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Preface

Since Einstein’s introduction of the cosmological constant in 1917, and its inter-
pretation as a vacuum-like state of a physical medium by E.B. Gliner in 1965, dark
energy (DE) is usually treated as perfectly uniform, always and everywhere.
However, it is not necessarily so when other sources of gravity are present:
interaction of DE with matter leads to its variation in space and time.

In this book, I systematically study cosmological implications of this fact by
analyzing cosmological models in which DE density interacts with matter and thus
changes with time. I model the DE–matter interaction by specifying the rate of
change of the DE density as an arbitrary function of it and the density of matter, in a
single-phase case. In the case of several matter components interacting with dark
energy, I assume the rate of every interacting phase density to be an arbitrary
function of this density and the DE density. Some properties of cosmological
solutions valid for a general law of DE–matter interaction are described, and
physical admissibility of the interaction laws is discussed.

I investigate numerous families of exact solutions, singular, non-singular, and
mixed. Some of them exhibit interesting properties, such as absence of the horizon
problem due to the initial fast growth of the scale factor (any power of time
possible); non-singular evolution from one de Sitter universe (pure DE with no
matter) to the other one with a different DE density; DE dominating either from
some moment of time on, or throughout the expansion; and dark matter dominating
normal matter at large times without any parameter tuning. All the results are
obtained strictly within the framework of general relativity, Einstein’s theory of
gravity, without modifying it in any way.

This book ends with my translation from the Russian of a paper about
E.B. Gliner written by A.D. Chernin, ‘Why does the Universe expand?’
(Istoriko-astronomicheskie issledovaniya, 38, 239–253. Moscow, 2016), made on
author’s request. It elucidates the remarkable life and work of Gliner, which is not
enough known, especially outside Russia.

Stanford, CA, USA Alexander S. Silbergleit
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Chapter 1
Introduction. Non-uniform Dark Energy

According to Einstein’s equations of general relativity, any energy-momentum tensor
Tαβ must satisfy the condition of energy and momentum conservation,

T α
β;α = 0 . (1.1)

In 1965 Gliner [1] pointed out that the simplest energy–momentum tensor is that
of what he called the vacuum-like state of matter, and what is now called the dark
energy, or heavy vacuum:

Tαβ = ρvac gαβ , (1.2)

where ρvac is the DE density proportional to the Einstein cosmological constant, �.
If dark energy is the only source of gravity, i.e., there are no other terms in the

energy–momentum tensor except the one in the Eq. (1.2), the condition (1.1), in view
of gα

β;α = δα
β;α = 0, implies

ρvac, α = 0, ρvac = const . (1.3)

In other words, the density of heavy vacuum is uniform always and everywhere if
the spacetime is created only by DE, with nothing else present in it.

Gliner also established the equation of state (EOS) of DE:

pvac = −ρvac ; (1.4)

thus for positive DE density its pressure is negative. This EOS is easily verified by
comparing the tensor (1.2) with the energy-momentum tensor of a perfect fluid:

Tαβ = −pgαβ + (ρ + p)uαuβ . (1.5)

© The Author(s) 2017
Alexander S. Silbergleit and Arthur D. Chernin, Interacting Dark Energy
and the Expansion of the Universe, SpringerBriefs in Physics,
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2 1 Introduction. Non-uniform Dark Energy

The actual values of density, ρ, and pressure, p, are restricted by the equations
following form the conservation condition (1.1) for each particular metric.

Writing the energy-momentum tensor when DE and other gravity sources are
present in the most general form as

Tαβ = ρvac gαβ + Qαβ, Qαβ �= 0 ,

we stress that the conservation law requires only

ρvac, β + Qα
β;α = 0 .

So ρvac �= const, unless Qαβ is conserved separately.
The tensor (1.5) is used in cosmology to describe matter in the universe. Recent

observational data from Supernovae and CMB anisotropy demonstrated the domi-
nating presence of DE in our universe. Therefore its complete energy-momentum
tensor is now taken as a sum of the tensors (1.2) and (1.5):

Tαβ = ρvac gαβ + [−pgαβ + (ρ + p)uαuβ

]
. (1.6)

(in particular, with p = 0 this is assumed in the �CDMmodel). By condition (1.1),
the divergence of this expression must vanish:

ρvac, β + [−pgα
β + (ρ + p)uαuβ

]
;α

= 0 . (1.7)

Nothing else is implied by the conservation condition (1.1): as soon as (1.7) is true,
energy and momentum are conserved, and vice versa.

However, for no evident reason, except simplicity, computational convenience,
and perhaps some kind of intellectual inertia, in modern cosmology it is usually
assumed that DE density is uniform, as in (1.3). So each of the two terms describing
DEandmatter is assumed to be conserved separately, andmatter density and pressure
satisfy the same conservation equations as in the case when there is nothing else but
matter.

Apparently, this assumption is mathematically redundant; even worse, it is suspi-
cious from the physics standpoint, because it makes heavy vacuum absolute, inde-
pendent of anything else, by forbidding, in fact, its interaction with matter. We do
not see why should it be so; rather, it seems natural to think that dark energy, being
a special state of a physical medium, should interact with other physical substances
populating the universe. Gliner [2] and Gliner and Dymnikova [3] held this point of
view, but did not pursue in full its cosmological implications. Their most important
suggestion of a non-singular cosmology could not reflect the modern knowledge
of the strong continuous presence of heavy vacuum, thus considering DE as just a
non-singular initial state of the universe that turns to pure matter through an instant
phase transition at the beginning of the cosmological expansion.
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Along these lines of thinking, below we study in detail the Friedmann cosmology
with variable density of heavy vacuum, that is, under the condition (1.7) only. In it,
DE and matter coexist and permanently interact with each other. The interaction is
modeled in a rather general way strictly within the framework of general relativity.

This appears to be even more reasonable since the �CDM model is found in
certain contradictions (‘tensions’) with the modern observational data (see paper [4]
and the references therein). Moreover, recent observations tentatively indicate that
dark energy in our universe does evolve (see e.g. [5]), so some alternatives to the
constant DE model have been considered in papers [6–13] (see also the references
therein and in [5]).
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Chapter 2
Friedmann Cosmology
with Changing Dark Energy

The energy-momentum tensor (1.6) can be written in the form (1.5) of a perfect fluid,

Tαβ = −ptot gαβ + (ρtot + ptot )uαuβ , (2.1)

whose density, ρtot , and pressure, ptot , are defined as

ρtot = ρ + ρvac, ptot = p + pvac = p − ρvac ; (2.2)

the last expression here is implied by the DE equation of state (1.4).
We study the Friedmann cosmology using the Robertson–Walker metric

ds2 = dt2 − a2(t)
[(
1− kr2

)−1
dr2 + r2

(
dθ2 + sin2 θ dϕ2)] , (2.3)

with the dimensionless scale factor a(t) being the only unkown, and k = 0, −1, 1
for the flat, open and closed universe, respectively; we use the system of units with
c = G = 1.

For the expressions (2.1) and (2.3) Einstein’s equations are known to reduce to
the Friedmann equations, which we write as:

3

(
ȧ

a

)2

= 8πρtot − k

a2
; ρ̇tot = −(ρtot + ptot ) 3

ȧ

a
(2.4)

(the dot always denotes the derivative in time). The second of this equations is one
of the four conditions (1.7) in co-moving coordinates (u0 = 1, u1 = u2 = u3 = 0)
withβ = 0; it expresses energy conservation in a co-moving volume (see below). The
other three conditions (1.7) require that ρvac is independent of all spatial coordinates,
which is also clear from the assumptions made.

© The Author(s) 2017
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6 2 Friedmann Cosmology with Changing Dark Energy

Equation (2.4) can be combined to yield the expression for the acceleration,

3
ä

a
= −4π (ρtot + 3ptot ) . (2.5)

It shows that the expansion accelerates, decelerates, or proceeds uniformly depending
on the sign of the ‘effective gravitating density’ ρtot + 3ptot (negative, positive or
zero, respectively). If only DE is present, i.e., ρtot = ρvac, ptot = pvac = −ρvac,
then

ρtot + 3ptot = −2ρvac < 0 ,

and expansion accelerates; thus heavy vacuum gravity is repulsive. In the opposite
case of purematter, ρvac = 0, the sign depends on its equation of state; usually matter
is attractive, leading to deceleration.

It is convenient to introduce the co-moving volume as

V (t) = a3(t), a(t) = V 1/3(t) , (2.6)

and rewrite the Friedmann equations (2.4) in terms of it. Using V (t) in the second
equation as an independent variable instead of time, we obtain:

1

3

(
V̇

V

)2

= 8πρtot − k

V 2/3
; d (ρtot V )

dV
= − ptot . (2.7)

The first of these equations determines the time dependence of the volume, and
hence of the scale factor and all other parameters. Indeed, as soon as the total density
is known as a function of the volume, ρtot = ρtot (V ), the dependence of the latter on
time is obtained by direct integration, namely:

t − t0 =
V (t)∫

V0

dV

V
√
3
[
8πρtot (V )− k V−2/3

] , V0 = V (t0) . (2.8)

Thus everything reduces to the second of Eq. (2.7), which describes conservation
of total energy, ρtot V , in the co-moving volume by implying

d (ρtot V )+ ptot dV = 0 .

This single equation, however, contains three unknown functions, ρ, ρtot and p:

d [(ρvac + ρ)V ]

dV
= − ptot = −(p + pvac) = −(p − ρvac) . (2.9)

The equation of state (EOS) of a single–phase matter relates its pressure and density,
reducing thus the number of unknowns to two, ρ and ρvac Of course, it is impossible
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to determine both of them simultaneously form the single Eq. (2.9). The situation is
even worse when there are N > 1 matter components, each with its own EOS; then
all the N + 1 densities are unknown, with just the same single equation for all of
them (see chapter III A).

Clearly, what ismissing yet is the law of interaction betweenDE andmatter, which
would provide the second equation needed to determine the expansion completely.
Its physical derivation, especially from the first principles, is an outstanding problem
of physics and cosmology, and a great challenge to the physics theory. Since we
currently do not know how to derive this equation, the only way to understand
possible features of the universe seems to rely on certain plausible models (and hope
that at least some of them are not very far from reality!).

In what follows we model the interaction of heavy vacuum with matter, and study
cosmological solutions that stem form these models; some of the solutions exhibit
remarkable properties. We will use the energy conservation Eq. (2.9) in the form
more convenient for our purposes:

d [(ρvac + ρ)]

dV
= − (ρ + p)

V
. (2.10)



Chapter 3
Cosmology with Dark Energy and a Single
Type of Matter: General Interaction Model

Let matter be present in a single phase with the equation of state

p = wρ . (3.1)

Since ρ + 3p = (1 + 3w)ρ, the matter is attractive, according to (2.5), when
w > −1/3.1 However, as a rule this parameter is non-negative for the known types
of matter: w = 0 for pressure-less matter (‘dust’), w = 1/3 for radiation (ultra-
relativistic gas), and w = 1 for the super-dense Zeldovich fluid [1] (it seems the
largest w known so far). Eliminating p from Eq. (2.10) by the EOS (3.1), we write
it as

d [(ρvac + ρ)]

dV
= − (1 + w)ρ

V
. (3.2)

Note that if there is no matter, ρ = 0, then this equation gives ρvac = const. which
is the de Sitter solution. If, on the contrary, onlymatter is present, ρvac = 0, Eqs. (3.2)
and (2.8) imply the usual solutions (see below). When both the DE and matter
are present, the standard approach is to assume that matter conserves separately,
dρ/dV = −(1 + w)ρ/V . Equation (3.2) then implies the constant DE density, and
the whole solution becomes

ρvac = const, ρ = C/V (1+w), C > 0 . (3.3)

1Matter with the EOS where w is negative, but larger than −1, is usually called quintessense.
Its gravity is attractive for −1/3 < w < 0, repulsive for −1 < w < −1/3, and ‘neutral’ when
w = −1/3 (no gravitational acceleration). Since Einstein effectively used neutral quintessense in
his static cosmological model of 1917, we named it ‘Einstein’s quintessense’ in our paper [16].

© The Author(s) 2017
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10 3 Cosmology with Dark Energy and a Single Type of Matter …

We assume, instead, that matter and heavy vacuum are interacting. We model this
interaction by specifying the rate of change of the DE density as

dρvac

dV
= F(ρvac, ρ)

V
. (3.4)

Here F is some function of two variables, so far arbitrary. Note that it must actually
depend on the second variable, ρ, otherwise there will be no DE–matter interaction,
just an independent law of the evolution of the dark energy density.

Some cosmological models with dynamical dark energy have been studied earlier
(see [2, 3], the references therein and below. A full list of models considered before
1998 is given in the paper [2], see Table I there). Mostly, these models treated
the DE density as a known function of time, or the scale factor, or the Hubble
parameter, H = ȧ/a,2 or the acceleration parameter ä/a (typically, some power
functions have been used). The first two dependencies do not actually model the
DE–matter interaction, rather try to trace it consequences.

A cosmologicalmodel for a flat Friedmann universewith a singlematter phase and
dynamical dark energy whose density is a known function of the Hubble parameter,
ρvac = ρvac(H), H = ȧ/a, was systematically studied by I.L. Shapiro and J. Solà
and their co-authors in papers [4–7]. They took into account some considerations of
the renormalization group techniques of quantum field theory hinting that ρvac(H)

might be a series in even powers of H ; particular solutions were studied with DE
density being an even polynomial of H .

Our model (3.4) allows for an arbitrary ρvac(H) as its particular case. Indeed,
specifying the interaction function as

F(ρvac, ρ) = F(ρvac + ρ) = F(ρtot ) ,

by the first of the Friedmann equations (2.4) with k = 0 we find that it is a function
of the Hubble parameter only, F = �(H). Function �(H) is determined from the
compatibility of Eqs. (2.4) and (3.4) as soon as ρvac(H) is fixed; the details are given
in Appendix A. Still, this model, in which the DE–matter interaction is completely
determined by the total density only, appears to be not very compelling. However,
this is not quite so for the open and closed universe. In Appendix A we extend
the ρvac(H) model to these cases, k = ∓1, and show that it corresponds to some
complicated enough interaction function F(ρvac, ρ).

Finally, the model with ρvac = ρvac(ä/a) is also a particular case of our
model (3.4), in view of the acceleration Eq. (2.5). In this case the interaction
function is

F(ρvac, ρ) = �(η), η = ρtot + 3ptot = (1 + 3w)ρ − 2ρvac = (−3/4π)(ä/a) ;

2The term Hubble parameter is, in fact misleading, since it is a function of time, H = H(t). So it
would be better to call it the Hubble function; in this book, however, we go along with the universal
usage.

http://dx.doi.org/10.1007/978-3-319-57538-4_2
http://dx.doi.org/10.1007/978-3-319-57538-4_2
http://dx.doi.org/10.1007/978-3-319-57538-4_2
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it is related to ρvac(η) by the equality

�(η) = − (1 + w)[η + 2ρvac(η)]ρ′
vac(η)

1 + 3(1 + w)ρ′
vac(η)

.

This is similar to the expressions (A6) and (A12) of the previous model ρvac(H),
and it works for a cosmology with any spacetime curvature, k = 0,±1.

Returning to our considerationwe notice that as soon as F(ρvac, ρ) is specified, the
system of two Eqs. (3.2) and (3.4) allows one to determine ρvac and ρ as functions
of V , and, due to (2.8), as function of time, i.e., to get the complete picture of
cosmological expansion. The form (3.4) of the interaction equation is rather general;
on the other hand, it simplifies the choice of a particular model belonging to this wide
class. It is straightforward to combine the equations so that each of them contains
just one derivative (standard form):

dρ

dV
= − (1 + w)ρ + F(ρvac, ρ)

V
,

dρvac

dV
= F(ρvac, ρ)

V
. (3.5)

Introducing a new independent variable λ = ln (V/V∗) (V∗ = const > 0 is arbi-
trary), we see that the governing system is autonomous (not containing the indepen-
dent variable explicitly):

dρ

dλ
= − [(1 + w)ρ + F(ρvac, ρ)] ; dρvac

dλ
= F(ρvac, ρ), λ = ln (V/V∗) .

(3.6)

Thus a powerful arsenal ofmethods applicable to autonomous systems in the plane
can be used for a qualitative study of solutions of Eqs. (3.6) based on the properties
of the interaction function F(ρvac, ρ). Alternatively, we will investigate particular
implementations of the general model and study the properties of the corresponding
exact solutions.

We are only interested in physically meaningful solutions for which the densities
ρ, ρvac are non-negative, and the matter density vanishes at large times:

ρ → +0 when λ → +∞ (V, a, t → +∞) . (3.7)

It is also natural to assume that the DE density is bounded at large times for a
physically sound cosmological solution. Thus we exclude “the big crunch” from the
discussion, mainly to limit our rather extended analysis. Also, a typical solution has
either an initial, or a final singularity, or none at all, but not both simultaneously; the
existence of the big crunch in our universe seems rather improbable.

The above requirements restrict the possible interaction laws. For instance, no
physical solutions exist when the interaction function is bounded away from zero for
all relevant values of its arguments,

F(ρvac, ρ) ≤ −F0 < 0, or F(ρvac, ρ) ≥ F0 > 0; F0 = const > 0 .

http://dx.doi.org/10.1007/978-3-319-57538-4_2
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Indeed, in the first case the DE density becomes negative at a finite moment of time
and tends to the negative infinity in the large time limit; in the second case it goes
to the positive infinity; and in both cases the matter density does not tend to zero at
large times. This is easily seen, under the above conditions, from the Eqs. (3.6).

The way to meet the requirement (3.7) is to have an attracting rest point
ρ = 0, ρvac = ρ∞ = const > 0. All the rest points (critical points, equilibria) of
the system (3.6) are described by the equations

ρ = 0, F(ρvac, 0) = 0 . (3.8)

A physical rest point exists when the second of these equations has a non-negative
root. If the root is zero, then no source of gravity is present, and it is a Minkowsky
spacetime; a positive root corresponds to a de Sitter universe with the uniform DE
and no matter. (Quite appropriately, the de Sitter universe is static, even though it
can be described by the Robertson—Walker metric with the time–dependent scale
factor). So, if a cosmological solution tends to such rest point, then the final state is
a de Sitter universe, as in the �CDM model.

We now go about some particular interaction models and analyze the exact cos-
mological solutions emerging from them.

3.1 Linear Interaction Between Dark Energy and Matter.
Exact Solution for Singular Cosmology Dominated by
Dark Energy

The simplest kind of DE–matter interaction appears to be when the rate of ρvac is
proportional to ρ,

F(ρvac, ρ) = −sρ . (3.9)

This is our first choice; it is remarkable also because it introduces just one new dimen-
sionless parameter, s. In addition, the whole positive semi–axis ρvac ≥ 0 consists of
the roots of the Eq. (3.8), so that ρ = 0, ρvac = ρ∗ ≥ 0 is the rest point for any ρ∗.

