
Lecture Notes in Computer Science 3674
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Willem Jonker Milan Petković (Eds.)

Secure
Data Management

Second VLDB Workshop, SDM 2005
Trondheim, Norway, September 2-3, 2005
Proceedings

1 3

Volume Editors

Willem Jonker
Milan Petković
Philips Research Eindhoven
Information and System Security
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
E-mail:{Willem.Jonker,Milan.Petkovic}@philips.com

Library of Congress Control Number: 200593521

CR Subject Classification (1998): H.2.0, H.2, C.2.0, H.3, E.3, D.4.6, K.6.5

ISSN 0302-9743
ISBN-10 3-540-28798-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28798-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11552338 06/3142 5 4 3 2 1 0

Preface

Although cryptography and security techniques have been around for quite some
time, emerging technologies such as ubiquitous computing and ambient intelli-
gence that exploit increasingly interconnected networks, mobility and person-
alization put new requirements on security with respect to data management.
As data is accessible anytime anywhere, according to these new concepts, it be-
comes much easier to get unauthorized data access. Furthermore, it becomes
simpler to collect, store, and search personal information and endanger people’s
privacy. Therefore, research in the area of secure data management is of growing
importance, attracting the attention of both the data management and security
research communities. The interesting problems range from traditional ones, such
as access control (with all variations, like dynamic, context-aware, role-based),
database security (e.g., efficient database encryption schemes, search over en-
crypted data, etc.), and privacy-preserving data mining to controlled sharing of
data.

In addition to the aforementioned subject, this year we also called for pa-
pers devoted to secure data management in healthcare as a domain where data
security and privacy issues are traditionally important. The call for papers at-
tracted 38 papers both from universities and industry. The Program Committee
selected 16 research papers for presentation at the workshop. These papers are
also collected in this volume which we hope will serve you as a useful research
and reference material.

The volume is divided roughly into four major sections. The first section fo-
cuses on encrypted databases addressing the topics of key and metadata manage-
ment, as well as searching in the encrypted domain. The second section changes
slightly the focal point to access control, which remains an important area of
interest. The papers in this section deal with this topic from a different point of
view and in a different context: two papers in the medical domain, one in the area
of the Semantic Web and one in XML databases. The third section focuses on
disclosure detection, control and prevention, again in a database environment.
The last paper in this section addresses in particular the topics of inference
control and anonymization in medical databases. Finally, the fourth section ad-
dresses privacy and security technologies which are required in a modern world
to support concepts like ubiquitous computing or location-based services.

July 2005 Willem Jonker and Milan Petković

Organization

Workshop Organizers

Willem Jonker (Philips Research/University of Twente, The Netherlands)
Milan Petković (Philips Research, The Netherlands)

Program Committee

Peter Apers, Twente University, The Netherlands
Gerrit Bleumer, Francotyp-Postalia, Germany
Ljiljana Branković, University of Newcastle, Australia
Sabrina De Capitani di Vimercati, University of Milan, Italy
Ernesto Damiani, University of Milan, Italy
Eric Diehl, Thomson Research, France
Csilla Farkas, University of South Carolina, USA
Eduardo Fernández-Medina, University of Castilla-La Mancha, Spain
Simone Fischer-Hübner, Karlstad University, Sweden
Tyrone Grandison, IBM Almaden Research Center, USA
Ehud Gudes, Ben-Gurion University, Israel
Marit Hansen, Independent Centre for Privacy Protection, Germany
Pieter Hartel, Twente University, The Netherlands
Sushil Jajodia, George Mason University, USA
Ton Kalker, HP Research, USA
Marc Langheinrich, Institute for Pervasive Computing, ETH Zurich, Switzerland
Nick Mankovich, Philips Medical Systems, USA
Stig Frode Mjlsnes, Norwegian University of Science and Technology, Norway
Eiji Okamoto, University of Tsukuba, Japan
Sylvia Osborn, University of Western Ontario, Canada
Günther Pernul, University of Regensburg, Germany
Birgit Pfitzmann, IBM Zurich Research Lab, Switzerland
Bart Preneel, KULeuven, Belgium
Jean-Jacques Quisquater, Universit Catholique de Louvain, Belgium
Kai Rannenberg, Goethe University, Frankfurt, Germany
Morton Swimmer, IBM Zurich Research Lab, Switzerland
Sheng Zhong, Stevens Institute of Technology, USA
Josip Zorić, Norwegian Telecom, Norway

Additional Referees

Maarten Fokkinga, University of Twente, The Netherlands
Ling Feng, University of Twente, The Netherlands

VIII Organization

Carlos Gutiérrez, STL, Spain
Jan Muntermann, Frankfurt University, Germany
Christiane Schweitzer, Karlstad University, Sweden
Maurice van Keulen, University of Twente, The Netherlands
Anna Zych, University of Twente, The Netherlands
Amit Jain, University of South Carolina, USA
Marcin Czenko, University of Twente, The Netherlands
Ha Tran, University of Twente, The Netherlands
Ari Saptawijaya, University of Twente, The Netherlands
Huiping Guo, George Mason University, USA
Erez Shmueli, Ben-Gurion University, Israel
Ronen Waisenberg, Ben-Gurion University, Israel
Claudine Conrado, Philips Research, The Netherlands
Djoerd Hiemstra, University of Twente, The Netherlands

Table of Contents

Encrypted Data Access

Efficient Key Updates in Encrypted Database Systems
Hakan Hacıgümüş, Sharad Mehrotra . 1

Metadata Management in Outsourced Encrypted Databases
E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, P. Samarati . 16

Experiments with Queries over Encrypted Data Using Secret Sharing
Richard Brinkman, Berry Schoenmakers, Jeroen Doumen,
Willem Jonker . 33

Access Control

An Authorization Framework for Sharing Data in Web Service
Federations

Martin Wimmer, Alfons Kemper . 47

User-Managed Access Control for Health Care Systems
Amir H. Chinaei, Frank Wm. Tompa . 63

Specifying an Access Control Model for Ontologies for the Semantic Web
Cecilia M. Ionita, Sylvia L. Osborn . 73

A Formal Access Control Model for XML Databases
Alban Gabillon . 86

Information Disclosure Control in Databases

Can Attackers Learn from Samples?
Ganesh Ramesh . 104

Dynamic Disclosure Monitor (D2Mon): An Improved Query Processing
Solution

Tyrone S. Toland, Csilla Farkas, Caroline M. Eastman 124

Detecting Privacy Violations in Sensitive XML Databases
Stefan Böttcher, Rita Steinmetz . 143

X Table of Contents

Suppressing Microdata to Prevent Probabilistic Classification Based
Inference

Ayça Azgın Hintoğlu, Yücel Saygın . 155

On Deducibility and Anonymisation in Medical Databases
David Power, Mark Slaymaker, Andrew Simpson 170

Privacy and Security Support for Distributed
Applications

Protecting Privacy Against Location-Based Personal Identification
Claudio Bettini, X. Sean Wang, Sushil Jajodia . 185

Information SeeSaw: Availability vs. Security Management in the
UbiComp World

Boris Dragovic, Calicrates Policroniades . 200

XML Security in the Next Generation Optical Disc Context
Gopakumar G. Nair, Ajeesh Gopalakrishnan, Sjouke Mauw,
Erik Moll . 217

Improvement of Hsu-Wu-He’s Proxy Multi-signature Schemes
Yumin Yuan . 234

Author Index . 241

Efficient Key Updates in Encrypted
Database Systems

Hakan Hacıgümüş1 and Sharad Mehrotra2

1 IBM Almaden Research Center, USA
hakanh@acm.org

2 University of California, Irvine, USA
sharad@ics.uci.edu

Abstract. In this paper, we investigate efficient key updates in encrypted
database environments. We study the issues in the context of database-as-
a-service (DAS) model that allows organizations to outsource their data
management infrastructures to a database service provider. In the DAS
model, a service provider employs data encryption techniques to ensure
the privacy of hosted data. The security of encryption techniques relies
on the confidentiality of the encryption keys. The dynamic nature of the
encrypted database in the DAS model adds complexity and raises spe-
cific requirements on the key management techniques. Key updates are
particularly critical because of their potential impact on overall system
performance and resources usage. In this paper, we propose specialized
techniques and data structures to efficiently implement the key updates
along with the other key management functions to improve the systems’
concurrency performance in the DAS model.

1 Introduction

The commodity pricing of processors, storage, network bandwidth, and basic
software is continuously reducing the relative contribution of these elements to
the total lifecycle cost of computing solutions. Operating and integration costs
are increasing, in comparison. The research community has responded by work-
ing on approaches to automated system administration as in [2]. Increasingly,
large companies are consolidating data operations into extremely efficiently ad-
ministered data centers, sometimes even outsourcing them [4].

The Database-as-a-Service (DAS) model [8] is one manifestation of this trend.
In the DAS model, the client’s database is stored at the service provider. The
provider is responsible for provisioning adequate CPU, storage, and network-
ing resources required to run database operations, in addition to the system
administration tasks such as backup, recovery, reorganization etc.

A fundamental challenge posed by the DAS model is that of database privacy
and security [8]. In the DAS model, the user data resides on the premises of the
database service provider. Most companies and individuals view their data as an
asset. The theft of intellectual property already costs organizations great amount
of money every year [3]. The increasing importance of security in databases is
discussed in [6][13][12][1][8][7][5][9][10]. Therefore, first, the owner of the data

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 H. Hacıgümüş and S. Mehrotra

needs to be assured that the data is protected against malicious attacks from
the outside of the service provider. In addition to this, recent studies indicate
that 40% of those attacks are perpetrated by the insiders [3]. Hence, the second
and more challenging problem is the privacy of the data when even the service
provider itself is not trusted by the owner of the data. Data encryption is pro-
posed as a solution to ensure the privacy of the users’ data. The first problem
is examined in [8] and the second one is studied in [7], which explores how SQL
queries can be executed over encrypted data.

The security of any encryption technique relies on the confidentiality of the
encryption keys. Hence, key management plays an essential role in a system,
which employs encryption techniques. In this paper, we mainly focus on the key
management issues in the context of the database-as-a-service model, where the
clients’ databases are stored at the service provider site in the encrypted form.
We argue that the key management in the hosted databases requires special
consideration especially due to the dynamic nature of the database systems.

The update transactions are an essential part of the database systems and
applications. Each update transaction requires at least one invocation of the
encryption function to encrypt the data in the system.1 It is known that en-
cryption is a CPU intensive process [8]. Therefore the update transactions may
hold locks on the certain set of database records for an extended period of
time causing a decline in the system performance. Besides the database up-
date transactions, re-keying is another process, which requires the invocation of
the encryption function in the system. As we discuss in Section 3, re-keying is
recommended and sometimes required for the systems that employ encryption.
Re-keying large amounts of data entails significant encryption costs and inter-
feres with the other transactions thereby causing performance degradation in
the system. In this study, we address these issues by proposing a specialized key
management architecture in Section 3. Our main focus is the key updates. We
propose new lock modes, key update locks, which are leveraged by the database
lock manager to efficiently handle the key updates along with the other database
update transactions. We present the necessary lock management protocols based
on the key management architecture we explain in the paper. We also introduce
a system architecture taxonomy in Section 2.3, which is coupled with the key
management architecture to enable the performance-conscious encryption key
management in dynamic database environments.

2 System Architectures

2.1 Overall DAS Architecture

The system we use in this study is based on the architecture proposed and
described in [7]. The basic architecture and the control flow of the system are
1 The actual number of invocations depends on various factors such as the data unit

subject to the encryption, i.e., the granularity of the encryption, specifics of the
transaction, e.g., an insert only transaction, a transaction on a number of data
objects, etc.

Efficient Key Updates in Encrypted Database Systems 3

Result
 Filter

Query
Translator

Encrypted
Client

Database

Meta
Data

Temporary
Results

Service Provider

Web Browser
(USER)

Encrypted Results
Server SiteClient Site

Query over Encrypted Data

Original Query

A
c

tu
a

l
R

e
s

u
lt

s

Fig. 1. Database-as-a-Service architecture

shown in Figure 1. It is comprised of three fundamental entities. A user poses
the query to the client. A server is hosted by the service provider that stores
the encrypted database. The encrypted database is augmented with additional
information (which we call the index) that allows the certain amount of query
processing to occur at the server without jeopardizing the data privacy. A client
stores the data at the server. Client2 also maintains the metadata for translating
the user queries to the appropriate representation on the server, and performs
post-processing on server query results. From the privacy perspective, the most
important feature is, the client’s data is always stored in the encrypted form
at the server site. The server never sees the unencrypted form of the data, and
executes the queries directly over the encrypted data without decrypting it.

2.2 Storing Encrypted Data in the Database

We briefly summarize how the client’s data stored at the server in an encrypted
fashion in the DAS model.3

For each relation R(A1, A2, . . . , An), we store, on the server, an encrypted
relation: RS(RID,KID, etuple, P id

1 , P id
2 , . . . , P id

i), where 1 ≤ i ≤ n. Here, an
etuple stores an encrypted string that corresponds to a tuple in a relation R.
Each attribute P id

i stores the partition index for the corresponding attribute Ai

that will be used for query processing at the server.
For example, consider the relation emp given in Table 1 that stores informa-

tion about employees. The emp table is mapped to a corresponding table, shown
in Table 2, at the server: empS(RID,KID, etuple, eidid, enameid, salaryid).

The RID represents the record identifier, which is a unique number created
by the client for each tuple. Here, the RIDs are not the same as unique identi-
2 Often the client and the user might be the same entity.
3 We will not repeat all of the details of the storage model here, since it is thoroughly

discussed in [7]. Rather, we only provide the necessary notations to explain the
constructs we develop in this work.

4 H. Hacıgümüş and S. Mehrotra

Table 1. Relation emp

eid ename salary addr did

23 Tom 70K Maple 40

860 Mary 60K Main 80

320 John 23K River 35

200 Sarah 55K River 10

Table 2. Encrypted representation empS of emp

RID KID etuple eidid enameid salaryid

1 45 =*?Ew@R*((¡¡=+,-. . . 2 19 81

2 78 b*((¡¡(*?Ew@=l,r. . . 4 31 59

3 65 w@=W*((¡¡(*?E:,j. . . 7 59 22

4 52 ffTi* @=U(¡?G+,a. . . 8 49 59

fiers, which are used as references to the records and assigned by the database
manager, as it is done in most of the commercial database products. Instead,
these RIDs also uniquely identify the records, however, they are created and
assigned by the client to facilitate the schemes we present in the study.

The KID represents the key identifier, which is also created and assigned
by the client. The KID indicates which key is used to encrypt the etuple of the
corresponding tuple. We elaborate on the use of KIDs in Section 3.5.

The column etuple contains the string corresponding to the encrypted tuples
in emp. For instance, the first tuple is encrypted to “=*?Ew@R*((¡¡=+,-. . . ”
that is equal to Ek(1, 23, T om, 70K,Maple, 40), where E is a deterministic en-
cryption algorithm with key k. Any deterministic encryption technique such as
AES, DES etc., can be used to encrypt the tuples. The column eidid corresponds
to the index on the employee ids.4

2.3 Classification of the System Architectures

In this section, we propose different instantiations for the overall system architec-
ture presented above. Our classification of the system architecture alternatives
is client-oriented. In other words, we identify the architecture model based on
how the clients interact with the service provider. We classify the system archi-
tecture models under three categories; standalone clients, group of clients, and
client networks. Each model has implications on the characteristics of the sys-
tem including the control flow, index management, key management, and query
processing. We first present the details of each architecture below.

Standalone clients: In the standalone clients model, shown in Figure 2(a),
each client is a single node connecting to the service provider individually. The
client does not directly share the data with the other clients. Possible example

4 The details of creation of those index values can be found in [7].

Efficient Key Updates in Encrypted Database Systems 5

Internet

User

User

Coordinator

User

User

User

User

User

User User

User

User

User

Local Netw ork

Corporate Netw ork

(b) Client Networks

(a)
 St

an
da

lon
e C

lie
nts

(c)
 Gr

ou
p o

f C
lie

nts

Database Service Provider

Fig. 2. Architectural model alternatives for database service

for the clients of this architecture is personal users accessing to the services, such
as e-mail, rent-a-spreadsheet etc., via a web browser or a lightweight application
interfaces.

Client networks: In this architecture, shown in Figure 2(b), the client of the
service is a network rather than the individual nodes. A characteristic example
for this architecture is larger corporations, which maintain their own network
infrastructure as corporate networks and outsource some or all of their IT op-
erations. In this model, the nodes inside the network utilize a connection point
(or multiple points) to communicate with the service provider. We call this dis-
tinguished node as coordinator node. The coordinator node is responsible for set
of operational tasks, such as maintaining metadata information required to exe-
cute queries directly over encrypted data (as described in Section 2.1), executing
transactional semantics in the multi-tier client/server architecture, and the key
management tasks as we describe in Section 3.

Group of clients: In this case, as shown in Figure 2(c), multiple clients ac-
cess to the same service individually. Those clients are somehow related to each
other. The relationship can be organizational, i.e., the group of clients belonging
to an organization, or data sharing or both. A typical example for this model
is small companies, which have multiple but limited number of users. They do
not want to (or need to) maintain an integrated network infrastructure contain-
ing the coordinator nodes as in client networks case. Nonetheless, they need to
enable collaboration among the user nodes in the organization as the users (or
employees) of them would be sharing the data in terms of querying and updat-
ing and are related by business means. Therefore the user nodes are connected
to each other to share local information, such as the metadata. Inherently this

6 H. Hacıgümüş and S. Mehrotra

information is managed in a distributed fashion. We will not further discuss the
distributed data management techniques in this context since it would cause us
to diverge from the main content of the paper.

3 Key Management

Key management is a group of policies and procedures that regulate the mainte-
nance of the encryption keys within the system. The key management techniques
have been extensively studied in the applied cryptography literature [14]. We dis-
cussed the relevant aspects of the key management techniques to database-as-
a-service model by considering their implications on the system implementation
issues elsewhere [11]. Therefore, here, we only provide necessary background on
the specific key management functions. We consider the following components of
the key management architecture: key generation, key installation, key distribu-
tion, and key update. We will discuss each of these functionalities in the context
of the DAS model and indicate where the each of the tasks are identified in
the respective subsections. Key updates are discussed separately as they are the
main focus of the paper. We also define the key assignment granularity, which
affects the discussion of the techniques presented in the paper. In addition, we
introduce a data structure, called key registry. The key registry is used to store
the encryption key in the system.

3.1 Key Assignment Granularity

A key can be used to encrypt different database objects in the database, such as
a table or a row. We call this as the assignment granularity of the key. The selec-
tion of granularity would have its own pros and cons, depending on the system
setup, limitations on computing and storage of the client etc., and the security
requirements. Discussion on these alternatives can be found in [11]. In this paper,
we assume that the key assignment granularity is vertical-partitions-level.

In vertical-partitions-level key assignment granularity case, a group of database
rows are encrypted with the same key. In the most extreme case, a different key is
used for each row. Alternatively, the rows can be grouped. In our system we define
the groups as the non-overlapping intervals on the RIDs. All rows in a value interval
are encrypted with the same key. For example, the key k1 can be used to encrypt
the rows of emp table, whose mgr.RID values fall in [1, 10] and the key k2 can be
used for the rows, whose mgr.RID values fall in [11, 25].

3.2 Key Generation

Key generation involves the creation of the encryption keys that meet the speci-
fications of the underlying encryption techniques. These specifications define the
properties, such as size, randomness, that the keys should have. The medium in
which keys are generated is of particular interest for the DAS model since the
decision has both security and performance implications [11].

Efficient Key Updates in Encrypted Database Systems 7

In the DAS model there are two places where the key generation may take
place. The first option is the client itself and the second option is a third party
trusted server, which provides the key generation (and possibly additional key
management functions) as a service. Note that, we do not consider the server as
an option since the server is considered as an untrusted party in the model. In
this paper, we assume that the client generates the keys.

3.3 Key Installation

Once the keys are generated, they need to be operational and accessible for the
authorized users. The key installation defines how and where the key are stored
during the regular use. We propose a specialized data structure, key registry, that
is responsible for storing the key material information. We present the details of
the key registry in Section 3.5.

3.4 Key Distribution

After a key is generated, a corresponding entry is created in the key registry.
Upon request, the keys should be provided to the authorized users. This process
is called key distribution. Similar to the case for the key generation function
there are different alternatives where the key distribution can be handled, the
client site, a trusted third party service provider, and the server site.

For the standalone clients model, the client either stores the key registry on
its machine or utilizes a trusted third party server for this purpose. Yet another
possibility is to store the key registry at the server site unlike key generation
function. The key registry can be encrypted by using a master key and stored at
the server securely. When the client needs to use key material, it can be down-
loaded from the server and be decrypted with the master key. These alternatives
are also valid for the client networks and the group of clients models. For the
former, coordinator node can act as a medium for storage and communication
with the other users.

If the server or a third party server is chosen for the key distribution, the
user authentication is an issue to address. This can be solved by using public key
infrastructure (PKI). After the key generation, the key registry can be locked
with the public key. This way anyone can request the encrypted key registry but
only the authorized users can decrypt using their private key.

3.5 Key Registry

The key registry is the data structure that stores all the required information to
manage the keys. It has a tabular structure, shown in Figure 3, which consists
of five columns corresponding to Key ID (KID) List, Correspondence, Expira-
tion, Cardinality, Key, and an indefinite number of rows, each corresponding to
a different key that is used in the system.

8 H. Hacıgümüş and S. Mehrotra

KID Correspondence Expiration Cardinality Key

45 mgr.RID:[1,200] 06/12/05 120 the key

92 mgr.RID:[1,200] 06/12/05 30 the key

52 proj.RID:[1,500] 06/09/05 275 the key

77 emp.RID:[1,300] 07/01/05 130 the key

23 mgr.RID:[201,500] 06/08/05 40 the key

Fig. 3. Key Registry

•Key ID (KID) provides key identifier, which is a numerical value, that is
used to identify the corresponding key. To obfuscate the correspondence between
the records and the encryption, we can assign different KIDs to the same encryp-
tion key, i.e., a key does not need to have a unique identifier. These numbers are
just used to make the associations between the records read from the encrypted
database tables and the key registry entries. When an encrypted tuple is read
from the database (or a tuple is to be inserted into the database) the system
should know which key had been used to encrypt the record. The KID column in
the encrypted storage model (Section 2.2) provides that information. Maintain-
ing multiple identification numbers for the keys increases the security afforded by
the system, especially against certain types of attacks, such as, known-ciphertext
attacks, related-key attacks [14]. An adversary cannot directly recognize the etu-
ples, which are encrypted with the same key.

• Correspondence indicates the records to which the key is assigned. In the
correspondence column of the key registry, we use a special notation to indicate
the correspondence to the database objects. The notation is:

table name.RID : [RID1, RID2]

Here we describe the conceptual implementation of the key registry. An actual
implementation of this framework could be done in different ways to achieve a
better performance.) The table name specifies the name of the table to which
the RIDs belong. RID indicates a set of record identifiers. An RID is associated
with a closed interval. For example, [20,50] indicates the continuous interval of
values, i.e., RIDs, between 20 and 50.

As an example, in Figure 3, the first entry defines the with KID=45. That
key is assigned to the records of mgr table whose RIDs are between 1 and 200.
The second record in the registry defines another key, KID=92. This key is also
used for the same set of records in mgr table. The client will know which key
had actually been used when a specific record is fetched from the server along
with the KID information.

• Expiration specifies expiration date of the key. It also possible to use finer
granularity in time, such as hours, minutes etc. Using expiration date limits the
lifetime of a key in the system. This is useful for many reasons in key management
and facilitates the creation of key management policies.

• Cardinality is essentially the counter for the number of records that have
been encrypted with the key. The RID interval defined in the Correspondence

Efficient Key Updates in Encrypted Database Systems 9

- Key Management
- Log Management

Key
Registry

Key Log Lock
Manager

Client side query
processing

Client

Coordinator Server

Encrypted
Database

Fig. 4. System architecture for key management

column does not give that number but just defines a partition over the RID
values domain. The cardinality information can also be used in creation and
management of the key management policies like the Expiration information.
The system could be designed in a way that it eliminates the keys that are used
for very few records for a long period of time or splits the RID intervals that are
exceedingly populated constantly.

• The Key field contains the actual encryption key.

4 System Architecture for Key Management

In this section we present the detailed system architecture that is used for key
management. Overall key management system architecture is shown in Figure 4.
This is a detailed view of the clients network system architecture in Figure 2(b)
in Section 2.3. The client submits the queries and perform the client side query
processing as it is described in Section 2.1 and in [7].

For the coordinator, we show two specific functions, key management and
log management, and respective data structures for those function, key log and
key registry. The coordinator initiates the key update processes based on the
system key update policies. Those policies are reflected on the expiration and the
cardinality fields of the key registry. The key registry is explained in Section 3.5.
Key log is another tabular structure that is maintained by the coordinator for
efficient concurrency control.

The key log consists of three columns: <RID,current key,new key>. RID is the
record identifier for a record as described earlier. Current key is the encryption key
that was used to encrypt the record and new key is the key that will be used as
the encryption key for re-keying. We will make use of this structure to keep track
of conflicts between the update operations and the key updates in Section 5.

The server runs a lock manager that implements the procedures we illus-
trate in Section 5. Essentially, the lock manager implements a new lock mode,

10 H. Hacıgümüş and S. Mehrotra

key update locks, and resolves the conflicts between the lock modes according
to the techniques we present. Our techniques always aim at reducing the con-
tention between the client transactions and the key updates thereby improving
the system’s concurrency performance.

5 Key Updates

From the security perspective the lifetime of an encryption key should be lim-
ited and the key should be removed from the active usage under certain cir-
cumstances. The lifetime of a key can be determined by the Expiration value in
the Key Registry. Re-keying is recommended and sometimes required. Periodic
re-keying is considered as a good practice, especially, for data stored over an
extended period of time to prevent a potential key compromise. If a key com-
promise is suspected or expected, an emergency re-keying has to be performed.
In those cases, all affected keys should be changed.

The key update has significant implications on the DAS model in which
large amount of data is divided into the parts and encrypted with different keys.
Therefore we particularly emphasize the need for the efficient mechanisms to
handle the key updates. Above, we presented how the encryption keys can be
applied at different granularity levels by defining the RID intervals accordingly
in the key registry. Choosing a finer level granularity would increase the security,
at the increased cost of key management since larger number of data items would
be encrypted with different keys.

From a database system point of view, the interference between the key
update procedure and regular database queries, being executed by the users,
should be minimized. This relates to the concurrency performance of the system.
Generally, the key update procedure consists of five main steps:

1) Generation and installation of a new key
2) Fetching the etuples that are subject to key change
3) Decryption of the etuples
4) Re-encryption of the etuples with the new key
5) Replacement of the etuples, re-encrypted with the new key

In this procedure, the records, which are subject to the key change are re-
encrypted with the new keys. Therefore, duration of this process, the records
should be locked for any update transaction. Otherwise an update transaction
may update a record with a new content while the re-encryption process is in
progress. When the re-encryption is completed the old content, which is en-
crypted with the new key is inserted back into the database. This would over-
write the updated value of the record causing inconsistency in the database.
Usually the client has limited computational and storage power. In addition, the
encryption and decryption are computationally very expensive operations [8].
Therefore, this may lead to a longer duration of key update procedures. If the
key update blocks out significant amount of user transactions then throughput
of the system may considerably deteriorate.

Efficient Key Updates in Encrypted Database Systems 11

In addition, we need to be judicious about the system resource usage due to
key updates. This includes, network bandwidth and I/O overhead. For exam-
ple, choosing a finer granularity for processing, could speed-up the key update
with lesser interference with the other transactions. This would, however, cause
an increased network traffic and message initiation cost since the number of
transmission requests increases with the finer granularity.

To address these issues, we devised techniques that observe overall system per-
formance to handle the key updates. In these techniques, our goal is to minimize
the interference between the key update procedures and the other user transac-
tions, and to minimize the system resources usage. We describe our techniques in
the client networks architectural class, (See Section 2.3), where the requirements
we stated above are most pronounced. The applications of the techniques extend
to the other classes, namely; standalone clients and the group of clients.

5.1 Key Update (KU) Locks

We introduce a new lock mode called Key Update (KU) locks to efficiently handle
the the key updates along with the other transactions. This is an additional lock
mode for the lock manager run by the server. We assume the lock manager uses
shared (S), exclusive (X), and update (U) locks for transaction processing. Other
possible lock modes, such as IX, IS, that are used in lock managers are not impor-
tant for the discussions of this paper. We assume lock manager uses record locking
granularity [15]. Thus, the lock manager locks a record at a time in a given table.

Shared locks are used to lock a database element for the transactions that
access the database element for read-only purposes, e.g., scans. Thus, there can
can be any number of shared locks held on a database element. Exclusive locks
are used to lock a database element for update operations. Therefore, there can
be one exclusive on a database element. Update locks are used to avoid the
deadlocks. If it is known that a transaction will update/delete a fetched record,
the transaction asks for a U lock to be acquired. U lock is incompatible with U
and X, but is compatible with S. Therefore, no other transaction can obtain a
U lock on the same record until the current transaction terminates. If only an
S lock were to be obtained, then two different transactions could both obtain S
locks. Afterward, both may try to obtain X locks and thereby create a deadlock.

Key Update (KU) locks are used lock the reords for key update operations.
The lock mode compatibility matrix is given in Table 3. A check mark (”�”)
means that the corresponding modes are compatible, which means that two

Table 3. Lock mode compatibility matrix

S X U KU

S � × � �
X × × × ×
U × × × ×

KU � � � ×

12 H. Hacıgümüş and S. Mehrotra

different transactions may hold a lock simultaneously in those modes on the
same record. The rows show the currently held lock and the columns show the
requested lock. Let us consider each column of the matrix to explain the new
lock mode.

Compatibility with S locks: S locks do not conflict with the KU locks. Be-
cause read/scan operations can be executed concurrently with the key update
procedure. When a group of etuples are brought in to the coordinator node, the
original copies of those are still available at the server for querying. Note that,
from the query processing -over encrypted data- perspective the only critical
attributes in the storage model are the partition indexes. All supported query
conditions are handled by making use of the partition indexes [7].

Based on the encrypted data storage model, predicates in the user query are
evaluated as described in [7]. This process includes the translation of the query
into a form that retrieves the (super)set of etuples by evaluating the predicates
directly over encrypted data. When the qualified etuples (along with RIDs and
KIDs) are fetched, the client looks up the key registry and finds out the valid
key(s) for each etuple and decrypts them. Note that, even the coordinator node
runs a key update over the etuples that are returned as the answer of the query,
the content of the data is the same. The only information the user needs to
correctly decrypt is the valid keys and this information is provided by the key
registry.

Compatibility with X locks: Unlike the scans, update transactions change
the content of the data. There is a clear conflict between the update and key
update operations. An update transaction may update a record, encrypted it
with the current key, insert it back to the database, and commit while the key
update is still running. The key update procedure re-encrypts the old content
with the new key and overwrites the updated content, which results in incorrect
database state. If the key update transaction commits first, then the update
transaction would encrypt the record with the old key and insert it back to the
database with the wrong KID value.

However, we can still grant an X lock on a record, which is already locked
with a KU lock. The sequence diagram of the protocol to efficiently handle the
update transactions is given in Figure 5. The conflicts between the X locks and
the KU locks are resolved at the coordinator. The server detects a conflict by
using the lock modes. Assume that, a record is locked with KU lock for key
update and another transaction requests for an X lock on the same record. The
server grants the X lock and sends the conflict information to the client. The
coordinator records the conflict information in the log, which is described in
Section 4, and stops any processing on the record. At this point, we have two
options to process the update.

First, the client asks the coordinator for the new key information. This can
be done by using the RIDs. To make the look-up even more efficient, we can store
the records in a sorted list or in a tree based data structure based on their RIDs
at the coordinator. (As we stated earlier, RIDs are assigned by the client and they

Efficient Key Updates in Encrypted Database Systems 13

Client Coordinator Server

Request X lock

Conflict information

Log the conflict

Ack

Send the record

Update the record

Request new key

New key

Encrypt the record

Insert the record

Update locks:

Update key log

Delete from key log

Send the record

Encrypt the record

Insert the record

OR

Fig. 5. Lock management protocol for KU and X locks

are not used as references to records by the server.) The client can encrypt the
updated record with the new key by itself. Note that, the new key information
is placed in the key registry before the coordinator starts the processing. Then
the client sends a notification to the coordinator and the coordinator drops the
corresponding record from the log. Following this, the client inserts the updated
record into the database. Since the coordinator drops the record from the log,
the record is not processed by the coordinator anymore thereby preventing the
overwriting and inconsistency.

As a second option, the client can transfer the updated record to the coordi-
nator for encryption with the new key. The coordinator first replaces the copy
of the record with the updated record, encrypts it with the new key, and inserts
it into the database.

The decision between those two alternatives should be made dynamically by
considering the performance requirements of the system and the current status

14 H. Hacıgümüş and S. Mehrotra

of the processes. This procedure allows the system to handle the record updates
and the key updates together in that way increasing the system’s concurrency
performance.

Compatibility with U locks: The U locks are managed in the same way that
the X locks are managed. A transaction that holds a U lock on a record may
escalate the lock mode to X after reading the record. If a KU lock is held on the
same record, the lock manager should consider the escalation. Consequently, the
U lock request is handled the way an X lock request is handled.

Compatibility with New KU lock request: As per the lock mode compat-
ibility matrix in Figure 3, S locks and a new KU lock request do not conflict.
However, new KU locks requests are not compatible with any of the other exist-
ing X,U,KU locks on the same record. We may grant a KU lock request if there
is a U lock on the record. Nevertheless, the system’s performance doesn’t benefit
from this as the coordinator has to wait until the transaction that holds the U
lock terminates.

6 Conclusions

We have studied the efficient key management issues in the encrypted database
environments, specifically in database-as-a-service (DAS) setups. We particularly
observed the importance of the key update procedures and proposed efficient key
update alternatives, which allow the system to update the keys in a concurrent
fashion. Key updates are a fundamental part of any system that uses encryp-
tion techniques. Due to the CPU intensive nature encryption/decryption, key
updates may take extended period of time and interfere with the other database
transactions. This could severely affect the systems’ concurrency performance.
We have presented specialized techniques, data structures, and protocols to han-
dle the key updates along with the other database transactions to improve the
concurrency performance.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In Proc.
of VLDB, 2002.

2. S. Chaudhuri, E. Christensen, G. Graefe, V. R. Narasayya, and M. J. Zwilling. Self-
tuning technology in microsoft sql server. Data Engineering Bulletin, 22(2):20–26,
1999.

3. Computer Security Institute. CSI/FBI Computer Crime and Security Survey.
http://www.gocsi.com, 2002.

4. ComputerWorld. Business Process Outsourcing. Jan. 01, 2001.
5. E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.

Balancing confidentiality and efficiency in untrusted Relational DBMSs. In Proc.
of 10th ACM Conf. On Computer and Communications Security, 2003.

6. B. Fernandez, R. C. Summers, and C. Wood. Database Security and Integrity.
Addison-Wesley, 1981.

Efficient Key Updates in Encrypted Database Systems 15

7. H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted
Data in Database Service Provider Model. In Proc. of ACM SIGMOD, 2002.

8. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Providing Database as a Service. In Proc.
of ICDE, 2002.

9. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Ensuring the Integrity of Encrypted
Databases in Database as a Service Model. In Proc. of 17th IFIP WG 11.3 Con-
ference on Data and Applications Security, 2003.

10. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Efficient Execution of Aggregation Queries
over Encrypted Relational Databases. In Proc. of International Conference on
Database Systems for Advanced Applications (DASFAA), 2004.

11. H. Hacıgümüş and S. Mehrotra. Performance-Conscious Key Management in En-
crypted Databases. In Proc. of 18th IFIP WG 11.3 Conference on Data and Ap-
plications Security, 2004.

12. J. He and M. Wang. Cryptography and relational database management systems.
In Proc. of IDEAS ’01, 2001.

13. T. Lunt and E. B. Fernandez. Database Security. ACM SIGMOD Record, 19(4),
1990.

14. D. R. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

15. C. Mohan. ARIES/KVL: A Key-Value Locking Method for Concurrency Control
of Multiaction Transactions Operating on B-Tree Indexes. In Proc. of VLDB, 1990.

Metadata Management in Outsourced
Encrypted Databases

E. Damiani1, S. De Capitani di Vimercati1, S. Foresti1,
S. Jajodia2, S. Paraboschi3, and P. Samarati1

1 University of Milan - 26013 Crema, Italy
{damiani, decapita, foresti, samarati}@dti.unimi.it
2 George Mason University - Fairfax VA 22030-4444, USA

jajodia@gmu.edu
3 University of Bergamo - 24044 Dalmine, Italy

parabosc@unibg.it

Abstract. Database outsourcing is becoming increasingly popular in-
troducing a new paradigm, called database-as-a-service, where a client’s
database is stored at an external service provider. Outsourcing databases
to external providers promises higher availability and more effective dis-
aster protection than in-house operations. This scenario presents new
research challenges on which the usability of the system is based. In par-
ticular, one important aspect is the metadata that must be provided to
support the proper working of the system.

In this paper, we illustrate the metadata that are needed, at the
client and server, to store and retrieve mapping information for pro-
cessing a query issued by a client application to the server storing the
outsourced database. We also present an approach to develop an efficient
access control technique and the corresponding metadata needed for its
enforcement.

1 Introduction

Nowadays databases hold a critical concentration of sensitive information and
the volume of this information is increasing very quickly. Therefore, many
organizations are adding data storage at a high rate. This data explosion is due
in part to powerful database applications, deployed by organizations to capture
and manage information. In such a scenario, database outsourcing is becoming
increasingly popular. A client’s database is stored at an external service
provider that should provide mechanisms for clients to access the outsourced
databases. The main advantage of outsourcing is related to the costs of in-house
versus outsourced hosting: outsourcing provides i) significant cost savings and
service benefits and ii) promises higher availability and more effective disaster
protection than in-house operations. As a consequence of this trend toward
outsourcing, highly sensitive data are now stored on systems run in locations
that are not under the data owner’s control. Therefore, data confidentiality and
even integrity can be put at risk. These problems are traditionally addressed by
means of encryption [10]. By encrypting the information, the client is guaranteed

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 16–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Metadata Management in Outsourced Encrypted Databases 17

that it alone can observe the data. The problem is then to perform a selective
retrieval on encrypted information. Since confidentiality demands that data de-
cryption must be possible only at the client side, techniques are needed enabling
external servers to execute queries on encrypted data, otherwise the whole
relations involved in the query would be sent to the client for query execution. A
first proposal toward the solution of this problem was presented in [8,9,12,13,15]
where the authors proposed storing, together with the encrypted database,
additional indexing information. Such indexes can be used by the DBMS to
select the data to be returned in response to a query. In [8,9] the authors propose
a hash-based method for database encryption suitable for selection queries.
To execute interval-based queries, the B+-tree structures typically used inside
DBMSs is adapted. Privacy homomorphism has been also proposed for allowing
the execution of aggregation queries over encrypted data [14,16]. In this case the
server stores an encrypted table with an index for each aggregation attribute
(i.e., an attribute on which the aggregate operator can be applied) obtained
from the original attribute with privacy homomorphism. An operation on an
aggregation attribute can then be evaluated by computing the aggregation at
the server site and by decrypting the result at the client side. Other work on pri-
vacy homomorphism illustrates techniques for performing arithmetic operations
(+, -, x, /) on encrypted data and does not consider comparison opera-
tions [3,11]. In [1] an order preserving encryption schema (OPES) is presented
to support equality and range queries over encrypted data. This approach
operates only on integer values and the results of a query posed on an attribute
encrypted with OPES is complete and does not contain spurious tuples.

However, this scenario, called database-as-a-service (DAS), presents new ad-
ditional research challenges on which the usability of the system is based. One
challenge is to develop efficient access control techniques. As a matter of fact, all
the existing proposals for designing and querying encrypted/indexing outsourced
databases assume the client has complete access to the query result. However,
this assumption does not fit real world applications, where different users may
have different access privileges. As an example, consider a medical database that
includes information about doctors and patients. Each user (doctor/patient) or
group thereof should be granted selective access to only a specific subset of data.
Enforcing selective access with the explicit definition of authorizations requires
the data owner to intercept and process each query request (from the user to
the server) and each reply (from the server to the user) to filter out data the
requestor is not authorized to access. Such an approach may however cause bot-
tleneck because it increases the processing and communication load at the data
owner site. A promising direction to avoid such a bottleneck is represented by
selectively encrypting data so that users (or groups thereof) can decrypt only
the data they are authorized to access [7]. This solution requires defining and
maintaining, both at the client and server, additional information at the level of
metadata needed to enforce selective access.

In this paper, after a brief summary of our proposal for enforcing access con-
trol in the DAS scenario, we focus on the metadata that are needed to access the

18 E. Damiani et al.

Fig. 1. DAS Scenario

outsourced database according to the policies defined by the data owner. In par-
ticular, we describe the metadata and compare different storage strategies each
of which is characterized by a different usage in storage and bandwidth capacity.
The remainder of this paper is organized as follows. Section 2 describes the DAS
scenario and briefly illustrates a solution for enforcing access control through
cryptography. Section 3 presents different strategies for storing and managing
the metadata necessary to properly use the outsourced database. Section 4 illus-
trates how a query on a plaintext database is transformed into a query on the
corresponding encrypted database. Finally, Section 5 concludes the paper.

2 DAS Scenario

We briefly introduce the considered DAS scenario, the encrypted database struc-
ture, and a solution for enforcing an access control policy on which the following
metadata analysis is based.

2.1 Data Organization

The DAS scenario involves four entities (see Figure 1):

– Data owner : an organization that produces data to be made available for
controlled external release;

– User : human entity that presents requests (queries) to the system;
– Client : front-end that transforms the user queries into queries on the en-

crypted data stored on the server;
– Server : an organization that receives the encrypted data from a data owner

and makes them available for distribution to clients.

Clients and data owners are assumed to trust the server to faithfully maintain
outsourced data. Specifically, the server is relied upon for the availability of

Metadata Management in Outsourced Encrypted Databases 19

Patients

PatientId Surname Name Disease Doctor

125YP894 Carter Andrew Tonsillitis Wayne
5896GT26 Rogers Mark Gastritis Becker
654ED231 Wise Paul Hypertension Wayne
442HN718 Brown Luke Hypertension Lean
942MD745 Fisher Robert Tonsillitis Becker
627IF416 Rogers Alice Arthritis Wayne
058PI175 Brown Mark Hypertension Lean
305EJ186 Rogers Paul Gastritis Morris
276DL557 Fisher Luke Hypertension Lean
364UK784 Rogers Laura Tonsillitis Wayne

(a)

Patientsk

Counter Etuple IdKey I1 I2 I3 I4 I5

1 r*tso/yui+ AC ω γ δ π η
2 hai4de-0q1 AB ϑ α λ π µ
3 nag+q8*L C ω γ ε ρ η
4 K/ehim*13- BCD τ β δ ρ µ
5 3gia*ni+aL BD ω β λ π µ
6 F0/rab1DW* BCD ϑ α ε ρ η
7 Bid2*k1-l0 AB ϑ β λ ρ µ
8 /bur21/*-D BC τ α ε π η
9 O/c*yd-q2+ C ω β δ ρ µ
10 bew0”!DE1a ACD ϑ α λ π η

(b)

Fig. 2. An example of plaintext relation(a) and encrypted relation (b)

outsourced databases. However, the server is assumed not to be trusted with the
confidentiality of the actual database content. That is, we want to preserve the
server from making unauthorized access to the data stored in the database. To
this purpose, the data owner encrypts her data and gives the encrypted database
to the sever.

Note that database encryption may be performed at different levels of granu-
larity: relation level, attribute level, tuple level, and element level. Both relation
level and attribute level imply the communication to the user of the whole rela-
tion involved in a query. On the other hand encrypting at element level would re-
quire an excessive workload for data owner and clients in encrypting/decrypting
data. For balancing the client workload and query execution efficiency, we assume
that the database is encrypted at tuple level.

The main effort of current research in this scenario is the design of a mech-
anism that makes it possible to directly query an encrypted database [12]. The
existing proposals are based on the use of indexing information associated with
each relation in the encrypted database [9,15]. Such indexes can be used by the
server to select the data to be returned in response to a query. More precisely,
the server stores an encrypted table with an index for each attribute on which a
query can include a condition. Different types of indexes can be defined, depend-
ing on the supported queries. For instance, hash-based methods are suitable for
equality queries [15,18] and B+-tree based methods support range queries [9]. For
simplicity, in the remainder of this paper we assume that indexes have been cre-
ated through a hash-based method and that there is an index for each attribute
in each relation. Formally, each relation ri over schema Ri(Ai1, Ai2, . . ., Ain) in
a plaintext database B is mapped onto a relation rki over schema Rki(Counter,
Etuple, I1, I2, . . ., In) in the encrypted database Bk where, Counter is the pri-
mary key; Etuple is an attribute for the encrypted tuple whose value is obtained
using an encryption function Ek (k is the key); Ii is the index associated with
the i-th attribute. For instance, given relation Patients in Figure 2(a), the cor-
responding encrypted relation is represented in Figure 2(b).1 As it is visible from
this table, the encrypted table has the same number of rows as the original one.

1 Here, the result of the hash function is represented as a Greek letter. Also, note that
the meaning of attribute IdKey will be discussed in Section 3.

20 E. Damiani et al.

The query processing is then performed as follows (see Figure 1): each query
(1) is mapped onto a query on encrypted data (2) and is sent to the server
that is in charge for executing it. The result of this query is a set of encrypted
tuples (3), that are then processed by the client front-end to decrypt data and
discard spurious tuples that may be part of the result. The final result (4) is
then presented to the user. We will discuss the query processing in more details
in Section 4.

2.2 Selective Access on Encrypted Databases

All existing proposals for designing and querying encrypted/indexing outsourced
databases focus on the challenges posed by protecting data at the server side,
and assume the client has complete access to the query result (e.g., [4,6,15,21]).
In other words, tuples are assumed to be encrypted using a single key; knowl-
edge of the key grants complete access to the whole database. Clearly, such an
assumption does not fit real world applications, which demand for selective ac-
cess by different users, sets of users, or applications. Our solution exploits data
encryption by including authorizations in the encrypted data themselves. While
in principle it is advisable to leave authorization-based access control and cryp-
tographic protection separate, in the DAS scenario such a combination can prove
successful. The idea is then to use different encryption keys for different data.
To access such encrypted data, users have to decrypt them, which could only
be done by knowing the encryption algorithm and the specific decryption key
being used. If the access to the decryption keys is limited to certain users of the
system, different users are given different access rights. In classical terms, the
access rights defined by the data owner can be represented by using an access
matrix A, where rows correspond to subjects, columns correspond to objects,
and entry A[s, o] is set to 1 if s can read o; 0 otherwise. Given an access matrix
A, ACLi denotes the vector corresponding to the i-th column (i.e., the access
control list indicating the subjects that can read tuple ti), and CAP j denotes
the vector corresponding to the j-th row (i.e., the capability list indicating the
objects that user uj can read). With a slight abuse of notation, in the following
we will use ACLi (CAP j , resp.) to denote either the bit vector corresponding to
a column (a row, resp.) or the set of users (tuples, resp.) whose entry in the ac-
cess matrix is 1. Let us consider a situation with four users, namely Alice, Bob,
Carol, and David, who need to read the tuples of relation Patients. Figure 3
illustrates an example of access matrix.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Alice 1 1 0 0 0 0 1 0 0 1
Bob 0 1 0 1 1 1 1 1 0 0

Carol 1 0 1 1 0 1 0 1 1 1
David 0 0 0 1 1 1 0 0 0 1

Fig. 3. An example of access matrix

Metadata Management in Outsourced Encrypted Databases 21

∅

A

������������
B

�������
Ct3,t9

�������
D

������������

AB

t2,t7

������

����������
AC

t1

����������������
AD

�������

����������������
BC

t8

											
BD

t5

CD

������

����������

ABC

���������������
ABD

���������������

���������
ACDt10

										

���������
BCD

t4,t6

������

ABCD

�������

����������

����������

�������

(a)

∅

B

��������
Ct3,t9

���������

AB

t2,t7

������
BD

t5

������
AC

t1

������
BC

t8

������

ACD
t10

BCD
t4,t6

(b)

Fig. 4. An example of user hierarchy (a) and the corresponding tree (b)

Different approaches can be taken to enforce the access rights reported in
the access matrix. A trivial solution consists in encrypting each tuple with a
different key and give users the keys for the tuples they can access. For instance,
with respect to the access matrix in Figure 3, user Carol should receive the
keys used for encrypting tuples t1, t3, t4, t6, t8, t9, and t10. Obviously, this
solution is not efficient and requires the management of too many keys. We
propose an alternative solution that consists of collecting users into groups of
privileges and encrypt each tuple (set thereof) with the key associated with the
set of users who can access it. To this purpose, we base our approach on the
definition and use of a user hierarchy whose elements are all possible sets of
users and on which an order is defined corresponding to the subset relationship
between them. Formally, a user hierarchy is defined as follows.

Definition 1. (User Hierarchy) Given a set U of users, a user hierarchy, de-
noted UH, is a pair (P(U), �), where P(U) is the power set of U and � is a
partial order on P(U) such that ∀X, Y ∈ P(U), X�Y iff Y⊆X.

The subset relationship between sets of users implies a relationship on their
rights. It is trivial to see that, given two sets of users X and Y , if Y is a subset
of X (i.e., X�Y), then users in Y can access all tuples that users in X can access
and the vice versa is not true. With respect to our example in Figure 3, let BCD
be the set of users Bob, Carol, David, and let BC be the set of users Bob and
Carol. Users in BCD can access tuples t4 and t6 and users in BC can access
tuples t4,t6, and t8.

By definition the user hierarchy includes all sets of users corresponding to
ACLi. A user hierarchy can be represented through a directed acyclic graph
(DAG) having a node corresponding to each set of users and a path from node
X to node Y if and only if Y � X. Figure 4(a) illustrates the user hierarchy

22 E. Damiani et al.

corresponding to the access matrix in Figure 3. Here, each node is labeled with
the set of initial letters of the users’ names belonging to the node, and each
tuple ti is depicted near node ACLi. Our solution for the determination and
assignment of keys exploits the user hierarchy together with a key generation
and assignment schema based on the idea of key derivation. Sophisticated key
derivation techniques that can be applied to DAGs have been extensively studied
in the literature [2,17,19,20]. Intuitively, these key generation schemes operate
on the hierarchy computing the keys of lower-level nodes based on the keys of
their predecessors. In other words, each node X of a hierarchy is associated with
a key that can be used to derive the keys associated with all nodes Y , where
Y � X and the opposite is not true. Therefore, using the user hierarchy for key
assignment, each user u needs to know only the key associated with the node
representing herself and each tuple t has to be encrypted with the key associated
with the node representing its ACL. For instance, tuple t1 is encrypted with the
key associated with node AC and Carol knows the key associated with node C
(see Figure 4(a)). In this way, Carol can derive the key associated with node
AC and can access tuple t1. Unfortunately, the key generation schemes working
on DAGs are complex and they would require a lot of key storage (whose size
grows exponentially with the nodes of the hierarchy). To avoid these problems,
we decide to apply more simple techniques that work on trees [22]. We develop a
greedy transformation algorithm from DAG to tree that converts a hierarchy in
a corresponding tree [7]. This transformation is performed by first introducing in
the tree the nodes corresponding to ACLs, and then by selecting, for each node,
the “best parent node”. This selection is performed by adopting a set of criteria
that allow to reduce the number of keys in the system. For instance, a criterion
requires the choice of the lowest candidate parent in the hierarchy, that is, the
parent node corresponding to the biggest set of users. Another criterion states
that it is better to choose as a parent, the node corresponding to an ACL. At
the end of the transformation process, the algorithm removes from the structure
obtained the nodes that are not necessary neither for encryption nor for key
derivation. The resulting user tree hierarchy is defined as follows.

Definition 2. (User Tree Hierarchy) Given a set Uof users, a set T of tuples,
and an access matrix A, the user tree hierarchy, denoted UTH, is a pair (N, �),
such that:

– N ⊆ P(U);
– ∀t ∈ T , ACLt ∈ N ;
– ∀X,Y ∈ N , X � Y iff Y ⊆ X;
– ∀X,Y,Z ∈ N , X � Y and X � Z ⇒ Z � Y or Y � Z.

The user tree hierarchy uses the same partial order relation as the one defined
for the user hierarchy. The data owner has to communicate to each user u ∈ U
the key associated with element V ∈ N such that u ∈ V and u /∈ W , where
W is the parent of V in the UTH. Note that to avoid accesses from untrusted
users, the data owner has to check the users’ identities before assigning them
a key. Figure 4(b) illustrates the UTH corresponding to the user hierarchy in

Metadata Management in Outsourced Encrypted Databases 23

Figure 4(a). As an example, consider now user Carol: she knows key {kC} and
can directly derive {kAC , kBC} that in turns allows her to derive keys {kACD,
kBCD}. By using these keys, Carol can decrypt the set {t1, t3, t4, t6, t8, t9, t10}
of tuples corresponding to CAPCarol.

3 Metadata Management in the DAS Scenario

To properly access and manage the outsourced databases, the users, the data
owners, and, possibly, the servers have to store some additional information that
we call metadata. The client and server use these metadata to interpret and ex-
ecute SQL statements, and to properly manage stored data. The distribution
of metadata should follow two principles: i) users should know any additional
metadata necessary to access the data for which they have a privilege, and
ii) users should be able to efficiently search and query metadata by saving on
bandwidth costs. To this purpose, metadata are stored in relational tables that
can be accessed by SQL queries just like any other type of data. Metadata may
be as simple as one keyword, or as complex as a derivation path for computing
keys. There are three main types of metadata: authorization metadata, descrip-
tive metadata, and key management metadata. Authorization metadata include
information about the access control policy defined by the data owner (i.e., the
access matrix). Basically, the authorization metadata contain the following ta-
bles (as usual, we underline the primary key of each relation).

– TabUser(IdUser, Surname, Name) maintains information about each user
in the system. The schema of this table depends on the information needed
by the data owner. For simplicity we assume that each user is identified by
a unique identifier (attribute IdUser) and has a name (attribute Name) and
surname (attribute Surname).

– AccessMatrix(ERelation, Counter, IdUser) maintains information
about who (attribute IdUser) can access what (attributes ERelation and
Counter).

These tables are very sensitive and therefore they have to be stored at the
data owner’s site. As an example, consider the access matrix in Figure 3: the
corresponding authorization metadata are illustrated in Figure 5.

Descriptive metadata are data descriptors and are similar to the system cat-
alogs automatically maintained by relational database systems. Basically, de-
scriptive metadata describe the structure of the encrypted database. The main
tables of the descriptive metadata are the following.

– TabRelation(Relation, EncryptedRel) maintains the correspondence be-
tween the name of a plaintext relation (attribute Relation) and the name
of the corresponding encrypted relation (attribute EncryptedRel).

– TabIndex(Relation, Attribute, Index, IdMethod) maintains the corre-
spondence between the name of an attribute (attribute Attribute) in a
plaintext relation (attribute Relation) and the name of the correspond-
ing index (attribute Index) together with the index method (attribute
IdMethod).

24 E. Damiani et al.

Authorization Metadata
TabUser

IdUser SurnameName

A Harris Alice
B Drew Bob
C Martin Carol
D Muller David

AccessMatrix(1)

ERelationCounter IdUser

Patientsk 1 A
Patientsk 1 C
Patientsk 2 A
Patientsk 2 B
Patientsk 3 C
Patientsk 4 B
Patientsk 4 C

AccessMatrix(2)

ERelationCounter IdUser

Patientsk 4 D
Patientsk 5 B
Patientsk 5 D
Patientsk 6 B
Patientsk 6 C
Patientsk 6 D
Patientsk 7 A

AccessMatrix(3)

ERelationCounter IdUser

Patientsk 7 B
Patientsk 8 B
Patientsk 8 C
Patientsk 9 C
Patientsk 10 A
Patientsk 10 C
Patientsk 10 D

Descriptive Metadata and Key Metadata
TabRelation

RelationEncryptedRel

Patients Patientsk

TabIndex

RelationAttribute Index IdMethod

Patient PatientId I1 M1
Patient Surname I2 M2
Patient Name I3 M1
Patient Disease I4 M3
Patient Doctor I5 M2

TabDerivation

IdKey IdParent PublicData

∅ / Owner
B ∅ Bob
C ∅ Carol

AB B AliceBob
BD B BobDavid
AC C AliceCarol
BC C BobCarol

ACD AC AliceCarolDavid
BCD BC BobCarolDavid

TabKey

IdKey Value

∅ gapvv

EncryptAlgo

Algorithm IdParameterValue

One time pad Start point 273

TabMethod

IdMethodFunction IdParameterValue

M1 Modular Module 13
M2 Modular Module 7
M3 Modular Module 11

KeyDerivationMethod

IdDerivMethod MethodDescr IdParameter Value

F1 Family of one-way encryption Vigenère
functions function

F1 Family of one-way key secret
functions

Data Owner

Descriptive and Key Metadata
TabRelation

RelationEncryptedRel

Patients Patientsk

TabIndex

RelationAttribute Index IdMethod

Patient PatientId I1 M1
Patient Surname I2 M2
Patient Name I3 M1
Patient Disease I4 M3
Patient Doctor I5 M2

TabDerivation

IdKey IdParent PublicData

C / Carol
AC C AliceCarol
BC C BobCarol

ACD AC AliceCarolDavid
BCD BC BobCarolDavid

TabKey

IdKeyValue

C uetfp

EncryptAlgo

Algorithm IdParameter Value

One time pad Start point 273

TabMethod

IdMethod Function IdParameter Value

M1 Modular Module 13
M2 Modular Module 7
M3 Modular Module 11

KeyDerivationMethod

IdDerivMethod MethodDescr IdParameter Value

F1 Family of one-way encryption Vigenère
functions function

F1 Family of one-way key secret
functions

Carol’s Client

Fig. 5. Metadata associated with the data owner and Carol’s client

– TabMethod(IdMethod, Function, IdParameter, Value) maintains infor-
mation about the hash function (attribute Function) used with a specific in-
dex method (attribute IdMethod) together with the value (attribute Value)
of the corresponding parameters (attribute IdParameter).

Metadata Management in Outsourced Encrypted Databases 25

– EncryptAlgo(Algorithm, IdParameter, Value) maintains information
about the encryption function (attribute Algorithm) used to encrypt data
together with the value (attribute Value) of the corresponding parameters
(attribute IdParameter).

The disclosure of these tables makes it possible for a malicious user to access
the encrypted database. Therefore, the descriptive metadata should never be
stored on the server. Note that each user only knows the portion of the descriptive
metadata corresponding to the relations for which she has a read privilege in
the access matrix; the data owner has instead a complete knowledge of these
metadata. For instance, Figure 5 illustrates the descriptive metadata associated
with Carol and the data owner. Here, we assume that the indexing method is
a hash function implemented through the modular operator, that is, I=A mod
M , where I is the index value corresponding to attribute A and M is a prime
number stored in table TabMethod. We use this specific hash function because
we need collisions.

Key management metadata include information about the key derivation
method, the value of keys directly communicated by the data owner to users,
and the key derivation paths. There are different strategies for storing these
metadata: on clients, on server, or partially on clients and partially on server.
While the client-side strategy saves network bandwidth but uses more client’s
memory, the server-side strategy requires more network bandwidth and save
client’s storage capacity. We discuss these three strategies more in details in the
following subsections.

3.1 Client-Side Key Metadata Storage

Key management metadata stored at each client include information about the
portion of the user tree hierarchy associated with the corresponding user. Such a
sub-hierarchy allows a user to derive the keys necessary for decrypting the data
for which she has a read privilege. For instance, with respect to the user tree
hierarchy in Figure 4(b), user Carol has to know the portion of the hierarchy
rooted at node C. The relational tables stored at the client-side are therefore
the following.

– TabKey(IdKey, Value) maintains the value of the keys (attribute Value)
directly communicated to a user.

– TabDerivation(IdKey, IdParent, PublicData) maintains, for each key
(attribute IdKey) in the considered sub-hierarchy, the identifier of its parent
(attribute IdParent) and the public information (attribute PublicData)
necessary to derive the key; if a key corresponds to the root of the sub-
hierarchy, attribute IdParent is conventionally set to /.

– TabDecryption(EncryptedRelation, Counter, IdKey) maintains, for
each encrypted relation (attribute EncryptedRelation) and each tuple in
the relation (attribute Counter), the identifier (attribute IdKey) of the de-
cryption key associated with that tuple.

26 E. Damiani et al.

– KeyDerivationMethod (IdDerivMethod, MethodDescr, IdParameter,
Value) maintains information about the key derivation method used for
deriving the keys associated with the nodes in the user tree hierarchy2.

While users have to store the complete sub-hierarchy to which they can ac-
cess, the data owner may decide to keep track of the information associated with
each node of the hierarchy (i.e., the identifier and the public parameters used by
the key derivation method) without storing the relationship parent-child. That
is, the data owner can decide to store a simplified version of the TabDerivation
table that includes only attributes IdKey and PublicData. Although this solu-
tion allows the data owner to save storage capacity, it requires to recompute the
user tree hierarchy whenever the data owner needs to access the data. Moreover,
if the access matrix changes (e.g., a user cannot access a tuple anymore) and the
user tree hierarchy is updated without using the transformation algorithm, the
new version of the hierarchy could be different from that obtained by applying
the algorithm. In this case, also the data owner has to store the TabDerivation
table as defined above.

3.2 Server-Side Key Metadata Storage

The client-side approach for storing the key management metadata has the great
advantage that each user directly knows the information she needs to properly
access the encrypted database. However, by analyzing these data more in de-
tails, it is easy to see that this approach requires a duplication of information:
the association between a tuple t and the identifier of the key used to encrypt
the tuple is duplicated for each user that can access t (table TabDecryption).
The same applies for the key derivation paths: two users with non-disjoint user
tree sub-hierarchies have a portion of the key derivation paths replicated in table
TabDerivation.3 The only sensitive information that should never be stored on
the server is table TabKey. Therefore, to avoid data duplication and to allow
the sharing of information among users, the user tree hierarchy and the asso-
ciation tuple-key identifier can be stored on the server. To this purpose, table
TabDerivation containing the whole user tree hierarchy is maintained on the
server and attribute IdKey defined in the relational schema of an encrypted re-
lation (see Section 2) is used to maintain the association tuple-key identifier. To
ensure metadata integrity, message authentication codes, that involve a secret
key in the computation of the digest, are used. Obviously, the key used should be
known by all users in the system. The main drawback of this solution, however,
is that the user tree hierarchy traversal can only be performed by the client.
This means that, to derive a key, the client has to perform a sequence of queries
that retrieve tree nodes on a derivation path. Another minor drawback of this
solution is that, due to the additional attribute IdKey, the result size returned to
2 The schema of this relation may change depending on the key derivation method

adopted.
3 Note that the data inconsistency problem can be avoided by applying the traditional

techniques developed in the distributed database area [5].

Metadata Management in Outsourced Encrypted Databases 27

clients is greater than the result size obtained with the client-side strategy. How-
ever, the impact of attribute IdKey on the result size is minimal and therefore
can be ignored.

3.3 Client-Side and Server-Side Combined Solution

A hybrid solution for storing the key management metadata can also be adopted
thus combining the advantages of the two previous strategies. For instance, the
association between tuple-key identifier can be stored on the server by using at-
tribute IdKey as previously discussed, and the information used for the key deriva-
tion (i.e., the user tree hierarchy, the derivation method, and the public informa-
tion associated with each element of the hierarchy) can be stored on the clients.
In this way, we avoid a duplication of information and the key derivation process
is more efficient because the client can execute it without querying the server.

The choice between a client-side, server-side, or a hybrid solution depends on
the storage and bandwidth capacity available to clients. For instance, if the stor-
age capacity is a more critical resource than the bandwidth capacity, a server-side
solution is preferable. Otherwise, if the bandwidth capacity is a more critical re-
source than the storage capacity, a client-side or a hybrid solution is preferable.
Note that when specific key derivation methods are used (e.g., the key deriva-
tion methods working on tree as in our approach), the size of the public data
stored on clients is minimal and therefore the impact on the storage capacity
is neglectable. For instance, the key derivation methods based on one-way hash
functions [22] require, as public information, a unique name associated with each
node of the hierarchy. The size of the public information is therefore of order
O(n log n), where n is the number of elements in the user tree hierarchy. The key
derivation methods working on DAGs and based on the modular exponentiation
technique [2,20] use as public data associated with an element n of the hierar-
chy, the product of the prime numbers associated with the nodes in the hierarchy
that are not dominated by n. Therefore, in the worst case (i.e., for a leaf of the
hierarchy) the size of the public information is of order O(n(n− 1)k) = O(n2k),
where n is the number of elements in the hierarchy and k is the number of bits
for representing a prime number.

The computational cost of the derivation mechanism could be reduced if each
client keeps a cache of the keys already computed. In this way, if the result of a
query includes a tuple encrypted with such a key, it is not necessary recompute
the decryption key. Obviously, this cache mechanism requires additional storage
capacity on clients. It is also important to note that whenever there is a change
in the access matrix, the cache should be cleared because the keys could be
changed. Figure 5 illustrates the metadata associated with user Carol and the
data owner by using a hybrid solution.

4 Query Processing

We now address the issue of evaluating client queries in the DAS scenario
where a hybrid solution for storing the metadata is adopted. For simplicity, we

28 E. Damiani et al.

assume that the encrypted database Bk consists of a single relation Patientsk

(see Figure 2(b)), and that queries are selection-project expressions.4 Based on
the metadata stored, a query Q on a plaintext relation is split into a query Qs

on the corresponding encrypted relation that is executed on the server, and a
client query Qc for post-processing result of the server query. The transforma-
tion between query Q and query Qs is performed as illustrated in Figure 6. As
it is visible from this table, the list of attributes in the select clause is replaced
by attributes Counter, Etuple, and IdKey: due to the fact that relations are
encrypted at the tuple level, a server can only return the whole encrypted tu-
ple Etuple, and therefore the projection operation cannot be executed on the
server. Attribute IdKey is necessary to identify the decrypting key. The list of
relations in the from clause is replaced by the list of corresponding encrypted
relations (table TabRelation) and conditions in the where clause are trans-
formed according to the index techniques. More precisely, each attribute Aj in
the where clause is replaced by the corresponding index (table TabIndex) and
constant values are transformed by applying the appropriate index technique
(table TabMethod).

Original Clause (Q) Transformed Clause (Qs)

select A1, . . ., An select Counter, Etuple, IdKey
from R1, . . ., Rm from Rk1, . . ., Rkm
where Aj = val where IAj = f(val)

Ak = Aw IAk =IAw

Fig. 6. Query transformation

As an example, suppose that Carol wants to find the name, surname, and
doctor of patients who disease is “Tonsillitis”. The SQL query is as follows.

select PatientId, Surname, Name, Doctor
Q ≡ from Patients

where Disease= “Tonsillitis”

The query processor module retrieves from the metadata the name of the
encrypted relation corresponding to Patients, the name of the index corre-
sponding to attribute Disease and the hash function (with its parameters) used
for creating the index. In this phase, it is also necessary to retrieve both the
encryption function and the key derivation method, together with their param-
eters. To this purpose, the following SQL queries are executed (here, we use an
embedded SQL syntax).

