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Preface

The International Conference on Scientific and Statistical Database Manage-
ment (SSDBM) is an established forum for the exchange of the latest research
results on concepts, tools, and techniques for scientific database applications. The
2010 meeting marked the 22nd time that scientific domain experts, databases re-
searchers, practitioners, and developers came together to share their insights and
to discuss future research directions in a stimulating environment. The confer-
ence was held from June 30 to July 2 at Villa Bosch, near the Carl Bosch Museum
and Heidelberg Castle, overlooking the picturesque Neckar Valley. The confer-
ence was organized at and co-sponsored by Heidelberg University and HITS,
the Heidelberg Institute for Theoretical Studies, established in January 2010 by
Dr. Klaus Tschira, co-founder of SAP AG, as a successor to the EML Research
Institute. HITS focuses on new approaches and foundations towards interpreting
the rapidly increasing amounts of experimental data. Heidelberg University, the
oldest university in Germany, was founded in 1386, is a German Excellence Uni-
versity, and a top-ranking university in Europe and worldwide, known among
other things for its excellence in the natural sciences and medicine. The univer-
sity also hosts a unique Interdisciplinary Center for Scientific Computing (IWR)
where grand challenges in the computational sciences are tackled, e.g., climate
and ocean modeling, turbulent flows, combustion, bio-molecules, and drug de-
sign.

In 2010, SSDBM received a near-record number of 94 submissions from 27
countries. Each submission was reviewed by at least three of the 38 PC mem-
bers or external reviewers. After careful consideration, 41 papers (≈44%) overall
where accepted, 30 as long papers (≈32%) and 11 short papers and demonstra-
tions. The reviewing process was managed by the EasyChair Conference System
(www.easychair.org), an excellent free conference management system, devel-
oped by Andrei Voronkov. SSDBM 2010 featured two keynotes: Daniel Abadi
from Yale University discussed “Trade-offs Between Parallel Database Systems,
Hadoop, and HadoopDB as Platforms for Petabyte-Scale Analysis” and de-
scribed experiences using existing parallel databases and MapReduce systems,
and HadoopDB, a hybrid system under development at Yale. In his keynote,
Roger Barga from Microsoft Research presented “Emerging Trends and Con-
verging Technologies in Data-Intensive Scalable Computing.”

The program and activities of SSDBM 2010 were the result of a large effort by
the authors, reviewers, presenters, and organizers. We thank them all for helping
to make this conference a success! In particular, we thank the General Chair, An-
dreas Reuter for offering to host SSDBM at Villa Bosch, for supporting SSDBM
in general, and for organizing the SSDBM sponsors. We also thank Wolfgang
Müller from HITS for the local organization and Conny Franke for compiling
the proceedings. Last not least, we would like to thank the “father of SSDBM”
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and Chair of the Steering Committee, Arie Shoshani, for guidance throughout
the process of organzing SSDBM. We hope you enjoy the proceedings!

April 2010 Michael Gertz
Bertram Ludäscher
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Klaus Meyer-Wegener

Spatio-temporal Event Stream Processing in Multimedia
Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Mingyan Gao, Xiaoyan Yang, Ramesh Jain, and Beng Chin Ooi



Table of Contents XV

Stratified Reservoir Sampling over Heterogeneous Data Streams . . . . . . . . 621
Mohammed Al-Kateb and Byung Suk Lee

Tree Induction over Perennial Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
Zaigham Faraz Siddiqui and Myra Spiliopoulou

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659



Tradeoffs between Parallel Database Systems,

Hadoop, and HadoopDB as Platforms
for Petabyte-Scale Analysis

Daniel J. Abadi

Yale University
dna@cs.yale.edu

Abstract. As the market demand for analyzing data sets of increas-
ing variety and scale continues to explode, the software options for per-
forming this analysis are beginning to proliferate. No fewer than a dozen
companies have launched in the past few years that sell parallel database
products to meet this market demand. At the same time, MapReduce-
based options, such as the open source Hadoop framework are becoming
increasingly popular, and there have been a plethora of research publi-
cations in the past two years that demonstrate how MapReduce can be
used to accelerate and scale various data analysis tasks.

Both parallel databases and MapReduce-based options have strengths
and weaknesses that a practitioner must be aware of before selecting an
analytical data management platform. In this talk, I describe some ex-
periences in using these systems, and the advantages and disadvantages
of the popular implementations of these systems. I then discuss a hybrid
system that we are building at Yale University, called HadoopDB, that
attempts to combine the advantages of both types of platforms. Finally, I
discuss our experience in using HadoopDB for both traditional decision
support workloads (i.e., TPC-H) and also scientific data management
(analyzing the Uniprot protein sequence, function, and annotation data).

Keywords: MapReduce, parallel databases, scalable dystems, fault tol-
erant systems, analytical data management.

1 Introduction

The amount of data that needs to be stored and processed by analytical appli-
cations is exploding. This is partly due to the increased automation with which
data can be produced (more processes are becoming digitized), the proliferation
of sensors and tracking devices, the increased computational power and data
output of scientific machinery, and an increasing desire for more historical data
to be kept online (in its raw, granular format) for analysis. It is no longer un-
common to hear of applications producing more than a terabyte of structured
data per day (e.g., clickstreams, network event logs, scientific experimental data,
telecom CDR records, and high-throughput genomic sequencing).

Given the exploding data problem, there is an increased demand for computer
systems that can store, process, manage, and analyze data at this tremendous

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 1–3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 D.J. Abadi

scale. Some applications attempt to use relational database (RDBMS) technol-
ogy such as Oracle, Teradata, or IBM DB2 for storing and analyzing their data.
Unfortunately, this technology is often unsuitable for the types of applications
mentioned above, for two reasons. First, RDBMSs require data to be carefully
modeled and loaded into two-dimensional tables before it can be used, and this
requirement is too constraining for some of the applications mentioned above,
which require more flexibility.

Second, while these relational databases have been proven to scale really
well into the tens of servers involved in parallel data processing (arranged in
a shared-nothing MPP architecture), there are very few known parallel RDBMS
deployments consisting of more than one hundred servers, and to the best of
our knowledge, there exists no published deployment of a parallel RDBMS with
servers numbering into the thousands. There are two primary reasons why par-
allel database systems generally do not scale well into the hundreds of servers.
First, failures become increasingly common as one adds more servers to a system,
yet RDBMS technology tends to be designed with the assumption that failures
are a rare event. Second, RDBMSs generally assume a homogeneous array of
machines, yet it is nearly impossible to achieve pure homogeneity at scale (espe-
cially on shared infracture such as public or private cloud environments). As the
data that needs to be analyzed continues to grow, the number of applications
that require more than one hundred servers is starting to multiply.

Some people argue that MapReduce-based systems are well suited for large
scale data analysis. Even though MapReduce was originally designed for un-
structured text data processing (to help Google build its Web index) [2], it was
architected from the beginning to scale to thousands of servers, and has had
proven scalability success in Googles internal operations and on the TeraSort
benchmark [3]. Unfortunately, MapReduce yields an order of magnitude slower
performance than RDBMS technology on structured data analysis workloads
(largely due to the fact that MapReduce was not originally designed to perform
structured data analysis) [3]. This yields commensurate increases in the number
of machines and energy consumption needed to perform a particular task (which
is becoming an increasingly important concern).

At Yale, we are building a system, called HadoopDB that combines the flex-
ibility and scalability advantages of MapReduce with the performance and effi-
ciency advantages of RDBMSs to achieve a hybrid system that is well suited for
analytical data management applications and can handle the future demands
of data intensive applications. In a recent paper [1], we described our architec-
tural vision of HadoopDB. The basic idea is to use Hadoop (an open source
implementation of MapReduce) as the communication and job scheduling layer
above multiple nodes running DBMS instances. Queries are expressed in SQL,
translated into MapReduce, and as much work as possible is pushed into the
higher performing single node databases. However, data that does not fit into a
relational data model need not be stored in the database systems; rather it can
be kept in Hadoop’s distributed file system (HDFS) and combined with data
stored in the database systems on the fly.
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This talk focuses on both the generic problems with using parallel database
systems and Hadoop for large scale data analysis and also the specific details of
the architecture of the HadoopDB hybrid system. I will discuss some interesting
architectural tradeoffs between common analytical platform implementations,
including:

1. Fault Tolerance
2. Loading Time
3. Schema Flexibility
4. Join Performance
5. Straggler Node Handling

HadoopDB makes some interesting design decisions with respect to these trade-
offs, often finding a flexible mechanism for a user to adjust the desired middle
ground between tradeoff extremes depending on a particular workload.

Finally I will discuss the status of the HadoopDB project, including the open
source initiative around the codebase, recent benchmark studies (including some
promising numbers on TPC-H), and some interesting applications we have found
for HadoopDB (such as analyzing the Uniprot protein sequence, function, and
annotation data).
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Emerging Trends and Converging Technologies

in Data Intensive Scalable Computing

Roger S. Barga

Microsoft Research, Microsoft Corporation
One Microsoft Way, Redmond, WA, USA, 98073

barga@microsft.com

There is today wide agreement that data-intensive scalable computing meth-
ods are essential to advancing research in many disciplines. Such methods are
expected to play an increasing important role in providing support for well-
informed technical decisions and policies. They are therefore of great scientific
and social importance.

The growing wealth of data is manifest as increasing numbers of data col-
lections, varying from curated databases to assemblies of files. The former pro-
vide reference resources, preservation and computational access whilst the latter
are often structured as spreadsheets or CSV files and stored on individual re-
searchers’ computers. Many of these collections are growing both in size and
complexity. As computer technology and laboratory automation increases in
speed and reduces in cost, more and more primary sources of data are deployed
and the flow of data from each one is increased.

At the same time, a growing number of researchers and decision makers are
both contributing to the data and expecting to exploit this abundance of data
for their own work. They require new combinations of data, new and ever more
sophisticated data analysis methods and substantial improvements in the ways
in which results are presented. And it is not just the volume of information but
also its scope. It’s becoming more important for different fields of science to
work collaboratively to drive new discoveries. While cross-disciplinary collabo-
ration is helping drive new understanding, it also imposes even greater levels of
complexity.

This pervasive change is part of a research revolution that introduces a wave
of data-driven approaches termed “The Fourth Paradigm” by Jim Gray, as it is
so transformative. Current strategies for supporting it demonstrate the power
and potential of these new methods. However, they are not a sustainable strategy
as they demand far too much expertise and help to address each new task. In
order to carry out these tasks effectively and repeatedly, we must tease out the
principles that underpinned their success, and through clarification, articulation,
and tools, make it possible to replicate that success widely with fewer demands
for exceptional talents. And this will allow researchers to spend more of their
time on research.

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 4–5, 2010.
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This talk will take an opinionated look at the past, present, and future of data
intensive scalable computing. I will outline trends that have recently emerged in
the computer industry to cope with data intensive scalable computing, show why
existing software systems are ill-equipped to handle this new reality, and point
towards some bright spots on the horizon and share predictions of technology
convergence.



Deriving Spatio-temporal Query Results
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Abstract. Tracking moving objects in relation to regions of interest,
e.g., for pollution control or habitat monitoring, is an important appli-
cation of Sensor Networks (SN). Research on Moving Object Databases
has resulted in sophisticated mechanisms for querying moving objects
and regions declaratively. Applying these results to SN in a straight-
forward way is not possible: First, sensor nodes typically can only de-
termine that an object is in their vicinity, but not the exact position.
Second, nodes may fail, or areas may be unobservable. All this is prob-
lematic because the evaluation of spatio-temporal queries requires precise
knowledge about object positions. In this paper we specify meaningful
results of spatio-temporal queries, given those SN-specific phenomena,
and say how to derive them from object detections by sensor nodes. We
distinguish between objects which definitely fulfill the query and those
that could possibly do so, but where those inaccuracies are in the way
of a definite answer. We study both spatio-temporal predicates as well
as spatio-temporal developments, i.e., sequences of predicates describing
complex movement patterns of objects.

1 Introduction

Spatio-temporal semantics are an inherent property of many applications of Sen-
sor Networks (SN). Examples of such applications range from scientists tracking
animals [1, 2, 3] to governmental authorities observing if unauthorized persons
or vehicles enter sensitive regions [4, 5, 6].

Researchers studying SN have noted the advantages of declarative query pro-
cessing (e.g., [7, 8]), but have focused on relational queries so far. However,
relational query languages are not well-suited to express spatio-temporal seman-
tics [9]. This is because they do not offer spatio-temporal data types to model
the movement of objects. Even simple spatio-temporal queries are difficult to for-
mulate. To solve this problem, researchers on Moving Object Databases (MOD)
have proposed languages to query moving objects and regions.

Applying these advances from MOD to SN in a straightforward way is not
possible due to the well-known limitations of SN: MOD tend to assume precise
and complete information on objects queried. This is typically not the case for
data acquired on moving objects by SN: First, the area monitored by a sensor
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node is bounded, and there exist temporarily or permanently unobserved areas.
This may be due to failed nodes, non-uniform deployment of nodes or external
influences such as objects physically blocking the detection hardware. Another
problem is the accuracy of most sensing devices commonly used in SN: They
typically only detect the presence of objects in their vicinity, but cannot deter-
mine their position. Thus, they might be unable to determine if some object is
”inside”, ”on the border” or ”outside” of a region. It is the combination of these
problems that is challenging, given the assumptions commonly used in MOD.

In this paper, we show how to obtain meaningful results for spatio-temporal
queries based on incomplete, imprecise object detections in SN. As a first step,
we provide a formal framework for the description of object movements that
is applicable to any detection mechanism. We show how to deduce results for
spatio-temporal queries from information acquired through object detection, to-
gether with information on the accuracy of query results. We distinguish between
three kinds of results: For some objects, the SN can determine that their move-
ment conforms to the query despite the inaccuracy of object detection for sure.
In the second case, object detection is not sufficiently accurate to yield a definite
answer. The third case is that the SN can rule out that a movement conforms
to the query. Note that we abstract from the implementation of communication
protocols or data types that may be used to compute the results.

More importantly, we show for all results that they are optimal considering
the limitations of object detection by the SN: First, we say how to derive a set
of objects definitely fulfilling the query of the user. We show for this set that it
is maximal, i.e., contains all objects for which SN can guarantee that they fulfill
the query, under non-restrictive assumptions. Second, we say how to derive the
set of objects that possibly fulfill the query. Similar to the first set, we show for
this set that it does not contain objects from the first category or objects that
definitely do not fulfill the query. We show how to compute such result sets for
both spatio-temporal predicates as well as spatio-temporal developments. The
latter are sequences of predicates that describe complex object movements [10].

Our results are not trivial: The number of possible sequences of object detec-
tions is infinite, and the difficulty is finding few good abstractions from individual
detection sequences, which give way to meaningful conclusions. Further, this ab-
straction must keep our approach applicable to a wide range of SN and detection
mechanisms.

Paper outline: Section 2 introduces our running example. In Section 3 we
briefly review query processing in MOD. Section 4 introduces an abstract node
and network model which we use to study the processing of predicates and
developments in SN in Sections 5 and 6 respectively. We conclude in Section 7.

2 Application Scenario

In the following, we use an application from research on vehicle-target detection
and classification called “A Line in the Sand” [6] as a running example. We
introduce this application and describe several properties of the SN our approach
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aims at. The objective of this application is detecting vehicles or humans along a
perimeter or within a region defined by geo-coordinates using a sensor network,
as illustrated in Figure 1.

Fig. 1. Illustration of the application
scenario

Sensor nodes like MicaZ [11] or Sun
SPOT [12] are deployed, e.g., by drop-
ping them out of an airplane or by man-
ually installing them. We take different
deployment methods into account by dis-
tinguishing between three coverage as-
sumptions (CA):

CA∅: Nodes are deployed randomly, and
it is not fixed a priori which parts of
the space are observed.

CAB: By deploying nodes in a controlled
manner, it is guaranteed that the
border of the region is completely ob-
served, i.e., objects cannot move over
the border without being detected.

CABI: The deployment guarantees that
objects inside the region as well as
objects moving over the border are
detected at any time.

Each node is equipped with a GPS receiver to determine its position and sens-
ing hardware to detect moving objects and classify them as, say, vehicles or
humans. There exist several approaches for this: For example, acoustic sensors
like condenser microphones detect vehicles based on noise emitted by the en-
gine or propulsion gear [13]. Other examples are passive infrared (PIR) motion
detectors or magnetics sensors [5].

A simple spatio-temporal query in our scenario is which vehicles have moved
from outside of a user-defined region R into the region. We use this query as our
running example. The application scenario just described also fixes the scope of
this paper: To ease presentation, we limit the discussion to queries regarding the
spatio-temporal relationship between moving objects and one static region. Next,
we assume that sensor nodes do not move, and that the detection mechanism
can distinguish between query-relevant objects and irrelevant ones. Further, it is
able to identify objects. For instance, if Sensor Si detects a certain object, and
Sj detects the object later on, the SN knows that it is the same object. Such an
identification is usually available, e.g., for pedestrians carrying a cellular phone
or vehicles emitting a certain noise-pattern.

Another important aspect is the temporal resolution of detection mechanisms:
From an abstract point of view, such a mechanism checks for objects in range. It
does so with a certain temporal resolution, e.g., measurements are taken every
t seconds. This temporal resolution determines the speed of the objects the
mechanism can detect. If objects travel faster than implicitly assumed, they
may remain undetected. We assume in the following that this is not the case.
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Finally, the temporal resolution never is infinitely high, but bounded by the
physical limits of the hardware used.

3 Spatio-temporal Query Processing and Related Work

In this section we briefly review related work and introduce some fundamentals
of spatio-temporal query processing. See [10] for further details.

3.1 Spatial Relationships

Spatio-temporal query processing is based on the point-set topology [14]. It
defines the spatial entities points, lines and regions for the Euclidean space Ed.
To ease presentation, we focus on the 2-dimensional space E2. Every element
of the space is a point p ∈ E2 with p :=< latitude, longitude >. An entity is
a set of points which divides the space into three pair-wise disjoint subsets: the
interior, the border and the exterior. For a region R, the border RB contains
all points of the line that delimits the region. The interior RI covers all points
within the region. The points that are neither in RI nor in RB are the exterior
RO (See [15] for formal definitions.). In contrast to regions, points do not have
a border and only an interior.

⎛
⎝

AB ∩ BB �= ∅ AB ∩ BI �= ∅ AB ∩ BO �= ∅

AI ∩ BB �= ∅ AI ∩ BI �= ∅ AI ∩ BO �= ∅

AO ∩ BB �= ∅ AO ∩ BI �= ∅ AO ∩ BO �= ∅

⎞
⎠

Fig. 2. 9-Intersection Model for two spatial entities A and B

⎛
⎝

F F F
F T F
T T T

⎞
⎠

⎛
⎝

F F F
T F F
T T T

⎞
⎠

⎛
⎝

F F F
F F T
T T T

⎞
⎠

inside (p3,R) meet (p2,R) disjoint (p1, R)

Fig. 3. 9-Intersection representation of
spatial predicates (A = pi and B = R)

inside (p3,R) meet (p2, R) disjoint (p1,R)

Fig. 4. Spatial Predicates for
Point/Region relations

There exist three predicates to describe the relationship between a point and
a region: disjoint (p1,R), meet (p2,R) and inside (p3,R), see Figure 4. The 9-
intersection model [15, 16] describes the topological relationship between two
spatial entities A and B. It is based on the nine possible intersections of interior,
border and exterior of A with the interior, border and exterior of B, as shown in
Figure 2. Each intersection is either empty or not. The intersection matrix con-
sisting of the nine resulting boolean values describes the topological relationship
between A and B.
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Example 1: inside (p3,R) is true if the interior of R contains the point p3.
The intersection matrix in Figure 3 represents the intersections of the partitions
corresponding to p3 and of the ones corresponding to R: For p3 to be in R,
pI
3 ∩ RI �= ∅. This corresponds to the middle value of the second row. Since p3

is a point, the border p3
B is an empty set and thus does not intersect with any

part of R. p3
O contains all remaining points of the space and intersects with all

parts of R. The last row illustrates this. ��
Note that only a subset of all 29 = 512 possible intersection configurations
makes sense. For example, if both interior and exterior of two entities intersect,
the borders of these two entities must intersect as well.

3.2 Spatio-temporal Relationships

When objects or regions move, their topological relation may change over time.
To express such changes, one needs to consider time. Temporal lifting [9] repre-
sents time as real numbers (time ⊂ R). It models a spatial value α that changes
over time as a temporal function θ (α) : time → α.

Temporal lifting can be leveraged to model moving objects and evolving re-
gions. In this paper, an object is fully represented by its position, i.e., modeled
as a point p ∈ E2. A moving object is one whose position changes over time:
Definition 1 (Moving Object): A moving object is a lifted object, i.e., a
function θ

(
E2

)
: time → E2 ∪ {⊥}. If an object does not exist at some point in

time t ∈ time, the function returns ⊥. ��
The set P contains all possible point sets and a region r is represented by an
element of P.
Definition 2 (Evolving Region): An evolving region R is a function θ (r) :
time → P ∪ {⊥}, i.e., points are added/removed over time. ��
A spatio-temporal predicate P (x,R) is a function that returns T , F or ⊥, de-
pending on the topological relation of x to R over time. Spatio-temporal predi-
cates are lifted spatial predicates.
Example 2: The spatial predicate inside (x,R) returns T if x is in RI .
To reflect that R and x might change over time, Inside (x,R) is a function
θ (inside (x,R)) : time → {T, F,⊥} that returns T whenever x is in RI . ��
Example 2 illustrates the lifting of a spatial predicate. We use lower-case letters
for spatial predicates like inside (x,R) and upper-case letters for lifted, spatio-
temporal predicates, e.g., Inside (x,R). In general, to describe the changing
topological relation between x and R, the predicate p (x,R) is lifted:

θ (p (x,R)) : time → {T, F,⊥} (1)

Next, [10] defines the concatenation operator � to express more complex changes
of relationships between spatio-temporal entities.
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Definition 3 (Concatenation): The concatenation of two predicates, P (x,R)
� Q (x,R), is true if P (x,R) is true for some time interval [t0; t1[, and Q (x,R)
is true at t1. ��
Using this concatenation operator, one can construct sequences of spatio-temporal
predicates P1 (x,R) � P2 (x,R) � . . . � Pp (x,R). A spatio-temporal development
is a sequence of spatio-temporal predicates.
Example 3: The user in Section 2 wants to know which vehicles have moved
into region R. To fulfill the query, a vehicle must be outside of R, then move
over the border RB into the interior RI . This query is expressed as follows:

Disjoint (x,R) � Meet (x,R) � Inside (x,R) (2)

This spatio-temporal development usually is referred to as Enter (x,R). Another
commonly used spatio-temporal development is Touch (x,R):

Disjoint (x,R) � Meet (x,R) � Disjoint (x,R) (3)

��
Any sequence that describes the changing relationship between an object and
a region consists of the three predicates Disjoint (x,R), Meet (x,R) and In-
side (x,R). While infinite sequences of spatio-temporal predicates are possible,
[10] has shown that it is sufficient to explicitly consider a canonical collection
of 28 developments. From these 28 developments, more complex ones can be
constructed by means of concatenation. In line with [10], we use this canoni-
cal collection in Section 6 to limit the number of predicate sequences we must
consider explicitly.

4 Network and Node Model

The main notion introduced next is abstract detection mechanism. We also say,
how objects are localized in a SN based on object detection.

Notation (SN): A sensor network is a set N = {S1, S2, . . . , Sn} of n sensor
nodes. pi is the position of Si after the deployment.

To process spatial or spatio-temporal predicates, sensor nodes must be able to
detect objects moving in the area where the sensor network is deployed. There
exist numerous approaches for the detection and localization of objects such as
humans or vehicles, most of them with different characteristics.
Example 4: Acoustic vehicle detection or PIR sensors detect if a vehicle is
in the vicinity of the node hosting the sensing device. Laser scanners or range
finders yield better results. They can detect the distance of an object to the
sensor node. Even more sophisticated mechanisms, e.g., radar, precisely locate
objects in the area observed by the node, i.e., the result are coordinates. ��
To keep our approach independent of the detection mechanism used, we abstract
from it as follows: To detect an object, the object must be ‘in range’, i.e., in the
area observed by the detection mechanism.
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Fig. 5. Illustration of the
node model

Fig. 6. Object detection
with distance estimation

Fig. 7. Position-Precise
Object Detection

Definition 4 (Detection Area): The detection area of node Si is the set of
points Di ⊆ E2 where Si can detect an object. ��
As illustrated in Figure 5, the detection area can have any shape or size and may
change over time. Another important aspect is that most detection mechanisms
cannot determine their actual detection area.

Notation (Maximum Detection Range): We refer to the maximum distance
between the node hosting the detection mechanism and an object detected as
maximum detection range Dmax.

The maximum detection range is usually provided externally, e.g., by the
manufacturer of the sensing hardware, or determined through calibration prior
to deployment. Figure 5 and Example 5 illustrate the difference between the
detection area and the maximum detection range.
Example 5: For PIR-based motion detectors, Dmax ≈ 30 meters. The sensor
node in Figure 5 has been deployed close to a wall and cannot detect any object
behind it. Thus, the area observed is much smaller than Dmax. Next, if there is
an object in front of the lens of such a sensor, the area observed may be only a
few centimeters. Nodes cannot detect this. ��
It is the aim of any detection mechanism to narrow down the actual position of
a detected object as precisely as possible. Thus, independently of the mechanism
used, the result of object detection is modelled as a point set.
Definition 5 (Possible Object Positions): The possible positions of an
object x detected by Si is a set POPi

x containing all points p ∈ E2 where x
could be while being detected by Si. Detection areas may overlap, resulting in
simultaneous detection of an object by several nodes. In this case, the possible
object positions POPx are the intersection of all POPi

x. ��
It depends on the detection mechanism how this point set is determined. Exam-
ple 6 illustrates this, using the detection mechanisms from Example 4.
Example 6: Simple mechanisms like acoustic vehicle detection or PIR-based
motion detectors cannot observe their detection area and only detect objects in
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the vicinity of the detecting node Si. In these cases, POPi
x equals the circle

with center pi and radius Dmax, see Figure 5. More sophisticated mechanisms
determine the distance d from the node to the detected object. Taking into
account a certain deviation ε, POPi

x is ring-shaped, see Figure 6. Figure 7
illustrates POPi

x for mechanisms which precisely determine the position of x.
��

For certain SN deployments, it is viable to make assumptions on the coverage
of the area the SN is deployed in. In Section 2 we introduced three cases which
are important for the discussion in the following.

CA∅: No assumptions about the coverage are made.
CAB: All points p ∈ RB are in the detection area Di of at least one node Si:

RB ⊆
⋃

1≤i≤n

Di (4)

CABI: All points p ∈ RB ∪ RI are in Di for at least one node Si:

RB ∪ RI ⊆
⋃

1≤i≤n

Di (5)

5 Deriving Predicate Results from Object Detection

In this section, we show how predicate results can be derived from information
acquired through object detection. As a first step, we formalize the information
obtained by object detection using so called detection scenarios. The detection
scenarios also take the accuracy of object detection into account, i.e., nodes
typically cannot determine the exact position of objects detected. To solve this
problem, we propose to have a three-valued predicate result, to distinguish be-
tween objects that are guaranteed to fulfill, those that could possibly fulfill and
those that definitely do not fulfill the predicate. The core contribution of this
section is a mapping of detection scenarios and predicates to result values. We
prove that the results obtained are optimal.

5.1 Semantics of Object Detection

When one or more nodes detect an object x, its actual position must be in
POPx. We deduce the result of spatio-temporal predicates from the overlap of
POPx with the different partitions of R by defining detection scenarios :

Notation (Detection Scenarios): A detection scenario describes the overlap
of POPx, which is determined by the detection mechanism, with the different
partitions of a region R. In SN, there are the following scenarios:

DSN: There does not exist a node that detects x. In other words, the object is
currently unobserved or does not exist: POPx = ∅
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DSO: The set of possible object positions POPx only contains points in RO.
Then x is outside of R: POPx ⊆ RO

DSI: POPx only contains points in RI . The object x is inside of R: POPx ⊆ RI

DSB: POPx overlaps with RB: RB ∩ POPx �= ∅.
If POPx also contains points of other partitions, it is unclear on which side
of the border the object is.

Lemma 1. For any point of time, exactly one detection scenario holds.

Proof. The set of scenarios mentioned is exhaustive because it covers all points in
E2. A point p ∈ E2 is either included in at least one detection area or unobserved.
DSNcovers all points E2 \ ⋃

Si∈N Di. The observed points
⋃

Si∈N Di are covered
by one of the remaining scenarios: It depends on the detection mechanism which
points are covered by DSB. If the mechanism precisely determines the object
positions, DSB only covers RB, while DSO and DSI cover RO and RI respectively.
For any mechanism that is less accurate, DSB also covers points around RB from
RI and RO. Each of these point sets is pair-wise disjoint with the others, thus
at every t ∈ time exactly one detection scenario holds. ��
The detection scenarios are completely independent from the detection mech-
anism used, the deployment and other external influences. They also take into
account simultaneous detection of an object by more than one node:
Example 7: Let N = {S1, S2, S3, S4}, and the SN is deployed as shown in
Figure 8. Suppose each node only detects objects in its vicinity, e.g., using a
PIR-based mechanism. Thus, if Si detects an object x, POPi

x contains all points
in the circle with radius Dmax and center pi. If each Si detects a vehicle vi,
1 ≤ i ≤ 4, the following scenarios occur:

v1 : POPv1
contains only points from

RO, and thus DSO occurs.
v2 : POPv2

contains only points from
RI , and thus DSI occurs.

v3 : POPv3
contains points from all

three partitions of the Euclidean
space. This means that the detec-
tion mechanism is not sufficiently
accurate to determine on which
side of the border of R the vehicle
v3 is. Thus, DSB occurs.

v4 : Analogous to v3.

Fig. 8. Example of SN, detection areas,
detection ranges and a region

In case of simultaneous detection of v4 by S4 and S2, POPv4
is the intersection

of POPS4
v4

and POPS2
v4

. It is a subset of RI and results in DSI.
The detection scenarios for these vehicles obviously change if more sophisti-

cated detection mechanisms are used. If S3 could determine its detection area
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D3, POPv3
does not overlap with RB anymore, as illustrated in Figure 8. This

increased accuracy changes the detection scenario for v3 from DSB to DSI. ��
Based on these scenarios, we will show how meaningful predicate results can be
obtained. Unless otherwise noted, we assume that nodes cannot precisely locate
an object. Thus, in case of DSB, POPx always contains points not in RB.

5.2 Predicate Results

While DSO and DSI guarantee that the object is in a certain partition of the space,
this is not true for DSB. Thus, objects detected with DSO or DSI conform to the
predicate p (x,R) in question or not. Contrary to that, objects detected with
DSB could fulfill p (x,R), but this is not certain. We take this disparity regarding
the certainty of object positions into account by adding a third value M(aybe)
to the possible results of p (x,R):

T : p (x,R) returns T if the SN can guarantee that x fulfills p (x,R).
F : p (x,R) returns F if the SN can guarantee that x does not fulfill p (x,R).
M : p (x,R) returns M otherwise.

Example 8: Continuing Example 7, think of a user interested in all vehicles
inside the region, i.e., inside (x,R). Recall that a SN can only narrow down the
actual position of a detected vehicle v: POPi

v is the circle with radius Dmax

around the position pi of the detecting node Si. If node Si in Figure 8 detects
vi, 1 ≤ i ≤ 4, the results are as follows:

v1: The distance between S1 and R is greater than Dmax. Thus, it is certain
that v1 is outside of R. This yields inside (v1,R) = F .

v2: POPS2
v2

for v2 is completely inside R. Thus, inside (v2,R) = T .
v3: Since the distance between S3 and the border of R is less than Dmax, the

detection area could overlap the border. If a vehicle is detected only by
S3, the SN cannot determine on which side of the border it is. Thus, in-
side (v3,R) = M .

v4: Analogously to v3. �

5.3 Deriving Predicate Results

To process spatio-temporal queries in SN, we specify the mapping of each detec-
tion scenario of Notation 5.1 to a result for any predicate. This mapping is the
foundation for meaningful results for spatio-temporal developments in Section 6.
To ease the presentation, we do not make any assumptions regarding coverage
for the time being, i.e., we use CA∅.

inside (x, R) in SN. There are three detection scenarios where an object can
possibly be in R:

DSI: POPx only overlaps with RI . Hence, inside (x,R) is true.
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DSB: POPx partly overlaps with R. Thus, it is possible that x fulfills inside (x,R),
but this is not guaranteed.

DSN: Objects may be within the region without being detected. Thus, x might
fulfill inside (x,R) while being undetected.

Equation 6 serves as a summary:

inside (x,R) =

⎧⎨
⎩

T iff DSI

F iff DSO

M iff DSB, DSN
(6)

Lemma 2. Let Ωinside be the set of objects in R. The set of objects where in-
side (x,R) yields T or M is the smallest superset of Ωinside that the SN can
derive from the detection scenarios.

Rationale. The remaining detection scenario DSO only corresponds to objects that
are guaranteed to be outside of R. ��
Lemma 3. The set of objects where inside (x,R) = T is the largest subset of
Ωinside that the SN can derive from the detection scenarios.

Rationale. Only DSI corresponds to objects that fulfill inside (x,R) for sure.
��

We conclude for inside (x,R), that the result in Equation 6 is as accurate as
possible, considering the limited view of reality offered by SN.

meet (x, R) in SN. The predicate meet (x,R) is true if x is in RB.

Lemma 4. SN cannot guarantee meet (x,R) = T for any object detected.

Proof. DSB occurs if POPx and RB overlap. All other detection scenarios either
guarantee that x is not in RB or is undetected. Therefore, only DSB needs to
be considered here. Even if x is on the border RB, POPx also contains points
p /∈ RB (cf. Section 5.1). Thus, the detection mechanism cannot distinguish
between objects on the border and objects close to it. ��
Even if sophisticated detection mechanisms were used that precisely determine
the position of an object, meet (x,R) would be problematic: RB is a line, and
lines do not have any ‘width’. The time it takes for an object to move over a line
is infinitely short. Capturing this moment would require sensing hardware with
infinitely high temporal resolution. Thus, even those sophisticated mechanisms
cannot detect objects on the border reliably.

DSB occurs if objects are ‘close’ to the border, i.e., DSB corresponds to objects
that possibly are on the border. Without any coverage assumptions, undetected
objects might be on the border as well. For the other detection scenarios, the
SN guarantees that x is not on the border of R. See Equation 7:

meet (x,R) =
{

F iff DSI or DSO

M iff DSB or DSN (7)
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Lemma 5. The set of objects where meet (x,R) = M is the smallest superset
of objects identifiable by the SN that might conform to meet (x,R).

Proof (Sketch). Unless detected according to DSB or DSN, objects are not in RB,
because POPx does not overlap with it. ��
One might now consider removing meet (x,R) from the set of predicates be-
cause there does not exist a detection scenario for which meet (x,R) = T . How-
ever this is problematic: For example, the development Touch (x,R) would not
be expressible without meet (x,R). We will show in Section 6 that there ex-
ist spatio-temporal developments containing meet (x,R) whose meaning can be
guaranteed despite Lemma 4. Summing up, the result in Equation 7 is as accu-
rate as the detection mechanisms in SN allow.

disjoint (x, R) in SN. To conform to disjoint (x,R), object x must be in
RO. The mapping to detection scenarios is analogous to inside (x,R):

disjoint (x,R) =

⎧⎨
⎩

T iff DSO

F iff DSI

M iff DSB or DSN
(8)

Obviously, there are lemmas analogous to Lemmas 2 and 3 for disjoint (x,R).

Summary. Table 1 summarizes the mapping of detection scenarios and predi-
cates to result values. Each row in the table corresponds to a predicate and each
column to a detection scenario.

Table 1. Correspondence of detection scenarios and spatial predicates

p (x,R) DSN DSO DSI DSB

inside (x,R) M F T M
meet (x,R) M F F M

disjoint (x,R) M T F M

5.4 Impact of Coverage Assumptions on Predicate Results

Table 1 shows the results for predicates in SN without any assumptions regarding
coverage. In controlled deployments, assumptions regarding coverage are feasible.
Such assumptions influence the results of predicates, as we now show.

CAB assumes that any point of the border is observed by at least one sensor
node. Thus, undetected objects are guaranteed to be either outside or inside of
R, but not on the border. Additionally, if RI is observed completely as well
(cf. CABI), undetected objects are guaranteed to be outside of R. Tables 2 and 3
summarize the mapping of detection scenarios and predicates to result values
for assumptions CAB and CABI respectively.
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Table 2. Predicate results assuming
CAB

p (x,R) DSN DSO DSI DSB

inside (x,R) M F T M
meet (x,R) F F F M

disjoint (x,R) M T F M

Table 3. Predicate results assuming
CABI

p (x,R) DSN DSO DSI DSB

inside (x,R) F F T M
meet (x,R) F F F M

disjoint (x,R) T T F M

6 Spatio-temporal Developments in SN

As a core contribution of this paper, we study in this section how sequences of
object detections relate to spatio-temporal developments, i.e., how to compute
the result of such developments. As with predicates, the result of spatio-temporal
developments is three-valued. We now present our approach in the following three
steps; the numbers are in line with the ones of the respective sections:

6.1 We define a framework that allows us to describe object trajectories formally
based on sequences of detection scenarios.

6.2 Using the framework and the canonical collection of spatio-temporal devel-
opments from [10], we come up with all trajectories that definitely fulfill a
predicate sequence.

6.3 We show how the SN can determine which objects definitely do not fulfill
the development queried.

All objects not identified in step 6.2 or 6.3 could fulfill the development in
question, i.e., the result equals M .

6.1 Formal Description of Object Detection Sequences

A spatio-temporal development P (x,R) = P1 (x,R) � P2 (x,R) � . . . � Pq (x,R)
is a sequence of predicates which describes the movement of an object x in
relation to a region R. The trajectory of an object matches such a development
if it conforms to the predicates in the given order (cf. Definition 3).
Definition 6 (Detection Sequence): The detection sequence D

R
x = DS1 �

DS2 � . . . � DSk describes the trajectory of an object x in relation to region R.
D

R
x means that for some time interval [t1; t2[ the detection scenario is DS1, DS2

for time interval [t2; t3[ etc.1 ��

Lemma 6. For every object x, there exists exactly one detection sequence D
R
x

that represents the information on the movement of x acquired by the SN.

Proof (Sketch). According to Lemma 1, at each t ∈ time one detection scenario
holds. The detection sequence D

R
x is the concatenation of these scenarios. ��

1 We have chosen right-open intervals here to be in line with the definition of predicate
sequences (cf. Definition 3 and [10]). This does not cause any problems, since the
temporal resolution of any detection mechanism is limited in any case.
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To abstract from detection sequences, we introduce the notion of detection term.
The notion is slightly more complex than what is presented next, but we omit
some details to keep the presentation concise. More specifically, we only introduce
some detection terms. A detection term stands for a (possibly infinite) set of
detection sequences.

Notation (Alternative Detection): If DS1, . . . , DSk are detection scenarios,
then DS1| . . . |DSk is a detection term. It represents all detection sequences D

R
x

that contain at least one of DS1, . . . , DSk. A detection sequence is a detection
term as well.

Notation (Repeated Detection): If d is a detection term, then {d} is a
detection term as well. The meaning is that d occurs at least once.
Example 9: Consider the development Enter (x,R). The detection sequences
DSO�DSB�DSI as well as DSO�DSN�DSI describe object trajectories that conform
to Enter (x,R). The latter does so because we can infer from the fact that
object x has been detected outside of R and inside of it afterwards that x has
crossed the border at some point. Additionally, there exists an infinite number of
detection scenarios like DSO�DSB�DSN�DSI that conform to Enter (x,R) as well.
The following detection term reflects this:

DSO �

{
DSB|DSN} � DSI (9)

All detection sequences that contain DSO once, directly followed by an infinite
number of repetitions of either DSN or DSB and a concluding DSI conform to this
detection term and at the same time to Enter (x,R). ��
Definition 7 (Detection-Term Conformance): A detection sequence D

R
x

conforms to a detection term d if D
R
x contains a substring of detection scenarios

that is represented by d. ��
To conform to a development, it is sufficient that a substring of a detection
sequence conforms to the detection term. This is because objects may move in
arbitrary patters before or after conforming to the term.
Example 10: Continuing Example 9, suppose that a vehicle x crosses R. This
results in D

R
x = DSO � DSB � DSI � DSB � DSO. The substring DSO � DSB � DSI, and

thus x, conforms to the detection term in (9) for Enter (x,R). ��
There exist various algorithms, e.g., [17], to find a substring conforming to a
pattern in a string. In our case, finding a substring in a detection sequence that
conforms to a detection term. We now provide detection terms for every possible
detection sequence that conforms to a given spatio-temporal development.

6.2 Determining whether P (x, R) = T from Detection Sequences

As mentioned in Section 3, [10] constructs a canonical collection of possible
developments describing the topological relation of an object and a region over
time. In this section, we provide a detection term for each development P (x,R)
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in this collection that describes a trajectory that conforms to P (x,R) for sure,
i.e., results in P (x,R) = T .

[10] distinguishes between meet (x,R) and Meet (x,R): Using their seman-
tics, meet (x,R) is true if x is on the border of R for exactly one instant of time.
Contrary to that, Meet (x,R) is true if x stays on the border for a time interval.
We omit developments with meet (x,R) here since this would require object de-
tection with infinite temporal resolution, cf. Lemma 4. This reduces the number
of detection sequences that must be considered to 10, which are contained in the
left column of Table 4. The right column contains the corresponding detection
term. We discuss each entry in the following and show its correctness.

Table 4. Detection terms for P (x,R) = T

P (x,R) P (x,R) = T

Disjoint (x,R)�Meet (x,R) DSO �

{
DSB|DSN} � DSI

Meet (x,R)�Inside (x,R) DSO �

{
DSB|DSN} � DSI

Inside (x,R)�Meet (x,R) DSI �

{
DSB|DSN} � DSO

Meet (x,R)�Disjoint (x,R) DSI �

{
DSB|DSN} � DSO

Disjoint (x,R)�Meet (x,R)�Inside (x,R) DSO �

{
DSB|DSN} � DSI

Disjoint (x,R)�Meet (x,R)�Disjoint (x,R) -
Inside (x,R)�Meet (x,R)�Disjoint (x,R) DSI �

{
DSB|DSN} � DSO

Inside (x,R)�Meet (x,R)�Inside (x,R) -
Meet (x,R)�Disjoint (x,R)�Meet (x,R) DSI �

{
DSB|DSN} � DSO �

{
DSB|DSN|DSO} � DSI

Meet (x,R)�Inside (x,R)�Meet (x,R) DSO �

{
DSB|DSN} � DSI �

{
DSB|DSN|DSI} � DSO

Lemma 7. Detection sequences conforming to DSO � {DSB|DSN}� DSI or to DSI �

{DSB|DSN}� DSO imply that Meet (x,R) = T . For any other sequence, this is not
the case.

Proof (Sketch). According to Lemma 4, Meet (x,R) = T if the object has been
detected on both sides of the border for sure. ��
Due to Lemma 7, developments consisting of two predicates require detection
of the object x in question on both sides of the border RB. This also affects
developments like Touch (x,R) or Inside (x,R)�Meet (x,R)�Inside (x,R):

Lemma 8. Let P (x,R) be an arbitrary predicate. There does not exist a de-
tection sequence which guarantees P (x,R) = T for developments P (x,R) �
Meet (x,R) � P (x,R).

Proof. There are two cases: 1. P (x,R) = Disjoint (x,R). 2. P (x,R) = In-
side (x,R). We omit P (x,R) = Meet (x,R) here for the following reason:

Meet (x,R) � Meet (x,R) � Meet (x,R) = Meet (x,R) (10)

We only discuss Case 1 here, since Case 2 is analogous. According to Lemma 7,
Meet (x,R) = T is only possible if x is detected on both sides of RB for
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sure. Thus, to guarantee a movement fulfilling the first part Disjoint (x,R)�
Meet (x,R), the sequence must conform to DSO � {DSB|DSN} � DSI. While this
movement guarantees Disjoint (x,R)�Meet (x,R), it also guarantees
Disjoint (x,R)� Meet (x,R)�Inside (x,R). Thus, the part Meet (x,R) � Dis-
joint (x,R) might not be true. ��
Summing up, SN cannot guarantee for any object movement that it conforms to
developments like Touch (x,R), as reflected by the ’-’ entries in Table 4.

Lemma 9. If D
R
x conforms to DSI � {DSB|DSN} � DSO � {DSB|DSN|DSO} � DSI, the

SN guarantees that Meet (x,R) � Disjoint (x,R) � Meet (x,R) = T .

Proof. Looking at the first part of the detection sequence, DSI � {DSB|DSN}� DSO

already guarantees that Meet (x,R) � Disjoint (x,R) is true at some time.
Afterwards, the object may move outside of R in any way, as reflected by
{DSB|DSN|DSO}. But this movement does not guarantee that x crosses RB another
time. This is achieved by adding �DSI, i.e., DSO � {DSB|DSN|DSO}� DSI guarantees
the second part Disjoint (x,R) � Meet (x,R). ��
We omit a lemma that the entry for Meet (x,R) � Inside (x,R) � Meet (x,R)
in Table 4 is correct because it would be similar to Lemma 9.

6.3 Determining whether P (x, R) = F from Detection Sequences

In this section we say how to determine systematically that an object movement
definitely does not conform to a development.

Lemma 10. Any object which is detected according to DSB could possibly con-
form to any spatio-temporal development.

Proof (Sketch). DSB occurs if an object is detected ‘close’ to the border, and
the inaccuracy of the detection mechanism prevents a definite answer on which
side of the border it is. Thus, while the SN detects DSB, the object could move
around and over the border in any way, repeatedly. ��
Recall that we only consider developments that describe topological relations
between an object and one region. Lemma 10 implies that detection sequences
of objects that definitely do not conform to a development queried may only
consist of DSO, DSN and DSI. Recall that detection areas may have any shape
or size, and temporarily undetected objects could cross the border of a region
in arbitrary ways unless assumptions regarding the coverage are made. Thus,
in case of CA∅, objects that have been temporarily undetected could possibly
conform to any spatio-temporal development. This is reflected by Lemma 11.

Lemma 11. An object that is temporarily undetected, i.e., DSN occurs, could
conform to any development unless assumptions about the coverage are made.

In SN deployed in a way such that CAB or CABI can be assumed, objects can-
not cross the border without being detected. In these cases, objects that did
not cross the border, i.e., DSB never occurred, do not conform to development
queried. Summing up, depending on the coverage assumption, the following ob-
jects definitely do not conform to any development queried:
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CA∅: Taking into account Lemmas 10 and 11, only objects that have been ob-
served during all times according to DSI or DSO definitely do not conform to
any development queried.

CAB: This assumption implies that objects cannot cross the border without being
detected. Thus, only Lemma 10 has to be taken into account to determine
which objects do not conform to the development queried.

CABI: Since all points of the region are observed, undetected objects cannot
exist in the region. Thus, the objects that definitely do not conform to a
development are determined similarly to CAB.

6.4 Summary

Equations 11-13 list the result of a development P (x,R) for assumptions CA∅,
CAB and CABI respectively.

P (x,R) =

⎧⎨
⎩

T iff D
R
x conforms to the corresponding entry in Table 4

F iff
(
D

R
x = DSI

) ∨ (
D

R
x = DSO

)
M otherwise

(11)

P (x,R) =

⎧⎨
⎩

T iff D
R
x conforms to the corresponding entry in Table 4

F iff
(
D

R
x = {DSN|DSO}) ∨ (

D
R
x = {DSN|DSI})

M otherwise
(12)

P (x,R) =

⎧⎨
⎩

T iff D
R
x conforms to the corresponding entry in Table 4

F iff
(
D

R
x = {DSN|DSO}) ∨ (

D
R
x = DSI

)
M otherwise

(13)

Theorem 1. The results for spatio-temporal developments derived in this sec-
tion are optimal, considering the limitations of detection mechanisms in SN.

Proof. Let ΩP(x,R) be the set of objects that conform to P (x,R). The set
of objects where P (x,R) = T according to lemmas in Section 6.2 is the largest
subset of P (x,R) the SN can derive. Similarly, the set of objects where P (x,R) =
F is the largest set of objects the SN can derive. Therefore, the set of objects
where P (x,R) = M is the smallest subset of ΩP(x,R) the SN can derive based
on the limited accuracy of object detection. ��

7 Conclusions

In this paper, we have studied the evaluation of spatio-temporal queries with
the help of SN. This is important, since SN are widely used to track moving
objects. It also is challenging, because MOD typically expect complete knowledge
about movements, while SN have limited sensing capabilities. We find classes
of detection scenarios that correspond/do not correspond/might correspond to
a given spatio-temporal development, for each element of the canonical set of
developments. For each of these results, we have shown that it is optimal taking
into account the accuracy of object detection of the SN in question.
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Abstract. Skyline queries have attracted considerable attention over
the last few years, mainly due to their ability to return interesting ob-
jects without the need for user-defined scoring functions. In this work,
we study the problem of distributed skyline computation and propose
an adaptive algorithm towards controlling the degree of parallelism and
the required network traffic. In contrast to state-of-the-art methods, our
algorithm handles efficiently diverse preferences imposed on attributes.
The key idea is to partition the data using a grid scheme and for each
query to build on-the-fly a dependency graph among partitions which
can help in effective pruning. Our algorithm operates in two modes: (i)
full-parallel mode, where processors are activated simultaneously or (ii)
cascading mode, where processors are activated in a cascading manner
using propagation of intermediate results, thus reducing network traffic
and potentially increasing throughput. Performance evaluation results,
based on real-life and synthetic data sets, demonstrate the scalability
with respect to the number of processors and database size.

1 Introduction

Skyline queries, in the context of databases, were initially proposed in [1] and
since then, they have attracted considerable attention from the database com-
munity, primarily due to their applicability in multi-criteria decision making,
without the requirement of user-defined scoring functions. The skyline of a data
set composed of d-dimensional points returns those points that are not domi-
nated by any other, with respect to some specific preference (e.g., min, max) on
each dimension. We say that point p dominates point q if p it is at least as good
as q in all dimensions and it is strictly better in at least one. A classic example
in the bibliography is that of hotels, for which we know their price (y-axis) and
distance to the beach (x-axis), as shown in Fig. 1(a). We are interested in those
hotels for which there is none cheaper and closer to the beach at the same time,
i.e., hotels {a, g, e, n}.

There is also a current tendency towards addressing problems in a distributed
manner, to enable decentralization and faster computation. P2P and Grid com-
puting are two prominent examples and substantial research has focused on an-
swering skyline queries in these environments [2,3,4,5,6,7,8]. Efficiency involves
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Fig. 1. Skyline example of hotels

query processing and propagation, high parallelism, progressiveness and low net-
work traffic. Achieving all these goals is far from trivial.

We focus on answering skyline queries in a decentralized setting. The data
is distributed to a set of servers, one of which coordinates query execution.
Therefore, our technique can be also applied in hierarchical P2P environments,
where a superpeer acts as a coordinator which is responsible for a set of peers [9].
An example is given in Fig. 1(b), where points are distributed over two servers.
The local skyline in each server is depicted by using different line styles.

Our first contribution is to examine the limitations of existing techniques that
address skyline queries in such environments [3,8,10]. These methods mainly
focus on ways of data partitioning instead of developing efficient algorithms.

After justifying our choice of one of the partitioning schemes, we make our
second contribution: we devise a new algorithm, ADISC (Adaptive DIstributed
Skyline Computation), that runs in either full-parallel or cascading mode, with-
out modification, as it uses the same internal structure in both cases. The
algorithm incorporates a set of highly tuned optimizations. Following similar
research [11], we use specific points from the partitions, to prune areas that will
not contribute to the final answer. We exploit these points further, in a novel
way, to: i) improve parallelism while maintaining progressiveness, ii) negate re-
lations between partitions which, as a side effect, iii) reduces network traffic and
iv) minimizes coordinator workload. Irrelevant points are discarded and eager
checking [12] is employed to improve performance. Parallel mode is more suit-
able for light-weighted systems, where response time reduction is desired, while
cascading execution is directed towards enhancing progressiveness, reducing net-
work traffic and increasing throughput.

Thirdly, aiming specifically to minimize traffic, we propose the use of marginal
points as representatives, which is more efficient in the general case than similar
techniques [4,8]. Furthermore, for the special case of 2D data we prove optimality
of the approach in that each queried processor i) performs minimum I/Os, ii)
returns only global skyline points and with a slight modification iii) we minimize
network traffic to the greatest extent.

Fourthly, we devise a data propagation algorithm based on skyline properties
to determine the way processors must inform each other. Such a method is crucial
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as it implicitly defines the order of execution, the degree of parallelism and the
bandwidth consumption. It is interesting to note that for this reason we use the
exact same structure as to determine how partitions must be checked with each
other, thus minimizing additional overhead at the coordinator.

A basic property of our algorithm is that it handles different query preferences
out of the box. Techniques such as [10] assume that skyline queries will always
have fixed semantics regarding the criteria on data attributes and apply a specific
partitioning method. However, we argue that this is a serious limitation, since
different users may pose different preferences on specific attributes. We give
two examples to illustrate the idea. As a first example, consider a multimedia
database where images are 3-dimensional points, with each coordinate being the
average value of red, green and blue in it. User U1 requires images that are
more red, but less green and blue, whereas user U2 is interested in images that
are less red but more green and blue. Evidently, U1 issues a skyline query Q1

with preferences <max,min,min>, whereas U2 asks for <min,max,max> in his
query Q2. As a second example, consider a decision making application storing 2-
dimensional data with bookstore profits, where each bookstore is represented as
a (x, y) = (time, profit) point. A query about bookstores with recent low profit
is equally valid to one about bookstores with high profit achieved lately. The first
is, of course, a <min,max> skyline query whereas the second is a <max,max>
skyline query. According to these observations, handling different preferences is
considered important towards supporting a broad range of applications.

The rest of the paper is organized as follows. Section 2 presents an overview
of related work. Section 3 gives the definition of the problem in the distributed
/ parallel setting and explains in detail the partitioning schemes and gives some
background information on the topic. Our proposal is studied in detail in Section
4 and evaluated experimentally in Section 5. Finally, Section 6 concludes the
work and briefly discusses future research in the area.

2 Related Work

Primarily known as the maximal vector problem, proposed by Kung et al [13],
skyline, or Pareto optimal, queries are a well studied problem in the area of
Computational Geometry. It was not until much later that skyline queries were
transferred to the context of databases, when Börzsönyi et al introduced the sky-
line operator [1] and proposed two algorithms: a Block-Nested-Loop (BNL) and a
divide-and-conquer (D&C) approach. BNL was later improved by presorting the
points according to a monotone scoring function, resulting in Sort-Filter-Skyline
(SFS) [14]. Kossman et al [15] proposed an algorithm based on nearest-neighbor
search. Papadias et al. proposed Branch-and-Bound Skyline (BBS) [16], which
uses a multidimensional index and it is proven to be I/O optimal.

All of these approaches assume a centralized setting. The first work for dis-
tributed skyline queries was by Wu et al [3], where a CAN overlay was used
to create grid partitions, each assigned to a processor. The main disadvantages
of this approach is its low parallelism and that processors exchange the entire
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skyline which floods the network. Our technique is also different in that it uses
a coordinator and processors are unaware of their neighbors’ coordinates.

Additional distributed approaches have been developed, with applicability in
the Web [2,5], Peer-To-Peer [6,7] and MANETs [4]. Web techniques partition the
data vertically, assigning a single dimension to each server instead of a portion
of the data, as we do. Peer-To-Peer systems lack any notion of a coordinator and
keep distributed indexes. MANETs have limited resources and ad-hoc connec-
tivity, contrary to our wired connection and more resourceful setting.

Parallel approaches include multiprocessor [17] and multi-disk environments
[18]. Our setting differs in that we assume a share-nothing architecture in con-
trast with the shared-memory and shared-disk architecture respectively.

The works mostly related to ours are [8] and [10]. Vlachou et al [10] proposed
a partitioning scheme based on hyper-spherical coordinates. Local skylines are
computed using BBS, while the global result with SFS. Despite its increased
parallelism, the approach has several limitations. First, as it has been noted
previously, it assumes that the preference criteria (min or max) are known in
advance. Secondly, due to SFS, the technique lacks progressiveness and all pro-
cessors must report their skyline before any output is returned. This also burdens
the coordinator with excessive points that must be kept in main or secondary
memory. Finally, all processors must be activated for a skyline query, which may
have a negative impact on throughput.

In [8], parallelism of distributed partitions is examined, where processors ex-
change representative points. Despite the similarities, a major difference is that
partitions overlap, unlike our setting. Any parallelism achieved stems only from
the initial bounds, whereas we increase parallelism in an innovative way. Par-
titions that cannot be computed in parallel are assigned a coordinator, hence
multiple coordinators exist. Each coordinator creates a linearized execution plan
for its partitions, though the details were not given. Finally, our representative
points performs better in the general case.

3 Background

Given a data set D of d-dimensional points, p = {p1, p2, .., pd}, the skyline con-
tains those points that are not dominated by any other. For simplicity, we assume
min criteria on all dimensions and w.l.o.g. coordinates are normalized in [0, 1]d.
For the remainder of the paper we use the notation shown in Table 1.

Definition 1. Let D be a set of d-dimensional points. The skyline of D, denoted
SKY (D), contains those points that are not dominated by any other. We say
that p dominates p′, p ≺ p′, if pi ≤ p′i ∀i = 1, 2, .., d and ∃j ∈ {1, 2, .., d} such
that pj < p′j. The points in SKY (D) are also referred to as skyline points.

In the distributed/parallel environment, there are N available processors P =
{P1, P2, .., PN} and, potentially, a distinct node, termed the coordinator, which
is responsible for the query execution strategy. The data set D is partitioned of-
fline in k subsets Di, D =

⋃
1≤i≤k Di and Di∩Dj = ∅, ∀i, j where i 	= j. Each Di
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Table 1. Frequently used symbols

Symbol Interpretation

D, n data set and cardinality (n = |D|)
d data set dimensionality

p a d-dimensional point

pi the i-th coordinate of p

Di the i-th partition of D

k number of partitions

Pi the i-th processor

N number of processors

SKY (S) the skyline of set S

is randomly1 assigned to a processor Pj , which is responsible for computing its
skyline. The Pis are deployed in a share-nothing architecture and may communi-
cate with each other. We assume one partition per processor, although multiple
partitions may be assigned to each processor. The coordinator propagates the
query to the Pis, which report their local skyline, and computes the global sky-
line without indexing the received data, though such an approach could improve
performance. The property SKY (D) = SKY (

⋃
1≤i≤k SKY (Di)) [1,17] ensures

that the coordinator correctly reports the global skyline by performing a skyline
algorithm on the local results.

There are several factors affecting the overall performance: (i) local and global
skyline computation, (ii) degree of parallelism, (iii) network traffic, (iv) through-
put. Although communicating the entire skyline minimizes I/O, it also floods the
network, results in more collisions during data transfer and hinders efficiency.
Given that the coordinator also accounts for other tasks, e.g. load balancing, we
are interested in minimizing its workload and resource consumption. It is evident
that many of these issues are contradictory. For example, high parallelism offers
low response times, but in a heavy-loaded system with many concurrent queries,
it will impact system throughput, due to increased network traffic. Therefore,
answering skyline queries efficiently involves issues such as:

– Response time: the time needed to return the full skyline to the user,
– Parallelism: the number of parallel executing processors,
– Network traffic: the number of points that travel across the network must be

minimized,
– Progressiveness: results should be returned as they are found and not after

all partitions have been checked. However, we also view progressiveness in
terms of iterativeness. Skyline queries may return a large number of points
on occasions, therefore it would be of interest for the algorithm to produce
results upon request, each time returning new skyline points.

– Diversity: diverse criteria on the data attributes must be supported and no
assumptions should be made on the type of queries that will be invoked.

1 We note that other assignment techniques (even dynamic ones) could also be applied,
since the proposed techniques are orthogonal to the assignment strategy employed.
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Grid-based partitioning. Grid partitioning was used in [3] by applying a CAN
overlay with recursive splits on the coordinates in a round robin fashion. Even
workload is ensured by creating partitions with fairly the same amount of points,
each one assigned to a processor. An example of grid partitioning is shown in
Fig. 2(a). The scheme has several advantages, with the most basic being that
partitions preserve skyline properties. Therefore, we can safely exclude those that
will certainly not contribute to the result, thus triggering fewer processors. A
convenient execution order can be established from partition coordinates which
also ensures progressiveness, while parallelism can be achieved for partitions that
are certain not to dominate points from each other. Finally, the scheme makes
no assumptions regarding the query criteria. This is a very interesting property,
since we simply need to develop efficient algorithms to support skyline queries.
Despite its advantages, the scheme has some inherent shortcomings. The most
prominent is its low parallelism, which is not tackled by existing techniques.
Secondly, activating all processors simultaneously returns a lot of unnecessary
points from partitions that are certain not to contribute to the final skyline.

Angle-based partitioning. This scheme was proposed in [10] to simultane-
ously execute skyline queries on all processors. To do so, it relies on hyper-
spherical coordinates and creates partitions of correlated-like distribution. An
example is given in Fig. 2(b). Despite its advantage of parallelism, the scheme
has several limitations. Firstly, because of its nature, the coordinator cannot
exploit skyline properties on partitions. This leaves SFS as the only option for
the global phase, when the received data is not indexed. This may be viable for
independent distributions, but it is inefficient for high dimensionality or anti-
correlated data, since its complexity is O(m2) on the number of received data.
Secondly, it assumes that the criteria of the queries are known in advance. As
shown in Fig. 2(b), the beginning of the axis for the polar coordinates is the same
as the beginning of the criteria on the dimensions. Therefore, if min preferences
are assumed, the scheme cannot answer efficiently a query with a max preference,
because the underlying partitions were not designed for such a case. This results
in a static partitioning and contradicts our goal of diversity. Finally, the scheme
is designed to answer skyline queries only. It is unclear how to efficiently answer

b) Angle schemea) Grid scheme

Fig. 2. Grid-based and angle-based partitioning schemes
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other query types such as top-k, range, k-nearest neighbor queries, or even sky-
line variants [19], since the partitions do not maintain Cartesian properties and
pruning properties in general, which are required by the aforementioned queries.

4 Proposed Approach

Based on the previous discussion, we choose the grid-based partitioning scheme
and optimize it, so that its disadvantages are smoothed enough to the point that
its advantages are elevated.

4.1 Skyline Dependencies

Definition 2. Let A = [llA, urA] and B = [llB, urB ] be two hyper-rectangles.
We say that B depends on A, A ≺ B, if there may be a point from A that
dominates any point from B.

Lemma 1. If A and B are two hyper-rectangles, then A ≺ B iff llA ≤ urB,
where for two d-dimensional points p and p′, we say p ≤ p′ ⇔ pi ≤ p′i ∀i =
1, 2, .., d.

Proof. First we will prove sufficiency. If llA 	≤ urB ⇒ ∃j ∈ {1, 2, .., d} such that
llAj > urB

j ⇒ ∀a ∈ A, ∀b ∈ B, aj > bj. Therefore, there is at least one dimension
for which B is better, hence no points in B can be dominated by any point in
A ⇒ A 	≺ B. For necessity, the proof is that llA has the highest dominating
region among points from A that dominate urB . Any points in B that fall in
that area are dominated by llA, assuming it is an actual point. For the same
reason, points in A above llA, below urB , may also dominate points from B. �
In Fig. 3(a), E ≺ A whereas D 	≺ B. Note that relation ≺ does not state that
such a point exists; only that there might be one. For instance, although A ≺ B,
none of the points in A dominate any of the points in B. An immediate result of
Lemma 1 is that for any A and B, A 	≺ B and B 	≺ A, their points are definitely
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skyline with respect to each other. This is of great advantage as such partitions
can be computed in parallel. We exploit this observation further so that such
partitions are not checked against each other during the global merging phase.

Dependencies can be organized in a graph, where partitions are nodes and
there is a directed edge from B to A iff A ≺ B. This creates a directed acyclic
graph of dependencies, or a dependency graph, as the one in Fig. 3(b) for the
partitioning of Fig. 3(a). Such a graph can also be used during data propagation,
because if an edge exists from B to A, then A may contain data that B can use for
pruning, thus A should send its data to B. This also illustrates that dependencies
define the workflow of query execution.

4.2 Cutting-Off Partitions

As in [16], where an R-tree node is not expanded if it is dominated, we can also
exclude partitions from being queried if they are dominated by known points.
This technique is also used in [11] and it is based on the following lemma.

Lemma 2. Let p be a point and A = [lA, uA] an MBR in the d-dimensional
space. If p ≺ lA (also written as p ≺ A) then none of the points a ∈ A will be in
the final skyline.

Proof. Since ∀a ∈ A, ai ≥ lAi they are all dominated by p and therefore, there is
no need to query this partition. �

4.3 Increasing Parallelism

Up to this point any achieved parallelism is derived from the partitioning scheme.
For example, partitions B and D in Fig. 3(a) will be computed in parallel,
because no edges between them exist in the graph. As already mentioned, this
does not result in great parallelism.

Definition 3. Let A = [lA, uA] and B = [lB, uB] be two non intersecting MBRs
and A ≺ B. We define the dominated region of B from A, dr ≡ drB(A), as the
part of B that is dominated by lA.

The dominated region dr is the part of B that is potentially dominated by a point
in A and is, in fact, the only reason why the relation A ≺ B exists between the
two. Points in B outside of dr are skyline with regards to points in A, because
∃j ∈ {1, 2, .., d} such that bj < lAj , b ∈ B. Therefore, dr is the sole reason why
parallelism is not achieved between them. As an example in Fig. 3(a), the gray
region of A, D, H is the dominating area of G on those partitions.

Lemma 3. Let A = [lA, uA] and B = [lB, uB] be two non intersecting MBRs
and A ≺ B. Then A and B can be computed in parallel if ∃ point p, p 	∈ A such
that p ≺ dr.

Proof. By definition, A ≺ B ⇒ lA ≤ uB ⇒ dr exists. If ∃p, p 	∈ A, p ≺ dr
then all of the points in dr are dominated according to Lemma 2. Therefore,
the points from B that are the reason for A ≺ B are no longer present, which
negates the dependency of A, B and allows them to be computed in parallel. �
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Fig. 4. Example of enhanced parallelism

Several observations derive from Lemma 3. First, for the two MBRs A and B, it
cannot be that lA ≤ lB because then dr ≡ B, in which case B is dominated and
will not contribute according to Lemma 2. Second, p 	∈ A in any case, as that is
the reason for the dependency in the first place. Third, assume p ∈ C ⇒ lC ≤ p.
Since p dominates dr ⇒ p ≤ ldr ≤ uB ⇒ lC ≤ uB ⇒ C ≺ B. No particular
relation exists between A and C. This gives us an indication of where to look for
such points. Fourth, data will not be exchanged, as the initial dependency has
been removed, which reduces traffic. Finally, because p negates the dependency,
parallelism is increased and response time is minimized as B no longer has to
wait data from A. Moreover, points from A and B will not be checked against
each other during the global merging phase, thus reducing coordinator workload.

Fig. 4(a) shows the dependency graph of the example in Fig. 3(a), after remov-
ing non contributing partitions. The new graph is much simpler, mostly because
the removed partitions had a lot of dependencies. Dashed lines indicate when a
partition is computed. B and D are by construction independent of each other,
hence their parallelism. Figure 4(b) shows the dependency graph after applying
our technique. The graph is obviously simpler, even compared to the one in Fig.
4(a). The lower left point of E negates the dependencies of A, D and H on G and
also removes the dependency of B on A. This results in parallelism between G
and A, which is also more intuitive by looking at the partitioned space. Finally,
there is one less dashed line because computations will end earlier than before.

4.4 Marginal Points

When processors exchange points, sending the entire skyline may become too
cumbersome, not because of the skyline size alone, but because each processor
may send it to many others. To alleviate this problem, we use representative
points. However, instead of selecting the k points with the highest domination
probability [8], also known as entropy points [14], we select targeted points with
respect to the partitions they will be sent to. We term these points marginal.

Definition 4. The marginal points of a partition are the ones closer to the d−1
coordinates of the partition’s lower left corner based on the L1 distance.
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a) Marginal VS entropy b) 3d marginal points c) projected view
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Fig. 5. Marginal versus entropy points

For example, in Fig. 5(a) query execution starts at partition 0 and propagated
to 1 and 2 (3 is pruned). Although e has the highest probability, it dominates
very few points from 1 and 2, whereas m1 and m2 dominate many more (each
one separately). Since the receiving partition has at least one greater coordinate,
all of its points have greater values in that coordinate. The only way for them to
be in the skyline is to have a smaller value on another coordinate. For example,
since partition 1 has greater x values, points will be in the skyline only if their y
coordinate is better than the current best. Therefore, m1 and m2 are the points
closest to x and y axis respectively.

We denote by mi the marginal point for which the i-th coordinate is ignored.
There are d such points in a d-dimensional space. Explaining the technique for
the 3D case gives some additional insight. Assume the marginal points m1, m2,
m3 of Fig. 5(b), with gray lines, and the entropy point e, with black lines defining
their dominating area. Disregarding the z coordinate to find m3 (bottom left in
the back), is like projecting on the xy plane, as in Fig. 5(c). On the projected
space m3 has a higher domination area than e, hence the technique works as if
we are selecting the d points with the highest dominating region on the d − 1
projected subspace. From another perspective, the corner that m3 is closer to
can be viewed as the beginning of the axis for partitions of greater z. In that
sense, we choose points closer to the origin of the partitions that will use them
and not of the one that sends them.

4.5 Data Propagation

Our algorithm is also able to operate in cascading mode, where processors prop-
agate intermediate results, after computing the local skyline. If a partition sends
data to all others that depend on it, the network may be flooded and, most
importantly, ignores the fact that representatives are refined thus rendering pre-
vious ones unnecessary. Taking into account the fact that skylines propagate
mainly along the axis, because inner partitions will be cut-off, we devise a data
dissemination algorithm to minimize traffic. The coordinator determines how
data will propagate using the dependency graph and skyline properties and in-
forms processors appropriately. If an edge B → A exists, the coordinator informs
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A it must send data to B and also informs B it must wait data from A. Each
processor begins computations only after receiving data from all its predecessors.

Multiple dependencies exist between partitions and reducing them minimizes
traffic. However, reducing them in a greedy way could have the opposite effect,
because less punning will occur and many non skyline points will be returned.
Therefore, a natural question is what dependencies can be ignored. A partition
should be processed after all of its priors have, thus only edges between nodes
that also have an indirect path may be removed, e.g., if A ≺ B, A ≺ C and
C ≺ B, then A ≺ B can be neglected. This is as if performing a topological
sort among the partitions, visiting nodes once all of its dependencies have been
visited. Note that this action does not negate dependencies as when increasing
parallelism; it only does not take them into account when finding how points
must be exchanged. However, not all such relations can be ignored. Finally,
the coordinator only knows partition MBRs and not the actual coordinates of
propagated points, so the heuristics should depend on that information alone.

We ignore dependencies A ≺ B with an intermediate node C, if A, B and C
share at least one propagation axis i.e. uA

i < lCi < uC
i < lBi as with E, A and D

in Fig. 3(a). The reason is that by projecting on the remaining d− 1 dimensions
C would send to B the mi point from A or a refined point from itself.

Another heuristic is to check if lA < lC , regardless of B’s coordinates. This
is based on the same assumption as above, but the partitions need not share a
propagation axis. This applies in the case of 3 or more dimensions. If neither
heuristic applies, the dependency remains and A must send to B.

An important issue about marginal points is their optimal behavior in the case
of 2D data. We prove that each queried processor: (i) performs the minimum
number of I/O operations and (ii) returns only global skyline points. We also
prove that by combining the two points, no fewer information can be exchanged
without invalidating the above behavior. To prove these, a basic lemma is needed.

Lemma 4. Let M be a 2D MBR. Its marginal points m1 and m2, m1 	= m2,
dominate the same regions outside M as its entire skyline.