The governing equations (3.6) become

dρ

dλ
= −(1 + w − s)ρ; dρvac

dλ
= −sρ ,

The first of them shows that this type of interaction with DE just changes the para-
meter in the linear EOS (3.1) of matter, replacing w with w − s. In other words, the
effective pressure here is

pef f = (w − s) ρ ; (3.10)

noteworthy, matter effectively acts as quintessense when s > w, and its gravity
becomes repulsive for s > w + 1/3.
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The governing linear system with constant coefficients is immediately integrated;
the result for s 	= 1 + w, in terms of the independent variable V , is:

ρ = C

V 1+w−s
;

ρvac = ρ∞ + s

1 + w − s

C

V 1+w−s
= ρ∞ + s

1 + w − s
ρ;

ρtot = ρ∞ + 1 + w

1 + w − s

C

V 1+w−s
= ρ∞ + 1 + w

1 + w − s
ρ, (3.11)

where C > 0, ρ∞ ≥ 0 are arbitrary constants. The evolution of matter density is
given by a power dependence, but the power value is different than the usual one
because of the DE–matter interaction.

Condition (3.7) of vanishing ρ at large times restricts parameter s from above:
s < 1 + w (recall that we excluded the big crunch from our discussion). The lower
bound for it comes from the requirement ρvac > 0 implying s > 0 (otherwise the
DE density is negative at least for small enough times, V → +0). Therefore the
interaction parameter s proves to be well constrained:

0 < s < 1 + w . (3.12)

The left inequality here means, by the way, that the interaction is permanently
reducing dark energy and producing matter; there is no physical solution in the
opposite case. Notably, here not only the matter, but also the DE density is singular
at the beginning. So both matter and dark energy are born in the Big Bang, unlike
the usual solution with uniform dark energy, where the density of the latter is some
finite constant.

The time behavior of the solution is given by the formula (2.8) where it is conve-
nient to set t0 = 0 and V0 = 0. The integral there can be calculated explicitly in some
cases (see [8], where similar integrals are treated systematically). Here we show just
most significant small and large time asymptotics of the solution (3.11), which is
straightforward to get from the analysis of the expression (2.8). Evidently, for large
time (V → +∞) we have the usual exponential acceleration caused by the limit
constant DE density, ρ∞:

a ∼ exp(t/τ ), ρ = O(exp(−3(1 + w − s)t/τ )) → 0 ,

ρvac → ρ∞ + O(exp(−3(1 + w − s)t/τ )) → ρ∞, t → +∞ ;
τ = √

8πρ∞/3. (3.13)

The solution emerges from the initial singularity (V → +0) according to

a ∼ t2/3(1+w−s) → +0, ρ ∼ ρvac ∼ t−2 → +∞, t → +0. (3.14)

http://dx.doi.org/10.1007/978-3-319-57538-4_2
http://dx.doi.org/10.1007/978-3-319-57538-4_2
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Of course, for s = 0 the scale factor and matter density behave exactly as in the
Friedmann solutions, since there is no DE–matter interaction. For the values of the
interaction parameter s from the physical range (3.12), the power 2/3(1 + w − s)
that specifies the initial time dependence of the scale factor is always smaller than
its Friedmann value 2/3(1 + w). The expansion thus goes faster, at least in the
beginning. This is the effect of the repulsive heavy vacuum whose density is as
singular as the matter density is. Moreover, this power can be larger than unity,
2/3(1 + w − s) > 1 when s > w + 1/3, so that for

w + 1/3 < s < w + 1 (3.15)

there is no horizon problem. Consistently, this is the range where the existing mate-
rial effectively behaves as a repulsive quintessense, since, by (3.10), its effective
gravitating density becomes negative,

ρ + 3pef f = 3(w + 1/3 − s)ρ < 0 .

The expansion is faster, the closer s is to w + 1, it beats any power of time when s
tends to this upper bound of its range. One can speak thus about ‘inflation’, but of
the power, rather than the exponential, one.

Note that the parameter range (3.15) is impossible for the closed universe
(k = 1) requiring 0 < s ≤ w + 1/3, to compensate for the negative curvature term
−a−2 = −V−2/3 (see Eq. (2.8)).

Quite naturally, Friedmann solutions (ρvac = 0) cannot be obtained from (3.11),
because for ρvac = 0, ρ 	= 0 the second of the governing equations is contradictory
unless ρ ≡ 0. On the other hand, the mentinoned de Sitter solution with any value of
the DE density is given by the expressions (3.11) with C = 0.

Next we note that the solution (3.11) is dominated by DE at large times indepen-
dent of parameter values. To see what is dominating for other periods of evolution,
it is instrumental to calculate the difference

ρdi f = ρvac − ρ = ρ∞ + 2s − (1 + w)

1 + w − s

C

V 1+w−s
= ρ∞ + 2s − (1 + w)

1 + w − s
ρ .

(3.16)

This formula shows that the range (3.12) of the interaction parameter s is
divided by exactly its midpoint, (w + 1)/2, into two parts: 0 < s < (w + 1)/2,
with the corresponding cosmological solutions initially dominated by matter, and
(w + 1)/2 ≤ s < w + 1, when DE dominates throughout the expansion. Indeed, in
the latter case ρdi f > 0, ρvac > ρ at all times (and ρdi f even turns to +∞ when
t → +0 for s strictly larger than (w + 1)/2). In the former case the density differ-
ence is negative (ρ > ρvac, matter dominates) from the beginning until

V =
[
1 + w − 2s

1 + w − s

C

ρ∞

] 1
1+w−s

, 0 < s < (w + 1)/2 ,

http://dx.doi.org/10.1007/978-3-319-57538-4_2
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when it turns to zero. After this moment the difference becomes positive, DE starts
dominating and continues for the rest of the time.

Summarizing our last observations we point out that: (a) the initial expansion can
be fast enough to resolve the horizon paradox for s > w + 1/3; (b) DE is dominating
throughout the whole expansion if and only if

s ≥ (w + 1)/2 (3.17)

(this means s ≥ 1/2 for dust (w = 0), and s ≥ 2/3 for radiation (w = 1/3)).
We also note that the excluded case s = 1 + w produces a physically meaningless

but rather peculiar solution: the matter density does not change, ρ = const, while the
DE density goes from plus to minus infinity as a log of the inverse scale factor.

An interaction depending on an arbitrary linear combination of both densities is
analyzed below in Sect. 3.3.1.

3.2 The Role of Non-linearity: Interaction Laws
F(ρvac,ρ) = f (ρ) and the Corresponding
Class of Exact Solutions

3.2.1 General Solution and Its Properties

A natural generalization of the linear interaction law (3.9) is:

F(ρvac, ρ) = f (ρ) , (3.18)

where f is an arbitrary function of one argument. The first of the governing equa-
tions (3.5) again is the equation for matter density only, which shows that the inter-
action (3.18) means the change in the matter EOS from the linear relation (3.1) to
the following non-linear one:

pef f = wρ + f (ρ) . (3.19)

Integration of the separable Eq. (3.5) provides an algebraic equation for the matter
density ρ = ρ(V ),

ln
V

V∗
= −

ρ∫
dx

(1 + w)x + f (x)
. (3.20)
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Then the DE density is found by integrating a known function. This operation, how-
ever, might be not easy to practically implement when the Eq. (3.20) cannot be solved
for ρ explicitly. To overcome this difficulty, we note that the governing equations
imply

dρvac

dρ
= − f (ρ)

(1 + w)ρ + f (ρ)
,

giving an expression for ρvac through ρ, ρvac = ρvac(ρ(V )):

ρvac = −
ρ∫

vac

f (x) dx

(1 + w)x + f (x)
. (3.21)

Depending on the properties of the function f , formulas (3.20) and (3.21) might
or might not represent physical solutions that require both densities to be positive
and have a reasonable behavior. Even the condition (3.7) of matter density vanishing
at large times might be not fulfilled; however, if f (ρ) behaves linearly for small ρ,

f (ρ) = −sρ [1 + o(1)], ρ → +0, (3.22)

then the expression (3.11) for matter density is retained for large times (large V ), so
it turns to zero at the end of expansion.

To specify f (ρ) in such way that the obtained solution is physically meaningful
turns out to be not an easy job. For instance, let us take a non-linear interaction
described by a quadratic dependence,

F(ρvac, ρ) = f (ρ) = −ρ2/R , (3.23)

where R is an arbitrary parameter. Calculating the integral (3.20) results in the fol-
lowing expression for the matter density:

ρ = (1 + w)R

(V/V∗)1+w − 1

(
V

V∗

)1+w

, ρ > (1 + w)R ;

ρ = (1 + w)R

(V/V∗)1+w + 1

(
V

V∗

)1+w

, ρ < (1 + w)R . (3.24)

It might look nice, but is not relevant, in fact, from the physics point of view, for both
signs of parameter R. It is straightforward to see that a meaningful positive solution
does not exist on the whole semi-axis 0 < V < ∞, and it has a strange singularity
at a finite time (finite volume V = V∗). Moreover, if the physical solution exists at
large times, it does not go to zero when t → +∞, tending instead to the positive
limit (1 + w)R.
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As it turns out, same problems surface for any non-negative power laws f (ρ) ∝
ρμ, μ > 1, as well as for the inverse power dependencies f (ρ) ∝ ρ−μ, μ > 0. Poly-
nomial functions, like

f (ρ) = −sρ − ρ2/R ,

satisfying condition (3.22) do not help, either, leading to non-physical solutions.
All these laws do have something in common: for all of them the non-linearity

becomes overwhelming, too strong, in one of the characteristic limits ρ → +0 or
ρ → +∞. This observation brings one to a thought that condition (3.22) could be
helpful in both limits of small and large densities,

f (ρ) = −sρ [1 + o(1)], ρ → +0 and ρ → +∞ . (3.25)

And indeed, asymptotic analysis of the integrals (3.20) and (3.21) under this condition
immediately demonstrates that the solution (3.11) is retained, for small and large ρ
(small and large V ), and thus the proper behavior (3.13) and (3.14) takes place.

Condition (3.25) subordinates non-linear part of interaction to the linear one for
both small and large densities. However, between the start and end of the expansion,
non-linearity can be dominating and cause thus significant deviations of parameters
from their values (3.11) obtained for purely linear interaction. Moreover, the strong
influence of non-linearity can lead to new singularities in the course of the expansion,
again making the corresponding solution non-physical. For this reason, (3.25) is not
a sufficient condition for a solution to be sound from a physical standpoint; it only
guarantees an acceptable behavior at initial singularity and infinity.

We illustrate these peculiarities using one but rich enough example.

3.2.2 Example: Exact Solution for a Special Form
of Function f (ρ)

Let us consider the interaction law (3.18) with

f (ρ) = −sρ

(
1 + θρ1/2

ρ + R

)
; (3.26)

here θ is a new parameter. This function satisfies condition (3.25):

f (ρ) = −sρ [1 + O(ρ1/2)], ρ → +0; f (ρ) = −sρ [1 + O(ρ−1/2)], ρ → +∞ .

The integrands of integrals (3.20) and (3.21) turn into rational fractions by the sub-
stitution x = √

ρ, thus both integrals are calculated explicitly in terms of elementary
functions. The result depends on the behavior of the following quadratic polynomial
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in the denominator of some fractions,

P(x) = x2 − qx + R, q = sθ/(1 + w − s) , (3.27)

that is, on the sign of its discriminant

� = q2 − 4R . (3.28)

Case 1: � = q2 − 4R < 0
Since the non-linearity of interaction (3.26) is stronger, the larger θ and the smaller

R, here we deal with a (relatively) weak non-linearity. In this case the polynomial
P(x) is positive on the whole real axis, and formulas (3.20) and (3.21) reduce to the
equations (C > 0, ρ∗ > 0 are constants of integration):

ρ = C

V 1+w−s
exp

[−q|�|−1/2 arctan ξ(ρ)
]
, ξ(ρ) = (

ρ1/2 − q/2
) |�|−1/2; (3.29)

ρvac = ρ∗ + s

1 + w − s
ρ + 2θ

s(1 + w)

(1 + w − s)2
[
ρ1/2 + h(ρ, s, θ, R, w)

]
, (3.30)

h(ρ, s, θ, R, w) = (
q2/2 − R

) |�|−1/2 arctan ξ(ρ) + (q/2) ln
[
1 + ξ2(ρ)

]
.

Equation (3.29) for the matter density has a unique solution ρ = ρ(V ) in the whole
range 0 < V < ∞, which behaves properly, i.e., starts with a singularity at V = 0
and monotonically goes down to zero at infinity. Therefore the DE density (3.30)
also behaves properly.

Both expressions, though somewhat cumbersome, do not differ much qualita-
tively from their counterparts in the ‘basic’ solution (3.11). Particularly, they require
the same parameter range (3.12), 0 < s < 1 + w. The exponential factor in (3.29)
replaces unity in the corresponding Eq. (3.11) but, since the arc-tangent is bounded,
it does not change much throughout the expansion. However, depending on parame-
ters, the difference in the matter density values (3.29) and (3.11) can be large for
some period of time, especially when q2 is close to 4R.

As seen from (3.30), the DE density also behaves in a familiar way: the two first
terms are same as in (3.11), followed by the correction due to interaction non-linearity
proportional to θ. Also as in the case (3.11), the solution is permanently dominated
by dark energy when s > (1 + w)/2. The main difference as compared to ρvac from
the solution (3.11) is: (1) the constant of integration ρ∗ is not the limit value of the
DE density at infinity, due to the addition from the non-linearity,

ρ∞ = ρ∗ + (
R − q2/2

) |�|−1/2 arctan
(
q|�|−1/2/2

) ;

(2) according to the Eq. (3.30), non-linearity adds the log term to the initial singularity
in the DE density; it is, however, weaker than the power singularity.

Anyway, this is a physically meaningful solution; not always so in other cases.
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Case 2: � = q2 − 4R = 0, q2 = 4R
Here we deal with the boundary case between weak and strong interaction non-

linearity. The equations for the densities have the same structure (3.29), (3.30):

ρ = C

V 1+w−s
exp

(
q

ρ1/2 − q/2

)
; (3.31)

ρvac = ρ∗ + s

1 + w − s
ρ + 2θ

s(1 + w)

(1 + w − s)2
[
ρ1/2 + h(ρ, s, θ, R, w)

]
, (3.32)

h(ρ, s, θ, R, w) = q

[
q2/4

ρ1/2 − q/2
− ln

ρ1/2 − q/2

q/2

]
.

The rest, however, totally depends on the sign of the interaction parameter q coin-
ciding with the sign of θ for the required range 0 < s < 1 + w.

If it is negative, q = −2
√
R < 0, then Eq. (3.31) has a unique solution ρ(V )

for any positive V , and both densities exhibit exactly the same qualitative behavior
as in the case (a). All observations made regarding the expressions (3.29), (3.30)
remain true, we have yet another physically meaningful solution. Its matter density
monotonically decreases from infinity at t = 0 (V = 0) to zero at t = ∞ (V = ∞),
and positive DE density goes from infinity to some positive value. This happens
because the non-linear part of the law (3.26) works against the linear one, reducing
thus the DE–matter interaction, i.e., making it weaker. In other words, the effective
pressure (3.19) corresponding to the interaction (3.26),

pef f = (w − s)ρ + s|θ|ρ1/2
ρ + R

is less repulsive due to non-linearity.
In the opposite case q = 2

√
R > 0 the picture is drastically different. An essential

singularity at ρ = q2/4 appears in the Eq. (3.31) which prevents it from having a
unique solution with the reasonable behavior on the whole semi-axis (note that the
graphic analysis of all the functional equations for ρ we obtained so far is rather
transparent). Similar to the case of the interaction law (3.23) andother onesmentioned
above, there is either a solution on a finite interval 0 < V < V∗, or a solution on
the semi-axis 0 < V < ∞ that starts with zero at V = 0 and becomes singular at
infinity. Thus this case presents no physical solution at all; the interaction proves to
be too strong, since its non-linear part enhances the linear one or, in other terms, the
corresponding effective pressure

pef f = (w − s)ρ − s|θ|ρ1/2
ρ + R

turns out too repulsive because of the second term.
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Case 3: � = q2 − 4R > 0
We finally treat the ‘strongly’ non-linear case. The quadratic polynomial (3.27)

has two real roots x1 < x2,

x1,2 = 1

2

(
q ∓ √

�
)

,

which are both negative for q < 0, and both positive in the opposite case. The for-
mulas for the densities are

ρ = C

V 1+w−s

∣
∣
∣
∣
ρ1/2 − x2
ρ1/2 − x1

∣
∣
∣
∣

2q/
√

�

; (3.33)

ρvac = ρ∗ + s

1 + w − s
ρ + 2θ

s(1 + w)

(1 + w − s)2

[
ρ1/2 + h(ρ, s, θ, R, w)

]
, (3.34)

h(ρ, s, θ, R, w) = 2√
�

[
(R − qx2) ln |ρ1/2 − x2| + (R + qx1) ln |ρ1/2 − x1|

]
.

They have the same properties as those from the previous case: for q < 0 (x1,2 < 0)
(interaction reduced by non-linearity), Eq. (3.33) has no singularities giving rise
to a unique meaningful cosmological solution with the kind of behavior described
several times above. Contrary to this, when θ > 0 (x1,2 > 0) (interaction enhanced
by non-linearity), no physical solution exists because of the singularities at ρ2 = x1,2
in both equations.

This example allows us to conclude that even if the interaction function f (ρ)

satisfies condition (3.26), the interaction may be too strong for the physical solution
to exist. The conclusion most probably applies to a general interaction law (3.4) as
well: repulsive non-linearity should be not too strong to yield meaningful solutions.

Note that a general linear interaction law involving both densities is considered
in Sect. 3.3.1, and two non-linear completely integrable models are found in Appen-
dix B.

3.3 Non-singular Cosmological Solutions Starting
and Ending with Pure Dark Energy
(de Sitter Universe)

Interaction between dark energy and matter allows for cosmological solutions which
do not start at a singularity. Instead, their initial and final state is a universe with
dark matter only; DE densities in the beginning and end are generally different, and
may differ by an arbitrary amount. Below we study such solutions in detail. Note
that some non-singular solutions were studied in papers [2, 3], and in [9–13] for the
ρvac = ρvac(H) model discussed above .
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3.3.1 A Toy Linear Model: Initial Jump in the Density

We first explore the general linear interaction law by setting

F(ρvac, ρ) = −sρ + θ(ρvac − ρ∞), θ 	= 0 (3.35)

(the case θ = 0 is examined in full in Sect. 3.1). Here s, θ and ρ∞ > 0 are the model
parameters; the last of them represents the only equilibrium value of uniform DE
density possible in this system. It also plays a role of the threshold for self-action
of heavy vacuum: if for, say, θ < 0, its density is above this critical one, ρvac > ρ∞,
then it tries to reduce its amount; in the opposite case ρvac < ρ∞ DE reproduces
itself.

According to the expression (3.35), the governing equations (3.6) become:

dρ

dλ
= − [(1 + w − s)ρ + θ(ρvac − ρ∞)] ; dρvac

dλ
= −sρ + θ(ρvac − ρ∞) ;

(3.36)
as before, λ = ln (V/V∗). This linear autonomous system has a single equilibrium
ρ = 0, ρvac = ρ∞; we require it to be stable, since we want our solutions to tend
exactly to it at large times (λ → +∞). (It is straightforward to see that other cases,
when this point is unstable or neutrally stable, do not generically lead to any sound
physical solutions.)

