
be placed where wires cannot go, or where power sockets are not available. With
this technology, ecosystems such as the Great Barrier Reef in Australia can be con-
tinuously monitored for pollution and to study the effects of climate change [1]. In
health care, different body parts of a patient can be remotely monitored and doctors
alerted if more medication or treatment is required [2].

New technologies such as cyber-physical systems [3, 4], smart cities [5, 6] and
the Internet of Things [7, 8] have been envisioned, where many everyday objects are
connected together (and also to the Internet) to form a network, potentially bringing
further improvements to the quality of life. For example, using the location informa-
tion of vehicles in the city can allow for improved traffic flow, alert drivers to areas of
congestion and optimize the traffic light patterns for public transport. Autonomous
vehicles, which will soon be available to the general public, can potentially lead to
fewer accidents and increased traffic capacity. Buildings can be made more energy
efficient by using more sophisticated control of the heating and cooling, ventilation
and lighting, e.g. by using information on people’s behaviour. Infrastructure such
as water distribution networks can be continuously monitored, such that faults are
detected and attended to quickly, leading to less wastage of resources. Air quality can
be monitored with high resolution, alerting citizens and authorities when needed. In
all these cases, communication with other sensors/devices or central authorities will
be mainly over wireless channels.

© The Author(s) 2018
A.S. Leong et al., Optimal Control of Energy Resources for State Estimation
Over Wireless Channels, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-65614-4_1
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2 1 Introduction

Fig. 1.1 Networked control
system

Networked Control Systems

In industrial monitoring and control applications, the driving force behind using
wireless technology is its lower deployment and reconfiguration cost. Here, reliable
operation is of vital importance, as a delay in implementing appropriate feedback
control actions can drive a dynamical system to instability and cause substantial
damage (both physical and financial). Nonetheless, even in such mission critical
domains, the use of wireless technologies has becomemore prevalent, with industrial
wireless sensor networks standards such as WirelessHART [9] being developed.

This has motivated significant research into networked control systems [10–13],
where measurement and control signals are transmitted over channels (e.g. fading
channels) or networks, see Fig. 1.1. In addition to bit rate limitations, these chan-
nels/networks introduce effects such as packet drops and delays. Research in net-
worked control systems has included the derivation of conditions for stability and
stabilizability, and methods for designing estimators and controllers which have a
degree of robustness, in the presence of such effects. To derive these results, often
the wireless environment has been abstracted into stochastic models such as i.i.d. (or
Markovian) packet dropping links or regarded fading as multiplicative noise, which
are then studied using mainly control-theoretic techniques. However, our view is that
techniques and ideas from wireless communications itself, such as how to optimally
manage energy resources in the presence of fading, can also be effectively utilized in
the study and design of networked control systems. This book aims to demonstrate
that making use of these additional techniques can provide significant performance
gains.

Wireless Communications

Wireless channels, also known as fading channels, are inherently randomly time-
varying, due to the small-scale effect of multipath, and larger scale effects such as
path loss and shadowing by obstacles [14]. This can cause the transmitted signals
to be attenuated, distorted, delayed or lost in ways which are difficult to predict, see
Fig. 1.2. Signals transmitted by different sensors/devices over the wireless medium
can also interfere with each other. Maintaining acceptable quality of service in such
conditions is a challenging problem. Nevertheless, the goal of communicating with
high reliability at ever higher data rates has been pursued extensively by the wireless
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Fig. 1.2 Channel
measurements taken at a
paper mill [15]
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communications community over the last 30 years, and many novel ideas have been
developed.

In particular, power control is a key enabling technology for wireless communica-
tions. It serves to compensate for the time-varying channel gains, to provide quality
of service guarantees to users and also to increase spectral efficiency [14]. Energy
harvesting technologies [16, 17], where the sensor can recharge their batteries by
extracting energy from the surrounding environment, can dramatically increase the
lifetime of nodes in wireless sensor networks, and will be fundamental in the imple-
mentation of self-sustaining cyber-physical systems and the Internet of Things. Cod-
ing schemes can improve the reliability of the transmitted information, with network
coding even able to increase throughput [18, 19]. Multi-hop networks and coopera-
tive communications via the use of relays [20] have been identified as some of the key
enabling technologies for fifth generation (5G) mobile networks [21]. These ideas,
just to name a few, have not receivedmuch attention in the study of networked control
systems so far, while we believe that they can, and should, be fruitfully utilized.

Contributions and Scope of This Book

One of the goals of this book is to bring closer together the wireless communications
and control literature, by introducing wireless communications techniques and ideas
into the study and design of networked control systems. For that purpose, the focus
is on state estimation problems where sensor measurements (or related quantities
such as local state estimates or innovations) are transmitted over wireless links to
a central observer, see Fig. 1.3. State estimation of dynamical systems is important
in areas such as environment monitoring and tracking. Furthermore, estimated state
feedback control forms a central part of contemporary control systems [22]. Indeed,
some of the topics studied in this book have also been extended to feedback control
[23–26].



4 1 Introduction

Fig. 1.3 Networked
estimation

The approach taken in this book is to utilize some of the techniques and ideas that
have been developed in wireless communications for energy1 resource management,
in order to improve the performance of the estimator when transmission occurs over
wireless packet dropping links. Many previous works have studied Kalman filtering
and control over packet dropping links, but where the energy usage is not explicitly
taken into account [27, 28]. Some works in the networked estimation and control
literature have considered fading [29–33], but apart from [32] the fading is often
treated as unknown multiplicative noise. This can lead to conservative designs, since
in practice, often knowledge of the fading channel gains is available2 at the receiver
(or transmitter). Thus, in this book, we will assume that the fading channel gains
are known and can be exploited, e.g. by using power control [14] to enhance system
performance.

Energy harvesting based rechargeable batteries or storage devices can offer sig-
nificant advantages in the deployment of large-scale wireless sensor and actuator
networks. These devices, when integrated into the sensor/actuator nodes, provide
freedom from the task of periodically having to replace batteries, and open the pos-
sibility for sensors to operate in a self-sustaining manner. Recent research on energy
harvesting has largely focused on resource allocation for wireless communication
systems design, optimizing communication objectives such as maximizing through-
put or minimizing transmission delay [35–37]. In contrast, in this book, we directly
optimize estimation objectives such as minimizing the expected estimation error
covariance.

This book focuses on performance optimization of networked estimation systems,
which goes beyond the notion of stability/stabilizability considered in many papers.
As mentioned previously, two fundamental aspects in wireless communications are
fading and interference [14]. In this book, we directly deal with fading, while inter-
ference is indirectly dealt with in our formulation via the particular abstraction of
packet loss that can consider interference by using higher packet loss probabilities.
In terms of robustness issues, our work in power control addresses robustness with
respect to the time-varying behaviour of the fading channels. However, robustness
in terms of model imperfections lies beyond the scope of this book and will not be
considered.

Book Outline

Chapter2 deals with power allocation for state estimation of discrete-time linear
dynamical systems. The sensors transmit measurements over a packet dropping
channel, where the probability of successful packet reception is time-varying and

1We measure energy on a per channel use basis and will refer to energy and power interchangeably.
2In wireless communication, this is referred to as having channel state information at the receiver
or transmitter [34].

http://dx.doi.org/10.1007/978-3-319-65614-4_2
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Fig. 1.4 Energy harvesting

Fig. 1.5 Event triggered
estimation

depends on the instantaneous fading channel gain and transmit power used. We first
consider a transmission power control problem to minimize a linear combination of
the expected error covariance and expected energy usage. We then study an optimal
transmission power control problem where energy is randomly harvested from the
environment. Here, the transmission energy is constrained by the battery level (which
depends on the energy used in previous time steps and the energy harvested in the
meantime), see Fig. 1.4.

Chapter3 considers event-triggered estimation, see Fig. 1.5, where a sensor will
transmit local state estimates to a remote estimator only when certain events occur,
e.g. if the estimation quality has deteriorated sufficiently. This can save energy while
still maintaining a certain level of performance. In particular, we study the case
where the transmission decisions are obtained from the solution to an optimization
problem that minimizes a linear combination of the expected error covariance and
expected energy usage. We derive structural results which show that the optimal
policy is of threshold type, i.e. transmit if and only if the error covariance at the
remote estimator exceeds a certain threshold. This provides a rigorous justification
of variance-based threshold policies proposed in [38]. We then consider the problem
ofminimizing the expected error covariance subject to energy harvesting constraints,
where a transmission can occur only if there is sufficient energy in the battery. We
show that the optimal policies have a threshold structure in both the error covariance
and the battery level.

Chapter4 studies a design problem which arises in the context of optimal trans-
mission strategies for remote state estimation. We consider the case where a sensor
can either transmit its local state estimate or its local innovations. While transmit-
ting local estimates will give improved performance at the remote estimator, often it
will also have a larger variance and require more energy to transmit. This raises the
issue of finding a transmission strategy that optimizes a linear combination of the
expected error covariance and expected energy usage. For scalar systems, it turns out
that (similar to Chap.3) the optimal strategy also has a threshold structure, where
one transmits the estimates if the error covariance exceeds a certain threshold, and
transmits the innovations otherwise.

http://dx.doi.org/10.1007/978-3-319-65614-4_3
http://dx.doi.org/10.1007/978-3-319-65614-4_4
http://dx.doi.org/10.1007/978-3-319-65614-4_3
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Fig. 1.6 Multi-hop network

Chapter5 focuses on remote state estimation problems over multi-hop networks,
see Fig. 1.6. Here, we show that performance benefits can be obtained if one adopts
more advanced communication techniques such as network coding [18, 19], relays
[20], and rerouting [39]. We first consider a set-up where sensors can transmit both
directly to the remote estimator or via intermediate relays. We consider different
operations that the relay can perform such as forwarding of transmissions or network
coding operations, and optimize over the relay operations and transmission powers.
Next, we consider the problemof reconfiguring the topology of (or rerouting) amulti-
hop network, in order to respond to time variations in thewireless channel conditions.
Optimal and suboptimal methods for reconfiguring the network are proposed, and
their performance compared.
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Chapter 2
Optimal Power Allocation for Kalman
Filtering over Fading Channels

Kalman filtering with random packet drops has been studied extensively since the
work of [1], which showed that for i.i.d. Bernoulli packet drops, there exists a crit-
ical threshold such that if the packet arrival rate exceeds this threshold, then the
expected error covariance remains bounded, but diverges otherwise. This work has
been extended in various directions such as: multiple sensors [2, 3], further charac-
terizations of the critical threshold [4, 5], probabilistic notions of performance [6,
7], performing local processing before transmission [8], consideration of delays [9]
and Markovian packet drops [10, 11].

As mentioned in Chap.1, in wireless communications, power control is regularly
used to improve system performance and reliability [12, 13]. The primary focus
of the previously mentioned works is on deriving conditions for stability of the
estimator, and power control is not explicitly considered. However, power control
can also be used in Kalman filtering to improve the estimator stability and estimation
performance. For Kalman filtering over continuous fading channels, the use of power
control for outage minimization and expected error covariance minimization has
been studied in [14]. The works of [15, 16] consider the use of power control at
the sensor over a continuous fading channel, with the data being sent over this
channel after digital modulation, which would then give a corresponding packet
loss probability dependent on the transmit power at the sensor. Power allocation
using model predictive control techniques is considered in [15], while optimal power
allocation schemes to guarantee stability are investigated in [16].

In conventional wireless communication systems, the sensors have access either
to a fixed energy supply or have batteries that may be easily recharged/replaced.
In contrast, when energy harvesting capabilities are available, then the sensors can
recharge their batteries by collecting energy from the environment, e.g. solar, ther-
mal, mechanical vibrations, or electromagnetic radiation [17, 18]. In the context of
wireless sensor networks, the use of energy harvesting may be especially useful, e.g.
in remote locations with restricted access to an energy supply, and even mandatory

© The Author(s) 2018
A.S. Leong et al., Optimal Control of Energy Resources for State Estimation
Over Wireless Channels, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-65614-4_2
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where it is dangerous or impossible to change the batteries. The amount of energy
harvested is random as most renewable energy sources are unreliable. Clearly, the
energy expenditure at every time slot is constrained by the amount of stored energy
currently available. This, however, complicates the design of suitable transmission
power allocation policies. Communication schemes for optimizing throughput or
minimizing transmission delay for transmitters with energy harvesting capability
have been studied in [19–23], while a remote estimation problem with an energy
harvesting sensor was considered in [24], which minimized a cost consisting of both
the distortion and the number of sensor transmissions.

In this chapter, we adopt the channel model of [15, 16], but instead of using power
allocation to achieve filter stability, we are interested in the use of power allocation
to improve the estimation performance of the Kalman filter. Section2.1 first studies
optimal power allocation for sensors without energy harvesting capabilities. Here,
we focus on minimizing the trace of the expected error covariance subject to an
average transmit power constraint. The problem is formulated as a Markov decision
process (MDP) problem that can be solved numerically with dynamic programming
techniques. Two simpler suboptimal schemes are also investigated, namely a constant
power allocation scheme and a truncated channel inversion policy. Section2.2 then
investigates the situation with an energy harvesting sensor. An important issue is to
address the trade-off between the use of available stored energy to improve the current
transmission reliability (and thus state estimation accuracy), or the storing of energy
for future transmissionswhichmaybe affected by higher packet loss probabilities due
to severe fading. The optimal transmission energy allocation policies are obtained
by the use of dynamic programming techniques. Using the concept of submodularity
[25], the structure of the optimal transmission energy policies is also studied.

2.1 Optimal Power Allocation for Remote State Estimation

2.1.1 System Model

A diagram of the system model for this section is given in Fig. 2.1. Consider a linear
system

xk+1 = Axk + wk (2.1)

where xk ∈ R
n , and wk is i.i.d. Gaussian with zero mean and covariance matrix

Q > 0.1 The sensor makes a measurement

yk = Cxk + vk (2.2)

1We say that a matrix X > 0 if X is positive definite, and X ≥ 0 if X is positive semi-definite.
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Fig. 2.1 Transmission
power control for remote
state estimation

where yk ∈ R
m , and vk is i.i.d.Gaussianwith zeromean and covariancematrix R > 0.

We assume that the pair (A,C) is detectable and the pair (A, Q1/2) is stabilizable.
The measurement is then sent to a remote estimator over a packet dropping link,

which can be modelled as
zk = γk yk,

where zk is the quantity received at the remote estimator. Here, the measurement
yk is assumed to be encoded to form a single packet, and γk = 1 denotes that the
measurement packet is received (i.e. correctly decoded), while γk = 0 denotes that
the packet is lost (i.e. corrupted).2

Kalman Filter with Random Packet Drops

In order to estimate the state xk , the remote estimator runs a Kalman filter, which also
takes into account the random packet drops [1]. The Kalman filter state estimates
and error covariances are defined as:

x̂k|k = E[xk |z0, . . . , zk, γ0, . . . , γk]
x̂k+1|k = E[xk+1|z0, . . . , zk, γ0, . . . , γk]
Pk|k = E[(xk− x̂k|k)(xk− x̂k|k)T |z0, . . . , zk, γ0, . . . , γk]

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |z0, . . . , zk, γ0, . . . , γk].

The Kalman filtering equations with packet drops are given by:

x̂k|k = x̂k|k−1 + γk Kk(yk − Cx̂k|k−1)

x̂k+1|k = Ax̂k|k
Pk|k = Pk|k−1 − γk Pk|k−1C

T (CPk|k−1C
T + R)−1CPk|k−1

Pk+1|k = APk|k AT + Q,

(2.3)

where Kk = Pk|k−1CT (CPk|k−1CT + R)−1. In this chapter, we will also use the
shorthand Pk � Pk|k−1. Then {Pk} satisfies

Pk+1 = APk A
T +Q−γk APkC

T (CPkC
T +R)−1CPk A

T .

2In practice this can be determined using simple error detecting codes.
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Packet Drop Model

In this chapter, we will adopt a model from [15, 16] for the packet loss process
{γk} that is governed by a time-varying wireless fading channel {gk} and the sensor
transmit power control {uk} over this channel. In this model, the conditional packet
reception probabilities are given by

P(γk = 1|gk, uk) � f (gkuk) (2.4)

where f (.) : [0,∞) → [0, 1] is a monotonically increasing continuous function.
The form of f (.)will depend on the particular digital modulation scheme being used
[26], see e.g. (2.12) for the case of binary phase shift keying (BPSK) transmission.

We will consider the case where {gk} is an i.i.d. block fading process [27], where
the channel remains constant over a fading block (representing the coherence time
of the channel [28]) but can vary from block to block in an i.i.d. manner.

Kalman Filter Stability

We assume that channel state information (CSI) is available at the remote estimator,
such that the remote estimator knows the values of the channel gains gk at time
k.3 Since CSI is assumed to be available, we will allow the sensor transmit power
uk to depend on both gk and Pk . Note that if the energy allocation uk is computed
based on the estimation error covariance (and not the state xk), then the optimal
estimator is still given by the Kalman filter (2.3). In the next section, we consider
optimal power allocation to minimize the trace of the expected error covariance. Due
to limited computational resources at the sensor, the optimal sensor transmit powers
are computed at the remote estimator and fed back to the sensor.4

Using techniques from [29], we can obtain the following sufficient condition for
stability of the Kalman filter, for power control schemes {uk} which are allowed to
depend on the channel gains gk and error covariances Pk .

Theorem 2.1 Let ‖A‖ denote the spectral norm of A. If there exists an r ∈ [0, 1)
such that:

P(γk = 1) ≥ 1 − r

‖A‖2 , ∀k ∈ N,

then {Pk} satisfies
E[tr(Pk)] ≤ αrk + β, ∀k ∈ N (2.5)

for some α, β ∈ R.

3In practice, this can be achieved by periodically sending pilot signals either from the sensor to the
remote estimator to allow the remote estimator to estimate the channel, or from the remote estimator
to the sensor under channel reciprocity.
4In wireless communications, online computation of powers at the base station, which is then fed
back to the mobile transmitters, is commonly done in practice [12], at time scales on the order of
milliseconds.



2.1 Optimal Power Allocation for Remote State Estimation 13

2.1.2 Optimal Power Allocation

Theproblemweconsider in this subsection is to determine the optimal sensor transmit
power allocation, in order to minimize the trace of the expected error covariance
subject to an average transmit power constraint P , i.e. we are interested in solving

min{uk }
lim sup
K→∞

1

K

K−1∑

k=0

E[tr(Pk+1)]

s.t. lim sup
K→∞

1

K

K−1∑

k=0

E[uk] ≤ P.

(2.6)

Remark 2.1 When the system matrix A is unstable (i.e. has eigenvalues outside the
unit circle), Kalman filtering with packet losses can have unbounded expected error
covariances in certain situations [1]. This then raises the question as to whether
problem (2.6) is well posed. In [16], we studied the problem of determining the
minimum average power required for guaranteeing that Theorem 2.1 is satisfied.
Choosing P in the average power constraint of problem (2.6) to be greater than
this minimum average power (see [16] for details on how to compute this minimum
average power) will be sufficient to make (2.6) well posed.

The optimization problem (2.6) can be regarded as a constrained average cost
Markov decision process (MDP) problem [30] with (Pk, gk) as the ‘state’ and uk as
the ‘action’ of the MDP. To solve this problem, we will use a Lagrangian technique
similar to [14, 30, 31] that considers instead the following unconstrained MDP
problem:

min{uk }
lim sup
K→∞

1

K

K−1∑

k=0

E[tr(Pk+1) + βuk]

= min{uk }
lim sup
K→∞

1

K

K−1∑

k=0

E[E[tr(Pk+1)|Pk, gk, uk] + βuk],
(2.7)

where β ≥ 0 specifies the trade-off between the average transmit power and expected
error covariance. Solving (2.7) for different values of β will then correspond to
minimizing the trace of the expected error covariance for different average transmit
power constraints in (2.6).

The average cost optimality equation or Bellman equation [32] associated with
problem (2.7) can be written as

ρ+h(Pk, gk) = min
uk

[
E[tr(Pk+1)|Pk, gk, uk] + βuk

+
∫

gk+1,Pk+1

h(Pk+1, gk+1)F(d(Pk+1, gk+1)|Pk, gk, uk)
]
,

(2.8)
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where ρ is the optimal average cost per stage, h the differential cost and F the
probability transition law of (Pk, gk).

We first show that there exist stationary solutions to the MDP (2.7). We will make
the following additional assumption:

Assumption 2.1.1 The range of uk is bounded, i.e. uk ∈ [0, umax ],∀k.
Such an assumption is obviously justified from a practical point of view.

Lemma 2.1 Under Assumption 2.1.1, there exists a stationary solution to the
Bellman equation (2.8) which solves the MDP (2.7).

Proof The proof involves verifying the conditions from [33] that guarantee the exis-
tence of stationary solutions for MDPs with Borel state and action spaces. The veri-
fication of these conditions is very similar to the proof of Lemma 3 in [14], see also
the proof of Theorem 2.3 in the appendix to this chapter. The details are omitted for
brevity. �

For computational purposes, the Bellman equation can be further simplified as
follows:

ρ + h(Pk , gk)

= min
uk

[
E[tr(Pk+1)|Pk , gk , uk ] + βuk

∫

gk+1,Pk+1

h(Pk+1, gk+1)F(d(Pk+1, gk+1)|Pk , gk , uk)
]

= min
uk

{
tr(APk A

T + Q) + βuk − f (gkuk)tr
(
APkC

T (CPkC
T + R)−1CPk A

T
)

+
∫

Pk+1,gk+1

h(Pk+1, gk+1)F(d(Pk+1, gk+1)|Pk , gk , uk)
}

(a)= min
uk

{
tr(APk A

T + Q) + βuk − f (gkuk)tr
(
APkC

T (CPkC
T + R)−1CPk A

T
)

+
∫

Pk+1,gk+1

h(Pk+1, gk+1)F(dPk+1|Pk , gk , uk)F(dgk+1)
}

(b)= min
uk

{
tr(APk A

T + Q) + βuk − f (gkuk)tr
(
APkC

T (CPkC
T + R)−1CPk A

T
)

+
∫

gk+1

[
h(APk A

T + Q, gk+1)(1 − f (gkuk))

+h
(
APk A

T+Q−APkC
T (CPkC

T+R)−1CPk A
T, gk+1

)
f (gkuk)

]
F(dgk+1)

}

(2.9)

where (a) follows from the fact that gk+1 is independent of Pk+1, and (b) follows from
writing out the conditional expectation E[h(Pk+1, gk+1)|Pk, gk, uk]. For numerical
implementation, a discretized version of the Bellman equation (2.9) can then be
solved using, e.g. the relative value iteration algorithm [32] to find solutions to the
MDP (2.7).
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Remark 2.2 The discretized solution is, strictly speaking, a suboptimal approxi-
mation to the true optimal solution, however, the use of discretization is generally
unavoidable forMDPswith continuous state and action spaces. As the number of dis-
cretization levels increases, the discretized solution usually converges to the optimal
solution [34].

Now let p∗(u) be the minimum trace of the expected error covariance such that the
average transmit power is less than u. By solving the MDP (2.7) for different values
of β, one can obtain points of the function p∗(u), corresponding to different trade-
offs between the average transmit power and trace of the expected error covariance,
see Fig. 2.2. We have the following characterization of the function p∗(u):

Lemma 2.2 Suppose f (.) in (2.4) is a strictly concave function. Then p∗(u) is a
decreasing strictly convex function of u.

Proof See Appendix.

An example of a strictly concave f (.) is given by (2.12) in Sect. 2.1.4. Using
Lemma2.2, one can conclude from the theory of Pareto optimality that all points
on the curve p∗(u) can be obtained by solving the MDP (2.7) for an appropriate
choice of β, see [35, 36] for further details.

2.1.3 Suboptimal Power Allocation Policies

The optimal solution considered in the previous section requires the solution of an
MDP, which is computationally demanding, particularly for vector systems. In this
section, we consider two suboptimal policies which are simpler to compute and
implement than the optimal solution of Sect. 2.1.2.

Constant Power Allocation

One very simple scheme is to use constant power allocation, where uk = uconst ,∀k.
With this policy, the conditional packet reception probabilities f (gkuconst ) will
depend only on the channel gain gk .

Truncated Channel Inversion

Another suboptimal scheme is based on the concept of channel inversion, which is a
simple but quite commonly used technique inwireless communications, that attempts
to invert the channel at every time instance to maintain a constant quality of service.
However, it is known that for certain fading distributions such as Rayleigh fading,
channel inversion actually requires infinite average power, so some modifications
to the scheme such as truncation (where channel inversion is only carried out if the
channel gain is sufficiently large) are necessary [37]. The power allocation policy
we consider here is of the following form:
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uk =
{

α/gk, if gk > g∗
α/g∗, otherwise (2.10)

where α and g∗ are values which can be designed. This scheme inverts the channel
gk and multiplies it by a gain α if gk is greater than some threshold g∗, otherwise it
transmits with the constant power α

g∗ . The average transmit power using this scheme
is

E[uk] =
∫ ∞

g∗

α

gk
F(dgk) +

∫ g∗

0

α

g∗ F(dgk)

= αE(g∗) + α

g∗ FG(g∗),∀k

where

E(g∗) �
∫ ∞

g∗

1

gk
F(dgk),

and FG(.) is the cumulative distribution function of gk . For instance, if gk ∼ Exp(1),
which is an example of Rayleigh fading [28], we have E(g∗) = ∫∞

g∗ exp(−gk)/gk
dgk = E1(g∗) (i.e. the exponential integral), and FG(g∗) = 1 − exp(−g∗).

In terms of the packet loss process {γk}, under this power allocation scheme,
γk = 1with conditional probability f (α)when gk > g∗, and γk = 1with conditional
probability f ( αgk

g∗ ) when gk ≤ g∗. That is, we have

γk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, w.p. f (α)(1 − FG(g∗)) +
∫ g∗

0
f

(
αgk
g∗

)
F(dgk)

0, w.p. (1 − f (α))(1 − FG(g∗)) +
∫ g∗

0

(
1 − f

(
αgk
g∗

))
F(dgk).

Therefore, using this scheme, γk becomes an i.i.d. Bernoulli process with probability
of successful packet reception f (α)(1 − FG(g∗)) + ∫ g∗

0 f ( αgk
g∗ )F(dgk).

As the values α and g∗ can be chosen by us, we can optimize α and g∗ to minimize
the trace of the expected error covariance subject to an average power constraint, i.e.
solving problem (2.6) but with uk restricted to be of the form (2.10). For i.i.d. packet
losses, it is known that the expected error covariance is a decreasing function of the
packet reception probability [1]. Hence, the problem is equivalent to minimizing the
probability of packet loss subject to an average power constraint P , i.e.

min
α,g∗ (1 − f (α))(1 − FG(g∗)) +

∫ g∗

0

(
1 − f

(
αgk
g∗

))
F(dgk)

s.t. αE(g∗) + α

g∗ FG(g∗) = P.

(2.11)

We can further simplify problem (2.11) by rearranging the constraint to express α in
terms of g∗, i.e.
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Fig. 2.2 Average transmit
power versus expected error
covariance

α = P

E(g∗) + 1
g∗ FG(g∗)

.

The optimization problem (2.11) then becomes a one-dimensional line search over
g∗, which can be easily solved numerically.

2.1.4 Numerical Studies

We present here numerical results for a scalar system with parameters A = 1.2,
C = 1, Q = 1, R = 1. We consider the case where the digital communication uses
binary phase shift keying (BPSK) transmission [26] with b bits per packet, so that
we have

P(γk = 1|gk, uk) = f (gkuk) =
⎛

⎜⎝

√
gkuk∫

−∞

1√
2π

e−t2/2dt

⎞

⎟⎠

b

(2.12)

One can verify that f (.) is a strictly concave function for b ∈ {1, 2, 3, 4, 5}. In the
simulations below we use b = 4. The fading channel is taken to be Rayleigh [28],
so that gk is exponentially distributed with p.d.f.

p(gk) = 1

ḡ
exp(−gk/ḡ), gk ≥ 0

with ḡ being itsmean. Here, wewill use ḡ = 1. In solving theBellman equation (2.9),
we use 50 discretization points for each of the quantities Pk, gk, uk , see Remark2.2.
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Fig. 2.3 Optimal power allocations

In Fig. 2.2, we plot the average transmit power versus expected error covariance
trade-off, for the cases of optimal power allocation of Sect. 2.1.2, and the constant
power allocation and truncated channel inversion policies of Sect. 2.1.3. We see that
optimal power allocation has significant performance gains over the simpler subopti-
mal policies of Sect. 2.1.3 for low average transmit powers, with the performance of
the constant power allocation and channel inversion policies being almost identical.
While for higher average transmit powers, the truncated channel inversion policy has
performance approaching that of the optimal power allocation policy.

In Fig. 2.3, we plot a single simulation run of Pk and gk , together with the cor-
responding optimal power allocations uk . We can see that in the optimal power
allocation scheme, the allocated powers will depend on both the current channel
gain gk and error covariance Pk . The allocated power uk tends to be higher when the
error covariance Pk is larger, provided the corresponding channel gain gk is not too
small.