Proof. Let p ∈ SKY (M), p 	= m1. Then, the dominating area of p outside M
for greater x, begins at (uM

x , py). Then m1 ≺ (uM
x , py), otherwise m1 would not

be marginal. We will prove by contradiction. Since m1 ∈ M ⇒ xm1 ≤ uM
x , so if

m1 	≺ (uM
x , py) ⇒ ym1 > py. That sets p closer to the x axis, therefore p is the

marginal point and not m1, hence the contradiction. The proof is analogous for
greater y’s and m2. By composition, p dominates a subset of the area dominated
by m1, m2 and therefore, m1, m2 jointly dominate the same regions as the entire
skyline of M . �
Theorem 1. (a) Let D be a 2-dimensional data set, partitioned in disjoint
MBRs. If processors communicate only the marginal points of a partition, each
activated processor: (1) will perform the minimum number of I/Os, (2) will re-
port to the coordinator only global skyline points. (b) Let each partition send a
single point to subsequent ones, with coordinates the minimum of its marginal
and any other points received. No fewer points can be sent so that (a) still holds.
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Proof. (a) Having the entire skyline available, BBS discards all non-contributing
areas, which is the reason for its I/O optimality. For the same reason, only global
skyline points are retrieved. Since marginal points dominate the same external
area as the entire partition skyline (Lemma 4), the number of I/Os of subsequent
partitions will be identical in the two cases, hence minimal (1) and only global
skyline points will be retrieved and reported to the coordinator (2). (b) Being in
the 2D case, points from partitions of at least one greater dimension have only
one coordinate to best to be in the skyline, i.e. points of greater x (y) will be in the
skyline iff their y (x) is less than the minimum of received points. Thus, the x (y)
value of received points is irrelevant and can be safely substituted by any x ≤ uA

x

(y ≤ uA
y ). So we can send (xm2 , ym1) and simultaneously define the maximum

allowed coordinate for both cases. Combined with the property SKYA∪B =
SKY (SKYA ∪ SKYB), we derive that the point to send is in fact (min(x),
min(y)) of local marginal and received points. This incorporates the skyline of
previous partitions, which is the global so far (according to a). This property
and Lemma 4 prove the validity of the technique. Therefore, each partition
sends a single point to each subsequent. Due to our first heuristic, each partition
receives data from at most two partitions, one for each propagation axis. Since
each partition sends a single representative, (b) holds as fewer points means that
no points will be sent. As a result no pruning is performed, with unnecessary
I/Os and non global skyline points returned. �
Similarly, we can prove that for the 2D case, all non-contributing partitions are
pruned, by constructing the marginal points from the partition MBR (which we
do), even though we do not explicitly know them. This means that the global
minimum of I/Os and traffic is achieved in that setting. Processors, of course,
return only global skyline points. We omit the proof due to space restrictions.

4.6 Additional Optimizations

Additional optimizations are studied so that the overall efficiency is improved,
both at the coordinator and processor side. A first one is point exclusion. Assume
a point p and a partition A = [lA, uA]. If p 	≤ uA ⇒ ∃i such that. pi > uA

i . Such
a point will not prune any areas of A, hence a processor that receives it can
safely discard it. Likewise, if p 	≥ lA ⇒ ∃j such that pj < lAj , which means that
the coordinator can save time by not checking p against the points from A.

Another optimization is eager checking, proposed for continuous skyline [12].
Points are checked for domination upon arrival, thus storing only skyline points.
The alternative of storing everything until all partitions have reported accumu-
lates data and more time is spent afterwards to discard already stored points.

4.7 The ADISC Algorithm

The previous ideas are integrated into the ADISC algorithm. The outline of
ADISC is given in Fig. 6. In the sequel, we describe briefly its most important
aspects. At first, the coordinator C partitions the data offline and assigns them
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to processors Pi, each of which indexes its local copy with an R-tree and re-
ports back arbitrary representatives. For each grid cell, C stores the MBR and
points received. Given a query, C determines all affected partitions (Line 1), by
executing a BBS-like pass over the MBRs, since no assumptions are made regard-
ing how such information is organized. Partitions dominated by representatives
of Pi are excluded. We also find additional points for pruning, by substituting
the i-th coordinate of the upper right MBR corner with that of the lower left
corner.

For the non-dominated partitions, we create the dependency graph, dg, based
on the criteria imposed on the attributes (Line 2). At this phase, representative
points are used to negate dependencies (Lines 3-4). If in cascading mode, the
propagation algorithm is executed (Line 5). Each Pi is then informed of the
query (Lines 7-8), including its priors and subsequent Pjs. In parallel mode that
information is empty. Then, C waits for results from queried Pis.

Algorithm. ADISC (qry, P , rp, mode)
qry: the skyline query, P : partitions
rp: the representative points from each cell, mode: the mode in which to operate

1. F ← ⋃
p ∈ P , s.t. ∀r ∈ rp

⋃
(other points from F), r �≺ p;

2. dg ← create dependency graph(F , qry.criteria);
3. ∀f, g ∈ F , f ≺ g
4. try negating it with r ∈ rp

⋃
(other points from F)

5. if ( mode = “cascading”) then
6. find propagation order( dg, qry.criteria);
7. ∀f ∈ F
8. inform( processor(f), qry, wait(f), send(f) )
9. RPTD← {} ; // no partitions have reported
10. while ( not all f ∈ F reported)
11. wait(); //until a partition reports
12. nprt← get next reporting partition();
13. ∀prt ∈ RPTD
14. checkGrids(dg, nprt, prt); //check nprt with previous
15. if (mode = “full-parallel”) then checkGrids(dg, prt, nprt);
16. RPTD← RPTD

⋃
nprt;

17. if (∃prtn ∈ RPTD s.t. dg.depends(prtn) = 0) then
18. report points from prtn;
19.
20. function checkGrids(dg,A,B)
21. if dg.depends(A, B) then
22. dg.removeDepends(A, B);
23. ∀a ∈ A, if ( a isAbove B.lowerleft) then
24. isDomd← check if ∃b ∈ B, s.t. b ≺ a;
25. if (isDomd = true) then discard a;

Fig. 6. Outline of ADISC algorithm
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Each Pi stores the information of prior partitions and subsequent Pjs. When-
ever data is received from Pj , Pi removes Pj from its priors, until the list becomes
empty and begins computations. The received data are used for pruning dur-
ing BBS. The local skyline is reported back to C. If subsequent Pjs must be
informed, representatives are selected and propagated as instructed.

When C receives data, it checks if they are dominated by previously received
points. Using dg, it finds reported partitions that the new one depends on (Line
14) and checks the points between them. If in parallel mode, the symmetric
action must also be performed (line 15), since partitions report in unspecified
order. Once checked, the dependency is removed, as they do not need to be
checked again. A partition without dependencies (Line 17) has been checked
against all partitions that could dominate any of its points, thus it contains only
global skyline points. Consequently, its data are reported to the user.

5 Performance Evaluation Study

The experiments have been conducted on both real and synthetic data, on an
Intel Core Duo @1.86GHz, Ubuntu Linux machine with 1GB RAM. R-tree page
size has been set to 4KBytes and each processor has 20% of its blocks in buffers.
We assume 8ms per page fault and a 100Mbps, collision-free, wired network. Tim-
ings show execution time in seconds, averaged over multiple data sets, including
network time, whereas traffic graphs refer to the number of points communi-
cated among processors. Synthetic data are generated with independent (IND)
and anticorrelated (ANT) distributions. Cardinality varies from 1M to 10M and
dimensionality from 2 to 7, with default values n=5M and d=4. The number of
processors varies between 25 and 200, with a default value of 100. For the real
data set, we used forest cover (FC) (http://kdd.ics.uci.edu).

We compare ANGLE (angle partitioning with min criteria and SFS), ADISC-
PRL (parallel ADISC), ADISC-L1 (cascading ADISC, entropy representatives)
and ADISC-MRG (marginal representatives). For fairness between ADISC-L1
and ADISC-MRG, processors may exchange at most the same number of points,
equal to the data set dimensionality. The darker portion of ADISC-L1/MRG
traffic bars show the points exchanged between processors alone.

The effect of cardinality. The impact of cardinality on response time is given
in Fig. 7(a), (b). ANGLE performs slightly better for IND and min criteria (Fig.
7(b)), since it is especially designed for this case, whereas ADISC-PRL requires
more time for some processors to compute their local skyline. High response
times of ADISC-L1/MRG are due to the almost sequential execution of some
partitions, a result of the data distribution. ADISC-MRG constantly performs
slightly better than ADISC-L1, and exchanges fewer points (Fig. 8), due to better
pruning of marginal points, which reduces I/O and processing time. However,
ANGLE does not behave well in all other cases, to the point that even ADISC-
L1 and ADISC-MRG outperform it in the all-min, ANT case (Fig. 7(a)). SFS
is the reason for this, as more than 90% of the time is spent on merging local
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Fig. 8. Network traffic results

skylines. On the other hand, ADISC’s dependency graph and optimizations save
valuable time. ANGLE also performs worse than ADISC for mixed criteria.

The effect of dimensionality. The impact of dimensionality on response time
is shown in Fig. 7(c), (d) and (e). ANGLE performs again slightly better than
ADISC-PRL, for few dimensions, all-min (Fig. 7(g), (h)). However, for more
dimensions (Fig. 7(c), (d)), or even average dimensionality and ANT (Fig. 7(a)),
its performance deteriorates. This is due to the fact that skyline computation
becomes CPU-bound for high dimensionality and the problems imposed by SFS.
Regarding the 2D IND case with diverse criteria, ADISC-PRL is better than
ANGLE up to 2 orders of magnitude (Fi.g 7(e)). Processors in ANGLE execute
an anticorrelated like skyline, and visit almost all RTree nodes. This also results
in exceedingly high traffic (Fig. 8(c)). For more dimensions, the difference is
reduced (Fig. 7(c)), as the effect of a single diverse criterion is normalized by
the large number of other default criteria. ADISC-PRL also performs better
than ANGLE in FC, for almost all cases, with diverse or all-min criteria. The
problems of SFS are easily seen for 6 dimensions and more, for the all-min case,
for a data set of low cardinality (∼600K) (Fig. 7(c)). With a single max criterion,
the difference is even greater, for as few as 4 dimensions (Fig. 7(d)). Regarding
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traffic, ANGLE sends many more points in most, if not all of these occasions.
For the all-min case, the number of points is comparable in the two occasions.

The effect of the number of processors. For IND and FC, response time is
reduced as the number of processors increases. However, an interesting result is
observed from Fig. 7(f): ANGLE response time slightly decreases at first but then
increases to a point greater than when having fewer processors. On the contrary,
all ADISC variants decrease their response time. More processors mean more
partitions which do not dominate points from each other. Therefore, time is
saved both at the processors and the coordinator, which significantly decreases
total response. This could also lead us to the assumption that skyline of ANT
data may be easier to compute than IND data.

The effect of diverse criteria. The most interesting results are those of
Fig. 7(g),(h), where all 8 combinations of criteria on a 3D data set are exam-
ined. Apart from mmm, ANGLE performs slightly better than ADISC-PRL for
MMM , as partitions retain the correlated-like distribution for the most part.
The sudden drop of ADISC-L1/MRG in Fig. 7(g), mmM case, is due to the
generators. By construction, the last dimension is the most likely to have a high
value, w.r.t. the other two, to achieve anticorrelation. Inverting the criterion to
max is like ignoring the dimension. This results in less anticorrelation, more
partitions are pruned, returning less points to C and the total response is lower.
However, ANGLE activates all processors, although many do not contribute,
hence many points are returned (Fig. 8(a), (c)). Another interesting observa-
tion, is that ADISC-PRL shows a particularly steady behavior, almost invariant
to the criteria imposed on the attributes, with minor fluctuations due to the dif-
ferent skyline sizes. A similar observation arise for traffic. ANGLE varies greatly,
depending not only on the number, but even on the position of a criterion (Fig
8(c)). Such a high number of points floods the network and degrades coordinator
performance, since these need to be locally stored, until all points are received.

6 Conclusions

In this work, we presented ADISC, an algorithm for efficient and adaptive dis-
tributed skyline computation. ADISC may operate in either full-parallel or cas-
cading mode, balancing between the degree of parallelism and network traffic
according to system load. The algorithm runs on top of a grid partitioning
scheme and integrates several optimizations for efficient computation. It effi-
ciently handles different criteria on the attributes, since the dependency graph
is constructed dynamically. We also proved optimality of our approach for the
case of 2D data. We finally demonstrated the efficiency of our scheme with exper-
imental results on real-life and synthetic data sets. Future research may include:
(i) the study of an hybrid mode, where some partitions execute in parallel and
others sequentially, for the same query, according to estimated cost and (ii) the
design of randomized algorithms trading accuracy for speed.
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Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 256–273. Springer, Heidelberg (2004)

3. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing
skyline queries for scalable distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C.
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Abstract. Recurrences are defined as sets of time instants associated
with events and they are present in many application domains, including
public transport schedules and personal calendars. Because of their large
size, recurrences are rarely stored explicitly, but some form of compact
representation is used. Multislices are a compact representation that is
well suited for storage in relational databases. A multislice is a set of
time slices where each slice employs a hierarchy of time granularities to
compactly represent multiple recurrences.

In this paper we investigate the construction of multislices from
recurrences. We define the compression ratio of a multislice, show that
different construction strategies produce multislices with different com-
pression ratios, and prove that the construction of minimal multislices,
i.e., multislices with a maximal compression ratio, is an NP-hard prob-
lem. We propose a scalable algorithm, termed LMerge, for the construction
of multislices from recurrences. Experiments with real-world recurrences
from public transport schedules confirm the scalability and usefulness of
LMerge: the generated multislices are very close to minimal multislices,
achieving an average compression ratio of approx. 99%. A comparison
with a baseline algorithm that iteratively merges pairs of mergeable slices
shows significant improvements of LMerge over the baseline approach.

1 Introduction

A recurrent event is the association of the same information with multiple time
instants, e.g., the departure times of bus 10A from stop P. Domenicani in direc-
tion north-west. We call such a set of time instants the recurrence of an event.
Recurrences might easily become very large. For example, in the city of Bozen-
Bolzano with 15 bus routes, the buses are making around 1,000 trips a day,
visiting up to 20 stops per trip. In a half year period the corresponding schedule
contains approximately 7.5 million departure times. Due to this large size, re-
currences are rarely stored explicitly in databases, rather some form of compact
representation is used.

Multislices [1], defined as sets of time slices, are a compact representation
formalism with a number of good properties: high compression for common
real-world recurrences, scalable relational representation, and easy interpreta-
tion and processing. A time slice employs a hierarchy of time granularities

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 42–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to compress a recurrence that follows a regular pattern. For example, slice
λ1 = (yea{7},wee{0-25}, day{0-4}, hou{7},min{0,25,55}) represents minutes 0,
25, and 55 past 7 from Monday to Friday in the first 26 weeks in 2007. A mul-
tislice groups a set of time slices allowing to represent recurrences with more
complex patterns.

In order to benefit from the multislice representation we first must construct
multislices. In this paper we address the construction of multislices with a given
hierarchy from recurrences that are represented explicitly as sets of time instants.

Example 1. Figure 1(a) shows a fragment of an explicit representation of a sched-
ule as it is stored in an existing application. The fragment shows the recurrence
P10A of departures of bus no. 10A in direction north-west from “P. Domenicani”
which is the first stop on route 10A in that direction. The recurrence contains
3250 departure times in the first 26 weeks in 2007. The attributes of relation
BUSEXP are the identifier of a route, a direction, the identifier of a stop, and a
departure time. Figure 1(c) shows a compact representation of P10A as multislice

BUSEXP
rtid dir seq stid depti

10A nw 1 P. Domenicani 2007-01-01 07:00
10A nw 1 P. Domenicani 2007-01-01 07:25
10A nw 1 P. Domenicani 2007-01-01 07:55
10A nw 1 P. Domenicani 2007-01-01 08:25
10A nw 1 P. Domenicani 2007-01-01 08:55
10A nw 1 P. Domenicani 2007-01-01 09:25
10A nw 1 P. Domenicani 2007-01-01 09:55

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
10A nw 1 P. Domenicani 2007-07-01 18:55

(a)

MSL
mid sid

10A λ1
10A λ2

SLI
sid lev gid xid

λ1 1 yea 649
λ1 2 wee 650
λ1 3 day 651
λ1 4 hou 652
λ1 5 min 653
λ2 1 yea 649
λ2 2 wee 650
λ2 3 day 651
λ2 4 hou 654
λ2 5 min 655

SEL
xid st en

649 7 7
650 0 25
651 0 4
652 7 7
653 0 0
653 25 25
653 55 55
654 8 18
665 25 25
665 55 55

(b)

M10A = {λ1 = (yea{7}, wee{0-25}, day{0-4}, hou{7}, min{0,25,55}),
λ2 = (yea{7}, wee{0-25}, day{0-4}, hou{8-18}, min{25,55})}

(c)

Fig. 1. Different representations of recurrence P10A: (a) explicit relational representa-
tion, (b) as multislice M10A in a relational representation, (c) as multislice in a symbolic
notation

M10A that consists of two time slices. Figure 1(b) shows the relational represen-
tation of M10A. Relation MSL groups time slices into multislices. Relation SLI
stores time slices as sets of tuples ordered by hierarchy levels, where each tuple
refers to a time granularity and a set of integers. Relation SEL stores the sets of
integers as sets of non-adjacent, non-overlapping intervals.

In this paper we show that a recurrence can be represented with various multi-
slices of different size. Smaller multislices provide higher compression ratios. We



44 R. Kasperovics, M.H. Böhlen, and J. Gamper

establish a two-step process for constructing multislices with a given hierarchy
of time granularities from a given recurrence. In the first step we construct a
singular multislice where each slice has the required hierarchy and corresponds
to a single time instant in the recurrence. In the second step we minimize the
singular multislice by merging slices until no further merging is possible. The
order in which the merging is done impacts the size of the resulting multislice.
We prove that the construction of a minimal multislice representation is an NP-
hard problem. We propose an algorithm, called LMerge, that merges time slices
in an order imposed by the levels of the hierarchy (LMerge stands for level-wise
merge). LMerge runs in O(d2n logn) time, where d is the depth of the hierarchy
and n is the size of the recurrence. We analyze the performance of LMerge by
constructing the worst cases, running experiments on the real-world data, and
comparing it with a straightforward baseline algorithm.

The main contributions of this paper can be summarized as follows:

– We propose a two-step bottom-up process for the construction of multislices,
where first a singular multislice is constructed followed by an iterative merg-
ing of slices.

– We show that different merging strategies produce multislices with different
compression ratio, and we prove that the construction of minimal multislices
(with maximal compression ratio) is NP-hard.

– We provide LMerge, a scalable approximation algorithm for the construction
of multislices.

– We show empirically that LMerge is scalable and produces multislices that
are close to minimal multislices with an average compression ratio of 99%.

The rest of the paper is organized as follows. Section 2 introduces preliminary
concepts. In Section 3 we prove that the construction of minimal multislices
is NP-hard and we propose LMerge algorithm with an analytical evaluation in
Section 4. Section 5 reports about an empirical evaluation using real-world recur-
rences from bus schedules. The paper concludes with related work, conclusions,
and future work.

2 Preliminaries

2.1 Time Domain and Granularities

We assume a time domain, A, as a set of time instants equipped with a total
order ≤ and isomorphic to the integers. A time granularity is a partitioning of a
subset of A into non-empty intervals of time instants, termed granules. Examples
of time granularities are minutes (min), hours (hou), days (day), weeks (wee),
months (mth), and years (yea). We assume a bottom granularity, G⊥, such that
each granule of G⊥ contains exactly one time instant. In our running example
minutes represent the bottom granularity, and we use the ISO 8601:2004 notation
to denote time instants, e.g., 2007-02-12 07:15. Granularity day , for instance,
divides the time domain into granules of 1440 minutes. The granules of each
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Fig. 2. Time domain and time granularities min, hou, day , wee , and yea

granularity G are ordered according to the time domain order and indexed with
a subset of integers, LG, such that the indexing function MG : LG → G is an
isomorphism that preserves the total order ≤. For each granularity we assume
that the granule with index 0 contains time instant 2000-01-01 00:00. Figure 2
illustrates some correspondences of indexes between different granularities, e.g.,
Mday(2568) = [2007-01-12 00:00, 2007-01-12 23:59].

We adopt the bigger-part-inside [2,3] conversion between time granularities.
The bigger-part-inside conversion of a granule i ∈ LH of a granularity H to a
granularity G, denoted �H

G (i), returns (the indexes of) those granules in G that
are covered by granule i in H for more than a half or, if exactly half of a granule
in G is covered, those with the second half covered, i.e.,

�H
G (i) = {j |(|MG(j) ∩MH(i)| > |MG(j) \MH(i)|) ∨

(|MG(j) ∩MH(i)| = |MG(j) \MH(i)| ∧ max(MG(j)) ∈ MH(i))}

2.2 Time Slices and Multislices

A (time) slice [4] is a finite list of pairs, λ = (G1X1, . . . , GdXd), where Gl are
granularities and Xl are selectors that are defined as sets of integers. Each selec-
tor Xl+1 specifies a set of granules in Gl+1 with a relative positioning with respect
to Gl. The sequence of granularities (G1, . . . , Gd) is the hierarchy of a slice, and
we assume that it always ends with the bottom granularity, i.e., Gd = G⊥. Con-
sider the slice λ1 = (yea{7},wee{0-25}, day{0-4}, hou{7},min{0,25,55}). The
hierarchy is (yea,wee, day , hou ,min). Selector {7} selects the year 2007, selector
{0-25} selects the first 26 weeks in 2007, selector {0-4} selects the days from
Monday to Friday from each of these weeks, etc.
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The semantics of a slice λ = (G1X1, . . . , GdXd) is defined through the fol-
lowing mapping I to a subset of the time domain:

I(λ) =

⎧
⎨

⎩

⋃
k∈X1

MG1(k) d = 1

I
(
(G2

⋃
k∈X1

(�G1
G2

(k)/X2), . . . , GdXd)
)

d > 1

A slice of depth d = 1 consists of a single granularity-selector pair and represents
all time instants covered by those granules in G1 selected by X1. Otherwise, if
d > 1, the slice is reduced to a slice of depth d−1 with hierarchy (G2, . . . , Gd);
�G1
G2

(k)/X2 is defined as �G1
G2

(k) ∩ {min(�G1
G2

(k)) + i | i ∈ X2}. Consider again the
slice λ1 = (yea{7},wee{0-25}, day{0-4}, hou{7},min{0,25,55}). First, years are
mapped to weeks yielding I((wee{365-390}, day{0-4}, hou{5-6},min{15,35})),
then weeks are mapped to days, and so on, returning a total of 390 time instants.

A slice can be split into two slices by splitting one selector into two disjoint
subsets [1]. The two slices represent disjoint sets of time instants, and their union
is equal to the set represented by the original slice. For example, by splitting the
selector of weeks the slice (yea{7}, wee{0-25}, day{0-4}, hou{7}, min{0,25,55})
can be split into (yea{7},wee{0,2-25}, day{0-4}, hou{7},min{0,25,55}) and
(yea{7},wee{1}, day{0-4}, hou{7},min{0,25,55}).

A slice λ′ = (G1X
′
1, . . . , GdX

′
d) is a subslice of a slice λ = (G1X1, . . . , GdXd),

denoted λ′ � λ, if they both have the same hierarchy and X ′
l ⊆ Xl for

all levels l = 1, . . . , d. For example, the slice (yea{7}, wee{1}, day{0-4},
hou{7}, min{25,55}) is a subslice of (yea{7}, wee{0-25}, day{0-4}, hou{7},
min{0,25,55}). The subslice λ′ represents a subset of the recurrence represented
λ, i.e., λ′ � λ =⇒ I(λ′) ⊆ I(λ).

A multislice M is defined as a set of slices and represents all the time instants
represented by the included slices, i.e., I(M) =

⋃
λ∈M I(λ). To simplify the

operations on multislices, we require that all slices within a multislice have the
same hierarchy. The compression of a multislice M is defined as 1 − |M|

|I(M)| .
Referring to Example 1, recurrence P10A with 3250 time instants is represented
by multislice M10A with two slices, which gives a compression ratio of 1− 2

3250 =
99.94%.

3 Constructing Multislices from Recurrences

In this section we study the construction of multislices from recurrences. We
adopt a bottom-up approach which first constructs a slice for each individual
time instant in the recurrence and then iteratively merges these slices.

3.1 Basic Concepts

Definition 1 (Singluar Slice). A slice λ̇ = (G1X1, . . . , GdXd) is singular if
for all hierarchy levels l = 1, . . . , d : |Xl| = 1.
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Singular slices have two important properties: (1) they represent exactly one
time instant1 and (2) two different singular slices cannot represent the same
time instant. To facilitate reading, we put a dot over the slice symbol for singular
slices, e.g., λ̇.

If a slice represents a time instant it must have as a subslice a singular slice
representing the same time instant.

Lemma 1. For slices λ = (G1X1, . . . , GdXd) and λ̇ = (G1{x1}, . . . , Gd{xd}),
if t ∈ I(λ) and t = I(λ̇) then λ̇ � λ.

We call a multislice that contains only singular slices a singular multislice. For a
given hierarchy (G1, . . . , Gd), each recurrence P can be represented by a unique
singular multislice (provided that empty slices are excluded).

Example 2. Consider the input recurrence P = {2007-01-12 05:10, 2007-01-12
05:30, 2007-01-12 06:10, 2007-01-12 06:20, 2007-01-12 06:30, 2007-01-12 06:40,
2007-01-12 06:50, 2007-01-12 07:20, 2007-01-12 07:40, 2007-01-12 07:50, 2007-01-
12 08:10, 2007-01-12 08:30} and the hierarchy (yea, wee, day , hou , min). The
corresponding singular multislice is the following multislice M where each of the
12 time instants is represented with a distinct singular slice:

M = {λ̇1 = (yea{7}, wee{1}, day{4}, hou{5}, min{10}),
λ̇2 = (yea{7}, wee{1}, day{4}, hou{5}, min{30}),
λ̇3 = (yea{7}, wee{1}, day{4}, hou{6}, min{10}),
λ̇4 = (yea{7}, wee{1}, day{4}, hou{6}, min{20}),
λ̇5 = (yea{7}, wee{1}, day{4}, hou{6}, min{30}),
λ̇6 = (yea{7}, wee{1}, day{4}, hou{6}, min{40}),
λ̇7 = (yea{7}, wee{1}, day{4}, hou{6}, min{50}),
λ̇8 = (yea{7}, wee{1}, day{4}, hou{7}, min{20}),
λ̇9 = (yea{7}, wee{1}, day{4}, hou{7}, min{40}),

λ̇10 = (yea{7}, wee{1}, day{4}, hou{7}, min{50}),
λ̇11 = (yea{7}, wee{1}, day{4}, hou{8}, min{10}),
λ̇12 = (yea{7}, wee{1}, day{4}, hou{8}, min{30})}

Two slices λX = (G1X1, . . . , GdXd) and λY = (G1Y1, . . . , GdYd) that have the
same hierarchy can be merged into one slice of the same hierarchy iff at all
hierarchy levels except one the corresponding selectors are equal, i.e., Xm �= Ym

for some level m and Xl = Yl for all levels l �= m. We say also that λX and λY

are mergeable across level m, denoted as mergeable(λX , λY , m).

Definition 2 (Merge Operation). Let λX = (G1X1, . . . , GdXd) and λY =
(G1Y1, . . . , GdYd) be two slices that are mergeable across level m. The merge
operation of λX and λY returns a slice and is defined as

λX + λY = (G1X1, . . . , Gm−1Xm−1, GmXm ∪ Ym, Gm+1Xm+1, . . . , GdXd)

1 We assume that the selectors are consistent and exclude the cases when a slice
represents the empty set due to inconsistent selectors.
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Example 3. Consider the multislice M from the previous example. The slices
λ̇1 and λ̇2 are mergeable across the level of min , since only at this level the
corresponding selectors are different. The result of merging these two slices is
(yea{7},wee{1}, day{4}, hou{5},min{10,30}). As another example, the slices λ̇1

and λ̇4 are not mergeable because the corresponding selectors for more than one
granularity differ, namely min and hou.

The merge operation is commutative, i.e., for two mergeable slices λX and λY , we
have λX +λY = λY +λX , and it is associative only for slices that are mergeable
across the same level, i.e., if mergeable(λX , λY , m) and mergeable(λY , λZ , m)
then (λX + λY ) + λZ = λX + (λY + λZ).

3.2 Baseline Algorithm BMerge

Let P ⊂ A be a non-empty finite recurrence and (G1, . . . , Gd) be a hierarchy
with Gd = G⊥. Our goal is to construct a multislice M with the given hierarchy
such that I(M) = P . Algorithm BMerge implements a baseline strategy for
the bottom-up construction of a multislice and operates in two steps. First, for
each time instant in the recurrence P a singular slice is constructed, yielding
a singular multislice M that has the same size as the recurrence. The second
step iterates over the slices in M . In each iteration a pair of mergeable slices
is selected and merged into a single slice. The loop terminates when no more
mergeable slices exist.

Algorithm BMerge

input: recurrence P , hierarchy (G1, . . . , Gd)
output: multislice M
// Step 1: build a singular multislice
M := ∅;
for each t ∈ P do

M := M ∪ {singular slice for t};
// Step 2: merge slices
while M contains mergeable slices do

Select a pair λ, λ′ ∈ M such that mergeable(λ,λ′, m);
M := M \ {λ, λ′} ∪ {λ + λ′};

return M ;

The result of BMerge is a final multislice, i.e., a multislice that contains no
mergeable slices. Depending on the order in which pairs of mergeable slices are
selected in Step 2 of the algorithm, different final multislices are obtained as
shown in the following example.

Example 4. Consider the recurrence P from Example 2 and the corresponding
singular multislice M which BMerge constructs in the first step. If in Step 2 the
merging is done in the order indicated with parentheses (λ̇1 + λ̇2) + (λ̇11 + λ̇12),
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(λ̇3 + λ̇4) + (λ̇5 + λ̇6), (λ̇7 + λ̇10), and (λ̇8 + λ̇9), we get a final multislice

Mfin = {(yea{7}, wee{1}, day{4}, hou{5,8}, min{10,30}),
(yea{7}, wee{1}, day{4}, hou{6}, min{10,20,30,40}),
(yea{7}, wee{1}, day{4}, hou{6-7}, min{50}),
(yea{7}, wee{1}, day{4}, hou{7}, min{20,40})}.

If, instead, we merge ((λ̇1 + λ̇2)+(λ̇3 + λ̇5))+(λ̇11 + λ̇12) and ((λ̇4 + λ̇6)+ λ̇7)+
((λ̇8 + λ̇9) + λ̇10) we get a different final multislice

Mmin = {(yea{7}, wee{1}, day{4}, hou{5-6,8}, min{10,30}),
(yea{7}, wee{1}, day{4}, hou{6-7}, min{20,40,50})}.

While both multislices are final, they have a different size and hence achieve a
different compression ratio.

Definition 3 (Minimal Multislice). Let P be a recurrence and M = {M1,
. . . , Mn} be the set of all multislices with hierarchy (G1, . . . , Gd) that represents
P . A multislice Mmin ∈ M is minimal iff ∀M ∈ M(|M | ≥ |Mmin|).
A multislice representation with a given hierarchy of a recurrence P is minimal
if all other multislices for P are of the same size or greater. A recurrence P can
have more than one minimal multislice with a given hierarchy, where all have the
same size. Minimal multislices provide the best compression ratio. A minimal
multislice is always a final multislice, but not vice versa. In the above example,
the final multislice Mmin is also a minimal, which is not true for Mfin. Thus,
for a recurrence P , a minimal multislice Mmin, and a final multislice Mfin the
following holds: |Mmin| ≤ |Mfin| ≤ |P |.

The worst case complexity of BMerge is O(d · |P |2). In this worst case after
the first pass through the singular slices of M all mergeable slices are merged
and appended at the “end” of the multislice. Further merging is only possible
among these appended slices which result in new appended slices, etc.

3.3 NP-Hardness of Computing Minimal Multislices

In the following we show that searching for a minimal multislice representation
is an NP-hard problem.

Definition 4 (Decomposition). A singular multislice M is a decomposition
of a slice λ = (G1X1, . . . , GdXd) if M contains all non-empty singular subslices
of λ, i.e., M = {(G1{x1}, . . . , Gd{xd}) | (G1{x1}, . . . , Gd{xd}) � λ}.
For each slice there is a unique decomposition. From Lemma 1 follows that if M
is a decomposition of a slice λ then M represents the same recurrence as λ, i.e.,
I(M) = I(λ). Lemma 2 states if M is a decomposition of λ then the unions of
selectors at the corresponding levels in M yield the selectors of λ.

Lemma 2. If a singular multislice M = {λ̇1, . . . , λ̇p} is a decomposition of
a slice λ = (G1X1, . . . , GdXd) and for all i ∈ [1, p] : λ̇i = (G1{x1,i}, . . . ,
Gd{xd,i}) then for all l ∈ [1, d] : Xl =

⋃p
i=1{xl,i}.



50 R. Kasperovics, M.H. Böhlen, and J. Gamper

Consider the slice λ2 = (yea{7}, wee{1}, day{4}, hou{6-7}, min{20,40,50}).
The following multislice Mλ2 is a decomposition of λ2 and represents the same
recurrence as λ2. The unions of selectors at the corresponding levels give the
selectors of λ2.

Mλ2 = {(yea{7}, wee{1}, day{4}, hou{6}, min{20}),
(yea{7}, wee{1}, day{4}, hou{6}, min{40}),
(yea{7}, wee{1}, day{4}, hou{6}, min{50}),
(yea{7}, wee{1}, day{4}, hou{7}, min{20}),
(yea{7}, wee{1}, day{4}, hou{7}, min{40}),
(yea{7}, wee{1}, day{4}, hou{7}, min{50})}

Let M be a singular multislice representing a recurrence P with a hier-
archy (G1, . . . , Gd) that contains no empty slices. Let Mmin = {λ1, . . . , λq}
be a minimum multislice representation of P with the same hierarchy. From
Lemma 1, each singular subslice λ̇ of each slice λi ∈ Mmin is in M , i.e.,
∀λi ∈ Mmin(∀λ̇ � λi(λ̇ ∈ M)). The decomposition Mλi of each slice λi ∈ Mmin

is then a subset of M , Mλi ⊆ M .

P = {

M = {

Mmin = {

}

}

}

t1,

λ̇1,

t2,

λ̇2,

t3,

λ̇3,

t4,
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t5,
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t6,

λ̇6,

t7,

λ̇7,

t8,

λ̇8,

t9,

λ̇9,

t10,

λ̇10,

t11,
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t12

λ̇12

λ1, λ2

Fig. 3. Relationships between P , M , and Mmin from Examples 2 and 4

Example 5. Consider the singular multislice M = {λ̇1, . . . , λ̇12} from Example 2.
Each singular slice in M represents a distinct time instant in P . A minimal
multislice representation Mmin of P with hierarchy (yea , wee, day , hou , min)
consists of two slices λ1 and λ2:

Mmin = {λ1 = (yea{7}, wee{1}, day{4}, hou{5-6,8}, min{10,30}),
λ2 = (yea{7}, wee{1}, day{4}, hou{6-7}, min{20,40,50})}

The two corresponding decompositions {λ̇1, λ̇2, λ̇3, λ̇5, λ̇11, λ̇12} and {λ̇4, λ̇6,
λ̇7, λ̇8, λ̇9, λ̇10} are subsets of M and cover all slices in M . Figure 3 illustrates
the relationships between P , M , and Mmin from Examples 2 and 4.

Theorem 1. Let P be a finite recurrence and let (G1, . . . , Gd = G⊥), d > 1, be
a hierarchy of time granularities. Finding a minimum multislice representation
of P with the hierarchy (G1, . . . , Gd = G⊥) is an NP-hard problem.

Proof. The problem of finding a minimal multislice representation of P with the
hierarchy (G1, . . . , Gd = G⊥) can be formulated as the following problem Π1 :
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Given a singular multislice M which contains no empty slices. Find the minimal
number of subsets of M such that each subset is a decomposition of some slice
and all subsets cover all slices in M .

We prove that Π1 is NP-hard by reducing a known NP-complete problem
of covering a bipartite graph by complete bipartite subgraphs (appears as the
problem GT18 in [5]) to Π1. We formulate the problem of covering a bipartite
graphs as the problem Π4 : Given a bipartite graph (A, B, E), where A, B are
disjoint sets of vertexes and E ⊆ {{a, b} | a ∈ A, b ∈ B} is a set of edges. Given
a natural number q, 1 ≤ q ≤ |E|. Are there q complete bipartite subgraphs
(A′

1, B
′
1, E

′
1), . . . , (A

′
q, B

′
q, E

′
q), where A′

i ⊆ A, B′
i ⊆ B, and E′

i = {{a, b} | a ∈
A′

i, b ∈ B′
i}, such that they cover all edges in E, i.e., E =

⋃q
i=1 E′

i?
We define intermediate problems Π2, Π3, and then prove that Π4 ≤T Π3 ≤T

Π2 ≤T Π1, where ≤T stands for Turing reducible. The problem Π1 is an op-
timization problem. Using the fact that the size of a minimal multislice repre-
sentation is always between 1 and |M |, we can formulate the following decision
problem Π2 : Given a singular multislice M which contains no empty slices, and
a natural number q, 1 ≤ q ≤ |M |. Are there q subsets of M such that each subset
is a decomposition of some slice and all subsets cover all slices in M?

Having the solution to Π1, we can solve the problem Π2 in constant time. By
proving that Π2 is NP-complete we show that Π1 is NP-hard. Π2 is certainly
in NP: if we guess q subsets of M we can check if they are decompositions of
some slices in polynomial time using Lemma 2. For d = 2 the problem Π2 is
formulated as the following problem Π3 : Given two sets X1, X2 and a multislice
M ⊆ {(G1{x1}, G2{x2}) | x1 ∈ X1 ∧ x2 ∈ X2}. Given a natural number q,
1 ≤ q ≤ |M |. Are there q subsets of M such that each subset is a decomposition
of some slice and all subsets cover all slices in M?

The problem Π4 is equivalent to the problem Π3, where every a ∈ A corre-
sponds to xa ∈ X1, every b ∈ B corresponds to xb ∈ X2. Each edge {a, b} ∈ E
corresponds to a slice (G1{xa}, G2{xb}) ∈ M . A complete bipartite subgraph in
(A, B, E) corresponds to a decomposition in M . Figure 4(a,b) shows an example
of such a correspondence. Note, that the bipartite graph in Fig. 4(a) can be
covered by its four complete bipartite subgraphs, and even though the subgraph
drawn with bold lines is the largest complete bipartite subgraph in the given
graph, it does not belong to these four (see Fig. 4(d)).

We can reduce a problem Π3 with d = 2 to a problem Π2 with d ≥ 2 just by
adding the same pairs granularity-selector to each slice in M . For example, we
can map the multislice from Fig. 4(b) to the multislice in Fig. 4(c). ��

3.4 Level-Wise Merge Algorithm LMerge

Recall that BMerge does not impose any ordering in the merging phase. Here
we present the algorithm LMerge (Level-wise Merge) which imposes a specific
order on the merging process: slices are merged by granularities, that is, for each
hierarchy level l the algorithm performs all possible merges across l before it
begins to merge across another level. Within a hierarchy level the order in which
slices are merged is irrelevant due to the associativity of the merge operation.
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Fig. 4. A bipartite graph with a complete bipartite subgraph (a), the corresponding
singular multislice with the corresponding decomposition (b), the corresponding multi-
slice with d = 3 (c), and the smallest cover of the bipartite graph by complete bipartite
subgraphs (d)

The LMerge algorithm adopts the same bottom-up strategy as the baseline
algorithm: (Step 1) a singular multislice M with the given hierarchy (G1, . . . , Gd)
is constructed and (Step 2) mergeable slices in M are merged. The main loop in
Step 2 iterates through all levels of the hierarchy (G1, . . . , Gd) and determines
the order in which slices are merged. At each iteration the slices in M are sorted
on all selectors except the one that corresponds to level l of the iteration. For
instance, if the hierarchy is (yea, wee, day , hou , min) and the iteration level is
of day , the slices are sorted on the selectors of yea, wee, hou , and min . Such
sorting brings the slices that are mergeable across l together into contiguous
clusters such that in a single pass through the multislice each cluster can be
merged into a single slice. The functions first and next retrieve the first and next
slice from M , respectively.

LMerge runs in O(d2 · |P | · log |P |) time, where O(d · |P | · log |P |) is the time
complexity of sorting.

Example 6. Consider the singular multislice M from Example 2. The first iter-
ation of the main loop merges across the granularity min. The sorting step pro-
duces the four clusters {λ̇1, λ̇2}, {λ̇3, λ̇4, λ̇5, λ̇6, λ̇7}, {λ̇8, λ̇9, λ̇10}, and {λ̇11, λ̇12},
which in a single pass are merged into four slices, yielding

M = {(yea{7}, wee{1}, day{4}, hou{5}, min{10,30}),
(yea{7}, wee{1}, day{4}, hou{6}, min{10,20,30,40,50}),
(yea{7}, wee{1}, day{4}, hou{7}, min{20,40,50}),
(yea{7}, wee{1}, day{4}, hou{8}, min{10,30})}.
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Algorithm LMerge

input: recurrence P , hierarchy (G1, . . . , Gd)
output: multislice M
// Step 1: build a singular multislice
M := ∅;
for each t ∈ P do

M := M ∪ {singular slice for t};
// Step 2: merge slices level−wise
for l ∈ {1, . . . , d} do

Sort M on X1, . . . , Xl−1, Xl+1, . . . , Xd;
λ := first(M);
while λ �= null do

λ′ := next(M);
while mergeable(λ,λ′, l) do

λ := λ + λ′;
M := M \ {λ′};
λ′ := next(M);

λ := λ′;
return M ;

The second iteration merges across the level of hou . The slices are sorted on
the selectors of the granularities yea, wee, day , and min, yielding three clusters,
which are merged to get the multislice

M = {(yea{7}, wee{1}, day{4}, hou{6}, min{10,20,30,40,50}),
(yea{7}, wee{1}, day{4}, hou{7}, min{20,40,50}),
(yea{7}, wee{1}, day{4}, hou{5,8}, min{10,30})}

This multislice is final, and the iteration through the granularities of day , wee,
and yea does not provide further merging.

Lemma 3. Let P be a recurrence and (G1, . . . , Gd) be a hierarchy. The algo-
rithm LMerge returns a final multislice M .

Proof. To keep the proof simple, we assume the merging is done from level 1 to
level d (the lemma holds for any order of levels). After m−1 iterations the selectors
at levels m, . . . , d of all slices are still unmodified and consist of single integers.
We do a proof by contradiction. Assume the result of LMerge is not final and
contains two slices λX = (G1X1, . . . , GdXd) and λY = (G1Y1, . . . , GdYd) that
are mergeable across some level m ∈ [1, d]. Then, Xl = Yl for all levels l �= m, and
there is a subslice λ′

X = (G1X1, . . . , Gm−1Xm−1, Gm{xm}, . . . , Gd{xd}) of λX

and a subslice λ′
Y = (G1Y1, . . . , Gm−1Ym−1, Gm{ym}, . . . , Gd{yd}) of λY such

that xm �= ym and xl = yl for all l ∈ [m + 1, d]. Such a situation is impossible,
because slices λ′

X and λ′
Y should already have been merged after iteration m,

which leads to a contradiction. ��
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4 Analytical Evaluation

Let P be a finite recurrence, Mmin be a minimal multislice representation of P
with a hierarchy (G1, . . . , Gd), and M be a multislice representation of P with
the same hierarchy constructed by LMerge. We define the worst case of LMerge
as maximum difference |M | − |Mmin|. In the following we show that for d = 2 in
the worst case |M | < min

{
2|Mmin|, 2|P |

|Mmin|
}
. This means that in the worst case

the multislice produced by LMerge can be exponentially larger than a minimum
multislice representation of P , however, still less than P by the factor of |Mmin|

2 .
To give an intuition, for d = 2 and |Mmin| = 10 in the worst case |M | = 1023
and |P | is at least 5120. In Section 5 we show that real recurrences from bus
schedules are far from this worst case, and the LMerge algorithm provides an
average compression ratio of 99%.

To show the rationale of these bounds we introduce a geometric visualization
of singular multislices. A singular multislice with a hierarchy (G1, G2) can be
visualized as a set of points in 2D space. Consider the singular multislice in
Fig. 5(a). This multislice has hierarchy (hou , min) and can be visualized in 2D
space where one dimension corresponds to the granularity hou and the other
dimension corresponds to the granularity min (see Fig. 5(b)). This geometric
visualization allows to observe two properties. First, all slices laying on the same
line parallel to the min axis are mergeable across the granularity min, and all
slices laying on the same line parallel to the hou axis are mergeable across the
granularity hou . Second, a subset of slices which fills a rectangle in the geometric
visualization is the decomposition of some slice. For example, the subset of slices
connected with dotted lines in Fig. 5(b) forms the decomposition of the slice
(hou{6-7},min{40,50}).

Note, that both segments and points are special cases of a rectangle and
visualize the decompositions of some slices. A change of order of values on both
axes does not change any of the two properties. This means that a subset of
points visualizes a decomposition if there are two permutations of values on
both axes for which it fills a rectangle. Figure 5(c) visualizes a multislice with
all slices grouped into two decompositions marked with white and black circles.
The corresponding slices make up a minimal multislice representation of the
recurrence represented by the singular multislice in Fig. 5(a).

Applying LMerge to the multislice in Fig. 5(a) the slices are merged iteratively
across the two hierarchy levels. For example, in Fig. 5(d) the slices that are
merged in the first iteration across the level of min are connected into segments
(dotted lines). In the second iteration, the mergeable slices are merged across
the level of hou. In our geometric visualization the mergeable slices would be
the segments that fill a rectangle for some permutation of indexes of hou . For
example, in Fig. 5(d) there are three groups of such segments making up three
decompositions that are marked with white circles, white squares, and black
circles. For comparison, Fig. 5(e) visualizes 4 decompositions that are found by
BMerge when the singular slices are chronologically ordered.
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Fig. 5. A singular multislice with d = 2 (a), its geometric visualization in 2D space
(b), grouping into minimal number of decompositions (c), grouping into decompositions
by LMerge with merging across levels 1,2 (d), grouping into decomposition by BMerge

(chronological order) (e)

Figure 6(a) shows the worst case for LMerge when merging is done first across
G1 and then across G2. When merging first across G2, the singular slices visu-
alized in this figure can be merged into 4 slices and it is a minimal multislice
representation of the corresponding recurrence. Merging first across G1 would
return 15 slices which corresponds to the number of all possible intersections
of 4 sets. We can systematically construct recurrences P for which LMerge(P ,
(G1, G2)) returns 2|Mmin| − 1 slices. We can construct the cases where merging
first across G1 or G2 does not avoid the exponential difference. For example,
Fig. 6(b) visualizes a singular multislice which can be compressed into 8 slices,
however, LMerge algorithm would return 19. In such cases LMerge would return
at least 2

|Mmin|
2 − 1 + |Mmin| slices.

The singular multislice visualized in Fig. 6(a) contains 32 singular time slices.
In order to construct the worst case where |M | = 2|Mmin| − 1, we need at least
|P | = |Mmin| · 2|Mmin|−1 singular slices. From here, |M | = 2|P |

|Mmin| − 1.

5 Empirical Evaluation

For the empirical evaluation we implemented BMerge and LMerge in PostgreSQL.
We used the BMerge algorithm with two different orderings of the singular mul-
tislices: when the singular slices are ordered chronologically (BMerge, chronolog-
ical order), and when the singular slices are ordered randomly (BMerge, random
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Fig. 6. The worst case for LMerge with merging across levels 1, 2 (a), and a bad case
for LMerge for any order of levels (b)

order). The randomization is achieved by reordering the multislice according to
a sequence of randomly generated numbers using PostgreSQL system functions.
In all experiments we used the hierarchy (wee, day , hou ,min)2. For the LMerge
algorithm we tried all 24 possible orders in which LMerge can iterate through the
levels of the hierarchy (wee, day , hou ,min). In the plots below for the LMerge
algorithm we show the average compression ratio and the average running time
over all 24 possible orders.

In the first experiment we compare LMerge and BMerge on the real-world
data from the bus network of Bozen-Bolzano from the first half of the year 2007.
This data describes 384 different route options grouped into 18 main routes. We
selected 20 route options with recurrences of departures with sizes uniformly
distributed within the range [100, 2000]. The best theoretically possible average
compression for these recurrences is 99.64% assuming that each of the recur-
rences can be represented with a multislice of size 2. Figure 7 shows the results
of this experiment. Algorithm LMerge provides with an average compression
ratio of 98.93% which is very close to the optimal solution (i.e., minimal multi-
slice). Changing the order of levels in the LMerge algorithm does not significantly
impact the compression ratio for the selected recurrences. The average compres-
sion for the best orders is 99.01% and for the worst orders 98.81%. Algorithm
BMerge with the random order is visibly behind LMerge providing on average
78.94% compression. Algorithm BMerge with the chronological order is very close
to LMerge providing an average compression ratio of 98.52%. The running time
of both algorithms conforms to our asymptotic bounds: O(d2 · |P | · log |P |) for
the LMerge algorithm and O(d · |P |2) for the BMerge algorithm.

For the second experiment we generated 20 multislices representing recur-
rences from the first half of the year 2007 with the size varying within the range
[96, 2009]. The sizes of the generated multislices cover the range [1, 20] and are

2 Since all recurrences are within the year 2007, the granularity yea provides no addi-
tional compression, hence we omitted it.
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Fig. 7. Comparison of multislices produced by LMerge and BMerge for 20 real-world
recurrences
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Fig. 8. Comparison of multislices produced by LMerge and BMerge for 20 generated
recurrences

taken for known minimal representations providing the average compression ra-
tio of 98.94%. Figure 8 shows the results of this experiment. Algorithm LMerge
provides with an average compression ratio of 98.04%. Changing the order of lev-
els in LMerge has a bigger impact than in the previous experiment (more than
1% in compression). The average compression for the best orders is 98.62% and
for the worst orders 97.19%. In this experiment the difference between LMerge
and BMerge has increased for both versions of the BMerge algorithm. BMerge
with the random order provides on average 67.50% compression. BMerge with
the chronological order provides an average compression ratio of 96.23%.

6 Related Work

Multislices are based on various formalisms coming from the research commu-
nity [4,6,7,2] and generalize some known representations used in industry [8,9].
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Time slices originate from the works of Leban et al. [6] and Niezette et al. [4].
Niezette et al. coined the term time slice and defined the intersection operation
on time slices. In their work the authors used sets of slices to overcome the
limitation of expressiveness of single time slices. Kasperovics et al. [1] introduced
multislices as a basic object for representing recurrences, defined the difference
operation on time slices and multislices, and proposed a scalable representation
of multislices in relational databases. There is a number of works improving the
expressiveness of time slices (e.g., [10,11,12,2]), or incorporating them into more
complex representation formalisms (e.g., [13,7,14]). In this paper we presented
an operation that constructs multislice representation for a given recurrence,
which was not addressed by the previous works.

There are few works that address constructing compact representations from
given recurrences. These representations, however, favor periodic recurrences and
do not use time granularities. Behr et al. [15] proposed a compact representation
formalism, called periodic moving tree, for periodic moving objects and provided
with an algorithm for constructing periodic moving trees from recurrences. Work
by Bettini et al. [16] proposed an algorithm for minimizing the representations
of periodic sets which can be used for constructing compact representations
of periodic recurrences. Multislices provide a high compression for recurrences
aligned to the hierarchies of time granularities. Such recurrences are common
for many kinds of schedules and are less periodic because of monthly or yearly
repetitions, and because of multiple exceptions, such as public holidays. The
representation of such recurrences with periodic moving trees or periodic sets
would require more space.

7 Conclusions and Future Work

In this paper we studied the problem of constructing multislice representations
for non-empty finite recurrences. We proved that the construction of a minimal
multislice representation is an NP-hard problem and proposed a scalable approx-
imation algorithm LMerge. Although in the worst case LMerge might produce an
exponentially worse compression than the minimal solution, experiments with
real-world data show that the multislices computed by the algorithm provide a
very high compression ratio of 99%, which is very close to the optimal solution.
LMerge clearly outperforms a straightforward baseline algorithm BMerge both in
terms of compression and in terms of time.

The recurrences in public transport schedules, lecture schedules, and personal
calendars are often a subject of changes, and so would be their multislice repre-
sentations. The changes can be resolved using the union and difference operations
on multislices [1], which in most would decrease the compression. The ideas pre-
sented in this paper can be extended for compressing multislices in more general
settings, where multislices are not necessarily singular (e.g., when produced as
the result of operations on multislices).
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Abstract. Most models for Wireless Sensor Networks (WSNs) assume
the existence of a base station where query results could in principle
be cached, however, the opportunity for re-using such cached data for
minimizing data traffic in the WSN has not been well explored thus far.
Aiming at filling this gap, we propose an approach that first clips the
original query into a polygon after selectively choosing a good subset of
the cached queries for reuse. Next, this polygon is partitioned into sub-
queries that are then submitted to the WSN. These two problems are
interconnected and lead to a highly combinatorial problem that justifies
the use of efficient and effective heuristics. This paper presents algorithms
for each of these problems that are used within a cost-driven optimization
search in order to find a set of sub-queries that minimizes the cost of in-
network query processing. Experimental results show that our heuristic
solution is orders of magnitude faster than an exhaustive search, and
yields no more than 10% loss compared to the optimal query processing.

1 Introduction

A typical Wireless Sensor Network (WSN) is comprised of a set of several iden-
tical sensor nodes with limited CPU and storage capacity plus one base station
which is assumed to have more resources, e.g., more CPU power, additional stor-
age space and a relatively large, or possibly continuous, energy supply. All nodes
are able to communicate wirelessly within a certain range and are assumed to
be aware of its neighbors, i.e., other nodes within its wireless communication
range. No node is assumed to have full knowledge of the network, including the
location of other nodes. The base station is a partial exception in the sense that
it is assumed to have some high-level knowledge of the WSN, e.g., node density,
wireless range, etc., which is used in the query cost model. All decisions, such
as data packet routing and collision resolution, are to be made locally by the
nodes. Each node is capable of observing its surroundings and capturing one or
more measures.
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Many applications for WSN have been proposed and discussed in the litera-
ture, e.g., [1,2,3] to name but a few. In general, once the WSN is active and nodes
are collecting data, a number of queries can be issued, e.g., spatio-temporal range
queries, join queries and aggregate queries, for which a number of algorithms have
been proposed, e.g., [4,5,6]. Most algorithms also assume the existence of a base
station from where queries are injected into the WSN and to where the queried
data is returned. In this scenario, there exists a clear opportunity for reducing
query cost by caching query results at the base station and subsequently re-using
such data when new queries are posed. While in a traditional database system
the use of cache is for maximizing the system’s throughput, we aim at minimiz-
ing the energy cost of query processing. As well, we do not make any strong
assumptions regarding how in-network query processing is done, rather we only
assume that a cost model for the adopted technique is available. Typically, al-
gorithms for query processing in WSNs borrow the minimum bound rectangle
abstraction from spatial databases and assume that the query is a rectangle
within the monitored area; we follow suit and make similar assumptions.

Our main problem in this paper is to minimize the energy cost of processing
a query Q within a WSN that requests the most recent values of (possibly all)
sensed attributes of sensor nodes located within Q1. While WSNs are of great
usefulness in a streaming scenario, that is not the only possible scenario. Consider
for instance a remote WSN connected to a satellite link, which is capable to
receiving and sending data. In many cases it would be simply too expensive
to have the WSN continuously streaming data to the base station. Hence, a
possibility would be to have different users querying, at will, the WSN through
the base-station, which would then send optimized queries to the WSN. The WSN
would then process the query and send its results back to the base station. It
may also be the case that several independent, and likely physically apart, users
are interested in the same WSN. Thus a natural choice would be to have the
base station acting as a “portal” to the WSN. In such a scenario, the advantage
of having users being able to transparently re-use relevant and valid data from
another user’s query in a cache at such portal should be quite clear.

To illustrate the potential gain of using cached data consider for instance
the scenario depicted in Figure 1(a), where Q is a new query and {P1, P2, P3}
represents previously processed queries. Assuming the cached data is still valid,
it is clear that only nodes located in the “clipped” query region Q′, need be
contacted. Since, the number of nodes within the area of Q′ is bound to be
smaller than those within Q’s area, the intuition is that processing Q′ should be
energy-wise less expensive than processing Q.

One trivial way to solve this problem is to find the minimum bounding rect-
angle of Q′, denoted by R(Q′), and process the query using R(Q′) instead of
Q. Clearly, that would not necessarily minimize query processing cost as R(Q′)
would often be likely equal to R(Q) (as in Figure 1(a)).

1 To simplify notation we refer to a query as well as to its spatial attributes using the
same variable.
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Fig. 1. Motivation and optimization framework

Another straightforward way to solve this problem is to “flood” the query
area and have only the sensors within the query area respond to the query.
There are two main drawbacks in this approach. One is that in order to decide
whether it should respond or not to the query, a sensor would need to know
whether it is actually inside the query area. Even though efficient algorithms
exist to answer the point-in-polygon problem [7], they depend on the size of
the polygon description. In general the contour of the clipped query Q′ can be
very complex and also have holes, that is, its description may be quite large.
Another, and more severe, problem is that the query area may contain a large
number of nodes, and each one (plus possibly others sufficiently close to the
query’s boundary) would receive such large description of the query’s polygon.
This would imply a potentially large number of large messages flowing in the
network. Given that the the larger the message the more energy is needed to
transmit it, this flooding-based approach is non-practical.

Thus a more sophisticated solution is needed to adequately address the cache-
aware query processing problem in WSN motivated above. The solution we pro-
pose assumes a query processing framework, illustrated in Figure 1(b), located
on the WSN’s base station, and whose functioning is as follows. The user poses
a query Q at the base station. The Query Processor requests from the Cache
Manager the set P of previous queries that intersect Q. The Cache Manager
uses the Cache Index to quickly obtain the set P of relevant (cached) queries.
(Although other possibilities could be used, an obvious alternative for the Cache
Index would be an R∗-tree [8].) The Cache Manager inspects whether any of
the queries in P contain stale data. If needed it updates the Cache Index, and
returns the set P ′ of valid relevant queries that intersect Q, along with the union
respective cached datasets D(P ′

i ), ∀P ′
i ∈ P ′. Having Q and P ′, the Query Pro-

cessor uses the services of a Query Optimizer2 for two inter-dependent tasks
aiming at reducing the cost of processing Q: (1) to determine which set P ′′ ⊆ P ′

to use, and thus determine the clipped query Q′ and, considering Q′ and P ′′, (2)
to partition Q′ in order to determine a set of sub-queries Θ. Finally, the Query
Processor receives Θ from the Query Optimizer, submits them to the WSN,
2 We do not claim that this is a full-fledged query optimizer in the usual sense, we use

this term simply for the sake of argumentation.
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combines their results with the cached datasets of the queries in P ′′ and returns
the final query result to the user.

In this paper we focus mainly on the Query Optimizer module, i.e., given a
query Q and the set P ′, we aim at determining the sets P ′′ and Θ that minimize
the energy cost for processing Q. To the best of our knowledge this cache-aware
query optimization problem has not been investigated yet. In summary, this
paper presents the following two main contributions: (1) we define the cache-
aware query processing problem and argue that its highly combinatorial nature
justifies the development of efficient sub-optimal solutions, and (2) we propose
cost-oriented heuristic algorithms that are able to rapidly find good solutions
(and often the best one) to the cache-aware query processing problem.

The remainder of the paper is structured as follows. In the next section we
discuss in detail the cached data selection problem and its inherently complex
nature in the context of in-network query processing. Heuristic algorithms that
are combined to find a cost-wise good strategy for solving the cache-aware query
processing problem are presented in Section 3. Section 4 follows presenting em-
pirical evidence that our proposed solutions can be both effective and efficient
when compared to the obvious alternatives of not using the cache at all or using
all of it. Finally, Sections 5 and 6 presents a review of the related work and
concludes the paper respectively.

2 Cache-Aware Query Processing

Before proceeding further we need to decide on a good model for estimating the
cost of processing queries in a WSN to be used within the Query Optimizer mod-
ule. In the remainder of this paper we re-use the SWIP framework for processing
rectangular queries within a WSN [9]. While other query processing algorithms
could be used, the main advantage of using the SWIP framework is that it offers
an intuitive and accurate cost model that can be used for guiding the optimiza-
tion problem we have. Due to limited space we skip the details of the cost model
and refer the interested reader to [9]. SWIP’s query processing approach can be
summarized in the following four major tasks, which form the main components
of SWIP’s cost model:

S1: The query is sent from the base station node to a coordinator node.
S2: The query is partially flooded within the query area.
S3: All nodes in the query area send their data to the coordinator node.
S4: The coordinator node returns the gathered data to the Base Station node

(likely the same path used in step S1).

An interesting issue at this point is the following. Consider a query Q and a
possible decomposition of Q into smaller sub-queries qi such that

⋃
i qi = Q.

Which option is less expensive: processing the larger single query Q or the set
of smaller sub-queries qi? The answer is not obvious. In fact, depending on sev-
eral parameters, the answer could be either one. For instance, the more smaller
queries one has, the smaller the combined cost in step S2, but the larger the
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costs of step S1 and S4, although in S4 each message is smaller. We advocate
that the optimal choice depends on how the set of sub-queries is determined, and
determining a good (ideally optimal) such a set is our main goal in this paper.

Let P be the set of all cached queries each having a possibly distinct validity
period. We assume that all cached queries are pair-wise disjoint. This is a natural
assumption because only the most recent data of any sensor needs to be cached.
The set P ′ = {P ′

1, P
′
2, . . . , P

′
M} ⊆ P of queries which are still valid and such that

P ′
i

⋂
Q �= ∅, ∀P ′

i ∈ P ′, is the set of relevant valid queries with respect to Q. We
make the natural assumption that the resulting data set D(P ′

i ) for each query
P ′

i is cached in the base station as well.
The following definitions summarizes some of the notation used throughout

the rest of the paper. Note that, unless otherwise noted, whenever we refer to a
polygon we mean its boundaries as well as its interior points.

Definition 1. Given two polygons R and T , R
⋃

T denotes the polygon given by
the union of all points interior to R or to T as well all as their boundaries. Sim-
ilarly, given a set P of polygons Pi, their union is denoted as U(P ) =

⋃
Pi∈P Pi.

Definition 2. Given a polygon R and a set of polygons S, such that R
⋂

Si �=
∅, ∀Si ∈ S, we denote as R ⊕ S the clipping of R with respect to S. Informally,
R ⊕ S is the portion of R not overlapped by any Si ∈ S.

Definition 3. Given a rectilinear polygon R we denote as its partition a set
ρ(R) of rectangles such that their pair-wise intersection is null and their union
is equal to R.

We can now state our main problem’s definition more formally as follows. We
want to to minimize the cost of processing a query Q which requests the current
observations of all sensor nodes within Q’s area. Considering only the set P ′, this
amounts to a request for the current data from the sensors in the area denoted by
Q′ = Q⊕P ′. We can take advantage of previously proposed algorithms for pro-
cessing rectangular queries in WSN by determining Θ = {θ1, θ2, . . . , θT } = ρ(Q′)
. Once this is done, one can use suitable algorithms to execute each sub-query
in Θ, and obtain the answer for Q, i.e., D(Q) = (

⋃
θi∈Θ D(θi))

⋃
(∪P ′

i ∈P D(P ′
i )).

Under the reasonable assumption that data for previous queries can be obtained
at no cost within the base station, the cost of processing the original query Q is
C(Q) =

∑
θi∈Θ C(θi). Hence, our main problem is to determine the set Θ that

minimizes C(Q).
However, as indicated before, we claim that often one may be better off not

using P ′, due to the overhead that each additional query imposes. For each
element P ′

i ∈ P ′ considered for re-use the query area is reduced but the number
of sub-queries in Θ is further increased. However, each sub-query carries the
burden of an inherent overhead, namely that of dispatching and receiving each
query, thus adding sub-queries in Θ—an unavoidable consequence of adding P ′

i

to P ′′—is worth it if and only if the amount of in-network flow saved is larger
than the overhead added.
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However, the reasoning above assumes one is able to solve two sub-problems
in an efficient manner, namely: clipping a polygon with respect to another one
and partitioning a rectlinear polygon. We discuss those in the following.

For the polygon clipping problem we use the well-known GPC public imple-
mentation3 which is based on a polygon clipping algorithm presented in [10].
Furthermore, we need to evaluate the query cost yielded by a given set P ′′.

There are many goals one can aim at when partitioning a polygon. As dis-
cussed earlier each obtained rectangle in the partitioning of the clipped query
will correspond to a sub-query, and in order to minimize the query processing
overhead we restrict ourselves to finding a minimum cardinality decomposition
of Q′. Interestingly, this produces a positive side-effect; it helps to improve query
performance from a networking perspective as well, e.g., by minimizing the ef-
fect of packet collisions in the network. There exists a O(v1.5 log v) time optimal
algorithm for this problem, where v is the number of vertices of the polygon to
be partitioned [11]. Unfortunately its implementation is quite complex. An alter-
native approximative algorithm, with complexity O(v log v) and much simpler
to implement has been presented in [12]. Furthermore it has also been argued
in [13] that the partitioning problem has “an Ω(v log v) lower bound on the
time-complexity. The result holds for any decomposition, optimal or approxi-
mative.” That is, the algorithm we chose, albeit not guaranteed to provide the
optimal partition is as efficient as it can possibly be in terms of time complexity.
Considering the fact that base station may not be computationally resourceful,
and furthermore that within a WSN environment one should use every chance
to save energy as opportunistic as it might be, we consider that settling for a
sub-optimal but effective and efficient algorithm is an worthy trade-off.

3 The Cache-Aware Query Optimization Problem

In order to address the problems discussed in the previous section, we begin by
assuming Q and P ′ are given. How one determines the set P ′ ⊆ P bears no
impact on the following discussion, for now it suffices to assume that the Cache
Manager module (Figure 1(b)) is able to find which previous queries intersect Q
and among those, the ones which are still valid.

If C(X) is the cost of processing a query X , and assuming the use of cached
data at the base station can be done at null cost, the optimization problem at
hand is to find the subset P ′′ and the rectangular partitioning Θ that minimizes
C(Q) =

∑
θi∈Θ C(θi). We now have two problems for which we seek effective

and efficient solutions. One problem is to find the set P ′′ that yields the optimal
query cost assuming a particular polygon rectangular partitioning algorithm,
which turns itself out to be the second problem.

Given the arguments above, the main problem is we need to solve is finding
which set P ′′ ⊆ P ′ of previous queries to use. A trivial but impractical way
to solve this problem is by brute-force. In this case one would to consider all
elements of P ′’s powerset, whose cardinality is 2|P

′|, and for each one find a
3 http://www.cs.man.ac.uk/∼toby/alan/software/
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Fig. 2. The branch-and-bound search for a good set P ′′ and corresponding set Θ

partition Θ—we discuss how to do this in the next section—and then select the
set P ′′ that minimizes C(Q). A more practical approach is to start with an empty
(full) set P ′′ and judiciously increase (decrease) its size until no improvement
can be achieved, at which point the best solution found so far is adopted. This
idea forms the core of the branch-and-bound approach we present in this section.

In our preliminary experiments we rarely saw a case where using no available
cache was the best option. This suggests that instead of starting with the original
query and incrementally evaluate the solutions obtained by considering more and
more intersections, it may be more productive to work the other way around.

We build our search tree by considering P ′′ = P ′, i.e., all possible |P ′| inter-
sections between P ′ and Q in the root node; we define the root node’s height to
be 0. Then at height 1 we consider all possible intersections using |P ′| − 1 ele-
ments from P ′. In general, at height K < |P ′| of the tree, each node represents
the intersection between Q and a set P ′′ containing a unique set of |P ′| − K
elements of P ′ Furthermore, each such node will branch out yielding P −K sub-
trees. Clearly, if no branch is pruned and memoization is used properly, then
all elements of P ′’s powerset will be evaluated, and the one with minimum cost
can be chosen as the best solution. It is important to note that for each one of
2|P

′| possibilities, one needs to compute a Q′ as well as its partitioning. While
such an exhaustive search is conceptually correct and guaranteed to find the op-
timal solution, it is not practical. Thus we propose to use a branch-and-bound
technique to find a solution, possibly sub-optimal, to this search problem.

The search works as follows (we use Figure 2 to support the explanation).
The root node uses P ′′ = P ′, we compute its cost C(Q) and save it as the
incumbent cost. Note that it implies performing both appropriate clipping as
well as partitioning operations. Next we “open” the node corresponding to the
incumbent solution, i.e., obtain all the possibilities using |P ′| − 1 intersections
and compute their cost. Any un-opened node, i.e., one not yet explored, that
has a cost lower than the incumbent is a candidate node to be opened as it
indicates a better solution that the current incumbent one. Following a greedy
mode, we choose the node with lowest cost, update the incumbent cost to that
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Algorithm 1. B+B: a branch-and-bound search for P ′′

Input: Q and set P ′

1: create a node and set it as an open incumbent node
2: set P ′′ = P ′

3: compute a set of sub-queries Θ = ρ(Q ⊕ U(P ′′))
4: compute the incumbent cost C∗ =

∑
θi∈Θ C(θi)

5: set the incumbent solution 〈P ′′, Θ〉
6: while there is at least one open incumbent node do
7: select as incumbent node the node closer to the root and set it as closed
8: for each element P ′

i ∈ P ′′ do
9: set P ′′ = P ′′ \ {P ′

i}
10: set Θ = ρ(Q ⊕ U(P ′′))
11: compute the cost C =

∑
θi∈Θ C(θi)

12: if C ≤ C∗ then
13: set the incumbent solution to 〈P ′′, Θ〉
14: set the current node as an open incumbent node
15: set C∗ = C
16: else
17: set the current node as closed
18: end if
19: end for
20: end while
21: return the incumbent solution

of the chosen node, and open it, leading us to one level further down the search
tree. In Figure 2, the chosen node is the one corresponding to using P ′ \{P ′

2}. As
long as there are un-opened nodes with cost lower than the current incumbent,
the search proceeds down the tree. Once all un-opened nodes fail this test, we
return the best solution thus far, i.e., the set P ′′ and partitioning Θ associated
with the node which yielded the current incumbent cost. In the case of Figure 2,
if none of the newly opened nodes has a better cost than the current incumbent
then the search would stop and report P ′′ = P ′ \ {P ′

2} = {P1, P3, P4} and the
corresponding partition of Q ⊕ U(P ′′) as the solution for the search.

Algorithm 1. shows the pseudo-code the searching procedure just discussed;
in what follows we refer to it as “B+B”. As we shall confirm shortly it provides
very good solutions at a very small fraction of the exhaustive search cost.

While Algorithm B+B will stop at a locally optimum solution and typically
be much faster than the exhaustive search, one can be even more aggressive.
Another possibility is to start the search as the branch-and-bound approach
does, i.e., using all intersections. Then at each step remove the smallest one,
i.e., the intersection that contributes the least to the savings. If this improves
the query cost, i.e., the overhead yielded by the removed query was larger than
its savings, we proceed removing the next smallest intersection, and so on and
so forth as long as the total query cost is not increasing. This greedy approach
leads to what we refer to as Algorithm GrF.



68 M.A. Nascimento, R.A.E. Alencar, and A. Brayner

With Algorithm GrF in mind, one can think of yet another fairly intuitive
alternative. A previous query in set P ′ is worth using only if it saves more cost
than it induces through the overhead of the resulting sub-queries. Then if one
uses P ′

i ∈ P ′ that yields the largest intersection with the current Q′ chances
are that the gain may be larger than the added overhead. This can be repeated
iteratively in a greedy mode. We refer to this alternative as Algorithm GrE.

By the way they start, it is easy to see that the solution by both the B+B and
the GrF algorithms above cannot be worse than using all of the cache without
any further optimization. Likewise the GrE algorithm cannot deliver a worse
solution than not using any cache at all. Furthermore, one can anticipate that
a bad (greedy) decision by the GrE algorithm is going to be more costly than a
bad decision by the GrF algorithm. In the GrF algorithm the change in the set
P ′′ from one iteration to the next is by construction relatively small whereas in
the case of the GrE algorithm it is exactly the opposite case, hence yielding a
bigger change in the solution. Indeed, this will be confirmed in the experiments
we present in Section 4.