4 Note that more complex queries can also be supported (e.g., range queries can be
supported by means of indexes based on B+-trees [9]). Details for this, however, are
beyond the scope of this paper.

Metadata Management in Outsourced Encrypted Databases 29

Counter Etuple IdKey

1 r*tso/yui+ AC
2 hai4de-0q1 AB
5 3gia*ni+aL BD
8 /bur21/*-D BC
10 bew0”!DE1a ACD

(a)

PatientId Surname Name Doctor

125YP894 Carter Andrew Wayne
364UK784 Rogers Laura Wayne

(b)

Fig. 7. Encrypted query result (a) and final result returned to Carol (b)

select EncryptedRel into :R select Index, IdMethod into :I, :M

from TabRelation from TabIndex

where Relation = “Patients” where Relation = “Patients”
and Attribute= “Disease”

select Function into :h select Value into :P

from TabMethod from TabMethod

where IdMethod = :M where IdMethod = :M

select Algorithm, Value into :E, :Pe select MethodDescr, Value into :DM, :Pm

from EncryptAlgo from KeyDerivationMethod

By assuming that the value of variable R is Patientsk, the value of variable
I is I4, and the index value corresponding to “Tonsillitis” is π, the original
plaintext query Q is translated as follows:5

select Counter, Etuple, IdKey
Qs ≡ from Patientsk

where I4= “π”

Figure 7(a) illustrates the query result returned to the client. The client has to
decrypts all tuples that Carol can access (a tuple is accessible by a user when the
corresponding IdKey value appears in table TabKey or table TabDerivation) and
to filter out those not matching the actual query predicates in Q. In our example,
Carol can access tuples t1, t8, and t10 and tuples t2 and t5 are discarded.
The keys to be used for decrypting the tuples are computed as follows. First,
for each tuple t of the query result, if table TabKey contains a tuple t′ where
t′[IdKey] = t[IdKey], then the decryption key is already available. Otherwise,
the decryption key is obtained by following the key derivation path stored in
table TabDerivation.

Figure 8 illustrates the procedure for computing the key derivation path.
Intuitively, for each tuple t, by starting from the leaf (i.e., t[IdKey]) of the path,
table TabDerivation is queried to determine the parent of the current node of
the path. The procedure terminates when root / is reached. Array Path stores
the key derivation path in reverse order. For instance, consider tuple t10: it is
encrypted with key kACD that can be obtained by following the path Path[3] =
5 Note that Qs is a dynamic embedded SQL statement that is built at run time and

placed in a string host variable. For simplicity, we report the final format of the
query executed at the server side.

30 E. Damiani et al.

Algorithm 1 (Key derivation path).

KeyDerivationPath(t[IdKey])
/* Initializes some variables */
i:=1; Path[i]:= t[IdKey]
While Path[i] �= / do

i := i + 1
select IdParent into :Path[i]
from TabDerivation

where IdKey=:Path[i − 1]
return Path

Fig. 8. Algorithm for computing the key derivation path

kC → Path[2] = kAC → Path[1] = kACD. The decryption key is computed by
applying the key derivation method DM along Path. Then, the client has to: (1)
decrypt the tuples using function E, (2) apply the original condition to discard
possibly spurious tuples that do not belong to the result set, and (3) execute the
requested projections. Spurious tuples are discarded by applying the following
query:

select PatientId, Surname, Name, Doctor
Qc ≡ from Result

where Disease= “Tonsillitis”

Figure 7(b) reports the final set of tuples that user Carol can read. Note that
these tuples are a subset of the tuples for which Carol has the read privilege
(see the access matrix in Figure 3).

As the server returns to the client also tuples that she cannot read, data
may be subject to inference attacks. The inference problem in the DAS scenario
has been considered in [6,9], where the authors gave a quantitative model for
evaluating the robustness of the indexes obtained by applying either the direct
encryption or a hash-based method. In summary, they shown that to achieve
a higher degree of protection against inference, it is convenient to use a hash
function to encode indexes values.

5 Conclusions and Future Work

The management of metadata for accessing a remote encrypted database is of
crucial importance in the database-as-a-service scenario. In this paper, we pre-
sented the metadata that provide abstract descriptions of the data structures
and data formats used in the underlying system. Issues to be investigated will
include: (i) an effective implementation of the different solutions presented for
metadata storage to better evaluate the trade off between storage and band-
width consumption, and (ii) an evaluation of strategies addressing the dynamic
updates of the access rights [7].

Metadata Management in Outsourced Encrypted Databases 31

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by the
Italian MIUR within the KIWI and MAPS projects.

References

1. R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving encryption for
numeric data. In Proc. of ACM SIGMOND 2004, Paris, France, June 2004.

2. S. Akl and P. Taylor. Cryptographic solution to a problem of access control in a
hierarchy. ACM Transactions on Computer System, 1(3):239–248, August 1983.

3. C. Boyens and O. Gunter. Using online services in untrusted environments - a
privacy-preserving architecture. In Proc. of the 11th European Conference on In-
formation Systems (ECIS ’03), Naples, Italy, June 2003.

4. R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching in
encrypted data. In Proc. of the Secure Data Management Workshop, Toronto,
Canada, August 2004.

5. S. Ceri and G. Pelegatti. Distributed Database Systems: Principles and Systems.
McGraw-Hill, 1984.

6. A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Modeling and assessing inference exposure in encrypted databases.
ACM Transactions on Information and System Security (TISSEC), 8(1):119–152,
February 2005.

7. E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati.
Selective release of information in outsourced encrypted database. Technical report,
University of Milan, 2005.

8. E. Damiani, S. De Capitani di Vimercati, M. Finetti, S. Paraboschi, P. Samarati,
and S. Jajodia. Implementation of a storage mechanism for untrusted DBMSs. In
Proc. of the Second International IEEE Security in Storage Workshop, Washington
DC, USA, May 2003.

9. E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Balancing confidentiality and efficiency in untrusted relational DBMSs. In
Proc. of the 10th ACM Conference on Computer and Communications Security,
Washington, DC, USA, October 27-31 2003.

10. G.I. Davida, D.L. Wells, and J.B. Kam. A database encryption system with sub-
keys. ACM Transactions on Database Systems, 6(2):312–328, June 1981.

11. J. Domingo-Ferrer and J. Herrera-Joanconmarti. A privacy homomorphism al-
lowing field operations on encrypted data. Jornades de Matematica Discreta i
Algorismica, March 1998.

12. H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service. In Proc.
of 18th International Conference on Data Engineering, San Jose, California, USA,
February 2002.

13. H. Hacigümüs, B. Iyer, and S. Mehrotra. Ensuring integrity of encrypted databases
in database as a service model. In Proc. of the IFIP Conference on Data and
Applications Security, Estes Park Colorado, August 2003.

14. H. Hacigumus, B. Iyer, and S. Mehrotra. Efficient execution of aggregation queries
over encrypted relational databases. In Proc. of the 9th International Conference
on Database Systems for Advanced Applications, Jeju Island, Korea, March 2004.

32 E. Damiani et al.

15. H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted
data in the database-service-provider model. In Proc. of the ACM SIGMOD’2002,
Madison, Wisconsin, USA, June 2002.

16. H. Hacigumus and S. Mehrotra. Performance-conscious key management in en-
crypted databases. In Proc. of the 18th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security, Sitges, Catalonia, Spain, July 2004.

17. L. Harn and H. Lin. A cryptographic key generation scheme for multilevel data
security. Computers and Security, 9(6):539–546, October 1990.

18. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries.
In Proc. of the 30th VLDB Conference, Toronto, Canada, 2004.

19. M. Hwang and W. Yang. Controlling access in large partially ordered hierarchies
using cryptographic keys. The Journal of Systems and Software, 67(2):99–107, July
2003.

20. S. MacKinnon, P.Taylor, H. Meijer, and S.Akl. An optimal algorithm for assign-
ing cryptographic keys to control access in a hierarchy. IEEE Transactions on
Computers, 34(9):797–802, September 1985.

21. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in out-
sourced database. In Proc. of the 11th Annual Network and Distributed System
Security Symposium, San Diego, California, USA, February 2004.

22. R.S. Sandhu. Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters, 27(2):95–98, April 1988.

Experiments with Queries over Encrypted Data

Using Secret Sharing

Richard Brinkman1,3, Berry Schoenmakers2,3, Jeroen Doumen1,
and Willem Jonker1,3

1 University of Twente, The Netherlands
{brinkman, doumen, jonker}@cs.utwente.nl

2 Technical University of Eindhoven, The Netherlands
berry@win.tue.nl

3 Philips Research, The Netherlands

Abstract. To avoid insider attacks one cannot rely on access control to
protect a database scheme. Encrypting the database is a better option.
This paper describes a working prototype of an encrypted database sys-
tem that allows remote querying over the encrypted data. Experiments
with the system show the practical impact of our encoding scheme on
storage space and CPU time. Two algorithms, each with two different
matching rules, are compared to each other.

1 Introduction

Enterprises often rely on access control to protect their assets. However, a study
of the Computer Science Institute and the FBI [1] shows that most successful
attacks are conducted by insiders. A possible solution is to replace access control
with database encryption where the user keeps the encryption key secret. This
shift opens up a new research area of query evaluation over encrypted data.

In this paper we present an extension of our encrypted database system of
[2]. We summarise this scheme in section 3. See [2] for further information on
the background of searching in encrypted databases. In this paper we present
an augmented version of the database system. The former solution lacks the
ability to search in the data itself, it only allows searching the XML tags. In the
new solution the textual data of an XML document is represented as a trie [3],
enabling searching tags as well as data. In section 4 we show how to represent
the text as a trie.

To investigate the practical impact of our database scheme, we have built an
implementation. In section 5 we describe some of the implementation issues. In
section 6 we use the implementation together with a test database to do several
experiments in order to measure the storage space and the influence of the search
algorithm and the configuration settings on the CPU time.

2 Related Work

Traditionally, databases are protected against malicious use by means of an
access control mechanism. However, the database management system itself is

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 33–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 R. Brinkman et al.

trusted. When the data is outsourced the database system cannot be trusted
anymore to keep the query and the answer secret. Private Information Retrieval
[4] aims at letting a user query the database system without leaking to the
database which data was queried. The idea behind PIR is to replicate the data
among several non-communicating servers. A client can hide his query by asking
all servers for a part of the data in such a way that no server will learn the
whole query by itself. Chor et al [4] prove that PIR with a single server can only
be done by sending all data to the client for each query. In practice database
replication is not preferable.

PIR aims at hiding the query from the database leaving the data in the
clear. Song, Wagner and Perrig [5] suggest a different technique that supports
encrypting the data itself. An encrypted keyword can be found in an encrypted
text without the server learning either the keyword or the plaintext. We adapted
this work to exploit the tree structure in XML documents in [6].

3 Overview of Our Approach

In our database scheme a plaintext XML document is transformed into an en-
crypted database by following the steps below. See figure 1 for the encoding of
a concrete example.

1. Define a function map : node → Fpe , which maps the tag names of the nodes
to values of the finite field Fpe , where pe is a prime power (p prime and e a
positive integer) which is larger than the total number of different tag names
(figure 1(b)).

2. Transform the tree of tag names (figure 1(a)) into a tree of polynomials
(figure 1(d)) of the same structure where each node is transformed to f(node)
where function f : node → Fpe [x]/(xp−1 − 1) is defined recursively:

f(node) =
{

x − map(node) if node is a leaf node
(x − map(node))

∏
d∈child(node) f(d) otherwise

Here child(node) returns all children of a node.
3. Split the resulting tree into a client (figure 1(e)) and a server tree (fig-

ure 1(f)). Both trees have the same structure as the original one. The poly-
nomials in the client tree are generated by a pseudorandom generator. The
polynomials of the server tree are chosen such that the sum of a client node
and the corresponding server node equals the original polynomial.

4. Since the client tree is generated by a pseudorandom generator it suffices to
store the seed on the client. The client tree can be discarded. When necessary,
it can be regenerated using the pseudorandom generator and the seed value.

It is simple to check whether a node N is stored somewhere in a subtree by
evaluating the polynomials of both the server and the client at map(N). If the
sum of these evaluations equals zero, this means that N can be found somewhere
in the subtree N . To find out whether N is the root node of this subtree, you
have to divide the unshared polynomial by the product of all its direct children.
The result will be a monomial (x − t) where t is the mapped value of the node.

Experiments with Queries over Encrypted Data Using Secret Sharing 35

c

b

a b

c

a

(a) XML
Example

name value

a 2
b 1
c 3

(b) Mapping
Function

x − 3

(x − 1)(x − 3)

x − 2 x − 1

(x − 3)(x − 2)(x − 1)

(x − 1)2(x − 2)2(x − 3)2

(c) Unshared/unreduced Encoding

x + 2

x2 + x + 3

x + 3 x + 4

x3 + 4x2 + x + 4

2x3 + 3x2 + 2x + 3

(d) Unshared/reduced Encoding

=

3x2 + 2x + 1

x3 + 2x2 + 2

3x3 + 2x2 + x 2x3 + x2 + 3x + 1

2x3 + x + 2

2x3 + x2 + 1

(e) Client Encoding

+

2x3 + 3x2 + 4x + 1

x3 + 3x2 + x + 1

2x3 + 3x2 + 3 3x3 + 3x2 + 3x + 3

4x3 + 4x2 + 2

2x2 + 2x + 2

(f) Server Encoding

Fig. 1. The mapping function (1(b)) maps each name of an input document (1(a)) to
an integer. The XML document is first encoded to a tree of polynomials (1(c)) before
it is reduced to the finite field F5[x]/(x4 − 1) (1(d)) and split into a client (1(e)) and a
server (1(f)) part.

36 R. Brinkman et al.

4 Trie Enhancement

The approach sketched in section 3 is only efficient when pe is small. This is
no problem for tag names that are chosen from a fixed sized set (described in
a DTD), but cannot be used for the data because the number of different data
nodes is unbounded. And since each polynomial takes (pe − 1) log2 pe bits of
storage space, it is important to keep pe as small as possible.

In this paper we propose a representation of XML documents allowing for
efficient searching in data nodes. Basically, all data nodes are transformed to
their trie representation [3].

A data string in the original XML document is translated to a path of nodes
where each node is chosen from a small set. Assume this set contains a, b, . . . , z.
With this set we can translate the tree shown in figure 2(a) to an equivalent
trie 2(b) or an uncompressed trie 2(c). An uncompressed trie stores exactly the
same information as the original data string, whereas the compressed trie loses
the order and cardinality of the words. If this is a problem an encryption of the
data string may be added to the node. In this example we first split a string into
words, represented by paths, and then each path is split into several characters.
Other ways of splitting the string into nodes are possible.

On average removing duplicate words from a text reduces the size by 50%.
Reducing a text into a compressed trie reduces the size by 75-80%. However each

”Joan Johnson”

name

(a) Original

⊥

n

a

⊥

n

o

s

n

h

o

J

name

(b) Trie

⊥

n

a

o

J

⊥

n

o

s

n

h

o

J

name

(c) Uncompressed trie

Fig. 2. Transformation of an XML document tree into either a compressed or an
uncompressed trie

Experiments with Queries over Encrypted Data Using Secret Sharing 37

node is converted into a polynomial of size (pe − 1) log2 pe bits. In case p = 29
a polynomial costs 17 bytes. Due to the trie compression the ‘encryption’ of a
single letter will cost approximately 3 1

2 − 4 1
2 bytes.

Having translated the original XML tree into a (compressed) trie, the same
strategy of [2] can be used to encode the document. Like the document, also the
queries should be pre-tuned to the new scheme. A query like

/name[contains(text(), "Joan")]

is first translated to

/name[//J/o/a/n]

before it is translated to

/map(name)[//map(J)/map(o)/map(a)/map(n)].

Simple regular expressions like . and .* can be mapped to their trie-equivalents
* and //.

5 Implementation

In the previous sections we described our theory of searching in encrypted data
by using secret sharing and a special kind of encoding/encryption. To demon-
strate that searching in encrypted data is not only possible in theory, but also

map seed

MySQLEncode
doc

XML

SimpleQuery

AdvancedQuery

ClientFilter
RMI

ServerFilter

DB

serverclient

encoding

querying

Fig. 3. Client/Server Architecture

38 R. Brinkman et al.

in practice, we have built a prototype implementing the encoding and search
strategy described in section 3.

The implementation is written in Java and set up using a client/server model.
Figure 3 shows the architecture. We will elaborate on each component in the
following sections.

The server stores all the polynomials in a database. The database is not
protected and can be considered publicly readable. However, the client encodes
the original plaintext XML document into encoded polynomials by using the
MySQLEncode class. The encoder needs a private seed and a private map file
which will be re-used by the query engines. The map file is just a text file which
stores the mapping between tag names and corresponding values from Fpe .

The prototype consists of two different query engines: SimpleQuery and
AdvancedQuery. Both engines share the same filtering technique. The filter is
distributed over the client and the server. The filter classes perform basic oper-
ations like function evaluation and tree reconstruction.

5.1 MySQLEncode

Since the server should not learn the information it is storing, it is the client’s
responsibility to fill the database.

The MySQLEncode class acts on three files which are provided on the command-
line:

1. A map file
2. A seed file
3. The original XML document

The map file is a property file where each line is of the form name = value,
where name is one of the tag-names as specified by the DTD or XML schema
and value ∈ Fpe is the value it is mapped to.

The seed file acts as the encryption key and should therefore be kept secure.
Without the seed file it is impossible to regenerate the client tree, and without
the client tree the data on the server is meaningless.

The original XML document is parsed by a SAX parser1. This means that
there is no need for a big client machine with lots of memory. This fits nicely
into our philosophy of small clients (cell phones, for example) and big servers.
The parser linearly reads the document and constructs the tree on the fly. It
only needs memory proportional to the depth of the tree. The tree structure is
stored by adding pre, post and parent values to each polynomial. The pre and
post fields are sequence number that count the open tags respectively close tags.
The parent fields refers to the pre value of its parent. This is a common way to
store a tree structure into a flat relational table [2,7]. In our prototype we use
MySQL2 as the database back-end. In order to speed up the search process the
pre, post and parent fields are indexed by a B-tree.
1 www.saxproject.org/
2 www.mysql.com

Experiments with Queries over Encrypted Data Using Secret Sharing 39

5.2 The Filter Implementation

Each different query engine (see section 5.3) will use the same set of basic oper-
ations. These operations are offered by ServerFilter and ClientFilter. Both
classes implement a common interface Filter but are adapted to work on the
server site respectively the client site. The two objects communicate with each
other using Java’s Remote Method Invocation (RMI). The operations consist
of functions to query the tree structure as well as to evaluate the polynomi-
als. ServerFilter will evaluate the polynomials stored in the database for the
given values. ClientFilter first regenerates the client polynomial by using the
pseudorandom generator with the secret seed and the pre location of the poly-
nomial. After the evaluation of its generated polynomial it will add the result to
the retrieved value from the server. Only when the sum equals zero, the location
is returned to the invoking query engine, otherwise the next candidate node is
generated/retrieved, evaluated and added together.

With the evaluation method only the containment of a node in a subtree
is tested. To be sure that the node is equal to the root of the subtree there
is an option to check the first factor of a node. To retrieve the factor (x − t)
in f(x) = (x − t)

∏
c(x)c∈children(f) it is necessary to reconstruct the node’s

polynomial and all its child polynomials. Because the equality test is expensive
it should only be invoked when absolutely necessary.

The operator nextNode() acts as a pipeline. The thin client only needs to
have one node in memory at a time. The big server will do the buffering of the
intermediate results.

5.3 Query Engines

Since it was not a priori clear which search strategy is the best, we have decided
to implement two query engines, called SimpleQuery and AdvancedQuery, each
using a different search strategy, as explained below.

SimpleQuery. The most simple search strategy parses the XPath3 query into
steps where each step consists of a direction (child (/) or descendant (//)) and
a tag name. Two special tag names exist: .. matches the parent and * matches
every child.

In this example we make use of the containment test only. In section 6
we will also use the equality test. There we will compare the two tests to see
whether one is preferable to the other. We will sketch the algorithm by using an
XML document generated by the XMark benchmark [8] and the example query
/site/*/person//city. See appendix A for the DTD. This query is parsed into
the following steps:

/site The first slash instructs the search engine to locate the root node (i.e. the
only node without a parent (parent=0)). Since the parent field is indexed
this is done in constant time. After the root node has been located both the

3 www.w3.org/TR/xpath

40 R. Brinkman et al.

stored polynomial on the server and the generated polynomial on the client
are being evaluated at map(site). Only when the sum equals zero the next
steps are carried out.

/* At this point the preliminary result set (implemented as a Queue on the
server) will consist of only a single element. This step will change the result
set into all children of the root node (i.e. regions, categories, catgraph, people,
open auctions and closed auctions). The * reduces the workload because no
additional filtering is needed.

/person All children of the 6 nodes in the result set are being examined in this
step. Evaluation at map(person) is done for all the polynomials found. Only
those nodes for which the sum of the server and client evaluations equals
zero remain in the result set.

//city This step is quite expensive in terms of execution time. The result of
the previous step is already quite large and this step even increases the
number of possible nodes that have to be checked. All the descendants of
the person-nodes (i.e. name, emailaddress, phone, address, homepage, credit-
card, profile, watches, street, city, country, province, zipcode, interest, edu-
cation, gender, business, age, watch, category, open auction and description)
have to be checked against map(city).

AdvancedQuery. In contrast to the SimpleQuery the AdvancedQuery takes
the tree as the starting point and parses it from root to leaf nodes. At each step
the whole remaining query is taken into account. We take advantage of the fact
that nodes have knowledge of all descendants. This way it is possible to identify
dead branches early in the search process at the cost of more evaluations for
each node.

For easy comparison we use the same query and the same test (containment)
as before.

/site/*/person//city The AdvancedQuery engine always starts at the root
node. This node is checked against map(site), map(person) and map(city).
Only when all three sums are zero the next steps are carried out. Note that
we can only check for the existence of a node. The structure of the query
cannot be taken into account since the nodes don’t store the structure of the
subtree.

/*/person//city The engine proceeds by consuming the /site part of the query
and traversing the tree one step down to find the root’s children. This unfil-
tered set of nodes are regions, categories, catgraph, people, open auctions and
closed auctions. After filtering only the people, open auctions and closed -
auctions remain; all the other nodes do not contain person or city nodes. Thus
we may skip these branches.

/person//city In this step the /* has been removed. This means we tra-
versed the tree one step downwards. The children of people, open auctions
and closed auctions are person, open auction and closed auction. Because
open auction and closed auction contain person and city nodes they remain
in the result set even after filtering. The implementation does not check if

Experiments with Queries over Encrypted Data Using Secret Sharing 41

the node is a person but if it contains it. This is done because we chose to use
the containment test instead of the equality test. In section 6 we investigate
whether this was a good choice or not.

//city From the person, open auction and closed auction nodes we interac-
tively walk downwards in the tree evaluating the polynomials at map(city)
until this results in a non-zero sum. The result set now contains all nodes
having a city inside. If we had chosen the equality test only the city nodes
would have been in the result set.

6 Experiments

The prototype is an ideal instrument to perform experiments with. With the
experiments described in this section we would like to find out what the prac-
tical impact of our encrypted database scheme is. We investigated the storage
space overhead (section 6.1), the influence of the different search engine algo-
rithms (section 6.2) and the difference between the equality and containment
tests (section 6.3). All experiments act on an auction database synthesized by
the XMark benchmark [8]. The DTD (see appendix A) contains 77 elements. We
chose p = 83 and e = 1 throughout this section.

6.1 Encoding

Encoding an XML document as polynomials requires extra storage space. This
is due to the fact that each polynomial not only stores the information of its own
node but also of all its descendants. Figure 4 plots the encoded database size

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

ti
m

e
(s

)

o
u
tp

u
t

si
ze

(M
B

)

input size (MB)

Encoding

output size index size time

Fig. 4. Encoding

42 R. Brinkman et al.

against the input XML size. Approximately 17% of the output size is caused by
the pre, post and parent values (not plotted in the figure). The remainder is thus
approximately 1.5 times the size of the input. To speed up the search process we
added indices to the pre, post and parent fields using B-trees. The size of these
indices is added on top of the output size. As expected both the storage space
and the encoding time are strictly linear in the input size.

6.2 Query Engines

One of the main reasons for building the prototype was because it was not
a priori clear what the most efficient query engine algorithm is. Is it best to
evaluate a polynomial at as many points as possible at each node to find an
early dead branch or should you evaluate at a single point at a time? To answer
this question we performed two tests: one with the simplest of all queries at
increasing length and one with more advanced queries containing // and *.

The first test is the worst case scenario for the advanced query engine. The
queries in table 1 are chosen in such a way that there is no gain for the advanced
algorithm. For instance it is a waste of effort to check whether a europe node
contains an item, description, parlist, listitem, text and keyword node, because
the DTD (see appendix A) dictates it to be always the case.

As can be seen in figure 5, where the number of evaluations is plotted against
the queries of increasing length shown in table 1, the two search algorithms are
comparable. They differ by at most a constant factor.

The second test with queries containing // and * was performed in conjunc-
tion with the strictness test. The test result are given in the next section.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

query length

Varying the query length

output size
number of evaluations simple

number of evaluations advanced

Fig. 5. Several queries with increasing query length. The query numbers refer to the
queries summed up in table 1.

Experiments with Queries over Encrypted Data Using Secret Sharing 43

Table 1. Queries with increasing length. The numbers correspond to figure 5.

1 /site

2 /site/regions

3 /site/regions/europe

4 /site/regions/europe/item

5 /site/regions/europe/item/description

6 /site/regions/europe/item/description/parlist

7 /site/regions/europe/item/description/parlist/listitem

8 /site/regions/europe/item/description/parlist/listitem/text

9 /site/regions/europe/item/description/parlist/listitem/text/keyword

6.3 Strictness

Another aspect that is hard to predict is the difference between the equality
test and the containment test. On the one hand, it can be argued that, since
the reconstruction of the first factor of a polynomial is computationally more
expensive than a simple function evaluation, it is preferable to use the contain-
ment test. On the other hand, the reduced accuracy causes more nodes to be
examined. Therefore we used our prototype to compare the two tests using both
search algorithms.

For each query in Table 2 four experiments were performed. Each algorithm
(simple and advanced) was run twice: once with the equality test (strict check-
ing) and once with the containment test (non-strict checking). The results are
plotted in figure 6. For all queries the advanced algorithm outperforms the sim-
ple algorithm. Furthermore, it can be noticed that sometimes the strict checking
pays off and sometimes it does not. In general, the equality test may cause a
slight overhead or a major improvement.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

ex
ec

u
ti

o
n

ti
m

e
(s

)

query

Strictness

non-strict/simple
strict/simple

non-strict/advanced
strict/advanced

Fig. 6. Equality test versus containment test

44 R. Brinkman et al.

Of course it is unfair to compare the equality test, which always gives the
exact answer, with the containment test without considering the accuracy. Fig-
ure 7 shows the accuracy of the containment test. It plots the percentage of the
nodes in the containment test’s result that also pass the equality test. Notice
that the accuracy drops for each // in the query. For absolute queries which do
not contain //, the accuracy of the containment test reaches 100%.

Table 2. Queries for the strictness checks. The numbers correspond to figure 6.

1 /site//europe/item

2 /site//europe//item

3 /site/*/person//city

4 /*/*/open auction/bidder/date

5 //bidder/date

0

20

40

60

80

100

1 2 3 4 5

co
rr

ec
tn

es
s

(%
)

query

Accuracy

Fig. 7. Accuracy of the containment test as defined by the quotient E
C

, where E is
the size of the result set using the equality test and C is the size of the result set using
the containment test

7 Conclusions and Future Work

In our previous paper [2] we introduced a new search strategy over encrypted
data. All XML nodes are encoded as polynomials. Each polynomial contains
knowledge of its own node as well as all its decendants. Due to a smart reduction
the storage overhead is reduced to 50% as measured by our prototype (using
p = 83 and e = 1). The encoding time is linear in the size of the input.

The prototype can choose between two different search algorithms. The sim-
ple algorithm reads a query from left to right carrying out a single evaluation

Experiments with Queries over Encrypted Data Using Secret Sharing 45

at each node. The more advanced algorithm uses a look-ahead strategy where
the whole remaining query is taken into account. Experiments show that the
advanced algorithm outperforms the simple algorithm in the majority of cases.
Only for the most simple queries it is slightly slower.

The search algorithms can use two comparison tests: the equality test and
the containment test. The containment test is just a cheap evaluation whereas
the equality test is more expensive because a node’s own polynomial should be
divided by all its child polynomials. The cost of a single equality test depends
on the number of children, whereas the costs of a containment test is always
constant. All the child nodes should be retrieved from the server and added to the
pseudorandomly generated client polynomials. The accuracy of the containment
test is reasonable but it does not result in a major improvement in the running
time. On the contrary, it is often better to use the equality test to reduce the
number of nodes to check, especially for the simple algorithm.

Using a trie to represent data content enables querying of the data inside the
XML tags. The trie-representation is not yet part of the current prototype but
we expect a major improvement especially in the advanced algorithm. Queries
over the data are more precise than those over the tag labels and thus the number
of nodes to be examined is being reduced. Since knowledge of the data is present
at high level nodes, the query engine can find the path to the answer almost
immediately.

References

1. Computer Science Institute. CSI/FBI computer crime and security survey.
http://i.cmpnet.com/gocsi/db area/pdfs/fbi/FBI2004.pdf.

2. R. Brinkman, J.M. Doumen, P.H. Hartel, and W. Jonker. Using secret
sharing for searching in encrypted data. In W. Jonker and M. Petković,
editors, Secure Data Management VLDB 2004 workshop, volume LNCS
3178, pages 18–27, Toronto, Canada, August 2004. Springer-Verlag, Berlin.
http://www.ub.utwente.nl/webdocs/ctit/1/00000106.pdf.

3. Edward Fredkin, Bolt Beranek, and Newman. Trie memory. Communications of
the ACM, 3(9):490–499, September 1960.

4. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In FOCS, pages 41–50, 1995.

5. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000. http://citeseer.nj.nec.com/song00practical.html .

6. R. Brinkman, L. Feng, J.M. Doumen, P.H. Hartel, and W. Jonker. Efficient tree
search in encrypted data. Information Systems Security Journal, 13(3):14–21, July
2004. http://www.ub.utwente.nl/webdocs/ctit/1/000000f3.pdf.

7. Torsten Grust. Accelerating xpath location steps. In Proceedings of
the 21st ACM International Conference on Management of Data (SIGMOD
2002), pages 109–120. ACM Press, Madison, Wisconsin, USA, June 2002.
http://www.informatik.uni-konstanz.de/∼grust/files/xpath-accel.pdf.

8. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and
R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI, Am-
sterdam, The Netherlands, April 2001. http://monetdb.cwi.nl/xml/index.html .

46 R. Brinkman et al.

A Appendix: XMark’s Auction DTD

<!ELEMENT site (regions, categories, catgraph, people, open_auctions, closed_auctions)>

<!ELEMENT categories (category+)>

<!ELEMENT category (name, description)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT text (#PCDATA | bold | keyword | emph)*>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>

<!ELEMENT parlist (listitem)*>

<!ELEMENT listitem (text | parlist)*>

<!ELEMENT catgraph (edge*)>

<!ELEMENT edge EMPTY>

<!ELEMENT regions (africa, asia, australia, europe, namerica, samerica)>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT namerica (item*)>

<!ELEMENT samerica (item*)>

<!ELEMENT europe (item*)>

<!ELEMENT item (location, quantity, name, payment, description, shipping, incategory+, mailbox)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT payment (#PCDATA)>

<!ELEMENT shipping (#PCDATA)>

<!ELEMENT reserve (#PCDATA)>

<!ELEMENT incategory EMPTY>

<!ELEMENT mailbox (mail*)>

<!ELEMENT mail (from, to, date, text)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT itemref EMPTY>

<!ELEMENT personref EMPTY>

<!ELEMENT people (person*)>

<!ELEMENT person (name, emailaddress, phone?, address?, homepage?, creditcard?, profile?, watches?)>

<!ELEMENT emailaddress (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT address (street, city, country, province?, zipcode)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT province (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT homepage (#PCDATA)>

<!ELEMENT creditcard (#PCDATA)>

<!ELEMENT profile (interest*, education?, gender?, business, age?)>

<!ELEMENT interest EMPTY>

<!ELEMENT education (#PCDATA)>

<!ELEMENT income (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT business (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT watches (watch*)>

<!ELEMENT watch EMPTY>

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction (initial, reserve?, bidder*, current, privacy?, itemref, seller, annotation, quantity, type, interval)>

<!ELEMENT privacy (#PCDATA)>

<!ELEMENT initial (#PCDATA)>

<!ELEMENT bidder (date, time, personref, increase)>

<!ELEMENT seller EMPTY>

<!ELEMENT current (#PCDATA)>

<!ELEMENT increase (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT interval (start, end)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ELEMENT amount (#PCDATA)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction (seller, buyer, itemref, price, date, quantity, type, annotation?)>

<!ELEMENT buyer EMPTY>

<!ELEMENT price (#PCDATA)>

<!ELEMENT annotation (author, description?, happiness)>

<!ELEMENT author EMPTY>

<!ELEMENT happiness (#PCDATA)>

An Authorization Framework for Sharing Data
in Web Service Federations

Martin Wimmer and Alfons Kemper

Technische Universität München,
D-85748 Garching bei München, Germany

{martin.wimmer, alfons.kemper}@in.tum.de

Abstract. In this paper we present our authorization framework that
supports the dynamic set-up of Web service federations for sharing data
within virtual federations. Building on previous work, where we showed
how the access control of Web services can be consolidated with the
access control of the underlying database systems, we focus on the del-
egation of trust across administrative boundaries, thus enabling inter-
organizational collaboration. In order to restrict the flow of (possibly
sensitive) access control information, authorization proceeds as an inter-
play of local and distributed policy enforcement. Scalability and perfor-
mance of distributed policy enforcement are provided through caching
techniques, which have to ensure strong cache consistency.

1 Introduction

In areas like e-science, e-business, and e-health, inter-organizational collabora-
tions are becoming more and more prevalent. Thereby, tightly and loosely cou-
pled systems are differentiated. Considering e-health, an example for a tightly
coupled system is a collaboration network built of hospitals for providing shared
access on medical records. Collaboration might also be established and again be
terminated dynamically, i.e., in a loosely coupled manner. As an example con-
sider the exchange of therapy results for testing new medications for a research
project. These scenarios have in common that data has to be shared among
users of different organizations participating in a collaboration network. As each
organization is considered to act autonomously regarding the management of its
data, the dynamic setup of database federations with a consolidated schema is
inflexible and can hardly be realized. Service oriented architectures (SOAs) pro-
vide a remedy for this integration task. As SOAs are based upon widely adopted
Web service standards, they are well suited for the integration of heterogeneous
applications supplied by different providers.

Providing access on data within a Web service federation poses two challenges
on access control. On the one hand, access control of the Web service interfaces
has to be consolidated with the security policies of the underlying database
systems. On the other hand, inter-organizational privilege delegation and policy
enforcement have to be realized.

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 47–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 M. Wimmer and A. Kemper

Web Service 1

accessible by dbUser

AC1 AC2

Database

objects

Web service WS1 Web service WS2

Fig. 1. Illustration of access corridors (AC1 and AC2)

Foregoing Work. When Web services are used as interfaces for database sys-
tems, access control proceeds in two stages. First, the authorization of requests
is checked on the side of the Web services, e.g., by employing security standards
and protocols like SAML, XACML and WS-Security. Second, when services exe-
cute queries, access control is performed by the underlying database systems. In
the general case, these authorization steps are done independently. With regard
to this, we presented engineering techniques addressing the consolidation of the
access control frameworks for Web services and databases in [1]. We further in-
troduced a partial order on policies, allowing the verification of access control
dependencies, i.e., ensuring that database policies embrace the access rights re-
quired by the depending Web services. Mainly due to restrictions of SQL, access
control provided by database systems is not as fine-grained as required by today’s
(Web) applications. By proceeding the way as described in [1], effective security
gatekeepers for database systems can be realized on the application layer.

A central aspect of the access control consolidation is the adjustment of
database profiles. Today it is common practice to access databases via powerful
(and potentially dangerous) super-user accounts. This might be reasonable for
large software installations like SAP R/3 running within closed trust domains.
But at the latest if data is made accessible via lightweight software components
like Web services, the same does not hold. Figure 1 illustrates an abstract ex-
ample of two services that access the same database. Each service requires only
access to an extract of the database content, expressed via the access corridors
AC1 and AC2. As both corridors overlap, it seems preferable to use the account
dbUser for both applications. In case of services or the service platform being
attacked, information not provided through the service interfaces will also be
accessible, e.g., � and � in the figure. We avoid this risk by automatically gen-
erating adequate database profiles from the service specifications and policies.
Thus, we follow the least privilege principle according to which accounts are only
granted those privileges needed to provide the service functionality.

Focus of This Contribution. Based on our previous work for the reliable
design of Web service interfaces for database systems, we concentrate on our
authorization framework that enables the set-up of tightly as well as loosely
coupled collaboration networks. Our approach relies on an interplay of local
and distributed policy enforcement. While local authorization enforces policies
within one closed trust domain, distributed authorization is required for verify-
ing privilege and role assignments that span several organizations. In order to
optimize distributed policy enforcement, i.e., reduce communication costs and

An Authorization Framework for Sharing Data in Web Service Federations 49

achieve low execution times, we devise a caching strategy for the goal-oriented
validation of assignments. As authorizations must not succeed based on out-
dated cache entries, we employ caching techniques that provide the required
strong cache consistency and analyze them with regard to their applicability in
the authorization context. The tight integration of these techniques in our Web
service platform ServiceGlobe [2] supports the secure sharing of data in Web
service federations.

Document Structure. The remainder of this paper is structured as follows: In
Section 2 the employed notation and policy representation is introduced. In Sec-
tion 3 the algorithms for local and distributed policy evaluation are described.
The optimization of distributed policy evaluation through caching is shown in
Section 4. Related work is presented in Section 5 and Section 6 provides a sum-
mary of the paper.

2 Policy Representation

2.1 Notation

Privilege assignments define relations between principals (the subjects) and re-
sources (the objects). In our authorization model any access is denied unless a
privilege granting a certain type of access can be inferred. This so-called closed
world assumption in combination with positive authorization is reasonable for
modeling access control of dynamic collaboration networks with trust relation-
ships being existent only temporarily.

The assignment of an access right to a subject is represented by use of the
following notation:

[Subject →P Privilege]Condition Issuer (2.1)

A Privilege summarizes information about a particular resource and the way it
can be accessed. An Issuer is an entity that is granted the administrative rights
to declare an assignment. The validity of an assignment can further depend
on a Condition like a temporal constraint. But it is also possible to define
constraints on the Subject’s context. For example, the access to the medical
record of a certain patient can be restricted to his/her attending physicians.
In addition to this common discretionary access control model, we integrated
role based access control (RBAC [3]) concepts in our authorization framework.
Privileges are associated with roles through privileges-to-roles assignments in the
meaning of assignment (2.1) with the subject being a Role. Subjects are granted
privileges through the indirection of assigning roles to them. As roles constitute
subjects themselves, hierarchical RBAC is realized, too. Similar to the previous
assignment, role assignments can be constrained as well:

[Subject →R Role]Condition Issuer (2.2)

50 M. Wimmer and A. Kemper

Assignments (2.1) and (2.2) support a static rights management. The follow-
ing assertions enable the delegation and revocation of privilege and role assign-
ments, which provide a dynamic rights management.

[Subject →(assign |revoke)
P Privilege]Condition Issuer (2.3)

[Subject →(assign |revoke)
R Role]Conditon Issuer (2.4)

Prefix notation is used to denominate organization affiliations of subjects,
roles and privileges. In the case of the subject’s affiliation varying from the
granted privilege’s one, we talk about an inter-organizational privilege assign-
ment or delegation. Analogous considerations apply to the assignment of roles.
The right to assign a privilege, respectively role, to a subject does not presup-
pose the issuer to possess the privilege (role) himself/herself. A self-assignment
can be prohibited via appropriate conditions.

Though entities in the subsequent examples are represented by names (e.g.,
Kerry Weaver as a subject or physician as a role), the introduced access control
model is not restricted to identities. In general, an entity, i.e., a subject or an
object, is described via a set of attributes. To give an example, physicians are
characterized by their names, field of activity, social security number (SSN), age
and so on. Thus, if Kerry Weaver is a chief physician at the Cook County General
Hospital (CCG), the following role assignment may be used:

[{name = K.Weaver ∧ SSN = 1234} →R {role = CCG.ChiefPhysician}] CCG

2.2 Implementation Details

The above notation constitutes a representation of the rights management we
realized in our authorization framework. We chose XACML [4,5] as policy lan-
guage for several reasons. One is its usability in the Web services context as both,
XACML and the Web services technology, are based upon XML. Thus, no new
terminology or processing technology is required. Moreover, the introduced for-
mal notation can seamlessly be realized in XACML. We distinguish three types
of policies.

– Permission policies specify access rights, i.e., objects and the way they can
be accessed. They are not restricted to certain subjects. Subcategories of this
type of policy exist for the assignment, respectively revocation of privileges
and roles. In these cases, other permission policies (i.e., privileges) or roles
constitute the objects and actions are in {assign, revoke}.

– By means of base policies, privileges (defined as permission policies) are
assigned to subjects. Thus, this type of policy is used to express assign-
ments (2.1), (2.3) and (2.4).

– Role assignment policies are used to assign roles to subjects in the meaning
of assertion (2.2).

An Authorization Framework for Sharing Data in Web Service Federations 51

The strict separation of privilege definitions and their assignment to users,
respectively roles, enable the system’s scalability: The administrative effort is
kept at a low level and the rights management remains concise and flexible. We
integrated the described policy management into our research Web service plat-
form ServiceGlobe. ServiceGlobe [2] is a lightweight, distributed and extensible
Service Oriented Architecture. It is completely implemented in Java and based
on standards like XML, SOAP, WSDL and UDDI. Services in ServiceGlobe are
mobile code that can be executed on arbitrary service hosts participating in the
ServiceGlobe federation. Access control functionality is supplied by separate au-
thorization components provided by the service platform. So-called Delegation
Services supervise the policy repositories of organizations, provide the function-
ality for privilege and role delegation, respectively revocation, and can be used
to evaluate authorization requests.

3 Policy Evaluation

We distinguish between local and distributed authorization. In case subject s
of organization Ds, denoted Ds.s, invokes a Web service of organization D, first
of all the policies of D are evaluated. This is what we refer to as local policy
evaluation. If the requested access cannot be granted solely based on the access
control information available at D, it is checked whether D and Ds are part of
a collaboration network which grants Ds.s the required privileges. As we do not
rely on central authorities, i.e., each organization administers and enforces access
rules locally, this step refers to distributed policy evaluation.

3.1 Local Policy Evaluation

Local policy evaluation is employed to check whether a subject Ds.s is granted
a privilege (to execute a respective Web service) within a closed trust domain
D, based only on D-local access rules. As introduced in the previous section,
the policies of D are separated into three categories: permission policies, base
policies and role assignment policies. Thus, local policy evaluation proceeds in
three steps:

1. Determine the set of local roles R(l) that are granted to Ds.s, defined as

R(l) def
= {D.r | D.r is a role : ∃ [

Ds.s →R D.r′
]
c
X, with D.r′ � D.r}

In the above equation, X is a placeholder for an issuer and c for a condition.
Through � a partial order on roles is defined. D.r′ � D.r, iff every privilege
that is granted to D.r is also granted to D.r′. On the other hand, every
subject that possesses the role D.r′ is implicitly granted the role D.r, too. In
the terminology of role hierarchies [3], D.r′ is said to be a senior role of D.r.
In return, D.r is called a junior role of D.r′.

2. Determine the set P of privileges that are granted to Ds.s directly or to any
role r ∈ R(l).

52 M. Wimmer and A. Kemper

3. If any privilege D.p ∈ P applies, the request is permitted. Thereby, D.p
applies to the request req, iff D.p addresses a resource that includes or is
equal to the resource addressed by req and the action allowed by D.p is equal
to or more comprehensive than the action expressed by req.

3.2 Distributed Policy Evaluation

Collaboration networks are established by assigning roles and/or privileges to
entities of foreign trust domains. For example, if two organizations D and D′

intend to collaborate, roles and/or access rights of organization D are assigned
to principals (i.e., subjects like users or roles) of D′ and vice versa. As mentioned
before, the respective assignment policies are administered and enforced at the
organization that is the owner of the granted privileges and roles. Consequently,
access control for collaboration networks relies on distributed policy evaluation
that proceeds as follows:

1. First of all the set P of privileges that grant the requested service execution
is determined.

2. Authorization will succeed, if Ds.s possesses a role that is granted at least one
of the privileges in P and which is defined in a trust domain that cooperates
with D. Let R be the set of roles that fulfill these requirements, defined as

R def
= {Di.ri |Di.ri is a role,Di �= D,∃D.p ∈ P : [Di.ri →P D.p]ci X ∨

(∃D.r is a role : [Di.ri →R D.r]ci X ∧ [D.r �P D.p]c′ X′)}
X and X′ represent arbitrary issuers and ci, c′ conditions of assignments.
D.r �P D.p stands for the assignment of the privilege D.p to D.r, whereby
D.p is granted to D.r either directly (referring to assertion (2.1) in Sec-
tion 2.1) or via role inheritance according to the D-local role hierarchy. For
each Di.ri ∈ R it is checked whether the role is assigned to Ds.s.

3. In case this assumption holds for any Di.ri, authorization succeeds. In order
to verify this, the Delegation Service of organization Di is queried, which
evaluates the policies of Di. This proceeds analogously to a Di-local policy
evaluation that either succeeds or requires further distributed evaluation.
(a) If successful, the Delegation Service of Di returns a positive response and

the initial request for executing D’s Web service can be granted.
(b) Otherwise, the set R(f)

i of roles that are granted Di.ri or any senior role
of Di.ri is determined. R(f)

i is defined as

R(f)
i

def= {Df.rf | Df.rf is a role,Df �= Di∧
[Df.rf →R Di.r′i]c X with Di.r′i � Di.ri}

Distributed evaluation branches by invoking the Delegation Services of
the trust domains Df with Df.rf ∈ R(f)

i . The services are called, query-
ing whether Ds.s is granted Df.rf. Each of these invocations can lead to
further distributed policy evaluation calls, i.e., step 3 can be executed
repeatedly.

An Authorization Framework for Sharing Data in Web Service Federations 53

c

D.p

D.r1

Dj.rj

Dk.rk

Di.ri

Df.rf

Dn.rn Ds.s

ck

cj

cn

c

r1

ci Di.ri’ci

D.r2

c

r2

Dl.rlcl

Search-depth0 1 n2 ...

Fig. 2. Graphical representation of distributed evaluation

The evaluation terminates at organization Di, in case of Di.ri being assigned
to Ds.s or the set R(f)

i = ∅. A chain of distributed role assignments that applies
to the subject Ds.s is called authorization path. If at least one authorization path
exists, the execution of the Web service of D requested by Ds.s is permitted.

Distributed policy evaluation thus corresponds to a browsing of a distributed
role hierarchy. As illustrated in Figure 2, this is equivalent to a backwards ori-
ented depth first search (DFS) in the distributed role assignments graph, with
roles constituting the nodes of the graph and the edges being annotated with
conditions. In other words, there is a directed edge from Df.rf to Di.r′i annotated
with c, if and only if there exists a role assignment policy [Df.rf →R Di.r′i]c X.
An increase of the search-depth proceeds by invocations of collaborating Dele-
gation Services. It can be assumed that real-world collaborations tend to have a
quite short delegation depth, denoting that collaboration networks are likely to
span only few trust domains. At the same time, organizations tend to directly
cooperate with other organizations. Consequently, a breadth first search (BFS)
algorithm is supposed to be particularly suitable by providing lower response
times than DFS. Unfortunately, a BFS-variant can hardly be realized due to the
distributed characteristics of the graph. For BFS, the role assignment graph ei-
ther has to be traversed with an initial depth bound that is increased successively
– which would lead to higher network traffic –, or the complete access control
information has to be available at a central authority, which would contradict
security considerations of loosely coupled systems. Techniques for enhancing the
evaluation process are discussed in more detail in Section 4.

Sensitivity of access control information is also the reason for the pull char-
acteristic of distributed policy evaluation. According to the pull model, the re-
questor provides only his/her identifying attributes (and/or context informa-
tion), i.e., Ds.s, while his/her privileges are determined by the framework. On
the other hand, following a push model, Ds.s would have to provide all security
credentials that are required to execute the particular Web service in advance.
These security credentials for example consist of the public keys of the roles
Ds.s possesses. On the one hand Ds.s has to know which set of keys is required
for executing the service method. This information has to be provided by the

54 M. Wimmer and A. Kemper

Authorization Path:[]1,1

assign
1,2

1,3

: {role=CH.AttendingPhysician} {policy=CH.ReadMedicalRecords} CH

: {role=SH.ChiefPhysician} {role=CH.AttendingPhysician} CH

: {role=SH.CoopPhysician} {role=CH.AttendingPhysicia

P

R

R

CH

CH

CH

→

⎡ ⎤→⎣ ⎦

→[]n} SH.BobKelso

[]1,1 : {name=CCG.KerryWeaver} {role =CCG.ChiefPhysician} CCG RCCG →

[]
[]

1,1

1,2

: {name=SH.BobKelso} {role=SH.ChiefPhysician} SH

: {role=CCG.ChiefPhysician} {role=SH.CoopPhysician} SH

R

R

SH

SH

→

→

de
le

ga
te

d
tr

us
t r

el
at

io
ns

hi
p

di
re

ct
 tr

us
t

re
la

ti
on

sh
ip Chicago Hope

Sacred Heart

Cook County General
CCG.KerryWeaver

CCG.ChiefPhysician

SH.CoopPhysician

CH.Read-
MedicalRecords

↑

↑

↑
CH.AttendingPhysician

↑

Fig. 3. Example of a hospital collaboration network

Web service but can only be given to Ds.s under the precondition of Ds.s being
trusted. Ds.s (or the application calling the service acting in Ds.s’ place) on the
other hand has to provide the required security credentials. In general, these
have to be collected in a distributed manner, as storing all role information with
Ds.s would contradict RBAC principles. In our approach, the service platform
is responsible for verifying the authorization based only on Ds.s’ identity and
context information.

3.3 Example Evaluation

Figure 3 illustrates an example of a hospital collaboration network. The Chicago
Hope Hospital (CH), the Sacred Heart Hospital (SH) and the Cook County
General Hospital (CCG) form a federation that allows physicians to read med-
ical records of patients that are housed in collaborating hospitals, e.g., the
Chicago Hope Hospital. This privilege is represented through the permission
policy CH.ReadMedicalRecords. Figure 3 shows an extract of the access con-
trol rules. For keeping the example concise, we disregarded further conditions,
like the restriction that only medical records of patients that agreed to publish
their data within the federation would be accessible. The policies contain rules
for the organization spanning assignment of roles. Rule CH1,2 states that chief
physicians of SH are allowed to delegate the role CH.AttendingPhysician, which
is applied by rule CH1,3. Through SH1,2 this role is assigned to chief physi-
cians of the CCG and, according to CCG1,1, also to Kerry Weaver. If Kerry
Weaver requests to read a medical record of a patient housed at the Chicago
Hope Hopital, the authorization chain CCG1,1, SH1,2, CH1,3 to CH1,1 has to
be traversed in reverse order. Foremost, as local evaluation at CH fails, the
roles that are granted CH.ReadMedicalRecords are determined. This applies to
CH.AttendingPhysician. As Kerry Weaver is not granted the role based on the
local policies, the Delegation Service of SH is invoked, querying whether she pos-
sesses the role SH.CoopPhysician. Again, this cannot be answered SH-locally, so
that the Delegation Service of CCG is invoked, asking for the assignment of
CCG.ChiefPhysician. Due to CCG1,1 the request is granted.

An Authorization Framework for Sharing Data in Web Service Federations 55

3.4 Inter-organizational Assignments

Collaboration networks based on Web services technology can be highly dynamic.
This especially applies to short-term interactions. ServiceGlobe as the underly-
ing authorization middleware provides the required level of flexibility through
the support of inter-organizational assignments. Privileges for the assingment
or revocation of access rights or roles are expressed via permission policies in
the meaning of assertions (2.3) and (2.4) in Section 2.1. If a subject Ds1.s1 in-
tends to assign the privilege D.p (respectively role D.r) to a subject Ds2.s2,
it invokes the Delegation Service of D. If Ds1.s1 is authorized, particular poli-
cies are generated. In case of a privilege assignment, a base policy representing
[Ds2.s2 →P D.p] Ds1.s1 is created. A role assignment is represented through a
role assignment policy [Ds2.s2 →R D.r] Ds1.s1.

Revocations of assignments lead to the deletions of the respective policies.
We distinguish between conservative and destructive revocation. If, for example,
Ds1.s1 revokes the role assignment [Ds2.s2 →R D.r] Ds1.s1, only the associated
role assignment policy will be deleted in case of conservative revocation. If the
destructive approach is applied, it is analyzed if D.r authorizes to delegate roles
or privileges, and every applied assignment will be revoked, too. Consequently,
the destructive approach cascades and involves the reorganization of the policy
repositories of the cooperating organizations, in general. Beneath its complexity,
destructive revocation might not be used depending on the application, e.g., if
an administrative officer of a hospital, who was responsible for the arrangement
of attending physicians, retires, his/her assignments shall not get lost.

A policy repository has to be modified exclusively, i.e., has to be locked in
case of updates. Otherwise, concurrency can cause inconsistencies. Considering
two requests with the first one performing a delegation of any role r, while the
second initiates the revocation of the respective delegation permission, isolation
of requests has to be ensured to avoid conflicts.

For some applications it might be required that (long-lasting) inter-
organizational transactions perform a rollback if any required privilege is re-
voked in the meantime. This is realized by integrating Delegation Services into
the transaction workflow. Prior to the start of a particular transaction, autho-
rization proceeds as described above. Before the services commit, access con-
trol is performed once again, e.g., by verifying the authorization path that was
found during the initial authorization check. If authorization fails, the Delega-
tion Service sends an abort message to the coordinator, initiating a rollback of
the transaction.

4 Caching of Authorization Paths

The described policy enforcement technique performs a DFS on the distributed
role assignment graph. Thus, in the worst case the complete collaboration net-
work has to be analyzed sequentially. While long execution times of unsuccessful
policy enforcements might be tolerable, successful authorizations have to pro-
ceed as quickly as possible. Most collaborations can be assumed to span only

56 M. Wimmer and A. Kemper

few organizations, i.e., role assignment chains are rather short. However, as out-
lined before, BFS can hardly be applied as the distributed role assignment graph
cannot be provided at a central authority in order to preserve autonomy of autho-
rization and ensure scalability. But the response times of the DFS variant can
be reduced substantially through parallelizing the search, i.e., asynchronously
querying the Delegation Services of cooperating organizations. Unfortunately,
lower response times then have to be traded for an increase of network traffic.
Both objectives, i.e., low response times and low network traffic can be obtained
by caching authorization paths of frequently and/or recently used requests. More
precisely, paths cached at a domain D look as follows:

〈
Ds.s

cn→Dn.rn
cn−1→ Dn−1.rn−1 . . .

c1→D1.r1
c→D.r

〉

This represents the delegation chain that asserts that the role D.r is assigned
to the subject Ds.s – if the conditions {cn, cn-1, . . . , c1, c} are fulfilled. Such a
cache entry is created when Ds.s invokes a Web service of D for which the privi-
leges of D.r are required and Ds.s is granted D.r. We refer to a Delegation Service
as a client, in case it consumes information, i.e., caches results of authorization
queries. If a Delegation Service returns successful evaluation results that can be
cached at collaborating organizations, the service is characterized as a server.

Caches are evaluated prior to a distributed policy evaluation query. If Ds.s
requires privileges that are granted to D.r, the cache entries starting with Ds.s
and ending with D.r′ are determined. In this regard, D.r′ has to be a senior
role of D.r or equal to D.r, i.e., D.r′ � D.r. Thus, not only exact matches can
be handled. If no applicable path is found, distributed policy evaluation takes
place as described above. Caching of access control information requires strong
cache consistency [6], meaning that authorization must not succeed based on
outdated, i.e., invalidated access control information. In the following we describe
three strategies that ensure strong cache consistency and are thus applicable for
caching authorization paths.

4.1 Client Validation

Client validation denotes that client-Delegation Services have to ensure the va-
lidity of cached entries. Therefore, a cache hit, i.e., an applicable authorization
path, is validated before authorization succeeds. Considering the introduced for-
mal representation of a delegation path, the Delegation Service of D first checks
whether D1.r1

c→D.r is still valid by evaluating the D-local policies and the re-
questor’s context (D.r is assigned to D1.r1 via a D-local role assignment policy).
Subsequently, the evaluation is continued at the Delegation Service of D1 for
verifying the next extract of the authorization path (D2.r2

c1→D1.r1) and so on.
Verification succeeds, if every assertion of the delegation path holds. Otherwise,
the authorization path is removed from the cache and further applicable entries
of the cache are evaluated, i.e., validated. Common distributed policy evaluation
proceeds if no applicable entry could be validated.

An Authorization Framework for Sharing Data in Web Service Federations 57

Compared to the introduced DFS-like distributed policy enforcement, the
validation of authorization paths significantly reduces run time. Client validation
in the authorization context differs from common Web caching scenarios: In the
general case, the location of the requested Web content remains unchanged and
performance there is enhanced by reducing data transfer. Here, execution time
is saved as the validation of authorization paths corresponds to a goal-oriented
“walk” through the distributed role assignment graph, rather than a complete
browsing of the graph in the worst case.

According to the above description, a cache entry represents a complete del-
egation path. This design enables the efficient validation of cache entries, but it
requires that all cooperating organizations agree in the exchange of access con-
trol information. In many cases, this assumption holds, because the cooperating
organizations are supposed to trust each other. Nevertheless, the information
flow is kept at minimum by caching authorization path fragments of the form
〈Ds.s � D1.r1

c→D.r〉 at D. As the assignment D1.r1
c→D.r is contained in the

repository of D, no security relevant data disperses to other organizations. The
complete authorization path is restored by starting a goal-oriented search at
D1. The Delegation Service of D1 either determines the subsequent fragment
of the authorization path in its local cache, or – in the worst case – triggers
distributed policy enforcement. With this modification, caching within dynamic
collaboration networks, with trust being existent only temporarily, is enabled.

4.2 Server Invalidation

When using server invalidation, Delegation Services inform adjacent clients in
case of policy updates that lead to an invalidation of cache entries. Therefore, a
Delegation Service has to log the requests of clients that received positive autho-
rization responses. A modification of policies must not proceed before all affected
cache entries have been invalidated and the invalidation has been acknowledged
by the clients. Consequently, this approach is vulnerable regarding the unreach-
ability of services, e.g., because of network failures. This clearly disqualifies this
caching technique for highly dynamic federations.

One further disadvantage of server invalidation is its limited scalability. A
Delegation Service has to log requests of clients, in order to notify them of
policy updates. But as in most use cases the size of collaboration networks is
restricted, this is not considered to be a crucial drawback.

4.3 Lease-Based Approach

Lease-based caching [7] is situated between client validation and server invali-
dation. A lease is a contract between client and server-Delegation Service. The
server asserts not to modify the administered access control policies as long as
the lease is valid. After the lease has expired, this task is shifted to the client.
When updating policies, a server has to wait until each client has acknowledged
the invalidation of cache entries, or in case of any of them being unreachable,
until the respective leases have expired. Consequently, the lease-based approach

58 M. Wimmer and A. Kemper

is parameterizable by the validity periods of leases. Setting them close to zero, it
behaves quite similar to client validation. On the other hand, server invalidation
is approximated by setting the periods near infinity. Thus, depending on the
parametrization, the pros and cons of client validation and server invalidation
more or less apply to this caching technique, too.

4.4 Experimental Results

To the best of our knowledge, there do not exist any standardized benchmarks for
measuring and comparing the performance of caching access control information.
Therefore, we developed several test cases varying the dimensions (i.e., width
and depth) of collaboration networks, the frequency of policy updates, and the
request characteristics. Due to space limitations, we only present experimental
results regarding the variation of the request characteristics. Figure 4 illustrates
the results of a benchmark that was performed varying the relation of local and
distributed policy enforcement. p is the proportion of requests that are handled
by local policy evaluation. We simulated a static collaboration network with
branching degree 2 and maximum delegation depth 5. That means, every domain
represented by a Delegation Service delegates trust to 2 other domains and the
maximum length of role delegations is 5. Thus, a network of 63 collaborating
organizations was simulated.

The benchmark was performed on ServiceGlobe installations running on a
cluster of 2.8 GHz Intel Xeon systems with up to 4GB of main memory. For the
test scenario we measured the performance of authorization when no caching,
client validation, and server invalidation were used. The performance of the lease-
based approach depends on the expiration period of leases and resides between
the performance of client validation and server invalidation. Therefore, results
for this kind of caching technique are not listed for the following experiments.
On average, the execution of a Delegation Service lasted 650ms. About 30% of
this time are required for local policy evaluation and cache examination (with
policies and caches being realized as XML documents), while the predominant
amount is needed for service loading and initialization.

In the experiment, 50 different request types were simulated with p·50 positive
access rules being inserted in the topmost policy repository, i.e., a portion of p
requests require local policy evaluation. The (1 − p) · 50 access rules that apply
to the remaining part of request types were inserted in the other repositories
according to a Zipf distribution. When sorting the levels of the collaboration
network according to the frequency with which access rights are assigned to them,
Zipf’s law states that the frequency of rights being assigned to a level l (frq (l))
is inversely proportional to its ranking following a power law: frq(l) ∼ 1/lα.
Typically, α ∈ [0, 1]. A uniform distribution is modeled through α = 0, while
a highly skewed distribution is achieved at α = 1. By setting α = 0.85, we
simulated a scenario with the predominant part of requests being authorized
after a few delegation steps, while only some require the enforcement of policies of
the undermost policy repositories. For each value of p, 2000 requests were posted
to the root Delegation Service and the mean evaluation time was determined.

An Authorization Framework for Sharing Data in Web Service Federations 59

0

1

2

3

4

5

6

7

0.75 0.9 0.95 0.97 0.98

No Caching Client Validation Server Invalidation

R
un

 ti
m

e
re

l.
to

 S
er

ve
r

In
v.

Portion of Local Requests (in %)

Fig. 4. Variation of the request characteristic

The 2000 requests are separated into clusters of those requiring local policy
evaluation and those requiring distributed policy evaluation with a ratio of p to
(1 − p) – analogously to the distribution of access rights. For each cluster, the
request types were chosen according to a Zipf distribution with α = 0.85, as
the authors of [8] showed that Zipf-like distributions are useful for modeling the
request characteristics of many Web applications.

In contrast to the caching of arbitrary Web content, the space requirements
for the caching of authorization paths can be estimated quite well in advance.
Thus, cache replacement strategies are of minor interest and were not consid-
ered in these experiments. In many real-world applications, p is assumed to be
quite close to 1. Figure 4 illustrates the performance measurements relative to
the results for server invalidation. As the presented experimental results show,
response times for requests requiring distributed policy enforcement can be re-
duced significantly, thus justifying the use of authorization caches.

5 Related Work

There has been substantial effort in the research community for providing secu-
rity for distributed applications. The Community Authorization Service (CAS)
[9] of the Globus Project manages access control for resources that are avail-
able within larger communities. The CAS plays the part of a central authority.
In contrast to this, our framework is suitable for both, centralized and decen-
tralized authorization. We presented our algorithm for distributed policy eval-
uation, supporting loosely coupled systems. Tightly coupled federations build-
ing upon centralized authorization can seamlessly be realized by shifting policy
enforcement to a trusted authority, thus breaking authorization down to local
policy enforcement. The CAS uses a push model for inferring granted access
rights, while we use a pull model to determine the roles and privileges that are
granted to users. A pull model is also used in Akenti [10] that is related to
X.509 certification technique. Policies, conditions, and attribute statements can
be encapsulated into certificates. Akenti allows access control for one resource to
be administered by multiple authorities. Our framework supports this through

60 M. Wimmer and A. Kemper

delegation privileges, but policy evaluation remains the task of the organizations
the respective resource belongs to, thus preserving autonomy of authorization.
Our approach for distributed role assignment is based on concepts similar to
those of the RT-framework [11] and the dRBAC [12] approach. We adapted the
syntax of [12] for the representation of privilege and role assignments. In [12]
complexity of distributed policy enforcement was countered through a publish-
and-subscribe algorithm related to server invalidation. As our comparison of
caching techniques shows, server invalidation is not well applicable for dynamic
federations. Instead, client validation is recommended.

Jajodia et al. [13] present a flexible and capable security framework support-
ing positive and negative authorization. They introduce conflict resolution tech-
niques as they are also provided by XACML [4,5]. Both, XACML and the Web
services technology are based upon XML. Thus, its integration into the security
system of a service platform that is based on SAML [14] and/or WS-Security [15]
like the one of ServiceGlobe is supported. As our formal notation can seamlessly
be realized in XACML we chose it as policy language and extended it by inte-
grating database specific object types and functions for attribute comparisons
and the evaluation of conditions. In earlier work [1] we presented a technique for
comparing XACML policies. More details and a definition of a partial order on
policies are presented there.

6 Conclusion and Future Work

The Web services technology provides the basis for sharing data in organization-
spanning collaboration networks and future database related applications are
likely to be realized as distributed Web service federations. But the sharing of
data requires a capable and flexible security system coping with authorization
within tightly and especially loosely coupled collaboration networks. This is of-
fered by our authorization framework that can be applied for both types of
federation systems. By employing a central authority responsible for administer-
ing the resources within a virtual organization through performing access control
in a centralized manner, tightly coupled federations are realized. We also pre-
sented an algorithm for distributed, i.e., decentralized policy enforcement. This
allows the set-up of loosely coupled federations with trust relationships being
established only temporarily. Thereby, the flow of information within the federa-
tion is restricted and the collaborating organizations preserve their authorization
autonomy by policies being administered and evaluated locally. In order to opti-
mize distributed policy enforcement, we devised caching strategies that allow the
efficient evaluation of frequently and repeatedly occurring authorization requests
– again by ensuring a minimum flow of information.

Future research proceeds in the following directions: On the one hand, caching
of authorization paths is examined further, e.g., by the evaluation of differ-
ent cache replacement strategies and usage of cryptography for securing cache

An Authorization Framework for Sharing Data in Web Service Federations 61

entries. On the other hand, we intend to examine negative authorization, i.e.,
the evaluation of prohibitions in the context of loosely coupled federations.

References

1. M. Wimmer, D. Eberhardt, P. Ehrnlechner, and A. Kemper, “Reliable and Adapt-
able Security Engineering for Database-Web Services,” in Proceedings of the Fourth
International Conference on Web Engineering, vol. 3140 of Lecture Notes in Com-
puter Science (LNCS), (Munich, Germany), pp. 502–515, July 2004.

2. M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper, “ServiceGlobe: Distributing E-
Services across the Internet (Demonstration),” in Proceedings of the International
Conference on Very Large Data Bases (VLDB), (Hong Kong, China), pp. 1047–
1050, Aug. 2002.

3. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Pro-
posed NIST standard for Role-Based Access Control,” ACM Trans. Inf. Syst. Se-
cur., vol. 4, no. 3, pp. 224–274, 2001.