2.2 Optimal Power Allocation with Energy Harvesting

A diagram of the system architecture for this section is shown in Fig. 2.4. The model
for the process (2.1) and (2.2) and packet drops (2.4) is the same as that of Sect. 2.1.
We assume that the packet loss process {γk} is fed back to the sensor, which allows
the sensor to reconstruct the error covariances {Pk} at the remote estimator.
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Fig. 2.4 Transmission power control with energy harvesting

In contrast to Sect. 2.1, here, the sensor is equipped with energy harvesting capa-
bilities. Let the energy harvesting process be denoted by {Hk}, where Hk is the energy
harvested between the discrete time instants k−1 and k. The process {Hk} ismodelled
as a stationary, first-order, homogeneous Markov process, which is independent of
the fading process {gk}. This modelling for the harvested energy process is justified
by empirical measurements in, e.g. the case of solar energy [38].

We assume that the dynamics of the stored battery energy B(·) is given by the
following first-order Markov model

Bk+1 = min{Bk − uk + Hk+1, Bmax}, k ≥ 0, (2.13)

where uk is the transmission energy at time k, and Bmax is themaximum stored energy
in the battery.

2.2.1 Optimal Energy Allocation Problems

In this subsection, we formulate optimal transmission energy5 allocation problems
in order to minimize the trace of the receiver’s expected estimation error covariance.
Unlike the problem formulation in Sect. 2.1, here, the optimal energy policies are
computed at the sensor, since the sensor has information about the energy harvesting
and instantaneous battery levels, as well as knowledge of {Pk} from the feedback of
{γk}.

We consider the scenario of causal information, where the realizations of future
wireless fading channel gains and harvested energies are not a priori known to the
transmitter, see also Remark2.4. More precisely, the information available at the
sensor at any time k ≥ 1 is given by

5We measure energy on a per channel use basis and we will refer to energy and power interchange-
ably in this chapter.
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Ik = {st := (γt−1, gt , Ht , Bt ) : 1 ≤ t ≤ k} ∪ I0 (2.14)

where I0 := {g0, H0, B0, P0} is the initial condition.
The information Ik is used at the sensor to decide uk , the amount of transmission

energy to use at time k. This quantity affects both the packet loss process and the
amount of energy in the battery. A policy {uk} is feasible if the energy harvesting
constraint 0 ≤ uk ≤ Bk is satisfied for all k ≥ 1. The admissible control set is then
given by U := {

u(·) : uk is adapted to sigma-field σ(Ik) and 0 ≤ uk ≤ Bk
}
.

The optimization problems are now formulated as Markov decision processes for
the following two cases:

(i) Finite-time horizon:

min{uk :0≤k≤T−1}

T−1∑

k=0

E[tr(Pk+1)]

s.t. 0 ≤ uk ≤ Bk 0 ≤ k ≤ T − 1

(2.15)

(ii) Infinite-time horizon:

min{uk :k≥0} lim sup
T→∞

1

T

T−1∑

k=0

E[tr(Pk+1)]

s.t. 0 ≤ uk ≤ Bk k ≥ 0

(2.16)

where Bk is the stored battery energy available at time k, which satisfies the battery
dynamics (2.13). It is evident that the transmission energy uk at time k not only
affects the amount of stored energy Bk+1 available at time k+1, but thereby also the
transmission energy uk+1, since 0 ≤ uk+1 ≤ Bk+1 = min{Bk −uk + Hk+1, Bmax} by
(2.13). One of the key issues in solving problems (2.15) and (2.16) is to determine
if one should use a lot of energy at time k, or save up some of the energy for use at
future times.

We now give sufficient conditions under which the infinite horizon stochastic
control problem (2.16) is well posed when the system matrix A is unstable. With
well posedwe, here,mean that an exponential boundedness condition for the expected
estimation error covariance is satisfied. LetG andH be the time-invariant probability
transition laws of the Markovian channel fading process {gk} and the Markovian
harvested energy process {Hk}, respectively.

We introduce the following assumption:

Assumption 2.2.1 The channel fading process {gk}, harvested energy process {Hk}
and the maximum battery storage Bmax satisfy the following:
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sup
(g,H)

∫

gk

∫

Hk

(1−h(gk min{Hk, Bmax}))P(gk |gk−1=g)P(Hk |Hk−1=H)dgkdHk

≤ r

||A||2 , k ≥ 0 (2.17)

for some r ∈ [0, 1), where ||A|| denotes the spectral norm of A.

Theorem 2.2 Assume that Assumption 2.2.1 holds. Then there exist energy alloca-
tions {uk} such that E[Pk] satisfies;

E[tr(Pk)] ≤ αrk + β, k ≥ 0 (2.18)

for some nonnegative scalars α and β, and r ∈ [0, 1). As a result, the stochastic
optimal control problem (2.16) is well posed.

Proof Based on Theorem 1 of [39], a sufficient condition for exponential stability
in the sense of (2.18) is that

sup
(g,H)

P(γk = 0|gk−1 = g, Hk−1 = H)

= sup
(g,H)

∫

gk

∫

Hk

P(γk =0|gk =g′,Hk =H ′,gk−1=g,Hk−1=H)

× P(gk, Hk |gk−1=g, Hk−1=H)dgkdHk

= sup
(g,H)

∫

gk

∫

Hk

P(γk =0|gk =g′,Hk =H ′,gk−1=g,Hk−1=H)

× P(gk |gk−1=g)P(Hk |Hk−1=H)dgkdHk

= sup
(g,H)

∫

gk

∫

Hk

(1 − h(gkuk))P(gk |gk−1 = g)P(Hk |Hk−1 = H)dgkdHk ≤ r

‖A‖2

for some r ∈ [0, 1). We now consider a suboptimal solution to the stochastic optimal
control problem (2.16), where the full amount of energy harvested at each time step
is used, i.e. u0 = B0 and uk = min{Hk, Bmax} for k ≥ 1. Then with this policy
(2.17) will be a sufficient condition for (2.18) in terms of the channel fading process,
harvested energy process and the maximum battery storage. Therefore, Assumption
2.2.1 provides a sufficient condition for the exponential boundedness (2.18) of the
expected estimation error covariance. �

Remark 2.3 In general, condition (2.17) given by Assumption 2.2.1 may be difficult
to verify for all values of g, H and k. However, if we assume that the channel fading
and harvested energy processes are stationary, then it would not be necessary to
verify the condition for all k. Furthermore, in the two most commonly used models,
namely i.i.d. processes and finite state Markov chains, the condition (2.17) can be
simplified as follows:

(i) If {gk} and {Hk} are i.i.d., then (2.17) amounts to
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∫

gk

∫

Hk

(1 − h(gk min{Hk, Bmax}))P(gk)P(Hk)dgkdHk ≤ r

||A||2 .

(ii) If {gk} and {Hk} are stationary finite state Markov chains with state spaces
{1, . . . , M} and {1, . . . , N } respectively, then (2.17) becomes

max
(i, j)

M∑

i ′=1

N∑

j ′=1

(1 − h(i min{ j, Bmax}))P(gk = i ′|gk−1 = i)P(Hk = j ′|Hk−1 = j) ≤ r

‖A‖2 .

2.2.2 Solutions to the Optimal Energy Allocation Problems

The stochastic control problems (2.15) and (2.16) can be regarded as constrained
Markov decision process (MDP) [30] problems with sk := (Pk, gk, Hk, Bk) as the
state and uk as the control action. We will approach the constrained MDPs (2.15)
and (2.16) by the use of dynamic programming techniques.

Note that due to the existence of a perfect feedback link the sensor has knowledge
about whether its transmissions have been received at the receiver or not. Hence, at
time k the sensor knows {Pt : 0 ≤ t ≤ k}. The information available at the sensor at
time instant k ≥ 0 is given by (2.14), which can be easily shown to be equivalent to

Ik := {st = (Pt , gt , Ht , Bt ) : 0 ≤ t ≤ k}.

The causal information Ik is used to decide the amount of transmit energy uk
to be used at time k. The transmit energy policy is computed offline using dynamic
programming.We recall that a policyuk is feasible if the energyharvesting constraints
0 ≤ uk ≤ Bk = min{Bk−1 − uk−1 + Hk−1, Bmax} are satisfied for all k ≥ 1.

For the finite-time horizon problem (2.15), we may define the value function at
time k as

Vk(s) := min
{ul }T−1

l=k

T−1∑

t=k

E[tr(Pt+1)|st , ut ], s.t. sk = s.

The optimality equation or Bellman dynamic programming equation associated
with the constrained stochastic control problem (2.15) is then given by

Vk(sk) = min
0≤uk≤Bk

{
E[tr(Pk+1)|sk, uk] + E[Vk+1(sk+1)|sk, uk]

}
(2.19)

with the terminal condition

VT (sT ) := min
0≤uT ≤BT

E[tr(PT+1)|sT , uT ] = E[tr(PT+1)|sT , BT ],

where we use all available energy for transmission at the final time T .



2.2 Optimal Power Allocation with Energy Harvesting 23

The optimal transmission energy at time instant k ≥ 0 is

u∗
k(sk) = arg min

0≤uk≤Bk

{
E[tr(Pk+1)|sk, uk] + E[Vk+1(sk+1)|sk, uk]

}
(2.20)

where Vk+1(·) is the solution to the Bellman equation (2.19).
We now simplify the terms in (2.19). First, we have

E[tr(Pk+1)|sk , uk ] = tr
(
APk A

T + Q
)− f (gkuk)tr

(
APkC

T [CPkC
T + R]−1CPk A

T
)

with the constraint that 0 ≤ uk ≤ Bk . On the other hand,

E[Vk+1(sk+1)|sk , uk ] =
∫

sk+1

Vk+1(sk+1)F(dsk+1|sk , uk)

=
∫

Pk+1,gk+1,Hk+1,Bk+1

Vk+1(Pk+1, gk+1, Hk+1, Bk+1)F(d(Pk+1, gk+1, Hk+1, Bk+1)|Pk , gk , Hk , Bk , uk)

where F is the probability transition law. But this together with (2.13) implies that

E[Vk+1(sk+1)|sk, uk]
) =

∫

Pk+1,gk+1,Hk+1

Vk+1

(
Pk+1, gk+1, Hk+1,min{Bk − uk + Hk, Bmax}

)

× F(dPk+1|Pk, gk, uk)G(gk+1|gk)H(Hk+1|Hk)

which follows from the fact that the mutually independentMarkovian processes gk+1

and Hk+1 are independent of Pk+1. This gives

E[Vk+1(sk+1)|sk, uk]
)

(2.21)

=
∫

gk+1,Hk+1

{
Vk+1

(
APk A

T + Q, gk+1, Hk+1,min{Bk − uk + Hk, Bmax}
)

× (
1 − f (gkuk)

)

+ Vk+1

(
APk A

T + Q − APkC
T [CPkC

T + R]−1CPk A
T , gk+1, Hk+1,

min{Bk − uk + Hk, Bmax}
)

× f (gkuk)
}
G(gk+1|gk)H(Hk+1|Hk). (2.22)

Define

L (P, γ ) � APAT + Q − γ APCT (CPCT + R)−1CPAT (2.23)
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For the infinite-time horizon problem (2.16), we have the following:

Theorem 2.3 Independent of the initial condition I0 = {g0, H0, B0, P0}, the value
of the infinite-time horizon minimization problem (2.16) is given by ρ, which is the
solution of the average cost optimality (Bellman) equation

ρ + V (P, g, H, B) = min
0≤u≤B

{
E
[
tr
(
L (P, γ )

)∣∣P, g, u
]

+ E

[
V
(
L (P, γ ), g̃, H̃ ,min{B − u + H̃ , Bmax}

)∣∣P, g, H, u
]}

, (2.24)

where V is the relative value function.

Proof See Appendix. �

We note that a discretized version of the Bellman equations (2.19) or (2.24) can
be used for numerical computation to find solutions to the MDP problems (2.15) and
(2.16).

Remark 2.4 The causal information pattern is clearly relevant to most practical sce-
narios. However, it is also instructive to consider the non-causal information scenario
where the sensor has a priori information about the energy harvesting {Hk} process
and the fading channel gains {gk} for all time periods, including the future ones. This
may be feasible in the situation of known environment where the wireless channel
fading gains and the harvested energies are predictable with high accuracy [22].
Furthermore, the performance of the non-causal information case can serve as a
benchmark (a lower bound) for the causal case. Indeed, we will present some perfor-
mance comparisons between the causal and non-causal cases in Sect. 2.2.4. Note that
the energy allocation problems for the non-causal case can be solved using similar
techniques as in the current subsection, thus the details are omitted for brevity. �

2.2.3 Structural Results on the Optimal Energy Allocation
Policies

In this section, the structure of the optimal transmission energy policy (2.20) is
studied for the case of the finite-time horizon stochastic control problem (2.15) with
causal information. Following similar arguments, one can show similar structural
results for the infinite-time horizon problem (2.16). We begin with a preliminary
result, which will be needed for the proof of Theorem 2.4.

Lemma 2.3 Suppose f (·) in (2.4) is a concave function in uk given gk. Then, for
given Pk, gk and Hk, the value function Vk(Pk, gk, Hk, Bk) in (2.19) is convex in Bk

for 0 ≤ k ≤ T . As a result,
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V0(P0, g0, H0, B0) = min
{0≤uk≤Bk }T−1

k=0

T−1∑

k=0

E[tr(Pk+1)]

is convex in B0.

Proof Recall that sk = (Pk, gk, Hk, Bk). First, note that, for given PT , gT and HT ,
the final time value function

VT (sT ) = min
0≤uT ≤BT

E[tr(PT+1)|sT , uT ] = E[tr(PT+1)|sT , BT ]

is a convex function in BT , due to the fact that f (·) is a concave function in uk given
gk (see Lemma 2.2). Assume that Vk+1(sk+1) is convex in Bk+1 for given Pk+1, gk+1

and Hk+1. Then, for given Hk and uk , the function

Vk+1(Pk+1, gk+1, Hk+1,min{Bk − uk + Hk, Bmax})

is convex in Bk , since it is theminimumof the constant Vk+1(Pk+1, gk+1, Hk+1, Bmax)

and (by the induction hypothesis) the convex function Vk+1(Pk+1, gk+1, Hk+1, Bk −
uk + Hk). Since the expectation operator preserves convexity, E[Vk+1(sk+1)|sk, uk]
given in (2.22) is a convex function in Bk .AsVk(sk) in (2.19) is the infimal convolution
of two convex functions in Bk for given Pk, gk and Hk , it is also convex in Bk (see
the proof of Theorem 1 in [22]). �

The following result shows that for fixed Pk, gk and Hk , the optimal energy allo-
cated is increasing with the battery level.

Theorem 2.4 Suppose f (·) in (2.4) is a concave function in uk given gk. Then,
given Pk, gk and Hk, the optimal energy policy uok(Pk, gk, Hk, Bk) in (2.20) is non-
decreasing in Bk for 0 ≤ k ≤ T .

Proof Assume Pk, gk and Hk are fixed. Define

L(B, u) = E[tr(Pk+1)|Pk, gk, u]
+ E[Vk+1(Pk+1, gk+1, Hk+1,min{B − u + Hk, Bmax})|Pk, gk, Hk, u].

We wish to show that L(B, u) is submodular in (B, u), i.e. for every u′ ≥ u and
B ′ ≥ B, we have [25]:

L(B ′, u′) − L(B, u′) ≤ L(B ′, u) − L(B, u). (2.25)

It is evident thatE[tr(Pk+1)|Pk, gk, u] is submodular in (B, u) since it is independent
of B. Let

Z(x) := E[Vk+1(Pk+1, gk+1, Hk+1,min{x + Hk, Bmax})|Pk, gk, Hk, u].
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Since Z(x) is convex in x by Lemma 2.3, we have

Z(x + ε) − Z(x) ≤ Z(y + ε) − Z(y), x ≤ y, ε ≥ 0

(see Proposition 2.2.6 in [40]). Letting x = B − u′, y = B − u and ε = B ′ − B,
we then have the submodularity condition (2.25) for Z̃(B, u) � Z(B − u) [22].
Therefore, L(B, u) is submodular in (B, u). We then note that submodularity is a
sufficient condition for optimality of monotone increasing policies [25], i.e. since
L(B, u) is submodular in (B, u), then u∗(B) = argminu L(B, u) is non-decreasing
in B. �

As discussed in [22], the structural result of Theorem 2.4 implies that if uuck is the
unique solution to the convex unconstrained minimization problem

uuck (Pk, gk, Hk)

= argmin
uk

{
E[tr(Pk+1)|Pk, gk, uk] + E[Vk+1(Pk+1, gk+1, Hk+1)|Pk, gk, Hk, uk]

}
,

then the solution to the constrained problem (2.20), where 0 ≤ uk ≤ Bk , will be of
the form

u∗
k(Pk, gk, Hk, Bk) =

⎧
⎨

⎩

0, if uuck ≤ 0
uuck , if 0 < uuck < Bk

Bk, if uuck ≥ Bk .

In the case that the transmission energy allocation uk belongs to a two element
set {E0, E1}, the monotonicity of Theorem 2.4 yields a threshold structure. This
threshold structure implies that, for fixed Pk, gk and Hk , the optimal transmission
energy allocation is of the form

u∗
k(Pk, gk, Hk, Bk) =

{
E0, if Bk ≤ B∗
E1, otherwise,

where B∗ is the corresponding battery storage threshold. The threshold structure
of the optimal energy allocation policy in the case of a binary energy allocation
set simplifies the implementation of the optimal energy allocation significantly. A
stochastic gradient algorithm for computing B∗ is presented in [41].

2.2.4 Numerical Studies

We present here numerical results for a scalar process with the following parameters:
A = 1.2, C = 1, Q = 1, R = 1. We assume that the sensor uses a binary phase
shift keying (BPSK) transmission scheme with b bits per packet. Therefore, (2.4) is
of the form [26]:
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Fig. 2.5 Infinite-time
horizon average error
covariance versus maximum
battery storage
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P(γk = 1|gk, uk) = f (gkuk) =
⎛

⎜⎝

√
gkuk∫

−∞

1√
2π

e−t2/2dt

⎞

⎟⎠

b

where we use b = 4 in the simulations.
The fading channel is taken to be Rayleigh [28], so that {gk} is i.i.d. expo-

nentially distributed with probability density function (p.d.f) of the form P(gk) =
1
ḡ exp(−gk/ḡ), with ḡ being its mean. We also assume that the harvested energy

process {Hk} is i.i.d. and exponentially distributed, with p.d.f. P(Hk) = 1
H̄

exp(−Hk/H̄), with H̄ being its mean.
For the following simulation results, we use 50 discretization points for each of

the quantities Pk, gk, Bk, uk in the Bellman equations.
We first fix the mean of the fading channel gains to ḡ = 1 decibel (dB) and

the mean of the harvested energy to H̄ = 1 milliwatt hour (mWh). Then, we plot in
Fig. 2.5 the expected error covariance versus themaximum battery storage energy for
the infinite-time horizon problem (2.16), where both cases of causal and non-causal
fading channel gains and energy harvesting information are shown, see Remark2.4.
We see that the performance gets better as the maximum battery storage energy
increases in both cases. Figure2.5 also shows that, as expected, the performance
for the non-causal information case is generally better than the performance of the
system with only causal information.

Finally, we fix the mean of the harvested energy to H̄ = 1 (mWh), and the max-
imum battery storage energy to 2 (mWh). For the infinite-time horizon formulation
(2.16), the expected error covariance versus the mean of the fading channel gains is
plotted in Fig. 2.6, for both cases of causal and non-causal information. As shown in
Fig. 2.6, in both cases, the performance improves as the mean of the fading channel
gain increases.
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Fig. 2.6 Infinite-time
horizon average error
covariance versus mean of
fading channel gains
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2.3 Conclusion

In this chapter, we have investigated transmission power control for Kalman filtering
with random packet drops over a fading channel, where the packet reception proba-
bility depends on both the time-varying fading channel gain and the sensor transmit
power. We first studied the problem of minimizing the trace of the expected error
covariance subject to an average power constraint. The resulting Markov decision
process problems are solved by the use of dynamic programming techniques. Simpler
suboptimal power allocation policies such as a constant power allocation policy and
a truncated channel inversion policy have also been considered. Numerical studies
suggest that, for low average transmit powers, optimal power allocation significantly
outperforms the suboptimal policies, while for higher average transmit powers, the
performance of the truncated channel inversion policy approaches the performance
of the optimal policy.

We then studied the problem of optimal transmission energy allocation for esti-
mation error covariance minimization, when the sensor is equipped with energy har-
vesting capabilities. In this problem formulation, the trace of the expected estimation
error covariance of the Kalman filter is minimized, subject to energy harvesting con-
straints. Using the concept of submodularity, some structural results on the optimal
transmission energy allocation policy have also been obtained.

Notes: Section2.1 is based on [42], while Sect. 2.2 is based on [41]. The case
of imperfect feedback acknowledgements, and a stochastic gradient algorithm for
computing the threshold in the case of binary energy levels, is also considered in
[41]. The work of [41] has since been extended to control with an energy harvesting
in [43]. Energy harvesting in the context of estimation and control has also been
subsequently studied in [44, 45], see also Sect. 3.2.

http://dx.doi.org/10.1007/978-3-319-65614-4_3
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In this book, power allocation decisions are often made at the remote estimator
(this is analogous to the situation inwireless communications,where power allocation
is often done at the base station and fed back to the mobiles), which motivates us to
consider decisions based on the estimation error covariance. When power allocation
decisions are made at the sensor, researchers have tried to make use of additional
state (or measurement) information [46, 47].

Appendix

Proof of Lemma 2.2

Proof The proof uses similar ideas to the proof of Proposition3.1 in [36]. The
decreasing property follows from the relation

E[Pk+1] = E[Pk+1|Pk, gk, uk]
= E[APk AT+Q− f (gkuk)APkC

T(CPkC
T+R)−1CPk A

T ]

and the assumption that f (.) is an increasing function.
For the proof of convexity, let u1 and u2 be two average transmit powers, where

u1 �= u2, with p∗(u1) and p∗(u2) the corresponding traces of the expected error
covariances. We want to show that

p∗(λu1 + (1 − λ)u2) < λp∗(u1) + (1 − λ)p∗(u2),∀λ ∈ (0, 1).

Let {u1k(Pk, gk)} be the optimal power allocation policy that achieves p∗(u1), and
{u2k(Pk, gk)} be the optimal power allocation policy that achieves p∗(u2). Define a
new policy {uλ

k (Pk, gk)} such that

uλ
k (Pk, gk) = λu1k(Pk, gk) + (1 − λ)u2k(Pk, gk),∀Pk, gk .

We will first show that for a given Pk , we have:

(1) E[uλ
k |Pk] ≤ λE[u1k |Pk] + (1 − λ)E[u2k |Pk], and

(2) E[tr(Pλ
k+1)|Pk] < λE[tr(P1

k+1)|Pk] + (1 − λ)E[tr(P2
k+1)|Pk],

where P j
k+1 is the value of Pk+1 that follows fromusing policy {u j

k (.)}, for j = 1, 2, λ,
respectively. For (1), this clearly follows from the definition of uλ

k . For (2), we have
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E[tr(Pλ
k+1)|Pk]

=
∫ (

tr(APk A
T + Q) − f (gku

λ
k )tr(APkC

T (CPkC
T + R)−1CPk A

T )
)
F(dgk)

<

∫ (
tr(APk A

T + Q) − (λ f (gku
1
k) + (1 − λ) f (gku

2
k))

× tr(APkC
T (CPkC

T + R)−1CPk A
T )
)
F(dgk)

= λE[tr(P1
k+1)|Pk] + (1 − λ)E[tr(P2

k+1)|Pk]

where the inequality comes from the strict concavity of f (.).
From (1) and (2), we have

lim
K→∞

1

K

K∑

k=1

E[uλ
k ] = lim

K→∞
1

K

K∑

k=1

E[E[uλ
k |Pk]]

≤ lim
K→∞

1

K

K∑

k=1

E[λE[u1k |Pk] + (1 − λ)E[u2k |Pk]]

= λu1 + (1 − λ)u2

and

lim
K→∞

1

K

K∑

k=1

E[tr(Pλ
k+1)] = lim

K→∞
1

K

K∑

k=1

E[E[tr(Pλ
k+1)|Pk ]]

< lim
K→∞

1

K

K∑

k=1

E

[
λE[tr(P1

k+1)|Pk ] + (1 − λ)E[tr(P2
k+1)|Pk ]

]

= λp∗(u1) + (1 − λ)p∗(u2).

By the definition of p∗(u) being theminimum expected error covariance such that the
average transmit power is less than or equal to u, we then have p∗(λu1+(1−λ)u2) ≤
1
K

∑K
k=1 E[tr(Pλ

k+1)] < λp∗(u1) + (1 − λ)p∗(u2).

Proof of Theorem 2.3

We first establish the inequality

ρ + V (P, g, H, B) ≥ min
0≤u≤B

{
E
[
tr
(
L (P, γ )

)∣∣P, g, u
]

+ E

[
V
(
L (P, γ ), g̃, H̃ ,min{B − u + H̃ , Bmax}

)∣∣P, g, H, u
]}

(2.26)
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by verifying conditions (W) and (B) of [48], that guarantee the existence of solutions
to (2.26) for MDPs with general state space. Denote the state space byS and action
space by A , i.e. (Pk, gk, Hk, Bk) ∈ S and uk ∈ A . Condition (W) of [48] in our
notation says that:

(1) The state space S is locally compact.
(2) Let U (·) be the mapping that assigns to each (Pk, gk, Hk, Bk) the nonempty set
of available actions. ThenU (Pk, gk, Hk, Bk) lies in a compact subset ofA andU (·)
is upper semicontinuous.
(3) The transition probabilities are weakly continuous.
(4) E

[
tr
(
L (P, γ )

)∣∣P, g, u
]
is lower semicontinuous.

By our assumption that uk ≤ Bk ≤ Bmax, (0) and (1) of (W) can be easily verified.
The conditions (2) and (3) follow from the definition (2.23).

Define wδ(P0, g0, H0, B0) = vδ(P0, g0, H0, B0) − mδ , where

vδ(P0, g0, H0, B0) = inf{uk :k≥0}E

[ ∞∑

k=0

δkE
[
tr
(
L (Pk, γk)

)∣∣Pk, gk, uk
]∣∣P0, g0, H0, B0

]

and mδ = inf (P0,g0,H0,B0) vδ(P0, g0, H0, B0). Condition (B) of [48] in our notation
says that

sup
δ<1

wδ(P0, g0, H0, B0) < ∞, ∀ (P0, g0, H0, B0).

Following Sect. 4 of [48], define the stopping time

τ = inf{k ≥ 0 : vδ(Pk, gk, Hk, Bk) ≤ mδ + ς}

for someς ≥ 0.Givenς > 0 and an arbitrary (P0, g0, H0, B0), consider a suboptimal
power allocation policy where the sensor transmits based on the same policy as the
one that achieves mδ (with a different initial condition) until vδ(PN , gN , HN , BN ) ≤
mδ + ς is satisfied at some time N . By the exponential forgetting property of initial
conditions for Kalman filtering, we have N < ∞with probability 1 and E[N ] < ∞.
Since τ ≤ N , we have E[τ ] < ∞. Then by Lemma4.1 of [48],

wδ(P0, g0, H0, B0) ≤ ς + inf{γk }
E

[
τ−1∑

k=0

E
[
tr
(
L (Pk, γk)

)∣∣Pk, gk, uk
]∣∣P0, g0, H0, B0

]

≤ ς + E[τ ] × Z < ∞ (2.27)

where the second inequality uses Wald’s equation, with Z being an upper bound to
the expected error covariance, which exists by Theorem 2.2. Hence, condition (B)
of [48] is satisfied and a solution to the inequality (2.26) exists.

To show equality in (2.26), we will require a further equicontinuity property of the
optimal cost for the related discounted cost MDP to be satisfied. This can be shown
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by a similar argument as in the proof of Proposition3.2 of [49]. The assumptions in
Sects. 5.4 and 5.5 of [33] may then be verified to conclude the existence of a solution
to the average cost optimality equation (2.24).
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Chapter 3
Optimal Transmission Scheduling
for Event-Triggered Estimation
with Packet Drops

As we have seen in the previous chapters, energy usage is a crucial issue in wireless
networked control systems. The concept of event-triggered estimation of dynamical
systems, where sensor measurements or state estimates are sent to a remote estima-
tor/controller only when certain events occur, has gained significant recent attention.
By transmitting onlywhen necessary, as dictated by performance objectives, e.g. such
as when the estimation quality at the remote estimator has deteriorated sufficiently,
potential savings in energy usage, which are important in networked estimation and
control applications, can be achieved.

Event-triggered estimation has been investigated in e.g. [1–11], while event-
triggered control has been studied in e.g. [12–16]. Many rules for deciding when a
sensor should transmit have been proposed in the literature, such as if the estimation
error [2, 4, 5, 8], error in predicted output [11], other functions of the estimation error
[3, 9, 10], or the error covariance [7], exceed a given threshold. These transmission
policies often lead to energy savings. However, the motivation for using these rules is
usually based on heuristics. Furthermore, mostly the idealized case, where all trans-
missions (when scheduled) are received at the remote estimator, is considered. Packet
drops [17], which are unavoidable when using a wireless communication medium,
are neglected in these works, saved for some works in event-triggered control [14,
16].