Due to space restrictions we do not discuss here the issue of cache mainte-
nance, instead we refer the interested reader to [14]. For now it suffices to say that
we do make sure the Cache Manager works effectively by cleaning the cache, i.e.,
removing stale queries and data in an opportunistic fashion, as well as updating
the cache whenever new data is acquired.

4 Experimental Results

In order to evaluate the quality of our solutions we considered their efficiency
and effectiveness with respect to a number of different parameters. Efficiency is
related to query processing time. Query processing time can be divided in time
spent at the base station devising the best query scheme, i.e., which (sub-)queries
to actually submit to the WSN, and time spent within the WSN forwarding the
query and collecting the results. To simplify our analysis we assume the latter
is proportional to the query cost, i.e., a higher cost means more traffic in the
network which implies more complex scheduling of messages and the like. Thus,
we concentrate on the time spent within the base station, which turns out to
be dominated by the Query Optimizer module. Since searching for the best
configuration 〈P ′′, Θ〉 is the most intensive process during query optimization,
we measure efficiency by the number of states explored during the search for
the cost-wise optimal (or good) configuration. We also make the simplifying
assumption that a query is completely processed much faster than the time
elapsed between incoming queries, which we believe could be in the order of a
few seconds vs. several minutes, respectively. Likewise we assume that the time
interval after which cached data becomes invalid is larger than the time it takes
to process a query; otherwise any cached data would be trivially of no use.

Regarding effectiveness we used the estimated energy cost, as per the cost
model, as the measure of interest. We first used an exhaustive –hence impractical–
search to find the optimum solution, i.e., the configuration 〈P ′′, Θ〉, which yields
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the least expensive query processing plan. This optimal cost was used through-
out as our baseline. Then we obtained the energy cost of the solutions obtained
by heuristic approaches presented in Section 3. Even though the cost model esti-
mates the query cost in nJ (nano Joules), in the figures that follow we report the
average relative loss in terms of energy cost, for each of our proposed solutions,
with respect to energy cost by the baseline configuration.

Given that the search space is relatively large and in order to make the exper-
iments practical we stopped the exhaustive search when it reached 213 states,
which was typically at least one order of magnitude larger than the number of
states explored by the heuristic searches. (In the few cases where this maximum
limit was reached the best solution found thus far was adopted as the optimal
one.) We compared the cost of all solutions against two straightforward choices:
not using any cached data at all (i.e., submitting the original query without any
further processing) or using all of the relevant cached data. As expected, only
in very rare cases not using cache at all was the best option, and in the inter-
est of space, we do not detail these results any further. Nonetheless, recall that
Algorithms GrF and GrE, cannot, by their very design, yield a solution that is
worse than using all or using none of the relevant cached data, respectively.

In order to adhere to the cost model’s assumptions, in all of our experiments
we assume the sensor nodes are uniformly distributed in the monitored area,
and so are the centroids of the queries. The location of the base station is fixed
in the center of the monitored area. (Experiments not shown here revealed the
location of base station does not have a qualitative influence in the results.) For
the sake of completeness Table 1 presents the values (borrowed from [9]) which
are used in the cost model for the WSN in our experiments.

We focus on studying the impact of the following parameters in our solutions.
By varying the number of sensors (N) we influence the sensor density of the
WSN, and consequently amount of data that flows when a query is processed.
The larger the N the more important role of the query optimizer will become
and the heavier its workload. Even though the base station can be realistic
considered to be less constrained in terms of resources, one must consider a
limited amount of storage for cached data. We denote this parameter by M
and investigated its effect on the simulated scenarios. The average size of the
queries (S) play an important role in our scenario. Larger queries will yield a
larger number of intersections with cached queries, thus more opportunity for
optimization, which, however, comes at a cost (searching process). We assume

Table 1. Parameters used in WSN model

Parameter Used Values

Monitored area 1000 m×1000 m
Cost to transmit 1 bit over d meters 50 + 10 × d2 nJ
Cost to receive 1 bit 50 nJ
Wireless range radio 50 m
Query message size 32 bytes
Answer tuple size 〈value, timestamp〉 8 bytes
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Table 2. Parameters investigated and respective values (bold face denotes default
values)

Parameter Used Values

N (# of sensors × 1,000) 1, 2, 3, 4, 5
M (# of cached queries × 100) 1, 2, 3, 4, 5
S (query size as % of total area) 0.01, 0.25, 1, 4, 16
V (validity period in timestamps) 10, 20, 30, 40, 50

that the size (area) of the queries follows an exponential distribution in order
to accommodate for eventual relatively larger queries. The last parameter we
investigate is the validity period of cached data (V ), which reflects how dynamic
and fresh the cached data is. In order to evaluate how each of those affected
the algorithms’ performance we adopted a ceteris paribus assumption, i.e., when
varying one parameter all others were kept constant at their default values. All
values used for the parameters above are listed in Table 2.

Before we started accumulating statistics about the algorithms performance
we run the experiments for a “cold-start” period where enough queries to fill
the cache were posed. Whenever a query was posed, i.e., during the cold-start
or afterwards, algorithms for maintaining cache consistency were used [14], and
when the cache run out of space the query closest to expiration, along with its
respective dataset, was evicted.

In the figures that follow we use the following convention to denote the origin
of the data: “FC” denotes results obtained by using the full content of the cache
without any optimization, “OPT” denotes results obtained via the exhaustive
search, “B+B” denotes results obtained using Algorithm 1., and “GrF” and
“GrE” denote results obtained using Algorithms GrF and GrE respectively. The
reported figures are average values obtained for each setting during consecutive
timestamps, where 10 queries were posed in each such timestamp.

In our first set of experiments we set all parameters to their default values and
compared how often the cost obtained by each of the heuristic algorithms was
greater to the optimal cost found by the exhaustive search and also how much
faster it was. We found that B+B’s solution cost was worse than OPT’s only 7%
of the time, while GrF and GrE were worse about 1/3 of the time respectively.
Regarding speedup, all heuristics consumed less than 2% of the time required
by OPT’s exhaustive search, with B+B being about 1.5% slower than GrF and
GrE (which were virtually equally fast).

Looking further into this experiment, Figure 3 shows the histograms of the
losses by all heuristics with respect to OPT. B+B’s cost advantage is quite clear;
it is not only very seldom worse than OPT’s but in about half of the (very few)
cases where it is worse than OPT it is less than 1% worse. The other approaches
are, as one would expect, less robust, in particular GrE—recall our previous
discussion on the effect of bad choices by GrE being more pronounced than bad
choices by GrF.
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Table 3. How each approach performed with respect to using no cache

Algorithm Better Tied Worse

B+B 71% 28% 1%
GrF 67% 30% 3%
GrE 70% 30% N/A

Next we investigated how the heuristic approaches compare with respect to
the two straightforward optimization-free alternatives to process Q: using no
cache (P ′′ = ∅) or using all of it (P ′′ = P ′). From Table 3 it is clear that using
no cache is very rarely a worthwhile option. For instance, in over 2/3 of the
experiments all heuristics found query plans yielding a energy cost often 50% less
expensive than processing the full unchanged query. When using all of the cache,
Table 4 reveals that none of the heuristics was able to remain as consistently
superior as the opposite case. Nonethless B+B was strictly better almost half of
the time and over 40% of the time it obtained gains upwards of 20%. Therefore
using P ′′ = P ′ may be an option that should to be considered depending on the
application scenario. However, we observe that in an environment such as WSN,
every opportunity to save energy must be seized, and all our experiments seem
to indicate that, compared to the two optmization-free alternatives, the B+B
heuristic is able to accomplish that at the expense of very minimal overhead.

The main conclusion at this point is that it is clear that there is merit in
our claim, i.e., that it is worth performing the optimization search in order to
determine good sets P ′′ and Θ. Next, we investigate how robust each of the
proposed solutions are with respect to the parameters in Table 2.

The results obtained by varying N are displayed in Figures 4(a) and (b).
On average B+B’s solution is sub-optimal by a factor smaller than 2% for all
values of N , and it obtained exploring typically less than 20 states as opposed
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Table 4. How well each approach performed with respect to using full cache

Algorithm Better Tied Worse

B+B 46% 54% N/A
GrF 27% 73% N/A
GrE 30% 46% 24%
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Fig. 4. Effectiveness and efficiency when varying number of number of sensors

to over 1,000 ones explored by the exhaustive search. Both greedy algorithms
are driven by the size of the intersections only. In scenarios with low sensor
densities (lower N) this turns out to be somewhat misleading and affects their
effectiveness noticeably. Nonetheless they are both faster than B+B, requiring
no more than a few states to reach a local optimum. The results also seem to
suggest that while B+B is a good compromise in general, for very dense networks
(large values of N) GrF may actually be a better one (though one must consider
that greedy approaches are typically less stable).

In order to simplify our analysis we measure the cache size (M) as number
of queries. Note that given the values in Tables 1 and 2, it is easy to estimate
the average actual size (in Bytes) of queries and their answers. When varying M
we observe that while B+B is again stable and very effective, GrE tend to lose
more when dealing with larger caches (Figure 5(a)). The reason is that while a
larger cache offers more opportunities for optimization it also opens the door to
more bad choices due to greedy short-sightedness. More interestingly however,
using FC becomes a less attractive alternative with the increase of M , confirm-
ing our claim that trivially using P ′′ = P ′ may often not be worthwhile. Given
that ideally one would like to use as much storage as possible (within reason)
for the cache, our results suggest that the optimization becomes increasingly
important as the cardinality of P ′ grows. Among the greedy approaches GrF is
actually an interesting option, unlike GrE. In terms of efficiency (Figure 5(b)),
the number of states explored grows with M since a larger cache yields larger
sets of candidates queries for re-use, thus more choices to be evaluated in the
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Fig. 5. Effectiveness and efficiency when varying number of cached queries

optimization process. As expected the greedy approaches are practically not
affected in terms of efficiency.

Figures 6(a) and (b) show the effect of varying the size of the query. As before
B+B offers very good effectiveness with best overall efficiency. With the increase
of S it is clear that GrE’s effectiveness becomes rather unacceptable, due again
to poor (greedy) optimization choices. On the other hand, using FC turns out to
be a not bad choice. As the size of the queries increase the optimization quickly
becomes a harder problem. This is due to a larger number of intersections and a
large number of configurations to be considered, and this is clearly reflected in
Figure 6(b). One aspect that is not transparent in our experiments is that when
queries become very large at some point the monitored area will be eventually
fully covered by cached queries (unless they have a very short validity period).
Hence, a rather trivial solution to the optimization problem is to use all of the
cache the area of the new query will be fully covered by cached data.

Our last experiment was varying the validity period (V ). Figures 7(a) and
(b) do not show a very clear dependence between this parameter and overall
performance. This is not unexpected, since while having long lived queries can
potentially allow for better optimization, the number of cached queries is limited
(by M), i.e., queries still valid will eventually need to be evicted, forcefully
limiting the search space. (Recall that we assume that the data’s validity period
is larger than the time it takes to process a query.)

In summary, it is clear that the branch-and-bound optimization process is
able to almost always offer identical or very close to optimal query plans at the
low cost of exploring only a very small number of configurations 〈P ′′, Θ〉. While
on the one hand one cannot deny that using all the relevant valid cached data
is often a reasonable compromise, in a domain, such as WSNs, the chance of
saving every bit of energy, as opportunistic as it may be, must be taken. Even
relatively small savings over the long term are worth the optimization overhead
(which incidentally has no impact in the energy budget of the network as it is
performed in the base station).
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5 Related Work

Data caching has been a well-known mechanism for enhancing query throughput
in database systems in general for quite some time [15]. In a typical setting, the
cache offers much faster access smaller than the main storage, and it is used so
that requests to frequently accessed data can performed more efficiently.

Cache strategies can be classified into two groups [16]: physical and logical
caching. Physical caching, arguably the most common one, replicates in the
(faster) cache pages or tuples identified as hot spots. In order to identify hot
spots, heuristics based on access frequency and cost/benefit analyses can be
used. Logical caching, on the other hand, replicates data that belong to query
results. For example, a logical caching mechanism where the main idea is to use
query semantics for organizing the cache was proposed in [17]. Our approach
may be likened to that one in the sense that the authors model cached data and
queries as “geometric” constraints onto the data space, whereas in our case we
deal with queries as actual polygons in the Euclidean space. Another difference is
that our approach aims at minimizing data flowing in the WSN using past queries
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whereas in [17] the authors aim at optimizing cache usage and replacement in
data servers using the query semantics.

The context in which we consider the use of cache, namely WSN, is fairly
novel itself, and a relatively small number of papers have been published in this
area. Most of them are related to the networking rather than the database as-
pect of the problem. In that context data caching can be applied to minimizing
packet transmissions in the network and consequently reducing power consump-
tion. For instance, in [18] the authors propose a strategy that emulates a data
caching mechanism by predicting when a sensor’s observed data will change.
Such a technique aims at avoiding requests to redundant data but it might
impact negatively the correctness of query results, because some unpredicted
change may not be propagated in the WSN. Another strategy proposed in the
same paper is to aggregate the flow of redundant (replicated) values in a single
message. Again, this may have an adverse effect on the query result as a sin-
gle message failure becomes responsible for several values from different nodes
being lost. While link failures can always affect query processing in a WSN, we
minimize their effect by placing the cache on the base station which needs to
relay the query results to the user anyway.

In [19] the authors discuss how to explore a natural hierarchy of entities
within a WSN using an XML framework. One of the main focus of that work
is on the so-called Query-Evaluate-Gather technique which enables one to not
only find relevant queried data within a node but also how to gather the missing
parts. We, on the other hand, assume that no data is cached on the (resource-
challenged) sensor nodes. More importantly the authors focus only on improving
query throughput, ignoring the energy cost factor, whereas in this paper, by
virtue of having the cache at the base station, we focus on minimizing the energy
cost of query processing in the WSN.

A work that assumes a context closer to ours, i.e., it is database-oriented
in nature and geared towards an WSN has been presented in [20]. The authors
assume that the WSN uses a tree-based routing protocol and propose that several
nodes in the network to be used for caching data. The problem of choosing these
so-called cache-nodes reduces to finding a Steiner Minimal Tree (SMT), i.e., a
tree that connects all points with minimal length. Since finding an SMT is a
NP-Hard problem, the authors propose a sub-optimal solution, called Steiner
Data Caching Trees (SDCT). Unfortunately the bottleneck of the proposal is
that it is as robust as the cache-nodes, i.e., once they become unavailable (which
can happen for a variety of reasons), not only data is lost but also another
SDCT needs to be reconstructed from scratch. By relying on the base-station
our approach is relatively free from side-effects when individual nodes become
unavailable.

Finally, Galpin et al discuss how to compile/optimize queries within a WSN,
e.g., employing well-known techniques such operator re-ordering and query re-
writing at the network and node level [21]. The main difference between their
contributions and ours is that we focus of re-using previously cached data in a
(sub-)optimal way and delegate the actual query processing to the in-network
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query processing engine, whereas in [21] the authors are not concerned with pre-
existing data in a cache, rather they focus on optimizing the query from a in-
network perspective. Clearly, both proposals are complementary and orthogonal
in the sense that one can (and should) first optimize the use of existing data
(using our proposal) and then optimize the actual query processing (using the
approach in [21]).

6 Conclusions

We have investigated the problem of how to effectively exploit a data cache at
the base station of a WSN. The problem calls for answers to two sub-problems:
(1) how to select which cached queries to use, and depending on those, (2) how
to create a query cost-wise good set of sub-queries that will be submitted to the
WSN. Given the highly combinatorial nature of the problem we proposed a few
heuristic approaches. The best alternative of the one we investigated, which is
based on a branch-and-bound optimization search, is (a) very efficient, devising
a query plan typically two orders of magnitude faster than an exhaustive search,
and (b) quite effective, yielding query energy cose typically less than 2% and no
more than 10% over the optimal one. Finally, even though this work re-used the
query processing framework presented in [9], the solution we propose does not
depend on the same. Rather, any approach can be used as long as it provides
the cost model that is used to guide the search for an optimized query “plan”.
We are currently working on extending the ideas in this paper to address other
types of queries, e.g., aggregate queries.
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Abstract. Today, many economic decisions are based on the fast analy-
sis of XML data. Yet, the time to process analytical XML queries is typ-
ically high. Although current XML techniques focus on the optimization
of query processing, none of these support early approximate feedback
as possible in relational Online Aggregation systems.

In this paper, we introduce a system that provides fast estimates to
XML aggregation queries. While processing, these estimates and the as-
signed confidence bounds are constantly improving. In our evaluation,
we show that without significantly increasing the overall execution time
our system returns accurate guesses of the final answer long before tra-
ditional systems are able to produce output.

1 Introduction

The data volume and growing rates of today’s business systems make approxi-
mate query processing an inevitable technique for fast analyses. Online Aggre-
gation (OLA) has been proposed as an approach for analytical processing of
relational data. In OLA, the database system quickly returns approximate an-
swers to aggregation queries together with statistical guarantees on the error
bounds. This computing paradigm allows users to more flexibly explore data:
Query processing may be terminated at any time once sufficient accuracy has
been reached; if exact answers are needed, they can be computed with little
overhead as compared to traditional systems.

In this paper, we show how OLA can be performed on XML data. We present
a novel query processing system—referred to as XML Database Online (XDBO)
System—which performs OLA on XML data in a scalable way. We have been
faced with the following main challenges: Query processing on XML data is heav-
ily dominated by the evaluation of so called twig patterns. This pattern matching
process involves a multitude of structural joins and is a major bottleneck within
XML query processing. Compared to relational databases the queries differ in
both the number and the kind of joins. Additionally, in current XML processing
systems an aggregate cannot be returned until the whole structural join opera-
tion is completed. This is a time-consuming task, especially for complex queries
and/or queries over large data sets. We address these challenges and make the
following contributions:
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– We propose novel operators for the random and non-blocking selection and
join of query path patterns.

– We show how sideways information passing can be used for fast approximate
query answering and introduce the architecture of the XDBO System.

– With an extensive evaluation of a prototypical implementation we demon-
strate the feasibility and the efficiency of our approach.

Furthermore, we point out optimization possibilities and present our prototype
in the long version of this paper [10].

2 Indexing and Pattern Matching

In this section, we introduce the foundations of our proposed XDBO System
that are based on the following requirements of OLA: First, for a scalable query
processing and for fast first answers the pattern matching must be performed
in a non-blocking fashion, and second, to guarantee statistical valid estimates
and error bounds XML elements have to be processed in random order. We now
describe two novel pattern matching operators and a special index structure
that are designed to meet the given requirements. The operators reflect the
general procedure of the approximate query processing in the XDBO System:
Instead of processing a query pattern as a whole, we decompose it into a set of
query path patterns. We identify all path patterns of the query and remember
the positions of branching nodes that connect individual paths. With a novel
selection operator (Section 2.2) we search for solutions to query path patterns;
a special index structure (Section 2.1) facilitates its efficiency. Finally, a join
operator (Section 2.3) connects the solutions of individual path patterns.

Figure 1 illustrates the main steps, starting from the query pattern, all iden-
tified query path patterns and the constructed execution plan for a count query
over the XPath expression //a[.//b[c]/d]//e[f]/g.

2.1 Element Path Index

Traditional XML database systems utilize special numbering schemes to speed
up query processing: They label all elements of an XML document, often encode
the structural relationship into the labels and store them for each element into an
index structure. The index is then used to accelerate a pattern matching opera-
tion. To support pattern matching in a system that meets the OLA requirements
a special index is needed. Based on a thorough state-of-the-art analysis, we de-
cided to utilize the extended Dewey numbering (EDN) scheme [7]. In addition to
the encoding of the structural relationship, the EDN scheme encodes—with the
help of a Finite State Transducer (FST)—the whole root-to-node path of each
element into the label. Therefore, only the labels of the leaf node element of a
query pattern need to be accessed during pattern matching. The solutions of the
query pattern //a//b/c can be found by examining all labels of c elements and
check if they match the query pattern. Hence, only the decoding of EDN labels
and the comparison of the retrieved path patterns with the query path pattern
have to be done. This enormously speeds up and simplifies pattern matching.
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Fig. 1. Generation of the execution plan

Fig. 2. Selection process

2.2 Path Pattern Selection Operator

Based on an index that stores EDN labels for each element type, we propose a
novel selection operator σXPath (see Figure 1). The characteristic of this operator
is the processing of input elements—the EDN labels from the index—in random
order. On the right part of Figure 2, we show how this is achieved (the XML
document and the corresponding index are given in the left part): The element
labels of the leaf nodes of the query are extracted from the index in random
order (a). If the index structure does not guarantee randomness a randomizer
has to be used. During the selection process (b) the operator translates each
label of the random input stream with the FST into a root-to-node path and
compares it with the query path pattern. If there is a match a solution is found.
For further processing, not only the selected labels but also the positions of the
query path pattern elements are memorized (c).

2.3 Path Pattern Join Operator

To find solutions for the whole query pattern the results of the individual query
path patterns need to be joined at branching nodes. Branching nodes (specifically
their position pos in the path pattern) are defined by the join operator ��pos (see
Figure 1). The join process is much more complex than the relational join op-
eration. Rather than comparing columns of different tuples positions of labels
are compared to join the records. Two labels can only be joined if they coincide
from root position up to the position of the associated branching node.



Approximate Query Answering and Result Refinement on XML Data 81

3 Query Processing

This section describes how the XDBO System effectively uses the presented
index and the two pattern matching operations to provide early estimates of the
final aggregate of a query. To achieve high scalability we employ the concept of
sideways information passing. According to this concept, operations at a single
level of a query plan are performed concurrently while allowing to share some
of its intermediate results with other operations at the same level. Thereby,
preliminary result tuples can be generated on the fly on each layer of the query
plan and are used to provide an estimate for the final query answer. Sideways
information passing was introduced as a design paradigm for OLA of relational
data [5]. Due to space limitations, we will only give an overview how sideways
information passing and related design principles can be adapted and combined
with EDN to allow scalable OLA of XML data. A detailed description can be
found in the long version of this paper [10].

As in [5], we refer to all of the joins at one level of a query plan, i.e., joins that
are evaluated concurrently, as a levelwise step. The query processing starts at
the bottom level and proceeds in ascending order. By passing information among
the join operations of a levelwise step i an estimate Ni of the final answer of
the aggregation query is maintained. This estimate becomes more and more
accurate as the levelwise step progresses. At any time, all available estimates Ni

are combined into a single estimate for the answer which will more and more
converge to the exact query result.

3.1 Levelwise Steps

Each levelwise step is partitioned into two phases: a scan and a merge phase.
The scan phase sorts the labels of all individual path solutions and finds early
solutions for the whole query pattern. In the merge phase, the actual join is per-
formed. To ensure scalability the set of path pattern solutions that are pipelined
into the join operations are divided into equal-sized runs. The size of the runs is
adjusted to ensure that the join can be performed in main memory.

Both phases are executed analog to the DBO System [5], but instead of tuples
results of path pattern operations are processed. Figure 3 illustrates the start of
the scan phase of the first levelwise step. Path pattern solutions are read into
memory in a round-robin fashion by the already introduced selection operator
(i = 1) or by the merge phase of the preceding levelwise step (i > 1). Subse-
quently, they are sorted by a hash function that only takes into account the
parts of the labels that are significant for the join operation (specified by pos).
To guarantee an unbiased label sorting the hash function is initialized with a
different seed for each single binary join operation. After each sorting, all records
being present in memory are immediately joined, thus, yielding early overall join
results to the join conditions specified in the query pattern. Based on these early
results, estimates and error bounds for the final result are generated at each step
of the query execution. Due to space limitations, we omit the explanation of the
estimate computation here and refer to [10].
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Fig. 3. Scan phase of the first levelwise step

The merge phase is directly connected with the scan phase of the subsequent
levelwise step. It provides the following two characteristics: (i) it guarantees a
(semi-)random output order and (ii) it produces output partitioned into equal-
sized runs that fit into main memory. The partitioning is controlled by the values
of the hash function from the scan phase. Based on equal-sized hash ranges the
merge process produces runs of joined pattern in a round-robin fashion. The
results of the join operations are directly streamed into the next levelwise step.

4 The XDBO System

We now present the architecture of the XDBO System whose main concepts were
implemented in a Java prototype. As shown in the next section, this prototype is
able to demonstrate the feasibility and the efficiency of our solution. However, it
is designed as proof of concept, and thus, limited in its functionality (see [10] for
restrictions). The XDBO System comprises two main parts which are the Import
and Indexing Component (Part (I) of Figure 4) and the core XML Database
System (Part II). They are supplemented by an underlying index storage.

Import and Indexing. The Import and Indexing Component comprises three
sub-components: the Data Import Interface, the Numbering Component and
a Finite State Transducer (FST) for the EDN. The Data Import Interface is
used to load XML data into the system. The Numbering Component creates an
element path index based on the FST that is set up for an XML document or a
predefined XML schema. For each element type, this index lists the EDN labels
of all nodes. Additional text indexes are created for the values of text nodes.

Database System. The database system follows a layered architecture with
three components: a Query Execution Plan (QEP) Generator, an Execution
Component and a Data Access Component. A user interface for posting queries
against the system using structural XML query languages can be realized on
top of XDBO. The QEP Generator accepts a structured query pattern as input
and generates a QEP; it converts the given query pattern into join trees of
query paths. The QEP is then handed over to the Execution Component which
manages the processing of the given join tree. Joins are executed in a levelwise
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Fig. 4. Architecture of the XDBO System

fashion as described in Section 3.1. Additional query optimization is possible
but is left for future work. On-the-fly records produced throughout the query
execution are used to estimate the final aggregate with the help of the Result
Estimator. All operators retrieve and store data via the Data Access Component
which offers a randomization and partitioned reading functionality.

5 Evaluation

For the evaluation of the XDBO System, we used different sized XML documents
(113 MB to 11.1 GB) generated with the XMark [9] data generator (scaling
factors 1 to 100) and compared main characteristics of XDBO with a scalable
implementation of the TwigStack System [2]. All experiments were conducted on
a 2.4 GHz processor with 4 GB RAM running a 32-bit Windows Vista Enterprise
operating system. Besides the evaluation of query processing presented as follows
we had a look on the index performance, the impact of the document size and
the application of the proposed optimizations. These detailed results are skipped
here due to space constraints and can be found in [10].

To evaluate the query execution performance we ran several COUNT queries
with different characteristics (selection rate, size of intermediate results, number
of branching nodes) on the different sized XMark documents and picked out
three of them for this paper; the respective query patterns Q1-Q3 can be found
in [10]. We ran each query three times and—as each execution of a query will
result in a different estimation chain which prevents averaging the results—we
picked the one with the medial total execution time.

Overall, the evaluation shows that the XDBO Systems generates good es-
timates with confidence intervals decreasing over time. Furthermore, accurate
estimates are produced long before the TwigStack System finishes execution.

Confidence interval ratio. First, we analyzed the relative confidence interval
width defined as the ratio of the 95% confidence interval width and the query
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Fig. 5. Time evaluation of relative confidence interval width and comparison of XDBO
and TwigStack System (for 2.8 GB XMark document)

estimate. Figure 5(a) shows the relative confidence interval width as a function
of the processing time for a 2.8 GB XMark document (XMark scaling factor
25). A value of 0.1 implies that the 95% confidence interval equals 10% of the
current estimate. The relative interval width decreases with time for all queries.
The very small confidence interval of the query Q1 demonstrates very accurate
estimates. In comparison, the queries with branching nodes (Q2 and Q3) show
larger relative interval widths, especially at the early phase of query processing.
However the interval width quickly decreases and therewith estimates are getting
accurate soon. First optimization approaches to address the limitations of the
relatively wide starting confidence intervals can be found in [10].

Comparison of XDBO and TwigStack. Figure 5(b) shows how the XDBO
query execution compares with the TwigStack System for the 2.8 GB XMark
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document. The TwigStack System returns the exact query result while XDBO
outputs early estimates and error bounds as well as the exact result at the end
of the query evaluation. For all queries the XDBO System was able to give first
output before the TwigStack System did. For the query without branching nodes
(Q1) the XDBO System not only provided fast accurate estimates but also fin-
ished before the TwigStack System was able to generate an answer. Moreover,
an aggregate with a relative confidence interval width lower than 10% was pro-
duced in less than 20% of the time needed by the TwigStack System to yield the
result. The queries with branching nodes required longer total execution time,
but still returned accurate guesses long before the TwigStack System produced
output.

6 Related Work

In this section, we give an overview over the different areas of related work.

Online Aggregation. Online Aggregation was introduced by Hellerstein et al.
in [4]. A major technical challenge in OLA is to combine efficient join process-
ing with unbiased guaranteed accuracy estimates. To address this task various
algorithms such as the Ripple Join [3] or the SMS Join [6] have been proposed.
Jermaine et al. [5] observed that the result inaccuracy for these algorithms sig-
nificantly increases with the number of tables to be joined; their DBO System
ensures scalable query processing for OLA by sharing information across rela-
tional operations at different levels of the query plan. Especially from the DBO
System we adopted some concepts; however, we made significant effort to adapt
these concepts to the fairly different style of query processing of XML data.

Indexing and numbering schemes for XML data. Indexes are a well-
known technique to speed up query processing; clearly, this also holds for XML
data as shown in [8]. Additionally, to speed up pattern matching a multitude
of numbering techniques and algorithms have been proposed [1,7]. They encode
structural relationships into labels for each element. The extended Dewey num-
bering scheme (EDN) [7], that we incorporate for highly efficient path pattern
matching, additionally encodes the complete root-to-node paths into the labels.

Pattern matching. Recent algorithms for XML pattern matching exploit the
characteristics of various numbering schemes to significantly improve the process-
ing speed of structural joins. The first proposed structural join operations [1,2]
focus on binary and query path patterns, but suffer from the need of additional
stitching steps when applied to more complex query patterns. To process query
patterns as a whole several holistic twig join algorithm had been presented [2,7].
While some of the proposed pattern matching algorithms are non-blocking they
generally rely on the processing of labels in a sorted order. Like our solution,
TJFast [7] exploits the features of the EDN, but does not meet the OLA require-
ments. Accordingly, none of these algorithms supports early result feedback and
processing with guaranteed statistical error bounds.
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7 Conclusion

In this paper, we presented the concepts and the architecture of a system ca-
pable of performing Online Aggregation over XML data. This XDBO System is
able to give fast feedback to aggregation queries by approximating and refining
the final answer throughout query processing. Additionally, it provides accuracy
guarantees by attaching confidence information to the estimates. We introduced
a novel query processing approach that splits query patterns into query path
patterns; efficient query processing is realized by novel operators for selecting
and joining path patterns in combination with an appropriate index structure.
For accurate estimates we adapted principles of the DBO engine to the XML
query processing. We prototypically implemented the XDBO System to demon-
strate the efficiency of our solution. Within our extensive evaluation, we have
shown that our system returns accurate guesses of the final answer long before
traditional systems are able to produce output. Furthermore, good estimates
are gained very fast for query patterns without branching nodes. We identified
some limitations for more complex queries, but presented and demonstrated first
optimization approaches to address these limitations in the long version of this
paper [10].
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Abstract. In this paper, we present a novel method to efficiently pro-
cess top-k spatial queries with conjunctive Boolean constraints on tex-
tual content. Our method combines an R-tree with an inverted index by
the inclusion of spatial references in posting lists. The result is a disk-
resident, dual-index data structure that is used to proactively prune the
search space. R-tree nodes are visited in best-first order. A node entry is
placed in the priority queue if there exists at least one object that satisfies
the Boolean condition in the subtree pointed by the entry; otherwise, the
subtree is not further explored. We show via extensive experimentation
with real spatial databases that our method has increased performance
over alternate techniques while scaling to large number of objects.

Keywords: Geographic databases, spatial keyword query, scalability.

1 Introduction

Today’s Internet applications typically offer users the ability to associate geo-
graphical information to Web content, a process known as “geotagging”. For
example, Wikipedia has standardized geotagging of their encyclopedia articles
and images via templates [6]. Furthermore, technological advances in digital
cameras and mobile phones allow users to acquire and associate geospatial co-
ordinates, via built-in GPS devices or Wi-Fi triangulation, to media resources.
Additionally, Web content can be automatically paired with geographical coor-
dinates, for instance, exploiting content features, such as place names or street
addresses, in combination with gazetteers. Thus, the powerful combination of
Internet applications, GPS-enabled devices, and automatic geotagging can po-
tentially generate large amounts of georeferenced content. On the structured end,
spatial databases usually contain rich textual descriptions, stored in non-spatial
attributes. For example, a database of property parcels may store property’s
owner name, description, and street address in addition to its coordinates.
� Research was partially supported by NSF DGE-0549489, IIS-0957394, and IIS-
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A key problem recently tackled by the academia and industry is spatial
searches with text constraints in geographical collections [3] [7] [11] [9] [10].
For example, in a database of parcels, we may be interested in finding nearby
houses to Miami Beach (spatial constraint) that have backyard and are located
on Collins Avenue (text constraint). Typically, query keywords are assumed to
be conjunctively connected. That is, records containing all query keywords are
retrieved. In the general case, text constraints may involve complex combina-
tions of keywords with logical connectives beyond the conjunctive semantics.
For instance, in the database of parcels, fire fighters traveling in a truck may
want to quickly determine the nearest parcels that have swimming pool and are
not located in buildings for water replenishment in an emergency.

As geospatial collections increase in size, the demand of efficient processing
of spatial queries with text constraints becomes more prevalent. In this paper,
we propose a method for efficiently processing top-k nearest neighbor queries
with text constraints where keywords are combined with the three basic Boolean
operators AND, OR, and NOT . Our method uses an R-tree to guide the spatial
search and an inverted file for text content retrieval, which are combined in a
novel hybrid spatial–keyword index. The specific contributions of this paper are:

1. We define a top-k spatial Boolean (k-SB) query that finds nearest neighbor
objects satisfying Boolean constraints on keywords combined with conjunc-
tive (∧), disjunctive (∨), and complement (¬) logical operators.

2. We propose a novel hybrid Spatial-Keyword Index (SKI ) to efficiently pro-
cess k-SB queries. A salient feature of SKI is that it only searches subspaces
that do contain objects satisfying the query Boolean predicate.

3. We execute extensive experimentation on an implementation of our method
over large spatial databases. Experimental results show that the proposed
method has excellent performance and scalability.

Section 2 discusses related work to our research. Section 3 formally defines the
problem. Section 4 presents the proposed hybrid indexing approach and query
processing algorithms. Experimental study on an implementation of our hybrid
index is conducted in Section 5. Section 6 presents our concluding remarks.

2 Related Work

The R-tree traversal method in our work is inspired in Hjaltason and Samet’s
[5] incremental top-k nearest neighbor algorithm using R-trees [1]. Performance
improvements on the original R-tree work have been proposed, e.g. R*-tree [13]
, R+-tree [14], and Hilbert R-tree [15]. Any of these variants can replace the R-
tree index used in the proposed hybrid spatial keyword index without modifying
our search algorithms. In information retrieval, inverted files are arguably the
most efficient index structure for free-text search [2] [12].

The problem of retrieving spatial objects satisfying non-spatial constraints has
been studied in the recent past. Park and Kim [10] proposed RS-trees, a combi-
nation of R-trees and signature trees for attributes with controlled cardinality;
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signature chopping is suggested to mitigate combinatorial errors [8] (database
overrepresentation) of superimposed signatures. Harinharan et al. [9] proposed
to include a list of terms in every node of an R-tree. De Felipe et al. [11] aug-
mented signature files in R-tree nodes with similar constraints as [10]. Recently,
Cong et al. [3] augmented an inverted file in every node of an R-tree, and used a
ranking function that combines spatial proximity and text relevancy. Our work
differs in that we assume distance as ranking score, and we focus on efficiently
processing Boolean constraints on textual data. Further, none of the previous
works offer efficient processing of the complement logical operator, which lim-
its their applicability to the k-SB queries we considered in this work. Likewise,
modern Web search engines, like Google and Yahoo!, offer Local Search services.
Advanced querying options are provided to include and exclude certain terms
from the search result. These are similar to the k-SB queries we consider. How-
ever, specific search algorithms are kept confidential by their owning companies.

3 Problem Definition

A spatial database D = {o1, o2, ..., oN} is a set of objects such that every o ∈ D
has a pair of attributes < p, T >, where: p ∈ E is a point in a metric space E
with distance dist(p1, p2), and T = {t1, t2, ...} is a document as a set of terms.

A top-k spatial Boolean (k-SB) query Q is a triple < l, k, B >, where: l ∈ E is
the query location (spatial constraint), k is the desired output size, and B is the
conjunctive Boolean predicate (text constraint). B is a set of keywords prefixed
with Boolean operators {∧,∨,¬}, conjunctively connected as follows:

B =
[
∧(A = {a1, a2, ...})

∧
∨(C = {c1, c2, ...})

∧
¬(G = {g1, g2, ...})

]
(1)

A (AND-semantics), C (OR-semantics), G (NOT -semantics) are subsets of terms
prefixed with ∧, ∨, and ¬, respectively. An object o ∈ D satisfies B if:

[(∀a ∈ A : o.T ∩ a �= ∅) ∧ (∃c ∈ C : o.T ∩ c �= ∅) ∧ (∀g ∈ G : o.T ∩ g = ∅)] (2)

The result of the k-SB query Q is the list:

L = {oi ∈ D, i = 1, ..., nL|oi satisfies B ∧ nL ≤ k}, such that:
∀o ∈ (D \ L) : [dist(o.p, l) ≥ arg maxr∈Ldist(r.p, l) ∨ ¬(o satisfies B)] (3)

Objects in L are sorted by distance to l in non-decreasing order. In other words,
a k-SB query Q returns the k nearest neighbor objects to the query location l
that satisfy the conjunctive Boolean predicate B. In this work, we assume E is
the Euclidean space. The problem is how to efficiently compute L.

Example: In database D1 of Table 1, the query “Find top-10 houses nearby
Miami that have masterbed with bathtub, have a pool or backyard, and are
not located in a building” translates to the following k-SB query:
Q1 ={Miami, 10, [∧(masterbed, bathtub)

∧∨(pool, backyard)
∧¬(building)]}

and retrieves L1 = {o3, o8}.
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Table 1. Property parcel database D1 = {o1, o2, ..., o12}. For every textual term (t),
the list of objects containing t is shown.

Term Object List Term Object List

backyard (t1) {o2, o3, o6, o8} collins (t4) {o2, o6, o10}
bathtub (t2) {o3, o5, o8, o9} masterbed (t5) {o3, o8, o11}
building (t3) {o1, o5, o7, o12} miami (t6) {o1, o3, o4, o10}

4 Hybrid Spatial-Keyword Indexing

In designing the hybrid index, we pursue the following objectives. First, we want
to attain fast retrieval even when matching objects are located far away from
one another. Second, we want to efficiently filter objects not satisfying the query
Boolean constraints on keywords. A key challenge is to perform small number of
computations to eliminate as many non-candidate objects as possible. In partic-
ular, NOT -semantics constraints may substantially shrink the output size and
lead to unnecessary scans. Third, we want to maintain low storage requirements
while keeping high query performance. With these objectives in mind, our index-
ing approach leverages the strengths of R-trees [1] in spatial search, and modifies
an inverted file [2] for efficient processing of Boolean constraints. The combina-
tion of indexing techniques yields the hybrid data structure: Spatial-Keyword
Index (SKI). We next introduce two important definitions in SKI.

Definition 1. Given an R-tree R with fanout m, a super node s is the list of m
leaf (level 1) nodes that have the same parent node. The universe of super nodes
of R is S(R) = [s1, s2, ...], where s1 references the left-most leaf nodes of R.

Definition 2. The term bitmap of term t at super node s is a fixed–length bit
sequence I(t, s) of size m2, where the i–th bit is computed as follows:

I(t, s)[i] =
{

1 if s[i] points to object o : t ∈ o.T
0 otherwise (4)

For an R-tree with L levels, a super node s contains O(m) leaf nodes, or equiva-
lently O(m2) object pointers, and |S(R)| = O(m(L−2)) for L > 1. A single-level
R-tree has no super nodes. Figure 1 shows super node s1 of an R-tree built on
D1, and term bitmap for “miami” keyword at s1.

4.1 Spatial Keyword Index

The hybrid spatial keyword index (SKI) is composed of two building blocks:

a) R-tree Index (R): A modified R-tree built with spatial attributes of D.
Entries in R’s inner nodes are augmented with index ranges [a, b], where sa and
sb are the left-most and right-most, respectively, super nodes contained in the
subtree rooted at node entry. Ranges in leaf-node entries contain a single value,
the index of the super node containing the leaf node.
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Fig. 1. Super node s1 composed of leaf nodes [N1, N2], and term bitmap for “miami”

b) Spatial Inverted File (SIF ): A modified inverted file constructed on the
vocabulary V =

{⋃
o∈D o.T

}
. The Lexicon contains terms in V and their docu-

ment frequencies (df). Posting lists are modified to include spatial information
from R. Specifically, the posting list of term t contains all its term bitmaps
(rather than documents) sorted by super node index as follows:

Posting(t) = [I(t, s1), I(t, s2), ...] where si ∈ S(R) (5)

Efficiency Considerations. We organize posting elements in a B+tree to allow
fast random and range retrieval. Keys are < t, i > pairs while values are bitmaps
I(t, si). In order to reduce storage requirements, we compress I(t, si) using the
Word-Aligned Hybrid bitmap compression method (WAH ) [4]. WAH method
allows fast bitwise computations with logical operators AND, OR, and NOT
on uncompressed bitmaps, which is capitalized during query processing.

Figure 2 shows R and SIF structures for database D1 in Table 1.

Level 1
(leaves)

Level 2

nullN1 N2

N6

Super node
ranges N8

N3 N4

N7

N5

[1,2]

[1,1] [2,2]

R: R-tree SIF: Spatial Inverted File

references

t I(t,s ), I(t,s )Level 3

s1 s2

...

...
[ 1 2 ]

Fig. 2. Hybrid Spatial-Keyword Index for database D1 in Table 1



92 A. Cary, O. Wolfson, and N. Rishe

4.2 Processing k-SB Queries

In order to process query Q =< l, k, B >, R-tree R is traversed from the root
node following the best-first traversal algorithm proposed in [5]. That is, node
entries are visited in order of proximity of their minimum bounding rectangles
(MBR) to location l. A node entry e is placed in a priority queue, with priority
equal to dist(MBR, l), if at least one object within e’s subtree satisfies Boolean
predicate B. The SIF structure is used to qualify e. A powerful feature of the
previous filter is that unnecessary subtree traversals are eliminated altogether.

Algorithm 1 shows the steps involved in processing k-SB queries using SKI.
The algorithm starts by resorting query keywords by documents frequency (line 1)
in such a way that as many object candidates as possible are eliminated with
few posting list merges. For instance, infrequent terms have large number of 0s
in their term bitmaps, and possibly short Posting() lists, which are adequate to
be processed first for AND-semantics terms. In line 2, the priority queue, result
list, and a globally accessible hash map M are initialized. M caches merged term
bitmaps of previously evaluated super nodes during query execution. Next, R is
traversed in best-first order starting from its root in lines 4–9. A node entry e is
evaluated w.r.t. B by the function isSubtreeCandidate (line 8). Only when e’s
subtree has at least one object that satisfies B is it pushed into the queue.

Algorithm 1. Process k-SB Query
Input. k-SB query Q =< l, k, B >
Output. A list of objects satisfying Q (see Equation 3)
begin

1 Sort term subsets in B by document frequency (df) as follows:
A (AND) in ascending order, and C, G (OR, NOT ) in descending order

2 Initialize: priority Queue← R.root; list L← ∅; global hash map M ← ∅
3 r ← 0 /* number of B-satisfying objects retrieved so far */

4 while (Queue �= ∅ and r < k) do
5 Node n← Queue.pop()
6 if (n is obj. pointer) then r ← r + 1

L.add(getObject(D, n)) /* retrieve o ∈ D pointed by n */

7 else for (every entry e in node n) do
8 if (isSubtreeCandidate(B,n, [e’s position in n])) then
9 Queue.push(e.ptr) with priority dist(e.MBR, l)

10 return L

isSubtreeCandidate function, described in Algorithm 2, evaluates B predi-
cate by merging query term bitmaps on a range of super nodes, one super node
at a time, until one candidate is found (lines 4–9). This processing style is simi-
lar to Document-At-A-Time processing in inverted files [2], except that postings
are not exhausted. Logical bitwise operations are performed on term bitmaps
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Algorithm 2. isSubtreeCandidate
Input. B: query predicate; n: node; i: positional index
Output. True if ∃ o that satisfies B within subtree at n[i], false otherwise
begin

1 if (n is leaf node) then
2 if (The i-th bit in M(n[i].a) is set) then return true
3 else return false

4 else for (j ← n[i].a to n[i].b) do
5 pe← ∧

t∈B.A I(t, j) /* execute bitwise operations */

6 pe← pe ∧ [∨
t∈B.C I(t, j)

]
/* on term bitmaps over */

7 pe← pe ∧ [∧
t∈B.G flip(I(t, j))

]
/* super node range in n[i] */

8 if (cardinality(pe) > 0) then M.add(key = j, value = pe)
9 return true

10 return false

(lines 5–7) according to term semantics. Complement operator requires term
bitmaps to be flipped (converting 1s into 0s and vice versa), which is accom-
plished by the flip function (line 7). Next, if the merged bitmap has at least one
bit set (line 8), meaning there is a candidate, then it is cached in M (line 8),
and the function returns true. Otherwise, B is evaluated at the next super node
in the range until a candidate is found, or the range is exhausted. In the latter
worst case, the subtree is discarded in its entirety. Since a super node references
O(m2) objects, a range [a, b] can potentially filter out O(m2 × |a − b|) objects.
The I/O cost is remarkably only O(|B| × log(|V |) × |a − b|), where |B| is the
number of query terms, |V | the vocabulary size, and log(|V |) the cost of term
bitmap retrievals from a B+tree (see Section 4.1).

5 Experiments

We conducted a series of querying experiments with three real spatial datasets
explained in Table 2. Records contain geographical coordinates, and between 30
and 80 text attributes (concatenated in a term set). SKI was implemented in
Java, and experiments ran on an Intel Xeon E7340 2.4GHz machine with 8GB
of RAM. We measured average number of random I/Os and response times in
processing k-SB queries and compared performance with two baselines:

Baseline 1 (IFC). An inverted file containing object coordinates in addition to
object pointers. Queries are processed in two phases. First, term postings are
merged according to B semantics. Second, satisfying objects are sorted by prox-
imity to query location. The top-k objects in the sorted list are returned.

Baseline 2 (RIF). An R-tree with every node augmented with an inverted file on
keywords within its subtree. This baseline is inspired by arts [3] [9]. At query
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time, R-tree nodes are visited in best-first order w.r.t. spatial attributes. B is
evaluated with the inverted file at every node, except for NOT -semantics terms.

Workload. Every vocabulary was sorted by document frequency (df) and divided
in three quantiles: S: Terms with df < 1–quantile (infrequent terms), M: Terms
with df < 2–quantile, L: Terms with df < 3–quantile (entire vocabulary). In
each quantile, k-SB queries were composed by randomly picking between 3 and
8 terms and prefixing them with {∧,∨,¬} operators to form B. k was fixed to 20.
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Fig. 3. Performance metrics on 50 k-SB query runs. Y-axis is in logarithmic scale.

Figure 3 shows the average number of I/Os and elapsed time over 50 k-SB
queries of each workload type {S, M, L} for every dataset. IFC shows perfor-
mance advantage when query terms are relatively infrequent (S). Short posting
lists can be quickly evaluated to compute query result, whereas SKI and RIF
spend additional R-tree traversals. When query terms become more frequent (M
and L), IFC incurrs in expensive long posting list merges, which is observed in
peaks of Figure 3.a for L queries. RIF performs acceptably for S queries but
degrades for M and L queries. This may be due to filtering limitations in R-
tree upper levels. Eventually, subtrees known (via inverted file) to contain query
terms are traversed. However, terms may belong to different objects, i.e. no sin-
gle object satisfies B predicate. In the same vein, RIF must wait until objects
are retrieved to apply NOT -semantics filters, which can also degrade its per-
formance. In summary, we observed consistent enhanced retrieval performance
using the proposed hybrid indexing and query processing methods.

Table 2. Experimental spatial datasets. Dataset and vocabulary sizes are in millions.

D |D| |V | Subject

FL 10.8 21.2 Property parcels in the Florida state.
YP 20.4 40.8 Yellow pages of businesses in the United States.
RD 23.0 64.8 Road segments in the United States.
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6 Conclusions

In this paper, we proposed a disk-resident hybrid index for efficiently answering
k-NN queries with Boolean constraints on textual content. We combined modi-
fied versions of R-trees and inverted files to achieve effective pruning of the search
space. Our experimental study showed increased performance and scalability on
large, 10M and 20M sized, spatial datasets over alternate methods.
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Abstract. One challenge in Earth science research is the accurate and
efficient ad-hoc query and retrieval of Earth science satellite sensor data
based on user-defined criteria to study and analyze atmospheric events
such as tropical cyclones. The problem can be formulated as a spatio-
temporal join query to identify the spatio-temporal location where
moving sensor objects and dynamic atmospheric event objects intersect,
either precisely or within a user-defined proximity. In this paper, we
describe an efficient query and retrieval framework to handle the prob-
lem of identifying the spatio-temporal intersecting positions for satellite
sensor data retrieval. We demonstrate the effectiveness of our proposed
framework using sensor measurements from QuikSCAT (wind field mea-
surement) and TRMM (precipitation vertical profile measurements) satel-
lites, and the trajectories of the tropical cyclones occurring in the North
Atlantic Ocean in 2009.

Keywords: data retrieval, satellite data, atmospheric events, spatio-
temporal join.

1 Introduction

The Earth Observing System Data and Information System (EOSDIS)1 is a
comprehensive data and information system which archives, manages, and dis-
tributes Earth science data from the EOS spacecrafts (a.k.a. satellite sensors)
[1]. A challenge of EOSDIS is how to “help users find the data that they need
and how to get it to them” [2]. The Warehouse Inventory Search Tool (WIST)2

is the primary search and order tool for Earth Science data sets for EOSDIS. It
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allows users to browse and retrieve satellite measurements based on user-defined
spatial and temporal conditions. This type of data query and retrieval is known
in the Earth science community as data “subseting”. One important use of the
retrieved satellite sensor data is the improvement of weather forecasting such
as the use of QuikSCAT wind measurements to accurately depict the initial
conditions of air and sea states for tropical cyclone forecast model [3].

In the mid-nineties, there was an ambitious project to develop a “flexible,
extensible, and seamless SCF [Scientific Computing Facilities] for scientific data
analysis, knowledge discovery, visualization, and collaboration” called the Open
Architecture Scientific Information System (OASIS) to support EOSDIS based
on the Common Object Request Broker Architecture (CORBA) [4]. The OASIS
was not embraced by the scientific community which could have been the result
of serious technical, complexity, and security issues related to CORBA [5].

Currently, there is still a lack of capabilities that support flexible data re-
trieval in the EOSDIS. One non-existent capability is the accurate and efficient
ad-hoc query and retrieval of Earth science satellite sensor data for dynamic
atmospheric events such as tropical cyclones based on ad-hoc user-defined cri-
teria and event trajectories. In this paper, we describe a fast data query and
retrieval framework based on a spatio-temporal partitioning scheme driven by
the partitioning of the moving satellite trajectory so that the positions which
the satellite trajectory and an atmospheric event trajectory intersect, either pre-
cisely or within close proximity, are used for satellite data retrieval. We demon-
strate the feasibility of our framework on the tropical cyclone event which is a
“non-frontal synoptic scale low-pressure system over tropical or sub-tropical wa-
ters with organized convection and definite cyclonic surface wind circulation”3.
Experimental results are used to show the effectiveness of our proposed frame-
work using sensor measurements from QuikSCAT (wind field measurement) and
TRMM (precipitation vertical profile measurements) satellites, and the tropical
cyclones occurring in the North Atlantic Ocean in 2009.

From published scientific journal papers [6,7,8,9,10], one observes that such a
capability is extremely important to scientists who retrieve specific sensor data of
specific atmospheric events for statistical analysis. Some query examples derived
from these published scientific papers that require search, retrieval, and analysis
of satellite data containing cyclone features, are listed below:

1. Retrieve TRMM precipitation data for tropical cyclones that attained tropi-
cal storm intensity or higher over western North Pacific and the South China
Sea between longitudes 100oE and 180o. 138 sensor datasets from 61 tropical
cyclones retrieved [6].

2. Retrieve TRMM precipitation data for tropical cyclones from December
1997 to December 2003. 3703 sensor datasets from 563 tropical cyclones
retrieved [7].

3. Retrieve QuikSCAT wind data for tropical cyclones in western North Pacific
from September 1999 to December 2004 which formed west of 160oE and
south of 26oN . Datasets containing 124 tropical cyclones retrieved [8].

3 http://www.aoml.noaa.gov/hrd/tcfaq/A1.html
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Our problem is fundamentally different from previous research to discover and
track cyclones from either sea-level pressure fields [11] or from heterogeneous
satellite data [12]. For our problem, the cyclone tracks are known. Our main
contribution is an efficient framework that enables the retrieval of satellite data
based on known cyclone tracks, an approach to fuse two databases with widely
different characteristics.

The paper is organized as follows. In Section 2, we briefly review previous re-
search and systems developed for satellite data query and retrieval, in particular,
for the tropical cyclone events. In Section 3, the satellite sensor data query and
retrieval problem is defined. In Section 4, the satellite data and tropical cyclone
event trajectory data are briefly described. In Section 5, the satellite sensor tra-
jectory data partitioning scheme and partition search algorithm are described in
detail. In Section 6, the satellite data retrieval algorithm is described in detail.
In Section 7, experimental results are presented to demonstrate the feasibility of
our proposed framework for both QuikSCAT and TRMM satellite sensor data.
Some visualizations of the retrieved satellite data sets from a queried hurricane
trajectory are also shown.

2 Related Work

Existing state-of-the-art publicly available web-based tropical cyclone data and
information portals4,5, data archives6, and forecast services7 provide excellent
visualizations and information of tropical cyclones and satellite sensor measure-
ments.

However, comfortable data access (e.g., ad-hoc data retrieval for specific
weather events) is not provided, and users only have limited, simple, and hard-
coded query and request capabilities. Examples of such queries are:

1. Provide specific satellite data of a specified region at a specific date and
time. [EOSDIS]

2. Provide the static dataset for a specific tropical cyclone event. [Physical
Oceanography DAAC: Hurricane/Typhoon Tracker]

Users are not able to perform own queries to retrieve satellite data based on
arbitrary trajectory information and retrieval parameters.

Many spatio-temporal access methods (for indexing historical spatio-temporal
data) have been developed [13,14] (and references therein) to support certain
query types or to support efficiently as many query types as possible. Some of
the common query types are

4 Navy/NRL Tropical Cyclone,
http://www.nrlmry.navy.mil/tc_pages/tc_home.html

5 NASA GSFC Hurricane Portal, http://daac.gsfc.nasa.gov/hurricane/
6 Physical Oceanography DAAC Hurricane/Typhoon Tracker,
http://podaac.jpl.nasa.gov/hurricanes/

7 NOAA National Hurricane Center, http://www.nhc.noaa.gov/pastall.shtml
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Fig. 1. Visualization of the output from the query “Find all hurricanes from
1886 to 1996 within 75 nautical miles of mid-Florida Bay” (http://www.aoml.
noaa.gov/hrd/Storm pages/fl track red.html)

1. Selection: Find all objects within a specific region and/or during a specific
time interval.

2. Join: Find all objects that are spatially close during a specific time interval.
3. Nearest Neighbor: Find the k-closest objects with respect to a specific region

and/or time interval.

These queries are of interest to scientists studying tropical cyclones An example
of a selection query is “Find all hurricanes8 from 1886 to 1996 within 75 nautical
miles of mid-Florida Bay” and its output shown in Fig. 1.

In this paper, we are, however, interested in exploring the intersection of two
different object classes (hurricanes and satellite trajectories) by a query such
as “Find the spatial region(s) R and time interval(s) I such that the hurricane
path is either in the satellite sensor scanning region or within some user-defined
distance outside the boundary of the satellite sensor scanning region” and then
to use its output for data retrieval.

3 Problem Definition

Consider the set of satellite sensors, Os = {Os1, Os2, . . . , Osk}, and the set of at-
mospheric events, Oc = {Oc1, Oc2, . . . , Ocm} such as the set of tropical cyclones.
In particular, the query and retrieval problem of interest is “Find all unique satel-
lite sensor measurements from Osi that is at most x kilometers from the tropical
cyclone path P of Ocj and in the time interval I.” It can be generalized to “Find
all unique satellite sensor measurements from satellite Os1, . . . , Osk that are at
most x kilometers from the tropical cyclone paths p1, . . . , pm in region R at time
interval I.” This is closely related to the spatio-temporal join which retrieves all
pairs of objects < o1, o2 > with o1 ∈ Os and o2 ∈ Oc, |o1(tq) − o2(tq)| ≤ d

8 Hurricanes are tropical cyclones with sustained surface wind intensity equal or more
than 119km/h.
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Table 1. Differences in the characteristics between the satellite sensor objects and the
tropical cyclone objects

Characteristics Os Oc

Temporal long short
Length (several years) (unlikely to be several months)

Temporal fine grain course grain
Resolution (order of 10−1 seconds) (several hours)

Motion high low
Speed (a full orbit is about 100 minutes)

Representation line segments points
(can be extended to a region)

Spatial continuous motion unlikely to be stationary,
Position (orbiting; not geostationary satellites) but possible

Data Updates/ No delete; No delete;
Modifications most current historical, most current

where tq is a time-stamp and d is an upper-bound threshold. Our problem goes
further by querying for the positions and time instances where and when the join
condition is satisfied. This condition is likely to be satisfied at multiple positions
and time instances. An orbiting satellite sensor trajectory consists of many years
of continuous spatio-temporal information. Hence, one needs to construct an ef-
ficient partitioning scheme to handle the lengthy data sequence. We construct
the partitions by treating time as another dimension for a satellite sensor ob-
ject. The tropical cyclone objects are stored in an index structure since there
are some fundamental differences between the two object types. The differences
in the characteristics between the two object types are shown in Table 1. For
selection and nearest neighbor queries for objects in Oc, one can use an index
structure such as TB-tree [15] or SEB-tree [16].

Let S be the spatial bound (latitude[min, max], longitude[min, max]) and T
be the temporal bound time(start, end). Queries that return sensor objects and
their intersecting spatio-temporal information such as

Oq = {osi ∈ Os|Os ∩ST Os �= ∅ within spatial bound S and temporal bound T}
TS = {(t, s)|t ∈ T, s ∈ S and Os ∩ST Os �= ∅ within spatial bound S and

temporal bound T}
are not the focus of this paper as the intersections (∩ST

9) of satellite sensor
trajectories alone are not useful information for atmospheric, ocean, and weather
event research. One is interested in

Oq = {osi ∈ Os|Oc ∩ST Os �= ∅ within spatial bound S and temporal bound T}
TS = {(t, s)|t ∈ T, s ∈ S and Oc ∩ST Os �= ∅ within spatial bound S and (1)

temporal bound T}
9 ∩ST denotes the operation that returns the set of elements from the bigger set

(usually Oc, if the two sets are different) when the trajectories of objects in Oc and
Os intersect. The simplest case is when |Oc| = |Os| = 1.
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The first one is a “Which” query such as a selection or nearest neighbor query.
The latter one is a query which determines the positions and time instances
where and when the trajectories of the objects in the two sets intersect, either
precisely or within a certain proximity. In this paper, we focus on the latter
query which can be derived from the first one and its outputs are applicable to
our satellite data retrieval problem.

4 Data Description

In this paper, we use the Level 2B QuikSCAT wind field swath data and the
Level 2A12 TRMM precipitation swath data stored in hierarchical data format
(HDF)10 to demonstrate the feasibility and efficiency of the partitioning scheme
and the data retrieval framework. In Section 4.1, we give a brief description
of the satellite data. In Section 4.2, we give a brief description of the tropical
cyclone trajectories.

4.1 Satellite Data

QuikSCAT. One QuikSCAT satellite full polar orbiting revolution takes about
101 minutes. The Level 2B data are grouped by rows of wind vector cells (WVC)
which are squares of dimension 25 km or 12.5 km. A complete coverage of the
earth circumference requires 1624 WVC rows at 25 km spatial resolution, and
3248 rows at 12.5 km spatial resolution. The width of the swath is 1800 km
which amounts to seventy-two 25 km WVCs or one hundred and forty-four 12.5
km WVCs.

Table 2. Relevant QuikSCAT data fields. nrow: number of rows; ncol: number of
columns.

Field matrix size Unit Minimum Maximum

wvc lat [nrow, ncol] degree -90.00 90.00
wvc lon [nrow, ncol] degree E 0.00 359.99
selected speed [nrow, ncol] meter per second 0.00 50.00
selected direction [nrow, ncol] degree from North 0.00 359.99
wvc row time [nrow] Coordinated 1993-001 2009-365

Universal Time (UTC) T00:00.000 T23:59:59.999

There are 25 fields in the data structure for Level 2B data [17]. We are,
however, only interested in the latitude, longitude, time, and the most likely
wind speed and direction for the WVCs. The fields that we are interested in are
summarized in Table 2 and used in Algorithm 1 and 2. The QuikSCAT Level
2B data is obtained from the JPL Physical Oceanography DAAC (PO.DAAC)

10 http://www.hdfgroup.org/
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Table 3. Relevant TRMM spatio-temporal data field. nscan: number of rows in the
data matrix; npixel: number of column in the data matrix.

Field Structure Size

Scan Time Table 9 bytes × nscan
Geo-location Array 2 × npixel × nscan

Table 4. Scan Time

Name Format Description

Year 2-byte integer 4-digit year
Month 1-byte integer The month of the Year
Day of Month 1-byte integer The day of the Month
Hour 1-byte integer The hour (UTC) of the Day
Minute 1-byte integer The minute of the Hour
Second 1-byte integer The second of the minute
Day of Year 2-byte integer The day of the Year

Table 5. Geo-location. Off-Earth is represented by -9999.9.

Name Minimum Maximum

Latitude -90.00 90.00
Longitude -179.99 180.00

Fig. 2. One QuikSCAT swath intersecting path of Hurricane Irene in 2005

FTP server11. In Fig. 2, the two outer curves are the boundaries of the satel-
lite observations and the middle curve represents the median of the observation
boundaries. The median approximates the satellite trajectory when sensor
takes measurements above the ocean. However, it is impossible to estimate
the QuikSCAT satellite trajectory accurately from the Level 2B data when the

11 ftp://podaac.jpl.nasa.gov/ocean_wind/quikscat/L2B12/data
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Fig. 3. One TRMM swath intersecting path of Hurricane Irene in 2005

satellite is above or near land due to the satellite sensor measurement constraints
above or near land.

TRMM. The Tropical Rainfall Measurement Mission (TRMM) is a joint mis-
sion between NASA and the Japan Aerospace Exploration Agency (JAXA) de-
signed to monitor and study tropical rainfall. TRMM satellite orbits between 35
degrees north and 35 degrees south of the equator. It takes measurements be-
tween 50 degrees north and 50 degrees south of the equator. All TRMM products
are archived and distributed to the public by the Goddard Distributed Active
Archive Center (GES DISC DAAC).12

For TRMM, we use the Level 2A12 data product, “TMI Profiling” which
contains vertical hydrometeor profiles on a pixel by pixel basis. For each pixel,
cloud liquid water, precipitation water, cloud ice water, precipitation ice, and
latent heating are given at 14 vertical layers [18]. The TRMM Level 2A12 data is
obtained from the Goddard Earth Sciences and Information Services Center13.

There are 15 fields in the SDS (Science Data Set) in the TRMM Level 2A12
HDF data file. We use the scan time and geo-location shown in Table 3 to
estimate the satellite motion. These fields are summarized in Table 4 and 5.
Fig. 3 shows a TRMM swath intersecting path of Hurricane Irene in 2005. One
notes that TRMM satellite takes measurements over land unlike the QuikSCAT
satellite. Hence, the median of the observation boundaries approximates the
TRMM satellite trajectory well.

4.2 Tropical Cyclone Event Trajectory

A trajectory is the path a moving object follows through space and time. Con-
sider a time-stamped d dimensional data sequence defining a trajectory Tr as
follows.

Tr = 〈(t1, x1), . . . , (ti, xi), . . . , (tN , xN )〉
12 http://disc.sci.gsfc.nasa.gov/
13 ftp://disc2.nascom.nasa.gov/ftp/data/s4pa/TRMM_L2/TRMM_2A12
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Fig. 4. Cyclone track for Hurricane Ike 2008 from NHC best track data

where N is the length of the data sequence Tr, t1 < · · · < ti < · · · < tN
are the timestamps, and the vector xi containing spatial information can have
cardinality d = 1, 2, or 3; A tropical cyclone trajectory is described by (i) spatial
attributes (latitude and longitude), and (ii) temporal attributes (year, day, time).
Fig. 4 shows the trajectory of Hurricane Ike 2008 based on National Hurricane
Center (NHC) best track information.

Historical tropical cyclone trajectories are obtained from the NOAA Coastal
Services Center (Atlantic and North Eastern Pacific)14. The eleven tropical cy-
clone trajectories in North Atlantic Ocean in 2009 are used in our experiments.

5 Satellite Sensor Object Partitioning Scheme

Since (i) the temporal resolution of the satellite observations is relatively high,
and (ii) the satellite orbiting speed is also relatively high compared to the atmo-
spheric event objects, a large amount of data is generated in a relatively short
time. Hence, one partition tree structure is used for each satellite object. The
partitioning scheme is based on the time segmentation of the satellite trajectory,
defined by the boundaries of the satellite sensor measurements.

We use the QuikSCAT satellite swath data (see Table 2) as an example to
illustrate the partitioning scheme for satellite sensor objects. One notes that
satellite measurements and their positions in an arbitrary row i in a data matrix
(e.g., selected speed[i, 1:ncol]) have a fix timestamp in QuikSCAT, TRMM, and
other satellites. Hence, the satellite sensor object at a fix time instance t (e.g.,
wvc row time[i]) can be represented by a spatial line segment or curve defined
by the latitude and longitude values in row i in the position matrices (e.g.,
wvc lat[i,1:ncol] and wvc lon[i,1:ncol]).

The QuikSCAT satellite data swath is divided into partitions such that each
partition is a spatial region within a time interval defined by a fixed n number of
consecutive wvc row time elements (see Fig. 5). These partitions form the leave
nodes in the partition tree. Each partition time interval varies slightly due to the
non-uniform measurement sampling. Each leave node (partition) contains (i) the
temporal information consisting of the start of the time interval wvc row time[i]

14 http://csc-s-maps-q.csc.noaa.gov/hurricanes/
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Fig. 5. A segment of the QuikSCAT satellite data swath divided into partitions

Root Node: [Year, Y]

|

Non-Leave Nodes: [Year, Y; Julian Day, D]

|

Non-Leave Nodes: [Year, Y; Julian Day, D; Rev. Number, Rn]

|

Non-Leave Nodes: [Rev. No., Rn; time: s_time, e_time]

|

Leave Nodes: [p_id; Rev. No., Rn; Partition, P; time: Ps_time, Pe_time]

Fig. 6. Partition tree scheme for the moving satellite trajectory

= ts, and the end of the time interval wvc row time[i + n − 1] = te, and (ii)
the spatial information for a swath data partition defined by the first and last
non-zero elements in wvc lat[i,1:ncol] and wvc lon[i,1:ncol] at ts, and wvc lat[i+
n − 1,1:ncol] and wvc lon[i + n − 1,1:ncol] at te. In other words, a leave node
partition is a quadrilateral region defined by the four corners of the data swath
partition approximating the data swath partition. One notes that as n increases,
some measurements in a data swath partition nearer to one of the swath data
boundaries fall outside the leave node partition. If n is too high, one may fail to
identify the data swath partitions that intersect a tropical cyclone trajectory.

The partition tree structure for a satellite sensor object is shown in Fig. 6.
Revolution numbers (Rev. No) are unique incremental numbers tagging the or-
bits. p ids are unique numbers tagging the partitions shown in Fig. 5. For the
QuikSCAT satellite object, there are either 365 or 366 Julian days each year,
14 unique revolution numbers per day, and each swath defined by a revolution
number is divided into segments containing n consecutive time instances. For
the TRMM satellite object, the only difference is that there is either 15 or 16
unique revolution numbers per day.

Algorithm 1 is used to search the partition tree structure (for QuikSCAT
swath data) for partitions that intersect a path defined by two consecutive
trajectory points and the user-defined radius R in degree. In Lines 2 to 3,
spatio-temporal points between the two consecutive trajectory points and their
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Input: Two consecutive trajectory points, (ts, xs) and (te, xe); Radius, R (in
degree)

Output: RIs, RIe, Rn, TS
1: TS := {}; I := {} ;
2: Generate a set of interpolated points, P = {p1, . . . , pk}, using (ts, xs) and

(te, xe);
3: Generate a set of circumference points, Ci for each pi ∈ P based on R;
4: for interpolated point pi = (ti, xi) do
5: Identity Rn and leave-node partitions within

time interval T =[s time, e time] in the partition tree based on ti;
6: if Rn �= ∅ then
7: Ci := Ci

⋃{pi};
8: for partition, Qj in T of Rn do
9: Ii := {Qj |Qj

⋂
Ci �= ∅};

10: if Ii �= ∅ then
11: I := I

⋃
Ii ;

12: TS := TS
⋃{pi} ;

13: end if
14: end for
15: end if
16: end for
17: if I = ∅ then
18: RIs := RIe := Rn := ∅;
19: end if
20: Use I to identify the start row number, RIs and end row number, RIe

for wvc lat, wvc lon, and wvc row time in Rn.

Algorithm 1. Partition tree search to locate the tropical cyclone event in
satellite swath data

corresponding circumference points are computed. For each interpolated spatio-
temporal point, the partition tree structure is searched to locate the Revolution
number Rn which the spatio-temporal point may be in (Line 5). When a Rn is
located, the partitions which may contain the interpolated point will be searched
(Lines 8 to 14). If the interpolated point and its circumference points are found
in a partition, I and TS are updated (Lines 10 to 13). I contains information
related to the start time instances and the end time instances of the spatio-
temporal partitions that the interpolated points and their circumference points
intersect. The goal of Line 20 is to locate the earliest start time and the latest
end time from I and also the start row number RIs and the end row number RIe

in the swath Rn. TS is the set defined in (1). Algorithm 1 can be generalized to
other satellite sensor data.