4. T. Moses, A. Anderson, A. Nadalin, B. Parducci, D. Engovatov, et al., “eX-
tensible Access Control Markup Language (XACML) version 2.0.” http://www.

org/committees/tc_home.php?wg_abbrev=xacml (last visited 06/20/05), Dec.
2004.

5. A. Anderson, “Core and Hierarchical Role Based Access Control RBAC
Profile of XACML version 2.0.” http://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=xacml (last visited 06/20/05), Sept. 2004.
6. L. Y. Cao and M. T. Özsu, “Evaluation of Strong Consistency Web Caching Tech-

niques,” World Wide Web, vol. 5, no. 2, pp. 95–124, 2002.
7. C. Gray and D. Cheriton, “Leases: An Efficient Fault-tolerant Mechanism for Dis-

tributed File Cache Consistency,” in Proceedings of the Twelfth ACM Symposium
on Operating Systems Srinciples, pp. 202–210, ACM Press, 1989.

8. L. A. Adamic and B. A. Huberman, “Zipf’s Law and the Internet,” Glottometrics,
vol. 3, pp. 143–150, 2002.

9. L. Pearlman, I. F. V. Welch, C. Kesselman, and S. Tuecke, “A Community Au-
thorization Service for Group Collaboration,” in 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY), (Monterey, CA, USA),
pp. 50–59, IEEE Computer Society, June 2002.

10. M. R. Thompson, A. Essiari, and S. Mudumbai, “Certificate-based Authorization
Policy in a PKI Environment,”ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 566–
588, 2003.

11. N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a Role-based Trust
Management Framework,” in Proc. IEEE Symposium on Security and Privacy,
(Oakland), pp. 114–130, May 2002.

12. E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti, “dRBAC: Dis-
tributed Role-Based Access Control for Dynamic Coalition Environments,” in Pro-
ceedings of the Twenty-second IEEE International Conference on Distributed Com-
puting Systems (ICDCS), (Vienna, Austria), pp. 411–420, July 2002.

13. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible Support
for Multiple Access Control Policies,” ACM Trans. Database Syst., vol. 26, no. 2,
pp. 214–260, 2001.

62 M. Wimmer and A. Kemper

14. S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML).” http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=security (last visited
06/20/05), Mar. 2005.

15. A. Nadalin, C. Kahler, P. Hallam-Baker, R.Monzillo, et al., “Web Services
Security (WS-Security).” http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wss (last visited 06/20/05), Mar. 2004.

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 63 – 72, 2005.
© Springer-Verlag Berlin Heidelberg 2005

User-Managed Access
Control for Health Care Systems

Amir H. Chinaei and Frank Wm. Tompa

School of Computer Science,
University of Waterloo, Canada

{ahchinaei, fwtompa}@uwaterloo.ca

Abstract. The requirements and technologies supporting shared health record
databases pose new access control challenges. This paper proposes a
decentralized access control system in which corporate policy can allow all
health record owners to administer access control over their own objects, and at
the same time, all objects are reasonably secure. We exploit various concepts of
Rule Based Access Control, Role Based Access Control, XML structures, and
object databases in our model.

1 Introduction

The complex base of sensitive objects in health record databases poses new access
control challenges. Much work has been done to address access control problems.
However in practice, there are several factors that affect access control efficiency in
health care systems. First, health records are sensitive personal objects that should be
secure all the time yet easily accessible to authorized subjects in emergency
situations. Second, querying the access control mechanism must be relatively fast
even in non-emergency cases. Third, similar to other applications, access control in
health care must be provided for the access control specification itself. Fourth,
delegating privileges must be efficiently controllable and selectively revocable;
patients often and temporarily have to reveal their personal data to particular
appropriate parties such as physicians, hospitals, and laboratories.

User-Managed Access Control (UMAC) in medical record databases is required
when several parties, usually without administrative control over one another, need to
share the medical data. UMAC reduces the bottleneck of access administration in
situations where health data is distributed among various parties.

This paper considers access control within a large shared medical document server.
Such an environment entails a decentralized access control administration within
which each subject possesses two faces: the administrator of its own objects, and at
the same time, a user of others’ objects. With their administration face, subjects
require full access control over their own objects, but as users they are typically
licensed to more limited levels of access. The problem is complicated when the
hierarchy of subjects is not consistent with the hierarchy of objects. In other words,
subjects (e.g. technicians) may have access to many small parts of objects (their
patients’ relevant personal data). Moreover, accessible domains of various subjects

64 A.H. Chinaei and F.Wm. Tompa

form diverse structures that should be recognized for optimization purposes. For
instance, a physician’s accessible data mainly consists of a collection of disconnected
nodes each of which corresponds to a particular patient treated in various clinics;
while, a technician’s accessible data is basically medical data of patients treated in a
particular laboratory.

Delegation is a significant open issue, which is not well addressed in the literature
of decentralized medical data administration. Data administrators (e.g. medical data
owners) often need to delegate some of their privileges to other users (e.g. other
health care parties). Furthermore users may delegate their privileges to third parties,
but the owners of the data must be able to efficiently control access with selective
revocation. This means that the UMAC mechanism must enforce owners’ arbitrary
restrictions.

An access control matrix [20] is the underlying logical model for implementing
access control. We exploit the role concept of Role Based Access Control (RBAC) to
group particular operations on the matrix. More specifically, since roles map a many-
to-many relationship between subjects and objects, assigning either a new subject or
object to a role is one operation corresponding to multiple operations on the access
data.

The major contribution of this work is our UMAC model for very large systems
such as health care document servers. We provide access control flexibility and
efficiency for environments in which hundreds of thousands of subjects and objects
exist. We assume that users may belong to groups and that groups of users may
belong to higher level groups in a hierarchy. We also assume that objects are arranged
in a “part of” hierarchy and that roles are arranged in an inheritance hierarchy. To
establish a dynamic model in which some operations are done implicitly, we exploit
rules to define both the hierarchies and the assignments of subjects or objects to roles.
Also, to control delegation, we exploit import/export mechanisms to support role
inheritance. To the best of our knowledge, such a UMAC model for medical
environments has not been addressed in the literature.

We propose a flexible model for decentralized administration by which health care
organizations are able to adjust the central power by defining precisely what actions
are to be taken centrally. At one end of the spectrum, access control can be
completely anarchistic, with the owners of each item of data maintaining complete
control over which subjects may access that data using which methods. At the other
end, access control can be absolutely autocratic, with a central administrative
authority dictating which subjects may access which objects. We assume a central
mechanism that enforces access control policies defined by arbitrarily many subjects
but does not necessarily dictate those policies itself.

The rest of this paper is organized as follows. Section 2 reviews the literature of
access control models. In Section 3, the specification of the UMAC model is
discussed. Section 4 illustrates our model by focusing on a use case for medical
records. Finally in Section 5, our contributions and future work are discussed.

2 Literature Review

Access control enforcements are traditionally divided into Discretionary Access Control
(DAC) and Mandatory Access Control (MAC). While DAC concerns predefined (by

 User-Managed Access Control for Health Care Systems 65

users) discretionary rules and access control based on users’ identity, MAC is mainly
based on the classification of subjects and objects in a system; in such environments,
access control rules are decided by only the system policies not by the owners of
objects. Both DAC and MAC frameworks have been of interest to researchers, and they
have been supported by later models as well. In this section, we review the literature of
access control based on mechanisms, administration, granularity, and properties.

Access control mechanisms are required to enforce access control policies. An
access control model is conceptually viewed as maintaining an access control matrix
[20], which is a function with three components: subject, right, and object. Despite its
popularity due to simplicity and elegance, an access control matrix is actually an
abstract formulation, and needs to be refined for many practical systems. A major
approach is to implement the access control matrix implicitly by rules [11, 13]. Also,
the Take-Grant model [15] based on directed graphs is another improved version of
the matrix model, which provides a compact way of representing the access control
data as well as supporting the transfer of rights. Typically, the access control matrix is
large and sparse. Hence, storage techniques such as access control lists and
capabilities improve the storage efficiency. For example, the Compressed
Accessibility Map (CAM) is an enhanced technique based on capability lists [25]. The
CAM algorithms exploit structural locality of subjects’ accessibility on hierarchical
data to construct a more efficient representation.

The administration of access control manages subjects’ activities to enforce access
control policies. MAC is an example of fully centralized administration. The
Multilevel Security model [2] is a well-known MAC model, which has been used
over the years. MAC has no flexibility, and it is not applicable when subjects or
objects may not be classified to a limited number of groups.

Regardless of whether the access control structure is centralized or distributed,
administration for DAC may still be centralized or decentralized. For example, RBAC
is a mechanism that typically provides central administration of access control for an
organization [22]. The central administration is implemented by defining roles, which
correspond to the job titles of the organization. Although RBAC can be used to model
arbitrary DAC systems, the decision of which subjects and objects are to be assigned
to which roles is centrally controlled. This not only causes a potential efficiency
bottleneck when new subjects and objects are added to the system, but it restricts the
subjects’ ability to manage the access controls themselves. If there were truly
decentralized Discretionary Access Control, owners would fully manage the
formation of groups and roles and the assignment of rights without interfering with
one another and without requiring a centralized administration to update the access
control structure.

Since the first publication of the RBAC model [8], many researchers have
investigated various issues of RBAC, such as the roles hierarchy [1, 7, 14] and
separation of duties [5, 17, 19]. Furthermore, some enhancements have been proposed
to the RBAC model for distributed environments [21, 24]. There have been several
restrictions on the use of RBAC in practice. First, it is not normally suggested for
applications in which a natural roles hierarchy does not exist. Second, delegation and
revocation are not clearly discussed in the RBAC literature. Scalability in the number of
subjects and objects is also a problem due to the central administration of the model.

66 A.H. Chinaei and F.Wm. Tompa

Decentralized access control mechanisms were first proposed for System R to
permit users to share and control their data in multi-user databases systems [12].
However, it does not support negative rights nor provide an expressive revocation
algorithm. Later, a more powerful model was proposed for relational data
management systems [3], but it is too complex to be practical.

Access control granularity, in the context of a hierarchically organized database,
refers to the extent to which different levels of access can be defined on objects or
parts of objects. Fine-grained access control manages access rights on small pieces of
objects. Many proposed models [11, 13, 15, 20] assume access control at the object
level only and ignore any internal structure within objects. However, if objects entail
a hierarchy, the distinction between objects and sub-objects becomes meaningful.
Jones examined an object-level access control model for client-server object
databases [16]. He provided a fine-grained access control model, which supports
navigating the data structure by inter-object references. Also Zhou introduced access
control vectors and slabs for fine-grained access control based on a code-based
scheme to represent a more compact structure for control data [26].

To evaluate whether an access control instance conforms to an access control
policy, one may check the mechanism’s properties such as safety, invulnerability, no-
information-flow, non-interference, and revocation [2, 4, 9, 10]. The safety property is
defined as the determination of whether or not a given subject can ever acquire a
particular right on a given object [13]. For example, both Graham-Denning and
Harrison-Ruzzo-Ullman models have weak safety properties [11, 13]. Introducing
strong typing into the latter model, the typed access control matrix model has stronger
safety properties [23]. As another example, retaining a limited expressive power, the
Take-Grant model does not exhibit the undecidable safety of the Harrison-Ruzzo-
Ullman model [15].

3 Problem Specification

We wish to design an access control system for health care systems in which the
decentralization degree is adjustable anywhere from completely anarchistic to
absolutely autocratic; and of course, all users’ sensitive documents must remain
secure. Our model exploits different concepts such as roles, rules, XML structure, and
object databases. Similar to RBAC, our model consists of three layers; each is a
Directed Acyclic Graph namely SDAG, ODAG, and RDAG corresponding to
subjects, objects, and a layer of roles, respectively.

We concentrate on RDAG in which nodes correspond to the roles, and edges
represent an inheritance hierarchy among the roles. A role is a special object
containing a set of privileges on a set of objects. For instance, in Figure 1, role r3
contains a privilege to run method M1 on document d1 with grant option (+). The set
of objects is determined by rules, e.g. specified as XPath expressions that identify
components of the data represented in XML. The licensing hierarchy between roles
(indicated by arrows) represents implicit privileges, which are imported from “senior”
roles (higher in the hierarchy). RDAG is an intermediate graph between subjects and
objects; on one hand, a set of subjects (either individual users or groups) from SDAG
is assigned to each node of RDAG (indicated by dot-dashed lines). On the other hand,

 User-Managed Access Control for Health Care Systems 67

each role contains a set of permissions on a set of objects of ODAG (indicated by
dashed lines). We note that objects can be of any type (with arbitrary associated
methods), including documents or document fragments, groups in the subject
hierarchy, or even roles.

Fig. 1. Roles Hierarchy

In practical environments, including those in the health care sector, there are

several characteristics that lead to useful refinements of the model. For instance, if
individual users create personal documents, the number of roles in a system may
become quite large, yet many of them are similar. We assume that every object
belongs to an owner, and thus an owner role is always required for each object: this
can be initiated parametrically. As another characteristic, some roles should be
predefined by the system, and at the same time, the model should provide subjects
with the feature of customizing roles. The following features express facilities of our
model in more detail:

Generic Role: This facility is to define a template for a set of possible roles. To
derive an actual role from this template, a specific event acts as a trigger. For
example, the owner role (indicated by black ovals in Figures 2 and 3) is a generic
role, which is instantiated as soon as a subject creates an object; subject id and object
id are the parameters of the instantiation. Based on this generic role, every subject
who creates an object is assigned to a concrete owner role in which all methods on the
object are permitted with grant option. Figure 2a illustrates this facility, where
subjects S1 and S2 are assigned to the owner roles when they create objects d1 and
d2, respectively. There is no administrative superiority in this feature since neither S1
nor S2 can disrupt each other’s actions.

Predefined Role: There exist some primitive roles in the system. For example, to
reduce the number of roles, our model provides a public role to which every subject is
automatically assigned and which imports all permission from any role above it in the
hierarchy. If owners want their objects to be accessible by everyone, they can connect
their owner role as a super-role of the public role and export exactly those
permissions they wish to grant on their objects. In this way, all users inherit the
designated access rights via the role hierarchy. In Figure 2b, S1 and S2 will put the
licenses for their public objects in the public role, and thereby make them accessible
to all subjects, by connecting their owner role to the public role but only exporting a
subset of the methods on objects d1 or d2, respectively, as desired. Thereafter, S1 or
S2 can remove access to their objects from the public role or change the permissions

M1(d1,d2)+,
M2(d2), M3(d2)

M1(d1)+

M3(d2)

Subjects
Hierarchy

Objects
Hierarchy

r1

r2

r3

68 A.H. Chinaei and F.Wm. Tompa

on their objects whenever needed by changing what is exported or by severing the
connection completely. Hence, neither S1 nor S2 has superiority over the other; and
once the system has been initiated, there is no centralized control.

Fig. 2a. Owner role as a Generic Fig. 2b. Public role as a Predefined

Fig. 2c. Customized role Fig. 2d. Combined role

Customized Role: Besides the generic and predefined roles, all subjects are able to
create their own customized roles. Every subject can choose an arbitrary subset of the
permissions in its owner role to create a customized role, and then assign arbitrary
subjects to this role. More generally, any subject assigned to a fertile role, i.e., one in
which some permissions have grant option, may create a new sub-role with a subset
of the fertile permissions and assign other subjects to that new role. Customized roles
thus form the role hierarchy, in which owner roles are the roots. For instance, any
physician may customize the privileges assigned to the physicians group to create a
particular role for nurses. In Figure 2c, owners S1 and S2 have created roles r1 and r2
to access objects d1 and d2, respectively. They both have assigned user S3 to these
roles. Therefore, S3 has access to both d1 and d2. S1 or S2 can remove S3’s access at
any time, independently. Again, neither S1 nor S2 has superiority over the other, and
there is no centralized control.

Combined Role: Subjects can create a combined role if they have inheritable
permissions in more than one role. In other words, a combined role is a role, which
has more than one immediate senior role. In health care systems, an accountant may
combine several roles to make several medical objects accessible to an insurance
representative. In Figure 2d, owners S1 and S2 have created fertile roles (i.e. with
delegation permissions) r1 and r2 to access objects d1 and d2, respectively; both S1
and S2 are willing to export permissions on their documents. They have also assigned

S1 S2

owner role 1
owner role 2

d2 d1

S1 S2 S3

r1

r2 M1(d1)

M2(d2)

d1 d2

S1
S2

S3

r1
r2

r3

M(d2)+
M(d1)+

M(d1,d2) S4

d2 d1

d2

S1 S2 S3

public roled1

M1(d1)
M2(d2)

 User-Managed Access Control for Health Care Systems 69

subject S3 to their roles. Therefore, S3 can create r3 and inherit (import) access
permissions on both d1 and d2. Moreover, S3 can assign other subjects (e.g. S4) to r3.
Both S1 and S2 can remove access privileges for S3 and its dependents (e.g. S4) from
their objects by severing the inheritance chain without disrupting one another. For
example, S1 (the owner of r1) can remove access for S3 and S4, from d1 simply by
removing both edges S3 r1 and r1 r3. Therefore, r3 no longer inherits anything
from r1.

We have created an XML schema to represent roles and assignments, and we have
developed the principal update algorithms needed for our proposed model. (These are
omitted from this paper because of insufficient space.)

4 Use Case

In this section, we illustrate our model through a use case focused on a typical
medical record database. This application has been mainly inspired from the XACML
use cases [6, 18]; however, we have adapted it to reflect a more decentralized
application environment.

Fig. 3. UMAC for Health Care Systems

Figure 3 illustrates how features explained in Figure 2 are applied in this
application. For readability, we omit the subject hierarchy from the illustration.
Dotted boundaries highlight the ownership domains within which each subject creates
and controls a part of the health record database.

We assume that St. Mary’s Hospital is the owner of medical records; however,
elements of a medical record may belong to different owners such as patients or
doctors. Patricia is a patient in our example. She, similar to any other user, has been

therapy_info

Dorothy

medical_record

patient_info

St. Mary’s

public role Fred

r4

Patricia

Doctors

Nurses

r3

Fred r5

hospitaliza
tion_info

encounter

diagnosis_info

¬R

R

R+

R

C3

consent

patient_c family_c predefined4

predefined1

family insurance#

Patricia

Doctors

r2

Robert

R+

Receptionists

r1

R

C1
predefined2

C2

C4

Predefined3

70 A.H. Chinaei and F.Wm. Tompa

initially assigned to role predefined1 so that she can copy (create) her personal
information in the system as a new patient. When she needs to see a doctor, she
creates her personal information together with role r1, and assigns receptionists of St.
Mary’s Hospital to this role. Then, by exploiting role predefined2, receptionist Robert
serves Patricia’s request and creates her hospitalization information (such as room
number and arrival date) and, using the grant permission in role r1, also creates role r2
for doctors to read her request; besides, he exports read permission on Patricia’s
hospitalization information to the public role, which is accessible to all subjects.
Then, doctor Dorothy attends to Patricia, and creates her diagnosis information using
role predefined3. As the doctor in charge, Dorothy creates role r3 for other doctors and
nurses to read Patricia’s diagnosis information. Dorothy also creates role r4 to prevent
Patricia from reading it herself. Notice that if Patricia is a doctor or a nurse, conflict
resolution should ensure that she will be prevented from reading this record. The
consent section is used for granting informed consent, which should not be modified
once it has been written. According to hospital policy, a member of Patricia's family,
namely Fred, can read her medical records if he signs (creates) an informed consent.
Upon creating the informed consent (using role predefined4), Fred will be able to read
Patricia’s medical record by being assigned to role r5. Fred is also able to allow
others, including Patricia, to read her medical records by creating a new role inherited
from r5 (not diagrammed).

In this example, we have shown how corporate policy can allow various subjects
such as patients, receptionists, doctors, and patient family to administer access control
over different parts of a medical record. Every time an item of data is created, a
corresponding ownership role with all methods is automatically created or updated.
As an example of a combined role, Fred can create one combined role on several
diagnoses information and assign Patricia to see them all. As an example of selective
revocation, Dorothy can prevent some user U from seeing Patricia’s record by
assigning him or her to r4. Dorothy can prevent Fred and others assigned to role r5 or
its descendents from reading the diagnosis information by removing the connection
between the ownership role and r5; the read permission will no longer be inherited.

5 Summary and Future Work

In this work, we have proposed a decentralized access control system, UMAC, in
which access to data is fully managed by users. Unlike standard RBAC, UMAC does
not require a central administration. We enrich previous work along these lines [3] by
including object database concepts. We have also introduced four classes of roles,
namely generic, predefined, customized, and combined, through which UMAC
provides suitable capabilities for very large systems. To support our model, we have
developed primary access control algorithms, as well as an XML schema representing
the roles hierarchy. We have also applied our model to enforce access control policies
in a medical records application. As a further part of our research, we developed a
simulator by which we can generate and evaluate various instances of the UMAC
model and a variety of implementation structures. Using our simulator, we are
performing some tests on real data.

 User-Managed Access Control for Health Care Systems 71

We propose several directions for continuing this research. The first is to develop
an efficient (space) data structure, flexibly managed by users. Designing
corresponding efficient (speed) access control algorithms will be the major
contribution of this work. A second direction is conflict resolution and rule
reorganization as major issues in establishing access rules.The next contribution
would be developing a delegation framework for efficient controls and flexible
revocation. This is particularly important when the access administration is not
central; since without centralization it is hard to maintain adequate safety and
accountability properties.

Acknowledgement. We gratefully acknowledge the Natural Science and Engineering
Research Council of Canada, Communications and Information Technology Ontario,
Open Text Corporation, and the University of Waterloo for their financial support.

Bibliography

1. M. A. Al_Kahtani and R. Sandhu. Induced Role Hierarchies with Attribute-Based RBAC.
In Proc. of the 8th ACM Symposium on Access Control Models and Technologies, pp. 12-
20, June 2003.

2. D. Bell and L. LaPadula. Secure Computer System: Unified Exposition and Multics
Interpretation. Technical Report, ESD-TR-75-306, The MITRE Corp, March 1976.

3. E. Bertino, S. Jajodia, and P. Samarati. A Flexible Authorization for Relational Data
Management Systems. ACM Transactions on Information Systems, vol. 17, no. 2, pp. 101-
140, April 1999.

4. K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical Report, ESD-
TR-76-372, USAF Electronic Systems Division, April 1977.

5. R. A. Botha and J. H. P. Eloff. Separation of Duties for Access Control Enforcement in
Workflow Environments. IBM Systems Journal, vol. 40, no. 3, pp. 666-682, 2001.

6. S. Damodaran and C. Adams. XACML- Summary of Use Cases.
http://xml.coverpages.org/RLTC-XACML-Reqs200207.pdf. 2001.

7. D. F. Ferraiolo, G. J. Ahn, R. Chandramouli, and S. I. Gavrila. The Role Control Center:
Features and Case Studies. In Proc. of the 8th ACM Symposium on Access Control Models
and Technologies, pp. 12-20, June 2003.

8. D.F. Ferraiolo and D.R. Kuhn. Role Based Access Control. In Proc. of the 15th NIST-
NCST National Computer Security Conference, pp. 554-563, October 1992.

9. R. Focardi and R. Gorrieri. Non Interference: Past, Present and Future. In Proc. of DARPA
Workshop on Foundations for Secure Mobile Code, 1997.

10. J. Goguen and J. Meseguer. Security Policy and Security Models. In Proc. of the 1982
IEEE Symposium on Security and Privacy, pp. 11-20, IEEE Computer Society Press, April
1982.

11. G. S. Graham and P. J. Denning. Protection - Principles and Practice. In Proc. of AFIPS
Spring Joint Computr Conference, vol. 40, 1972.

12. P. P. Griffith and B. W. Wade, An Authorization Mechanism for a Relational Database
System, ACM Transactions on Database Systems, vol. 1, no. 3, pp. 242-255, 1976.

13. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.
Communications of ACM. vol. 19, no. 8, August 1976.

14. W.A. Jansen. Inheritance Properties of Role Hierarchies. In Proc. of the 21st NIST-NCSC
National Information Systems Security Conference, October 1998.

72 A.H. Chinaei and F.Wm. Tompa

15. A. K. Jones, R. J. Lipton, and L. Snyder. A Linear Time Algorithm for Deciding Security.
In Proc. of Foundations of Computer Science ‘76, pp. 33-41, IEEE, 1976.

16. V. E. Jones. Access Control for Client Server Object Databases. Ph.D. Thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, 1997.

17. J. B. D. Joshi, and B. Shafigh. Dependencies and Separation of Duty Constraints in
GTRBAC. In Proc. of the 8th ACM Symposium on Access Control Models and
Technologies, pp. 51-64, June 2003.

18. M. Kudo. Use Cases for Access Control on XML Resources. http://www.oasis-open.org/
committees/xacml/docs /UseCase.doc. 2001.

19. D.R. Kuhn. Mutual Exclusion of Roles as a Means of Implementing Separation of Duty in
Role-Based Access Control Systems. Second ACM Workshop on Role-Based Access
Control, pp. 23-30, November 1997.

20. B. W. Lampson. Protection. In Proc. of the 5th Annual Princeton Conference on
Information Sciences and Systems, pp. 437-443, March 1971.

21. J. S. Park, and J. Hwang. Role-based Access Control for Collaborative Enterprise in Peer-
to-Peer Computing Environments. In Proc. of the 8th ACM Symposium on Access Control
Models and Technologies, pp. 93-99, June 2003.

22. R. Sandhu. Lattice-Based Access Control Models. IEEE Computer. vol. 26, no. 11, pp.
9-19, November 1993.

23. R. Sandhu. The Typed Access Matrix Model. In Proc. of the IEEE Symposium on Security
and Privacy, pp. 122-136, 1992.

24. H. F. Wedde, and M. Lischka. Cooperative Role-Based Administration. In Proc. of the 8th
ACM Symposium on Access Control Models and Technologies, pp. 21-32, June 2003.

25. T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V. Jagadish. Compressed Accessibility
Map: Efficient Access Control for XML. In Proc. of Very Large Data Bases, pp. 478-489,
August 2002.

26. D. Zhuo. On Fine-Grained Access Control for XML. Master’s Thesis, School of Computer
Science, University of Waterloo, 2003.

Specifying an Access Control Model for
Ontologies for the Semantic Web�

Cecilia M. Ionita and Sylvia L. Osborn

Dept. Of Computer Science,
The University of Western Ontario,

London, Ontario, Canada
cionita@uwo.ca/sylvia@uwo.ca

Abstract. Security and privacy are important components of the Se-
mantic Web; the need for research in this area is widely recognized. In
this paper we propose a model that regulates access control on ontolo-
gies developed for the Semantic Web. Based on the Role Graph Model,
our work models the ontology resources as directed, acyclic graphs, in-
corporating the basic features of the OWL Lite language. We also show
how the privileges are propagated and how we can use constraints to
deny access to resources in the Semantic Web, an environment where
information can be easily accessed through logic inferences.

1 Introduction

The World Wide Web has grown dramatically over the last few years. By 2002
there were around a billion Web users and a higher number of available doc-
uments [9]. This growth makes it difficult to find, access and maintain infor-
mation to be available for users. The content of the World Wide Web today is
mostly processed by humans via natural language. To overcome problems re-
lated to accessing and processing the information, Tim Berners-Lee introduced
the Semantic Web concept, envisioned as an extension to the current web, where
information is represented in a way so that it can be easily understood and ma-
nipulated by machines on a global scale. The Semantic Web is described as
an environment in which the “web of links” is transformed into the “web of
meaning”. It is meant to be accessible and comprehensible to automated soft-
ware agents without human intervention. In order to achieve its goal, the Se-
mantic Web lays its foundation on some already well-known technologies like
XML, as well as several new ones like ontologies, RDF (Resource Description
Language), etc.

The increasing need to protect data on the web, especially personal informa-
tion, has raised the issue of security and privacy for the Semantic Web, an envi-
ronment based on extensive data interconnection and information retrieval tools.
Research is concentrating on developing a well-understood model and language
for expressing access control. The semantic web is based on XML technologies,
� This research was supported by the Natural Sciences and Engineering Research

Council of Canada.

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 73–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

74 C.M. Ionita and S.L. Osborn

therefore it is only natural to find access control models also based on the ones
developed for XML documents. However, specifying access control requirements
for subjects and objects based only on predicates and identifiers is not enough
because we have to consider also the metadata defined in the ontologies that
describes them.

In this paper we propose an access control model that defines authorizations
on the elements of ontologies that are used to describe information about subjects
and objects in the Semantic Web environment. We will begin in Section 2 by
making a summary of the related work that investigates security within the
Semantic Web. Section 3 describes basic concepts relevant to this research area
as well as to this paper. In Section 4 we describe our access control model and
define the authorization propagation rules. Section 5 summarizes the paper and
presents future research.

2 Related Work

We will start by mentioning papers regarding XML access control, since the
most important Semantic Web security models are based on XML technology.
There are several authorization-based access control models. In [19], an autho-
rization model is built for distributed hypertext systems. Here the authorization
can be specified at different granularity levels, based on data types and their
relationships. In [4], Damiani et al. proposed another access control model for
XML documents and DTDs using a special authorization sheet attached to them.
Their model is extended in [5] where an access control system is introduced to
specify access restrictions to Web documents. Bertino et. al. in [2] proposed an
XML-based language, X-Sec, for defining subject credentials and security poli-
cies needed for Web document protection. In [1], a content-based authorization
model is defined in the context of Digital Libraries to describe specific access
control requirements for this environment.

Some of these authors extended their research in the Semantic Web secu-
rity area. There are some attempts to adopt XML-based data exchange formats
and protocols from distributed systems by the Semantic Web. Some examples
are XML digital signatures [8], XML encryption [7] and X.509 Public Key cer-
tificates [11]. In the area of authorization specification in the Semantic Web
environment, we mention some important papers from the last few years. In
[10] the authors proposed a language for describing security policies and trust
information based on ontology languages. Denker et al. focus the work in [6]
on DAML web services. They introduced a framework for annotating web ser-
vices with security information and also developed security-based ontologies to
describe and exchange security requirements for these services. In [17] an access
control model is proposed based on the concepts described in ontologies and
the relationship between them. The authors also introduced a Semantic Access
Control Language based on OWL for specifying security policies. Kagal et al.,
in [13], introduced a security framework based on a semantic policy language
and also a distributed policy management system for authentication and access

Specifying an Access Control Model for Ontologies for the Semantic Web 75

control. An XML based security engine is proposed in [21] to identify undesir-
able disclosed data due to ontology-based inference attacks. In [14], Kim et al.
argues the need for a privacy ontology and stresses that trust and security must
be built into the Semantic Web to protect personal information.

3 Basic Concepts

3.1 The Role Graph Model

The Role Graph Model [15] is an access control model whose basic functionality
is similar to the one described in the RBAC model developed by Sandhu et al.
[20]. The entities used in this model are users, roles and privileges. They are
grouped into three planes: the user/group plane contains the Group Graph [16]
in which one can model users, groups and the relationships between them, the
role plane where roles and role-role relationships are defined, and the privilege
plane which allows one to model implications among privileges. A privilege is
considered the basic unit of authorization. It is defined as a pair (object, access
mode) where the object is defined according to the context in which the security
model is being applied. For example, in an object-oriented environment an object
would be a class or a set of instances. An access mode is any valid operator or
method on the object, such as read or write. The role plane contains the Role
Graph which defines the relationships between roles. The nodes of this graph
represent the roles defined as a set of privileges. A role is represented by a pair
(name, pset) giving the name of the role and its set of privileges respectively.
There are two types of privileges assigned to a role: the direct privileges are the
ones that are not inherited from any other role in the graph and the effective
privileges are the union of all the direct and inherited privileges of a role. The
edges in the graph represent the is-junior relationship. Role ri is-junior to rj

iff ri.pset ⊂ rj .pset.
The Role Graph has the following properties: it is acyclic, directed, there is

a single MaxRole that contains all privileges from all the roles and there is a
single MinRole which contains the minimum set of privileged assigned to any
user. There is always a path between every role and MaxRole and MinRole.
There is a path from role ri to rj iff ri.pset ⊂ rj .pset. Role graph design is
managed through a set of algorithms defined in [15]. Algorithms are given for
role and edge addition/deletion and privilege addition/deletion to/from a role.
All of the algorithms run in time polynomial in the size of the role graphs and
the privilege sets.

Role Models are ivery useful because it is easy to manage the assignments of
users to privileges by grouping the latter into roles, therefore allocating a large
number of privileges in one step. Another advantage of RBAC is that when a
user ceases to need the privileges in a role, they can all be deleted at once by
removing the user from the role.

76 C.M. Ionita and S.L. Osborn

3.2 Ontologies

Ontologies, one of the Semantic Web’s important components, help embed com-
mon meanings and relationships of terms across different structures making pos-
sible semantic interoperability. Their use brings to search engines numerous
improvements in retrieving precise information as well as computing results
based on related data and specific inferences. Ontologies are meant to be used
by people and applications in order to share domain specific vocabularies in
domains such as medicine, finance, etc.

The OWL Web Ontology language is probably the most complex tool devel-
oped so far to define ontologies. OWL is a language that helps design Web-based
ontologies for an easier integration of information between communities. It is de-
veloped to be understood by computer applications and not by humans. OWL
is based on RDF Schema [22] but it is has a stronger syntax for defining prop-
erties and classes. As part of its vocabulary we mention a few examples: class
equivalence (owl.equivalentClass), cardinality (owl:minCardinality), transitivity
(owl:TransitiveProperty), etc.

4 An Access Control Model

In this section we define an access control model that applies to the ontology
elements in a Semantic Web environment. As part of building this new tech-
nology, incorporating security is very important. In the Web of today or in any
relational database management system, we have to deal with a large number of
resources and information related in a syntactic way and not semantically. This
is why all the inferences are made manually at the user level. On the contrary, the
Semantic Web will contain the resources semantically linked so that a software
agent will be able to easily obtain information making use of logic inferences and
knowledge management. In such an environment the need to integrate security
as soon as possible becomes obvious.

In order to create a model that controls the access to the resources, we use
the concepts from the Role Graph model and OWL features and apply them to
the ontology structures created with this ontology language. In this paper we
will use the Lite version of OWL in order to incorporate the basic functionalities
of the language. We plan to extend our work as future research by taking into
consideration the more advanced features of OWL DL and Full.

We start by briefly introducing the characteristics of the OWL Lite language
that will be integrated into our model. The two basic terms are classes and
properties which are both considered resources. A class denotes a group of indi-
viduals grouped together on the basis of some common properties. Classes can
be organized into hierarchies using rdfs:subClassOf . Two classes can be defined
to be equivalent using equivalentClass. There is one special class called Thing
which is the superclass of all OWL classes and another one called Nothing which
is the subclass of all OWL classes.

Properties are used to define relationships between individuals or between
individuals and data types. They can also be organized into hierarchies using

Specifying an Access Control Model for Ontologies for the Semantic Web 77

rdfs:subPropertyOf and they can also be defined to be equivalent using equiva-
lentProperty. The property characteristics that we are taking into consideration
are: inverse of a property, transitive property, symmetric property, functional
property and inverse functional property.

The reasons why we chose the Role Graph Model as the best alternative for
an access control model in the Semantic Web environment are:

– Both the Role Graph Model and the OWL language structure their elements
in similar ways. In the context of the Role Graph Model, it is very natural
to add additional hierarchies represented by directed acyclic graphs.

– The Role Graph Model performs well in environments with large number of
users and privileges, which is the case with the Semantic Web.

– The management of the assignment of privileges to users is very easy because
of the use of roles that facilitates the allocation of an arbitrary number of
privileges in only one step.

Let us start defining the basic concepts of our access control model.

4.1 Authorization Users

The Semantic Web content will be mostly accessed and processed by machines
and software agents that are also called reasoners. Their capabilities of inference
are the biggest security concern. The users of today’s Web will also access the
information on the Semantic Web. Both agents and human users should be
considered to be authorization users, based on their identities and location, as
described in [5].

4.2 Roles

A role is composed a pair consisting of the role name and the set of privileges
assigned to that role. Figure 1 contains an example of a role graph in a company
environment containing roles like HR Manager, Engineer, Project Leader, etc.

4.3 Access Modes

As we have stated in Section 2, a privilege is defined as a pair consisting of the
authorization object that is being accessed and the access mode or operation.
The types of access modes for XML documents are very restrictive. Some papers
consider only reading and authoring [3] as access modes while others also include
update and extend operations [23]. Some of these access modes are also suitable
for OWL documents since OWL’s language syntax is based on XML. In our
paper we consider read and extend as valid operations. Their meaning is reading
elements of an ontology and extending an ontology with classes or properties. In
addition we add a new operation specific to the Semantic Web context, called
reason. Assigning this access mode gives the user permission to access elements
that are inferred through a reasoning operation. The access modes are organized

78 C.M. Ionita and S.L. Osborn

Fig. 1. Example Role Graph

Fig. 2. Access Mode Graph

into a graph (called the authorization type graph in [23]), where an edge from
the extend operation to the read operation means that holding the privilege to
extend a given object o implies also having the privilege to read the same object
o. The graph containing the operations for this paper is given in Figure 2.

Specifying an Access Control Model for Ontologies for the Semantic Web 79

4.4 Authorization Objects

The resources, namely classes and properties, are the authorization objects in
OWL ontologies. Following the model of the Role Graph, we structure the re-
sources into graphs. In this case we have to build two graphs, one for the on-
tology classes called the Class Graph and one for the ontology properties called
the Property Graph. The characteristics of these structures are:

– both graphs are directed and acyclic
– there is a Thing resource as a superclass to all the OWL resources
– there is a Nothing resource as a subclass to all the OWL resources
– an edge in the Class Graph going from class c1 to class c2 has the meaning

that c1 is a subclass of c2 and c2 is a superclass of c1.
– an edge in the Property Graph going from property p1 to property p2 has

the meaning that p1 is subproperty of p2 and p2 is superproperty of p1.

The last two characteristics come as a natural modeling of the rdfs:subClassOf
and rdfs:subPropertyOf features from the OWL Lite language that represent the
basic relationship between two classes and properties, respectively.

The nodes of the Class Graph can contain more than one class when these
classes are related through the equivalentClass feature. For example, we can
model the Car and Vehicle classes as equivalent and put them both in the same
node of the Class Graph. The same principle applies to the Property Graph
using the equivalentProperty feature. As an example we and have hasMarks and
hasGrades as two equivalent properties in the same node.

In the beginning of this section we introduced briefly the property charac-
teristics that we will include in our model. Here is a more detailed description
of them and some examples:

inverseOf defines a property p1 as the inverse of another property p2. For
example, trains and isTrainedBy are the examples of two inverse properties.

TransitiveProperty defines transitive properties. For example, supervises can
be defined as transitive, because if John supervises Laura and Laura super-
vises Peter, then a reasoner can infer that John supervises Peter, too.

SymmetricProperty defines two properties as symmetric. For example, col-
league is a symmetric property because if John is the colleague of Laura,
then it can be deduced that Laura is the colleague of John.

FunctionalProperty defines properties that have a unique value for each in-
dividual. For example, hasStudentNo is a functional property.

InverseFunctionalProperty defines a property as an inverse of a functional
property. Considering the above example, we can say that isStudentNo is an
inverse functional property of hasStudentNo property.

Our objective is to incorporate these features into our model, more precisely
into the Property Graph. In order to do this we have to extend the definition
of this graph by adding to each property node an indicator that holds the type
or types of that property. Its value corresponds to one of the five characteristics
defined above.

80 C.M. Ionita and S.L. Osborn

Fig. 3. Example Class Graph

Using the above definitions, we can specify a privilege as a pair of authoriza-
tion object and access mode, where the authorization object is made of one or
both of the resources (classes and properties) depending on the degree of the
security restriction we want to enforce.

Figures 3 and 4 contain examples of a Class Graph and a Property Graph
respectively, representing a part of an ontology defined for a company structure
and the activities of the company.

We can see that the class graph in Figure 3 shows the isSubclassOf informa-
tion about several kinds of objects which might be part of the description of the
security requirements of the company. It deals with company employee classes
as well as company artifacts like project schedules, project documentation and
payroll administration data.

As we can see in Figure 4, some properties have attached a special indicator
specifying one or more types. The properties situated in one node, with no
indicator, are defined as equivalent. An example of this is entersDataIn and
inputDataIn. Properties contained in a node with an IP indicator mean that
they are the inverse of each another; in the example, reportsTo and supervises
are inverse properties. The property worksWith is symmetric and isPartOf is an
example of a transitive property.

Specifying an Access Control Model for Ontologies for the Semantic Web 81

Fig. 4. Example Property Graph

As we said before, these properties represent the relationships between classes.
For example we can have statements like: “Manager hasFullDataAccess on Pay-
rollInfo”, “TeamLeader trains Employee”, “Design isPartOf Product Documenta-
tion”, “Employee reportsTo TeamLeader”, etc. Using the access modes defined in
Figure 2, examples of privileges are: (Manager, Read), ((Manager, hasFullDataAc-
cess), Read), ((Product Documentation, isRelatedTo), Reason), (supervises,
Read), etc. When we assign the privilege (Manager, Read) to a user through a
role, it means that the user is allowed to read any information about the Man-
ager class. If the privilege is ((Manager, trains), read), then a user who has this
privilege can read information about the training carried out by Managers. If the
privilege ((Product Documentation, isRelatedTo), Reason) is assigned to a role,
then any user or software agent assigned to this role can reason about how objects
of type Product Documentation are related to each other.

4.5 Propagation of Privileges

The propagation policies are very similar to the ones defined for the Role Graph
Model. Users assigned to a role have, within their effective privileges, two kinds

82 C.M. Ionita and S.L. Osborn

of privileges associated. One kind deals with access modes and how they relate
to classes. The other kind deals with the properties of the classes, and the access
modes allowed for these. These are the explicit authorizations associated with
a user. In addition to these, there are two sets of implicit authorizations that
can be deduced by the system. This kind of authorization is computed through
the subclass and subproperty relationships from the Class Graph and Property
Graph respectively.
Example 1:

Let us assume we have the following example privileges set assigned to the
Supervisor role:

{ ((TeamLeader, approvesDataIn), Read),
(Design, Read),
((Workhours, isPartOf), Reason),
((Contract, changeDataIn), Extend),
(ProductionExecution, Extend) }
Also assume our ontology has the following statements:

“TeamLeader approvesDataIn Timesheet” and
“TeamLeader addsData Workhours”

Is a person assigned to the Supervisor role allowed to see both statements
in the ontology about the TeamLeader? From the set of privileges in the Su-
pervisor role, we can see that a Supervisor has a Read access mode on the
TeamLeader class and the approvesDataIn property, and a Reason access mode
on the WorkHours class. From the Class Graph we see that TimeSheet is a sub-
class of WorkHours, meaning that the Reason access mode propagates to the
TimeSheet class as well. From the Access Modes Graph we know that the Rea-
son access mode implies a Read access mode. Therefore, we can easily deduce
that the Supervisor role also has a Read access mode on the TimeSheet class.
That means that a Supervisor can see the first statement in our example.

For the second statement above, the Supervisor has a Read access mode on
the TeamLeader and WorkHours class but no authorization on the addsdataIn
property. That means that Supervisors cannot see the information from the
second statement.
Example 2:

As another example, let us suppose we have the same privileges in the Su-
pervisor role and the following statements in our ontology:

“TeamLeader approvesDataIn Workhours”
“Timesheet isPartOf WorkHours”
“WorkHours isPartOf Payrolll”

It can be easily seen that the Supervisor can see the first statement. For the
second statement, we know from the set of privileges that our role has the Reason
access mode on the Workhours class and the isPartOf property. As we have shown
above, from the Class Graph we can infer that the Supervisor also can Reason on
theTimeSheet.Therefore, the second statement can also be seen by the Supervisor.

Specifying an Access Control Model for Ontologies for the Semantic Web 83

In the third statement our role has an authorization on WorkHours and
isPartOf but we cannot infer any authorization on the Payroll. Therefore, the
Supervisor cannot see the information from this statement.
Example 3:

As a final example, let us suppose that our ontology has the following infor-
mation:

“Contract reads Schedule”
“Contract reads Design”

From the role’s set of privileges we can see that the Supervisor has an Ex-
tend access mode on the Contract and ProductionExecution classes and the
changeDataIn property. From the Class Graph and the Property Graph we can
deduce that this role can also see the first statement because of the subclass
relation between ProductExecution and Schedule and the subproperty relation
between reads and changeDataIn. For the second statement, Supervisors have
no authorization on the Design class, therefore they cannot see it.

The denial of access to resources is specified explicitly in the form of con-
straints explained in the next section.

4.6 Constraints

Constraints are used in our model to express the denial of access to resources;
they take precedence over all explicit or propagated privileges. In some papers,
the constraints are modeled as negative permissions [18,17]. Here, all the con-
straints defined for the Role Graph Model in [12] can be applied to our archi-
tecture of graphs. The possibility of logical inference creates the need for more
complex restrictions. In the Semantic Web environment we have to consider new
ways of reaching the information; sometimes the relationships between resources
expressed in ontologies gives new possibilities for finding out private information.
As a way of preventing this, we define here constraints on these resources that
will prevent the regular user or the software agent to reason about unwanted
data. One way of doing this is by expressing constraints based on the indicators
of the property nodes in the Property Graph or by using other basic property and
classes restrictions defined in the OWL Lite language. This is meant to be a sig-
nificant extension to the Role Graph constraint-management model to deal with
the increased power of possible intruders using reasoning engines instead of regu-
lar technologies from today. The foundation of our model will have an artificial in-
telligence core capable of computing the extended information offered by the on-
tology (like property and class characteristics) along with a user’s role in order to
create dynamic constraints. These will act as a firewall for malicious users trying
to get access beyond their privileges through information gained by reasoning.

5 Conclusions and Future Work

In this paper we have proposed an access control model for the ontologies used
in the Semantic Web. Based on the Role Graph Model, we modeled resources,

84 C.M. Ionita and S.L. Osborn

classes and properties with directed, acyclic graphs, incorporating the basic fea-
tures of the OWL Lite language. A noticeable advantage of our work over similar
models like [17] is that we take into consideration the properties that define re-
lationships between classes, by specifying authorizations and propagation rules
based on them. Combining the two separate authorization graphs for classes and
properties and their propagation policies, we captured the semantic relationships
from ontologies, the main idea behind the Semantic Web.

As future research, we want to integrate other important features of the
OWL language, as it is the most comprehensive tool for developing ontologies.
As an immediate approach, we want to extend our model to be able to model
union and intersection of classes and cardinality restrictions. We also want to
further explore the interaction between the classes and properties by taking into
consideration rdfs:domain and rdfs:range features of OWL.

References

1. N. R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A content-based authorization
model for digital libraries. IEEE Transactions Knowledge and Data Engineering,
14(2):296–315, 2002.

2. E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for web doc-
uments with an XML-based language. In 6th ACM Symposium on Access Control
Models and Technologies (SACMAT 2001), pages 57–65, 2001.

3. E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents.
ACM TISSEC, 5(3):290–331, 2002.

4. E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. Design
and implementation of an access control processor for XML documents. Computer
Networks, 33(6):59–75, 2000.

5. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Fine-
grained access control system for XML documents. ACM Trans. on Information
and System Security, 5(2):169–202, 2002.

6. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for DAML web
services: Annotation and matchmaking. In Proc. of the 2nd International Semantic
Web Conference (ISWC2003), Sanibel Island, Florida, USA, October 2003.

7. D. Eastlake and J. Reagle. XML encryption syntax and processing. W3C Candi-
date Recommendation, August 2002.

8. D. Eastlake, J. Reagle, and D. Solo. XML-signature syntax and processing. RFC
3275, March 2002.

9. D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential. The MIT Press, 2003.

10. T. Finin and A. Joshi. Agents, trust, and information access on the semantic web.
SIGMOD Record, 31(4):30–35, December 2002.

11. R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key infrastructure
certificate and certificate revocation list. RFC 3280, April 2002.

12. Cecilia M. Ionita and Sylvia L. Osborn. Privilege administration for the role
graph model. In Research Directions in Data and Applications Security, Proc.
IFIP WG11.3 Working Conference on Database Security, pages 15–25. Kluwer
Academic Publishers, 2003.

Specifying an Access Control Model for Ontologies for the Semantic Web 85

13. L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the
semantic web. In Proc. of the Second International Semantic Web Conference
(ISWC2003), Sanibel Island FL, October 2003.

14. A. Kim, L.J. Hoffman, and C.D. Martin. Building privacy into the semantic web:
An ontology needed now. In Proc. of the International Workshop on the Semantic
Web, Honolulu, Hawaii, May 2002.

15. M. Nyanchama and S. L. Osborn. The role graph model and conflict of interest.
ACM TISSEC, 2(1):3–33, 1999.

16. S. Osborn and Y. Guo. Modeling users in role-based access control. In Fifth ACM
Workshop on Role-Based Access Control, pages 31–38, Berlin, Germany, July 2000.

17. L. Qin and V. Atluri. Concept-level access control for the semantic web. In Proc.
of the ACM Workshop on XML Security, October 2003.

18. F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for
next-generation database systems. ACM Trans Database Syst, 16(1):88–131, 1991.

19. P. Samarati, E. Bertino, and S. Jajodia. An authorization model for a distributed
hypertext system. IEEE Trans. on Knowledge and Data Engineering, 8(4):555–562,
1996.

20. R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control
models. IEEE Computer, 29:38–47, Feb. 1996.

21. A. Stoica and C. Farkas. Ontology guided security engine. Journal of Intelligent
Information Systems, 2004.

22. w3.org. Resource description framework. http://www.w3.org/TR/rdf-schema/.
23. Jingzhu Wang and Sylvia L. Osborn. A role-based approach to access control for

XML databases. In Proc. ACM SACMAT, 2004.

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 86 – 103, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Formal Access Control Model for XML Databases*

Alban Gabillon

Université de Pau et des Pays de l’Adour, IUT de Mont de Marsan,
LIUPPA/CSySEC, 40 000 Mont de Marsan, France

alban.gabillon@univ-pau.fr

Abstract. In this paper, we first define a logical theory representing an XML
database supporting XPath as query language and XUpdate as modification
language. We then extend our theory with predicates allowing us to specify the
security policy protecting the database. The security policy includes rules
addressing the read and write privileges. We propose axioms to derive the
database view each user is permitted to see. We also propose axioms to derive
the new database content after an update.

1 Introduction

Several discretionary access control models for eXtensible Markup Language (XML)
documents [2] have been proposed [1][7][13][11] [14][10]. In [10], we first reviewed
most of the existing access control models for XML and discussed their weaknesses.
Based on our study, we then defined a new model suggesting a solution to cope with
the problems that our study revealed. The model in [10] has the following
characteristics:

− The model is an interpretation for XML of the SQL security model (with some
additional features).

− Each user is provided with a view of the source database he or she is permitted to
see.

− The model includes a new position privilege that allows knowing about the
existence of an XML node but not about its label. Nodes on which users hold a
position privilege are shown with a RESTRICTED label in users’ views. Thus,
sensitive labels are hidden while the structure of the XML document is preserved.

− The model includes various write privileges and defines the access controls for the
write operations.

However, the model in [10] has two drawbacks:

− It is defined in an informal way.
− Like the security model of SQL, it ignores interactions between the read privilege

and the write privilege. In other words, write operations are evaluated on the
source database and not on the user’s view. As a consequence, users can build
some covert channels to learn about the data they are not permitted to see.

* This work was supported by funding from the French ministry for research under “ACI Sécurité

Informatique 2003-2006. Projet CASC".

A Formal Access Control Model for XML Databases 87

The purpose of this paper is to formally define a new security model which does not
have the negative aspects of the model in [10]:

− We use mathematical logic to define our model. With logic, we can
homogeneously define the database, the query language, the security policy and the
access controls. This approach enables an easy and precise way of computing the
facts that users are authorized to see/update.

− The model we define in this paper is partly based on the model in [10]. In
particular, it includes the position privilege we introduced in [10]. However,
interactions between the read privilege and the write privilege are now investigated
in details and, as a major consequence, write operations are now evaluated on
views and not on the source database.

We have implemented a Prolog-based prototype simulating a secure XML database.
Logical formulae given in this paper are Horn clauses and have been implemented as
such in the prototype. This prototype can be downloaded from the following address:
http://www.univ-pau.fr/~gabillon/xmlsecu.

In section 2, we make an informal overview of our model and we underline the
main limitations of existing security models for XML. In section 3, we define the
logical theory representing an XML database. Since we use XPath [4] as a query
language and XUpdate [15] as a modification language, we give their logical
interpretation. In section 4, we extend our theory with predicates allowing us to define
the security policy protecting the database. The security policy includes rules
addressing read and write privileges. We define the logical formulae allowing us to
derive the database view each user is permitted to see. We also give the logical
formulae allowing us to derive the new database after an update. Finally, section 5
concludes this paper.

2 Informal Overview of Our Model

Most of the existing security models for XML define a view-based access control
strategy for handling the read privilege. However, these models suffer from problems
that were pointed out in [18]:

− Regarding the model in [11], if access to a node is denied then the user is not
allowed to access the entire sub-tree under that node even if access to part of the
sub-tree is permitted, therefore limiting the availability of data.

− Regarding the model in [7], in order to preserve the structure of the document, the
authors allow elements with negative authorizations (i.e. access denied) to be
released if the element has a descendant with a positive authorization (access
permitted), thus making the semantics of the negative authorization unclear.

Some of the existing security models for XML consider the write privilege but,

− they do not clearly indicate in which framework the different update operations for
XML are supported,

− the access control strategy that they use for handling the write privilege is not
clearly described,

A. Gabillon 88

− interactions between read access controls and write access controls are not
investigated.

In fact, these security models were designed to be implemented as extensions to
existing web servers.

2.1 View Access Control

In order to solve the problems mentioned in [18], we introduced in [10] a special
privilege protecting the existence of nodes. Therefore, our model includes two kinds
of read privileges: one privilege which allows knowing about the existence of a node
(we call it the position privilege) and another privilege which allows knowing both
the existence and the label (we call it simply the read privilege). The security
designer has now two options:

− if user s is forbidden to know about the existence of node n then the security
designer denies both position and read privileges on node n to user s. In that case
node n and possible descendant nodes (even those for which the user has
permission to read) are not shown in the view user s is permitted to see.

− if only the label of node n is sensitive then the security designer grants to user s
the position privilege on node n (without granting the read privilege). Node n is
shown in the view with RESTRICTED label and descendant nodes for which the user
has permission to see are also shown in the view. Label RESTRICTED was first used
by Sandhu and Jajodia in the context of multilevel databases [19]. Its semantics is
“the label exists but you are not allowed to see it”.

/patients

r

/robert

/diagnosis

text()pneumonia

p

r

r

/patients

/RESTRICTED

/diagnosis

text()pneumonia

Fig. 1. View Access Control

Left tree in figure 1 shows a sample medical files database. Let s be a user. Tag r
(respectively p) attached to a node represents the fact that user s holds the read
(respectively position) privilege on that node. Right tree represents the view user s
is permitted to see. User s is permitted to read illnesses (most probably for statistical
purpose) but she is forbidden to see patients’ names.

A Formal Access Control Model for XML Databases 89

2.2 Write Access Controls

SQL ignores interactions between the read privilege and the write privilege. Indeed, if
a user submits a write operation (via one of the standard SQL commands: INSERT,
UPDATE or DELETE) then this operation is evaluated on the source database and not on
the data the user is permitted to read. As a consequence, users can easily learn about
the data they are not permitted to see. For example, consider user_A who is the owner
of the employee table and who has granted to user_B the sole update privilege on
employee.

user_B is not permitted to see user_A’s employee table,
SQL> SELECT * FROM user_A.employee;
ERROR ORA-01031: insufficient privilege

but user_B is permitted to update user_A’s employee table:
SQL> UPDATE user_A.employee SET salary=salary+100 WHERE salary > 3000;
2 rows updated

Although user_B is not permitted to see user_A’s employee table, she has been
able to learn, through an update command, that there are two employees with a salary
greater than 3000. The UPDATE command was evaluated on data user_B was not
permitted to see. Note, in particular, that the WHERE clause performed a read operation
on the employee table. We could show various examples exploiting this vulnerability.
The model in [10] has the same vulnerability since it is an interpretation for XML of the
SQL security model. In [10], an operation updating XML data is evaluated on the source
database regardless of the read privileges held by the user submitting the operation.

In this paper, our approach is different. Since a write operation is a process running
on behalf of a user we consider that it should have the privileges and the limitations of
the user. In particular the write operation should not be able to read the data the user
is not permitted to see. This means that the write operation has to be evaluated on the
user’s view and not on the source database.

Our model supports three kinds of write privileges (insert, delete and update).
We give the exact semantics for each of these privileges. We state the privileges that
each XUpdate operation requires for completion and we formally define the access
controls for each of the XUpdate operations.

3 XML Database

Mathematical logic has been used to formalize databases in two main directions.
These directions are usually called the proof theoretic approach and the model
theoretic approach. The former represents a database as a logical theory; the latter
represents a database as an interpretation of a logical theory [16]. In this paper, we
adopt the proof theoretic approach, that is, each database is associated with its logical
theory db. We also make the closed world assumption. The closed world assumption
holds that anything that we cannot show to be true is false.

3.1 XML Documents Modeled as Trees

For the sake of simplicity, we shall not consider the type of XML nodes. An XML
document is a tree of nodes. Each node is the parent of zero or more child nodes.

A. Gabillon 90

Each node has one and only one parent except one fundamental node which has no
parent and which is called the document node. We state that each node is associated
with a unique identifier and a label:

− Node identifiers are obtained by applying a numbering scheme. Several numbering
schemes have been proposed [21][6][24][8]. They all support the representation of
ancestor and sibling relationships between nodes i.e. one can derive the
relationship between any two given nodes by looking at their unique numbers. In
this paper we assume the numbering scheme does not require renumbering after an
update i.e. numbers assigned to existing nodes remain the same even after an
update modifying the tree structure. Such a numbering scheme could be the LSDX
numbering scheme [8] or our own persistent numbering scheme [12].

− Labels are the data. Labels are small for nodes of type element (in the XML
terminology they are referred to as names) and they can be very large for nodes of
type text (in the XML terminology they are referred to as values or PCDATA).

Figure 2 shows an XML document which we shall use throughout the remainder of this
paper. Strings patients, franck, service, otolarynology … are labels. n1, n2,
n3, … denote numbers identifying nodes. We state that the document node has
identifier / and position /. The document node has only one child node which is
called the root element node. Identifier of the root element is n1 and label is patients.

<patients>
 <franck>
 <service>

<otolarynology/>
 </service >
 <diagnosis>
 <tonsillitis/>
 </diagnosis>
 </franck>
 <robert>
 …
 </robert>
</patients>

n4

/diagnosis

text()tonsillitis

/service

/patients

/franck

text()otolarynology

n1

n2

n3 n5

n6

/robert

n7

/

/

Fig. 2. XML document

3.2 Language

Language L of theory db is based on first-order logic with equality. For the sake of
simplifying our logical formulae, we shall consider that the database may contain only
one document. We shall use the following two-place predicate to represent the
database content:

− ()node n, v reads “there is a node with label v identified by number n”

A Formal Access Control Model for XML Databases 91

We shall also use the following predicates to learn about the database tree geometry:

− ()child x, y , reads “node1 x is a child of node y”

− ()child_or_self x, y , reads “node x is a child of node y or, x and y are the same”

There are also other tree geometry predicates like parent, descendant, descendant_
or_self, ancestor, following_sibling …

3.3 Axioms

Set of axioms A of theory db includes the classical axiom schemata of first order logic
with equality plus some proper axioms. We divide these proper axioms into the
following two sets:

− the set F of atomic facts recorded in the database.
− the set of formulae allowing us to derive facts belonging to the tree geometry

predicates.

The sample database we shall use throughout this paper includes the document in
figure 2:

() () ()

() () () ()
1 2 3

4 5 6 7

node(/,/), node n ,patients , node n ,franck , node n ,service ,
F

node n ,otolarynology ,node n ,diagnosis , node n ,tonsillitis , node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
…

 (1)

Axioms allowing us to derive tree geometry facts depend on the numbering scheme
and are not given in this paper. However, these axioms can be found in our prototype.
For example, we can derive the following child relation from these axioms:

() () () () () (){ }1 2 1 3 2 5 2 4 3 6 5 7 1child(n ,/), child n , n , child n , n , child n , n , child n ,n ,child n , n , child n , n ,…

3.4 XPath and XUpdate

We use the following three place xpath predicate to logically interpret XPath
expressions:

− ()xpath p,n,v , reads “node with label v identified by number n is addressed by

path p”

Since semantics of XPath is well known, we do not give axioms interpreting the
xpath predicate. However, these axioms can be found in our prototype.

Updating XML data is still a research issue (e.g. see [22][20][3]). Today, XUpdate is
a solution to update XML data. The reader may refer to [15] for a complete description
of XUpdate.Throughout this section, we shall use the following notations:

− From the logical point of view, whenever we update the database we obtain a new
logical theory representing the updated database. Let dbnew be the new logical
theory representing the updated database.

1 More precisely, it should read, “node identified by number x is a child of node identified by

number y”.

A. Gabillon 92

− Let predicatedb representing the predicate predicate in the theory db. Let
dbnew

predicate representing the same predicate in the theory dbnew.

For each XUpdate operation, we shall give the logical formulae that allow us to derive
the theory dbnew from the theory db.

3.4.1 Updating Node Operations
There are two XUpdate instructions for updating XML nodes: xupdate:update and
xupdate:rename. xupdate:update can be used to update the content of existing
element nodes. xupdate:rename allows attribute or element nodes to be renamed.
Both operations need two parameters: the path PATH selecting the nodes to update and
the new label VNEW.

xupdate:rename: The following two formulae allow us to derive facts belonging to
the new set F after an xupdate:rename operation.

() () ()db db dbnew
n v, node n, v xpath ,n, v node n, v∀ ∀ ∧ ¬ →PATH (2)

Label of nodes which are not addressed by PATH are not updated.

() ()db dbnew
n v, xpath , n, v node n,∀ ∀ → NEWPATH V (3)

Label of nodes which are addressed by PATH are updated to VNEW.

Example:
Let us consider the operation xupdate:rename which renames all nodes service in
department:

- PATH = //service
- VNEW = department

From formulae 2 and 3, we can derive the new set F:

() () ()

() () () ()
1 2 3

4 5 6 7

node(/,/), node n ,patients , node n ,franck , node n , ,
F

node n ,otolarynology ,node n ,diagnosis , node n ,tonsillitis , node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

department

…

xupdate:update: The following two formulae allow us to derive facts belonging to
the new set F after an xupdate:update operation.

() () ()() ()db db db dbnew
n v, node n, v n v , xpath , n , v child n, n node n, v′ ′ ′ ′ ′∀ ∀ ∧ ¬∃ ∃ ∧ →PATH (4)

Children of nodes which are not addressed by PATH are not updated.

() () ()db db dbnew
n n v , xpath , n , v child n, n node n,′ ′ ′ ′ ′∀ ∀ ∀ ∧ → NEWPATH V (5)

Children of nodes which are addressed by PATH are updated to VNEW.

Example:

Let us consider the operation xupdate:update which updates diagnosis of franck in
pharyngitis:

- PATH = /patients/franck/diagnosis
- VNEW = pharyngitis

A Formal Access Control Model for XML Databases 93

From formulae 2 and 3, we can derive the new set F:

() () ()

() () () ()
1 2 3

4 5 6 7

node(/,/), node n ,patients , node n ,franck , node n ,service ,
F

node n ,otolarynology ,node n ,diagnosis , node n , , node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
pharyngitis …

3.4.2 Creating Node Operations
There are three XUpdate instructions for creating XML fragments: xupdate:insert-
before, xupdate:insert-after and xupdate:append. xupdate:insert-before can
be used to insert a new tree as the immediate preceding sibling of existing nodes.
xupdate:insert-after can be used to insert a new tree as the immediate following
sibling of existing nodes. xupdate:append can be used to insert a new tree as the last
child of existing nodes. All these operations need two parameters: a path PATH
selecting some nodes and the tree TREE to insert. Let us assume nodeTREE be the two-
place predicate used to represent the tree to insert.

() ()db dbnew
n v, node n, v node n, v∀ ∀ → (6)

If a node belongs to the original document then it belongs to the final document.

() ()

()
db

dbnew

n v n v n o, xpath , n, v create_number(n, n , o, n '')

node n , v

′ ′ ′′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

′′ ′→

TREEnode n , v PATH
 (7)

The tree to insert shall be inserted as the last subtree of each node selected by PATH
(append), or as a new preceding-sibling tree of each node selected by PATH (insert-
before), or as a new following-sibling tree of each node selected by PATH (insert-
after). Therefore, each node n’ belonging to the tree to insert is inserted at as many
places as nodes addressed by PATH. Created numbers n’’ assigned to inserted nodes
are given by the create_number predicate.

− ()create_number n,n ,o,n′ ′′ , reads “node n’ is inserted with number n’’ by

operation o on node n”. o can be append, insert-before or insert-after.

We do not give axioms for deriving facts belonging to the create_number predicate
since they depend on the numbering scheme. Axioms implementing our own
numbering scheme [12] can be found in our prototype.

Example:
Let us consider the operation xupdate:append which inserts a new medical record:

− PATH = /patients

− The tree TREE to insert is the following:

() () () (){ }1 2 3 4node n ,albert , node n ,service , node n ,cardiology ,node n ,diagnosis ,′ ′ ′ ′

From formulae 6 and 7, we can derive the new set F:

() () ()

() () () ()

() () ()

1 2 3

4 5 6 7

1 2 3 4

node(/,/), node n ,patients , node n ,franck , node n ,service ,

F node n ,otolarynology ,node n ,diagnosis , node n ,tonsillitis , node n ,robert ,

node n ,albert , node n ,service , node n ,cardiology ,node n ,diag

=

′′ ′′ ′′ ′′

…

()nosis

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

A. Gabillon 94

From the tree geometry axioms we can derive:

() () () ()

7 1 2 4

1 1 2 1 3 2 4 1

preceding_sibling(n ,n), preceding_sibling(n , n),

child n , n , child n , n , child n , n , child n , n

⎧ ⎫′′ ′′ ′′⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪′′ ′′ ′′ ′′ ′′ ′′ ′′⎪ ⎪⎪ ⎪⎩ ⎭

3.4.3 Deleting Node Operations
There is one XUpdate instruction for deleting XML nodes: xupdate:remove.
xupdate:remove can be used to delete existing subtrees. It requires one parameter: the
path PATH selecting subtrees to delete.

The following formula allows us to derive facts belonging to the new set F after an
xupdate:remove operation.

() () ()db dbnew
n v, node n, v undeleted n node n, v∀ ∀ ∧ → (8)

If a node belongs to the original document and if it does not belong to a deleted
subtree then it belongs to the final document.

− ()undeleted n , reads “node n does not belong to a deleted subtree”

We can derive facts belonging to the undeleted predicate from the following
formulae:

()
()

()
()

db

db

db

descendant_or_self n, n
n v, node n, v n v , undeleted n

xpath , n , v

⎛ ⎞′ ⎟⎜ ⎟⎜ ⎟′ ′ ⎜∀ ∀ ∧ ¬∃ ∃ →⎟⎜ ⎟⎜ ⎟′ ′∧ ⎟⎜⎝ ⎠PATH
 (9)

This formula says that nodes which are not deleted are the nodes which do not
belong to a subtree whose root node is addressed by path PATH.