In Sect. 3.1, we consider an event-triggered estimation problem with i.i.d. packet
drops, and derive structural properties on the optimal transmission schedule.1 For
transmission schedules which decide whether to transmit local state estimates based

1Optimal transmission scheduling can in some ways be regarded as less general than the optimal
power allocation problems studied in Chap.2. On the other hand, stronger structural results can be
obtained when we restrict ourselves to transmission scheduling problems where the possible sensor
decisions are either transmit or don’t transmit.
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only on knowledge of the error covariance at the remote estimator, our analysis shows
that a threshold policy, where the sensor transmits if the error covariance exceeds a
threshold and does not transmit otherwise, is indeed optimal. For noiseless measure-
ments and no packet drops, similar structural results were derived using majorization
theory for scalar [18] and vector [19] systems respectively. In the situation where
sensor measurements (rather than local estimates) are transmitted, the optimality
of threshold policies is proved for the scalar case in Sect. 3.1.4. These structural
results provide a theoretical justification for the use of such variance-based thresh-
old policies in event-triggered estimation. However, for vector systems, we provide
a counterexample to show that, in general, threshold-type policies are not optimal
when measurements are transmitted.

In Sect. 3.2, we study the casewhere the sensor is equippedwith energy harvesting
capabilities (see Chap.2, [20, 21], and the references therein), and transmission over
a packet dropping channel can only occur if there is sufficient energy in the battery.
We will prove that for a given battery energy level and a given harvested energy, the
optimal policy is a threshold policy on the error covariance. Similarly, for a given
error covariance and a given harvested energy, the optimal policy is a threshold policy
on the battery level.

3.1 Transmission Scheduling over a Packet Dropping
Channel

3.1.1 System Model

A diagram of the system model for this section is shown in Fig. 3.1. Consider a
discrete-time process

xk+1 = Axk + wk, (3.1)

where xk ∈ R
n and wk is i.i.d. Gaussian with zero mean and covariance Q > 0.2

There is a sensor taking measurements

yk = Cxk + vk, (3.2)

where yk ∈ R
m and vk is i.i.d. Gaussian with zero mean and covariance R > 0. We

assume that {wk} and {vk} are mutually independent, the pair (A,C) is detectable
and the pair (A, Q1/2) is stabilizable.

In contrast to the situation examined inChap.2, here, the sensor has computational
capability that allows it to run a local Kalman filter. The state estimates and error
covariances at the sensor, namely

2We say that a matrix X > 0 if X is positive definite, and X ≥ 0 if X is positive semi-definite.

http://dx.doi.org/10.1007/978-3-319-65614-4_2
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Fig. 3.1 Transmission scheduling for remote state estimation

x̂ sk|k−1 � E[xk |y0, . . . , yk−1]
x̂ sk|k � E[xk |y0, . . . , yk]

Ps
k|k−1 � E[(xk − x̂ sk|k−1)(xk − x̂ sk|k−1)

T |y0, . . . , yk−1]
Ps
k|k � E[(xk − x̂ sk|k)(xk − x̂ sk|k)

T |y0, . . . , yk],

can be computed using the Kalman filter equations. Let P̄s be the steady state value
of Ps

k|k−1 and P̄ the steady state value of Ps
k|k as k → ∞, which both exist due to the

detectability assumption. To simplify the presentation, we will assume that the local
Kalman filter is operating in steady state, so that Ps

k|k−1 = P̄s and Ps
k|k = P̄,∀k. Note

that in general the local Kalman filter will converge to steady state at an exponential
rate [22].

At time k, the remote estimator decides whether or not the sensor should send its
current state estimate x̂ sk|k . Let νk ∈ {0, 1} be decision variables such that νk = 1 if
x̂ sk|k is transmitted to the remote estimator, and νk = 0 if there is no transmission.
We will assume that νk is computed by the remote estimator based on information
available at time k − 1, and fed back to the sensor via a feedback link, see Fig. 3.1.3

The decision νk is assumed to not depend on the current value of xk (or functions of
xk such as measurements and state estimates). In particular, we will assume that νk
depends only on the error covariances at the remote estimator, see Sect. 3.1.2.

Sensor transmissions occur over a packet dropping link. Let γk be random vari-
ables such that γk = 1 if the transmission at time k is successfully received by the
remote estimator, and γk = 0 otherwise. We begin our analysis by assuming that
{γk} is i.i.d. Bernoulli with

P(γk = 1) = λ, λ ∈ (0, 1).

Define the information set available to the remote estimator at time k as:

Ik � {ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0 x̂ s0|0, . . . , νkγk x̂ sk|k}.

Denote the state estimates and error covariances at the remote estimator by:

3Scheduling can also be done at the sensor if γk−1 is fed back from the remote estimator to the
sensor.
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x̂k|k � E[xk |Ik]
Pk|k � E[(xk − x̂k|k)(xk − x̂k|k)T |Ik].

Given that the decision variables νk depend on Pk−1|k−1, but not on the state xk (or
functions of xk), the optimal remote estimator can be shown to have the following
form, similar to [23, 24]:

x̂k|k =
{

x̂ sk|k , ifνkγk = 1
Ax̂k−1|k−1 , if νkγk = 0

Pk|k =
{

P̄ , if νkγk = 1
APk−1|k−1AT + Q , if νkγk = 0.

(3.3)

For our subsequent analysis, we introduce

f (X) � AX AT + Q (3.4)

and define the countably infinite set

S � {P̄, f (P̄), f 2(P̄), . . .}, (3.5)

where f n(.) denotes the n-fold composition of f (.), with the convention that
f 0(X) = X . Then, it is clear from (3.3) that S consists of all possible values of
Pk|k at the remote estimator.

3.1.2 Optimization of Transmission Scheduling

As stated in the previous subsection, we will consider transmission policies where
νk(Pk−1|k−1) depends only on Pk−1|k−1, similar to [7]. To take into account energy
usage, we will assume a fixed transmission energy cost of E for each scheduled
transmission (when νk = 1, independent of the reception outcome γk). We will
consider the following finite horizon (of horizon K ) optimization problem:

min{νk }

K∑
k=1

E
[
βtrPk|k + (1 − β)νk E

]
, (3.6)

for some design parameter β ∈ (0, 1). Problem (3.6) minimizes a linear combination
of the trace of the expected error covariance at the remote estimator and the expected
transmission energy. We can write
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min{νk }

K∑
k=1

E
[
βtrPk|k + (1 − β)νk E

] = min{νk }

K∑
k=1

E
[
E

[
βtrPk|k + (1 − β)νk E |P0|0, Ik−1, νk

]]

= min{νk }

K∑
k=1

E
[
E

[
βtrPk|k + (1 − β)νk E |Pk−1|k−1, νk

]]
,

where the last line holds since Pk−1|k−1 is a deterministic function of P0|0 and Ik−1,
and Pk|k is a function of Pk−1|k−1, νk , and γk . We note that

E[trPk|k |Pk−1|k−1, νk] = νk
[
λtrP̄ + (1 − λ)tr f (Pk−1|k−1)

] + (1 − νk)tr f (Pk−1|k−1)

= νkλtrP̄ + (1 − νkλ)tr f (Pk−1|k−1)

(3.7)

where f (.) is defined in (3.4). Let the functions Jk(.) : S → R be defined recursively
as:

JK+1(P) = 0

Jk(P) = min
ν∈{0,1}

{
β

[
νλtrP̄+(1−νλ)tr f (P)

] + (1 − β)νE + νλJk+1(P̄)

+ (1−νλ)Jk+1( f (P))
}
, k = K , . . . , 1.

(3.8)

Problem (3.6) can then be solved using the dynamic programming algorithm
by computing Jk(Pk−1|k−1) for k = K , K − 1, . . . , 1, with the optimal ν∗

k =
argmin Jk(Pk−1|k−1). Note that the finite horizon problem (3.6) can be solved exactly
via explicit enumeration, since for a given initial P0|0, the number of possible values
for Pk|k, k = 1, . . . , K is finite.

We will also consider the infinite horizon problem:

min{νk }
lim sup
K→∞

1

K

K∑
k=1

E
[
E

[
βtrPk|k + (1 − β)νk E |Pk−1|k−1, νk

]]
, (3.9)

which is a Markov decision process (MDP) based stochastic control problem with
νk as the ‘action’ and Pk−1|k−1 as the ‘state’ at time k. The Bellman equation for
problem (3.9) is

ρ + h(P) = min
ν∈{0,1}

{
β

[
νλtrP̄ + (1 − νλ)tr f (P)

] + (1 − β)νE

+ νλh(P̄) + (1 − νλ)h( f (P))
}
,

(3.10)

where ρ is the optimal average cost per stage, and h(.) is the differential cost or
relative value function [25]. For the infinite horizon problem (3.9), existence of
optimal stationary policies can be ensured via the following result:
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Lemma 3.1 Let λ > 1− 1
maxi |σi (A)|2 , wheremaxi |σi (A)| denotes the spectral radius

of A. Then there exists a constant ρ and a function h(.) that satisfies the Bellman
equation (3.10).

Proof See Appendix.

As a consequence of Lemma 3.1, Problem (3.9) can be solved using methods such
as the relative value iteration algorithm [25]. In computations, since the state space
is (countably) infinite, one commonly first truncates the state space to

S
N � {P̄, f (P̄), f 2(P̄), . . . , f N−1(P̄)}, for some N ∈ N,

and then uses the relative value iteration algorithm to solve the resulting finite state
space MDP problem, as follows: For a given N , define for t = 0, 1, 2, . . . the value
functions Vt (.) : SN → R by:

Vt+1(P) = min
ν∈{0,1}

{
β[νλtrP̄ + (1 − νλ)tr f (P)] + (1 − β)νE

+ νλVt (P̄) + (1 − νλ)Vt ( f (P))
}
.

Let Pf ∈ S
N be fixed. The relative value iteration algorithm is given by:

ht+1(P) � Vt+1(P) − Vt+1(Pf )

= min
ν∈{0,1}

{
β[νλtrP̄ + (1 − νλ)tr f (P)] + (1 − β)νE

+ νλht (P̄) + (1 − νλ)ht ( f (P))
}

− min
ν f ∈{0,1}

{
β[ν f λtrP̄ + (1 − ν f λ)tr f (P)] + (1 − β)ν f E

+ ν f λht(P̄) + (1 − ν f λ)ht( f (P))
}
.

(3.11)

As t → ∞, we have ht (P) → h(P),∀P ∈ S
N , with h(.) satisfying the Bellman

equation (3.10). In practice, the algorithm (3.11) terminates once the differences
ht+1(P)−ht (P) become smaller than a desired level of accuracy. One then compares
the solutions obtained as N increases to determine an appropriate value of N for
truncation of the state space S, see Chap.8 of [26] for further details.

3.1.3 Structural Properties of Optimal Transmission
Scheduling

In this subsection,wewill derive some structural results on theoptimal solutions to the
finite horizon problem (3.6) and the infinite horizon problem (3.9). In particular, we
will prove that a threshold policy is optimal and derive simple analytical expressions
for the expected energy usage and expected error covariance. Knowing that the
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optimal policy is a threshold policy allows for ease of real-time implementation,
and can also allow for more computationally efficient algorithms in the numerical
solution of problems (3.6) and (3.9), see [27, 28].

Notation: For symmetric matrices X and Y , we say that X ≤ Y if Y −X is positive
semi-definite, and X < Y if Y − X is positive definite. Let S denote the set of all
positive semi-definite matrices.

Definition 3.1 A function F(.) : S → R is increasing if

X ≤ Y ⇒ F(X) ≤ F(Y ). (3.12)

Lemma 3.2 The function tr f (X) = tr(AX AT + Q) is an increasing function of X.

Proof This is easily seen from the definition. �

Recall the set S defined in (3.5).

Lemma 3.3 There is a total ordering on the elements of S given by

P̄ ≤ f (P̄) ≤ f 2(P̄) ≤ · · · .

Proof This result is proved in [29], see also [30]. �

Theorem 3.1 (i) The optimal solution to the finite horizon problem (3.6) is of the
form:

ν∗
k =

{
0 , if Pk−1|k−1 < P th

k
1 , if Pk−1|k−1 ≥ P th

k

for some thresholds P th
k , k = 1, . . . , K, where the thresholds may be infinite (mean-

ing that ν∗
k = 0,∀Pk−1|k−1 ∈ S) when A is stable.

(ii) The optimal solution to the infinite horizon problem (3.9) is of the form:

ν∗
k =

{
0 , if Pk−1|k−1 < P th

1 , if Pk−1|k−1 ≥ P th (3.13)

for some constant threshold P th, where the thresholdmay be infinite when A is stable.

Proof (i) Since νk takes on either the values 0 or 1, Jk(P) can be rewritten as

Jk(P) = min
{
βtr( f (P)) + Jk+1( f (P)), β[λtr(P̄) + (1 − λ)tr( f (P))] + (1 − β)E

+ λJk+1(P̄) + (1 − λ)Jk+1( f (P))
}

with the two terms in theminimization corresponding to the cases νk = 0 and νk = 1.
Let

φk(P) � β[λtr( f (P)) − λtr(P̄)] − (1 − β)E + λJk+1( f (P)) − λJk+1(P̄),

(3.14)
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which denotes the difference between the two terms, considered as a function of P .
Note that if φk(P) < 0 then the sensor will not transmit, while if φk(P) > 0 then
the sensor will transmit.

Theorem3.1 (i)will be proved ifwe can show that the functionφk(P) is an increas-
ing function of P , for k = 0, . . . , N − 1. By Lemma 3.2, tr f (P) is an increasing
function of P . Furthermore, a simple induction argument shows that Jk+1( f (P)) is
increasing in P . Hence the function φk(P) defined by (3.14) is increasing in P .
(ii) Recalling the relative value iteration algorithm (3.11), one can show using sim-
ilar arguments as in the proof of (i) that the properties in Theorem 3.1 (i) also hold
when Jk+1(.) is replaced with hl(.). Since hl(P) → h(P) as l → ∞, the result then
follows. �

Remark 3.1 In Theorem 3.1, we could have P th
k or P th equal to P̄ , in which case

ν∗
k = 1,∀Pk−1|k−1 ∈ S.

Remark 3.2 Theorem 3.1 was originally proved in [31] using the theory of submod-
ular functions. Under a related set-up that minimizes an expected error covariance
measure subject to a constraint on the communication rate, the optimality of thresh-
old policies over an infinite horizon was also proved using different techniques in
[32].

By Theorem 3.1, the optimal policy is a threshold policy on the error covariance.
This also allows us to derive simple analytical expressions for the expected energy
usage and expected error covariance for the single sensor case over an infinite horizon.
A similar analysis can be carried out for the finite horizon situation but the expressions
will be rather complicated due to the thresholds P th

k in Theorem 3.1 being time-
varying in general.

Let t ∈ N be such that f t (P̄) = P th ∈ S, see (3.13). Note that t will depend on the
value of β chosen in problem (3.9). Then the evolution of the error covariance at the
remote estimator can be modelled as the (countably infinite) Markov chain shown
in Fig. 3.2, where state i of the Markov chain corresponds to the value f i (P̄), i =
0, 1, 2, . . .. The transition probability matrix P for this Markov chain can be written
as:

Fig. 3.2 Markov chain for threshold policy
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . . . . . . .

0 0 1 0 . . . . . .
...

. . .
. . .

0 . . . . . . 0 1 0 . . . . . .

λ 0 . . . 0 1 − λ 0 . . . . . .

λ 0 . . . 0 1 − λ 0 . . .
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Forλ ∈ (0, 1), one can easily verify that thisMarkov chain is irreducible, aperiodic
and with all states being positive recurrent. Then the stationary distribution

π = [
π0 π1 π2 . . . πt πt+1 πt+2 . . .

]
,

where π j is the stationary probability of theMarkov chain being in state j , exists and
can be computed using the relation π = πP. We find after some calculations that
π j = π0, j = 1, . . . , t , and π j = (1 − λ) j−tπ0, j = t + 1, t + 2, . . ., and thereby

π0 = 1

t + 1/λ
= λ

λt + 1
.

Hence

π j =
{

λ
λt+1 , if j = 0, . . . , t

(1−λ) j−tλ

λt+1 , if j = t + 1, t + 2, . . . .

We can now derive analytical expressions for the expected energy usage and
expected error covariance. For the expected energy usage, since the sensor transmits
only when the Markov chain is in states t, t + 1, . . ., an energy amount of E is used
in reaching the states corresponding to P̄, f t+1(P̄), f t+2(P̄), . . .. Hence

E[energy] = E[π0 + πt+1 + πt+2 + · · · ]
= Eπ0[1 + 1 − λ + (1 − λ)2 + · · · ]
= Eπ0

λ
= E

λt + 1
.

(3.15)

For the expected error covariance, we have

E[trPk|k] = π0tr(P̄) + π1tr( f (P̄)) + π2tr( f
2(P̄)) + · · · (3.16)

which can be computed numerically. Under the assumption that λ > 1− 1
maxi |σi (A)|2 ,

E[trPk|k]will be finite, by a similar argument as that used in the proof of Lemma 3.1.
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3.1.4 Transmission of Measurements

In this subsection, we will study the situation where, as in Chap.2, sensor measure-
ments instead of local state estimates are transmitted to the remote estimator. In
particular, we wish to derive structural results on the optimal transmission schedule.
Our descriptions of the model and optimization problem below will be kept brief, in
order to proceed quickly to the structural results.

System Model

The process and measurements follow the same model as in (3.1) and (3.2). Let
νk ∈ {0, 1} be decision variables such that νk = 1 if the measurement yk (rather than
the local state estimate) is to be transmitted to the remote estimator at time k, and
νk = 0 if there is no transmission. As before (see Fig. 3.1), the transmit decisions νk
are to be decided at the remote estimator and assumed to only depend on the error
covariance at the remote estimator.

At the remote estimator, if no sensors are scheduled to transmit, then the state
estimates and error covariances are updated by:

x̂k+1|k = Ax̂k|k
x̂k|k = x̂k|k−1

Pk+1|k = APk|k AT + Q

Pk|k = Pk|k−1.

(3.17)

If the sensor has been scheduled by the remote estimator to transmit at time k, then
the state estimates and error covariances at the remote estimator are now updated as
follows:

x̂k+1|k = Ax̂k|k
x̂k|k = x̂k|k−1 + γk Kk(yk − Cx̂k|k−1)

Pk+1|k = APk|k AT + Q

Pk|k = Pk|k−1 − γk KkC Pk|k−1,

(3.18)

where Kk � Pk|k−1CT (CPk|k−1CT + R)−1. We can thus write:

Pk+1|k =
{
f (Pk|k−1), if νkγk = 0
g(Pk|k−1), if νkγk = 1,

(3.19)

where f (X) = AX AT + Q as before, and

g(X) � AX AT − AXCT (CXCT + R)−1CX AT + Q. (3.20)

In (3.19), the recursions are given in terms of Pk+1|k rather than Pk|k , since the
resulting expressions are slightly more convenient to work with.

http://dx.doi.org/10.1007/978-3-319-65614-4_2
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Optimization of Transmission Scheduling

We consider transmission policies νk(Pk|k−1) that depend only on Pk|k−1. The finite
horizon optimization problem is:

min{νk }

K∑
k=1

E

[
E

[
βtrPk+1|k + (1 − β)νk E

∣∣∣∣Pk|k−1, νk

]]
(3.21)

where we can compute

E[trPk+1|k |Pk|k−1, νk] = νkλtrg(Pk|k−1) + (1 − νkλ) tr f (Pk|k−1),

with f (.) defined in (3.4) and g(.) defined in (3.20). Let the functions Jk(.) be given
by:

JK+1(P) = 0

Jk(P) = min
ν∈{0,1}

{
β
[
νλtrg(P) + (1 − νλ) tr f (P)

]
+ (1−β)νE

+ νλJk+1(g(P)) + (1 − νλ) Jk+1( f (P))

}
, k = K , K − 1, . . . , 1.

(3.22)

The infinite horizon problem can be formulated in a similar manner, but will be
omitted for brevity.

Structural Properties of Optimal Transmission Scheduling

We will here prove Theorem 3.2, which is the counterpart of Theorem 3.1 for scalar
systems when measurements are transmitted, and in particular, establishes the opti-
mality of threshold policies. However, for vector systems we will give a counterex-
ample (Example 3.1) to show that, in general, the optimal policy is not a simple
threshold policy. Lemma 3.4 and Theorem 3.2 below will assume scalar systems,
thus A,C, Q, R and P are all scalar.

Lemma 3.4 LetF (.) be a function formed by composition (in any order) of any of
the functions f (.), g(.), and id(.), where

f (P) � A2P + Q, g(P) � A2P + Q − A2C2P2

C2P + R
,

and id(.) is the identity function. Then:
(i)F (.) is either of the affine form

F (P) = aP + b, for some a, b ≥ 0, (3.23)

or the linear fractional form
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F (P) = aP + b

cP + d
, for some a, b, c, d ≥ 0 with ad − bc ≥ 0. (3.24)

(ii)F ( f (P)) − F (g(P)) is an increasing function of P.

Proof (i)We prove this by induction. Firstly, id(P) = P has the form (3.23), f (P) =
A2P + Q has the form (3.23), and

g(P) = (A2R+C2Q)P+RQ

C2P+R

has the form (3.24) since (A2R + C2Q)R − RQC2 = A2R2 ≥ 0.
Now assume that F (.), which is a composition of the functions f (.), g(.), and

id(.), has the form of either (3.23) or (3.24). Then we will show that f (F (P)) and
g(F (P)) also has the form of either (3.23) or (3.24). For notational convenience,
let us write f (P) = ā P + b̄ for some ā, b̄ ≥ 0, and g(P) = (ā P + b̄)/(c̄P + d̄)

for some ā, b̄, c̄, d̄ ≥ 0 with ād̄ − b̄c̄ ≥ 0, which can be achieved as shown at the
beginning of the proof.

IfF (.) has the form (3.23), then

f (F (P)) = ā(aP + b) + b̄

is of the form (3.23), and

g(F (P)) = ā(aP + b) + b̄

c̄(aP + b) + d̄
= āaP + āb + b̄

c̄aP + c̄b + d̄

has the form (3.24), since āa(c̄b + d̄) − (āb + b̄)c̄a = a(ād̄ − b̄c̄) ≥ 0.
IfF (.) has the form (3.24), then

f (F (P)) = ā(aP + b)

cP + d
+ b̄ = (āa + b̄c)P + āb + b̄d

cP + d

has the form (3.24), since (āa + b̄c)d − (āb + b̄d)c = ā(ad − bc) ≥ 0. Finally,

g(F (P)) = ā
(
aP+b
cP+d

) + b̄

c̄
(
aP+b
cP+d

) + d̄
= (āa + b̄c)P + āb + b̄d

(c̄a + d̄c)P + c̄b + d̄d

has the form (3.24), since (āa + b̄c)(c̄b + d̄d) − (āb + b̄d)(c̄a + d̄c) = (ad −
bc)(ād̄ − b̄c̄) ≥ 0.
(ii) By part (i), we know thatF (.) is either of the form (3.23) or (3.24). IfF (.) has
the form (3.23), then

F ( f (P)) − F (g(P)) = a( f (P) − g(P))
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will be an increasing function of P , since f (P) − g(P) = (A2C2P2)/(C2P + R)

can be easily checked to be an increasing function of P .
IfF (.) has the form (3.24), then it can be verified after some algebra that

d

dP
(F ( f (P))−F (g(P)))= d

dP

(
a f (P)+b

c f (P)+d
− ag(P)+b

cg(P)+d

)

= (ad−bc)A2C2P(d+cQ)

(d + c(A2P + Q))2

C2P(d+cQ)+2(d+c(A2P+Q))R(
C2P(d + cQ) + (d + c(A2P + Q))R

)2 ≥ 0

since ad −bc ≥ 0. HenceF ( f (P))−F (g(P)) is an increasing function of P . �

Theorem 3.2 The optimal solution to problem (3.21) is of the form:

ν∗
k =

{
0 , if Pk−1|k−1 < P̃ th

k

1 , if Pk−1|k−1 ≥ P̃ th
k

for some thresholds P̃ th
k , k = 1, . . . , K.

Proof Define the functions

φk(P) � β f (P)+ Jk+1( f (P))−β[λg(P)+(1−λ) f (P)]
−(1−β)E−λJk+1(g(P))−(1−λ)Jk+1( f (P))

Similar to Theorem 3.1, Theorem 3.2 will be proved if we can show that φk(P) are
increasing functions of P . Note that the functions are equivalent to

φk(P) = βλ[ f (P) − g(P)] − (1 − β)E + λ[Jk+1( f (P)) − Jk+1(g(P))].
(3.25)

As stated in the proof of Lemma 3.4 (ii), f (P) − g(P) can be easily verified to
be an increasing function of P . Thus Theorem 3.2 follows if we can show that
Jk( f (P)) − Jk(g(P)) is an increasing function of P for all k. The proof is by
induction. In order to make the induction argument work, we will prove the slightly
stronger statement that Jk(F ( f (P))) − Jk(F (g(P))) is an increasing function of
P for all k, whereF (.) is a function formed by composition of any of the functions
f (.), g(.), id(.). The case of JK+1(F ( f (.))) − JK+1(F (g(.))) = 0 is clear. Now
assume that for P ′ ≥ P ,

Jk ′(F ( f (P ′))) − Jk ′(F (g(P ′))) − Jk ′(F ( f (P))) + Jk ′(F (g(P))) ≥ 0

holds for k ′ = K + 1, K , . . . , k + 1. We have
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Jk(F ( f (P ′))) − Jk(F (g(P ′))) − Jk(F ( f (P))) + Jk(F (g(P)))

≥ min
ν∈{0,1}

{
β
[
νλg(F ( f (P ′))) + (

1 − νλ
)
f (F ( f (P ′)))

]

+ νλJk+1(g(F ( f (P ′)))) + (
1 − νλ

)
Jk+1( f (F ( f (P ′))))

− β
[
νλg(F (g(P ′))) + (

1 − νλ
)
f (F (g(P ′)))

]

− νλJk+1(g(F (g(P ′)))) − (
1 − νλ

)
Jk+1( f (F (g(P ′))))

− β
[
νλg(F ( f (P))) + (

1 − νλ
)
f (F ( f (P)))

]

− νλJk+1(g(F ( f (P)))) − (
1 − νλ

)
Jk+1( f (F ( f (P))))

+ β
[
νλg(F (g(P))) + (

1 − νλ
)
f (F (g(P)))

]

+ νλJk+1(g(F (g(P)))) + (
1 − νλ

)
Jk+1( f (F (g(P))))

}
. (3.26)

In the minimization of (3.26) above, if the optimal ν∗ = 0, then

Jk(F ( f (P ′))) − Jk(F (g(P ′))) − Jk(F ( f (P))) + Jk(F (g(P)))

≥ β
[
f (F ( f (P ′))) − f (F (g(P ′))) − f (F ( f (P))) + f (F (g(P)))

]
+ Jk+1( f (F ( f (P ′)))) − Jk+1( f (F (g(P ′))))
− Jk+1( f (F ( f (P)))) + Jk+1( f (F (g(P)))) ≥ 0

where the last inequality holds by Lemma 3.4 (ii), the induction hypothesis, and the
fact that f ◦F (.) is a composition of functions of the form f (.), g(.), id(.). If instead
the optimal ν∗ = 1, then by a similar argument

Jk(F ( f (P ′))) − Jk(F (g(P ′))) − Jk(F ( f (P))) + Jk(F (g(P)))

≥ βλl
[
g(F ( f (P ′))) − g(F (g(P ′))) − g(F ( f (P))) + g(F (g(P)))

]
+ β(1 − λl)

[
f (F ( f (P ′))) − f (F (g(P ′))) − f (F ( f (P))) + f (F (g(P)))

]
+ λl

[
Jk+1(g(F ( f (P ′)))) − Jk+1(g(F (g(P ′))))

− Jk+1(g(F ( f (P)))) + Jk+1(g(F (gm(P))))
]

+ (1 − λl)
[
Jk+1( f (F ( f (P ′)))) − Jk+1( f (F (g(P ′))))

− Jk+1( f (F ( f (P)))) + Jk+1( f (F (g(P))))
] ≥ 0, (3.27)

from where the result follows. �

Theorem 3.2 is the counterpart of Theorem 3.1 for estimation schemes where
the system is scalar and measurements are transmitted. It provides a theoretical
justification for the variance-based triggering strategy proposed in [7]. For vector
systems, Theorem 3.2, in general, does not hold, as the following counterexample
shows.
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Example 3.1 Consider the case K = 1, corresponding to the case of a single trans-
mission. Suppose we have a system with parameters

A =
[
1.1 0.2
0.2 0.8

]
, C = [

1 −0.9
]
,

Q = I , R = 1, β = 0.5, λ = 0.7, E = 0.85. Let

P = P̄ =
[
7.8328 7.3915
7.3915 7.7127

]
, P ′ =

[
7.85 7.40
7.40 7.80

]
.

Then one can easily verify that P ′ > P , but that φ(P ′) < 0 and φ(P) > 0, so that
one transmits for the smaller value P , but not for the larger value P ′. �

For vector systems with scalar measurements, a threshold policy was considered
in [7], where a sensor would transmit if CPCT exceeded a threshold. Since P ′ > P
impliesCP ′CT > CPCT , the above example also shows that such a threshold policy
is in general not optimal when measurements are transmitted, under our problem
formulation of minimizing a linear combination of the expected error covariance
and expected energy usage.