So we demand that the characteristic equation

μ2 + (1 + w − s − θ)μ − (1 + w)θ = 0 (3.37)

of the linear system (3.36) with constant coefficients has either a couple of complex
conjugate roots with the negative real part, or two negative real roots μ1 < μ2 < 0,

μ1,2 = 0.5
[
−(1 + w − s − θ) ∓ √

δ
]
, δ = (1 + w − s − θ)2 + 4θ(1 + w) .

(3.38)
However, in the first case the matter density oscillates around zero and thus does
not stay positive all the way, as it should. This leaves us with the second alternative,
μ1 < μ2 < 0, which condition is guaranteed by the inequalities

δ > 0, 1 + w − s − θ > 0, (1 + w − s)θ > 0 .

The analysis shows that they hold for only one range of the parameters, namely
(recall that w ≥ 0):

s < 0, θ < 0 . (3.39)

These inequalities are assumed true in the sequel; note that, due to them, parameter
θ lies between the roots, μ1 < θ < μ2 < 0.
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The general solution of the linear system (3.36) is found in a standard way in
terms of exponents of λ, or, accordingly, powers of V :

ρ = C1

V |μ1| + C2

V |μ2| , ρvac = ρ∞ + |s|
(

−Q1
C1

V |μ1| + Q2
C2

V |μ2|

)
;

Q1 = (θ − μ1)
−1 = 2

[
(1 + w − s + θ) + √

δ
]−1

> 0 ,

Q2 = (μ2 − θ)−1 = 2
[
−(1 + w − s + θ) + √

δ
]−1

> 0 ; (3.40)

here C1,2 are arbitrary constants of integration. For ρ to be positive throughout the
expansion both of themmust be positive. But then ρvac is negative in the beginning of
the expansion, V → +0, since the negative termwith V−|μ1| dominates its expression
in this limit. Therefore the general linear interaction law (3.35) does not allow for
any sound cosmological solutions.

Still, one special case, C1 < 0, C2 > 0, might turn meaningful with certain addi-
tion. In this case we introduce, for convenience, two new constants ρ∗, V∗ > 0:

C1 = −ρ∗V |μ1|∗ , C2 = ρ∗V |μ2|∗ .

Using these notations, we rewrite the solution (3.40) as

ρ = ρ∗

[(
V∗
V

)|μ2 |
−

(
V∗
V

)|μ1|]
, ρvac = ρ∞ + |s|ρ∗

[

Q2

(
V∗
V

)|μ2 |
+ Q1

(
V∗
V

)|μ1|]
(3.41)

We see that the matter density here goes to negative infinity at the initial moment
of time (V → +0). It stays negative for a finite interval 0 < V < V∗, becomes zero
at V = V∗, and then remains positive for V∗ < V < +∞, vanishing in the limit. In
contrast with that, the DE density is always positive, decreasing from positive infinity
at V → +0 to ρ∞ > 0 in the opposite limit.

All this is easily seen from the trajectory of solution (3.41) in the phase plane
{ρvac, ρ} plotted in Fig. 3.1 (the physical part of this plane is its first quadrant ρ ≥
0, ρvac ≥ 0). After starting below the horizontal ρvac axis, the trajectory crosses it
at V = V∗ and stays above it, first going upwards, reaching the highest point, and
finally going to the stable equilibrium {ρvac = ρ∞, ρ = 0} on this axis. Remarkably,
the crossing point is at the value of DE density, ρvac(V∗), which is larger than the
final value ρ∞, as implied by the second of the formulas (3.41):

ρ0 ≡ ρvac

∣
∣
∣
V∗+0

= ρ∞ + |s|ρ∗ (Q2 + Q1) = ρ∞ + 2|s|ρ∗
√

δ

(θ − μ1)(μ2 − θ)
> ρ∞

So, to make this solution more realistic, i.e., the matter density all the way non-
negative, one needs just to change it somehow at the initial stretch 0 < V < V∗
without violating the governing equations. The only available option is to assume
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Fig. 3.1 Phase trajectory of
a non-physical
solution (3.41) and closed
orbit for the solution with the
initial jump in ρvac
based on it

0
ρ∞(V=∞) ρ

*
(V=V

*
) ρvac

(V=0)

ρ

that throughout this period of time the system rests at its only equilibrium {ρvac =
ρ∞, ρ = 0}, the spacetime is filled with heavy vacuum only, no matter is present.
Then at the moment t∗ corresponding to V∗ = V (t∗) a positive jump in DE density
occurs, driving it up to some value ρ0 > ρ∞; the corresponding initial conditions,

ρ = 0, ρvac = ρ0 at V = V∗ ,

are then picked up by the governing equations giving the solution (3.41). Thus the
complete solution is:

ρ = 0, ρvac = ρ∞, 0 < V < V∗ ;

ρ = ρ∗

[(
V∗
V

)|μ2 |
−

(
V∗
V

)|μ1|]
, ρvac = ρ∞ + |s|ρ∗

[

Q2

(
V∗
V

)|μ2 |
+ Q1

(
V∗
V

)|μ1|]
,

V∗ < V < +∞. (3.42)

It starts and ends with pure heavy vacuum whose initial density is higher—and
can be any number of orders of magnitude higher—then the final one. In the phase
plane (Fig. 3.1) this solution corresponds to a finite closed orbit (loop) obtained from
the initial infinite one by replacing its part below the horizontal axis with an interval
of this axis between ρ∞ and ρ0, as shown in the figure.

This might represent some interesting physics but for the initial jump in the DE
density increasing it instantly. Where does the additional energy come from? Apart
from assuming the existence of some other universe(s) connected to the one we are
considering, the jump is a clear violation of the energy conservation law. Interest-
ingly, it can be avoided if matter has more than one component leading to a feasible
cosmological solution given in Sect. 4.1.

http://dx.doi.org/10.1007/978-3-319-57538-4_4
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Nevertheless, this toy model seems valuable, as it hints to some other ones that
do not have the indicated significant drawback. One can think about multiple rest
points and heteroclinic trajectories connecting them; these features, however, belong
entirely to the realm of non-linear models, which we consider next.

3.3.2 General Non-linear Model: Qualitative Picture.
Non-singular Cosmologies Represented by
Heteroclynic Phase Trajectories

We now return to the general non-linear case described by the autonomous sys-
tem (3.6),

dρ

dλ
= − [(1 + w)ρ + F(ρvac, ρ)] ; dρvac

dλ
= F(ρvac, ρ), λ = ln (V/V∗) .

Its equilibria and their stability play a central role in what follows, so we first of all
recall some related basic facts.

The global stability of a generic rest point of an autonomous system is determined
by the local system linearized about this point. The stabilty properties are specified
by the behavior of small perturbations of the equilibrium, i.e., by the solutions of this
linearized system, whose dependence on the evolution variable λ is exponential, ∝
exp(μλ). The admissible values of the exponentμ coincidewith the set of eigenvalues
of the matrix of the linearized system.

If each eigenvalue hasReμ < 0, then small perturbations decay in the vicinity of
this rest point, and it is stable (attractive); it is unstable (repulsive) in the opposite
case Reμ > 0 for every eigenvalue, when small perturbations are growing.

In the case when Reμ < 0 for a part of eigenvalues, Reμ > 0 for another part of
them, and perhaps yet Reμ = 0 for the remaining third part of them, the equlibrium
is called semi-stable. The eignevectors of eignevalues belonging to the first group
define the directions of stability, the motion along them goes towards the rest point in
its vicinity, i.e., perturbations decay. Accordingly, the second group of eigenvectors
define the unstable directions with the motion away from the rest point near it, so the
magnitude of perturbations in these directions grows.

Finally, if all the eigenvalues are purely imaginary, then the rest point is called
neutrally stable; such rest points are usually associated with closed orbits near them
representing periodic solutions.

Our governing system (3.6) repeated in the beginning of the current chapter has
the dimension D = 2, which implies a lot of pleasant specifics (for example, deter-
ministic chaos [14] possible in all higher dimensions does not occur in the systems



3.3 Non-singular Cosmological Solutions Starting and Ending … 25

on the plane). The 2 × 2 matrix, M, of the system linearized at an equilibrium has
just two eignevalues μ±, which are the roots of the quadratic polynomial

μ2 − (trM) μ + detM = 0 ; (3.43)

so they are either real or complex conjugate.
The rest point is stable ifReμ± < 0, and unstable in the opposite caseReμ± < 0.

Semi-stable equilibria, called saddles, correspond to real eigenvalues of the opposite
signs, μ− < 0, μ+ > 0. A rest point with imaginary μ± is called a center, it is
surrounded by closed phase orbits, which correspond to periodic solutions.

So the stability condition is detM > 0, trM < 0, the instability condition is
detM > 0, trM > 0. A rest point is a saddle when the discriminant of the polyno-
mial (3.43) is positive and the determinant of the matrixM is negative, detM < 0;
finally, a center occurs when trM = 0, detM > 0.

Let now P∗ = {ρvac = ρ∗, ρ = 0} be a rest point of our system (3.6), so that
F(0, ρ∗) = 0, as in Eq. (3.8). The matrixM∗ = M(P∗) is then given by

M∗ =
[−(1 + w + a∗) −b∗

a∗ b∗

]
, a∗ = ∂F

∂ρ

∣
∣
∣
∣
P∗

, b∗ = ∂F

∂ρvac

∣
∣
∣
∣
P∗

,

trM∗ = −(1 + w + a∗) + b∗ detM∗ = −(1 + w)b∗ . (3.44)

The stability conditions for P∗ are easily calculated to be:

saddle: b∗ > 0 ;
stable: b∗ < 0, b∗ < 1 + w + a∗ ;

unstable: b∗ < 0, b∗ > 1 + w + a∗ ;
center: b∗ < 0, b∗ = 1 + w + a∗ ; (3.45)

here we took into account 1 + w > 0. In a special case b∗ = 0 perturbations in the
ρ direction grow when a∗ > −(1 + w) and decrease when the opposite inequal-
ity holds. However, in the linear approximation perturbations in the direction ρvac

remain constant (corresponding eigenvalue is equal to zero), so stability in this direc-
tion should be additionally studied. The same is true for the (non-generic and thus
unrealistic) case b∗ = 0, a∗ = −(1 + w) when both eigenvalues turn to zero.

We are finished with all the preliminaries, and now turn to the general mechanism
producing cosmologies dominated by dark energy. We assume that our governing
system has (at least) three rest points

Pj = {ρvac = ρ j , ρ = 0}, j = 1, 2, 3 ,

corresponding to three different positive roots of the equation

F(ρ j , 0) = 0, 0 < ρ1 < ρ2 < ρ3 .
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Fig. 3.2 Two saddles
connected by heteroclinic
curves surrounding a single
center. The upper curve is a
trajectory corresponding to a
non-singular cosmological
solution starting and ending
with pure dark energy of
different densities. Dashed
line is a trajectory
corresponding to some
solution starting at a
singularity

ρ∞
ρ
0

ρvac

ρ

ρc

For the reasons that become clear below we will use also the alternative notations,

ρ1 = ρ∞, ρ2 = ρc, ρ3 = ρ0 .

Moreover, let us assume that the first ( j = 1) and last ( j = 3) rest points are saddles,
while the middle one ( j = 2) is a center, or a neutrally stable point, surrounded by
closed trajectories representing periodic solutions. Replacing the subscript ∗ with the
subscript j in the stability conditions (3.45) wewrite the corresponding requirements
as

b1,3 > 0; b2 < 0, b2 = 1 + w + a2 . (3.46)

Under these conditions, easily met, of course, by a general function F(ρvac, ρ),
heteroclinic trajectories, or separatrices, that go from one saddle point to the other,
necessarily exist. They separate the finite closed phase orbits around the center {ρ =
0, ρvac = ρc} from the infinite ones (this statement is valid only in the plane, D = 2!).
Each separatrix starts from one saddle along its unstable direction, and ends at the
other one, approaching it along its stable direction.

In this way, a classical phase portrait of the system appears that is given in Fig. 3.2
in solid lines. The arrows on heteroclinic curves show the direction of motion when
the evolution variable (λ, or V , or t) increases; it takes an infinite time to go from
one end of the separatrix to the other.

The upper heteroclinic curve corresponds, in fact, to a valid non-singular cos-
mological solution that starts with a pure heavy vacuum of the density ρ0, and ends
again in the state with nomatter and DE of a smaller density ρ∞. Matter appears from
the vacuum due to their interaction, its density grows and reaches some maximum
ρ = ρmax , and then decreases to zero when t → +∞.

This solution can be realized in the following way. Initially, the whole spacetime
rests at the de Sitter equilibrium P3, it is filled with DE of the density ρ0 and nothing
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Fig. 3.3 More saddles
(crosses), centers (dots), and
heteroclinic curves
surrounding the latter: a 3
saddles, 2 centers (‘cat’s
eyes’); b 4 saddles, 2 centers.
Each positive heteroclinic
trajectory corresponds to a
non-singular cosmological
solution starting and ending
with pure DE. Dashed lines
are trajectories of singular
cosmological solutions

ρvac

ρ

(a)

ρvac

ρ

(b)

else. At some moment t = 0 (V = 0) due to a small perturbation of this equilibrium
in its unstable direction toward positive values of ρ, the universe gets off P3 to the
upper separatrix, and goes along it to another de Sitter equilibrium P1 at t = +∞.
Such instability can happen for various physical reasons, for example, it may occur
due to the particle creation [15].

Of course, depending on the intricacies of the DE–matter interaction, there can
be more saddles and more heteroclinic trajectories representing non-singular cosmo-
logical solutions (examples with 3 and 4 saddles are given in Fig. 3.3). Moreover, a
heteroclinic trajectory might go not to a saddle, but to a stable rest point from either
an unstable one, or a saddle. In the former case of an unstable and stable equilibria
an infinite set of heteroclinic curves can exist, as in Fig. 3.4a.

Independent of how it occurs, each positive heteroclinc trajectory corresponds to
a non-singular cosmological solution starting and ending at the de Sitter equilibria
with diffrent DE densities. There also can be homoclinic curves going from a saddle
back to the same saddle, in which, cleraly non-generic, case the initial density of
heavy vacuum is equal to the final one. In any case, all non-singular cosmologies
start and end at pure vacuum states, because there are only equilibria with ρ = 0.

In addition, ‘standard’ cosmologies that emerge from singularities and correspond
to infinite phase trajectories tending to a rest point at large times, such as those
drawn in dashed lines in Figs. 3.2 and 3.3, are usually present. This infinite variety of
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Fig. 3.4 a Trajectories of
non-singular cosmological
solutions starting at an
unstable and ending at the
stable de Sitter equilibrium.
b Trajectory of a
non-singular cosmological
solution starting at a saddle
and ending at the stable de
Sitter equilibrium. Dashed
lines are trajectories of
singular cosmological
solutions

ρ∞ ρ
0

ρvac

ρ

(b)

ρvac

ρ
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cosmological solutions represents a ‘multi-verse’ that can be created by a common
heavy vacuum due to its complex interaction with matter.

Significant features are unveiled by studying the time dependence of the non-
singular cosmological solutions, described by heteroclinic trajectories, at there begin-
ning and end. As usual, this time dependence is derived by asymptotically calculating
the integral in the basic relation (2.8). Since ρ → +0, ρvac → ρ∞ at large times, the
asymptotics of the scale factor is an exponential one, exactly as in (3.13):

a(t) ∼ exp(t/τ∞), τ∞ = √
8πρ∞/3 . (3.47)

The situation with the behavior at small times is more complicated. For the open
universe, k = −1, the curvature term V−2/3 is positive, and dominating under the
square root in the Eq. (2.8) in the limit V → +0. So a non-singular solution can exist
that starts from the zero value of the scale factor, or co–moving volume:

V 2/3(t) ∼ t, a(t) ∼ √
t, t → +0 . (3.48)

If the universe is closed, k = 1, then the expression under the square root in the
formula (2.8) becomes negative for small values of V due to the negative curvature

http://dx.doi.org/10.1007/978-3-319-57538-4_2
http://dx.doi.org/10.1007/978-3-319-57538-4_2
http://dx.doi.org/10.1007/978-3-319-57538-4_2
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contribution−V−2/3. Hence there is no meaningful non-singular solution describing
a closed universe that starts at a = 0.

In the case of a flat universe, k = 0, the total density tends to ρ0 at the expansion
beginning, which results in

a(t) = a0 exp(t/τ0), τ0 = √
8πρ0/3 ,

so a → +0 only when t → −∞; the solution is defined on the whole time axis.
However, unlike the singular case, there is no need for a non-singular cosmological

solution to start at the zero value of the scale factor: before the expansion starts, a static
de Sitter universe exists whose scale factor grows exponentially and can have any
positive value at any given moment of time. Therefore an alternative for a universe of
any curvature is to start expanding, at t = 0, with a finite scale factor a0 = a(0) > 0.

For the closed universe the minimum starting scale factor value is defined by the
initial DE density, ρ0:

a0 = (8πρ0)
−1/2

The initial velocity of expansion is then equal to zero, ȧ(0) = 0, as implied by the
first Friedmann equation (2.4). The scale factor is a regular function of time near
t = 0, its two–term Taylor expansion is

a(t) = a0
(
1 + t2/6a20 + . . .

)
, t → +0; a0 = (8πρ0)

−1/2, k = 1 . (3.49)

A closed universe can also start at any scale factor value larger than the minimum
one, with the corresponding finite velocity. A flat or open non-singular universe can
start at any positive value a∗ of the scale factor. In all these cases the scale factor is
regular at t = 0, with the following two–term expansion (a∗ > a0 for k = 1):

a(t) = a∗ (1 + t/τ + . . . ) , t → +0; τ =
√
3/

(
8πρ0 − k/a2∗

)
, k = 0,±1 .

(3.50)

3.4 Non-singular Cosmologies: Exact Solutions

3.4.1 General Exact Solution by the Semi–inverse Method

A construction of closed–form heteroclinic solutions is always difficult, even if the
governing equations are explicitly integrable,which is not the case of our system (3.6)
with a general interaction law F(ρvac, ρ). Luckily, a semi–inverse solution method
comes to rescue.

We assume that our system has at least two rest points, P0 = {ρ0, 0} and P∞ =
{ρ∞, 0}, ρ∞ < ρ0, and that there exists a positive heteroclinic phase trajectory H
connecting the first point with the second one, as in Figs. 3.2, 3.3 and 3.4. We are

http://dx.doi.org/10.1007/978-3-319-57538-4_2
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looking for the exact solution describing this trajectory. Along it, the matter density
is some smooth enough positive function, h(ρvac), of the DE density, which turns to
zero at both ends of the interval ρ∞ < ρvac < ρ0:

ρ = h(ρvac); h(ρvac) > 0 for ρ∞ < ρvac < ρ0; h(ρ∞) = h(ρ0) = 0 .

(3.51)
Our plan is to keep h(ρvac)otherwise arbitrary, and try tofind the proper expression

for the interaction function F(ρvac, ρ) along the heteroclinic curve that makes the
function (3.51) satisfy the first of the governing equations (3.6). We then try to
complete the solution by finding some meaningful ρvac(V ) from the second of them.
This is what we call the semi–inverse method; if successful, it allows one to obtain
a non-singular cosmological solution and study its properties.