Example:
Let us consider the xupdate:remove operation which removes element diagnosis from
franck’s medical file:

− PATH = /patients/franck/diagnosis

From formula 8 and 9, we can derive the new set F:

() () () () ()

()
1 2 3 4

7

node /,/ , node n ,patients , node n ,franck , node n ,service ,node n ,otolarynology ,
F

node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
…

4 Secure XML Database

We extend the logical theory db to represent a secure XML database.

4.1 Extended Theory

We extend the language with predicates subject and isa for representing the subject
hierarchy,
− ()subject s , reads “s is a subject”

− ()isa s,s′ , reads “subject s is a subject s’”

A Formal Access Control Model for XML Databases 95

We also introduce the predicate rule for writing the security policy:

− ()rule accept,r,p,s,t , reads “subject s is granted privilege r on nodes addressed by

path p”. t is the priority of the rule.
− ()rule deny,r,p,s,t , reads “subject s is denied privilege r on nodes addressed by

path p”. t is the priority of the rule.

Since accept and deny rules may conflict with each other, we define predicate perm to
represent the actual privileges held by subjects:

− ()perm s,r,n , reads “subject s is (definitely) granted privilege r on node n”

We extend our theory with the following sets:

− the set S of formulae representing the subjects recorded in the database,
− the set RS of formulae allowing us to derive the subject hierarchy
− the set P of atomic formulae representing the security policy,
− the set RP of formulae allowing us to solve conflicts between security rules,

4.2 Subjects

Let us consider the subjects hierarchy at figure 3. In each tree, internal nodes are roles
[17] and external nodes are users.

Fig. 3. Subject Hierarchy

The following set S represents this hierarchy:

() () () ()

() () ()

subject staff , subject secretary , subject doctor , subject epidemiologist ,

subject patient , subject beaufort , subject laporte , subject(richard),

S subject(robert), subject(franck), isa(secretary, staff), isa(doctor, staff=

()

()

),

isa epidemiologist, staff , isa(laporte, doctor), isa(beaufort, secretary),

isa richard,epidemiologist , isa(robert, patient), isa(franck, patient)

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 (10)

Set RS includes the two following axioms allowing us to derive the reflexive and
transitive closure of the isa relation:

() ()s, subject s isa s, s∀ → (11)

() () ()s s s , isa s,s isa s ,s isa s,s′ ′′ ′ ′ ′′ ′′∀ ∀ ∀ ∧ → (12)

secretary

staff

doctor

laporte beaufort

epidemiologist

richard

patient

robert franck

A. Gabillon 96

4.3 Security Policy

The security policy may refer to the following privileges:
{position, read, delete, insert, update}

− if user s holds the position privilege on node n then user s has the right to know
the existence of n.

− if user s holds the read privilege on node n then user s has the right to see node n.
− if user s holds the insert privilege on node n then user s has the right to add a new

sub-tree to node n.
− if user s holds the update privilege on node n then user s has the right to update

node n (i.e. change its label).
− if user s holds the delete privilege on node n then user s has the right to delete the

sub-tree of which node n is the root.

Privileges should not be confused with operations. Operations need privileges to
complete. For example, both xupdate:append and xupdate:insert-before need the
insert privilege to complete.

Due to space limitation, we cannot represent the security administration model. In
particular, we cannot state the policy constraining the management of users, roles and
security rules. We cannot also represent any kind of delegation mechanism, whereas
in [10] we included the privilege to transfer privileges. This privilege is referred to as
the grant option in SQL.

Let us now consider the example of security policy defined by axiom 13. First rule
states that staff members have the privilege to read the whole document. Second rule
partially denies that right from secretaries. Indeed, secretaries are denied the right to see
diagnosis. However, rule 3 states that secretaries may know whether the patient was
diagnosed or not. Rule 4 and rule 5 state that patients may access their own medical file
($USER is a variable containing the session user login name). Rule 6 and rule 7 state that
epidemiologists are forbidden to see patient names. Rule 8 states that secretaries may
insert new medical files. Rule 9 states that secretaries may update patient names. Rules
10, rule 11 and rule 12 state that doctors can pose/update/delete a diagnosis.

1. rule(accept,read,//*,staff,10),

2. rule(deny,read,//diagnosis/*,secretary,11),

3. rule(accept,position,//diagnosis/*,secretary,12),

4. rule(accept,read,/patients,patient,13),

5. rule(accept,read,/pa

P=

[]

()

()

tients/descendant-or-self::* $USER ,patient,14)

6. rule deny,read,/patients/*,epidemiologist,15

7. rule accept,position,/patients/*,epidemiologist,16

8. rule(accept,insert,/patients,secretary,17),

9. rule(accept,update,/patients/*,secretary,18),

10. rule(accept,insert,//diagnosis,doctor,19),

11. rule(accept,update,//diagnosis/*,doctor,20),

12. rule(accept,delete,//diagnosis/*,doctor,21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎬⎪ ⎪⎩ ⎭

(13)

A Formal Access Control Model for XML Databases 97

From practical point of view, we assume that the security administrator inserts
these rules one by one. The last issued command has the priority over the previous
ones and possibly cancels them. The timestamp indicating when the command was
issued plays the priority role. For example, rule 1 which says that staff members have
the permission to see the whole document is partially cancelled by rule 2 which
partially denies that right to some staff members (secretaries).

Set RP includes the following axiom allowing us to solve the conflicts between the
rules and to derive the actual privileges held by each subject:

() () ()

() ()
() ()

()

s s r p t n v, isa s, s rule accept, r, p, s , t xpath p, n, v

isa s, s rule deny, r, p , s , t
s p t , perm s,n,r

xpath p ,n, v t t

′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

⎛ ⎞′′ ′ ′′ ′∧ ⎟⎜ ⎟⎜ ⎟′′ ′ ′ ⎜∧¬∃ ∃ ∃ →⎟⎜ ⎟⎜ ⎟′ ′∧ ∧ > ⎟⎜⎝ ⎠

(14)

This axiom says that if there is an accept rule applying to privilege r, subject s
and node n and if there is no subsequent deny rule applying to privilege r, subject s
and node n then subject s holds privilege r on node n.

4.4 Access Controls

4.4.1 Read Access Controls
The purpose of this section is to define link axioms allowing us to derive the view of
the source document that subjects are permitted to see. Each view is represented by a
logical theory. Let us denote by s the current session user. Let us denote by view the
theory representing the view that user s is permitted to see. The view access control
strategy of our model can be informally described as follows:

− A node n is selected by the view access control mechanism if user s holds either a
read or a position privilege on node n and the parent of node n is itself a selected
node. Axioms 15, 16 and 17 implement that principle. The fact that a node requires
its parent to be selected, in order for it to be selected, shows that the view is a
pruned version of the source document.

− A selected node for which user s holds only the position privilege is shown with
the RESTRICTED label. Axiom 17 implements that principle.

Note that selected nodes are not renumbered in the view. This cannot lead to
inference channels since numbers are for internal processing only and are not visible
to users.

The following formula allows us to derive facts belonging to the view user s is
permitted to see:

()viewnode /,/ (15)

This formula says that ()viewnode /,/ always belong to the view regardless of user

privileges.

() () () ()
()

db db view

view

n v n v s, node n, v logged(s) perm s,n, read child n, n ' node n , v

node n, v

′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧ ∧ ∧

→
 (16)

A. Gabillon 98

This formula says that if the current session user has the permission to read node n
with label v and if the parent of node n is itself a selected node then the access control
mechanism selects node n with label v.

() ()

() () () ()

db

db view view

n v n v s, node n, v logged(s) perm s, n, position

perm s,n, read child n, n ' node n , v node n,RESTRICTED

′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧

′ ′∧¬ ∧ ∧ →
 (17)

This formula says that if current session user has the permission to know the
existence of node n and if the parent of node n is itself a selected node then the access
control mechanism selects node n with label RESTRICTED. If the session user also
holds the read privilege then this axiom does not apply.

− ()logged s , reads “s is the current session user”

Axioms 15, 16 and 17 can, of course, be implemented by a tree traversal algorithm. In
[10], we give such an algorithm.

We can now derive the view of the sample source database (see axiom 1) each
subject is permitted to see.

View for secretaries is the following:

() () () () ()

() ()
1 2 3 4

5 6 7

node /,/ , node n ,patients , node n ,franck , node n ,service ,node n ,otolarynology ,

node n ,diagnosis ,node(n ,RESTRICTED), node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
…

Secretaries can see everything except the content of diagnosis elements. If the
diagnosis is posed, then they are provided with the RESTRICTED label.

View for patient Robert is the following:

() () () () ()

() ()
1 7 8 9

10 11

node /,/ , node n ,patients , node n ,robert , node n ,service ,node n ,pneumology ,

node n ,diagnosis , node n ,penumonia

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

Robert is the current session user. As a patient he has access to its medical file only.
View for epidemiologists is the following:

() () () ()

() () ()
1 2 3

4 5 6 7

node /,/ , node n ,patients , node n ,RESTRICTED ,node n ,service ,

node(n ,otolarynology), node n ,diagnosis , node n ,tonsillitis , node n ,RESTRICTED

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
…

Epidemiologists can see everything except patient names.
Doctors can see everything without restriction. Therefore, view for doctors

includes the whole database represented by axiom 1.

4.4.2 Write Access Controls
The purpose of this section is to define the link axioms allowing us to derive the new
database content after an update. The link axioms must take into account the
privileges of the user performing the update.

Each XUpdate operation requires the path PATH parameter to select nodes to update.
In order to avoid the vulnerability we described in section 2.2, we require nodes to
update to be selected on the view the user is permitted to see. This has the following
implications:

A Formal Access Control Model for XML Databases 99

− Users cannot perform write operations on nodes they cannot see.
− Since users express XUpdate operations by looking at their view, PATH parameter

might include some node tests equal to RESTRICTED.

Note that only the “selecting nodes” step is performed on the view. Thanks to their
numbers, corresponding database nodes are then retrieved and updated.

Let s be the current session user submitting the XUpdate operation. Let n be one of
the nodes selected by PATH.

− xupdate:rename: user s needs the update privilege on node n.
− xupdate:update: user s needs the update privilege on the child node of node n.
− xupdate:append: user s needs the insert privilege on node n.
− xupdate:insert-before: user s needs the insert privilege on the parent of

node n.
− xupdate:insert-after: user s needs the insert privilege on the parent of node n.
− xupdate:remove: user s needs the delete privilege on node n.

Before defining the link axioms allowing us to derive the new database after an
update, we need to consider the following issues:

− Each XUpdate operation may address several nodes via the PATH parameter.
Depending on the privileges held by the user submitting the operation, the XUpdate
operation may succeed for some nodes and fail for others.

− Let us consider an xupdate:rename operation addressing a node n. Let us assume
node n is shown in the user’s view with a RESTRICTED label. Since renaming node n
would update the original label that the user is not permitted to see, we enforce that
nodes which are shown with RESTRICTED label cannot be updated.

− Let us consider the xupdate:update operation. This operation requires that the
user holds the update privilege on the child of each selected node n. In fact, the
xupdate:update operation on node n is equivalent to the xupdate:rename
operation on the child of node n. Therefore, the child of node n has to belong to the
user’s view with its original label, that is, the user needs to hold the read privilege
on node n.

− Let us consider an xupdate:remove operation addressing a node n. If the user
removes node n then he actually deletes the subtree of which node n is the root.
Some of the nodes which belong to that subtree may not be visible (i.e. may not
belong to the user’s view). Shall we reject the operation if some nodes of the
deleted subtree do not belong to the user’s view? On one hand, it would preserve
the integrity of data the user is not permitted to see. On the other hand, it would
reveal to the user the existence of data she is not permitted to see. In fact there is
no definite answer to this question. This is typically a case of conflict between
confidentiality and integrity. In this paper, we prefer to emphasize the
confidentiality that is the remove operation is accepted (see axiom 25).

Link axioms allowing us to derive the new database after an update are given below.
Note that for each axiom we use the xpathview predicate for selecting nodes to update
from the view:

A. Gabillon 100

xupdate:rename: We need to adapt axioms 2 and 3 as follows:

()
()

()
()

view

db dbnew

xpath , n, v logged(s)
n v s, node n, v node n, v

perm s, n, update

⎛ ⎞∧ ⎟⎜ ⎟⎜ ⎟∀ ∀ ∀ ∧ ¬ →⎜ ⎟⎜ ⎟∧⎜ ⎟⎜⎝ ⎠

PATH

(18)

Label of nodes which are not addressed by PATH or for which the current session
user does not hold the update privilege are not updated.

() () ()view dbnew
n v s, xpath , n, v logged(s) perm s,n, update node n,∀ ∀ ∀ ∧ ∧ → NEWPATH V (19)

Label of nodes which are addressed by PATH and for which the current session user
holds the update privilege are updated to VNEW.
xupdate:update: We need to adapt axioms 4 and 5 as follows:

()
() ()

()

()

view view

db

dbnew

xpath , n , v child n, n
n v s, node n, v n v ,

logged(s) perm s,n, update perm(s, n, read)

node n, v

⎛ ⎞′ ′ ′∧ ⎟⎜ ⎟⎜ ⎟′ ′∀ ∀ ∀ ∧ ¬∃ ∃ ⎜ ⎟⎜ ⎟⎜ ⎟∧ ∧ ∧ ⎟⎜⎝ ⎠

→

PATH

(20)

Label of nodes whose parent is not addressed by PATH or for which the current
session user does not hold both the update privilege and the read privilege are not
updated.

() ()
() ()

view view

dbnew

n v n v s, xpath , n , v child n, n logged(s)

perm s,n, update perm(s, n, read) node n,

′ ′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧

∧ ∧ → NEW

PATH

V
 (21)

Label of nodes whose parent is addressed by PATH and for which the current
session user holds both the update and the read privilege are updated to VNEW.
xupdate:append: We only need to adapt axioms 7:

() () ()

()
view

dbnew

n v n v n s, xpath , n, v logged(s) perm s,n, insert

create_number(n, n ,append,n '') node n , v

′ ′ ′′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧ ∧

′ ′′ ′→

TREEnode n , v PATH
 (22)

The tree to insert shall appear as the last subtree of each node selected by PATH for
which the current session user holds the insert privilege.
xupdate:insert-before: We need to adapt axiom 7 as follows:

() () ()

()

()

view view

dbnew

n v n v n f s, xpath , n, v child n, f

logged(s) perm s, f, insert create_number(n, n , insert-before, n '')

node n , v

′ ′ ′′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

′∧ ∧ ∧

′′ ′→

TREEnode n , v PATH

 (23)

The tree to insert shall appear as the preceding sibling subtree of each node n
selected by PATH provided the current session user holds the insert privilege on the
parent node of n.
xupdate:insert-after: We need to adapt axiom 7 as follows:

A Formal Access Control Model for XML Databases 101

() () ()

()

()

view view

dbnew

n v n v n f s, xpath , n, v child n, f

logged(s) perm s, f, insert create_number(n, n , insert-after, n '')

node n , v

′ ′ ′′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

′∧ ∧ ∧

′′ ′→

TREEnode n , v PATH

 (24)

The tree to insert shall appear as the following sibling subtree of each node n
selected by PATH provided the current session user holds the insert privilege on the
parent node of n.
xupdate:remove: We only need to adapt axiom 9:

()

()
()

()
()

db

db view db

descendant_or_self n, n

n v s, node n, v n v , xpath , n , v undeleted n, v

logged(s) perm s,n , delete

⎛ ⎞′ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′ ′∀ ∀ ∀ ∧ ¬∃ ∃ ∧ →⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′∧ ∧⎜ ⎟⎜⎝ ⎠

PATH (25)

This formula says that nodes which are not deleted are the nodes which do not
belong to a subtree that the current session user has the permission to delete and
whose root is addressed by PATH.

5 Conclusion

In this paper, we gave the formal definition of a secure XML database. We represented
the database content, the query language, the modification language, the subject
hierarchy, the security policy and the access controls.

All the logical formulae given in this paper are Horn clauses. Based on these
clauses, we wrote a prototype in Prolog simulating a secure XML database. The
prototype includes a small database, an XPath and XUpdate interpreter, a sample
subject hierarchy, a sample security policy and the access control formulae. It can be
downloaded from http://www.univ-pau.fr/~gabillon/xmlsecu. The purpose of
this prototype was simply to validate the correctness of the axioms given in this paper.
The prototype uses our own numbering scheme [12] which does not require
renumbering nodes after an update.

We are also currently implementing an XSLT-based [5] security processor based on
our model, on top of a native XML database (Xindice [23]).

In [9], the authors suggest applying filters reflecting the user privileges on the
queries and then evaluating the queries on the source document. We are also
investigating the possibility of using this approach. However, before applying this
solution, we have to make sure that we can express query filters providing us with
answers compatible with the authorized views. In particular, we have to investigate
how answers to filtered queries could include RESTRICTED labels. This is further work
related to implementation that remains to be done.

Acknowledgment

The author would like to thank Emmanuel Bruno and the anonymous referees for
fruitful comments about the paper.

A. Gabillon 102

References

[1] E. Bertino, S. Castano, E. Ferrari and M. Mesiti. "Specifying and Enforcing Access
Control Policies for XML Document Sources". World Wide Web Journal, vol. 3, n. 3,
Baltzer Science Publishers. 2000.

[2] T. Bray et al. "Extensible Markup Language (XML) 1.0". World Wide Web Consortium
(W3C). http://www.w3c.org/TR/REC-xml (October 2000).

[3] E. Bruno, J. Le Maitre and E. Murisasco, "Extending XQuery with Transformation
Operators", Proceedings of the 2003 ACM Symposium on Document Engineering
(DocEng 2003), ACM Press, Grenoble, France, November 20-22 2003, pp. 1-8. [Réf.
F75].

[4] J. Clark and Steve DeRose . "XML Path Language (XPath) Version 1.0". World Wide
Web Consortium (W3C). http://www.w3c.org/TR/xpath (November 1999).

[5] J. Clark. "XSL Transformations (XSLT) Version 1.0". World Wide Web Consortium
(W3C). http://www.w3c.org/TR/xslt (November 1999).

[6] Cohen, E., Kaplan, H. and Milo, T. (2002): Labelling dynamic XML trees, in
Proceedings of PODS 2002.

[7] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, "Securing XML
Documents,'' in Proc. of the 2000 International Conference on Extending Database
Technology (EDBT2000), Konstanz, Germany, March 27-31, 2000.

[8] Maggie Duong and Yanchun Zhang. LSDX: A New Labelling Scheme for Dynamically
Updating XML Data. In proc of ACSW2005 – 16th Australasian Database Conference.
Newcastle, Australia.

[9] I. Fundulaki and M. Marx. "Specifying Acces Control Policies for XML Documents with
XPath". In ACM Symp. on Access Control Models and Technologies (SACMAT), 2004.

[10] Alban Gabillon. "An Authorization model for XML databases''. Proc. of the 11th ACM
Conference on Computer Security (Workshop Secure Web Services). George Mason
University, Fairfax, VA, USA. October 2004.

[11] Alban Gabillon and Emmanuel Bruno. "Regulating Access to XML documents''.
Fifteenth Annual IFIP WG 11.3 Working Conference on Database Security. Niagara on
the Lake, Ontario, Canada July 15-18, 2001.

[12] Alban Gabillon and Majirus Fansi. "A Persistent Labelling Scheme for XML and tree
Database''. Submitted to the IEEE International Conference on Signal-Image Technology
& Internet- Based Systems 2005.

[13] M. Kudo and S. Hada. "XML Document Security based on Provisional Authorisation".
Proceedings of the 7th ACM conference on Computer and communications security.
November, 2000, Athens Greece.

[14] C. Lim, S. Park, and S. H. Son, "Access Control of XML Documents considering Update
Operations" ACM Workshop on XML Security, Fairfax, VA, Oct. 2003

[15] A. Laux et L. Martin. XML Update (XUpdate) language. XML:DB working draft,
http://www.xmldb.org/xupdate. September 14, 2000

[16] R. Reiter. "Toward a logical reconstruction of relational database theory". In On
Conceptual Modelling: Perspectives from Artificial Intelligence, Databases and
Programming Languages. Springer Verlag, 1983

[17] R. Sandhu. ''Role-Based Access Control''. Advances in Computers. Vol 48. Academic
Press. 1998.

[18] A. Stoica and C. Farkas, “Secure XML Views,” In Proc. 16th IFIP WG11.3 Working
Conference on Database and Application Security, 2002.

A Formal Access Control Model for XML Databases 103

[19] R. Sandhu and S. Jajodia. Polyinstantiation for cover stories. In European Symposium on
Research in Computer Security. Toulouse, France.1992. Springer Verlag.

[20] Gargi M. Sur, Joachim Hammer, and Jerome Simeon, "UpdateX - An XQuery-Based
Language for Processing Updates in XML." International Workshop on Programming
Language Technologies for XML (PLAN-X 2004), Venice, Italy, January 2004.

[21] Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E. and Zhang:
Storing and Querying Ordered XML Using a Relational Database System, in Proceedings
of SIGMOD 2002.

[22] I. Tatarinov, Zachary G. Yves, Alon Y. Halevy, Daniel S. Weld. “Updating XML”. In
ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA.

[23] Apache software foundation. Xindice, http://xml.apache.org/xindice.
[24] Yu, X. J., Luo, D., Meng, X. and Lu, H.: Dynamically Updating XML Data: Numbering

Scheme Revisited, in World Wide Web: Internet and Web Information System, 7, 2004.

Can Attackers Learn from Samples?

Ganesh Ramesh

Department of Computer Science,
University of British Columbia,

201-2366 Main Mall, Vancouver, B.C. V6T 1Z4
ramesh@cs.ubc.ca

Abstract. Sampling is often used to achieve disclosure limitation for
categorical and microarray datasets. The motivation is that while the
public gets a snapshot of what is in the data, the entire data is not re-
vealed and hence complete disclosure is prevented. However, the presence
of prior knowledge is often overlooked in risk assessment. A sample plays
an important role in risk analysis and can be used by a malicious user
to construct prior knowledge of the domain. In this paper, we focus on
formalizing the various kinds of prior knowledge an attacker can develop
using samples and make the following contributions. We abstract various
types of prior knowledge and define measures of quality which enables
us to quantify how good the prior knowledge is with respect to the true
knowledge given by the database. We propose a lightweight general pur-
pose sampling framework with which a data owner can assess the impact
of various sampling methods on the quality of prior knowledge. Finally,
through a systematic set of experiments using real benchmark datasets,
we study the effect of various sampling parameters on the quality of prior
knowledge that is obtained from these samples. Such an analysis can help
the data owner in making informed decisions about releasing samples to
achieve disclosure limitation.

1 Introduction

Data owners often face situations where sharing their data is either a necessity
or will yield some kind of benefit. The problem with sharing is the breach of
privacy caused by revealing sensitive information in the data. Various methods
have been proposed to deal with this problem. Techniques like transformations,
random data perturbations and k-anonymization, modify the data in such a
way that sensitive information is either suppressed or modified to prevent being
disclosed (or inferred). One of the techniques that is used as an alternative to
sharing the entire database, is to release a small sample of the database: the main
motivation being that while the public gets a snapshot of the kind of data that
exists in the actual database, it is unlikely that a user can create accurate models
of the original data using a small sample of the database. Moreover, in many
practical domains, it is not very difficult for a casual observer to obtain a sample
of data. For example, an observer of a market basket can casually note down the
contents of a basket and later relate them with the barcodes of the product to

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 104–123, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Can Attackers Learn from Samples? 105

construct a sample of market basket data. Similarly, a casual observer can note
down the contents of an online shopper and note down the contents of an online
store’s transaction database. While this may be unethical in an ideal situation,
malicious users will go to any extent to obtain knowledge of the domain they
intend to attack. Hence, a sample plays an important role in the analysis of risk
in information sharing. While similar analysis exists for other transformation
techniques, this paper focusses on sampling. Typically, the sample is used by
malicious users to construct statistical knowledge of the domain, also called as
prior knowledge, with which the attacker can try to identify sensitive information
in the actual database. In this work, we focus on formalizing what kinds of prior
knowledge the attacker can develop, using the information in the sample and how
good such knowledge is based on the parameters of the sample. Such an analysis
can help the data owner in making a self assessment of the risk involved in releas-
ing a sample of the database to the public or in sharing a sample of the database.

More specifically, we make the following contributions. We abstract various
types of prior knowledge a malicious user can construct from a sample and
formalize them (section 3.1). These include knowledge of the actual frequency of
the items in the database, knowledge about the interval in which the frequency
of an item can lie in, knowledge about how the frequency of an item relates to
the frequency of other items and so on. We define various measures of quality
which enables one to quantify how good the prior knowledge is with respect to
the actual true knowledge in the database (section 3.2). We propose a general
purpose lightweight sampling framework with which a data owner can assess
the impact of various sampling parameters on the quality of prior knowledge
(section 4). We study various types of sampling: Single sample with and without
replacement and bootstrap sampling where the master sample may be drawn
with or without replacement. We also propose methods with which attackers
or data owners (for self assessment) can construct prior knowledge from these
samples. Finally, through a rigorous experimental analysis using real benchmark
datasets, we present the effect of various sampling parameters on the quality of
prior knowledge that is obtained from the samples (section 5).

1.1 Research Questions

An informal list of problem statements addressed in this paper is given below.
1. Suppose that a sample of the database is released, what are the various types
of knowledge an attacker can construct from this sample? 2. How close is the
knowledge constructed from the sample to the true knowledge that is present in
the database? 3. Does it matter how the sample is drawn from the database? 4.
How do the parameters like sample size affect the knowledge that is constructed
from the sample?

2 Related Work

A predominant amount of work in disclosure limitation like [15,11,10] focus on
applying statistical disclosure limitation methods for categorical and microarray

106 G. Ramesh

datasets. A number of techniques like cell suppression, data swapping, rounding,
sampling, anonymization and synthetic data generation are used for achieving
statistical disclosure control. Many of these methods perturb the characteristics
of the data in the process of limiting disclosure.

Privacy has been studied in the context of association rule mining. In [9],
Evfimievski et al. propose a framework for mining association rules in which
the data items in transactions are randomized to preserve privacy of individual
transactions. They analyze the nature of privacy breaches caused by using the
association rules discovered from this database and propose randomization op-
erators to limit such breaches. The problem of hiding association rules by trans-
forming the input database is studied by Verykios et al. in [19]. The authors are
interested in modifying the input database such that a given set of associations
is hidden in the transformed database. They assume that the associations to be
hidden are pre-marked and use heuristics to transform the database in order to
hide the marked associations. All these studies, however, do not deal with prior
knowledge that can be constructed by an attacker.

In [4], Agrawal and Srikant propose an approach for privacy preserving classi-
fication that is based on mining on perturbed data, with the perturbed distribu-
tion closely matching the real distribution. Furthermore, Agrawal and Aggarwal
in [5] discuss an expectation maximization algorithm which provides robust es-
timates of the original distribution based on perturbation and provides some
interesting results on the relative effectiveness of different perturbing distribu-
tions in terms of privacy. In [12], Iyengar uses the approaches of suppression
and generalizations to satisfy privacy constraints. In [2], Aggarwal and Yu use
an approach based on condensation groups to model indistinguishability of data
records and use it to create anonymized data which has similar characteristics
to the original multidimensional dataset and apply it to the classification prob-
lem. Cryptographic techniques for privacy preserving data mining have been
explored in [13]. Finally, the k-anonymity model studied in [17,18,3,16] uses
domain generalization hierarchies in order to transform and replace each record
value with a corresponding generalized value. In sum, all these studies focus
on perturbing the data so that the results of data mining the perturbed data
remain similar to the original data. Privacy has also been studied in the con-
text of statistical databases. The security problem in statistical databases deals
with protecting a database from returning information about an individual or
answering a sequence of queries from which individual information can be de-
duced, where the statistical databases allow only queries that retrieve statistical
information. These methods are characterized in the survey [1].

Laks et al. [14] consider the problem of assessing the risk in disclosing
anonymized data in the presence of prior knowledge. They model prior knowl-
edge through belief functions and depending on how much the attacker knows
about the domain, the belief functions are categorized as ignorant, point-valued
and interval belief functions. They also use a notion of compliancy to model
how accurately the frequency of an item can be guessed by an attacker and
use the analysis to come up with a recipe based on which data owners can de-

Can Attackers Learn from Samples? 107

cide whether to release their anonymized data or not. While [14] considers prior
knowledge obtained through samples, this work differs from them in two ways.
First, the types of prior knowledge we consider are different. Second, the focus
of this work is to see how accurate prior knowledge obtained from samples are
as opposed to helping a data owner resolve the dilemma of disclosure. Also, we
evaluate the impact of various sampling methods on the accuracy of prior knowl-
edge. The main motivation for this study was however derived from their work.
Finally, Clifton [7] argues that releasing a small sample poses no threat to the
data owner as little information can be revealed. We discuss the implications of
our work on this statement later on in the paper.

3 Preliminaries

We consider a universal set I of n items. A subset X ⊆ I is called an item-
set. A transaction t is a nonempty itemset. A database D = 〈t1, . . . , tm〉 is a
nonempty sequence of transactions. Each transaction is identified by a unique
identifier called the transaction identifier or tid. For the rest of this paper, we
use nonnegative integers to represent items and tids. The tid for transaction ti
will be i and I will be identified with the set {1, 2, . . . , n}. The size of an itemset
X ⊆ I is the cardinality of the itemset |X|. An itemset of size k will be re-
ferred to as a k-itemset. The size of a database D denoted |D|, is the number of
transactions in D.

A transaction t contains an itemset X, whenever X ⊆ t. The support
of itemset X in D, denoted π(X,D), is the number of transactions in D that
contain X, i.e |{t ∈ D | X ⊆ t}|. The frequency of an itemset X in the database
D, denoted F(X,D) is the fraction of transactions in D that contain X. More
formally, F(X,D) = |{t∈D|X⊆t}|

|D| = π(X,D)
|D| .

Often in practice, many situations do not attach the same degree of impor-
tance to every item in the universe I. To model this case, we define a weight
function w : I → IR, that associates a real number with each item in I. For
consistency, we assume that the weights are assigned in such a way that the
higher the value, the more important the item is. The other cases can be han-
dled analogously.

A random sample S of the database is a set of transactions drawn from the
database D uniformly at random. For the purposes of our discussion, it is enough
to keep in mind that a sample is usually smaller than the size of the database.
The size of the sample is denoted as |S| and is the number of transactions in the
sample. A k%-sample is a sample S such that |S| = k

100 .|D|, i.e. the number of
transactions in the sample is k% of the number of transactions in the database.

3.1 Prior Knowledge

When samples are released, an attacker can use the information in the sample
to gather domain knowledge. As the attacker builds such knowledge prior to
using them for inferring more about sensitive data, we refer to such knowledge

108 G. Ramesh

as prior knowledge. For the rest of the paper, by prior knowledge, we refer to
the information gained by the attacker, by analyzing a sample of data that is
released by any data owner. While it is always likely that an attacker can build
and use prior knowledge in arbitrary ways, for the purposes of this work, we are
interested in the following types of prior knowledge.

Definition 1 (Frequency Knowledge). The first type of knowledge is that of
frequency of individual items. Depending on the type of knowledge constructed
by the attacker, we classify the frequency knowledge into two types: exact and
interval, which we define below.

1. We say that the attacker has exact frequency knowledge, denoted K◦, when
the prior knowledge associates every item x ∈ I with a frequency value in
[0, 1]. More formally, K◦ is a function that maps every item x ∈ I to a real
number in the interval [0, 1]. Thus, when the attacker has exact frequency
knowledge K◦, then it is the attacker’s belief that K◦(x) is the frequency of
item x ∈ I in the database.

2. We say that the attacker has interval frequency knowledge, denoted K[],
whenever the prior knowledge associates every item x ∈ I with an interval
[lx, rx], where 0 ≤ lx ≤ rx ≤ 1. Thus, when the attacker has interval fre-
quency knowledge K[] as prior knowledge, then it is the attacker’s belief that
the frequency of the item x ∈ I in the database lies in the range given by
K[](x).

The notion of exact and interval frequency knowledge can be used to model
the confidence an attacker has in the frequency of items. For an item whose fre-
quency is precisely known, an attacker may associate a single value of frequency
to its prior knowledge. However, for an item whose frequency is unknown, the at-
tacker may wish to associate the most general interval in which the frequency can
lie, namely [0, 1]. The interval frequency knowledge can be used to model such
precision, as exact knowledge is precisely the interval [l, l] (if l is the attacker’s
knowledge of the frequency of an item x).

Example 1. Let us consider the case when I = {1, 2, 3, 4, 5}. An example of K◦

is given by the function K◦(1) = 0.2,K◦(2) = 0.3,K◦(3) = 1,K◦(4) = 0,K◦(5) =
0.7. This models the case where the attacker believes that the frequency of item
1 in the database is 0.2 or 20%, the item 4 does not occur in the database, item
3 occurs in every transaction in the database and so on. An example of K[] is
given by K[](1) = [0.1, 0.5],K[](2) = [0.35, 0.45],K[](3) = [0.5, 0.5],K[](4) =
[0, 1],K[](5) = [0.6, 0.6].

Apart from frequency, the attacker can also use the relative order of the
frequency of items. We model the prior knowledge of the order of frequency of
items as follows.

Definition 2 (Frequency Order Knowledge). The frequency order knowl-
edge of an attacker, denoted K≺, is an ordered partition (PI , <) defined as fol-
lows. PI = {P1, . . . , Pk} is a partition of the set of items I. Thus,

⋃k
i=1 Pi = I

Can Attackers Learn from Samples? 109

and Pi ∩ Pj = ∅ for 1 ≤ i < j ≤ k. The partitions contain items whose frequen-
cies are believed to be identical by the attacker. There is an additional ordering
of these partitions defined by the ordering <. The ordering Pi < Pj models the
attacker’s belief that the frequency of items in partition Pi is less than the fre-
quency of items in partition Pj. This is assumed to be a partial order and hence,
if two partitions are incomparable according to <, this models the user’s lack
of knowledge about how to compare the frequency of items in partitions Pi and
Pj. We can also think of K≺ as an edge labelled graph GK≺ = (I, E) with two
types of labels {=, <}. There is an edge labelled ′′ =′′ between x ∈ I and y ∈ I,
whenever x and y belong to the same partition Pi ∈ PI . There is an edge labelled
′′ <′′ between x ∈ I and y ∈ I whenever there exists two partitions Pi and Pj

such that x ∈ Pi, y ∈ Pj and Pi < Pj.

Definition 3 (Rank of an Item and Rank Knowledge). Let I be a universe
of items and let F(x,D) be the frequency of item x in database D. Let F be the
set of distinct frequency values of the items in D. The rank of an item x is the
number of frequency values in F that is greater than orq equal to x’s frequency
in the database. More formally, F = {f | ∃x ∈ I : F(x,D) = f}. The rank of
item x ∈ I, denoted rank(x,D) = |{f | (f ∈ F) ∧ (f ≥ F(x,D))}|.

We say that an attacker has Rank Knowledge, denoted Kpos, when the prior
knowledgeassociates an itemx ∈ I withapositive integer in the range{1, 2, . . . , |I|}.
This models the fact that the attacker believes the rank of item x ∈ I in the database
to be Kpos(x).

From definition 3, it is easy to see that the most frequent items in a database
are assigned a rank of 1, the next most frequent items are assigned a rank of
2 and so on. In practice, the attacker can determine the rank of items from a
sample of the dataset and use it as prior knowledge. Unlike the Frequency Order
Knowledge, the Rank Knowledge need not necessarily associate every item with
a rank. It may map a subset I ′ ⊂ I of items to a rank value (hence a partial
function). Note that we can also generalize the Rank Knowledge to a range of
rank values instead of a single value. This is a natural generalization to the
belief that the rank of an item lies between l and r, where l and r are valid
rank values (between 1 and |I|). It should be noted that the actual ranks of
items in the original database may be entirely different from those assigned
to them by an attacker. This is understandable, as the attacker bases prior
knowledge on a sample of data. As an example, the frequencies of items may be
distributed in such a way that there are two partitions of the items in groups
of two frequencies and hence have ranks 1 and 2 respectively. However, the
attacker’s prior knowledge may be that every item has a distinct frequency and
hence a distinct rank value in the range {1, 2, . . . , |I|}.
Example 2. Figure 1(a) gives an example of Frequency Order Knowledge for a
set of 5 items I = {1, 2, 3, 4, 5}. The knowledge is shown pictorially and contains
4 partitions. P2 = {3, 5} is the only partition containing more than 1 item, while
P1 = {1}, P3 = {2} and P4 = {4} are the other partitions. The partitions model
the attacker’s belief that items 3 and 5 have the same frequency and the other

110 G. Ramesh

1

5 3

1

4P3 2 P4

P2

P

(a) Four Groups

5 3

1

P2

P1

4 2P3 P4

6 P5

(b) Five groups

Fig. 1. Example of Frequency Order Knowledge

items have distinct frequencies in the database. The ordering of frequencies is
represented by directed edges between the various partitions. Thus, the attacker
believes that the frequency of item 1 is less than those of items 3 and 5, the
frequency of items 3 and 5 are less than those of 2 and 4, respectively. Note that
the attacker has no idea how to compare the frequencies of 2 and 4 and hence
they are incomparable. The frequency of item 1 is less than that of items 2 and
4 respectively, by transitivity. Figure 1(b) gives another example of frequency
order knowledge. It is the same as the one in figure 1(a), except for the fact that
there is an additional item, numbered 6 whose frequency is believed to be less
than those of items 2 and 4, greater than item 1 but for which the attacker has
no idea how the frequency relates to those of items 3 and 5.

All the types of prior knowledge we have discusses thus far, associate sta-
tistical knowledge to items. The following type of prior knowledge captures the
belief an attacker has about what the most frequently occurring items are.

Definition 4 (TOP-K Knowledge). Given a value of k ≤ |I|, the TOP-K
Knowledge, denoted topK is a subset I ′ ⊆ I, such that |I ′| = k. This models the
attacker’s prior belief that the top k most frequent items in the database is given
by the set I ′. Alternately, the value of k can be specified as a percentage. In this
case, the Top-K knowledge, denoted topK%, deals with a fraction k

100 of items.

Example 3. TheTop-Kknowledge topK = {2, 5}, fork = 2,overI = {1, 2, 3, 4, 5},
models the fact that the attacker believes that items 2 and 5 are the two most fre-
quently occurring items in the database. This is also the same as topK%(40) as 40%
of I is 2.

Note that when two items have the same frequency and the value of k is
such that only one of them can be in the set of top k items, then the ties
can be broken arbitrarily. However, for correctness, each of these top k sets are
considered correct.

Can Attackers Learn from Samples? 111

3.2 Measuring Quality of Prior Knowledge

Let us assume that the attacker has access to a sample S of the original database
D. The attacker can use the sample to construct any (or all) of the types of
knowledge that were defined in section 3.1. How close is the attacker’s knowledge
to the original facts in the database? To quantify this, we define measures of
quality of the prior knowledge. As an example, if the attacker believes that the
frequency of item x is 0.5 and the actual frequency of item x is 0.55 in the
database, then the attacker has a better knowledge of the frequency of x than if
the attacker believes that the frequency of item x is 0.3. The measure of quality
allows us to determine which types of knowledge are close to the actual knowledge
(and hence bad for the owner of the data but good for the attacker). We define
and formalize measures of quality with the various types of prior knowledge that
were defined earlier.

Definition 5 (Mean Frequency Difference). Let K◦ be the exact frequency
knowledge of an attacker over the set I of items. Let F(x,D) be the frequency
of item x ∈ I in the database and let w : I → IR be a weight function associated
with I. Then, the (weighted) mean frequency difference, denoted ∆, measures
the average absolute difference in frequencies of the prior knowledge and the
actual frequency of items in I. More formally,

∆ =
1
|I| .

∑

x∈I

|K◦(x) −F(x,D)|
w(x)

(1)

The weighted mean frequency difference ∆, measures how far the frequency
of items are from their original frequency values in the database. The higher the
value of ∆, the poorer the quality of prior knowledge.

Definition 6 (Compliancy and Mean Compliant Interval Width). Let
K[] be the interval frequency knowledge of an attacker. An item x is said to
be compliant whenever F(x,D) ∈ K[](x). Thus, Compliant items are those
items whose frequency intervals modelling prior knowledge, contain the actual
frequency in the database. Let C(I,K[],D) be the set of compliant items defined
as C(I,K[],D) = {x|F(x,D) ∈ K[](x)}. The mean compliant interval width
measures the average width of the attacker’s belief for each compliant item and
is defined as

MCIW =
1

|C(I,K[],D)| .
∑

x∈C(I,K[],D)

|K[](x)| (2)

Let w be the weight function on I. Then, we define the weighted interval com-
pliancy measure as

WIC =
∑

x∈C(I,K[],D)

w(x)
|K[](x)| (3)

Note that MCIW by itself, may not be appropriate to say that the interval
frequency knowledge of an attacker is of good quality. We need to consider

112 G. Ramesh

it along with the number of compliant items in order to measure quality. For
example, in the first case, there may be 1 compliant item whose interval is of
width 0.3 and in the second case, there may be 2 compliant items whose average
width is 0.35. The interval width in the first case may be smaller but the number
of items on which the attacker has reasonably good knowledge is only 1 in the
first case, while it is 2 in the second case. Hence, we need to take these two kinds
of knowledge together to determine the quality. This is done using the weighted
interval compliancy measure, which accounts the importance of the item and
the confidence with which the attacker can know the frequency of this item. The
higher this measure, the greater the quality of knowledge of the attacker.

Definition 7 (Order Compliancy). Let K≺ be the frequency order knowledge
of an attacker and let GK≺ be the corresponding graph. We say that an edge
e(x, y) ∈ E(GK≺) is order compliant, whenever any of the following conditions
are satisfied:

– e(x, y) is labelled ′′ =′′ and F(x,D) = F(y,D)
– e(x, y) is labelled ′′ <′′ and F(x,D) < F(y,D)

More formally, the set of order compliant edges are defined as: EC = {e(x, y) ∈
E(GK≺) | ((l(e) =′′=′′) ∧ (F(x,D) = F(y,D))) ∨ ((l(e) =′′<′′) ∧ (F(x,D) <
F(y,D)))} The Order Compliancy Measure, denoted OCM is defined as

OCM =
|EC|

|E(GD)| (4)

where, E(GD) is the set of edges in the graph representing the order in the actual
database.

Note that the set EC is the set of all edges for which the order knowledge of
the attacker is consistent with the order of the frequency of items found in the
actual database. The order compliancy measure is thus a normalized measure of
the pairs of items for which the order knowledge is consistent with those in the
actual database.

Definition 8 (Rank Measure). Let Kpos be the rank knowledge of an at-
tacker. For each item x ∈ I, |Kpos(x)− rank(x,D)| gives how far the attacker’s
knowledge of the rank of x is compared with the actual rank of item x in the
database. The rank measure, denoted RM, measures the average absolute differ-
ence between the actual rank and the one given by the rank knowledge, over all
the items in I and is defined as

RM =
i

|I|
∑

x∈I
|Kpos(x) − rank(x,D)| (5)

A second measure that is used in this work is the number of items whose actual
rank exactly coincides with the rank knowledge of the attacker. The set R = {x ∈
I|Kpos(x) = rank(x,D)} is the set of those items whose rank knowledge is equal

Can Attackers Learn from Samples? 113

to the actual rank in the database. The fraction of such items is given by |R|
|I| and

this is also used to measure the quality of Kpos. The higher this value, the better
the rank knowledge.

Definition 9 (Top-K Measure). Given a fixed integer k, let Ik be the k most
frequent items in the database. This includes all the items that have the highest
frequency, those of second highest frequency and so on, upto the kth highest
frequency value. Let topK be the top-k knowledge of the attacker and let w be
the weight function on I. The Top-K Measure is defined as

TKM =
|topK

⋂
Ik|

|topK| (6)

The weighted Top-K Measure is defined as

WTKM = TKM.
∑

x∈topK
⋂

Ik

w(x) (7)

4 Extracting Prior Knowledge Using Sampling

Once a sample is released to the public, an attacker can extract different kinds of
knowledge from the samples. There are two different perspectives for analyzing
samples. The first perspective is from the point of view of the attacker. As an
attacker, the prior knowledge obtained from the samples should be reliable and
of good quality. The second perspective is from the point of view of the data
owner. To protect the privacy of the sensitive information, releasing a sample is
not good if the attacker can construct prior knowledge of high quality from the
sample. So, an analysis of samples can help the data owner in identifying the
risks involved in releasing samples to the public. On the other hand, part of this
analysis can be used by the attacker to determine which types of knowledge and
of what quality can be derived from the sample.

Figure 2 shows the general framework for analysis of samples, whose main
components are:

1. The Sample Generating Procedure: This is used to generate one or more ran-
dom samples of a given size from a database, based on the type of sampling
method (section 4.1).

2. Constructing Prior Knowledge: Once one or more samples are available, how
do we use the samples to construct prior knowledge? This component, though
not explicitly shown in the figure, is the one that takes us from a collection
of samples to obtaining prior knowledge from the samples (section 4.2).

3. Comparison Procedure: This component is responsible for determining the
measures of quality of prior knowledge by comparing the prior knowledge
from the samples with the actual knowledge in the database (section 4.2).

114 G. Ramesh

THE SAMPLING FRAMEWORK A − Sampling Algorithm
S − Sample Size
N − Number of Samples

Sample Generation

Procedure

A S N

Comparison
Procedure

...

SAMPLES

Prior Knowledge
from samples

DATABASE

D

CONTROL PARAMETERS

Quality Measure

Actual Knowledge

Fig. 2. The Sampling Framework

4.1 The Sample Generation Procedure

This procedure takes a database D, the number of samples (N) and sample size
(S) as input parameters and produces as output N samples, each consisting
of S transactions, generated by a sampling method. We consider the following
sampling methods for this work.

1. Sampling with/without replacement: A random sample of S tids is generated
from the set {1, 2, . . . ,M} of transaction ids with/without replacement. If
more than 1 sample is generated, then each time a random sample of S tids is
drawn with/without replacement from the set {1, 2, . . . ,M} of the database
tids. The transactions that correspond to the tids selected in S are used for
the sample. When the sampling is done with replacement, a transaction may
be read multiple times as the tids may repeat.

2. Bootstrap Sampling: An initial sample of size S is generated from the database
either with or without replacement. This becomes the seed set and let the tids
of this sample S be {1, 2, . . . , S}. Each of the N samples are constructed by
generating S tids with replacement from the seed set {1, 2, . . . , S} of tids. We
refer to each sample generated in this manner as a bootstrap sample.

4.2 Constructing Prior Knowledge from the Sample(s) and the
Comparison Procedure

For this section, let us assume that S1, . . . , SN are N samples, each of size S.
For an item x ∈ I, let F(x, Si) denote the frequency of item x in sample Si, for
1 ≤ i ≤ N . Using these frequencies, we now describe how they can be used to
compute the various types of prior knowledge described in section 3.1.

Can Attackers Learn from Samples? 115

Exact Frequency Knowledge K◦: The exact frequency knowledge for an
item is computed by taking the average of the frequency of the item in all the
N samples. More formally, K◦(x) = 1

N .
∑n

i=1 F(x, Si).

Interval Frequency Knowledge K[]: Various methods can be used to con-
struct the interval frequency knowledge for an item x ∈ I. Let K◦(x) = 1

N .∑n
i=1 F(x, Si) denote the average frequency of item x in all the samples. The

interval is constructed around this frequency for an item x. We consider the
following two methods and denote the interval frequency knowledge K[M] and
K[δ] respectively: 1. Let mx = min{F(x, S1), . . . ,F(x, SN)} and let Mx =
max{F(x, S1), . . . ,F(x, SN)}. Then, K[M](x) = [mx,Mx]. 2. Let δi denote the
mean (or median) frequency gap between the frequencies of various items in
sample Si and let δ = 1

N .
∑N

i=1 δi be the average of all the mean/median fre-
quency gaps across all the samples. The interval knowledge K[δ], associated with
item x is K[δ](x) = [K◦(x) − δ,K◦(x) + δ].

Note that the interval [mx,Mx] is a single point when the number of samples
is 1. Hence, for the single sample case, we only consider the interval frequency
knowledge K[δ].

Frequency Order Knowledge K≺: To compute the frequency order knowl-
edge K≺, we first model the relationship between the frequencies of pairs of
items as predicates. Instead of modelling K≺ as an ordered partition, we convert
the order information into a numeric measure. Let F(x, S) denote the average
frequency of item x in all the samples and let F(x,D) denote the frequency of
x in D. We say that =S (x, y) (or =D (x, y)) whenever F(x, S) = F(y, S) (re-
spectively F(x,D) = F(y,D)). Predicates <S (x, y), >S (x, y), <D (x, y) and
>D (x, y) are defined analogously. For x ∈ I, y ∈ I, define P (x, y) as follows.

P (x, y) = {(x, y) : (x �= y) ∧ ((=S (x, y)∧ =D (x, y))
∨(<S (x, y)∧ <D (x, y)) ∨ (>S (x, y)∧ >D (x, y)))}

Thus, P (x, y) is the set of all pairs of items which have the same order of
frequencies in both the sample and the database. The frequency order knowl-
edge is then defined to be the fraction of pairs between which the frequency order
obtained from the sample is consistent with that in the database. This is given by

K≺ =
|{P (x, y)}|

(|I|
2

) (8)

Rank Knowledge Kpos: To compute rank knowledge from the samples, we
compute the rank of each item based on their frequency in the database (denoted
rank(x,D) for item x) and their average frequency in the samples (denoted
rank(x, S) for item x). The rank knowledge is the computed as the average
absolute difference between the ranks in the samples and those in the database.
This is formally defined as

116 G. Ramesh

Kpos =
∑

x∈I |rank(x, S) − rank(x,D)|
|I| (9)

Note that many items can have the same frequency and hence this measure
may be too pessimistic in computing the quality of rank knowledge. We han-
dle this when computing the Top-K knowledge, which accounts for groups of
frequencies.

Top-K Knowledge topK%: For measuring the Top − K knowledge, we first
compute the set of frequency groups in which the k% of items with the highest
frequency in the database lie in. We then compute the Top-K items to be the
union of all items in these frequency groups, which may be more than k% of the
number of items. We compute the corresponding set of items using the average
frequency of the items in the samples. These groups are then compared to obtain
the topK% measure.

Table 1. Tabular Summary of Prior Knowledge

Prior Knowledge Notation Computed From Samples

Exact Frequency K◦ K◦(x) = 1
N

.
∑n

i=1 F(x, Si)

Interval Frequency K[] 1. K[M](x) = [mx, Mx] (For multiple samples)

2. K[δ](x) = [K◦(x) − δ,K◦(x) + δ]

Frequency Order K≺ K≺ = |{P (x,y)}|
(|I|

2)

Rank Knowledge Kpos Kpos =
∑

x∈I |rank(x,S)−rank(x,D)|
|I|

5 Experimental Results

5.1 Experimental Setup and Implementation

We used real benchmark datasets obtained from the UCI repository 1 and the
FIMI repository 2. Table 5.1 shows the characteristics of the datasets. The do-
main varies from 76 to 41271 items, and the number of transactions varies from
3196 to 990003. The number of frequency groups and the number of singleton
frequency groups are given. In many cases, the latter number is high in relation
to the total number of items. Although we performed our experiments on all the
datasets that are listed in the table, we present our results only on ACCIDENTS,
KOSARAK and RETAIL due to space limitations. Note that for all the datasets
the median frequency gap is much smaller than the average frequency gap and
for all the datasets except CHESS and CONNECT, this is smaller by a few
orders of magnitude. We expect this to impact the compliancy measurements
which will be addressed in a later section.

All procedures to extract samples from the benchmark datasets were imple-
mented in C + +. The procedure first collects the sampling parameters: sample
1 http : //kdd.ics.uci.edu
2 http : //fimi.cs.helsinki.fi/fimi03/

Can Attackers Learn from Samples? 117

Table 2. Tabular Summary of Datasets and Their Parameters

Dataset # Transactions # Items # Freq. Gps Mean Gap Median Gap

ACCIDENTS 340184 469 310 0.003236 0.000179
RETAIL 88163 16470 582 0.00099 0.0000113

KOSARAK 990003 41271 1886 0.00032225 0.000001
CHESS 3196 76 73 0.01389 0.00657

MUSHROOM 8124 120 90 0.01124 0.00394
CONNECT 67557 130 125 0.0081 0.0029

PUMSB 49046 2113 650 0.00154 0.000041

size, number of samples, type of sampling (with or without replacement). We
used the random number generators provided as part of the GNU Scientific Li-
brary to generate random samples. The procedure has the option to choose from
the 15 random number generators available in the library. To generate a single
sample, we first create an array to store the tids that are to be in the sample. We
then read the dataset parameters from a configuration file and use the number
of tids in the dataset to generate a sample (with or without replacement) of tids.
We then sort the array and in one pass count the frequency of items in the sam-
ple and the dataset simultaneously. In case of bootstrapping, it is unreasonable
to assume that there will be enough main memory space to allocate a number
of arrays (one for each sample for say 25 samples) especially for a large sample
size, say a 95% sample, of tids from the dataset. Hence, in this case, the mas-
ter sample is written out to a temporary file which is then used for subsequent
computation.

5.2 Effect of Sample Parameters on Frequency Difference

Figure 3 presents the average frequency difference of items as the sample size
is varied for the three datasets ACCIDENTS, KOSARAK and RETAIL. Fig-
ure 3(a) shows the variation of the average frequency difference and median fre-
quency difference with varying sample size when a single sample is chosen with
and without replacement. The first observation is that even for a 10%-sample,
the average/median frequency difference between the sample frequency and ac-
tual frequency in the datasets is very small. For ACCIDENTS and RETAIL, this
means that on the average, using a 10%-sample, an attacker can construct the
frequency of an item that is only 0.0001 off from the actual frequency (a little
higher is the attacker uses average frequency difference instead of median). For
KOSARAK, the difference is even smaller - 0.00001. With increasing sample size,
this difference decreases which means that the frequency knowledge constructed
from samples of higher size gets more and more accurate with increasing sam-
ple size. This decrease is more pronounced when the sample is drawn without
replacement.

Figures 3(b) and 3(c) show the impact of bootstrapping on the average fre-
quency difference measurements. The two cases are when the original master
sample (from which the bootstrap samples are drawn) is taken with replacement

118 G. Ramesh

 1e-06

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size

ACCIDENTS - Single Sample Frequency Difference Measurements

No Rep. - Avg.
No Rep. - Median

With Rep. - Avg.
With Rep. - Median

 1e-07

 1e-06

 1e-05

 0.0001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size

KOSARAK - Single Sample Frequency Difference Measurements

No Rep. - Avg.
No Rep. - Median

With Rep. - Avg.
With Rep. - Median

 1e-06

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size

RETAIL - Single Sample Frequency Difference Measurements

No Rep. - Avg.
No Rep. - Median

With Rep. - Avg.
With Rep. - Median

(a) ACCIDENTS, KOSARAK, RETAIL - Single Sample Frequency Difference Plots

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size (With Replacement)

ACCIDENTS - Frequency Difference with Bootstrapping

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 1e-06

 1e-05

 0.0001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size(With Replacement)

KOSARAK - Frequency Difference with Bootstrapping

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 1e-06

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size(With Replacement)

RETAIL - Frequency Difference with Bootstrapping

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

(b) ACCIDENTS,KOSARAK,RETAIL - Average Frequency Difference for Bootstrap-
ping with Replacement

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size (Without Replacement)

ACCIDENTS - Frequency Difference with Bootstrapping

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 1e-06

 1e-05

 0.0001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size(Without Replacement)

KOSARAK - Frequency Difference with Bootstrapping

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 1e-06

 1e-05

 0.0001

 0.001

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
re

qu
en

cy
 D

iff
er

en
ce

Sample Size(Without Replacement)

RETAIL - Frequency Difference with Bootstrapping

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

(c) ACCIDENTS,KOSARAK,RETAIL - Average Frequency Difference for Bootstrap-
ping without Replacement

Fig. 3. Frequency Difference Measurements

and without replacement. From figure 3(b), it is evident that bootstrapping
does not make a big difference over single samples, when the master sample is
drawn with replacement. However, when the master sample is drawn without
replacement, as shown in Figure 3(c), the effect of drawing more and more boot-
strap samples causes the average frequency difference to decrease (and hence the
knowledge becomes better as the number of samples increase), especially when
the sample size is large. For small sample sizes, the variation in the average fre-
quency difference measurements is not notable with either the sampling method
or the number of bootstrap samples that are drawn. The effect is only when the
sample size is large - say 0.5 or above, when the master sample is taken without
replacement (figure 3(c)).

5.3 Effect of Sample Parameters on Rank Difference

Figure 4 shows the variation in the average rank difference of items for the three
datasets ACCIDENTS, KOSARAK and RETAIL when the sample size is var-
ied from 10% to 95%. The behaviour of average rank difference measurements
were pretty similar to those of the average frequency difference measurements. A

Can Attackers Learn from Samples? 119

single sample taken without replacement yielded the smallest average rank differ-
ence and was consistently better than sampling with replacement and bootstrap
samples. The difference was very pronounced for large sample sizes. We do not
present the bootstrap samples where the master sample was drawn with re-
placement. This is because the average rank difference measurements for these
samples were pretty much close to the single sample drawn with replacement.
The variation in the average rank difference measurements were not too notice-
able even for large sample sizes. However, it is definitely noteworthy that when
the number of bootstrap samples are increased (when the master sample is taken
without replacement), there is a decrease in the average rank difference among
items, even though this decrease is very small. In all cases, it can also be ob-
served that the single sample without replacement has the best possible quality
for the average rank difference measure.

The average rank difference measurement is taken over all the items and
this difference may not be uniform for all the items. To better study the rank
difference measure, it is important to consider whether the frequency of an item
in the database has anything to do with how good one can determine its rank
from a sample. To study this aspect, we plot the average rank difference as
a function of the frequency of items in the database for the smallest (10%)
and the largest (95%) sample sizes for all the three datasets and these plots
are shown in Figure 4(b). As seen from these plots, it can be concluded that
even for the smallest sample size of 10%, for the items which appear in the
database with very high frequency, it is possible to estimate the rank of these
items better than the low frequency items. The estimates for the low frequency
items become significantly better as the sample size becomes 95%. Note that

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
an

k
M

ea
su

re

Sample Size(Without Replacement)

ACCIDENTS - Average Rank Difference Measurements

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
an

k
M

ea
su

re

Sample Size(Without Replacement)

KOSARAK - Average Rank Difference Measurements

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
an

k
M

ea
su

re

Sample Size(Without Replacement)

RETAIL - Average Rank Difference Measurements

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

(a) ACCIDENTS,KOSARAK,RETAIL - Average Rank Difference for Bootstrapping
without Replacement

 0

 20

 40

 60

 80

 100

 120

 140

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 R
an

k
D

iff
er

en
ce

Frequency of Group

ACCIDENTS - Groupwise Average Rank Difference

sample size 0.95
sample size 0.10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 R
an

k
D

iff
er

en
ce

Frequency of Group

KOSARAK - Groupwise Average Rank Difference

sample size 0.95
sample size 0.10

 0

 500

 1000

 1500

 2000

 2500

 3000

 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 R
an

k
D

iff
er

en
ce

Frequency of Group

RETAIL - Groupwise Average Rank Difference

sample size 0.95
sample size 0.10

(b) ACCIDENTS,KOSARAK,RETAIL - Frequency Groupwise Average Rank Differ-
ence for 10% and 95% samples

Fig. 4. Rank Difference Measurements

120 G. Ramesh

ACCIDENTS contain roughly 470 items, KOSARAK contains roughly 41000
items and RETAIL contains roughly 16500 items. This means that for a 95%
sample, the margin of error in ranks for the low frequency items is only a small
fraction of the size of the items and hence the rank of the low frequency items
are not too far from their actual ranks.

5.4 Effect of Sample Size on Compliancy and Top-K Measures

Figure 5 shows the compliancy and top K measurement plots for the three
datasets. Let us first consider the compliancy and order compliancy plots shown
in figure 5(a). The variation of compliancy and order compliancy measures with
the sample size are shown for the three datasets ACCIDENTS, KOSARAK and
RETAIL, for a single sample drawn with or without replacement. The interval
compliancy is measured with the median frequency gap used to construct the
intervals.

For the ACCIDENTS dataset, the fraction of items that are compliant in-
creases with increase in sample size. The increase is substantial when the sample
is drawn without replacement with around 70% of items compliant when the
sample size is 10%, reaching around 95% compliancy for a sample size of 95%.
The difference in compliancy between the sampling procedures is also substan-
tial, reaching around 12%, for large sample sizes. However, for RETAIL and
KOSARAK, the compliancy first starts decreasing with increasing sample size,
when the sample is drawn without replacement and then starts to increase reach-
ing a high value for the largest sample size of 95%. This behavior is attributed to
the property of the datasets. Note that the ratio of the number of transactions to
the number of items is not as high as for the other datasets. For a small sample
of say 10%, there are only 8800 transactions in RETAIL and only 99000 transac-
tions in KOSARAK but the domain of items remain the same. Hence, the items
tend to cluster together as their frequencies are under-determined. As the sample
size increases, some of the items start to separate into more frequency groups
and hence the sample median frequency gap drops. This leads to a decrease in
compliancy. As the sample size increases, the number of frequency groups start
to stabilize, causing the normal trend to kick in and we see an increase in com-
pliancy. However, for sampling with replacement, the compliancy continues to
decrease all the way in both RETAIL and KOSARAK.

For all the three datasets, it can be observed fromfigure 5(a) that the order com-
pliancy remains roughly the same or increases with increasing sample size, when
the sample is drawn with or without replacement. For higher sample sizes, the or-
der compliancy measure is better when the sample is drawn without replacement
reaching close to 100% for a 95% sample. Another observation which is worthwhile
to note is that even for a small sample of 10%, it is possible to obtain a high degree
of compliancy and order compliancy (around 70% for all three datasets).

Let us now consider the top-k measurement plots in figure 5(b). The plots
show the measurements for the top 10% of items in terms of their frequency, as
the sample size is varied, for the three datasets. For the ACCIDENTS dataset,
all the sampling procedures identify the top 10% of the most frequent items

Can Attackers Learn from Samples? 121

ACCIDENTS - Compliancy Plots

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sample Size

F
r
a
c
ti

o
n

 C
o

m
p

li
a
n

t

Median(Rep) Median(No Rep) Order(Rep) Order(No Rep)

KOSARAK - Compliancy Plots

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sample Size

F
r
a
c
ti

o
n

 C
o

m
p

li
a
n

t

Median(Rep) Median(No Rep) Order(Rep) Order(No Rep)

RETAIL - Compliancy Plots

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sample Size

F
r
a
c
ti

o
n

 C
o

m
p

li
a
n

t

Median(Rep) Median(No Rep) Order(Rep) Order(No Rep)

(a) ACCIDENTS,KOSARAK,RETAIL - Compliancy Measurement Plots

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
op

K
 M

ea
su

re

Sample Size

ACCIDENTS - Top K (K = 10%) Measurements

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
op

K
 M

ea
su

re

Sample Size

KOSARAK - Top K (K = 10%) Measurements

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
op

K
 M

ea
su

re

Sample Size

RETAIL - Top K (K = 10%) Measurements

No Rep.
With Rep.

5 Samples
10 Samples
15 Samples
20 Samples
25 Samples

(b) ACCIDENTS,KOSARAK,RETAIL - Top-K Measurement Plots

Fig. 5. Compliancy and Top-K Measurement Plots

almost accurately for all the sample sizes. Note that even for a small sample size
of 10%, all the methods except one, give 100% accuracy and the lowest accuracy
value is close to 98%. For the KOSARAK and RETAIL datasets, the top-k
accuracy measurement increases with increase in sample size. A single sample
drawn without replacement enjoyed higher accuracies over the other methods,
varying from an accuracy of around 95% for a 10% sample to around 99% for a
95% sample in KOSARAK and from around 91% accuracy for a 10% sample to
around 99% accuracy for a 95% sample in RETAIL. As the number of bootstrap
samples increase, the accuracy of top-k measurements increases, tending towards
the value obtained by a single sample without replacement. For small sample
sizes, the number of bootstrap samples did not affect the quality of the top-k
measure over that obtained from a single sample with replacement.

6 Discussion

Once can conclude from the experimental study that for the real datasets consid-
ered, even small samples can be used by outsiders to learn reasonably accurate
prior knowledge. In some cases, the accuracy is almost close or as good as the
actual knowledge in the database. If sampling is considered as a method to limit
disclosure, as argued in [7], then an additional point to consider is the kind of
prior knowledge that can be built from these samples. For the cases of prior
knowledge considered, we can conclude that sampling is not good for the sample
sizes considered in our experiments. Either lower sample sizes have to be consid-
ered or other suppression techniques need to be used to prevent disclosure. The
scope of this work does not stop here. We can further consider generalizations
of prior knowledge as described below.

122 G. Ramesh

6.1 Generalizing Prior Knowledge

While we formalized various types of prior knowledge that can be constructed
by an attacker using samples, these are not the only kinds of knowledge one
can consider. For the purposes of this work, we only focus on frequency and
order information for single items in the domain. One can also generalize this
notion to itemsets and consider similar types of knowledge for itemsets. As an
example, the frequency knowledge for items could be generalized to higher order
frequency knowledge by associating a frequency value in the interval [0, 1] with
each itemset X ⊆ I. The interval knowledge and order knowledge could be
defined in an analogous manner. We expect the analysis of such cases to be
more complicated as we are now dealing with a lattice space of itemsets and
quantifying the quality of prior knowledge would require analysis over this lattice
space and hence take more time and space. Another important generalization
is to relax the prior knowledge defined to partial prior knowledge. In practice,
attackers may have knowledge for a subset of items in the domain and they may
have NO information about certain other items in the domain. In many cases,
even the domain is not completely available to the attacker in which case, only
a subset of the universe is known. This leads to a refinement in the definition of
prior knowledge from functions to partial functions. The hope is that our current
analysis can be restricted to the subset of items on which prior knowledge exists
to derive measurements.

6.2 Summary and Ongoing Work

Samples form an important ingredient in sharing data and are often employed
in real situations. An important concept for risk assessment is what malicious
users can learn from these samples. Prior knowledge, which is an important
consideration for analysis is an often overlooked issue while analyzing risk and
security [14]. In this paper, we formalized various types of prior knowledge that
can be constructed by an attacker using samples. We gave precise formalization
of the quality of such knowledge. Through a lightweight sampling framework
and a systematically designed set of experiments on real benchmark datasets,
we present empirical analysis of how effective such prior knowledge is in practice.
We observe that even for small sample sizes, it is possible to obtain good quality
prior knowledge that is reasonably accurate. Our ongoing work is addressing
the various manifestations of prior knowledge especially in the context of data
mining tasks and how one can use the analysis using samples to make informed
decisions about risk and security.

References

1. Adam N.R. and Wortmann J.C. Security-Control Methods for Statistical
Databases: A Comparative Study. ACM Computing Surveys, 21(4), 1989.