6 Retrieval Algorithm

Next, we describe the algorithm that retrieves all satellite measurements within
a specified radius R from TS defined in (1). In practice, we want a unique set of
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Input: Rn, RIs, RIe, R (in degree), TS.
Output: Point Sets: PSws, PSwd

1: Retrieve QuikSCAT HDF Data with Rev. No., Rn;
2: py := {wvc lat[i, 1 : ncol], i ∈ [RIs, RIe]};
3: px := {wvc lon[i, 1 : ncol], i ∈ [RIs, RIe]};
4: ws := {selected speed[i, 1 : ncol], i ∈ [RIs, RIe]};
5: wd := {selected direction[i, 1 : ncol], i ∈ [RIs, RIe]};
6: Compute x̂ using (3) OR Cyclone Eye Locator (see Algorithm 3);
7: for p(j) := (py(j), px(j)) do
8: dist(j) :=‖ p(j) − x̂ ‖2;
9: end for

10: PSws := {ws(k) | dist(k) < R};
11: PSwd := {wd(k) | dist(k) < R};

Algorithm 2. Retrieval algorithm for wind direction and speed measure-
ments

Input: QuikSCAT L2B Data with rev. no, Rn; (ts, xs) and (te, xe).
Output: S, Cyclone Eye
1: Subset the L2B data based on (ts, xs) and (te, xe);
2: Grid the L2B subseted data;
3: for Pixel i from the gridded L2B subseted data do
4: Compute the normal vector n̂i to the direction vector d̂i;
5: Calculate which 8-neighbors n̂i is pointing;
6: Update the neighbor count Nk of the pixel k n̂i is pointing;
7: Update lk, list of neighbor pixels, pointing at k ;
8: end for
9: MaxNeighbor := max1≤k≤m Nk;

10: V C := {i | Ni ≥ MaxNeighbor − 1};
11: for j ∈ V C do
12: root := j;
13: Count[j] := SizeOfSpanningTree(root, lroot);
14: end for
15: S := arg maxj∈V C Count[j];

Algorithm 3. Cyclone eye locator

retrieved satellite sensor measurements, M = {M1, . . . , Ms} from the satellite
sensor data set S such that

Mi

⋂
Mj = ∅, i �= j, ∀i, j ∈ {1, . . . , s} (2)

with each Mi defined by Mi = {m|m ∈ S, |m − tpi| < R} and represented by a
unique tpi ∈ TS and a user-defined radius R. However, one is likely to match
more than one (interpolated) trajectory point tpi ∈ TS to a specific satellite
measurement partition. This may result in Mi

⋂
Mj �= ∅ with Mi corresponding
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to tpi and Mj corresponding to tpj , tpi �= tpj , and i �= j. One needs to identify
the best time interpolated trajectory position x̂ that corresponds to the satel-
lite measurement set Mx̂ such that (2) is satisfied. We compute the best time
interpolated trajectory position x̂ as follows.

x̂ = argmin
x∈X

{s̄ − x} for s̄ ∈ T (3)

where

T =
{

s | s =
xe − xs

te − ts
(t − ts) + xs for t ∈ [ts, te]

}

,

X = {x = (x1, x2) | x1 = wvc lat[i, j], x2 = wvc lon[i, j], (4)
∀(i, j), j = 1, · · · , ncol and wvc row time(i) ∈ [ts, te]},

such that (ts, xs) and (te, xe) are two consecutive (interpolated) trajectory points
and Ms

⋂
Me �= ∅.

Algorithm 2 retrieves wind direction and speed measurement sets from the
QuikSCAT HDF data files based on user-defined radius and outputs from Al-
gorithm 1. Assuming that Rn is a single revolution number, a single HDF data
file is retrieved (Line 1). To improve the accuracy of a tropical cyclone eye posi-
tion x̂ and data retrieval, a cyclone eye locator algorithm (see Algorithm 3 [19])
based on the vortex feature of a tropical cyclone can be used instead of com-
puting x̂ using (3) (Line 6). Then, the distances between all the spatial points
in the partition located using outputs from Algorithm 1 and x̂ are computed
(Line 7-9). The point sets containing wind speed and direction measurements
within the user-defined radius, R, are created (Lines 10 to 11). Algorithm 2 can
be generalized to data retrieval for any satellite HDF file.

A simple query and retrieval system for QuikSCAT L2B swath data is shown
in Fig. 7. The user inputs consist of arbitrary trajectory information and the
retrieval parameter R. First, Algorithm 1 searches the partition tree structure.
The retrieval parameter R and the outputs from Algorithm 1 are then used by
Algorithm 2 to retrieve the satellite data for analysis.

Fig. 7. QuikSCAT data search and retrieval system
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One notes that using Algorithm 3 increases the computation cost of Algo-
rithm 2. Algorithm 3 works as follows. First, the satellite data is gridded (Line
2). Then, one computes the normal vector to the wind direction at each gridded
pixel and compute the number of pixels pointing to each gridded pixels (Lines 3
to 8). The most likely cyclone eye position is the one which creates the largest
spanning tree from among the pixels (Lines 11 to 14) with the largest number
of pixels pointing to them (Line 15). For TRMM measurements, one can use the
characteristics discussed in [6] to improve the cyclone eye positions.

7 Experimental Results

In our experiments, we used QuikSCAT L2B data and TRMM 2A12 data from
Day 182 (July 1) to 325 (November 21) in 2009. There are 2623 uncompressed
QuikSCAT L2B HDF data files (32.1M each and a total size of 84.2G) and
2245 uncompressed TRMM 2A12 HDF data files (98.4M each and a total size of
220.9G). All eleven tropical cyclones occurring in North Atlantic Ocean in 2009
are used in the experiments.

First, we look at the effect of partition size to the partition tree search time,
data retrieval time, and the number of vectors returned to users. The number of
consecutive instances, n, in the time interval for each partition is varied from 1 to
200 with R = 1. When n = 1, it represents the standard approach where each row
in a measurement position matrix has to scan through to decide whether there
is an intersection between a tropical cyclone trajectory and a satellite object. As
n increases, the partition size increases and the number of partitions decreases.
One observes from Fig. 8 that as n increases, the mean search time (MST) drops
exponentially and stabilizes after n = 50 for both the QuikSCAT and TRMM
satellite data. The number of vectors returned to the user query decreases as n
increases. We pointed out earlier in Section 5 that a bigger n value decreases
the accurate approximation of the data swath partition which in turns affects
the data retrieval accuracy by failing to return the data vectors based on the
tropical cyclone trajectory. While the number of HDF files (NRtr) that need
to be opened in Algorithm 2 remains almost the same, the mean retrieval time
(MRT) increases due to the decrease in the number of returned vectors (NRtn).
The mean retrieval time for TRMM data is much higher than QuikSCAT data
as much more data is retrieved for each HDF data file.

Next, we query for QuikSCAT and TRMM measurements for all the North
Atlantic Ocean tropical cyclones in 2009 with user-defined radius R = 1, 2, and 3.
The data query and retrieval performance statistics for each tropical cyclone for
QuikSCAT and TRMM data are presented in Table 6 and 7, respectively. Based
on results shown in Fig 8, we set n to 25 for QuikSCAT and 50 for TRMM
satellite data so that it has identical returned vectors as standard approach
(n = 1). Some observations from the experimental results in Table 6 and 7 are
as follows.
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Fig. 8. Effect of partition size, n, on the mean search time (MST), number of vectors
returned (NRtn) and mean retrieval time (MRT) for QuikSCAT and TRMM satellite
data

Table 6. Query and Retrieval Performance: QuikSCAT data query and retrieval for
North Atlantic tropical cyclones in 2009

Radius = 1 Radius = 2 Radius = 3
Name NS TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT
01L 13 3.27 0.27 0 0 0.00 3.19 0.27 0 0 0.00 3.22 0.27 0 0 0.00
Ana 31 9.39 0.31 11 11 1.01 9.38 0.31 12 12 1.11 9.44 0.31 14 14 1.43
Bill 49 14.82 0.31 21 21 1.90 14.79 0.31 21 21 1.91 14.91 0.31 23 23 2.19

Claudette 5 1.22 0.30 2 2 0.30 1.22 0.31 2 2 0.18 1.22 0.31 2 2 0.18
Danny 22 6.60 0.31 8 8 0.72 6.58 0.31 8 8 0.72 6.63 0.32 9 9 1.28
Erika 32 9.67 0.31 11 11 0.97 9.70 0.31 12 11 1.10 9.73 0.31 14 13 1.35
Fred 34 10.43 0.32 14 14 1.22 10.49 0.31 15 15 1.37 10.48 0.32 16 16 1.64
08L 8 2.31 0.33 4 4 0.35 2.33 0.33 4 4 0.37 2.34 0.33 4 4 0.37

Grace 37 11.57 0.32 20 20 1.84 11.67 0.32 20 20 1.94 11.69 0.33 20 20 1.91
Henri 21 6.71 0.34 9 8 1.67 6.75 0.34 10 10 0.90 6.76 0.34 12 11 1.35
Ida 29 9.29 0.33 13 12 1.74 9.32 0.33 15 15 1.43 9.28 0.33 15 15 1.53

Table 7. Query and Retrieval Performance: TRMM data query and retrieval for North
Atlantic tropical cyclones in 2009

Radius = 1 Radius = 2 Radius = 3
Name NS TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT TST MST NRtr NRtn TRT
01L 13 1.76 0.15 0 0 0.00 1.75 0.15 0 0 0.00 1.74 0.14 0 0 0.00
Ana 31 5.86 0.20 24 13 230.20 5.87 0.20 24 15 225.32 5.89 0.20 25 18 236.71
Bill 49 8.93 0.19 26 14 214.87 8.87 0.18 27 20 212.05 8.87 0.18 27 21 211.55

Claudette 5 0.75 0.19 2 2 13.32 0.74 0.18 2 2 13.23 0.74 0.19 2 2 14.41
Danny 22 3.99 0.19 9 6 81.61 3.97 0.20 9 8 81.77 3.94 0.19 9 8 81.15
Erika 32 5.98 0.19 22 10 186.13 6.00 0.20 22 13 176.35 5.99 0.19 22 17 180.55
Fred 34 6.40 0.19 22 6 197.97 6.35 0.20 22 9 195.58 6.43 0.19 22 11 200.66
08L 8 1.43 0.20 5 2 63.88 1.46 0.21 5 3 62.47 1.48 0.21 5 3 63.82

Grace 37 6.59 0.18 9 6 58.47 6.71 0.19 11 6 69.76 6.71 0.19 14 7 93.15
Henri 21 4.08 0.20 11 7 148.06 4.20 0.21 11 8 156.24 4.13 0.21 11 8 157.68
Ida 29 5.52 0.20 14 5 123.21 5.59 0.20 14 9 126.56 5.50 0.20 14 11 126.71
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Table 8. Abbreviation Definitions

Abbreviation Definition
NS Number of line segments = Number of trajectory points - 1

TST Total time for partition tree searching (seconds)
MST Mean search time for each segment= TST

NS (seconds)
NRtr Number of HDF files opened.
NRtn Number of sensor measurement vectors returned to user
TRT Total time for data retrieval (seconds)

Fig. 9. QuikSCAT examples of retrieved partition and output vector when R = 3 for
Hurricane Bill in 2009

Fig. 10. A fully developed Hurricane Bill from QuikSCAT measurements. Left: Re-
trieved Partition; Middle: Output vector with R = 3 using interpolated eye location;
Right: Output vector with R = 3 using Algorithm 3

1. The mean search time (MST) for each tropical cyclone for a particular satel-
lite is similar. The MST for TRMM satellite is lower than QuikSCAT satellite
as there are more leave nodes (partitions) for each QuikSCAT non-leave node
(revolution number).

2. User-defined radius does not affect the MST as the number of sampling points
is fixed. It only affects the number of HDF files opened and measurement vec-
tors returned to user, which in turn affects the total retrieval time (TRT).

3. The total retrieval time (TRT) is related to (i) the number of HDF opened
(Nrtr), (ii) the number of data features retrieved from the HDF files and
their matrix size, and (iii) the number of measurement vectors to be returned
to user. For each retrieved QuikSCAT data file, four 2-D matrices, namely
speed, direction, latitude, and longitude, are retrieved. For each retrieved
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TRMM data file, six 3-D (fourteen data points for each spatial location)
matrices for five features, and the spatial location (two data points for spatial
location) are retrieved. Hence, TRMM data retrieval takes longer time.

4. Even though Hurricane Grace consists of thirty-seven segments, only six to
seven TRMM measurement vectors are returned compared to the twenty
QuikSCAT measurement vectors since Hurricane Grace occurred close to
Europe which is near and beyond the edge of TRMM orbiting latitude.

5. 01L occurred near and beyond the edge of TRMM orbiting latitude.
QuikSCAT also did not registered any measurement when three degrees
from its eye. Hence, no related data is retrieved or returned.

Fig. 9 shows examples of retrieved QuikSCAT partitions and their output vectors
for Hurricane Bill in 2009 when the user-defined radius R is 3. The top row
shows the retrieved QuikSCAT data partitions for Hurricane Bill at three time
instances. The bottom row shows the output vectors at the three time instances.
One notes that the satellite sensor captured the hurricane partially at the later
two time instances. In the right column, the example shows a case when the
interpolated hurricane eye location is beyond the sensor data boundaries.

Fig. 10 shows a fully developed hurricane. The middle image shows the output
vector based on the interpolated hurricane eye location at 15.33N, 310.83E which
is slightly East of the hurricane eye. The right image shows the output vector
using the eye position computed from Algorithm 3. The hurricane eye is at
15.20N, 310.40E. The right image appears to be the more accurate output vector.
Again, one notes that the retrieval time (TST) increases with the application of
a cyclone eye location algorithm such as Algorithm 3.

8 Conclusions and Future Work

In this paper, we describe an efficient framework to handle ad-hoc query and
retrieval of satellite sensor data for dynamic atmospheric events such as tropical
cyclones based on ad-hoc user-defined criteria. This approach provides Earth
science researchers the capability to retrieve and manipulate satellite data to
study dynamic atmospheric events. Future work include (i) integrating the cur-
rent framework into a moving objects database for both satellite sensor objects
and dynamic atmospheric (also earth and ocean) event objects, and (ii) the de-
sign and implementation of a spatio-temporal query language that enables users
to pose ad-hoc satellite data retrieval queries (see query examples in Section 1).
One also foresees the possibility of integrating our query and retrieval framework
into a scientific workflow system to support flexible scientific analysis.
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Abstract. Science is becoming data-intensive, requiring new software architec-
tures that can exploit resources at all scales: local GPUs for interactive visualiza-
tion, server-side multi-core machines with fast processors and large memories, 
and scalable, pay-as-you-go cloud resources. Architectures that seamlessly and 
flexibly exploit all three platforms are largely unexplored. Informed by a long-
term collaboration with ocean scientists, we articulate a suite of representative 
visual data analytics workflows and use them to design and implement a multi-
tier immersive visualization system. We then analyze a variety of candidate  
architectures spanning all three platforms, articulate their tradeoffs and require-
ments, and evaluate their performance. We conclude that although “pushing the 
computation to the data” is generally the optimal strategy, no one single architec-
ture is optimal in all cases and client-side processing cannot be made obsolete by 
cloud computing. Rather, rich visual data analytics applications benefit from  
access to a variety of cross-scale, seamless “client + cloud” architectures. 

1   Introduction 

Science in every field is becoming data-intensive, motivating the use of a variety of 
data management, analysis, and visualization platforms and applications. This is par-
ticularly true for the Earth sciences that involve a host of observational and numeric 
modeling systems. A comprehensive infrastructure addressing this need requires  
cooperation between desktop Graphics Processing Units (GPUs) for immersive, inter-
active visualization, server-side data processing, and massive-scale cloud computing. 
The requirement that applications seamlessly span all three platforms, leveraging the 
benefits of each, is becoming the norm rather than the exception. Moreover, applica-
tion components cannot be statically assigned to these resources — specific use cases 
motivate specific provisioning scenarios. For example, in “small data” conditions, 
local processing is ideal for simplicity, to reduce latency, to reduce load on shared 
resources, and — in the era of “pay-as-you-go” computing — to reduce cost in real 
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currency. However, as data is increasingly deposited in large shared resources, and as 
data sizes grow, reliance on local processing incurs significant transfer delays and 
may not be feasible. We advocate seamlessness, where data analysis pipelines trans-
parently span a variety of platforms — client, server, cloud — and can be reconfig-
ured dynamically as the situation warrants — either manually as with our current 
system or automatically based on estimated cost. 

Remarkably, there is little research on architecture, principles, and systems for 
seamless visual data analytics. Existing workflow systems are dataflow-oriented [1-
5]; they do not subsume client-side interactive visualization applications such as 
Google Earth. Existing visualization systems [6-8] lack data integration capabilities to 
access and manipulate data from different sources.  

In this paper, we explore the design space for architectures spanning client, server, 
and cloud for visual data analytics in the ocean sciences. Our technology includes the 
Collaborative Ocean Visualization Environment (COVE) [9], the Trident Scientific 
Workflow Workbench [1] running on both client and server, and the Microsoft Azure 
cloud computing platform [10]. We compare various design choices, model their 
performance, and make recommendations for further research. 

To inform the analysis, we defined 9 visual data analytics scenarios gleaned from a 
multi-year collaboration with ocean scientists. From these scenarios we distilled a set 
of common sub-tasks and then implemented a selection of the scenarios as representa-
tive visualization workflows in Trident and COVE. 

We model these visual data analytics workflows as instances of a Data-Workflow-
Visualization-Client pipeline, and use this abstraction to derive a simple cost model 
based on data transfer costs and computation time. We then use this cost model to 
design a set of experiments testing each workflow in a variety of multi-tier architec-
ture scenarios using typical resources, measuring both computation and data transfer 
costs at each step. 

We find that the role of the client remains critical in the era of cloud computing as a 
host for visualization, local caching, and local processing. The network bandwidth 
limitations found in practice frequently dominate the cost of data analytics, motivating 
the need for pre-fetching and aggressive caching to maintain interactive performance 
necessary for immersive visualization applications. We also confirm that a GPU is 
crucial for efficient visual data analytics, suggesting that the generic hardware configu-
rations found in many cloud computing platforms are not a complete solution. Finally, 
we show that there is no “one size fits all” architecture that is satisfactory in all cases, 
motivating further research in dynamic provisioning and seamless computing. 

 
Summary of contributions. We evaluate potential architectures for seamless, multi-
platform visual analytics using a representative benchmark of workflows in the ocean 
sciences. We implemented these workflows in an integrated visualization and work-
flow system using COVE and Trident, and tested them on several candidate architec-
tures involving client, server, and cloud resources. We make the following specific 
contributions: 

• We present a test suite of representative visual data analytics tasks derived from 
a multi-year collaboration with ocean scientists;  

• We describe a comprehensive visual data analytics system based on COVE, an 
immersive visualization environment, Trident, a scientific workflow workbench 
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to support seamless multi-platform computing, and Microsoft Azure, a cloud 
computing platform that we use for serving data and limited computation; 

• We implement the test suite on the complete system across a variety of different 
architectures spanning client, server, and cloud; 

• We experimentally compare these architectures using the test suite, report and 
analyze their performance, and conclude that seamless “Client + Cloud” archi-
tectures — as opposed to cloud-alone or client-alone — are an important  
consideration for visual data analytics applications. 

2   Background and Related Work 

Visualization. McCormick et al provide an early and influential call to arms for the 
importance of visualization [11] in the face of large scientific datasets. Stemming 
from this need, computer visualization researchers articulated a standard data visuali-
zation pipeline architecture around which the majority of visualization systems today 
are designed [12]. This architecture consists of three logical steps: Filter (selection, 
extraction, and enrichment of data), Map (production of a spatial representation of the 
data using visualization algorithms), and Render (generation of a series of images 
from the spatial representation). Today, the Map and Render steps are typically per-
formed together using high-performance GPUs; we refer to these two steps together 
as simply “visualization.” 

Visual Data Analytics pipelines, in contrast to pure visualization pipelines, must 
incorporate more than just “Filtering”; they must perform arbitrary data processing, 
restructuring, manipulation, and querying — the capabilities associated with data 
management and workflow systems as opposed to pure visualization systems [2]. 

The requirements of visualization systems, analytics engines, and data retrieval 
systems are converging. The scientific visualization community is recognizing that 
visualization systems must do more than just “throw datasets” through the rendering 
pipeline — that data restructuring, formatting, query, and analysis cannot be relegated 
to an offline “pre-processing” phase [13, 14]. Simultaneously, the data management 
community is recognizing the importance of incorporating visualization capabilities 
into data management systems, for two reasons. First, visualization is a critical 
method of interpreting large datasets, thanks to the acuity and bandwidth of the hu-
man visual cortex — humans cannot quickly “see” the patterns in a million data 
points without a visual representation. Second, since visualization pipelines typically 
reduce large datasets to relatively small images or sequences of images, requiring the 
client to be solely responsible for visualization creates a significant data transfer cost.  

Some proposed systems provide optimization and control of distributed visualiza-
tion pipelines [15, 16], but are restricted to specialized visualization algorithms rather 
than a general purpose framework, as our collaboration with ocean scientists mandates. 

 
Workflow. Workflow systems [1-5] provide a significant step forward in this regard, 
striving for several goals simultaneously. First, workflow systems attempt to raise the 
level of abstraction for scientist-programmers, allowing them to reason about  
their computational tasks visually as data flow graphs instead of syntactically as 
scripts. Second, workflow systems aim to provide reproducible research. Perhaps 
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paradoxically, computational tasks are often more difficult to reproduce than labora-
tory protocols, due to diversity of languages, platforms, user skills, and usage scenar-
ios. Expressed as a workflow (assuming agreement on the workflow system!), these 
protocols are easier to share, reuse, and compose than are raw scripts. Third, and most 
relevant to our discussion, workflow systems help to abstract away the execution 
environment, allowing workflow tasks to be executed on a variety of different plat-
forms. For example, Kepler and Trident systems allow workflows to be submitted to a 
cluster for execution or be evaluated directly in the desktop environment [1, 4]. 

However, these tools do not provide for interactive visualization on the client — 
workflows are typically executed as batch jobs. More recently, the VisTrails system 
[2], adopting the VTK visualization library [8] as a core plugin, has added richer 
support for visualization. VisTrails also provides a powerful caching mechanism to 
support repeated execution and exploratory analysis. However, VisTrails does not 
consider visual analysis pipelines that span multiple platforms in one execution. 

Workflow execution and optimization is a well-studied problem [3, 17-19], but 
these approaches typically ignore client-side processing and interactive visualization. 
We demonstrate that the local client remains an important resource. Further, since 
optimization of workflow execution over heterogeneous environments is NP-
complete [19], we adopt a simpler model and experimentally verify its accuracy. 

3   Ocean Science Requirements  

The goal of our requirements analysis was to obtain a representative suite of real 
ocean data visualization and analysis scenarios, then measure the effectiveness of 
different visualization architectures on their performance. This was part of a multi-
year study to determine requirements for more effective science visualization tools. 
We met with groups of scientists on multiple occasions to collect examples of data-
sets, visualizations, and workflows. We also interviewed eleven members of the 
teams in depth to glean detailed requirements. This close collaboration was instru-
mental to our success, as many of the workflows were not documented and were often 
problematic for the scientists to recall from memory. 

Our work took place at two different ocean science institutions: the Monterey  
Bay Aquarium Institute (MBARI) [20], and the University of Washington College of 
Ocean and Fisheries Sciences [21]. MBARI is the largest privately funded oceano-
graphic organization in the world and acquires data through fixed and mobile instru-
ments, ship based cruises, and occasional large-scale multi-institute projects. We 
worked with MBARI on two such projects: The Autonomous Ocean Sampling  
Network (AOSN), which is a program to design and build an adaptive, coupled ob-
servation/modeling system. This program involved a series of multi-month activities 
to measure the effectiveness of adaptive sampling in Monterey Bay. A second 
MBARI effort involves the preparation for a multi-organization program in 2010 to 
study the interaction of typhoons with the ocean surface. At the University of Wash-
ington College of Ocean and Fisheries Sciences, we worked with one group building 
the Regional Scale Nodes (RSN) portion of the NSF-funded Ocean Observatories 
Initiative, and another group generating regional-scale simulations of the Puget 
Sound. Both of these institutions consist of primarily desktop system users who  
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connect to a local network to share data when necessary. Both also expressed interest 
in how cloud computing could help them on current and future projects. 

3.1   Abstract Use Scenarios 

A key result of this interaction with ocean scientists was a set of 16 data analysis 
scenarios spanning a wide range of requirements in oceanographic data visualization 
and analysis. To make our investigation more tractable, we focused on 9 scenarios 
that had relatively similar workflow needs based on our analysis and discussions with 
the scientists. These scenarios are listed in Table 1 along with a short description. 

Table 1. Use case scenarios for visual data analytics in oceanography 

Scenario Description 
1)   Data Archive Analysis Analyze existing collections of observed and simulated data 
2)  Ocean Modeling Generate more accurate and denser ocean simulations 
3)  Observatory Simulation Simulate ocean observatory data collection from existing data 
4)  PCA Sensor Placement Determine optimal sensor placement using PCA modeling 
5)  Hydrographic Analysis Estimate larger ocean effects based on limited observed data  
6)  Data Comparison Compare observed and simulated data sets for integrity 
7)  Flow Field Analysis Measure changes over time based on ocean currents 
8)  Hydrographic Fluxes Measure changes over time in a specific ocean volume 
9)  Seafloor Mapping Generate detailed terrain maps from collected sensor points 

 
What we observe in our study is that even though the scenarios shared very similar 

underlying tasks, they are difficult to categorize as data-intensive, computation-
intensive, or visualization-intensive. This difficulty is due in some part to the heteroge-
neous nature of oceanographic data. Simulations of the ocean are very data-intensive, 
producing multiple terabytes of simulated output. Most observed data, in contrast, is 
significantly smaller since it is expensive to obtain and usually sparse, requiring ag-
gressive extrapolation and interpolation to determine ocean effects. Therefore data 
sizes in a scenario often show extreme variability from task to task. We also find that 
while large datasets increase computation time as expected, analytics are not usually 
inherently compute-bound in these scenarios. Visualization needs vary from simple 2D 
plots up to animations of geographically located datasets with multiple 3D iso-surfaces 
of ocean parameters. The choice of visualization primarily depends more on a current 
research need rather than the specific scenario category, making it difficult to build 
specialized applications. 

3.2   Concrete Workflows 

From this suite of scenarios, we derive 43 re-usable components (called activities) in 
order to recreate the scenario visualizations. These activities are linked together to 
carry out filtering of the raw datasets to create visualization ready data products. 
Some of the activities supported were subsampling, supersampling, cropping, filter-
ing, masking, scaling, merging, and resampling data to match other data sample 
points. Some of these activities are not compute-intensive while others, such as  
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resampling of simulations, can be quite compute-intensive due to the use of irregular 
grids in ocean simulation and the size of the simulated datasets. We also provide more 
ocean-science-specific activities such as particle advection to map currents or the 
projection of instrument collected data onto vertical sections by supersampling data 
points. For details on the complete activity set and usage, please see the standard 
oceanographic library included with Microsoft’s Trident Workflow system [1], which 
was created as a direct result of this collaboration. 

Based on these activities, we created a set of 12 visualization-based workflows that 
provide a representative cross-section of visualization workflows we observed or 
collected. These workflows each consisted of from 8 to 20 activities and comprised 
the test cases for our visualization architecture described in the next section. Each 
workflow loads the necessary inputs from a data store, transforms the input datasets 
into a new dataset, and then outputs the data to the COVE visualization engine to 
create a time series visualization of the data. These set of workflows are listed in 
Table 2 along with the primary scenarios they apply to and a broad measure of how 
data-intensive, computation-intensive, and visualization-intensive they were relative 
to the other workflows in the sample. 

Table 2. Representative workflows tested based on ocean science scenarios 

Workflow Scenarios Data Computation Visualization 
Advect Particles 1,2,3,6,7 Medium Medium High 
Combine Data 1,4,5,9 Low Low Low 

Combine Models 1,2,3,6 High Low Medium 
Compare Models 1,2,6 High High High 

Compare Data to Model 1,2,6,7 Medium Medium Low 
Filter Model 1,2,8 Medium Low Medium 

PCA Projection 2,4 Medium High Medium 
Regrid Model 1,2,7,8 Medium Medium Medium 

Subsample Terrain 3,9 Medium Low High 
Supersample Data 1,3,5 Medium Low Medium 

Verify Model 2,6 High Low Medium 
Vertical Section 1,5,6 Low Low High 

 
The overall result of this effort suggests that there are no obvious or simple pat-

terns in the workload of oceanographic analytics, and therefore no obvious or simple 
system that can be built to satisfy the requirements. Informed by this effort, we have 
designed a general platform for visual data analytics that spans these requirements, 
incorporating workflow, visualization, and cloud-based data access. 

3.3   Cost Model 

Informed by the basic Data, Filter, Map, Render visualization pipeline, we model 
visual analysis tasks in terms of four logical software components: Data Store, Work-
flow, Visualization, and Client arranged linearly according to dataflow. The Data 
Store component may be a remote query service: a database, an OPeNDAP server 
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[22], or an Open Geospatial Consortium web service [23]. These services are typi-
cally outside the scope of a workflow system, though calls may be issued from the 
context of a workflow. We model the Visualization component as distinct from the 
Workflow component for two reasons: First, there are a variety of stand-alone visuali-
zation systems found in practice [6-8]. Second, the visualization step occurs last and 
benefits from access to a GPU, and is therefore often evaluated independently from 
the rest of the workflow. The Client component is responsible for processing user 
interaction and issuing calls to the upstream pipeline. This model allows us to seam-
lessly move the Visualization component from platform to platform based on current 
graphic processing needs; it can be tightly bound with the client for interactivity, 
tightly bound with the workflow system to minimize data transfer, or run independ-
ently to leverage external graphics resources. 

 We map these components onto a physical architecture consisting of three re-
sources: Cloud, Server, and Client. An architecture configuration, or simply configu-
ration, is a mapping from components {Data Store, Workflow, Visualization, Client} 
to {Local, Server, Cloud} that respects data flow order. For example, Fig. 1 illustrates 
a configuration that maps the Data Store to the Cloud, and the Trident Workflow 
Service, Visualization Engine, and COVE Client to the local computer. 

 

Fig. 1. An example of an architectural configuration mapping software components to re-
sources. In this case the data is provisioned in the cloud and all other tasks are local. 

We express the cost of each scenario as the sum of the workflow execution time, 
the visualization execution time, and the total data transfer cost between each pair of 
adjacent steps. That is: 

 
COST = RAW_TX + WF_COMP + WF_TX + VIS_COMP + VIS_TX                      (1) 

where 
RAW_TX = RAW_SIZE / BANDWIDTH_DATA_WF 
WF_COMP = WF_WORK (RAWSIZE) / PROCESSOR_WF 
WF_TX = WF_SIZE (RAWSIZE) / BANDWIDTH_WF_VIZ 
VIS_COMP = VIZ_WORK (WF_SIZE) / PROCESSOR_VIZ 
VIS_TX = VIZ_SIZE (WF_SIZE) / BANDWIDTH_VIZ_CLIENT 

 
RAW_SIZE is the size in bytes of the input dataset. BANDWIDTH_DATA_WF, 
BANDWIDTH_WF_VIZ, and BANDWIDTH_VIZ_CLIENT are the bandwidth 
between the data source/workflow system, the workflow system/visualization system, 
and the visualization system/client respectively. WF_SIZE and VIZ_SIZE are func-
tions of the final output size based on the input data size for the pipeline step.  
PROCESSOR_WF and PROCESSOR_VIZ are the processor speeds for the respec-
tive machines, accounting for the potentially significant difference between server and 
client machines. WF_WORK and VIZ_WORK are functions of data size and  
return the (approximate) number of instructions required to process their input. These 
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functions can be estimated precisely through curve fitting, sampling, or provided by 
the user directly [24]. These functions are typically polynomial in the size of the input 
data, but we find that even rough linear estimates of the workflows often provide a 
reasonable estimate. 

Although this model captures the cost of the pipeline, it is not directly useful for 
prediction or optimization because the parameters are too difficult to estimate a pri-
ori. Therefore, we retain this model as a reasoning tool in Section 5, but experiment 
with a simpler proxy model based only on data transfer overhead. This proxy model, 
although simple, frequently captures the relative cost between different architecture 
configurations, as we will see. In this case, the model is 

 
COST = RAW_TX + WF_TX + VIS_TX                                (2) 

 
In Section 5, we will show experiments that justify this simplification for certain 
configurations. 

4   System Design  

To implement a system to measure the cost components over our workflow set, we 
leverage three existing systems: the COVE visualization system, the Microsoft Tri-
dent workflow system, and Microsoft Windows Azure cloud computing service. 
Communication between the components is provided through system I/O services if 
the components are co-located or by RESTful HTTP interfaces when distributed. 
Each component is described in more detail below. 

4.1   Visualization with COVE 

The Collaborative Ocean Visualization Environment (COVE), shown in Fig. 2, is a 
system designed in close collaboration with scientists to provide support for oceano-
graphic data visualization and planning. For ease of use, the interface is based on the 
Geo-browser interface applied successfully for data visualization in applications such 
as Google Earth and Microsoft’s Virtual Earth. COVE provides all the essential fea-
tures of these commercial geo-browser systems, as well as enhancements designed in 
cooperation with ocean scientists. 

In particular, COVE incorporates better support for the time and depth dimensions 
of ocean data sets. Visualizations can be animated and synchronized in time. COVE 
also provides extensive terrain visualization support, as each scientist may require a 
different set of terrain information. To provide more visual cues for the underwater 
terrain there are depth-based color gradients and contour lines as well as user adjust-
able shading and terrain detail to enhance visualization of seafloor features. 

To enable experiment planning, asset deployment and tracking, and observatory 
design, enhanced interactive layout facilities are provided. To support vessel track 
routing and cable layout, COVE provides a large selection of smart cable and track 
types. These conform to the terrain, and positioning handles are available for maneu-
vering the cable around obstacles such as trenches. To provide instant feedback (e.g., 
budget and current cost), heads-up displays are provided during editing sessions. 
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Fig. 2. COVE displays a geo-positioned scientific data, seafloor terrain, images, and instrument 
layout with selectable layers on the left and rich visualization controls on the right 

To help share visualizations throughout the team, anything created in COVE can 
be uploaded to a server to be viewed by other members of the team. Other users can 
then download the visualization script and datasets to jumpstart derivation of new 
visualizations for their own needs.  

COVE has been successfully deployed for a variety of tasks. It was a key tool in 
the design of a planned deep-water ocean observatory off the northwest coast of the 
United States, and has also been a part of two ocean expeditions. The first expedition 
mapped sites for the deep-water observatory and the second explored ways to support 
deep ocean navigation while exploring volcanic sites on the Juan de Fuca plate. While 
quite successful in these deployments, limitations became apparent. The geo-browser 
interface was empowering to novices, but expert users required extensibility for data 
manipulation. Also, as datasets grew in size, scalability problems associated with a 
desktop-only deployment of COVE emerged. To meet these needs, we integrated the 
Trident workflow system for data analysis and pre-processing. 

4.2   Workflow with Trident  

The Trident Workflow system, developed at Microsoft Research, is a domain-
independent workbench for scientific workflow based on Microsoft’s Windows 
Workflow Foundation. The system supports a high level component based view of 
scientific tasks that offers a number of advantages over traditional script-based ap-
proaches including visual programming, improved reusability, provenance, and exe-
cution in heterogeneous environments. In addition to these features common to many 
workflow systems, it also provides automated provenance capture, “smart” re-
execution of different versions of workflow instances, on-the-fly updateable parame-
ters, task monitoring, and support for fault-tolerance and failure recovery.  
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Fig. 3. This image displays an example of the interactive workflow editing interface of Trident 

Trident can be executed on the local desktop, on a server, or on a High Perform-
ance Computing (HPC) cluster. It currently runs on the Windows OS using the .NET 
API, with SQL Server for data storage and provenance capture. Interactive editing 
and management of workflows is available through a set of programs that are part of 
the Trident suite (Fig. 3). Trident provides cross-platform support using Silverlight, a 
downloadable cross-browser, cross-platform, and cross-device plug-in for delivering 
.NET-based applications over the Web. 

Cross platform support is also available through a web service interface developed 
as part of this effort. This interface allows execution and job control through a REST-
ful API. For example, a user can login, select a desired workflow, monitor its  
progress, poll for created data products, and retrieve data products for local use using 
HTTP GET and POST calls. This is the communication interface used by COVE to 
provide cross-platform access to Trident. 

4.3   Cloud Services with Azure  

Azure is a cloud computing platform offering by Microsoft. In contrast to Amazon's 
suite of “Infrastructure as a Service” offerings (c.f., EC2, S3), Azure is a “Platform as 
a Service” that provides developers with on-demand compute and storage for web 
applications through Microsoft datacenters. A primary goal of Windows Azure is to 
be a platform on which ISVs can implement Software as a Service (SaaS) applica-
tions. Amazon's EC2, in contrast, provides a host for virtual machines, but the user is 
entirely responsible for outfitting the virtual machine with the needed software. 

Windows Azure has three components: a Compute service that runs applications, a 
Storage service, and a Fabric that supports the Compute and Storage services. To use 
the Compute service, a developer creates a Windows application consisting of Web 
Roles and Worker Roles using the .NET API or the Win32 API. A Web Role package 
responds to user requests and may include an ASP.NET web application. A Worker 
Role, often initiated by a Web Role, runs in the Azure Application Fabric to imple-
ment parallel computations. Unlike other parallel programming frameworks such as 
MapReduce or Dryad, Worker Roles are not constrained in how they communicate 
with other Worker Roles. 

For persistent storage, Windows Azure provides three storage options: Tables, 
Blobs, and Queues, all accessed via a RESTful HTTP interface. A table is a scalable 
key-value store, a Blob is a file-like object that can be retrieved, in its entirety, by 
name, and a Queue simplifies asynchronous inter-communication between workers. 
The Windows Azure platform also includes SQL Azure Database offering standard 
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relational storage based on SQL Server. In our system, we model data sources as 
Blobs and simply retrieve them for processing by our workflow engine. 

4.4   Architecture Configurations 

With these systems there are a variety of configurations that can be created to run the 
visualization workflows enumerated in Table 2. Fig. 4 illustrates the six architectures 
we evaluate. 
 

 

Fig. 4. The 6 evaluated configurations of the COVE + Trident + Azure system 

In the Local configuration, all the data and visualization is handled locally. This is 
the most common visualization mode we noted with the scientists. It avoids network 
latency or cross platform communication issues. The disadvantage is that computation 
and data size are limited by available cores and local storage capacity. 

In Cloud Data, the data has been moved to the cloud. This configuration allows 
larger data sizes and also allows sharing of the data with other researchers, but with 
the overhead of downloading all necessary data to the local system. 

In Cloud Workflow, the computation has been moved to the cloud and co-located 
with the data. This leverages the computational and storage capabilities of the remote 
platform and removes the overhead of moving raw data. However, this configuration 
still incurs the cost of downloading the filtered data. 
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In 3-Tier, the computation has been moved remotely to a server and the data stored 
on in cloud storage. This allows the most flexibility to optimize the choice of platform 
based on cost and needs. It also is the most sensitive to network speeds, since raw and 
filtered data are both transferred to a remote location. 

3-Tier Thin provides the ability to move the data and visualization handling to a 
server, possibly with fast graphics capability, and place the data on cloud storage. 
This configuration is useful for a thin client environment such as a browser or phone 
interface, but requires a fast connection between the cloud and the server. 

Finally, the All Cloud configuration allows all the data to be handled in the cloud, 
with a minimum of network overhead since only the visual product is transferred over 
the network. The drawback is that the environment is usually unspecialized. In par-
ticular, the cloud typically does not provide graphics support for fast visualization. 

4.5   Data Model 

Our data model is essentially file-oriented. On Azure, each file is stored as a Blob. On 
the Server and Local platforms, each file is stored on local disk and referenced with 
standard filename conventions. In either case, we access non-local files using HTTP. 

Files are downloaded by the workflow system from the data store and cached on 
the workflow system. The workflow system then accesses them from the local cache. 
This transfer mechanism could be optimized to reduce the overhead of local disk IO, 
but the local storage also allows for re-use of cached files in future workflows. Fur-
ther, we observe in Section 5 that the local IO overhead is small relative to the overall 
cost of the workflow. 

Similarly, the resulting data products are cached locally by the workflow service 
and made available through HTTP using a RESTful API. Although Trident provides 
access to SQL server for data storage, we found the current implementation for serial-
izing and de-serializing large files to the database to be prohibitively slow. Instead, 
we implemented a multi-threaded file-based data storage solution that significantly 
improved IO performance. All experiments were conducted using the file-based stor-
age solution. 

Trident by default loads all data into memory to allow pointer-based access. This 
means large files can exceed physical memory and lead to thrashing. For our Trident 
workflow activities, we instead use a lazy loading strategy. We load only a descriptive 
header when opening a file, and read in sections of the file on demand. This technique 
reduces the memory footprint and prevents thrashing. 

The data files we access are taken directly from our collaborators. Each dataset is 
represented as a NetCDF [25] file or in simple binary and textual table data formats. 
NetCDF files are a very common format in the ocean sciences and allow us to use 
publicly available libraries for data access. We also use the NetCDF CF-Metadata 
naming conventions to standardize identification of position and time variables.  

4.6   Programming Model 

The Trident activities are written in C and deployed to a dynamic library for increased 
performance. The object interface for the library is then wrapped by a set of .NET 
managed C# Trident activities. Each activity typically accesses a single method in the 
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library. This design also made it easy to expose the same functionality available to the 
workflow system to other systems. For example, since Trident was not yet available 
natively on the Windows Azure service, we created a substitute workflow shell on 
Azure that executed our workflow activities. 

Each activity has a set of inputs and outputs that can be declared explicitly by the 
user or implicitly through composition with another activity (e.g., the output of the 
file load activity may connect to the input of the resample activity.) The activities may 
be linked together interactively using the Trident Workflow Composer or by editing 
the XML based workflow description. While the activities may execute either serially 
or in parallel according to the instructions in the workflow specification, all our work-
flows operate serially to simplify performance monitoring. 

5   Experimental Analysis 

We tested the 12 benchmark workflows in Table 2 on each of our 6 architectural con-
figurations in Fig. 4 to record the 5 cost components of Eq. 1. Since the final dataset 
is too large to visualize effectively in this paper, we show a summary of the overall 
performance results in Fig. 7. This figure displays the average time of each of the cost 
components across the entire workflow set for each configuration. 
 
Setup. We instrumented COVE and all of the Trident activities to record wall clock 
time for each of the components of the cost model: network transmission (RAW_TX, 
WF_TX, VIZ_TX), workflow computation (WF_COMP), and visualization creation 
(VIZ_COMP). We used the three systems described in Table 3 as the Local Machine, 
Web Server, and Azure Web Role in our architecture configurations. 

Table 3. Physical Specification of Experimental Systems 

Machine Description 
Local Machines Apple Macbook Pro Laptop running Windows 7 (32 bit) 

Intel Core Duo T2600 CPU 2.16 GHz, 2GB RAM,  
Radeon X1600, 256 Mb memory 
Internet Connection: 11.43 Mb/Sec in, 5.78 Mb/Sec out 

Web Server HP PC running Windows Server 2008 R2 Enterprise 
Intel Core Duo E6850 CPU @ 3.00 GHz, 4 GB RAM 
Internet Connection: 94.58 Mb/Sec in, 3.89 Mb/Sec out 

Azure Web Role  Intel PC running Windows Server 2008 R2 Enterprise 
Intel 1.5-1.7 GHz, 1.7 GB RAM, No Video System 
Internet Connection: .85 Mb/Sec in, 1-2 Mb/Sec out 

 
 

Data sizes. The data sizes used for each workflow appear in Fig. 5, averaging around 
150MB per task. Typical datasets include time steps of an ocean simulation, a set of 
“glider tracks” from an Autonomous Underwater Vehicle (AUV), or a terrain model 
for a region. All datasets pertain to the Pacific Northwest or Monterey Bay region and 
are “live” in the sense that they are actively used by scientists. 
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Fig. 5. Data sizes used in the experiments. Each bar is broken into three sections: the Raw data 
size (RAW_SIZE), the filtered data size generated by the workflow (WF_SIZE), and the size of 
the final result generated by the visualization (VIZ_SIZE). 

Summary of Findings. We answer the following questions: (1) Is one architecture 
preferable for all of our visual analytics benchmarks? (2) What role does client-side 
processing have in cloud and server oriented analytics? (3) Does access to a GPU 
strongly affect performance for visual analytics workflows? (4) Does the simple cost 
model derived in Section 3 accurately capture performance? 

Our results show that: (1) There is no “one size fits all” architecture — the appro-
priate configuration depends on workflow characteristics (Fig. 7); (2) client-side 
processing is a crucial resource for performance, assuming data can be pre-staged 
locally to minimize transfer costs (Fig. 8); (3) access to a GPU strongly affects the 
performance of visual data analytics workflows, meaning that generic, virtualized 
cloud-based resources are not ideal (Fig. 9); (4) the simple cost model is sufficient to 
capture the behavior of these workflows, and that the cost is generally dominated by 
data transfer times. 

5.1   There Is No “One Size Fits All” Architecture 

The diversity of workflows in the benchmark illustrates that multiple architecture 
configurations must be supported in practice. Although local processing outperforms 
other configurations due to data transfer overhead, this configuration is not always 
viable. Among the alternatives, no one configuration is best in all cases. In the Verti-
cal Section workflow, for example, the output of the filter step is larger than its input, 
motivating an architecture that pulls data down from remote locations before process-
ing; contradicting the conventional wisdom that one should “push the computation to 
the data”. In terms of the cost model, this distinction is captured by the ratio of data 
output to data input in the workflow or WF_RATIO = WF_SIZE / RAW_SIZE. In 
Fig. 6, the time profile for two workflows is displayed: one with WF_RATIO < 1, and 
the other with WF_RATIO > 1. For WF_RATIO < 1, the preferred (non-local) con-
figuration to minimize transfer overhead is Cloud WF, where the data is processed on 
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the same machine where it resides, however, when WF_RATIO > 1, the preferred 
configuration is Cloud Data, where data is sent to the local computer for processing.  

The 3-tier configuration in these examples appears to be universally bad, but 
asymmetric processing capabilities between server and client can make up the differ-
ence. For example, the PCA workflow is highly compute bound, and therefore bene-
fits from server-side processing at the middle tier. 

 

 

Fig. 6. Time profile comparison of a workflow with WF_RATIO < 1 on the left and 
WF_RATIO > 1 on the right. When WF_RATIO < 1, the preferred (non-local) strategy is to 
push the computation to the data using the Cloud WF configuration. When WF_RATIO > 1, the 
better strategy is to bring the data to the computation using the Cloud Data configuration. 

5.2   Client-Side Processing Improves Efficiency 

At these modest data sizes, the local data configuration performed well in all cases. 
Fig. 7 shows the average performance across all benchmark workflows. The perform-
ance benefits are perhaps not surprising — desktop computers are increasingly power-
ful in terms of CPU speed and memory size, and are typically equipped with GPU to 
accelerate visualization. However, local processing is only appropriate for small data-
sets that are either private or have been pre-staged on the user’s machine. Since the 
trend in ocean sciences (and, indeed, in all scientific fields) is toward establishing 
large shared data repositories, we believe that aggressive pre-fetching and caching on 
user’s local machines will become increasingly important. 

 

 

Fig. 7. The average runtime of all 12 workflows for each of the 6 architecture configurations is 
dominated by data transfer overhead. The Local configuration, although not necessarily feasible 
in practice, eliminates this overhead and therefore offers the best performance. This result 
suggests that aggressive caching and pre-fetching methods should be employed to make best 
use of local resources. 
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5.3   Visual Analytics Benefit from GPU-Based Processing 

Tasks involving significant visualization processing benefit from having access to 
GPUs. Although GPUs are becoming popular for general computation due to their 
vector processing capabilities, they can of course be used for visualization tasks with 
no change to the application. Using the instrumented COVE and Trident platform, we 
tested whether having access to a GPU would improve performance for the visual 
data analytics tasks. In particular, in the Thin Client and All Cloud configurations, the 
visualization engine ran in the cloud and performed rendering in software using the 
Mesa 3D library, a state-of-the-art OpenGL software renderer. On average, the work-
flow set ran 5x faster overall with access to a GPU (Fig. 7). The visualization portion 
of the work ran 9x faster. This result suggests that the generic environment typically 
found on cloud computing platforms may be insufficient for visual data. 

 

 

Fig. 8. Scatter plot of estimated results from Eq. 2 compared to actual results 

5.4   A Simple Cost Model Informs Architecture Decisions 

The proxy cost model presented in Section 3 is very simple, capturing only the data 
transfer costs between each step. We allow the source data and each of these two 
steps to be located on any of the three tiers in the client-server-cloud pipeline, subject 
to technical constraints. Despite its simplicity, we find that this cost model adequately 
describes several of the computations, suggesting that a very simple “architecture 
optimizer” could be based on it. 

In Fig. 8, we plot the estimated running time against the actual measured times us-
ing a model that ignores everything except for transfer times. A linear relationship is 
clear, though of course it underestimates CPU and Visualization-heavy workflows, as 
well as fully local configurations that do not require any data transfer. For these cases, 
we are exploring an incrementally more sophisticated model based on parameters that 
can be estimated by the scientists ad hoc. 
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6   Conclusions and Future Work 

Overall, we conclude that cloud-based platforms must be augmented with significant 
local processing capabilities for maximum performance. Due to the overhead of data 
transfer, access to GPUs for high-performance visualization, and the interactive na-
ture of interactive visual data analytics, “Client + Cloud” architectures are appropriate 
for maximizing resource utilization and improving performance. 

We base our conclusions on 1) a comprehensive, multi-year collaboration with 
ocean scientists from which we gleaned a suite of representative workflows, 2) a 
complete visual ocean analytics system involving immersive visualization capabilities 
in COVE and a flexible workflow environment in Trident, and 3) a set experiments 
testing each workflow in a variety of client, server, and cloud configurations.  

Based on these results, we are pursuing an architecture optimization framework 
that will dynamically distribute computation across the client-server-cloud pipeline to 
maximize utilization and improve performance. We distinguish this work from the 
heterogeneous resource scheduling problem by focusing on visualization and a do-
main-specific and realistic suite of workflows. 
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Abstract. Scientists’ ability to generate and collect massive-scale datasets is
increasing. As a result, constraints in data analysis capability rather than limi-
tations in the availability of data have become the bottleneck to scientific discov-
ery. MapReduce-style platforms hold the promise to address this growing data
analysis problem, but it is not easy to express many scientific analyses in these
new frameworks. In this paper, we study data analysis challenges found in the
astronomy simulation domain. In particular, we present a scalable, parallel al-
gorithm for data clustering in this domain. Our algorithm makes two contribu-
tions. First, it shows how a clustering problem can be efficiently implemented
in a MapReduce-style framework. Second, it includes optimizations that enable
scalability, even in the presence of skew. We implement our solution in the Dryad
parallel data processing system using DryadLINQ. We evaluate its performance
and scalability using a real dataset comprised of 906 million points, and show
that in an 8-node cluster, our algorithm can process even a highly skewed dataset
17 times faster than the conventional implementation and offers near-linear scala-
bility. Our approach matches the performance of an existing hand-optimized im-
plementation used in astrophysics on a dataset with little skew and significantly
outperforms it on a skewed dataset.

1 Introduction

Advances in high-performance computing technology are changing the face of science,
particularly in the computational sciences that rely heavily on simulations. Simulations
are used to model the behavior of complex natural systems that are difficult or impossi-
ble to replicate in the lab: subatomic particle dynamics, climate change, and, as in this
paper, the evolution of the universe. Improved technology — and improved access to
this technology — are enabling scientists to run simulations at an unprecedented scale.
For example, by the end of 2011, a single astrophysics simulation of galaxy formation
will generate several petabytes of data, with individual snapshots in time ranging from
10s to 100s of terabytes. The challenge for scientists now lies in how to analyze the
massive datasets output by these simulations. In fact, further increases in the scale and
resolution of these simulations — to adequately model, say, star formation — are con-
strained not by limitations of the simulation environment, but by limitations of the data
analysis environment. That is, data analysis rather than data acquisition has become the
bottleneck to scientific discovery.

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 132–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Ad hoc development of data analysis software to efficiently process petascale data is
difficult and expensive [1]. As a result, only relatively few science projects can afford
the staff to develop effective data analysis tools [2,3]. An alternate strategy is to use
either a parallel database management system (DBMS) or a MapReduce-style paral-
lel processing framework [4,5]. Both types of systems provide the following benefits:
(1) they run on inexpensive shared-nothing clusters; (2) they provide quick-to-program,
declarative interfaces [6,7,8]; and (3) they manage all task parallelization, execution,
and failure-handling challenges. These frameworks thus hold the promise to enable
cost-effective, massive-scale data analysis. However, porting complex scientific analy-
sis tasks to these platforms is far from trivial [9,10] and therefore remains relatively rare
in practice.

Clustering algorithms in particular have been difficult to adapt to these shared noth-
ing parallel data processing frameworks, for two reasons.

First, both parallel DBMSs and MapReduce-type systems support a dataflow style of
processing where data sets are transformed by a directed acyclic graph of operators that
do not otherwise communicate with each other. Additionally, the system controls the
data placement and movement. In this setting, it is difficult to efficiently track clusters
that span machine boundaries because such tracking typically requires frequent com-
munication between nodes, especially when clusters may be arbitrarily large, as is the
case in astronomy. Previous work on distributed clustering used a space-filling curve to
partition the data, then built and queried a global distributed spatial index such that only
adjacent partitions needed to communicate [11]. However, the same approach is diffi-
cult to implement in a MapReduce-style system that constrains communication patterns
and controls data placement.

Second, the varying data density causes significant skew (i.e., inter-node load im-
balance) in processing-times per partition. Significant skew can counteract the benefit
of using a parallel system [12]. We find this effect to be significant in the astronomy
simulation domain (see Section 6). Previous research proposed to use approximation
to handle such dense regions [13,14]. This approach, however, yields a different result
than an exact serial computation.

In this paper, we address the above two challenges by describing dFoF, an algo-
rithm for scalable, parallel clustering of N-body simulation results in astrophysics. Our
algorithm is designed to run efficiently in a MapReduce-style data processing engine
and is also optimized to deliver high performance even in the presence of skew in the
data. We implement dFoF on the shared-nothing parallel data processing framework
Dryad [15], and evaluate it on real data from the astronomy simulation domain. Dryad
can be described as a generalization and refinement of MapReduce [4] allowing arbi-
trary relational algebra expressions and type-safe language integration [16].

The contributions of this paper are threefold. First, we develop dFoF, the first
density-based parallel clustering algorithm for MapReduce-type platforms. Second, we
show how to leverage data-oriented (rather than space-oriented) partitioning and intro-
duce a spatial index optimization that together enable dFoF to achieve near-linear scala-
bility even for data sets with massive skew. Third, we implement the proposed algorithm
using DryadLINQ [16] and evaluate its performance in a small-scale eight-node clus-
ter using two real world datasets from the astronomy simulation domain. Each dataset
comprises over 906 million objects in 3D space. We show that our approach can cluster
a massive-scale 18 GB simulation dataset in under 70 minutes (faster than the naı̈ve
version by a factor of 17) and offers near-linear scaleup and speedup. We also show that
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Fig. 1. Friends of Friends clustering algorithm. Two particles are considered friends if the
distance between them is less than a threshold ε: A and B are friends and B and C are friends,
but A and C are not. The friend relation is symmetric if the distance is symmetric. The Friend of
Friend relation (FoF) is defined between two points if they are friends or if they are contained in
the transitive closure of the friend relation (e.g., A and C are a friend of friend pair via B). In the
figure, the FoF relation induces a partition on the particles: all black points are in one cluster and
all white points are in another.

our approach matches the performance of an existing hand-optimized implementation
used in the astrophysics community on a dataset with little skew and improves running
time by a factor of 2.7 on a skewed dataset.

2 Background and Related Work

Application domain. Cosmological simulations serve to study how structure evolves in
the universe on distance scales ranging from a few million light-years to several billion
light-years in size. In these simulations, the universe is modeled as a set of particles.
These particles represent gas, dark matter, and stars and interact with each other through
gravitational force and fluid dynamics. Particles may be created or destroyed during the
simulation (e.g., a gas particle may spawn several star particles). Every few simulation
timesteps, the program outputs a snapshot of the universe as a list of particles, each
tagged with its identifier, location, velocity, and other properties. The data output by a
simulation can therefore be stored in a relation with the following schema:

Particles(id, x, y, z, vx, vy , vz, mass, density, · · · )
State of the art simulations (e.g., Springel et al. 2005 [17]) use over 10 billion particles
producing a dataset size of over 200 GB per snapshot. When the NCSA/IBM Blue
Waters system [18] comes online in late 2010, it will support astrophysical simulations
that generate 100 TB per snapshot and a total data volume of more than 10 PB per run.

Friends of Friends Clustering Algorithm. The Friends-of-Friends (FoF) algorithm
(c.f.Davis et al. 1985 [19] and references therein) has been used in cosmology for
at least 20 years to identify interesting objects and quantify structure in simula-
tions [17,20]. FoF is a simple clustering algorithm that accepts a list of particles
(pid, x, y, z) as input and returns a list of cluster assignment tuples (pid, clusterid).
To compute the clusters, the algorithm examines only the distance between particles.
FoF defines two particles as friends if the distance between them is less than ε. Two
particles are friends-of-friends if they are reachable by traversing the graph induced by
the friend relationship. To compute the clusters, the algorithm computes the transitive
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closure of the friend relationship for each unvisited particle. All particles in the closure
are marked as visited and linked as a single cluster. Figure 1 illustrates this clustering
algorithm.

Related work. Thanks to its simplicity, FoF is one of only two algorithms to have been
implemented in a distributed parallel fashion in the astrophysics community [21,22]
using the Ntropy library [21,22]. Ntropy is an application-specific library that supports
parallel kd-trees by combining “distributed shared memory” (DSM), a popular parallel
data-management paradigm, with “remote procedure call” for workload orchestration.

FoF is a special case of the DBSCAN algorithm [23] corresponding to a MinPts
parameter of zero; there exists a large body of work on distributed DBSCAN algo-
rithms [11,13,14,24]. This prior work can be categorized into two groups. The first
category of approaches is similar to Ntropy. These algorithms build a distributed spatial
index on a shared-nothing cluster and use this index when merging local clustering re-
sults [11,24]. The second category of approaches is to perform approximate clustering
by using clustering on local models [13] or using samples to reduce the size of data or
the number of spatial index lookups [14].

In contrast to these prior techniques, dFoF does not require any approximations.
More importantly, it is designed and implemented to run on a data analysis platform
such as Dryad [15] or MapReduce [4] rather than as a stand-alone parallel or dis-
tributed application. By leveraging an existing platform, dFoF automatically benefits
from fault-tolerance, task scheduling, and task coordination. Further, dFoF does not
rely on a global shared index but rather incrementally merges large clusters detected by
different compute nodes.

Additionally, previous work on parallelizing DBSCAN has been evaluated against
relatively small and often synthetic datasets [11,13,14,24]. Their datasets have, at most,
on the order of one million objects in two dimensions. In this paper, we evaluate the
performance and scalability with real datasets of substantially larger scale.

Programming shared-nothing clusters has been gaining increased attention. Several
distributed job execution engines have been proposed [5,4,15,25], and several high-
level job description languages have been defined [7,16,26,27,28]. However, complex
scientific analysis tasks are only just beginning to be ported to these new platforms.
In particular, Chu et al. investigated how to leverage such emerging platforms to run
popular machine-learning algorithms and gain linear scalability [29]. There are sev-
eral efforts to implement scalable machine learning algorithms in MapReduce-style
framework [30,31,32]. Papadimitriou et al. implemented a co-clustering algorithm [31].
Panda et al. implemented a decision tree learning algorithm using MapReduce [32]. The
Mahout project, inspired by Chu et al., implements many machine learning algorithms
in Hadoop including k-means and other clustering algorithms, but there is no density-
based algorithm yet [30].

3 Basic Distributed Friends of Friends

In this section, we introduce dFoF, our distributed FoF algorithm for MapReduce-style
shared-nothing clusters. We discuss critical optimizations that make this algorithm truly
scalable in the following section.

The basic idea behind any distributed clustering algorithm is to (1) partition the space
of data to be clustered, (2) independently cluster the data inside each partition, and
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Fig. 2. Dataflow in dFoF algorithm. dFoF runs in four phases. Each phase exchanges data in the
form of a standard relation or set of key-value pairs. Underlined attributes are the primary keys
of the corresponding relations. part represents a partition id. pid represents a particle ID. x, y,
and z correspond to the particle coordinates. cid is a cluster id. Phases execute in series but with
intra-phase parallelism.

finally (3) merge clusters that span partition boundaries. There are several challenges
related to implementing this type of algorithm on a MapReduce-style platform and in
the context of astronomy data.

Challenges. First, in astrophysical applications, there is no characteristic cluster size
or mass. The clustering of matter in the universe is largely scale-invariant at the size
represented by the simulation. This means a cluster can be arbitrarily large and span ar-
bitrarily many partitions. To identify such arbitrarily-large clusters from locally found
ones, one cannot simply send to each compute node its own data plus a copy of the data
at the boundary of adjacent partitions. Indeed, nearly all data would have to be copied
to merge the largest clusters. Alternatively, one could try to use a global index structure,
but this approach requires extensive inter-node communication and is therefore unsuit-
able for the dataflow-style processing of MapReduce-type platforms. In this paper, we
investigate a radically different approach. Instead of trying to use a distributed index,
we redesign the algorithm to better follow the shared-nothing, parallel query processing
approach and not require a global index at all. In this section, we present this algorithm,
which we call dFoF.

Second, the uncharacteristic clusters pose a challenge for load balancing — each
node needs to hold a contiguous region of space but there is no a priori spatial de-
composition that is likely to distribute the processing load evenly. Load imbalances
can negate the benefits of parallelism [12]. To achieve load balance and improve per-
formance, we must ensure that each partition of the same operation processes its input
data in approximately the same amount of time. This requirement is more stringent than
ensuring each node processes the same amount of data. Indeed, in the FoF algorithm,
execution times depend not only on the number of particles in a partition but also their
distribution: small dense regions are significantly slower to process than large sparse
ones. We discuss extensions to our algorithm that address these challenges in Section 4.

Approach. Our basic dFoF algorithm follows the typical distributed clustering ap-
proach in that the data is first partitioned, then clustered locally, and finally the local
clusters are reconciled into large ones. Our algorithm differs from earlier work pri-
marily in the way it handles the last phase of the computation. Instead of relying on
a distributed index, dFoF reconciles large clusters through a hierarchical merge pro-
cess that resembles a parallel aggregate evaluation [33]. To keep the cost of merging
low, only the minimum amount of data is propagated from one merge step to the next.
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(a) Local clustering (b) Hierarchical merge
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Fig. 3. Illustration of the dFoF algorithm. (a) shows the first local clustering phase. Data is
partitioned into four cells. Points with the same shape are in the same global cluster. Particles
with different shades but with the same shape are in different local clusters. Each Pi shows
the cell boundary and each I shows the interior region that is excluded during the Hierarchical
Merge phase. (b) demonstrates Hierarchical Merge phase. Note that only boundary particles in
(a) are considered during the merge phase. After the merge, three cluster mappings are gener-
ated: (C4,C3), (C5,C3), and (C6,C3). Such mappings are used to relabel local clusters during the
Relabel phase as illustrated in (c).

The rest of the data is written to disk before the merge. A final relabeling phase takes
care of updating this data given the final merged output. dFoF thus runs in four phases:
Partition, Local cluster, Hierarchical merge, and Relabel. Figure 2 shows the overall
data flow of the algorithm, with each step labeled with the type of its output. We now
describe the four phases in more detail using a simple 2D example.

Partition. During partitioning, we assign each node a contiguous region of space to
improve the probability that particles in the same cluster will be co-located on the same
node. Figure 3 illustrates a 2D space split into four partitions P1 through P4. To deter-
mine these uniform regions, dFoF recursively bisects the space, along all dimensions,
until the estimated number of particles per region is below the memory threshold of
a node, such that local processing can be performed entirely in memory. We call the
hierarchical regions cells, and the finest-resolution cells — the leaves of the tree — unit
cells. The output of this phase is a partition of all data points (i.e., particles).

Local Cluster. Once the data is partitioned, the original FoF algorithm runs within each
unit cell. As shown in Figure 2, the output of this phase is written to disk and consists
of a set of pairs: (pid,cid), where pid is a particle ID and cid is a globally-unique
cluster ID. Each input particle is labeled with exactly one cluster ID. Particles within
distance ε of the boundary of each cell continue on to the next phase. They will serve to
identify locally found clusters that need to be merged into larger ones.

Hierarchical Merge. To identify clusters that span multiple cells, particles at cell
boundaries must be examined. If particles in adjacent partitions are within distance
threshold ε of each other, their clusters must be merged. Figure 3 illustrates the merge
step for four partitions P1 through P4. The outer boxes, Pi, represent the cell bound-
aries. The inner boxes, I , are distance ε away from the corresponding edge of the cell. In
Figure 3(a), the local clustering step identified a total of six clusters labeled C1 through
C6. Each cluster comprises points illustrated with a different shape and shade of gray.
However, there are only three global clusters in this dataset. These clusters are identified
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Algorithm 1. Merge result of FoF (mergefof)
Input: D← {(pid, cid, x, y, z)} // output from Local Cluster or Hierarchical merge

ε← distance threshold
Output: {(old cid, new cid)}
1: M ← ∅ // nested set to store cluster ids of merged clusters
2: R← ∅ // output mappings
3: sidx← build spatial index(D)
4: for all unvisited p ∈ D do // compute cluster ids to merge
5: N ← friendclosure(p, ε, sidx) // find all friends of friends of p using the spatial index

6: mark all q ∈ N as visited
7: C ← {x.cid | x ∈ N} // set of all cluster ids found in N
8: M ←M ∪ {C} // All cluster ids in N must be merged
9: end for

10: repeat // find additional clusters to merge
11: for all C ∈M do
12: C+ ← {X|X ∈M, C ∩X �= ∅}
13: if |C+| > 1 then
14: M ←M − C+

15: C′ ← {x|x ∈ X, X ∈ C+}
16: M ←M ∪ {C′}
17: end if
18: end for
19: until M does not change
20: for all C ∈M do // produce output
21: newCid← min C // select the lowest identifier in C
22: R← R ∪ {(cid, newCid)|cid ∈ C}
23: end for
24: return R

during the hierarchical merge process. Clusters C3, C4, C5, and C6 are merged because
the points near the cell boundaries are within distance ε of each other. Only points in-
side each Pi but outside each region I are needed to determine that these clusters must
be merged. Figure 3(b) shows the actual input to the hierarchical merge following local
clustering phase. This data reduction is necessary to enable nodes to process hierarchi-
cally larger regions of space efficiently and without running out of memory.

Algorithm 1, which we call mergefof, shows the detailed pseudocode of the merge
procedure. At a high-level, the algorithm does two things. First, it re-computes the clus-
ters in the newly merged space. Second, it relabels the cluster ids of those clusters that
have been merged. The input is a set of particles, each labeled with a cluster id. The
output is a set of pairs (oldcid, newcid) providing a mapping between the pre-merge
cluster ids and the post-merge cluster ids.

Lines 1-8 show the initial cluster re-computation whose output, M , is a nested set of
clusters that must be merged. For example, for the dataset in Figure 3, M will have three
elements, {{C1}, {C3, C4, C5}, {C4, C6}}. This set M , however, is not yet quite cor-
rect, as there are potentially members of M that should be further combined. To see
why, recall that some particles — those in the interior of the merged regions — were
set aside to disk before the merge process began. These set-aside particles may connect
two otherwise disconnected clusters. In our example, C6 should be merged with C3,
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C4, and C5 but is not because the particles of C4 bridging C6 to C3 were set aside to
disk before merging. We can infer such missing links by examining the pairwise inter-
sections between sets of merged cluster identifiers. For example, since {C3, C4, C5}
and {C4, C6} both contain C4, we infer that C3, C4, C5, and C6 are all part of the
same cluster and can be assigned a single cluster id. The second step of mergefof
(lines 10-19) performs this inference. In the last step, the algorithm simply chooses the
lowest cluster id as the new id of the merged cluster (lines 20-23).

Algorithm mergefof executes every time a set of child cells under the same parent
are merged as we proceed up the cell hierarchy. After each execution, the mappings
between clusters that are found are saved to disk. They will be reused during the final
Relabel phase.

Relabel. In dFoF, there are two occasions for relabeling, intermediate and global. In-
termediate relabeling assigns each particle used during the merge process a new cluster
id based on the output of mergefof. This operation occurs once for each cell in the
merge hierarchy. Global relabeling occurs at the end of dFoF. This operation first de-
termines the final cluster ids for each local cluster id based on the accumulated output
of mergefof. It then updates the local cluster assignments from the first phase with
the final cluster id information by reprocessing the data previously set aside to disk as
shown in Figure 2.

4 Scalable Distributed Friends of Friends

The dFoF algorithm presented thus far is parallel but not scalable due to skew effects.
Some compute nodes during Local clustering phase may run significantly longer than
others, negating the benefits of parallelism. In this section, we discuss this problem and
present two optimizations that address it. The first optimization significantly improves
the performance of both local fof and mergefof algorithms. The second optimiza-
tion improves load balance.

4.1 Pruning Visited Subtrees

With an ordinary spatial index implementation, each partition can spend a significantly
different amount of time processing its input during the local clustering phase (i.e.,
FoF), despite having approximately the same amount of input data. We demonstrate this
effect in Section 6, where we measure the variance in task execution times (in Figure 7,
all plots except for non-uniform/optimized exhibit high variance). This imbalance is due
to densely populated regions taking disproportionately longer to process than sparsely
populated regions, even when both contain the same number of points.

To understand the challenge related to dense regions, recall that the serial FoF algo-
rithm computes the transitive closure of a particle using repeated lookups in a spatial
index. The average size of the closure, and therefore of the traversed part of the index,
are proportional to the density of the region. These lookups dominate the runtime. As-
tronomy simulation data is especially challenging in this respect, because the density
can vary by several orders of magnitude from region to region. To address this chal-
lenge, we optimize the local cluster computation as follows.

The original FoF algorithm constructs a spatial index over all points to speed up
friend lookups. We modify this data structure to keep track of the parts of the subtree
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Algorithm 2. Range search with pruning visited subtree
Input: root← search root node

query ← center of the range search (i.e., querying object)
ε← distance threshold

Output: set of objects within distance ε of query
1: if root.visitedAll is true then
2: return ∅ // skip this subtree
3: end if
4: R← · · · // normal range search for root

// update bookkeeping information
5: if entire branch under root marked visited then
6: root.visitedAll← true
7: end if
8: return R

where all data items have already been visited. For each node in the tree (leaf node and
interior node), we add a flag that is set to true when all points within the subtree rooted
at the node have been returned as a result of previous friends lookups. The algorithm
can safely skip such flagged subtrees because all data items within them have already
been covered by previous lookups. By the nature of spatial indexes, points in a dense
region are clustered under the same subtree and are therefore quickly pruned. With this
approach, the index shrinks over time as the previously visited subtrees are pruned.

Because this optimization requires only one flag per node in the spatial index, it im-
poses a minimal space overhead. Furthermore, the flag can be updated while processing
range lookups. In Algorithm 2, we show the modified version of the range search using
this modified index structure. Line 5 is dependent on the type of spatial index. For a
kd-tree, the condition can be evaluated by checking the flags of the child nodes and
the data item assigned to the root node. For an R-tree, the condition can be evaluated
similarly by checking child nodes and data items in a leaf node.

We apply this optimization both during the local clustering and the merging phases.

4.2 Non-uniform Data Partitioning

While the above optimization solves the problem of efficiently processing dense re-
gions, it does not solve all load imbalance problems. Indeed, with the uniform space-
based partitioning described in Section 3, some nodes may be assigned significantly
more data than others and may delay the overall execution or even halt if they run out
of memory when the data is not uniformly distributed. The only way to recover is for
the system to restart the job using a smaller unit cell. On the other hand, unit cells that
are unnecessarily fine-grained add significant scheduling and merging overheads.

To address this challenge, we use a variant of Recursive Coordinate Bisection (RCB)
scheme [34] to ensure that all partitions contain approximately the same amount of
data (i.e., same number of particles). The original RCB repeatedly bisects a space by
choosing the median value along alternating axis to evenly distribute input data across
multi-processors. Since the input data does not fit in memory, we first scan the data,
collect a random sample, and run RCB over the sample until the estimated size of the
data for each bucket fits into the memory of one node. We use RCB because its spatial
partitioning nature is well-suited to the underlying shared-nothing architecture (i.e., it
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Fig. 4. Uniform partitioning and Non-uniform partitioning. Uniform partitioning would gen-
erate uneven workloads: P1 contains 22 points while P3 have only 5 points in it. Data-oriented
partitioning, however, produces an even workload: each partition is assigned 10 or 11 points.

generates non-overlapping regions that are also easy to merge compared to space filling
curve). In Figure 4, we compare the uniform and data partitioning schemes. Because
we use a sample instead of the entire dataset, there is some small discrepancy in the
size of the partitions. Also, sampling requires an extra scan over the data, thus adding
overhead to the entire job. However, it effectively reduces load skew, especially with
the first optimization, and improves the job completion time as we show in Section 6.