3.1.5 Numerical Studies

We consider a system of the form (3.1) and (3.2) with parameters

A =
[
1.1 0.2
0.2 0.8

]
, C = [

1 1
]
, Q = I, R = 1,

in which case P̄ is easily computed as

P̄ =
[

1.3762 −0.9014
−0.9014 1.1867

]
.

The packet reception probability is chosen to be λ = 0.8, and the transmission energy
is taken as E = 1.

We first consider the finite horizon problem (3.6), with K = 5 and β = 0.05.
Figures3.3 and 3.4 plot respectively the optimal ν∗

1 and ν∗
2 (i.e. k = 1 and k = 2)

for different values of f n(P̄), which we recall represent the different values that the
error covariance can take. In agreement with Theorem 3.1, we observe a threshold
behaviour in the optimal ν∗

k . In this example,wehave P th
1 = f 3(P̄) and P th

2 = f 2(P̄);
the thresholds are in general different for different values of k.
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Fig. 3.3 Finite horizon, K = 5. ν∗
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Fig. 3.4 Finite horizon, K = 5. ν∗
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Fig. 3.5 Infinite horizon. ν∗
k for different values of f n(P̄)

We next consider the infinite horizon problem (3.9), with β = 0.05. Figure 3.5
plots the optimal ν∗

k for different values of f n(P̄), where we again see a threshold
behaviour, with P th = f 3(P̄). In Fig. 3.6 we plot the values of the thresholds for
different values of β. As β increases, the relative importance of minimizing the error
covariance (vs the energy usage) is increased, thus one should transmit more often,
leading to decreasing values of the thresholds.

Finally, in Fig. 3.7 we plot the trace of the expected error covariance versus the
expected energy, obtained by solving the infinite horizon problem for different values
of β, with the values computed using the expressions (3.15) and (3.16). We observe
that a smaller expected error covariance can be obtained for higher expected energy
usage. Note that the plot is discrete as t ∈ N in (3.15) and (3.16), see also Fig. 3.6.
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Fig. 3.7 Infinite horizon. Expected error covariance versus expected energy

3.2 Transmission Scheduling with Energy Harvesting

3.2.1 System Model

A diagram of the system model for this section is shown in Fig. 3.8. The discrete-
time process and sensor measurements are as given in (3.1) and (3.2). As before,
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Fig. 3.8 Transmission scheduling with an energy harvesting sensor

let νk ∈ {0, 1} be decision variables such that νk = 1 if and only if x̂ sk|k is to be
transmitted to the remote estimator at time k. Let Bk denote the battery level of the
sensor at time k, with Bmax the maximum capacity of the battery. There is an energy
usage of E for each scheduled transmission. Here transmission can only occur if
there is sufficient battery energy, i.e. νk = 1 is possible only when the battery level
Bk ≥ E . The sensor is equipped with energy harvesting capabilities, with the energy
harvested between the discrete-time instants k − 1 and k denoted by Hk . Similar to
[33], the evolution of the battery level is modelled as

Bk+1 = min{Bk − νk E + Hk+1, Bmax} = g(Bk − νk E + Hk+1) (3.28)

with νk = 0 if Bk < E , and where the function g(.) is defined by

g(x) � min{x, Bmax}. (3.29)

The harvested energy process {Hk} is random and here assumed to be a Markov
process, with state space H. Also denote B � [0, Bmax]. The decision variables νk
are determined at the sensor, and will be assumed to depend on Pk−1|k−1, Hk and Bk .
We assume that γk−1 is fed back to the sensor before the transmission decision at
time k. Thus, the remote estimator error covariance Pk−1|k−1 can be reconstructed at
the sensor with this acknowledgement mechanism.4

The information set available to the remote estimator is again

Ik �{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0 x̂ s0|0, . . . , νkγk x̂ sk|k}.

Given that the decision variables νk depend on Pk−1|k−1, Hk and Bk , but not on the
current state xk or measurement yk , the optimal remote estimator will also be of the
form (3.3).

4The case of imperfect feedback acknowledgements can also be considered, using similar ideas as
in [34].
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Remark 3.3 Note that even if there are no packet drops, i.e. γk = 1,∀k, {Pk|k}will in
general still be a random process, due to the random nature of the harvested energy
which place constraints on whether a transmission can occur. In contrast, when there
are no packet drops and no energy harvesting constraints, {Pk|k}will be deterministic
under threshold policies on the estimation error covariance [7].

3.2.2 Optimization of Transmission Scheduling

Asmentioned in Sect. 3.2.1, wewill consider transmission policies where νk depends
only on Pk−1|k−1, Hk and Bk . We will consider the following optimization problem
of finite horizon K :

min
νk∈{0,1}
νk E≤Bk

K∑
k=1

E[trPk|k] = min
νk∈{0,1}
νk E≤Bk

K∑
k=1

E
[
E[trPk|k |Pk−1|k−1, νk, Hk, Bk]

]
. (3.30)

We note that

E[trPk|k |Pk−1|k−1, νk, Hk, Bk] = νkλtr(P̄) + (1 − νkλ)tr f (Pk−1|k−1).

Let the functions Jk(·, ·, ·) : S × H × B → R be defined recursively as:

JK+1(P, H, B) = 0

Jk(P, H, B) = min
ν∈{0,1}
νE≤B

{
νλtr(P̄) + (1 − νλ)tr f (P)

+ νλE
[
Jk+1(P̄, H̃ , g(B − νE + H̃))|H

]

+ (1 − νλ)E
[
Jk+1( f (P), H̃ , g(B − νE + H̃))|H

] }
, k = K , . . . , 1,

(3.31)

where the conditional expectations are with respect to H̃ given H , and g(.) is defined
in (3.29). Problem (3.30) can be solved using the dynamic programming algorithm,
by computing Jk(Pk−1|k−1, Hk, Bk) for k = K , K − 1, . . . , 1. Note that if the range
of Hk is continuous, then, in practice, Hk and Bk will need to be discretized in order
for problem (3.30) to be solved numerically.

3.2.3 Structural Properties of Optimal Transmission
Scheduling

In this subsection, we will show that for a given Bk and Hk , the optimal policy is
a threshold policy with respect to the error covariance Pk−1|k−1, i.e. it is optimal to
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transmit if and only if Pk−1|k−1 exceeds a certain threshold (dependent on k, Bk and
Hk). Similarly, for fixed Pk−1|k−1 and Hk , the optimal policy is a threshold policy
with respect to the battery level Bk .

Recall from Definition 3.1 that a function F(.) : S → R is increasing if

X ≤ Y ⇒ F(X) ≤ F(Y ). (3.32)

Lemma 3.5 For any n ∈ N, tr f n(P) is an increasing function of P.

Proof We have

tr f n(P) = tr

(
An P(An)T +

n−1∑
m=0

AmQ(Am)T

)
,

which is increasing with P . �

Lemma 3.6 For d ≥ 0, the function g(.) defined in (3.29) satisfies

0 ≤ g(x) − g(x − d) ≤ d.

Proof The inequality g(x) − g(x − d) ≥ 0 is obvious. For the other inequality, note
that if x ≤ Bmax, then g(x) − g(x − d) = x − (x − d) = d. If x > Bmax and
x − d > Bmax, then g(x) − g(x − d) = Bmax − Bmax = 0. If x > Bmax (which
implies x − d > Bmax − d) and x − d ≤ Bmax, then it holds that g(x) − g(x − d) =
Bmax − (x − d) < Bmax − (Bmax − d) = d. �

Theorem 3.3 (i)For fixed Bk and Hk, the optimal ν∗
k is a threshold policy on Pk−1|k−1

of the form:

ν∗
k (Pk−1|k−1, Bk, Hk) =

{
0 , if Pk−1|k−1 ≤ P∗

k
1 , otherwise,

where the threshold P∗
k depends on k, Bk and Hk.

(ii) For fixed Pk−1|k−1 and Hk, the optimal ν∗
k is a threshold policy on Bk of the form:

ν∗
k (Pk−1|k−1, Bk, Hk) =

{
0 , if Bk ≤ B∗

k
1 , otherwise,

where the threshold B∗
k depends on k, Pk−1|k−1 and Hk.

Proof See Appendix. �

Bymaking use of both parts (i) and (ii) of Theorem3.3,we see that for a given k and
Hk , the region of possible values of (Pk−1|k−1, Bk) can be divided into a ‘transmit’ and
‘don’t transmit’ region, separated by a staircase-like threshold, see Fig. 3.9. Knowing
that the optimal policies are of threshold-type simplifies real-time implementation.
In addition, specialized algorithms can be derived which can provide computational
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Fig. 3.9 ν∗
k for different values of Pk−1|k−1 = f n(P̄) and Bk , with k = 5 and Hk = 1

savings when solving problem (3.30) numerically. For example, for a given (k, Hk),
suppose we want to compute ν∗

k (Pk−1|k−1, Bk, Hk) for all possible (Pk−1|k−1, Bk).
Without structural information, one would need to compare the values νk = 0 and
νk = 1 at each (Pk−1|k−1, Bk), which results in around (k + 1) × |B| comparisons,
where |B| is the cardinality of B. However, by using structural information, one way
to determine the staircase-like threshold is as follows. For the smallest possible value
of Pk−1|k−1, which is P̄ , search (in decreasing order) starting from the largest value
of Bk (i.e. Bmax) to find the threshold B∗

k (P̄, Hk). Then for the next smallest value
of Pk−1|k−1, which is f (P̄), the threshold B∗

k ( f (P̄), Hk) satisfies B∗
k ( f (P̄), Hk) ≤

B∗
k (P̄, Hk), so we can now search (in decreasing order) for B∗

k ( f (P̄), Hk) starting
from B∗

k (P̄, Hk) rather than from Bmax. Continuing this procedure until we cover all
possible values of Pk−1|k−1, it is not too difficult to see that the number of comparisons
required (for each (k, Hk)) to determine the staircase-like threshold is upper bounded
by 2(k + 1+|B|). This could be significantly smaller than (k + 1)×|B|, the number
of comparisons needed if no structural information is assumed.

3.2.4 Numerical Studies

We consider an example with parameters

A =
[
1.2 0.2
0.2 0.7

]
, C = [

1 1
]
, Q = I, R = 1,

in which case
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Fig. 3.10 Expected error covariance versus maximum battery capacity

P̄ =
[

1.3634 −0.8347
−0.8347 1.0809

]
.

The packet reception probability is chosen to be λ = 0.7. The transmission energy
is set to E = 2. The harvested energy process {Hk} is chosen to be a Markov chain
with state space {0, 1, 2} and transition probability matrix

⎡
⎣ p00 p01 p02
p10 p11 p12
p20 p21 p22

⎤
⎦ =

⎡
⎣0.2 0.3 0.5
0.3 0.4 0.3
0.1 0.2 0.7

⎤
⎦ ,

with the initial distribution of (H1) having the stationary distribution. The maximum
battery capacity Bmax = 6. We use the finite horizon K = 10. Figure3.9 plots ν∗

k
for different values of Pk−1|k−1 = f n(P̄) and Bk , for fixed k = 5 and Hk = 1. We
observe threshold-like behaviour in agreement with Theorem 3.3.

Next, we study the effect of varying the maximum battery capacity Bmax.
Figure3.10 plots the trace of the expected error covariance trE[Pk|k] versus Bmax,
with trE[Pk|k] obtained by averaging over 1,00,000 Monte Carlo runs, with each run
having the initial values P0|0 = P̄ and B1 = E . We compare the performance with
a simple suboptimal greedy policy which always transmits provided it has enough
energy. We see that performance generally improves as Bmax increases, though for
larger Bmax further performance gains are small. We also see that the optimal pol-
icy significantly outperforms the greedy policy, while the average energy usage (or
number of transmissions) of the optimal scheme is no larger than that of the greedy
policy.
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3.3 Conclusion

This chapter has studied event-based remote estimation problems, with sensor trans-
missions over a packet dropping channel. By considering an optimization problem
for transmission scheduling thatminimizes a linear combination of the expected error
covariance at the remote estimator and the expected energy across the sensors, we
have derived structural properties in the form of the optimal solution, when either
local state estimates or sensormeasurements are transmitted. In particular, our results
show that a threshold policy is optimal.

Later, we considered the case where the sensor is equipped with energy harvesting
capabilities. We derived structural results on the optimal transmission scheduling in
order to minimize an expected error covariance measure. Our results show that for
the class of problems studied threshold policies in the error covariance and battery
level are optimal.

Notes: Section3.1 is based on [30], which also considers the case of multiple
sensors and imperfect feedback acknowledgements. This work has been extended to
LQG control in [35]. Section3.2 is based on [36]. Subsequent work has additionally
studied the problemof transmission scheduling and controlwith an energy harvesting
sensor [37].

Appendix

Proof of Lemma 3.1

We will verify the conditions (CAV*1) and (CAV*2) given in Corollary 7.5.10 of
[26], which guarantee the existence of solutions to the Bellman equation for average
cost problems with countably infinite state space. Condition (CAV*1) says that there
exists a standard policy5 d such that the recurrent class Rd of the Markov chain
induced by d is equal to the entire state space S. Condition (CAV*2) says that given
U > 0, the set DU = {i ∈ S|c(i, a) ≤ U for some a} is finite, where c(i, a) is the
cost at each stage when in state i and using action a.

To verify (CAV*1), let d be the policy that always transmits, i.e. νk = 1,∀k. Let
state i of the induced Markov chain correspond to the value f i (P̄), i = 0, 1, 2, . . ..
The state diagram of the induced Markov chain is given in Fig. 3.11, with state space
S = {0, 1, 2, . . .}.

Let z = 0. Then the expected first passage time from state i to state z = 0 is

τi,z = λ+2(1−λ)λ+3(1−λ)2λ+· · · = 1

λ
< ∞.

5d is a standard policy if there exists a state z such that the expected first passage time τi,z from
i to z satisfies τi,z < ∞,∀i ∈ S, and the expected first passage cost ci,z from i to z satisfies
ci,z < ∞,∀i ∈ S.
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Fig. 3.11 Markov chain for
policy of always transmitting

The expected cost of a first passage from state i to state z = 0 is

ci,z = βtr f i (P̄) + (1 − β)E + (1 − λ)c(i+1),0

= βtr f i (P̄) + (1 − β)E + (1 − λ)
[
βtr f i+1(P̄) + (1 − β)E

]
+ (1 − λ)2

[
βtr f i+2(P̄) + (1 − β)E

] + · · ·

= β

∞∑
n=0

(1 − λ)ntr f i+n(P̄) + (1 − β)E

λ
.

(3.33)

For stable A, the infinite series above always converges. To show convergence
of the infinite series for unstable A, note that the scenario where the sensor always
transmits to the remote estimator, with packet reception probability λ, corresponds
to the situation studied in [23, 24]. By computing the stationary probabilities of the
Markov chain in Fig. 3.11, we can show that the expected error covariance E[Pk|k]
can be written as E[Pk|k] = ∑∞

n=0(1− λ)nλ f n(P̄). From the stability results of [23,
24], we know that E[Pk|k] is bounded if and only if λ > 1− 1/maxi |σi (A)|2. Thus

β

∞∑
n=0

(1 − λ)ntr f i+n(P̄) = β

(1 − λ)iλ

∞∑
n=0

(1 − λ)i+nλtr f i+n(P̄) < ∞

when λ > 1 − 1/maxi |σi (A)|2.
Hence d is a standard policy. Furthermore, one can see from Fig.3.11 that the

positive recurrent class Rd of the induced Markov chain is equal to S, which verifies
(CAV*1).

Since the cost per stage c(i, a) corresponds to βtrPk|k + (1 − β)νk E , condition
(CAV*2) can also be easily verified. This thus proves the existence of solutions to
the infinite horizon problem (3.9).

Proof of Theorem 3.3

(i) For B ≥ E , Jk(P, H, B) in (3.31) can be expressed as
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Jk(P, H, B)=min
{
tr f (P)+E[Jk+1( f (P), H̃ , g(B+ H̃))|H ],

λtrP̄+(1−λ)tr f (P)+λE[Jk+1(P̄, H̃ , g(B−E+ H̃))|H ]
+ (1−λ)E[Jk+1( f (P), H̃ , g(B − E + H̃))|H ]

}
,

where the two terms in the minimization correspond to the values νk = 0 or νk = 1.
Since νk only takes on the two values 0 and 1, Theorem 3.3 will be proved if we can
show that for fixed B ≥ E and H , the functions

φk(P) � tr f (P)+E[Jk+1( f (P), H̃ , g(B + H̃))|H ]−λtrP̄ − (1−λ)tr f (P)

−λE[Jk+1(P̄, H̃ , g(B − E + H̃))|H ]−(1−λ)E[Jk+1( f (P), H̃ , g(B − E + H̃))|H ]
= λ

(
tr f (P)−trP̄−E[Jk+1(P̄, H̃ , g(B−E+ H̃))|H ]

)
+ E[Jk+1( f (P), H̃ , g(B + H̃))|H ]

− (1 − λ)E[Jk+1( f (P), H̃ , g(B − E + H̃))|H ]

for k = 1, . . . , K , are increasing functions of P . As tr f (P) is increasing with P by
Lemma 3.5, this will be the case if we can show thatE[Jk( f (P), H̃ , g(B+ H̃))|H ]−
(1 − λ)E[Jk( f (P), H̃ , g(B − E + H̃))|H ] is an increasing function of P for all k.

To prove this using an induction argument, wewill in fact prove a slightly stronger
statement, namely that

Jk( f
n(P), H, B) − (1 − λ)Jk( f

n(P), H, B ′) (3.34)

is an increasing function of P for all k ∈ {1, . . . , K + 1}, n ∈ N, H ≥ 0, B ≥ 0,
B ′ ≥ 0 with 0 ≤ B − B ′ ≤ E , noting that 0 ≤ g(B + H̃) − g(B − E + H̃) ≤ E by
Lemma 3.6. In order to show that (3.34) is an increasing function of P , it turns out
that we also need to show that

Jk( f
n(P), H, B ′) − Jk( f

n(P), H, B) (3.35)

is an increasing function of P for all k ∈ {1, . . . , K + 1}, n ∈ N, H ≥ 0, B ≥ 0,
B ′ ≥ 0 with 0 ≤ B − B ′ ≤ E .

As stated before, the proof is by induction. It is clear that (3.34) and (3.35) are
increasing functions of P in the case of k = K +1. For P ≥ P ′ and 0 ≤ B−B ′ ≤ E ,
assume that

Jl( f
n(P), H, B) − (1 − λ)Jl( f

n(P), H, B ′)
− Jl( f

n(P ′), H, B) + (1 − λ)Jl( f
n(P ′), H, B ′) ≥ 0

(3.36)

and

Jl ( f
n(P), H, B′) − Jl ( f

n(P), H, B) − Jl ( f
n(P ′), H, B′) + Jl ( f

n(P ′), H, B) ≥ 0
(3.37)

holds for l = K + 1, K , . . . , k + 1.
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Let us first show that (3.36) holds for l = k. We have

Jk( f
n(P), H, B) − (1 − λ)Jk( f

n(P), H, B ′) − Jk( f
n(P ′), H, B) + (1 − λ)Jk( f

n(P ′), H, B ′)

= min
ν,νE≤B

{
νλtr(P̄ + (1 − νλ)tr f n+1(P) + νλE

[
Jk+1(P̄, H̃ ,g(B − νE + H̃))|H

]

+ (1−νλ)E
[
Jk+1( f

n+1(P), H̃ ,g(B−νE+ H̃))|H
]}

− (1 − λ) min
ν,νE≤B′

{
νλtrP̄ + (1 − νλ)tr f n+1(P)

+ νλE
[
Jk+1(P̄, H̃ ,g(B ′ − νE + H̃))|H

]

+ (1−νλ)E
[
Jk+1( f

n+1(P), H̃ ,g(B ′−νE+ H̃))|H
]}

− min
ν,νE≤B

{
νλtrP̄ + (1 − νλ)tr f n+1(P ′) + νλE

[
Jk+1(P̄, H̃ ,g(B − νE + H̃))|H

]

+ (1−νλ)E
[
Jk+1( f

n+1(P ′), H̃ ,g(B−νE+ H̃))|H
]}

+ (1 − λ) min
ν,νE≤B′

{
νλtrP̄ + (1 − νλ)tr f n+1(P ′)

+ νλE
[
Jk+1(P̄, H̃ ,g(B ′ − νE + H̃))|H

]

+ (1−νλ)E
[
Jk+1( f

n+1(P ′), H̃ ,g(B ′−νE+ H̃))|H
]}

.

If B ≥ E and B ′ ≥ E , then

Jk( f
n(P), H, B) − (1 − λ)Jk( f

n(P), H, B ′)
− Jk( f

n(P ′), H, B) + (1 − λ)Jk( f
n(P ′), H, B ′)

≥ min
ν

(1 − νλ)
{
λ

[
tr f n+1(P) − tr f n+1(P ′)

]

+ E

[
Jk+1( f

n+1(P), H̃ , g(B − νE + H̃))|H
]

− (1 − λ)E
[
Jk+1( f

n+1(P), H̃ , g(B ′ − νE + H̃))|H
]

− E

[
Jk+1( f

n+1(P ′), H̃ , g(B − νE + H̃))|H
]

+ (1 − λ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B ′ − νE + H̃))|H
] }

≥ 0,

where the last inequality holds (for both cases ν∗ = 0 and ν∗ = 1) by Lemma 3.5 and
the induction hypothesis (3.36), since 0 ≤ g(B − νE + H̃) − g(B ′ − νE + H̃) ≤ E
when 0 ≤ B − B ′ ≤ E .

If B < E and B ′ < E , then

Jk( f
n(P), H, B) − (1 − λ)Jk( f

n(P), H, B ′)
− Jk( f

n(P ′), H, B) + (1 − λ)Jk( f
n(P ′), H, B ′)

=
{
λ

[
tr f n+1(P) − tr f n+1(P ′)

] + E

[
Jk+1( f

n+1(P), H̃ , g(B + H̃))|H
]
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− (1 − λ)E
[
Jk+1( f

n+1(P), H̃ , g(B ′ + H̃))|H
]

− E

[
Jk+1( f

n+1(P ′), H̃ , g(B + H̃))|H
]

+ (1 − λ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B ′ + H̃))|H
] }

≥ 0,

by Lemma 3.5 and the induction hypothesis (3.36).
If B ≥ E and B ′ < E , then

Jk( f
n(P), H, B) − (1 − λ)Jk( f

n(P), H, B ′)
− Jk( f

n(P ′), H, B) + (1 − λ)Jk( f
n(P ′), H, B ′)

≥ min
ν

{
λ(1 − ν)

[
tr f n+1(P) − tr f n+1(P ′)

]

+ (1 − νλ)E
[
Jk+1( f

n+1(P), H̃ , g(B − νE + H̃))|H
]

− (1 − λ)E
[
Jk+1( f

n+1(P), H̃ , g(B ′ + H̃))|H
]

− (1 − νλ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B − νE + H̃))|H
]

+ (1 − λ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B ′ + H̃))|H
] }

.

In the minimization above, if the optimal ν∗ = 0, then Jk( f n(P), H, B) − (1 −
λ)Jk( f n(P), H, B ′) − Jk( f n(P ′), H, B) + (1 − λ)Jk( f n(P ′), H, B ′) ≥ 0 by a
similar argument as before. If instead ν∗ = 1, then we have

Jk( f
n(P), H, B) − (1 − λ)Jk( f

n(P), H, B ′)
− Jk( f

n(P ′), H, B) + (1 − λ)Jk( f
n(P ′), H, B ′)

≥ (1 − λ)E
[
Jk+1( f

n+1(P), H̃ , g(B − E + H̃))|H
]

− (1 − λ)E
[
Jk+1( f

n+1(P), H̃ , g(B ′ + H̃))|H
]

− (1 − λ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B − E + H̃))|H
]

+ (1 − λ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B ′ + H̃))|H
]

≥ 0,

where the last inequality now holds by induction hypothesis (3.37), since 0 ≤ g(B ′ +
H̃) − g(B − E + H̃) ≤ E when 0 ≤ B − B ′ ≤ E . This proves that (3.36) holds for
l = k.

It remains to show that (3.37) holds for l = k, i.e. that

Jk( f
n(P), H, B′) − Jk( f

n(P), H, B) − Jk( f
n(P ′), H, B′) + Jk( f

n(P ′), H, B) ≥ 0.
(3.38)
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This can be done using similar arguments as showing that (3.36) holds for l = k.
If B ≥ E and B ′ ≥ E , then (3.38) can be shown by making use of the induction
hypothesis (3.37). Similarly, (3.38) holds if B < E and B ′ < E . If B ≥ E and
B ′ < E , then

Jk( f
n(P), H, B ′) − Jk( f

n(P), H, B) − Jk( f
n(P ′), H, B ′) + Jk( f

n(P ′), H, B)

≥ min
ν

{
tr f n+1(P)+E

[
Jk+1( f

n+1(P), H̃ , g(B ′+ H̃))|H
]

− (1 − νλ)tr f n+1(P)

− (1 − νλ)E
[
Jk+1( f

n+1(P), H̃ , g(B − νE + H̃))|H
]

− tr f n+1(P ′) − E

[
Jk+1( f

n+1(P ′), H̃ , g(B ′ + H̃))|H
]

+(1−νλ)tr f n+1(P ′)

+ (1 − νλ)E
[
Jk+1( f

n+1(P ′), H̃ , g(B−νE+ H̃))|H
] }

.

In the minimization above, if the optimal ν∗ = 0, then (3.38) holds by a similar
argument as before. If instead ν∗ = 1, then (3.38) now holds by Lemma 3.5 and
the induction hypothesis (3.36), since 0 ≤ g(B ′ + H̃) − g(B − E + H̃) ≤ E for
0 ≤ B − B ′ ≤ E . This proves that (3.37) holds for l = k.

(ii) This can be proved using similar techniques as in the proof of Theorem 2.4.
The details are omitted.

References

1. Y. Xu, J.P. Hespanha, Optimal communication logic in networked control systems, in Proceed-
ings of the IEEE Conference on Decision and Control, Paradise Islands, Bahamas (2004), pp.
842–847
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Chapter 4
Optimal Transmission Strategies for Remote
State Estimation

Improving system performance and reliability under resource (e.g. energy/power,
computation and communication) constraints is one of the important challenges in
wireless-based networks. This concern is particularly crucial in industrial applica-
tions such as remote sensing and real-time control where a high level of reliability is
usually required. As a consequence, it becomes of significant importance to inves-
tigate the impact of realistic wireless communication channel models in the area of
state estimation and control of networked systems [1]. Two important limitations of
wireless communication channels in these problem formulations include (i) limited
bandwidth and (ii) information loss or packet loss.

Packet loss has been reviewed and studied in previous chapters. Among the many
papers in the area of networked state estimation and control over bandwidth limited
channels, we first mention [2], which addresses the minimum data rate required for
stability of a linear stochastic systemwith quantized measurements received through
afinite rate channel. Thiswork is extended to the general case of time-varyingMarkov
digital communication channels in [3]. The reader is also referred to the survey [4]
and the references therein.

Even thoughmost of theworks available in the literature focus onmerely one of the
two mentioned communication limitations (limited bandwidth or packet loss), some
works attempt to address both issues. In particular, the problem of minimum data
rates for achieving bounded average state estimation error in linear systems over lossy
channels is studied in [5], while the problem of control around a target state trajectory
in the case of both signal quantization and packet drops is investigated in [6, 7]. The
work in [8] concentrates on designing coding and decoding schemes to remotely
estimate the state of a scalar stable stochastic linear system over a communication
channel subject to both quantization noise and packet loss.

Similar to [8], the current chapter is concernedwith remote state estimation subject
to both quantization noise and packet drops. However, rather than considering fixed

© The Author(s) 2018
A.S. Leong et al., Optimal Control of Energy Resources for State Estimation
Over Wireless Channels, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-65614-4_4
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coding and decoding schemes (as in [8]), we are here interested in choosing optimal
transmission policies at the smart sensor that decide between sending the sensor’s
local state estimates or its local innovations. We present a novel design methodology
for optimal transmission policies at a smart sensor to remotely estimate the state of
a stable1 linear stochastic dynamical system. The sensor makes measurements of
the process and forms estimates of the state using a local Kalman filter, see Fig. 4.1.
The sensor then transmits quantized (using a high-resolution quantizer) information
over a packet dropping link to the remote receiver. The sensor decides, at each time
instant, whether to transmit a high-rate quantized version of either its local state
estimate or its local innovation.

The packet reception probability is generally a function of the length of the packet,
such that shorter packets (and hence lower required data rates) may result in higher
packet reception probabilities. Since the local innovations process has a smaller
covariance, for a fixed packet reception probability, the quantized innovations require
less energy to transmit than the quantized state estimates. However, due to the packet
dropping link between the sensor and the remote estimator, if there has been a number
of successive packet losses, then receiving a quantized state estimate might be more
beneficial in reducing the estimation error covariance at the remote estimator than
receiving the innovations. Thus, there is a trade-off between whether the sensor
should transmit its local state estimates or its local innovations. The objective is
to design optimal transmission policies in order to minimize a long-term average
(infinite-time horizon) cost function as a linear combination of the receiver’s expected
estimation error covariance and the energy needed to transmit the packets.