At the first step of our approach, we combine the second of the Eqs. (3.6),

dρvac

dλ
= F(ρvac, ρ) ,

with the representation (3.51) on the heteroclinic curve to get:

dρ

dλ

∣
∣
∣
∣
H

= dh

dρvac

dρvac

dλ

∣
∣
∣
∣
H

= h
′
(ρvac)F(ρvac) = h

′
(ρvac)F(ρvac, h(ρvac)) .

Therefore the first of the governing equations,

dρ

dλ
= − [(1 + w)ρ + F(ρvac, , ρ)] ,

turns, along the curve H, into

h
′
(ρvac)F(ρvac, h(ρvac)) = − [(1 + w)h(ρvac) + F(ρvac, h(ρvac))] ,

giving thus

F

∣
∣
∣
∣
H

= F(ρvac, h(ρvac)) = −(1 + w)
h(ρvac)

1 + h ′
(ρvac)

. (3.52)

This is the result of the first step of our approach; it requires two comments.
First, expression (3.52) specifies the interaction function F(ρvac, ρ) on the het-

eroclinic curve ρ = h(ρvac) only. Its value in the rest of the physical quarter–plane
ρvac ≥ 0, ρ ≥ 0 can be provided by an infinite number of smooth (one time contin-
uously differentiable) extensions of (3.52). The most obvious extension is

F(ρvac, ρ) = − (1 + w)ρ

1 + f (ρvac, ρ)
; f (ρvac, h(ρvac)) = h

′
(ρvac) .
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However, it represents a ‘degenerate’ case: each point of the positive semi–axis
ρvac ≥ 0 is a rest point here. To avoid this, one can use other extensions, like

F(ρvac, ρ) = − (1 + w)ρ + f1(ρvac, ρ)

1 + f2(ρvac, ρ)
,

f1(ρvac, h(ρvac)) = 0, f2(ρvac, h(ρvac)) = h
′
(ρvac) ,

and so on. Depending on the extension, or, better to say, on the complete law of
DE–matter interaction, the system may or may not have rest points other than P0
and P∞. Moreover, the stability of the rest points also depends on the extension of
the expression (3.52); however, the heteroclinic curve connects P0 with P∞, so P0
is either a saddle or an unstable equilibrium, while P∞ is a stable one or a saddle, as
in Fig. 3.4.

The second comment is that we have to avoid singularities of the function (3.52)
only within the interval ρ∞ < ρvac < ρ0: all other singularities can be eliminated by
choosing the extension appropriately. If exist, the singularities of F

∣
∣
H are the zeros

of the denominator in (3.52); since h
′
(ρvac) is positive near the left end of the interval

and negative at the right one, there are no such zeros if and only if

min
ρ∞≤ρvac≤ρ0

h
′
(ρvac) > −1 . (3.53)

This is a regularity condition for the function (3.52), and simultaneously one more
restriction on the function h(ρvac).

At the next step of the solution by the semi–inversemethodwe integrate the second
governing equation along the heteroclinic curve, where, by the formula (3.52),

dρvac

dλ
= −(1 + w)

h(ρvac)

1 + h ′
(ρvac)

.

The result of this simple integration in terms of the variable V is:

h(ρvac) exp H(ρvac) = ρ∗
(
V∗
V

)1+w

, H(ρvac) =
ρvac∫

dv

h(v)
. (3.54)

An arbitrary constant ρ∗ > 0 is introduced for the consistency of writing; of course,
effectively there is only one arbitrary constant here, that is,

C∗ = ρ∗V 1+w
∗ .

If, for a given h(ρvac), the Eq. (3.54) has a proper solution ρvac(V ), particularly, with
the right behavior at the ends of the interval, ρvac → ρ∞ + 0 and ρvac → ρ0 − 0,
then, combined with ρ = h(ρvac(V )), it provides a valid cosmological solution. The
existence of such solution can hardly be established in general; instead, one can
usually successfully analyze Eq. (3.54) for a particular h(ρvac).
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However, assuming that the solution does exist, we verify its limit behavior in
Appendix C under the assumption that the zeros of h(ρvac) at ρvac = ρ0, ρ∞ are
general algebraic, i.e.:

h(ρvac) = h∞(ρvac − ρ∞)ν∞[1 + o(1))], ρvac → ρ∞ + 0; h∞ > 0, ν∞ > 0 ;
h(ρvac) = h0(ρ0 − ρvac)

ν0 [1 + o(1))], ρvac → ρ0 − 0 h0 > 0, ν0 > 0 . (3.55)

Assuming also that these asymptotic expressions can be differentiated in ρvac,

h
′
(ρvac) = ν∞h∞(ρvac − ρ∞)ν∞−1[1 + o(1))], ρvac → ρ∞ + 0 ;
h

′
(ρvac) = − ν0h0(ρ0 − ρvac)

ν0−1[1 + o(1))], ρvac → ρ0 − 0 , (3.56)

we conclude that

h
′
(ρ0) = 0, ν0 > 1; h

′
(ρ0) = −h0, ν0 = 1; h

′
(ρ0) = −∞, 0 < ν0 < 1 ;

h
′
(ρ∞) = 0, ν∞ > 1; h

′
(ρ∞) = h∞, ν∞ = 1; h

′
(ρ∞) = +∞, 0 < ν∞ < 1 .

This shows that the condition (3.53) guaranteeing the lack of singularity of the
interaction function on the heteroclinic curve results in the following restrictions on
the parameters:

ν0 > 1; ν0 = 1, 0 < h0 < 1 . (3.57)

So, the zero of h(ρvac) at ρvac = ρ0 should be of order one at least; the positive
constants h∞ and ν∞ remain unrestricted.

The asymptotic analysis of Appendix C demonstrates that, under the condi-
tions (3.55)–(3.57), the non-singular solutions obtained by the semi–inverse method
can start only with the zero value of the scale factor. According to the previous
chapter, this means that such solutions describe only an open universe. (However,
there is no such limitation in the case of several matter components when not all of
them are interacting with dark energy, see Chap.4).

Combining the results of this chapter with those of Appendix C we arrive at the
following description of the solutions found by the semi–inverse method.

Let P0 = {ρ0, 0} and P∞ = {ρ∞, 0}, ρ∞ < ρ0, be the rest points of the sys-
tem (3.6) governing cosmological evolution. Let a smooth enough function h(ρvac)

be positive in the interval ρ∞ < ρvac < ρ0, turn to zero at both its ends, and satisfy
condition (3.53). Let the function F(ρvac, ρ) describing the DE–matter interaction
be restricted to the heteroclinic curve ρ = h(ρvac) connecting P0 and P∞ according
to the Eq. (3.52).

If Eq. (3.54) has a continuously differentiable positive solution ρvac = ρvac(V )

such that ρvac(+0) = ρ0, ρvac(+∞) = ρ∞, then

ρ = h(ρvac) = h(ρvac(V )), ρvac = ρvac(V )

is a solution of the governing system with the above heteroclinic curve as its phase
trajectory. It describes a Friedmann universe whose expansion starts with pure dark

http://dx.doi.org/10.1007/978-3-319-57538-4_4
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energy of the density ρ0 and no singularity, and ends with dark energy of the density
ρ∞ < ρ0.

If, in addition, h(ρvac) satisfies conditions (3.55)–(3.57), then the asymptotic
dependence of both densities on time is:

t → +0, a(t) ∼ √
t (open universe)

(a) for ν0 > 1,

ρ0 − ρvac ∼ (ln t)
− 1

ν0−1 , ρ ∼ (ln t)
− ν0

ν0−1 ;
(b) for ν0 = 1, 0 < h0 < 1,

ρ0 − ρvac ∼ ρ ∼ t
3(1+w)h0
2(1−h0) . (3.58)

t → +∞, a(t) ∼ exp(t/τ∞), τ∞ = √
8πρ∞/3 (open universe)

(a) for ν∞ > 1,

ρvac − ρ∞ ∼ t−
1

ν∞−1 , ρ ∼ t−
ν∞

ν∞−1 ;
(b) for ν∞ = 1,

ρvac − ρ∞ ∼ ρ ∼ exp

[
−3(1 + w)h∞

2(1 + h∞)

t

τ∞

]
;

(c) for ν∞ < 1,

ρvac − ρ∞ ∼ exp

[
−3(1 + w)

2ν∞
t

τ∞

]
, ρ ∼ exp

[
−3(1 + w)

2

t

τ∞

]
. (3.59)

Remarkably, for ν0 > 1, when ρ0 is a zero of h(ρvac) of the order higher than one,
both densities evolve very slowly in the beginning, only as an inverse power of the
log of time. Similarly, at large times they both tend to their limits only as inverse
powers for ν∞ > 1, with the exponential decay in other cases.

3.4.2 Particular Non-singular Cosmologies: Examples
of Exact Solutions

Any particular choice of the function h(ρvac) (3.51) satisfying all the pertinent con-
ditions and allowing for the proper solution ρvac(V ) of the Eq. (3.54) provides an
example of the solution describing some non–singular cosmology. We are choos-
ing simple enough expressions for h(ρvac), in particular, allowing for the integral
H(ρvac) to be calculated in terms of elementary functions.

Example 1 Clearly, the simplest possible expression for h(ρvac) is

h(ρvac) = (ρ0 − ρvac)(ρvac − ρ∞)

R
, R > 0 . (3.60)
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It satisfies conditions (3.51), (3.55), and (3.56) with parameter values

ν0 = ν∞ = 1, h0 = h∞ = (ρ0 − ρ∞)/R . (3.61)

The inequality (3.57) on the value of h0 is met when

h0 = (ρ0 − ρ∞)/R < 1, or R > ρ0 − ρ∞ ; (3.62)

it also ensures the inequality (3.53) required to avoid singularities of the interac-
tion function. Therefore the function (3.60) with the parameters restricted by the
inequality (3.62) meets all the desirable conditions.

It is straightforward to calculate the integral (3.54) for this case, with the result:

H(ρvac) = ln

(
ρvac − ρ∞
ρ0 − ρvac

)1/h0

; (3.63)

thus the Eq. (3.54) for ρvac(V ) reduces to

(ρvac − ρ∞)(1/h0)+1 = K

V 1+w
(ρ0 − ρvac)

(1/h0)−1, K = Rρ∗V 1+w
∗ = RC∗ > 0 .

(3.64)

Since, by (3.62), 1/h0 > 1, the l.h.s. of this equation increases monotonically from
zero at ρvac = ρ∞ to a positive value at ρvac = ρ0. Contrary to this, the r.h.s.monoton-
ically decreases to zero at ρvac = ρ0, for any V > 0. Therefore the two curves have a
single intersection, i.e., the equation has the unique solution ρvac(V ), 0 < V < ∞.

So, Eqs. (3.60) and (3.64) under the condition (3.62) define a solution of the
governing equations corresponding to a non-singular cosmology. Its behavior in
the beginning and at the end of the expansion is described by the formulas (3.58)
and (3.59):

ρ0 − ρvac ∼ ρ ∼ tα, α = 3(1 + w)(ρ0 − ρ∞)/2 [R − (ρ0 − ρ∞)] , t → +0 ;
ρvac − ρ∞ ∼ ρ ∼ exp

{
−3(1 + w)(ρ0 − ρ∞)

2[R − (ρ0 − ρ∞)]
t

τ∞

}
, τ∞ = √

8πρ∞/3; t → +∞ .

In this example the heteroclinic phase trajectory (3.60) is the top of a quadratic
parabola with its maximum at the midpoint, (ρ0 + ρ∞)/2, of the interval. Thus the
maximum value of matter density achieved in the course of evolution is

ρmax = h

(
ρ0 + ρ∞

2

)
= (ρ0 − ρ∞)2

4R
<

ρ0 − ρ∞
4

; (3.65)

the inequality here is implied by the condition (3.62). Naturally, ρmax tends to zero
when R → ∞ and (ρ0 − ρ∞) is fixed.
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Example 2 Formula (3.60) can be generalized to

h(ρvac) = (ρ0 − ρvac)(ρvac − ρ∞)q(ρvac) ,

where the function q(ρvac) is positive on the segment ρ∞ ≤ ρvac ≤ ρ0 and has a
bounded derivative. As our next example, we take q(ρvac) = θ/ρvac, θ > 0, so that

h(ρvac) = θ(ρ0 − ρvac)(ρvac − ρ∞)/ρvac ;
ν0 = ν∞ = 1, h0 = θ(ρ0 − ρ∞)/ρ0, h∞ = θ(ρ0 − ρ∞)/ρ∞ . (3.66)

Condition (3.62), h0 < 1, requires

θ < ρ0/(ρ0 − ρ∞) .

Since
h

′
(ρvac) = θ(ρ0ρ∞ − ρ2vac)/ρ

2
vac , (3.67)

the inequality (3.53), h
′
(ρvac) > −1, holds for

0 < θ < (ρ0 + ρvac)/ρ0 , (3.68)

which also guarantees the previous inequality, because (ρ0+ρ∞)/ρ0< ρ0/(ρ0−ρ∞).

Next we calculate H(ρvac) (compare to the expression (3.63)):

H(ρvac) = ln
(ρvac − ρ∞)1/h∞

(ρ0 − ρvac)1/h0
.

Thus the Eq. (3.54) for ρvac(V ) is:

(ρvac − ρ∞)(1/h0)+1 = K

V 1+w
ρvac(ρ0 − ρvac)

(1/h0)−1, K = θ−1ρ∗V 1+w
∗ > 0 .

(3.69)
It differs from the Eq. (3.64) of Example1 by a single growing factor ρvac on the
utmost right, which however causes the additional investigation of how the r.h.s.
behaves as a function of ρvac, since its second factor is decreasing. The analysis shows
that the r.h.s., i.e., the product of the two factors, is decreasing under the condition
θ < ρ0/(ρ0 − ρ∞), which is true by virtue of the condition (3.68). Therefore the
Eq. (3.69) has a unique positive solution ρvac(V ), as in the Example1.

So, a unique non-singular cosmological solution exists in this case for any para-
meters satisfying condition (3.68). Its small and large time behavior is described by
the following asymptotic formulas,

ρ0 − ρvac ∼ ρ ∼ tα, α = 3(1 + w)θ(ρ0 − ρ∞)/2 [ρ0 − θ(ρ0 − ρ∞)] t → +0;
ρvac − ρ∞ ∼ ρ ∼ exp

{
−3(1 + w)θ(ρ0 − ρ∞)

2[ρ0 − θ(ρ0 − ρ∞)]
t

τ∞

}
, τ∞ = √

8πρ∞/3; t → +∞ ,
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which can be obtained from the formulas (3.65) of Example1 by a formal replace-
ment of R with ρ0/θ. The main difference between the solutions from the two exam-
ples is that the phase trajectory of the second one is no longer symmetric about the
midpoint (ρ∞ + ρ0)/2. In particular, the maximum value of the matter density is
achieved when ρvac = √

ρ0ρ∞:

ρmax = h(
√

ρ0ρ∞) = θ(
√

ρ0 − √
ρ∞)2 . (3.70)

Example 3 In the previous two examples the zeros of the function h(ρvac) at both
ends of the interval were of the first order. In other words, the phase trajectory
ρ = h(ρvac) intersected the ρvac axis at a non-zero angle at both ρvac = ρ∞ and
ρvac = ρ0. Now we consider an example of higher, second order zero, when the
phase orbit just touches the horizontal axis. We assume

h(ρvac) = (ρ0 − ρvac)(ρvac − ρ∞)2/R2, R > 0 , (3.71)

so

ν0 = 1, h0 = (ρ0 − ρ∞)2/R2; ν∞ = 2, h∞ = (ρ0 − ρ∞)/R2 . (3.72)

Conditions (3.57) and (3.53) are met by just

R > ρ0 − ρ∞ . (3.73)

The function H(ρvac) is

H(ρvac) = ln

(
ρvac − ρ∞
ρ0 − ρvac

)1/h0

− 1

h0

ρ0 − ρ∞
ρvac − ρ∞

.

Therefore the key Eq. (3.54) turns into

(ρ0 − ρvac)
(1/h0)+2 exp

(
− 1

h0

ρ0 − ρ∞
ρvac − ρ∞

)
= K

V 1+w
(ρvac − ρ∞)(1/h0)−1 , (3.74)

where K = R2ρ∗V 1+w∗ > 0. Since 1/h0 > 1, the same arguments of monotonicity
apply here as in the two previous examples, so the unique positive solution ρvac =
ρvac(V ) to the Eq. (3.74) exists for any V > 0. Along with ρ = h(ρvac), it defines
yet another non-singular cosmology; its behavior at the beginning and end of the
expansion is described by the formulas:

ρ0 − ρvac ∼ ρ ∼ tα, α = 3(1 + w)(ρ0 − ρ∞)2/2
[
R2 − (ρ0 − ρ∞)2

]
, t → +0 ;

ρvac − ρ∞ ∼ t−1, ρ ∼ t−2, t → +∞ .
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Remarkably, the behavior of the density at large times is no longer exponential but
given by a power law; this is always true for ν∞ > 1, according to the formula (a)
in (3.59).

The maximum value of the matter density in the course of the expansion is

ρmax = h

(
2ρ0 + ρ∞

3

)
= 4(ρ0 + ρ∞)2

9R
. (3.75)

The number of examples generated by the semi–inverse method developed in the
Sect. 3.4.1 can be easily extended. It is worthwhile to note that the Examples1–3 can
be obtained as exact solutions of the first completely integrable model of Appen-
dix B, under the proper choice of the function f (ρvac) involved in the interaction
law (B1). However, there is a significant difference in these two approaches. Namely,
the interaction law in the semi–inverse method is fixed only along the heteroclinic
curve, and can be extended elsewhere without any singularities, as stated. Contrary
to this, the law (B1) is specified in the whole plane, so the singularities on the ρvac

axis outside its [ρ∞, ρ0] interval are present in it, making it hardly plausible form the
physics standpoint. Also, because of the freedom of the interaction law extension,
the first approach demonstrates how generic these non-singular solutions are.
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Chapter 4
Friedmann Cosmology with Interaction
Between Dark Energy and Multi-Phase
Matter

We now consider a more realistic cosmological model with a number of different
matter species (as, in particular, in the �CDM model); for the sake of generality,
we assume the number, N > 1, of matter phases arbitrary. Each of the phases is
described by its density, ρn = ρn(t), and pressure, pn = pn(t), related by the partial
equation of state:

pn = wnρn, wn > −1, n = 1, 2, . . . , N . (4.1)

Two species with the same equation of state might still differ by other physical
properties, so we do not assume wm �= wn for m �= n. In the presence of DE, the
total density and pressure thus become:

ρtot = ρvac + ρ = ρvac +
N∑

n=1

ρn ;

ptot = pvac + p = pvac +
N∑

n=1

pn = −ρvac +
N∑

n=1

wnρn . (4.2)

Cosmological evolution is again described by the Friedmann equations (2.4) but
with the total density and pressure (4.2). The first Friedmann equation defines the
time dependence of the scale factor (or the co-moving volume V (t) = a3(t)) by the
formula (2.8). The second one, the equation of energy conservation in the form (2.7),
dρtot/dV = −(ρtot + ptot )/V , turns to

d

dV

(
ρvac +

N∑

n=1

ρn

)
= − 1

V

N∑

n=1

(1 + wn)ρn

(compare with the corresponding single phase Eq. (3.4)), or
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dρvac

dV
+

N∑

n=1

[
dρn

dV
+ (1 + wn)ρn

V

]
= 0 . (4.3)

In the usual approach each specie is assumed to be conserved,

dρn

dV
+ (1 + wn)ρn

V
= 0, n = 1, 2, . . . , N . (4.4)

Under this condition Eq. (4.3) requires that the DE density is constant, and the whole
cosmological solution becomes thus

ρvac = const, ρn = Cn/V
(1+wn), Cn > 0, n = 1, 2, . . . , N . (4.5)

There are enough grounds for considering matter species in our universe not
interacting with each other. We retain this standard assumption, but, as everywhere
in this book, do not forbid any of them to interact with DE. In case when Ni ≥ 1
species interact with heavy vacuum, Ni equations describing this interaction should
be added to the Eq. (4.3), to determine the evolution of all the relevant densities. We
discuss two cases: (a) when a single matter phase interacts with DE, Ni = 1, and (b)
when several phases are interacting, 1 < Ni ≤ N .