5 Implementation

We implemented dFoF in approximately 3000 lines of C# code using DryadLINQ [16]
the programming interface to Dryad [15]. Dryad is a massive-scale data processing
system that is similar to MapReduce but offers more flexibility because its vertices are
not limited to map or reduce operations. DryadLINQ is a Language-Integrated Query
(LINQ) interface provider for Dryad. The LINQ offers relational-style operators such
as filters, joins, and groupings and users can write complex data query succinctly and
seamlessly in C#. At runtime, DryadLINQ automatically translates and optimizes the
task written in LINQ expressions into a Dryad job which is a directed acyclic graph of
operators with one process per operator. If possible, connected vertices communicate
through shared memory pipes. Otherwise, they communicate through compressed files
stored in a distributed file system. The job is then deployed and executed in the Dryad
cluster.

We wrote the core fof(), mergefof() functions as user-defined operators. Because
both functions have to see all data in the input data partition, we used DryadLINQ’s
apply construct which exposes the entire partition to the operator rather than a single
data at a time. Other than the user defined operators, we used standard LINQ operators
not only for the initial data partitioning and relabeling but also for the post-processing
output of each phase. We also used the lazy evaluation feature of the LINQ framework
to implement the iterative hierarchical merge phase. Thus, we only submit a single
Dryad job for the entire dFoF task. Using MapReduce, we would have to schedule one
MapReduce job for the local clustering, and also one for each iteration of the iterative
hierarchical merge process. The entire job coordination is written in only 120 lines out
of a total of 3000 lines. The final Dryad plan to process dataset in Section 6 consists of
1227 vertices with three hierarchical merges.
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For the node-local spatial index used in the FoF computation (and also partitioning
the data), we chose to use a kd-tree [35] because of its simplicity. We implemented both
a standard version of the kd-tree and the optimized version presented in Section 4.1.

6 Evaluation

In this section, we evaluate the performance and scalability of the dFoF clustering al-
gorithm using two real world datasets. We execute our code on an eight-node cluster
running Windows Server 2008 Datacenter edition Service Pack 1. All nodes are con-
nected to the same gigabit ethernet switch. Each node is equipped with dual Intel Xeon
E5335 2.0GHz quad core CPU, 8GB RAM, and two 500GB SATA disks configured as
RAID 0. Each Dryad process requires 5GB RAM to be allocated, or it is terminated.
This constraint helps quickly detect unacceptable load imbalance. Note that we tuned
neither the hardware nor software configurations other than implementing the algorith-
mic optimizations that we described previously. Our goal is to show improvements in
the relative numbers rather than try and show the best possible absolute numbers.

We evaluate our algorithm on data from a large-scale astronomy simulation currently
running on 2048 compute cores of the Cray XT3 system at the Pittsburgh Supercom-
puting Center [36]. The simulation itself was only about 20% complete at the time
of submission. Therefore we use two relatively early snapshots: S43 and S92 corre-
sponding respectively to 580 million years and 1.24 billion years after the Big Bang.
Each snapshot contains 906 million particles occupying 43 GB in uncompressed binary
format. Each particle has a unique identifier and 9 to 10 additional attributes such as
coordinates, velocity vector, mass, gravitational potential stored as 32-bit real numbers.
The data is preloaded into the cluster and is hash partitioned on the particle identifier at-
tribute. Each partition is also compressed using the GZip algorithm. Dryad can directly
read compressed data and decompresses it on-the-fly as needed.

For this particular simulation, astronomers set the distance threshold (ε) to
0.000260417 in units where the size of the simulation volume is normalized to 1. Both
datasets require at least two levels of hierarchical merging.

As the simulation progresses, the Universe becomes increasingly structured (i.e.,
more stars and galaxies are created over time). Thus, S92 has not only more clusters
(3496) than S43 (890) but also has denser regions than S43. The following table shows
the distribution of the number of particles within distance threshold (i.e., density of
data):

Percentile 25 50 75 90 99 99.9 100

S43 6 16 97 373 1,853 8,322 10,494
S92 8 44 1,370 41,037 350,140 386,577 387,136

S92:S43 1.33 2.75 14.12 110.02 188.96 46.45 36.89

Ideally, the structure of data should not affect the runtime of the algorithm so that sci-
entists can examine and explore snapshots taken at any time of simulation in a similar
amount of time.

Evaluation summary. In the following subsections, we evaluate our dFoF Dryad im-
plementation. First, we process both snapshots using an eight-node Dryad cluster while
varying the partitioning scheme and the spatial index implementation. These experi-
ments enable us to measure the overall performance of the algorithm and the impact of
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Fig. 5. Average time to cluster entire snapshot. Average of three executions except for jobs that
took longer than 20 hours. Missing bar is due to a failure caused by an out-of-memory error. As
the figure shows, with both optimizations enabled, both snapshots are processed within 70 min.
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Fig. 6. Runtime breakdown across phases. Average of three executions except jobs that take
longer than 20 hours. The initial fof() takes more than 40% of total runtime. The three-level
hierarchical merges, mergefof(), took less than 4% of total runtime. “Other” represents time
to take to run all standard vertices such as filter, partition, joins to glue the phases. Overall, fof()
is the bottleneck and completely dominates when the data is highly skewed and an ordinary kd-
tree is used.

our two optimizations. Second, we evaluate dFoF’s scalability by varying the number
of nodes in the cluster and the size of the input data. Finally, we compare dFoF to the
existing OpenMP implementation that the astronomers use today. Overall, we find that
dFoF exhibits a near linear speedup and scaleup even with suboptimal hardware and
software configurations. Additionally, dFoF shows consistent performance regardless
of skew in the input data thanks to the optimization in Section 4.

6.1 Performance

In this section, we use the full eight-node cluster, varying the partitioning scheme and
spatial index implementation. For the partitioning scheme, we compare deterministic
uniform partitioning (Uniform) described in Section 3 and dynamic partitioning (Non-
uniform) described in Section 4.2. We also compare an ordinary kd-tree implementation
(Normal) to the optimized version (OPT) described in Section 4.1. We repeat all exper-
iments three times except for Uniform partitioning using the Normal kd-tree because it
took over 20 hours to complete. For Non-uniform partitioning, we use a sample of size
0.1%. We show the total runtime including sampling and planning times. There is no
special reason for using a small sample except to avoid a high overhead of planning. As
the results in this section show, even small samples work well for this particular dataset.

Figure 5 shows the total run times for each variant of the algorithm and each dataset.
For dataset S43, which has less skew in the cluster-size distribution, all variants com-
plete within 70 minutes. However, when there is high skew (i.e., more structures as
in S92), the normal kd-tree implementation takes over 20 hours to complete while the
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Fig. 7. Distribution of FoF runtime per partition. Uniform partitioning yields higher variance
in per partition runtime than Non-uniform partitioning. FoF with optimized index traversal runs
orders of magnitude faster than FoF with normal implementation in S92 dataset. Note that the
y-axis for S92 is in log scale.

optimized version still runs in 70 minutes. Uniform-OPT over snapshot S92 did not
complete because it reached full memory capacity while processing a specific data par-
tition, causing the failure of the entire query plan as we discuss in more detail below.

Figure 6 shows the average relative time taken by each phase of the algorithm. The
hierarchical merge occurs in order of mergeLv1, mergeLv2, and mergeLv3. As the
figure shows, local clustering, fof, takes more than 40% of total runtime in all cases
and completely dominates when there is high-skew in the data and a normal kd-tree
is used. All other user-defined functions account for less than 4% of total runtime. All
other standard operators account for over 50% of total runtime, but the total is the sum of
more than 30 operators including repartitions, filters, and joins to produce intermediate
and final result for each level of the hierarchical merge. In the following subsections,
we report results only for the dominant fof phase of the computation and analyze the
impact of different partitioning schemes and different spatial index implementations.

In Figures 7 and 8, we measure the per-node runtime and peak memory utilization
of the local fof phase. We plot the quartiles and minimum and maximum values. Low
variance in runtime represents a balanced computational load, and low variance in peak
memory represents balance in both computation and data across different partitions. In
both Figures 7 and 8, Non-uniform partitioning shows a tighter distribution in runtime
and peak memory utilization than uniform partitioning. With uniform partitioning, the
worst scenario happens when we try the optimized kd-tree implementation. Due to high
data skew, one of the partitions runs out of memory causing the entire query plan to fail.
This does not happen with normal kd-tree and uniform partitioning because the opti-
mized kd-tree has a larger memory footprint as discussed in Section 4.1. Non-uniform
partitioning is therefore worth the extra scan over the entire dataset.

As Figure 7 shows, dFoF with the optimized index (Section 4.1) significantly outper-
forms Normal implementation especially when there is significant skew in the cluster-
size distribution. Thanks to the pruning of visited subtrees, the runtime for S92 remains
almost the same as that for S43. However, the optimization is not free. Due to the extra
tracking flag, the optimization requires slightly more memory than the ordinary imple-
mentation as shown in Figure 8. The higher memory requirement could be alleviated
by a more efficient implementation such as keeping a separate bit vector indexed per
node identifier or implicitly constructing a kd-tree on top of an array rather than keeping
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Fig. 9. Speedup. dFoF runtime for each dataset with varying number of nodes. dFoF speedup is
almost linear. OS43 and OS49 are the result of OpenMP implementation of FoF with varying
degree of parallelism. Note that S43 overlaps with S92.

pointers to children in each node. Overall, however, the added memory overhead is
negligible compared with the order-of-magnitude gains in runtime.

6.2 Scalability

In this section, we evaluate the scalability of the dFoF algorithm with non-uniform data
partitioning and the optimized kd-tree. In these experiments, we vary the number of
nodes in the cluster and redistribute the input data only to the participating nodes. All
reported results are the average of three runs. The standard deviation is less than 1%.

Figure 9 shows the runtime of dFoF for each dataset and increasing number of com-
pute nodes. Speedup measures how much faster a system can process the same dataset
if it is allocated more nodes [12]. Ideally, speedup should be linear. That is, a cluster
with N nodes should process the same input data N times faster than a single node.
For both datasets, the runtime of the dFoF is approximately half as long as we double
the number of nodes, showing a close-to perfect linear speedup. We do not present the
number for the single-node case due to an unknown problem in the Dryad version we
use; the system did not schedule remaining operators if currently running operator takes
too long to complete.
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Fig. 10. Scaleup. Runtime of dFoF with increasing data size proportional to the number of nodes.
Except for the two node case where scheduling overhead pronounced, dFoF scales up in linear.

Figure 10 shows the scaleup results. Scaleup measures how a system handles data
size that has increased in proportion to the cluster size. Ideally, as the data and cluster
size increase proportionally to each other, the runtime should remain constant. To vary
the data size, we subsample the S43 and S92 datasets. For 4-node and 8-node configura-
tions, the scaleup is close to ideal: the ratio of runtimes to the single-node case are 0.99
and 0.91 respectively. The 2-node experiment showed a scaleup of only 0.83 and 0.78.
We investigated the 2-node case and found that the size of the subsampled dataset was
near the borderline of requiring one additional hierarchical merge. Thus, each partition
was underloaded and completed quickly, overloading the job scheduler and yielding a
poorer scaleup.

Overall, considering our suboptimal hardware configuration, the scalability of dFoF
is excellent.

6.3 Compared to OpenMP Implementation

Astronomers currently use a serial FoF implementation that has been moderately par-
allelized using OpenMP [37] as a means of scheduling computation across multiple
threads that all share the same address space. OpenMP is often used to parallelize pro-
grams that were originally written serially. The two biggest drawbacks of OpenMP are
(1) non-trivial serial portions of code are likely to remain, thereby limiting scalability
by Amdahl’s Law; (2) the target platform must be shared memory. The serial aspects of
this program are state-of-the-art in terms of performance — they represent an existing
program that has been performance-tuned by astrophysicists for over 15 years. It uses
an efficient kd-tree implementation to perform spatial searches, as well as numerous
other performance enhancements. The OpenMP aspects are not performance-oriented,
though. They represent a quick-and-dirty way of attempting to use multiple process-
ing cores that happen to be present on a machine with enough RAM to hold a single
snapshot.

The shared-nothing cluster that we used for the previous experiments represents a
common cost-efficient configuration for modern hardware: roughly 8 cores per node
and one to two GB of RAM per core. Our test dataset is deliberately much larger than
what can be held in RAM of a single one of these nodes. The astrophysics FoF applica-
tion must therefore be run on an unusually large shared-memory platform. In our case,
the University of Washington Department of Astronomy owns a large shared-memory
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system with 128 GB of RAM, 16 Opteron 880 single-core processors running at 2.4
GHz, and 3.1 TB of RAID 6 SATA disks.

At the scale of 128 GB of RAM, it is now cheaper to buy a single shared-memory
system than to distribute the same 128 GB across 16 nodes. However, this cost-savings
breaks down at the scales beyond 128 GB. For example, it is not possible to find sym-
metric multiprocessing systems (SMPs) with 1TB of RAM. At this scale, certain ven-
dors offer systems with physically distributed memory that share a global address space
(“Non-Uniform Memory Access” or “NUMA” systems), but these are generally more
expensive than building a cluster of distributed-memory nodes from commodity hard-
ware. Furthermore, the ostensible advantage of the shared-nothing architecture over a
large, shared-memory system is the scalability of I/O.

Consequently, our goal is to achieve competitive performance with the astrophysics
FoF running on the shared-memory system with our Dryad version running on the
shared-nothing cluster (i.e., 64 GB of total RAM — just barely large enough to fit
the problem in memory). If we do this, then we have demonstrated that the MapReduce
paradigm is an effective means of utilizing cheaper distributed-memory platforms for
clustering calculations at scales large enough to have economic impact.

In order to normalize serial performance, we ran the existing astrophysics FoF ap-
plication on a smaller dataset on both the shared-memory system and our cluster. The
dataset was small enough to fit completely into RAM on a single cluster node. The
shared-memory platform took 61.4 seconds to perform the same analysis that required
34.8 seconds on a cluster node excluding I/O. We do not include I/O in our normaliza-
tion because the system’s storage hardware is still representative of the current state-
of-the-art; only its CPUs are dated. In the following results, we normalize the timings
of the CPU portion of the test on shared-memory system to the standard of the Dryad
cluster hardware.

Running the astronomy FoF algorithm in serial on the shared-memory system for
our test dataset S43 (with the same parameters as our cluster runs) took 5202 seconds
in total — only 1986 of this was actual FoF calculation, the rest was I/O. In comparison,
our Dryad version would likely have taken an estimated 30,000 seconds, as extrapolated
from our optimized Dryad 2-node run assuming ideal scalability. However, since we do
not actually know the serial runtime of Dryad on this dataset, it is difficult to compare a
parallel Dryad run directly to our serial FoF implementation, since there is undoubtedly
parallel overhead induced by running Dryad on more than one node.

The runtime comparisons are much more interesting for S92. The particle distribu-
tion in S92 is more highly clustered than S43, meaning that the clusters are larger on
average, and there are more of them. In this case, the astrophysics FoF takes quite a
bit longer: 16763 seconds for the FoF computation itself and 19721 for the entire run
including I/O, compared to roughly 30,000 seconds for a serial Dryad run of the same
snapshot. The OpenMP implementation still wins, but the difference is smaller than
for S43.

One can also see the effect of S92’s higher clustering on the OpenMP scalability.
The OpenMP version is not efficient for snapshots with many groups spanning multiple
thread domains. This limitation is because multiple threads may start tracking the same
group. When two threads realize they are actually tracking the same group, one gives up
entirely but does not contribute its already-completed work to the survivor. While this
is another optimization that could be implemented in the OpenMP version, astronomers
have not yet done so. This effect can be seen in Figure 9.
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Since our Dryad version performed similarly on both snapshots, we conclude that our
methodology achieves scalability in both computational work and I/O. The advantage
of our implementation can be seen when we run on more nodes. This advantage allows
us to match the performance of the astrophysics code on S43 (3513 seconds vs. 4141
seconds) and to substantially outperform it for S92 (11763 seconds vs. 4293 seconds).
This idea is in keeping with the MapReduce strategy: We employ a technique that may
be less than optimally efficient in serial, but that scales very well. Consequently, we
have achieved our goal of reducing time-to-solution on platforms that offer an economic
advantage over current shared-memory approaches at large scales.

7 Conclusion

Science is rapidly becoming a data management problem. Scaling existing data analysis
techniques is very important to expedite the knowledge discovery process. In this paper,
we designed and implemented a standard clustering algorithm to analyze astrophysical
simulation output using a popular MapReduce-style data analysis platform. Through
experiments on two real datasets and a small eight-node lab-size cluster, we show that
our proposed dFoF algorithm achieves near-linear scalability and performs consistently
regardless of data skew. To achieve such performance, we leverage non-uniform data
partitioning based on sampling and introduce an optimized spatial index approach. An
interesting area of future work, is to extend dFoF to the DBSCAN algorithm.
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Database Design for High-Resolution LIDAR

Topography Data�
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Abstract. The advent of high-resolution mapping technologies such as
airborne Light Detection and Ranging (LIDAR) has revolutionized the
study of processes acting on the earth’s surface. However, the massive
volumes of data produced by LIDAR technology pose significant techni-
cal challenges in terms of the management and web-based distribution of
these datasets. This paper provides a case study in the use of relational
database technology for serving large airborne LIDAR “point cloud”
datasets, as part of the National Science Foundation funded OpenTo-
pography facility. We have experimented with the use of spatial exten-
sions in the database as well as implementation solutions from a single
partition database on a supercomputer resource to a multi-partition im-
plementation on a shared-nothing commodity cluster for management of
these terabyte scale datasets. We also describe future directions being
pursued to support binary data formats and for scaling to larger system
configurations.

1 Introduction

High-resolution topography data acquired with LIDAR (Light Detection and
Ranging) are revolutionizing the study of geomorphic processes acting along the
Earth’s surface. These data are emerging as a fundamental tool for research on a
variety of topics ranging from earthquake hazards to ice sheet dynamics. LIDAR
topography data allow earth scientists to study the processes that contribute
to landscape evolution at resolutions not previously possible and provide new
insights into many geologic phenomena, e.g. [1,2,3].

LIDAR data are currently being acquired by local, state, and federal agen-
cies across the United States for a wide range of applications, from earthquake
hazard studies (including for recent earthquakes in Haiti and Mexicali, near the
California/Baja California border) to mapping utility corridors and other vital
infrastructure.

Although high-resolution topographic data collection is burgeoning for re-
search, planning, and regulatory activities, the volume of data generated by the
technology currently impedes wider utilization. On the one hand, many orga-
nizations that acquire LIDAR topography struggle to manage the datasets due
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to their relatively large size and the fact that most organizations do not have
the necessary disk capacity and bandwidth, nor the in-house expertise, to make
these data available via the Internet for community access. On the other hand,
these acquisitions are often undertaken with public funding by federal, state,
and local agencies at a cost of a few hundred dollars per square kilometer, thus
it is important to maximize the utilization of such data by providing easy online
access to a range of potential users.

The NSF-funded OpenTopography facility (www.opentopography.org) pro-
vides a cyberinfrastructure-based platform to improve web-based access to
high-resolution LIDAR topography data, online processing tools, and deriva-
tive products. The OpenTopography effort began as a research and development
activity within the GEON project [4], and has since been funded as an NSF facil-
ity with an active user community of thousands of scientists, educators, students,
and government agency users. The central component of the OpenTopography
Facility is the OpenTopography Portal, which provides access to LIDAR data
in various formats to serve LIDAR users at various levels of expertise. These in-
clude “raw” LIDAR point cloud data emphasized here, standard LIDAR-derived
digital elevation models (DEMs), and easily accessible KMZ-based Google Earth
products [7].

The sections that follow describe the design of the OpenTopography LIDAR
database, its evolution since the early phases of the project, lessons learned and
future directions.

2 The LIDAR Point Cloud Data Management System

The primary focus of this paper is on the management of the raw LIDAR “point
cloud” datasets representing discrete measurements of the earth’s surface using
IBM’s DB2 database.

2.1 LIDAR Point Cloud Data Format

LIDAR point cloud data are a collection of the individual geographic coordi-
nates (e.g. Universal Transverse Mercator projection, UTM [9]) of each individ-
ual return of the outgoing pulse of the laser scanning system. Each return is
represented as a record in the point cloud data file and includes the horizontal
coordinates of the return (x, y) and the elevation (z), as well as other attributes
that provide additional information about that data point. For example, each
data point in the Northern San Andreas Fault point cloud dataset [8] includes
information about the number of returns recorded by the laser scanner (nore-
turns), orientation of the scanner at the time of the shot (offnidar), the intensity
of the return as a 256 grey scale value (returnint), a classification parameter that
designates whether the return came from the ground, vegetation, or a structure
(classification), and date and time of collection tied to a high-precision GPS time
stamp (time), as shown in this data row extract:
[x, y, z, date, time, returnnumber, noreturns, offnidar, returnint, classification]
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6048776.74, 2240379.76, 4.43, 1204, 515158.764, 1.00,5,12.62,12,G

The dataset contains approximately 1.2 billion point returns and was originally
organized in groups of files corresponding to USGS Quarter Quadrangles [10].

The attributes associated with each data point are critical to applications
of the data. For example, a user can query on the classification attribute to
perform “virtual deforestation” by selecting only points classified as “ground
return”, thereby revealing the ground structure beneath a vegetation canopy.
While the NSAF dataset attributes are typical of most LIDAR data, the list
of attributes can vary among datasets and the database must be designed to
accommodate such variations.

2.2 Data Preparation and Loading

As shown in Figure 1, the raw LIDAR point cloud data needs go through a pre-
processing and transformation phase before it can be loaded into the database.
A typical dataset may contain billions of point returns and range anywhere
from 100’s of GB to a few TB depending on its extent and attributes. They are
usually shipped to the OpenTopography facility on hard drives or transfered via
an FTP server and arrive organized into numerous hetrogenous files of varying
point densities and spatial extents.

Since the raw LIDAR data are collected by a variety of vendors, datasets may
also arrive in different formats, with different compression schemes, and differ-
ent attributes. In some cases, even within the same dataset, different files may
contain data recorded in different geographic projections. A pre-processing step
is required to convert all data into the same projection system. The first phase
of data preparation involves extracting data, error checking, and converting data
into a target projection system, as necessary. This initial validation phase is then
followed by a transformation phase where the data are reorganized to create a set
of output files with more uniform data distribution across files. We have found
that for large datasets usually in excess of a billion rows, it is more efficient to
distribute the data across multiple tables in the database rather than storing all
data in a single very large table.

Each LIDAR dataset is first analyzed based on its spatial extent and average
point density to determine the number of tables across which it should be dis-
tributed in the database. For example, in the case of the Northern San Andreas
(NSAF) dataset, all files within a USGS Quarter Quadrangle were aggregated
into a single file, which was then implemented as a single table in the database.
Thus, the dataset comprising of approximately 1 billion records is distributed
uniformly across 45 tables, with an average of about 25 million rows per table.
The specific implementation, including the number of tables and size of each
table, will vary for each LIDAR dataset.

Data access can be further speeded up by using a metadata table, which serves
as an additional index layer. The metadata table stores information including the
table name, the spatial extent corresponding to the data in that table, number
of rows in the table, and geographic projection for the data in the table. A
user query in the form of a bounding box is first applied to the metadata table
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Fig. 1. Data preparation and loading workflow

to obtain a subset of tables whose extents intersect with the bounding box.
Occassionaly, there may be additional data appended to an existing LIDAR
dataset. This is done with logging turned off, to improve performance.

2.3 Spatial Database Implementation

We use IBM’s DB2 database for storing the LIDAR point cloud data. We use
standard regular data types to store all information including coordinates, ele-
vation and related attributes. The DB2 Spatial Extender enables storage, SQL-
based access and management of spatial data in DB2 by supporting a set of
spatial data types, viz. points, lines and polygons, along with related spatial
functions that interoperate with these data types [11,12,13]. The spatial exten-
der also supports a standard set of spatial reference systems in which the LIDAR
data may be encoded, with the ability to create new custom ones.

The DB2 spatial data type ST Point constructs a geometry point (“spatial
column”) from the X and Y coordinates (latitude, longitude) in the LIDAR
data set. Prior to populating the spatial column, it is necessary to define the
Spatial Reference System (SRS) to be used to interpret the coordinates. All
spatial queries and functions on a table then operate on this spatial data column.
Continuing with our example of the NSAF dataset, which was collected in the
California State Plane Zone II coordinate system [9], we define the appropriate
spatial reference system (SRS) as follows:

db2se create_srs LIDARDB -srsName "NSAF" -srsID 1001 -xScale 1
-coordsysName "NAD_1983_STATEPLANE_CALIFORNIA_II_FIPS_0402_FEET"

In the above command, LIDARDB is the name of the database, NSAF is the
name of the SRS being created and 1001 is the id associated with the SRS. One
can then register the spatial column in the table to this SRS. The ST Point user
defined function (UDF) is then used to populate the spatial column using the
X, Y coordinates and SRS id as follows:
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update NSAF.TABLE01 set SPATIALPOINT = ST_POINT(X, Y, 1001)

Once the spatial column is populated, it needs to be indexed using a grid index,
optimized for two-dimensional queries and created on the X and Y dimensions
of a geometry [12]. The spatial index scan is done in “strips” the width of a
grid cell with the height of the actual query window. If a small grid size is set
compared to the average size of the query window, there may be an excessive
number of index entries scanned. If the grid size is set too large, there may
be an inordinate number of geometry data examinations. The grid size can be
optimized by either utilizing the index advisor that is provided or by studying
the spatial query window patterns and using that information to modify grid size
though performance testing. We first arrived at our index grid sizes via a series
of synthetic query performance tests on the dataset. Over a period of time, we
were also able to measure the average actual query size for the NSAF dataset,
which is about 1, 454, 000 points (rows) per query. In cases where query window
size estimates and patterns are not available, it is more efficient to make the
spatial index grid size larger rather than smaller. With a larger grid size, a large
number of points may be assigned the same grid key value but the filtering is
fast during the index scan because the actual point coordinates are also stored
in the key. If the grid size is small, there may be a large number of “strips”
corresponding to the query window, resulting in numerous restarts of the index
scan [14].

The command to create a spatial index for the SPATIALPOINT column is:

create index SPI on NSAF.TABLE01 (SPATIALPOINT) extend using
SPATIAL_INDEX (1000,0,0)

The typical LIDAR spatial query calls the comparison function EnvelopesIn-
tersect, since it utilizes the spatial grid index to provide improved query per-
formance. A spatial query that returns all ground (G) classified LIDAR points
within a specified bounding box coordinates is as follows:

select SPATIALPOINT..ST_X, SPATIALPOINT..ST_Y, Z from NSAF.TABLE01
where EnvelopesIntersect (SPATIALPOINT, 6048700.00, 2240300.00,
6048900.00, 2240700.00, 1001) = 1 and CLASSIFICATION=’G’

2.4 Single Partition Implementation

In the initial stages, efficient LIDAR data management and concurrent access
to these massive volumes was provided by leveraging the high-end hardware
infrastructure and software resources provided by DataStar, a TeraGrid cluster
computing resource located at the San Diego Supercomputer Center [15]. We
utilized one of the nodes in the DataStar cluster, which was a 32-way SMP
node with P690 processors, each running at 1.7 GHz, and with 128 GB of node
memory. The node was connected to a storage area network (SAN) disk via a
fibre channel link for fast data movement at a rate of approximately 4 GB/sec.
Eight terabytes of SAN disk were allocated for hosting the LIDAR database,
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which were configured in RAID 5. DataStar ran AIX 5.2, IBM’s 64-bit version
of the Unix OS. The powerful hardware with a 64-bit OS and large real memory
and large capacity fault tolerant disk space made this an ideal system for hosting
the LIDAR database.

The 64-bit version of DB2 UDB Enterprise Server Edition (ver.8.2) along with
the Spatial Extender component was installed on DataStar. The storage config-
uration was optimized by creating eight large logical disks using disk striping to
spread the I/O load across multiple physical disks, while maintaining reliability
using RAID-5 in case of individual disk failures. The set of tables corresponding
to each LIDAR dataset is stored in its own, separate tablespace with a dedi-
cated buffer pool. Since each dataset has its own “hot zone” or area of interest,
frequently accessed rows in each dataset can remain in memory. The tablespace
is spread across all available disks by creating a tablespace container in each
disk. All queries involve processing sequential subsections of the dataset. Thus,
prefetching and parallel I/O significantly improve overall query performance.

Apart from providing fast query response times, DataStar also provided im-
proved data loading and spatial index generation times. When compared to a
LIDAR database installed on a Dell PowerEdge 2650 server, load times on the
LIDAR database on DataStar were approximately four and half times faster and
spatial data generation was eight times faster.

However running a database on a shared TeraGrid resource had its disadvan-
tages. There were other applications utilizing the same processors and shared
memory, leading to poor database performance at times of heavy shared usage.
Thus, repeatability and scaling of performance is an issue, since it is difficult
to achieve isolation of an individual subsystem in a shared, supercomputing en-
vironment. In the next section we describe our approach based on the use of
commodity clusters and IBM DB2’s “partitioned database” (aka shared noth-
ing) feature.

2.5 Partitioned Database Implementation

A key reason for using the partitioned implementation is to take advantage of the
processing power and distributed memory across multiple systems at reasonable
costs (lower costs than a large multiprocessor system). In a partitioned database,
the data are stored across multiple partitions or nodes that function together as
a single database engine. Each partition has an independent database manager,
each with its own data, indexes, logs and configuration files. Tables can be cre-
ated on single or multiple partitions and the data (rows) are distributed across
partition using range or hash partitioning on a “partitioning key”. The query
optimizer utilizes properties of the data partitioning scheme to optimize query
performance.

Partitioned Database Optimizations. For the LIDAR database, we create
four partition groups to account for the variations in the database table sizes.
Small tables, like the metadata table mentioned before, are created on a single
node partition group, while larger tables are created in medium or other larger
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partition groups. This organization scheme gives us the maximum performance
to overhead ratio.

An important consideration in a partitioned environment is the choice of a
partitioning key for each table. We employ hash partitioning: for each row in a
table, the hash algorithm is applied to the specified partitioning key. The result
of the hash is a number between 0 and 1023, called the partition number. At the
time of creation of a nodegroup, the 1024 partitions are distributed across all
the nodes of the nodegroup in round-robin fashion. This mapping between the
partition and the node is stored in a partitionmap. For a given row, the hash
value obtained from the hash function, which is used to lookup the partitionmap
to determine which node the row will reside on [16]. Ideally, the data should be
evenly distributed across all the nodes in a nodegroup to maximize parallelism
and performance. For LIDAR datasets, the choice of partitioning key depends on
a number of factors including the geographical orientation of the dataset and the
available attributes that are candidate partitioning key attributes. For example
the NSAF dataset extends in a narrow North-South swath along the coast. In
this dataset, the y attribute will have many distinct values, compared to x, and
choosing this as the partitioning key results in a better distribution of the data
across nodes. In other datasets, other attributes like a GPS timestamp column,
may serve better as the partitioning key due to the many distinct values.

Spatial Extender in a Partitioned Environment. DB2 Spatial Extender
functionality works in a similar manner in a partitioned database as it does in
a regular single partition environment. However, when spatially enabling the
database in a partitioned environment, we need to specify that the spatial cat-
alog tables also reside on the same node as the main DB2 catalog. We also need to
alter the spatial data generation phase. The ST Point UDF queries the SRS defini-
tion tables to get the values of the SRS offsets and multipliers needed to construct
a geometry, which it then passes to the GsePoint which is an internal UDF. By
using the GsePoint UDF directly we can avoid the additional table access which
force table queue broadcasts in a partitioned environment [14]. Using this internal
UDF also significantly improves the performance of the spatial point generation
process as the DB2 optimizer executes this update query in parallel.

While the primary additional cost in a partitioned environment is the increase
in the one time data partitioning and load phase, this is overshadowed by the
benefits in terms of improved performance. This partitioned database architec-
ture provides better scalability and lower costs. New commodity machines can
be added to the cluster and the database can be expanded across them.

Spatial Overhead and Data Growth Implications. One disadvantage of
using spatial data types in the database is a significant increase in storage
overhead. The ST Point data type is in binary format and causes inflation on
database disk to approximately six times the size of the original data. For host-
ing seven datasets with 27.2 billion LIDAR returns, the database size grew to
approximately 10.4 TB including spatial indexes. The other hidden overhead is
the time taken to generate the spatial data and the corresponding spatial grid
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indexes. As the number of LIDAR datasets increase and more data is loaded,
disk space also becomes a major issue.

The switch to a partitioned environment allowed us to experiment with drop-
ping the spatial index and replacing it with “regular” (B-tree) indexes on X and
Y attributes. A typical bounding box query can still run quite efficiently using the
X and Y columns indexes (using B-tree indices). This switch in implementation
saves significant amount of disk space and also eliminates the spatial generation
and grid index creation phases that were necessary after loading the data into the
database. With this modification, the current LIDAR database is now about 3 TB
in size and hosts about 31 billion LIDAR returns from eight distinct datasets in-
cluding EarthScope Northern California, Intermountain Seismic Belt, Southern
and Eastern California and Alaska Denali Totschunda LIDAR projects.

The binary LAS format is gaining popularity as a standard for LIDAR data
exchange. The data sizes are significantly smaller compared with ASCII data
and the format includes a built-in header for recording metadata [6]. We plan
to extend the capabilities of OpenTopography to incorporate the ability to in-
gest and serve data in LAS format. The database will thus need to provide the
capability to support queries to the LAS-based datasets as well as the existing
LIDAR ASCII data. We plan to take advantage of DB2’s object-relational fea-
tures that will allow programs written in various languages like C and Java to
be bound to the database as “external” user defined functions (UDFs). With
the LAS metadata stored in regular tables, these UDFs can then be used along
with standard SQL to query and subset the LAS files.

3 Future Work

One of the challenges arising from incorporating the LAS format is the manage-
ment of these binary files in a partitioned enviroment. The binary files themselves
could be reorganized to support range-partitioning or hash-partitioning of the
data within the files. We will investigate different techniques for optimally dis-
tributing the files, and hence the workload, across the nodes of a partitioned
database.

We also plan to investigate other RDBMS offerings including ORACLE Spa-
tial, which provides some packaged solutions for management of LIDAR data.
This includes new data types to support point cloud data as well as spatial
functions to generate topological data models from this data [17].

Another key direction is associating more processing capabilities closer to the
data. For example, we plan to integrate digital elevation model (DEM) processing
capability, which involves generation of different types of grids from point cloud
data, within the database itself in the form of stored procedures and UDFs.
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Abstract. A growing number of scientific data archives set up Web interfaces for
researchers and sometimes for the general public. While these services often de-
ploy sophisticated search facilities, these are constrained to metadata level where
conventional SQL/XML technology can be leveraged; no comparable retrieval
support is available on original observation or simulation data.

For raster data in the earth sciences, this is overcome by the 2008 Open GeoSpa-
tial Consortium (OGC) Web Coverage Processing Service (WCPS) standard. It
defines a retrieval language on multi-dimensional raster data for ad-hoc naviga-
tion, extraction, aggregation, and analysis. WCPS is part of the Web Coverage
Service (WCS) suite which additionally contains a simple retrieval service and a
upload and update service for raster data.

In this contribution we present PetaScope , an open-source implementation of
the complete WCS suite. Most of the suite’s functionality is available already,
and a first code version has been released. An online showcase is being built, and
the system will soon undergo real-life evaluation on mass data. After briefly in-
troducing the WCPS language concept we discuss the architecture of the service
stack based on examples publicly available on the demo website.

1 Introduction

Demand for unlimited availability of scientific data is rapidly increasing, be these col-
lected as observations and simulation results. This goes far beyond the traditional ftp
archives where files with some cumbersome names had to be downloaded as a whole,
buried in directory hierarchies with similarly cumbersome names. Dynamic subsetting
is a must today, based on a variety of individual criteria. To this end, sophisticated meta-
data catalogs with powerful retrieval capabilities are being built; ontologies, controlled
vocabularies and other techniques help to guide search.

This search, however, usually is based on the metadata alone; selection criteria based
on the ground truth data themselves are not supported well, in particular when these data
are of high volume and difficult to represent in SQL-supported relational databases. For
example, on a three-dimensional hyperspectral satellite time series cube with axes x,
y, and t questions like ”when did summer ice coverage fall below 50% in some given
area?” and ”a vegetation timeline for some given area and time period” are important
for climate change research questions. They require significant processing of the ground
truth data.
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Service providers prefer to pre-calculate such data and provide them for plain down-
load for several reasons. One reason is the fear that naive users or denial-of-service
attacks might misuse processing capabilities to block the service as such. Another is
that there is no generally accepted request language on multi-dimensional raster data
which can do a job comparable to SQL in metadata search. The net effect is that only
very selected, predefined queries can be answered by such services, which constitutes a
severe lack of flexibility and hinders exploitation significantly.

Recognizing this shortcoming, the Open GeoSpatial Consortium (OGC), which de-
velops and maintains open, interoperable geo service standards, in 2008 has adopted
the Web Coverage Processing Service (WCPS) which offers a high-level raster query
language suitable for Web-based retrieval from large, multi-dimensional sensor, im-
age, and statistics data archives. WCPS is part of the Web Coverage Service (WCS)
standards suite. WCS, as a base service, allows for simple subsetting, scaling, repro-
jection, and format encoding requests. WCS-T, a WCS extension like WCPS, defines
an open interface for manipulating coverages [22]. The term ”coverage”, in OGC and
ISO speak, means ”space-time varying phenomenon” [13], in current practice: spatio-
temporal raster data.

In this contribution we present PetaScope , an implementation of the complete WCS
suite, encompassing WCS, WCS-T, and WCPS. As the latter constitutes the most com-
plex functionality we put particular emphasis on this part. The next section gives a brief
introduction to the standards addressed and their core functionality. Section 3 presents
addresses the PetaScope architecture, related work is discussed in Section 4. Section 5
describes the demo, and Section 5 gives a conclusion.

2 The OGC WCS Standards Suite

In this section we give a brief overview on the WCS suite of geo raster standards;
the official website is [15]. ISO 19123 [13] defines a coverage as ”a function from a
spatio-temporal domain to an attribute domain”. This is adopted by WCS [23], which
currently only considers regular rasters (arrays in a programming sense). Simplified,
a WCS coverage consists of a multi-dimensional array described by an axis-parallel
bounding box (its domain), one or more coordinate reference systems (CRSs) in which
it can be queried (one of which must allow addressing in integer array coordinates), and
a locally unique title (i.e., identifier). The array cell type (its range type) consists of a
list of named atomic components (”bands”). For each range component its null values
can be indicated, plus the interpolation methods applicable to this component.

All coverage service protocols share two initialization request types. If information
about a service is not known otherwise, the client will issue a GetCapabilities request to
obtain data and service information like specification version supported, protocols sup-
ported, and coverages offered. Further details about selected coverages can be obtained
via a DescribeCoverage request; the response contains all relevant metadata about the
coverages inquired, such as coverage domain extent and range (”pixel”, ”voxel”) type
and CRSs in which the coverage can be addressed.

Further request types are service specific. WCS itself defines the GetCoverage re-
quest for subsetting, scaling, reprojecting, and encoding a coverage [23]. WCS-T adds
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the Transaction request which serves to add a new coverage, update an existing cover-
age partially or completely with new data, or to delete a coverage from a WCS repos-
itory [22]. WCPS, finally, adds a ProcessCoverages request [1]. In the remainder we
will focus on WCPS queries.

A WCPS expression iterates over lists of server-side stored coverages. A variable
is bound to each element inspected; several variables, each iterating over one list, can
be indicated, thereby emulating nested loops. During each iteration, an optional filter
predicate is applied which can suppress the current item combination in the result list.
The result of each iteration is generated according to a processing clause using the
coverage variables. Among the processing operators available are

– spatio-temporal subsetting operations, in particular cutout (trim) and slicing;
– induced operations which apply an operation available on the cell type simulta-

neously to all cell values; these include unary and binary arithmetic, exponential,
trigonometric, and boolean operations;

– condensers allow to derive summary information (such as count, avg, some, all);
– a general array constructor to derive completely new arrays (such as histograms);
– reprojection of the coverage into another coordinate reference system;
– auxiliary functions, such as metadata extraction.

To convey the flavor of the language, whose syntax tentatively has been designed close
to XQuery, consider derivation of the Normalized Difference Vegetation Index (NDVI).
This is a mathematical measure to discover whether an earth observation image con-
tains live green vegetation. The mathematical definition, NDV I = nir−red

nir+red
, takes into

account the red (red) and near-infrared (nir) measurements from a satellite, and yields
an index in [−1, 1], where values close to +1 suggest presence of vegetation.

The WCPS request that computes the NDVI of a coverage object rgb implements
the mathematical definition in a straightforward manner: This request binds variable $s
to satellite images (”scenes”) Landsat1, Landsat2, and Landsat3 in turn. Only those
assignments are considered where, in the red channel, average intensity exceeds a value
of 127. Such objects are processed in the return clause where the NDVI is computed
and thresholded with a value of 0.6 in our case. The result image is encoded in JPEG
for delivery to the client:

for $s in ( LandSat1, Landsat2, Landsat3 )
where avg( $s.red ) > 127
return encode((($s.nir-$s.red)/($s.nir+$s.red))>0.6,"png")

Figure 1 shows on the left side a false-color image consisting of the near infrared, read,
and green bands of a 7-band Landsat scene. On the right side, the NDVI result can be
seen for a threshold value of 0.6; white pixels denote vegetation detected and black
pixels indicate vegetation-free locations.

A complete presentation of the WCPS language, including a formal treatment as well
as a discussion of the design decisions made, is given in [2]. The expressive power of
this language allows to perform a range of statistics, imaging, and signal processing
operations, such as aggregation or roll-up, modes, convolutions, filter kernels and the
Fast Fourier Transform [17]. Still, it is safe in evaluation: every possible request will
terminate after a finite number of steps.
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Fig. 1. Slider for scalar query parameter input; false-color image (left), threshold selector (top),
and thresholded NDVI (right)

3 PetaScope Architecture

3.1 Overview

Fig. 2. PetaScope overall architecture (left),
including tools used (right)

The PetaScope architecture follows a
model-driven architecture: service func-
tionality is orthogonally offered via dif-
ferent protocols. For example, WCPS
requests can be sent using the abstract
syntax shown in the above example,
or alternatively employing an equiva-
lent XML encoding specified in the stan-
dard. Figure 2 illustrates the overall
system architecture, together with the
tools used. On server side, two main
layers can be distinguished. The service
layer provides the Web service inter-
faces. It is mainly concerned with marshalling and unmarshalling of requests according
to the different protocol specifications. Incoming requests are translated, with the help
of service metadata stored in the PostgreSQL database, into queries of the rasdaman
array DBMS. The data management layer encapsulates two database management sys-
tems that store all information. Next, we discuss the layers.

3.2 Data Processing and Management Layer

The data processing and management layer consists of the rasdaman array DBMS mid-
dleware and the PostgreSQL relational DBMS. Rasdaman (”raster data manager”) al-
lows to store multi-dimensional arrays of unlimited size in standard relational databases
while offering a declarative query language, rasql, which extends SQL with raster oper-
ations. Such raster objects are partitioned (tiled), and each tile is stored in a BLOB of
the underlying relational DBMS. Incoming queries are transformed into a parse tree and
then undergo a series of optimizations, including algebraic rewriting with currently 150
rules, just-in-time compilation for CPU and GPU, pre-aggregation, and several more.
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Query tree execution relies on tilestreaming which allows to process objects signifi-
cantly larger than server main memory. As rasdaman array algebra [3], query language
[14], engine architecture [24], the R+-tree indexing used in rasdaman [8], query op-
timization [19] including just-in-time compilation [11] and graphics processors [20],
parallelization [10], and application in earth [9], space [4], and life [18] sciences has
been described elsewhere we omit further details.

The dynamic type system of rasdaman allows definition of new raster types at run-
time; the following statement1 defines a five-band 3-D Landsat satellite image time
series stack of unlimited extent in x and y (assumed as first and second dimensions) and
a fixed lower bound and variable upper bound for time (assumed as third dimension):

typedef marray<
struct{ char band1, band2, band3, band4, band5; },
[ *:*, *:*, 0:* ]

> LandsatTimeseries;

This schema definition functionality is not passed through to PetaScope, as the WCPS
standard currently only supports read access. WCS-T, while offering simple update
functionality, does not allow schema modification either. However, it is planned to de-
velop a Web-based tool for local administrators to set up and maintain the geo service
schema using the rasdaman and the relational base DBMS’s facilities.

Said relational DBMS comes into play as raster data, their metadata, and PetaScope
metadata ultimately are stored in a relational database, in our case PostgreSQL. The
rasdaman/PostgreSQL layer part is being used under operational conditions since about
five years, with object sizes up to a dozen TB. The EarthLook database currently en-
compasses about 70 GB.

3.3 Service Layer

The service layer contains the three service components mentioned previously: WCS
for simple data access, WCPS for complex retrieval, and WCS-T for updating.

WCPS accepts queries written in Abstract Syntax as well as in XML. We have used
ANTLR [16] to construct the Abstract Syntax parser and Xerces to handle incoming
XML. Both query representations ultimately are transformed into a query tree from
which subsequently a rasdaman query is generated.

Since WCS functionality (concretely: the GetCoverage request type) is a subset of
WCPS, WCS queries can be relayed to WCPS.

3.4 Networks Transport

Sometimes it is argued that Web transport is inefficient for large data sets. While this
may hold for comparatively small chunks of data where the http header occupies a sig-
nificant part this is certainly not the case for raster transport – any header and eventual

1 This also demonstrates why multi-dimensional arrays cannot be modelled adequately by
object-relational databases: the n-D array constructor, marray, is a template and not a data
type, similar to stacks, lists, etc. Object-relational systems allow injection of new data types,
but not of type constructors.
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metadata are negligible against the multi-Megabyte payload. This actually can be ex-
perimentally verified in the system demonstration as the rasdaman system comes with
three carrier protocols: SUN RPC, http, and RNP (rasdaman networks protocol) which
maps to http. In tests where identical query workloads are run over the different proto-
cols there is no significant response time difference.

That said, server-side optimizations have reached an effectiveness where data trans-
fer takes up a large part of the overall response time. Therefore, transfer data compres-
sion has been introduced additionally [7].

Still, however, the main gain in bandwidth saving is simply through the query lan-
guage approach itself which allows users to specify the desired outcome, rather than
downloading the ingredients for a client-side evaluation. A factor of 10 can be obtained
on the average [12], but the following example demonstrates much higher peak rates. A
Hyperion satellite image has 250 bands of which two are used to compute the NDVI. If
this is thresholded like in Figure 1 then ultimately a binary image is sent to the client.
Not only is this a 1-bit image as compared to 250 8-bit channels, but this binary im-
age also compresses excellently. The EarthLook demo case allows to monitor Internet
response times of both situations in real time.

3.5 User Interface

Unleashing the power of the query language to the end user presents a GUI design
challenge. The construction of EarthLook turned out representative for many projects
we had done earlier in one particular aspect: the large variety of data combined with
the use case variability makes user interface design a major task in the overall project
effort. Roughly, three categories of use cases can be distinguished:

– Static, unparametrized queries. Such WCPS queries are completely prefabricated,
and the client will simply submit them upon a user mouse click. One example is
presented in Figure 3 where the histogram is displayed for an 8-bit image.

– Queries requiring a (usually numeric) parameter provided by the user. For example,
computing the Normalized Difference Vegetation Index (NDVI) requires a thresh-
old parameter between -1 and +1 to be chosen by the user. Figure 1 shows an

Fig. 3. Unparametrized query submission
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EarthLook screenshot with a false color image, a slider to choose the threshold
value, and the result image where white represents a vegetation guess.

– Queries expecting query fragments from the user. In particular expert users often
want to choose and vary evaluation functions, but without having to write the whole
query on their own. Such a situation was encountered, for example, when designing
an experimental interface for astrophysical data analysis [4].

Several tasks, like spatio-temporal subsetting, are conveniently solved via sliders and
other guiding input devices, wrong input is impossible by construction. For more com-
plex expressions, however, the client needs to perform syntactic and even semantic
analysis to ensure an error free input query, something which is difficult to accomplish.
Currently, therefore, we are experimenting with visual programming techniques.

For the screenshots shown, a prototype of a GUI design tool for query construction
and multi-dimensional result display has been developed. Based on the experiences
made we are investigating into a design methodology which will allow to compose
manipulation (i.e., query generating) widgets with display (query execution and result
presentation) widgets into a custom Web interface.

4 Related Work

Matlab and Mathematica are popular computing environments that support importing
scientific data (reading NetCDF and HDF formats, among others), but they target desk-
top environments. Further, working with data volumes which exceed main memory
capaity by several orders of magnitude is not efficient.

In Web world, various WCS implementations exist [6] [21], yet WCS alone is unsuit-
able for ad-hoc exploration and analysis of high-volume data (such as earth observation
satellitei image streams). To the best of our knowledge, PetaScope is the first implemen-
tation of standardized web services that allow retrieval, data management and remote
query evaluation. Furthermore, we are not aware of any package which combines WCS
1.1 (the current version), WCS-T, and WCPS.

NASA is developing, with our collaboration, an on-board satellite interface which
allows to task WCPS queries in an ad-hoc fashion [5]. Based on an own implementa-
tion independent from PetaScope , NASA’s plan is to significantly enhance quality and
intelligence of service for the next generation of earth observation satellites.

5 Demonstration

The PetaScope demonstration will make use of a variety of earth science use cases to
explain issues in query language design, optimizability, GUI design, as well as applica-
tion specifics. Demonstration data will cover the complete spectrum of spatio-temporal
dimensions, ranging from 1-D timeseries over 2-D remote sensing and seafloor imagery
to 3-D geophysics and 4-D climate model data. Among the operations performed are
spatio-temporal subsetting; band extraction and recombination; ad-hoc sensor fusion;
processing derivation of various aggregates, such as min/max, histogram; and further
processing, like convolution. In addition to the prefabricated demo cases, a ”sandbox”
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allows to visually experiment with the queries. All this functionality is additionally per-
manently made available on the EarthLook site, www.earthlook.org.

These queries challenge the engine in different ways. Subsetting speed is mainly
driven by disk access (and the fit of the tiling structure) and to some lesser extent by
agglomerating the result from the tiles read, data format encoding, and shipping to the
client. The other operations mentioned above are mostly CPU-bound, except when just-
in-time compilation of query fragments comes in. By using the command line query
interface, timing of requests can be tested under both RPC and http based transport
protocols to explore protocol performance overhead as discussed in Section 3.4.

Similar scenarios have been applied successfully in Computer Science courses re-
cently and at OGC’s Climate Change Integration Plugfest at the FOSS4G ”Free and
Open Source for Geospatial” Conference in Fall 2009. Depending on the Internet con-
nection, either a local notebook server or Jacobs University’s server will be acessed.
Visitors can simultaneously exercise prefabricated and ad-hoc queries via EarthLook .

6 Conclusion

Serving rapidly growing amounts of data to both public audiences and expert com-
munities at hitherto unknown qualities is one of the main current challenges arising
in geo-scientific data management. The immense data volumes potentially addressed
in queries, spanning multi-Terabyte and soon multi-Petabyte object sizes, lead to new
dimensions of I/O bandwidth, CPU processing, and network capacity requirements.

PetaScope constitutes a flexible, multi-dimensional, multi-purpose geo raster server
which is available in open source. Its components have been tested on all spatio-temporal
dimensions and with multi-Terabyte object sizes. This system constitutes the reference
implementation of the OGC WCPS standard and, at the same time, incorporates the
currently most comprehensive collection of OGC’s geo raster service standards.

Among our research avenues are further server-side query optimizations, addressing
both software measures (like further heuristic query rewriting and cost-based optimiza-
tion) and hardware (such as GPU support and distributed query processing). Collabora-
tion with NASA continues towards on-board WCPS services, and the European Space
Agency (ESA) has awarded two contracts for the further development of PetaScope for
use in value-adding services on their satellite mission results. Further, we envisage ap-
plication of the PetaScope technology in domains beyond the earth sciences, such as
human brain imaging and gene expression analysis.
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Abstract. In this short paper we outline a novel and rich application do-
main for scientific data management: Archaeobiology. We give a short in-
troduction to the key quests and issues in this research domain and derive
a list of data management and data analysis tasks that requires original
contributions from the Computer Science community and can initiate the
birth of a new research discipline which we call Archaeo-Informatics. Fur-
thermore, we describe a prototype for scientific data management called
OSSOBOOK that meets many of the identified requirements of this ap-
plication domain. In particular, OSSOBOOK is a distributed database
system specially designed for Archaeobiology data management and anal-
ysis. Finally we give some future perspectives which is intended to serve
as input for novel challenges for the Computer Science community.

1 Introduction

Archaeobiology basically deals with the historic evolution of the relationships
between human, plants, and animals. For that purpose, Archaeobiologists main-
tain excavations all over the world to explore historic findings of humans, plants,
animals, housings, grave yards, etc. The amount of data derived from these find-
ings has reached a critical point: manual management, i.e. storage, analysis, and
retrieval, as it is still common practice among Archaeobiology researchers is no
longer feasible. The domain experts have realized that Computer Science meth-
ods for managing scientific data is urgently needed in order to avoid drowning
in the flood of relevant data produced. Unfortunately, Computer Scientists are
not really aware of this situation nor do they usually know details about the ap-
plication and its specific problems. This is a pity since Archaeobiology provides
a rich origin of novel challenges for Computer Scientists touching most aspects
of scientific data management.

In this paper, we claim the following two key contributions. First, we intro-
duce Archaeobiology as a highly interesting and challenging application domain
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for Computer Science in general and the scientific data management research
community in particular. Based on this description, we also detail our vision of
a new interdisciplinary research field called Archaeo-Informatics by identifying a
list of application specific needs and deriving potential research issues for Com-
puter Scientists. Second, we propose a demo of a first prototype system called
OSSOBOOK that offers an integrated database system for managing Archaeo-
biological data that meets many of the identified requirements. We describe the
system architecture and scientific workflow of OSSOBOOK as well as the first set
of data analysis tools provided by OSSOBOOK, including methods for similarity
search and data mining of scientific data. In addition, we sketch a case study
that demonstrates the use of OSSOBOOK in a real Archaeobiological project.

The remainder is organized as follows. Section 2 introduces our vision of
Archaeo-Informatics. In Section 3 we present details of our demonstration of
the OSSOBOOK system. Section 4 rounds up the paper with some concluding
remarks.

2 A Vision of Archaeo-informatics

2.1 A Brief Introduction to Archaeobiology

In the following, we will give a brief introduction to Archaeobiology. We will focus
on Archaeozoology as a prototype research branch of research of Archaeobiology.
Other branches, including Archaeobotany and Anthropology, deal with similar
problems.

Archaeozoology evaluates bone findings of domestic and wild animals and
other faunal remains from prehistoric and historical times. Most of these find-
ings come from archaeological excavations. Whereas palaeontology explores pre-
vious geological eras, archaeozoology deals with the Holocene, the actual era.
Archaeozoological research focuses on the cultural history of mankind and the re-
lationship between humans and animals from Mesolithic periods to early modern
times. Key issues are the history of domestication, geographical expansion of do-
mesticated animals, relevance of stock-keeping and hunting, ecological changes,
interaction of different cultural groups, burial rituals.

Fundamental methods of archaeozoology are macroscopic investigations of the
faunal remains. Important precondition is their taxonomical identification. This
has to be learned by long-time practice and is done in comparative collections.
Identification work includes the determination of skeletal elements, manner of
dissection, sex, age at death for humans or slaughter age for animals as well
as the size by measuring the bones. On the molecular biological level stable
isotopes and ancient DNA are investigated. Research on stable isotopes aims
at recognizing vertebrate food-webs and subsistence strategies (13C and 15N).
The analysis of stable isotopes of strontium and oxygen (88Sr and 16O) reveals
migration phenomena. Ancient DNA is a reliable technique, if properly used, for
phylogenetic investigations.

Projects in Archaeobiology maintain archaeological excavations all over the
world, producing a tremendous amount of information that can no longer be
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analyzed by any human manually. Rather, the information on individual findings,
e.g. descriptions of osseous parts, should be stored in a database system and
should be available for analysis purposes like information retrieval and data
mining via a central portal. Since the findings can usually not be transferred
to other locations due to regional legal restrictions or high transportation costs,
the information on these findings need to be recorded on-site.

2.2 Towards Archaeo-informatics

The situation of Archaeobiology nowadays can be compared with the situation
of Molecular Biology in the 1980’s that led to the birth of a new interdisciplinary
research field: Bioinformatics. In particular, the researchers in Archaeobiology
face an ever increasing amount of data but the use of IT to store, manage,
retrieve, and analyze this amount is not widespread at all. Individual researchers
all have their own way to record data (usually in Excel spreadsheets or even old
fashioned on paper) and use only very limited tools for data analysis, e.g. the
limited tools of Excel or SPSS).

The domain of Archaeobiology urgently needs some wake-up call in order to
realize the wealth of Computer Science technology for managing and analyzing
scientific data. In fact, many researchers from this domain currently are aware
that they need informatics methods in order to not drown in the flood of data
they currently produce. Any help from the Computer Science community is
usually highly appreciated. However, Archaeobiology researchers do not have a
clue how this help could look like and what Computer Science methods could
provide. On the other hand, Archaeobiology represents a rich origin of interesting
and novel challenges for the Computer Scientists. Thus, establishing Archaeo-
Informatics as a discipline where researchers from Archaeobiology and Computer
Science strongly collaborate, would obviously create a win-win situation.

In the following, we try to list some of the major requirements for Archaeo-
biology data management and data analysis and try to derive challenges for
Computer Science research thereof.

Requirements for Managing Archaeobiology Data. The first step to-
wards Archaeo-Informatics is to establish an environment to store and manage
Archaeobiology data that considers domain specific constraints. Only if such
an infra-structure is built, data is available in a standardized way that allows
concise analysis. This leads to the following challenges for Computer Scientists.

In general, Archaeobiologists produce data of quite different types including
the following.

– Structured data that can originally be stored in tables of a relational database
system (e.g. numerical features of bones like metrics, weight, etc.). However,
structured data items are often incomplete, i.e., some of the features are
missing, because the findings may be fragmentary.

– Interval data and uncertain data consisting of features that cannot be mea-
sured precisely.
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– Temporal data: individual projects consisting of findings from different time
epochs need to be correlated to explore the evolution of the relationship
between humans and animals.

– Spatial data (such as 2D and 3D images of findings) and location data (such
as the location of a given finding, e.g. in terms of GPS coordinates).

– Spatio-temporal data consisting of the combination of temporal and location
data, e.g. data recording the movement of (sets of) animals or humans.

– Set-valued data, e.g. a project (excavation) basically consists of a set of
findings of different types.

The produced data is usually very heterogeneous, i.e. different classes of find-
ings have varying features of different types. For example, two bones having a
different position within the skeleton of the same species usually have differ-
ent features and two bones from two different species may also have dissimilar
features. These heterogeneous data featuring different data types need to be
managed adequately. This challenge also relates to the question of how to define
similarity models for such data types for efficient and accurate similarity search
and data mining (see below).

In order to avoid redundant and error-prone data recording including a man-
ual and ad hoc on-site documentation at the location of each excavation followed
by a successive input of this documentation into a central database at some in-
stitute, advanced and integrated database systems for managing Archaeobiology
data need to be provided. These database systems particularly need to provide
intuitive user interfaces for data input and also advance visualization techniques
to display and browse the data.

Any database system for Archaeobiology data is required to be capable of
dealing with the application specific obstacles, in particular with the fact that
internet access may not be available during long field sessions all the time. Thus,
dedicated synchronization concepts need to be explored and developed that allow
consistent online access to the central database even if internet access cannot be
guaranteed persistently at the location of a given excavation.

Ideally, Archaeobiology data from different institutions all over the world
working in different projects should be shared. Therefore, the methods for ad-
vanced project management as well as meta data management need to be em-
ployed. In addition, advanced methods for integrating data from distributed
heterogeneous sources need to be applied and developed.

Requirements for Analyzing Archaeobiology Data. Once the envisioned
infrastructure for storing Archaeobiology data is established and researchers be-
gin to use it to archive their findings, they need powerful tools for analysis and
retrieval.

Similarity Models. The foundation of data analysis and retrieval is the develop-
ment of accurate and efficient similarity models for the data types listed above.
In particular, Computer Scientists are required to design similarity models for
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– incomplete data, i.e., objects with missing features,
– set-valued data,
– temporal, spatio-temporal, and location (GPS) data,
– 2D and 3D spatial data,
– interval data and uncertain data.

Each similarity model must consider domain specific constraints in order to meet
the domain experts’ intuitions.

A general approach which is applicable for most types of objects, even for
those having a complex structure, is to extract a set of features, each represented
by a numerical value. For example, the shape of a bone can be represented by
features like weight, size, further attributes specifying the curvature of the bone
surface, etc. In this way, each object can be represented as a vector in a d-
dimensional space and the distance between the vectors reflects the dissimilarity
of the corresponding objects. As a distance function, the Euclidean distance is
most commonly used. This model works well for most types of objects (e.g. see
[1,2,3], if we assume that we extracted the most significant features from the
objects. However, the identification of suitable features is challenging and the
applicability highly depends on the particular application.

Sequence data including time series and spatio-temporal trajectories require
more advanced similarity measures coping with distortion in time, gaps and
different sequence lengths [4,5,6]. Dynamic programming based methods like
Dynamic Time Warping (DTW) [4] and variants can adequately handle such
problems but are very expensive [5]. The design of suitable approximation tech-
niques and access methods which can be used for multi-step query processing
methods are mandatory for these types of data.

Another important issue is the effective handling of uncertainty in the data.
Most of the existing data analysis and retrieval tools are designed for certain
data. However, efforts in reconstructing certain data from uncertain sources,
e.g. by applying aggregation methods, would yield loss of potentially relevant
information. As a consequence, analysis and retrieval of uncertain data call for
new, more advanced definitions of similarity models [7]. Thereby, problems like
efficient handling of similarity distributions and dependencies between object
similarities have to be solved.

Similarity Search. Similarity search is the most important tool for retrieval of
Archaeobiology data. This includes standard query types like distance range,
nearest-neighbor and ranking queries as well as more advanced types like finding
the furthest neighbor of a given query object, skyline queries, and reverse-nearest
neighbor queries. A variety of applications including digital mock-up and partial
similarity search is also needed, the latter e.g. when search for incomplete or
fragmentary data. Since the amount of data is ever increasing and similarity
search deals with complex objects, novel performance issues such as multi-step
querying approaches are also very important.

Data Mining. For an advanced data analysis, new data mining methods need to
be explored. Major challenges include the development of algorithms for trend
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mining in spatial as well as in temporal data, data methods that are capable
of handling uncertain data and high dimensional data. Again, due to the large
amount of raw data, high performance issues also need to be solved. In general,
the data basis is highly dynamic, i.e. updates of the raw data frequently oc-
cur. Thus, data mining methods should be incremental to efficiently adjust the
derived patterns when the underlying data changes.

Visualization. Since Archaeobiology researchers have only little knowledge about
Computer Science, new methods for visualizing data and mined patterns need to
be designed. This includes data browsing capabilities, the visualization of spatial
and temporal trends, visual integration of data from different features (e.g. map
overlay, temporal and spatial joins), etc.

3 OSSOBOOK: A First Solution for Archaeobiology
Data Managament

In the following, we will sketch a first prototype of a system for managing and
analyzing Archaeobiology data that was designed to meet as many requirements
identified above as possible. The system is called OSSOBOOK and provides an
integration of database technology with state-of-the-art similarity search and
data mining methods.

3.1 System Architecture and Data Management Workflow

OSSOBOOK implements a distributed client/server database system using the
concept of intermittently synchronized databases [8] to handle the application
specific problem that users may have no persistent access to the central system
due to network constraints but may still want to update certain parts of the
database. A client-server architecture ensures that each client (usually a partic-
ular researcher equipped with a laptop) manages its own local database that is
schema-equivalent to the central database at the server. This way, each client
can make its updates locally, independently, and—most important—offline. At
a given time, e.g. when a network connection to the server is established, the
client and the server synchronize, i.e. the updates of the client are inserted into
the central database at the server and the updates of the server (e.g. originating
from other clients that have already synchronized) are sent to the client. The
application scenario of the OSSOBOOK system is visualized in Figure 1. The
central database is located at some institute. Within the institute, clients can
connect to this central database system. On the field, each client has its own
local copy of the central database and can connect from time to time to the
central repository via a network for synchronization.

OSSOBOOK is implemented as a MySQL DB with a JAVA GUI. For the
purpose of collaboration between different institutes in different countries, the
central database has a user management which allows the institutes to manage
there own projects independently from each other. Research results stay related
to the institute. Each cooperating institute can maintain its own database which
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Fig. 1. The architecture of the mobile OSSOBOOK database system

will synchronize with the central database. Within an institute, clients connect
either directly to a project on the local institute database or they log into the
related project on the central database. In case of field work, the researcher has a
copy of the project on a locally installed OSSOBOOK database on the notebook.
The researcher therefore can use and alter all the project related data directly
on the field. As soon as the researcher has internet access, he or she can synchro-
nize the local database with the institute database which then will synchronize
with the central database. On the central database all the research data is stored
in the different projects of the different institutes. Here, the data mining algo-
rithms are provided to all participants. These data mining methods use the
complete data set of all collaborating institutes. This is the main scientific ad-
vantage of the OSSOBOOK database. Similarities in data collected in different
parts of the world, on different time periods, by different institutes can be dis-
played independently from the internal use of the data.

The synchronization of OSSOBOOK operates in double depth. First stage
is the synchronization of the local databases of the field clients to the local
institute’s database. The second stage is the synchronization of the institute
database to the central database. Within these stages data input can be done at
the field clients and at the local institute clients. The data mining concepts can
be used from the local institute clients at the central database without direct
access to the underlying central data.

From 2010, OSSOBOOK is used as the common primary database system
by eight laboratories from Europe that have founded the BioArch [9] initiative.
To protect unpublished data that should not yet shared among the partners to
be seen by unauthorized users, OSSOBOOK also implements dedicated project
management methods.

3.2 Data Analysis Capabilities

OSSOBOOK not only provides a database system for storing data of archaeo-
logical findings. It also offers facilities for retrieving and mining this data.

Similarity Search. Beside the standard retrieval capabilities of relational database
systems, OSSOBOOK provides the possibility to perform similarity queries on
more complex objects like entire projects. Conceptually, we implemented a method
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for searching for similar projects using kNN ranking queries. The underlying simi-
larity model for projects, i.e., sets of findings, represents projects as sets of feature
vectors and uses a minimum matching distance that can be computed e.g. by the
Kuhn-Munkres algorithm.

Data Mining. The data mining unit of OSSOBOOK provides algorithms for
standard data mining tasks such as clustering, outlier detection, classification
and association rule mining to do specialized, domain-driven analysis of the
entire database. For example, association rule mining based on the Apriori al-
gorithm [10] is used for rating archaeological excavations. Every excavation can
be treated as a market basket, the items are the found objects. From the appli-
cation, it is now interesting to find rules like “If item A has been found, item
B will also be found with a probability of x%”. This gives the local excavation
manager a list of items to look for.

3.3 OSSOBOOK Demo – A Case Study

The Institute for Palaeoanatomyof the Ludwig-Maximilians-UniversitätMünchen
(LMU), Germany, participates at an archaeological excavation in Göbekli Tepe,
Turkey. About 30,000 bones of different animals are analyzed. Originally, these
data have been recorded manually. Now the OSSOBOOK system is used for data
input and data storage. A demo prototype can be provided that exemplarily shows
how archaeological data from the Göbekli excavation is input into a local client
and then synchronized with the central database at the LMU. The data consists
of classical relational data as well as complex data like images and 3D spatial ob-
jects. We will also show how the data mining capabilities of OSSOBOOK can give
a rating of the current findings in the site, taking other projects all over the world
into account. In particular, OSSOBOOK can derive a list of items, each associated
with a probability that it can be found in Göbekli Tepe.

3.4 Availability

The complete source code of the current OSSOBOOK system is accessible via
SOURCEFORGE.NET at http://sourceforge.net/projects/ossobook.

4 Conclusion

This paper is a mixture of a vision paper and a demo paper. It sketches the vision
of a new interdisciplinary research field which we call Archaeo-Informatics that
deals with the requirements of managing and analyzing Archaeobiological data
using Computer Science methods. A list of domain specific requirements for
managing Archaeobiological data is identified and research challenges for the
Computer Science domain are derived thereof.

We further present a demonstration of the OSSOBOOK system for Archaeo-
biology applications that explores current concepts and strives state-of-the-art
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research issues in the field of scientific data management. The demo provides
first-hand experiences with research prototype systems from these areas that
are integrated into OSSOBOOK. We show how the synchronization of multiple
users in a client-server environment can be performed by using the concept of in-
termittently synchronized database systems. Furthermore, we demonstrate how
specialized data mining techniques can provide important application specific
services like the rating of archaeological excavations, etc.

For the future, we would like to establish Archaeo-Informatics as new and rich
origin of research challenges in the area of scientific data management serving a
fascinating application domain. In addition, we want to extend the OSSOBOOK
system by further capabilities for analyzing and visualizing Archaeobiology data,
in particular focusing on 2D and 3D spatial data originating from images and
3D models of findings, e.g. methods for partial similarity search on spatial data
and methods for the digital mock-up of skeletons.
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Abstract. Currently, a large amount of data can be best represented as graphs,
e.g., social networks, protein interaction networks, etc. The analysis of these
networks is an urgent research problem with great practical applications. In this
paper, we study the particular problem of finding frequently occurring dense sub-
graph patterns in a large connected graph. Due to the ambiguous nature of oc-
currences of a pattern in a graph, we devise a novel frequent pattern model for a
single graph. For this model, the widely used Apriori property no longer holds.
However, we are able to identify several important properties, i.e., small diame-
ter, reachability, and fast calculation of automorphism. These properties enable
us to employ an index-based method to locate all occurrences of a pattern in a
graph and a depth-first search method to find all patterns. Concluding this work,
a large number of real and synthetic data sets are used to show the effectiveness
and efficiency of the DESSIN method.

1 Introduction

With the emergence of bioinformatics and social network applications, many data can
be naturally represented as graphs. Thus, graph analysis and mining are of great
research interests. The following are some example applications: (1) Biological Net-
works. Many types of biological data can be represented as graphs, e.g., protein interac-
tion network. Each vertex is a protein while an edge represents the interaction between
two proteins. There are usually tens of thousands of vertices and more edges. By discov-
ering the frequently occurring dense substructure in a protein interaction network, the
corresponding protein complex can be discovered. [1]. (2) Social Networks. The power
of social networks lies in large-scale connectivity. As mentioned in [17], the extended
effects of social networks are clear considering the spread of diseases that have crossed
the globe (mainly) through an intimate but far-reaching social network. A tradition of
work on the small-world problem similarly rests on large-scale connectivity, which has
been shown to have potentially important consequences for information and large scale
coordination. (3) Procedural Dependency Networks. Each graph represents a procedure
augmented with special edges linking callers and callees. There may be thousands of
vertices and tens of thousands of edges. By using the commonly occurring patterns as
rules, any violator of these rules could be a candidate of bugs or neglected conditions
(e.g., missing paths, missing conditions, and missing cases) in software programs. Use-
ful results have been generated and reported in [3].
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All above applications share some similar characteristics. (1) A single large database
graph has hundreds and thousands to millions of vertices. (2) The average degree can
be high, e.g. tens or more. (3) It is necessary to find dense frequent subgraph patterns
(with a large number of edges) in a single large graph. Thus in this paper, we study the
problem of mining frequent dense subgraph patterns in a single large graph.

There are two main challenges in mining frequent subgraph patterns in a single
graph: the definition of occurrence and the high computational complexity. First, it is
difficult to define the number of occurrences of a pattern in a graph. Let’s consider the
occurrences of pattern g in graph G in Figure 1. In this example, one may consider g oc-
curs five times in G. However, the occurrences overlap. It is ambiguous whether a pair
of overlapping occurrences should be counted as one or two. There are two extremes
in the occurrence definition. One extreme is that as long as two occurrences differ by
at least 1 edge, they are considered two occurrences. This solution suffers from the fol-
lowing shortcoming. If a pattern of 100 edges occurs 1000 times in a graph and all these
occurrences share 99 edges in common and only 1 edge is different, then we will con-
sider it occurs 1000 times under this definition, which may not be a good assessment.
The other extreme is that we consider a pattern occurs twice only if the two occurrences
are entirely non-overlapping. This may not work well either. If a pattern of 100 edges
occurs 1000 times in a graph, all these occurrences share only 1 common edge, and
all other edges’ occurrences are different, then this pattern is still considered to occur
only once in the graph. Therefore, a new definition that lies somewhere between the
two extremes is needed.