The organization of the chapter is as follows. The system model is given in
Sect. 4.1. The augmented state space model at the remote receiver is constructed
in Sect. 4.2 and the corresponding Kalman filtering equations are given. Section4.3
presents optimal transmission policy optimization problems, together with their solu-
tions. For scalar systems, Sect. 4.4 proves the optimality of threshold transmission
policies. Numerical simulations are given in Sect. 4.5.

Notation: We let (Ω,F ,P) denote a complete probability space. Throughout
the chapter, the subscript or superscript s is used for the sensor’s quantities, and the
superscript r is used for the remote estimator’s quantities.We say that amatrix X > 0
if X is positive definite, and X ≥ 0 if X is positive semi-definite.

4.1 System Model

A diagram of the system architecture is shown in Fig. 4.1. Detailed descriptions of
each part of the systems are given below.

1We consider stable systems as the state of an unstable system becomes unbounded over time which
makes it difficult to quantize its state estimates.
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Fig. 4.1 Remote state estimation over a digital packet drop channel

4.1.1 Process Dynamics and Sensor Measurements

We consider a linear dynamical process

xk+1 = Axk + wk, (4.1)

where xk ∈ R
n is the process state at time instant k ≥ 0, with A being a Schur stable

matrix, and {wk : k ≥ 0} is a sequence of independent and identically distributed
(i.i.d.) Gaussian noises with zero mean and covariance Σw ≥ 0.2 The initial state
of the process x0 is a Gaussian random vector, independent of the process noise
sequence {wk : k ≥ 0}, with mean x̄0 := E[x0] and covariance Px0 ≥ 0.

The sensor measurements are obtained in the form

yk = Cxk + vk, (4.2)

where yk ∈ R
m is the vector observation at time instant k ≥ 0, and {vk} is a sequence

of i.i.d. Gaussian noises, independent of both x0 and {wk}, with zero mean and
covariance Σv > 0.

4.1.2 Local Kalman Filter at the Smart Sensor

We assume that the sensor has some computational capabilities. In particular, it can
run a local Kalman filter to reduce the effects of measurement noise, as in Chap.3.

Denote the local sensor information at time k by Y s
k := σ {yt : 0 ≤ t ≤ k},

which is the σ -field generated by the sensor measurements up to time k. We use the
convention Y s

0 := {∅,Ω}. The optimal Kalman filtering and prediction estimates
of the process state xk at the sensor are given by x̂ sk|k = E[xk |Y s

k ] and x̂ sk+1|k =
E[xk+1|Y s

k ], respectively.
We assume that the local Kalman filter at the sensor has reached steady state. The

stationary error covariance is defined by Ps = limk→∞ E[(xk+1 − x̂ sk+1|k)(xk+1 −

2We useΣw andΣv rather than Q and R to denote the process and measurement noise covariances,
as Q and R will be used for the noise covariances of the augmented state space model in Sect. 4.2.1.

http://dx.doi.org/10.1007/978-3-319-65614-4_3
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x̂ sk+1|k)T |Y s
k ], which is the solution of the algebraic Riccati equation (see e.g. [9])

Ps = APs A
T + Σw − APsC

T (CPsC
T + Σv)

−1CPs A
T . (4.3)

The Kalman filter equations for x̂ sk|k and x̂ sk+1|k are then given by

x̂ sk|k = x̂ sk|k−1 + K f (yk − Cx̂sk|k−1), (4.4)

x̂ sk+1|k = Ax̂sk|k−1 + Ks(yk − Cx̂sk|k−1), (4.5)

with x̂ s0|−1 := x̄0, where K f := PsCT (CPsCT + Σv)
−1 and Ks := AK f are the

stationary Kalman filtering and prediction gains, respectively. Denote the covariance
of the local state estimate byΣs := limk→∞ E[(x̂ sk+1|k)(x̂

s
k+1|k)T |Y s

k ], which satisfies
the stationary Lyapunov equation

Σs = AΣs A
T + Ks(CPsC

T + Σv)K
T
s . (4.6)

From (4.4) we can obtain limk→∞ E[x̂ sk|k(x̂ sk|k)T ] = Σs + K f (CPsCT + Σv)KT
f .

4.1.3 Coding Alternatives at the Smart Sensor

We define the innovation process at the sensor, εs(·), as

εsk = x̂ sk|k − x̂ sk|k−1 = K f (yk − Cx̂sk|k−1), (4.7)

see (4.4). From (4.7) we can obtain limk→∞ E[εsk(εsk)T ] = K f (CPsCT + Σv)KT
f .

As depicted in Fig. 4.1, the sensor communicates over a digital erasure channel with
a remote receiver which utilizes the received data to calculate an estimate of the
process state x(·).

This work aims to investigate what data the smart wireless sensor should transmit
to the receiver. Motivated by differential Pulse-Code Modulation (PCM) techniques
[10, 11], the digital sensor may convey either a vector quantized version of its local
estimate, or a vector quantized version of its innovation. Therefore, we may denote
the packet sent by the sensor as

zk :=
{
x̂ sk|k + qx

k , if νk = 1

εsk + qε
k , if νk = 0,

(4.8)

where νk ∈ {0, 1} is a decision variablewhich is transmitted to the receiver in addition
to zk . The sequence {νk} is assumed to be designed at the sensor, though it can also be
designed at the remote estimator. In (4.8), qx

(·) and q
ε
(·) are the high-rate quantization

noises resulting from encoding x̂ sk|k and εsk , respectively. We note that in this chapter
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the effects of the quantizer are only modelled via the additional quantization noise
term in (4.8). For high-rate quantization, such an approach is quite accurate, since the
quantization noises at high rates are approximately uncorrelated with the quantizer
inputs [12, 13]. It is also reasonable to assume that the quantization noises, whilst
uncorrelated to the inputs, have covariances which are proportional to the input
covariances, i.e.

Σ x
q := lim

k→∞E[qx
k (qx

k )T ] = α1 lim
k→∞E[x̂ sk|k(x̂ sk|k)T ]

Σε
q := lim

k→∞E[qε
k (q

ε
k )

T ] = α0 lim
k→∞E[εsk(εsk)T ], (4.9)

for given α0, α1 ≥ 0 which depend upon the quantizers and the bit rates used.
To be more specific, consider a vector Gaussian source s and a quantizer with

N = 2n quantizer levels, where n is the transmission rate (i.e. the number of bits
transmitted per sample). Then the quantization noise covariance of a high-resolution
quantizer will beΣq ≈ αE[ssT ]. For the case of asymptotically optimal lattice vector
quantizers with Voronoi cell S0, we have (see [14]):

α = M(S0)V 2/m

η2

2
m ln N

N 2/m
,

where m represents the dimension of the vector to be quantized, η = √
1/2, V =

πm/2


(m/2+1) ,

M(S0) =
1
k

∫
S0

||x − y||22dx
v(S0)1+2/m

is the normalized moment of inertia of S0, and v(S0) is the volume of S0. For m = 1,
it can be shown that α reduces to α = 4 ln N

3N 2 . For the case of ‘optimal’ Lloyd-Max
quantizers, we have (see [15])

α ∼ Bm

N 2/m
.

However, the exact values of the constants Bm are not known for dimensions m ≥ 3.
For m = 1, we have α = π

√
3

2N 2 .
In this chapter, we shall focus on a situation wherein the sensor chooses a varying

rate of quantization in order to make the traces of the quantization noise covariances
Σ x

q and Σε
q the same. From (4.9), this implies that the data rates n0 and n1 for

transmitting εsk and x̂ sk|k in the case of the lattice vector quantizer satisfy

TrΣ x
q = M(S0)V 2/m

η2

2n1 ln 2/m

22n1/m
Tr(Σs + K f (CPsC

T + Σv)K
T
f )

= M(S0)V 2/m

η2

2n0 ln 2/m

22n0/m
Tr(K f (CPsC

T + Σv)K
T
f ) = TrΣε

q .
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In the case of the Lloyd-Max quantizer, we have

TrΣ x
q = Bm

22n1/m
Tr(Σs + K f (CPsC

T + Σv)K
T
f ) (4.10)

= Bm

22n0/m
Tr(K f (CPsC

T + Σv)K
T
f ) = TrΣε

q . (4.11)

If the resulting n0 and n1 are not integers, their nearest integers will be chosen as the
transmission rates. Since the covariance of the local state estimates Σs ≥ 0, we have
n0 ≤ n1 in the two cases above.

As shown above, the local innovation process has a smaller stationary covariance,
and hence a smaller data rate to maintain a given packet reception probability. There-
fore, transmitting εsk should require less energy than transmitting x̂ sk|k (see Sect. 4.1.4).
However, due to the packet dropping link between the sensor and the remote esti-
mator, if there has been a number of successive packet losses, then receiving x̂ sk|k
might be more beneficial in reducing the estimation error covariance at the remote
estimator than receiving εsk . Thus, in this model, it is not immediately clear whether
the sensor should transmit local estimates x̂ sk|k or innovations εsk . This chapter seeks
to elucidate this dilemma in answering how to optimally design the control sequence
{νk}, using causal information available at the sensor.

4.1.4 Communication Channel

We assume that the forward communication channel between the sensor and the
receiver is unreliable, see Fig. 4.1. This channel carries the packets {(zk, νk) : k ≥ 0}
and is characterized by the transmission success process {γk : k ≥ 0}, where γk = 1
refers to successful reception of (zk, νk) and γk = 0 quantifies a dropout. Since the
decision variable νk consists of only one bit of information, it can be easily sent along
with zk as a header in the transmitted packet.

In this work we assume that γk is a Bernoulli random variable with P(γk = 1) =
λ = 1− p, where p ∈ [0, 1] is the packet loss probability. The packet loss probability
is generally a function of the data rates, such that higher data rates result in higher
packet loss probabilities. If pb is the error probability of sending one bit, then the
packet loss probability of sending a packet of n bits will be of the form

p = 1 − (1 − pb)
n, (4.12)

where the packet is assumed to be lost if an error occurs in any of its bits (e.g. when
there is no channel coding used). We assume that the bit error probability pb of a
wireless communication channel depends on the transmission energy per bit Eb, such
that pb decreases as Eb increases. The bit error probability pb can be computed for
different combinations of channels and digital modulation schemes. For example,
in the case of an Additive White Gaussian Noise (AWGN) channel with Binary
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Phase-Shift Keying (BPSK) modulation, we have

pb = Q

(√
2Eb

N0

)
, (4.13)

where N0/2 is the noise power spectral density andQ(x) := (1/
√
2π)

∫ ∞
x e−t2/2dt =

1
2 erfc(

x√
2
) is the Q-function [16]. As a consequence of (4.12) and (4.13), to obtain

a fixed packet dropout probability, when innovations are sent the transmit energy
per bit will be lower than when local estimates are transmitted. In Sect. 4.3 we will
further elucidate the situation and allocate power levels accordingly.

The sensor receives an acknowledgment process, such that after the transmission
of yk and before transmitting yk+1, the sensor has access to γk .

4.2 Analysis of the System Model

4.2.1 Augmented State Space Model at the Receiver

To analyse the model considered in this chapter, we write the dynamics of the aug-
mented state θk := [xk x̂ sk|k−1]T which we estimate at the remote receiver as

θk+1 = A θk + ξk,

where

A :=
[

A 0
KsC A − KsC

]
and ξk :=

[
wk

Ksvk

]
,

by (4.1), (4.2) and (4.5). From (4.8), we may write zk = νk(x̂ sk|k +qx
k )+(1−νk)(ε

s
k +

qε
k ), or

zk = C (νk)θk + ζk,

where

C (νk) := [K f C νk I − K f C] and ζk := K f vk + νkq
x
k + (1 − νk)q

ε
k ,

by (4.2), (4.4) and (4.7) (note that K f C is a square matrix). We note that {ξk} and
{ζk} are zero-mean noise processes. The covariance of the process {ξk} is

Q := E[ξkξ T
k ] =

[
Σw 0
0 KsΣvK T

s

]
≥ 0,
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while the covariance of the process {ζk} is given by

R(νk) := E[ζkζ T
k ] = K f ΣvK

T
f + ν2

kΣ
x
q + (1 − νk)

2Σε
q ≥ 0. (4.14)

The matrix S, which models the correlation between the augmented state process
noise {ξk} and the measurement noise {ζk}, is given by

S := E[ξkζ T
k ] =

[
0

KsΣvK T
f

]
.

4.2.2 Kalman Filter at the Receiver

We assume that the receiver knows whether dropouts have occurred or not, and at
instances where sensor packets are received, the decision variable νk is also known.
Therefore, the information at the receiver at time k, Y r

k , is given by the σ -field
σ {γt , γtνt , γt zt : 0 ≤ t ≤ k}. We use the convention Y r

0 := {∅,Ω}. At time instant
k, the receiver estimates the process state xk through estimation of the augmented
state θk based on the information Y r

k−1. We denote the conditional expectation and
the associated estimation error covariance of the augmented state as

θ̂k := E[θk |Y r
k−1]

Pk := E[(θk − θ̂k)(θk − θ̂k)
T |Y r

k−1] =
[
P1,1
k P1,2

k

P1,2
k P2,2

k

]
.

(4.15)

Let x̂rk := E[xk |Y r
k−1]. Then

P1,1
k ≡ E[(xk − x̂rk )(xk − x̂rk )

T |Y r
k−1] (4.16)

is the state estimation error covariance at the receiver at time k. The estimation error
covariance P(·) satisfies the following random Riccati equation of Kalman filtering
with correlated process and measurement noises:

Pk+1 = A PkA
T + Q − γk[A PkC

T (νk) + S]
× [C (νk)PkC

T (νk) + R(νk)]−1[A PkC
T (νk) + S]T . (4.17)

Note that γk appears as a random coefficient in the Riccati equation (4.17). The
process {νk} in general is also random, as will become apparent in Sect. 4.3.

Theorem 4.1 The estimation error covariance P(·) of the augmented system is of
the form
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Pk =
[

P1,1
k P1,1

k − Ps
P1,1
k − Ps P1,1

k − Ps

]
, k ≥ 0. (4.18)

Proof We have by definition Y s
k = σ {yt : 0 ≤ t ≤ k} and Y r

k = σ {γt , γtνt , γt zt :
0 ≤ t ≤ k}. In addition, let us define the σ -fields: Y 1

k = σ {νt , yt : 0 ≤ t ≤ k},
Y 2

k = σ {νt , zt : 0 ≤ t ≤ k}, Y 3
k = σ {γt , νt , zt : 0 ≤ t ≤ k}. We have the obvious

inclusions Y 2
k ⊆ Y 1

k and Y r
k ⊆ Y 3

k . Now E[xk |Y s
k−1] = E[xk |Y 1

k−1] since νk−1

does not provide any additional information about xk (because νk can depend on the
error covariance but not the current state). Then we have

E
[
E[xk |Y s

k−1]|Y 2
k−1

] = E
[
E[xk |Y 1

k−1]|Y 2
k−1

] = E[xk |Y 2
k−1] = E[xk |Y 3

k−1],

where the second equality is due to the inclusionY 2
k−1 ⊆ Y 1

k−1, and the third equality
holds because γk−1 is independent of xk . Therefore,

E[x̂ sk |Y r
k−1] = E

[
E[xk |Y s

k−1]|Y r
k−1

] = E
[
E

[
E[xk |Y s

k−1]|Y 2
k−1

] |Y r
k−1

]
= E

[
E[xk |Y 3

k−1]|Y r
k−1

] = E[xk |Y r
k−1] = x̂rk ,

where the second last equality is due to the inclusion Y r
k−1 ⊆ Y 3

k−1.
On the other hand,

P2,2
k ≡ E[(x̂ sk − E[x̂ sk |Y r

k−1])(x̂ sk − E[x̂ sk |Y r
k−1])T |Y r

k−1]
= E[(x̂ sk − x̂rk )(x̂

s
k − x̂rk )

T |Y r
k−1]

= E
[(

(xk − x̂rk ) − (xk − x̂ sk )
)(

(xk − x̂rk ) − (xk − x̂ sk )
)T |Y r

k−1

]
= P1,1

k + Ps − 2E[(xk − x̂rk )(xk − x̂ sk )
T |Y r

k−1]. (4.19)

We note that x̃ sk := xk − x̂ sk is orthogonal to Y s
k−1, and hence orthogonal to Y r

k−1.
Therefore, E[x̂ sk (x̃ sk )T |Y r

k−1] = 0 and E[x̂rk (x̃ sk )T |Y r
k−1] = 0, which gives

E[(xk − x̂rk )(xk − x̂ sk )
T |Y r

k−1] = E[((xk − x̂ sk ) + (x̂ sk − x̂rk )
)
(xk − x̂ sk )

T |Y r
k−1] = Ps .

This together with (4.19) implies that P2,2
k = P1,1

k − Ps . In a similar way, it can be
shown that P1,2

k = P1,1
k − Ps . �

Theorem 4.1 is useful in numerical solutions of the stochastic control problems
considered in the next section, in that it reduces the dimension (and hence the size)
of the state space which needs to be considered.
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4.3 Optimal Transmission Policy Problem

Based on the discussion in Sect. 4.1.3, the decision of whether to send the innovation
εsk , i.e. set νk = 0, or the state estimate x̂ sk|k , i.e. set νk = 1, will result in bit rates
n0 or n1, respectively, where n0 ≤ n1. To maintain a fixed packet loss probability p,
these bit rates yield different bit error probabilities p0b and p1b , where

p0b = 1 − (1 − p)1/n0 ≥ p1b = 1 − (1 − p)1/n1

by (4.12) and the fact that n0 ≤ n1. The required transmission energies for bit
error probabilities p0b and p1b will be denoted by E0

b and E1
b , respectively. Since

the transmission energy is a decreasing function of the bit error probability, we have
E0
b ≤ E1

b . For example, in the case of AWGN channel with BPSKmodulation, (4.13)
implies that

E0
b = N0

(
erfc−1(2p0b)

)2
and E1

b = N0
(
erfc−1(2p1b)

)2
,

where erfc−1(.) is the inverse complementary error function, which is monotonically
decreasing.

We define the energy per packet of n bits at time k as

J (νk) = nνk E
νk
b ,

which depends on the control variable νk ∈ {0, 1}.
We now aim to design optimal transmission policies in order to minimize a linear

combination of the trace of the receiver’s expected estimation error variance and the
amount of energy required at the sensor for sending the packet to the receiver. This
optimization problem is formulated as a long-term average (infinite-time horizon)
stochastic control problem

min{νk }
limsup

T→∞
1

T

T−1∑
k=0

E
[
βtrP1,1

k+1 +(1−β)J (νk)
∣∣{γl}k−10 ,{νl}k0,Px0

]
, (4.20)

where β ∈ [0, 1] is the weight, and P1,1
k+1 is the submatrix of Pk+1 (see (4.15) and

(4.16)) obtained from the Riccati equation (4.17). The problem (4.20) may be rewrit-
ten as

min{νk }
limsup

T→∞
1

T

T−1∑
k=0

E
[
βtrP1,1

k+1 + (1 − β)J (νk)
∣∣Pk, νk

]
(4.21)

due to the fact that Pk is a deterministic function of {γl}k−1
l=0 , {νl}k−1

l=0 , and Px0 . Denote
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L (P, γ, ν) := A PA T + Q − γ [A PC T (ν) + S]
[C (ν)PC T (ν) + R(ν)]−1[A PC T (ν) + S]T

≡
[

L 1,1(P, γ, ν) L 1,1(P, γ, ν) − Ps
L 1,1(P, γ, ν) − Ps L 1,1(P, γ, ν) − Ps

]
(4.22)

as the randomRiccati equation operator (which has the form (4.22) by Theorem 4.1),
where the matrices A , Q, C , S and R are given in Sect. 4.2.1.

Theorem 4.2 Independent of the initial estimation error variance Px0 , the value of
problem (4.21) is given by ρ, which is the solution of the average cost optimality
(Bellman) equation

ρ + V (P) = min
ν∈{0,1}

(
E

[
βtrL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν
] + E

[
V

(
L (P, γ, ν)

)|P, ν
])

,

(4.23)

where V is the relative value function.

Proof The proof uses similar techniques as in the proof of Theorem 2.3. �

In (4.23), the term E
[
L 1,1(P, γ, ν)|P, ν] is the submatrix (similar to (4.15)) of

E
[
L (P, γ, ν)|P, ν]= APAT+ Q−(1 − p)[APCT (ν) + S]

× [C(ν)PCT (ν) + R(ν)]−1[APCT (ν) + S]T , (4.24)

where p is the packet loss probability of the forward erasure communication channel
given in Sect. 4.1.4. For a given P, the stationary solution to the stochastic control
problem (4.21) is then given by the ν that solves the average cost Bellman equation
(4.23), and can be found by the use of the relative value iteration algorithm (see
Sect. 4.4).

4.4 Structural Results on Optimal Transmission Policies
for Scalar Systems

This section presents structural results on the optimal transmission policies for scalar
systems (where we will set A = a ∈ R, C = 1, Σw = σ 2

w, Σv = σ 2
v , Σq = σ 2

q ). The
idea is to apply the submodularity concept (see [17, 18]) to the Bellman equation
(4.23), to show that the optimal policy ν∗(·) is monotonically increasing with respect
to the receiver’s state estimation error variance P1,1. This monotonicity then implies
a threshold structure since the control space has only the two elements in {0, 1}.
Definition 4.1 ([17] after [18] ) A function F(x, y) : X × Y → S is submodular
in (x, y) if F(x1, y1) + F(x2, y2) ≤ F(x1, y2) + F(x2, y1) for all x1, x2 ∈ X and
y1, y2 ∈ Y such that x1 ≥ x2 and y1 ≥ y2. �

http://dx.doi.org/10.1007/978-3-319-65614-4_2
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It is important to note that submodularity is a sufficient condition for optimality of
monotone increasing policies. Specifically, if F(x, y) defined above is submodular
in (x, y), then y(x) = argminy F(x, y) is non-decreasing in x [18].

Define the class of matrices S as

S :=
{
P =

[
P P − Ps

P − Ps P − Ps

]
: P ≥ Ps

}
. (4.25)

We define an ordering ≥ for matrices in class S as P1 ≥ P2 if P1 − P2 is positive
semi-definite. It is evident that for P1,P2 ∈ S, we have P1 ≥ P2 if and only if
P1,1
1 ≥ P1,1

2 . We also define the mapping F : S × {0, 1} → S as

F(P, ν) = A PA T + Q − (1 − p)[A PC T (ν) + S]
[C (ν)PC T (ν) + R]−1[A PC T (ν) + S]T ,

in view of the instantaneous costE
[
L (P, γ, ν)|P, ν] in (4.24). Note that in the scalar

case R can be made independent of νk (see (4.14)), since in the scalar case we can
always achieve Σ x

q = Σε
q .

Lemma 4.1 For scalar systems, the function F(P, ν) is submodular in (P, ν), i.e.
for P1,P2 ∈ S such that P1 ≥ P2, we have

F(P1, 1) + F(P2, 0) ≤ F(P1, 0) + F(P2, 1). (4.26)

Proof We will show that

F1,1(P1, 1)+ F1,1(P2, 0) ≤ F1,1(P1, 0) +F1,1(P2, 1), (4.27)

where F1,1(·, ·) is the (1, 1) entry of F(·, ·). This will then imply (4.26). Let

P :=
[

P1,1 P1,1 − Ps
P1,1 − Ps P1,1 − Ps

]

where P1,1 ≥ Ps , which implies that P ∈ S. First, note that

F1,1(P, 0) = a2P1,1 + σ 2
w − (1 − p)

a2K 2
f P

2
s

K 2
f Ps + R

and

F1,1(P, 1) = a2P1,1 + σ 2
w − (1 − p)

a2
(
(P1,1 − Ps) + K f Ps

)2
(P1,1 − Ps) + K 2

f Ps + R
.

We denote
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g(x) :=
(
(x − Ps) + K f Ps

)2
(x − Ps) + K 2

f Ps + R
, x ≥ Ps .

Let P1,P2 ∈ S be such that P1 ≥ P2. Then the inequality (4.27) is equivalent to

a2(P1,1
1 −P1,1

2 )−(1− p)a2
(
g(P1,1

1 )−g(P1,1
2 )

)≤a2(P1,1
1 −P1,1

2 ). (4.28)

On the other hand, the derivative g′(x) satisfies

g′(x) =
2
(
(x − Ps) + K f Ps

)(
(x − Ps) + K 2

f Ps + R
)

(
(x − Ps) + K 2

f Ps + R
)2 −

(
(x − Ps) + K f Ps

)2(
(x − Ps) + K 2

f Ps + R
)2 .

(4.29)

In the case x = Ps − K f Ps where either Ps = 0 or σ 2
v = 0, (4.29) yields g′(x) = 0.

Otherwise, dividing the numerator of the right-hand side of (4.29) by the positive
value (x − Ps) + K f Ps , one obtains

2
(
(x − Ps) + K 2

f Ps + R
) − (

(x − Ps) + K f Ps
) = x − Ps + 2K 2

f Ps + 2R − K f Ps

= x − Ps + 2K 2
f (Ps + σ 2

v ) + 2σ 2
q − P2

s /(Ps + σ 2
v )

by the fact that R = K 2
f σ

2
v + σ 2

q . Since K f = Ps/(Ps + σ 2
v ), we have

x − Ps + 2K 2
f (Ps + σ 2

v ) + 2σ 2
q − P2

s /(Ps + σ 2
v ) = x − Ps + P2

s /(Ps + σ 2
v ) + 2σ 2

q ≥ 0

Therefore, g′(x) ≥ 0 for x ≥ Ps .
Since g(x) is an increasing function of x ≥ Ps , and P1,1

1 ≥ P1,1
2 ≥ Ps , the

inequality (4.28) is valid. This gives (4.27), and thus

F(P1, 1) − F(P2, 1) ≤ F(P1, 0) − F(P2, 0),

based on Theorem 4.1 and the fact that for P1,P2 ∈ S, we have P1 ≥ P2 if and only
if P1,1

1 ≥ P1,1
2 . �

Wenowpresent the relative value iteration algorithm to solve theBellman equation
(4.23). It is used to derive structural results for the optimal transmission policy. First,
we consider theBellman equation for the finite T -horizon stochastic control problem:

Vt (P) = min
ν∈{0,1}

(
E

[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν
]

+ E
[
Vt+1

(
L (P, γ, ν)

)|P, ν
])

, 0 ≤ t ≤ T − 1 (4.30)

with terminal condition VT (P) = 0, where T is large. We now define the function
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Ht (·) := Vt (·) − Vt (P f ), 0 ≤ t ≤ T (4.31)

whereP f �= P0 is fixed.We then have the following relative value iteration algorithm
recursion:

Ht (P) = min
ν∈{0,1}

(
E

[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν
]

+ E
[
Vt+1

(
L (P, γ, ν)

)|P, ν
])

− min
ν∈{0,1}

(
E

[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P = P f , ν
]

+ E
[
Vt+1

(
L (P, γ, ν)

)|P = P f , ν
])

(4.32)

for 0 ≤ t ≤ T − 1. It can be shown that the relative value iteration recursion (4.32)
converges to the optimal solution ρ of the infinite-time horizon average cost Bellman
equation (4.23) such that ρ ≈ H0(P0) (see the discussion on p. 391 of [19]).

Theorem 4.3 For scalar systems, the optimal transmission policy is a threshold
policy with respect to the receiver’s state estimation error variance P1,1 (and hence
in the augmented state estimation error covariance P), i.e.

ν∗(P) =
{
0, if P1,1

k ≤ φ∗
1, otherwise,

(4.33)

where φ∗ is the threshold.
Proof Based on the relative value iteration (4.32), define

Lt (P, ν) = E
[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν
] + E

[
Vt+1

(
L (P, γ, ν)

)|P, ν
]

:= L(1)
t (P, ν) + L(2)

t (P, ν)

for 0 ≤ t ≤ T − 1. We will next employ the submodularity concept.
Submodularity of L(1)

t (P, ν): Lemma 4.1 implies that F(P, ν) = E
[
L (P, γ, ν)∣∣P, ν

]
, and hence

(
F(P, ν)

)1,1 = E
[
L 1,1(P, γ, ν)

∣∣P, ν
]
, are submodular in (P, ν).

It is evident that E
[
J (ν)

∣∣ν]
is also submodular in (P, ν), since it is independent of

P. Therefore, their linear combination L(1)
t (P, ν) is submodular in (P, ν).

Submodularity of L(2)
t (P, ν): First we note that bothL (P, γ, 0) = E

[
L (P, γ, ν)∣∣P, ν = 0

]
andL (P, γ, 1) = E

[
L (P, γ, ν)

∣∣P, ν = 1
]
given in (4.24) are concave3

and non-decreasing functions in P (see Lemmas 1 and 2 in [20]). This implies that

E
[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν = 0
]
,

E
[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν = 1
]
,

3The proof of concavity is based on the fact that a function f (x) is concave in x if and only if
f (x0 + th) is concave in the scalar t for all x0 and h.
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and therefore

min
ν∈{0,1}

(
E

[
βL 1,1(P, γ, ν) + (1 − β)J (ν)

∣∣P, ν
])

,

are concave and non-decreasing functions of P (note that the expectation operator
preserves concavity). By induction and the fact that the composition of two non-
decreasing concave functions is itself concave and non-decreasing, one can show
that the value function Vt (P) in (4.30) is a concave and non-decreasing function of
P. But the composition of a non-decreasing concave function Vt (·)with a monotonic
submodular function L (·, γ, ν) is submodular (see part (c) of Proposition 2.3.5 in
[21]). Therefore, L(2)

t (P, ν) = E
[
Vt+1

(
L (P, γ, ν)

)|P, ν
]
is submodular in (P, ν).