2. Aggarwal C.C and Yu P.S. A Condensation Approach to Privacy Preserving Data
Mining. EDBT, 2004.

Can Attackers Learn from Samples? 123

3. Aggarwal.G et. al. Anonymizing Tables. ICDT Conference, 2005.
4. Agrawal R. and Srikant R. Privacy Preserving Data Mining. ACM SIGMOD

Conference, 2000.
5. Agrawal D. and Aggarwal C.C. On the Design and Quantification of Privacy

Preserving Data Mining Algorithms. ACM PODS Conference, 2001.
6. Agrawal R., Imielinksi T., Swami A. Mining Association Rules between Sets of

Items in Large Databases. ACM SIGMOD Conference, 1993.
7. Clifton C. Using Sample Size to Limit Exposure to Data Mining. Journal of

Computer Security, 8(4), 2000.
8. Dinur I., Nissim K. Revealing Information while Preserving Privacy. ACM PODS

Conference, 2003.
9. Evfimievski A. et. al. Privacy Preserving Mining of Association Rules. Information

Systems, 29(4) 2004.
10. Domingo-Ferrer J. et. al. Information-Theoretic Disclosure Risk Measures in Sta-

tistical Disclosure Control of Tabular Data. IEEE SSDBM Conference, 2002.
11. Fienberg S.E. et. al. Disclosure Limitation using perturbation and related methods

for Categorical Data. Journal of Office Statistics, 14, 1998.
12. Iyengar V. S. Transforming Data to Satisfy Privacy Constraints. ACM KDD

Conference, 2002.
13. Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. Advances in Cryptology

LNCS 1880, Aug 2000.
14. Laks V.S. Lakshmanan and Raymond T. Ng and Ganesh Ramesh. To Do or Not

To Do: The Dilemma of Disclosing Anonymized Data. ACM SIGMOD Conference,
2005.

15. Moore Jr. R. A. Controlled Data-Swapping Techniques for Masking Public Use
Microdata Sets. Statistical Research Division Report Series, RR 96-04, US Bureau
of Census, Washington D.C., 1996.

16. Meyerson A. and Williams R. On the Complexity of Optimal k-Anonymity ACM
PODS Conference, 2004.

17. Samarati P. and Sweeney L. Protecting Privacy when Disclosing Information: k-
anonymity and its Enforcement through Generalization and Suppression. IEEE
Symposium on Research in Security and Privacy,1998.

18. L.Sweeney. k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10(5), 2002.

19. Verykios V. et. al. Association Rule Hiding. IEEE TKDE, 16(4) 2004.

Dynamic Disclosure Monitor (D2Mon):
An Improved Query Processing Solution�

Tyrone S. Toland1, Csilla Farkas2, and Caroline M. Eastman2

1 Department of Informatics, University of South Carolina Upstate,
800 University Way, Spartanburg, SC 29303, USA

ttoland@uscupstate.edu
2 Department of Computer Science and Engineering, University of South Carolina,

Columbia, SC 29208, USA
{farkas, eastman}@cse.sc.edu

Abstract. The Dynamic Disclosure Monitor (D2Mon) is a security
mechanism that executes during query processing time to prevent sensi-
tive data from being inferred. A limitation of D2Mon is that it unneces-
sarily examines the entire history database in computing inferences. In
this paper, we present a process that can be used to reduce the number of
tuples that must be examined in computing inferences during query pro-
cessing time. In particular, we show how a priori knowledge of a database
dependency can be used to reduce the search space of a relation when
applying database dependencies. Using the database dependencies, we
develop a process that forms an index table into the database that iden-
tifies those tuples that can be used in satisfying database dependencies.
We show how this process can be used to extend D2Mon to reduce the
number of tuples that must be examined in the history database when
computing inferences. We further show that inferences that are computed
by D2Mon using our extension are sound and complete.

1 Introduction

Providing a balance between security requirements and data availability is an
ongoing challenge in data management. Current security access models, such
as Mandatory Access Control, Discretionary Access Control, and Role-Based
Access Control do not prevent the discovery of sensitive information through
inference channels. An inference channel discloses data that is classified at a
higher level by using data that is classified at a lower level. Detecting and pre-
venting the disclosure of sensitive data via inference channels is referred to as
the inference problem [9]. Solutions to the inference problem can be catego-
rized as either a database design [2,3,7,8,11,14,15,17,18,21] or a query process-
ing [4,10,12,13,16,19] solution.

A database design solution involves identifying and removing inference chan-
nels at design time. This solution can result in over-classifying data items. The

� This work was partially supported by the National Science Foundation under grants
numbers IIS-0237782 and P200A000308-02.

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 124–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Disclosure Monitor (D2Mon) 125

procedure for preventing sensitive data from being inferred during query pro-
cessing time involves examining query results to determine if the user can use
the results along with some database constraints to infer some sensitive data. In
this approach, current query results are released if the results cannot be com-
bined with previously released query results and the metadata to determine some
sensitive data; otherwise, query results are not released to the user.

Consider the following example using a query processing security mechanism
called Dynamic Disclosure Monitor (D2Mon) [6]. The architecture is shown in
Figure 1. The algorithm is shown in Algorithm 1. For this example we use the
Employee relation in Table 1, which contains information about employee Name,
Rank, Salary, and Department. The relation satisfies the functional dependency
(FD) Rank → Salary. The security requirement is that the employees’ salaries
should be kept confidential for which partial tuples over attributes Name and
Salary can only be accessed by authorized users. However, to increase data avail-
ability unauthorized users are allowed to access Name and Salary separately.

Mandatory Access

Control
(MAC)

Disclosure
Inference Engine

(DiIE)

Database

Dynamic Disclosure Monitor (D2Mon)

User

Database Constraints

All Disclosed
Data

Accept/Reject
Query

Current Query Current Query
Results

Updated
History

User History
Database

Update
Consolidator

(UpCon)

Update
Log

Fig. 1. Dynamic Disclosure Monitor (D2Mon)

Suppose an unauthorized user requests the following two queries:
Query 1: ”List the name and rank of the employees working in the Toy depart-
ment.” (ΠName,RankσDepartment=′Toy′)

126 T.S. Toland, C. Farkas, and C.M. Eastman

Input:
1 User’s query (object) Qi

2 User’s id U
3 Security classification < O,U , λ >
4 User’s history database Uhistory (i.e., data which were previously

retrieved by the user)
5 D, a set of database constraints

Output: Answer to Qi and update of the user’s history database or
refusal of Qi

1 Mandatory Access Control (MAC) evaluates direct security violations

if direct security violation is detected then
Qi is rejected (i.e., D2Mon functions as the basic MAC mechanism)

else
(no direct security violation was detected)
begin

2 Use Update Consolidator (UpCon) to modify Uhistory according to
the relevant updates to create Uupdated−history

Let Uall−disclosed = Uupdated−history ∪ Qi(answers)

repeat

3 Use Disclosure Inference Engine (DiIE) to generate all data
that can be disclosed from the Uall−disclosed and the database
constraints D

4 Uall−disclosed = Uall−disclosed ∪ Unewly−disclosed

until no change occurs

end

MAC reevaluates security violations in Uall−disclosed :
5 if Illegal disclosure is detected then

6 Reject Qi and Uhistory = Uupdated−history

else

7 Accept Qi and Uhistory = Uall−disclosed (i.e., security is not violated)

end
end

Algorithm 1: Dynamic Disclosure Monitor (D2Mon)

Query 2: “List the salaries of all clerks in the appliance department.”
(ΠSalaryσRANK=′Clerk′∧Department=′Appliance′).

In Table 1, we show the user history database that is used by D2Mon to store
released query results. Delta values represent values that were not released to
the user. Since the Employee relation satisfies the FD Rank → Salary and both
Query 1 and Query 2 have Rank = ′Clerk′ in the respective result sets, a user

Dynamic Disclosure Monitor (D2Mon) 127

Table 1. Employee relation

ID NAME RANK SALARY DEPT.

1 John Clerk 38,000 Toy
2 Mary Secretary 28,000 Toy
3 Chris Secretary 28,000 Marketing
4 Joe Manager 45,000 Appliance
5 Sam Clerk 38,000 Appliance
6 Eve Manager 45,000 Marketing

can join the two queries via the Rank value to reveal the fact that John’s salary
is $38,000 (i.e., δ1 = $38, 000). D2Mon is capable of detecting such indirect data
disclosures.

To satisfy the FD Rank → Salary, we need to identify those tuples that
have the same value for RANK. The tuples with ID’s 1 and 5, respectively,
are the only tuples that can satisfy the FD and therefore need to be used in
the inference processing. It follows trivially from the definition of FD’s, that the
FD Rank → Salary means that only those tuples that have the same attribute
value for Rank should be retrieved. In this paper, we present an approach that
shows “how” to apply database dependencies represented as a Horn-clause in an
efficient manner. We propose a concept called Useful Common Attribute, that
defines a list of attributes from the prerequisite of the dependency which must
contain the same values. We use this concept to develop an index table from
the database dependencies prerequisite onto the tuples in the history database
that satisfies the database dependency. The index table will reduce the search
space to a constant operation. This will in turn provide a means by which we
can retrieve the tuples in the history database in an efficient manner and hence
reduce the overall inference processing time.

In this paper, we deal with generalized dependencies, which cover equality
generating (e.g., functional) and tuple generating (e.g., multivalued and join)
dependencies, respectively (see Ullman [20]). Our examples, for simplicity, show
a simple functional dependency application.

We are not proposing a new concept with respect to a history database.
We are proposing a “prediction” on which attributes are needed to apply de-
pendencies. We use this prediction to index the history database to improve
performance.

Table 2. History Database

Query # ID NAME RANK SALARY DEPARTMENT

1 1 John Clerk δ1 Toy
1 2 Mary Secretary δ2 Toy
2 5 δ3 Clerk $38, 000 Appliance

128 T.S. Toland, C. Farkas, and C.M. Eastman

This paper is organized as follows. In Section 2 we give an overview of the
Dynamic Disclosure Monitor (D2Mon) security architecture. This section also
provides some preliminary notation and concepts. In Section 4 we develop our
proposed solution. In Section 5 we discuss the complexity of our solution. Sec-
tion 6 presents some related work. In Section 7 we conclude this paper and
discuss some future work.

2 Preliminaries

2.1 Dynamic Disclosure Monitor (D2Mon)

D2Mon is a security architecture that runs during query processing time to pre-
vent disclosure of sensitive data. The D2Mon architecture is shown in Figure 1.

D2Mon first uses the Mandatory Access Control (MAC) module to examine
the user’s query to determine if the user has the proper authority to submit the
query. If the user does not have the proper authority, then the query is rejected;
otherwise, the query is submitted to the Database Management System (DBMS)
for execution. Once the query results are returned from the DBMS, then D2Mon
executes a module called Update Consolidator (UpCon). This module retrieves
the updates from the Update Log that have occurred since the last query was
processed.1 UpCon retrieves the updates and performs a process called “stamp-
ing”. That is, UpCon marks the data items in the history database that have
been updated in the base relation with the updated data value from the Up-
date Log. The motivation behind stamping the history database is to identify
attributes that produce outdated inferences that do not lead to a security vio-
lation because the values do not produce values that are current in the history
database.

D2Mon will then add the current query results to the user’s history database.
D2Mon uses a separate history database for each user which allows the system
to manage the query results and inference processing of an individual user in a
central location. Then, the Disclosure Inference Engine (DiIE) is applied to the
history database to compute newly disclosed data. After which, MAC inspects
the history database to determine if sensitive data has been revealed. If a security
violation exists, then the current query is rejected and the history database is
reset to the state before DiIE was ran; otherwise, if not sensitive data is revealed,
then the current query results are returned to the user.

3 Preliminary Notation

In this paper we follow the notation defined in our earlier work [6]. We assume,
as in [1,11,20,21] the existence of a universal relation as defined in [20], which
states that a single relation can be constructed from the relations in a database

1 We assume that the updates are executed by users with the appropriate access
authority and that these updates are stored in an Update Log.

Dynamic Disclosure Monitor (D2Mon) 129

by taking the cross-product of those relations. Let R = {A1, . . . , Ak} denote
the schema of a universal relation and r the actual database instance over R.
We shall denote by dom(Ai) (1 ≤ i ≤ k) the domain of attribute Ai and t =
(. . . , Ai = c, . . .) ∈ r a sub-tuple of r, where the value of attribute Ai is c. We
also use the notation t[Ai] = c to represent the value c of attribute Ai in tuple t.

Definition 1 (Stamped Attribute). Let r be a relation over schema R. Let
A be an attribute name from a schema R and dom(A) = a1, . . . , al the domain
of A. A stamped attribute SA is an attribute such that its value sa is of the
form ai

aj (i, j = 1, . . . , l), where ai ∈ dom(A) ∪ {−} and aj ∈ dom(A) ∪ {−}.
We call ai the value of sa and aj is the stamp or updated value of sa. We assign
aj the value that the attribute A has been updated to in the relation r. If the
attribute A has been deleted, then we assign aj the symbol {−}. We call this
process stamping.

For example, assume at some time t1 that the user has received the tuple
< Clerk, $38, 000 > over the attributes RANK and SALARY from the Employee
relation. Since the tuple was released, it is also stored in the user’s history
database.

If at some time t2(t1 < t2) the salaries of the clerks are modified, e.g, in-
creased to $39,520, the corresponding tuple in the history database is stamped
as follows < Clerk, $38, 000$39,520 >. We are able to determine from this tuple:
(1)The attribute values Clerk and $38,000 have been released to the user and
(2) The attribute value RANK has not been modified; however, the attribute
value of Salary has been modified to $39,520. This modification is unknown to
the user.

We recognize that previous stamped values can be overwritten by successive
stamping procedures, but our proposed solution only requires that the most
recent update to an attribute be stored.

Definition 2 (Projection Fact). Let {A1, . . . , Ak} and {SA1, . . . , SAk} be
a set of attribute and stamped attribute, respectively, over schema R. A pro-
jection fact (PF) of type A1, . . . , Ak is a mapping m from {A1, . . . , Ak} to
⋃k

j=1 dom(Aj) ∪ ⋃k
j=1 dom(SAj) such that m(Aj) ∈ dom(Aj) ∪ dom(SAj)

for all j = 1, . . . , k. A projection fact is denoted by an expression of the form
R[A1 = v1, . . . , Ak = vk], where R is the schema name and v1, . . . , vk are values
of attributes A1, . . . , Ak, respectively. A PF is classified as one of the following:

1. A stamped projection fact (SPF) is a projection fact R[A1 = v1, . . . , Ak =
vk], where at least one of vj (j = 1, . . . , k) is a stamped attribute value.

2. A non-stamped projection fact is a projection fact R[A1 = v1, . . . , Ak = vk],
where all vjs are constants in dom(Aj).

For example, Employee[NAME = John,Rank = Clerk] is a non-stamped
projection fact, while Employee[NAME = John,Rank = ClerkManager] is a
stamped projection fact.

In the remainder of this paper the term projectionfact may refer to either
a stamped or a non-stamped projection fact. The type of projectionfact (i.e.,
stamped or non-stamped) will be clear from its context.

130 T.S. Toland, C. Farkas, and C.M. Eastman

Definition 3 (Query-answer pair). An atomic query-answer pair (QA-pair)
is an expression of the form (P,ΠY σC), where P is a projection fact over Y that
satisfies C or P is a stamped projection fact, such that the un-stamped projection
fact generated from P satisfies C. A query-answer pair is either an atomic QA-
pair or an expression of the form (P,ΠY σC), where P is a set of projection facts
(stamped or non-stamped) {P1, . . . , Pl} such that every Pi, (i = 1, . . . , l) is over
Y and satisfies C.

Similar to Brodsky et al. [1], the database dependencies will be defined by way
of Horn-clauses, which can express tuple generating-dependencies and equality-
generation dependencies [20]. The definition is as follows.

Definition 4 (Database Dependencies).) Let r denote a relation with
schema R = {A1, . . . , Al}. Let D= {d1, . . . , dm}, where m > 0, be a set of depen-
dencies for R. Each di ∈ D is of the following form: ∀x1, . . . , xl p1∧ . . .∧pk → q,
where x1, . . . , xl are the free variables in p1, . . . , pk (k ≥ 1). The pi’s are called
the prerequisites and have the form R[A1 = a1, . . . , Al = al], where ai is either
a constant or a variable that must appear in the prerequisite. The consequence q
can have the following forms:

1. If the consequence q is either of the form Ai = Aj (Ai, Aj ∈ R) or Ai = c
(c ∈ dom(Ai)), then di is an equality generating dependency

2. If the consequence q has the form R[A1 = a1, . . . , Al = al] where A1, . . . , Al

are all of the attributes of the schema R (i.e., the constraint is full) and each
ai is either a constant or a variable that must appear in the prerequisite pi

(i = 1, . . . , k), then di is a tuple generating dependency.

Generating dependencies are outside the scope of this paper. The interested
reader is referred to [1,20]. We now show how we can represent an equality
generating dependency (i.e., functional dependency).

As an example of functional dependency (FD) consider the Employee rela-
tion in Table 1 that satisfies the FD: Rank → Salary. Using Definition 4, this
would be represented as follows. Due to space limitations, we use N, R, S, and
D for Name, Rank, Salary, and Department, respectively:

Employee(N = a1, R = b, S = c1,D = d1) ∧ Employee(N = a2, R = b, S =
c2,D = d2) → c1 = c2.

We now define how the prerequisites (i.e., body) of the Horn-clauses are
mapped to a tuple of a relation.

Definition 5 (Atom mapping of dependencies). Given a Horn-clause con-
straint p1, . . . , pn → q and a relation r over schema R, we define an atom
mapping as a function h : {p1, . . . , pn} → r such that

1. h preserves constants; i.e., if h(R[. . . , Ai = c, . . .]) = (c1, . . . , ci, . . . , cm) ∈ r
and c is a constant (i.e., c ∈ dom(Aj) ∪ dom(SAj)), then c = ci

2. h preserves equalities; i.e., if pi = R[. . . , Ak = a, . . .], pj = R[. . . , Al = a, . . .]
and h(pi) = (c1, . . . , ck, . . . , cm), h(pj) = (c′1, . . . , c

′
l, . . . , c

′
m), then ck = c′l.

Dynamic Disclosure Monitor (D2Mon) 131

4 Useful Common Attribute

We proposed in our initial work a security mechanism called the Dynamic Dis-
closure Monitor (D2Mon) [6]. We develop in this section a procedure that can
be used to reduce the search space and ultimately the complexity of D2Mon.

4.1 Problem Discussion and Motivation

The complexity of the inference algorithm used by D2Mon is high, since it applies
the database dependencies to the entire history database in a brute force manner.
That is, D2Mon does not use any a priori knowledge about the prerequisite
tuple mapping into the history database to reduce the number of tuples that
should be retrieved when performing inference processing. As discussed in the
Introduction, we need to define a process such that only those tuples that satisfy
the body of the database constraints are retrieved, which will reduce the number
of tuples in the history database to be examined. Consider, the example from
the Introduction that uses the Employee relation from Table 1 that satisfies the
FD Rank → Salary. This database constraint is represented as a Horn-clause
in the following manner:

Equation 1. Employee(N = a1, R = b1, S = c1,D = d1) ∧ Employee(N =
a2, R = b1, S = c2,D = d2) → c1 = c2.

Consider the history database in Table 1 in which we use Definition 5 to map
h(p1) → (N = John,R = Clerk, S = δ1,D = Toy) and h(p2) → (N = δ3, R =
Clerk, S = $38, 000,D = Appliance), respectively. It follows from the FD that
John’s salary is $38, 000.

Notice that the mapping of p1 to a particular tuple restricts the mapping
of p2. That is, we know that both tuples that are mapped to by p1 and p2, re-
spectively, must contain the same attribute value for Rank (i.e., Clerk). There-
fore, once the mapping h(p1) → (N = John,R = Clerk, S = δ1,D = Toy)
is performed, then the tuples that p2 maps to must be of the form h(p2) →
(N = a2, R = Clerk, S = c2,D = d2), where a2, c2, d2 are free-variables and
Rank = Clerk. Instead of using this knowledge to map p2 to (N = δ3, R =
Clerk, S = $38, 000,D = Appliances), D2Mon would use an exhaustive search
to check each tuple in the history database to determine the tuples that p2

can be mapped to in order to satisfy the prerequisite of Equation 1. To pro-
cess the entire history database in Table 1, D2Mon would test 32 = 9 mappings
of the tuples in the history database. This comes from the fact that there are
two prerequisites and three tuples in the history database. However, to satisfy
the database constraint Rank → Salary in the history database, D2Mon only
needs to map h(p1) → (N = John,R = Clerk, S = δ1,D = Toy) and h(p2) →
(N = δ3, R = Clerk, S = $38, 000,D = Appliance), respectively. Therefore,
there are eight mappings that D2Mon can omit from the inference process.

We use the aforementioned observation to construct an index file on the
history database that will be used to retrieve only those tuples that satisfy the

132 T.S. Toland, C. Farkas, and C.M. Eastman

prerequisites of a database dependency. That is, given a database dependency
p1∧ . . .∧pl → c, we use prerequisite pi, the tuples to which pi maps to, and pi+1

to construct a modified p′i+1 that can be used to form an index on the history
database that contains only those tuples that satisfy the prerequisite, pi+1. If
we use this approach in the previous example, then we would construct p′2 =
(N = a2, R = Clerk, S = c2,D = d2), which will map h(p′2) → (N = δ3, R =
Clerk, S = $38, 000,D = Appliance) in the history database.

4.2 Our Solution

We define in this section a prerequisite index table that will be used to retrieve
only those tuples that can be used to satisfy the prerequisites of a database
dependency. This prerequisite index table requires some preliminary definitions
which we now present.

Definition 6 (Set of Prerequisite Attributes). Let r denote a relation with
schema R = {A1, . . . , Al}. Let p1 ∧ . . . ∧ pn → q be a Horn-clause constraint
as defined in Definition 4. We define the set of prerequisite attributes for a
prerequisite pj as the set of attributes Ai ∈ pj. We denote the set by A(pj).

As an example, suppose we have prerequisite p1 = Employee(N = a1, R =
b, S = c1,D = d1). Then, the set of prerequisite attributes A(p1) = {N,R, S,D}.
Definition 7 (Useful Common Attributes). Let r denote a relation with
schema R = {A1, . . . , Al}. Let p1∧. . .∧pn → q be a Horn-clause constraint on r.
Let pi = R[Ai1 = ai1 , . . . , Ail

= ail
] and pj = R[Aj1 = aj1 , . . . , Ajl

= ajl
], where

(1 ≤ i < j ≤ l). Let A(pi) and A(pj) denote the set of prerequisite attributes in
pi and pj, respectively. We define the useful common attributes of pi and pj as
the set of attributes Ak ∈ A(pi) ∩ A(pj) such that for each Aik

= aik
∈ pi and

each Ajk
= ajk

∈ pj, either (1) One of the values aik
or ajk

is a variable, or (2)
Both aik

and ajk
are the same variables (i.e., aik

= ajk
). We shall denote the

useful common attributes by Ai−j = A(pi) ∩cu A(pj), where (1 ≤ i < j ≤ l).

Definition 7 is used to identify those attributes that must have the same
attribute values in the tuples that are used in the mapping of the prerequisite of
a database dependency. In Equation 1, A1−2 = A(p1) ∩cu A(p2) = {Rank}. It
is the case that Name, Rank, Salary, and Department are all attributes that are
in the intersection of p1 and p2; however, we must also apply that latter part of
Definition 7. That is, we select attributes that appear in the intersection of p1

and p2 only if the value of one of the intersecting attributes in the prerequisite
are a variable or if both prerequisite attribute values is the same, which is the
case in the intersection of prerequisites p1 and p2.

Definition 8 (Modified Prerequisite). Let r denote a relation with schema
R = {A1, . . . , Al}. Let d be a Horn-clause of the form p1∧ . . .∧pk → q. Let pi =
R[A1 = ai1 , . . . , Al = ail

] and pj = R[A1 = aj1 , . . . , Al = ajl
] be prerequisites

in d (1 ≤ i < j ≤ k) and Ai−j = A(pi) ∩cu A(pj), the set of useful common
attributes. Let h(pi) → t, where t ∈ r. We construct a modified pj as follows:

Dynamic Disclosure Monitor (D2Mon) 133

– If Am ∈ Ai−j and Am = aim
(1 ≤ m ≤ l) is in pi, where aim

is a constant
value, then replace the attribute value for Am in pj with t[Am] (i.e., the
attribute value for Am in t).

We denote a modified prerequisite pj as [pj]modified.

Using Definition 8, if we have p1 = R(N = a1, R = b1, S = c1,D = d1),
p2 = R(N = a2, R = b1, S = c2,D = d2), A1−2 = A(p1) ∩cu A(p2) = {Rank},
and h(p1) → (N = John,R = Clerk, S = δ1,D = Toy), then [p2]modified =
R(N = a2, R = Clerk, S = c2,D = d2). Then, the modified prerequisite could
be mapped into the history database. That is, h([p2]modified) → (N = δ3, R =
Clerk, S = $38, 000,D = Appliance).

Definition 9 (Prerequisite Index Mapping). Let r denote a relation over
schema R = {A1, . . . , Al} and let p1 ∧ . . .∧ pl → q be a Horn-clause constraints.
Let S be the set of tuples mapped to in r by either h(pi) or h([pi]modified) (1 ≤
i ≤ l). We define a prerequisite index mapping by the function ν : {S} → r,
such that

– For each tuple t ∈ S, we form a 3-tuple of the form (i, t[time], t[ID]), where
i is the subscript of the prerequisite (i.e., pi) that mapped to tuple t, t[time]
is the time in which tuple t is inserted into r, and t[ID] is the tuple ID,
respectively.

Definition 9 forms a 3-tuple relation consisting of the time and ID2 of those
tuples in the prerequisite mapping. We can use this definition to reduce the pro-
cessing time of the dependency. That is, if we use Definition 9 to form a Prereq-
uisite Index Mapping Table (PIM - Table) called Idx into the history database,
then to determine if prerequisites pi (i = 1, . . . , l) satisfy the dependency re-
quires only a linear search of Idx . Because of the way the modified prerequisite
is constructed, the entries in Idx must satisfy the prerequisites which can be de-
termined in a linear time in the size of the Idx. We can use the tuple time and
ID from the indexing table to retrieve the tuple(s) from the history database in
one operation using the tuple time and ID. We shall use the notation Idx[i] as
the set of tuples in r that satisfies prerequisite pi.

For example, in Figure 2 we show a history database with tuple time included.
If a modified prerequisite [p2]modified = R(N = a2, R = Clerk, S = c2,D = d2)
is constructed, then ν(h([p2]modified)) = {< 1, 1, 1 >,< 2, 3, 5 >} from which
we construct the PIM - Table in Figure 2. Again we need only search the index
table to determine if entries in the mapping ν(h([p2]modified)) satisfy database
dependency in Equation 1. We discuss further complexity in Section 5.

Figure 3 shows the D2Mon architecture that includes the PIM - Table. In
Algorithms 2 and 3, we present the algorithms that compute the set of useful
common attributes (Definition 7) and the modified prerequisite (Definition 8),
2 Although we do not address tuple generating dependencies in this paper, we use

the tuple time to distinguish those tuples that are generated via a tuple generation
dependencies in D2Mon which are assigned the same tuple ID (i.e., ID = −999).

134 T.S. Toland, C. Farkas, and C.M. Eastman

Time ID NAME RANK SALARY DEPARTMENT

1 1 John Clerk δ1 Toy
2 2 Mary Secretary δ2 Toy
3 5 δ3 Clerk $38, 000 Appliance History Database

Prerequisite Number Time ID

1 1 1
2 3 5 Prerequisite Index Table

Fig. 2. Index table and history database with tuple time

respectively. We show in Algorithm 5 how Algorithms 2 and 3 can be used to-
gether to compute the consequence of a Horn-clause database constraint. That
is, Algorithm 5 presents the Apply Database Constraints algorithm, which re-
ceives as input a set of Horn-clause dependencies and a history database. This
algorithm returns a modified history database with the database dependencies
applied as defined in Definition 4.

Input:
1 Prerequisite, pi = R[A1 = ai1 , . . . , Al = ail]
2 Prerequisite, pj = R[A1 = aj1 , . . . , Al = ajl]

Output: S, a set of useful common attributes for D
1 Let S = ∅
2 for k = 1 to l − 1 do

Let Ak ∈ A(pi) ∩ A(pj)
if (aik or ajk is a variable) OR (aik and ajk are the same variables) then

S = S ∪ Ak

end
end
return S

Algorithm 2: Set of Useful Common Attributes

As an example of Algorithm 5, suppose that the database constraint that is
shown in Equation 1 is applied to the History Database in Figure 2. These steps
are as follows:

1. Step 1, let hi(p1) → {(Time = 1, ID = 1, N = John,R = Clerk, S =
δ1,D = Toy), (Time = 2, ID = 2, N = Mary,R = Secretary, S = δ2,D =
Toy), (Time = 3,ID = 5, N = δ3, R = Clerk, S = $38, 000,D = Appliance)}
in the history database and store these tuples in Q

2. In Step 2, t = (Time = 1, ID = 1, N = John,R = Clerk, S = δ1,D = Toy)
3. In Step 3, the PIM - Table, Idx is loaded with {< 1, 1, 1 >}, the index entry

for tuple t
4. Step 4, we continue the prerequisite evaluation process.
5. The loop that states in Step 5 computes the useful common attributes be-

tween the current pi and preceding pj ’s (1 ≤ i < j ≤ l).

Dynamic Disclosure Monitor (D2Mon) 135

Mandatory Access

Control
(MAC)

Disclosure
Inference Engine

(DiIE)

Database

Dynamic Disclosure Monitor (D2Mon)

User

Database Constraints

All Disclosed
Data

Accept/Reject
Query

Current Query
Current Query

Results

Updated
History

User
History

Database

Update
Consolidator

(UpCon)

Update
Log

Prerequisite
Index Mapping

Table

Fig. 3. D2Mon with prerequisite index mapping table

Input:
1 Prerequisite, pi = R[A1 = ai1 , . . . , Al = ail]
2 Prerequisite, pj = R[A1 = aj1 , . . . , Al = ajl]
3 Ai−j , useful common attributes between pi and pj

4 Idx, a PIM - Table

Output: A modified prerequisite pj if useful common attributes exist; other-
wise, an unmodified prerequisite pj

1 foreach Am ∈ Ai−j do

2 if aim in pi is a constant value then
Let t ∈ Idx[i]
Let pj = R[. . . , Am = t[Am], . . .] {Replace the attribute value Am in pj with
the attribute value t[Am]}

end
end
return pj

Algorithm 3: Modified Prerequisite

136 T.S. Toland, C. Farkas, and C.M. Eastman

Input:
1 Set of Horn-clause constraints D
2 Relation r, which may contain null-values

Output: Updated relation r

begin
repeat

foreach di ∈ D do
Apply Database Constraints(di,r)

end
until No more changes to r occurs
return r

end

Algorithm 4: Chase process

6. The dependency in Equation 1 only has two prerequisites, so Step 6 computes
only the useful common attribute set, A1−2 = A(p1) ∩cu A(p2)

7. Step 7, constructs the modified prerequisite [p2]modified by calling Modified
Prerequisite with p1 = R(N = a1, R = b1, S = c1,D = d1), p2 = R(N =
a2, R = b1, S = c2,D = d2), A1−2 = {Rank}, and the PIM - Table, Idx.

8. In Step 9 we store in X the result of the mapping h([p2]modified). If
h([p2]modified) does not successfully map to an entry in r, then the prerequi-
site cannot be satisfied. We would then execute Step 12 to begin processing
the next tuple.

9. Since X is not the empty, in Step 13 we store {< 2, 3, 5 >} in the PIM -
Table.

10. Since we have completed the evaluation of the prerequisite for database
dependency using t = (Time = 1, ID = 1, N = John,R = Clerk, S =
δ1,D = Toy), we go to Step 14.

11. In Step 14, we can linearly traverse the PIM - Table to retrieve the tuples
from r that satisfies the prerequisites of the database dependency. That is, we
have reduced the number of tuples that need to be examined to successfully
evaluate the prerequisite of the database dependency.

12. Step 14, Since all of the prerequisites have been satisfied, the consequence
can be computed (i.e., S = {δ1 = $38, 000}) and applied to r.

13. In Step 15, we go back to Step 2 to process the next tuple.

Suppose in Step 2, that hi(p1) → (Time = 2, ID = 2, N = Mary,R =
Secretary, S = δ2,D = Toy) occurs, then Algorithm 5 will correctly determines
that this mapping will not lead to a successful evaluation of the body of the
dependencies. This will be discovered when the algorithm processes the prereq-
uisite p2. That is, A1−2 = {Secretary} in Step 6. In Step 7, [p2]modified =
R(N = a2, R = Secretary, S = c2,D = d2). Then, in Step 9 the mapping will
fail. This in turn will cause Step 11 the condition will evaluate to false and we
would execute Step 12 which will begin processing the next tuple.

As shown in Figure 1, the DiIE component of the D2Mon architecture com-
putes the inferences. Algorithm 1 shows the D2Mon algorithm. Because of space

Dynamic Disclosure Monitor (D2Mon) 137

Input:
1 d = p1 ∧ . . . ∧ pl → q, a Horn-clause dependency
2 Relation r, which may contain null-values

Output: Updated r

map to in H
1 Let Q be the set, such that atom mappings h1, . . . , hk maps p1 to t1, . . . , tk in

r
2 foreach mapping hi in h1, . . . , hk do

3 Store an entry in the Prerequisite Index Mapping Table, Idx, consisting of
the prerequisite number 1 (i.e., p1), t[time], t[ID]

4 for j = 2 to l do
Let [pj]

modified = pj

5 for i = 1 to j do

6 Ai−j = A(pi) ∩cu A(pj)
7 [pj]

modified = Modified Prerequisite(pi, [pj]
modified,Ai−j , Idx)

end
8 if [pj]

modified �= pj then

9 X = ν(hi([pj]
modified)) {Get the index values from tuples mapped to by

the modified prerequisite, Definition 9 }
else

10 X = ν(hi(pj)) {Get the index values from tuples mapped to by the
unmodified prerequisite pj , Definition 9}

end
11 if X = ∅ then

12 Go to Step 2 {Unable to satisfy dependency using initial tuple, t}
else

13 Add X to Idx using prerequisite number, j

end
end

14 Using Idx, apply the dependency d to r as follows:

1. If d is an equality-generating dependency of the form p1, . . . , pl → a = b
then equate hi(a) and hi(b) as follows: (a) If both hi(a) and hi(b) are
null-values then replace all occurrences of one of them in r with the other,
(b) If one of them say hi(a), is not a null-value, then replace all occurrence
of hi(b) in r with hi(a), (c) If both are not null-values (i.e., constants), do
nothing. If hi(a) �= hi(b), we say that inconsistency occurred.

2. If d is a tuple-generating dependency of the form
p1, . . . , pl → R[A1 = a1, . . . , An = an] and the tuple (hi(a1), . . . , hi(an)) is
not in r, then add it to r.

15 Goto Step 2 {Begin processing next tuple.}
end
return r

Algorithm 5: Apply Database Constraints

138 T.S. Toland, C. Farkas, and C.M. Eastman

limitations, the DiIE algorithm is not presented. We do, however, use the fact
that the DiIE algorithm uses a variation of the Chase method from Ullman [20] to
compute inferences. Algorithm 4 shows how we propose that our Apply Database
Constraints algorithm should be used in the Chase algorithm.

We now present and prove some theoretical results.

Theorem 1. Let D be a set of Horn-clause dependencies. The Chase algorithm
is sound and complete when used with the Apply Database Constraints algorithm.

We will use the following lemmas to prove Theorem 1.

Lemma 1 (Algorithm 3: Modified Prerequisite). Let r be a relation and
d = p1 ∧ . . . ∧ pk → q a Horn-clause dependency. Let T = h(pi) (i.e., tuples
to which pi maps to in r) and Ai−j = A(pi) ∩cu A(pj), a set of useful com-
mon attributes between pi and pj (1 ≤ i < j ≤ k). Let [pj]modified be the
modified prerequisite returned from Algorithm 3 using pi, pj , and t ∈ T . Then,
h([pj]modified) ⊆ h(pj).

Proof Sketch 1. Let d = p1∧. . .∧pk → q be a dependency. If A(pi)∩cuA(pj) =
∅, then h([pj]modified) = ∅. Therefore, h([pj]modified) ⊆ h(pj) is trivially true.

Suppose that A(pi) ∩cu A(pj) = {Ai}. Assume by contradiction that
h([pj]modified) �⊆ h(pj). Then there must exists some tuple t = (. . . , Ai = ai, . . .)
in h([pj]modified), such that t �∈ h(pj). It follows from Definition 8 that there
exist some tuple t′ = (. . . , Ai = ai, . . .) in h(pi), such that t[Ai] = t′[Ai]. But,
for h(pj) to participate in the evaluation of dependency d, then there must be a
tuple t′′ = (. . . , Aj = aj , . . .) in h(pj), such that Aj ∈ A(pi) ∩cu A(pj). This as-
serts that, Aj = Ai and t′′[Aj] = t′[Ai]. Hence, t and t′′ must be the same tuple.
Therefore, h([pj]modified) ⊆ h(pj) and we have a contradiction to our original
assumption. �

Lemma 2 (Algorithm 5: Apply Database Constraints). Given a relation
r over schema R, a set of Horn-clause database dependencies D = {d1, . . . , dm}
on r. Let A = {A1, . . . ,Am} be a set of useful common attributes computed with
Algorithm 2. Then, the inferences computed by Algorithm 5 are valid.

Proof Sketch 2. Assume by contradiction that q is an invalid consequence that
was computed from a dependency di ∈ D. But, for this to happen, a pj ∈ di had
to be incorrectly mapped to a tuple in r. Algorithm 5 has two steps in which
prerequisite mapping occurs to tuples in r. We know by Definition 5 that if a
mapping occurs in Step 10, it is performed correctly. In Step 9, we map to a
tuple in relation r by using a modified prerequisite. By Definition 5, h(pj) are
valid mappings. Then by Lemma 1, we know that h([pj]modified) ⊆ h(pj) and
therefore h([pj]modified) is a valid mapping in Step 9 of the Algorithm 5. Since
all of the tuples that are mapped to by the prerequisites of di are valid, then
the consequence q must be a valid inference and we have a contradiction to our
original assumption. �

We now use Lemma 1 and Lemma 2 to prove Theorem 1.

Dynamic Disclosure Monitor (D2Mon) 139

Proof Sketch 3. We know that D2Mon is sound and complete without the use
of Algorithm 5 [6]. To prove Theorem 1, we need to show that (1) All tuples
disclosed by D2Mon using Algorithm 5 are valid (i.e. soundness) and (2) D2Mon
discloses all valid inferences when used with Algorithm 5 (i.e., completeness).

The proof of soundness follows directly from Lemma 2. To prove complete-
ness, assume that a tuple t is disclosed by D2Mon using Algorithm 5, but is not
disclosed by D2Mon that does not use Algorithm 5. Recall, that Algorithm 5
only reorders the tuples in r to reduce the dependency processing time. For tu-
ple t not to be disclosed by D2Mon that uses Algorithm 5, then a dependency
must have failed to be evaluated. We know that D2Mon is sound when executed
with Algorithm 5. So, if a tuple is not disclosed, then the PID-Table must be
missing some tuple t′, which causes the prerequisite of some dependency d to fail.
But, for this to occur the mapping in either Step 9 or Step 10 must have failed,
which would in turn execute Steps 11 and 12, respectively. We know that Step 9
and Step 10 could not fail since D2Mon using Algorithm 5 is sound. Therefore,
Step 13 will execute, which loads the PIM-Table with the index entries to eval-
uate the prerequisite of d. Since the prerequisites of d can be evaluate, we can
generate t. Hence, we have a contradiction to our original assumption. �

5 Complexity Analysis

The complexity analysis depends on the schema. We shall assume that there exist
a schema R = {A1, . . . , Ak}. The complexity of Algorithm 2 depends on Step 2.
The algorithm must check each of the k attribute values in the prerequisite.
Therefore, this algorithm runs in O(k), where k is the number of prerequisites
in the body of the dependency. Algorithm 3 is bounded by Step 1. This step
executes k times. So, the complexity of Algorithm 3 is also O(k), where k is the
number of prerequisites in the body of the dependency.

In computing the complexity of Algorithm 5, we need to compute the running
time for Steps 2, 4, and 5, respectively. We shall assume that Steps 9 and 10
execute in one operation by a database management system. Steps 6 and 7
both execute in O(k), where k is the number of prerequisites in the body of the
dependency. Step 5 can execute l, where l is the number of prerequisites in a
dependency. So, Step 5 can execute in O(l · k) time, where l is the number of
prerequisites and k is the number of attribute values in the prerequisite. Step 4
also executes in O(l). Step 2 can execute in O(n), where n is the number of
elements in the relation r. Therefore, the complexity of Algorithm 5 is O(n · l ·
l · k) = O(n · k · l2), where n is the number of tuples in r, k is the number of
attributes, and l is the number of prerequisites.

6 Related Work

For an overview of the inference problem, the reader is referred to Farkas et
al. [5] and Jajodia et al. [9]. There are several query processing solutions to the
inference problem.

140 T.S. Toland, C. Farkas, and C.M. Eastman

The solution to the inference problem proposed by Marks [11] forms equiva-
lence classes from the query results returned from the database. The equivalence
classes are then used to construct a graph, which can be used to reveal infer-
ences. The query results are referred to as views. The two types of views that
are discussed are referred to as total disclosed and cover by, respectively. A to-
tal disclosed view is one in which “tuples in one view can actually be created
from those in another” [11]. A cover by view is one in which the “release of even
one tuple will disclose a tuple in . . .” another view [11]. The inference process
is to convert a query to a view and insert it into the graph. Then, inspect the
graph to see if it will introduce any inference channels that will lead to some
sensitive data. If it does, then reject the query; otherwise, release the current
query results. Because the approach presented by Marks examines inferences at
the attribute level, preprocessing can be done by examining the query before
execution to see if it contains attributes that will produce an inference channel
that will reveal sensitive data. Obviously, in this approach, if the query pro-
duces an inference channel before execution, then the results from the queries
will as well.

The inference engine presented by Thuraisingham [19] is used to augment the
relational database by acting as an intermediary between the queries and the
database. The inference engine uses first order logic to represent queries, security
constraints, environment information, and real world information. That is, the
inference engine converts the current query to first order logic. The first order
logic query is then compared against the database constraints to determine if
a security constraint will be violated. If a security violation exists, the query is
rejected; otherwise, the query is converted into relational algebra and forwarded
to the database for execution. The results that are returned from the database
are assigned classification labels that ensure that no security violation exists.

Stachour and Thuraisingham propose a system called Lock Data Views
(LDV) [16]. This approach to the inference problem is similar to Thuraising-
ham [19]. That is, the solution proposed by Stachour and Thuraisingham per-
forms query processing that involves converting a query to an internal format,
determining if a violation exists by submitting the query to the DBMS and
classifying the query results accordingly. Unlike the approach presented by Thu-
raisingham [19], the approach presented in Stachour and Thuraisingham [16]
runs on top of a trusted computing base called LOgical Coprocessing Kernel
(LOCK) and is dependent on LOCK functioning correctly (i.e., securely).

Yip and Levitt [21] discuss an inference detection system that utilizes five
inference rules to uncover any possible inference channels that may be present.
These rules are applied to the initial query and the query results to determine if
an inference channel exists. These rules are sound, but not necessarily complete.

A major disadvantage of [11,16,19,21] is that the additional processing time
that is introduced during query processing time may have a significant adverse
effect on the overall query response time. Our solution does address this disad-
vantage. In particular, the additional processing time that is introduced by our
solution is polynomial in terms of the prerequisites.

Dynamic Disclosure Monitor (D2Mon) 141

7 Conclusion and Future Work

In this paper, we have presented an approach that can be used to increase the
performance of a query processing solution to the inference problem. We have
presented a solution that forms an index on the history database that contains
only hose tuples that can be used in satisfy the database dependencies. We have
shown how our approach can be used in a query processing security mechanism
called D2Mon to produce inferences that are sound and complete.

In this paper we have proposed that an index table entry be constructed
for each database dependency prerequisite. Then each of these indices would be
stored in the prerequisite index table to assist in the inference processing. It may
be possible to combine these separate indices into one index structure. We have
discussed the construction of one-dimensional indices. Although it is beyond the
scope of this paper, we acknowledge that it may be possible to apply multi-
dimensional indices to reduce the complexity of our solution even further. Also,
we do not consider how our approach can be used in applying tuple generating
dependencies. These research questions can be investigated in future work.

References

1. A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference
channels, and monitoring disclosure. IEEE Trans. Knowledge and Data Eng.,
November, 2000.

2. L.J. Buczkowski. Database inference controller. In D.L. Spooner and C. Landwehr,
editors, Database Security III: Status and Prospects, pages 311–322. North-Holland,
Amsterdam, 1990.

3. S. Dawson, S.De Capitani di Vimercati, and P. Samarati. Specification and en-
forcement of classification and inference constraints. In Proc. of the 20th IEEE
Symposium on Security and Privacy, Oakland, CA, May 9–12 1999.

4. D.E. Denning. Commutative filters for reducing inference threats in multilevel
database systems. In Proc. IEEE Symp. on Security and Privacy, pages 134–146,
1985.

5. C. Farkas and S. Jajodia. The inference problem: a survey. SIGKDD Explor.
Newsl., 4(2):6–11, 2002.

6. C. Farkas, T. Toland, and C. Eastman. The inference problem and updates in
relational databases. In Proc. IFIP WG11.3 Working Conference on Database and
Application Security, pages 171–186, July 15-18 2001.

7. J.A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE
Symp. on Security and Privacy, pages 75–86, 1984.

8. T.H. Hinke. Inference aggregation detection in database management systems. In
Proc. IEEE Symp. on Security and Privacy, pages 96–106, 1988.

9. S. Jajodia and C. Meadows. Inference problems in multilevel secure database man-
agement systems. In M.D. Abrams, S. Jajodia, and H. Podell, editors, Information
Security: An integrated collection of essays, pages 570–584. IEEE Computer Society
Press, Los Alamitos, Calif., 1995.

10. T. F. Keefe, M. B. Thuraisingham, and W. T. Tsai. Secure query-processing
strategies. IEEE Computer, pages 63–70, March 1989.

142 T.S. Toland, C. Farkas, and C.M. Eastman

11. D.G. Marks. Inference in MLS database systems. IEEE Trans. Knowledge and
Data Eng., 8(1):46–55, February 1996.

12. D.G. Marks, A. Motro, and S. Jajodia. Enhancing the controlled disclosure of
sensitive information. In Proc. European Symp. on Research in Computer Security,
Springer-Verlag Lecture Notes in Computer Science, Vol. 1146, pages 290–303,
1996.

13. S. Mazumdar, D. Stemple, and T. Sheard. Resolving the tension between integrity
and security using a theorem prover. In Proc. ACM Int’l Conf. Management of
Data, pages 233–242, 1988.

14. M. Morgenstern. Controlling logical inference in multilevel database systems. In
Proc. IEEE Symp. on Security and Privacy, pages 245–255, 1988.

15. G.W. Smith. Modeling security-relevant data semantics. In Proc. IEEE Symp.
Research in Security and Privacy, pages 384–391, 1990.

16. P.D. Stachour and B. Thuraisingham. Design of LDV: A multilevel secure relational
database management system. IEEE Trans. Knowledge and Data Eng., 2(2):190–
209, June 1990.

17. T. Su and G. Ozsoyoglu. Inference in MLS database systems. IEEE Trans. Knowl-
edge and Data Eng., 3(4):474–485, December 1991.

18. T.H.Hinke, Harry S. Delugach, and Asha Chandrasekhar. A fast algorithm for
detecting second paths in database inference analysis. Jour. of Computer Security,
3(2,3):147–168, 1995.

19. B.M. Thuraisingham. Security checking in relational database management sys-
tems augmented with inference engines. Computers and Security, 6:479–492, 1987.

20. J.D. Ullman. Principles of Database and Knowledge-base Systems, Volumes 1,2.
Computer Science Press, Rockville, MD, 1988.

21. R. W. Yip and K. N. Levitt. Data level inference detection in database systems. In
Proc. of the 11th IEEE Computer Security Foundation Workshop, Rockport, MA,
pages 179–189, June 1998.

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 143 – 154, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Detecting Privacy Violations in
Sensitive XML Databases

Stefan Böttcher and Rita Steinmetz

University of Paderborn (Germany), Computer Science,
Fürstenallee 11, D-33102 Paderborn

stb@uni-paderborn.de, rst@uni-paderborn.de

Abstract. Privacy violations and the exposition of sensitive data to a third party
may seriously damage the business of a company. Therefore, it is crucial for the
company to identify that set of users that may have exposed the sensitive data.
To identify that set of users is a problem, when multiple users must have access
rights that allow them to access the exposed sensitive data. Our solution to the
problem is based on an analysis of the users’ XPath queries. Within a two-step
approach, we compare submitted queries with the exposed data to identify sus-
picious queries.

1 Introduction

1.1 Motivation

Whenever a company has to allow multiple users to access sensitive data, i.e., any in-
formation, which through loss, unauthorized access, or modification could adversely
affect the privacy of individuals, and some of the sensitive data has been disclosed to
a third party, it is important for the company to identify the privacy leak. In such a
situation, the company has to determine, who had access to the uncovered sensitive
data, i.e., who had the possibility to expose certain data to the third party.

For example, consider a woman – say Jane – who has overdrawn her account at her
bank – say MoneyCo – and after a few weeks, she receives advertisements for books on
how to reduce debts by a second company. Therefore, Jane might blame MoneyCo for
exposing the balance of her bank account to the other company. In such a case, it could
be useful if MoneyCo could query its database to identify which database users had ac-
cess to the concerned data, i.e., which users have posed queries, the results of which
contain Jane and the balance of her bank account. In a second step, MoneyCo could in-
terview all suspicious users to detect who might have disclosed the information.

In this scenario, we assume that there exists an access control system within the
MoneyCo database, i.e., each database user was only able to access that part of the da-
tabase he is allowed to. Note however, that not every user really has accessed all the
data that he had an access right to. Instead, it depends on the queries that a user sub-
mits to a system whether he received sensitive data. In other words, our approach,
does not want to prevent anyone who has the access rights from accessing the data,
but we want to detect ex post based on the submitted user queries, which user has got

144 S. Böttcher and R. Steinmetz

knowledge of the specified sensitive information, i.e., which user had the opportunity
to reveal the specified sensitive information to a third party (which does not have the
right to access this information).

1.2 Audit Language

Some requirements to the audit language can be derived from the above given scenario.
Jane must be able to express which of her data MoneyCo should audit, i.e., she must be
able to submit an audit query to the audit system. Since in this paper we deal with XPath
(see [19]) as the system’s query language, the language to express audit queries is very
similar to XPath. Mainly, an audit query is an XPath expression preceded by a Dur-
ingTo-clause and by the keyword ‘audit’. It is defined by the following grammar:

AuditExp ::= DuringTo ‘audit’ XPath
DuringTo ::= ‘during’ datetime ‘to’ datetime
XPath ::= Path | Path ‘[‘ FExp ‘]’
Path ::= ‘/’Path | Path‘/’Path | Path‘//’Path | Σ |‘.’
FExp ::= XPath | Path Comp constant
Comp ::= ‘=’|‘<’|‘≤’|‘>’|‘≥’|‘≠’

datetime is a timestamp, Σ is the set of elements and attributes specified by the
DTD of the XML database, and constant is a constant of some standard type,
such as String, Long or Integer. Note that our audit language covers a subset of XPath
for which an efficient algorithm is presented.

One example of an audit query, which Jane might have posed in the above given
scenario is

A=during 3pm,01/02/05 to 5pm,08/02/05
 audit /Bank/Department/Customer[./Name=”Jane”][.//Balance<0]

The DuringTo-clause is used to specify a period in which the suspicious query must
have been answered. In the above given scenario, the start time ‘3pm,01/02/05’
would be the time and date when the balance of Jane’s bank account got negative and
the end time ‘5pm,08/02/05’ would be the time and date when Jane received the
advertisement.

The supported set of XPath queries in our system is also defined by the above
given grammar when starting with the start symbol XPath. We refer to the supported
set of XPath queries as XP{/, //, [], ≥c} in the remainder of this paper, where ≥c denotes
that comparisons of paths to constants are allowed within predicate filters.

For example, consider the user query
Q1=//Customer[./Account/Balance<0]/Name

If within the database there exists an entry of a user with name=”Jane” and with bal-
ance less than 0 at the time when Q1 has been executed, then Q1 has accessed the
data specified by A, i.e., Q1 is returned as a suspicious query by our audit system.

1.3 Requirements of Our Audit System

In some situations, additional information can be gained by posing a series of related
queries. For example, consider the queries Q2=//Customer/Name and
Q3=//Customer[//Balance>=0]/Name. Each of these queries would not be

 Detecting Privacy Violations in Sensitive XML Databases 145

deemed suspicious. However, if outside of the XML database the difference Q1=Q2-
Q3 of both queries would be build, the user gains the information specified in the au-
dit query. Nevertheless, in this paper, we limit ourselves to determining whether a
single query is suspicious with respect to an audit query, and we do not provide a so-
lution where a combination of queries is suspicious.

Thus, the problem solved in this paper is, given an XML database system, an un-
derlying DTD, and an audit query A, return all user queries, which have accessed data
specified in A.

1.4 Paper Organization

The remainder of the paper is organized as follows. Section 2 gives an overview of
the system structure designed to fulfill the requirements of our proposed auditing sys-
tem. Section 3 describes the algorithm to find suspicious queries according to an audit
query. Section 4 discusses the related works. Finally, Section 5 concludes the paper.

2 System Structure

The overall system (see Figure 1) is an XML database system which is extended by a
query log and a backlog, which are defined as follows.

Query log: The query log stores the queries that have been executed on the XML da-
tabase together with the IDs of the users who have executed the queries and with
timestamps of when the results of the queries were returned to the users.

Backlog: The backlog is used to store all changes to the XML database in order to be
able to restore the state of the database at a certain timestamp t.

Fig. 1. System architecture (cf. [2])

The backlog is organized as a table where each row contains the following infor-
mation: an index number identifying the changed XML node, a keyword – either ‘de-
lete’ or ‘insert’, depending on the operation performed on the value of the changed
node, a value, and the timestamp on when the operation has been performed.

146 S. Böttcher and R. Steinmetz

The value is either the new value of the inserted node, if the operation is an insert
operation, or the value of the deleted node, otherwise. An update operation on one
node is treated as a deletion of the node followed by the insertion of a new node with
the same index number and a new value.

An alternative to the use of a backlog to restore the state of a database to the state
at a previous timestamp t, is to use a temporal XML database instead, i.e., a database
that contains all these states at the same time. For an approach on how to efficiently
query temporal XML databases refer to [12]. Note that our algorithms to detect suspi-
cious queries do not depend on the storage approach used for the backlog, i.e., both
storage approaches are compatible with our technique to detect suspicious queries.

3 Algorithms

The overall process is as follows: The audit query processor first takes an audit query
as input. Then, it searches the query log for possible candidate queries, i.e., it searches
for queries that might have accessed information specified by the audit query. After-
wards, the audit query processor restores the database to the time t of each candidate
query, i.e., it computes a copy of the database or, in case of a temporal XML data-
base, uses a database view, that represents the state of the database at timestamp t. Fi-
nally, the audit query processor returns all suspicious queries, i.e., it returns all the
queries that efficiently have accessed the information specified by the audit query.
The formal definition of candidate queries will be given in Section 3.1, and the formal
definition of suspicious queries will be given in Section 3.3.

In order to test whether a query Q returns the data specified by an audit query A,
i.e., whether the query is deemed suspicious, the audit system performs the query
A(treeCopyOf(Q(Dt))), and checks whether it returns a non-empty XML node set. Dt
is the restored database at timestamp t, where t is the timestamp of the query Q re-
corded in the query log. The operation treeCopyOf(Q(Dt)) executes the query Q on
the database Dt and returns the fragment of Dt that contains all the leaf nodes of Dt
that are selected by Q plus all the paths from the root to these selected nodes plus all
the nodes that are “selected” by predicate filters plus the paths from the root to these
nodes. Our goal is to find all these suspicious nodes.

3.1 Reducing the Number of Queries

One problem of the nested query execution of A(treeCopyOf(Q(Dt))) is that it takes a
long time to perform this audit query for all queries Q in the query log, as for each
query, the state of the database at the time when the query was answered has to be re-
stored. Therefore, we perform an analysis to filter out some of the non-suspicious
queries. The simplest optimization is to perform a static analysis on all queries first,
i.e., to filter out all queries, the timestamp of which is not contained within the period
specified by the DuringTo-clause of the audit query.

Furthermore, we propose an approach to efficiently identify a set of queries called
candidate queries that includes all the suspicious queries. These candidate queries can
be identified by an analysis of the structure of both queries, the audit query, and the

 Detecting Privacy Violations in Sensitive XML Databases 147

user query. In order to define the set of candidate queries, we need the following
definitions:

Definition 1 (Tree Pattern [13]). Let Σ be the set of element names and attributes de-
fined by the underlying DTD. A tree pattern is a tree p or a forest F of trees, the nodes
of which are labeled with symbols fromΣ, with two distinguished subset of edges, and
two distinguished subsets of nodes.

The first distinguished subset of edges is called child edges and it represents the
parent-child relationship. It is denoted by a single line. The second distinguished sub-
set of edges is called descendant edges and it represents the ancestor-descendant rela-
tionship. It is denoted by a double line.

The first distinguished subset of nodes is called element nodes. It is denoted by a
circle. The second distinguished subset of nodes is called comparison nodes. It is de-
noted by a rectangle. The label of a comparison node is a comparison operator (i.e., =,
<, ≤, >, ≥, ≠) followed by a constant.

Informally, a tree pattern TQ is a tree representation of an XP{/, //, [], ≥c} XPath query Q.
A candidate query is a query Q that might have accessed information specified by

the audit query, i.e., a query for which a homomorphism from the audit tree pattern to
the tree pattern of Q exists.

Definition 2 (Candidate queries). Let TQ be the tree pattern of the query Q, and let
TA be the tree pattern of the audit query A. The query Q is a candidate query with re-
spect to the audit query A if and only if there exists a homomorphism
h:ElementNodes(TA) ElementNodes(TQ) so that

1. h(root(TA)) = root(TQ)
2. ∀ x ∈ ElementNodes(TA) : Label (x) = Label(h(x))
3. ∀ x,y ∈ ElementNodes(TA): if (x,y) is a child edge in TA then (h(x),h(y)) is a
child edge in TQ and if (x,y) is a descendant edge in TA then h(y) is a descendant
of h(x) in TQ.

In the example of Figure 2, condition 3. is satisfied by the nodes x and y with La-
bel(x)=Customer and Label(y)=Balance in Figure 2(a) and a homomorphism h that
maps these nodes to the corresponding nodes h(x) with Label(h(x))=Customer and h(y)
with Label(h(y))=Balance in Figure 2(b), because the node h(y) is a descendant of h(x).

3.2 Transformed Tree Patterns

Sometimes a homomorphism h cannot be found just because of some nodes (e.g., the
nodes with the labels Bank and Department of the audit pattern of Figure 2(a) cannot
be mapped to corresponding nodes in the query pattern of Figure 2(b)). However,
there might be a possibility to “map” these nodes to a descendant edge. Therefore, we
transform the tree pattern of the user query into an equivalent transformed tree pat-
tern. Equivalent means that the query Q and the transformed query pattern Q’ select
the same element nodes for each document that is valid according to the given DTD.
For example, consider the user query:

Q1: //Customer[./Account/Balance<0]/Name

148 S. Böttcher and R. Steinmetz

Fig. 2. (a) audit pattern TA, (b) query pattern TQ1

and the following DTD:

<!ELEMENT Bank (Department*)>
<!ELEMENT Department (Customer*)>
<!ELEMENT Customer (Name, Account*)>
<!ELEMENT Account (Balance)>

As the DTD states that a node Customer can only be reached by the path
/Bank/Department/Customer, Q1 is equivalent to the user query

Q1’= /Bank/Department/Customer[./Account/Balance<0]/Name.

Fig. 3. (a) Homomorphism from audit pattern to transformed query pattern, (b) query pattern,
(c) transformed query pattern

In this case, we replace the descendant edge (root, Customer) with a path of nodes
root Bank Department Customer. In general, we replace each descendant edge
with a set of paths, which is the reduced DTD graph, as introduced in [6].

Figure 3(b) shows the tree pattern TQ1 of the original user query Q1 and Figure 3(c)
shows the transformed query tree pattern TQ1’ of the transformed user query Q1’.

 Detecting Privacy Violations in Sensitive XML Databases 149

Figure 3(a) shows a homomorphism between the audit pattern TA of the audit
query A and the transformed query pattern TQ1’ of the user query Q1. Whether there
exists a homomorphism between one audit pattern TA and a transformed tree pattern
TQ’ of a user query can be tested in O(|TA||TQ’|) time (see [13]), where |TA| is the
number of nodes of pattern TA and |TQ’| is the number of nodes of pattern TQ’.

3.3 Suspicious Queries

Definition 3 (treeCopyOf): Let Q be a given query and D be a given document D.
Furthermore, let TQ be the tree pattern of the query Q, and let TD be the tree repre-
sentation of the document D. An embedding from TQ to TD is defined to be a func-
tion e:Nodes(TQ) Nodes(TD) with

1. e(root(TQ)) = root(TD)
2. ∀ x ∈ ElementNodes (TQ) : Label (x) = Label(e(x))
3. ∀ x,y ∈ ElementNodes (TQ): if(x,y) is a child edge in TQ then (e(x),e(y)) is a
child edge in TD and if (x,y) is a descendant edge in TQ then e(y) is a descendant
of e(x) in TD.
4. ∀ x ∈ ElementNodes (TQ), ∀ y ∈ ComparisonNodes (TQ): if(x,y) is a child
edge in TQ, then e(x) has to fulfill the condition stated in label(y).

Let e be such an embedding. Then VEDe is defined as {v ∈ Nodes(TD) | v=e(q) and q
∈ Nodes(TQ)}.

Let E be set of all possible embeddings e:Nodes(TQ) Nodes(TD). Let VED be
defined as VED:=∪e∈EVEDe. Then treeCopyOf(Q(D)) is that subtree of TD that con-
tains all nodes of VED plus all paths from the root node to these nodes.

Definition 4 (Suspicious Query): We call a query Q, the results of which were re-
turned at timestamp t from a database, suspicious with respect to an audit query A and
a database D, if A(treeCopyOf(Q(Dt))) ≠ ∅, for state Dt of the database D at time-
stamp t.

Note that the test whether a query is suspicious is completely different from testing
query containment which could be used for access control.

3.4 Restoring the Database at Timestamp t

In order to restore the state of the database at timestamp t, we use the backlog. We as-
sume that the backlog is sorted by the timestamps, and we additionally use the eX-
tended Preorder Numbering Scheme (XPNS) as presented in [11] to implement the in-
dex number of each row. The XPNS assigns a tuple (P, R) to each node of the XML
database, where P is the preorder number of the node and R is a range. For each node
x and each of its descendants y, it holds that P(x)<P(y) and P(y)+R(y)≤P(x)+R(x), and
for each node x and each of its following siblings z, it holds that P(x)+R(x)<P(z).
Therefore, given the preorder number P(w) of a node w, w can be found within the
XML database by the use of those inequations in O(log(width(db))*depth(db)) time,
where width(db) is the maximum number of children that one node of the XML data-
base has, and depth(db) is the depth of the XML database.

150 S. Böttcher and R. Steinmetz

In order to restore the state of the database for a given query, we first have to check
the query log for the timestamp t when the query was answered. Then we check the
backlog for all changes from time t to the current time. These changes can be detected
quickly as the backlog is sorted by the timestamps. Then we make a copy of the actual
XML database and perform all the changes, which are recorded in the backlog, on the
copy of the database in reverse order and reverse mode, i.e., if the backlog entry says
that a node with preorder number 9 has been inserted, we delete the node, or vice versa.

3.5 Summarized Algorithm

As shown in Figure 4, our algorithm works as follows. First, by a static analysis, we
filter out all queries that do not meet the time constraints specified by the audit query
(lines (2)-(4)). Then, we generate the transformed query pattern q’ for all remaining
queries and check if there exists a homomorphism between the audit query pattern
and the transformed query pattern (lines (5)-(8)). Finally, we restore the state Dt of
the database at timestamp t for each candidate query, and we return all queries for
which A(treeCopyOf(Q(Dt)))≠∅ holds.

audit(AuditQuery A, querylog QL, DTD D){
(1) Q,C,S := ∅;
(2) for each (q ∈ QL) {
(3) if(A.during ≤ q.timestamp ≤ A.to)
(4) Q:=Q ∪ {q}; }
(5) for each (q ∈ Q) {
(6) q’ := transform(q,D);
(7) if(existsHomomorphism(A,q’))

(8) C:=C ∪ q; }
(9) for(q=C.newest;C.moreQueries;C.next)
(10) { Dt:=restoreDB(lastTime,q.timestamp);
(11) lastTime:=q.timestamp
(12) if A(treeCopyOf(Q(Dt)))≠∅)

(13) S:=S ∪ {q}; }
(14) return S; }

Fig. 4. Audit algorithm

In this algorithm, q.timestamp is the timestamp stored in the query log for
query q. The function transform(q,D) transforms the query q into the trans-
formed query pattern q’.

The overall time complexity of our audit-algorithm is polynomial for the following
reasons. Line (3) can be performed in linear time, line (7) can be performed in
O(|A||Q|²) time, as for each query q ∈ C according to [13] the existence of a homo-
morphism from TA to TQ can be checked in O(|A||Q|) time. Finally, we assume that
the query log and therefore as well the sets Q and C are sorted by the timestamps of
the query. Therefore, line (10) can be performed in O(|bl|*log(width(db))*depth(db))
time, where |bl| is the number of entries in the backlog, width(db) is the maximum
number of children that one node of the XML database has, and depth(db) is the depth
of the XML database.

 Detecting Privacy Violations in Sensitive XML Databases 151

3.6 Correctness of Testing Candidate Queries

Within our algorithm, we first filter out all candidate queries and search the suspi-
cious queries only amongst them. Therefore, we have to ensure, that we do not over-
look any query.

Theorem 1: Let A be the given audit expression and TD be the tree representation of
the XML database D at the time t when the query Q was executed. Let Q be a suspi-
cious query with respect to A and D. Then Q is a candidate query with respect to A.

Proof sketch: Let Q ∈ S be a suspicious query with respect to A and D. Then there
exists at least one embedding e from TQ to TD. Let treeStructureOf(Q(Dt)) be that
subtree of treeCopyOf(Q(Dt)) that is generated from treeCopyOf(Q(Dt)) by

1. Deleting all attribute-values
2. Deleting all text-nodes
3. Combining all siblings with the same label into one sibling.

Step 3 is stored within a mapping compress:node node, i.e. if the nodes x
and y are combined within a new node z, we insert x z and y z within the mapping
compress.

As q is a suspicious query with respect to A, A(treeCopyOf(Q(Dt))) ≠ ∅. There-
fore, there exists an embedding eA from A to treeCopyOf(Q(Dt)). That means, there
exists as well a homomorphism hA from A to treeStructureOf(Q(Dt) with
hA(a):=compress(eA(a)) for each element node a of the audit pattern TA.

As treeStructureOf(Q(Dt)) contains only paths from the root to nodes com-
press(e(q)) for each node q of the tree pattern TQ, and TQ’ contains all paths that are
valid according to the given DTD and that are selected by Q, there exists a homo-
morphism hT from treeStructureOf(Q(Dt)) to TQ’.