In most previous frequent subgraph models, the problem setting is that there are a
large number of database graphs, the goal is to find patterns that occur in many of these
graphs. It only needs to determine whether a pattern occurs in a graph or not and does
not consider the number of occurrences. In recent years, some researchers have con-
sidered the problem of finding patterns occurring many times in a single graph[6,16].
These solutions mostly use the maximum independent set concept. However, the max-
imum independent set problem itself is NP-hard. Therefore, this model may not be
practical especially in large graphs.

In this paper, we propose a new definition of frequent pattern in a single graph. Any
pattern is frequent if and only if both of its minimum and maximum vertex supports
are higher than some given thresholds. There are two advantages in this new definition,
efficiency and flexibility. First, we can calculate whether a pattern is frequent or not
in the polynomial time, given all its occurrences in hand. Second, when the database
graph has an abundance of patterns of many automorphisms, the number of generated
patterns can be reduced by varying parameters.

The second challenge of mining frequently occurring patterns in a single large graph
is the high computational complexity. The subgraph isomorphism test is generally ac-
cepted to be an NP-complete problem. As a result, the computation time could be very
high especially when the pattern grows. As mentioned before, most previous work only
considers whether a graph contains a pattern, but not all occurrences of a pattern in
a graph. However, in this work, we need to locate all occurrences of a pattern in a
graph. Thus, it is natural to use some indexing method with the following two prop-
erties for the purpose of mining. (1) The indexing structure should be able to locate all
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occurrences of a pattern in a graph efficiently compared to performing isomorphism
tests. (2) It should be relatively more efficient in terms of space and time to construct the
index than the entire mining process. Fortunately, the GADDI indexing structure [26]
satisfies both requirements. For a graph of tens of thousands of edges, it takes around
twenty minutes to construct the indexing structure, which is much less than the mining
time (often in the range of hours). The query (pattern locating) time is in the range of
100ms, which is much less than the isomorphism tests. The advantages of employing
an indexing structure is more significant when the discovered patterns are large.

Furthermore, based on our definition, the Apriori property no longer holds. Fortu-
nately, we have identified the reachable property, i.e., for any non-trivial frequent dense
pattern g, there exists at least one proper subgraph g′ of g, such that g′ is frequent and
dense. This enables us to use a depth-first search algorithm (namely, DESSIN) to find all
frequently occurring dense patterns. DESSIN proceeds as the following. (1) A prepro-
cessing step is performed for constructing the GADDI indexing structure. (2) We mine
the frequent vertex sets via a method similar to the depth-first frequent itemset mining.
(3) For each frequent vertex set S, we generate the candidate patterns composed of ver-
tices in S in a depth-first manner. (4) The number of occurrences of a candidate pattern
is computed via the graph indexing structure. The frequent patterns are finally outputted.

The following are the main contributions of this paper:

1. We propose a definition for counting the number of occurrences of a pattern in a
graph.

2. We devise an efficient algorithm, DESSIN, to find the frequent dense subgraphs in
a large single graph. This algorithm has the following novelties.
(a) The DESSIN algorithm first constructs an indexing structure for the mining

process. This is used to locate all occurrences of a pattern in the graph.
(b) Based on the reachability property, frequent vertices sets are identified via a

depth-first manner.
(c) For a set of frequent vertices S, we find all frequent dense patterns involving

all vertices in S.
3. A large set of real and synthetic data sets are employed to show the effectiveness

and efficiency of our proposed model and method.

The remainder of this paper is organized as follows. Related work is discussed in Sec-
tion 2 while preliminaries are presented in Section 3. Section 4 and 5 introduces the
properties and algorithms of DESSIN, respectively. We show the empirical studies in
Section 6. Finally, the conclusions are drawn in Section 7.

2 Related Work

Regarding the problem studied in this paper, one category of related work is mining
frequent subgraph patterns in a set of database graphs [4,10,11,12,13,14,15,18,19].
A subgraph pattern is defined to be frequent if it occurs in a substantial number of
graphs. These algorithms focused on mining all frequent subgraph patterns from the
graph databases. In [5,8,21,24,27], the searching process was optimized by focusing on
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those more discriminative and hence more important patterns. M bT [5] used a deci-
sion tree based algorithm to partition data and select patterns. In ORIGAMI [8], a new
representative graph mining method was proposed to find α - orthogonal, β - represen-
tative set of graphs. MARGIN [21] found maximal patterns, while LEAP [24] extracted
those distinct patterns with two novel concepts, structural leap search and frequency de-
scending mining, both of which are proposed to support leap search in the graph pattern
space. RING [27] integrated a representative pattern selection process into the pattern
mining procedure.

There is also quite a significant amount of work related to finding dense graph pat-
terns. [7] used a randomized approach to find large dense subgraphs in massive net-
works. [23] proposed CSV, which maps edges and vertices to a multi-dimensional space
to help extracting dense subgraphs. However, the discovered dense subgraph is not nec-
essarily frequent, and it is not guaranteed that all frequent patterns will be enumerated.
[9,20,22,28] mined coherent dense patterns, quasi-cliques, closed cliques, and coherent
closed quasi-clique over a set of graphs. However, as these algorithms are designed for
mining arbitrary subgraph patterns over a set of database graphs, they may not work
equally well on the problem we try to solve in this paper.

Compared to the large amount of work on mining frequent subgraph patterns in mul-
tiple graphs, there is not much work on either frequent pattern mining in a single graph.
The underlying reason is that defining ”frequency” in a single graph is not as straight-
forward as it is in a set of graphs, as occurrences of a pattern may overlap with each
other. To solve this problem, [16] proposed a maximum independent set based support
definition which successfully removed the ambiguity introduced by overlapping. [6]
proved the anti-monotone property of a slightly modified maximum independent set
based support and improved it by taking into account the harmful overlapping. How-
ever, as calculating maximum independent set itself is NP-hard, the algorithm performs
less efficiently when it deals with dense and large database graphs. In [2], a minimum
vertex support definition based on the most restrictive node was proposed.

3 Preliminaries

In this section, we introduce the fundamental definitions used in this paper and give the
formal problem statement.

Definition 1. A labeled graph G is a five element tuple G = {V, E, ΣV , ΣE , LG}
where V is a set of vertices and E ⊆ V × V is a set of edges. ΣV and ΣE are the sets
of vertices and edge labels, respectively. The labeling function LG defines the mappings
V → ΣV and E → ΣE . A graph G′ is defined as a subgraph of G, denoted as G′ ⊆ G,
if the graph vertices and graph edges of G′ form subsets of the graph vertices and graph
edges of G. A graph G = {V, E, ΣV , ΣE , LG} is defined to be dense if and only if
|E| ≥ |V |(|V | − 1)/2 − (|V | − 2), i.e., the average degree of the graph is close to
|V | − 1.

Definition 2. A labeled graph G = (V, E, ΣV , ΣE , l) is isomorphic to another graph
G′ = {V ′, E′, Σ′

V , Σ′
E , l′}, denoted by G ≈ G′, if and only if there exists a bijec-

tion f : V → V ′ s.t. (1) ∀ u ∈ V , l(u) = l′(f(u)), (2) ∀ u, v ∈ V ,(u, v) ∈ E



182 S. Li, S. Zhang, and J. Yang

(a) Database graph G (b) Pattern g

Fig. 1. Example Database Graph and Pattern

⇔ (f(u), f(v)) ∈ E′, and (3) ∀ (u, v) ∈ E, l(u, v) = l′(f(u), f(v)). We denote
G(v) ≈ G′(v′) if f(v) = v′. S is subgraph isomorphic to G′, if S is isomorphic to at
least one subgraph G′′ of G′. G′′ is an occurrence of S in G′. Two occurrences overlap
with each other if and only if they share at least one vertex.

Definition 3. Let O model the relationships among occurrences of g in G, in which
each occurrence is modeled as a vertex, and an edge is created between two overlap-
ping occurrences. Then the maximum independent set support of g in G, denoted as
SupMIS(g, G), is the size of any maximum independent vertex set of O.

As an example, the maximum independent support of the pattern graph in Figure 1(b)
is 3 in the database graph in Figure 1(a), while there are 5 distinct occurrences.

The maximum independent set support is first proposed by [15], and served as a
benchmark for subgraph pattern mining in a single graph. As calculating the maximum
independent set is NP-hard, this support definition will not be adopted in our mining
algorithm, but serves as a standard method to evaluate our support definition.

Definition 4. The minimum vertex support of a pattern graph g in database graph
G, denoted as SupminV (g, G), is defined as the minimum number of distinct database
graph vertices that a pattern graph vertex mapped to. Formally, SupminV (g, G) =

minv∈g|{v′|v′ ∈ m, m ⊆ G, m ≈ g, g(v) ≈ m(v′)}|
Similarly, the maximum vertex support, denoted as SupmaxV (g, G), is the maximum
number of distinct database graph vertices that a pattern graph vertex mapped to. For-
mally SupmaxV (g, G) =

maxv∈g|{v′|v′ ∈ m, m ⊆ G, m ≈ g, g(v) ≈ m(v′)}|
Let’s assume that a pattern g occurs 100 times in a graph G. All these occurrences share
one vertex and all other vertices are not overlapped at all. The minimum vertex support
of g in G is 1 while the maximum vertex support is 100. Intuitively, the minimum
vertex support reflects the case that overlapping occurrences are considered as a single
occurrence. On the other hand, the maximum vertex support represents the scenario that
overlapping occurrences are considered as distinct occurrences. By varying these two
thresholds, users can find desired frequent patterns.
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Definition 5. Given a database graph G and threshold parameters γmax and γmin, a
subgraph g of G is defined to be frequent if and only if the minimum vertex support of
g is no less than γmin and the maximum vertex support of g is no less than γmax, i.e.,
SupminV (g, G) ≥ γmin and SupmaxV (g, G) ≥ γmax.

Problem Statement: Given a large database graph G and threshold parameters γmax,
γmin, we aim to find all frequent subgraphs of G which are also dense.

4 Properties

In this section, we introduce some important properties of the dense frequent sub-
graph patterns, which are small diameter, reachability, and fast calculation of automor-
phisms. In the next section, we design mining algorithms by taking advantage of these
properties.

4.1 Small Diameter

The diameter is defined as the largest shortest distance among all pairs of vertices in the
given graph. It is expected that the diameter of any dense graph is small. Apparently,
if the graph is not complete, the diameter of the graph will be at least two, which is
achieved by any pair of non-adjacent vertices. And clearly, the diameter of a dense
subgraph is at most two since at least k-1 edges have to be removed from a k-clique to
remove all paths of length one and two between any two vertices.

4.2 Reachability

In [6], the frequent patterns defined by the maximum independent set were proved to
meet the anti-monotone property. So were the frequent patterns defined by minimum
vertex support in [2]. The anti-monotone property guarantees that any frequent pattern
can be found by a graph mining algorithm based on enumeration. In contrast to the
anti-monotone property which requires that every subgraph of any frequent pattern be
frequent, the property of reachability is proposed in this paper.

The reachability property states that for every non-trivial frequent dense pattern g,
there exists at least one subgraph g′ of g, such that g has one more vertex than g′ and g′

is frequent and dense. If the reachability property is satisfied, then any frequent pattern
could be found by a graph mining algorithm where candidate patterns are generated by
adding one vertex to existing frequent patterns. Next we prove that for any non-trivial
frequent dense pattern we defined satisfies the reachability property.

When g is composed of fewer than four vertices, the reachability property is easy
to prove by a simple enumeration. There exist two situations for g with four or more
vertices. Let us assume that v is connected to v′ and vertex vmax achieves the maximum
vertex support (maps to the maximum number of distinct vertices in among embedding
of g in the database graph G). In the first case, there exists one and only one vertex v
in g, such that the degree of v is one. It is allowable for vmax to be either v or v′. After
any of the vertices other than v′ and vmax is removed from g, the induced subgraph
of the remaining vertices, denoted as g′, is a frequent dense subgraph of g, because(1)
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g′ is connected by definition; (2) g′ is dense as the removal of the vertex will delete
at most |Vg| − 2 edges where Vg is the vertex set of g; and (3) g′ is frequent as each
occurrence of g corresponds to an occurrence of g′ in the database graph, indicating
that SupminV (g′, G) ≥ SupminV (g, G). Besides, vmax is mapped to no less than
SupmaxV (g, G) of vertices. In the second case, if there does not exist any vertex in g
with degree one, then, we simply remove any vertex from g other than vmax. We can
prove that the induced subgraph of g composed of the remaining vertices is a connected
frequent dense pattern. Thus, we prove the property of reachability of frequent dense
patterns.

4.3 Fast Calculation of Automorphisms

An automorphism of a graph is a graph isomorphism with itself, i.e., a bijection from
the vertices of the given graph g back to vertices of g such that the resulting graph is
isomorphic with g. To compute all automorphisms of any given graph can be computa-
tionally expensive.

Since we focus on dense patterns in this paper, it is very likely for a vertex in the
graph to be adjacent to most of the other vertices. We denote a vertex that is adjacent to
all other vertices as a complete vertex. We have the following observations regarding to
automorphisms. If in a graph g vertices va and vb have the same vertex label and are (1)
adjacent to every vertex other than va and vb with the same edge label, or (2) adjacent
to a set of complete vertices of same vertex labels and with the same edge labels, then
we can find at least one automorphism of g that maps va to vb and vb to va.

We briefly prove our conclusion. In the first case, we can simply construct a bijection
function f1 in which va is mapped to vb while all the other vertices map to themselves.
f1 is an automorphism by definition. This leads to the proof for the second case. In the
second case, we can construct a bijection function f2 that maps each adjacent vertex
of va to an adjacent vertex of vb and va to vb. It is obvious that f2 is the production
function of a set of automorphism. Thus f2 is also an automorphism.

For example, in Figure 2, assuming all labels are the same, vc and vd can be mapped
to each other by an automorphism as both of them are complete vertices; va and vb can
also be mapped to each other by an automorphism as they are adjacent to the same set
of complete vertices.

Fig. 2. Fast Calculation of Automorphisms Fig. 3. An Example of Inequality Property
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5 The Mining Algorithm

In this section, we introduce our mining algorithm for searching frequent dense sub-
graph patterns. The mining algorithm is composed of three components, preprocessing
the database graph, generating the candidate patterns, and finding the occurrences.

5.1 Preprocessing the Database Graph

The matching process will be extensively invoked during the search for frequent pat-
terns. The most straightforward method to accelerate this process may be to keep the
matches of the predecessors in the matching process, where predecessors are the set
of vertices that have been matched already. Since the database graph is quite large, of
thousands or tens of thousands of vertices and edges, the memory tends to be exhausted
if the occurrences are saved.

Before proceeding to any mining process, we first preprocess the database by con-
structing a series of indices, which greatly facilitates the discovery of the occurrences
of any candidate pattern. To the best of our knowledge, few existing graph mining al-
gorithms pre-process the database graph before starting the searching process.

As shown in the previous section, the diameter of any dense pattern is at most two.
The information on any database vertex within distance two is of crucial importance.
There are two types of index structures to be constructed in our method, the shortest
distance based index and sharing vertex based index. For the shortest distance based
index, we keep the information of whether the distance between any pair of database
vertices is exactly two. For the sharing vertex based index, the number of mutually
shared adjacent vertices is extracted for any pair of vertices.

The following are two inequalities for a graph G and its subgraph g. (1) The shortest
distance between any two vertices va and vb in g is always larger than or equal to that
between their counterparts in G. (2) Similarly, the number of commonly shared adjacent
vertices of va and vb in g is always less than or equal to that of their counterparts in G.

For example, let’s assume the database graph is the graph in Figure 3, the pattern
graph is the one in Figure 1(b), and va and vb are the two vertices with label 1. There is
exactly one occurrence of the pattern graph in the database graph. The shortest distance
between va and vb is 1 in the database graph, while it is 2 in the pattern graph. Similarly,
the number of commonly shared adjacent vertices between va and vb is 2 in the database
graph, while it is 1 in the pattern graph.

The time complexity to construct the shortest distance based index is O(d2|V |), d
the average degree and V the vertex set of the database graph. On the other hand, the
time complexity to construct the sharing vertex based index based index is O(d3|V |),
since we only need to process the pair of vertices whose shortest distance is no greater
than 2. The space complexity of both indices is O(d2|V |).

5.2 Generating Candidate Patterns

In this subsection, we introduce a scheme of generating candidate patterns. The can-
didate patterns are generated in a hybrid fashion. Since only dense patterns are going
to be searched, the total number of possible dense graph patterns with the same vertex
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set is relatively small. We take advantage of this fact and use a frequent itemset mining
algorithm to assist the generation process.

First all labels with no less than γmin occurrences are discovered in the database
graph. These labels are denoted as frequent labels and used as the initial frequent label
set candidates. At this time, we have an initial set of frequent label sets. Each label set
contains one label only. After that, a frequent label set is extended by iteratively includ-
ing one more frequent label. To qualify as a frequent label set, each newly generated
label set should have at least γmax vertex set instances whose induced subgraphs are
dense. A vertex set instance of a label set is a set of vertices whose labels are exactly
the same as the label set. It is not necessary to enumerate all the vertex set instances
of a given label set. We keep records of all the vertex set instances of a frequent label
set, whose induced subgraphs are dense. When a new label is added into a label set, we
merely join the vertex set instances and the vertices of the new label.

For example, suppose γmax = 2 and a frequent label set σ has two vertex set in-
stances {v1, v2, ..., vi} and {u1, u2, ..., ui}. Next σ is expended to a label set σ′ with one
more label l′. There are two vertices, v′ and u′, with label l′ in database graph G. There-
fore, four vertex set instances of σ′ are generated by joining two vertex set instances
of σ and two vertices with label l′, which are {v1, v2, ..., vi, v

′}, {v1, v2, ..., vi, u
′},

{u1, u2, ..., ui, v
′}, and {u1, u2, ..., ui, u

′}. If there is only one vertex set with dense
induced subgraph, then there is no way that frequent dense graph with the same labels
in σ′ exists. Therefore, σ′ is not included as the candidate label set.

After obtaining a frequent label set σ based on the label set mining described above,
instead of starting from a sparse graph, we start from a complete graph composed of
vertices in σ, then remove one edge at a time. As long as the search of the successor
vertex set of σ has not been done, all maximal frequent dense patterns composed of
σ are stored. For each ongoing candidate graph, we check (1) if the ongoing graph
has already been examined, and (2) whether it is frequent. If the graph has not been
examined and is not frequent at the same time, we continue to shrink it by removing
one more edge from the candidate graph. Otherwise, the current pattern is frequent and
thus we go back to the predecessor of this graph and generate another candidate graph
by removing another edge to that graph. The process terminates when we have explored
all possible dense subgraphs composed of σ. All frequent dense graphs are outputted.

To check whether the graph has already been reached or not, two types of canonical
forms are used: the regular canonical adjacency matrix [10] and tree canonical forms
[25]. Since the frequent patterns of interest are dense, their complement graphs are very
likely to be trees. For example, in Figure 4, the complement graph of the left dense

Fig. 4. An Example of Complement Graph
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graph is a single tree. Thus, if the complement graph of the candidate graph is a tree
or a forest, we use the tree canonical forms to represent the candidate graph as it is
asymmetrically easy to calculate. Otherwise, we use the canonical adjacency matrix for
the representation of the candidate graph.

Algorithm 1. DESSIN
Input: Database graph G, minimum vertex support γmin, and max vertex support γmax

Output: A set of frequent dense pattern Π

1: Π ← ∅.
2: Preprocess G and construct the index.
3: Find all frequent labels, add them into the set SFL.
4: Initialize a stack of candidate label set Σ.
5: for each label l in SFL do
6: Create an label set σ containing l only.
7: Push σ into Σ.
8: end for
9: while Σ is not empty do

10: σ ← Σ.pop().
11: Start searching from the complete graph composed of vertices with labels in σ.
12: for each candidate pattern g composed of vertices with labels in σ do
13: if g is dense and has not been reached then
14: Find all occurrences of g by index based matching.
15: if g is frequent then
16: Add g into Π .
17: Continue to process other subgraphs of g’s predecessor.
18: else
19: Generate a candidate pattern by removing 1 edge from g.
20: end if
21: end if
22: end for
23: for each label l in SFL do
24: Add l into σ.
25: Support of σ, s← 0.
26: Obtain the set of vertex set Ψ , each of which has the same label set as σ.
27: for each vertex set ψ in Ψ do
28: Create an induce subgraph g using vertices in ψ.
29: if g is dense then
30: s← s+ 1.
31: end if
32: end for
33: if s ≥ γmax then
34: Create a copy of σ and push it into Σ.
35: end if
36: Remove l from σ.
37: end for
38: end while
39: Return Π .
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5.3 Occurrence Discovery

In order to check whether any candidate pattern is frequent, we need find out all the
occurrences of this pattern in the database graph. With all the occurrences in hand, we
will be able to count the minimum/maximum vertex support of the pattern by a simple
enumeration.

In [26], a depth first matching algorithm GADDI was proposed for graph querying
in a single database graph. GADDI is used to find all occurrences of candidate patterns.
GADDI adopts a two-way pruning. First, a database graph vertex vg is matched to a
candidate graph vertex vc if and only if the following condition is true. For any neigh-
boring vertex vnc of vc, we can find a corresponding neighboring vertex vng of vg with
the same label as vnc. Besides, the distance between vnc and vc is no larger than that
between vng and vg . Second, after a database graph vertex is matched, all vertices that
cannot appear in the occurrence based on the restriction composed by the matching of
vc and vg are pruned. In addition, GADDI also applied a dynamic matching scheme,
in which it temporarily records the relationships between database and candidate graph
vertices in order to avoid redundant calculation.

Since only the dense patterns are of interest, this matching scheme can be improved
by taking advantage of the property of dense patterns. As shown in the previous section,
some pair of vertices can be easily found as equivalent because of automorphisms. Let
us suppose that vertex va can be mapped to vb by an automorphism in a candidate graph
vertex, if we can find one occurrence in which va is mapped to database graph vertex
vg , then vb can also be mapped to vg and we do not need to check it anymore.

Having introduced all three essential parts of DESSIN, we summarize it in Algo-
rithm 1.

6 Experimental Results

In this section, we empirically analyze the performance of DESSIN against SIGRAM
[16], which is designed for finding all frequent patterns in a very large sparse graph.
We cannot find an existing algorithm that finds frequent dense patterns only in a single
graph, which is very important in many applications. So SIGRAM is employed here for
the comparison. DESSIN and SIGRAM are both implemented with C++ code. They
were all run on a Dell PowerEdge 2950, with two 3.0GHZ dual-core CPUs and 16GB
main memory, using Linux 2.6.16.21-0.8-smp.

For SIGRAM, there are actually two methods, HSIGRAM and VSIGRAM, pro-
posed in [16]. HSIGRAM follows a horizontal approach and discovers the vertices in
a breadth-first fashion, whereas VSIGRAM follows a vertical approach and discovers
the vertices in a depth-first fashion. SIGRAM also has three formulations of frequent
subgraph discovery in a single large graph. They are exact discovery, approximate dis-
covery, and upper bound discovery. We choose exact discovery to do the comparison
since DESSIN does exact discovery only. Also, we choose VSIGRAM instead of HSI-
GRAM as it performs better in most parts of exact discovery tests from the experiment
in [16].

The definition of support in SIGRAM is the number of embeddings that have no
overlap, which is based on the maximum independent set. SIGRAM mines all frequent



DESSIN: Mining Dense Subgraph Patterns in a Single Graph 189

patterns first and then finds those without overlaps. However, to facilitate comparison,
we modified it to find only dense patterns which satisfy the minimum and/or maximum
vertex support requirement. There is no difference between minimum and maximum
vertex support for SIGRAM since it first mines all frequent patterns and then finds
those that satisfy dense and support requirements. The execution time of SIGRAM only
depends on the value of support threshold.

In experiments with DESSIN and SIGRAM, both minimum vertex and maximum
vertex supports, γmin and γmax, are used except those experiments that are designed
for minimum vertex support or maximum vertex support only. We can then see which
definition can find bigger patterns in a reasonable time. Users can decide to use mini-
mum or maximum vertex support based on their requirements.

The experiment is divided into two parts. First we compare the performance of
DESSIN with SIGRAM on two real data sets, a protein interaction network and a
social network. Then, a large number of synthetic data sets are employed to show
the efficiency and scalability of these two methods. The performance of DESSIN and
SIGRAM is measured using the following three criteria, the execution time, the number
of patterns found and the size of largest pattern found, which is measured in the number
of edges.

6.1 Real Data Sets

In this set of experiments, two graphs generated from real data sets are utilized. They
are both non-directed graphs. The first graph is generated from a subset of the protein-
protein interaction networks for homo sapiens. There are 6,410 vertices, 22,408 edges,
and the average degree of a vertex is around 7. Each vertex represents a protein and
the label of the vertex is its gene ontology term from [29]. There are a total of 632
distinct labels. An edge in the graph represents an interaction between the two proteins
it connects. We also compare DESSIN with SIGRAM in a social network graph, where
the average degree is much higher. The social network graph is obtained from a social
network in [30]. There are 297 vertices, 2148 edges, and the average degree of a vertex
is 14. It has 40 different labels in total. Each vertex represents a person (with a unique
vertex label), and an edge corresponds to communication between two persons.

For the protein interaction network, we vary the threshold and test both minimum
vertex support and maximum vertex support mentioned in section 3. As a result, we
show the execution time in figure 5, the number of found patterns and the size of the
largest found pattern of DESSIN and SIGRAM in Table 1. SIGRAM crashed when the
vertex support was set lower than 20.

For the social network graph, we also vary the threshold and test both minimum
vertex support and maximum vertex support. Figure 6 shows the execution time and
Table 2 shows the number of found patterns and the size of the largest found pattern.
SIGRAM crashed when support was set to 3 due to a too lengthy execution time and
memory exhaustion.

From the results of the real data sets, we can see that as expected, for both methods,
the running time, number, and largest size of found patterns increases as the threshold
decreases. DESSIN is much more efficient than SIGRAM since SIGRAM intends to
find all patterns while DESSIN finds only dense patterns. The running time of SIGRAM
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Table 1. Pattern found in PPI network

γmin largest
size

NO. of
Pattern

γmaxlargest
size

NO. of
Pattern

10 24 2,311 15 33 12,721
15 17 936 20 25 3,342
20 6 504 30 18 1,013
25 5 310 40 11 434
30 4 208 50 7 236

Table 2. Pattern found in social network

γmin largest
size

NO. of
Pattern

γmaxlargest
size

NO. of
Pattern

3 22 25,539 10 46 49,864
5 13 2,450 15 30 3,017
8 9 555 20 24 1,020
10 6 232 25 6 11
15 5 72 30 4 8
20 3 23 40 0 0

(a) Min. Vertex Support (b) Max. Vertex Support

Fig. 5. Runtime for PPI network

increases much faster than DESSIN. When the threshold was set low, SIGRAM was
aborted because of either the excessively long runtime or memory exhaustion. How-
ever, if SIGRAM can finish running, DESSIN could still find all dense patterns as
SIGRAM did.

6.2 Synthetic Data Sets

We analyze the performance of the two methods from various aspects based on a set of
synthetically generated graphs. To systematically analyze the performance of DESSIN
and SIGRAM, we vary one parameter at a time. The default parameter values are in
Table 3. We test all graphs using both maximum vertex support and minimum vertex
support. The default threshold is set to 30 for maximum vertex support while 10 for
minimum vertex support.

The first aspect is the number of vertices in G. We test DESSIN and SIGRAM from
500 vertices to 6,000 vertices. Query time of DESSIN is less than SIGRAM regardless
of the size of G. When the size of G is large, SIGRAM was aborted due to an exces-
sively long runtime. DESSIN was still able to finish the mining process in a reasonable
amount of time when G has 6,000 vertices. The runtime of both methods grows as the
number of vertices increases, but SIGRAM grows much faster, because the number of
patterns increases much faster than the number of dense patterns with more vertices in
G. Figure 7 shows the execution time of both methods with both support thresholds



DESSIN: Mining Dense Subgraph Patterns in a Single Graph 191

(a) Min. Vertex Support (b) Max. Vertex Support

Fig. 6. Runtime for social network

Table 3. Default Param. Value

Param. Default Value
Num. of Vertices in G 2,000

Avg. Degree in G 8
Num. of Labels 500

γmin 10
γmax 30

and Table 4 shows the number and largest size of found patterns. When the minimum
vertex support threshold was set to 10, SIGRAM can finish the execution only with
500 and 1,000 vertices G. However, if it was set to 30, SIGRAM is able to finish most
experiments except for the largest G which has 6,000 vertices.

The second aspect is the average degree of a vertex in G. We tested both methods
with average degree 4, 6, 8, 10 and 12. SIGRAM crashes when the average degree is
greater than 8. It is easy to imagine that the number of patterns in G increases expo-
nentially as the average degree grows, which is also true for dense patterns. This is the
reason why SIGRAM crashes when average degree of G is higher than 6 or 8 with the
vertex support threshold of 10 or 30. Figure 8(a) and (b) show the execution time for
both support thresholds for both methods. Table 5 shows the number and largest size of
found patterns.

Table 4. Various size of G

Vertices in G largest size NO. of Pattern
min max min max

500 6 6 243 8
1,000 17 33 3,675 9,866
2,000 24 46 9,637 49,864
4,000 32 48 18,765 56,234
6,000 34 49 35,982 69,875

Table 5. Various average degree of G

Degree of G largest size NO. of Pattern
min max min max

4 13 22 2,560 6,894
6 18 38 4,986 17,456
8 24 46 9,637 49,864

10 31 48 24,579 67,841
12 39 490 78,415 89,638
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(a) Min. Vertex Support (b) Max. Vertex Support

Fig. 7. Runtime with various size of G

(a) Min. Vertex Support (b) Max. Vertex Support

Fig. 8. Runtime with various average degree of G

(a) Min. Vertex Support (b) Max. Vertex Support

Fig. 9. Runtime with various # of labels

The third aspect is the number of distinct label types. We test a 2000-vertex graph
with the number of distinct labels from 250 to 1,000. With more labels in G, the number
of frequent patterns is reduced significantly. Figure 9 shows the execution time of both
methods with two support thresholds SIGRAM also crashes due to the long execution
time and memory exhaustion when number of distinct labels is too small.
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The fourth and fifth aspects are the minimum and maximum vertex support of pat-
terns in G. The number and largest size of patterns found by both methods grow very
fast as γmin and γmax decrease. SIGRAM cannot finish the execution when γmin is set
lower than 12. Figure 10(a) and 10(b) show the runtime with various vertex support for
both methods. Table 6 and 7 shows the number and largest size of patterns found.

Table 6. Various Min. vertex support

γmin largest size NO. of Pattern
8 37 44,652
9 29 22,021

10 24 9,637
12 22 7,812
15 16 3,403

Table 7. Various Max. vertex support

γmax largest size NO. of Pattern
20 47 90,610
25 46 56,721
30 46 49,864
35 30 19,312
40 25 8,547

(a) Min. Vertex Support (b) Max. Vertex Support

Fig. 10. Runtime with various vertex support

We experimented two methods on various real and synthetic data sets. SIGRAM was
modified to find all frequent dense patterns which satisfy the minimum and maximum
vertex support requirements. Both DESSIN and SIGRAM were able to find all frequent
dense patterns, as long as they can finish the mining process. However, SIGRAM per-
forms less efficiently when it deals with dense and large database graphs than DESSIN
does since it is not designed for them. DESSIN is faster in all tests than SIGRAM which
sometimes crashes due to either excessively long runtime or memory exhaustion. For
DESSIN, we have two thresholds of support, minimum vertex and maximum vertex
support thresholds. The maximum vertex support is much looser than the minimum
vertex support. Using the maximum vertex support, the algorithm could find more pat-
terns than the minimum vertex support even when it is set much higher. It is possible
that a frequent pattern has a very high maximum vertex support but a low minimum
vertex support if the vertex is heavily shared by most embeddings of the pattern in G.
In conclusion, if the database graph G is relatively sparse, e.g., a degree of 2, SIGRAM
can be employed to mine frequent patterns in it. On the other hand, if G has a higher
degree and dense patterns are intended to be found, then DESSIN should be deployed.
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7 Conclusion

In this paper, we propose the frequent dense patterns model for a single large connected
graph. The DESSIN algorithm is devised to mine these patterns. There are two main
characteristics of DESSIN. (1) To find these patterns efficiently, a preprocessing step
is employed to build an indexing structure. By employing the indexing structure, it is
shown be much faster in locating all occurrences of a pattern. (2) A depth-first pattern
generation method is utilized based on the reachability property. Last but not least, a
large number of real and synthetic data sets are employed to show the effectiveness and
efficiency of DESSIN.
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Discovery of Evolving Convoys
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Abstract. Traditionally, a convoy is defined as a set of moving objects
that are close to each other for a period of time. Existing techniques,
following this traditional definition, cannot find evolving convoys with
dynamic members and do not have any monitoring aspect in their de-
sign. We propose new concepts of dynamic convoys and evolving convoys,
which reflect real-life scenarios, and develop algorithms to discover evolv-
ing convoys in an incremental manner.

1 Introduction

Object identification and tracking technologies as well as triangulation tech-
niques enable to monitor and archive movement data of objects. For example, in
an urban setting, pedestrian and vehicle movement can be recorded at high tem-
poral resolutions using a combination of GPS, cellular networks, Wi-Fi hotspots
and other radio frequency (RF) sensor networks. These data can be used to find
interesting spatial-temporal movement patterns including convoys.

Discovering and monitoring convoys have many practical applications ranging
from traffic planning to wild-life research. Traffic planners can use the knowledge
of groups of trucks moving between factories, warehouses and stores. Convoy
discovery can be also used to extract complex herding behaviour of wild animals.

Definition 1. A convoy can be defined as a set of m or more objects, which are
within proximity of each other for a duration dur ≥ w, where m > 1 and w > 1
are user-defined parameters.

Convoys were traditionally defined as in Def. 1 using arbitrary spatial proximity
– in a circle [1,2], in a clique [3,4] or in a density-connected cluster [5]. The
primary focus of this paper is on convoys formed from density-connected objects
as it is more relevant for real-world objects.

Although Def. 1 is intuitive, it cannot be applied directly in real-life. Figure
1(a) shows movement of five college students (a, b, c, d and e). Circles with
time-stamps show spatial proximity. An administrator, trying to find convoys
of size m = 2 and duration w = 5, will be overwhelmed by a result containing
seven convoys as listed in Fig. 1(b).

From the above example, we made the following observations on the nature
of real-life convoys that Def. 1 cannot cope with :

1. Some members of the convoy may temporarily leave the group. Actually,
a, b, c and e formed a convoy from t6 to t22 as they were literally moving

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 196–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(b) Convoys and Life-spans.

Fig. 1. Movement of Five College Students and Corresponding Convoys

together. However, according to Def. 1, there were three convoys (see C4, C6

and C7 in Fig. 1(b)) for their movement because b was not detected together
with the rest (a, c and e) at a single time-stamp t14 resulting in a short gap
that eventually creates three overlapping convoys. We will refer to a convoy
that allows its members to be briefly absent as a dynamic convoy.

2. In reality, it is also possible that convoys may evolve into larger (smaller)
convoys. In our example, the convoy {a, b, c} was joined by e and evolved
into a larger convoy {a, b, c, e} (at t6), which, in turn, evolved into a smaller
convoy {b, c, e} (at t23). Representing this evolving convoy as seven over-
lapping convoys is not intuitive and hard to comprehend. It is also difficult
to order or establish relationship among the overlapping convoys. It will be
more useful if it is represented as three stages of a single evolving convoy.

Many existing works do not have a satisfactory mechanism to handle the convoys’
behaviour we observed above. Algorithms proposed in [5] report only two convoys
– {a, c} from t1 to t22 and {b, c, e} from t23 to t31 – omitting the longest-duration
convoy C2

1 while those in another work [6] report different number of cluster
sequences for different values of similarity threshold, θ.2 For example, two cluster
sequences will be reported for similarity threshold θ = 0.70.

In this paper, we made the following contributions :

1. Introduce novel concepts of dynamic convoys and evolving con-
voys – In contrast to traditional persistent-members-only definitions, a dy-
namic convoy (DC) allows dynamic members under constraints imposed by
user-defined parameters. An evolving convoy (EC) captures the relationship
between different stages of convoys such that a convoy in a stage has more
(fewer) members than its previous stage.

2. Three algorithms to discover evolving convoys – All proposed al-
gorithms are incremental, and can be used in both off-line and streaming
datasets. All dynamic convoys can be derived from the evolving convoys.

1 Personal communications with the authors confirmed this claim.
2 For detailed description of parameter θ and its effects, please refer to Sec. 2.2.
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To the best of our knowledge, this is the first work that addresses dynamic con-
voys and evolving convoys. The rest of the paper is organized as follows : the
next section outlines related works and is followed by a section on formal defini-
tions of dynamic convoys and evolving convoys. In the subsequent section, the
proposed algorithms to find evolving convoys are presented. Before concluding
our work, we report the results of experiments that assess the performance of
the algorithms on real-life and synthetic datasets.

2 Related Works

2.1 Clustering of Spatial Points

Existing works on spatial clustering consist of hierarchical [7,8] and partition-
ing [9] algorithms but they need domain-specific parameters in advance. These
parameters cannot be pre-determined in convoy discovery, where grouping be-
haviour of the objects should not be assumed. Ng and Han [10] proposed an
efficient partition algorithm CLARANS and suggested running it multiple times
to determine the best number of targeted clusters. In convoy discovery, clustering
of points for each time-stamp is required and, hence, this may be expensive.

Ester et al. [11] suggested density-based clustering, DBSCAN, which does not
need any domain-specific parameters and is scalable. DBSCAN distinguishes
each object in a density-connected clusters into two categories: core and border.
A core object has at least min pts objects within its ε-proximity and is used to
expand the clusters. An object, which has fewer than min pts objects within its
ε-proximity and has a core object as its ε-neighbours is a border objects. For
example, in Fig. 2, (for min pts = 3) black circles like c are core objects while
white circles like b are border objects. DBSCAN can handle clusters of arbitrary
shape and is tolerant to noise. Dynamic clustering, to cope with insertion and
deletions, in spatial databases can be performed by incremental DBSCAN [12].

2.2 Moving Clusters, Flocks, Groups and Convoys

Kalnis et al. [6] proposed algorithms to find moving clusters. A sequence of
clusters is defined to be a moving cluster if Jaccard index between each cluster
and its immediate predecessor is not lower than a user-defined threshold, θ. It

c

b
aL1

L1

L2

L3

Fig. 2. An Example of Density-based Clustering
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permits clusters to be completely different (larger, smaller etc.) in a short time,
especially for lower θ values. Using higher θ values, however, cluster transitions
(merge, split etc.) tend to break moving clusters into shorter episodes. MONIC
[13] models and monitors cluster transitions: survival, split, absorbed, disappear
and emerge.

A fixed flock is defined as a set F of m or more objects, which are within a
circle of radius r > 0 in w or more consecutive time-stamps (r, m and w are
given). Gudmundsson and Kreveld [1] reported computing longest-duration fixed
flock is NP-Hard and gave various approximations. Benkert et al. [2] described
a method that transforms d dimensional trajectories (containing τ points) into
dτ dimensional points and performs range-query to find flocks. Vieira et al. [14]
reported polynomial-time algorithms to find flocks of fixed duration dur = w.

Hwang et al. [3] described a definition of moving groups. A moving group is a
set of objects G, whose members must be within min dis away from each other
for min dur or more consecutive time-stamps. They proposed an Apriori based
algorithm and VG-growth based algorithm to find all such groups of moving
objects. These algorithms are extended to find maximal groups in [4].

Jeung et al [5] defined a convoy, which can occupy a spatial region of ar-
bitrary size and shape in its lifetime, as a group of at least m objects being
density-connected with each other throughout w consecutive time-points, where
m, w and DBSCAN parameters are provided by the user. They proposed a
filter-refinement scheme called CuTS. Although CuTS is better than the simple
refinement step alone, it cannot produce a complete list of convoys.

3 Dynamic Convoys and Evolving Convoys

Definition 2. For a given set of objects O = {o1, o2, ..., on}, time-stamps T =
{t1, t2, ..., tτ} and a spatial-space IRd, a moving object dataset R is a set of records
of the form 〈o, t, loc〉 where o ∈ O, t ∈ T and loc ∈ IRd.

In a moving object dataset, o and t form a composite key that uniquely deter-
mines loc. However, a given moving object dataset (R) can be incomplete – i.e.
for all {o, t} ∈ O × T , there may not be 〈o, t, loc〉 ∈ R – since, in reality, some
objects may be untraceable in certain time-stamps due to hardware limitations.
Although time is assumed as a discrete sequence with an equal intervals between
each pair of consecutive points, generality of Def. 2 is not undermined since any
application can set an arbitrarily small interval.

Definition 3. For given parameters: m, k and w (m > 1, 1 ≤ k ≤ w), a set of
moving objects D forms a dynamic convoy from tstart(D) to tend(D) if it :

– Contains at least m persistent-members (denoted by PMD), all of which are
density-connected in each time-stamp t in [tstart(D), tend(D)] and

– Contains zero or more dynamic members (denoted by DMD), each of which
must be density-connected with the persistent-members at least k times for
any w sliding window in [tstart(D), tend(D)].
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Under Def. 3, members of a convoy are density-connected and, hence, a dynamic
convoy can assume arbitrary spatial size and shape in its life-time. The first
condition ensures a fixed set of persistent members (PMD) forms its main body.
The second condition requires each dynamic member o ∈ DMD to stay close
with the persistent members at least k times in any w sliding window in its life-
span. For smaller k values, a dynamic-member can move away from the convoy
longer while larger k values prohibit a dynamic-member from being away for a
long time (k = w means no dynamic-member and, hence, a traditional convoy).
For example, with m = 2, w = 5 and k = 4, in Fig. 1(a), {a, b, c, e} forms a
dynamic convoy from t6 to t22.

It is clear that, for a dynamic convoy D, PMD forms a traditional convoy.
Therefore, for a given dataset, we can have as many dynamic convoy as we have
traditional convoys. It is also difficult for a human user to establish relation-
ship between overlapping dynamic convoys. For m = 2, k = 4 and w = 5, in
the scenario described in Fig. 1(a), D1 = {a, b, c} in [t1, t22], D2 = {b, c, e} in
[t6, t31], D3 = {a, b, c, e} in [t6, t22] and many of their subsets are all dynamic
convoys. From the usability point of view, reporting all convoys, whose members
and life-spans are overlapped, may be confusing. Selecting a representative from
overlapping convoys is also application-dependent. For example, some adminis-
trators may be interested in longer-duration convoys (like D2) while others may
be interested in larger convoys (like D3). A more comprehensive approach is to
report each set of overlapping convoys as an evolving entity with stages.

Definition 4. A dynamic convoy of duration dur = w is called a w-convoy.

For given m, k and w, a dynamic convoy D of duration dur ≥ w has dur −
w + 1 w-convoys D1, D2, ..., D(dur−w+1) of duration w, each of which has the
same persistent-members and dynamic-members as D. For example, the convoy
D1 = {a, b, c} (see above paragraph) that exists from t1 to t22 has 18 convoys of
duration w, each having the same set of members as D1.

Definition 5. A w-convoy D that exists from t to t+w−1 evolves into another
w-convoy D′ that exists from t + 1 to t + w if they have at least m common
persistent-members, i.e |PMD ∩ PMD′ | ≥ m.

Definition 5 defines how a w-convoy can evolve into the next w-convoy of duration
w. It ensures that a convoy evolves only into a related convoy (not to a convoy
with totally different members). The w-convoys formed by a, b, c and e in the
scenario in Fig. 1(a), for parameters m = 2, k = 4 and w = 5, is shown in Fig.
3. D1 = {a, b, c} that exists from t1 to t5 evolves into D2 = {a, b, c} that exists
from t2 to t6, which in turn evolves into D3, D4 and D5. Then, D5 = {a, b, c}
evolves into D6 = {a, b, c, e} as they share {a, b, c} as persistent members. The
evolution continues until D18, which evolves into smaller D19 and so on.

Definition 6. A sequence of w-convoy D1, D2, ..., Dz such that each Di evolves
into D(i+1) for 1 ≤ i < z is maximal if there is no w-convoy D′, which evolves
into D1 or into which Dz evolves into.
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Fig. 3. The Concept of Convoy Evolution

Following Def. 6, we can see that in Fig. 3, there is a single maximal sequence
of 27 w-convoys, from D1 = {a, b, c} to D27 = {b, c, e}. Informally, for each
maximal sequence of w-convoys in a dataset, there is a corresponding evolving
convoy (defined below) that covers all related convoys (even longer ones).

Definition 7. For given parameters m, k, w and a maximal sequence of w-
convoys, D1, D2, ..., Dz such that each Di evolves into D(i+1) for 1 ≤ i < z,
the corresponding evolving convoy V contains z′ ≤ z stages. Each stage Sj, for
1 ≤ j ≤ z′, is defined as a continuous sequence of w-convoys [Ds, De] having the
same set of members.

Definition 7 ensures a sequence of related dynamic convoys to be covered in an
evolving convoy with stages. The members at each stage S[s,e] that covers w-
convoys [Ds, De] are the members of Ds (De). The start-time and end-time of
a stage S[s,e] can be derived from the start-time and end-time of participating
w convoys. For example, in Fig 3, the evolving convoy corresponding to the
maximal sequence of w-convoys has three stages – stage S1 = {a, b, c}, stage
S2 = {a, b, c, e} and stage S3 = {b, c, e}. The period of the first stage S1 of the
evolving convoy V is from t1 to t5, while the period of the last stage S3 of V is
from t22 to t31. Each stage corresponds to at least a dynamic convoy and, from
an evolving convoy, the dynamic convoys it covers can be easily derived.3

By Def. 7, an evolving convoy can gain (lose) new (existing) dynamic members
throughout its life. For instance, stage S1 = {a, b, c} of evolving convoy V in Fig.
3 evolves to the next stage S2 = {a, b, c, e} by obtaining e as a new member.
They also allow a persistent member in the current stage to become a dynamic
member in subsequent stages (and vice versa) and impose no hard differentiation
on a member’s role. Any member can become a dynamic member (persistent
member) and leave (form) the main body of the convoy. This property agrees
with real-life scenarios. Consider a group of five soldiers each, in turn, taking
a point-duty, i.e to walk ten meter ahead of the group looking for anomalies,
depicted in Fig. 4. Although this is a convoy moving for 50 time-stamps, there
is no fixed set of persistent-members defining the main body from t1 to t50 for
any m > 1. However, with parameters w = 20, k = 10 and m = 2, we can have
an evolving convoy as the soldiers returning from point-duty will take the role
3 The detailed process is omitted to conserve space.
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Fig. 4. Movement of Five Soldiers

of persistent-member and form the main body of the convoy. For example, b is a
dynamic-member earlier and, eventually, a persistent-member at t21 onwards.4

Thus, a and b together formed the main body of the evolving convoy during
[t41, t50].

To summarize, following the traditional notions of convoys, there are many
overlapping convoys in a moving object dataset and the relationship among them
is hard to establish. Therefore, the new concept of evolving convoys, which allows
a convoy to evolve from a stage to the next, can provide a better picture of the
real-life groups of moving objects than the traditional definitions.

4 Discovery of Evolving Convoys

We developed three algorithms to discover evolving convoys from a moving object
dataset. The first algorithm is a straight-forward implementation while the next
two algorithms mitigate the performance bottlenecks of their predecessors.

4.1 Simple Slice-by-Slice Algorithm

The Simple Slice-by-Slice algorithm S3 is directly obtained from the problem
definition and is similar to MC2 in [6] and CMC in [5]. It obtains density-
connected clusters in each time-stamp in the dataset. Each cluster is treated
as a potential candidate and S3 tries to verify if it actually forms a convoy by
checking clusters in subsequent time-stamps.

Details of S3 is shown in Fig. 5. If the moving object dataset R has missing
records, the function SNAP performs linear interpolation to fill the gaps in R′.
EXTEND is a function that tracks count or the number of times an object
o ∈ O is found with the PMV for each convoy V and assigns different role to
each member o for a convoy. EXTEND maintains a log of stages for each convoy.5

The internals of EXTEND is shown in Fig. 6
For each time-stamp t, S3 obtains a complete snapshot R′ using SNAP and

all the objects in R′ are clustered using DBSCAN (line 3). S3 tries to match

4 This, however, can be inferred only after movement information up to t40 is available.
5 Information on role transitions between persistent-members and dynamic-members

can be also tracked to provide the list of all the dynamic convoys if desired.
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Algorithm: S3

Input: R, ε, min pts, m, k and w.
Output: A set of Evolving Convoys V.
1: Set V ← φ and Vcur ← φ
2: for t = 1 to τ do
3: Set R′ ← SNAP(R, t) and L ← DBSCAN(R′, ε,min pts)
4: Set match(L) ← false for all L ∈ L
5: for all V ∈ Vcur do
6: Set extended ← false
7: for all L ∈ L such that |L ∩ PMV | ≥ m do
8: EXTEND(V , L) and Set match(L) ← true and extended ← true
9: if extended = false then

10: Set tend(V ) ← (t − 1) and Vcur ← Vcur − {V }
11: if tend(V ) − tstart(V ) + 1 ≥ w then
12: Set V ← V ∪ {V }
13: for all L ∈ L such that match(L) = false and |L| ≥ m do
14: Create new convoy V with PMV ← L and tstart(V ) ← t
15: Set Vcur ← Vcur ∪ {V }
16: for all V ∈ Vcur such that τ − tstart(V ) + 1 ≥ w do
17: Set tend(V ) ← τ and V ← V ∪ {V }

Fig. 5. Algorithm S3 for DEC

Function: EXTEND(V , L, m, k, w)

1: for all o ∈ O do
2: Set count ← no. of times o is density-connected to PMV in [t − w + 1, t]
3: if count = w then
4: Set PMV ← PMV ∪ {o} and DMV ← DMV − {o}
5: else
6: if count ≥ k then
7: Set PMV ← PMV − {o} and DMV ← DMV ∪ {o}
8: else
9: Set PMV ← PMV − {o} and DMV ← DMV − {o}

Fig. 6. Function EXTEND for S3

each of the current convoys maintained in Vcur with the clusters found in the
current time-stamp (lines 5 - 8). If m or more persistent-members of a convoy V
is found in a cluster C, V is matched to C – we say V “extends” to C. For each
evolving convoy V matched to a cluster L, its member objects are tracked by
EXTEND(V, L) (line 8). When a matching cluster cannot be found, the convoy
is put in the results if its life-span is at least w (lines 9-12). Those clusters L,
into which no convoy has extended, are made potential convoys and placed in
Vcur(lines 13-15).
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The S3 algorithm reports a split when it detects a convoy V extends to more
than one clusters. It can also detect merges using a test – conducted in each
time-stamp – which checks whether two convoys, V and V ′, have the same set
of persistent-members.

Figure 7 shows movement of eight objects in nine time-stamps. For min pts =
2, m = 2, k = 3 and w = 4, this dataset contains two evolving convoys, shown
in shaded areas, namely V1 and V2. A partial trace following convoy V1 is listed
in Tab. 1. At t = t1, S3 found a cluster C1,1 = {a, b, c, d}, which is made as
a potential convoy V 1 and put into Vcur. In subsequent time-stamp t = t2,
DBSCAN returns a cluster C2,1 = {a, b, c}, into which the potential convoy V 1
extends to because C2,1 has 3 ≥ m objects common with PMV 1. Now, PMV 1

becomes {a, b, c}. For each object o, EXTEND tracks count or the number of
times it appeared with PMV 1 in [t − w + 1, t], thus, for example, at t2, count
for a = 2 and count for d = 1. In this way, at t = t4, the existence of convoy V 1
starting from t1 is confirmed (d and e are not included as count for d = 1 < k
and count for e = 2 < k). In time-stamp t = t5, DBSCAN returns two clusters
C5,1 = {a, c, e} and C5,2 = {d, f, g}. V 1 extends to cluster C5,1, and, since count
for e = 3 ≥ k, e is noted to be joining the convoy. Since no convoy extends to
cluster C5,2, a potential convoy V 2 = {d, f, g} is put into Vcur.

4.2 Interleaved DEC Algorithms (ID Family)

In S3, all objects in each time-stamp are clustered using DBSCAN, which is
an expensive operation. Therefore, for better performance, we need to minimize
DBSCAN calls. TRAJ-DBSCAN (DBSCAN for trajectories) proposed in [5] uses
the closest distance between each pair of trajectories as their distance. It has a
property that if objects o1 and o2 are density-connected at t (t ≤ t ≤ t + λ− 1),
their trajectories j1 and j2 for [t, t + λ − 1] are in the same trajectory-cluster
returned by TRAJ-DBSCAN. Therefore, in order to prune objects which may
not form a cluster in a given time-stamp t (t ≤ t ≤ t + λ − 1), we borrowed
TRAJ-DBSCAN to check the trajectory-clusters for trajectories in [t, t + λ− 1].
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Table 1. A Partial Trace of S3

t PMV 1 DMV 1 count of log(V 1)
a b c d e f

t1 {a, b, c, d} - 1 1 1 1 0 0
t2 {a, b, c} - 2 2 2 1 0 0
t3 {a, b, c} - 3 3 3 1 1 0
t4 {a, b, c} - 4 4 4 1 2 0 Stage S1 = {a, b, c}.
t5 {a, c} {b, e} 4 3 4 0 3 0 Stage S2 =

{a, b, c, e}. b be-
came DM.

t6 {a, c, e} {b} 4 3 4 0 4 0 e became PM.
t7 {c, e} {a, b} 3 3 4 0 4 0 a became DM.
t8 {c, e} {b} 2 3 4 0 4 0 Stage S3 = {b, c, e}
t9 {b, c, e} - 1 4 4 0 4 0 b became PM.

For better performance, TRAJ-DBSCAN works on trajectories simplified by
DP-simplification [5]. DP-simplification uses a parameter δ to reduce the number
of points to represent a trajectory by allowing an error less than δ.

Our proposed, Interleaved-DEC (ID) algorithms divide the dataset into parti-
tions, each containing λ consecutive time-stamps. For each partition, the
Interleaved-DEC (ID) algorithms operate in two steps – the first is to get the
set of objects which are likely to form convoys while the second is the actual
clustering of objects and extending of the convoys. The ID algorithms, there-
fore, interleave the two steps (hence their name) as they progress. The length of
each partition (λ) and trajectory simplification parameter (δ) can be set inde-
pendently.

ID-1. The first interleaving algorithm, ID-1, is a simple extension of S3. A
sketch of ID-1 is shown in Fig. 8. The function PARTITION(R, p, λ) returns
the pth λ-length partition from moving object dataset R. Selective SNAP –
S SNAP(P , J, t) – returns the data of the given set of objects J at t. For each
partition P , the trajectories are clustered using TRAJ-DBSCAN (lines 3-5).
For each trajectory-cluster J found in current partition, only its members are
clustered in each-time-stamp t (lines 6-7) saving clustering efforts. Matching
the clusters found in each time-stamp against the set of current convoys and
initiating unmatched clusters as potential convoys are the same as S3(lines 8-9).

ID-1 brings performance improvement over S3 by clustering a handful of ob-
jects each time-stamp. For example, in Fig. 7, if we set λ = 2, in partition [t3, t4],
only trajectories of a, b, c and e will form trajectory-clusters while those of d,
f , g and h will not. Therefore, in time-stamps t3 and t4, ID-2 needs to cluster
only four objects in contrast to S3 clustering eight objects each time-stamp.

ID-2. Although ID-1 is expected to have better performance than S3, it is
still costly because the pruning is not tight enough and have false positives,
which must be checked and removed by the slice-by-slice loop that follows. For
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Algorithm: ID-1

Input: R, ε, min pts, m, k and w.
Output: A set of Evolving Convoys V.
1: Set V ← φ and Vcur ← φ
2: for t = 1 to τ do
3: if mod(t − 1, λ) = 0 then
4: Set p = t/λ + 1 and P ← PARTITION(R, p, λ)
5: Set J ← TRAJ-DBSCAN(P , ε, min pts, δ)
6: for all J ∈ J do
7: Set R′ ← S SNAP(P , J , t) and L ← L ∪ DBSCAN(R′, ε, min pts)
8: Set match(L) ← false for all L ∈ L
9: {The rest is the same as lines 5 - 15 in S3}

10: for all V ∈ Vcur such that τ − tstart(V ) + 1 ≥ w do
11: Set tend(V ) ← τ and V ← V ∪ {V }

Fig. 8. Algorithm ID-1 for DEC

Algorithm: ID-2

Input: R, ε, min pts, m, k and w.
Output: Set of Realistic Convoys V.
1: Set V ← φ, Vcur ← φ and N ← w/λ
2: for p = 1 to τ/λ + 1 do
3: Set Pp ← PARTITION(R, p, λ)
4: Set V ← V ∪ S VERIFY(Pp, Vcur, ε, min pts, m, k, w)
5: Set Vcur ← Vcur ∪ NEW CONVOY(p, Vcur, ε, min pts, m, k, w)
6: for all V ∈ Vcur such that τ − tstart(V ) + 1 ≥ w do
7: Set tend(V ) ← τ and V ← V ∪ {V }

Fig. 9. Algorithm ID-2 for DEC

instance, in the scenario shown in Fig. 7, trajectories of objects f , g and h form
a trajectory cluster in partition [t1, t2] as the closest distance between h and f
(g) was small as they meet in t1 (t2). ID-1 must, therefore, try to cluster them
for 2 time-stamps (t1 and t2) without finding a single cluster (and convoy) they
form. We also noted that if a convoy is verified to exist from ti to ti+λ−1, its
members can be excluded from TRAJ-DBSCAN, i.e. clustering the trajectories
of a, c and e in partition [t5, t6] is a waste if their convoy is verified to exist up
to t6.

We developed another interleaving algorithm ID-2 to have tighter pruning
than ID-1 and exploit the fact we noted to save trajectory-clustering efforts.
The skeleton of the second interleaving algorithm, ID-2, is given in Fig. 9. For
each partition Pp, ID-2 first tries to extend the current convoys in Vcur and those
which failed to extend until end of Pp are put into results (line 4). Objects which
are not persistent-members of any current convoy (verified up to end of Pp) can
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Function: S VERIFY(Pp, Vcur, ε, min pts, m, k, w)

1: for t = tstart(Pp) to tend(Pp) do
2: Set Lt ← φ
3: for all V ∈ Vcur do
4: Set Lt ← Lt ∪ S DBSCAN(R, PMV , t, ε, min pts)
5: Set match(L) ← false for all L ∈ Lt

6: for all V ∈ Vcur do
7: Set extended ← false
8: for all L ∈ Lt such that |L ∩ PMV | ≥ m do
9: Extend(V , L) and Set match(L) ← true and extended ← true

10: if extended = false then
11: Set tend(V ) ← t − 1, Vcur ← Vcur − {V } and V ← V ∪ {V }
12: Return V

Fig. 10. Function S VERIFY for ID-2

form new convoys. Therefore, new convoys are formed out of them and put into
the list of current evolving convoys Vcur (line 5).

Since, a current convoy V can only extend to a cluster L containing at least
m of its persistent members (PMV ), S VERIFY, shown in Fig. 10, uses the
persistent-members of the convoy PMV as a guide to build the clusters it
can extend. In each time-stamp t in the given partition Pp, clusters contain-
ing persistent-members of evolving convoy V ∈ Vcur are formed by S DBSCAN
(lines 3 - 4). Then, the convoys are extended to the clusters found (lines 6-9)
and those convoys, which cannot extend any more are returned (lines 10-11).

S DBSCAN is a modified version of DBSCAN that returns all the valid clus-
ters in R at t containing all objects o ∈ PMV according to DBSCAN parameters
ε and min pts. S DBSCAN is built around the fact that any object o can be
either a core point or a border point in a density cluster (or a noise). Since a
density-cluster can be built starting with any of its core points, the given object
will be used as the seed to recursively expand its cluster if it is a core point.
On the other hand, if it is a border point, one of its ε-neighbour must be a
core point. Therefore, its ε-neighbours are used as seeds to build the clusters
containing them. For example, if we ask S DBSCAN to find clusters containing
{b, c}, in Fig. 2, it will return L1 and L3 (but not L2). While c can be directly
used as the seed to build L1, a, a neighbour of b is used to construct L3 as b is
not a core-point.

Since it is possible that new convoy formed from the clusters that S DBSCAN
leaves to build (for example L2 from Fig. 2), NEW CONVOY (see Fig. 11) uses a
filter-refinement scheme to initiate new convoys. In order to avoid finding convoys
already verified to exist, only trajectories of objects, which are not persistent-
members of any existing convoys, are clustered (lines 1-2). Trajectory-clusters are
verified if they can form a set of persistent members across N = w/λ partitions
(or w time-stamps) to get convoy-candidates (lines 3 - 9). The set of convoy
candidates D is used as a guide to find the set of convoys V ′

cur, whose start-time
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Function: NEW CONVOY(p, Vcur ε, min pts, m, k, w)

1: Set P ′
p ← Pp − {〈o, t, loc〉| there is V ∈ Vcur such that o ∈ PMV }

2: Set Jp ← TRAJ-DBSCAN(P ′
p, ε, min pts, δ)

3: Set D ← J(p−N+1)

4: for T = p − N + 1 to p do
5: Set D′ ← φ
6: for all D ∈ D do
7: for all J ∈ JT such that |J ∩ D| ≥ m do
8: Set D′ ← D′ ∪ {J ∩ D}
9: Set D ← D′

10: Set V ′
cur ← φ and Call VERIFY(P(p−N+1), D, V ′

cur, ε, min pts, m, k, w)
11: for T = p − N + 2 to p do
12: Call S VERIFY(PT , V ′

cur, ε, min pts, m, k, w)
13: Return V ′

cur

Fig. 11. Function NEW CONVOY for ID-2

is in partition P(p−N+1) (line 10). VERIFY is a similar to S VERIFY except it
uses D to find cluster instead of Vcur to find density-connected cluster (see line
3 of S VERIFY) and it initiates the unmatched clusters as potential convoys
(which S VERIFY does not). Convoys in V ′

cur are extended by S VERIFY until
the end of partition P(p)(lines 11 - 12).

Here is an illustration of ID-2 on dataset in Fig. 7. For the first two partitions
[t1, t2] and [t3, t4], there is no existing convoys in Vcur. To find new convoys of
at least w = 4 period, trajectory-clusters from those partitions are examined. In
the first partition, there are two trajectory-clusters, {a, b, c} and {f, g, h}. How-
ever, the second partition has only one trajectory cluster {a, b, c, e}. Thus, slice-
by-slice verification is done only for the convoy containing persistent-members
{a, b, c} and put it into the set of existing convoys. In the third partition [t5, t6],
the existing convoy {a, b, c} is extended until t6 (e became a persistent-member,
b became dynamic-member). Since the convoy containing {a, b, c, e} is verified to
exist up to t6, trajectories of its members are left in TRAJ-DBSCAN operation
and a trajectory cluster containing d, f and g is formed. In the fourth partition
[t7, t8], existing convoy is extended up to t8 and a new convoy {d, f, g} is formed.

5 Experimental Evaluations

5.1 Experiment Set-Up

We implemented the algorithms in C++ and evaluated their performance on a
Windows XP-Professional workstation equipped with Intel Core 2 Duo E6500
processor and 4GB RAM. Two real-life datasets and a synthetic dataset used to
evaluate the performance of the algorithms are:

– Mob contains human movement in five different sites [15]. In order to obtain
more moving objects, we merge data from five sites by aligning their reference
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points. We further divide the dataset into five-hour-periods and merge them
to obtain 559 trajectories. It is notable that the update rate of each trajectory
is strictly 30 seconds.

– Bus contains bus movements during peak hours (0800-1600 hours) in Seattle
from 30-Oct-2001 to 05-Oct-2001 [16]. We merge the data into a single day
to obtain a large dataset of 4,471 bus movement.

– Synth is a synthetic dataset, in which we maintain a total of ten thousand
moving objects at any time by spawning a new object for each one leaving the
map (total unique objects is 13,635). The initial positions and velocities of
the objects are randomly determined. The mean location update rate of 30%
of the objects is 3 while that of the rest is 5. Moreover, there is 1% missing
records introduced randomly. Based on a random variable, new convoys of
random durations are artificially built from existing objects.

For all sets of experiments, the interval between each consecutive time-stamps is
set at 10 seconds but no pre-processing is done for missing records. The param-
eters used for the experiments are selected intuitively. For example, the distance
between walking humans in the same convoy is 3 meter while that of moving
buses is 30 feet. The range query operation heavily used in DBSCAN is supported
by dividing the map into 100 equal-sized grids, i.e. 10 rows and 10 columns. This
is a fair assumption in real-time setting (like streaming data), where building a
high-performance spatial-index is out of the question. More information of the
datasets and experiment settings are summarized in Tab. 2.

Table 2. Datasets and Experiment Settings

Dataset Time- Records Unit Map m w/k ε min λ/δ
stamps pts

Mob 1,800 267,459 meter (40K)2 3 90/54 3 3 10/1
Bus 2,880 1,000,579 feet (300K)2 5 90/54 30 5 10/5
Synth 720 2,046,112 meter (10K)2 5 90/54 3 3 10/3

Since each evolving convoy starts with a dynamic convoy, for comparison,
we extend CuTS [5] into X-CuTS to find dynamic-convoys and include it in
the first set of experiments. However, to prevent its pruning mechanism from
pruning dynamic members, λ values for X-CuTS must be greater than w − k.
We run X-CuTS with λ = w/2 when k = 0.60 × w. Moreover, MC2 [6] is also
run on Mob and Bus datasets, with θ = 0.67, in order to compare the results.

5.2 Results and Analysis

Table 3 shows a comparison of running time (in seconds) of the algorithms to
find evolving convoys for each dataset. The ID family (ID-1 and ID-2) always
out-performs S3 and X-CuTS as they prune many of the objects from clustering,
which S3 must inadvertently perform. In general, ID-2 is better than ID-1 since
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Table 3. Running Time Comparison of Algorithms for Different Datasets

Dataset No. of Convoys S3 ID-1 ID-2 X-CuTS

Mob 10 174.39 137.41 113.00 156.959
Bus 153 1843.88 1765.95 1423.24 2470.83
Synth 6 1932.61 1852.75 1607.44 5127.87
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Fig. 12. Effect of Parameters w and k on Performance in Mob Dataset

ID-2 has a tighter pruning and saves clustering and verification efforts for objects,
which accidentally came close for a short period of time. X-CuTS performed
worse than S3 in Bus and Synth datasets. Although X-CuTS performs better
than S3 in Mob dataset, it does not return a complete answer in Bus and Synth
datasets. Therefore, we omit its results in further discussions.

Figure 12 shows how the parameters w and k affect the performance of the
algorithms in Mob dataset. Algorithm S3 is not affected by changing w and k
values. The ID family is not affected by changing k value but ID-2 performs
better for larger w value since it can prune evolving convoys of short-duration
while S3 and ID-1 cannot.

Figure 13 shows how the DBSCAN parameters ε and min pts affect the perfor-
mance of the algorithms in Mob dataset. All algorithms are affected by changing
ε and min pts values. Increasing ε means more clusters and/or larger clusters
are found in each time-stamps. This, in turn, increases pruning, clustering and
joining time. However, the ID family benefits from the pruning steps while S3

does not. Increasing min pts means fewer and/or smaller clusters and, hence,
shorter running time. The ID family out-performs S3, with ID-2 being the best.

Parameters δ and λ do not affect the correctness of the ID family but may have
impact on performance. Although δ can be set independently, our preliminary
studies show that δ should be lower than half of ε to have a tighter bound.
Otherwise, higher δ values will increase the running time.

However, λ is not an independent variable as it determines how often the user
gets the reports as all information of convoys in a λ-partitions P are reported in
bulk only after P has been read in. Therefore, setting λ as low as possible would



Discovery of Evolving Convoys 211

100
110
120
130
140
150
160
170
180

1 2 3 4 5

Ru
nn

in
g 

Ti
m

e 
(s

ec
)

Epsilon

S3 ID-1 ID-2

(a) min pts is fixed at 3.

100
110
120
130
140
150
160
170
180

3 4 5

Ru
nn

in
g 

Ti
m

e 
(s

ec
)

min_pts

S3 ID-1 ID-2

(b) ε is fixed at 3.0

Fig. 13. Effect of DBSCAN Parameters ε and min pts on Performance in Mob Dataset

100
110
120
130
140
150
160
170
180

Ru
nn

in
g 

Ti
m

e 
(s

ec
)

Algorithm/Lambda

Fig. 14. Effect of Parameter λ on Performance

be preferred. Figure 14 shows the performance of the algorithms with different λ
values. We observed that the lower the value of λ, the better the ID algorithms
perform. The running time rises when λ is set to 5 because the update rate
for Mob dataset is 3 (30 seconds), thus each partition includes 1-2 movement
record for each object, putting more overheads in TRAJ-DBSCAN operations.
Therefore, from our studies, we recommend setting a low λ value as long as each
object reports its location 3 or more times in a given length of partition (λ).

In order to assess how the algorithms would perform when given more/less
complete data, more experiments are conducted. Objects in Synth dataset is
modified to have higher/lower update frequencies. Performance of S3, ID-1 and
ID-2 are plotted in Fig. 15(a). In general, lower update rates introduce lower
I/O costs. However, this forces S3 to perform more linear interpolation to pre-
dict locations of all the objects, reducing the saving in I/O. However, the ID
algorithms benefit as trajectory clustering time is reduced and they can prune
much interpolation and clustering efforts.

To assess how the algorithms scale, they are evaluated on more synthetic
datasets. Figure 15(b) shows the running time of each algorithm. The ID algo-
rithms outperform S3 when the dataset contains more than 7,500 objects. ID-1
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Fig. 15. Performance of the Algorithms on Synthetic Datasets

performs slightly better than S3 as its pruning power is limited. It is found that
ID-2 performs best and scales better than S3 and ID-1.

Finally, we compare the moving clusters reported by MC2 [6] against the
convoys our algorithms report. MC2 often finds a set of shorter moving clusters
instead of a single evolving convoy as the convoy’s members are often found in a
cluster not similar to the one they were in the previous time-stamp (for example,
merge). In Mob and Bus datasets, 9 and 248 moving clusters (compared to 10
and 153 evolving convoys), which last for 90 time-stamps, are found respectively.
Yet, they do not cover all the evolving convoys with the same duration because
some convoys correspond to a set of disjoint moving clusters, some of whose
duration are shorter than 90 time-stamps.

To summarize the experiment results, S3 cannot scale well with the size of
dataset. ID-1 can be used when we want convoys of short-duration or when few
false positives are expected. ID-2 is suitable for many scenarios. By definition,
evolving convoys are more compact and more expressive than moving clusters.

6 Conclusion

In this paper, we presented and proposed new and practical convoy definitions
and proposed algorithms to find them. Dynamic convoys allow members to
briefly move away under user’s constraints. Evolving convoys present a more
comprehensive result for human users. All three proposed algorithms can report
details of evolving convoys, from which dynamic convoys can be extracted. They
work in an incremental manner suitable for both off-line discovery and on-line
monitoring. The ability to work with continuous-valued time-stamps and aware-
ness of deadlines for real-time monitoring are left as future extension.
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Abstract. With the growing focus on semantic searches, an increasing number
of standardized ontologies are being designed to describe data. We investigate the
querying of objects described by a tree-structured ontology. Specifically, we con-
sider the case of finding the top-k best pairs of objects that have been annotated
with terms from such an ontology when the object descriptions are available only
at runtime. We consider three distance measures. The first one defines the object
distance as the minimum pairwise distance between the sets of terms describ-
ing them and the second one defines the distance as the average pairwise term
distance. The third and most useful distance measure—earth mover’s distance—
finds the best way of matching the terms and computes the distance corresponding
to this best matching. We develop lower bounds that can be aggregated progres-
sively and utilize them to speed up the search for top-k object pairs when the earth
mover’s distance is used. For the minimum pairwise distance, we devise an algo-
rithm that runs in O(D + Tk log k) time, where D is the total information size
and T is the number of terms in the ontology. We also develop a best-first search
strategy for the average pairwise distance that utilizes lower bounds generated in
an ordered manner. Experiments on real and synthetic datasets demonstrate the
practicality and scalability of our algorithms.