Submodularity of Lt (P, ν): The sum of two submodular functions Lt (P, ν) =
L(1)
t (P, ν) + L(2)

t (P, ν) is also submodular.
As a result of submodularity,

arg min
ν∈{0,1} Lt (P, ν), 0 ≤ t ≤ T − 1

is non-decreasing inP (see [18]), and hence non-decreasing in P1,1. This monotonic-
ity implies the threshold structure (4.33), since the control space {0, 1} has only two
elements. �

Similar to the structural results obtained in the preceding chapters, knowing that
the optimal policy is a threshold policy simplifies real-time implementation, and
additionally allows one to derive specialized algorithmswhich provide computational
savings when computing the optimal threshold φ∗ numerically, see [22].

4.5 Numerical Studies

We present here numerical results for a scalar model with parameters a = 0.95,
σ 2
w = 0.25, σ 2

v = 0.01 and Px0=1 in (4.1) and (4.2). These values give Ps = 0.26,
Ks = 0.91, K f = 0.96 and Σs = 2.30, see Sect. 4.1.2. We take σ 2

q = Σ x
q = Σε

q =
0.01 in (4.9) together with a Lloyd-Max quantizer, which yields n0 = 3 and n1 = 5
by (4.11). In the simulation results, an AWGN channel with BPSK modulation is
assumed where N0 = 0.01 in (4.13).

First, let the packet error probability p in (4.12) be equal to 0.2. This gives p0b =
0.07 and p1b = 0.04, and hence, energy per bit levels of E0

b = 0.21 and E1
b = 0.29,

see Sect. 4.3.
In Fig. 4.2,we plot the expected estimation error covariance versus the packet error

probabilities. We let the transmission policies {νk} be fixed either to zero (sending
innovations) or one (sending state estimates). On the other hand, Fig. 4.3 presents
the packet transmission energy J (ν) (in milliwatt hour (mWh)) defined in Sect. 4.3
versus the packet error probabilities. Figures4.2 and 4.3 show that transmitting local
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Fig. 4.2 Expected estimation error covariance versus the packet error probabilities for the two
cases ν = 0 and ν = 1
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Fig. 4.3 Transmission energy per packet versus the packet error probabilities for the two cases
ν = 0 and ν = 1
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Fig. 4.4 Performance versus packet error probabilities

estimates gives smaller error covariance, but also requires more transmit energy,
than transmitting local innovations. This fact motivates the optimization formulation
(4.20).

We now set the weight β in problem (4.20) to 0.6. The discretized equation of
the relative value iteration algorithm (4.32) is used for the numerical computation
of the optimal transmission policy. In solving the Bellman equation (4.23) we use
40 discretization points for the state estimate error variance P1,1

k in the range of
[0,1]. In Fig. 4.4 we plot the cost function consisting of the linear combination of the
receiver’s expected estimation error covariance and the energy needed to transmit
the packets, versus the packet loss probability p ∈ [0.1, 0.9] for the cases of (i) fixed
transmission policy ν = 0, (ii) fixed transmission policy ν = 1 and (iii) optimal
transmission policy ν∗. We observe that for small packet loss probabilities, sending
innovations (ν = 0) is better than sending the state estimates (ν = 1). On the
other hand, for large packet loss probabilities sending the state estimates gives better
performance than sending the innovations, due to the poor estimation performance
when sending innovations when the packet loss probability is high.

4.6 Conclusion

This chapter presents a design methodology for remote state estimation of a stable
linear dynamical system, subject to packet dropouts. The key novelty of this for-
mulation is that the smart sensor decides, at each discrete-time instant, whether to
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transmit either its local state estimate or its local innovation. It is shown how to design
optimal transmission policies in order to minimize a long-term average (infinite-time
horizon) cost function as a linear combination of the receiver’s expected estimation
error covariance and the energy needed to transmit the packets. For scalar systems,
the optimality of a threshold policy is proved.

Notes: This chapter is based on [22], which also considers the case of imperfect
feedback acknowledgements, and a stochastic gradient algorithm for computing the
optimal threshold.
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Chapter 5
Remote State Estimation in Multi-hop
Networks

This chapter focuses on remote state estimation problems when using multiple
sensors and multi-hop networks. In communications, performance benefits can be
obtained if one adopts advanced communication techniques such as network coding
[1, 2], relays [3] and rerouting [4]. Here, we will show how these concepts can be
employed in remote state estimation. We first consider, in Sect. 5.1, a setup where
sensors can transmit both directly to the remote estimator or via intermediate relays.
We consider different operations that the relay can perform such as forwarding of
transmissions or network coding operations, and optimize over the relay operations
and transmission powers. Next, we consider in Sect. 5.2 the problem of reconfigur-
ing the topology of (or rerouting) a multi-hop network, in order to respond to time
variations in the wireless channel conditions. Optimal and suboptimal methods for
reconfiguring the network are presented and their performances compared.

Notation: We define col(X1, . . . , Xn) � [ XT
1 . . . XT

n ]T to be the matrix formed
by stacking the matrices X1, . . . , Xn on top of each other, and diag(X1, . . . , Xn) to
be the block diagonal matrix with X1, . . . , Xn being the diagonal blocks. We say that
a matrix X > 0 if X is positive definite, and X ≥ 0 if X is positive semi-definite.

5.1 Kalman Filtering over Fading Channels with Relays

5.1.1 Background

In digital communications, channel coding is often used to improve the quality of
transmissions over unreliable channels. The concept of network coding [1, 2], where
in a network with many nodes, throughput can be increased by allowing intermediate
nodes to perform simple operations (such as linear transformations [1]) on its received

© The Author(s) 2018
A.S. Leong et al., Optimal Control of Energy Resources for State Estimation
Over Wireless Channels, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-65614-4_5
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information, has attractedmuch attention in recent years.Kalmanfilteringwith power
control and coding was considered in [5, 6]. The work [6] included a study of
network coding, where one could choose to utilize a relay to perform a network
coding operation and the energy trade-offs involved. The use of relays in combating
the effects of fading and increasing channel capacity has been extensively studied in
wireless communications, see e.g. [3, 7]. Indeed, cooperative communications via
the use of relays have been identified as one of the key enabling technologies for
fifth-generation (5G) mobile networks [8]. The use of a relay in control has been
studied in [9], which showed that for the case of a single sensor the stability region
for stabilizing an unstable LTI plant can be enlarged in some situations, and also in
applications towards control of unmanned aerial vehicles [10].

In this section, we will study remote estimation using relays and investigate what
information the individual relays should send to the gateway/fusion centre. In a
related setup considered in [6], the relay could only perform network coding that
linearly combines two of the sensor transmissions using an XOR operation [1]. Here,
we allow for the possibility of the relay combining multiple sensor transmissions
using XOR operations [11], as well as the possibility of the relay forwarding the
sensors’ transmissions, which has the potential to give better performance.

5.1.2 System Model

The process is a discrete-time linear system

xk+1 = Axk + wk, (5.1)

where xk ∈ R
n and {wk} is i.i.d. Gaussian with zero mean and covariance matrix

Q > 0. The process is observed by M sensors with measurements

yi,k = Ci xk + vi,k, i = 1, . . . , M, (5.2)

where yi,k ∈ R,∀i , and {vi,k} are i.i.d. Gaussian with zeromean and variance Ri > 0,
i = 1, . . . , M . The processes {vi,k} and {wk} are assumed to bemutually independent,
with (A,C) detectable and (A, Q1/2) stabilizable, where C � col(C1, . . . ,CM).

We assume that the measurements yi,k have undergone source coding and can
be grouped into packets of b bits, with each packet short enough to be transmitted
within one time step. In particular, the uniform quantizer of [12] will be used here.
Under the additive noise model for quantization (which in general is quite accurate
for bit rates as low as three bits per sample [13]), the quantized value of yi,k can be
written as

yqi,k = yi,k + qi,k,

where the quantization noise qi,k has variance δbE[y2i,k], with
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Fig. 5.1 System model for the case of two sensors and two relays

δb = 4b ln 2

3 × 22b

when using the uniformquantizer of [12]. Themeasurements yqi,k are transmitted over
parallel channels to a gateway, which will perform the remote state estimation. Let
γi,k , for i = 1, . . . , M , be random variables such that γi,k = 1 if yqi,k is successfully
transmitted to the gateway by sensor i , and γi,k = 0 otherwise.

Furthermore, there exist L intermediate relay nodes that can be used to aid the
transmission of the sensor measurements to the gateway. Such situations can for
instance occur in mesh networks, where nodes close to the process will make mea-
surements of the process, while the other nodes do not make measurements, but
can be used to relay the sensor measurements to the gateway [7]. A diagram of the
system model for the case of M = 2 sensors and L = 2 relays is shown in Fig. 5.1.
Each relay can listen (with possible dropouts) to a subset of the sensor transmissions.
Denote I = {1, . . . , M} as the set of all sensors, and Il ⊆ I as the set of sensors
which relay l can listen to. In general, the sets Il , l = 1, . . . , L will not necessarily
be disjoint, with possibly multiple relays listening to a given sensor. For i ∈ Il , let
ζ l
i,k be a random variable such that ζ l

i,k = 1 if the transmission at time k of sensor i
is received by relay l, and ζ l

i,k = 0 otherwise. The relays can perform some simple
local processing before transmitting over parallel channels to the gateway. Let γ̃l,k
for l = 1, . . . , L be random variables such that γ̃l,k = 1 if transmission at time k
from relay l to the gateway is successful, and γ̃l,k = 0 otherwise.
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In this sectionwewill consider a few simple operations that the relay can perform.1

A relay can either (a) listen to one of the sensors’ transmissions, say sensor i , and
forward yqi,k if it is successfully received by the relay, or (b) listen to a number of the
sensors’ transmissions, say sensors i1, i2, . . . , il , and send yqi1,k ⊕ yqi2,k ⊕ · · · ⊕ yqil ,k
if yqi1,k, y

q
i2,k

, . . . , yqil ,k have all been successfully received by the relay, where ⊕ is
the XOR operation. The XOR operation is commonly used in network coding [1, 2].
For instance, if the gateway receives both yqi,k and yqi,k ⊕ yqj,k , then the gateway can

recover yqj,k using yqj,k = yqi,k ⊕
(
yqi,k ⊕ yqj,k

)
. In general, given the transmissions

received at the gateway, themeasurements which can be recovered can be determined
using Gaussian elimination over Z2.2 Determining which sensor/s each relay listens
to, and which operation each relay uses, is one of the key questions to be addressed
in Sect. 5.1.5. We define a relay configuration

φk = (φ1,k, . . . , φL ,k)

at time k as the set of operations φl,k that each relay uses at time k. The set of all
possible relay configurations will be denoted by Φ.

The communication channels will be modelled as time-varying fading channels.
We let gi,k, i = 1, . . . , M be the channel gains at time k from sensor i to the gateway,
g̃l,k, l = 1, . . . , L the channel gains from relay l to the gateway, and hli,k, i ∈ Il , l =
1, . . . , M the channel gains from sensor i to relay l. We use the block fading model
[14] and assume that {gi,k}, {g̃l,k}, {hli,k} vary over time k in an i.i.d. manner, with
the processes being mutually independent. Denote the transmit powers at time k of
the sensors and relays by ui,k, i = 1, . . . , M and ũl,k, l = 1, . . . , L , respectively.
Following the model of Chap.2, the packet reception probabilities will depend on
both the channel gains and transmit powers as follows: We have λi,k � P(γi,k =
1|gi,k, ui,k) = f (gi,kui,k) as the time-varying packet reception probabilities from
sensor i to the gateway, λ̃l,k � P(γ̃l,k = 1|g̃l,k, ũl,k) = f (g̃l,k ũl,k) the probabilities
from relay l to the gateway, and ρl

i,k � P(ζ l
i,k = 1|hli,k, ui,k) = f (hli,kui,k) the

probabilities from sensor i to relay l. Here

f (.) : [0,∞) → [0, 1] (5.3)

is a continuousmonotonically increasing function whose form depends on the partic-
ular digital modulation and coding scheme being used [15]. For example, in the case
of uncoded binary phase shift keying (BPSK) transmission with b bits per packet,

1We assume limited computational power at the relays, thus only simple operations at a bit level
are considered. If, however, additional computational capability is available, then other possibilities
include the use of more involved network coding schemes [2] or the computation of local state
estimates at the relays.
2While our use of the XOR operation is similar to network coding, our objectives are not exactly
the same. In network coding transmissions are often regarded as “successful” only if all packets
arrive (eventually) at their intended destinations, whereas in our problem even if some packets are
not received one will still perform state estimation using the available measurements.

http://dx.doi.org/10.1007/978-3-319-65614-4_2
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Table 5.1 Notation for different types of links

Channel gain Packet reception
random variable

Packet reception
probability

Sensor i to gateway gi,k γi,k λi,k

Relay l to gateway g̃i,k γ̃i,k λ̃i,k

Sensor i to relay l hli,k ζ li,k ρl
i,k

f (.) would take the form

f (gu) =
(∫ √

gu

−∞
1√
2π

e−t2/2dt

)b

, (5.4)

where we assume a packet is successfully received if and only if all b bits are success-
fully received. However, if there is channel coding and/or different digitalmodulation
schemes, f (.) will in general take on different forms [16]. In Table5.1 we summa-
rize the notation for the channel gains, packet reception random variables and packet
reception probabilities for the different types of links.

In addition to the links carrying information from the sensors to the gateway, there
are feedback links from the gateway to the sensors and relays which can be used to
communicate the relay configuration φk and power levels ui,k and ũl,k to be used, see
Sects. 5.1.5 and 5.1.6. In this chapter we will assume that transmissions can occur
over a much faster timescale than the process (5.1). Thus, delays experienced by
the measurements in passing through intermediate relay nodes will be ignored. For
instance, in the industrial wireless sensor networks standard WirelessHART [17],
transmissions between nodes would typically take around 10ms, whereas for many
estimation and control applications the process time constant might be 1 s or more.

5.1.3 Kalman Filter with Packet Drops and Relays

Let θi,k, i = 1, . . . , M be random variables such that θi,k = 1 if yqi,k can be recon-
structed at the gateway, and θi,k = 0 otherwise.Note that in general θi,k and θ j,k, i 
= j
are not independent even when the transmission dropouts are i.i.d. Values of θi,k for
different relay configurations and combinations of γi,k , γ̃l,k , ζ l

i,k can be written in
Boolean algebra form. For example, in Table5.2 we give the Boolean expressions
for θ1,k and θ2,k in the case of two sensors and one relay, where we use the notation
∧ to denote logical ‘and’ and ∨ to denote logical ‘or’. Now define



90 5 Remote State Estimation in Multi-hop Networks

Table 5.2 Boolean expressions for θ1,k and θ2,k , for two sensors and one relay, under three types
of operations

φk Forward yq1,k Forward yq2,k Send yq1,k ⊕ yq2,k
θ1,k γ1,k ∨ (γ̃1,k ∧ ζ 1

1,k) γ1,k γ1,k ∨ (γ̃1,k ∧ γ2,k ∧
ζ 1
1,k ∧ ζ 1

2,k)

θ2,k γ2,k γ2,k ∨ (γ̃1,k ∧ ζ 1
2,k) γ2,k ∨ (γ̃1,k ∧ γ1,k ∧

ζ 1
1,k ∧ ζ 1

2,k)

C̆k � col(θ1,kC1, . . . , θM,kCM), y̆k � col(θ1,k y
q
1,k, . . . , θM,k y

q
M,k),

x̂k+1|k � E[xk+1|y̆0, . . . , y̆k, C̆0, . . . , C̆k],
Pk+1|k �E[(xk+1− x̂k+1|k)(xk+1− x̂k+1|k)T|y̆0, . . . , y̆k, C̆0, . . . , C̆k].

(5.5)

The associated Kalman filter equations which are run at the gateway can be written
as (see e.g. [5])

x̂k+1|k = Ax̂k|k−1 + Kk(y̆k − C̆k x̂k|k−1)

Pk+1|k = APk|k−1A
T + Q − KkC̆k Pk|k−1A

T ,
(5.6)

where Kk = APk|k−1C̆T
k (C̆k Pk|k−1C̆T

k + R̆k)
−1, with R̆k = diag(R̆1,k, . . . , R̆M,k) �

diag(R1 +δbE[y21,k], . . . , RM +δbE[y2M,k]), similar to [6]. In the sequel, we will also

call Pk � Pk|k−1.

5.1.4 Performance of the Kalman Filter with Relays

In Sect. 5.1.2 we have proposed that each relay can either listen to transmissions
from one of the sensors which it then forwards to the gateway, or listen to a number
of sensors and perform an XOR operation that is then sent to the gateway. We
wish to investigate which operation each relay should use, and which sensors each
relay should listen to, i.e. determining the relay configuration φk , in order to give
the best performance for the Kalman filter. This section presents some preliminary
results on the performance of the Kalman filter, with optimal relay configuration
selection to be studied in Sect. 5.1.5. We consider the problem of optimal relay
configuration selection in order to minimize the trace of the one step ahead expected
error covariance E[Pk+1|Pk, gk,φk], where

gk � {g1,k, . . . , gM,k, g̃1,k, . . . , g̃L ,k, h
1
1,k, . . . , h

L
M,k} (5.7)

represents the channel gains at time k, which in turn will determine the packet recep-
tion probabilities λi,k , λ̃l,k , ρl

i,k, i = 1, . . . , M, l = 1, . . . , L . In order to compute
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E[Pk+1|Pk, gk,φk], we will further assume that full channel state information at the
receiver is available, so that gk is known at the gateway.3

Define

Fk(X)� AX AT+Q−E

[
AXC̆T

k

(
C̆k XC̆

T
k + R̆k

)−1
C̆k X AT

∣∣∣gk,φk

]
, (5.8)

where the expectation is with respect to θ1,k, . . . , θM,k in the definition of C̆k in (5.5).
Equivalently, we can write Fk(X) as

Fk(X)= AX AT+Q−
∑
I⊆I

E

⎡
⎣∏
i∈I

Θi,k

∏
j /∈I

(1 − Θ j,k)

∣∣∣gk,φk

⎤
⎦AXC̄(I )T

× (
C̄(I )XC̄(I )T+ R̄k(I )

)−1
C̄(I )X AT ,

(5.9)

where C̄(I ) = col({Ci , i ∈ I }), R̄k(I ) = diag({R̆i,k, i ∈ I }), and Θi,k, i =
1, . . . , M are random variables with the same distributions as θi,k . The quantities

E

[∏
i∈I Θi,k

∏
j /∈I (1−Θ j,k)

∣∣gk,φk

]
can be computed in terms of the packet recep-

tion probabilities λi,k , λ̃l,k , ρl
i,k, i = 1, . . . , M, l = 1, . . . , L . A systematic procedure

for doing this is as follows:
(1) Write out the Boolean expression

∧
i∈I

θi,k
∧
j /∈I

(¬θ j,k), (5.10)

where each θi,k is written as a Boolean expression, ¬θ j,k denotes the negation of the
Boolean expression for θ j,k and the notation

∧
i∈I θi,k � θi1,k ∧ · · · ∧ θin ,k ∧ · · · for

indices in ∈ I .
(2) Convert the Boolean expression (5.10) into the sum of products normal form
[19]. Note that this can be done in a systematic way.

(3) E
[∏

i∈I Θi,k
∏

j /∈I (1−Θ j,k)|gk,φk

]
is then given by taking the sum of products

normal form of (5.10), and replacing ∧ with multiplication, ∨ with addition, γi,k
with λi,k ,¬γi,k with 1−λi,k , γ̃i,k with λ̃i,k ,¬γ̃i,k with 1− λ̃i,k , ζ l

i,k with ρl
i,k and¬ζ l

i,k

with 1 − ρl
i,k .

By step (2) above, each term in the sum will correspond to a distinct entry of the

truth table for θ1,k, . . . , θM,k , thus allowing E
[∏

i∈I Θi,k
∏

j /∈I (1− Θ j,k)|gk,φk

]
to

be easily calculated.
We now give a result on how the packet reception probabilities affect the expected

error covariance E[Pk+1|Pk, gk,φk] = Fk(Pk). First denote

3In practice, this can be achieved using channel estimation and prediction algorithms, see references
in [6, 18].
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Li,k � {λ1,k, . . . , λi,k, . . . , λM,k, λ̃1,k, . . . , λ̃L ,k, ρ
1
1,k, . . . , ρ

L
M,k}

Ui,k � {λ1,k, . . . , μi,k, . . . , λM,k, λ̃1,k, . . . , λ̃L ,k, ρ
1
1,k, . . . , ρ

L
M,k}

L̃l,k � {λ1,k, . . . , λM,k, λ̃1,k, . . . , λ̃l,k, . . . , λ̃L ,k, ρ
1
1,k, . . . , ρ

L
M,k}

Ũl,k � {λ1,k, . . . , λM,k, λ̃1,k, . . . , μ̃l,k, . . . , λ̃L ,k, ρ
1
1,k, . . . , ρ

L
M,k}

Rl
i,k � {λ1,k, . . . , λM,k, λ̃1,k, . . . , λ̃L ,k, ρ

1
1,k, . . . , ρ

l
i,k, . . . , ρ

L
M,k}

S l
i,k � {λ1,k, . . . , λM,k, λ̃1,k, . . . , λ̃L ,k, ρ

1
1,k, . . . , σ

l
i,k, . . . , ρ

L
M,k}.

Lemma 5.1 Let FXi,k (.) be defined by Fk(.) in (5.8) when the links have packet
reception probabilitiesXi,k . Then, irrespective of which relay configuration is used,
∀i = 1, . . . , M,∀l = 1, . . . , L, we have

λi,k ≤ μi,k ⇒ FLi,k (X) ≥ FUi,k (X)

λ̃l,k ≤ μ̃l,k ⇒ FL̃l,k
(X) ≥ FŨl,k

(X)

ρl
i,k ≤ σ l

i,k ⇒ FRl
i,k

(X) ≥ FS l
i,k

(X).

Proof Consider the case λi,k ≤ μi,k . Recall that Bernoulli random variables can
be generated from U (0, 1) uniform random variables, by comparing the uniform
random variable with the probability that the Bernoulli random variable is equal
to one, i.e. γi,k = 1 when u ≤ λi,k , and γi,k = 0 otherwise, where u is U (0, 1).
Let ω denote an outcome corresponding to N independent realizations of U (0, 1)
random variables, where N is equal to the total number of packet dropping links. For
each ω, one can generate corresponding independent Bernoulli random variables
γ1,k, . . . , γM,k, γ̃1,k, . . . , γ̃L ,k, ζ

1
1,k, . . . , ζ

L
M,k . One can then construct the Bernoulli

random variables θ1,k, . . . , θM,k , and hence C̆k as in (5.5).
Let C̆Li,k (ω) be the matrix C̆k when using packet reception probabilities Li,k ,

and C̆Ui,k (ω) be the matrix C̆k when using packet reception probabilities Ui,k . Now
note that if θ j,k(ω) = 1 using the packet reception probabilities Li,k , then we also
have θ j,k(ω) = 1 when using the packet reception probabilities Ui,k , from the way
in which θ j,k(ω) is constructed, and since an increase in the packet reception proba-
bility of any link cannot decrease the probability of reconstructing any of the sensor
measurements. Hence

AXC̆Li,k (ω)T
(
C̆Li,k (ω)XC̆Li,k (ω)T+ R̆k

)−1
C̆Li,k (ω)X AT

≥ AXC̆Ui,k (ω)T
(
C̆Ui,k (ω)XC̆Ui,k (ω)T+ R̆k

)−1
C̆Ui,k (ω)X AT .

(5.11)

Since (5.11) holds for all ω, we have
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E

[
AX (C̆Li,k )

T
(
C̆Li,k X (C̆Li,k )

T+ R̆k

)−1
C̆Li,k X AT

∣∣∣gk,φk

]

≥ E

[
AX (C̆Ui,k )

T
(
C̆Ui,k X (C̆Ui,k )

T+ R̆k

)−1
C̆Ui,k X AT

∣∣∣gk,φk

]
,

which shows that FLi,k (X) ≥ FUi,k (X). The other two cases can be proved in a
similar manner. �

5.1.5 Relay Configuration Selection

We now wish to address the question of determining which configurations for the
relays will give the best Kalman filter performance. Suppose for now that the sensor
transmit powers ui,k, i = 1, . . . , M and relay transmit powers ũl,k, l = 1, . . . , L are
given or fixed (The more difficult problem of jointly optimizing the relay configura-
tion and transmission powers will be considered in Sect. 5.1.6.).Wewish to choose at
each time instant k, the relay configuration φ∗

k that minimizes trE[Pk+1|Pk, gk,φk],
i.e.

φ∗
k = argmin

φ
k
(Pk ,gk )∈Φ

trE[Pk+1|Pk, gk,φk], (5.12)

where E[Pk+1|Pk, gk,φk] = Fk(Pk), see (5.8).

Optimal Relay Configuration Selection

Problem (5.12) can, in principle, be solved by exhaustive search at the gateway.
The optimal configuration can then be fed back to the relays. We will characterize
the number of relay configurations that need to be checked at each time instant for
exhaustive search.

Lemma 5.2 Let Il be the set of sensors that relay l can listen to, and let Ml = |Il |
denote the cardinality of Il . Suppose that there are no restrictions on howmany relays
listen to the same sensor. Then the number of possible relay configurations for φk is

|Φ| =
L∏

l=1

(
2Ml − 1

)
. (5.13)

Proof First fix a relay l, which can listen to Ml of the sensors. This relay can either
forward any one of the sensor transmissions, or perform the XOR operation on two
or more of the sensor transmissions it listens to, resulting in Ml +

(Ml

2

)+ (Ml

3

)+· · ·+(Ml

Ml

) = 2Ml − 1 possible operations. If there are no restrictions on multiple relays
listening to the same sensor, then by the multiplication principle the number of relay
configurations is

∏L
l=1

(
2Ml − 1

)
. �

We thus see that the number of configurations that needs to be checked is, in the
worst case (where each relay can listen to all sensors), exponential in the number
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of relays L and number of sensors M . However, in practice, due to geographical
considerations, the number of sensors Ml that each sensor l listens to is often small,
e.g. in [20, 21] it is assumed that Ml ≤ 3.

Stability of Kalman Filtering with Optimal Relay Configuration Selection

We now wish to give a condition for stability of the Kalman filter with optimal relay
configuration selection.

Definition 5.1 The Kalman filter is said to be exponentially bounded if there exist
finite constants α and β, and an r ∈ [0, 1), such that E[trPk] ≤ αrk + β, ∀k.
Theorem 5.1 Let {sk} be a stochastic process such that sk = 1 if C̆k is full rank, and
sk = 0 otherwise. Suppose there exists a policy φ�(gk) dependent only on gk , such
that

||A||2E[P(sk = 0|gk,φ�(gk))] < 1, (5.14)

where ||A|| is the spectral norm of A. Then the Kalman filter using the optimal
configurations obtained from problem (5.12) is exponentially bounded.

Proof Since the distribution of C̆k depends on Pk and gk , and gk is independent in
time and of Pk , we have P(C̆k |Pk, Pk−1, . . . , P0) = P(C̆k |Pk). Then by (5.6), the
process {Pk} isMarkovian.NowdefineVk � trPk . In the relay configuration selection
problem (5.12) we are minimizing E{Vk+1|Pk, gk, φk(Pk, gk)}. We thus have

E{Vk+1|Pk} = E[E{Vk+1|Pk, gk,φ∗
k(Pk, gk)}]

≤ E[E{Vk+1|Pk, gk,φ�(gk)}]
= E

[
E{Vk+1|Pk, gk,φ�(gk), sk = 1}P{sk = 1|Pk, gk,φ�(gk)}

+ E{Vk+1|Pk, gk,φ�(gk), sk = 0}P{sk = 0|Pk, gk,φ�(gk)}
]

≤ W + (||A||2Vk + trQ
)
E[P{sk = 0|gk,φ�(gk)}],

where the last inequality is shown using similar arguments to [6], andW is a positive
constant. If ||A||2E[P(sk = 0|gk,φ�(gk))] < 1 we may then use a stochastic Lya-
punov function argument, similar to [6], to show that E{Vk |P0} ≤ αrk + β,∀k for
some r ∈ [0, 1) and constants α and β, which establishes exponential boundedness
of the Kalman filter. �

Theorem 5.1 thus provides a sufficient condition for Kalman filter stability dependent
on the system matrix A and the distributions of the channel gains gk .

Example 5.1 Consider the case of two sensors and one relay, with C̆k being full rank
only when both θ1,k = θ2,k = 1. Then

P(θ1,k = 1, θ2,k = 1|gk , φk) = E[Θ1,kΘ2,k |gk , φk ] = λ1,kλ2,k + (1 − λ1,k)λ2,k λ̃1,kρ
1
1,k .