4.1 Single Matter Phase Interacting with Dark Energy

Let the matter component interacting with DE have the number n = 1, so it is
described by ρ1; all other matter phases are conserved. The densities of the latter are
as in Eq. (4.5),

ρn = Cn/V
(1+wn), Cn > 0, n = 2, . . . , N , (4.6)

and the conservation equation (4.3) reduces to

d(ρvac + ρ1)

dV
= − (1 + w1)ρ1

V
. (4.7)

To find ρ1(t) and ρvac(t), we need an equation specifying the interaction between
the two. It is natural to take it in the same general form (3.4), that is,

dρvac

dV
= F(ρvac, ρ1)

V
, (4.8)

where F(ρvac, ρ1) is some interaction function. Combining the last two equations
gives the governing system

dρ1

dV
= − (1 + w1)ρ1 + F(ρvac, ρ1)

V
,

dρvac

dV
= F(ρvac, ρ1)

V
, (4.9)

http://dx.doi.org/10.1007/978-3-319-57538-4_3
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which is, naturally, nothing else as the system (3.5) controlling the cosmology of
a single matter phase interacting with DE (up to the notations ρ, w replaced with
ρ1, w1). Therefore all the general features and all exact solutions found and discussed
in Chap.3, including non-singular cosmologies of Sect. 3.4, remain valid for ρ1(t)
and ρvac(t), with all other densities given by the usual expressions (4.6).

Remarkably, a toy non-singular cosmological solution of Sect. 3.3.1, with the
initial jump in the DE density (see Fig. 3.1) and the linear interaction law (3.35),

F(ρvac, ρ1) = −sρ1 + θ(ρvac − ρ∞) ,

acquires a physical meaning due to the presence of other matter species. Namely,
the initial jump in the DE density from ρ∞ to ρ0 can be explained by a phase tran-
sition between the matter phases (4.6) (otherwise not interacting with DE) and the
heavy vacuum that keeps the total energy conserved. The corresponding solution not
violating, unlike the solution (3.42), energy conservation, is:

ρvac = ρ∞, ρ1 = 0, ρn = Cn/V
(1+wn), Cn > 0, n = 2, . . . , N , for 0 < V < V∗ ;

ρvac = ρ∞ + |s|ρ∗

[
Q2

(
V∗
V

)|μ2|
+ Q1

(
V∗
V

)|μ1|]
, ρ1 = ρ∗

[(
V∗
V

)|μ2|
−

(
V∗
V

)|μ1|]
,

ρn = C
′
n/V

(1+wn), C
′
n > 0, n = 2, . . . , N , for V∗ < V < +∞ ; (4.10)

�ρtot

∣∣∣
V=V∗

= (�ρvac + �ρ)

∣∣∣
V=V∗

= ρ0 − ρ∞ +
N∑

n=2

C
′
n − Cn

V 1+wn∗
= 0 .

The constants μ1,2 and Q1,2 are defined in the Eqs. (3.38) and (3.40), respectively, the
interaction parameter s is in the physical range (3.12), and ρ0 = ρvac(V∗ + 0). Note
that some of the matter phases can turn to DE (C

′
n < Cn) at the jump, some might

gain from DE (C
′
n > Cn), and some might stay unchanged (C

′
n = Cn), provided that

the last equality holds. That is, since �ρvac = ρ0 − ρ∞ is positive, �ρ = −�ρvac

must be negative. Note also that the (partial) phase trajectory of this solution in the
plane {ρvac, ρ1} remains as shown in Fig. 3.1.

The universe (4.10) starts (t, V → +0) with ρ1 = 0, ρvac = ρ∞, and all other
matter phases singular, undergoes an instant matter–DE phase transition raising ρvac

to ρ0 at some moment t = t∗ (V∗ = V (t∗)), and drives finally (t, V → ∞) to the
initial de Sitter universe with ρvac = ρ∞ and ρ = 0.

4.2 Any Number of Matter Phases Interacting with Dark
Energy

Let now more than one matter phases interact with DE, so that the number of the
interacting species is Ni , 1 < Ni ≤ N . The densities of all other, non-interacting,
matter species are again given by the standard expressions

ρn = Cn/V
(1+wn), Cn > 0, n = Ni + 1, . . . , N , (4.11)
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and N should be replaced with Ni in the energy conservation equation (4.3). Keeping
the assumption that the matter species do not interact with each other, we take the
following law of their interaction with DE (Fn is an arbitrary function):

dρn

dV
+ (1 + wn)ρn

V
= − Fn(ρvac, ρn)

V
, n = 1, 2, . . . Ni ;

each phase is conserved if and only if Fn = 0. With this, the energy conservation
equation turns to

dρvac

dV
= F(ρvac, ρ1, ρ2, . . . , ρNi )

V
,

where

F(ρvac, ρ1, ρ2, . . . , ρNi ) =
Ni∑

n=1

Fn(ρvac, ρn) . (4.12)

The last two differential equations govern the evolution of the universe in this case;
as before, it is convenient to use them in an autonomous form,

dρn

dλ
= − [(1 + wn)ρn + Fn(ρvac, ρn)] , n = 1, 2, . . . Ni ;

dρvac

dλ
= F(ρvac, ρ1, ρ2, . . . , ρNi ) : λ = ln (V/V∗) , (4.13)

with F defined by the equality (4.12).
Generally, this is a nonlinear autonomous system ofODEs of the order Ni +1 ≥ 3,

which allows for solutions with various behavior: even a strange attractor is possible,
in principle, in the large time limit. This alone shows that the approach inwhichmatter
is represented by a single ‘dominant’ component (like radiation, w = 1/3, in our
early universe, or dark matter, w = 0, later) might be insufficient no matter how
small the abundances of other matter species are.

A usual regular limiting behavior at large times occurs when a cosmological
solution goes to a rest point P = {ρ∗

1, ρ
∗
2, . . . , ρ

∗
N , ρ∗

vac} ≡ P{ρ∗
n, ρ

∗
vac} of the sys-

tem (4.13). Such a rest point is described by the equations:

ρ∗
n = (1 + w1)

−1Fn(ρ
∗
vac, ρ

∗
n), n = 1, 2, . . . Ni ;

Ni∑

n=1

Fn(ρ
∗
vac, ρ

∗
n) = 0.

It is a physical equilibrium when ρ∗
n ≥ 0, therefore in this case Fn(ρ

∗
vac, ρ

∗
n) ≥ 0

for all relevant values of n. But then the second of the above equations implies then
Fn(ρ

∗
vac, ρ

∗
n) = 0 for all n, so from the first equation it follows that the only possible

physical rest point is

ρ∗
n = 0, Fn(ρ

∗
vac, 0) = 0, n = 1, 2, . . . Ni ; ρ∗

vac > 0 ; (4.14)
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it corresponds again to a de Sitter universe. If an equilibrium point exists and is
stable, then, in view of the expressions (4.11), a set of cosmological solutions of a
non–zero measure tends to it at large times. However, this requires all interaction
functions Fn(ρvac, 0), n = 1, 2, . . . Ni , have a common positive root ρ∗

vac.
This is a strong restriction, unless some serious physics underlies it; if it is not

valid, then the densities of the interacting matter species do not all tend to zero at
large times, and the DE density does not tend to a constant. So generically the large
time behavior of cosmological solutions with several matter phases involved in the
DE–matter interaction is more complicated than the usual one; this is a characteristic
feature of the multiple phase interaction.

Of course, the governing system (4.13) cannot be explicitly integrated for a general
set of interaction laws Fn . For this reason, below we explore two more particular
models of interaction allowing for a detailed analysis and some new features.

4.2.1 Linear Interaction Laws

In a complete similarity with the case of single matter phase (see formula (3.35)) we
consider linear interaction laws

Fn(ρvac, ρn) = −snρn + θn(ρvac − ρ∞), sn, θn, ρ∞ = const, ρ∞ ≥ 0 . (4.15)

The governing equations (4.13) become thus

dρn

dλ
= − [(1 + wn − sn)ρn + θn(ρvac − ρ∞)] , n = 1, 2, . . . Ni ;

dρvac

dλ
= −

Ni∑

n=1

snρn + �(ρvac − ρ∞), � =
Ni∑

n=1

θn .

Introducing an Ni + 1–dimensional vector function z(t),

z(λ) = {ρ1(λ), ρ2(λ), . . . , ρNi (λ), [ρvac(λ) − ρ∞]}T , (4.16)

we rewrite this system of the first order equations in a matrix form (δ jk is the Kro-
necker symbol):

dz
dλ

= Mz ; (4.17)

Mnj = −(1 + wn − sn)δnj − θnδ j N1+1, n = 1, 2, . . . Ni ;
MN1+1 j = −s j , n = 1, 2, . . . Ni ; MN1+1N1+1 = � .

It is a linear system with constant coefficients, so its general solution is obtained as
a linear combination of exponents of λ (powers of V ):

http://dx.doi.org/10.1007/978-3-319-57538-4_3
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z(λ) =
Ni+1∑

k=1

Akek exp(μkλ) =
Ni+1∑

k=1

BkekV ; Bk = Ak/V
μk∗ . (4.18)

Here μk are the eigenvalues of the matrix M, that is, the roots of the algebraic
equation

det (M − μI ) = 0 (I is the unit matrix) ,

and ek are the corresponding normalized eigenvectors,

(M − μI ) ek = 0, ek = {ek1, . . . , ekNi+1}T ,

Ni+1∑

n=1

e2kn = 1, k = 1, . . . Ni + 1

(for brevity, we consider only the generic case when all μk are different).
The matrixM is not symmetric, so its eigenvalues might be complex, coming in

complex conjugate pairs. Since the physical solution must be real, real parts should
be taken at the proper places of expression (4.18). Namely, suppose there are Nc ≥ 1
pairs of complex eigenvalues μk and μ̄k , with the eigenvectors ek and ēk , respectively,
k = 1, 2, . . . , Nc. The physical solution then becomes

z(λ) =
Nc∑

k=1

CkV
ηk [rk cos(νk ln V ) + ik sin(νk ln V )] +

Ni+1∑

k=2Nc+1

CkV
μkek;

Ck = Ak/V
ηk∗ ; ηk = Re(μk), νk = Im(μk) ; (4.19)

rk = 2Re(ek)/V ηk∗ , ik = −2Im(ek)/V ηk∗ ,

but it still requires two additional conditions to be met. First, all the densities must
vanish at large times (V → ∞), so all the powers of V must be negative,

ηk = Re(μk) < 0, 1 ≤ k ≤ Nc; μk < 0, 2Nc + 1 ≤ k ≤ Ni + 1 ; (4.20)

this shows also that the expansion starts (V → +0) from singularity.
The second and more constraining condition comes from the fact that all the

densities must be positive throughout the expansion. For the case of a single matter
specie interacting with DE, corresponding to Ni = 2, this condition never holds,
as demonstrated in Sect. 3.1. For Ni > 2 this condition might be possible to meet
with some proper combination of parameters wn, sn, θn , and the right choice of
the arbitrary constants Ck . Additional restrictions are needed when some of the
eigenvalues μk are indeed complex (Nc ≥ 1). In this case the densities contain
some terms oscillating around zero (the first sum in the expression (4.19)); those
oscillations must be dominated by other strictly positive monotonic contributions.
This can happen if one of the real negative eigenvalues μk is smaller than all ηk, k =
1, 2, . . . , Nc, and the other one is larger than them. If this is true, the oscillations
are compensated at least near the initial singularity (V → +0) and towards the end

http://dx.doi.org/10.1007/978-3-319-57538-4_3
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of the expansion (V → ∞), with a possibility for the density to stay positive in
between as well.

If all the mentioned conditions are fulfilled, then the physical solution is

ρn =
Nc∑

k=1

CkV
−|ηk | [rkn cos(νk ln V ) + ikn sin(νk ln V )] +

Ni+1∑

k=2Nc+1

CkeknV
−|μk |;

ρvac = ρ∞ +
Nc∑

k=1

CkV
−|ηk | [rkNi+1 cos(νk ln V ) + ikNi+1 sin(νk ln V )

] + (4.21)

+
Ni+1∑

k=2Nc+1

CkekNi+1V
−|μk | .

This solution drives to a de Sitter universe ρn = 0, ρvac = ρ∞. If oscillations are
present, then their frequency becomes infinitely large both at the initial singularity
and the expansion end.

It is worthy to consider one particular case studied in detail in Sect. 3.1 for the
singlematter phase cosmology. In this case the linear interaction law does not depend
on the DE density, i.e., θn = 0, Fn(ρvac, ρn) = −snρn . Thus every density ρn satisfies
its own linear equation, making the answer rather simple:

ρn = Cn

V 1+wn−sn
, n = 1, 2, . . . Ni ; ρvac = ρ∞ +

Ni∑

k=1

snCn

V 1+wn−sn
; (4.22)

it is an exact analog of the single matter phase solution (3.11), with all the proper-
ties described in Sect. 3.1. The solution (4.22) is physically meaningful under the
condition

0 < sn < 1 + wn, n = 1, 2, . . . Ni ,

which is a generalization of the condition (4.19). It guarantees that all the densities,
including ρn , are positive and monotonically decreasing with matter vanishing at
infinity. However, the left inequality above is, in fact, necessary for only one value
of n, say, n = k, corresponding to the maximum difference (wn − sn),

wk − sk = max
1≤n≤Ni

(wn − sn) ,

providing that the DE density is positive at small times, near the singularity. Depend-
ing on the values of the positive constants Cn , some of other parameters sn, n �= k,
can be negative, with ρvac remaining positive throughout the expansion. In this case
it might be non-monotonic, having positive maxima and minima at some moments
of time.

http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
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4.2.2 Quadratic Interaction Laws

Here we set

Fn(ρvac, ρn) = −(sn/R)ρn(ρvac − ρ0), sn, R, ρ0 = const, R, ρ0 ≥ 0 . (4.23)

The governing equations (4.13) become:

dρn

dλ
+ (1 + wn)ρn = sn

R
ρn(ρvac − ρ0), n = 1, 2, . . . Ni ;

dρvac

dλ
= − 1

R

Ni∑

n=1

snρn(ρvac − ρ0) . (4.24)

As usual, we are interested only in its physical solutions, with all the densities positive
and matter phase densities vanishing at the end of the expansion.

The autonomous system (4.24) of (Ni + 1) equations has a physical rest point
ρn = 0, ρvac = ρ∞ with any ρ∞ ≥ 0, i.e., the whole semi-axis ρvac ≥ 0 consists of
its equilibriia. They can attract solutions at large times; the corresponding asymptotic
expressions for the case ρ∞ �= ρ0 are (t, V → +∞):

ρn = Dn

V 1+wn+γsn
[1 + o(1)] , γ = ρ0 − ρ∞

R
, ρ∞ �= ρ0; n = 1, 2, . . . Ni ; (4.25)

ρvac = ρ∞ − γsk Dk

(1 + wk + γsk )V 1+wk+γsk
[1 + o(1)] , wk + γsk = min

1≤n≤Ni
(wn + γsn) ;

here Dn > 0 is some constant. For the matter densities to vanish asymptotically, the
following condition is required, for all n:

1 + wn + γsn > 0 ,

which splits into two sets of inequalities:

(a) ρ∞ > ρ0, sn <
R

ρ∞ − ρ0
(1 + wn); (b) ρ∞ < ρ0, sn > − R

ρ0 − ρ∞
(1 + wn) .

(4.26)
In both cases the signs of the parameters sn are not fixed: some of them can be
positive, the other can be negative.

The large time asymptotics for the exceptional case of the attracting rest point with
ρvac = ρ0 is more complicated, except the obvious exact solution with the constant
DE density:

ρn = Dn/V
1+wn , n = 1, 2, . . . Ni ; ρvac = ρ0 = const . (4.27)

Here there is no interaction between dark energy and matter, thus all the matter
species are conserved (by the formulas (4.27) and (4.11)). However, this solution,
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and thus the parameter ρ0, can play a role in the initial behavior of solutions that
may ‘branch’ from the above one out of the singularity. The asymptotic formulas
describing such behavior are (t, V → +0):

ρn = Dn

V 1+wn
[1 + o(1)] , D − n > 0, n = 1, 2, . . . Ni ; (4.28)

ρvac = ρ0 + D0 exp

[ −sk Dk

(1 + wk)V 1+wk

]
[1 + o(1)] , wk = max

1≤n≤Ni

wn, sk > 0 .

The last inequality is needed because the correction to ρ0 must vanish in the limit. For
the first time this correction proves to be exponentially small; all other cosmological
solutions obtained and discussed so far do not have this feature.

A solution with the small time asymptotics (4.28) is similar to the solution (4.27)
in a sense that all matter in the universe described by it is born form a singularity,
and the DE density is finite at the initial moment of time. If this solution also has the
large time behavior described by the formulas (4.25), then the DE density evolves
from one value, ρ0, in the beginning, to some other, ρ∞, at the end of the expansion.

The governing system (4.24) of (Ni + 1) equations can be reduced to just two
equations for any Ni > 1, since its Ni − 1 integrals are explicitly found. Indeed, the
first Eq. (4.24) implies

d ln ρn

dλ
+ (1 + wn) = sn

R
(ρvac − ρ0), n = 1, 2, . . . Ni ,

allowing for the following Ni − 1 combinations:

sn
d ln ρ1

dλ
− s1

d ln ρn

dλ
+ [sn(1 + w1) − s1(1 + wn)] = 0, n = 2, 3, . . . Ni .

These equations can be immediately integrated to give the expressions for all inter-
acting phase densities through the first one,

ρn = Anρ
θn
1 exp(βnλ) = Bnρ

θn
1 V βn , Bn = An/V

βn∗ , n = 2, 3, . . . Ni ;
An, Bn > 0; θn = sn/s1, βn = −(1 + wn) + (sn/s1)(1 + w1) . (4.29)

What remains is the system (4.24) of two equations for ρ1 and ρvac, the second of
them with the coefficient depending generally on the evolution variable (λ or V ):

dρ1

dλ
+ (1 + w1)ρ1 = s1

R
ρ1(ρvac − ρ0),

dρvac

dλ
= −P(ρ1,λ)

R
(ρvac − ρ0) ; (4.30)

P(ρ1,λ) =
Ni∑

n=1

sn Anρ
θn
1 exp(βnλ) =

Ni∑

n=1

sn Bnρ
θn
1 V βn .
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Here by the definition (4.29) β1 = 0, θ1 = s1/s1 = 1, and we set A1 = 1; all the
densities ρ2, ρ3, . . . , ρNi are replaced with their expressions (4.29).