1 Introduction

We are witnessing an unprecedented growth in annotated information. This growth has
been motivated by a need to share information and, more recently, by a need to search and
analyze objects based on their structure and semantics. Annotated objects occur in mul-
tiple application domains including language (http://wordnet.princeton.edu/), biology
(http://www.geneontology.org), medical documents (http://www.nlm.nih.gov/mesh/),
web content (http://www.semanticweb.org/), etc. In all these cases, annotations are de-
rived from a structured vocabulary or ontology.

This paper investigates the analysis of large sets of objects that have been annotated
with terms from a common ontology. The analysis is useful in many practical situations.
For example, consider a reviewer assignment scenario for a conference. There is a set of
reviewers along with interest areas in which they have expertise, and a set of submitted
papers described using keywords. The set of keywords and interest areas are organized
as an ontology (e.g., http://www.academia.edu/ maintains a detailed hierarchy of re-
search interests). An efficient algorithm should rank a paper-reviewer pair high if the
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keywords in them match, as then, the reviewer is likely to review this paper. Thus, this
can act as a guide to the reviewers by showing more interesting papers earlier. In short,
we need to perform an efficient join (may be self-join) of two sets of objects described
using terms in a hierarchy. Therefore, the basic problem we consider in this paper is as
follows: Given two sets of objects annotated with terms from an ontology, how to find
the top-k pairs of objects from the two sets that are most similar.

The above problem statement requires us to formalize the notion of distance between
two terms in a given ontology and then to extend this notion to distance between two
annotated objects. The distance between two terms can be measured by the shortest
path distance on the ontology. There are a number of definitions for distance (or con-
versely, similarity) between objects. Two obvious definitions are based on the minimum
pairwise distance and the average pairwise distance. The third one is the earth mover’s
distance [1] that takes into account the relative positions of the terms in the hierarchy
that describes the objects. We investigate querying based on these three distances.

In this paper, we consider that the object descriptions are available only at run-time.
As such, no pre-processing or index construction or any other offline processing can be
used, and all the computation costs are paid at run-time. Even if the distance function
used is a metric, the online nature of the problem renders the use of index structures
(such as M-tree [2]) infeasible due to their high index construction times. In a way,
this is reminiscent of the problem of spatial joins on objects in the Euclidean space: the
spatial datasets are delivered online and we need to compute the best spatial matches [3].
Only that, in the case of ontologies, the distance is not Euclidean, but computed on a
hierarchy.

The problem can be easily extended when objects are annotated with multiple inde-
pendent ontologies. We can compute the per-ontology distance and combine them using
an aggregate ranking technique [4]. The problem of querying with a particular object
similar to a given query object (i.e., the k-NN problem) reduces to the special case of
a join of the database with a singleton set (the query object). Similarly, range queries
can be solved by choosing only those pairs having a distance less than the query range.
While these and other kinds of queries can also be considered, the problem of top-k join
exposes the computational and data management complexities of this domain the best.

Formally, our problem can be stated as:

Problem 1. Given a set of objects each of which is defined by a set of terms from an
ontology and a distance function d(Oi, Oj) between two objects Oi and Oj , find k
pairs of objects P such that for any (Oi, Oj) ∈ P and (Og, Oh) /∈ P , d(Oi, Oj) ≤
d(Og, Oh).

Fig 1(a) illustrates a particular instance of the problem. The ontology tree consists of 10
terms. There are 4 objects that are described using these terms. An inverted index, i.e.,
mapping of a term to a set of objects can be maintained on the ontology itself (as shown
in the figure). Thus, each node in the tree maintains a list L of its associated objects. For
example, the list of objects for t1 is (O1,O2). We use term and node interchangeably to
denote the node in which the term resides.

We denote the number of objects by N , the number of terms by T , the total infor-
mation size (i.e., the total number of describing terms for all the objects) by D, and the
number of object pairs queried by k. In Fig 1(a), N = 4, T = 10, and D = 11.
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Fig. 1. (a) Example of an ontology tree with objects. (b) The tree after reduction.

Our contributions in this paper are as follows:

1. First, we propose the problem of finding top-k most similar object pairs that are
annotated with terms in a hierarchy in an online fashion.

2. Then, we define and motivate three different distance functions that can be used to
describe the dissimilarity between a pair of objects (Sec 3). The minimum pairwise
distance is useful for searching objects sharing a similar term (concept). The aver-
age pairwise distance can be used to query objects that are described using multiple
attributes. The earth mover’s distance (EMD) finds the best way of matching the
terms from two objects and finds the distance corresponding to this best matching.

3. Finally, we develop efficient algorithms to solve the problem using the above dis-
tances. We use lower bounds based on L1 on reduced number of terms for EMD.
The L1 distance, in turn, is computed progressively using a modified version of the
threshold algorithm (Sec 4). For the minimum pairwise distance, we show that the
top-k query runs in O(D + Tk log k) time (Sec 5). For the average pairwise dis-
tance, we devise an efficient best-first search algorithm that avoids distance com-
putations by generating lower bounds in an ordered manner (Sec 6). Experiments
demonstrate the scalability and practicality of our algorithms (Sec 7).

2 Related Work

Heterogeneous and high-throughput data is becoming commonplace in the science-
sand there is consensus that integration of this information is needed for newbreak-
throughs. In all these cases, annotations are derived from a structured vocabulary or
ontology. The Semantic Web (http://www.semanticweb.org/) has defined a specific lan-
guage, OWL (http://www.w3.org/2004/OWL/), for describing ontologies. In biology,
genes are described using Gene Ontology (GO) (http://www.geneontology.org/) that an-
notates genes and gene products by three kinds of terms reflecting molecular functions,
biological processes, and cellular components. Millions of abstracts in Pubmed (http:
//www.pubmed.gov/) are indexed using MESH terms (http://www.nlm.nih.gov/mesh/).
WordNet (http://wordnet.princeton.edu/) is a lexical database that groups English words
into cognitive synonyms (or synsets). A good compendium of different ontologies is
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maintained at http://www.ontologyonline.org/. A given ontology uses different hierar-
chical relationships to organize concepts. Of these, “is-a” and “is-part-of” are the most
prevalent. Both of these lead to structures in which the proximity between terms (con-
cepts) grows as one descends into the hierarchy.

There have been numerous works on gene ontology ranging from gene function pre-
diction using information theory [5] to defining similarity among genes using the full
graph structure of GO [6]. In [7], a comparison of three different gene similarity mea-
sures were presented. Probabilistic approaches have also been used [8]. Biologists have
used average and minimum pairwise distances between genes based on GO for compar-
ing co-evolutionary rates of yeast genes [9] and for co-clustering with gene expression
data [10] respectively. There are a number of similar efforts in the area of informa-
tion retrieval where the similarity between documents is measured by considering the
overlap of terms. Work on text matching showed that hierarchy-based measures using
tf-idf [11] outperform lexical similarity measures [12]. EMD has been shown to be
better than others in finding document similarities using the WordNet ontology [13].

Embedding an ontology into Euclidean space [14] and then processing the queries is
another alternative. However, an object description will then span multiple points lead-
ing to possibly large MBRs. Further, the embedding may suffer from high distortion.

3 Distance Definitions

3.1 Distance between Terms

The distance d(ti, tj) between two terms ti and tj is defined as the length of the path
between them on the ontology tree. Since there is only one path between two terms in
a tree, from the properties of the shortest path, this distance is a metric [15].

In an ontology, concepts closer to the root are less similar than concepts that share
some common ancestors. For example, broader concepts such as “sports” and “poli-
tics” should be more dissimilar than relatively narrower concepts such as “football”
and “cricket”. Exponentially decreasing edge weights capture this notion. An interest-
ing and important point to note in such cases is that the distance between two terms at
the leaves of two subtrees can be approximated by the distance between the roots of the
subtrees. For example, in Fig 1(a) where the edge distances are halved at each level, the
distance between t4 and t6 (= 3) can be approximated by that between t1 and t2 (= 2).
We emphasize the fact that our algorithms are general enough to work correctly with
all edge weights, and not just the exponential function.

We next define the three object distance measures—dmin, davg and demd. We use
the terms dmin and MinDist, davg and AvgDist, demd and EMD interchangeably.

3.2 Minimum Pairwise Distance

Definition 1 (Minimum Pairwise Distance). The minimum pairwise distance between
two objects Oi and Oj , denoted by MinDist, is defined as:

dmin(Oi, Oj) = min
ti∈Oi,tj∈Oj

{d(ti, tj)} (1)
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This distance is useful for searching objects that have similar terms. It is of particular
use in keyword searching, where a single keyword is queried, and all documents having
that keyword are returned with a distance of 0. MinDist, in general, extends this idea
by finding additional documents that contain terms most similar to the queried key-
word. The MinDist measure is heavily used in hierarchical bottom-up clustering meth-
ods where in each step, two clusters with the minimum pairwise distance are merged.
It has also been successfully used for finding the distance between two genes, where a
gene is annotated with a set of terms from GO [10].

Table 1. (a) MinDist, (b) AvgDist, and (c) EMD for example in Fig 1(a)

Min O1 O2 O3 O4

O1 0.0 0.0 0.5 1.0
O2 0.0 1.0 1.5
O3 0.0 0.5
O4 0.0

Avg O1 O2 O3 O4

O1 1.25 1.50 2.08 1.75
O2 0.75 2.17 2.50
O3 1.11 2.00
O4 0.50

EMD O1 O2 O3 O4

O1 0.00 1.25 1.75 1.75
O2 0.00 2.17 2.50
O3 0.00 2.00
O4 0.00

(a) (b) (c)

Table 1(a) shows the MinDist measures among the objects in Fig 1(a). MinDist is
not a metric distance as it does not maintain the triangular inequality. For example,
dmin(O1, O4) + dmin(O1, O2) = 1.0 + 0.0 < 1.5 = dmin(O2, O4).

3.3 Average Pairwise Distance

Definition 2 (Average Pairwise Distance). The average pairwise distance between
two objects Oi and Oj , denoted by AvgDist, is defined as:

davg(Oi, Oj) =
1

|Oi|.|Oj |
∑

ti∈Oi,tj∈Oj

d(ti, tj) (2)

where |Oi| and |Oj | denote the number of terms describing Oi and Oj respectively.

The AvgDist is useful in cases where the objects are not precisely defined. For example,
it has been successfully used for gene function prediction using GO terms for yeast
genes [9] as well as in the domain of web services [16].

Table 1(b) shows the AvgDist measures among the objects in Fig 1(a). AvgDist is
not a metric, as it fails to satisfy the identity property (e.g., davg(O1, O1) = 1.25).
However, since it follows symmetry and triangular inequality1, it is a pseudo-metric.

3.4 Earth Mover’s Distance

AvgDist suffers from the fact that each term of an object is matched with all terms of the
other object. Consider two documents with the terms {war, sports} and {war, football}.

1 See extended version of the paper [17] for the proof.
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Even though it is obvious that the distance between these two documents should be
small, AvgDist unnecessarily compares “war” in the first document with “football” in
the other. The earth mover’s distance (EMD) [1] rectifies this shortcoming by compar-
ing only the similar terms by finding the best matching among them. For this example,
EMD will match “war” with “war” and “sports” with “football” and aggregate these dis-
tances only. Consequently, EMD performs better than other distances (e.g., in finding
similar documents using the WordNet ontology [13]).

Formally, each object is considered to be composed of “mass” at the specific nodes
in the ontology (corresponding to the terms that describe the object). The total mass of
each object is 1, i.e., the mass at each node is inverse of the number of terms describing
the object (e.g., O1 in Fig 1(a) has mass 1

2 corresponding to terms t1 and t7). The EMD
between two objects A and B is the minimum work required to transform A to B, where
one unit of work is equal to moving one unit of mass through one unit of distance in
the ontology (called “ground distance”). Finding the best “flows” (i.e., how much mass
needs to be moved from one term in A to another term in B) is a linear programming
(LP) problem.

Definition 3 (Earth Mover’s Distance). The earth mover’s distance between two ob-
jects Oi and Oj , denoted by EMD, is defined as:

demd(Oi, Oj) = min
f

∑

tp∈Oi

∑

tq∈Oj

cpqfpq (3)

s.t., each fpq ≥ 0, ∀tp∈Oi ,
∑

tq∈Oj

fpq = Oip , and ∀tq∈Oj ,
∑

tp∈Oi

fpq = Ojq

where cpq is the distance between terms tp and tq and Oip is the mass of tp in Oi, etc.

EMD is a metric when the term distance is a metric (proof in [1]). Table 1(c) shows the
EMDs among the objects in Fig 1(a).

3.5 Comparison of the Distance Measures

To compare the usefulness of the three distance measures, we performed the following
experiment. We used WordNet (http://wordnet.princeton.edu/) as the ontology and the
“bag-of-words” dataset from the UCI repository (http://archive.ics.uci.edu/ml/datasets/
Bag+of+Words) as the set of objects. We chose the first 59 documents from the cate-
gories enron and kos of the bag-of-words dataset. Each document was described using
nouns from the WordNet ontology, and the ontology was converted into a tree. The
top-50 and top-10 pairs were obtained using all the three distances. For EMD, on an
average, there were 45 and 10 pairs respectively where both the objects were from the
same category. The corresponding numbers for AvgDist distance were 23 and 6 respec-
tively. The MinDist returned 505 object pairs with distance 0 as many objects shared
one or more terms. Consequently, the top-k lists returned were arbitrary and precision
was poor. This established the quality of the EMD and its usefulness in finding the
top-k similar pairs of objects. Nevertheless, the two other distance measures have been
proved to be useful in specific contexts (e.g., [9,10,16]).

We next design algorithms to efficiently compute the top-k pairs using these dis-
tances. We start with EMD as it is the most interesting and useful measure.
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4 The Algorithm for EMD

When the two sets contain N objects each, the problem of finding top-k pairs of ob-
jects can be solved by computing and sorting O(N2) EMD distances. However, the
prohibitive time required by each EMD computation makes the entire running time
(O(N2) × O(EMD) + O(N2 log N)) impractical.

4.1 Lower Bound Using Reduced Number of Terms

When the ontology tree has a size T , the ground distance matrix is of size T 2. However,
we need not consider all the terms as we can prune those that are absent in both the
object descriptions.2 This is still impractical: the average time taken to compute demd

for objects of size 7 was 54 ms.3

Since the complexity of EMD depends mainly on the number of flow variables,
which is quadratic in the number of terms in each object, the running time can be
reduced if the size of the object descriptions is reduced. Fig 1(b) shows how such re-
duction can be accomplished. The ontology tree is pruned at height 1; only the root
term and its immediate children remain. When a term thus deleted appears in an object
description, it is replaced by its ancestor that is retained. Hence, all the terms in the
dashed subtrees in the figure are removed and replaced by the root of the subtrees. The
size of an object description is now upper bounded by the branching factor of the root.
Table 2 shows the reduced object descriptions.

Table 2. Reduction of terms using Fig 1(b) for example in Fig 1(a)

Before reduction After reduction
Object {t0, t1, t2, t3, t4, t5, t6, t7, t8, t9} {t0, t1, t2, t3}

O1 {0, 1
2
, 0, 0, 0, 0, 0, 1

2
, 0, 0} {0, 1

2
, 1

2
, 0}

O2 { 1
4
, 1

4
, 0, 0, 1

4
, 1

4
, 0, 0, 0, 0} { 1

4
, 3

4
, 0, 0}

O3 {0, 0, 1
3
, 1

3
, 0, 0, 0, 0, 0, 1

3
} {0, 0, 1

3
, 2

3
}

O4 {0, 0, 0, 0, 0, 0, 1
2
, 0, 1

2
, 0} {0, 0, 1, 0}

The EMD between two objects calculated using the reduced ontology is a lower
bound of the EMD using the full ontology [1]4. If the number of terms in the reduced
ontology is t (generally t � T ), the number of flow variables are reduced to at most
t2. Since the complexity of linear programming is super-linear in the number of flow
variables, the running time of EMD decreases by at least a (large) factor of T 2/t2. The
number of distance computations, however, still remains O(N2). Next, we show how
to reduce that.

2 The row and column sums corresponding to these terms in the flow matrix will be 0 and, hence,
all the flows will be 0 individually as well.

3 All the times reported in the paper are based on Java implementation on a 3 GHz machine with
2 GB of RAM running Linux Fedora 11.

4 A lower bound can be obtained by pruning the tree at any height. However, there is a trade-off
between the tightness and computational efficiency of the lower bound.
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4.2 L1 Lower Bound

The L1 distance, when scaled by the sum of the total mass, can be used as a lower
bound for EMD [18]. Hence, the L1 distance between two objects computed using all
T terms, when divided by 2, serves as a lower bound for EMD. From now on, whenever
we mention L1, we mean the scaled version of it which is a lower bound. L1 on all
terms, in turn, is lower bounded by L1 on reduced number of terms. The proof uses the
fact that |ai − bi| + |aj − bj | ≥ |(ai + aj) − (bi + bj)|. Since L1 is much faster to
compute (for 3 terms, it takes only 0.002 ms), we can calculate a L1 lower bound on
EMD for each object pair and then use it as a filtering step to prune object pairs.

The L1 distance between two objects is a sum of the distances between the corre-
sponding values in each dimension; therefore, if the distances for all the object pairs
are obtained and sorted for each dimension, an aggregate ranking technique such as the
threshold algorithm (TA) [4] can generate in a progressive manner the object pairs with
the least sum of distances (i.e., the least L1 distance). The increasing order of generated
L1 distances can then guide the order of EMD computations.

TA can avoid sorting of object pairs when the next object pair in the list can be output
in a sorted manner whenever asked for. This avoids the O(N2) computations. Hence,
now our problem is reduced to delivering the next smallest pairwise distance whenever
asked for in a particular list (or dimension).

o3 o5 o4 o2

C: o3o5,1

C: o3o5,1; o 5o4,2

H: o1o3,3; o 3o5,1; o 5o4,2; o 4o2,6

H: o1o3,3; o 4o2,6; o 3o4,3

o1

0 3 4 6 12

Fig. 2. Example of ordered generation of object pairs for one dimension

For this, we maintain two data structures for each dimension: (i) a min-heap H that
outputs the next best pair, and (ii) a list C that stores all the pairs that have been output
from H . Initially, the N objects are sorted and all N − 1 consecutive object pairs (not
necessarily OiOi+1) corresponding to N − 1 differences are inserted into H . Fig 2
shows an example. The 5 objects are sorted according to their values for the dimension
that is being processed. Initially, H contains the 4 object pairs corresponding to the 4
differences in the sorted list. Whenever the next pair is asked for by TA, the minimum
object pair from H is extracted and returned. It is also inserted into C. In this example,
after the first call, O3O5 is extracted from H and inserted into C. Proceeding similarly,
in the next call, O5O4 is extracted.

Extracting just the initial pairs is not enough as there may be a non-initial pair with
a value (e.g., O3O4 with 3) less than that of an initial pair (O4O2 with value 6). The
important point to note, however, is that any non-initial pair is a combination of some of
the initial pairs. Two pairs having an overlapping object can be fused together to gen-
erate a new pair. For example, O3O4 can be generated by fusing O3O5 and O5O4.
Further, a pair can never be the least pair until and unless the pairs from which it
has been generated have been chosen (i.e., output from H). Therefore, in the example,
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O3O4 is added to H only after both O3O5 and O5O4 have been chosen. In general,
when a pair OxOy is chosen, the contents of C are scanned and new pairs are generated
if possible. If C has pairs of the form OwOx and OyOz , new pairs OwOy and OxOz

are generated respectively, and are inserted into H . The value of this new pair is the
sum of the values of the fused pairs.

4.3 Algorithm

The EMD algorithm5 uses the lower bounds to find the top-k pairs. It uses a priority
queue to list the top-k pairs. When the size of P is less than k, P.dist is ∞; otherwise,
it is maintained as the kth largest distance in P . It examines the object pairs in sorted
order of the L1 lower bound on reduced number of terms by using the heap as explained
earlier. If it is less than P.dist, the bound is improved by computing L1 on all terms. If
it is still less, the exact EMD is computed and the top-k list is modified, if necessary.
For each such L1-reduced computation, the threshold distance R of TA is increased.
When R > kth distance in P , no other object pair can have L1-reduced distance less
than the top-k pairs already found. Therefore, the EMDs will also be greater. Hence,
the algorithm halts correctly.

4.4 Analysis of Time Complexity

For each of the reduced number of dimensions t, the algorithm incurs the following
costs. Initial sorting takes O(N log N) time. Thereafter, inserting the N − 1 elements
in the heap takes O(N) time. At the ith iteration, at most i elements are added to the heap
again. This takes O(i log N) time. Thus, if we have k′ calls (this k′ is generally larger
than k as many object pairs with low lower bound but high EMD are examined), the
time per dimension is O(k′2 log N) which leads to a total time of

∑t
j=1 O(k′2

j log N)
or O(tk′2

max log N) where kmax is the maximum of all k′
js.

Space Complexity: Heap j requires O(N + k′2
j ) space where k′

j is the number of calls
made on column j. Hence, the total space required is O(t(N + k′2

max)).

5 The Algorithm for MinDist

Unlike EMD, the MinDist for an object pair can be estimated whenever two terms
corresponding to two objects are encountered, If it is better than the current estimate, it
is retained; otherwise, it is never needed again. We next explain the MinDist algorithm
that exploits this property.

Any object pair (Oi, Oj) having a lesser distance than (Og, Oh) must have a term
pair (ti ∈ Oi, tj ∈ Oj) which has a lesser distance than all term pairs (tg ∈ Og, th ∈
Oh). Hence, we only need to identify such term pairs (ti, tj) that are close and process
their inverted lists of objects.

Initially, an inverted index is built for MinDist and AvgDist but not EMD. For each
object Oi, when a term tj appears in it, Oi is inserted into the inverted list of tj . The
list is accessed using hashing, and the object is inserted at the top of the list.

5 The pseudocode for the entire algorithm is provided in full version of the paper [17].
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Algorithm MinDist
Input: Node t

Output: Pair list P of size k; Object list B of size O(
√

k)

1. TB := list of objects in t of size O(
√

k)
2. c := number of children of t
3. for i = 1 to c
4. CB[i], CP [i] := MinDist(t.child[i])
5. Add t.edge[i] cost to each object in CB[i]
6. end for
7. B := Merge(CB[1], . . . , CB[c], TB)
8. TP := GenPairs(B)
9. P := Merge(CP [1], . . . , CP [c], TP )

Fig. 3. The MinDist algorithm

Fig 3 describes the MinDist algorithm that computes the top-k object pairs in a node.
Any such object pair must either be in the top-k list of the children, or contains terms
from different children. The recursive definition of the first kind allows us to employ
a divide-and-conquer approach. For the second kind, we need a list of objects that are
close to the subtree of the children nodes. The lists can then be joined to generate the
necessary object pairs. The MinDist algorithm called at the root of the ontology returns
the top-k pairs.

Each node t maintains two lists: (i) a list of pairs of objects P ordered by their dmin

distances; and (ii) a list of objects B ordered by their minimum distances di to the node
t. The length of P is at most k. The length of B is k′ = O(�√k
) which is enough to
ensure that k distinct pairs of objects can be generated from B.6

When MinDist is called on a node t, it selects k′ objects from its list of associated
objects L into TB. MinDist is then called on each of its c children. The cost of the edge
from t to its child is added to the objects in the corresponding child’s object list (line
5) to ensure that the distances are maintained correctly. The c sorted object lists and the
list of objects in t are then merged to produce the sorted list B.

The merging (line 7) is done using a heap. The heap is initialized with c+1 elements
(from position 1 of each of the child lists and the list TB). The minimum element is
then extracted into B. Since all the individual lists are sorted, the properties of heap
guarantee that the object extracted has the least dmin distance from this node. The
object at the next position of the list from where this minimum object was obtained is
then inserted into the heap. This is repeated k′ times.

All the possible k pairs are then generated from the k′ objects in B (method GenPairs
in line 8). This list TP computes the k best distances of the object pairs which are not in
any of the subtrees. TP is finally merged with the pair lists CP [i], i = 1 . . . c from the
children to produce the final pair list P using a heap in the same manner as above (line 9).

6 Since k′(k′ − 1)/2 ≥ k, the actual number of terms required is k′ = �1/2 +
√

1/4 + 2k�.
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5.1 Analysis of Time Complexity

We first analyze the time required to compute the inverted index. The object descriptions
are read once, and for each term in an object, the corresponding list is accessed in O(1)
time using hashing, and the object is inserted at the top of the list in another O(1) time.
The total time required for this phase is, therefore, O(D) where D is the total size of
the description.

We next analyze the running time for the main phase of the algorithm. Selecting k′

objects in TB requires O(k′) time. Adding the child edge costs to each object in CB
lists takes O(k′c) time. At every step of the merging operation, the object with the min-
imum distance is extracted from the heap and another object is inserted. The size of the
heap is, therefore, never more than O(c) for c children. Extracting the minimum ele-
ment and inserting another object into the heap takes O(log c) time. Since the operation
is repeated k′ times, the total running time of the merging procedure is O(k′ log c).

If, however, the objects in the child lists are not unique, k′ operations may not be
enough to select k′ different objects. Thus, a hashtable is used to ensure that an object
is inserted into the heap only once. The hashtable maintains only a single copy of an
object, the one with the smallest distance. The other copies are never required. This
limits the number of heap operations to O(k′). Assuming that the hashtable operations
take constant time, the running time is O(k′ log c). Scanning the c lists require an initial
O(k′c) time.

Sorting k local object pairs requires O(k log k) time. The sorted pair lists at the node
and the children are merged in O(kc + k log c) time using a heap and a hashtable in
a similar manner as before. Thus, the total running time of the MinDist algorithm at a
node with c children is O(kc + k log k).

The algorithm is run once at each node of the ontology. Assuming that there are T
terms in the ontology, the total number of children for all the nodes is O(T ). Hence, the
amortized cost is O(Tk + Tk log k) = O(Tk log k).

The total running time of the MinDist algorithm is, therefore, O(D + Tk log k).
Space Complexity: Each node in the ontology contains an object list of size O(k′)
and a pair list of size O(k). Once these lists are sent to the parent, they are no longer
required. Thus, at any time, the space requirement at a node is O(c(k′ + k)). The total
space complexity, therefore, is O(cmax(k + k′)) where cmax is the largest branching
factor of a node in the tree. The inverted index requires O(D) space for storage.

6 The Algorithm for AvgDist

Unlike the MinDist algorithm that needs to maintain only one term pair for each object
pair, the davg distance needs to remember all term-pair distances. Consequently, the
AvgDist algorithm runs in two phases: (i) the Build phase, when pertinent information
about objects are collected at the root in a bottom-up manner, and (ii) the Query phase,
when such information is used to identify the top-k pairs in a top-down order.

For any object pair, two types of costs need to be accumulated: (i) across-tree costs,
i.e., the distances between terms that occur in different subtrees of the root, and (ii) within-
tree costs, i.e., the distances between terms that are within the same child of the root. For
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example, in Fig 1(a), the total pairwise term distances for (O1, O4) can be broken into
2 parts: (i) the across-tree distances between t1 of O1 and t6, t8 of O4 in the different
subtrees under t1 and t2 respectively, and (ii) the within-tree distances between t7 of O1

and t6, t8 of O4 in the same subtree under t2.
To estimate the across-tree distances for object pairs at a node, the following infor-

mation need to be calculated for each object Oi: (i) the number of terms, ni, in the
subtree that describe the object, and (ii) the total distance, wi, of all such terms to this
node. This information is accumulated at the root of the ontology by the build phase
AvgDist-Build, which we describe later (in Sec 6.4).

We next explain how lower bounds for the across-tree costs of an object pair can be
computed and generated in an ordered manner.

6.1 Lower Bounds for Across-Tree Costs

The estimates of the across-tree distances of a pair of objects Oi and Oj at a node t
depend on the distribution of their describing terms. The span of an object is defined to
be the number of subtrees of the root where its constituent terms occur. It can be either
single (terms occur in only one subtree), or multiple (terms occur in multiple subtrees).
Based on these, 3 different cases need to be considered. In each case, we would like to
write the bounds at a node in terms of the parameters maintained for Oi and Oj at the
node, i.e., in terms of (Oi, ni, wi) and (Oj , nj , wj ) only.

Case 1: Both objects have single spans. Two sub-cases need to be considered.

Sub-case 1(a): The objects are in the same subtree. The across-tree cost is 0 and nothing
can be concluded about their distance in the subtree without descending deeper into it.
Hence, the lower bound is

dlb = 0 (4)

Sub-case 1(b): The objects are in different subtrees. The distance between two terms
ti ∈ Oi and tj ∈ Oj at node t is d(ti, t) + d(tj , t). The total across-tree distance is
obtained by adding all such combinations of terms:

|Oj |∑

j=1

|Oi|∑

i=1

d(ti, t) +
|Oi|∑

i=1

|Oj |∑

j=1

d(tj , t) = nj

|Oi|∑

i=1

d(ti, t) + ni

|Oj |∑

j=1

d(tj , t) = njwi + niwj

(5)

Thus, the average distance is

dlb = d = wi/ni + wj/nj (6)

Since the within-tree distance for this pair is 0, this is the exact distance.

Case 2: Both objects have multiple spans. The minimum across-tree distance can be
estimated in a manner similar to that in Case 1(b). There are at least two pairings of
terms of Oi and Oj that are in different subtrees. Using Eq. (5), the total across-tree
costs for these pairings are wi1nj2 + wj2ni1 and wi2nj1 + wj1ni2 , where ni1 , wi1 etc.
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are the number of terms of Oi in one subtree and its total distance to t from that subtree.
Each of ni1 , ni2 , nj1 , and nj2 is at least 1. Thus, the total across-tree distance is at least
wi1 + wi2 + wj1 + wj2 = wi + wj . The lower bound, then, is

dlb = (wi + wj)/(ninj) (7)

Case 3: One object Oi has a single span, and the other object Oj has a multiple span.
Similar to Case 2, there is at least one subtree containing terms of Oj but not containing
terms of Oi. The total across-tree cost is then the minimum of winj1 + wj1ni and
winj2 + wj2ni. Again, similar to Case 2, there is at least one term of Oj that is not
in the same subtree of Oi. Thus, nj1 and nj2 are at least 1. However, without knowing
where the terms of Oj occur, nothing can be concluded about wj1 and wj2 . Since the
terms may occur at the node itself, the estimates for wj1 and wj2 are 0. Hence, the total
distance is at least wi producing a lower bound of

dlb = wi/(ninj) (8)

6.2 Generating Ordered Pairs

Though the above mentioned lower bounds can be computed for a given pair, the cost
of computing them for every pair is O(N2). We would like to avoid that. The trick is to
separate the parameters of Oi and Oj in each lower bound such that they can be system-
atically generated in an ordered manner whenever needed. The order of generation will
guarantee that at any point of time, the lower bounds of the pairs not examined will be
greater than or equal to the lower bounds of the pairs already generated. In this section,
we discuss ways to achieve this for each of the cases mentioned above.

To identify pairs of objects in the same subtree (Case 1(a)), c + 1 different lists are
maintained at the root corresponding to itself and its c children.

To handle Case 1(b), each of these c + 1 lists of objects are sorted by the average
distance wi/ni. Given two such sorted child lists, the lower bound (which is the sum of
the distances) for an object pair at positions pi in the first list and pj in the second list
is lower than the estimate of every pair whose positions are > pi and > pj . Thus, every
time a pair at positions (pi, pj) is inspected, only its immediate successors (pi + 1, pj)
and (pi, pj +1) need to be considered next. Since there are c+1 child lists, the number
of possible ways of generating object pairs is c(c + 1)/2.

The lower bound for Case 2 is not easily separable in terms of parameters of Oi and
Oj . It is, however, separable, if for an object pair, the number of terms for the objects
(i.e., ni, nj) are known a priori. For that, objects with multiple spans is partitioned such
that each partition only contains objects with a particular ni. Pairing Oi and Oj and
knowing which partitions they come from immediately defines the denominator of the
lower bound. Thus, if there are r partitions, sorting each partition by wi and performing
r2 pairings in the same way as done for Case 1(b) orders the pairs.

Case 3 is handled similarly. The single-span objects are partitioned into c + 1 lists
and the multiple-span objects into r partitions. Generating all r(c+1) pairings produces
the lower bounds in an ordered manner.

We next describe how the Query phase of the algorithm uses these lower bounds.
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6.3 Query Phase

The AvgDist-Query procedure is run at the root of the ontology.7 Initially, the list L of
objects at the root is partitioned into c+1+ r lists corresponding to single and multiple
spans as explained in the earlier section. From these lists, the initial pairs with the lower
bounds are generated and put into a heap H .

The algorithm progresses by extracting the current best pair from the heap, i.e., the
pair p with the current best lower bound. If the lower bound is an estimate for p and not
an exact distance as in Case 1(b), the bound can be improved in two ways. First, the
within-tree costs at the subtrees in the next level can be estimated again using Eq. (4) to
Eq. (8) by descending into the subtree (denoted as AvgDist-NextEstimate). The descent
is made in a breadth-first order on the tree.8 The second way is to compute the term-wise
distances exhaustively without resorting to recursion (denoted as AvgDist-Complete).
This, however, disregards the structure of the ontology.

When the exact distance of p is computed, the top-k list P is updated with p. If,
however, the lower bound of p is still an estimate, p is re-inserted back into the heap H .
The next pairs are generated from the c + 1 + r lists and inserted into the heap as well.

In the next iteration, the pair which is now the best is examined. If this pair has
a distance more than P.dist (i.e., the kth largest distance in P ), it is guaranteed that
all pairs currently in the heap and all pairs that have not yet been generated will have
a greater distance. This is due to the ordered nature of generating the pairs from the
c + 1 + r lists. Thus, the algorithm is then terminated correctly.

The top-down searching for object pairs proceeds in a manner where at every stage,
only the current “best” pair is examined [19]; hence, this is called the best-first search.

6.4 Build Phase

In this section, we describe how AvgDist-Build computes the information (Oi, ni, wi)
for an object.9 Each node t maintains an inverted list L of objects Oi (with ni = 1
and wi = 0) described using t. It calls AvgDist-Build for each of its children. For
each object Oj in list CL that it receives from a child, it modifies wj by adding to
it the distance to the child node to ensure that the total distance from t is maintained
correctly. The distance is accumulated for all terms and, therefore, wj is modified as
wj + dist × nj , where dist is the edge distance from t to its child.

Analysis of Space and Time Complexities: Each object’s information is stored at the
terms describing it. The information stored in a term is repeated along all its ancestors.
Since the size of the description is D, and there are O(log T ) ancestors (assuming the
ontology to be balanced), the storage cost is O(D log T ).

The inverted index requires O(D) time for construction. At the leaf level of the tree,
there are D describing terms. When this O(D) information is sent up to the next level,
the time required to combine the information is still O(D) since each object description

7 The pseudocode of the entire algorithm is provided in [17].
8 Any other order, e.g., depth-first order, will also work. However, if the edge distances decrease

exponentially, breadth-first ordering produces better bounds.
9 The pseudocode is provided in [17].
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is read only once and is matched using a hashtable to the information already computed.
Assuming the height of the tree to be O(log T ), the total running time is O(D log T ).

7 Experiments

In this section, we describe the experiments. Due to space constraints, we show only the
most interesting results. Please refer to full version of the paper [17] for more details.

7.1 Datasets

We have experimented with real as well as synthetic datasets. The real dataset is that of
Gene Ontology (GO, http://www.geneontology.org/). There are three ontologies in GO,
corresponding to biological process, molecular function, and cellular component (lo-
calization), containing 13762, 7803 and 1990 terms respectively. The number of unique
genes described using the ontologies are 3437, 1958 and 645 respectively.

The synthetic datasets were generated by controlling the number of objects, the num-
ber of terms, the average branching factor of the ontology tree and the average number
of terms per object. The details of how the object descriptions were obtained are in [17].

7.2 Experiments on EMD

When the distance function between the objects is defined as the earth mover’s distance
the following schemes were evaluated:

– L1-reduced: In this scheme (Sec 4), the L1 on reduced number of terms is used.
– L1-full: In this scheme, the L1 on all terms is used. The tree is not pruned.
– EMD-reduced: All the O(N2) EMDs on reduced number of terms are computed.

These are then used to prune those object pairs for which the reduced EMD is
greater than the kth best EMD already found.

– Brute-force: In this scheme, all the O(N2) pairs are computed and then the top-k
pairs are returned.

The performance of the brute-force scheme (267 s for N = 100 objects) is too imprac-
tical to be of any use and are, therefore, not reported. Also, the times of L1-full are not
reported since, in the best case, it can only save L1-reduced computations, which are
very fast anyway. In all the experiments, it was actually worse than L1-reduced.

When the number of retrieved object pairs, k, increases, more number of L1 compu-
tations are needed before the TA can halt. Consequently, more number of EMD calcu-
lations are also required. However, for small k, the effect is minimal (graph not shown).

Fig 4(a) shows that the scalability of our algorithm with N is better than quadratic.
Due to L1 lower bounding, many of the object pairs are pruned. As a result, the number
of full EMD computations increases by a lower factor. Also, even for N = 350 which
translates to 6 × 104 object pairs, our algorithm finishes in only 55 s. To further under-
stand the effect of increasing N , we measured the ratio of object pairs for which full
EMD computation was done. The ratio was measured as number of pairs investigated to
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Fig. 4. (a) Effect of N on EMD. (b) Effect of t on EMD.

the total number of possible pairs (N(N − 1)/2) and is denoted by η. As N increased,
η decreased which explained why the scalability was better. For N > 250, η < 0.1.

We next measure the effect of the total number of terms, T , on the EMD computa-
tions. Since both L1 and EMD-reduced depends only on the reduced number of terms,
the effect is minimal (graph not shown).

However, as the number of children of root, i.e., t increases, the complexity of the
TA increases linearly. Fig 4(b) shows the running times for varying t. The size of each
object description is limited to 10. When t ≤ 10, the time increases. EMD-reduced
behaves in the opposite manner. This is due to the interaction of two opposing effects:
as t increases, each computation takes more time, but the lower bound gets tighter as
more number of terms are taken into account resulting in less number of full EMD
computations. However, when t > 10, since there are at most 10 terms in each object,
the object description size do not get reduced and each EMD-reduced computation
takes as much time as the full EMD computation. Since O(N2) of these computations
are performed, the running time shoots up. The L1-reduced, on the other hand, shows
only a little increase.

7.3 Experiments on MinDist

When the distance function between the objects is defined as the minimum pairwise
distance between the terms, the following schemes were considered:

– MinDist: This scheme has a running time of O(D + Tk log k).
– Brute-force: In this scheme, all the O(N2) pairs are computed and then the top-k

pairs are returned. Maintaining a heap of size at most k reduces the running time of
this scheme to O(N2 log k).

For N = 104, the top-k computation using the brute-force algorithm finishes in ∼300 s.
Since MinDist has a better running time, we report the experiments for MinDist only.

The first experiment on MinDist measures the effect of the number of top pairs
queried, k, on the running time. As shown in Fig 5(a), the scalability with k is linear.
The analysis in Sec 5.1 shows that for small values of k, this is the expected behavior.
The largest real dataset—GO process—finishes in less than 1 s for k ≤ 50, demonstrat-
ing the effectiveness of the algorithm.
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Fig. 5. (a) Effect of k on MinDist. (b) Effect of T on MinDist.

Fig 5(b) shows that increasing T increments the running time of MinDist linearly,
independent of the value of k. We also note the practicality of the MinDist algorithm.
Even for a very large dataset of size N = 106 (translating to 1012 pairs) and a very
large tree of size T = 106, a top-100 query finishes in about 100 s.

When the number of terms, T , is kept constant, experiments confirm that the running
time increases only slightly with N (graph not shown).

7.4 Experiments on AvgDist

When the distance function between the objects is defined as the average pairwise dis-
tance between the terms, the following schemes were evaluated:

– AvgDist-NextEstimate: In this variant of AvgDist, the estimate for the best-pair is
improved by progressively descending into the subtrees and estimating the across-
tree costs at the roots of those subtrees.

– AvgDist-Complete: This is the other variant of AvgDist where the exact distance is
computed at one go by computing all the pairwise term distances.

– Brute-force: In this scheme, all the O(N2) pairs are computed and then the top-k
pairs are returned.

The performance of the brute-force scheme (300 s for 104 dataset) is much higher than
that for AvgDist schemes. Consequently, it is not discussed any further.

The first experiment on AvgDist measures the effect of k on the running time of the
Build phase and the two different variants—NextEstimate and Complete—for the two
larger GO datasets. Intuitively, the running time of AvgDist depends on the actual num-
ber of object pairs investigated. For the GO datasets, even for large k’s up to 100, this
remains almost constant (graph not shown). Moreover, the Build phase takes negligible
time in comparison to the Query phase.

To analyze further, we measured the number of object pairs that are examined in
the Query phase for k up to 10000. Fig 6(a) shows that η (i.e., the ratio of object pairs
examined to the total number of possible pairs) increases very slowly with k. The results
are robust across different values of T (as shown in the figure) and N (not shown). This
is the reason why the running time is almost constant across k.
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The NextEstimate method examines less than 2% of the total number of pairs. The
Complete method investigates more object pairs (about 7%) than the NextEstimate
method. Computing a distance for the current best-pair guarantees that only those pairs
which have a bound lower than this distance will be analyzed. For the NextEstimate
method, the distance of the best-pair is computed progressively, thereby saving on full
AvgDist computations as compared to the Complete method, which directly finds the
actual distance of the best-pair. Consequently, AvgDist-NextEstimate is faster.

We next discuss the results when the number of objects, N , is varied. From the
analysis done in Sec 6.4, we expect the running time of the Build phase to grow linearly
with the size of the input information. Assuming that the number of describing terms for
an object is constant, the size of the information is directly proportional to the number
of objects. Experiments confirm that the scalability with N is indeed linear (graph not
shown). The number of object pairs and, hence, the running time of the Query phase,
grows at most quadratically with N (graph not shown).

The next experiment measures the effect of the number of terms, T , on the different
components of the AvgDist algorithm. Fig 6(b) shows the time required for the Build
phase. Since the build procedure is run at each node, the effect of T is linear. Further,
when the number of objects increase, more information needs to be processed at each
node and the running time increases linearly (graph not shown).

The number of pairs examined depends primarily on the span of the objects—mainly
the number of objects in the single span lists—and not on the size of the tree. As a result,
the size of the tree, T , has no appreciable effect on η (graph not shown).

8 Conclusions

In this paper, we proposed the problem of finding top-k most similar object pairs an-
notated with terms from an ontology. The terms represent concepts and the objects are
described using these concepts. We then defined and motivated three object distances,
minimum pairwise distance, average pairwise distance, and earth mover’s distance.
Finally, we designed algorithms to efficiently solve the join problem using the above
distance measures. Range and k-NN queries should be simple extensions of the pro-
posed algorithms.
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Abstract. A conventional skyline query requires no query point, and
usually employs a MIN or MAX annotation only to prefer smaller or
larger values on each dimension. A relative skyline query, in contrast,
is issued with a combination of a query point and a set of preference
annotations for all involved dimensions. Due to the relative dominance
definition in a relative skyline query, there exist various such combina-
tions which we call as user preferences. It is also often interesting to
identify from an assorted user preference collection the most influen-
tial preference that leads to the largest relative skyline. We call such a
problem the most influential preference query. In this paper we propose a
complete set of techniques to solve such novel and useful problems within
a uniform framework. We first formalize different preference annotations
that can be imposed on a dimension by a relative skyline query user.
We then propose an effective transformation to handle all these anno-
tations in a uniform way. Based on the transformation, we adapt the
well-established Branch-and-Bound Skyline (BBS) algorithm to process
relative skyline queries with assorted user preferences. In order to pro-
cess the most influential preference queries, we develop two aggregation
R-tree based algorithms. We conduct extensive experiments on both real
and synthetic datasets to evaluate our proposals.

1 Introduction

Given a d-dimensional point set P , a skyline query [4] returns a subset of points
that are not dominated by any other points. Point p1 dominates p2 (termed as
p1 ≺ p2), if p1 is better than p2 in at least one dimension and no worse than p2

in all other dimensions. The skyline operator plays an important role in multi-
criteria user decision making applications [2, 4, 10, 12, 18–20]. In the conventional
skyline computation, no query point but MIN or MAX annotations on different
dimensions are required [4]. Here the MIN (or MAX) annotation indicates that
smaller (or larger) values are preferred on each dimension.

Given a same point set P , different users may issue skyline queries with dif-
ferent annotations, which produce different skylines. Refer to Figure 1(a) as an
example, which shows a set of hotels with two attributes: room price and dis-
tance to the beach. Suppose a skyline query is issued with the MIN annotation

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 233–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Example of hotels

on both attributes, then the skyline is {h3, h6, h8, h9, h10}. Sometimes, however,
a user may prefer hotels far away from the beach for reasons like quietness and
easy transportation to downtown. In that case, the MAX annotation instead can
be used on the distance attribute. As a result, the skyline is {h1, h2, h3}.

Different from conventional skyline queries, a relative skyline query is issued
with a query point and preference annotations on the involved dimensions. The
consequent relative skyline is formed by all those points that are not dominated
by others with respect to the given query point and preference notations. For
example, Figure 1(b) displays the same set of hotels with a query point q, where
q corresponds to a (virtual) hotel that is priced to $150 and 2km to the beach.
A user with specific preferences is interested in finding those hotels that are the
most similar to q.

In such relative skyline queries, users have more flexibility in the sense that
there are more options for preference in hotel selection. Specifically, users who
do not care much about the price are interested in any hotel absolutely close to
the given query point q on the price dimension (preference I). Other users may
prefer hotels that are cheaper and close to the price of q (preference II). Also,
users may prefer those hotels that have the similar (no matter longer or shorter)
distance to the beach as does q (preference III).

Consequently, if preference I is combined with preference III, the relative sky-
line is {h6, h7, h8}; if II is combined with III, the relative skyline is {h6, h8}. Note
that even more preference types can be involved in this example. For instance,
those who do not like the beach may require hotels close to q but having longer
distance to the beach.

When more dimensions are involved (e.g., star, rating for hotels), more flex-
ible preference types can be defined according to various user needs. However,
only the absolute close annotation (preference I in the above example) has been
studied in the literature [7, 9, 22]. This single and simple annotation is unable to
cope with various user needs. For example in Figure 1(b), this annotation does
not differentiate hotels h6 and h9 on the price dimension because both of them
have an absolute price difference $50 with the query point q. Whereas, preferring
h6 to h9 makes sense as h6 has a lower price than h9.
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We call such a combination of a query point and a set of annotations a user
preference. When there is a set of assorted user preferences, it is often interesting
to identify the one that leads to the largest skyline. We call such a one the most
influential user preference. Refer to the hotel example again. Different customer
requirement types can be captured as a set of user preferences (e.g., from user
generated data online [1]). Identifying the most influential user preference will
disclose the customer requirement type that can be easily satisfied by the avail-
able hotel resources. As a result, promotions and advertisements targeting such
requirements are expected to boost the business in the corresponding market.

Motivated by the above observations, we in this paper formally study as-
sorted user preferences, support them in relative skyline queries, and develop
algorithms to identify efficiently the most influential user preference from an
assorted collection. We make the following contributions in this paper:

– To the best of our knowledge, we are the first to systematically define and
study assorted user preference annotations for relative skyline queries.

– We propose an effective transformation that equivalently converts an ar-
bitrary relative user preference annotation to a conventional MIN annota-
tion. Based on the transformation, we develop branch-and-bound skyline
(BBS [18]) based algorithm for processing relative skyline queries with as-
sorted user preferences.

– We define the most influential preference query to return from a set of user
preferences the one leading to the largest relative skyline.

– We design two aggregate R-tree based algorithms for processing the novel
and useful most influential preference queries; we also discuss the complexity
and extensibility of the proposed algorithms.

– We conduct extensive experimental studies to evaluate our proposals and
the results demonstrate that our approaches are efficient and scalable.

The remainder of this paper is organized as follows. Section 2 gives a brief re-
view of related work. Section 3 defines a set of user preference annotations and
formulates our problems. Section 4 elaborates on how to represent assorted user
preferences in a uniform way, and exploits such a representation in processing
relative skyline queries. Section 5 details and discusses the algorithms for pro-
cessing most influential preference queries. Section 6 presents the experimental
studies. Section 7 concludes and discuss directions for future work.

2 Related Work

Two categories of algorithms exist for conventional skyline queries. Those in
the first category, namely BNL [4], D&C [4], SFS [8], LESS [10], LS [15], and
SaLSa [3], require no index on the dataset. Those in the second category require
specific indexes. Bitmap requires bitmap [20], Index [20] and ZSearch [13] require
B+-tree or its variant, NN [12] and BBS [18] require R∗-tree. Recent work [26]
proposes a dynamic indexing tree to organize skyline points in sort-based algo-
rithms (SFS, LESS and SaLSa), in order to reduce the CPU costs (not the IO
costs) in skyline computation.
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Skyline queries can be issued in subspaces [16, 21, 23, 24] of a multi-dimensional
data set. For high dimensionality, skylines can be unmanageably large. Tech-
niques [5, 6, 14, 18, 25] have been proposed to narrow down the large results.

Given a point set P and a query point q, the reverse skyline query [9] on P
returns the points whose dynamic skylines contain q. In other words, p ∈ P is
included in the reverse skyline if the dynamic skyline with p as the query point
contains q. The dynamic skyline query in [9] is the same as the relative skyline
query in this paper.1 However, only the absolute close preference annotation is
allowed by dynamic skyline queries in [9], which falls short in real-life scenarios
as we have pointed out in Section 1.

The bichromatic reverse skyline query [7, 22] extends the above monochro-
matic definition that involves only one dataset to a setting with two datasets. A
basic bichromatic reverse skyline algorithm [7] is proposed for uncertain data.
An improved algorithm [22] is proposed for certain data.

Two important points distinguish this work from previous ones [7, 9, 22].
First, this work is focused on supporting assorted user preference annotations in
relative skyline queries, whereas previous ones deal with reverse skyline queries
with the single absolute close preference annotation. Second, compared to previ-
ous ones, this work offers users more flexibility in defining their preferences. The
binary dimension classification in [22] differentiates dimensions in two cases that
may have different user preferences (e.g., users always prefer lower car price but
higher car capacity). However, its binary nature and aforehand differentiation
fail to capture various possible user needs. For example, some users may prefer
low car capacity because they only drive alone. In contrast, our proposed pref-
erence annotations offer more options for users to choose from, such that they
are able to issue relative skyline queries according to their personalized needs.

3 Problem Formulation

We first study preference annotations that can be used in a relative skyline query,
and then formalize our problem definitions based on these annotations. Let P
be a d-dimensional dataset, where each dimension is on a domain of numerical
values. Without loss of generality, we assume that each dimension domain is R,
the set of real numbers. The domain of the i-th dimension is denoted by Di. For
any d-dimensional point p, we use p[i] to denote its value on the i-th dimension.

3.1 Preference Annotations

A conventional skyline can have a specific preference annotation attached on
each dimension [4]. For example, the MIN annotation indicates that smaller
1 A slightly different dynamic skyline query definition in [18] may involve a de-

rived dimension obtained from a function on original dimensions, e.g., the dis-
tance

√
(xi − xq)2 + (yi − yq)2 between data location (xi, yi) and the query location

(xq, yq). For simplicity, we assume that a relative skyline query involves only original
dimensions but no such derived dimensions. The techniques proposed in this paper
can be applied to the definition in [18].
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values are preferred on each dimension; whereas the MAX annotation chooses
larger values. In reality, for a relative skyline query on the dataset P with the
query point q, more preference annotations can be defined by a user.

Absolute Close annotation (ABC). The Absolute Close annotation is in-
tended to minimize the distance between the query point q and a data point p on
a particular dimension. Specifically, the ABC annotation on the i-th dimension
indicates that small values |q[i] − p[i]| are preferred in the relative dominance
relationship. For example, users can use this annotation to select the hotels with
similar prices as the given query hotel.

MIN Close annotation (MIC). The MIN Close annotation picks the closest
value that is smaller than q on a particular dimension. If all values are larger than
q, the MIC annotation picks the smallest value. Notice that the ABC annotation
does not differentiate whether p[i] is larger or lower than q[i] in a similarity
comparison. While the MIC annotation prefers a similar value lower than the
counterpart of q. Refer to the example of retrieving similar hotels in Figure 1(b).
The MIC annotation prefers hotel h6 to h9 as h6 has a lower price than the query
point q, although h6 and h9 have the same absolute price distance to q.

MAX Close annotation (MAC). Contrary to the MIN Close annotation,
the MAX Close annotation chooses the closest value larger than q on a particular
dimension. If all values are smaller than q, then the MAC annotation picks the
largest value. In the example of retrieving hotels similar to a given query hotel
q, the MAC annotation can be used to select those with more stars from all
candidates having the same absolute star difference with q.

Absolute Far annotation (ABF). Contrary to the ABC annotation, the
Absolute Far annotation is intended to maximize the distance between the query
point q and a data point p on a particular dimension. Specifically, the ABF
annotation on the i-th dimension prefers large values |q[i] − p[i]| in the relative
dominance relationship. The ABF annotation reflects the powerful differential
competition strategy. For a company to market a new product, for example, the
ABF annotation can be used to identify those most different products from a set
of competitive products. It is in turn beneficial to compete with those products,
by advertising the new product within the same space or time slot.

MIN Far annotation (MIF). The MIN Far annotation picks the farthest
value that is smaller than q on a particular dimension. If all values are larger than
q, then the MIF annotation selects the smallest value. Given a new mobile phone
type, for example, the MIF annotation can be used to identify the competitive
product with shortest standby time.

MAX Far annotation (MAF). Contrary to the MIC annotation, the MAX
Far annotation is intended to pick the farthest value that is larger than q on a
particular dimension. If all values are smaller than q, then the MAF annotation
picks the largest value. Given a new mobile phone type, for example, the MIF
annotation can be used to identify the competitive product with highest price.
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3.2 Problem Definitions

A relative skyline query on dataset P is issued together with a query point q. In
addition, we can specify a preference annotation from the set {ABC, MIC, MAC,
ABF, MIF, MAF} on an arbitrary dimension. Let v1 and v2 be two arbitrary
values on the arbitrary i-th dimension. If there is an annotation anti ∈ {ABC,
MIC, MAC,ABF, MIF, MAF} imposed on the i-th dimension, v1 and v2 will be
compared accordingly to decide if one is preferred to the other. If neither value
is preferred to the other according to the definition of the annotation anti, or
no annotation is imposed on the corresponding dimension, we say v1 and v2 are
incomparable with respect to q.

Definition 1 (User Preference). In a d-dimensional space, a user preference
ψ is defined as a 2-tuple ψ = 〈p, ants〉, where p is a d-dimensional point and
ants is a list of d preference annotations. Specifically, ψ.ants = 〈ant1, . . . , antd〉,
where for 1 ≤ i ≤ d each anti ∈ {ABC, MIC, MAC, ABF, MIF, MAF, null}.
A null anti indicates that no annotation is imposed on i-th dimension.

Definition 2 (Relative Dominance). Let p1 and p2 be two d-dimensional
points, and ψ be a user preference. Point p1 relatively dominates p2 with respect
to ψ, if ∀1 ≤ i ≤ d, p1[i] is preferred to or incomparable with p2[i] according to
ψ.p[i] and ψ.ants[i], but ∃1 ≤ i ≤ d, p1[i] is preferred to p2[i] according to ψ.p[i]
and ψ.ants[i].

Definition 3 (Relative Skyline Query). Given a d-dimensional point set P ,
a relative skyline query with a user preference ψ, termed as RSQψ, returns from
P all points that are not relatively dominated by any others with respect to ψ.

It is noteworthy that the set of preference annotations defined in Section 3.1
offers to users convenience and flexibility when they need to retrieve interesting
and meaningful objects from a complex data set. For example, a music database
may contain enormous song samples that are represented as vectors of specific
attributes (e.g., melody, rhythm, tempo, pitch, etc.). Without defining any com-
plex distance function within the vector space, one can issue relative skyline
queries with appropriate preference annotations to retrieve from the database
those samples that are most similar (or most dissimilar) to a given sample.

We use RSky(P, ψ) to denote the relative skyline query result on P , i.e., the
relative skyline of P with respect to ψ.

Definition 4 (Most Influential Preference Query). Given a d-dimensional
point set P , and a user preference set Ψ within the d-dimensional space, a most
influential preference (MIP) query returns a user preference ψ from Ψ such that
∀ψ′ ∈ Ψ, |RSky(P, ψ′)| ≤ |RSky(P, ψ)|.
The definition above can be easily extended to return the top-k most influential
preferences. Such MIP queries are very useful in various applications. In customer
relationship management (CRM) systems, for example, MIP queries can identity
very important customers who are interested in the largest number of products.
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As another example,it is often interesting for composers and music researchers
to know which types of music are the most influential in a music database. By
capturing different music types in the preference set Ψ , a MIP query against the
music database P retrieves the type that leads to the largest skyline of P , i.e.
the most frequent music type in P .

4 Supporting Assorted User Preferences

In this section, we address how to efficiently support assorted user preferences
that can be used in relative skyline queries and MIP queries. Section 4.1 develops
a transformation mechanism through which various preference annotations can
be represented in a uniform way. Based on the necessary uniform representation,
Section 4.2 adapts the branch-and-bound skyline (BBS) algorithm [18] to process
relative skyline queries with various preference annotations.

4.1 Uniform User Preference Annotation Representation

It is desirable that we unify the presentations of all those annotations aforemen-
tioned, as this will give us convenience in the query processing. In our approach,
we convert all preference annotations into the conventional MIN annotation. The
key point of this transformation is a function fant for each annotation type, from
a dimension domain Di to R.

For the ABC annotation, fABC is defined as:

fABC (q[i], p[i]) = |q[i] − p[i]| (1)

For the MIC annotation, fMIC is defined as:

fMIC (q[i], p[i]) =
{

(q[i] − p[i])/(Di.MAX −Di.MIN ), if q[i] ≥ p[i]
1 + (p[i] − q[i])/(Di.MAX −Di.MIN ), otherwise

(2)

For the MAC annotation, fMAC is defined as:

fMAC (q[i], p[i]) =
{

(p[i] − q[i])/(Di.MAX −Di.MIN ), if q[i] ≤ p[i]
1 + (q[i] − p[i])/(Di.MAX −Di.MIN ), otherwise

(3)

For the ABF annotation, fABF is defined as:

fABF (q[i], p[i]) = −|q[i] − p[i]| (4)

For the MIF annotation, fMIF is defined as:

fMIF (q[i], p[i]) = p[i] − q[i] (5)

For the MAF annotation, fMAF is defined as:

fMAF (q[i], p[i]) = q[i] − p[i] (6)

Using these functions, any preference annotation anti on the i-th dimension in
a relative skyline query can be transformed to a conventional MIN annotation
on a dynamic dimension fanti(q[i], p[i]). Thus, given a relative skyline query
RSQ = (q, 〈ant1, ant2, . . ., antd〉), we have the following corollary.
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Corollary 1 (Dominance Equivalence). Let P be a d-dimensional point set,
and RSQ = (q, 〈ant1, ant2, . . ., antd〉) be a relative skyline query. For two points
p1, p2 ∈ P , p1 relatively dominates p2 with respect to RSQ if and only if ∀1 ≤
i ≤ d, fanti(q[i], p1[i]) ≤ fanti(q[i], p2[i]) and ∃1 ≤ i ≤ d, fanti(q[i], p1[i]) <
fanti(q[i], p2[i]).

Corollary 1 tells that, with our proposed transformation, a relative skyline query
with arbitrary annotations can be processed by adapting the dynamic skyline
query approach [18]. We proceed to detail the adaptation and algorithms.

4.2 Processing Relative Skyline Queries with Assorted Preferences

We adapt the Branch-and-Bound Skyline (BBS) algorithm [18] for our skyline
computation. The BBS algorithm is based on the best-first nearest neighbor [11]
via R-tree. Given a dataset P indexed by an R-tree RP , BBS employs a min-heap
H to keep all R-tree entries that contain skyline points. For an entry e in RP ,
we use e.min (e.max) to denote its minimum (maximum) corner. Initially, BBS
enheaps all entries in the root of RP . Subsequently, BBS accesses all entries via
H . At each step, the entry e with the smallest L1 distance between e.min and
the origin is deheaped from H and expanded. The expansion eliminates all e’s
subentries dominated by any current skyline point, and enheaps the remaining
subentries toH . It repeats the aforementioned expansion untilH becomes empty.

Our choice is justified by the three desirable properties of the BBS algorithm.
First, it requires no specialized index but the popular R-tree; neither does it
require any specific data transformation before specialized indexes can be cre-
ated [13, 20]. Second, it never expands an entry that does not contain a skyline
point (IO-optimality). Third, at any moment, all points in the current skyline
are in the final skyline (progressiveness). Therefore, it is interesting to adapt
BBS to process relative skyline queries with assorted user preferences.

Specifically, the essence of BBS is its ability to prune R-tree entries (and
their nodes) by checking whether an entry is dominated by any current skyline
point. In order to retain this beneficial feature, we need to address how to check
whether a given R-tree entry e is relatively dominated by any current skyline
point with respect to a given user preference ψ. The crucial step for that check is
to derive from e a virtual minimum corner in the transformed space, which is then
compared with the skyline points according to Corollary 1. We use VMBB(e, ψ)
to denote the virtual minimum bounding box derived from e and ψ. The virtual
minimum corner is then denoted as VMBB(e, ψ).min. It is noteworthy that
VMBB(e, ψ).min is not necessarily the same as the result of transforming e’s
minimum corner e.min.
Deriving virtual minimum corners. Now let us elaborate how to derive
the virtual minimum corner VMBB(e, ψ).min[i] on an arbitrary dimension Di.
The results are listed in Table 1. In general, for each annotation, if it is the
cases that q[i] < e.min[i] or q[i] > e.max[i], the appropriate entry bound-
ary is used in the corresponding transformation function, which calculates the
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Table 1. Construction of VMBB(e,ψ).min

q[i] < e.min[i] q[i] > e.max[i] e.min[i] ≤ q[i] ≤ e.max[i]

ABC fABC (q[i], e.min[i]) fABC (q[i], e.max[i]) 0
MIC fMIC (q[i], e.min[i]) fMIC (q[i], e.max[i]) 0
MAC fMAC (q[i], e.min[i]) fMAC (q[i], e.max[i]) 0
ABF fABF (q[i], e.max[i]) fABF (q[i], e.min[i]) min{fABF (q[i], e.min[i]), fABF (q[i], e.max[i])}
MIF fMIF (q[i], e.min[i]) fMIF (q[i], e.min[i]) fMIF (q[i], e.min[i])
MAF fMAF (q[i], e.max[i]) fMAF (q[i], e.max[i]) fMAF (q[i], e.max[i])

expected VMBB(e, ψ).min[i]. If q[i] is (inclusively) between e.min[i] and e.max[i],
VMBB(e, ψ).min[i] is derived differently.

For all Close annotations (ABC, MIC and MAC), the transformation func-
tions in Section 4.1 always produce non-negative values. Therefore, when q[i]
is between e.min[i] and e.max[i], VMBB(e, ψ).min[i] is 0 which indicates that
entry e is likely to contain points that dominate others on the i-th dimension.

For ABF annotations, the transformation function fABF always produces non-
positive values. Whereas, when q[i] is between e.min[i] and e.max[i], VMBB
(e, ψ).min[i] = min{fABF (q[i], e.min[i]), fABF(q[i], e.max[i])} indicates that
the distance from q[i] to the farther boundary determines the likelihood that
entry e contains potential preferred values on the i-th dimension.

For the MIF (MAF) annotation, the same preferred entry boundary e.min[i]
(e.max[i]) is used, according to the preference definition.

Note that for a leaf entry e (i.e., e corresponds to a point), the above con-
struction still works with e.min[i] = e.max[i].
Algorithm. We now present the algorithm for processing relative skyline
queries with assorted preference annotations. We call it branch-and-bound rel-
ative skyline algorithm, or BBRS for short. Its pseudo code is shown in Algo-
rithm 1. Here, the L1 distance metric is used at line 4 and line 14 to prioritize
the R-tree node access. For an entry e, however, its virtual minimum corner
VMBB(e, ψ).min is used rather than its original minimum corner e.min.

Function isDominated used in Algorithm 1 checks whether an entry is rela-
tively dominated by any current skyline point (lines 7 and 12). It is shown in
Algorithm 2, where only the virtual minimum corner VMBB(e, ψ).min is com-
pared with the transformed skyline points.

5 Processing Most Influential Preference Queries

We proceed to present two algorithms for processing most influential preference
queries. Both algorithms require that the point set P is indexed by an aggregate
R-tree [17], where each node entry e stores in e.count the count of points in its
subtree. We make use of that count to prune unqualified user preferences.

5.1 The Probing-with-Pruning Algorithm

The first algorithm is Probing-with-Pruning (PwP for short), as shown in Algo-
rithm 3. The PwP algorithm takes two inputs: a user preference list Ψ and an
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Algorithm 1. BBRS(R-tree RP for dataset P , User preference ψ)

1: initialize a min-heap H ; S ← ∅
2: for each entry e in RP ’s root do
3: mindist(ψ.p, e)←∑d

i=1 VMBB(e,ψ).min[i]
4: enheap(H, 〈e,mindist(ψ.p, e)〉)
5: while H is not empty do
6: e← deheap(H)
7: if isDominated(e, S, ψ) then
8: continue
9: else

10: if e is a non-leaf entry then
11: for each child ej of e do
12: if !isDominated(ej , S, ψ) then
13: mindist(ψ.p, ej)←∑d

i=1 VMBB(ej , ψ).min[i]
14: enheap(H, 〈ej , mindist(ψ.p, ej)〉)
15: else
16: insert e to S
17: return S

Algorithm 2. isDominated(R-tree entry e, Current skyline S, User preference ψ)

1: for each skyline point s ∈ S do
2: if ∀1 ≤ i ≤ d, fψ.ants[i](ψ.p[i], s[i]) ≤ VMBB(e, ψ).min[i] and

∃1 ≤ i ≤ d, fψ.ants[i](ψ.p[i], s[i]) < VMBB(e, ψ).min[i] then
3: return true
4: return false

aggregate R-tree RP for point set P . Using RP as the index, PwP processes a
relative skyline query in the similar way as BBRS(Algorithm 1) for each user
preference ψ ∈ Ψ , and the one leading to the largest query size is maintained
and finally returned.

The PwP algorithm employs two variables to maintain the most influential
preference (mip) and the relevant skyline result size (max) (line 1). Before pop-
ping the heap and expanding an RP entry, it checks whether all current RP
entries in the heap contain enough points to make the current candidate ψ ex-
ceed the existing result mip (lines 8–9). If the sum of the total number of points
in the heap and the cardinality of the current skyline S is not larger than max
(line 8), then ψ cannot lead to a larger skyline even if all points in the heap enter
skyline S. As a result, ψ is pruned and the further processing on it is avoided
(line 9). When the processing for the current preference ψ ends, PwP checks
whether it is necessary to update the current result (lines 21–22).

5.2 The Prioritized Probing Algorithm

The second algorithm is Prioritized Probing (PP for short), as shown in Algo-
rithm 4. It takes the same inputs as the PwP algorithm but works with a different
philosophy. Instead of continuing the relative skyline query processing for each
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Algorithm 3. PwP(User preference list Ψ , Aggregate R-tree RP for point set P )

1: max← 0; mip← null
2: for each user preference ψ ∈ Ψ do
3: initialize a min-heap H ; S ← ∅
4: for each entry e in RP ’s root do
5: mindist(ψ.p, e)←∑d

i=1 VMBB(e,ψ).min[i]
6: enheap(H, 〈e,mindist(ψ.p, e)〉)
7: while H is not empty do
8: if

∑
ei∈H ei.count + |S| ≤ max then

9: break
10: e← deheap(H)
11: if isDominated(e, S, ψ) then
12: continue
13: else
14: if e is a non-leaf entry then
15: for each child ej of e do
16: if !isDominated(ej , S, ψ) then
17: mindist(ψ.p, ej)←∑d

i=1 VMBB(ej , ψ).min[i]
18: enheap(H, 〈ej ,mindist(ψ.p, ej)〉)
19: else
20: insert e to S
21: if |S| > max then
22: max← |S|; mip← ψ
23: return mip

user preference until either the query is done or the query is terminated because
of pruning, the PP algorithm at each step only selects the most promising user
preference ψ and pushes forward the relative skyline query processing for that
particular ψ.

Specifically, the PP algorithm employs a max-heap to prioritize the processing
for all user preferences (line 1). In the max-heap, each user preference ψ is
attached with a list of RP tree entries that may contain relative skyline points
for ψ. In addition, a variable count, the total number of points that may be in
the relative skyline for ψ, is used as the key to prioritize all user preferences in
the max-heap. Initially, each user preference ψ in the input gets its list based on
all entries in the root of RP tree (lines 2–5). Its count is initialized as the total
number of all points contained in the list, by referring to the aggregate values
stored in the child node entries; then each ψ is enheaped with its count as the
key (line 6). The selection of the promising RP tree entries into a ψ’s list is done
by the procedure addEntry (we will discuss it later).

The subsequent processing is prioritized by the max-heap. Each time, the user
preference ψ attached with the largest count is deheaped (line 8). If ψ’s list is
empty, which means that its relative skyline query has been processed and the
corresponding skyline is the largest (due to the property of a max-heap), ψ is
returned as the result (lines 9–10).
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Algorithm 4. PP(User preference list Ψ , Aggregate R-tree RP for point set P )

1: initialize a max-heap H
2: for each user preference ψ ∈ Ψ do
3: list← ∅
4: for each entry e in RP .root do
5: addEntry(e, list, ψ)
6: count←∑

e∈list e.count; enheap(H, 〈ψ, list, count〉)
7: while H is not empty do
8: 〈ψ, list, count〉 ← deheap(H)
9: if list is empty then

10: return ψ
11: else
12: repeat
13: count1← count; flag ← true
14: for each entry e in list do
15: if e is a non-leaf entry then
16: flag ← false; remove e from list
17: for each subentry ei in e do
18: addEntry(ei, list, ψ)
19: if flag then
20: list← ∅
21: else
22: count←∑

e∈list e.count
23: until flag or (count1− count) = 0
24: enheap(H, 〈ψ, list, count〉)

Otherwise, RP tree entries in ψ’s list will be expanded and processed to elim-
inate unpromising subentries and maintain promising ones (lines 12–23). Each
non-leaf entry e in the list is moved out, and all its promising child entries will
be added back to the list by calling addEntry (lines 14–18). The expansion is
repeated until all entries in the list are leaf entries, or the expansion does not
reduce ψ’s list (line 23). The latter case is indicated by the unchanged count
value. The variable flag indicates whether all entries are leaf entries or not. If
positive, the list attached to ψ will be set to empty (line 19–20); otherwise, the
count value is updated to the total number of points contained in the current
list (lines 21–22). After the processing for ψ stops, it is enheaped again with
updated list and count (line 24).