Suppose we choose φ� to be the suboptimal policy that always forwards yq1,k , and
with the transmit powers u1,k = u2,k = ũ1,k = 1. The condition (5.14) then becomes
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E[P(sk = 0|gk,φ�(gk))] =
∫ (

1− f (g1,k) f (g2,k)

−(1− f (g1,k)) f (g2,k) f (g̃1,k) f (h
1
1,k)
)
dP(gk) <

1

||A||2 ,

which can be checked by numerically computing the integral for specific functions
f (.) in (5.3) and fading distributions P(gk). If condition (5.14) is satisfied for this
suboptimal policy, then by Theorem 5.1 the Kalman filter using the optimal relay
configurations will also be exponentially bounded.

Suboptimal Relay Configuration Selection

Lemma 5.2 has shown that the optimal way of choosing the relay configuration
by checking each configuration is (at most) exponential in the number of relays
L , which is computationally intensive when L is large. To reduce computational
complexity, a suboptimal method for determining a relay configuration is to optimize
the operation of each relay l independently of each other.Amotivation for thismethod
is that sometimes other relays may become unavailable; thus one should optimize the
performance of each relay irrespective ofwhat the other relays are doing. Specifically,
consider subsets Il ⊆ Il . Let C̄(Il) = col({Ci , i ∈ Il}), R̄k(Il) = diag({R̆i,k, i ∈ Il}),
and

Fl,k(X) � AX AT+Q−
∑
Il⊆Il

E
l

⎡
⎣∏

i∈Il
Θi,k

∏
j /∈Il

(1 − Θ j,k)|gk, φl,k

⎤
⎦

× AXC̄(Il)
T
(
C̄(Il)XC̄(Il)

T+ R̄k(Il)
)−1
C̄(Il)X AT ,

where the terms E
l
[∏

i∈Il Θi,k
∏

j /∈Il (1 − Θ j,k)|gk, φl,k

]
are computed assuming

that relay l is the only relay available. One then computes Fl,k(Pk) for each of the
operations φl,k that relay l can perform, with the one that gives the smallest value
of tr(Fl,k(Pk)) then chosen. This optimization can be carried out for each relay
independently of the other relays. The number of configurations that need to be
checked at each time step k is then

∑L
l=1

(
2Ml − 1

)
, which (compared to (5.13)) is

no longer exponential in the number of relays L , and with Ml often being small in
practice [20, 21].

5.1.6 Relay Configuration Selection and Power Control

InSect. 5.1.5 the sensor and relay transmit powerswere assumed tobefixed.However,
similar to Chap.2, the presence of time-varying fading channels will also allow for
the use of power control techniques to further improve performance. In this section
we present one possible formulation which optimizes the estimation performance
subject to a sum of transmit powers constraint.

http://dx.doi.org/10.1007/978-3-319-65614-4_2
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As in Sect. 5.1.5, we assume that full channel state information is available at the
receiver, with gk in (5.7) representing the set of all channel gains at time k. The trans-
mit powers of the sensors and relays can then depend on both the instantaneous chan-
nel gainsgk and the error covariance Pk ,with these transmit powers being computed at
the gateway (which is assumed to havemore computational resources than the sensors
and relays) and fed back to the sensors and relays before transmission occurs. Denote
uk(gk, Pk) � {u1,k(gk, Pk), . . . , uM,k(gk, Pk), ũ1,k(gk, Pk), . . . , ũL ,k(gk, Pk)} as the
set of all transmit powers at time k.

Optimal Power Control for a Given Relay Configuration

For a given relay configuration, we can pose the following power control problem:

min
uk (gk ,Pk )

trE[Pk+1|Pk, gk,φk]

s.t.
M∑
i=1

ui,k(gk, Pk) +
L∑

l=1

ũl,k(gk, Pk) ≤ utot,
(5.15)

which minimizes the expected one step ahead error covariance subject to the sum
power

∑M
i=1 ui,k(gk, Pk)+∑L

l=1 ũl,k(gk, Pk) being less than a given bound utot. Due
to the objective being a complicated nonlinear function of the transmit powers uk ,
the optimization problem (5.15) is in general non-convex and will need to be solved
using numerical optimization algorithms.

Joint Relay Configuration Selection and Power Control

Problem (5.15) is for a given relay configuration φk . To optimally choose both the
relay configuration and transmission powers, we can, in principle, solve∏L

l=1

(
2Ml − 1

)
instances of problem (5.15) at each time step (for each of the config-

urations, see Lemma 5.2), and choose the relay configuration that gives the smallest
value for the objective function, which however is very computationally intensive.

A less computationally intensive suboptimal scheme is to first assume a simple
power allocation (e.g. that the total power utot is equally divided between the sensors
and relays), and use the suboptimal method of Sect. 5.1.5 to choose a relay configu-
ration. For this chosen relay configuration, we then further optimize the transmission
powers by solving the power control problem (5.15).

5.1.7 Numerical Studies

We first look at the performance of the optimal and suboptimal relay configuration
selection methods of Sect. 5.1.5. We consider a situation with two sensors and two
relays, where each of the relays can listen to both sensor transmissions, see Fig. 5.1.
We consider the scalar case with a = 0.95, q = 1, c1 = c2 = 1, r1 = r2 = 1. For
simplicity, we assume that the links from the sensors to the relays are perfect (i.e.
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Fig. 5.2 Optimal and suboptimal relay configuration selections

have no dropouts), with the fading channels (from the sensors to gateway, and from
the relays to gateway) being exponentially distributed withmean 1, whichmodels the
case of Rayleigh fading [15]. We assume that the digital communication uses BPSK
transmission with b = 6 bits per packet, so that the function f (.) in Sect. 5.1.2 has
the form (5.4). We distribute the transmit powers equally between the sensors and
relays. Figure5.2 plots the average sum power and expected error covariance E[Pk]
(obtained by time averaging (xk − x̂k|k−1)(xk − x̂k|k−1)

T over 10,000 Monte Carlo
iterations), for the optimal and suboptimal relay configuration selectionmethods. For
comparison we also plot the performance for the cases of (1) no relay, (2) a scheme
where the relay always performs the XOR operation as investigated in [6] and (3)
a scheme where the gateway can ask for each lost transmission to be retransmitted
once.4 In each case, the expected error covariance decreases as the average power is
increased. Since by (5.4) larger powers imply higher packet reception probabilities,
this behaviour is in agreement with Lemma 5.1. We also see that the suboptimal
method that optimizes each relay separately gives very close performance to the
optimal method, and significantly outperforms the other schemes.

4Here we assume that additional transmit power (same as the power for a single transmission) is
used for each retransmission, with a successfully retransmittedmeasurement (from time k) available
to the Kalman filter at time k + 1, which now utilizes a buffer similar to [22].
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Fig. 5.3 Power control and relay configuration selections

We next consider the case of two sensors and one relay, with Rayleigh fading for
each of the fading channels. We choose g1,k , g2,k to have mean 1, while g̃1,k , h1,k ,
h2,k have mean 4. This models the case where power decays in free space as 1/d2,
with d being the distance from the transmitter [15], and where the relay is located
approximately halfway between the sensors and gateway. In Fig. 5.3 we plot E[Pk]
(obtained by time averaging (xk − x̂k|k−1)(xk − x̂k|k−1)

T over 10,000 Monte Carlo
iterations) for different sum powers, obtained by solving problem (5.15) using the
fmincon routine in MATLAB® for each relay configuration and selecting the best
one. We also plot the performance of the suboptimal scheme where a relay config-
uration is first chosen (assuming equal power allocation) and then power control is
performed, see Sect. 5.1.6. We compare this with the case where there is no power
control, with the sensors and relay using the same transmit power at all times, but
with the best relay configuration chosen at each time step. Additionally, we plot
the case where the relay always performs the XOR operation, and the case without
a relay but with power control. We see that using power control gives significant
performance benefits, with the best performance achieved when one optimizes both
the relay configuration and transmit powers. The suboptimal scheme where a relay
configuration is first chosen by assuming equal power allocation, and then the pow-
ers are optimized, performs very close to the optimal scheme. Comparing the plots
where power control is used, we see that for a given expected error covariance the
average power required is significantly less (at least 30–40%) when a relay is used.
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5.2 Network Topology Reconfiguration for Remote
State Estimation

5.2.1 Background

Estimation in wireless sensor networks using a variety of different architectures has
been considered in the literature. The architecture in [23] consists of one sensor
making measurements, which is then transmitted over a lossy network with arbitrary
topology. The article [24] looks at decentralized Kalman filtering with packet drops
and/or delays. The works in [18, 25] consider one-hop transmission (or a star topol-
ogy) over packet dropping links,with [25] investigating various different fusion rules,
and [18] studying the effect of power control on stability. Sensor network architec-
tures with relays are studied in [6] and Sect. 5.1, adopting network coding as a way
to improve performance. Kalman filtering over networks with tree structures include
[26–28], with [26] studying a stochastic sensor scheduling problem, and [27] study-
ing routing algorithms and topology reconfiguration but in the absence of packet
drops. In [28] the individual links in the tree can be packet dropping, and the notion
of a network state process is introduced, which models random time variations in the
wireless environment, for example, due to moving machines and robots in a factory.

In [28] the network topology, i.e. which sensors communicate to each other and
how packets are routed through the network, is assumed to be fixed even over dif-
ferent network states. The current section differs from [28] in that we consider the
problem of determining the optimal network topology configuration to use in each
network state. We further assume that network topology reconfigurations do not
occur instantly, but may incur a (temporal) cost, in that changing from one configu-
ration to another, unwanted links will need to be removed before new links can be
established [29]. This leads to a transient time where some links may not be available
and poor transitory performance. The aim is to optimize an expected error covariance
measure over the possible network configurations, taking into account this transient
state when switching between different configurations.

5.2.2 System Model

As before, the process is a discrete-time linear system of the form5

x(k + 1) = Ax(k) + w(k), k ∈ N0 � {0, 1, 2, . . .},

where x(k) ∈ R
n , and w(k) is Gaussian with zero mean and covariance matrix

Q > 0. The process is observed by M sensors, with measurements

5We change notation slightly by writing, e.g. x(k) instead of xk . This is to avoid having multiple
subscripts in quantities such as P(kl ) later on.



100 5 Remote State Estimation in Multi-hop Networks

Fig. 5.4 Sensor network
with nine nodes. The set of
active links represented by
arrows forms a tree, while
the dotted lines represent
inactive links

ym(k) = Cmx(k) + vm(k), m ∈ {1, . . . , M},

where ym(k) ∈ R
lm , and vm(k) is Gaussian with zero mean and covariance matrix

Rm > 0. We assume that {w} and {vm},m = 1, . . . , M are i.i.d. over time and mutu-
ally independent. We make the assumption that (A,C) is detectable and (A, Q1/2)

is stabilizable, where C � col(C1, . . . ,CM). However, the individual (A,Cm) pairs
are not required to be detectable.

Sensor Network Model

We consider the situation where some sensors and a gateway are connected to form
a sensor network, which in general is assumed to have a mesh structure. Sensor
measurements are to be transmitted, possibly via intermediate nodes, to the gate-
way, which performs the remote state estimation. The paths used by the sensors
in transmitting to the gateway are usually computed using routing algorithms. We
assume that the links which are utilized in the set of routes from the sensors to the
gateway, which we denote as the set of active links, have a tree structure (i.e. has no
cycles or parallel paths) with the gateway as the root node. This reduces redundancy
in transmissions and energy usage, and avoids sensors having to listen to multiple
transmissions.

The set of active links can be described using a directed graph with nodes/vertices
{S0, S1, . . . , SM },where the root node S0 denotes the gateway, and Sm,m = 1, . . . , M
denote the sensors. See Fig. 5.4 for an example with nine nodes (eight sensors and a
gateway). Each sensor aggregates its own measurement to the received packets from
incoming nodes and transmits the resulting packet to a single destination node. As
in Sect. 5.1, we assume that transmissions can occur over a much faster timescale
than the process, thus delays experienced in travelling through the network will be
ignored in the sequel. We call the node that sensor Sm transmits to, the parent of Sm ,
denoted by Par(Sm). The outgoing link/edge from each of the nodes will be denoted
as Em = (Sm,Par(Sm)),m = 1, . . . , M . For a given tree, there is a unique path from
each node Sm to the gateway S0, denoted by Path(Sm), with Edges(Path(Sm)) being
the corresponding edges.
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Fig. 5.5 Channel measurements taken at a paper mill

Wireless Channel Model

We model changes in the characteristics of the wireless environment by the notion
of a randomly time-varying network state process Ξ(k) ∈ B � {1, 2, . . . , |B|}.
As motivation, consider Fig. 5.5, which plots some fading channel measurements
acquired at a rolling mill in Iggesund, Sweden [30].We see infrequent but substantial
variations in the measured channel gains, due to mobile machinery and cranes in the
ceiling blocking the line of sight between certain sensors, or changing the propagation
pattern. Different network states can be used to represent the different positions (or
similar groups of positions) that themachines are in.6 Wewill assume that the network
state process {Ξ} is a discrete-time semi-Markov process [31], to model situations
where network state transitions occur randomly, but not necessarily at every discrete-
time instant k, see Fig. 5.6. The transition instants between network states are denoted
by K � {kl}, with k0 = 0, and k0 < k1 < k2 · · · all integers. The holding times,
or the amounts of time spent in a network state between transitions, are defined as
Δl � kl+1 − kl . We will also refer to the period between successive network state
transitions as a holding period. We assume that the holding times are bounded, thus
Δl ≤ Δmax,∀l. Let D � {1, 2, . . . , Δmax}. We have

P{Ξ(kl+1) = j,Δl = δ|Ξ(k0), . . . , Ξ(kl−1),Ξ(kl) = i, k0, . . . , kl}
= P{Ξ(kl+1) = j |Ξ(kl) = i}P{Δl = δ|Ξ(kl) = i}
= qi jψi (δ), ∀(kl, δ, i, j) ∈ K × D × B × B,

(5.16)

6In practice, network states Ξ(k) can be estimated by either directly observing the positions of the
machinery on the factory floor, or by using techniques to estimate variations in the radio environment
[30].
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Fig. 5.6 Discrete-time semi-Markov process, see (5.16)

where in the second line we have made use of the fact that theMarkov property holds
at the transition instants (since the process is semi-Markov [31]), with

qi j � P{Ξ(kl+1) = j |Ξ(kl) = i}, kl , kl+1 ∈ K (5.17)

being the transition probabilities of the embedded Markov chain, and the fact that
the conditional probabilities of the holding time

ψi (δ) � P{Δl = δ|Ξ(kl) = i}, kl ∈ K (5.18)

depends only on the current state of the embeddedMarkov chain.We allow for virtual
transitions [28] where j = i , see Fig. 5.6.

The network configuration π(k) at time k fixes the transmission schedule that
determines which nodes each sensor will receive from and forward to. The set of all
possible network configurations is denoted by Π = {1, 2, . . . , |Π |}, and the set of
possible configurations when in network state j by Π j ⊆ Π . We assume that the
set of all possible network configurations has been precomputed and is known at the
gateway. For instance, in each network state, one can compute a small number of
reasonable configurations, using routing algorithms that optimize different objectives
[32], which could also take into account possible link failures during operation.
The set of all configurations in the different network states would then form our
precomputed set of possible network configurations.

Define the random variables γm(k),m = 1, . . . , M by

γm(k) =
{
1, if transmission via link Em at time k is successful
0, otherwise,

and the corresponding link success probabilities by

φm|( j,p) � P{γm(k) = 1|Ξ(k) = j, π(k) = p}, p ∈ Π j .
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We will assume that, conditioned on a network state, the dropouts {γm} are i.i.d.
Bernoulli processes, with {γm} independent of {γn} for m 
= n. Note that the packet
reception probabilities can differ in different network states. Situations with i.i.d.
and Markovian packet drops can also be regarded as special cases of this model, see
[28] for details.

Kalman Filter at Gateway

Define the random variables θm(k),m = 1, . . . , M by

θm(k) =
{
1, if transmission via Path(Sm) at time k is successful
0, otherwise,

which determines whether the measurement of sensor m at time k is received by the
gateway. Due to the fact that the set of active links forms a tree, we have

θm(k) =
∏

Ei∈Edges(Path(Sm ))

γi (k)

and, by independence,

P{θm(k) = 1|Ξ(k) = j, π(k) = p} =
∏

Ei∈Edges(Path(Sm ))

φi |( j,p).

Let θ(k) � col(θ1(k), . . . , θM(k)), y(k) � col(θ1(k)y1(k), . . . , θM(k)yM(k)), R �
diag(R1, . . . , RM), C(k) � col(θ1(k)C1, . . . , θM(k)CM). The information set avail-
able at the gateway at time k is

I(k) ={θ(0), . . . , θ(k), y(0), . . . , y(k)}.

The state estimates and estimation error covariances are defined as

x̂(k|k − 1) � E{x(k)|I(k − 1)}.
P(k|k − 1) � E{(x(k) − x̂(k|k − 1))(x(k) − x̂(k|k − 1))T|I(k − 1)}.

The Kalman filtering equations can then be written as (see [28])

x̂(k + 1|k) = Ax̂(k|k − 1) + K (k)(y(k) − C(k)x̂(k|k − 1))

P(k + 1|k) = AP(k|k−1)AT +Q−K (k)C(k)P(k|k−1)AT ,
(5.19)

where K (k) � AP(k|k−1)C(k)T
(
C(k)P(k|k − 1)C(k)T + R

)−1
. In the sequel, we

will also use the shorthand P(k) � P(k|k − 1).
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5.2.3 Optimal Network Reconfiguration

As mentioned before, network states model random changes in the characteristics of
the wireless environment. Due to these changes, see e.g. Fig. 5.5, the packet recep-
tion probabilities of existing links can change, and there could even be a complete
(temporal) loss of connectivity in some links. The purpose of the present section
is to illustrate how to compensate for changes in the wireless environment through
network reconfiguration.

Reconfiguration Issues

In what follows, we will use a similar cost of reconfiguration as in [29], where in
changing from one configuration to another, unwanted links will need to be removed
before the establishment of new links. We will refer to this as a transient state. Thus
there is a transient time or reconfiguration time Tl ∈ N0 at the lth state transition,
where some linkswill not be available, resulting in poor transitory performance of the
Kalman filter (see Sect. 5.2.5 for a specific example). Therefore, there is potentially
a trade-off between choosing a configuration that gives good performance (after it is
fully reconfigured) but requires many link changes, versus a configuration that has
fewer link changes but poorer performance.

The reconfiguration time Tl is dependent on the underlying communication tech-
nology. For instance, in IEEE 802.11 the time needed to reroute a wireless network
could be on the order of seconds, or even tens of seconds [33]. On the other hand,
in WirelessHART which maintains multiple routes that can be switched at different
time instances [34], it might be more appropriate to take Tl = 0. In this section Tl is
taken to be random,7 with a conditional probability distribution that could depend on
the current network state Ξ(kl), the previous network configuration π(kl−1), and the
new network configuration chosen π(kl). We will assume that the reconfiguration
times are bounded, i.e. Tl ≤ Tmax,∀l, for some finite Tmax.

Optimization Problem

At each transition instant kl ∈ K, we seek to find a network configuration

π(kl) � π(P(kl),Ξ(kl), π(kl−1))

which is to be held until the next transition instant kl+1 ∈ K, and which minimizes an
expected estimation error covariance performance measure over this holding period.
The gateway decides on the new configuration based on knowledge of the current
error covariance P(kl), the current network state Ξ(kl) and the old network con-
figuration π(kl−1), which is then communicated back to the sensors. For ease of
exposition, we introduce the aggregated process

7Suppose the new configuration is to be communicated from the gateway back to the sensors
(either using a broadcast or transmitted via intermediate nodes). Then, due to random packet losses,
information about this new configuration may not get through reliably to all nodes at the same time
but will need to be retransmitted, resulting in a random reconfiguration time Tl .



5.2 Network Topology Reconfiguration for Remote State Estimation 105

U (kl) �
(
P(kl),Ξ(kl), π(kl−1)

)
, kl ∈ K. (5.20)

In terms ofU (kl), the new configuration π∗(kl) ∈ Π j when Ξ(kl) = j is found via
the following optimization:

π∗(kl) = argminπ(kl )∈Π j
V (U (kl), π(kl)), (5.21)

where the cost function

V (U (kl), π(kl)) � E

{ Δl∑
d=1

trP(kl + d)

∣∣∣U (kl), π(kl)

}
, (5.22)

with the holding time Δl being random. The quantity V (U (kl), π(kl)) amounts to
the sum of the trace of expected error covariances over the random holding time Δl ,
when the configuration π(kl) is used. In computations, it is useful to further rewrite
(5.22) as

V (U (kl), π(kl)) =
Δmax∑
δ=1

[
Tmax∑
t=0

E

{
δ∑

d=1

trP(kl + d)

∣∣∣U (kl), π(kl), Tl = t

}

×P{Tl = t |Ξ(kl) = j, π(kl−1), π(kl)}
]
P{Δl = δ|Ξ(kl) = j}.

(5.23)

In (5.23), the expectations in the terms

E {P(kl + d) |U (kl), π(kl), Tl = t} (5.24)

are taken over the packet loss processes (which affect the Kalman filter recur-
sions (5.19)), while the summations over δ and t average over the random hold-
ing times and random reconfiguration times, respectively. Following the model of
Sect. 5.2.2, the network state Ξ(kl) determines the distribution of the holding times
(see (5.18)) and thereby the upper limit of the sum over d in (5.23); differences
between the decision variable π(kl) and the previous configuration π(kl−1) deter-
minewhich linkswould bemoved to a transient state. In particular, (5.24) is computed
based on whether the network is still in the transient mode (if d ≤ Tl) or has been
fully reconfigured (if d > Tl), with the expectation taken over the discrete random
variables {θ(kl), . . . , θ(kl + d − 1)}.
Computational Aspects

In principle, problem (5.21) can be solved by checking the values ofV (U (kl), π(kl))
for each of the different configurations π(kl) ∈ Π j . However, computation of the
expectations in (5.24) involves considering the values of P(kl + d) for all possible
combinations of {θ(kl), . . . , θ(kl + d − 1)}, with the number of possibilities being
O(2Md) in general. In particular, computingE {P(kl + Δmax) |U (kl), π(kl), Tl}will
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have a complexity of O(2MΔmax). Thus, for large holding times, which occur often in
industrial settings, calculating the cost function (5.22) is computationally intensive.
Section5.2.4 proposes a suboptimal method, which minimizes an alternative cost
function that can be computed with complexity O(2M).

Stochastic Stability Analysis

Before proceeding, we will present a criterion for estimator stability with network
configurations provided by the optimal reconfiguration problem (5.21), by extending
the methods developed in [28].

Definition 5.2 The Kalman filter is said to be uniformly bounded8 if there exists a
finite constant B > 0 such that E{trP(k)} ≤ B,∀k ∈ N.

First we have the following:

Lemma 5.3 The process {Z}K defined by

Z(kl) � (P(kl−1 + 1), . . . , P(kl),Ξ(kl), π(kl−1)), kl ∈ K

is Markovian.

Proof Note that {Ξ}K is Markovian, and π(kl) depends only on (P(kl), Ξ(kl),
π(kl − 1)). We also have

P{C(kl)|P(kl), . . . , P(kl−1 + 1), P(kl−1), . . . , Ξ(kl), Ξ(kl−1), . . . , π(kl−1), π(kl−2), . . .}
= P{C(kl)|P(kl), . . . , P(kl−1 + 1), Ξ(kl), π(kl−1)}.

The result then follows from (5.19). �

Next, define the observability matrices O(k, k) = C(k),

O(k + n, k) =

⎡
⎢⎢⎢⎣

C(k)
C(k + 1)A

...

C(k + n)An

⎤
⎥⎥⎥⎦ , n ∈ N. (5.25)

Consider the processes {ρd}K, d = 1, . . . , Δl , given by

ρd(kl) =
{
1 , if O(kl + d − 1, kl) is full rank
0 , otherwise.

Taking into account the network state, network configurations and reconfiguration
times, define

8Uniform boundedness can be easily shown to be equivalent to the notion of exponential bounded-
ness adopted in Definition 5.1 and the preceding chapters.
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μd( j, p, p
−) �P{ρd(kl)=0|Ξ(kl)= j, π(kl)= p, π(kl−1)= p−}

=
Tmax∑
t=0

P{ρd(kl)=0|Ξ(kl)= j, π(kl)= p, π(kl−1)= p−, Tl = t}

× P{Tl = t |Ξ(kl)= j, π(kl)= p, π(kl−1)= p−}.
(5.26)

Then we have the following theorem:

Theorem 5.2 Suppose there exists a policy π�(kl) � π�(Ξ(kl), π�(kl−1)), depen-
dent only on the current network state Ξ(kl) = j and existing configuration
π�(kl−1) = p−, such that

Δmax∑
δ=1

μδ( j, π
�( j, p−), p−)||A||2δψ j (δ) < 1, ∀ j ∈ B, ∀p− ∈ Π, (5.27)

where ||A|| denotes the spectral norm of A, and ψ j (δ) is as defined in (5.18). Then,
under the optimal network reconfiguration method (5.21), the Kalman filter is uni-
formly bounded.

Proof See Appendix. �

Theorem5.2 establishes a sufficient condition for estimator stability, seeSect. 5.2.5
for an example of how this condition can be verified numerically. Intuitively, condi-
tion (5.27) averages out non-full rank observation outcomes over the random holding
times Δl = δ.

Remark 5.1 In the case of a single network state with i.i.d. packet drops, we have
δ = 1, and ψ j (δ) = 1,∀ j . Then μδ( j, p, p−) reduces to the probability that C(k)
is not full rank, and (5.27) becomes

P{C(k) is not full rank}||A||2 < 1,

which is similar to the stability condition of [18]. Further reducing to a single sensor
with C1 being full rank, the probability of C(k) not being full rank is the probability
of dropping a packet, so (5.27) becomes

P{γ1(k) = 0}||A||2 < 1,

which resembles the stability conditions of e.g. [35].

Remark 5.2 Theorem 5.2 differs from Theorem 2 of [28] in that the probabilities
μd( j, p, p−) also depends on the network configurations π(kl−1) and π(kl), a con-
cept which was not considered in [28]. In addition, μd( j, p, p−) is defined to be a
probability conditional on Ξ(kl) rather than Ξ(kl−1), which is perhaps more natural
since our chosen configurations depend on Ξ(kl) rather than Ξ(kl−1).
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Multiple Holding Periods

In (5.21) and (5.22) network reconfigurations are carried out by considering the
sum of expected error covariances over one network state holding period (involving
several time steps k). By looking further ahead over multiple holding periods, one
can potentially achieve better performance. For the case of averaging over N holding
periods, the newconfigurationπ(kl) ∈ Π j whenΞ(kl) = j is foundvia the following
optimization:

argminπ(kl )∈Π j

[
E

{
Δl∑

d0=1

trP(kl + d0)
∣∣∣U (kl), π(kl)

}

+ min
π(kl+1)

E

{
E

{
Δl+1∑
d1=1

trP(kl+1 + d1)
∣∣∣U (kl+1), π(kl+1)

} ∣∣∣∣U (kl), π(kl)

}
+ · · ·

+min
π(kl+N−1)

E

⎧⎨
⎩E

⎧⎨
⎩

Δl+N−1∑
dN−1=1

trP(kl+N−1+dN−1)
∣∣∣U (kl+N−1), π(kl+N−1)

⎫⎬
⎭
∣∣∣∣U (kl), π(kl)

⎫⎬
⎭

⎤
⎦ .

(5.28)
Observe that in solving themultiple holding period optimal reconfiguration problems
(5.28), we also obtain reconfiguration policies forπ(kl+1), . . . , π(kl+N−1). However,
here we will adopt a moving horizon approach similar to [5], wherein the optimal
π∗(kl+1) will be obtained by solving problem (5.28) at the next transition instant
kl+1 ∈ K, the optimalπ∗(kl+2) is obtained by solving problem (5.28) at the transition
instant kl+2 and so on. We note that optimization over N holding periods will require
the computation of cost functions with an increased complexity of O(2MΔmaxN ).

5.2.4 Suboptimal Network Reconfiguration

To address the computational issues outlined in Sect. 5.2.3, in this section we study a
suboptimal schemewhichminimizes upper bounds to the expected error covariances,
where these upper bounds can be computed recursively with lower complexity than
the expected error covariance performance measure (5.22).

Optimization Problem

We adopt a suboptimal approach wherein, usingU (kl) defined as in (5.20), the new
configuration π̄∗(kl) ∈ Π j is obtained via

π̄∗(kl) = argminπ(kl )∈Π j
W (U (kl), π(kl)), (5.29)

where
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W (U (kl), π(kl)) �
Δmax∑
δ=1

δ∑
d=1

trY (kl + d)P{Δl = δ | Ξ(kl) = j}. (5.30)

The sequence {Y (kl + 1),Y (kl + 2), . . . ,Y (kl + Δmax)} is given by the following
recursion:

Y (k + 1) = AY (k)AT + Q

− E{AY (k)C(k)T (C(k)Y (k)C(k)T+R)−1C(k)Y (k)AT |U (kl ), π(kl )}
= AY (k)AT + Q

−
Tmax∑
t=0

E
{
AY (k)C(k)T (C(k)Y (k)C(k)T+R)−1C(k)Y (k)AT |U (kl ), π(kl ), Tl = t

}

× P{Tl = t |Ξ(kl ) = j, π(kl ), π(kl−1)},
(5.31)

with initial condition Y (kl) = P(kl). The expectations

E{AY (k)C(k)T (C(k)Y (k)C(k)T+R)−1C(k)Y (k)AT |U (kl), π(kl), Tl = t},

for k ∈ {kl, . . . , kl + Δmax − 1} in (5.31), are computed with respect to the random
packet loss processes, taking into account whether the network is still in the transient
mode (k − kl ≤ Tl) or has been fully reconfigured (k − kl > Tl), similar to the
computation of (5.24). We have the following result:

Lemma 5.4 The sequence Y (k) is an upper bound to E{P(k)|U (kl), π(kl)} for
k ≥ kl .