A physically meaningful solution of the system (4.30) together with the expres-
sions (4.29) provides the complete answer, i.e., a cosmological solution describing
the universe with N matter species, of which Ni > 1 interact with dark energy by
the law (4.23).

We consider now one example where the equations integrate completely, that is,
the secondorder system (4.30) proves to be explicitly integrable. This is the casewhen
the Eq. (4.30) become autonomous, i.e., the independent variable is not involved in
the second of them. We take (see formulas (4.30))

βn = 0, sn = s1
1 + wn

1 + w1
, n = 2, 3, . . . Ni ;

note that all parameters sn are of the same sign. Using this in the definition (4.30) of
the function P we find

P(ρ1,λ) = s1

Ni∑

n=1

1 + wn

1 + w1
Anρ

1+wn
1+w1
1 ≡ s1Q(ρ1) , (4.31)

so the Eq. (4.30) become:

dρ1

dλ
+ (1 + w1)ρ1 = s1

R
ρ1(ρvac − ρ0),

dρvac

dλ
= − s1

R
Q(ρ1)(ρvac − ρ0) . (4.32)

Dividing the first of them by the second one we arrive to the equation with the
separable variables,

dρ1

dρvac
= ρ1

Q(ρ1)

[
(1 + w1)R

s1(ρvac − ρ0)
− 1

]
,

whose integral, by virtue of the expression (4.31), is:

s1

Ni∑

n=1

Anρ
1+wn
1+w1
1 = K − ρvac + (1 + w1)R

s1
ln |ρvac − ρ0| ;

here K is a constant of integration. It is determined from the large time behavior of
a physical solution: in this limit ρ1 must vanish, and ρvac must tend to some value
ρ∞ ≥ 0, ρ∞ �= ρ0. The l.h.s of the above equality goes to zero in this limit, therefore
the same must happen with the r.h.s, which gives

K = ρ∞ − (1 + w1)R

s1
ln |ρ∞ − ρ0| ,

and the integral becomes
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Ni∑

n=1

Anρ
1+wn
1+w1
1 = ρ∞ − ρvac + (1 + w1)R

s1
ln

∣∣∣∣
ρvac − ρ0

ρ∞ − ρ0

∣∣∣∣ . (4.33)

It is convenient to treat this as an equation for the DE density as function of thematter
density depending also on the limit value ρ∞. If it has a solution ρvac = ρvac(ρ1, ρ∞)

such that ρvac(0, ρ∞) = ρ∞, then the first Eq. (4.32) reduces to integrating a known
function and determining thus ρ1(λ), or ρ1(V ), from the equation:

ρ1∫
dx

x {1 + w1 + (s1/R) [ρ0 − ρvac(x)]} = −λ = ln

(
V∗
V

)
. (4.34)

If, in its turn, this equation has a solution ρ1 = ρ1(V ) going to zero when V → +∞,
then we have a consistent solution to the system (4.32). This is a cosmological
solution if both densities are positive on the whole semi–axis V > 0.

A simple enough graphic analysis of the transcendental equation (4.33) shows
that its positive solution ρvac = ρvac(ρ1, ρ∞) does exist under certain restriction on
the parameter values. First of all, the large time limit of DE density should be smaller
than ρ0,

ρ∞ < ρ0 . (4.35)

Under this condition there are two cases yielding solutions of a different type.

Case A Parameter s1, and hence all sn , are positive,

sn > 0, n = 1, 2, . . . , Ni . (4.36)

A single solution ρvac to the Eq. (4.33) then exists that increases from the initial
zero value to ρ∞ in the course of the expansion, while the density ρ1 decreases
from a finite initial value ρ∗ to zero (the value ρ∗ is found from the Eq. (4.33) with
ρvac = 0). This is not surprising, because the governing equations (4.24) show that
in this case the interaction reduces the matter phases and produces heavy vacuum
for 0 < ρvac < ρ∞ < ρ0. According to the expressions (4.29), all other interacting
matter densitiesρn, n = 2, 3, . . . , Ni are also finite at the beginning of the expansion.

However, Eq. (4.34) shows that the finite initial value of ρ1 corresponds to a finite
non-zero initial value of V , or of the scale factor, which does not make sense, unlike
the situation described at the end of Sect. 3.3.2. So we need to extend the solution
towards larger density ρ1 (smaller values of V ), but the DE density becomes negative
there, for ρ1 > ρ∗. The solution thus has no physical meaning.

Case B Parameter s1, and hence all sn , are negative,

sn < 0, n = 1, 2, . . . , Ni . (4.37)

Here the positive solution ρvac to the Eq. (4.33) decreases from the initial value ρ0 to
ρ∞, while the matter density ρ1, singular at the beginning, decreases monotonically

http://dx.doi.org/10.1007/978-3-319-57538-4_3
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to zero. Dark energy permanently produces the interacting matter phases while being
reduced accordingly, which production slows down the decay of matter densities, as
compared to the absence of the interaction.

By the expressions (4.29), all interacting densities ρn, n = 1, 2, . . . , Ni , also
emerge from the initial singularity; since the DE density is finite, this is a cosmology
of a mixed, singular—non-singular, type. From the Eq. (4.34) we find that the initial
behavior of the solution is given by the formulas (4.28), and its final behavior is
described by the expressions (4.25). So each matter density is inversely proportional
to some power of V , or the scale factor, at the beginning of the expansion, and to
some other power at its end. The initial dependencies are the same as in the case
without the interaction, because it becomes negligibly small when ρvac → ρ0 + 0.

Finally, we note briefly the general quadratic interaction law

Fn(ρvac, ρn) = anρ
2
n + bnρ

2
vac + cnρnρvac + dnρn + enρvac , (4.38)

with some constants an, bn, cn, dn , and en . The condition for a physical equilibrium
point is

bnρ
2
∗ + enρ∗ = 0, ρ∗ ≥ 0, , n = 1, 2, . . . , Ni .

So an empty space is always a rest point, but the existence of a non-trivial de Sitter
equilibrium requires

ρ∗ = −bn/en > 0, n = 1, 2, . . . , Ni ,

giving Ni relations on the 5Ni parameters involved. For small values of matter den-
sities, i.e., in the large time limit, the solution is effectively governed by the general
linear law. Otherwise the signature of the quadratic form in the r.h.s. of Eq. (4.29) is
most important for the existence of physical solutions and their properties.

4.2.3 Non-singular Cosmologies

Non-singular cosmologies found in Sect. 3.3 for one matter specie exist in the mul-
tiple matter component case as well. They evolve according to the general picture
of non-linear interaction described there, namely, as heteroclinic phase trajectories
connecting one physical rest point, ρn = 0, ρvac = ρ0 > 0, of the system (4.13)
with the other, ρn = 0, ρvac = ρ∞ > 0, now in the Ni +1–dimensional phase space.

Note that if not all matter species interact with dark energy (Ni < N ), then a
‘mixed’ type cosmology is obtained in this way: the interacting components and
DE are non-singular, but the non-interacting ones start at a singularity. In this case
there is no limitations on the spacetime curvature pointed out in Sect. 3.3.2, because
the denisities of the conserved components dominate everything else, including the
curvature contribution, at the expansion beginning. The corresponding ‘mixed type’
universe can be either open, or flat, or closed. When all the matter species are inter-

http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
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acting, Ni = N , then an entirely non-singular universe is necessarily open. In this
case all matter is born from heavy vacuum and pushed apart by its anti-gravity, as
E.B. Gliner suggested back in 1965.

The semi–inverse method for constructing such solutions developed in the
Sect. 3.4.1 also works in the general case. Indeed, in a complete similarity with
the one-specie Anzatz (3.51) we assume that a heteroclinic trajectoryH is described
by the equations

ρn = hn(ρvac), ρ∞ < ρvac < ρ0, hn(ρ0) = hn(ρ∞) = 0; n = 1, 2, . . . Ni ,

(4.39)
where the functions hn , positive inside their domain, are otherwise arbitrary. The
appropriate calculations go the same way as in the Sect. 3.4.1.

Namely, the first Ni Eq. (4.13) require certain values of the interaction functions
Fn(ρvac, ρn) on the heteroclinic curve which are found from the linear algebraic
system (as usual, the prime denotes the derivative in ρvac):

−(1 + wk)hk(ρvac) = Fk(ρvac, hk(ρvac)) + h
′
k(ρvac)

Ni∑

n=1

Fn(ρvac, hn(ρvac)) ,

ρ∞ < ρvac < ρ0, k = 1, 2, . . . Ni .

It allows for a simple explicit solution: by summing up all the equations, we first find
the sum

S(ρvac) ≡ F

∣∣∣∣
H

=
Ni∑

n=1

Fn

∣∣∣∣
H

= −

Ni∑
n=1

(1 + wn)hn(ρvac)

1 +
Ni∑
n=1

h ′
n(ρvac)

, (4.40)

and then, from each of the above equations, functions Fn on the curve H:

Fk

∣∣∣∣
H

= − − (1 + wk)hk(ρvac) − S(ρvac), k = 1, 2, . . . Ni

(we do not actually use them in what follows). They have no singularity on the
interval [ρ∞, ρvac] under the condition

min
ρ∞≤ρvac≤ρ0

Ni∑

n=1

h
′
n(ρvac) > −1 , (4.41)

and can be extended from the curve H to the whole phase space in a continuum of
ways, as noted in Sect. 3.4.1; the inequality (4.41) is a direct generalization of the
single-phase condition (3.53).

Now, by the formula (4.40), the last of the governing equations (4.13) on the
heteroclinic curve H becomes

http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
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dρvac

dλ

∣∣∣∣
H

= F

∣∣∣∣
H

= S(ρvac) = −

Ni∑
n=1

(1 + wn)hn(ρvac)

1 +
Ni∑
n=1

h ′
n(ρvac)

,

so determining ρvac reduces to integrating the known function. The result, in terms
of the variable V , is:

exp
[
Ĥ(ρvac)

]
= C

V
, Ĥ(ρvac) =

ρvac∫ 1 +
Ni∑
n=1

h
′
n(x)

Ni∑
n=1

(1 + wn)hn(x)

dx , (4.42)

with C > 0 being a constant of integration. This is the analog of the Eq. (3.54) for
determining the DE density. If this transcendental equation has a positive solution
ρvac = ρvac(V ) decreasing monotonically from ρvac = ρ0 to ρvac = ρ∞, then
ρn = hn(ρvac(V )), and these Ni +1 functions provide a solution of the system (4.13)
corresponding to the heteroclinic trajectoryH in its phase space. If exist, the densities
of non-interacting species are given by the usual expressions (4.11), completing the
solution describing a ‘mixed’ cosmology.

By specifying algebraic behavior of functions hn at the ends of the interval of
their definition, like in the equalities (3.55), one can find the asymptotic behavior of
the interacting densities at the beginning and end of the expansion, first as functions
of V , as it is done in the Appendix C, and then as functions of time, as in the
formulas (3.58), (3.59).

We here extend our calculations for just one special case, which leads to even
more similarity with the results of Sect. 3.4.1, and hence to the set of particular exact
solutions. Namely, we assume that the projections of the heteroclinic trajectory H
on each of the planes {ρn, ρvac}, n = 1, 2, . . . , Ni all have the same shape. That is,
we assume that hn(ρvac) differ from each other only by scaling:

hn(rv) = χnh(ρvac), χn > 0 ; (4.43)

h(ρvac) > 0 for ρ∞ < ρvac < ρ0, h(ρ∞) = h(ρ0) = 0 .

It is then straightforward to calculate, by the formula (4.42):

exp
[
Ĥ(ρvac)

]
= χ− 1

1+w̄

{
ȟ(ρvac) exp [H(ρvac)]

}
, H(ρvac) =

ρvac∫
dx

ȟ(x)
,

http://dx.doi.org/10.1007/978-3-319-57538-4_3
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where

χ =
Ni∑

n=1

χn, 1 + w̄ = 1

χ

Ni∑

n=1

(1 + wn)χn, ȟ(ρvac) = χh(ρvac) .

After some constant reassignment we can thus rewrite the resolving Eq. (4.42) in
exactly the form of the resolving Eq. (3.54) of the single–phase case:

ȟ(ρvac) exp H(ρvac) = ρ∗
(
V∗
V

)1+w̄

, (4.44)

with just h replacedwith ȟ, andw replaced with w̄. So one can use the exact solutions
of the examples from Sect. 3.4.2 obtained for the functions

ȟ(ρvac) = (ρ0 − ρvac)(ρvac − ρ∞)/R, ȟ(ρvac) = θ(ρ0 − ρvac)(ρvac − ρ∞)/ρvac ,

ȟ(ρvac) = (ρ0 − ρvac)(ρvac − ρ∞)2/R2 ,

as well as construct many other.

4.3 Three Matter Phases: A Model for Our Universe

To get closer to the only reality known by us, we finally consider a cosmological
model with dark energy and three matter phases: dark matter (DM), w = 0, normal
matter,w = 0, and radiation,w = 1/3. There aremany speculations about a possible
relation between the dark energy and dark matter, which seem plausible intuitively.
Following these ideas we here assume that only dark matter interacts with dark
energy, and the other two matter phases are conserved, as in the usual cosmological
models. This puts us in the case of the Sect. 4.1 with N = 3; we denote ρ1 = ρdm
the DM density (w1 = 0), ρ2 = ρm the density of normal matter (w2 = 0), and
ρ3 = ρr the density of radiation (w3 = 1/3). The last two species are conserved, so
their densities are given by the standard formulas:

ρm = Cm/V, ρr = Cr/V
4/3, Cm,r > 0 . (4.45)

Thus there is always the Big Bang in this model, but DE and DM are not necessarily
involved in it. The behavior of ρ1 and ρvac is determined by the system (4.9), written
as

dρ1

dV
= −ρ1 + F(ρvac, ρ1)

V
,

dρvac

dV
= F(ρvac, ρ1)

V
,

or, in terms of λ = ln(V/V∗) and ρdm = ρ1, as

http://dx.doi.org/10.1007/978-3-319-57538-4_3
http://dx.doi.org/10.1007/978-3-319-57538-4_3
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dρdm

dλ
= − [ρdm + F(ρvac, ρdm)] ,

dρvac

dλ
= F(ρvac, ρdm) . (4.46)

It is nothing else as the Eq. (3.6) with w = 0, so we can use all results of Chap.3 in
the discussion of our model of the Universe.

We start with a special linear interaction law (3.9), F(ρvac, ρdm) = −sρdm , when
the rate of DE reduction is proportional to the darkmatter density. The corresponding
exact solution (3.11) reads:

ρdm = Cdm

V 1−s
, ρvac = ρ∞ + s

1 − s

Cdm

V 1−s
; (4.47)

here Cdm > 0, ρ∞ ≥ 0 are arbitrary constants, and the interaction parameter s is in
the range (3.12), 0 < s < 1.

The expressions (4.47) and (4.45) combine to give a cosmological solution that
differs from the usual one, with the constant DE density, by the power in the depen-
dence of ρdm , V−(1−s) instead of V−1. However, this difference is essential from the
point that, although both the dark and normal matter densities tend to zero at large
times, their ratio

ρdm/ρm ∝ (Cdm/Cm) V s → ∞, V → ∞ ,

tends to infinity at the large time limit independent of the parameters involved.
So, without any fine–tuning, dark matter dominates normal matter at later stages,
as observed in our universe. Otherwise, radiation dominates the early universe, as
usual, so the scale factor a(t) ∝ t1/2, t → +0; non-vanishing DE dominates all
other components at later time providing the typical exponential time dependence of
the the scale factor (see formula (3.13)).

Interestingly, this linear model of interaction between DE and DM in our universe
was checked against the observational data in a recent paper [1]. The authors used
the Planck 2013 data, the baryon acoustic oscillations measurements, the type-Ia
supernovae data, the Hubble constant measurement, the redshift space distortions
data and the galaxy weak lensing data to estimate the parameter s (denoted β in the
paper). One-sigma errors of the found estimates are larger than 100%. Generally,
constraints on any interaction models are very important, but they are definitely a
subject for further investigation(s).

Next, as demonstrated in Sect. 4.1, the general interaction law (3.35),

F(ρvac, ρdm) = −sρdm + θ(ρvac − ρ∞), s, θ, ρ∞ = const, ρ∞ ≥ 0 ,

does not allow for any continuous physical solution. However, a solution of the
form (4.10) with a jump in the DE density is possible. In this case it is given by the
following expressions:
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ρvac = ρ∞, ρdm = 0, ρm = Cm/V, ρr = Cr/V
4/3 for 0 < V < V∗ ;

ρvac = ρ∞ + |s|ρ∗

[
Q2

(
V∗
V

)|μ2|
+ Q1

(
V∗
V

)|μ1|]
, ρdm = ρ∗

[(
V∗
V

)|μ2|
−

(
V∗
V

)|μ1|]
,

ρm = C
′
m/V, ρr = C

′
r/V

4/3 for V∗ < V < +∞ ; (4.48)

�ρtot

∣∣∣
V=V∗

= (�ρvac + �ρ)

∣∣∣
V=V∗

= ρ0 − ρ∞ + C
′
m − Cm

V∗
+ C

′
r − Cr

V 4/3∗
= 0 ;

all the parameters are restricted as in the formulas (4.10), and ρ0 = ρvac(V∗ + 0).
In this cosmology matter and radiation are born from a singularity on the back-

ground of a finite DE density remaining constant, ρvac = ρ∞, until some moment
of time t∗, V∗ = V (t∗). At this moment the two existing non-interacting species
undergo an instant phase transition raising the DE density to the value ρ0 > ρ∞.
After this the DE density relaxes all the time back to its initial value ρ∞, and dark
matter appears whose density first grows, then reaches some maximum, and then
declines to zero at infinity; the evolution of the two interacting species is depicted in
Fig. 3.1.

As before, this example leads us to non-singular cosmologies appearing under
non-linear interaction laws, i.e., to the results of Sects. 3.3.2 and 3.4, which all apply
to our current model. Non-singular cosmological solutions discussed and explicitly
found there correspond to heteroclinic curves in the phase plane {ρvac, ρdm} connect-
ing two de Sitter equlibrium states with ρvac = ρ0 and ρvac = ρ∞. So the dark energy
density evolves from the initial value ρ0 to the final value ρ∞. Dark matter appears
at the start of the evolution, its density reaches a maximum (whose value depends on
the model parameters, c.f. formulas (3.65), (3.70), (3.75)) at some moment of time,
and then tends back to zero.

The conserved radiation and normalmatter are born in a singularity, their densities
evolve according to the usual expressions (4.45). At large times DM often dominates
normalmatter, since the former goes to zero slower than the latter. This is clearly seen
from the asymptotic formulas (C4) in the cases (a) and (b), when at large times the
ratio ρdm/ρm tends to infinity independent of the model parameters. In the case (c)
both densities have the same later times dependence ∝ V−1, so the DM dominance
requires parameter tuning.