Then finally, we know that there exists a homomorphism h from the audit pattern
TA to the transformed query pattern TQ’ with h(a):=hT(hA(a)) for each element node a
of the audit pattern TA. According to Definition 2, q is therefore a candidate
query.

4 Relation to Other Works

Typical cases of privacy sensitive databases are hippocratic databases. [1] presents an
overview of the 10 key privacy principles of such databases. Our work contributes to
the principle “compliance”, which means, a database shall provide mechanisms so
that it can be checked whether the principles – in our case the principle that no sensi-
tive information shall be exposed to a non-authorized third party – are met.

In order to fulfill audit compliance, an “audit log” as the backlog introduced in this
paper is needed. One aspect, that has to be considered, but that is not treated in this
paper is to detect anyone corrupting the backlog. Snodgrass et al ([15]) contribute to
this problem as they propose a mechanism that detects intruders or bugs corrupting
the audit log.

Our work has been inspired by the approach to audit compliance for relational da-
tabases and SQL presented in [2]. However, we focus on XML databases and XPath

152 S. Böttcher and R. Steinmetz

expressions. Some issues, such as identifying candidate queries, identifying suspi-
cious queries and the organization of the backlog, are easy to solve for RDBMS, but
are more sophisticated for XML databases, as the structure of relational databases are
two-dimensional tables, where the structure of XML databases are trees.

Although our approach contributes to the topic privacy, it does not form an ap-
proach to access control as e.g. ([4], [5], [7] , and [10]), which contribute to the field
of access control for XML data sources and which range from policies, to user
groups, to document location, to access control on fragments of XML documents.

Another contribution to these topics [9] concentrates on query rewriting to hide in-
formation to the user. However, the problem treated by [9] is fundamentally different
from our problem in the following aspect. The problem of [9] is to hide a part of the
information from the users submitting queries to the system. In the example taken by
[9] a nurse seeing a patient and asking queries about the patient should not get knowl-
edge of whether or not this patient is a trial patient, i.e. this part of the information is
hidden by rewriting the queries of the nurse. In comparison, we do not discuss the
problem of hiding a part the information from the users that submit queries to the sys-
tem. In contrast, our problem is that users who are authorized to get knowledge (i.e.
"full" access must be granted to them) uncover that knowledge to a third party, i.e. au-
thorized users are a leak. And depending on the queries submitted and answers re-
trieved by each authorized user, we want to identify the leak. Note that our approach
is also significantly different from traditional access control techniques, which pro-
vide a technique to prevent some non-authorized users from accessing all the informa-
tion that is retrievable for authorized users from a database, e.g. from query rewriting
techniques like [16].

Containment tests for XPath queries are presented e.g. in ([6], [8], [13], [14], [17],
and [18]). Some of them (e.g., the algorithms presented in [8], [17], [18]) restrict the
subset of allowed XPath expressions too much, e.g. they do not allow for descendant-
axes within the XPath expressions. Others (e.g., the algorithms presented in [6], [13])
present efficient and sound, but incomplete algorithms, i.e., we cannot be sure that
each candidate query will be found. Furthermore, other contributions (e.g., [14], [18])
show that for certain classes of XPath expressions, the containment problem gets a
too high complexity, i.e., these classes cannot be considered for our algorithm.

In fact, the above-mentioned algorithms deal with containment tests for the results
of XPath queries. In our algorithm, a containment test on the structure of the XPath
queries is used to detect candidate queries. As our test for candidate queries uses a
containment test on the structure of XPath expressions, in this paper, we propose an
approach that combines the ideas presented in [3] and [13].

5 Conclusions

Detecting privacy violations is crucial when a company has to allow multiple users to
access its sensitive data, and some of the data has been disclosed to a third party. The
approach presented in this paper is completely independent from any existing access
control system, i.e., we assume, that each database user can only access that part of
the database, he is allowed to according to its access rights. In contrast to access con-
trol systems, our approach allows the company to check ex post, which user had had

 Detecting Privacy Violations in Sensitive XML Databases 153

access to the specified sensitive part of the database, i.e., which user was able to dis-
close the specified part of the database to a third party.

In this paper, we have presented an efficient algorithm that identifies a set of suspi-
cious XPath queries with respect to an audit XPath query for an XML database. Our
algorithm first restricts the set of relevant queries of the query log by using the time-
stamp interval given in the audit query. Then it identifies candidate queries by search-
ing a homomorphism between the tree pattern TA of the audit query A and the trans-
formed pattern TQ of each relevant user query Q of the query log. For each query Q
where a homomorphism for TA to TQ exists, in a final step, our algorithm checks,
whether both queries Q and A access the same data.

In order to keep our presentation as simple as possible, we have restricted it to
XPath. However, as XPath forms the major part of other query languages like XQuery
and XSLT, we believe that our approach will be easily adaptable to these query
languages.

References

[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Hippocratic Data-
bases. In: Philip A. Bernstein, Yannis E. Loannidis, Raghu Ramakrishnan (Eds.): Pro-
ceedings of 28th International Conference on Very Large Data Bases. VLDB 2002, Hong
Kong, 2002

[2] Rakesh Agrawal, Roberto J. Bayardo Jr., Christos Faloutsos, Jerry Kiernan, Ralf Rantzau,
Ramakrishnan Srikant: Auditing Compliance with a Hippocratic Database In: Mario A.
Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, K.
Bernhard Schiefer (Eds.): (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases. VLDB 2004, Toronto, Canada, 2004

[3] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, Divesh Srivastava: Minimi-
zation of Tree Pattern Queries In: Timos Sellis (Ed.): Proceedings of the 2001 ACM
SIGMOD international conference on Management of data. SIGMOD Conference 2001,
Santa Barbara, California, United States, 2001

[4] Elisa Bertino, Silvana Castano , Elena Ferrari: On specifying security policies for web
documents with an XML-based language In: In Proceedings of the 6th ACM Symposium
on Access Control Models and Technologies. SACMAT 2001, Chantilly, Virginia, USA,
2001.

[5] Elisa Bertino, Elena Ferrari: Secure and selective dissemination of XML documents. In:
ACM Transactions on Information and System Security. TISSEC, Volume 5, Number 3,
pp 290–331, 2002

[6] Stefan Böttcher, Rita Steinmetz: A DTD Graph Based XPath Query Subsumption Test In:
Zohra Bellahsene, Akmal B. Chaudhri, Erhard Rahm, Michael Rys, Rainer Unland
(Eds.): Database and XML Technologies, First International XML Database Symposium,
XSym 2003, Berlin, Germany, 2003

[7] Ernesto Damiani, Sabrina di Virmercati, Stefano Paraboschi, Pierangela Samarati: Secur-
ing XML Documents In: Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl, Torsten
Grust (Eds.): Advances in Database Technology - EDBT 2000, 7th International Confer-
ence on Extending Database Technology, Konstanz, Germany, 2000

[8] Alin Deutsch, Val Tannen: Reformulation of XML Queries and Constraints In: Diego
Calvanese, Maurizio Lenzerini, Rajeev Motwani (Eds.): Database Theory - ICDT 2003,
9th International Conference, Siena, Italy, 2003

154 S. Böttcher and R. Steinmetz

[9] Wenfei Fan, Chee Yong Chan, and Minos Garofalakis: Secure XML Querying with Se-
curity Views In: Gerhard Weikum, Arnd Christian König, Stefan Deßloch (Eds.): Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
SIGMOD Conference 2004, Paris, France, 2004

[10] Michiharu Kudo, Satoshi Hada: XML document security based on provisional authoriza-
tion In: In Sushil Jajodia, Pierangela Samarati (Eds.): Proceedings of the 7th ACM Con-
ference on Computer and Communications Security. CCS 2000, Athens, Greece, 2000

[11] Quanzhong Li, Bongki Moon: Partition Based Path Join Algorithms for XML Data In::
Vladimír Marík, Werner Retschitzegger, Olga Stepánková (Eds.): Database and Expert
Systems Applications, 14th International Conference, DEXA 2003, Prague, Czech Re-
public, , 2003

[12] Alberto O. Mendelzon, Flavio Rizzolo, Alejandro A. Vaisman: Indexing Temporal XML
Documents In: Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J.
Miller, José A. Blakeley, K. Bernhard Schiefer (Eds.): (e)Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases. VLDB 2004, Toronto, Canada, 2004

[13] Gerome Miklau, Dan Suciu: Containment and Equivalence for an XPath Fragment. Jour-
nal of the ACM, Volume 51, 2004

[14] Frank Neven, Thomas Schwentick: XPath Containment in the Presence of Disjunction,
DTDs, and Variables In: Diego Calvanese, Maurizio Lenzerini, Rajeev Motwani (Eds.):
Database Theory - ICDT 2003, 9th International Conference, Siena, Italy, 2003

[15] Richard T. Snodgrass, Shilong (Stanley) Yao, Christian S. Collberg: Tamper Detection in
Audit Logs In: Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J.
Miller, José A. Blakeley, K. Bernhard Schiefer (Eds.): (e)Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases. VLDB 2004, Toronto, Canada, 2004

[16] Stonebraker, M.: Implementation of Integrity Constraints and Views by Query Modifica-
tion In: W. Frank King (Ed.): Proceedings of the 1975 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD Conference 1975, San Jose, California, 1975

[17] Peter T. Wood: Containment for XPath Fragments under DTD Constraints In: Diego Cal-
vanese, Maurizio Lenzerini, Rajeev Motwani (Eds.): Database Theory - ICDT 2003, 9th
International Conference, Siena, Italy, 2003

[18] Peter T. Wood: Minimising Simple XPath Expressions In: Giansalvatore Mecca, Jérôme
Siméon (Eds.): Proceedings of the Fourth International Workshop on the Web and Data-
bases, WebDB 2001, Santa Barbara, California, USA, 2001

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 155 – 169, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Suppressing Microdata to Prevent Probabilistic
Classification Based Inference*

Ayça Azgın Hintoğlu and Yücel Saygın

Sabancı University, Faculty of Engineering and Natural Sciences, Tuzla,
34956 Istanbul, Turkey

{aycah, ysaygin}@sabanciuniv.edu

Abstract. Enterprises have been collecting data for many reasons including bet-
ter customer relationship management, and high-level decision making. Public
safety was another motivation for large-scale data collection efforts initiated by
government agencies. However, such widespread data collection efforts cou-
pled with powerful data analysis tools raised concerns about privacy. This is
due to the fact that collected data may contain confidential information, or it
can be used to infer confidential information. One method to ensure privacy is
to selectively hide confidential data values from the data set to be disclosed.
However, with data mining technology it is now possible for an adversary to
predict the hidden data values, which is another threat to privacy. In this paper
we concentrate on probabilistic classification, which is a specific data mining
technique widely used for prediction purposes, and propose methods for down-
grading probabilistic classification models in order to block the inference of
hidden microdata values.

1 Introduction

Data collection is one of the major tasks of enterprises especially after the Internet
revolution, which made the data collection task even easier. Collected data is usually
stored in data warehouses and, powerful data mining tools are used to turn it into
competitive advantage via better business intelligence and customer relationship man-
agement. Government agencies are among the most aggressive data collectors espe-
cially after the increased threats to safety coming from global terrorist organizations.

The pervasive data collection rally by government agencies and enterprises raised a
lot of concerns among people about their privacy. For example, airline companies are
obliged by international laws to disclose their passenger information to the officials in
the United States and other countries. It is true that privacy of individuals is protected
by regulations in Europe and other countries, however such regulations may not be
enough to ensure privacy.

Widespread usage of data mining tools as well has contributed to the fears about
privacy. This is due to the fact that confidential data mining results can now be ex-

* This work is funded by the PIA-BOSPHORUS programme of EGIDE (France) and

TÜBİTAK (Turkey).

156 A. Azgın Hintoğlu and Y. Saygın

tracted with data mining tools, and data mining models themselves can be used to
predict confidential data values. Concerns about privacy even caused some data min-
ing projects to be canceled in US. Therefore, privacy issues have become one of the
important aspects of data mining research, which has been emphasized in recent panel
sessions, and workshops on databases and data mining.

In this paper, we propose new methods for suppressing confidential data values in
a data set by modifying it in a way to avoid prediction of confidential data values
using probabilistic classification models. As an initial attempt for solving this prob-
lem we choose Naïve Bayesian as the representative of probabilistic classification
models and propose algorithms based on Naïve Bayesian classification.

The rest of the paper is organized as follows: In section 2, we present an overview
of the current approaches on privacy preserving data mining and give some back-
ground information on the Naïve Bayesian classification. In section 3, we formally
define the problem, and present the algorithms for suppressing probabilistic classifica-
tion models. In section 4, we present and discuss the experimental results of the algo-
rithms. Section 5 concludes the paper.

2 Background and Related Work

Privacy issues were previously investigated in the context of statistical databases as
the inference problem with the aim of blocking attempts to predict confidential infor-
mation using the results of successive related queries. An extensive survey of statisti-
cal database security is provided in [13] and more recent work on statistical disclosure
control in databases can be found in [14] and [25]. The issue of preserving the ano-
nymity during the data dissemination process using generalizations and suppressions
on the potentially identifying portions of the data was addressed in [10], [17] and
[26]. However, in all these works the privacy threats due to inference based on data
mining models were not addressed. Therefore, they do not directly apply to our
problem.

From the data mining perspective, researchers developed methods to enable data
mining techniques to be applied while preserving the privacy. Methods for building
classification models on perturbed data were proposed by Agrawal and Srikant in [8].
Association rule extraction methods over encrypted data, which is distributed over
multiple autonomous sites, were proposed by Clifton et al. in [2]. Privacy preserving
data mining techniques were investigated further in [7], [12], [19], [20], [21], [22] and
[23]. These techniques are concentrated on obtaining valid and useful results when the
input is private. However, the results might also violate privacy resulting in a poten-
tial privacy breach. Kantarcıoğlu et al. explores this issue in [3]. An extensive survey
of privacy preserving data mining approaches can be found in [4].

Another issue from the data mining perspective is to protect privacy against data
mining techniques. In [5], [6] and [11] methods for protecting confidential data min-
ing results were proposed.

The basic problem of using nonsensitive data to infer sensitive data with the help
of data mining has been defined in [1]. In this work, it has been shown how lower

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 157

bounds from pattern recognition theory can be used to determine sample sizes where
data mining tools cannot obtain reliable results. A new paradigm for dealing with the
inference problem, which combines the application of decision tree analysis with the
concept of parsimonious downgrading, was proposed in [9]. In this work, Chang and
Moskowitz showed how classification models can be used to predict suppressed con-
fidential data values and concluded that some feedback mechanism is needed to pro-
tect suppressed data values against classification models.

2.1 Naïve Bayesian Classification

Naïve Bayesian Classifier is a statistical classifier that can predict the probability that
a given tuple belongs to a particular class. It works with the class conditional inde-
pendence assumption such that the effect of an attribute value on a given class is in-
dependent of the values of the other attributes. Moreover, it is based on Bayes theo-
rem. According to this theorem, given a new tuple d whose class label is unknown,
the probability that d belongs to some class c

k
 ∈ C is equal to the posterior probability

of c
k
 conditioned on d and is given by

() (|)
(|)

()
k k

k

p c p d c
p c d

p d
=

(1)

where p(ck) and p(d) are the prior probabilities of ck and d respectively, and p(d | ck) is
the posterior probability of d conditioned on ck. Since we made the assumption of
class conditional independence, we can write the posterior probability p(d | ck) as

1

(|) (|)
n

k j k
j

p d c p d c
=

= ∏

(2)

where d
j
 represents the jth attribute value of tuple d.

The Naïve Bayesian classifier will predict that d belongs to the class having the
highest posterior probability p(ck | d) as shown below:

1

() (|)
Most Probable Value = arg max (|) .

()k

n

k j k
j

c k

p c p d c
p c d

p d
=

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∏
 (3)

A detailed description of Naïve Bayesian classification can be found in [18].

3 Preventing Probabilistic Classification Based Inference

In this section we present the problem of suppressing a confidential data value to
prevent probabilistic classification based inference together with the information
theoretic evaluation measures used in our experiments. We also introduce the strate-
gies for preventing classification based inference with the algorithms implementing
these strategies with a discussion on the effectiveness of the suppression algorithms.

158 A. Azgın Hintoğlu and Y. Saygın

3.1 Problem Formulation

Classification is the process of finding a set of classification models using a training
data set in order to predict the class label of a given tuple based on its attribute values.
In this study, we aim at preventing probabilistic classification models to predict a
confidential data value. Formally, the problem of suppressing a confidential data
value to prevent probabilistic classification based inference can be stated as follows:

Let A = {a1,…,an} be the set of attributes and, let C be the set of class labels that a
confidential data value might take. Let D = {d1,…, dm} be the data set where each tu-
ple di ∈ D is an n dimensional row vector (di1 di2 … din). Given such a data set D
where the jth attribute of the ith tuple, denoted by dij

1, contains a confidential data
value, how can we modify the data set D to form a new data set D′ with as little in-
formation loss as possible, such that the confidential data value dij used to contain
cannot be predicted by a probabilistic classification model formed using D′.

As an initial attempt for solving this problem we choose Naïve Bayesian classifica-
tion model as the representative of probabilistic classification models and develop the
suppression algorithms based on this model.

3.2 Evaluation Measures

One of the issues in suppressing a confidential data value is to minimize the informa-
tion loss by minimizing the number of data values modified. Therefore, the proposed
algorithms are assessed by measuring information loss apart from the CPU time re-
quirements and success rate. In order to measure the information loss, two metrics is
used.

The first and the simplest metric is the direct distance. Direct distance finds the
number of data values hidden after suppressing the confidential data value.

Definition 1 (Direct Distance). Given two data sets D and D′ representing the origi-
nal and new data sets with m tuples and n attributes respectively, the direct distance
between them can be defined as

1 1

(,)
m n

ij
i j

DD D D dist
= =

′ =∑∑

(4)

where

0
.

1
ij ij

ij

if d d
dist

otherwise

′=⎧= ⎨
⎩

 (5)

The second metric is the sum of Kullback Leibler distances. This metric is based
on the Kullback Leibler distance which is defined within the scope of information
theory and heavily used to assess information loss in several contexts. It measures the
information loss by finding the distance between the first order probability distribu-
tions of the original and the new data sets. A detailed description of Kullback Leibler
distance can be found in [24].

1 Note that, dij is used to denote the location of the confidential data value in the rest of the

paper.

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 159

Definition 2 (Kullback Leibler Distance). Let X ∈ A be an attribute from the origi-
nal data set D with probability distribution p

X
(x) and X′ be the corresponding attribute

from the new data set D′ with probability distribution p
X′(x). Moreover, let the domain

of X and X′ be ℵ.Then, the Kullback Leibler distance between the original and the
new data sets in terms of attributes X and X′ can be defined as

()
(||) () log .

()
X

X X X
x X

p x
D p p p x

p x
′

∈ℵ ′

=∑ (6)

Definition 3 (Sum of Kullback Leibler Distances). Given the original data set D
with n attributes A = {a1,…,a

n
}and the new data set D′ with the corresponding n attrib-

utes A′ = {a′1,…,a′
n
}, the sum of Kullback Leibler distances can be defined as

1

(,) (||) .
i i

n

a a
i

SKLD D D D p p ′
=

′ =∑ (7)

3.3 Algorithms for Preventing Probabilistic Classification Based Inference

One method of suppressing confidential data values in a data set is to replace them
with a special symbol NULL or “unknown” denoted by a question mark. As a more
general scheme the confidential data values could be generalized to non-confidential
data values from a concept hierarchy. Within the scope of this study, we use the sim-
pler method of replacing confidential data values with a question mark which is also
referred to as hiding.

Suppressing a confidential data value alone by replacing it with a question mark
may not be enough to protect it if the whole data set is going to be disclosed. This is
due to the fact that an adversary can build a classification model using the rest of the
data as the training data set and can use the resulting classification model to predict
the actual confidential data value. In order to avoid such attacks, we propose three
algorithms for preventing probabilistic classification based inference using the Naïve
Bayesian classification.

DECP Algorithm
The DECP algorithm tries to decrease the probability of the tuple containing the con-
fidential data value being a member of class t, p(t | di), below the probability of it be-
ing a member of class random next best guess trnbg, p(trnbg | di).

Definition 4 (Random Next Best Guess). Let C be the set of possible class labels,
and d

i
 ∈ D be the tuple containing a confidential data value t ∈ C, such that the most

probable value for the class label of d
i
 is equal to t. Then, the random next best guess

t
rnbg for the tuple d

i
 is a randomly selected class label such that the probability of d

i

being a member of class t
rnbg

 is smaller than that of class t and greater than zero as
shown below:

(| { } , (|) (|) 0) .rnbg k k i k it rand c c C t p t d p c d= ∈ − > > (8)

160 A. Azgın Hintoğlu and Y. Saygın

In order to decrease p(t | di) below p(trnbg | di), the attribute values with largest impact
on probability coefficient p(di | t) can be replaced with a question mark in the tuples
with class label t.

Definition 5 (Largest Impact Attribute). The attribute with largest impact on prob-
ability coefficient p(d

i | t) is the one that satisfies

(){ }& &arg min { } { } 1
l l il l ill a C t a d i C t a d ia A D d D d= = = =∈ − − >

(9)

where D
C=t

 denotes the set of tuples with class label t, d
il
 denotes the lth attribute value

of tuple d
i
, D

al = dil
 denotes the set of tuples having the same lth attribute value as d

i
, and

D
C=t & al = dil

denotes the set of tuples having the same lth attribute value as d
i
 among the ones

with class label t.

Definition 6 (Largest Impact Data Values). Let a
l
 be the largest impact attribute.

Then, the largest impact data values are the set of occurrences of the lth attribute val-
ues in tuples D

C=t & al = dil
excluding d

i
.

{ }&= { }
l ilkl k C t a d iLargest Impact Data Values d d D d= =∈ −

(10)

As we replace the occurrences of data values which impact the probability coeffi-
cient most with a question mark, we achieve the maximum reduction in probability.

Theorem 1. Let a
l
 be the largest impact attribute satisfying

(){ }& &arg min { } { } 1
l l il l ill a C t a d i C t a d ia A D d D d= = = =∈ − − >

(11)

where D
C=t

 denotes the set of tuples with class label t, d
il
 denotes the lth attribute value

of tuple d
i
 which contains a confidential value, D

al=dil
 denotes the set of tuples having

the same lth attribute value as d
i
, and D

C=t & al = dil
 denotes the set of tuples having the same lth

attribute value as d
i
 among the ones with class label t. And, let the lth attribute values

of tuples in D
C=t & al = dil

 – {d
i
} be the largest impact data values. Then, every replacement of

a largest impact data value with a question mark causes the maximum reduction in
probability p(t | d

i
), resulting in fewer data values to be modified.

Proof. Let us first find the effect of hiding a largest impact data value on p(t) p(d
i | t).

Remember that since p(d
i
) does not change with class label it can be ignored when

calculating p(c
k
 | d

i
) for all c

k
 ∈ C. Let the size of D

C=t & al = dil
 – {d

i
} be Freq

al
 and p

org
 denote

the initial probabilities before suppression. Then,

1

() (|) () (|)
n

i ik
k

p t p d t p t p d t
=

= ∏ (12)

1

1 1

() (|) (|) (|) .
l n

org org ik il org ik
k k l

p t p d t p d t p d t
−

= = +

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∏ ∏ (13)

Single replacement of a largest impact data value causes p(dil | t) to decrease

from
| |

la

C t

Freq
D =

to
1

| |
la

C t

Freq
D =

−
. And, this decreases p(t | di) by

1
l

l

a

a

Freq
Freq

−
.

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 161

1

1 1

1
() (|) () (|) (|) (|)l

l

l n
a

i org org ik org il org ik
k k la

Freq
p t p d t p t p d t p d t p d t

Freq

−

= = +

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∏ (14)

1

1
() (|) l

l

n
a

org org ik
k a

Freq
p t p d t

Freq=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ (15)

Now, let there be another attribute ak which causes a higher reduction in p(t | di)
than that of al. This implies the following:

(1) (1)
k l

k l

a a

a a

Freq Freq

Freq Freq

− −
>

(16)

(1) (1)
k l l ka a a aFreq Freq Freq Freq− > −

 (17)

l ka aFreq Freq>
 (18)

which contradicts the definition of the largest impact attribute. So, we can conclude that
every replacement of a largest impact data value with a question mark causes the maxi-
mum reduction in p(t | d

i
) implying fewer number of data values should be modified. 

The algorithm works as follows: Let dij contain the confidential data value t which
is assumed to be the class label of di. In order to suppress dij by decreasing the prob-
ability coefficient p(di | t), the algorithm first finds the probabilities p(ck | di) for each
ck ∈ C. If it decides that it is necessary to suppress the confidential data value by hid-
ing other data values, it picks a random next best guess trnbg from C, and decreases the
probability p(t | di) until it is less than p(trnbg | di) by finding the largest impact data
values and replacing them with a question mark. An overview of this algorithm is
depicted in Fig. 1. As can be seen from the pseudocode, the hiding decision is ran-
domized if the number of different class labels a confidential data value might take is
equal to 2. In such a case, suppressing the actual confidential value might result in an
adversary guessing it correctly with a confidence equal to the success rate of the algo-
rithm. In order to avoid this situation, the decision to suppress a confidential data
value is randomized in all algorithms for the case | C | = 2. This results in an adversary
guessing the actual confidential data value with 50% confidence which is the maxi-
mum uncertainty we could achieve.

Lemma 1. Let d
ij
 contain the confidential data value t with probability p(t | d

i
) and, let

t
rnbg

 be the random next best guess with probability p(t
rnbg

 | d
i
). Moreover, let the number

of tuples in D with class label equal to t be N
t
 excluding d

i
. Then, the upper bound for

the number of target data values that will be replaced with a question mark will be
equal to (n – 1)(N

t – 1) where n is equal to the number of attributes.

Proof. The proof of this statement is straightforward. DECP algorithm hides the larg-
est impact data values from tuples with class label equal to t. If the number of such
tuples is Nt, then the maximum number of possible largest impact data values is also
equal to Nt. The algorithm hides Nt – 1 of these largest impact data values for a single
largest impact attribute. After, hiding Nt – 1 data values it picks another attribute as
the largest impact attribute and starts hiding data values of this attribute. Since, we

162 A. Azgın Hintoğlu and Y. Saygın

assumed from the beginning that the number of attributes is n – 1 excluding the class
attribute, then the DECP algorithm hides at most (n – 1)(Nt – 1) data values for sup-
pressing a single confidential data value. 

 INPUT: the data set D, the confidential data dij with actual value t

OUTPUT: the new data set D'
Begin
Place a question mark for the confidential value dij
Find the probabilities p(ck | di) for each ck ∈C
If most probable value of dij == actual value t {
 If | C | = 2
 Randomly decide to continue suppression
 Pick a random next best guess trnbg
 Do {
 Find the largest_impact_attribute
 Find the largest_impact_data_values
 Count = number of data values in largest_impact_data_values
 While p(t | di) • p(trnbg | di) and Count > 1 {
 Place a question mark for the next data value in
 largest_impact_data_values
 p(t | di) = p(t | di) * (Count – 1) / Count
 Count = Count – 1
 }
 }
 While p(t | di) • p(p(trnbg | di) & candidates for
 largest_impact_attribute exist
}
End

Fig. 1. Pseudocode of Algorithm DECP

INCP Algorithm
An alternative to decreasing the probability of the actual confidential value is the INCP
algorithm which increases the probability of the next best guess set, S

nbg
, over p(t | d

i
).

Definition 7 (Next Best Guess Set). Let C be the set of class labels, and di ∈ D be the
tuple containing a confidential data value t ∈ C, such that the most probable value for
the class label of tuple di is equal to t. And, let trnbg be a random next best guess. Then,
the next best guess set, Snbg, for the tuple di is the set of all class labels ck ∈ C such that
the probability of di being a member of ck is smaller than that of class t and greater
than or equal to than that of class trnbg.

{ }| {}, (,) (,)nbg k k k i rnbg iS c c C t p c d p t d= ∈ − ≥

(19)

In order to achieve this, for each class label ck ∈ Snbg, the class labels of tuples in
DC=ck

 which have no common data values with di are hidden. The algorithm works as
follows: Let dij contain the confidential data value t that will be suppressed. The algo-
rithm suppresses dij by increasing the probability coefficient p(di | ck) for all ck ∈ Snbg.
As the first step, it finds the probabilities p(ck | di) for each ck ∈ C. If it decides that it
is necessary to suppress the confidential data value by hiding other data values, it
picks a random next best guess trnbg from C – {t}, and finds all class labels ck ∈ C
satisfying p(t | di) > p(ck | di) ≥ p(trnbg | di). These class labels form the next best guess
set. Next, for each ck ∈ Snbg the algorithm finds the tuples in DC=ck

 which have no

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 163

common data values with di and replaces the class labels of these tuples with a ques-
tion mark until p(t | di) is less than or equal to p(ck | di). Finally, it checks whether the
most probable value of dij is equal to t. If this is the case, DECP algorithm is called to
complete this algorithm. An overview of the INCP algorithm is shown in Fig. 2.

INPUT: the data set D, the confidential data dij with actual value t
OUTPUT: the new data set D'
Begin
Place a question mark for the confidential value dij
Find the probabilities p(ck | di) for each ck ∈ C
If most probable value of dij == actual value t {
 If | C | = 2
 Randomly decide to continue suppression
 Pick a random next best guess trnbg
 Snbg = All class labels ck ∈ C satisfying p(t | di) > p(ck | di) •
 p(trnbg | di)
 For Each ck in Snbg {
 Find the tuples in DC=ck
 While p(t | di) • p(ck | di) And DC=ck != ∅ {
 T = next tuple in DC=ck

 If T ∩ di = ∅ {
 Place a question mark for the class label of T
 Recalculate probabilities p(ck | di) for each ck ∈ C
 }
 }
 }
 If most probable value of dij == actual value t
 Run Algorithm DECP
}
End

Fig. 2. Pseudocode of Algorithm INCP

Lemma 2. Let d
ij
 contain the confidential data value t with probability p(t | d

i
), and let

S
nbg

 be the next best guess set. Moreover, let the number of tuples in data set D be m,
and the number of tuples in D with class label equal to t be N

t
 (excluding d

i
). Assum-

ing that there are enough number of tuples that can be used for the suppression proc-
ess (no need for DECP execution) the upper bound for the number of target data val-
ues that will be replaced with a question mark is equal to m – N

t
 – 1 – | S

nbg
 |.

Proof. The proof of this statement is straightforward. DECP algorithm removes only
the data values from the tuple set DC=ck

 which have no common data values with di
where ck ∈ Snbg. In the worst case, Snbg contains all class labels except t. This implies
that the sum of all tuples with class label equal to one of the class labels in Snbg is
equal to m – Nt – 1. Moreover, for all ck ∈ Snbg, the probabilities p(ck | di) must be
greater than zero due to the definitions of next best guess set and random next best
guess. This means that, in the worst case there exists at least one tuple having the
same data values with di (except the class label) for each ck ∈ Snbg. So, the number of
target data values that will be hidden is bounded by m – Nt – 1 – | Snbg |. 

DROPP Algorithm
This algorithm suppresses a confidential data value contained in d

ij
 by decreasing the

probability of tuple d
i
 being a member of class t below the probability of it being a

164 A. Azgın Hintoğlu and Y. Saygın

member of class random next best guess t
rnbg

. In order to achieve this, the algorithm
hides the data values d

ik
 for 1 ≤ k ≤ n & k ≠ j satisfying the inequality p(d

jk | t) > p(d
jk | trnbg

).
The data values satisfying this inequality are the ones that increase the probability of
the actual confidential data value t above the probability of the random next best
guess t

rnbg
. The algorithm works as follows: Let d

ij
 contain the confidential data value t

that will be suppressed. The algorithm first finds the probabilities p(c
k
 | d

i
) for each c

k

∈ C. If it decides that it is necessary to suppress the confidential data value by hiding
other data values, it picks a random next best guess t

rnbg
 from C. Then, it finds repeat-

edly the data values d
ik
 for 1 ≤ k ≤ n & k ≠ j that have a higher probability of occurrence in

tuples with class label t than in tuples with class label t
rnbg

 and hides these data values.
An overview of this algorithm is shown in Fig. 3.

INPUT: the data set D, the confidential data dij with actual value t
OUTPUT: the new data set D'
Begin
Place a question mark for the confidential value dij
Find the probabilities p(ck | di) for each ck ∈ C
If most probable value of dij == actual value t {
 If | C | = 2
 Randomly decide to continue suppression
 Pick a random next best guess trnbg
 While p(t | di) • p(p(trnbg | di) {
 k = next attribute index for which corresponding data value in
 dik is not hidden yet
 If p(dik | t) > p(dik | trnbg) {
 Place a question mark for the data value dik
 Recalculate probabilities p(ck | di) for each ck ∈ C
 }
 }
}
End

Fig. 3. Pseudocode of Algorithm DROPP

Lemma 3. Let d
ij
 contain the confidential data value t with conditional probability

p(t | d
i
) and, let t

rnbg
 be the random next best guess with conditional probability p(t

rnbg
 |

d
i
). If the number of attributes is n, then the upper bound for the number of target data

values that will be replaced with a question mark is equal to n – 1 excluding the confi-
dential data value.

Proof. The proof of this statement is straightforward. DROPP algorithm replaces only
the data values that are contained in d

i
 with a question mark. We assumed that the

number of attributes is n which means that d
i
 contains n – 1 data values excluding the

confidential data value. So, the DROPP algorithm hides at most n – 1 data values for
suppressing a single confidential data value. 

3.4 Discussion on the Effectiveness of Suppression Algorithms

The motivation of the suppression algorithms presented in this paper is to make a
given set of confidential data values non-discoverable, while minimizing the side
effects. But how can we be sure that an adversary would not be able to predict the
suppressed confidential data values? Certainly this might be a problem if randomiza-

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 165

tion is not employed in various stages in the algorithms. Now, let us assume that the
transformed database D' and the set of class labels C, a confidential data value might
take, are known by an adversary and, analyze how the randomization techniques used
avoid the adversary from guessing the actual confidential data value.

First, let us assume that instead of the random next best guess the class label having
the second highest probability among C, denoted by tnbg, is used in suppressing the con-
fidential data value t. This results in an exchange between the actual confidential data
value t and tnbg. Knowing this fact, the adversary can predict the actual confidential data
value with a confidence equal to the success rate of the algorithm. Since this problem is
inherent in all suppression algorithms, we employed a random next best guess in order
to reduce the confidence of an adversary predicting the actual confidential value.

The second issue that needs to be discussed occurs when the number of class labels
is equal to 2. Assume that the algorithms are not randomized in deciding to suppress a
confidential data value. In this case, the algorithms will try to suppress the confiden-
tial data value. Knowing this fact, the adversary will be able predict the actual confi-
dential data value with a confidence equal to the success rate of the algorithm. In
order to avoid this type of attacks, we randomly decide to suppress a confidential data
value or not for data sets with 2 class labels.

The final issue that needs to be discussed is the side effects of the algorithms which
are related to the number of data values hidden including the confidential data value.
According to the upper bounds we derived for the number of data values that will be
hidden; we can say that, for the INCP algorithm the number of data values that will be
hidden depends on the number of transactions m. On the contrary, for the DROPP
algorithm, the number of data values that will be hidden depends on the number of
attributes n. And, finally for the DECP algorithm the number of data values that will
be hidden depends on both the number of transactions m and the number of attributes
n. Now, let us assume that m >> n. In this case, the worst case performance of the
DROPP algorithm will be much better than the worst case performance of the DECP
and INCP algorithms with respect to the side effects. However, for data sets satisfying
n >> m, like the ones containing gene expression data, the worst case performance of
the INCP algorithm will outperform the DECP and DROPP algorithms with respect to
the side effects. It must be noted that, the DECP algorithm will perform very similar
to the other algorithms it is grouped with, because in both cases either m or n will lose
its significance with respect to the other term.

4 Experimental Results

In order to conduct the experiments we select the Wisconsin Breast Cancer data set
[15] with 699 instances, 10 attributes and 16 unknowns from the University of Cali-
fornia at Irvine repository [16]. We implemented the proposed algorithms using the
C++ programming language. To evaluate the performance of the algorithms, we per-
formed experiments on a 2.20 GHz Celeron PC with 256 MB of memory running the
Windows operating system.

The first performance criterion we measured is the average CPU time required to
suppress a single confidential data value. The CPU time results for each suppression
strategy are depicted in Table 1. In order to find the average CPU times we sup-

166 A. Azgın Hintoğlu and Y. Saygın

pressed a data value from each tuple of the data sets and averaged the CPU time re-
sults. Since the suppression algorithms contain random components, all the experi-
mental results we present are averages of five realizations unless stated otherwise. As
can be seen from the table, all the algorithms suppress a single confidential data value
in less than a second, with INCP and DECP algorithms performing slightly better than
the DROPP algorithm.

Table 1. Average CPU times(in msecs)

DECP INCP DROPP
156.2 154.5 159

Another performance criterion is the rate of successful suppressions with respect to
the Naïve Bayesian classification model. Rate of successful suppressions is the per-
centage of suppressed data values that cannot be predicted using Naïve Bayesian
classification after suppression. The performance of the algorithms in terms of suc-
cess rate is shown in Table 2. As can be seen from the table, the DECP and INCP
algorithms suppress the confidential data values with 100% success rate, followed by
the DROPP algorithm with 51% success rate. Since the number of attributes is very
small compared to the number of transactions, the DROPP algorithm performs rela-
tively worse compared to the INCP and DECP algorithms. In order to guarantee
100% success rate, the tuples containing confidential data values that cannot be hid-
den by the corresponding suppression algorithm can be completely removed from the
data set. However, in order to justify our discussions on success rate and side effects
we leave these tuples as they are. Finally, it must be noted that the decision to sup-
press the confidential data values is not randomized, because the number of possible
class labels confidential data values can take is greater than two.

Table 2. Rate of Successful Suppressions

DECP INCP DROPP
100% 100% 51%

The next performance criterion is the information loss caused by the suppression
algorithms. In order to measure information loss, we use direct distance and sum of
Kullback Leibler distances. As a benchmark, we use the naive Row Deletion (RD)
algorithm which suppresses a confidential data value by hiding the whole instance
containing the confidential data value.

The first metric used to measure the information loss is the average direct distance
which finds the average number of unknowns introduced due to suppression of a
single confidential data value. The average direct distance of the suppression algo-
rithms is shown in Table 3. As can be seen from the table, the DROPP algorithm
causes the least amount of information loss in terms of direct distance followed by the
RD algorithm. Actually, the DROPP algorithm is bounded by the RD algorithm, be-
cause both algorithms suppress a confidential data value by hiding the data values

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 167

from the instance containing the confidential data value. On the other hand the DECP
and INCP algorithms perform relatively worse, because they aim at distorting the
classification model in a randomized manner. Total direct distance versus number of
confidential data values to suppress for a group of randomly selected 30 confidential
data values is shown in Fig. 4.

Table 3. Average Direct Distance

DECP INCP DROPP RD
78.8 63.5 1.7 10

Direct Distance

0

500

1000

1500

2000

5 10 15 20 25 30

Number of Confidential Data Values

D
ir

ec
t

D
is

ta
n

ce

DECP INCP DROPP RD

Fig. 4. Direct Distance for Breast Cancer Wisconsin Data Set

The second information loss metric used is the sum of Kullback Leibler distances
which measures the total distance between the first order probability distributions of
the original and the new data sets. The performance of the suppression algorithms in
terms of average sum of Kullback Leibler distances is shown in Fig. 5. Similar to
direct distance results, the DROPP algorithm causes the least amount of information
loss in terms of sum of Kullback Leibler distances followed by the RD, INCP and
DECP algorithms.

To sum up, the experimental results for the suppression algorithms show that there
is a tradeoff between the rate of successful suppressions and the information loss
caused by the suppression process. Moreover, it can be clearly seen that the algo-
rithms distorting the classification model, the DECP and INCP algorithms, achieve a
higher success rate leading to a high amount of information loss. On the other hand,
the DROPP algorithm achieves a lower success rate leading to a low amount of in-
formation loss. However, it must be noted that the reason why the information loss
caused and success rate achieved by the DECP and INCP algorithms is higher than
that of the DROPP algorithm is that the data set used in experiment satisfy the ine-
quality m >> n (number of transactions in the data set is much more than the number
of attributes). And finally, the information loss results of the RD algorithm show that
it provides an upper bound for the DROPP algorithm.

168 A. Azgın Hintoğlu and Y. Saygın

Sum of Kullback Leibler Distances

0
1
2
3
4
5
6
7

5 10 15 20 25 30

Number of Confidential Data Values

K
u

ll
b

ac
k

L
ei

b
le

r
D

is
ta

n
ce

DECP INCP DROPP RD

Fig. 5. Sum of Kullback Leibler Distances for Breast Cancer Wisconsin Data Set

5 Conclusion

In this paper we pointed out the possible privacy breaches induced by data mining
algorithms on hidden microdata values. We considered the probabilistic classification
model which could be used for prediction purposes by adversaries. As an initial step
to attack the problem, we proposed some heuristic algorithms to suppress the selected
classification model so that the hidden microdata values cannot be predicted with this
model. Our methods are based on modifying the original data set by inserting un-
known values with as little damage to the original data set as possible.

Our experiments with a real data set showed that the proposed algorithms are effec-
tive in blocking the inference channels based on the probabilistic classification model.
From the success rate and side effects results we observed that there is a tradeoff
between the rate of successful suppressions and the information loss caused by the
suppression process. Moreover, these results verify our statement that; the side effects
of the DECP algorithm depend both on the number of transactions and number of
attributes while the side effects of the INCP and DROPP algorithms depend on the
number of transactions and the number of attributes respectively.

In order to ensure that a confidential data value cannot be recovered later on by any
alternative prediction method, we need to develop a more general technique based
directly on information theory concepts, which we consider as a future work.

References

1. Clifton, C. Using Sample Size to Limit Exposure to Data Mining. Journal of Computer Se-
curity, v.8, n.4, p. 281-307, Dec. 2000.

2. Kantarcioglu, M., Clifton, C. Privacy-Preserving Distributed Mining of Association Rules
on Horizontally Partitioned Data. IEEE TKDE, Vol. 16, No. 9, September 2004.

3. Kantarcioglu, M., Jin, J., Clifton, C. When do data mining results violate privacy? KDD
2004.

4. Verykios, V. S., Bertino, E., Parasiliti, L., Favino, I. N., Saygin, Y., Theodoridis, Y. State-
of-the-Art in Privacy Preserving Data Mining. SIGMOD Record, Vol. 33, No. 1, 2004.

 Suppressing Microdata to Prevent Probabilistic Classification Based Inference 169

5. Verykios, V. S., Elmagarmid, A., Bertino, E., Saygin, Y., Dasseni, E. Association Rule
Hiding. IEEE TKDE, Vol. 16, No. 4, 2004.

6. Saygin, Y., Verykios, V. S., Elmagarmid, A. Privacy Preserving Association Rule Mining.
Proceedings of the 12th International Workshop on Research Issues in Data Engineering
(RIDE’02), IEEE Computer Society Press, 2002.

7. Vaidya, J., Clifton, C. Privacy-Preserving K-Means Clustering over Vertically Partitioned
Data. SIGKDD 2003

8. Agrawal, R., Srikant, R. Privacy Preserving Data Mining. SIGMOD 2000, p. 45-52.
9. Chang, L., Moskowitz, I. S. Parsimonious Downgrading and Decision Trees Applied to the

Inference Problem. Proceedings of the Workshop of New Security Paradigms, 1999.
10. Iyengar, V. S. Transforming data to satisfy privacy constraints. SIGKDD 2002.
11. Oliveira, S. R. M., Zaiane, O. R. Protecting Sensitive Knowledge by Data Sanitization.

Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03), 2003.
12. Rizvi, S. J., Haritsa, J. R. Privacy-Preserving Association Rule Mining. Proceedings of the

28th International Conference on Very Large Data Bases, Hong Kong, China, August
2002.

13. Adam, N. R., Wortmann, J. C. Security-Control Methods for Statistical Databases: A
Comparative Study. ACM Computing Survey. 21(4): 515-556 (1989).

14. Domingo-Ferrer, J. (editor). Inference Control in Statistical Databases, Lecture Notes in
Computer Science, vol. 2316, Berlin: Springer-Verlag, 2002.

15. Mangasarian, O. L., Wolberg, W. H. Cancer diagnosis via linear programming, SIAM
News, Volume 23, Number 5, September 1990, pp 1 & 18.

16. UCI Machine Learning Repository. http://www.ics.uci.edu/~mlearn/MLSummary.html.
17. Samarati, P. Protecting respondents’ identities in microdata release. IEEE TKDE, 2001.
18. Han, J., Kamber, M. Data Mining Concepts and Techniques. Morgan Kaufmann Publish-

ers. 2001.
19. Du, W., Zhan, Z. Using Randomized Response Techniques for Privacy-Preserving Data

Mining. SIGKDD 2003.
20. Kargupta, H., Liu, K., Ryan, J. Privacy Sensitive Distributed Data Mining from Multi-

party Data, ISI 2003, p. 336-342.
21. Kargupta, H., Datta, S., Wang, O., Sivakumar, K. On the privacy preserving properties of

random data perturbation techniques, Data Mining, 2003, ICDM 2003.
22. Polat, H., Wenliang, D. Privacy-preserving collaborative filtering using randomized per-

turbation techniques, Data Mining, 2003, ICDM 2003.
23. Evfimievski, A. V., Gehrke, J., Srikant, R. Limiting privacy breaches in privacy preserving

data mining, PODS 2003, p. 211-222.
24. Cover, T. M., Thomas, J. A.Elements of Information Theory. John Wiley & Son, 1991.
25. Farkas, C., Jajodia, S. The inference problem: A survey. SIGKDD Explorations, Jan 2003.
26. Sweeney, L. k-Anonymity: A model for protecting privacy. International Journal on Un-

certainty, Fuzziness and Knowledge-based Systems, 10(5), 2002; 557-570.

On Deducibility and Anonymisation

in Medical Databases

David Power, Mark Slaymaker, and Andrew Simpson

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

Abstract. The utilisation of real medical data in research projects is
becoming evermore widespread, and a clear duty of care towards such
data is mandatory. To this end, anonymisation is essential. It is well un-
derstood that a conflict between functionality and confidentiality exists
within this context: while patients’ confidentiality must be preserved,
restricting access can reduce the value of the data that is available to
researchers. As such, limiting access so that confidentiality is preserved
while still ensuring a high degree of functionality should be a key aim of
every designer of medical research databases. In this paper, we outline
an approach developed within the e-DiaMoND project that combines
anonymisation and query modification to manage this conflict.

1 Introduction

The utilisation of real data in medical research projects is becoming increasingly
widespread as is the use of IT within healthcare delivery, and the two areas
appear to be on a convergence path. The linking of personal data from various
sources gives rise to many promising research opportunities. Such integration
requires the striking of a balance between functionality—in maximising the use of
such data to support research that may lead to improved healthcare—and ethical
and legal concerns—ensuring that the rights of the participants are respected.
Within the UK, legal protections can be derived from (at least) the Human
Rights Act of 1998 [21] and the Data Protection Act of 1998 [13].

Within the UK, the National Health Service (NHS) comprises a number of
hospital trusts, each of which is an independent legal entity. Each hospital trust
is legally responsible for the data held at its sites: this data is released only with
respect to the principles of the Caldicott Guardian [5], which include “don’t use
patient-identifiable information unless it is absolutely necessary” and “use the
minimum necessary patient-identifiable data”.

When real patient data is used in research projects, anonymisation is essen-
tial. It is acknowledged that the simple removal of a patient’s name and address
from a record is not sufficient to guarantee anonymisation: there may be further
information that enables one to deduce the patient’s identity, such as, for exam-
ple, date and place of birth. Those fields that are anonymised or removed have
no research value, while those fields that remain constitute a useful resource;
eliminating more information than the bare minimum is essential to prevent in-
formation flow—the deducing of answers to illegal queries from the results of

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 170–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Deducibility and Anonymisation in Medical Databases 171

legal ones (see [11] for an overview of such issues) while eliminating too much
will reduce the value of the data that has been captured. The consideration of
tracker attacks [12], which may be characterised by the submission of successive
queries over different subsets of data to determine specific values of sensitive
data, is also of concern.

In this paper, we reprise the approach to query modification of [24], describe
a formal framework for reasoning about inferences, and then consider how they
can be used together. Our inference framework draws upon concepts and theory
from the areas of information security (specifically, the notion of information
flow [10]) and relational database design (specifically, the notion of functional
dependencies—a concept first described in [1]), and is presented in terms of the
formal description technique Z [29].

The motivation for this work comes from the authors’ involvement in the e-
DiaMoND project [4], the primary aim of which is the development a prototype
for a national database of mammograms to support applications for training,
breast screening, epidemiological studies, and data mining. The e-DiaMoND
grid consists of a number of nodes each of which contains data belonging to a
single hospital. If a user wishes to access this data they cannot connect to the
database directly, but must instead access the data via a grid service. If the
user sends an SQL query to the database it is modified by the grid service in
accordance with the access control policy of that hospital. If a user wishes to
access data stored at multiple hospitals, then the query must be sent to each
hospital where it is subject to the local access control policy. As the user is not
aware of their exact access permissions at each hospital it would not be possible
to construct a query based on the views they have access to; instead they just
write the query they wish to run and the grid service will either modify it so
that it can be run, or reject it. This allows the hospitals to dynamically change
their access control policies without having to inform the users. (The reader is
referred to [28] for a detailed overview of this architecture.) If the e-DiaMoND
database [23] is to support epidemiological studies, then it is essential that access
to data is provided in accordance with appropriate ethical and legal guidelines.
That is, it is essential that the identities of patients cannot be deduced from
the information provided to researchers undertaking such studies unless explicit
consent has been given.

2 Terminology

Disclosure control (see, for example, [2] or [32]) is the term given to the activity
that is concerned with the alteration of data containing information pertaining to
individuals that may be considered confidential with a view to ensuring that third
parties working with this altered information cannot recognize the individuals—
thereby arriving at confidential information.

Microdata is the term given to a series of records, where each record in
the series contains information pertaining to an indvidual entity; masked (or
released) microdata (see, for example, [8]) refers to microdata that has been

172 D. Power, M. Slaymaker, and A. Simpson

masked to reduce the possibility of disclosure; [35] contains a survey of statistical
disclosure control techniques for the masking of microdata.

Disclosure risk is the risk that a particular type of disclosure will occur if
masked microdata is released [7]. Disclosure risk can be measured in numerous
ways: as a matter of perception [22], in terms of the probability of population
uniqueness [2,19], in terms of the proportion of sample records that are popula-
tion unique [16,26], or as the proportion of correct matches among the records
in the population that match a sample unique masked microdata record [15].

Overviews of related security research may be found in [3] and [34].
We concern ourselves with the automated discovery of the potential for in-

formation leakage. A key difference between the work described in this paper
and that of those mentioned above is that the literature is typically concerned
with determining risk on the basis of the actual data contained in a database,
whereas our focus is the semantics of the information model under investigation.

3 Query Modification

3.1 Motivation

The use of query modification was first proposed by Stonebraker and Wong [31,30]
for use with the query language QUEL, and was implemented as part of the orig-
inal INGRES database management system. Other work in which the concept of
query modification has played a significant role includes [20], [6], [33], [18], [14],
and [17]. While essentially similar to views, the application of query modification
differs in several ways.

First, the user makes a query against the underlying tables as if there was no
access restriction taking place. This query is intercepted by the access control
mechanism and the query is then modified so that the user can only access the
data that they have permission to access. As an example, it could be that the
DBA wishes to restrict access to a table containing information pertaining to
patients from two departments. Typically, a DBA might create two views of
the table, with each view presenting information associated with one of the two
departments. The users would only be given permission to use one of the views
and they would then make their query against that view. When using query
modification the user would make their query against the underlying tables and
would not be aware of the modification made to their query. For example, a nurse
from one department might only see information pertaining to that department.
In this example, the results of the two queries would be identical: the effect of
query modification was just to hide the views from the user.

Second, while the added flexibility of query modification may make it slightly
more difficult to administer, it does have another advantage over views. For
example, there is no need for the query modification to take place inside the
DBMS: the query can be intercepted at any point between the user and the
DBMS. In a system such as e-DiaMoND this can take place in a trusted internal
grid service. (See [27] and [28] for more details.)

On Deducibility and Anonymisation in Medical Databases 173

3.2 Stonebraker’s Approach to Query Modification

What restrictions are placed on a query depends on which columns of which
tables are accessed. This includes not just the columns that are returned, but
also columns that are used as part of a WHERE clause. This is an important
restriction as the values in other columns could be deduced by using them as
part of a WHERE clause. Each combination of columns has an associated WHERE
clause which is added to the WHERE clause of the original request using a logical
and. If a user tries to access a combination of columns that are not listed for
that user then access will be denied. If more than one combination of columns
is applicable, then the WHERE clauses are combined using a logical or.

As an example consider the following table, Patient ,

ID DOB Occupation Postcode Gender MaritalStatus
P1 03/04/1950 Plumber OX1 3QD F Married
P2 12/11/1934 Dentist SE1 9RT F Single
P3 27/07/1956 Butcher SW17 0QT M Divorced
P4 07/06/1942 Builder OX3 7LJ F Widowed

Consider also the following rules:

{DOB ,Occupation} �→ DOB < 01/01/1950
{DOB ,MaritalStatus} �→ DOB > 01/01/1940
{Postcode,Gender ,MaritalStatus} �→ 1 = 1

Given the above rules, the following original queries

– SELECT Postcode, Gender FROM Patient;
– SELECT DOB FROM Patient;
– SELECT DOB FROM Patient WHERE Occupation = ’Plumber’;

become

– SELECT Postcode, Gender FROM Patient WHERE 1 = 1;
– SELECT DOB FROM Patient

WHERE (DOB < 01/01/1950) OR (DOB > 01/01/1940);
– SELECT DOB FROM Patient

WHERE (Occupation = ’Plumber’) AND (DOB > 01/01/1940);

3.3 Query Modification for Medical Research Databases

If multiple views are allowed of the same table, then it is essential that they
do not feature the primary key of the table—this is because they could then be
used to uniquely identify the same row in two or more views. This can cause a
problem if one wishes to perform a join as the primary key is needed.

In Stonebraker’s query modification scheme [31], tables can only be joined
if a user is given simultaneous access to a query involving both tables. The
consequence of this is that all joins are explicitly defined; it also gives access to

174 D. Power, M. Slaymaker, and A. Simpson

the primary key/foreign key pair as this will form part of the WHERE clause. If
one wished to use views to restrict access to the data then there would not be
the same problem: this is because the joining columns do not need to be included
in the view. It should be noted that there is little point in restricting joins if
users have access to the primary key/foreign key pair. In this case, the user
could manually perform the join themselves, by asking for the entire contents of
both tables and then performing the join outside of the database. Similarly with
sub-queries, one could always perform the sub-query separately though this may
involve many queries, hence each sub-query can be treated as a separate request.

We consider two methods that a user can use to perform a join. In the first
method, a user has already been given access to the primary key/foreign key
columns. In this case, the access restriction for the two tables are joined using a
logical and. This differs from the case when there are multiple access restrictions
on one table where a logical or is used to join them.

In the second method, explicit access is given for the join, with possibly
stricter restrictions than the user has for the underlying tables. If the user is not
to be able to see the primary key of a table used in a join the standard rules for
allowing access to data cannot be applied, instead the primary key and foreign
key columns are not counted when the join is performed, as long as they are
only used as part of the joining condition. This only applies for rules involving
explicit joins and not in general.

To see the need for control over joins, consider the following table, Symptom.

ID Date Symptom
P1 04/08/1998 Back Pain
P1 10/11/1998 Fainted
P1 23/11/1998 Heart Attack
P3 07/01/1997 Nausea
P3 28/02/1999 Nausea
P4 14/06/2003 Fractured Leg

This table relates the identifier of a patient with a symptom and a date. Consider
now that we have the same restriction on access that we discussed previously,
and that total access to this new treatment table has been granted. This alone
would not allow a join to take place as the user does not have access to the ID
column of the Patient table.

It would, of course, be possible to create a new view of the Patient table that
included the ID column: this would have the benefit of allowing the user to join
the two tables together, but would have the drawback of also allowing the user
to join to any other table which they have access to the ID column of, which
may or may not be desirable.

It is also possible to create an explicit join view that would allow one to
choose the exact combination of permissable columns. This is much safer but it
still could lead to problems: if two different explicit join views were allowed that
mirrored the two original allowable views, then the user could use the unique
nature of the list of conditions to identify an individual row in the patient table.

On Deducibility and Anonymisation in Medical Databases 175

By doing this using both the permitted accesses of the patient table a unique
patient could be identified, and—even worse—the user would know sensitive
information about their symptoms. What may be safe, however, is to permit
just access to say the occupation column of the Patient table and the symptom
column of the Symptom table: this would permit queries without the negative
effect of giving away too much information about the patient.

4 A Formal Approach to Anonymisation and Information
Flow

In this section, we introduce a framework for anonymisation and information
flow. We do not consider, for example, how dependencies are determined—that
is, after all, a property of the specific domain; nor do we consider how anonymi-
sation is carried out. Although the framework is presented formally, the intention
is that the surrounding narrative should be sufficient to aid those readers who
are unfamiliar with the Z notation.

4.1 Capturing Inferences

Our language of anonymisation is concerned primarily with pieces of information.
We express the collection of all possible pieces of information within a particular
context in abstract fashion in terms of the set Tag. For this discussion, we shall
assume that each tag is associated with an attribute of a relational model. It
should be noted that the relationships between tags depends entirely upon the
semantics of the model under consideration.

If it is possible for the value of one tag, B , to be inferred from another tag, A,
then we shall write this potential inference as A → B . We choose this notation
to be evocative of the notion of a functional dependency from the relational
database design literature. For example, it is possible that someone’s sex may
be determined by their title; as such, we have title → sex . Even though there
are cases where this is not the case (such as, for example, if an individual’s title
is ‘Dr’) there are, of course, cases where it most certainly is possible: we identify
the potential inference.

It is sometimes the case that the value of a tag, C , cannot be inferred directly
from the value of A but can be inferred from the combination of A and another
tag, B . We express this via conjunction: A ∧ B → C . For example, assume
that each hospital assigns unique patient numbers—that is, patient numbers
are unique within individual hospitals. Furthermore, each hospital has a unique
number to distinguish it from other hospitals. As such, assuming that HNum
denotes the hospital number attribute, PNum denotes the patient number at-
tribute and PNam denotes the patient name attribute, neither HNum → PNam
nor PNum → PNam holds, but HNum ∧ PNum → PNam does hold.

It is sometimes the case that the value of a tag, C , can be derived from
either A or B. We express this via disjunction: A ∨ B → C . For example, it may
be possible to derive a patient’s condition from either their symptoms or their
treatment; as such, symptoms ∨ treatment → condition holds.

176 D. Power, M. Slaymaker, and A. Simpson

We can capture the set of such inferences formally in Z in terms of a relation,
i.e., a set of pairs:

inferences : (P Tag) ↔ Tag

We move from the domain to which the dependencies pertain to the set inferences
in the following fashion:

– If A → B , then {A} �→ B ∈ inferences .
– If A → B ∧ C , then {{A} �→ B , {A} �→ C} ⊆ inferences .
– If A ∧ B → C , then {{A,B} �→ C} ∈ inferences .
– If A ∨ B → C , then {{A} �→ C , {B} �→ C} ⊆ inferences .

Furthermore, X �→ T ∈ inferences only if it can be derived from the set of
dependencies in the manner described above. As an example, if our dependencies
are A → B , B ∧ C → D , D ∨ E → F and F → G ∧ H , then we arrive at the
following set of pairs:

inferences = { {A} �→ B , {B ,C} �→ D , {D} �→ F ,
{E} �→ F , {F} �→ G, {F} �→ H }

Having introduced the notion of tags, together with the potential relationships
between them, we now consider two subsets of Tag. The first, critical , is the set
of tags that we wish to remain undiscovered; the second, anonymised , is the set
of anonymised tags.

critical , anonymised : P Tag

Within a particular context, then, we can represent the set of known, i.e., im-
mediately visible, facts as known:

known : P Tag

known = Tag \ anonymised

That is, known contains all elements of Tag that are not anonymised.

4.2 An Axiomatic Approach to Information Flow

We have seen that we can express the set of all direct inferences within a particu-
lar context via the set inferences . So, for example, if the dependency title → sex
holds within the domain, then {title} �→ sex ∈ inferences . What is more inter-
esting, though, is the set of derived inferences.

As we have seen, it is possible to capture domain-specific information in
the guise of sets and relations. This approach has much in common with the
established theory of functional dependencies; as such, it is natural to consider
some of the results of that area here.

On Deducibility and Anonymisation in Medical Databases 177

Consider the following simple example.

Tag = {A,B ,C ,D ,E ,F ,G,H }
critical = {D}

anonymised = {C ,D}
inferences = {{A} �→ B , {B} �→ C , {C} �→ D}

Here, D is critical, and—as such—been anonymised. It is fairly straightforward
to see that—even though D has been removed from the interface—it can be
derived easily enough: from A, via B and C . (One can imagine, though, that in
more complex domains such information flow could not be detected so trivially.)
Thus, it is not sufficient to consider the obvious dependencies captured from
the domain, but also the non-obvious dependencies that can be derived from
the original ones. As such, we need to consider more than simply the set of
inferences : we need to consider a collection of rules—or axioms—underpinning
this set to determine which tags can be derived.

Armstrong’s axioms for functional dependencies [1] are appropriate within
this context and allow one to determine the closure of a set of dependencies.

We shall let closure determine the closure of a set of inferences:

closure : ((P Tag) ↔ Tag) �→ ((P Tag) ↔ Tag)

Here, closure (inferences) represents the closure of the set inferences , i.e., the
collection of all inferences that can be derived from the original ones.

We consider each of Armstrong’s axioms in turn.
The first axiom, reflexivity, can be captured as a predicate on closure:

∀ r : (P Tag) ↔ Tag • (∀ s : P Tag; t : Tag | t ∈ s • s �→ t ∈ closure (r))

As an example, this axiom may be characterized by “if one knows a patient’s
name and their address, then one knows their name.”

The second axiom, augmentation, can be captured as a predicate on closure:

∀ r : (P Tag) ↔ Tag •
(∀ s1, s2 : PTag; t : Tag | s1 �→ t ∈ r • (s1 ∪ s2) �→ t ∈ closure(r))

As an example, this axiom may be characterized by “if it is true that one
can deduce a patient’s name from their photograph, then it is also true that one
can deduce a patient’s name and address from their photograph and address.”

The third axiom, transitivity, can be captured as a predicate on closure:

∀ r : (P Tag) ↔ Tag • ∀ s1, s2 : P Tag; t1 : Tag •
(s1 �→ t1 ∈ closure (r) ∧ s1 ⊆ (closure (r))(| {s2} |)) ⇒

s2 �→ t1 ∈ closure (r)

As an example, this may be characterized by “if it is possible to deduce a
patient’s name from their photograph and it is also possible to deduce a patient’s

178 D. Power, M. Slaymaker, and A. Simpson

address from their name, then it is possible to deduce a patient’s address from
their photograph.”

Together these axioms ensure that closure gives us the closure of inferences .
Armstrong’s axioms provide us with a closure that is both sound, i.e., all cap-
tured inferences genuinely are inferences, and complete, i.e., all genuine infer-
ences are captured [9].

We can, then, extend our definition of closure as follows:

∀ r : (P Tag) ↔ Tag • ∀n : N | n > 1 •
closure0 (r) = {t : Tag; s : P Tag | t ∈ s • s �→ t}
closure1 (r) = closure0 (r)

∪
{s1, s2 : P Tag; t : Tag | s1 �→ t ∈ r • (s1 ∪ s2) �→ t}

closuren (r) = closuren−1 (r)
∪
{s1, s2 : P Tag; t : Tag |

s1 �→ t ∈ closuren−1 (r) ∧
s1 ⊆ (closuren−1 (r))(| {s2} |) •

s2 �→ t}
We can, then, define closure as

closure : ((P Tag) ↔ Tag) �→ ((P Tag) ↔ Tag)

∀ r : (P Tag) ↔ Tag • closure (r) =
⋃{n : N • closuren (r)}

Recalling that known is the set of Tags that we know and critical is the set of
things that we do not wish to give away, it follows that confidentiality is satisfied
exactly when

critical ∩ ((closure (inferences))(| {known} |)) = ∅

That is, confidentiality is guaranteed exactly when no critical facts can be derived
from known ones. We note that in extreme cases, the satisfaction of this equality
will result in a collection of information that is useless: this is, of course, an
extreme manifestation of the conflict between functionality and privacy.

4.3 Minimal Additions

While the consideration of closures is effective from a theoretical point of view,
there must, of course, be a tractable representation to ensure a practical mani-
festation of the concept: in reality, any closure will grow exponentially as via the
reflexivity axiom, it will contain entries for all possible subsets of tags mapping
to each of their members.

As such, we would like to define a set of inferences that is equivalent to the
closure set—the set that is typically referred to as the minimal set of functional
dependencies in the functional dependency context.

On Deducibility and Anonymisation in Medical Databases 179

We term this set onepass , and its relationship with closure is as follows:

∀ r : (P Tag) ↔ Tag; s1 : PTag; t : Tag •
s1 �→ t ∈ onepass (r) ⇔

(s1 �→ t ∈ closure (r) ∧
t /∈ s1 ∧
¬ (∃ s2 : P Tag • s2 �→ t ∈ closure (r) ∧ s2 ⊂ s1))

The following property should be evident from the above:

∀ r : (P Tag) ↔ Tag; s : P Tag •
(closure (r))(| {s} |) = (onepass (r))(| P s |) ∪ s

We would, for obvious reasons, like our definition of onepass to be indepen-
dent of the set closure. As such, we define two new functions—removes and
combine.

The function reduce removes all the redundant maplets that are not needed:

reduce : ((P Tag) ↔ Tag) �→ ((P Tag) ↔ Tag)

∀ r : (P Tag) ↔ Tag •
reduce (r) = {s1 : P Tag; t : Tag | s1 �→ t ∈ r ∧ t /∈ s1 ∧

¬ (∃ s2 : PTag • s2 �→ t ∈ r ∧ s2 ⊂ s1) • s1 �→ t}
The function combine adds the maplets which can be deduced by combining any
two existing maplets:

combine : ((P Tag) ↔ Tag) �→ ((P Tag) ↔ Tag)

∀ r : (P Tag) ↔ Tag •
combine (r) = r

∪
{ s1, s2 : PTag; t1, t2 : Tag |

s1 �→ t1 ∈ r ∧ s2 �→ t2 ∈ r ∧
t1 ∈ s2 ∧ t1 /∈ s1 ∧ t2 /∈ s2 •

(s1 ∪ (s2 \ {t1})) �→ t2}
We can, then, define onepass in the following fashion.

onepass : ((P Tag) ↔ Tag) �→ ((P Tag) ↔ Tag)

∀ r : (P Tag) ↔ Tag •
onepass (r) = onepassmin {n:N|onepassn (r)=onepassn+1 (r)} (r)

where

∀ r : (P Tag) ↔ Tag • ∀n : N | n > 1 •
onepass0 (r) = ∅ ∧
onepass1 (r) = reduce (r) ∧
onepassn (r) = reduce (combine (onepassn−1 (r)))

180 D. Power, M. Slaymaker, and A. Simpson

5 Combining Inferences and Query Modification

In this section we outline an approach to query modification that takes into ac-
count known and calculated inferences. Together, these go some way to realising
the notion of an ethical firewall, as described in [25]. Aspects that are not directly
relevant to our discourse, such as, for example, the auditing and analysis of past
queries with a view to preventing the aforementioned tracker attacks, are not
discussed here.