Proof Define

gk(X) = AX AT + Q − E{AXC(k)T (C(k)XC(k)T + R)−1C(k)X AT |U (kl ), π(kl )}.

Lemma 5.4 is proved by using the fact that gk(.) is concave in X , and induction.
The concavity of gk(.) can be shown by using similar techniques as in [35, 36]. The
details are omitted for brevity. �
Thus, when the suboptimal method minimizes (5.30), what is minimized is not the
expected error covariance performance measure (5.22), but by Lemma 5.4, an upper
bound to (5.22).

Computational Aspects

Upper bounding sequences of the form (5.31) are much easier to compute than the
expected error covariance when the holding times are large, since one now needs to
consider O(2M) combinations of packet drops at each stage in (5.31), rather than
O(2MΔmax)when computing the expected error covariance.9 Furthermore, the bounds

9While still exponential in the number of sensors, for industrial settings with small subnetworks
this is usually quite feasible.
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often seem to be quite tight, see, e.g. [37].10 In Sect. 5.2.6wewill see that in numerical
simulations the configurations obtained using the suboptimal method are in many
cases identical to the configurations obtained using the optimal method.

Stochastic Stability Analysis

Wenowgive a stability condition for the suboptimal network reconfigurationmethod.
First we have the following lemma:

Lemma 5.5 The process {Z̄}K defined by

Z̄(kl) � (Y (kl−1 + 1), . . . ,Y (kl),Ξ(kl), π(kl−1)), kl ∈ K

is Markovian.

Proof The proof follows from the fact that (1) {Y }N is Markovian since Y (k+1)
depends only on Y (k), (2) {Ξ}K is Markovian, and (3) π(kl) depends only on
(Y (kl),Ξ(kl), π(kl − 1)). �

Now consider a process {s(k)} defined by

s(k) =
{
1 , if C(k) is full rank
0 , otherwise.

For d = 1, . . . , Δl , let

νd( j, p, p
−) � P{s(kl + d − 1) = 0|Ξ(kl) = j, π(kl) = p, π(kl−1) = p−}

=
Tmax∑
t=0

P{s(kl+d − 1)=0|Ξ(kl)= j, π(kl)= p, π(kl−1)= p−, Tl = t}

× P{Tl = t |Ξ(kl)= j, π(kl)= p, π(kl−1)= p−}.

We have the following theorem:

Theorem 5.3 Suppose there exists a policy π�(kl) � π�(Ξ(kl), π�(kl−1)), depen-
dent only on Ξ(kl) = j and π�(kl−1) = p−, such that

Δmax∑
δ=1

νδ( j, π
�( j, p−), p−)||A||2δψ j (δ) < 1, ∀ j ∈ B, ∀p− ∈ Π. (5.32)

Then, under the suboptimal reconfiguration method (5.29), the Kalman filter is uni-
formly bounded (see Definition 5.2).

Proof See Appendix. �

10Some tighter but more complicated bounds based on techniques in [38] can also be used.
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Remark 5.3 Comparing Theorems 5.2 and 5.3, we see that the condition (5.32) in
Theorem 5.3 involves probabilities of the matricesC(k) not being full rank, which in
general is larger than the probability of the observability matrices in (5.25) not being
full rank. Thus the condition (5.32) in Theorem 5.3 is more stringent than condition
(5.27) of Theorem 5.2.

Multiple Holding Periods

Similar to Sect. 5.2.3, for the case of averaging over N holding periods, the new
configuration π̄∗(kl) ∈ Π j when Ξ(kl) = j is found via the following optimization:

argminπ(kl )∈Π j
E

{
Δl∑

d0=1

trY0(kl + d0) + min
π(kl+1)

Δl+1∑
d1=1

trY1(kl+1 + d1) + · · ·

+ min
π(kl+N−1)

Δl+N−1∑
dN−1=1

trYN−1(kl+N−1+dN−1)

⎫⎬
⎭ .

(5.33)

The N sequences {Y0(kl+1), . . . ,Y0(kl+Δmax)}, . . . , {YN−1(kl+N−1+1), . . . ,YN−1

(kl+N−1 + Δmax)} in (5.33) are defined, for n = 0, . . . , N − 1, as follows:

Yn(k + 1) = AYn(k)A
T + Q −

Tmax∑
tn=0

E{AYn(k)C(k)T (C(k)Yn(k)C(k)T+R)−1

× C(k)Yn(k)A
T |Ū (kl+n), π(kl+n), Tl+n = tn}

× P{Tl+n = tn|Ξ(kl+n), π(kl+n), π(kl+n−1)},
(5.34)

for k ∈ {kl+n, . . . , kl+n+Δmax−1},with initial condition Yn(kl+n) = Yn−1(kl+n−1+
Δl+n−1) = Yn−1(kl+n). In (5.34), we have Ū (kl) � (P(kl),Ξ(kl), π(kl−1)), and
Ū (kl+n) � (Yn(kl+n),Ξ(kl+n), π(kl+n−1)) for n > 0. Note that in the suboptimal
reconfiguration problem (5.33), theminimization overπ(kl+n) for n > 0 is computed
based on Ū (kl+n), rather than U (kl+n) = (P(kl+n),Ξ(kl+n), π(kl+n−1)) as in the
optimal method (5.28).

When looking over N holding periods, computation of the cost functions has a
complexity ofO(2MN ), which could be very intensive for large values of N . However,
from numerical simulations, it appears that in many situations even the case N = 1
already provides most of the gains achieved by solving the N -period problem, see
Sect. 5.2.6.

5.2.5 An Illustrative Example

Here we give an example to illustrate some of the concepts that have been introduced,
in particular how to verify the stability condition (5.27) of Theorem 5.2. We will
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Fig. 5.7 Sensor network for example of Sect. 5.2.5

Fig. 5.8 Network configurations for example of Sect. 5.2.5

consider an example with four sensor nodes, see Fig. 5.7 for a diagram of the physical
layout. The system has parameters

A =
[
1.1 0.2
0.2 0.8

]
, Q =

[
0.2 0
0 0.2

]
,

C1 = C2 = C3 = C4 = [
1 1
]
, R1 = R2 = 20, R3 = R4 = 0.2. The differences

in the sensor measurement noise variances correspond to situations where either (i)
the process is located much closer to sensors 3 and 4 than to sensors 1 and 2, or (ii)
sensors 1 and 2 are located in a more hostile radio environment than sensors 3 and 4
[30]. However, sensors 1 and 2 have better connectivity to the gateway.

The set of all network configurations is shown in Fig. 5.8. There are two network
states, with network configurations 1 and 2 possible when in network state 1 (so that
Π1 = {1, 2}), and network configurations 1 and 3 possible when in network state 2
(so that Π2 = {1, 3}). The packet reception probabilities for the links in each of the
network configurations are

φ1|(1,1) = 0.5, φ2|(1,1) = 0.5, φ3|(1,1) = 0.1, φ4|(1,1) = 0.5

φ1|(1,2) = 0.5, φ2|(1,2) = 0.5, φ3|(1,2) = 0.8, φ4|(1,2) = 0.5

φ1|(2,1) = 0.5, φ2|(2,1) = 0.5, φ3|(2,1) = 0.5, φ4|(2,1) = 0.1

φ1|(2,3) = 0.5, φ2|(2,3) = 0.5, φ3|(2,3) = 0.5, φ4|(2,3) = 0.8.

(5.35)

Network state 1 corresponds to the case where there is a robot blocking the line
of sight between sensor nodes 1 and 3, giving a packet reception probability of 0.1
for the direct link from sensor 3 to sensor 1 in network configuration 1, while in
network configuration 2 sensor 3 will instead transmit to sensor 2 with a higher
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Fig. 5.9 Transient states when reconfiguring between two network configurations

packet reception probability of 0.8. Similarly, network state 2 will correspond to the
case where the robot is now blocking the line of sight between sensors 2 and 4.

The transition probabilities for the embedded Markov chain {Ξ(kl)}, kl ∈ K are

P{Ξ(kl+1) = 1|Ξ(kl) = 1} = q11 = 0.5, q12 = 0.5

P{Ξ(kl+1) = 1|Ξ(kl) = 2} = q21 = 0.5, q22 = 0.5.

The reconfiguration times have the distribution:

P{Tl =1|Ξ(kl), π(kl), π(kl−1)}=0.8, P{Tl =2|Ξ(kl), π(kl), π(kl−1)}=0.2,
(5.36)

∀(Ξ(kl), π(kl), π(kl−1)). The transient states in reconfiguring between different net-
work configurations are shown in Fig. 5.9. For instance, in reconfiguring from net-
work configuration 2 to configuration 3, the active links from sensor 3 to sensor 2,
and from sensor 4 to sensor 2, will first need to be removed, leading to the transient
state where sensors 3 and 4 do not have connectivity to the rest of the network for
some time Tl . Similarly, reconfiguring from configuration 3 to configuration 2 will
also lead to the same transient state.

We now illustrate how to verify the stability condition (5.27).We need to compute
the termsμd( j, p, p−), which, using (5.26), requires us to compute the probabilities

P{ρd(kl) = 0|Ξ(kl) = j, π(kl) = p, π(kl−1) = p−, Tl = t}. (5.37)

The observability matrices O(kl + d − 1, kl) are as in (5.25), where each C(k) =
col(θ1(k)C1, . . . , θM(k)CM), k = kl, kl + 1, . . . , kl + d − 1. One can easily verify
that if θm1(k1) = 1 and θm2(k2) = 1 for any m1, m2 ∈ {1, . . . , M}, and any k1, k2 ∈
{kl, kl + 1, . . . , kl + d − 1} with k1 
= k2, then O(kl + d − 1, kl) has full rank. Thus
O(kl + d − 1, kl) is not full rank when either:

(1) θm(k) = 0,∀m ∈ {1, . . . , M} and ∀k ∈ {kl, kl + 1, . . . , kl + d − 1}, or
(2) there exists a k∗ ∈ {kl, kl + 1, . . . , kl + d − 1} such that∑M

m=1 θm(k∗) ≥ 1, and
θm(k) = 0,∀m ∈ {1, . . . , M} and k 
= k∗.

First consider the instance d = 4, Ξ(kl) = 2, π(kl−1) = 2, π(kl) = 3, Tl = 1.
With these parameters, the network will be in the transient state (2 → 3) of Fig. 5.9
at time kl , and be in network configuration 3 at times kl + 1, kl + 2, kl + 3. Note
that θm(k) = 0,∀m when γ1(k) = 0 and γ2(k) = 0, both in the transient state and
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in network configuration 3. For case (1) above, note that for fixed k, the situation
that θm(k) = 0,∀m occurs with probability (1− φ1|(2,3))(1− φ2|(2,3)). Thus case (1)
occurs with probability

[
(1 − φ1|(2,3))(1 − φ2|(2,3))

]4
. For case (2) above, consider

individually the four situations when k∗ = kl, kl + 1, kl + 2, kl + 3. One can easily
verify that each of these four situations occurs with probability

[
1−(1−φ1|(2,3))(1−φ2|(2,3))

] [
(1−φ1|(2,3))(1−φ2|(2,3))

]3
,

and so case (2) occurs with probability

4
[
1−(1−φ1|(2,3))(1−φ2|(2,3))

] [
(1−φ1|(2,3))(1−φ2|(2,3))

]3
.

Hence

P{ρ4(kl ) = 0|Ξ(kl ) = 2, π(kl ) = 3, π(kl−1) = 2, Tl = 1} = [
(1 − φ1|(2,3))(1 − φ2|(2,3))

]4

+ 4
[
1−(1−φ1|(2,3))(1−φ2|(2,3))

][
(1−φ1|(2,3))(1−φ2|(2,3))

]3
.

Following the same arguments, it is not difficult to show that for other values of
d, Ξ(kl) = j , π(kl−1) = p−, π(kl) = p, Tl = t , case (1) occurs with probability[
(1 − φ1|( j,p))(1 − φ2|( j,p))

]d
, case (2) occurs with probability

d
[
1−(1−φ1|( j,p))(1 − φ2|( j,p))

][
(1−φ1|( j,p))(1−φ2|( j,p))

]d−1
,

and hence

μd( j, p, p
−) = [

(1 − φ1|( j,p))(1 − φ2|( j,p))
]d

+ d
[
1−(1−φ1|( j,p))(1 − φ2|( j,p))

][
(1−φ1|( j,p))(1−φ2|( j,p))

]d−1
.

(5.38)

Let the network state holding times have the following distribution:

P{Δl =1|Ξ(kl)}=0.1, P{Δl =2|Ξ(kl)}=0.1,

P{Δl =3|Ξ(kl)}=0.1, P{Δl =4|Ξ(kl)}=0.7, ∀Ξ(kl).
(5.39)

Suppose π� is the policy which uses network configuration 1 at all times. Then using
(5.38) and (5.39), we find that for j ∈ {1, 2},
Δmax∑
δ=1

μδ( j, π
�( j, p−), p−)||A||2δψ j (δ) =

Δmax∑
δ=1

μδ( j, 1, 1)||A||2δψ j (δ) = 0.4342 < 1.

Since we can find at least one policy satisfying condition (5.27) of Theorem 5.2, the
Kalman filter with optimal reconfiguration will be uniformly bounded.
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5.2.6 Numerical Studies

5.2.6.1 Comparison Between Optimal and Suboptimal Reconfiguration

We will use the same example as in Sect. 5.2.5, with the holding time distribution
(5.39). The maximum holding time Δmax = 4 is chosen to be small in order to allow
for a comparison between the optimal and suboptimal reconfiguration methods of
Sects. 5.2.3 and 5.2.4.

We first simulated a single realization of time length 10,000. The trace of the time
averaged error covariance, E[trP(k)], when performing network reconfiguration is
1.65, whereas E[trP(k)] with no reconfiguration is 2.14, which amounts to a perfor-
mance gain of about 30% for network reconfiguration. The network configurations
obtained using both optimal and suboptimal methods behaved identically:Whenever
the network state was equal to 1, the network changed to network configuration 2,
while if the network state was equal to 2, the network changed to network config-
uration 3. However, different behaviours can be observed by modifying the packet
reception probabilities. For instance, if in (5.35) both φ3|(1,1) and φ4|(2,1) are increased
(so that the probability of packet reception in these two links for network config-
uration 1 is increased), then the network becomes less likely to reconfigure. From
simulations, we found that for values of φ3|(1,1) and φ4|(2,1) greater than around 0.4,
the network is always in network configuration 1, i.e. the network never reconfigures.

In Table5.3 we give the values of E[trP(k)] under the optimal and suboptimal
methods, for different values of φ3|(1,1) and φ4|(2,1), with φ3|(1,1) = φ4|(2,1). Each
E[trP(k)] entry is computed by taking the time average of Monte Carlo realiza-
tions of length 10,000. We also list the number of times when the optimal and
suboptimal methods gave different network configurations. Only when φ3|(1,1) and
φ4|(2,1) are around 0.3 did we observe significant differences (27 times in a real-
ization of length 10,000) in the configurations obtained using the optimal and sub-
optimal methods, with the resulting performance being very similar. In terms of
computational complexity, here M = 4, Δmax = 4 and Tmax = 2. To compute
the cost function for the optimal method requires consideration of approximately
(2M + 22M + · · ·+ 2ΔmaxM)× Tmax = (24 + 28 + 212 + 216)× 2 = 139,808 different
terms. On the other hand, computing the cost function for the suboptimal method
requires consideration of approximately 2M × Tmax × Δmax = 24 × 2 × 4 = 128
different terms, substantially less than for the optimal method.

5.2.6.2 Comparison with Optimization over N = 2 Holding Periods

We now consider the case where the network state holding times have the following
distribution:

P{Δl =11|Ξ(kl )}=P{Δl =12|Ξ(kl )}=P{Δl =13|Ξ(kl )}=P{Δl =14|Ξ(kl )}= 1

4
,
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Table 5.3 Comparison between optimal and suboptimal reconfiguration schemes

φ3|(1,1) = φ4|(2,1) E[trP(k)] optimal E[trP(k)] suboptimal Differences in
configurations b/w
optimal and
suboptimal

0.1 1.650 1.650 0

0.2 1.650 1.650 0

0.3 1.644 1.649 27

0.4 1.574 1.574 0

0.5 1.442 1.442 0

0.6 1.329 1.329 0

0.7 1.239 1.239 0

0.8 1.162 1.162 0

0.9 1.098 1.098 0

φ3|(1,1) = φ4|(2,1)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
[t
rP
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1.1
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2
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1 holding period, N=1
2 holding periods, N=2

Fig. 5.10 E[trP(k)] for suboptimal network reconfiguration over one and two holding periods

∀Ξ(kl), so that the minimum duration of a holding period is at least 11. Longer
holding times are typically encountered in industrial environments, see e.g. Fig. 5.5.
Due to the substantial increase in the computational complexity of solving the opti-
mal reconfiguration problem for long holding times and/or the case of two holding
periods, here we will only present results for the suboptimal methods of Sect. 5.2.4.

In Fig. 5.10 we plot E[trP(k)] when solving the suboptimal network reconfigu-
ration problem over N = 1 or N = 2 holding periods, together with the case of
no reconfiguration, for different values of φ3|(1,1) and φ4|(2,1), with φ3|(1,1) = φ4|(2,1),
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φ3|(1,1) = φ4|(2,1)
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Fig. 5.11 E[trP(k)] for different holding times

where E[trP(k)] for each point on the graphs is obtained by taking the time average
of Monte Carlo realizations of length 10,000. For small values of φ3|(1,1) and φ4|(2,1),
the performance gains from reconfiguration are larger than in Sect. 5.2.6.1, due to
the longer periods of time in which one can use a good network configuration before
needing to reconfigure. For instance, when φ3|(1,1) = φ4|(2,1) = 0.1,E[trP(k)] is 1.46
with reconfigurations and 2.14 without reconfigurations, resulting in a performance
gain of 47% for network reconfiguration, compared to 30% for the case examined in
Sect. 5.2.6.1. We also see that the results are very similar when optimizing over both
one or two holding periods. In fact, in our simulation results, only for values of φ3|(1,1)
and φ4|(2,1) around 0.4–0.5 did we observe differences in the network configurations
obtained, with the resulting performance differences being very small.

5.2.6.3 Performance Gains with Different Holding Times

We now consider the case where the network state holding times are fixed:

P{Δl = δ|Ξ(kl) = 1} = P{Δl = δ|Ξ(kl) = 2} = 1 (5.40)

for different values of δ. Figure5.11 depictsE[trP(k)] in solving the suboptimal net-
work reconfiguration problem over one holding period, for holding times of duration
δ = 2, 3, 5, 10, 20, 30, together with the case of no reconfiguration. We see that for
larger δ, there is a greater performance gain by performing network reconfiguration.
Additionally, there is a wider range of values of φ3|(1,1) and φ4|(2,1) where reconfigu-



118 5 Remote State Estimation in Multi-hop Networks

ration gives performance benefits. However, the relative performance gains diminish
as δ increases, with little difference between the cases δ = 20 and δ = 30, due to the
fact that reconfiguration times lose importance for large δ.

5.2.7 Conclusion

In this chapterwehavefirst studied the use of relays forKalmanfilteringwithmultiple
sensors over packet dropping links, where the packet reception probabilities are
governed by fading channel gains and sensor and relay transmit powers. By allowing
relays to either forward one of the sensor’s measurements or perform a network
coding operation, we have considered the problem of determining the optimal relay
configuration at each time step, together with a simpler suboptimal method. We
have also studied the use of power control in addition to selecting the best relay
configuration, to further improve performance. Numerical results have demonstrated
that the use of relays can lead to significant power savings.

We then presented network topology reconfiguration methods for state estima-
tion in sensor networks over time-varying wireless channels. The optimization of an
expected error performance measure which takes into account the cost of reconfig-
uration has been studied. A less computationally intensive suboptimal method has
been proposed, which in many cases gives identical results to the optimal method. In
situations with long holding times, which are likely to be encountered in an industrial
setting, numerical results suggest that significant performance gains can be achieved
by network reconfiguration.

Notes: Section5.1 is based on [39]. Section5.2 is based on [40], which also
describes some other low complexity reconfiguration approaches.

Appendix

Proof of Theorem 5.2

Consider a policy π�. Define the candidate stochastic Lyapunov function:

Vl � trP(kl), (5.41)

where kl ∈ K are the switching times of the semi-Markov chain {Ξ}. We have

E{Vl+1|Z(kl), π
�( j, p−)} =

Δmax∑
δ=1

E{Vl+1|Z(kl), π
�( j, p−),Δl = δ}ψ j (δ).

(5.42)
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Noting that kl+1 = kl + Δl , we can write

E{Vl+1|Z(kl), π
�( j, p−),Δl = δ} = E{trP(kl + δ)|Z(kl), π

�( j, p−)}
= E{trP(kl + δ)|Z(kl), π

�( j, p−), ρδ(kl) = 1}P{ρδ(kl) = 1|Z(kl), π
�( j, p−)}

+ E{trP(kl + δ)|Z(kl), π
�( j, p−), ρδ(kl) = 0}P{ρδ(kl) = 0|Z(kl), π

�( j, p−)}.

For the case when ρδ(kl) = 1, by bounding the performance with that of a simple
suboptimal predictor, we can show using similar arguments to [28] that

E{trP(kl + δ)|Z(kl), π
�( j, p−), ρδ(kl) = 1}P{ρδ(kl) = 1|Z(kl), π

�( j, p−)} ≤ W δ
1

for somefinite constantW δ
1 . For the casewhenρδ(kl) = 0, the error covariancematrix

P(kl + δ) is bounded by the worst case where γm(k) = 0,∀(m, k) ∈ {1, . . . , M} ×
{kl, . . . , kl + δ − 1}. Therefore,
E{trP(kl + δ)|Z(kl ), π

�( j, p−), ρδ(kl ) = 0}P{ρδ(kl ) = 0|Z(kl ), π
�( j, p−)}

≤ tr
(
AδP(kl )(A

δ)T + Aδ−1Q(Aδ−1)T + · · · + Q
)

μδ( j, π
�( j, p−), p−)

≤ trP(kl )||A||2δμδ( j, π
�( j, p−), p−) + W δ

2 = Vl ||A||2δμδ( j, π
�( j, p−), p−) + W δ

2
(5.43)

for some finite constant W δ
2 . Then

E{Vl+1|Z(kl), π
�( j, p−)}

≤
Δmax∑
δ=1

μδ( j, π
�( j, p−), p−)||A||2δψ j (δ)Vl +

Δmax∑
δ=1

(
W δ

1 + W δ
2

)
ψ j (δ).

The second summation above is bounded. Thus, if

Δmax∑
δ=1

μδ( j, π
�( j, p−), p−)||A||2δψ j (δ) < 1

then, since {Z}K is Markovian by Lemma 5.3, we can use Proposition 3.2 of [41] to
show that, under the policy π�,

E{P(kl)|Z(0), π�} ≤ α1r
kl + β1, ∀kl ∈ K (5.44)

for some r ∈ [0, 1) and finite constants α1 and β1. For the times in between transition
instants, note that similar to (5.43), we can find finite constants α2 and W3 such that

trP(kl + d) ≤ ||A||2d trP(kl) + W3 ≤ α2r
d trP(kl) + W3

holds for all d ∈ {1, . . . , Δl}. Then, using (5.44),
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E{trP(kl + d)|π�} ≤ α2α1r
kl+d + α2β1r

d + W3 ≤ αrkl+d + β, ∀d ∈ {1, . . . , Δmax}

for some finite constants α and β. Since r < 1, this implies that

E[trP(k)|π�] ≤ α + β � B.

This establishes uniform boundedness at all times k ∈ N under policy π� when
condition (5.27) is satisfied.

Now, under the optimal reconfiguration policy π∗, we have

E{trP(kl + 1) + · · · + trP(kl + Δl)|Z(kl), π
∗}

≤ E{trP(kl + 1) + · · · + trP(kl + Δl)|Z(kl), π
�}

for all Z(kl), so that

E{trP(kl + 1) + · · · + trP(kl + Δl )|π∗} ≤ E{trP(kl + 1) + · · · + trP(kl + Δl )|π�}
≤ Δl B ≤ ΔmaxB.

Since error covariance matrices have nonnegative trace, we have for all d ∈
{1, . . . , Δl},

E{trP(kl + d)|π∗} ≤ ΔmaxB � B̃.

This thus establishes uniform boundedness of the Kalman filter under the optimal
policy π∗.

Proof of Theorem 5.3

First, for k ∈ {kl, . . . , kl + Δmax − 1}, the recursion (5.31) can be written as

Y (k+1)=E{AY (k)AT+Q−AY (k)C(k)T (C(k)Y (k)C(k)T+R)−1

× C(k)Y (k)AT |U (kl), π(kl), s(k) = 1}P{s(k)=1|U (kl), π(kl)}
+ E{AY (k)AT+Q−AY (k)C(k)T (C(k)Y (k)C(k)T+R)−1

× C(k)Y (k)AT |U (kl), π(kl), s(k)=0}P{s(k) = 0|U (kl), π(kl)},

from which one can derive the bounds



5.2 Network Topology Reconfiguration for Remote State Estimation 121

trY (kl + 1) ≤ W1,1 + tr
(
AY (kl)A

T + Q
)
P{s(kl) = 0|U (kl), π(kl)}

= W1,1 + (
trY (kl)||A||2 + W1,2

)
ν1(Ξ(kl), π(kl), π(kl−1))

trY (kl + 2) ≤ W1,2 + tr
(
AY (kl + 1)AT + Q

)
P{s(kl + 1) = 0|U (kl), π(kl)}

≤ W1,2 + (
trY (kl)||A||4 + W2,2

)
ν2(Ξ(kl), π(kl), π(kl−1))

...

trY (kl + d) ≤ W1,d + (
trY (kl)||A||2d + W2,d

)
νd(Ξ(kl), π(kl), π(kl−1))

(5.45)
for some finite constants W1,d and W2,d .

Consider a policy π�. Define

V̄l � trY �(kl−1 + Δl−1),

where Y � denotes the recursion (5.31) under policy π�. We have

E{V̄l+1|Z̄(kl), π
�( j, p−)} =

Δmax∑
δ=1

E{V̄l+1|Z̄(kl), π
�( j, p−),Δl = δ}ψ j (δ)

and
E{V̄l+1|Z̄(kl), π

�( j, p−),Δl = δ}
= E{trY �(kl + δ)|Z̄(kl), π

�( j, p−), s(kl + δ − 1) = 1}
× P{s(kl + δ − 1) = 1|Z̄(kl), π

�( j, p−)}
+ E{trY �(kl + δ)|Z̄(kl), π

�( j, p−), s(kl + δ − 1) = 0}
× P{s(kl + δ − 1) = 0|Z̄(kl), π

�( j, p−)}
≤ W1,δ + (

trY �(kl)||A||2δ + W2,δ
)
νδ( j, π

�( j, p−), p−)

for some finite constants W1,δ and W2,δ , where the inequality comes from making
use of the bounds (5.45). Using Lemma 5.5 and similar arguments as in the proof of
Theorem 5.2, we can show that if

Δmax∑
δ=1

νδ( j, π
�( j, p−), p−)||A||2δψ j (δ) < 1

holds, then there exists finite constants B, B̃, such that trY �(k) ≤ B, ∀k under pol-
icy π�, and trY (k) ≤ B̃, ∀k under policy π̄∗. Since Y (k) upper bounds E{P(k)} by
Lemma 5.4, this then implies E{trP(k)} ≤ B̃, ∀k, and hence the uniform bounded-
ness of the Kalman filter with reconfiguration under the suboptimal policy π̄∗.
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Chapter 6
Concluding Remarks

In this book, we have investigated the use of a number of different techniques from
wireless communications, within the context of remote state estimation of dynami-
cal systems. Techniques such as power control, energy harvesting, network coding,
relays and rerouting have been introduced into remote state estimation problems.
It has been shown that adapting appropriately to the time-varying wireless channel
conditions, while taking into account the estimation quality, is usually beneficial and
enhances system performance. Furthermore, in many of the problems studied in this
book, optimal policies have been found to exhibit threshold-type structure, which
simplifies their implementation.

As stated in the Introduction, one of the goals of this book is to bring closer
together the wireless communications and control literature, by introducing wireless
communications techniques and ideas into the study and design of networked control
systems. We hope that by reading this book, the reader will have been inspired
to investigate further into these approaches for use in networked estimation and
control applications. We believe that many other wireless communication ideas and
techniques, that have not treated in this book or elsewhere in the control literature,
can also be successfully utilized by control researchers and practitioners.

© The Author(s) 2018
A.S. Leong et al., Optimal Control of Energy Resources for State Estimation
Over Wireless Channels, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-65614-4_6
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