Of course, our universe can be also modeled with two or all the matter phases
interacting with DE; the results of Sect. 4.2 apply to such models. When all matter
phases interact with DE, there can exists entirely non–singular solutions describing
matter born by heavy vacuum at the onset of cosmological expansion caused by DE
anti-gravity.
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Chapter 5
Conclusion

Dark energy is not necessarily uniform if it coexists with matter: its density might
vary in space and time due to the interaction between the two gravity sources. Based
on this idea, we systematically studied the Friedmann cosmology with changing
cosmological constant (or DE density proportional to it), first for one matter phase
(single equation of state), and then for an arbitrary number of matter species. We
modeled theDE–matter interaction by specifying the rate of change of theDEdensity
as an arbitrary function of it and the density of matter, in a single–phase case. In the
case of several matter components interacting with dark energy we assumed the rate
of every interacting phase density to be an arbitrary function of this density and
the DE density. We thus neglected the interaction of matter phases with each other,
as usual; any number of entirely non-interacting, conserved matter species might
accompany the interacting ones in our model.

Within this framework we indicated some properties of cosmological solutions
which hold for a general law of DE–matter interaction. We also studied numerous
families of exact solutions obtained for particular interactions; some of them still
contain arbitrary functions of one of the densities.

In particular, we found singular solutions with no horizon problem in some range
of parameters. Depending on the latter, the scale factor can grow in the beginning
of the cosmological expansion as an arbitrary large power of time, so that one can
speak about the ‘power inflation’. These solutions are always dominated by dark
energy after some moment of time; depending on parameters, the domination might
start at the singularity and continue throughout the whole expansion.

We most thoroughly investigated non-singular cosmologies (or partially non-
singular, ‘mixed’ ones, if the conservedmatter components are present: their densities
evolve by the usual formulas with initial singularity).We found a general mechanism
of their existence. Namely, non-singular cosmological solutions are represented by
heteroclinic trajectories in the phase space of interacting matter densities and the
DE density. Each such trajectory connects two de Sitter universes (pure uniform
dark energy) with different DE densities (a non-generic case when the initial and
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final density values coincide corresponds to a homoclinic trajectory). We developed
a semi–inverse method for solving the equations governing cosmological evolution
that allows one to explicitly construct any number of non-singular cosmological
solutions, with several examples treated in detail.

Very often different cosmological solutions exist for a given interaction law, for
instance, some of them singular, and other non-singular. In a sense, this is what is
called a multiverse, because those different solutions can describe many universes
existing in parallel.

We finally considered a model for our universe consisting of four components
(radiation, normal matter, dark matter, and dark energy) under the assumption that
only dark matter interacts with dark energy. This means that radiation and normal
matter are both born in a Big Bang, while the DE and DM densities can be either
singular or non-singular, in the ‘mixed’ case. Among various properties of the con-
sidered exact solutions we note the typical domination of darkmatter over the normal
one at later stages of the expansion, which takes place for any values of the model
parameters, without any tuning.

All these and other results were obtained strictly within the theory of general
relativity,without anymodifications, such as extra space–time dimensions, additional
fields, etc. (recent restrictions on such extended models derived from observations
and tests are found in papers [1, 2]). This fundamental physical theory remains
vibrant after its centennial, despite many alternative suggestions.

As for cosmology, the choice of the model for our universe is ultimately deter-
mined by observations. As far as our model, with dark energy and matter interacting,
goes, one can think, in the very long run, about reconstructing the real interaction
law from observational data.

Our approach to general relativistic solutions with interacting dark energy and
matter can be used in various other problems of general relativity, starting with the
classical spherically symmetric case.

Acknowledgements I am grateful to Arthur Chernin, James Overduin, and Robert Wagoner for
their valuable remarks and discussion. My special thanks go to Chernin who introduced me to
cosmology more than 40 years ago, and encouraged my work on this book.
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Chapter 6
Why Does the Universe Expand?
(A Tribute to E.B. Gliner)

In 1965 Erast Borisovich Gliner, a graduate of the Leningrad University, who had
been recently admitted to the Theory Department of the A.F. Ioffe Physics-Technical
Institute (Phystech) of the Academy of Sciences of the USSR, published a paper
‘Algebraic properties of energy-momentum tensor and the vacuum-like state of mat-
ter’ in one of the best Russian physics journals, Journal of Theoretical and Exper-
imental Physics, JETP. In this paper he gave a physical interpretation of Einstein’s
cosmological constant and presented a new hypothesis on the physical nature of the
BigBang. According toGliner, theUniverse began in a vacuum state described by the
cosmological constant. From this primordial vacuum matter was born that expanded
due to vacuum anti-gravity. In this way the observed cosmological expansion started.

6.1 Inflation, or Blow-Up

Lev Emmanuilovich Gurevich, Gliner’s scientific supervisor at Phystech, and Andrei
Dmitrievich Sakharov appreciated Gliner’s idea immediately. In his ‘Memoirs’
Sakharov writes about his first (1965) cosmological works: ‘In one of the hypothet-
ical equations of state that I examined, the energy density converged to a constant
value as the pressure approached infinity. That is, in the limiting case, the energy
density does not depend on the density of matter and in this case the pressure is neg-
ative. Such an equation of state leads to the exponential expansion of the Universe,
and the matter is rapidly ‘diluted’ as the volume increases. In the same year Gliner
independently wrote on this and with a greater degree of certainty.’

The author of this chapter, A.D. Chernin, is a Professor at Sternberg Astronomical Institute,
Moscow State University. The chapter was translated from the Russian and commented by A.S.
Silbergleit. The translation was edited by J. Overduin.
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E.B. Gliner.

In 1965–80 the idea of a primordial vacuumwas developed by E.B. himself, by his
Phystech coworker I.G.Dymnikova, byL.EGurevich, and byA.A. Starobinsky (L.D.
Landau Theoretical Physics Institute). In the 1980s, after publications by A. Guth
and A. Linde, this idea gradually became rather popular. It resulted in the appearance
and permanent growth of a new broad line of cosmological studies named inflation
(as suggested by Guth), or blow-up (as E.B. prefers to call it). The inflationary theo-
rists have suggested hundreds, if not thousands, of various cosmological scenarios,
that is, evolutionary schemes fulfilling the general principles first outlined by Gliner.
Some of these scenarios are very sophisticated in plan and construction; some others
are notable by an elegant description of the finest mathematical details; and some
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combine both features. However, not much ‘struggle of ideas’ can be noticed within
the inflation movement, rather, all participants amicably broaden the space of theo-
retically admissible possibilities, amply citing each other in the process. And quite
often it is forgotten whose ideas are actually being developed.

6.2 A Great Life

E.B. Gliner came to theoretical physics with a lot of severe life trials and hard
experiences behind him. He was born in Kiev on January 26, 1923. He grew up
without a father. His mother was a head of a regional tuberculosis clinic. After
graduating from the high school, E.B. was admitted to the Chemistry Department
of Leningrad University. With the beginning of WWII in 1941 Gliner, like many
people from the university, was sent to the defense construction works in Leningrad’s
suburbs. Because of untenable physical loads and hard living conditions he became
seriously ill. By a miracle, half-alive, he was transported to an already besieged
Leningrad where he spent the whole severest winter of 1941–42. Only after this was
he evacuated ‘to the continent’. Because of tremendous dystrophia he was entirely
cleared from the army service. Still, in 1942 E.B. voluntarily went to serve in the
army: the situation at the front was so bad that he was accepted. He was wounded
twice, and received two fighting Orders. In May of 1944, after the third wound, he
lost his right arm. So he was demobilized from the army and went back to Leningrad
University as a first year student of the Physics Department.
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Gliner in the early 1960s

OnMarch 13, 1945 Gliner was arrested and got a 10-year sentence under the infa-
mous article 58–10, p. 2, 11 of the Criminal Code of the USSR for the ‘participation
in the activity of an anti-Soviet group’. In fact, it was just a student literary circle for
those who loved Russian poetry (some ‘members of the group’ even did not know
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each other until their arrest and ‘investigation’—A.S.). E.B. mostly spent his term
in the prison design bureaus (‘sharashkas’) of the Gulag (and survived due to this—
A.S.)—in the sadly known Leningrad ‘Kresty’ prison, special prisons ofMoscow and
Krasnoyarsk. He was a senior engineer of the computation and research group, then
a lab director; he designed certain automated control systems and electrical equip-
ment. In prison E.B. received several patents, as well as certificates for significant
technical improvement of various devices. He was freed from the Gulag on April 25,
1954; on August 5, 1955 he got his rehabilitation for ‘the lack of criminal action’
(corpus delicti).

E.B. returned to LeningradUniversity and studied at its Physics Department while
simultaneously teaching at an evening school. He graduated from the university
in 1965 and was admitted as a researcher to Phystech the same year. One year
before this his book ‘Partial differential equations ofmathematical physics’ (Moscow,
Fizmatlit) was published,written togetherwithM.M. Smirnov andAcademicianN.S.
Koshlyakov (also a former Gulag inmate). It became rather popular andwent through
several editions, including the US one in English. In the 1960s Gliner published, in
addition to the mentioned paper in JETP, several works on relativistic physics and
cosmology. One of them was communicated to the journal Soviet Physics: Doklady
by A.D. Sakharov. Based on these publications, E.B. prepared a Candidate thesis
and submitted it to the Phystech Scientific Council.

Meanwhile, a serious dispute flared up around Gilner’s cosmological ideas at
the level of the Academy members. Academician Yakov Borisovich Zeldovich was
sharply against them. Academicians Andrei Dmitrievich Sakharov and Vladimir
AleksandrovichFock supported themwholeheartedly. They stated thatGliner’s thesis
deserved the degree of Doctor of Science and should be defended as such; they were
ready to be the opponents at the defense. (Note that in the USSR and currently
in Russia there are two higher scientific degrees. The first one, approximately the
equivalent to Ph.D, is the Candidate of Science, the second and highest one is the
Doctor of Science.ARussian thesis defense requires ‘official opponents’who present
written reports on the thesis. A Candidate thesis requires two, and a Doctor thesis
three official opponents.—A.S.)

This became known at Phystech, and the institute leadership, probably not of their
own volition, forced E.B. to make a choice: either to remove Sakharov’s name as an
opponent of his thesis (at this timeAndrei Dmitrievich alreadywas in a deep disgrace
with the communist authorities—A.S.), and then defend it despite Zeldovich’s opin-
ion, possibly for the Doctor of Science; or not defend it at all, even as a Candidate
thesis. Gliner selected the second option.

A silent ban was imposed on Gliner’s thesis. Still it was successfully defended in
1972. It happened in the following way. L.E. Gurevich called Estonian Academician
Harald Petrovich Keres, author of fundamental works on general relativity, and told
him aboutGliner’s results and the situationwith his thesis, suggesting thatGliner give
a talk at the relativity seminar in Tartu. The talk went very well, and Keres eagerly
accepted Gliner’s thesis for defense at Tartu University (it was a bit easier away from
Moscow and Leningrad, in Estonia and other Soviet republics—A.S.). However, the
dissertation documents (which are required in abundance in Russia!—A.S.) were
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kept in the Phystech administration. So dear Georgij Vasil’evich Skornyakov, then
a Scientific Secretary at the A.F. Ioffe Institute, took the documents secretly and
arranged them to be delivered to Tartu.

In the same year of 1972 at the ‘Znanie’ publishing house, a popular book by
L.E.Gurevich and E.B. Gliner, ‘General Relativity after Einstein’ was published.
Two years later, their second brochure ‘Space and Time’ appeared from the same
publishers. Gurevich said in 1976: ‘In Leningrad general relativity is best of all
known and felt by E.B., and then by Volodya Ruban’ [Validimir Afanas’evich Ruban
(1937–1983), a talented Leningrad theorist who passed away early].

E.B. did not fight for the Doctor degree. A theorist of high international stature, a
decorated veteran of WWII, a head of a family, he was still in the position of a Junior
Scientist at Ioffe Institute. In the fall of 1979 he ‘voluntarily’ quit the Institute, and
left the USSR next year. His children strongly insisted on this hard decision.

In 1980–87E.B.worked atmajor research centers in theUSA, such as theMcDon-
nell Center for Space Science atWashingtonUniversity (St. Louis), the Joint Institute
for Laboratory Astrophysics at University of Colorado, and the Institute of Theory
Studies (San-Francisco). In 1987 a chance surfaced to start working at one of the
best universities of the Western coast, when he was invited to come over there and
give a talk at a seminar. However, nothing positive came out of it (see below).

In December 1985, and then in April 1986 Gliner published in Nature two letters
in the defense of Sakharov, whowas in exile inGorky (Nizhnij Novgorod) at the time.
From this authoritative source numerous readers, scientists from different countries
learned about the scientific achievements of this outstanding physicist, who, risking
his freedom and life, openly came out for human rights, against the arbitrary rule of
the USSR authorities.

E.B. Gliner at the Neva embankment in Leningrad (early 1970s)
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6.3 V.L. Ginzburg: We Owe Gliner

In Moscow, at the Physical Institute of the Russian Academy of Sciences, during the
winter of 1999, Vitalij Lazarevich Ginzburg used the longest key in the big bunch to
open a lock hanging on the door of his office: ‘Had to hang it, because somebody had
stolen my printer’. V.L. invited three physicists working on cosmology (including
the author): ‘I regularly hear about inflation, but still cannot figure out clearly what
is so important in it, and why it is so popular. What is the gist of it, essentially?’

V.L. listened to the answers to these questions, asked some new ones, but by the
end of the discussion was disappointed, almost angered: ‘In general, I did not get
much new from you. Want to talk more with Slava Mukhanov, he is well qualified,
I trust him also. One thing is clear, though: all this violent activity emerged from
Gliner’s idea of the primordial vacuum. But I knew myself about Gliner.’

Ginzburg had visited E.B. inCalifornia one or two years earlier, and suggested that
Gliner write a comprehensive critical review of cosmology for the Physics Uspekhi
journal, whereV.L.was the Editor-in-Chief. But E.B.went slowly about it, and finally
wrote not a detailed review, but rather a not very large paper ‘Inflationary Universe
and the Vacuum-like State of a Physical Medium’—only about what excited him
and what he was interested in at the moment. Against the customs of the inflation
community, therewas certain criticism in this paper, presented, however, in the softest
and most delicate manner typical for E.B.. The critique touched upon a ‘probably
erroneous’ interpretation of the blow-up in thewhole large class of inflation scenarios
very popular at the time.

Ginzburg wrote a preface to this paper, published in the February 2002 issue
of Physics Uspekhi, where he mentioned a number of facts of Gliner’s difficult
biography. He wrote, in particular: ‘Unfortunately, in 1980 Gliner had to emigrate
because of the challenges his children met on their way to higher education—a
situation only too well known to many at the time. In the United States Gliner was
quite successful in solar physics and cosmology—until a seminar in 1987 at a world-
famous university. His ideas, close to those in the paper below, apparently turned
out to be objectionable to some prosperous cosmology authorities in the US. Alas,
this cost Gliner his job, and his pension too, because his dismissal left him one year
short of the necessary period of service. [. . .] as things stand, however, E.B. Gliner
has no affiliations, cannot attend scientific conferences, and is denied access to the
university online services.

My feeling is that we owe a great debt to E.B.Gliner, and should therefore take this
opportunity to publish his paper—the more so because, in my judgement at least,
the paper is quite deep in its content. It is perhaps noteworthy that E.B. Gliner’s
pioneering work has been highly appreciated in Physics Uspekhi and the Bulletin of
the Russian Academy of Science [references given]’.

Ginzburg hoped that eventually Gliner would follow up on this brief paper with
the promised large critical review of inflation. In the summer of 2009 he asked author
on the phone: ‘Do you hear from and about Erast? Do you call him? Why doesn’t
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he respond to my e-mails? I am thinking maybe he took umbrage at me? Please pass
my best regards on to him and ask him to write me. And generally ask him to write
a survey, he had promised!’

6.4 Einstein–Gliner Vacuum

At least two scientific results from the golden store of modern cosmology belong
to Gliner. As mentioned, these are the physical interpretation of the cosmological
constant and the hypothesis on the nature of the cosmological expansion. Let us say
more about them.

The cosmological constant is Einstein’s invention. In 1917 Einstein included it
in the mathematical structure of his General Relativity theory; this was done in a
very simple and elegant way. But what does the cosmological constant mean? What
physics is behind it? No explanations were given. The understanding of the physi-
cal origin of the cosmological constant took shape gradually, decade after decade,
starting with the works of W. de Sitter, G. Lemaitre, and R. Tolman. The decisive
point was made by Gliner in 1965. He put forward the notion that the cosmological
constant represents a universal cosmic vacuum creating the world repulsion. This
concept is now commonly accepted.

In physics there exist quite a number of vacua: ‘technical’ vacuum, true vacuum,
false vacuum, quantum vacuum, and so on. Let us call the one we are speaking about
the Einstein–Gliner vacuum, or shortly EG-vacuum.

EG-vacuum is a special medium, unknown in physics before. It is not visi-
ble, does not emit, absorb, or scatter light. But it is not just emptiness, because
EG-vacuum has a non-zero energy. This energy fills the whole space of the Universe
perfectly uniformly. The vacuum energy density (i.e., its energy per unit volume) is
the same everywhere and does not change with the time. EG-vacuum also has pres-
sure, and the relation between it and the energy density, which is called the equation
of state (EOS) of the medium, is: the pressure is the energy density with a negative
sign (both quantities have the same dimension). The vacuum energy density is pos-
itive, hence its pressure is negative. Negative pressure itself is not so unusual; for
instance, the pressure is negative inside a stretched rubber tourniquet, or in a steel
block stretched in all directions. However, it is only in vacuum, and not in any other
medium, that the pressure is equal in magnitude to the energy density.

Two most important properties of vacuum follow from its EOS. First, EG-
vacuum enjoys the main mechanical property of ‘vacuum’, namely, that motion
and rest relative to it cannot be discerned (as in the trivial case of emptiness).
Alternatively, one can describe this, for example, as follows. Let there be two bod-
ies (or two frames) that move against each other in an arbitrary way. However,
both bodies (or frames) are always at rest relative to vacuum. So EG-vacuum
co-moves with any body. Clearly, it cannot serve as a frame, for this reason, and
its energy density is the same in all frames, whatever the relative motion is. So
EG-vacuum is always and everywhere the same in all its manifestations.
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Galina Ivanovna, Gliner’s wife, and E.B. near their home in San Francisco, 2005.

Photo by V. Ketov (bicycle of this photographer-traveler is seen)

Second, EG-vacuum creates not an attraction but repulsion, the overall repulsion
of the Universe. The point is, in the General Relativity the ability of a uniform
medium to create gravity depends not only on its density, as in Newton’s theory,
but also on its pressure. In cosmology, the ‘effective gravitating energy density’ is
given by a combination of these two quantities: it is the sum of the energy density
and three values of pressure. For vacuum, with its special equation of state, this sum
is negative (equal to negative twice density). That is, unlike all other substances in
nature, EG-vacuum creates anti-gravity instead of gravity.

Unexpectedly, this circle of ideas grew in the center of most vivid discussions,
theoretical and observational studies in physics, cosmology, and astronomy. In 1998–
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99 two international groups of astronomers, one led by B. Schmidt and A. Riess,
the other by S. Perlmutter, reported that cosmological expansion is accelerating.
Before, it had been believed that the recession of galaxies can only slow down under
the influence of their gravitational attraction. Their acceleration means that there is
not only gravitational attraction, but also gravitational repulsion in nature, with the
latter dominating the former in the observed Universe. Anti-gravity is created not by
galaxies themselves, but by some special medium in which they are all immersed.