We assume that the data owner has described what access is permitted. This
is achieved by specifying combinations of columns which may be queried as well
as any restrictions that should be placed on those queries. Conceptually, these
restrictions depend on the individual concerned. These query modification rules
do not need to take into account any inferences between columns and as such
can be written in a reasonably simplistic fashion. In addition, the data owner
has to produce a set of inferences between columns to be used by the system.
Recall that we concern ourselves with the possibility of information flow, i.e., we
concern ourselves with the semantics of relations and not with the contents of
tables.

It would be possible to use the inference rules to re-write the query modifi-
cation rules, but this would be rather time consuming and could lead to a large
set of query modification rules. It would be preferable for the set of inferences to
have the function onepass applied to them, and for these calculated inferences
to be captured.

When a query is received by a user, the normal procedure of creating a set
of columns that are used by the query is performed. Rather than applying the
query modification rules to this set of columns straight away, each inference
from the output of onepass is compared with the set to see if it is applicable. By
definition, each inference need only be considered once, so a single pass through
the set will give a definitive set of columns that can be inferred from the original
set. It is the union of the original set and the infered set that is then used as input
to the next step of the query modification system. This separation of concerns is
preferable to calculating a resultant set of query modification rules as it allows
new unknown inferences to be added without affecting the query modification
rules; it also allows new query modification rules to be added without concern
for inferences.

If the set of inferences includes {DOB} �→ MaritalStatus and we again con-
sider the following two queries

– SELECT DOB FROM Patient;

– SELECT DOB FROM Patient WHERE Occupation = ’Plumber’;

then the effective sets of columns would become

– {DOB ,MaritalStatus}
– {DOB ,MaritalStatus ,Occupation}

On Deducibility and Anonymisation in Medical Databases 181

due to the fact that

onepass ({{DOB} �→ MaritalStatus}) (| P {DOB} |)
= onepass ({{DOB} �→ MaritalStatus}) (| P {DOB ,Occupation} |)
= {MaritalStatus}

The first query will not be affected by the addition of the inferences, but the
second query would be blocked as there is no rule containing all three columns.

Of course, difficulties arise when one has to consider more complicated queries
that involve more than one table. As an example, consider the following tables,
Patient and Child ,

ID DOB Surname
P1 12/04/1972 Power
P2 23/10/1965 Slaymaker
P3 06/08/1971 Simpson

ID DOB Surname ParentID
C1 03/04/1990 Power P1

C2 12/11/1984 Slaymaker P2

C3 27/07/1982 Jones P2

together with the associated inference, {Patient .Surname} �→ Child .Surname.
Using the first style of join described in Section 3 the following two rules may

have been defined:

{Patient .ID ,Patient .Surname} �→ 1 = 1
{Child .ParentID ,Child .DOB} �→ 1 = 1

These allow the surname of a patient to be related to the dates of birth of the
children. As such, without the inference, the following query is allowed:

– SELECT Patient.Surname, Child.DOB FROM Patient, Child
WHERE Patient.ID = Child.ParentID

However, the inference will lead to the set of used columns growing from

{Patient .Surname,Patient .ID} ∪ {Child .ParentID ,Child .DOB}
to

{Patient .Surname,Patient .ID}∪
{Child .Parent .ID ,Child .DOB ,Child .Surname}

This set of columns would not be permitted as there is no applicable rule for the
Child table.

The same result is achieved when an explicit join is permitted. Considering
the explicit join version of the rules defined above we have:

JOIN ({Patient .ID ,Child .PatientID} �→ Patient .ID = Child .PatientID)
{Patient .Surname,Child .DOB} �→ 1 = 1

182 D. Power, M. Slaymaker, and A. Simpson

where the first line represents the allowed joining condition and the second line
represents the columns that can be referenced and any resulting restriction.

Again, without the inference rule the query would be allowed due to the
fact that after the join is taken into account the set of referenced columns is
{Patient .Surname,Child .DOB}. However, if the inference rule is taken into ac-
count, the set of referenced columns after the join is performed would become
{Patient .Surname,Child .DOB ,Child .Surname}, and, as such, the query will not
be allowed.

6 Discussion

The work described in this paper was motivated by the authors’ involvement with
the e-DiaMoND project. Within systems such as e-DiaMoND, each database is
owned by a hospital that is legally and ethically responsible for the data. A
user would typically want to run the same query on many databases. As all
access to the database in the e-DiaMoND grid is via grid services it is possible
to modify all queries before they are submitted to the database. This is a more
ideal solution than using views due to the fact that the access control policy
will differ between hospitals, and hence the user will not be aware of which view
they should be using. It should be noted that there is only one grid service per
database and hence there is no possibility of the access permissions differing
between applications, it should also be noted that each hospital will have full
control of the policy used by this grid service. A benefit of the e-DiaMoND grid
approach is that the user can be authenticated using a certificate based system.
This is more flexible than using passwords as a trusted certificate authority can
give access to the database without the need to create multiple accounts on the
database, or the need for many users to use the same account.

Our approach to query modification offers flexibility in comparison to access
control based on views, while retaining the same level of functionality. It is
significantly easier for the users as they only have to know one version of the
database schema as opposed to a possibly disjoint set of views, based on a range
of roles that they may have access to. Furthermore, the impact of updates to
policies are easier to manifest using this approach. The contribution of this paper
is to build upon our previous work on query modification to consider potential
inferences.

We have adopted a characterisation of information flow in terms of Arm-
strong’s axioms of functional dependencies. Although the system is adapted
from another domain it works well for our needs. The approach described is
distinct from previous work in the domain, in that it utilises formal descrip-
tion techniques. In addition, it is concerned with the automated discovery of the
potential for information leakage, rather than identifying risk.

With respect to the validation of our approach, establishing appropriate map-
pings between the real world domain and the formal representation of those con-
cepts will be key, as will the provision of appropriate tool support for the end
users.

On Deducibility and Anonymisation in Medical Databases 183

References

1. W. W. Armstrong. Dependency structures of data base relationships. In Proc.
IFIP Congress, Stockholm, Sweden, 1974.

2. J. G. Bethelehem, W. J. Keller, and J. Pannekoek. Disclosure control of microdata.
Journal of the American Statistical Association, 85:38–45, 1990.

3. J. Biskip and P. A. Bonatti. Controlled query evaluation for enforcing confidential-
ity in complete information systems. International Journal of Information Security
(Special issue on ESORICS 2002, 2(1):14–27, October 2004.

4. J. M. Brady, D. J. Gavaghan, A. C. Simpson, M. M. Parada, and R. P. Highnam.
e-DiaMoND: A Grid-enabled federated database of annotated mammograms. In
F. Berman, G. C. Fox, and A. J. G. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality, pages 923–943. Wiley Series, 2003.

5. The Caldicott Report. www.publications.doh.gov.uk/ipu/confiden, December
1997.

6. S. Chauduri. Generalization and a framework for query modification. In Proceed-
ings of the IEEE International Conference on Data Engineering, 1990.

7. G. Chen and S. Keller-McNulty. Estimation of deidentification disclosure risk in
microdata. Journal of Official Statistics, 14(1):79–95, 1998.

8. T. Dalenius and S. P. Reiss. Data-swapping: a technique for disclosure contol.
Journal of Statistical Planning and Inference, 6:73–85, 1982.

9. C. J. Date. An Introduction to Database Systems. Addison Wesley, seventh edition,
2000.

10. D. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

11. D. E. Denning and P. J. Denning. Data security. ACM Conputing Surveys, 11(3),
September 1979.

12. D. E. Denning, P. J. Denning, and M. D. Schwartz. The tracker: a threat to
statistical database security. ACM Transactions on Database Systems, 4(1):7–18,
1978.

13. Data Protection Act 1998. The Stationery Office Limited, London, 1998.
14. K. Du. On automated query modification techniques for databases. PhD thesis,

Case Western Reserve University, May 1993.
15. M. J. Elliot. Dis: a new approach to the measurement of statistical disclosure risk.

International Journal of Risk Management, pages 39–48, 2000.
16. S. E. Feinberg and U. E. Markov. Confidentiality, uniqueness, and disclosure in-

formation for categorical data. Journal of Official Statistics, pages 385–397, 1998.
17. D. Florescu, L. Raschid, and P. Valduriez. Query modification in multidatabase

systems. International Journal of Intelligent and Cooperative Information Systems
(Special Issue on Formal Methods in Cooperative Information Systems: Heteroge-
neous Databases), 5(4), December 1996.

18. M. M. Fonkam and W. A. Gray. Employing integrity constraints for query mod-
ification and intensional answer generation in multi-database systems. In Ad-
vanced Database Systems: Proceedings of the 10th British National Conference on
Databases, pages 244–260. Springer-Verlag Lecture Notes in Computer Science,
volume 618, 1992.

19. B. Greenberg and L. Zayatz. Strategies for measuring risk in public use microdata
files. Statistica Neerlandica, pages 33–48, 1992.

20. D. Harman. Relevance feedback and other query modification techniques. In
W. B. Frakes and R. Baeza-Yates, editors, Information retrieval: data structures
and algorithms. Prentice Hall, 1992.

184 D. Power, M. Slaymaker, and A. Simpson

21. Human Rights Act 1998. The Stationery Office Limited, London, 1998.
22. D. Lambert. Measures of disclosure risk and harm. Journal of Official Statistics,

9:313–331, 1993.
23. D. J. Power, E. Politou, M. A. Slaymaker, S. Harris, and A. C. Simpson. An

approach to the storage of dicom files for grid-enabled medical imaging databases.
In Proceedings of the ACM Symposium on Applied Computing, pages 272–279,
2004.

24. D. J. Power, M. A. Slaymaker, E. A. Politou, and A. C. Simpson. Protecting
sensitive patient data via query modification. In ACM Symposium on Applied
Computing, pages 224–230, 2005.

25. A. C. Simpson, D. J. Power, M. A. Slaymaker, S. L. Lloyd, and E. A. Politou.
GIMI: Generic infrastructure for medical informatics. In IEEE Computer-Based
Medical Systems (to appear), 2005.

26. C. J. Skinner, C. Marsh, S. Openshaw, and C. Wymer. Disclosure control for
census microdata. Journal of Official Statistics, pages 31–51, 1994.

27. M. A. Slaymaker, E. Politou, D. J. Power, S. L. Lloyd, and A. C. Simpson. Security
aspects of grid-enabled digital mammography. Methods of Information in Medicine
(to appear), 2004.

28. M. A. Slaymaker, D. J Power, E. A. Politou, and A. C. Simpson. A vision for secure
grid-enabled healthcare. In Workshop on Grid Security Practice and Experience.
Technical Report YCS-2004-380, University of York, June 2004.

29. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International,
second edition, 1992.

30. M. Stonebraker. Implementation of integrity constraints and views by query mod-
ification. In Proceedings of ACM SIGMOD International Conference on the Man-
agement of Data, pages 65–78, 1975.

31. M. Stonebraker and E. Wong. Access control in a relational data base management
system by query modification. In ACM/CSC-ER Proceedings of the 1974 annual
conference, 1974.

32. P. Tendick and N. Matloff. A modified random pertubation method for database
security. ACM Transactions on Database Systems, 19(1), 1994.

33. A. Walker and S. C. Salveter. Automatic modification of transactions to preserve
data base integrity without undoing updates. Technical Report 81/026, State
University of New York, Stony Brook, New York, June 1981.

34. L. Wang, S. Jajodia, and D. Wijesekera. Securing OLAP data cubes against privacy
breaches. In Proceedings of the 2004 IEEE Symposium on Security and Privacy,
pages 161–175, 2004.

35. L. Willemborg and T. Waal. Elements of statistical disclosure control. Springer-
Verlag, 2001.

Protecting Privacy Against Location-Based

Personal Identification�

Claudio Bettini1, X. Sean Wang2, and Sushil Jajodia3

1 DICo, University of Milan, Italy
bettini@dico.unimi.it

2 Dept of CS, University of Vermont, Vermont
xywang@cs.uvm.edu

3 CSIS, George Mason University, Virginia
jajodia@gmu.edu

Abstract. This paper presents a preliminary investigation on the pri-
vacy issues involved in the use of location-based services. It is argued that
even if the user identity is not explicitly released to the service provider,
the geo-localized history of user-requests can act as a quasi-identifier and
may be used to access sensitive information about specific individuals.
The paper formally defines a framework to evaluate the risk in revealing
a user identity via location information and presents preliminary ideas
about algorithms to prevent this to happen.

1 Introduction

There are currently over 1.5 billion mobile phone users worldwide and the num-
bers are still growing very fast. Location technologies can be currently used by
wireless carrier operators to provide a good estimate of the user location. These
techniques are being refined in order to meet the requirements imposed by federal
institutions both in US and Europe for location-enhanced emergency services.
Significantly more precise positioning is obtained by GPS technology which is
already integrated in some mobile phones and it is likely to become a common
feature of mass product phones. Indoor positioning is also available based on a
wide range of enabling technologies including ultrasounds, Wi-Fi, and Bluetooth.
Considering that mobile phones are rapidly evolving into multipurpose devices
that can access a wide range of services, there is a general concern about how
positioning information is stored, managed and released to possibly untrusted
service providers.

This paper considers the privacy issues involved in accessing location-based
services, i.e., services that, based on the user current position, can provide
location-aware information. Typical examples are map and navigation services,
services that provide information on close-by public resources (e.g., gas sta-
tions, pharmacies, ATM machines, ...), services that provide localized news (e.g.,
� This work is partially supported by NSF under grants IIS-0430402 and IIS-0242237.

The work of Bettini is also partially supported by the Italian MIUR (FIRB ”Web-
Minds” project N. RBNE01WEJT 005).

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 185–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 C. Bettini, X.S. Wang, and S. Jajodia

weather forecasts, road constructions, etc.), as well as more personalized services
like proximity marketing or friend-finder.

In principle, most location-based services do not require the personal identi-
fication of the user. However, better service may be provided if personalization is
allowed. In order to obtain personalized service without revealing personal infor-
mation, we may use a trusted middleware infrastructure to make sure that only
pseudonyms are sent to the service providers, hence making the service requests
anonymous for them. Such pseudonyms can also be helpful when the accounting
of service usage is performed.

The problem, however, is that positioning information, in the form of a spe-
cific location or of a movement trace, can actually lead to personal identifica-
tion, hence revealing the association between a pseudonym and a real person.
For example, a service request containing as location information the exact co-
ordinates of a private house provides sufficient information to personally identify
the house’s owner since the mapping of such coordinates to home addresses is
generally available and a simple look up in a phone book (or similar sources)
can reveal the people who live there. If several requests are made from the same
location with the same pseudonym, it is very likely that the user associated with
that pseudonym is a member of the household.

An obvious solution might be to make all requests very coarse in terms of
spatial and temporal resolution. However, for some services to be useful, suf-
ficiently fine resolution must be used. With fine resolution, however, location
data may become a quasi-identifier. A quasi-identifier (see Section 4 for more
details) is similar to a social security number in that with some external infor-
mation source, a specific person can be identified. Any service request containing
data that becomes sensitive once associated with a user’s identity is a poten-
tial threat to the user’s privacy. Hence, the challenge is to obtain useful service
without revealing personal privacy.

By sensitive data we mean information of general concern, like medical infor-
mation or financial data that could be transmitted as part of a service request;
but it may also be the spatio-temporal information regarding the user, as possibly
collected by a location-based service provider. Examples include a) information
on the specific location of individuals at specific times, b) movement patterns
of individuals (specific routes at specific times and their frequency), c) personal
points of interest (frequent visits to specific shops, clubs, or institutions).

The problem we are addressing can be stated as follows:

We must ensure that no sensitive data is released to a service provider
when the data can be personally identified through a location-based quasi-
identifier.1

The main contributions of this paper are the following:

– By defining location-based quasi-identifiers and by introducing the notion of
Historical k-anonymity, we provide a formal framework to evaluate the risk
of revealing personal sensitive information based on location data.

1 See Section 4 for a formal definition of location-based quasi-identifiers.

Protecting Privacy Against Location-Based Personal Identification 187

– We propose a technique to preserve a specified level of anonymity, and iden-
tify several promising research directions on this topic.

The rest of the paper is organized as follows. In Section 2 we discuss re-
lated work. In Section 3 we present the service delivery model we are taking as
a reference in our work. In Section 4 we define location quasi-identifiers, while
in Section 5 the central notion of historical k-anonymity is presented. In Sec-
tion 6 we present preliminary ideas about algorithms for preserving historical
k-anonymity, and we mention several issues that deserve further investigation.
Section 7 concludes the paper.

2 Related Work

The problem we are addressing has many analogies with the problem of guaran-
teeing anonymity of personal data extracted from a relational database (see e.g.,
[14]). Typical solutions involve either the de-identification of data, essentially
avoiding the presence of quasi-identifiers, the obfuscation of sensitive data, or
the separation of quasi-identifiers from sensitive data. The first two solutions are
usually based on the generalization or suppression of attribute values. Despite we
will show that there are specific issues that distinguish the location-based prob-
lem from the analogous one in the relational database scenario, similar techniques
can be applied. Indeed, the dynamic change of spatio-temporal resolution that
we illustrate in Section 6 is an obfuscation technique based on generalization.

Considering the delivery of positioning data, the IETF Geopriv working
group [7] has focused on the design of protocols and APIs that enable devices
to communicate their location in a confidential and integrity-preserving man-
ner to a location server. Then, the location server is assumed to deliver data to
other services accordingly to the user’s privacy policies, possibly including the
use of pseudonyms instead of the real user identity. This work can be considered
complementary to ours.

The idea of adapting spatio-temporal resolution to provide a form of location
k-anonymity can be found in [11]. This work is extended in [9] to support the
use of a different value of k for different requests. However, the notion of k-
anonymity used in [9] is slightly different: the authors consider a message sent
to a service provider to be k-anonymous, only if there are other k-1 users in the
same spatio-temporal context that actually send a message. This is a debatable
interpretation of the k-anonymity concept, and differs from the one used in our
paper as well as in [11]. We only require the presence in the same spatio-temporal
context of k-1 potential senders, which is a much weaker requirement.

Independently from the above issue, [11] and [9] address a special case of the
problem considered in this paper, characterized by assuming that each location
is a quasi-identifier, and that the simple fact of issuing a request is sensitive
information. We believe that this assumption on the quasi-identifier is actually
a very strong one, similar to assuming that an external source (e.g. a camera)
would be available at each location allowing the identification of all users that
were at that location in any given time interval. The solution proposed in [11]

188 C. Bettini, X.S. Wang, and S. Jajodia

ensures that the request may have been issued by anyone of k users present at
a certain location in the time interval specified in the request. With respect to
this work, our framework addresses the issue of defining what a location-based
quasi-identifier is, enabling a wide range of assumptions about how easy it would
be to re-identify a subject in a specific context. Moreover, we extend to traces
the notion of k-anonymity.

Location privacy issues have also been addressed in [2,1]. In particular, the
authors propose and deeply investigate the notion of a mix-zone. A mix-zone is
analogous to a mix node in communication systems [6], and can be intuitively
described as a spatial area such that, if an individual crosses it, then it won’t
be possible to link his future positions (outside the area) with known positions
(before entering the area). Here, “link” means the association of different requests
to the same user. While it is not the focus of this paper to analyze mix-zones, we
consider it a very useful notion, and we use it in Section 6 as part of algorithmic
solutions for the preservation of historical k-anonymity.

3 The Anonymous Location-Based Service Model

Our investigation assumes a specific service provisioning model described by
the following scenario (see Figure 1). This model is assumed as well in [11,9],
and it closely reflects the reality of current systems. Although a trusted server
presents risks in terms of a single-point trust, since mobil devices are usually
limited in their capabilities, the assumed model as we adopt here is a reasonable
assumption.

Service Provider (SP) Service Provider (SP) Service Provider (SP)

Trusted Server
(TS)

Users

Fig. 1. Service provisioning model

– Users invoke or subscribe to location-based remote services that are going to
be provided to their mobile devices. Users can turn on and off a privacy pro-
tecting system which has a simplified user interface with qualitative degrees
of concern: low, medium, high. The user choice may be applied uniformly to

Protecting Privacy Against Location-Based Personal Identification 189

all services or selectively. More expert users can have access to more involved
rule-based policy specifications.

– User sensitive information, including user location at specific times and pos-
sibly other data needed for the service request, is collected and handled by
a Trusted Server (TS). TS has the usual functionalities of a location server
(i.e., a moving object database storing precise data for all of its users and
the capability to efficiently perform spatio-temporal queries). Qualitative
privacy preferences provided by each user are translated by the TS into spe-
cific parameters. The TS has also access to the location-based quasi-identifier
specifications (see Subsection 6.1).

– Service Providers (SP) receive from TS service requests of the form

(msgID, UserPseudonym, 〈Area, TimeInterval〉, Data).

The msgID is used to hide the user network address and will be used by
the TS to forward the answer to the user’s device; UserPseudonym is used
to hide the user identity while allowing the SP to authenticate the user, to
connect multiple requests from the same user, and possibly to charge the user
for the service (through a third party which has the mapping to identity and
payment instruments). The field 〈Area, TimeInterval〉 defines a spatio-
temporal context in which the request was issued. While the TS knows the
exact point and exact time when the user issued a request, both Area and
TimeInterval provide possibly generalized information in the form of an
area containing the exact location point, and of a time interval containing
the exact instant. Finally, Data is a set of attribute-value pairs depending
on the specific service and request.

– Service providers fulfill the requests sending the service output to the user’s
device through the trusted server.

4 Location-Based Quasi-Identifiers

In a database table storing personal information about individuals, a set of at-
tributes is called a quasi-identifier [8] if their values, in combination, can be
linked with external information to reidentify the respondents to whom the in-
formation refers. A typical example of a single-attribute quasi-identifier is the
Social Security Number, since knowing its value and having access to external
sources it is possible to identify a specific individual. In this work we consider
in particular the possibility of reidentifying the respondents based on attributes
revealing spatio-temporal data, possibly considering histories of attribute values.
A relevant issue, not actually addressed in previous work, is how to define and
how to represent such location-based quasi identifiers (LBQIDs in the sequel).
Since the choice of an LBQID implies certain assumptions on the accessibility
of external sources to identify the user, we believe that this is a crucial point in
defining what is really a privacy concern for location-based services.

We propose to represent LBQIDs as spatio-temporal patterns, as intuitively
illustrated in Example1.

190 C. Bettini, X.S. Wang, and S. Jajodia

Example 1. A user may consider the trip from the condominium where he lives
to the building where he works every morning and the trip back in the afternoon
as an LBQID if observed by the same service provider for at least 3 weekdays in
the same week, and for at least 2 weeks.

The derivation of a specific pattern or a set of patterns acting as LBQIDs
for a specific individual is an independent problem, and is not addressed in this
paper. However, it should be clear that the derivation process will have to be
based on statistical analysis of the data about users movement history: If a
certain pattern turns out to be very common for many users, it is unlikely to
be useful for identifying any one of them. The selection of candidate patterns
may also possibly be guided by the user. Since in our model it is the TS which
stores, or at least has access to, historical trajectory data, it is probably a good
candidate to offer tools for LBQID definition.

Definition 1. A Location-Based Quasi-Identifier (LBQID) is a spatio-temporal
pattern specified by a sequence of spatio-temporal constraints each one defining
an area and a time span, and by a recurrence formula.

Each location in the sequence is represented analogously to the spatio-
temporal context used in each request, i.e., 〈Area, U-TimeInterval〉 where
Area identifies a set of points in bidimensional space (possibly by a pair of
intervals [x1, x2][y1, y2]), and U-TimeInterval is a unanchored time interval
[t1, t2]. Differently from the specification of the time interval at request time,
here the values t1 and t2 represent unanchored instants of time. For example,
the U-TimeInterval = [7am,9am] defines the time span of two hours starting
at 7am and ending at 9am in a generic day. This interval is called unanchored
since it does not identifies a specific time interval on the timeline, but an infinite
set of intervals, one for each day.

A recurrence formula is associated with each location sequence and it follows
the following syntax:

r1.G1 ∗ r2.G2 ∗ . . . ∗ rn.Gn

where for each i = 1 . . . n, ri is a positive integer, and Gi is a time granularity,
as formally defined in [3].

The intuitive semantics is the following: each sequence must be observed
within a single granule of G1. The value r1 denotes the minimum number of
such observations. All the r1 observations should be within one granule of G2,
and there should be at least r2 occurrences of these observations. The same
semantics clearly extends to n granularities.

Example 2. The LBQID intuitively described in Example 1 can be formally de-
fined as follows:

〈AreaCondominium [7am,8am], AreaOfficeBldg [8am,9am],
AreaOfficeBldg [4pm,6pm], AreaCondominium [5pm,7pm]〉
Recurrence: 3.Weekdays * 2.Weeks

Protecting Privacy Against Location-Based Personal Identification 191

Accordingly to the semantics of this expression, each round-trip from home
to office and vice versa should be observed in the same weekday, there should
be 3 observations in the same week, and for at least 2 weeks.

Considering the given language syntax and semantics, we can observe that
any subexpression 1.Gn at the end of a recurrence formula can be dropped, since
it is implicit. For the formula to be satisfied, it is also implicitly necessary that
there are at least ri granules of Gi, each containing at least ri−1 granules of
Gi−1. If the recurrence formula is empty, it is assumed equivalent to 1.�, hence
the sequence can actually appear just once at any time.

Note that if user-defined time granularities are allowed, recurrence formulas
can also express patterns like “same weekday for at least 3 weeks”, or “at least
two consecutive days for at least 2 weeks”. In the first case we may use the
granularities Mondays, Tuesdays, etc., and use a different LBQID for each one of
them. The second pattern may require a special granularity having each granule
composed of 2 contiguous days.

However, the formalism we propose is only one among many that could be
used to represent recurring spatio-temporal sequences. Some of the work on
recurring temporal patterns may also be considered [13,10]. The choice of a par-
ticular formalism is not crucial for our approach, as long as there are algorithms
to continuously verify if the patterns are matched by the positioning data asso-
ciated with the users’ requests.

Considering the language proposed above, a timed state automata [4] may be
used for each LBQID and each user, advancing the state of the automata when
the actual location of the user at the request time is within the area specified
by one of the current states, and the temporal constraints are satisfied. Details
about monitoring LBQIDs are outside the scope of this paper.

For specifying our framework we only need to define the notion of a set of
requests matching an LBQID.

Definition 2. If 〈xi, yi, ti〉 is the exact location and time of a request ri, as seen
by the TS, ri is said to match an element Ej of an LBQID if Areaj contains
〈xi, yi〉 and ti is contained in one of the intervals denoted by U-TimeIntervalj.

Definition 3. A set of requests R′ is said to match an LBQID Q if the following
conditions hold: (1) each request ri in R′ matches an element Ej of Q, and vice
versa each element Ej is matched by a request ri in R′; (2) if ti is the time
instant of a request ri matching Ej, the set of ti’s for all ri ∈ R′ must satisfy
the temporal constraints imposed by the recurrence formula of Q.

5 A Privacy Preservation Framework Based on
k-Anonymity

In this section we present the principles defining our framework for privacy
preservation. The framework has the main goal of enabling a quantitative eval-
uation of the effectiveness of privacy preservation solutions.

192 C. Bettini, X.S. Wang, and S. Jajodia

5.1 The Notion of k-Anonymity for Location-Based Services

As mentioned earlier, when a user does not want to be recognized when per-
forming an action, like issuing a service a request, making a call, or informing a
service provider of the present location, one general solution is to make requests
anonymous with pseudonyms. The reason that pseudonyms lead to anonymity is
because there exists a set of many individuals, each of whom could have used any
given pseudonym. Hence, anonymity can be intuitively described as the prop-
erty of being indistinguishable among a set of individuals. The anonymity set
concept was probably first defined in [5] in an analogous context as the set of
participants who could have sent a certain request, as seen by a global observer.
According to this definition the cardinality of the anonymity set gives a measure
of anonymity level. The greater the k value, the higher the level of anonymity. In
our context, the anonymity of the service requests may be obtained as follows:

Given a measure k of desired anonymity level, algorithms should be applied at
the TS to guarantee that the SP will not be able, using location data, to bind a
request to an anonymity set with fewer than k users.

A location-based anonymization algorithm based on this notion was first
proposed in [11]. The main idea is to forward a request to the SP only when at
least k different subjects have been in the space defined by Area in anyone of
the subintervals of TimeInterval. Since any of the subjects may have issued
the request, even if the SP had access to a direct observation of the area, the SP
may not determine which of the subjects actually issued the request.

Note that this approach has an implicit assumption (not mentioned in [11]):
There is a very low probability that all the individuals in the anonymity set will
actually make exactly the same request in the same time interval. Indeed, if this
is not the case, the cardinality of the set is irrelevant, since it would be sufficient
to know that an individual belongs to the set in order to know that he/she
actually issued the request. A similar assumption is made when dealing with k-
anonymity in relational databases. In the following we also make this assumption
and we assume that it has been validated by a data statistical analysis. Note
that [9] requires that.

In this paper we also take into account sequences of requests issued by the
same individual. These sequences are usually identified by service providers when
the service requires authentication, since each request is explicitly associated
with a userid. We remind that in our model, a UserPseudonym is included in
each request and it is also used to authenticate the user. Central to our framework
are the notions of Service Request Linkability and Historical k-anonymity.

5.2 Service Request Linkability

Intuitively, service request linkability (linkability for shortness) is a measure
of the possibility, by looking at the set of service requests issued to a service
provider, to guess that two requests have been issued by the same user. Any

Protecting Privacy Against Location-Based Personal Identification 193

two requests with the same UserPseudonym are clearly linkable, since we as-
sume that pseudonyms are not shared by different individuals. Using different
pseudonyms for the same individual may not be sufficient to make his/her re-
quests unlinkable. In general computing linkability is not a trivial task, since
various techniques can be used to link two requests. The issue has been in-
vestigated in [12] considering multi target tracking techinques to associate the
location of a new request with an existing trace; if this association succeeds, the
new request is considered linkable (with a certain probability) to all the requests
used in the trajectory. However, many other techniques could also be applied,
including pattern matching of traces (to guess, for example, recurring traces),
or probability-based techniques considering most common trajectories based on
physical constraints like roads, crossings, etc.. While it is out of scope in this
paper to consider specific linking techniques, we assume the TS can replicate the
techniques used by a possible attacker, hence computing a likelihood value for
the linkability of any pair of issued requests.

Definition 4. Given the set R = {r1, . . . , rn} of all requests issued to a certain
SP, linkability is represented by a partial function Link() from R × R to [0, 1],
intuitively defining for a pair of requests ri and rj in R the likelihood value of
the two requests being issued by the same individual.

The Link() function is assumed to have some simple properties: Link(ri, rj)
= Link(rj , ri) (symmetricity), and Link(ri, ri) = 1 (reflexivity).

For each request we can define the set of all requests linkable to it as follows.

Definition 5. Let R be the set of all the requests issued to a certain SP and
R′ ⊆ R. Then we say R′ is link-connected with likelihood Θ if for each pair
ri and rj of requests in R′, there exist ri1 , . . . , rik

in R′, where ri1 = ri and
rik

= rj, such that Link(ril
, ril+1) ≥ Θ for all l = 1, . . . , k − 1.

Note that we may say that the Link() function is correct if, for each set R′

of requests, the following holds: all the requests of R′ belong to the same user if
and only if R′ is link-connected with Θ = 1.

5.3 Historical k-Anonymity

In order to define historical k-Anonymity we need some preliminary definitions.
The trusted server not only stores in its database the set of requests that are

issued by each user, but also stores for each user the sequence of his/her location
updates. We call this sequence Personal History of Locations.

Definition 6. The sequence of spatio-temporal data associated with a certain
user in the TS database is called his/her Personal History of Locations (PHL),
and it is represented as a sequence of 3D points (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉),
where 〈xi, yi〉, for i = 1, . . . , m, represents the position of the user (in two-
dimensional space) at the time instant ti.

194 C. Bettini, X.S. Wang, and S. Jajodia

Note that a location update may be received by the TS even if the user did
not make a request when being at that location. Hence, for each request ri there
must be an element in the PHL of User(ri), but the vice versa does not hold.
This has an intuitive motivation in the fact that the anonymity set for a certain
area and a certain time interval is the set of users who were in that area in that
time interval, and who could potentially make a request.

We also need to define the following relationship between PHLs and sets of
requests issued to the SP.

Definition 7. A PHL (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉) is said to be location-time-
consistent, or LT-consistent for short, with a set of requests r1, . . . , rn issued to
an SP if for each request ri there exists an element 〈xj , yj , tj〉 in the PHL such
that the area of ri contains the location identified by the point xj , yj and the time
interval of ri contains the instant tj.

We can now define Historical k-Anonymity.

Definition 8. Given the set R of all requests issued to a certain SP, a subset of
requests R′ = {r1, . . . , rm} issued by the same user U is said to satisfy Historical
k-Anonymity if there exist k − 1 PHLs P1, . . . , Pk−1 for k − 1 users different
from U , such that each Pj , j = 1, . . . , k − 1, is LT-consistent with R′.

What we want to do below is to make sure that if a set of requests R′

matches an LBQID and is link connected with a certain likelihood, then R′

satisfies historical k-anonymity. This means that if an SP can successfully track
the requests of a user through all the elements of an LBQID, then there would
be at least k − 1 other users whose personal history of locations is consistent
with these requests; in other words, from the SP perspective, there would be at
least k users who may have issued those requests.

From the above definitions it should be clear that the two main parameters
defining a “level of privacy concern” in our framework are k, the anonymity
value, and Θ, the linkability likelihood.

6 Preserving Historical k-Anonymity

While several strategies may be devised for privacy preserving in our framework,
here we illustrate a simple approach that may be used as a starting point to
develop more sophisticated techniques.

6.1 A Simple Strategy

We assume that each location-based service has some tolerance constraints that
define the coarsest spatial and temporal granularity for the service to still be
useful. For example, consider a service that returns information on the closest
hospital. For the service to be useful, it should receive as input a user location
that is at most in the range of a few square miles, and a time-window for the

Protecting Privacy Against Location-Based Personal Identification 195

actual request time of at most a few minutes. On the contrary, a service providing
localized news may even work reasonably with much coarser spatial and temporal
granularities.

Our strategy can be summarized as follows:

1. The TS monitors all incoming user requests for the possible release of
LBQIDs. While the TS knows the exact position and time (〈x, y, t〉) as-
sociated with a request r, they are generalized when r is forwarded to the
SP in the following case: r matches an element Ej of an LBQID for User(r)
such that (1) either Ej is the first element or (2) a previous request r′ by the
same user has matched Ej−1 and the time instants associated with r′ and
r satisfy the temporal constraints specified in Q between Ej−1 and Ej . The
generalization essentially consists in enlarging the Area and TimeInterval,
hence increasing the uncertainty about the real user location and time of
request. Generalization is performed by an algorithm that tries to preserve
Historical k-Anonymity of the set of requests that have matched the current
partial LBQID.

2. If, for a particular request, generalization fails, (i.e., historical k-anonymity
is violated), the system will try to unlink future requests from the previous
ones by changing the pseudonym of the user. If unlinking succeeds before
a complete LBQID is matched, all partially matched patterns based on old
pseudonym for that user are reset. Otherwise, the user is considered at risk
of identification, and notified about it so that he may refrain from sending
sensitive information, disrupt the service, or take other actions.

Clearly, if the generalization algorithm succeeds for each LBQID sub-pattern,
k-historical anonymity is satisfied. If the algorithm fails, it does not mean that an
LBQID would be revealed. Indeed, if Step 2 succeeds in changing the pseudonym
of the user before a complete LBQID is matched, no further requests with the
old pseudonym will occur and the partially matched patterns would have no
chance to be completed.

We now show the generalization algorithm explaining how it can guarantee
Historical k-Anonymity. For simplicity, we make the assumption that each re-
quest can match an element in only one of the LBQIDs defined for a certain
user. The algorithm can be easily extended to consider multiple LBQIDs.

6.2 A Spatio-Temporal Generalization Algorithm

Algorithm 1 is composed of two main steps (lines 1 and 8 in the listing). If the
current request matches the first element in an LBQID, then steps at lines 5
and 6 are executed selecting from all the user PHLs the k points (each one from
a different user) that are closest to the point corresponding to the request. For
requests matching intermediate elements in an LBQID, Steps at lines 2 and 3 are
performed using the PHLs of the k users selected when the request matching the
first element of the LBQID has been processed. The second main step (line 8)
simply checks if the generalization satisfies the tolerance constraints. If it doesn’t,
in order not to disrupt the service, the computed area and time interval are

196 C. Bettini, X.S. Wang, and S. Jajodia

algorithm 1. The generalization algorithm
Input: 〈x, y, t〉 as position and time of request r, k user-ids (if r matches the initial
element of an LBQID) or a parameter k, tolerance constraints;
Output: 〈 Area, TimeInterval 〉, boolean value for HK-anonymity, k user-ids (if r
matches the initial element of an LBQID);
Method:

1: if k user-ids are given as part of the Input then
2: For each of the k user-ids, find the 3D point in its PHL closest to 〈x, y, t〉.
3: Compute 〈 Area, TimeInterval 〉 as the smallest 3D space containing these

points
4: else
5: Compute 〈 Area, TimeInterval 〉 as the smallest 3D space (2D area + time)

containing 〈x, y, t〉 and crossed by k trajectories (each one for a different user)
6: Store the ids of the k users.
7: end if
8: if 〈 Area, TimeInterval 〉 satisfies the tolerance constraints then
9: HK-anonymity := True

10: else
11: HK-anonymity := False
12: Area and TimeInterval are uniformly reduced to satisfy the tolerance con-

straints
13: end if

shrunk as much as required to satisfy the constraints. A False value is returned
for the variable HK-anonymity to notify the failure in proper generalization.

The most time consuming step is the one at line 5. This can be performed
using a brute-force algorithm by simply considering the nearest neighbor in the
PHL of each user and then taking the closest k points. In this case, the worst case
complexity of this step is O(k ∗ n) where n is the number of location points in
the TS. Optimizations may be inspired by the work on indexing moving objects.
The computation necessary for steps at lines 2 and 3 is quite simple, considering
that it is restricted to the traces of k users, and that this number is usually much
smaller than the total number of users.

In order to make the algorithm practical several issues still have to be ad-
dressed. The most relevant one is the trade-off between quality of service (i.e.,
how strict tolerance constraints should be), degree of anonymity (i.e., choice
of k), and frequency of unlinking (i.e., number of possible interruptions of the
service). These parameters must be considered carefully, possibly based on the
user policies. Based on specific objective functions, several techniques can then
be applied to improve the algorithm. For example, if we want to ensure histor-
ical k-anonymity, we should probably use an initial parameter k′ larger than k.
Indeed, the longer the trace, the less are the probabilities that the same k indi-
viduals will move along the same trace (even considering generalizations along
the space and time dimensions). Starting with a larger k and decreasing its value
at each point in the trace, until k is reached, should increase the probability to

Protecting Privacy Against Location-Based Personal Identification 197

maintain historical k-anonymity for longer traces. Guidance on the choice of k′

and on the value by which it should be decremented at each step should come
from the analysis of historical data.

6.3 Unlinking Techniques

Unlinking is performed by changing the pseudonym of the user, possibly doing
it when he crosses a mix-zone [2] (see Section 2), in order for the SP not to
be able of binding the different pseudonyms to the same user. Mix-zones have
been defined as “natural” locations where no service is available to anybody and
specific conditions are satisfied such that it becomes very difficult for an SP to
link two requests from the same user if the user has crossed the mix-zone. The
definition is partly due to the fact that the class of services considered in [2] are
specific to certain areas (e.g., all branches of a department store), leaving most
of the remaining space unserviced.

We are interested in defining mix-zones on-demand, for example temporarily
disabling the use of the service for a number of users in the same area for the
time sufficient to confuse the SP. Technically, we may define the problem as that
of finding, given a specific point in space, k diverging trajectories (each one for
a different user) that are sufficiently close to the point. The “diverging” feature
should capture the intuitive idea that these users, once out of the mix-zone, will
take very different trajectories.

We abstract the above into an action called “Unlinking with a likelihood
parameter Θ”. This action will make sure that two requests, when unlinked,
will (1) have two pseudonyms pID1 and pID2, and (2) Link(r1, r2) < Θ for all
requests r1 and r2 having pID1 and pID2, respectively.

We can now state our correctness result for our algorithm:

Theorem 1. If we apply our strategy with Algorithm 1, and we assume we can
always perform Unlinking for a certain likelihood parameter Θ, then, given an
anonymity value k, any set of requests issued to an SP by a certain user that
matches one of his/her LBQIDs and is link connected with likelihood Θ, will
satisfy Historical k-anonymity.

By choosing an appropriate k, Theorem 1 ensures that no SP may use an
LBQID to personally identify a user.

7 Conclusions and Open Issues

In this paper we have formally defined the problem of the personal identification
of sensitive data in location-based services. We believe that the formal framework
we have defined can be used for two very different purposes:

(a) to enforce a certain level of privacy – possibly disabling the service when the
level cannot be guaranteed –, and

198 C. Bettini, X.S. Wang, and S. Jajodia

(b) to evaluate if the privacy policies that a location-based service guarantees
are sufficient to deploy the service in a certain area. This may be achieved by
considering, for example, the typical density of users, their movement pat-
terns, their concerns about privacy, as well as the spatio-temporal tolerance
constraints of the service and the presence of natural mix-zones [1] in the
area.

While in this paper we presented preliminary results about (a), we consider (b)
as another promising research direction.

Regarding a) we already pointed out several issues that deserve further in-
vestigation, including monitoring multiple LBQIDs, efficient generalization al-
gorithms and unlinking techniques. In addition, randomization should be used
as part of the TS strategy to prevent inference attacks.

Another interesting open issue regards user interfaces. On one side, very
simple tools should be provided to define LBQIDs and verify them based on
statistical data. On the other side, simple and effective interfaces are needed to
specify the level of anonymity required by the user, as well as to notify when
identification is at risk. Graphical solutions, like the open and closed lock in an
internet browser should be considered.

References

1. A. Beresford, F. Stajano, Mix Zones: User Privacy in Location-aware Services.
In Proc. IEEE Workshop on Pervasive Computing and Communication Security
(PerSec), pp. 127-131, IEEE, 2004.

2. A. Beresford, F. Stajano. Location Privacy in Pervasive Computing. IEEE Perva-
sive Computing, 2(1):46-55, 2003.

3. C. Bettini, S. Jajodia, X.S. Wang, Time Granularities in Databases, Data Mining,
and Temporal Reasoning, Springer, 2000.

4. C. Bettini, X. Wang, and S. Jajodia. Testing complex temporal relationships in-
volving multiple granularities and its application to data mining, in Proc. of ACM
Symposium in Principles of Database Systems (PODS), ACM press, 1996.

5. D. Chaum, The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability. Journal of Cryptology 1(1): 65-75, 1988.

6. D. Chaum, Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2): 84-88, 1981.

7. J. Cuellar, J. Morris, and D. Mulligan. Internet Engineering task force geopriv re-
quirements. http://www.ietf.org/html.charters/geopriv-charter.html , 2002.

8. T. Dalenius. Finding a needle in a haystack – or identifying anonymous census
record. Journal of Official Statistics, 2(3):329–336, 1986.

9. B. Gedik, L. Liu. A Customizable k-Anonymity Model for Protecting Location
Privacy. The 25th International Conference on Distributed Computing Systems
(IEEE ICDCS 2005).

10. I. Goralwalla, Y. Leontiev, M. Özsu, D. Szafron, Carlo Combi, Temporal Granu-
larity: Completing the Puzzle, J. Intell. Inf. Syst. 16(1): 41-63, 2001.

11. M. Gruteser, D. Grunwald, Anonymous Usage of Location-Based Services Through
Spatial and Temporal Cloaking. In Proc. of MobiSys 2003.

Protecting Privacy Against Location-Based Personal Identification 199

12. M. Gruteser, B. Hoh, On the Anonymity of Periodic Location Samples In Proc.
of 2nd International Conference on Security in Pervasive Computing, LNCS series,
Springer, 2005.

13. L. Khatib, R. Morris Generating Scenarios for Periodic Events with Binary Con-
straints, In Proc. of TIME, pp. 67–72, IEEE, 1999.

14. P. Samarati, Protecting Respondents’ Identities in Microdata Release, IEEE Trans.
Knowl. Data Eng. 13(6): 1010–1027, 2001.

Information SeeSaw: Availability vs. Security

Management in the UbiComp World

Boris Dragovic and Calicrates Policroniades

Systems Research Group, The Computer Laboratory,
University of Cambridge, United Kingdom
{Firstname.Lastname}@cl.cam.ac.uk

Abstract. The ubiquitous computing vision brings about a number of
information security and privacy challenges, some of which we already
face in the mobile computing arena. This work focuses on a context-
specific class of information leakage threats not involving a malicious
custodian. Information exposure threats arise as a side effect of a partic-
ular choice of data management procedures employed during legitimate
information use or possession in a specific context. They affect, in dif-
ferent forms, information throughout its lifetime in a ubiquitous com-
puting environment. To maximize information availability, and thus its
value to user, under unpredictably varying threat models, we depart form
static and inflexible approaches to secure data management to provide
for continuous and adaptive information exposure protection. We outline
a means of structured reasoning about information exposure and intro-
duce a metric for its quantification. An approach to threat mitigating
information management operations discrimination based on informa-
tion utility change is also presented. To unify the introduced concepts
into a coherent big picture we form a Levels of Exposure model. On the
implementation side, we overview a type aware, sub-file granularity data
repository system that meets the requirements implied in the paper.

1 Introduction

Ubiquitous computing vision [1] has brought about a number of challenges for
information security and privacy stemming from a number of technological and
socio-technological reasons [2] [3] [4] [5]. Some of the problems can be solved by
adapting existing solutions from traditional distributed systems while the others
need novel solutions.

Context represents a significant factor in establishing a threat model for an
asset. Every contextual state can be attributed with a set of threats and their
respective likelihoods, as seen from the point of view of an sensitive asset. Vari-
ability in context thus implies threat model changes. Information omnipresence,
its anywhere and anytime availability to end users, in the ubiquitous computing
world leads to dissolution of the notion of secure perimeter. Consequently, infor-
mation is subjected to unpredictable context changes, and thus threat models,
throughout its lifetime.

Our work focuses on, what we call, Information Exposure Threats. Informa-
tion exposure threats are a subset of information leakage threats and impact on

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 200–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Information SeeSaw: Availability vs. Security Management 201

information confidentiality. Their distinguishing characteristic is that they do not
involve a malicious custodian1. Information exposure threats represent informa-
tion leakage into the environment as a side-effect of the information management
and handling procedures deployed in a particular context. They stem from a mis-
match between: information sensitivity; context surrounding the information -
determining the threat model; and a particular information management proce-
dure employed - granting a level of protection in the context. Simple instances
of the threat class involve sensitive information being: displayed in a form and
on a screen visually accessible by a third party [6] [7]; taken out of a secure
perimeter on a mobile computing or storage device unaccounting for the shift
in threat model; transmitted in plain-text over a corporate wireless link whose
signal penetrates into a publicly accessible area, etc.

Addressing information exposure threats requires continuous threat moni-
toring and application of adequate protective measures in the face of threat
changes. In contrast to access control mechanisms, triggered at the point of
access, continuous information exposure protection has to be provided in pre-
during- and post-access phases. Threat mitigating operations, thus, have to be
available whether information is on a storage device, in virtual memory, or being
displayed or transmitted.

Information security and privacy protection mechanisms are frequently at
odds with both information availability and system usability. This undermines
the very vision of ubiquitous computing. Reasoning about threat mitigating
operations in terms of the degree and the nature of protection they provide
in contrast to their impact on information availability allows for maximising
information availability while ensuring adequate levels of information security
and privacy - balancing the seesaw.

In this paper we extend our previous work [8] [9] to meet the challenges of
the continuous information exposure threats mitigation while maximising infor-
mation availability. Section 2 contrasts our work with related research. Section
3 provides a brief overview of an approach to modeling the world based on the
notions of container and containment that allows for structured and continu-
ous fine-grained reasoning about threats information is exposed to. In Section
4 we outline a method for quantifying information exposure, an approach to
threat mitigation actions discrimination based on their impact, most notably on
information utility and unification of the concepts through the Levels of Expo-
sure modeling. Section 5 outlines a type-aware storage subsystem that allows for
fine-grained, per sensitivity level, data manipulation matching the information
centric nature of our approach to information security and privacy protection.

2 Related Work

The most prominent instance of information exposure threats is information
leakage due to unprotected storage on lost and stolen mobile devices. Thus, a
1 A person in a legitimate possession or access to information as determined by exter-

nal authentication and authorisation mechanisms.

202 B. Dragovic and C. Policroniades

wide body of research has been focused on data storage protection. This has
resulted in a wide variety of cryptographic and information hiding file systems.
Furthermore, a number of commercial vendors offer solutions based on manda-
tory data storage encryption.

Data storage protection affects threats relevant to only a segment of infor-
mation lifetime. Once data is read from a protected storage it becomes possi-
bly affected by a plethora of other information exposure threats. Furthermore,
indiscriminate data storage security management procedures may prove too re-
strictive and resource costly for application on constrained ubiquitous devices.

Provos [10] realises the vulnerability of information beyond storage and ex-
tends cryptographic protection to swap-space. As such, the protection provided
covers another aspect of information lifetime only. The mandatory, cryptographic-
only approach, retains the previously outlined issues.

A step forward in “on-demand” encryption is made by Corner and Noble in
their work on Zero Interaction Authentication [11]. They use transient associa-
tion between a storage hosting device and a token, signifying user presence, to
encrypt stored data on user absence. In [12] Corner and Noble build on their
previous work to provide for on-demand process state and virtual memory en-
cryption as well. They also allow for selective data encryption by designing an
API that allows aware applications to be notified on user-absence and take rele-
vant application-specific actions. The threat model space, as seen by Corner and
Noble, is binary - determined by the state of user presence. We see user presence
as only one of the possible contextual factors which may impact on the likelihood
of a set of information exposure threats. Thus, our approach enables reasoning
about threats on a much finer granularity. Furthermore, Corner and Noble do
not provide for alternatives in security-relevant data management procedures.

In [13] Patwardhan et al. develop a deontic policy language Rei and show how
it can be employed for securing information in pervasive environments. Among
their objectives are: accountability, by which an administrator may specify a
policy for safe use of the device to limit the damage in case it is lost or stolen;
automatic guards, providing for automatic security-relevant event-triggered de-
vice reconfiguration; and capability restriction, limiting a device’s software or
hardware capabilities according to the automatic guards. Unlike the previously
mentioned work, this approach allows for flexible context-based threat reasoning.
However, rather than offering a method for context-aware information security
reasoning or analysis the work offers solely a framework for policy enforcement.
As such, it resembles work done on Ponder [14].

In summary, current approaches, to the best of our knowledge, lack holistic,
continuous and data item centric, fine-grained, information protection through-
out information lifetime. In general, they aim at providing information protec-
tion through a combination of platform functionality restriction and deployment
of inflexible, generalised, data management and handling mechanisms. Not only
does this inhibit information availability and system usability but without means
of estimating the level of risk in a methodic way, by only assessing the possibility
of a threat, the protection provided may well be without a cause.

Information SeeSaw: Availability vs. Security Management 203

3 The Role of Containment

To provide for continuous structured reasoning about information exposure
threats on per data item granularity we developed a way of modeling the world
based on the notions of a container and containment. The model facilitates
localized threat mitigation.

3.1 Characterizing Threats

For the sake of clarity we firstly define threats as used in the rest of the paper. We
characterize threats with two values: type and effect. With respect to the class
of unintentional information leakage, or information exposure, threats the type
is intended to denote the nature of the channel, or means, by which information
leaks form a data item to an unauthorized entity. For the purpose of clarity of
this paper, as an example illustration, we can typify information exposure as:
physical, visual, audio and network. The threat effect describes the impact of a
threat. Threat effect is expressed using an appropriate metric, Section 4, and
has unified semantics across all threats recognized by the system.

3.2 Container - The Basic Building Block

We define a container to be a virtual or physical enclosure, a bounded region, in
which a piece of information, or another container, may exist. The semantics of
an enclosure imply that migrations as well as destruction of a container assume
its contents. Containers can be classified into a hierarchy based on their nature.
The three top level classes we define are: physical container, virtual container
and intermediate container. Physical containers refer to enclosed physical spaces
such as e.g. an office, space within a secure perimeter, etc. Virtual containers,
on the other hand, do not have dimensions in the physical world e.g. a file, a
file system, an TCP packet, an IPSEC tunnel, a GUI window, etc. Intermediate
containers act as a bind between the physical and virtual worlds by being physical
phenomena but able to contain only virtual containers e.g. a storage device, a
display, a keyboard, a wireless communications link etc. Container class data item
is special in a sense that it serves as a direct representation of information. We
introduce containable relationship to denote container classes that a container
of a particular class may contain.

The fundamental characteristic of a container is its transparency. Container
transparency represents filtering characteristics that its boundary poses for dif-
ferent types of contextual factors, and thus for implied information exposure
threats. For example: an sound-proof enclosure filters out threats of audio access
to information originating from outside; a size of a GUI window and information
rendering characteristics determine relative distance and angle required for the
information to be accessed visually; tamper resistance of a storage device, file or
communications channel encryption increase the level of effort, knowledge and
determination needed for physical access to information, etc. Container trans-
parency may change depending on container’s state, e.g. size of a GUI window,

204 B. Dragovic and C. Policroniades

open vs. closed door of a room etc. Based on this observation we define for each of
the container classes a transparency function that, given a set of container char-
acteristics and a threat specification, determines the impact of the container’s
boundary on the threat’s effects.

3.3 Containment - The Model of the World

The state of the world at any point in time can be represented, in a graph-
theoretic way, as a forest of finite-path-length finite-degree rooted trees with
directed edges. Nodes of the tree represent containers while the edges denote
contains relationship. For a containment tree to be well structured it has to obey
the containable relationship. Containers of class data item are always leaf nodes.
Containment of an entity (a container of a data item) represents a sequence of
nested containers leading from the tree root to the entity in question. Detailed
formal specification of the model can be found in [8].

To evaluate effects of a threat occurring somewhere in a containment tree
on a data item we successively apply the transparency function for each of the
containers on a path from the threat source container to the data item.

Room

Personal Digital
Assistant

Storage
Device

Display

...

...

Storage
Device

Display USB
Key

...
Encrypted

File

...

Wi-Fi

Tabletop
Personal Computer

Location Service

P.D.A.

T.P.C.

Mobile
Phone

DisplayStorage
Device

GPRS

...

...

Legend:

= Data Object

M.P.

Fig. 1. Containment model of the world snapshot

The model is intended to be established and maintained independently on
individual ubiquitous computing devices - called model authorities. Figure 1
shows a partial containment-based model of the world denoting, as labeled on
the dashed boxes, model authorities and their respective model portions.

4 From Exposure Quantification to Threat Mitigation

4.1 Quantifying Information Exposure

The first and essential step towards our aim of matching threats and protec-
tive actions on fine grained basis is derivation of a threat exposure metric. In

Information SeeSaw: Availability vs. Security Management 205

Section 3 we have outlined how a container may impact on a threat effect which
allows us to reason about information exposure threats on per data item basis.
The approach, as presented, assumes that the threat has materialized and does
not account for two specific factors: context sensing uncertainty and the likeli-
hood of a particular threat materializing in the given context. Context sensing
uncertainty stems from characteristics of sensors and deployed context inference
methods; it has been a topic of interest of a wide body of research in the area
of context-aware computing. The likelihood of a threat materializing in a con-
text depends on a particular set of contextual fragments forming the context. In
other words, it represents probabilistic correlation between contextual fragments
and threat occurrence. As the setting makes experimentation close to impossible
other methods based on, for example, prior experiences and historical informa-
tion, expert opinions, cost/benefit analysis or attacker profiling have to be used
to arrive at threat likelihood values.

We propose the following general form of the metric for quantifying informa-
tion exposure:

exposure(u, l, e)

where u represents context sensing uncertainty, l is the perceived likelihood of
threat occurrence while e is the threat effect as experienced by a data item in
a particular containment upon threat materialization. Exact functional depen-
dence between the parameters, their domains as well as the metric semantics
and cardinality are application specific.

In general, context-threat mapping is many-to-many. It is realistic to expect
a number of threats of the same and different types to co-occur in a context. As
the exposure metric is threat specific the following table defines a simple algebra
for combining exposure values of different types:

⊕
et1
1 et2

1

et1
2 max(et1

1 , et1
2) [et1

2 , et2
1]

et2
2 [et2

2 , et1
1] max(et2

2 , et2
1)

where etx
n denotes an exposure value enumerated as n and resulting from a

threat type x. The algebra shows that exposure values due to different threat
types can not be added but are preserved separately. The table also shows that
given several exposures of the same time the joint exposure is just as significant
as the highest value individual exposure on its own. The motivation and the
consequence of the algebra specification are shown in section 4.4.

4.2 Controlling Information Exposure - The Protective Actions

The role of protective actions is to lower exposure experienced by a piece of
information to what is considered to be an “acceptable” level with respect to a
security policy. Protective actions can be grouped as:

206 B. Dragovic and C. Policroniades

– Container manipulation:
• Container modification.
• Container creation.
• Containment migration.

– Information manipulation:
• Information reduction.
• Information subsetting.

Container manipulation actions rely on container transparency to mitigate
threats. Container modification exploits dependencies between a container’s char-
acteristics and its boundary’s transparency to impact on a threat effect propaga-
tion, e.g. resizing a GUI window decreases its visibility radius. Insertion of a con-
tainer, i.e. its creation, in a threat propagation path down a containment tree is
equivalent to adding a filter for the threat effects, e.g. file encryption - regarded
as “enclosing” a file within a cryptographic container. Lastly, threat effects may
be mitigated by migration of a portion of a data item’s containment to a differ-
ent point in the containment tree, e.g. migration of a GUI window from an wall-
mounted display to a PDA’s built-in display.

Unlike container modification actions, information manipulation operations
do not act to lower exposure but to make information more “tolerable”2 to the
experienced exposure. To increase the exposure “tolerance” information manipu-
lation actions impact on data sensitivity by decreasing the quality and quantity
of data items’ information content. Information reduction techniques [15] as-
sume direct transformations of data items’ content such as e.g. JPEG image
degradation. Information subsetting consists of fully omitting sensitive pieces of
information, e.g. map feature selection as in [16]. Information subsetting may be
seen as a coarse-grained form of information reduction providing only a binary,
full content or none, alternative.

4.3 The Choice of Action

Given the variety of possible protective actions there is likely to be multiple
alternatives to mitigating any single threat. For example, in case of a threat
of visual information exposure the actions of resizing the GUI window, hiding
the GUI window, blanking the whole screen or migrating the window to a more
restricted display are viable. The ability to reason about “appropriate” action
given a threat is one of the fundamental contributions of our work. To meet the
stated goal of maximizing information availability while adequately protecting its
security and privacy with respect to information exposure threats we introduce
the measure of information utility.

Information Utility Measure. Information utility measure is envisaged to capture
the following properties of a piece of information affected by a protective action
execution:
2 As defined by a wider security policy.

Information SeeSaw: Availability vs. Security Management 207

– Information content.
– Locality of information.
– Information Accessibility.
– User Perceived Quality of Service.

We reason about impact of protective actions on information utility given,
what we call, assumption of general “rational” behavior of a system and a user
with respect to information utility. We say that a system or a user behaves in a
“rational” manner if any information management decision taken and operation
performed strives to maximize information utility. For example, if a user opts for
a particular display to view a piece of information or a system chooses a specific
link to transfer data we assume that both decisions maximize information utility
under a relevant set of constraints. An information manipulation action is likely
to impact on information content of affected data. We introduce Information
Loss Factor as a measure of relative change of information content pre- and
post- protective action execution. Locality of information is introduced to char-
acterize change of containment of a piece of information. Given the “rationality”
assumption it is intended to favorise actions that cause no containment shift as
shown in the table below. Information accessibility captures delay and cost of
accessing a piece of information as well as general information availability post-
execution of a protective action. Finally, it is well known in the human-computer
interaction that human perceptions of the quality of service vary subjectively and
are difficult to generalize. User Perceived Quality of Service expresses user pref-
erences towards the form in which and means by which information is managed
and presented. For example, while one user would be happy to trade off some
of information content for keeping the information on the same display another
may favor the opposite. Even more straightforward, given a laptop, a PDA and a
mobile phone different users may voice different preferences towards using their
resources.

Information Utility Measure is introduced to combine the above four factors
in order to obtain a ranking of protective actions with respect to their impact
on information utility. The level of measure (ordinal, interval or ratio) used for
expressing each of the above factors is application specific. While, for example,
the natural way to express ILF is in percentage (ratio level of measurement) the
locality may be expressed ordinally, as in the following table:

Local Collaborative Remote
== cclass 6 5 4
!= cclass 3 2 1

where the local container of the same class is the most preferred (preference value
6). The collaborative category represents containers that are part of different,
trusted and highly available, ubiquitous computing devices. In general, given the
“rationality” assumption, the information utility measure should be designed to
favorise actions that: make information at least as available as it was; do not
reduce information content; and make information available through means and
in a form preferred by user.

208 B. Dragovic and C. Policroniades

Other Properties. Besides the information utility measure which enables balanc-
ing the level of protection and the information utility there are several other
protective action properties that may influence the discrimination process. Re-
versibility represents the cost and degree to which a protective action may be
undone. Reversibility is important as, due to the “rationality” assumption, we
may expect that once an information exposure threat becomes inactive the sys-
tem will try to return to its “pre-protective-action-execution” state. Other two
important aspects are protective action cost, resource and/or monetary, and its
impact on system usability in general. For example, locking up a mobile phone
has a wider system usability impact than erasing a single data item.

Action Impact. We define impact of an action to be a function of the infor-
mation utility measure, its cost, reversibility, system usability impact and the
perceived threat duration, if available. Threat duration may play a significant
role in weighing individual factors that contribute to an action’s impact: for
short lived threats actions with greater information utility impact, reversibility
factor and lower cost may be sensible to perform; for longer lived threats, on the
other hand, information utility may be considered as the single most important
factor.

If we consider A to be the set of all actions, A◦ ⊂ A to be a set of alternative
actions to mitigate a threat and ι the action impact function then we define:

A◦◦ = {a | a ∈ A◦ ∧ ι(a, c) = maxx∈A◦ [ιavg(sum)(x, c)]}
where c is a containment path expression that the action applies to. ιavg(utility)

is a function that expresses action impact taking into account the average of
information utility measure on per affected data item basis. This form of the
action impact function is to be used when a protective action impacts multiple
data items at once, e.g. blanking of a screen containing multiple GUI windows,
encrypting a file system as a whole, etc. The averaging form of the ι function
is, thus, likely to be used for any container manipulation action. Averaging in
this manner is necessary in cases where the utility measure is to be weighed
differently depending on the affected data items’ sensitivity classification level.

A◦◦ therefore represents a set of optimal actions given a threat and a par-
ticular containment configuration. If | A◦◦ |> 1 then ∀a ∈ A◦◦, a is an optimal
choice according to the above criteria.

4.4 Levels of Exposure Modeling

A Level of Exposure (LoE) represents a range in information exposure which
requires the same security and privacy handling procedure. A handling procedure
assumes a set of protective actions matching the exposure level denoted by a LoE
and any auxiliary actions. The latter represent non threat relevant actions to be
performed on LoE activation such as e.g. logging, user notification, etc. LoE
defining exposure regions are non-overlapping.

In general, LoEs are defined on per information sensitivity level. This is
because of two reasons. Firstly, a security policy may define different exposure

Information SeeSaw: Availability vs. Security Management 209

thresholds for information of different sensitivity. And secondly, a specific set of
protective actions may be mandated for information of certain sensitivity e.g.
encryption algorithm of a specific key length. At any point in time, i.e. in every
context, all containments in a containment model are associated with a set of
LoEs denoting exposure for data items of each sensitivity level.

LoEs Model. All LoEs that are part of the same security policy form a LoE
Model. A LoE model is defined as a directed multigraph G = (V, E) where V is
a set of vertices, each representing a LoE, and E is a set of labeled edges, each
representing an action. In any one context each LoE is associated with none or
more containments relevant to the local model authority - denoting exposure of
the contained data items. The graph edge configuration is relative to a context
and is based on a set of available protective actions. Each edge is directed to-
wards a node (LoE) signifying a lower exposure. Edge labels consist of source
and destination containments, which may be the same in case of information
reduction actions, and the respective action impact, as defined in Section 4.2.

The simplest conceivable LoE model has two levels: “exposed” and “not-
exposed”, for each of the information sensitivity levels. The latter signifies ex-
posure values not “endangering” information confidentiality while the former
requires a mitigating action to be taken. All approaches of Section 2 implicitly
assume a single bi-LoE model for data items of all sensitivity levels without any
flexibility in choosing protective actions.

LoEs Modeling Granularity. A number of subtleties exist which require depar-
ture from the simple bi-LoE approach.

Situations may arise in which performing actions to fully mitigate information
exposure impacts severely on a progress of a task dependent on an affected data
item. To address this issue, a security policy may define additional LoEs that
denote exposures that are sustainable under a set of constraints e.g. temporal.
For example, consider an exposure metric in volume of information leakage per
unit time. Then a three level LoE sub-model for one of information sensitivity
levels may be defined as: LoE Low - 0 to 5 bits/sec; LoE Medium - 5 to 10
bits/sec; and LoE High - more than 10 bits/sec. The medium LoE can further
have a constraint associated that bounds amount of time it can be sustained for
e.g. 10 seconds, time required for a proportion of the overall information content
to leak etc.

The exposure algebra, defined in Section 4.1, specifies that exposure values
due to threats of different types can not be added i.e. it preserves the type. The
primary reason for this is that the handling procedures assigned to a exposure
value range (a LoE) may be threat type specific. Furthermore, LoE defining in-
formation exposure ranges may also vary depending on the threat type and the
exposure metric semantics. Thus, in general case, a LoE is defined for any pos-
sible combination exposure value ranges due to threats of different types. This
approach avoids the possibility of a single data item being under multiple LoEs
in a context. It also enables model representation of protective actions that affect
“multi-typed” exposures by a single edge. However, the approach increases size

210 B. Dragovic and C. Policroniades

of the LoE space. In the worst case scenario a number of LoEs required to repre-
sent n threat types and m exposure ranges per type, for a single sensitivity level,
is given by nm. The average case is influenced by a particular container classifica-
tion granularity and threat typification which may render certain combinations
of threat types occurring concurrently for a specific container impossible. For
example, it is unlikely that a data item may be both ”visually” and ”audibly”
exposed at the same time and under the same containment.