Subsequent studies demonstrated that EG-vacuum is the best for explaining this
effect. Indeed, all its properties, which Gliner wrote about, are remarkably consistent
with and completely supported by astronomical observations. According to all the
currently available data, the ratio of the vacuum pressure to its energy density is
minus one, as established by Gliner, with a remarkably high precision of 3–4%, for
this kind of measurements.

As often happens in science, a newly discovered phenomenon immediately got a
new name, dark energy (DE). That’s how the observed EG-vacuum is usually called
now. DE comprises about three quarters of all energy (or mass) of the observed
Universe, so DE is the main ingredient of the ‘cosmic mix’. The three astronomers
mentioned above were awarded the 2011 Nobel prize.

Gliner’s other most important result is his idea of primordial vacuum, which has
not yet found its observational confirmation. Its theoretical development is difficult
due to the fact that ‘standard’ fundamental physics is hardly true under the most
unusual conditions of the early universe. That is why anyoneworking in this direction
has to resort to very far reaching and often rather arbitrary assumptions about the
physics laws valid at the onset of cosmological evolution (this applies especially to
the mentioned inflationary scenarios, in the first place). For this reason we will not
go into details, speaking only about the most significant points.

According to Gliner, primordial vacuum had all the properties of EG-vacuum.
However, in the earliest world history its energy density was many orders of mag-
nitude larger than the current value determined by astronomical observations. This
starting super-dense vacuum created the anti-gravity force. So it was capable of effec-
tively accelerating the matter which was born out of it and moved on its background.
This is the Big Bang mechanism suggested by E.B.: in a smallest fraction part of a
second, the primordial vacuum gave birth to matter and caused it to expand.

Itwould bemost interesting to findout if there exists an (evolutionary?) connection
between the hypothetical primordial vacuum and the real vacuum, dark energy, that
astronomers observe in the modern Universe some 14 billions of years after the Big
Bang.

There exists also a variety of other questions. The most important of them is
about the internal structure of EG-vacuum. The point is that neither Gliner’s ideas,
nor astronomical observations tell us anything about the content of the vacuum at
the microscopic level. What kind of substance is vacuum? What is it ‘made of’?
The question remains completely unanswered. Many people think that this is a key
problem of fundamental physics in the 21st century.

Let us now return to Ginzburg’s question about inflation: ‘Why is it so popular?’
Indeed, interest in this pioneering idea of Gliner’s has not dissipated during four
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decades. It attracts new generations of theorists frommany countries. Science groups
and whole science schools that study inflationary cosmology have multiplied all
over the world. Every year hundreds of papers and dozens of books devoted to it
are published, numerous seminars and conferences are held, theses are defended,
international prizes are awarded, and so on.

E.B. and the author at Gliner’s house in San Francisco, 1994. Photo by G.I. Gliner.

It appears that the main reason for this surprising popularity is that the idea of
primordial vacuum opens truly unlimited possibilities for theoretical speculation in
this puzzling and most promising branch of fundamental science, where cosmology
and physics of elementary particles meet. Right here (where else?!) hides the answer
to the question that has excited physicists and astronomers for almost a hundred
years: why does the universe expand? The most significant theoretical achievement
along the path to the answer was and remains Gliner’s idea of primordial vacuum.
Any other idea that could somehow compete with it is so far unknown.

And what about the sharp objections to it by Zeldovich? Gliner actually won
their scientific dispute, although not immediately. In the beginning of the 1980s, in
a packed auditorium (as it always was when Zeldovich talked) at Phystech, Yakov
Borisovich spoke with enthusiasm about the news in cosmology. Having mentioned
the paper by A. Guth on inflation, Zeldovich remarked: ‘I had underestimated the
results of the Leningraders when they appeared’.

In 2003, at his 80th anniversary, E.B. visited Russia for the first time since leaving
the USSR. He was warmly welcomed at Phystech, and gave a talk at a seminar in his
honor attended by lots of people. Other theorists from St. Petersburg and Moscow
presented their talks aswell. Later E.B. gave a talk ‘Whatwe call vacuum’ inMoscow,
at the Institute of Space Studies (IKI) of the Russian Academy of Sciences.
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In the US, E.B. was awarded a medal with the inscription WWII veteran. It was
accompanied by a windshield plaque that allows a veteran to park ‘everywhere’,
which E.B. especially likes. He has a small house with a garden in a quiet part of
San Francisco, which is familiar to a number of E.B.’s guests from St. Petersburg
and Moscow. There is an unforgettable atmosphere of goodwill, peace and coziness
there, created through many years by the care of a remarkable person, Gliner’s wife
Galina Ivanovna. And all over the house there are scores of books in two languages...

E.B. Gliner at the Pacific coast in San Francisco.
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Appendix A
The ρvac(H) Model as a Particular Case
of the Model (3.4)

Our general model (3.4) of interaction between one–phase matter and DE incorpo-
rates ρvac(H) model of flat universe introduced in paper [1] (more references are
given in Chap.3). To show this, we set the interaction function to be

F(ρvac, ρ) = F(ρvac + ρ) = F(ρtot ) . (A.1)

By the first of the Friedmann equations (2.4) with k = 0,

3

8π
H 2 = ρ + ρvac, H = ȧ

a
, (A.2)

we obtain thus
F(ρvac, ρ) = F(ρtot ) = �(H) , (A.3)

where � is arbitrary as far as F is. The two Eqs. (3.5) (energy conservation and
interaction model) written in terms of H are

ρ̇ = −3H [(1 + w)ρ + �(H)] , ˙ρvac = 3H�(H) , (A.4)

where the dot denotes the derivative in time, as usual; Eqs. (A.2), (A.4) completely
determine the cosmological expansion.

Assuming now ρvac = ρvac(H), form the first Eq. (A.2) we find the matter density
as a function of H ,

ρ(H) = 3

8π
H 2 − ρvac(H) ,

which converts the Eqs. (A.4) to (the prime denotes the derivative in H ):

Ḣ = −3H
(1 + w)

[(
3H 2/8π

) − ρvac(H)
] + �(H)

(3H/4π) − ρ
′
vac(H)

, Ḣ = 3H
�(H)

ρ
′
vac(H)

(A.5)
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The compatibility condition for these two equations apparently is:

− (1 + w)
[(
3H 2/8π

) − ρvac(H)
] + �(H)

(3H/4π) − ρ
′
vac(H)

= �(H)

ρ
′
vac(H)

,

or

�(H) = (1 + w)
[(
3H 2/8π

) − ρvac(H)
]

(
3H/4πρ

′
vac(H)

) − 1
. (A.6)

If the function ρvac(H) is specified, as it is always done in the papers on the ρvac(H)

model cited in Chap.3, then the interaction function �(H) is expressed through
it by this formula. If, on the other hand, one specifies the interaction �(H), then
the formula (A.6) turns to a first order differential equation defining ρvac(H). In
both cases H(t) is then found in quadratures from the single first order differential
equation (A.5), determining both densities as functions of time, as well as the scale

factor, a(t) ∼ exp

[
t∫
H(t

′
)dt

′
]
.

In several papers (see [2] and the references therein) the dynamical DE density
ρvac(H) was used in its simplest form of an even quadratic polynomial,

ρvac(H) = ρ0 + αH 2, ρ0, α = const > 0 . (A.7)

Formula (A.6) shows that the interaction function�(H) is also quadratic in this case,

�(H) = 1 + w

(3/8πα) − 1

{
[(3/8π) − α] H 2 − ρ0

}
.

Remarkably, this requires α �= 3/8π : if the opposite is true, then the Friedmann
equation (A.2) reduces to ρ + ρ0 = 0, which can only be valid if ρ = ρ0 = 0, since
both densities are non-negative. A similar argument shows that a physically mean-
ingful solution requires α < 3/8π ; otherwise at least one of the densities becomes
negative.

We now extend the ρvac(H)model to the open and closed universe, k = ∓1; some
particular cases of thismodelwere considered in papers [3, 4]. Equations (A.2), along
with equation of the total energy conservation, now read:

3

8π
H 2 = ρ + ρvac − k

a2
,

ȧ

a
= H, ρ̇ + ˙ρvac = −3H(1 + w)ρ . (A.8)

This gives three equations for the three unknown functions of time, H, a and ρ,
because ρvac is a given function of H , and ˙ρvac = ρ

′
vac Ḣ .

The first of the Eqs. (A.8) allows us to eliminate the scale factor a(t) from the
other two: we have

http://dx.doi.org/10.1007/978-3-319-57538-4_3
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a2 = k

(ρ + ρvac) − (3/8π)H 2
,

ȧ

a
= − ρ̇ + [

ρ
′
vac − (3/4π)H

]
Ḣ

2
[
(ρ + ρvac) − (3/8π)H 2

] . (A.9)

So the second and third Eqs. (A.8) become:

ρ̇ +
[
ρ

′
vac − (3/4π)H

]
Ḣ = 2H

[
(3/8π)H 2 − (ρ + ρvac)

] ;
ρ̇ + ρ

′
vac Ḣ = −3H(1 + w)ρ .

Solving this linear algebraic equations for ρ̇ and Ḣ , we obtain the governing system
of two autonomous equations resolved with respect to the derivatives,

Ḣ = −8π

3

{[
3

8π
H2 − ρvac(H)

]
+ (2 + 3w)ρ

}
; (A.10)

ρ̇ +
[
3(1 + w)H − 8π

3
(2 + 3w)ρ

′
vac(H)

]
ρ = 8π

3

[
3

8π
H2 − ρvac(H)

]
ρ

′
vac(H) ,

for the two unknown functions H(t) and ρ(t).
Note that the parameter k designating open or closed universe case dropped out

of this system. However, the first of the relations (A.9) requires

k
[
(ρ + ρvac) − (3/8π)H 2

]
> 0 , (A.11)

which condition, as well as the usual ρ > 0, significantly limits the set of physical
solutions.

Moreover, since, by the first Eq. (A.10),

˙ρvac = ρ
′
vac Ḣ = −ρ

′
vac

8π

3

{[
(3/8π)H 2 − ρvac(H)

] + (2 + 3w)ρ
}

,

we find

dρvac

dV
= 8πρ

′
vac

9H

{[
(3/8π)H 2 − ρvac(H)

] + (2 + 3w)ρ
} = F(ρvac, ρ) , (A.12)

because H = H(ρvac). Therefore theρvac(H)model for the open and closed universe
(k = ∓1) is also a particular case of our DE–matter interaction model (3.4).

If H(t) and ρ(t) are found from the system (A.10), then the DE density is given
by ρvac = ρvac(H(t)), and the scale factor is determined by the first Eq. (A.9). In
practice, a naturalway to solve the system (A.10) is to expressρ form its first equation
and introduce to the second one. This gives a second order autonomous differential
equation for H(t), which reduces, by means of a standard transformation, to a first
order equation for Ḣ as a function of H .When the latter canbe analytically integrated,
an exact solution of the whole problem can be obtained.

http://dx.doi.org/10.1007/978-3-319-57538-4_3


Appendix B
Two Classes of Non-linear Interaction Laws
Allowing for General Explicit Solutions
(the Case of a Single Matter Phase)

Herewe study two interaction laws depending on both densities ρ and ρvac, for which
the equations governing cosmological evolution are explicitly integrable.

First, we deal with the interaction function which is conveniently written as

F(ρvac, ρ) = ρ/ f
′
(ρvac) , (B.1)

f (ρvac) being an arbitrary function. Accordingly, the governing system (3.6) takes
the form

dρ

dλ
= −ρ

[
(1 + w) + 1

f ′
(ρvac)

]
; dρvac

dλ
= ρ

f ′
(ρvac)

. (B.2)

Dividing the first equation by the second one gives

dρ

dρvac
= −1 − (1 + w) f

′
(ρvac) ,

which is immediately integrated to produce the matter density as an explicit function
of the density of heavy vacuum:

ρ = ρ(ρvac) = r − ρvac − (1 + w) f (ρvac) (B.3)

(r is an arbitrary constant of integration). Using this in the second Eq. (B.2) we
determine the dependence of ρvac on λ, or on V :

ρvac∫
f

′
(x)dx

x + (1 + w) f (x) − r
= −λ = ln

V∗
V

. (B.4)

If this transcendental equation has a solution ρvac(V ), then ρ = ρ(ρvac(V )) is given
by the expression (B.3), and we obtain thus an exact solution of the system (B.2).
All the solutions are described by the integrals (B.3) and (B.4), so the system (B.2)
is completely integrable.
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However, even if a solution to the Eq. (B.4) exists, it might not lead to a proper
cosmological solution, since the latter requires the two densities to be non-negative,
the matter density to vanish at large times (V → ∞), and the DE density to stay
finite in the same limit. Formulating some sufficient but general enough conditions
on the function f (ρvac) that guarantee this is rather difficult, if possible at all. It
is also not easy to find a particular function f (ρvac) that provides a simple enough
physical solution.

We now turn to the interaction law of the form

F(ρvac, ρ) = − (1 + w)ρρvac f
′
(ρ)

1 + ρvac f
′
(ρ)

, (B.5)

where f (ρ) is arbitrary. This might seem too elaborate, but it allows for an exact
integration of the governing system (3.6), which is

dρ

dλ
= − [(1 + w)ρ + F] = − (1 + w)ρ

1 + ρvac f
′
(ρ)

; dρvac

dλ
= F(ρvac, ρ) . (B.6)

Indeed, we rewrite the expression (B.5) as

F = −ρvac f
′
(ρ) [(1 + w)ρ + F] = ρvac f

′
(ρ)

dρ

dλ
,

where the last equality is implied by the first Eq. (B.6). Hence

F = ρvac
d f (ρ)

dλ
,

so the second Eq. (B.6) becomes

dρvac

dλ
= ρvac

d f (ρ)

dλ
,

and immediately integrates to give the DE density as a function of the density of
matter:

ρvac = ρvac(ρ) = r exp[ f (ρ)] (B.7)

(r > 0 is a constant of integration). Using this in the first Eq. (B.6) we turn it to
the equation with separable variables whose integral is a transcendental equation
determining ρ = ρ(V ):

ρ∫
1 + r f

′
(x) exp[ f (x)]

x
dx = −(1 + w)λ = ln

(
V∗
V

)1+w

. (B.8)

As in the previous case, any solution of this combined with the expression (B.7)
gives a solution to the system (3.6). And again, by far not any such solution makes
physical sense.
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Appendix C
Behavior of Non–singular Cosmological
Solutions Obtained by the Semi–Inverse
Method in the Beginning and at the End
of the Expansion (the Case of a Single
Matter Phase)

Under the conditions (3.55)–(3.57), let us check the behavior of the solution ρvac(V )

to the resolving Eq. (3.54), derived in Chap.3.4, in the limits ρvac → ρ0 − 0 and
ρvac → ρ∞ + 0, i.e., at the beginning and end of the expansion.

For the first limit we use the second representation (3.55) to evaluate asymptoti-
cally the integral H(ρvac) involved in the Eq. (3.54), which gives:

H(ρvac) = − (ρ0 − ρvac)
1−ν0

h0(1 − ν0)
, ν0 �= 1; H(ρvac) = − 1

h0
ln(ρ0 − ρvac), ν0 = 1 .

Therefore we obtain the following asymptotic forms of this equation for ρvac(V ):

(ρvac − ρ0)
ν0 exp

[
− (ρ0 − ρvac)

1−ν0

h0(1 − ν0)

]
= (ρ0)

ν0

(
V∗
V

)1+w

, ν0 > 1 ;

(ρ0 − ρvac)
1−1/h0 = (ρ0)

1−1/h0

(
V∗
V

)1+w

, ν0 = 1 . (C.1)

The constants (ρ0)
ν0 , (ρ0)

1−1/h∞ are introduced here for the consistency of writing;
effectively, only one arbitrary constant is present in each line.

The left hand sides of the above equations tend to infinity when ρvac → ρ0 − 0
(recall that in the second line 0 < h0 < 1 by the condition (3.57)). Their right hand
sidesmatch this infinity onlywhen V → +0; so the expansion necessarily starts with
the zero value of the scale factor. As shown in Chap.3.3.2, this is only possible for the
solution describing the open universe. Hence only the open non-singular cosmologies
are found by the semi-inverse method under the conditions (3.55)–(3.57).

Next, using the first representation (3.55), we calculate the asymptotics of the
integral H(ρvac) in the limit ρvac(V ) → ρ∞ + 0:
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H(ρvac) =
ρvac∫

dv

h(v)
= 1

h∞(1 − ν∞)
(ρvac − ρ∞)1−ν∞ , ν∞ �= 1 ;

H(ρvac) = 1

h∞
ln(ρvac − ρ∞), ν∞ = 1 .

Equation (3.54) in this limit becomes thus

(ρvac − ρ∞)ν∞ exp

[
(ρvac − ρ∞)1−ν∞

h∞(1 − ν∞)

]
= (ρ∞)ν∞

(
V∗
V

)1+w

, ν∞ �= 1 ;

(ρvac − ρ∞)1+1/h∞ = (ρ∞)1+1/h∞
(
V∗
V

)1+w

, ν∞ = 1 .(C.2)

As in the previous case, the left hand sides of the Eq. (C.2) tend to infinity when
ρvac(V ) → ρ∞ + 0 for any ν∞ > 0. The right hand sides become infinite only when
V → +∞, which is the right limit for t → ∞.

Equations (C.1) and (C.2) imply the following asymptotic behavior of both den-
sities (main terms only; V∗ > 0 is an arbitrary constant):

V → +0 (t → +0), open universe

(a) for ν0 > 1,

ρvac = ρ0 − [(1 + w)h0(ν0 − 1) ln(V/V∗)]
− 1

ν0−1 ,

ρ = h0 [(1 + w)h0(ν0 − 1) ln (V/V∗)]
− ν0

ν0−1 ;
(b) for ν0 = 1, 0 < h0 < 1, (C.3)

ρ0 − ρvac ∼ ρ ∼ ρ0(V/V∗)
(1+w)h0
1−h0 .

V → +∞ (t → +∞), open universe

(a) for ν∞ > 1,

ρvac = ρ∞ +
[
(1 + w)h∞(ν∞ − 1) ln

V

V∗

]− 1
ν∞−1

,

ρ = h∞
[
(1 + w)h∞(ν∞ − 1) ln

V

V∗

]− ν∞
ν∞−1

;
(b) for ν∞ = 1, (C.4)

ρvac − ρ∞ ∼ ρ ∼ ρ∞(V/V∗)−
(1+w)h∞
1+h∞ ;

(c) for 0 < ν∞ < 1,

ρvac = ρ∞
[
1 + (V/V∗)−

1+w
ν∞

]
ρ = ρ∞(V/V∗)−(1+w) .
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Recall that ν0,∞ and h0,∞ are positive constants defined by formulas (3.55) subject
to the conditions (3.57). Asymptotic formulas (C.3), (C.4) can be converted into time
dependencies using scale factor expressions (3.47) and (3.48); they are given by the
equalities (3.58) and (3.59).
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