TS

S

C

U

Fig. 2. A LoEs model example

Figure 2 depicts an abstract representation of a partial LoE model (see be-
low). Dots representing LoEs, i.e. graph nodes, are grouped in planes which
represent information sensitivity levels (U, C, S and TS). Unclassified (U) in-
formation is never considered exposed in a sense that it would need a threat
mitigating operation and thus only a single LoE associated with it. The LoE is
also used as the destination node of actions that cause complete information loss
i.e. information content destruction. Thus, there should be an edge from every
LoE to the single LoE at the bottom of the diagram. These edges, as well as the
edges connecting LoEs associated with non-adjacent information sensitivity lev-
els are not shown for the diagram clarity. Coplanar graph edges denote container
manipulation actions while the edges connecting planes correspond to informa-
tion manipulation actions. In other words, staying within a plain assumes no
information loss. Note that a particular graph configuration always corresponds
to a particular context and model authority.

5 Enforcing Data Security

In our previous work [9] we concentrated on the overall system architecture and
an appropriate formal policy model to address the specific requirements posed

Information SeeSaw: Availability vs. Security Management 211

by the target setting, the ubiquitous computing world. The work is partic-
ularly focused on enabling the system deployment on widely heterogeneous
platforms with substantial and variable resource constraints. The proposed ar-
chitecture and the policy model fully support the concepts presented in the
previous chapters.

As justified in [9], mainly due to resource requirements and complexity issues,
we split the system into two: the management side and the client side. The
former handles computationally heavy and centralizable tasks related to policy
specification and formulation tailored to the capabilities of a policy enforcement
device, conflict resolution etc. The client side is deployed on ubiquitous devices
where tasks such as context establishment, policy evaluation, user preference
analysis and enforcement actually happen.

5.1 Policy Enforcement - An Overview

The formal policy model employed is based on Deterministic Finite State Trans-
ducers (DFST). For DFST policy representation we use the model presented in
[17] that is a modification of predicate augmented FSTs (Finite State Trans-
ducers) [18] to provide intrinsic support for conflict resolution via tautness func-
tions. The policy model supports consideration of user preferences and device
constraints in discriminating between the protective actions (Section 4.2).

Figure 3 depicts client components that take part in the policy enforcement
process and their relevant interactions. The policy enforcement process assumes
the execution of protective actions as determined by Policy Evaluation Master
(PEM) - a client side component in charge of policy evaluation.

As for the container manipulation actions, both the application and the sys-
tem layers may be responsible for their execution. This is as containers of classes
intermediate and virtual may originate from both an application or a system

.

.

.

System

Storage

Enforcement Module (EM)

A
p
p
s

PEM CMM

System Component 1

System Component n

Fig. 3. Policy enforcement component architecture

212 B. Dragovic and C. Policroniades

component. For example, while a SSL tunnel and a GUI window are applica-
tion level containers, a IPSEC tunnel and swap space encryption are system
level containers. Thus, when a container manipulation is required Enforcement
Module (EM) enquires with Containment Model Manager (CMM) to learn the
“owner” of a respective container and instructs them accordingly - as shown by
the interaction arrows in the figure.

In case of information manipulation actions, the atomic unit of policy en-
forcement is a data item. It denotes an entity that binds related information of
the same security and privacy sensitivity level. As such it is conceptually differ-
ent from the traditional notion of a monolithic file - which may well represent a
collection of data items with different sensitivity levels. Such approach allows for
fine-grained policy enforcement that affects only the “threatened” information.

5.2 Data Model: Requirements and Implications

Information manipulation actions are performed on per data item basis. They
have a generic description and data item type specific implementation. To avoid
imposing otherwise unnecessary overheads and functionality requirements on the
application space and burdening application designers with additional complex-
ity we offload the support for information manipulation actions into the data
storage system. Such an approach causes a shift in roles and responsibilities of
both the applications and the data repository.

Data Repository. For a data repository to support the information manipula-
tion actions it needs to be able to recognize, at a fine-grained level, application
specific data types and respective internal data layouts. By internal data layout
we assume its data item substructure. Understanding of the data layouts also
ensures the compatibility of the transformed data. Means of associating individ-
ual data items with sensitivity levels, with respect to a security policy, need to
exist. Identification of data items for information manipulation purposes is done
on information sensitivity level basis. The data repository, further, has to sup-
port a mechanism for provision of data type specific implementations of generic
information manipulation actions and their respective mappings.

Applications. Upon a shift in threat model applications should simply be able
to retrieve, from the data repository, an “updated” version of any of the threat
affected data they are operating on. An event-based system to accomplish this
is outside the scope of this work. However, each application-specific data type
should include enough information to enable the correct operation of the data
repository with respect to policy enforcement. An exception are applications
that do not alter data in a way which violates its relevant layout, e.g. data
viewers such as browsers, pdf readers etc. These can remain utterly unaware of
the underlying data model.

Figure 4 illustrates an example information manipulation process at the data
repository level. It represents the data item structure of a document prior to and
post a set of information manipulation actions, depicted on the left and on the

Information SeeSaw: Availability vs. Security Management 213

E

A

D

CB
F G

���
���
���

���
���
���

����
����
����

����
����
����

A

B
ED

Before protective operations. After protective operations.

Fig. 4. A data transformation scenario

right of the arrow respectively. To address a particular information exposure,
as instructed by the EM, the data repository adapts the document by: fully
omitting data entity labeled C, containing data items F and G, and reducing
the information content of data items labeled D and E.

5.3 Data Layout Specification

To address the issue of data layout specification we leverage the capabilities
of XML [19] data representation. XML allows for applications and standards
bodies to produce data layout descriptions which can be interpreted by the
data repository in a systematic fashion. XML data representations are seen as
matching our requirements for several reasons. Firstly, they facilitate efficient
inspection and identification of data content, both automatic and manual, aiding
choice and design of applicable information manipulation actions. Secondly, the
XML approach enables easy protective actions validation through XML schemas
to ensure application specific data compliance of transformed data. Thirdly,
XML file formats being built upon a set of standards implies the ability to
reuse data type specific information manipulation actions for all applications’
data that uses standardized data types. Finally, we have at hand a number of
standard XML tools that greatly facilitate generic data access.

5.4 Storage Subsystem Architecture

Figure 5 shows the component structure of the storage subsystem. It is com-
prised of: a Generic Interface, pluggable Type Wardens and the Data Store. The
Data Analyser and the Type Wardens perform the protective operations cooper-
atively. The Enforcement Module (EM) interacts with the storage subsystem by
invoking generic calls. Generic calls are internally mapped to data-type specific
implementations that obey certain data structuring rules. These are provided by
pluggable modules known as Type Wardens.

Generic Interface. Generic interface provides a set of generic calls as invoked by
the EM. An example of the interface is a set of calls of the form degrade levelX
(sensitivity), where X represents Information Loss Factor (Section 4.3) and
sensitivity denotes the level of sensitivity of data items that the operation
should be applied to.

214 B. Dragovic and C. Policroniades

Generic Interface

Data Store

Warden 1

Warden 2

Warden 3

Warden N

Data Analyser

Type Wardens

EM Calls

Fig. 5. Storage enforcement system architecture

Data Analyser. The role of the Data Analyser is coordination of an information
manipulation procedure. Firstly, it identifies target data items and retrieves them
from the store. Secondly, it invokes appropriate operations for each of the data
items. Finally, it either: stores the data; passes the data to the EM for application
update, in case it is the data an application was using that was under exposure;
or does both.

Type Wardens. The role of Type Wardens is to provide data-type specific imple-
mentations of the generic information manipulation actions. The data-type spe-
cific actions can be either provided along the type definition by standards’ bodies
or application designers or they me be custom-made by security administrators.
The latter is facilitated by the existence of standard XML tools (i.e. DOM, SAX,
XPath) that can be used as data manipulation interface to application-specific
data types. The ability to provide for type wardens in an “on-demand” fash-
ion significantly facilitates the deployment of the storage system on resource
constrained ubiquitous devices.

Data Store. For the purposes of the proposed system the data store is used solely
as a persistent data repository.

6 Conclusion

Traditionally, the notion of secure data management was assumed to point to-
wards data storage. The peculiarities of the ubiquitous computing vision, re-
flected largely on its prime forerunner, mobile computing, have both raised
novel information security and privacy issues and have brought into spotlight
some that were previously considered attention unworthy. Information exposure

Information SeeSaw: Availability vs. Security Management 215

threats, as introduced in our work, extend the semantics of secure data manage-
ment to represent a means of both maximizing information availability at any
one time and providing adequate information exposure protection throughout
information lifetime.

To facilitate structured and methodic reasoning about information expo-
sure threats and localized threat mitigation we have outlined a model of the
world based on a naturally-occurring notion of a container and containment. Es-
sential for flexible and context-adaptive information exposure threat mitigation
was conception of the information exposure and mitigating operations’ impact
metrics. The level of abstraction at which both are introduced paves the way
for application-specific specializations. The previously introduced concepts are
fused in a Levels of Exposure Model, a structured representation of degrees of
information exposure as formed with respect to particular information classi-
fication policy and available data management procedures. From the practical
perspective, we have presented a data repository system that greatly facilitates
the system implementation.

As our prototype is in its early stages, being developed at the time of writing
of this document, the paper lacks any usability, computational complexity or
related overheads evaluation. The prototype fuses the work presented in this
paper as well as our previous publications on the topic. The overall practical
evaluation is the first item on our future work agenda. Theoretical evaluation of
relevant aspects, however, is available in our previous work.

Acknowledgments

We would like to thank Jon Crowcroft and Ian Pratt for support in the research
that led to the publication of this paper. Boris Dragovic is a Benefactors’ Scholar
of St John’s College, Cambridge, UK. Calicrates Policroniades has a scholar-
ship from the Mexican government through the National Council of Science and
Technology (CONACyT). Last but not the least, we would like to express our
gratitude to the anonymous reviewers who have provided valuable advice on how
to improve the paper and the research in general.

References

1. Weiser, M.: The computer for the 21st century. Scientific American 265 (1991)
94–104

2. Thomas, R., Sandhu, R.: Models, protocols, and architectures for secure pervasive
computing: Challenges and research directions. In: IEEE PerSec’04. (2004)

3. Stajano, F., Crowcroft, J. In: The Butt of the Iceberg: Hidden Security Problem
of Ubiquitous System. Kluwer (2003)

4. Stajano, F.: Security for Ubiquitous Computing. Wiley (2002)
5. Nixon, P., Wagealla, W., English, C., Terzis, S.: Security, privacy and trust issues

in smart environments. Technical report, SmartLab, Dept of Computer Science,
Uni of Strathclyde, UK (2004)

216 B. Dragovic and C. Policroniades

6. Tan, D.S., Czerwinski, M.: Information voyeurism: Social impact of physically
large displays on information privacy. In: Short paper at CHI 2003 Conference on
Human Factors in Computing Systems. (2003)

7. Kuhn, M.G., Anderson, R.J.: Soft tempest: Hidden data transmission using elec-
tromagnetic emanations. In: Information Hiding, Second International Workshop.
(1998)

8. Dragovic, B., Crowcroft, J.: Containment: from context awareness to contex-
tual effects awareness. In: 2nd Intl Workshop on Software Aspects of Context
(IWSAC’05). (2005)

9. Dragovic, B., Baliosian, J., Vidales, P., Crowcroft, J.: Autonomic system for
context-adaptive security in ubiquitous computing environments. Submitted for
publication at ESORICS 2005, notification: May 30. (2005)

10. Provos, N.: Encrypting virtual memory. In: USENIX Security Symposium. (2000)
11. Corner, M., Noble, B.D.: Zero-interaction authentication. In: 8th ACM Conf. on

Mobile Computing and Networking (MobiCom ’02). (2002)
12. Corner, M., Noble, B.D.: Protecting applications with transient authentication.

In: The 1st Intl. Conf. on Mobile Systems, Applications, and Services (MobiSys
’03). (2003)

13. Patwardhan, A., Korolev, V., Kagal, L., Joshi, A.: Enforcing policies in pervasive
environments. In: International Conference on Mobile and Ubiquitous Systems:
Networking and Services. (2004)

14. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: Workshop on Policies for Distributed Systems and Networks. (2001)

15. Heuer, A., Lubinski, A.: Data reduction - an adaptation technique for mobile
environments. In: Interactive Apllications of Mobile Computing (IMC’98). (1998)

16. Chalmers, D.: Contextual Mediation to Support Ubiquitous Computing. PhD
thesis, Department of Computing, Imperial College London (2002)

17. Baliosian, J., Serrat, J.: Finite state transducers for policy evaluation and conflict
resolution. In: Proceedings of the Fifth IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY 2004). (2004)

18. van Noord, G., Gerdemann, D.: Finite state transducers with predicates and iden-
tities. Grammars 4 (2001) 263–286

19. XML: eXtensible Markup Language. http://www.w3.org/XML (2004)

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 217 – 233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XML Security in the Next Generation Optical
Disc Context

Gopakumar G. Nair1, Ajeesh Gopalakrishnan1, Sjouke Mauw1, and Erik Moll2

1 Eindhoven University of Technology (TU/e),
Eindhoven, The Netherlands

{G.gopakumar, A.gopalakrishnan, S.mauw}@tue.nl
2 Philips Applied Technologies,

Eindhoven, The Netherlands
Erik.moll@philips.com

Abstract. The Extensible Markup Language (XML) is considered as the de
facto standard for information processing and exchange on the Internet and in
the enterprise services domain. It is widely regarded that XML has the potential
of being an interoperable standard for interactive applications in the next gen-
eration connected Consumer Electronic devices. A key industry concern in us-
ing XML in CE devices is that how basic security requirements pertaining to
the above said domain can be met. Notably, the standardization bodies of the
Internet domain such as W3C and OASIS have defined specifications for cryp-
tography-based security solutions using XML technology that is mainly aimed
for web applications. This paper investigates and presents various scenarios
where XML Security can be applied to markup based interactive applications in
the context of a next generation Consumer Electronic Optical Disc Player. We
conclude the paper by presenting a prototype establishing how these scenarios
could be realized in practice.

1 Introduction

Until recently, the diverse and well-established domains of Personal Computers (PC),
Web (Internet), Consumer Electronics (CE) and Broadcast domains have had their
own autonomous realms of existence. Each of these domains spawned their own char-
acteristic and individualistic ways of managing and doing things, with examples as
diverse as the application specification to the very notion of interactivity. However,
lately there has been considerable interest among these domain communities to share
and adopt inter-domain best practices and knowledge. As an illustration, the content
creators could create applications for one domain, which could be seamlessly inte-
grated or be transferred to other domains. Such integration could provide new usage
models in the CE optical disc domains [2]. As a fleshed out example, the content crea-
tors could author multi-domain interoperable applications which could be packaged in
a disc and additional application extensions such as bonus materials, clips etc could
be downloaded from a content server or a set top box in a home network, thus bor-
rowing the ideas from Web and Broadcast domains. One of the possible candidates

218 G.G. Nair et al.

for this cross-domain sharing is the XML and its related technologies, which entails
the core theme of discourse in this paper.

XML is emerging as the de-facto standard for storing, managing, and communicat-
ing information on the Internet [1]. In addition, XML is the basis for markup applica-
tions and a wide range of XML based languages [7] for various web services. Several
standardized interfaces, tools, techniques and their programming language bindings
are available, both commercial and open source. This makes XML a serious con-
tender for being considered as a standard for creating consumer interactive multime-
dia systems, the market where disc based systems mainly belong. A well-known ex-
ample of such a standard is DVB-HTML [8], an XML based interactive application
specification for Multimedia Home Platform [8] which has been existing for several
years. With such pervasive and proven applications and usage scenarios of XML in a
myriad of domains, it is without doubt a pick while considering the specification for
Interactive Applications in next generation optical discs. Certainly, in combination
with a procedural language, such as Java such a standard would open up new possi-
bilities in bringing interactivity to such devices.

Next generation optical disc formats such as Blu-ray disc (BD) [2], High Defini-
tion (HD) DVD, and enhanced DVD (eDVD) [31] are reckoned as the natural succes-
sors of DVD as a medium for storage, playback and distribution of digital media [2].

Fig. 1. End-to-End Usage Model (based on [1])

Figure 1 depicts the end-to-end usage model of the next generation optical discs
based players in a consumer home. The movie companies distributes the High Defini-
tion (HD) content via optical discs as medium or via HD broadcast and the optical
disc player equipment at the consumer home can playback the content on HD Televi-
sions. As a consequence, the consumers get High Definition (HD) video experience,
the content providers (movie companies) get the opportunity to store and distribute
high quality videos and games and the independent content creators and vendors have
the opportunity to provide value-added media based services. Additionally, due to the
wide availability and growth of broadband connections, new Internet based usage
models to download applications from content servers are foreseen for such devices

 XML Security in the Next Generation Optical Disc Context 219

due to the perceived characteristics of these devices to connect to Internet. In order to
realize this, the next generation optical discs would need an interoperable interactive
application specification with adequate considerations for security.

In the context of next generation optical disc players, careful consideration should
go into the interactive application security issues while considering the usual issues of
copy protection of audio and video content. In this case, the applications could also be
copyrighted and could be subjected to malicious usage. To give an example, consider
a malicious application loaded from an external server that could corrupt the local
storage of the player. As another example, the user could try to create his/her own ap-
plication, load to the system and try to access content where he has no access rights.
The security mechanisms that could prevent such issues must be non-invasive to the
users, should be capable of being applied easily by the content creators and be neces-
sarily future proof. Additionally, the opted security mechanism should be flexible, in-
teroperable, and widely supported with appropriate tools and libraries in order to be
accepted by the manufacturers.

W3C [22] and OASIS [18], the major standardization bodies within the Internet
domain, have been working on creating XML based security standards for web-based
applications. We foresee that these standards can be applied with the XML based in-
teractive applications for the next generation optical disc systems. In this paper we
discuss which are these standards, what problems they can solve in a disc player con-
text and how we can establish the end-to-end security. We also see whether these
mechanisms are realizable in an embedded system context.

This paper first portrays a typical markup based Content Hierarchy depicting the
Interactive Applications in the next generation optical discs. Further to that, we char-
acterize the security profile of a connected player by applying analytical Threat Mod-
eling and ascertaining the detailed security requirements for this paper from the
Threat model, which will be used for the rest of the discussions. Various XML Secu-
rity standards are presented with their proposed solutions for the above said security
requirements. Additionally, an end-to-end security scenario is presented and a pro-
posal of how all the security standards could be brought together to guarantee an end-
to-end security solution is exposited. Finally, to substantiate the proposal, a prototype
implementation is detailed on a next generation optical disc reference platform.

2 A Markup Based Content Hierarchy

Optical discs are intended to store digital content, the term, used to describe any kind
of collection of functional work, artwork, or other creative content, copyrighted or
otherwise distributed in an optical disc. In this section, we introduce the content hier-
archy in the next generation optical discs; in particular, the markup based application
hierarchy, which can be used for representing Interactive applications. The Interactive
Application refers to a part of the overall content that can be executed by the optical
disc player.

At the top of the content hierarchy (see Figure 2) is the Interactive Cluster, which
is the generic representation of packaged content, including Video, Audio and markup
Application. The Interactive Cluster contains several Tracks, which form chapters for
Video/Audio Playlist [23] and optionally manifest (application). The playlists contain

220 G.G. Nair et al.

meta-information about the play items and refer to Clip Information, which ultimately
links to the Mpeg-2 Transport Stream file [24]. It is the Application Manifest that
represents the Interactive Application in the hierarchy and captures its essence.

Fig. 2. An XML based content hierarchy

The manifest file consists of two distinct parts, namely the Markup and the Code.
The Markup part captures the static composition of the application, which includes
layout, timing model. The Code part provides flexibility by adding programmability
and dynamics to the overall interactive experience. In turn the markup part could con-
tain “SubMarkups” helping the separation of various characteristics of the application.
For e.g. the layout can be captured in one SubMarkup and the timing issues in an-
other. On the same lines, the code part can contain none or more scripts. As long as
the overall structure and representation is respected, these subtle choices are entirely
up to the discretion of the content author.

The choice of the markup for next generation optical discs may be from the fol-
lowing XML based languages, such as Synchronized Multimedia Integration Lan-
guage (SMIL) [9], Scalable Vector Graphics (SVG) [26], Extended Hypertext
Markup Language (XHTML) [27] and Extended Style Sheet Language (XSL) [28].
Additionally, ECMAScript [10] could be considered for the programmable part of
the manifest.

 XML Security in the Next Generation Optical Disc Context 221

3 Identifying Security in an Optical Disc Player Context

As pointed out in Section 1, next generation optical discs can be used to distribute HD
video [3] content, along with interactive applications packaged in the disc and addi-
tional resources may be downloadable from an external location. The disc players can
represent a myriad of devices ranging from Consumer Electronics devices to PC
drives and mobile systems such as portable game stations. To get a complete picture
of security requirements in such varied usage contexts, a complete threat characteriza-
tion, and analysis is necessary. As a result, a Threat Modeling approach based on
STRIDE [15] has been applied in order to make a methodical analysis of the security
threats for optical disc based systems– especially with regard to the accession of in-
teractive applications.

3.1 Threat Modeling for Next Generation Optical Disc Player

The Threat Model [12] provides us with a comprehensive list of threats to the applica-
tion security and the various mitigation strategies that can be applied. We intend not
to present the full results from the model [12], since the model per se is out of scope
of this paper. Nevertheless, using the model we select a subset of the requirements
and investigate how XML security mechanisms could be used to mitigate certain
risks. In particular, the requirements of Authentication, Application Integrity, Content
Secrecy, and Access control management ([4]) were under scrutiny.

Some of interesting inferences resulting from the investigative study of the model
[12] about threats and their widely adapted mitigation strategies [4] are presented be-
low in the context of next generation optical disc and players.

• Authentication & Integrity: The markup applications or resources loaded from
the disc need to be authenticated by the player in order to guarantee that only
trusted applications are executed. Additionally, the applications or their parts or
downloaded resources [3] may need to pass integrity checks [4] to detect (mali-
cious) tampering before being used by the disc player.

• Encryption: Applying encryption techniques [4] can allow content authors to
avoid wiretapping (man-in-the-van attack) and application sources/resources pro-
tection. This is important in the context of markup and script applications because
they are essentially verbose.

• Key Management: Key Management includes all the services pertaining to key
handling, registration, revocation and updates of cryptographic public keys,
which are used in authentication and encryption mechanisms. In particular, ap-
propriate Key Management procedures [4] must be in place to circumvent the
causes of illegal creation, exchange, repudiation, replacement, protection, stor-
age, and usage of keys used in the scenarios of optical disc application authenti-
cation and encryption.

• Access Control: The access control mechanisms [4] allow the next generation op-
tical disc player to give access rights to the markup based on certain pre-
determined policies. As a result, it can provide or restrict access to certain re-
sources, as requested by the application author or under certain conditions.

222 G.G. Nair et al.

In the subsequent sections, we see various XML security standards and examine
their usage in satisfying the requirements (identified in Section 3.1) in an optical disc
usage context.

4 Overview of the Applicable XML Based Security Mechanisms

In this section, an overview of the standardized XML security mechanisms, proposed
by W3C and OASIS, is presented.

The issues of Authentication and Integrity identified in Section 3.1 can be miti-
gated by Digital Signatures, which can be used to verify the integrity of the Interac-
tive Application or associated content assets. To this end, XML Digital Signature [5]
proposes a specific syntax to represent a Digital Signature [4] over arbitrary digital
content. Furthermore, the XML Digital Signature is in itself a well-formed XML
document and carries all the information needed to process the signature, including
the verification information. The XML Digital Signature specification also recom-
mends a mechanism for signature creation and verification of XML based markup. It
is useful for signing and verifying entire or portion of the markup, which may be of
binary content and/or include multiple documents.

Another point identified for elaboration in Section 3.1 was the issue of encryption.
This issue has been treated well by W3C, in particular with the standardization of the
XML Encryption Syntax and Processing [6], which can be applied in the disc-player
context to satisfy specific needs of application content protection and secrecy. XML
Encryption can handle both XML and non-XML (e.g. binary) data, which makes it
flexible to be used along with the interactive applications. A typical usage scenario
foreseen in the above-mentioned systems is to encrypt markup applications residing in
the disc along with the resources such as images and data. The player will decrypt the
application and resources on execution of these markup applications. The content or
referenced resources could be encrypted as well.

References [6] and [16] suggest that XML encryption can be done at various lev-
els. The content could be encrypted and stored in parts or as a whole. This allows
flexibility and better performance. A Player, for instance, can encrypt and store the
high scores of a game in a local storage while keeping the general application markup
unencrypted. When the game is being executed, the player needs to decrypt only the
scores, which can be done in parallel to the execution of the markup.

Another advantage of XML encryption in ensuring confidentiality is that mecha-
nisms such as Secure Sockets Layer (SSL)/Transport Layer Security (TLS) protocols
only provide confidentiality while the information is in transit and not while it is stored
at a server, but XML Encryption takes it one step further by maintaining the confidenti-
ality of information, both while in transit as well as when stored. Notably, the secrecy is
not dependent on the state or a particular session of the communicating parties.

The issue of Key Management could be dealt with using the XML Key Manage-
ment Specification (XKMS) [33] from W3C. The XKMS helps manage the sharing of
the public key realizing the possibility of signature verification and encrypting for re-
cipients. The usage of XML based message formats for key management eliminates
the need to support other specialized public key registration and management proto-
cols for markup based interactive applications in the next generation optical discs.

 XML Security in the Next Generation Optical Disc Context 223

In order to counter the Access control issue from Section 3.1, the XACML [19]
Specification proposed by OASIS [18] provides access control mechanism for appli-
cations, based on assertions. This may allow content creators to add policies to re-
quest the disc player devices to provide certain rights to an application.

The mechanism defined by MHP [8] suggests the usage of XML based “permis-
sion request” files. In this case, the content provider can add the permission request
file along with the markup as an attachment. This will be interpreted by the platform
and will provide access rights to the application (e.g. rights to use return channel or
rights to dial to a particular server). Based on the adopted policy, the platform can al-
low or reject the rights to the resources.

Having looked at the XML based security possibilities, we now broaden the dis-
cussion with an overview of comparison of XML based security mechanisms with
other potential content download security mechanisms like OMA DRM (Open Mo-
bile Alliance - Digital Rights Management) [34]. Reference [37] provides an interest-
ing comparison between OMA DCF (DRM Content Format) extensions (see [35]
[36]) and XML based security mechanisms on overhead and performance for data
broadcast in mobile networks. The reference [37] suggests that XML based security
incurs 2.5 to 5.1 times more overhead as compared to OMA DCF and performance
wise the text based XML takes a back seat when compared to binary-based OMA
DCF. Nevertheless, our scenario test runs using the developed prototype (see Section
8) convinced us that in the context of a consumer electronic device like optical disc
player, this performance reduction while using XML based security would be within
the allowable performance requirements. Additionally, the indicated overhead would
also not be a significant issue, owing to the fact that the broadband Internet bandwidth
(used by next generation disc players) is not as much of a concern when compared to
the mobile over-the-air bandwidth, which the reference [37] refers to.

Additionally, the DVD (Digital Versatile Disc) Content Scrambling System (CSS)
used on DVDs to encrypt media data thereby restricting the decoding to only licensed
DVD players is less likely to be extended to downloaded application security scenar-
ios in the next generation optical disc in lieu of differences in the nature of content
data and usage scenarios. Particularly, the CSS is meant for the protection of digital
content and lacks flexibility and scalability when extended to interactive applications.
Moreover, CSS has been tampered.

In Section 5, we see various ways in which the XML Digital Signature is applied to
interactive applications. In Section 6, we see how XML encryption and decryption is
applied. Even though Key Management as a requirement was highlighted earlier, an
example of XKMS application in the context of interactive application in optical discs
has been left out of the discourse in this paper. Section 7 describes the order of inte-
gration of these two, along with additional mechanisms to provide order such that
end-to-end security is ensured when applications are created and then later executed.

5 Applying XML Digital Signature in the End-to-End Usage

5.1 Global Scenario

Figure 3 examines the global scenario for usage of Digital Signature in the context of
signing, transmission, and verification of Interactive Applications. In the previous

224 G.G. Nair et al.

sections, we introduced the notion of the player accessing the applications over the
Internet in addition to accessing the applications on the pre-authored disc. Disc based
applications are inherently trusted since they were authored into the disc by the con-
tent providers - provided the disc is authenticated [29]. The real security issue [12]
lies with the interactive applications downloaded over the Internet and the Sign-
ing/Verification scenario identified in Figure 3 would facilitate in mitigation. Though
the realization of the XML Digital Signature [5] in this section is addressed using ex-
amples from the over the Internet downloaded Blu-ray applications, the Digital Signa-
ture creation and verification can be extended to disc-resident disc-based Blu-ray ap-
plications too.

Fig. 3. Global Signing/Verification Scenario in Bluray

As seen in Figure 3, both at the content creators end and at the application authors’
end, the applications can be digitally signed. When the player accesses any applica-
tion from the Internet (e.g. Servers), it tries to authenticate the content by verifying
the Digital Signature of the markup application. If the verification succeeds, the ap-
plication is executed. In the case of signature verification failure, the application is
barred from being executed. This implies that the player needs to have a Verifier
component, which can carry out the signature (XML Signature) verification. Further-
more, the flexibility with this approach lies in the fact that this signing/verification
mechanism can be applied in a variety of ways and levels.

5.2 Identified Signing/Verification Levels for Applications

To account for and prove the application of XML Digital Signature mechanism in
next generation optical disc format, we look at the various sub-scenarios where the
XML Signing and Verification can be achieved in the context of the interactive Ap-
plications as introduced in the “Content Hierarchy” section (see section 2). Even
though these sub-scenarios can be extended with more detailed scenarios, here we
only propose the general concept supported by examples here.

 XML Security in the Next Generation Optical Disc Context 225

5.3 Signing/Verification at Interactive Cluster Level

We envision that the XML Digital Signature [5] can be applied at the level of Interac-
tive Cluster (see Figure 2). Since the Interactive Cluster is Markup based, the XML
Digital Signature can be used to sign/verify the Interactive Cluster in its entirety or
can be used to sign/verify at Track (see Figure 2) Level. It is entirely up to the discre-
tion of the Signer if (s)he wishes to sign the non-markup audio/video Content, which
is nevertheless possible using XML Digital Signature. Since the main discourse is in-
clined towards Interactive Application authentication, a realization of selective Sign-
ing/Verification of application Track is hence commendable.

Fig. 4. Signing/Verification Scenarios in the Interactive Cluster Level

5.4 Signing/Verification at the Manifest Level

Taking the Signing and Verification one level deeper to the Manifest (see Figure 2)
that forms part of the application Track, we notice that the control of authentication
becomes much fine-grained or more granular. In this case, the choices available to the

Fig. 5. Signing/Verification Scenario at the–Manifest Level

226 G.G. Nair et al.

signer are quite large. (S)He can selectively sign only the Code or the Markup part
(see Figure 2). Within the Code or Markup part itself, (s)he can choose to sign/verify
only one of scripts or submarkups. The capability of the script to dynamically ma-
nipulate the Interactive Application makes it much more suited for authentication us-
ing XML Digital Signature [5]. Nevertheless, a maliciously tampered markup can be
also detrimental to the Security of the Disc Player and the content.

From the above two example sub-scenarios we have seen that a number of Markup
Items can qualify to be the target for XML Digital Signature. We refer to these as
“Markup Targets”.

Fig. 6. Result of XML Signing on markup Targets

Figure 6 indicates the result of signing a Markup Target. The result of the signing
process is the Signature Markup section that is demarcated in the figure by thick lines.
This signature can be enveloped or enveloping [5] based on whether the markup target
is parent or child to the “Signature”. The signature can also be detached [5] if the tar-
get has no parent-child relationship to “Signature” element. The choice resides en-
tirely with the content signer. The fact that XML based markups allows syntactic
variations while remaining semantically equivalent and the nature of hash functions to
be sensitive to syntax variations, calls for the application of canonicalization (XML-
C14N)[32] to the signature to remove syntactic differences from semantically equiva-
lent XML documents.

Reference [4] gives the concepts of Digital Signatures and the cryptographic algo-
rithms which can be used for signatures. Reference [16] gives description of the
markup tags for digital signature.

An additional concept used within the context of Digital Signature is the Certificate
Handling [8], which uses a digital signature for public key [8] bindings.

5.5 Certificate Based Authentication

XML Digital Signature supports the insertion of digital certificates along with the
signatures and provides syntax for the certificates present within the markups or re-

 XML Security in the Next Generation Optical Disc Context 227

ferred to by the markups, which will be useful for the players to verify the authentic-
ity of the keys. Reference [8] suggests a mechanism for the verification of certificates
leading to a trusted root certificate within the player. It should be noted that the XML
Digital Signature [5] could be used for such verification.

6 Applying XML Encryption to Markups

Having introduced the notion of XML based Encryption/ Decryption in the context of
Interactive Applications in Section 4, we now take a look at how they can be applied
in practice. As mentioned earlier, the XML Encryption could be used to encrypt both

Fig. 7. Result of XML Encryption on Track Target

Fig. 8. Result of XML Encryption on Manifest Target

228 G.G. Nair et al.

XML markup based or non-XML based content. This brings us two different scenar-
ios for encryption of Interactive Applications, namely, the Encryption of the Track
Target and the Encryption of Manifest Target.

Figure 7 illustrates the result of signing non-markup content, i.e. a chapter’s au-
dio/video track (see Figure 2) that is an Audio/Video Play list [23]. The result of en-
cryption of non-markup content in this case is an “Encryption Data” [6], which is ei-
ther created and embedded in the Interactive Cluster or jettisoned as a separate
Markup.

However the scenario is different when markup content is encrypted. Figure 8
shows such a scenario where the manifest (see Figure 2) is encrypted.

In this case, the signing of manifest, an XML based markup, results in the Encryp-
tion Data being embedded in the manifest itself. For more details on XML Encryption
and various elements within the Encryption Data refer to [5].

7 Providing End to End Security

In this section we explore the possibility of integrating the previously identified secu-
rity mechanisms in order to provide end-to-end security. In particular, we consider
how the above-mentioned XML security mechanisms works together when a typical
application is created, packaged or transmitted and later executed in a CE optical disc
player. Figure 9 shows an example of how these mechanisms work together when an
application is created, packaged and transmitted via Internet. Such an order can be
used when applications are created and packaged in a disc and later launched by a
player.

Fig. 9. Encryption and decryption process- end to end

 XML Security in the Next Generation Optical Disc Context 229

To ensure the order between content encryption and signing, W3C specifies the
Decryption Transform [21], which provides the signers with mechanisms specifying
the order of signing and encryption. The resulting application contains sufficient in-
formation in the form of additional markup that enables the player to identify how the
application needs to be decrypted and verified. The content creators also can add
XML based permission request file, which requests permissions from the player to al-
low access to certain Player resources (e.g. access to graphics plane or writing to local
storage). Furthermore, the XKMS [33] based Key Management could be used to con-
vey key registrations and information requests to any “trusted source (trust server)”
and to convey responses back from the server. Note that SSL/TLS mechanisms could
be used for mutual authentication and secrecy between server and the player when
applications are transmitted over the network.

8 Prototype

This section aims to substantiate the proposals mentioned in the previous sections
with a prototype on a reference platform as a proof of concept. We chose Blu-ray as
our optical disc format and aimed at prototyping the concepts mentioned above on a
Blu-ray based optical disc platform.

For the choice of the markup target, we chose Application Manifest (see Figure
10), which represents the Interactive application. This choice is guided by the possi-
bility to demonstrate the flexibility of the application of XML Digital Signature in a
Blu-ray disc player.

8.1 Realizing the Reference Blu-Ray Interactive Application

The first and foremost need in the prototyping stage is to start with a reference Inter-
active Application with Blu-ray as a target system, along with appropriate choice of
the markup target, the scripts and the sub-markups.

Fig. 10. Choices of Reference Blu-ray Markup Target, Script and SubMarkups

230 G.G. Nair et al.

For the prototype we choose to represent the script with ECMAScript [10], a
scripting programming language created to capture the common core language ele-
ments of both Javascript[11] and JScript[25]. For the timing and layout markup, we
chose SMIL [9], a W3C [22] recommendation for describing multimedia presenta-
tions based on XML. It defines timing markup, layout markup, animations, visual
transitions, and media embedding, among other things.

8.2 XML Security Library Implementations

At the time of prototyping available XML Security Libraries were from Apache Secu-
rity Project [13] and IBM Alphaworks [14]. We selected the Apache XML Security
libraries since it provides flexible licensing options for prototyping. At the time of the
prototyping, two XML security implementations were available in Java and C++ from
Apache. Each of these library flavors stood out as potentials for our cause. Our choice
of Java was guided by the need of quick prototyping and stability of the available Java
based Libraries over C++ based libraries. Apache XML security uses Java Cryptogra-
phy Extension (JCE) and this was included in the prototype, along with the bundled
Sun cryptography provider [31].

8.3 Reference Platform

We chose Linux based Blu-ray platform and created a prototype as discussed in this
section.

Figure 11 shows the layered view of the software architecture.

Fig. 11. Software Architecture for feasibility – Layered View

 XML Security in the Next Generation Optical Disc Context 231

The Interactive Application Engine is the main component, which has access to the
Interactive Cluster (see Figure 2) and is responsible for getting the application con-
tents decrypted, if encrypted, and verified, if signed. In addition to the Verifier and
Decryptor, a Signer and an Encryptor component were created to fulfill end-to-end
requirements, which enabled the signing and encryption of Application Content.

The resulting prototype substantiated the pragmatic dimension of the proposal for
using XML Security in the next generation optical discs. This prototype also demon-
strated that XML based security and Interactive Application Engine (see Figure 11)
can exist independent of the type the Disc format, be it Blu-ray disc [2], High Defini-
tion-DVD and enhanced DVD (eDVD) [31]. In addition, one of the main highlights of
the proposal was the overall development time of the prototype, which took no more
than 4 man weeks to complete. This demonstrates the simplicity and flexibility in the
case of implementation of the proposal.

9 Conclusions and Future Work

We have seen that XML security offers a standard and interoperable mechanism that
can be used by content providers to accommodate necessary security requirements for
next generation optical discs. The content authors may use the flexibility of partially
signing or encrypting the applications. For player platforms, this flexibility translates
into better performance. The standard looks mature and implementations are available
in Java and C++. The prototype enabled us to conclude the feasibility of proposal in
an embedded platform, although we did not derive any performance constraints. We
conclude that the usage of XML Security as a mechanism for markup based interac-
tive applications can alleviate the security concerns pertaining to application security
for content providers and CE manufacturers.

In lieu of future work, to expand the scope of XML Security mechanisms we envi-
sion that XRML [20], an XML based rights management language proposed by
OASIS [18], to express digital rights for the usage of markup-based applications and
resources, can be investigated for digital rights management in the next generation
disc player context. Additionally, we intend to extend the current prototype with
XML based Key Management [33].

Additionally, the current prototype could be extended to other underlying plat-
forms, with respect to optical disc formats, Operating Systems and Hardware Plat-
forms to account for the interoperability. Next, a scalable Interactive Application En-
gine library could be developed enabling ease of deployment. Finally, a performance
model with comprehensive performance study measurements could be done for iden-
tifying and tuning the system resources needed for interpretation of the markup appli-
cations, and the associated XML based security.

References

1. Tim Bray et al., Extensible Markup Language (XML) 1.0 (Third Edition), World Wide
Web Consortium (W3C) Recommendation. www.w3.org/TR/REC-xml/

2. Blu-ray Disc Association (BDA), Blu-ray Disc –Application Specification, BD-J Baseline
Application Model Definition for BD-ROM – March 2005. www.bluraydisc.com

232 G.G. Nair et al.

3. Blu-ray Disc Association (BDA), White Paper: Blu-ray Disc Format - General, August
2004. www.bluraydisc.com

4. Bruce Schneier, Applied Cryptography, Wiley, Second Edition, 1995, ISBN: 0471117099.
5. Mark Bartel et al., XMLDigSig - XML-Signature Syntax and Processing, World Wide

Web Consortium (W3C) Recommendation 12 February 2002. www.w3.org/TR/2002/
REC-xmldsig-core-20020212/

6. Takeshi Imamura et al., XML Encryption Syntax and Processing, World Wide Web Con-
sortium (W3C) Recommendation 10 December 2002. www.w3.org/TR/2002/REC-
xmlenc-core-20021210/

7. Uche Ogbuji, A survey of XML standards. www-106.ibm.com/developerworks/xml/
library/x-stand1.html

8. European Telecommunications Standards Institute (ETSI), Digital Video Broadcasting
(DVB), Multimedia Home Platform 1.2.1, ETSI TS 102 812 V1.2.1 (2003-06).

9. Jeff Ayars et al., Synchronized Multimedia Integration Language (SMIL 2.0), World Wide
Web Consortium (W3C) Recommendation, 07 January 2005. www.w3.org/TR/2005/REC-
SMIL2-20050107/

10. European Computing Manufacturing Association (ECMA), ECMAScript Language Specifi-
cation, Standard ECMA-262 ISO/IEC 16262, 3rd Edition - December 1999.

11. Mozilla, JavaScript 2.0 Specifications. www.mozilla.org/js/language/js20/
12. G Gopakumar, A Gopalakrishnan, Threat Model based on STRIDE, OOTI Project Report

2005, TU/e.
13. Apache Security. xml.apache.org/security/
14. IBM Alphaworks, XML Security Suite. ww.alphaworks.ibm.com/tech/xmlsecuritysuite
15. Frank Swiderski et al., Threat Modeling, Microsoft Press 2004 ISBN: 0-7536-1991-3
16. Blake Dournaee, XML Security, RSA Press, McGraw-Hill/Osborne 2002, ISBN: 0-07-

219399-9.
17. Balal Siddiqui, Exploring XML Security. www-106.ibm.com/developerworks/xml/library/

x-encrypt/
18. Organization for the Advancement of Structured Information Standards (OASIS).

www.oasis-open.org
19. Tim Moses et al., Extensible Access Control Markup Language Specification (XACML)

version 2.0, Organization for the Advancement of Structured Information Standards
(OASIS) Committee draft 04, 6 Dec 2004. docs.oasis-open.org/xacml/access_control-
xacml-2_0-core-spec-cd-04.pdf

20. Simon Godik, Tim Moses et al., Xtensible Digital Rights Markup Language (XRML),
OASIS Standard, 18 February 2003. www.oasis-open.org/committees/xacml/repository/

21. Decryption Transform for XML Signature, World Wide Web Consortium (W3C) Recom-
mendation, 10 December 2002. www.w3c.org/TR/xmlenc-decrypt

22. World Wide Web Consortium (W3C). www.w3c.org
23. Blu-ray Disc Association (BDA), Audio Visual Basic Specifications version 0.89 July

2004. www.bluraydisc.com
24. ISO/IEC 13818-2 1996 Information technology, ISO/IEC 13818-2 1996 Information tech-

nology—Generic coding of moving pictures and associated audio information—Part 2:
Video (MPEG-2 Video)

25. Microsoft Corporation, Jscript Language Reference 5.5, MSDN library.
26. Ola Andersson et al., Scalable Vector Graphics (SVG) 1.1 Specification, World Wide Web

Consortium (W3C),Recommendation 14 January 2003. www.w3.org/TR/2003/REC-
SVG11-20030114/

 XML Security in the Next Generation Optical Disc Context 233

27. Steven Pemberton et al., XHTML1.0 The Extensible HyperText Markup Language (Sec-
ond Edition), World Wide Web Consortium (W3C)Recommendation revised 1 August
2002. www.w3.org/TR/2002/REC-xhtml1-20020801

28. Sharon Adler et al., Extensible Stylesheet Language (XSL) Version 1.0, World Wide Web
Consortium (W3C) Recommendation, 15 October 2001.

29. Intel et al., Advanced Access Content System (AACS), Technical Draft, July 14 2004
www.aacsla.com

30. DVD Forum, Enhanced DVD Specification version 0.9, DVD Forum news, Vol 19, Octo-
ber 2003, Office of the secretary, DVD Forum.

31. Sun Microsystems, JavaTM Cryptography Extension 1.2.2, API Specification & Refer-
ence. java.sun.com/products/jce/

32. John Boyer, Canonical XML Version 1.0, World Wide Web Consortium (W3C) Recom-
mendation 15 March 2001. http://www.w3.org/TR/2001/REC-xml-c14n-20010315

33. Phillip Hallam-Baker et al., XKMS – XML Key Management Specification, World Wide
Web Consortium (W3C) Recommendation 2 May 2005. http://www.w3.org/TR/2005/PR-
xkms2-20050502/

34. OMA DRM 2.0, OMA-DRM-DRM-V2_0-20040716-C
 www.openmobilealliance.org

35. OMA DRM Content Format, OMA-DRM-DCF-v2_0-20040715-C,
 www.openmobilealliance.org.

36. Nokia, S3-040781 Extensions to OMA DRM V2.0 DCF for MBMS Download
Protection,S3#35, Oct 2004, 3GPP.

37. Nokia, Overhead and Performance Comparison of OMA DRM V2.0 DCF and XML for
MBMS Download Protection, 3GPP TSG SA WG3 Security S3#36,

W. Jonker and M. Petković (Eds.): SDM 2005, LNCS 3674, pp. 234 – 240, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improvement of Hsu-Wu-He’s Proxy
Multi-signature Schemes

Yumin Yuan

Department of Managerial Science, Xiamen University of Technology,
Xiamen 361005, P.R. China
yuanymp@163.com

Abstract. In 2005, for reducing Yi et al.’s proxy multi-signature schemes in
terms of computational complexity and communication cost, Hsu, Wu and He
proposed new proxy multi-signature schemes. Unfortunately, with this paper,
we will show that their schemes are insecure, because any malicious attacker
can alone forge valid proxy multi-signatures for any message to impersonate an
original signer (or a proxy signer) by choosing proper public key as long as he
has obtained some users’ public keys. We further improve their schemes to
eliminate the security flaw of Hsu-Wu-He’s schemes. Moreover, the im-
provements still maintain the advantages of their schemes while reducing the
computational complexity.

1 Introduction

The concept of proxy signature was first proposed by Mambo, Usuda, and Okamoto
in 1996 [1,2]. In such a scheme, an original signer is allowed to delegate his signing
power to a designated person as his proxy signer. After that, the proxy signer is able
to sign the message on behalf of the original signer. Consider the situation that two or
more original signers might want to delegate their signing power to the same proxy
signer. To achieving such purpose, the concept of the proxy multi-signature scheme
was proposed by Yi et al. [3]. It allows an original group of signers to authorize a
designated proxy signer under the agreement of all signers in the original group so
that the designated proxy signer can generate proxy multi-signatures for all original
signers. Proxy multi-signatures can play important roles in the following scenario: For
a large building, there are some conflict among the constructors and the householders.
All householders of the large building want to authorize a lawyer as their agent. So
the lawyer is authorized to act on behalf of all householders.

According to whether valid multi-signatures are generated only by the proxy
signer, proxy multi-signatures can be classified into two types. One is a proxy-
unprotected multi-signature, in which besides the proxy signer, only the cooperation
of all members in the original group can create valid proxy signatures. The other is a
proxy-protected multi-signature, in which only the proxy signer can create valid
proxy signatures.

In 2000, Yi et al. presented two proxy multi-signature schemes based on Mambo
et al.’s [2] and Kim et al.’s schemes [4], respectively. However, Hsu, Wu and He
pointed out that Yi et al.’s proxy multi-signatures have the weaknesses that

 Improvement of Hsu-Wu-He’s Proxy Multi-signature Schemes 235

computational complexity and communication cost are too high [5]. To overcome
these weaknesses, Hsu, Wu and He proposed two new proxy multi-signatures in [5].
One is a proxy-unprotected scheme and another is a proxy-protected scheme. Their
new schemes have following three advantages compare with Yi et al.’s schemes: (1)
the size of a proxy signature is constant and the same as that of an ordinary proxy
signature, (2) it is no need to transmit public key certificates to verifiers for ensuring
the authenticity of their public keys, (3) the authenticity of public keys of original
signers (and the proxy signer) and the validity of the proxy signature can be
simultaneously carried out in the proxy signature verification.

Unfortunately, in this paper, we demonstrate that both of new schemes are not
resist a forge attack. That is, when a malicious attacker knows some public keys with
the corresponding identities, he can forge valid proxy signatures for any message by
extracting a proper public key. And then, we propose two improvements to prevent
this attack.

The organization of this paper is described as follows. In next section, we will only
review Hsu-Wu-He’s proxy-unprotected scheme. Then, in Section 3, we propose an
attack on their schemes. After that, in Section 4, we offer modified Hsu-Wu-He’s
schemes, and analyze the security of the proposed schemes. Finally, the conclusion
will be given in Section 5.

2 Hsu-Wu-He’s Proxy Multi-signature Scheme

Let p be a large prime number, g be a generator for , and ()h ⋅ be a secure one-

way hash function. The parameters (, ,)p q g and the function ()h ⋅ are made public.

CA owns his private key γ and public key modg pγβ = , respectively. Let 1,A

2 , , nA A… be n original signers, and 0A be the proxy signer. Hsu-Wu-He’s scheme

consists of three stages: registration stage, proxy share generation stage, and proxy
signature generation and verification stage. Here, we only review briefly Hsu-Wu-
He’s proxy-unprotected multi-signature scheme.

2.1 Registration

Each user iA with the identity iID randomly chooses an integer 1i pt −∈ , computes
(||) modi ih t ID

iv g p= and sends (,)i iv ID to CA. CA chooses 1i pz −∈ , computes

1() modiz
i i iy v h ID g p−= (1)

(||) mod 1i i i iw z h y ID pγ= + − (2)

returns (,)i iy w to iA , and publishes iy as the public key for iA . Upon receiving

(,)i iy w from CA, iA verifies the validity of (,)i iy w by checking whether the

following equation holds:

p
∗

∗

∗

236 Y. Yuan

(||) (||)() modi i i i ih y ID w h t ID
i ih ID y g pβ += (3)

If it holds, then iA computes his private key as

(||) mod 1i i i ix w h t ID p= + − (4)

2.2 Proxy Share Generation

Let 1 2, , , nA A AK be the n original signers who jointly delegate their signing power

to the proxy signer 0A . Each original signer iA randomly chooses an integer

1i pk −∈ , computes modik
iK g p= , and broadcasts iK to other original signers.

Upon getting all jK ’s from jA (for 1,2, ,j n= … and)j i≠ , iA computes

1

n

ii
K K

=
= ∏ mod p and (||)i w i ih m K x kσ = + mod 1p − . Then, he sends (, ,i iK σ

)wm to 0A via a secure channel. After receiving (, ,)i i wK mσ , the proxy signer 0A

verifies its validity by checking

() (||)(||) () mod
w

i i i
h m Kh y ID

i i ig h ID y K pσ β= (5)

If all (, ,)i i wK mσ ’s are valid, 0A computes his proxy signature key as

1

mod 1
n

i
i

pσ σ
=

= −∑ (6)

where
1

n

ii
K K

=
= ∏ mod p .

 2.3 Proxy Signature Generation and Verification

For signing m on behalf of the original signers 1 2{ , , , }nA A AK , the proxy sign-

er 0A uses σ to generate a valid proxy signature ((), ,)wSig m K mσ . For verifying the

signature, a verifier first computes the proxy public key for these original signers as

n

1

(||)
(||)

1

() mod
w

i ii

h m Kn
h y ID

P i i
i

y h ID y K pβ =

=

⎛ ⎞∑= ⎜ ⎟
⎝ ⎠

∏ (7)

then verifies the signature with the checking operation correspondent with the
generation of the signature.

3 On the Security of Hsu-Wu-He’s Schemes

In this section, we will show that with knowing some users’ public keys, any
malicious attacker can impersonate an original signer of an original group (or a proxy

∗

 Improvement of Hsu-Wu-He’s Proxy Multi-signature Schemes 237

signer) to forge a valid proxy multi-signature for any message without the agreement
of the other participants.

In the following, we first propose the attack on Hsu-Wu-He’s proxy-unprotected
scheme. Suppose that a malicious attacker A′ with the identity ID′ obtains the public
keys 1,y 2 , , ny y… of users 1 2, , , nA A A… . A′ can forge a proxy signature on the

message m which looks as if is generated on behalf of original signers

1 2, , , , nA A A A′ … . For forging the signature, A′ first randomly selects an integer

1pt −∈ , computes

1

1
(||) (||)

1
()

n
i ii

nh y ID h t ID
i ii

v h ID y gβ =

−
′

=
⎛ ⎞∑′ = ⎜ ⎟
⎝ ⎠

∏ mod p

Then, he sends (,)v ID′ ′ to CA to extract his public key. Following the normal

procedure, CA respectively computes y′ and 'w by Eqs.(1) and (2), returns

(,)y w′ ′ to A′ , and publishes y′ as the public key of A′ . After receiving (,)y w′ ′

from CA, the attacker A′ fabricates an appropriate warrant wm′ , randomly selects a

random number 1pk −′∈ , computes modkK g p′′ = and (||)wh m K x kσ ′ ′ ′ ′ ′= +

mod 1p − , where (||) mod 1x w h t ID p′ ′ ′= + − is his private key. Then, A′ uses σ ′

to create a proxy signature '((), ,)wSig m K mσ ′ ′ for m . Because

1

(||)
(||)(||)

1

() ()
wn

i ii

h m Kn
h y IDh y ID

P i i
i

y h ID y h ID y Kβ β =′ ′

=

⎛ ⎞∑′ ′= ⎜ ⎟
⎝ ⎠

∏

1

(||)
(||)

1

()
wn

i ii

h m Kn
h y IDw k

i i
i

v g h ID y gβ =′ ′

=

⎛ ⎞∑′= ⎜ ⎟
⎝ ⎠

∏

() (||)(||) wh m Kw h t ID kg g
′ ′′ ′ ′+=

modg pσ ′=

and ' ()Sig mσ will pass the corresponding signature verification since it is the signa-

ture generated by using key σ ′ . Thus, a verifier will believes that '((), ,Sig m Kσ ′

)wm′ is a valid proxy multi-signature on behalf of the original signers with the

identities 1 2{ , , , , }nID ID ID ID′ K for m .

As considering another Hsu-Wu-He’s scheme, since the register stage in this
scheme is the same as the one in the proxy-unprotected scheme and the proxy
signature verification equation in this scheme is similar to that of the proxy-
unprotected scheme. It is easily show that the above attack is also successful for the
proxy-protected scheme by using similar approach. Note that in Hsu-Wu-He’s proxy-
protected scheme, 0y and each iy are used in symmetric ways in proxy public key

0

(||)
(||)

0

() mod
wn

i ii

h m Kn
h y ID

P i i
i

y h ID y K pβ =

=

⎛ ⎞∑= ⎜ ⎟
⎝ ⎠

∏

∗

∗

238 Y. Yuan

Thus, any malicious attacker can act as either the original signer of the original group
or the proxy signer to generate proxy multi-signatures for any messages. Therefore,
both of Hsu-Wu-He’s schemes are insecure. The security leak inherent in Hsu-Wu-
He’s schemes mainly results from that the structure of iv is not restricted strictly by

CA in the registration stage. A possible solution to remedy this weakness is to add an
exponential on iv .

4 Improvement of Hsu-Wu-He’s Schemes

We modify Hsu-Wu-He’s schemes as follows:

4.1 Improved Proxy-Unprotected Multi-signature Scheme

In registration phase, we replace Eq. (1) with Eq. (8)

modi iv z
i iy v g p= (8)

Consequently, the corresponding verification equation Eq.(3) should be changed to:

(||) (||) modi i i i i ih y ID w v h t ID
iy g pβ += (9)

and the corresponding private key Eq.(4) should be changed to:

(||) mod 1i i i i ix w v h t ID p= + − (10)

In proxy share generation stage, the verification equation Eq.(5) of iσ should be

changed to:

() (||)(||) mod
w

i i i
h m Kh y ID

i ig y K pσ β= (11)

In proxy signature generation and verification stage, we replace the proxy public
key Eq.(7) with Eq.(12)

1

(||)
(||)

1

mod
wn

i ii

h m Kn
h y ID

p i
i

y y K pβ =

=

⎛ ⎞∑= ⎜ ⎟
⎝ ⎠

∏ (12)

4.2 Security Analysis

The security of the proposed improvement is similar to that of Hsu-Wu-He’s scheme
[5]. Here, we only discuss the pointed out weakness in section 3. Assume that with
the knowledge of the public keys 2, 3 , , ny y y… of users 2 3, , , nA A AK , an attacker 1A

attempts to forge a proxy multi-signature for a message m on behalf of 1 2, , , nA A A… .

He has to choose a and 1v to pass

21
(||)

1
2

n
i ii

n
h y IDva

i
i

g v yβ =

=

∑= ∏

 Improvement of Hsu-Wu-He’s Proxy Multi-signature Schemes 239

If the 1v is determined first, then 1A has to solve the discrete logarithms to find a

without knowing CA’s private key. If a is determined first, he has to obtain 1v by

solving the equation

21
(||)

1 (
n

i ii
h y IDv av g β =∑= 1

2

)
n

i
i

y −

=
∏ mod p

It is an extremely difficulty thing. Thus, no one can choose his v to create valid proxy
multi-signatures. Hence, our attack cannot work on this new scheme.

4.3 Performance Evaluation

Compared with the original scheme, only one more exponentiation and one more
multiplication are required just in the registration stage of the improved scheme, while
the hash function ()iH ID is not required in all stages of the improved scheme. So the

cost of computing hash function can be reduced, while Hsu-Wu-He’s scheme requires
n hashing operation in the proxy share generation and the proxy signature generation
and verification, respectively. It is obvious that the improved scheme is more efficient
than the original scheme in these stages. Furthermore, the improved scheme keeps the
advantages of the original scheme.

4.4 Improved Proxy-Protected Multi-signature Scheme

Based on the above improved proxy-unprotected multi-signature scheme, it is easy to
construct a proxy-protected multi-signature scheme only by replacing Eqs.(6) and
(12) with Eqs.(13) and (14)

0
1

mod 1
n

i
i

pσ σ σ
=

= + −∑ (13)

0 1

(||)
(||)(||)

0
0

mod
wn

i ii i

h m Kn
h y IDh y ID

p i
i

y y y K pβ β =

=

⎛ ⎞∑= ⎜ ⎟
⎝ ⎠

∏ (14)

where 0 0(,)x y is the key pair of the proxy signer 0A with identity 0ID ,

0 0 0(||)wh m K x kσ = + mod 1p − and modik
iK g p= are computed by 0A , and

0
mod

n

ii
K K p

=
= ∏ . The security analysis and performance evaluation of this

scheme is almost the same as the previous one.

5 Conclusions

We have shown that Hsu-Wu-He’s schemes are not secure enough by presenting a
forgery attack on them. That is, any malicious attacker, under the knowledge of some
users’ public keys, can impersonate an original signer (or a proxy signer) to forge

240 Y. Yuan

valid proxy signatures for arbitrary message. To eliminate the security leaks inherent
Hsu-Wu-He’s schemes, we proposed improvements. The improved schemes not only
keep the advantages of Hsu-Wu-He’s schemes but also could effectively avoid the
attack proposed in this paper and are more efficient for generating and verifying
proxy share and proxy signature in terms of computational complexity.

References

1. M. Mambo, K. Usuda, E. Okamoto, Proxy signatures for delegating signing operation,
Proceedings of the Third ACM Conference on Computer and Communications Security,
ACM Press, 1996, pp. 48–57.

2. M. Mambo, K. Usuda, E. Okamoto, Proxy signatures: delegation of the power to sign
messages, IEICE Transactions on Fundamentals of Electronic Communications and
Computer Science E79-A (9) (1996) 1338–1354.

3. L. Yi, G. Bai, G. Xiao, Proxy multi-signature scheme: a new type of proxy signature
scheme, Electronics Letters 36 (6) (2000) 527–528.

4. S. Kim, S. Park, D. Won, Proxy signatures, revisited, ICICS’97, Lecture Notes in Computer
Science, vol. 1334, Springer-Verlag, 1997, pp. 223– 232.

5. C.L. Hsu, T.S. Wu, W.H. He, New proxy multi-signature scheme, Applied Mathematics and
Computation 162 (2005) 1201–1206.

Author Index

Azgın Hintoğlu, Ayça 155

Bettini, Claudio 185
Böttcher, Stefan 143
Brinkman, Richard 33

Chinaei, Amir H. 63

Damiani, E. 16
De Capitani di Vimercati, S. 16
Doumen, Jeroen 33
Dragovic, Boris 200

Eastman, Caroline M. 124

Farkas, Csilla 124
Foresti, S. 16

Gabillon, Alban 86
Gopalakrishnan, Ajeesh 217

Hacıgümüş, Hakan 1

Ionita, Cecilia M. 73

Jajodia, Sushil 16, 185
Jonker, Willem 33

Kemper, Alfons 47

Mauw, Sjouke 217
Mehrotra, Sharad 1
Moll, Erik 217

Nair, Gopakumar G. 217

Osborn, Sylvia L. 73

Paraboschi, S. 16
Policroniades, Calicrates 200
Power, David 170

Ramesh, Ganesh 104

Samarati, P. 16
Saygın, Yücel 155
Schoenmakers, Berry 33
Simpson, Andrew 170
Slaymaker, Mark 170
Steinmetz, Rita 143

Toland, Tyrone S. 124
Tompa, Frank Wm. 63

Wang, X. Sean 185
Wimmer, Martin 47

Yuan, Yumin 234

	Front matter
	Chapter 1
	Introduction
	System Architectures
	Overall DAS Architecture
	Storing Encrypted Data in the Database
	Classification of the System Architectures

	Key Management
	Key Assignment Granularity
	Key Generation
	Key Installation
	Key Distribution
	Key Registry

	System Architecture for Key Management
	Key Updates
	Key Update (KU) Locks

	Conclusions

	Chapter 2
	Introduction
	DAS Scenario
	Data Organization
	Selective Access on Encrypted Databases

	Metadata Management in the DAS Scenario
	Client-Side Key Metadata Storage
	Server-Side Key Metadata Storage
	Client-Side and Server-Side Combined Solution

	Query Processing
	Conclusions and Future Work

	Chapter 3
	Introduction
	Related Work
	Overview of Our Approach
	Trie Enhancement
	Implementation
	MySQLEncode
	The Filter Implementation
	Query Engines

	Experiments
	Encoding
	Query Engines
	Strictness

	Conclusions and Future Work
	Appendix: XMark's Auction DTD

	Chapter 4
	Introduction
	Policy Representation
	Notation
	Implementation Details

	Policy Evaluation
	Local Policy Evaluation
	Distributed Policy Evaluation
	Example Evaluation
	Inter-organizational Assignments

	Caching of Authorization Paths
	Client Validation
	Server Invalidation
	Lease-Based Approach
	Experimental Results

	Related Work
	Conclusion and Future Work

	Chapter 5
	Introduction
	Literature Review
	Problem Specification
	Use Case
	Summary and Future Work
	Bibliography

	Chapter 6
	Introduction
	Related Work
	Basic Concepts
	The Role Graph Model
	Ontologies

	An Access Control Model
	Authorization Users
	Roles
	Access Modes
	Authorization Objects
	Propagation of Privileges
	Constraints

	Conclusions and Future Work

	Chapter 7
	Introduction
	Informal Overview of Our Model
	View Access Control
	Write Access Controls

	XML Database
	XML Documents Modeled as Trees
	Language
	Axioms
	XPath and XUpdate

	Secure XML Database
	Extended Theory
	Subjects
	Security Policy
	Access Controls

	Conclusion
	Acknowledgment
	References

	Chapter 8
	Introduction
	Research Questions

	Related Work
	Preliminaries
	Prior Knowledge
	Measuring Quality of Prior Knowledge

	Extracting Prior Knowledge Using Sampling
	The Sample Generation Procedure
	Constructing Prior Knowledge from the Sample(s) and the Comparison Procedure

	Experimental Results
	Experimental Setup and Implementation
	Effect of Sample Parameters on Frequency Difference
	Effect of Sample Parameters on Rank Difference
	Effect of Sample Size on Compliancy and Top-K Measures

	Discussion
	Generalizing Prior Knowledge
	Summary and Ongoing Work

	Chapter 9
	Introduction
	Preliminaries
	Dynamic Disclosure Monitor (D^2Mon)

	Preliminary Notation
	Useful Common Attribute
	Problem Discussion and Motivation
	Our Solution

	Complexity Analysis
	Related Work
	Conclusion and Future Work

	Chapter 10
	Introduction
	Motivation
	Audit Language
	Requirements of Our Audit System

	System Structure
	Algorithms
	Reducing the Number of Queries
	Transformed Tree Patterns
	Suspicious Queries
	Restoring the Database at Timestamp t
	Summarized Algorithm
	Correctness of Testing Candidate Queries

	Relation to Other Works
	Conclusions
	References

	Chapter 11
	Introduction
	Background and Related Work
	Naïve Bayesian Classification

	Preventing Probabilistic Classification Based Inference
	Problem Formulation
	Evaluation Measures
	Algorithms for Preventing Probabilistic Classification Based Inference
	Discussion on the Effectiveness of Suppression Algorithms

	Experimental Results
	Conclusion
	References

	Chapter 12
	Introduction
	Terminology
	Query Modification
	Motivation
	Stonebraker's Approach to Query Modification
	Query Modification for Medical Research Databases

	A Formal Approach to Anonymisation and Information Flow
	Capturing Inferences
	An Axiomatic Approach to Information Flow
	Minimal Additions

	Combining Inferences and Query Modification
	Discussion

	Chapter 13
	Introduction
	Related Work
	The Anonymous Location-Based Service Model
	Location-Based Quasi-Identifiers
	A Privacy Preservation Framework Based on k-Anonymity
	The Notion of k-Anonymity for Location-Based Services
	Service Request Linkability
	Historical k-Anonymity

	Preserving Historical k-Anonymity
	A Simple Strategy
	A Spatio-Temporal Generalization Algorithm
	Unlinking Techniques

	Conclusions and Open Issues

	Chapter 14
	Introduction
	Related Work
	The Role of Containment
	Characterizing Threats
	Container - The Basic Building Block
	Containment - The Model of the World

	From Exposure Quantification to Threat Mitigation
	Quantifying Information Exposure
	Controlling Information Exposure - The Protective Actions
	The Choice of Action
	Levels of Exposure Modeling

	Enforcing Data Security
	Policy Enforcement - An Overview
	Data Model: Requirements and Implications
	Data Layout Specification
	Storage Subsystem Architecture

	Conclusion

	Chapter 15
	Introduction
	A Markup Based Content Hierarchy
	Identifying Security in an Optical Disc Player Context
	Threat Modeling for Next Generation Optical Disc Player

	Overview of the Applicable XML Based Security Mechanisms
	Applying XML Digital Signature in the End-to-End Usage
	Global Scenario
	Identified Signing/Verification Levels for Applications
	Signing/Verification at Interactive Cluster Level
	Signing/Verification at the Manifest Level
	Certificate Based Authentication

	Applying XML Encryption to Markups
	Providing End to End Security
	Prototype
	Realizing the Reference Blu-Ray Interactive Application
	XML Security Library Implementations
	Reference Platform

	Conclusions and Future Work
	References

	Chapter 16
	Introduction
	Hsu-Wu-He’s Proxy Multi-signature Scheme
	Registration
	Proxy Share Generation
	Proxy Signature Generation and Verification

	On the Security of Hsu-Wu-He’s Schemes
	Improvement of Hsu-Wu-He’s Schemes
	Improved Proxy-Unprotected Multi-signature Scheme
	Security Analysis
	Performance Evaluation
	Improved Proxy-Protected Multi-signature Scheme

	Conclusions
	References

	Back matter