The selection of the promising RP tree entries into a user preference ψ’s list is
done through the procedure addEntry, shown in Algorithm 5. Given a new entry
e and all candidate entries in list, it performs a mutual dominance check between
e and list to eliminate the dominated entries (including e). Given two entries e1
and e2 and a user preference ψ, if VMBB(e1, ψ).max ≺ VMBB(e2, ψ).min in
the transformed space, every point in e2 must be dominated (with respect to ψ)
by some point(s) in e1. As a result, e2 can be safely pruned.
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Algorithm 5. addEntry(Aggregate R-tree entry e from RP , Candidate entry list

list, User preference ψ)

1: for each entry ei in list do
2: if VMBB(ei, ψ).max ≺ VMBB(e, ψ).min then
3: return
4: else if VMBB(e,ψ).max ≺ VMBB(ei, ψ).min then
5: remove VMBB(e, ψ) from list
6: add e to list

Table 2. Construction of VMBB(e,ψ).max

q[i] < e.min[i] q[i] > e.max[i] e.min[i] ≤ q[i] ≤ e.max[i]

ABC fABC (q[i], e.max[i]) fABC (q[i], e.min[i]) max{fABC (q[i], e.min[i]), fABC (q[i], e.max[i])}
MIC fMIC (q[i], e.max[i]) fMIC (q[i], e.min[i]) fMIC (q[i], e.max[i])
MAC fMAC (q[i], e.max[i]) fMAC (q[i], e.min[i]) fMAC (q[i], e.max[i])
ABF fABF (q[i], e.min[i]) fABF (q[i], e.max[i]) max{fABF (q[i], e.min[i]), fABF (q[i], e.max[i])}
MIF fMIF (q[i], e.max[i]) fMIF (q[i], e.max[i]) fMIF (q[i], e.max[i])
MAF fMAF (q[i], e.min[i]) fMAF (q[i], e.min[i]) fMAF (q[i], e.min[i])

The construction of VMBB(e, ψ).max for an entry e is detailed in Table 2. It
follows the same line of reasoning as we construct VMBB(e, ψ).min. Due to the
space limitation, we omit the detailed explanation here.

5.3 Discussions

We now provide a brief estimation on the worst-case IO costs for the two algo-
rithms proposed above. Let NP be the number of nodes in the aggregate R-tree
RP on P , LP be the number of leaf nodes in RP , and f be the fan-out of RP . In
the worst-case, PwP processes a relative skyline query for each user preference
in Ψ ; and such a skyline query processing visits all tree nodes in the aggregate
R-tree RP on P . As a result, the worst-case IO cost of PwP is |Ψ | ·NP .

On the other hand, PP always conducts a complete relative skyline query
processing only for one user preference in Ψ . However, in the worst-case, it may
reach the leaf node level of the aggregate R-tree RP on P for all other preferences
in Ψ . As a result, the worst-case IO cost of PP is NP + (|Ψ | − 1) · (NP − LP ) ≤
NP + (|Ψ | − 1) · (NP − |P |

f ).
When it is necessary to return the top-k most influential user preferences from

Ψ , both PwP and PP algorithms need very slight change, i.e., a list instead of a
variable to keep the temporary and/or final results.

In addition, it is noteworthy that both PwP and PP algorithms are able to
handle special input formats, e.g., a fixed query point with a list of preference
annotations, or a list of query points with a common set of annotations for all
dimensions. Neither PwP nor PP needs major changes to handle such cases. Due
to the space limitation, we leave for future work the possible specialized subtle
optimizations for such cases.
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6 Experimental Studies

All algorithms were implemented in Java and run on a Windows XP PC with a
2.8GHz Intel Pentium D CPU and 1GB RAM. We used both real and synthetic
datasets, all normalized to space [0, 1]d (d is the data dimensionality). For syn-
thetic datasets, both anti-correlated (AC) and independent (IN) distributions
were generated according to methods in previous work [4]. For each algorithm,
we set the page size to 4K and used an LRU memory buffer whose size is set to
1% of the sum of the input data size. We mainly report the results of IOs since
they are dominant in query processing.

6.1 Experiments on Assorted User Preferences

In the first set of experiments, we investigate the performance of relative skyline
queries with assorted preference annotations. In each experiment, 50 relative
skyline queries were executed. The user preference ψ in each query was generated
as follows unless stated otherwise. Its query point p was a random point within
the space [0, 1]d; the annotation on each dimension was randomly chosen from
the set {ABC, MIC, MAC, ABF, MIF, MAF}. In addition, we also imposed each
annotation type on all d dimensions and ran 50 queries accordingly.

We first fixed the dimensionality d to 2 and varied P cardinality from 100K to
1000K. The results are reported in Figures 2(a) and 3(a), on AC and IN datasets
respectively. Overall, all queries perform steadily and scalably as the cardinality
increases. The AC datasets have large skylines, which offers enough room to
make the differences more visible among various preference annotations.
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Fig. 2. Relative Skyline Query Performance on AC Data Sets

We then fixed P cardinality to 100K and varied the dimensionality d from 2 to
5. The results are reported in Figures 2(b) and 3(b). For most annotation types
on both distributions, a higher dimensionality incurs a modest cost increase
less than one order of magnitude. The exception of MIF on the AC datasets
is attributed to the very large corresponding skylines. This is because the MIF
transformation (see Equation 5) is actually a parallel translation, which makes
the relative skyline as large as the conventional skyline.
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Finally we investigated the effect of the variations of the query point p =
{v, . . . , v} in ψ, by varying v from 0.1 to 0.9. We used random annotations. The
results are shown in Figures 2(c) and 3(c). For each dimensionality, the change
of the query point does not affect the query performance much.

In summary, the performance of relative skyline queries with assorted user
preference annotations is efficient and scalable under various settings. This indi-
cates that our preference annotation transformation is effective, and the adapted
query algorithm is efficient.

6.2 Experiments on Most Influential Preference Queries

We also conducted extensive experiments on most influential preference queries.
We first report the results on the synthetic datasets. The default settings were
used: 100K points in P , 10K user preferences with random query points and
random annotations in Ψ , and 2 as the dimensionality.

We compared the query processing efficiency of PwP and PP algorithms, and
the results are reported in Figures 4 and 5. Figure 4(a) and Figure 5(a) describe
the effect of varying P cardinality. As P becomes larger, all cases incur more
IO costs. The PP algorithm outperforms the PwP algorithm by more than one
order of magnitude on both distributions, because the PP algorithm completes
relative skyline query processing for only one user preference.

Figure 4(b) and Figure 5(b) show the effect of varying dimensionality. Higher
dimensionality incurs more IO costs in every case, whereas the PP algorithm
is better than the PwP algorithm. Figure 4(c) and Figure 5(c) reports on the
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Fig. 6. Pruning Effectiveness on AC Data Sets
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Fig. 7. Pruning Effectiveness on IN Data Sets

effect of varying Ψ cardinality. Again, the PP algorithm outperforms the PwP
algorithm as the former avoids considerable unnecessary computations.

We also investigated the R-tree node pruning effectiveness of PwP and PP
algorithms, by comparing them to a baseline approach that executes a complete
relative skyline query for each user preference in the input preference list Ψ . We
measure the node pruning ratio, i.e., the ratio between the number of tree node
accesses PwP or PP saves and that the baseline approach incurs.

The results are reported in Figures 6 and 7. It is seen that PP always has a sig-
nificantly higher pruning ratio than PwP does. This indicates that the prioritized
probing strategy is very effective in avoiding accessing unnecessary tree nodes
in query processing. This also explains why PP outperforms PwP markedly.
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Fig. 8. Skyline Size of the Most Influential User Preference

An interesting phenomenon is seen from Figure 6(b) and Figure 7(b), where
the pruning ratio of PP decreases apparently as the dimensionality increases. The
reason behind is as follows. A higher dimensionality leads to a larger skyline size
for all user preferences, which makes the counting based pruning employed by PP
less discriminative and thus less effective. Consequently, PP has to execute more
steps in the prioritized relative skyline query processing for all user preferences,
which incurs considerably more node accesses.

Sometimes it is also interesting to know the size of the skyline of the most in-
fluential user preference. Figure 8 reports such results. As expected, the skyline
size is larger on AC data distributions than that on IN distributions. As dimen-
sionality increases, referring to Figure 8(b), the skyline size increases especially
on AC distributions. This is consistent with what we have observed above.

In the final experiment, we used the US hotel dataset (USH) from AllStays.com
to compare our PwP and PP algorithms. After data cleaning, we had 30,918 hotel
records of three attributes: review, stars, and price. The dataset approximately
follows a correlated distribution. Each attribute was normalized to the range [0,
1]. Two thirds (20,612 records) were randomly picked as the P dataset, and all
others (10,306 records) formed the query points in Ψ dataset.

We used different quality attribute combinations and obtained four variants
of P dataset: review and stars (denoted as rs), review and price (denoted as
rp), stars and price (denoted as sp), and all three attributes (denoted as rsp).
The corresponding Ψ dataset variants were obtained similarly, except that each
query point got random preference annotations on all attributes.
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The experimental results are shown in Figure 9. Figure 9(a) reports on the
node access costs of PwP and PP algorithms. Due to its prioritized nature of tree
node expansion and query processing, the PP algorithm outperforms the PwP
algorithm on all dataset variants. Figure 9(b) reports on the size of the skyline
of the most influential user preference. The significantly large skyline size on the
rs dataset contributes to the corresponding relatively very high node access cost
of PP seen in Figure 9(a).

7 Conclusion and Future Work

A relative skyline query is issued with a user preference that is the combination
of a query point and a set of preference annotations on dimensions. Various user
preferences are expected to be supported when relative skyline queries are to be
issued. It is also interesting to identify from an assorted user preference collection
the most influential preference that leads to the largest skyline. This paper offers
a complete set of techniques to solve such interesting problems within a uniform
framework.

As a basis, different preference annotations that can be imposed on a dimension
are formalized. An effective transformation is then proposed to handle all these
annotations in a uniform way. Using the transformation, the well-established BBS
algorithm is neatly adapted to process relative skyline queries with assorted user
preferences. Furthermore, the most influential preference query is introduced,
which returns from an assorted collection of user preferences the one leading to
the largest relative skyline. In order to process such novel and useful queries, two
aggregation R-tree based algorithms are designed and discussed. Extensive ex-
periments are conducted on both real and synthetic datasets. The informative
experimental results demonstrate that our proposals are efficient and scalable.

Several directions for future work exist. First, it is relevant to apply the for-
malization of user preferences defined in this paper to existing relative dominance
based reverse skyline queries [7, 9, 22]. Second, it is interesting to explore the
possibility to adapt other skyline algorithms than BBS to support the user pref-
erences and the most influential preference queries defined in this paper. Third,
it is possible to define other useful query types by using the assorted user pref-
erences defined in this paper, e.g., by applying them to the relative versions of
conventional skyline query variants [5, 6, 14, 19].

References

1. TripAdvisor, http://www.tripadvisor.com/
2. Balke, W.-T., Guentzer, U., Zheng, J.X.: Efficient distributed skylining for

web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004.
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Abstract. In scientific databases large amounts of data are collected
to create knowledge repositories for deriving new insights or planning
further experiments. These databases can be used to train classifiers
that later categorize new data tuples. However, the large amounts of
data might yield a time consuming classification process, e.g. for nearest
neighbors or kernel density estimators. Anytime classifiers bypass this
drawback by being interruptible at any time while the quality of the
result improves with higher time allowances. Interruptible classifiers are
especially useful when newly arriving data has to be classified on demand,
e.g. during a running experiment. A statistical approach to anytime clas-
sification has recently been proposed using Bayes classification on kernel
density estimates.

In this paper we present a novel data structure called MC-Tree (Multi-
Class Tree) that significantly improves Bayesian anytime classification.
The tree stores a hierarchy of mixture densities that represent objects
from several classes. Data transformations are used during tree construc-
tion to optimize the condition of the tree with respect to multiple classes.
Anytime classification is achieved through novel query dependent model
refinement approaches that take the entropy of the current mixture com-
ponents into account. We show in experimental evaluation that the MC-
Tree outperforms previous approaches in terms of anytime classification
accuracy.

1 Introduction

Classification is one of the most frequently used data mining techniques in sci-
entific processes. The classifier is trained on data repositories that often com-
prise large data bases. A common application is continuous online classification
or monitoring, e.g. during a running experiment, using measured sensor data.
Examples from chemistry, physics or biology include the monitoring of concen-
trations or mixing ratios, temperature, pressure, intensity, velocity (movement),
and so forth. Rather than simply checking values against thresholds, classifica-
tion using multiple measurements simultaneously can exploit correlations among
attributes and build more sophisticated classifiers.

The data stream resulting from the consecutive measurements differs depend-
ing on the application. In mechanical engineering for example, one might be
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interested in measurements including pressure, temperature, etc. at a certain
position of the piston of an engine. Taking these measurements at varying rev-
olutions per minute results in a varying data stream, i.e. the data tuples arrive
in varying time intervals (e.g. every 60 ms at 1000 rpm and every 20 ms at
3000 rpm). In chemistry or biology, measuring concentrations or movements is
often done in fixed intervals. Hence, these processes yield constant data streams,
where the time interval between two arriving data tuples is constant. Advanced
sensors, however, only send measurements if the actual value changed resulting
once again in varying data streams.

Algorithms, such as classification algorithms, traditionally had either no time
limitation or they got a fixed time budget for a certain task. The budget was
known in advance, i.e. they were tailored to the specific application. These budget
algorithms can neither provide a result in less time nor exploit additional time to
improve their result. In contrast, anytime algorithms can provide a result after
a very short initialization, improve their result incrementally when more time
is available and hold the most recent result ready at any time. In data mining
anytime solutions have been proposed for many tasks such as clustering [13] and
classification [6,8,21].

Anytime algorithms are the natural choice for varying data streams since
they flexibly exploit all available time to improve the quality of their result.
Recently it has been shown in [14] that also on constant data streams anytime
classifiers can improve the classification accuracy over that of traditional bud-
get approaches. With their superiority on varying and constant data streams,
applications for anytime classifiers are numerous and range from science over
industrial applications to robotics and health applications.

In this paper we propose a novel approach to Bayesian anytime classification
called MC-Tree. It can provide a very fast first result after evaluating just one
Gaussian normal distribution per class at the root level and it can improve the
classification accuracy as long as time permits by refining its current model in-
crementally. On the finest level a kernel density estimator is evaluated for each
object in the training set (database). In between, the MC-Tree stores a hierar-
chy of mixture models that allows effective and query adaptive anytime density
estimation. The mixture components contain objects from several (potentially
all) classes. During tree construction data transformations are used that take
both the locality of the data and the class distribution into account. Our novel
descent strategies, which exploit the entropy information available through the
MC-Tree, achieve parallel model refinement for several classes. Our experiments
confirm the effectiveness of the MC-Tree and show significant improvements over
previous approaches in terms of anytime classification accuracy.

2 Related Work

Traditional classification aims at determining the class label of unknown objects
based on training data. Different classification approaches are discussed in the
literature including nearest neighbor classifiers [17], decision trees [18] or support
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vector machines [4]. Bayes classifiers constitute a statistical approach that has
been successfully used in numerous application domains [2,7]. The naive Bayes
classifier uses a simple model to estimate the data distribution by assuming
strong statistical independence of the dimensions. Other models do not make
this strong independence assumption, but estimate the density for each class by
taking the dependencies of the dimensions into account. Another approach to
Bayesian classification is represented by kernel density estimation [12]. Especially
for huge data sets the estimation error using kernel densities is known to be very
low and even asymptotically optimal [3].

Anytime classification is classification up to a point of interruption. In addition
to high classification accuracy as in traditional classifiers, anytime classifiers have
to make best use of the limited time available, and, most notably, they have to be
interruptible at any given point in time. This point in time is usually not known
in advance and may vary greatly [23]. Anytime classification has for example been
discussed for decision trees [8], support vector machines [6] or nearest neighbor
classification [21]. While decision trees, and often also support vector machines
(SVM), provide a classification result after very short time, classification using
a nearest neighbor approach (NN) might take considerably longer, especially
with growing training set size. In [21] an anytime version of the NN classifier
is achieved by ordering the items of the training set during the training phase
and processing the items in that fixed order during classification as long as time
permits. The ordering is done based on a leave-one-out cross validation on the
training data, where an item is given one point if it contributes to the correct
decision. Otherwise it gets subtracted 2/(m− 1) points, where m is the number
of classes. Besides a recent approach to Bayesian anytime classification from
[19], we compare our approach against the anytime NN from [21] as well as the
decision tree and SVM implementation from Weka [22].

For Bayesian classification based on kernel densities an anytime algorithm
called Bayes tree has been proposed in [19]. The Bayes tree is a balanced tree
structure and is basically an extension of the R-tree [10]. It stores in each entry
a pointer and a minimum bounding rectangle and additionally a cluster feature
representing the corresponding subtree. In [19] one tree structure is build per
class using the standard R-tree insert, i.e. no optimization is done with respect
to overlapping or effectiveness in terms of density estimation. For anytime classi-
fication several heuristics are proposed that first have to determine a class, i.e. a
tree (out of all trees), whose model is refined in the next step. As a consequence,
for m classes, m steps are necessary to reach one refinement per class model.

Our novel approach takes up on the Bayes tree idea, removes its drawbacks and
shows significantly better anytime classification performance. More precisely, we
improve the tree construction by a top down approach that tries to optimize the
construction with respect to the eventual classification task. Also, we combine
all classes in one Multi-Class tree whereby we only need one step to refine all
class models simultaneously. Finally we introduce novel improvement strategies
that exploit the MC-tree structure by incorporating the class distribution of the
mixture components into the descent decision.
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3 The MC-Tree

Our Multi-Class Tree (MC-Tree) is a generative model that tries to find a good
representation of the underlying data distribution for a classification with high
accuracy. We do not analyze each class on its own, but we describe several classes
simultaneously if their objects show similar characteristics. At the same time we
present a data transformation approach to consider the class information. By
this we reach a stronger discrimination between the classes. The structure and
construction of our MC-Tree is presented in Section 3.2. Also, within the classi-
fication and refinement process, which is necessary for the anytime behavior of
our algorithm, the possible mixing of classes is considered. The classification pro-
cess is described in Section 3.3. Section 3.4 concludes with our novel refinement
techniques for anytime classification to improve the classification accuracy.

3.1 Preliminaries

Given a set of classes C and an object x a classifier is a function G that assigns
to x the class label G(x). Based on a statistical model of the distribution of
class labels the Bayes classifier assigns to an object the class ci with the highest
posterior probability P (ci|x). With Bayes rule it holds:

G(x) = argmax
ci∈C

{P (ci|x)} = argmax
ci∈C

{P (ci) · p(x|ci)}

Estimating the class-conditional density p(x|ci) is the challenging task. One
method is to assume a certain distribution of the data, e.g. a unimodal Gaussian.
In general this approach yields no good representation of the true distribution.
An improvement of this model is realized by the mixture of densities, i.e. a
combination of several probability density functions (pdfs). In our work we use
Gaussian mixture densities p(x|ci) =

∑k
j=1 wj · g(x, μj , Σj) with

g(x, μj , Σj) =
1

√
(2π)d · det(Σj)

e(−
1
2 (x−μj)

T Σ−1
j (x−μj))

where μj is the mean of the j-th Gaussian component, wj its weight and Σj its
covariance matrix. For a valid model the weights wj must sum up to 1. Another
approach is kernel density estimation that defines an influence function for each
object separately. The pdf is obtained by replacing the Gaussians g with the

kernels of each object. We use Gaussian kernels, i.e. K(x) = 1
(2·π)d/2 e

− x2
2hi , where

hi is the bandwidth corresponding to the variance of a Gaussian component. To
set the bandwidth for our kernel estimators we use a common data independent
method according to [20]. Kernel density estimation is known to perform well
for traditional classification [3] and anytime classification [19].

3.2 Tree Structure and Construction

The general idea of our Multi-Class Tree (MC-Tree) is to store a hierarchy of
mixture densities. The hierarchical structure allows us to represent data in more
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Fig. 1. Example of an MC-Tree. Gaussian components of an entry may represents
entities from various classes.

or less detail. Figure 1 shows an exemplary MC-tree structure with three levels.
The root node of the tree consists of two entries and represents the coarsest data
model. The grey depicted Gaussians in these entries represent the aggregated
statistical information of the points in the subtrees. They are constructed from
the Gaussians in the level below. For better illustration these lower-level compo-
nents are shown once again in the entries of the root node but are actually not
stored twice in our MC-Tree. The Gaussians of the first level on their part are
constructed from kernel based Gaussian components in the leaves, which repre-
sent the finest data model. As one can see at the left most entry in level 1, our
MC-Tree permits to represent objects from different classes (A and B) in one
Gaussian component. This is beneficial if the spatial similarity of the underlying
objects is high and thus our model remains compact. Gaussians that comprise
objects from several classes are represented by dotted lines in the figure.

Furthermore, unbalanced MC-Trees are possible. If an area of the data space
needs a more detailed representation, paths can get longer than for other areas.
Hence the level of detail in our object representation is adjusted to the actual
data set.

Our MC-Tree consists of interlinked nodes, where each node contains a set
of entries. We develop and analyze two types of entries for our MC-Tree. In the
first version, we store the necessary information for calculating the mean and
variance for each class contained in an entry separately. Thus if O(e, c) is the set
of objects from class c in the entry e we can derive the corresponding Gaussian.
This can be done for each class in the entry individually. Furthermore we can
calculate the mean and variance of the overall entry, i.e. independent to which
classes the objects belong.

Definition 1. MC-Tree node entry (type A)
Let O(e) be the objects that are represented by an entry e of the MC-Tree and
O(e, c) ⊆ O(e) the objects belonging to the class c ∈ C. The entry e of type A
stores the following information:
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– A pointer to its subnode Sube (set of entries)
– For each class c ∈ C a cluster feature CFc = (ne,c, LSe,c, SSe,c) representing

the objects O(e, c) with their number ne,c = |O(e, c)|, their linear sum LSe,c

and their squared sum SSe,c

The algebraic measures mean and variance can be calculated out of the linear
and squared sums. For class c and entry e we get the mean via μe,c = 1

ne,c
·LSe,c

and the variance by σe,c = 1
ne,c

· SSe,c − ( 1
ne,c

· LSe,c)2. Accordingly, we can
calculate these values for the overall entry.

In our second approach we use a technique called variance pooling. Instead
of storing the squared sum for each class we only use the squared sum of all
objects in the entry. By this we assume for all classes the same variance within
the entry, but we use less space. Please note that the linear sum, the number of
objects and hence the mean are still used for each class on its own.

Definition 2. MC-Tree node entry (type B)
The entry e of type B stores the following information:

– A pointer to its subnode Sube (set of entries)
– For each class c ∈ C a cluster feature CFc = (ne,c, LSe,c) representing the

objects O(e, c) with their number ne,c = |O(e, c)| and their linear sum LSe,c

– The squared sum SSe for all objects O(e)

An inner node of our MC-Tree is a set of the beforehand introduced entries. As
in [19] a leaf node of our tree is a set of kernels. Thus a kernel can be regarded
as a special kind of entry that is only possible in leaf nodes. This special entry
e represents only one object and hence O(e) is just a single object. The overall
definition of our MC-Tree is:

Definition 3. MC-Tree
Let DB be a database of objects. An MC-Tree with a fanout of θ is a tree that
fulfills the following properties:

– each inner node is a set of maximally θ entries (type A or B)
– each leaf node is a set of maximally θ kernels
– the objects O(e) represented by an entry e correspond to the objects of its

subnode Sube, i.e. O(e) =
⋃

ei∈Sube
O(ei)

– the entries of a single node N represent disjoint object sets, i.e. ∀ei, ej ∈
N : O(ei) ∩ O(ej) = ∅

– the root-node R represents the whole database, i.e.
⋃

ei∈R O(ei) = DB

Tree construction. With the definition of the tree structure we know how to
represent a certain subset of objects. In the next step we have to determine which
objects should be grouped together to get a high classification accuracy based
on our MC-Tree. We use a top-down approach to divide the whole database DB
in smaller subsets Si. For each subset one entry ei is constructed that represents
the objects Si. All the entries together represent an inner node of the MC-Tree.
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(a) Transformation for better cluster detection;
Gaussians in original space

(b) Recursive vs. non-recursive
MDS

Fig. 2. Multidimensional scaling (MDS) for class discrimination

The subsets are recursively divided in smaller subsets and hence further inner
nodes are constructed until the kernel level is reached.

One aspect for a good partitioning of the objects is using their spatial order.
The mixture of densities calculated from the entries should represent the under-
lying data distribution well. For dividing a set of objects in reasonable subsets
we use the EM clustering algorithm [16]. The EM algorithm tries to represent
objects with the best possible Gaussians. Similar to our approach it is a gen-
erative model, so we can directly use its clusters as our division of objects in
entries. Because both models, our MC-Tree and the EM algorithm, use Gaus-
sians to describe the data the clustering results of EM are well suited for our
index construction. Other methods like the density-based clustering paradigm [9]
optimize different criteria to obtain the clusters. Thus, a subsequent description
of these clusters by Gaussians in our MC-Tree might result in poor results. The
number of clusters used in the EM algorithm determines the branching factor of
our MC-Tree (explicit branching factors are given in Section 4).

Using this clustering method, our MC-Tree is able to mix up several classes in
one entry and we can achieve compact representations of the data. However, very
impure clusters with respect to their class labels could result in low classification
accuracy even if the underlying objects show a similar spatial relationship. In
an impure cluster we cannot discriminate between the classes and thus a precise
class prediction is problematic. Hence its preferable to find pure clusters with
respect to their class labels if they also show good spatial compactness/similarity.
The MC-Tree has to form a trade-off between pure entries with respect to the
class labels and compact spatial clusters.

The EM algorithm does not consider the classes in the clustering process. It
simply gets all objects neglecting their labels and hence pure clusters cannot
be expected. To take care of this fact, objects from the same class must be
considered as more similar than objects from different classes. Hence we use a
new distance function that combines the spatial similarity of the objects and
their class similarity:

dδ(x, y) =

{
δ · ||x − y||2 if class(x) �= class(y)
||x − y||2 else
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where ||x−y||2 is the Euclidean distance between the objects x and y and δ > 1.
However, EM cannot work on arbitrary distance functions and requires a vector
space.

Our approach is to transform the data space, such that the desired simi-
larity/distance between the objects results. After the transformation the class
information should also be reflected by the spatial similarity, i.e. the Euclidean
distance between x and y in the new space is approximately the value dδ(x, y).
As an advantage, we still have a vector space on which EM can work but we also
implicitly use the class information.

We make use of multi-dimensional scaling (MDS [5]) to transform the data
space. MDS is a non-linear transformation technique for representing or visu-
alizing objects in any d-dimensional vector space. Given the original distances
between the objects, MDS iteratively tries to find a mapping into the new d-
dimensional space such that the distances match best. In our technique we do
not transform our objects to a lower-dimensional space but we use the same
dimensionality as our original objects and change the distances to dδ(x, y). Fur-
thermore, the initial coordinates which are used for the MDS algorithm are the
original coordinates of the objects. By this we keep to the most parts the orig-
inal spatial structure of the objects and achieve by selective adjustments the
consideration of the class information.

In Figure 2(a) (left) we see two classes (squares/circles) which are mixed
together in the 1d space. Its not possible for the EM to identify pure clusters,
i.e. both clusters contain squares and circles. The clusters are marked in red and
blue, respectively. After transformation with δ > 1 the situation in the middle
is obtained, for which EM gets the two marked clusters. Keep in mind that the
transformation is only performed for the detection of clusters, i.e. which subsets
should be grouped together. The Gaussians of the corresponding entries in the
MC-Tree are still calculated in the original space. An object to be classified
(cf. Sec. 3.3) cannot be transformed because of its unknown class. The resulting
clusters/entries are presented in Figure 2(a) (right). Both clusters represent only
objects from one class. Hence, Gaussians could overlap in the original space if
by this we get purer clusters.

We do not employ our MDS technique only once at the beginning of the tree
construction, but recursively for each subtree. By application of MDS only for a
subset of objects a better discrimination of the classes in further steps is possible.
An example is depicted in Figure 2(b), where it is not possible to separate all
objects from class 1 to those from class 2 with the first transformation. If we
do not perform MDS recursively (right upper case) the clusters are still impure.
However, if we apply MDS on the remaining smaller subset (right lower case),
we can further discriminate the classes. Thus Gaussians which represent only
objects from one class are more likely to show in higher levels of our MC-Tree
with this recursive application.

With our method we can generate clusters and thus entries which account
for the trade-off between compact spatial representations and pure cluster with
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respect to the class labels. Due to the flexibility of the MC-Tree construction we
can use any other method that also considers this trade-off.

3.3 Classification

Given our MC-Tree we are able to perform classification of objects with un-
known labels based on the mixture of densities. We distinguish two steps in the
classification process which are alternately performed. First, given a mixture of
models, i.e. in our MC-Tree a set of entries, we have to determine the probability
of a class a novel objects belongs to. Second, to realize the anytime property,
in each step we refine our mixture to get a more fine-grained model. For this
we have to replace an entry with the entries in its subtree. In the following we
discuss the first step, the second step is presented in Section 3.4.

Each entry represents a Gaussian, which is associated to a set of objects. Not
every set of entries is a valid mixture of densities for our classification task. We
have to make sure that each object in our training set is represented by exactly
one Gaussian, i.e. we need a complete model. Representing objects multiple times
would favor some objects in the classification process. Objects which are not
represented by Gaussians consequently are not considered for the classification.
We call a set of entries F = {e1, . . . , er} a frontier if it is a complete model.
Formally:

Definition 4. Frontier
Let O(e) be the set of objects represented by the entry e and DB the whole
training set. A set of entries F = {e1, . . . , er} is a frontier iff

1.
⋃r

i=1 O(ei) = DB
2. ∀ ei, ej ∈ F : O(ei) ∩ O(ej) = ∅

The idea of the frontier is demonstrated in Figure 3. In this example you see a
frontier (highlighted entries) which consists of two entries in the root node, one
entry in the level 1 and three kernels. Obviously the set of all entries from the
root-node is a valid frontier. It corresponds to the coarsest model. The same holds
for the set of all leaf nodes, which is the finest model. The example in Figure 3
shows a case in between these extremes. This frontier results from refinement of
the most left entry in the root node and the most left entry in the level 1 and
represent a data model where one area is represented in a higher resolution. The
mentioned refinement step is discussed in the Section 3.4. Given the frontier we
can calculate the density of an object with respect to one class. Keep in mind
that our MC-Tree can store objects from different classes in one entry. Hence,
given an entry we must use only the class-specific information.

Definition 5. Probability density query pdq in MC-Tree
Given a frontier F = {e1, . . . , er} and a class c. Let ne,c be the number of objects
from class c in the entry e. The pdq returns the density of an object x with respect
to c and F , i.e.

pdq(x|c,F) =
∑

e∈F

ne,c

|DB| · g(x, μe,c, σe,c)
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Fig. 3. Example of a frontier. The gray entries contribute to the current mixture model
for the density estimation and can be refined in further steps.

where μe,c and σe,c are calculated based on the stored information within the
entries (cf. Def. 1 or Def. 2).

This is a weighted mixture of densities according to distribution of number of
objects from the current class. For the leaf entries a kernel estimator is used. By
our two different types of entries we have also two versions of our pdq depending
on the beforehand chosen entry type.

Let nci be the total number of objects from class ci and let the a priori
probability P (ci) be estimated from the training data as the relative frequency
of each class. Then it holds:

pdq(x|ci,F) =
∑

e∈F

ne,ci

|DB| · g(x, μe,ci , σe,ci)

=
nci

|DB| ·
∑

e∈F

ne,ci

nci

· g(x, μe,ci , σe,ci)

= P (ci) · p(x|ci)

The term p(x|ci) is a valid probability density function because the weights as-
sociated to the Gaussians sum up to 1. With our MC-Tree the class-specific
weighting P (ci) is directly integrated in the pdq. According to Bayes classifica-
tion the class label assigned to an object can be calculated by the rule:

argmax
ci∈C

{P (ci) · p(x|ci)} = argmax
ci∈C

{pdq(x|ci,F)}

3.4 Refinement

Given a frontier F we are able to determine the class of a new object. For
anytime processing we have to generate a chain of such frontiers, starting with
the coarsest model from the root, down to the leaf nodes. In each step we replace
one entry e ∈ F with the entries in the subnode of e. By this we perform a
refinement of the underlying spatial data distribution and hence a refinement of
the probability density query pdq.
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Definition 6. Anytime pdq processing in MC-Tree
Given a frontier Fi. Let e ∈ Fi and {e1, . . . , em} the entries of the subnode of e.
We refine Fi to Fi+1 by removing e and inserting the child entries:

Fi+1 = (Fi \ {e}) ∪ {e1, . . . , em}

The pdq of an object x with respect to a class c and the new frontier Fi+1 is
calculated by:

pdq(x|c,Fi+1) = pdq(x|c,Fi) − ne,c

|DB| · g(x, μe,c, σe,c)

+
m∑

i=1

nei,c

|DB| · g(x, μei,c, σei,c)

Calculating the new density for x is based on the previous result and hence the
cost is low. At the beginning of the anytime processing (i = 1) we initialize
F1 to the entries of the root node. From each time step i to i + 1 we have
to decide which e ∈ Fi should be replaced. This decision is important for the
performance in terms of anytime classification. If an entry with low information
with respect to the current query is refined, the classification result may change
only slightly but we have wasted time which could be spend for an improvement
with more useful entries. We present different strategies for choosing the next
entry in the following. Because we perform only local refinements during our
anytime processing, it is very unlikely that we reach the leaf level for all objects
in the available time. Overfitting is mitigated because we generalize huge parts
of the data via aggregated information.

Quality measure. During our anytime processing the result is not only incremen-
tally improved but our model is refined individually based on the current object
to be classified. The classification is based on densities. A high density increases
the probability of a class being selected. Hence a first approach, as presented in
[19], is to refine the entry e ∈ F with the highest density to hopefully increase
the density further. Doing this in our MC-Tree is not straightforward. Each en-
try subsumes several classes and densities of each class could vary. The question
is, how to decide which entry is the best for refinement without favoring single
classes. To make a fair selection, we use the density resulting from all objects by
disregarding their class labels. The next entry to refine is defined by

argmax
e∈F

{ ne

|DB| · g(x, μe, σe)}

with the mean μe, variance σe and number of objects ne based on all objects in
the entry e.

Similar to the tree construction this first approach only considers the spatial
order of the data. During construction we had to consider the trade-off between
pure clusters with respect to their class labels and the spatial similarity of the
objects. A similar observation can also used for our refinement method. Consider
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an entry e with several classes that splits up in the subtree in complete pure
clusters, i.e. each sub-entry of e contains only objects from one class. If we refine
e we can make a clear decision in the following steps and hence our accuracy
could increase. This entry e should be preferred to an entry whose sub-entries
are still impure. Based on this intuition we need a measure that assesses the skew
of the class label distribution in an entry and the possible gain if we refine it.

We use the well known information gain that is already used for decision
trees [15,18]. The information gain for an entry e with sub-entries {e1, . . . , em}
is defined as:

IG(e) = entropy(e) −
m∑

i=1

nei

ne
· entropy(ei)

where entropy(e) measures the entropy of the class label distribution in e:

entropy(e) =
∑

c∈C

(

−ne,c

ne
· log

(
ne,c

ne

))

The information gain measures the reduction of the entropy, i.e. the reduction
of the class label skew, if we replace the entry e by the entries in its subnode.
This information can be calculated before the query processing because it is
independent of the actual query object x.

The higher the information gain the better is the refinement of e with respect
to the class purity of the subtree. The higher the beforehand defined density
measure the better is the refinement of e with respect to the spatial similarity.
Both measures are important for our MC-Tree and hence we realize this trade-off
by building a linear combination of these terms for our quality measure.

Definition 7. Refinement quality of an entry
Given a query x and a frontier F . The refinement quality of an entry e ∈ F with
respect to x and F is defined as:

qualityα(e, x) = α · IG(e)
log |C| + (1 − α) · ne · g(x, μe, σe)

maxw∈F nw · g(x, μw, σw)

We normalize both measures to the range 0 − 1, so that a fair comparison is
possible. The information gain is at most log |C| if C is the set of all possible
classes in our database. The user can control the influence of both measures by
changing α.

Meta strategies. Formally our quality measure defines a ranking of the entries in
the current frontier. We select the first entry out of this ranking, i.e. the entry
resulting out of

argmax
e∈F

{qualityα(e, x)}

and we perform our refinement step. Afterwards the ranking is adapted based on
the newly inserted entries and we can select the next best entry after updating
our pdq. We call this method first-best, as in each step the best entry is refined.
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One possible problem of this approach is that only a small local area around
the query object is refined. We can stick to one path of refined entries, while
other entries that could show a strong influence on the query in later steps are
not refined. This problem is related to greedy algorithms which choose at each
step the best local solution and hence can run into local optima and not resulting
to a global optimal solution. To avoid this we present two further meta strategies
for the selection of entries.

The k-best method is a direct extension of first-best. Instead of choosing the
best entry we mark the k best entries in the current frontier. While there are
marked entries in the frontier we select the best out of these and perform our
refinement step and pdq update. Other non-marked entries are ignored even if
they show better quality values. Only when all marked entries are processed
for refinement, we again consider all entries in the frontier for marking the k
currently best ones based on their quality measures. By this method we widen
the search space because a currently second best entry is refined and can advance
to a top choice for the following steps. If we set k = 1 we get the first-best method.

The k-best method simply chooses the k best entries based on their quality
measures. The method does not consider the classes within the entries which
is the important characteristic of the MC-Tree. Hence for k-best it is possible
to select k entries all belonging to one class. This single class is favored in the
classification process and all remaining classes are neglected. If the true class
of the query object belongs to one of the neglected classes its unlikely to reach
a correct classification. Therefore our last method tries to consider all classes
equally within the refinement steps, i.e. in k successive refinement steps we favor
k different classes. Similar to k-best we mark the k best entries with respect to
the quality measure, but now with the additional constraint that the strongest
represented class of each marked entry is always different among the k entries.
This method is similar to the qbk heuristic, which yielded the best results in
[19]. Formally we select for each class ci the entry with the highest quality and
for which ci is also the strongest representative:

e∗ci
= argmax

e∈F
{qualityα(e, x) | ci = argmax

c∈C
{ne,c}}

Out of the set {e∗ci
}ci∈C we mark the k best entries for the next refinement steps.

Note that the strongest represented class of each entry can be calculated before
the actual query processing. This method, called k-class, accounts for different
classes in each refinement step and hence our classification decision is more likely
to be changed to the correct class if it is underestimated so far.

4 Experiments

To evaluate the performance of the MC-Tree we ran experiments on different real
world data sets with varying dimensionality, cardinality and number of classes.
Table 1 summarizes their characteristics (Covtype = Forest Covertype). All ex-
periments were run on Windows machines with 3 GHz and 2 GB RAM using
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Table 1. Data sets used in the experiments

name size classes features ref.

Vowel 990 11 10 [11]

Pendigits 10,992 10 16 [11]

Letter 20,000 26 16 [11]

Gender 189,961 2 9 [1]

Covtype 581,012 7 10 [11]

Java 6.0. Mostly we will use an implementation invariant time measure (as used
e.g. in [21]), i.e. in the graphs we report the classification accuracy over the num-
ber of Gaussians that have been evaluated. When comparing against anytime
nearest neighbor [21], SVM [22] and C4.5 [22] we report the actual time on the
x-axis. Please note that our goal is to improve the accuracy of anytime Bayesian
classification rather than showing statistical evidence for the superiority of one
or the other classifier in different domains. We perform 4-fold cross validation
on the data sets and report the average accuracy value. The tree structures
are constructed once using all training data of the current fold. For updates of
the trees using additional new training data one can employ the incremental
insertion proposed in [19] or adapt other split strategies. Since we focus on the
anytime classification performance, we do not study these aspects here. In the
next section we first evaluate the influence of the parameters on the anytime clas-
sification accuracy of the MC-Tree and in Section 4.2 we show the improvement
of anytime Bayesian classification that is gained through our novel approach over
previous results from [19].

4.1 MC-Tree Parameter Evaluation

To find a good parameter setting for the MC-Tree we start by evaluating the
influence of the entropy level during descent by varying the parameter α in
Figure 4 (left). We use the k-class strategy because in primary experiments it
performs best among all meta strategies. In addition, we use zero penalty for
the MDS (δ = 1) and the classification decision is based on μe,c and σe,c. The
maximal number of entries in a node and hence the number of clusters for the
EM algorithm is set to the number of classes in the respective data set.

We find a clear winner in the results indicating that α = 0 yields the best
results. This means that the local density of the individual Gaussian components
in the frontier is sufficient to best determine the next entry for a refinement.
Deprecating the importance of entries that yield a high probability density with
respect to the query object by promoting other entries due to their higher entropy
obviously delays beneficial model refinements and thereby reduces the anytime
accuracy performance. Hence we only use the entry’s probability density and set
α to zero in the following.

In Figure 4 (right) we evaluate the influence of the penalty for the construction
using MDS on the Gender data set. The purple line corresponding to δ = 1
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Fig. 4. Left: Varying the influence of entropy during descent via the parameter α.
Right: Varying the penalty for MDS construction via the parameter δ.

(zero penalty) rises quickly to an accuracy of around 74%, but does not improve
it afterwards. We found similar results, i.e. steep increase early on and little
improvement in later stages, for most data sets when using the same parameter
setting.

Increasing the penalty through a higher δ yields continuous improvement in
terms of anytime accuracy. While the curve for δ = 1 shows better performance
for the first Gaussians that are read, the other settings can soon improve the
accuracy significantly. The tree build with δ = ∞ penalty shows an accuracy
that is up to 9% higher for this data set. The superior performance for this
setting was confirmed on the other data sets. Moreover, the stagnating behaviour
disappeared throughout as will be shown in the next section.

δ = ∞ constitutes a special case, since this transformation can be considered
as dividing our database in subsets, such that all objects with the same class label
are in the same subset. Afterwards we perform clustering only on the separated
classes. Hence we do not need the actual transformation but can directly cluster
in the original space on these subsets. This special case is more similar to the
Bayes tree, but the resulting hierarchy is still very different due to the top down
clustering instead of the balanced R-tree split as in [19]. We will see in the next
section that the MC-tree shows significantly better anytime accuracy.

As a consequence of the high penalty and the resulting tree structure, all
classification options provided by the different node types (cf. Def. 1 and 2)
yield the same results and are therefore not displayed here.

4.2 Comparison: Improvement of Anytime Bayesian Classification

We compare our novel MC-Tree to a recent anytime Bayes classifier described
in [19] (Bayes tree). For the Bayes tree we use the global best descent strategy
and the qbk refinement strategy as they were reported to yield the best results.
For the MC-Tree we set the fanout, i.e. the maximal number of entries per node,
to the same amount as in the Bayes tree where it is dictated through the page
size (2KB pages for all experiments as was used in [19]). Note that eventually
the results of both approaches will be equal, i.e. if the entire leaf level has been
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read the decision of both classifiers is based on the same model. However, in
the graphs we focus on the interesting part, i.e. the anytime performance in the
beginning of the classification process. On the right hand side of the Figures we
show the corresponding accuracy reached by the SVM and C4.5 implementation
from Weka [22]. These methods do not constitute an anytime approach. Clearly,
for each individual application there will be a best performing classifier, but no
single classification approach will be the best choice for all application domains.
Our goal in this paper is to improve anytime Bayesian classification, hence we
focus our comparison on the Bayes tree [19].

Figure 5 (left) shows the results for the Pendigits data set. The Bayes tree
performs only slightly better than the anytime nearest neighbor in the beginning
before it falls behind. The MC-tree shows a steep increase in the very beginning
and outperforms the other two anytime classifiers throughout. While the accu-
racy of the MC-tree is similar to the nearest neighbor in later stages, it quickly
shows a performance gain over the Bayes tree of three to four percent accuracy.
Support vector machine (SVM) and decision tree (C4.5), which are considered
very fast classifiers, perform well with 97.9% and 96.3% accuracy respectively.
These approaches, however, can not improve their accuracy once they computed
their result while the anytime classifiers will use additional time for further com-
putations.

Similar results can be seen for the letter data set in Figure 5 (right). For this
domain C4.5 (86.8%) performs better than the SVM (81.8%). The results of the
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anytime NN and the Bayes tree are again similar, after a short time the nearest
neighbor bypasses the accuracy of the Bayes tree. The MC-tree outperforms
both approaches and reaches accuracy values which are up to 15% higher as
compared to the Bayes tree constituting a major performance gain. Moreover,
it soon reaches higher accuracy than both SVM and C4.5.

On the gender data set (cf. Figure 6 (left)) the Bayes tree shows constantly
better performance than anytime NN. Once more, the MC-tree constantly out-
performs both approaches by roughly 6% compared to the Bayes tree and 10%
compared to anytime NN. As was the case for the letter data set, the decision
tree (83.2%) reaches higher accuracy than the support vector machine (70.7%).
This performance is once again met by the MC-tree after short time and ad-
ditional time can be used for further improvement. More importantly, as was
our mayor goal, the new concepts of the MC-tree prove to be effective through
constantly better performance in comparison with the Bayes tree.

In Figure 6 (right) we show our results for the MC-tree and Bayes tree on
the Forest Covertype data set. The results for the anytime nearest neighbor,
SVM and C4.5 could not be computed due to memory issues. We report in this
Figure the number of Gaussians that have been evaluated until classification. As
stated above, the goal in this paper was to improve the performance of Bayesian
anytime classifiers, which is again clearly reached in this experiment.

Theoretically, the accuracy curve of an anytime approach corresponds to a
non-decreasing function. In Figure 6 we observe a slight up and down in the
anytime curves for the MC-tree. Note that in both cases k = 2, i.e. the two
most probable classes are refined in turns. Obviously the classification decision
changes for some queries after each node that is evaluated. The amplitude of
the oscillation indicates the percentage of queries behaving as just described.
Those query points fall into a region of the data space where two classes overlap
and where a correct decision is difficult to find. Refining the one class’ model by
reading an additional node increases its probability in that step, while in the next
refinement the other class’ model is refined (due to k = 2) and its corresponding
probability prevails. However, the slight oscillation of the anytime curves does
not diminish the dominance of the MC-Tree in terms of anytime accuracy.

5 Conclusions

Anytime algorithms and in particular anytime classification received a lot of at-
tention over the last years. Different classification approaches are proposed in the
literature which all have certain domains where they perform best. In this paper
we focused on Bayesian classification and proposed a novel data structure called
MC-Tree that significantly improves the anytime classification performance over
previous approaches. We investigated various strategies for tree construction,
descent and classification. In experimental evaluation on real world data sets we
showed that the MC-Tree outperforms previous Bayesian anytime classifiers and
that it improves the accuracy constantly by up to 15%.
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Abstract. Any large-scale operational system running over a variety
of devices requires a monitoring mechanism to assess the health of the
overall system. The Technical Infrastructure Monitoring System (TIM)
at CERN is one such system, and monitors a wide variety of devices
and their properties, such as electricity supplies, device temperatures,
liquid flows etc. Without adequate quality assurance, the data collected
from such devices leads to false-positives and false-negatives, reducing
the effectiveness of the monitoring system. The quality must, however,
be measured in a non-intrusive way, so that the critical path of the data
flow is not affected by the quality computation. The quality compu-
tation should also scale to large volumes of incoming data. To address
these challenges, we develop a new statistical module, which monitors the
data collected by TIM and reports its quality to the operators. The sta-
tistical module uses Oracle RDBMS as the underlying store, and builds
hierarchical summaries on the basic events to scale to the volume of
data. It has built-in fault-tolerance capability to recover from multiple
computation failures. In this paper, we describe the design of the sta-
tistical module, and its usefulness for all parties involved with TIM: the
system administrators, the operators using the system to monitor the
devices, and the engineers responsible for attaching them to the system.
We present concrete examples of how the software module helped with
the monitoring, configuration and design of TIM since its introduction
last year.

1 Introduction

Monitoring the status of large numbers of devices across a scientific installation
is vital to assuring the operational quality and accuracy of the experiments. The
Technical Infrastructure Monitoring System (TIM) at CERN monitors hardware
devices and allows the operators to control them if necessary. TIM is responsible
for collecting the data from the devices, storing the values in the database, and
presenting them through a graphical interface.

TIM itself requires a system to monitor its own quality. For example, a
faulty device can generate many spurious events in the monitoring system to
create false-positives and waste valuable operator time. Similarly, over aggres-
sive filtering of the events can create false-negatives and consequently reducing
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the operator control over the devices. Since TIM may be stretched by the in-
coming events from the devices, the self-monitoring part of TIM should be as
non-intrusive as possible and by-pass the critical path followed by the device
events. It should also scale to the high volume of incoming events (≈80 million
a day).

To address these challenges, we develop a statistics module to monitor the
events entering TIM. The module monitors the filtering activity to report sub-
stantial loss of events, and reports the quality of the incoming events for each
device. The module resides away from the critical path of the main data flow,
so that the operators are not inconvenienced by any delay introduced by the
quality computation.

The design of the database underlying this module is vital to address the scal-
ing challenges. All incoming updates (filtered or not) are written to the database.
To account for short database outages or bursts in the incoming events, the mod-
ule keeps a FIFO queue of the incoming events. Several processes consume events
from these queues and append them to the database. The database is horizon-
tally partitioned by the event’s origin date, and older partitions are discarded
to keep the database size at a manageable level. To scale the statistics computa-
tion to the large volume of events, the module avoids using complex statistical
measures, and employs several simple aggregation computations over multiple
time windows. The module monitors itself, by identifying the failed aggregation
jobs, and restarts the jobs on detecting a failed job. The configuration param-
eters are held within the database itself, allowing for easy modification of the
archival settings. It is also extensible, i.e., can automatically create new aggre-
gation summaries using the configuration parameters, as users typically change
the requirements as they become more familiar with the system.

The module is now in production at CERN and is used by system admin-
istrators and engineers to monitor the performance of the system. It has al-
ready led administrators to reconsider certain aspects of the design of TIM and
helps engineers tweak the configuration of the devices they are responsible for.
More generally, this running implementation demonstrates the importance of
a self-monitoring quality control module for achieving the full potential of any
monitoring system.

The rest of the paper is organized as follows: Section 2 provides an overview
of TIM, Section 3 discusses the design decisions behind the statistics module.
We provide the use cases for the module in Section 4, and discuss the related
work in Section 5.

2 The Technical Infrastructure Monitoring System (TIM)

The Technical Infrastructure Monitoring system (TIM) is a large-scale system
currently being used to monitor a variety of infrastructure at CERN (see [2][4][6]
for details on TIM). TIM is an example of a Supervisory Control And Data
Acquisition system (SCADA) [3].
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2.1 TIM Architecture

The devices monitored by TIM are spread across the site and very diverse in
nature: temperatures, flows, the status of doors, access point procedures are all
monitored by the system. Control functionality is also supported, with certain
devices accepting commands sent via TIM. Figure 1 gives an overview of the
TIM architecture.

The system is made up of 5 main components: the Data Acquisition Layer
is the interface with the monitored devices (or equipment); a number of Java
modules have been written for connecting to different kinds of hardware (e.g.
Siemens PLCs). The TIM Viewer is the client side of the system providing
a graphical interface for observing the monitored devices. The database (Or-
acle) stores both configuration data and updates received for each monitored
point; in general, updates are kept for 2 weeks. The final two components are
the application server (Oracle oc4j) and message-oriented middleware
(Sonic MQ).

Quality codes in TIM: Each monitored point in TIM has a associated quality
code, reflecting the status of the currently held value and sensor. The value

Equipment TIM ViewerApplication
serverDAQ layer

Database
equipment-specific

protocol

TIM overview

message-oriented
middleware (JMS)

Fig. 1. Overview of TIM

Table 1. DAQ filtering mechanisms

REPEATED VALUE updates representing the same value as the previous
value are filtered out

REPEATED INVALID updates with the same invalid quality code
as the previous value are filtered out

VALUE DEADBAND for numeric values, updates inside the value deadband
are filtered out (that is, the new value is too close to
the current one)

TIME DEADBAND if a time deadband t is set, a single update will be
forwarded every t seconds (the most recent will be
forwarded, with the others filtered out)
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will either be considered valid, or given one of the following invalidity codes:
uninitialised, inaccessible, value-expired, value-out-of-bounds, invalid-tag, value-
undefined, unknown (the meaning of most of these codes should be quite clear;
see appendix B in [2] for further details)

Filtering at TIM’s data acquisition layer: One particularity of TIM is that a
number of filtering mechanisms are applied to the updates by the DAQ processes.
Filtered updates are not forwarded to the application server and are invisible to
the rest of system. There are four such filters at work: we list them in table 1,
together with a brief explanation of each mechanism.

2.2 TIM Usage

TIM is primarily used in the CERN Control Center, where operators monitor the
devices attached to the system. The operators use the monitoring system both
to detect potential hazards on the CERN site, and to identify faulty equipment
that needs attention. The operators are interested in the current value of a data
tag, its most recent changes, and the current status of the sensor (that is, the
quality of the values that are arriving, as described above).

2.3 TIM Shortcomings

The key purpose of TIM is real-time monitoring of the equipment sensor readings
and the system provides ample functionality in this respect. Having said that, the
original design failed to provide for any significant monitoring of the monitoring
system. More precisely, we identify two deficiencies of the original system:

1. Firstly, no record is kept of the filtering taking place at the DAQ layer. More
generally, the system provides no mechanism for monitoring the activity of
the DAQ processes.

2. Secondly, no statistics on the performance of the system are readily available.
In the original design, only the last 2 weeks of incoming updates are kept,
and these can only be analyzed using SQL by system administrators.

These deficiencies illustrate a general lack of monitoring features in the original
design. As a consequence of this deficiency, significant information, useful to both
users and administrators of the system, is lost. In particular, administrators are
lacking the necessary information for correctly managing the DAQ processes:
there is no systematic analysis or archiving of the performance and load of the
various parts of the system. Similarly, engineers are not given adequate tools for
monitoring the performance of the equipment they have connected to the system:
information useful for detecting equipment malfunctions and fine tuning config-
uration choices, is being lost (for example, indications of badly configured value
deadbands). Finally, operators are deprived of useful information for detecting
equipment malfunctions (for example, operators will generally fail to identify de-
vices sending only invalid updates, since these statistics are not systematically
created and accessible).
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The module developed in this project seeks to address the shortcomings out-
lined above: a mechanism is developed for recording the filtering activity of the
DAQ layer and an archival system is set up for storing, displaying and monitoring
performance statistics.

3 Design Aspects

In this section we present an overview of the design of the new statistics module.
Details of all the issues touched on below can be found in [2].

Figure 2 shows the three (sub-)modules in the design of the statistics module:
the filter module, the database module and the display module.

The critical path up the left side is the original path taken by sensor updates
in TIM; updates filtered at the DAQ layer are redirected down the newly imple-
mented filter path. Implementing independent paths prevents the performance
of the critical path being affected by the filtering. Both paths rely on JMS mid-
dleware for transmitting the updates. The heart of the filter path is a Consumer
process, responsible for reading the updates from JMS and writing them to the
database. The design remains highly scalable, since several Consumer processes
can be started up on different machines, and extra JMS brokers can be added
as needed. A number of design choices ensure that the critical path remains
unaffected by failures in the filter path (see [2] for details).

The database module is an archival system, managing the process of summa-
rizing the raw data arriving from the filter module using a number of aggregate
functions. The database module design can be split into four layers, as illustrated
in Figure 3. The first layer is made up of the raw updates received from the crit-
ical and filter paths. The second layer consists in a unique table storing counts
of the different types of updates received for each tag. The third layer manages

DAQl ayer

Application
server Filter module

DatabaseClient views Critical path:

Filter path:

Data paths in TIM

Fig. 2. The paths taken by sensor updates in TIM
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Fig. 3. The database module design

the longer-term storage of the information using weekly, monthly and yearly ag-
gregations. Finally, the fourth layer is the interface to the display module, and
consists of specific-format views integrating any necessary external information
about the tags. The database module is optimized for dealing with large num-
bers of incoming updates (currently runs in operation at around 700 updates per
second). It runs as an Oracle database job and the job status is always checked
to restart the job in case of failures.

The display module manages the process of displaying the statistics in graph-
ical form through a web interface. It accesses the database once every 24 hours
to generate the required charts (specified in an XML configuration file), which
can then be accessed by the web application.

4 Module Use Cases

The new module has now been in operation for several months at CERN. In
this section, we examine how it is being used and the benefits that have been
observed since its introduction. We address the perspectives of all three parties
interacting with TIM: the administrators, the CERN operators and the engineers
responsible for the hardware devices.

4.1 Administrators’ Perspective

So far, the administrators of TIM are those making the most use of the features
provided by the new module. They are employing it in three different ways,
which we address in the paragraphs below.
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Firstly, it provides a daily perspective of the performance of the system, help-
ing identify any unusual behavior. In this way, the high-level charts provided by
the module complement other standard performance indicators, such as CPU us-
age and load average. On arriving at their desk, the administrators are presented
with the last 24 hours of data and the trend over the last few days.

Secondly, the new module presents the administrators with detailed statistics
of the behavior of the DAQ processes (and hence attached devices); unusual
behavior is documented and can be presented to the responsible engineers, with
a view of improving the overall performance. As a concrete example, the new
module has revealed that a very small number of devices (the first three out of
roughly 120 attached to TIM) are responsible for the vast majority of updates,
both those arriving at the DAQ layer and those being forwarded to the appli-
cation server. This precise knowledge has allowed the administrators to contact
the engineers responsible for these devices. It is likely that the configuration of
this equipment will need reassessing. It may also prove necessary to split the
DAQ processes in question into several smaller ones running on different ma-
chines. As an illustration of the charts used in this process, Figure 4 provides
a breakdown of the activity of the DAQ layer over the last 24 hours: it shows
the DAQs contributing the most updates to TIM, split into filtered values and
values forwarded to the application server. Further examples of useful charts can
be found in [2].

Thirdly, the new module is stimulating further design efforts, both to address
newly-observed potential weaknesses in the system and to enhance the available
monitoring information. For instance, one significant surprise when the module
was put into operation was the very large proportion of values being filtered
out at the DAQ layer. This has raised questions about excessive network usage
by the system, since updates transit over the network from the devices to the
DAQ processes. Moreover, it is now clear that a badly configured device could
endanger the system as a whole, by flooding the application server. As a result,
new design efforts are focusing on a dynamic filtering mechanism, which would
pro-actively configure time deadbands on individual sensors as soon as excessive
data rates are observed. The statistics module has also pushed the developers
to revisit the quality code framework. Indeed, the statistical tool has created

Fig. 4. Number of updates by DAQ (only top contributors are shown)
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an interest in adding additional quality measures to the system, which could
then also be monitored via the module web interface. In this way, the software
is moving towards providing statistical overviews of any “data events” taking
place in the system.

4.2 Operators’ Perspective

Operators in the CERN Control Center are concerned with both identifying
potential hazards on the site (through alarms for instance), and detecting faulty
devices. They are currently informed of equipment malfunction by an associated
“alive” signal. The new software provides additional pointers to problems in
the form of an overview of the quality of the values received. Moreover, it can
provide sensor-specific information (a device consists of a set of sensors). For
example, a sensor constantly feeding values out of the acceptable range (i.e. with
quality code “out-of-bounds”) may indicate sensor malfunction. Other invalidity
codes can be used to the same effect. A useful chart for identifying problematic
devices is a ranking of sensor points according to the proportion of invalid values
received. Such charts can be monitored by the operators, who are able to notify
the responsible engineers.

4.3 Engineers’ Perspective

All equipment connected to TIM must initially be configured by the responsible
engineer. The configuration process consists in fixing a number of parameters
for each sensor, such as intervals of valid values, or value and time deadbands.
Ensuring correct configurations and the smooth connection of new equipment to
TIM, is a major concern of the administrators.

Prior to this project, TIM provided feedback to the engineers on the con-
nected devices only via the CERN operators, who detect equipment malfunction

Fig. 5. Breakdown of filtering mechanisms over last 7 days for a DAQ
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through the CERN alarm system. In addition, only standard checks were run
before validating a newly configured device. With the new software, the engi-
neers are now able to access equipment-specific charts to help them with both
the configuration process and longer-term monitoring. More concretely, once the
initial configuration parameters have been decided on, and the system has been
running for a short period of time, the engineer is able to gain an overview of the
effectiveness of his choices. Both the effect of the value and time deadbands can
be measured, and the chosen min-max intervals can be given an initial assess-
ment. For example, the chart in Figure 5 provides a breakdown of the filtering
mechanisms used by a particular DAQ. The engineer can return to these charts
over time and refine the configuration if necessary, as well as monitor the overall
behavior of the equipment he is responsible for.

5 Related Work

Using statistical analysis of incoming data in establishing equipment failures
is already used in the context of Supervisory Control and Data Acquisition
(SCADA) systems, notably in wind turbine applications [7]. Together with fault
detection, these techniques are often aimed at ensuring system security [1]. Sim-
ilarly, filtering incoming data using a variety of mechanisms is a recurrent theme
in the literature: see for instance [5]. As far as the authors are aware, the ap-
proach taken in this work has not been looked at before.
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Abstract. The continuing growth of data leads to major challenges
for data clustering in scientific data management. Clustering algorithms
must handle high data volumes/dimensionality, while users need assis-
tance during their analyses. Ensemble clustering provides robust, high-
quality results and eases the algorithm selection and parameterization.
Drawbacks of available concepts are the lack of facilities for result adjust-
ment and the missing support for result interpretation. To tackle these
issues, we have already published an extended algorithm for ensemble
clustering that uses soft clusterings. In this paper, we propose a novel
visualization, tightly coupled to this algorithm, that provides assistance
for result adjustments and allows the interpretation of clusterings for
data sets of arbitrary size.

1 Introduction

Advanced scientific applications, e.g., gene expression analyses in biology and
medical science, come with increased amounts of input data and performance
requirements. This leads to two major challenges for data clustering. On the one
hand, appropriate algorithms must be developed, while on the other hand, users
require assistance with the application of such algorithms and the interpreta-
tion/perception of the vast data sets involved in the clustering process.

Fundamentally, clustering is defined as the problem of partitioning a set of
objects into groups, so-called clusters [1,2], where objects in the same cluster
are similar, while objects in different clusters are dissimilar. In order to create
a clustering, the user has to complete three steps: (i) algorithm selection, (ii)
algorithm execution (including parameterization), and (iii) result interpretation.
Each of these steps has critical impact on the clustering process/result. The
selection of the best-fitting clustering algorithm and parameters is a non-trivial
task, additionally complicated by the multitude of available algorithms [2,3].
Therefore, the most common workflow for clustering in practice is found in the
constant iteration over the mentioned three steps until a user-satisfying result is
created. However, this iterative approach—corresponding to a ‘trial and error’
procedure—is tedious work and wastes time and resources.

To overcome this issue, ensemble clustering has been proposed [3,4,5,6]. This
approach aggregates several partitionings of a data set—the cluster ensemble—
into a final clustering result. The aggregate shows increased quality and robust-
ness in comparison with the single input clusterings [3,4,5,6]. While the creation
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of a robust result is eased, existing methods lack instruments to enable the user
to adjust/refine the obtained clustering result. Our algorithm proposed in [7]
helps overcome this issue. A user is now able to modify a result, not by supply-
ing ‘technical’ parameters but by choosing an intended effect, namely: merge if
fewer clusters are desired or split if more clusters are needed.

For an effective refinement, the interpretation of the result and the derivation
of corresponding adjustments are important. Our novel visualization concept
proposed in this paper, which is tightly coupled with our extended ensemble
clustering, assists the user in identifying the optimal effects for result refine-
ment. In addition, our approach simplifies the interpretation of clustering results
for data sets of arbitrary size. We start by introducing our ensemble-clustering
scenario in Sec. 2. Subsequently, an in-depth description of our visualization is
given in Sec. 3. In Sec. 4, we propose our software demonstration, before we end
this paper with a conclusion and some remarks on future work.

2 Overview

The overall goal of our research project AEGIS is to enable users to conduct
clustering processes in a simplified and efficient way, regardless of their back-
ground knowledge in the area of data mining. We want to achieve this goal by
assisting the user during the mentioned three steps: (i) selection, (ii) execution,
and (iii) interpretation. Our scenario is illustrated in Fig. 1, where two domains
face each other. The user domain on top contains the data that is to be ana-
lyzed, the user’s context knowledge about the data, and the clustering result.
The algorithm domain at the bottom incorporates all existing algorithms for the
clustering analysis, including their parameters. At the center, we find the three-
step clustering cycle, during which the input data is passed to the algorithm
domain for analysis, from where the clustering result is returned to the user
domain for interpretation. The separated domains exemplify the average user’s
lack of knowledge in the area of algorithms and parameters. We have already
introduced the ensemble-clustering concept as an effective way to support the

Fig. 1. The clustering scenario
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user during algorithm selection and execution. Currently, most aggregation algo-
rithms use a set of hard clustering results as basic input. Such hard clusterings
are, e.g., obtained with k-means or DBSCAN, and they assign each object exclu-
sively to the one cluster with the highest similarity to it. Based on this mapping,
a pairwise assignment is determined for each object pair in every input cluster-
ing. Two cases of pairwise assignments are known: a pair of objects can either
be located (i) in the same cluster or (ii) in different clusters. Using these assign-
ments, the final aggregate is constructed by selecting the most frequent of both
cases for each object pair and setting it in the aggregation result.

Influence of Input. The major drawback of all existing aggregation ap-
proaches is their lack of controllability. Suppose an aggregate does not satisfy
the user, then the user’s only option for result adjustment is the modification
of the input clusterings. In this case, the actual benefits regarding user support
are lost, since algorithm and parameter adjustments now need to be made for a
whole set of clusterings. In addition, the modified input must be re-computed,
which costs time and resources, especially for large cluster ensembles. With the
enhanced aggregation concept we proposed in [7], both of these issues are tack-
led. The key of our technique is to change the aggregation input from hard to
soft clusterings. Such clusterings assign to each object its relative degree of sim-
ilarity with all clusters. They can be obtained via algorithms like FCM [8] or
via refinement techniques like the a-posteriori approach [4]. The major benefit
of soft assignments is the fine-grained information about object-cluster relations
they provide. This allows, for example, the identification of undecidable cluster
assignments that are found if an object has the same maximal similarity to more
than one cluster. This may occur in every clustering but cannot be handled by
hard assignments; it is thus ignored or randomly solved, respectively.

Flexibility of Aggregation. To utilize soft clusterings to the full extent, we
expand pairwise assignment cases by adding an undecidable case that represents
object pairs with undecidable assignments. Based on this, we propose a signifi-
cance measure for pairwise assignments, including the intra-pair similarity and
decidability for the respective object assignments. The range for decidability is
defined as follows: zero decidability (meaning a decision is impossible) is given
to objects with a maximal degree of similarity with more than one cluster. The
maximum decidability is given if one of the object’s degrees of similarity ap-
proaches 1 while all others approach 0. The decidability values for all objects
are inside this range.

Based on our significance score, we define a filter that classifies all pairwise
assignments not exceeding a certain significance threshold as undecidable. With
this, actual aggregation control becomes possible. The mentioned result adjust-
ments are achieved via such control and the handling of the undecidable pairwise
assignments during aggregate construction. Since undecidable is no valid option
for a final object assignment, we propose two handling strategies: one assumes
that undecidable pairs are part of the same cluster, while the other assumes just
the opposite. Our evaluation shows that these two strategies allow to merge or



282 M. Hahmann, D. Habich, and W. Lehner

split clusters without modifying the original cluster ensemble, thus saving time
and resources. Now, one could argue that there are still parameters burdening
the user, which would normally be true, but our control parameters have a novel
character. In general, the relation between parameters and the clustering result
is one of cause and effect. With common ‘technical’ parameters like k for k-means
or ε for DBSCAN, the user modifies the cause and awaits the effect regarding
the cluster number and size. In our approach, the user simply chooses the desired
effect, namely: merge for fewer clusters or split for more clusters.

Until now, merging and splitting have been mutually exclusive and had to be
set for the whole clustering. This is sufficient if the bulk of clusters requires the
same operation, but it effectively prevents an individual handling of clusters. In
tight coupling with our extended aggregation approach, our developed visual-
ization shall enable the user to interpret the obtained clustering and assist in
the decision on whether or not clusters are stable and should be merged or split.
With this, the result quality can be iteratively refined, whereas the provided
support keeps the iteration count low.

3 Augur Visualization

Fig. 2. Example aggregate

This section introduces our visualization by
describing its input, its single views, the in-
formation visualized, and its interpretation.
The input consists of the clustering aggre-
gate provided by our algorithm [7], offering
access to cluster centroids and sizes, soft
cluster assignments, and significance scores
for object pairs. From this input, additional
information is computed for certain views,
which will be explained during the descrip-
tion of the respective view. On the basis
of Shneiderman’s mantra, ‘overview first,
zoom and filter, then details-on-demand’
[9], our visualization features three views: overview, cluster composition and
relations, and the attribute view. With this, we want to enable the user to de-
termine the clusters that need no adjustment and to decide which ones should
be merged or split, with the goal to improve the quality of the result. In this
section, the clustering aggregate depicted in Fig. 2 is used as an example. It has
been generated with ensemble clustering and its already good partitioning still
needs adjustments. In all figures, clusters are identified via color.

Overview. The overview is the first view presented to the user and depicted in
Fig. 3. This view is completely result-driven, i.e., only characteristics of the clus-
tering aggregate are shown. The dominant circle represents the clusters of the ag-
gregate, whereas each circle segment corresponds to a cluster whose percental size
correlates with the segment’s size. The radar-like gauge located on the left shows
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Fig. 3. AUGUR overview showing clusters and inter-cluster distances

the distances between the prototypes (centroids) of all clusters. The mapping be-
tween centroids in the radar and circle segment is done via color. The radar shows
a distance graph, where vertices represent centroids, and edges—invisible in our
visualization—represent the Euclidean distance between centroids in the full di-
mensional data space. Therefore, the radar is applicable for high-dimensional data.
Since all our views are basically result-driven, we can also handle high-volume
datasets without problems. The overview provides the user with a visual summary
of the clustering result, allowing a first evaluation of the number of clusters and
relations between clusters expressed by distance and size.

Cluster Composition and Relations. If the user identifies clusters of interest
in the overview, e.g., two very close clusters like the pink (F) and red (G) ones
in Fig. 2, they can be selected individually to get more information about them,
thus performing ‘zoom and filter’. Cluster selection is done by rotation of the main
circle. As soon as a cluster is selected, the composition and relations (c&r) view
depicted in Fig. 4 (for cluster F) is displayed. The selected cluster’s composition
is shown by the row of histograms on the right. All histograms feature the interval
[0, 1] with ten bins of equal width. From the left to the right, they show the distri-
bution of: (i) fuzzy assignment values, (ii) significance scores for all object-centroid
pairs, and (iii) significance scores for all object-object pairs in the selected cluster.
For details concerning these scores, refer to [7]. Certain histogram signatures in-
dicate certain cluster states, e.g., a stable and compact cluster is given if all three
histograms show a unimodal distribution with the mode—ideally containing all
objects—situated in the right-most (highest significance) bin.

Let us regard the signature of the example depicted in Fig. 4. The histograms
show that many of the object-centroid and pairwise assignments are not very
strong. This indicates that there are other clusters (G in the example) that
strongly influence the selected cluster objects, which leaves the chance that these
clusters could be merged. To support such assumptions, the relations between
clusters have to be analyzed. For this, the two ’pie-chart’ gauges and arcs inside
the main circle are used. The smaller gauge shows the degree of ’self-assignment’
of the selected cluster, while the other one displays the degree of ’shared as-
signment’ and its distribution among the remaining clusters. These degrees are
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Fig. 4. AUGUR c&r view showing composition and relations for the pink cluster

calculated as follows: each fuzzy object assignment is a vector with a sum of 1,
consisting of components ranged between 0 and 1, indicating the relative degree
of assignment to a certain cluster, i.e., each vector-dimension corresponds to a
cluster. The degree of self-assignment is calculated by summing up all compo-
nents in the dimension corresponding to the selected cluster. This sum is then
normalized and multiplied with 100 to get a percental score. The shared as-
signment is generated in the same fashion for each remaining cluster/dimension.
The target and strength of relations between the selected cluster and others is
described by the color and size of the shared-assignment slices. For easy identi-
fication, the displayed arcs show these cluster-to-cluster relations by connecting
clusters, where the stroke width shows the strength of the relation.

If a cluster is not influenced by others, it shows a very high degree of self-
assignment with no outstanding relations to other clusters. In contrast, the ex-
ample in Fig. 4 shows that the selected cluster has a noticeable relation to
the red cluster. This supports the merge assumption and furthermore indicates
which other cluster should be part of a possible merge. To get additional in-
formation, the inter-cluster distances can be analyzed. For this, the user can
employ the ’radar’, showing that both clusters in our example are relatively
close to each other (the selected cluster is encircled), or switch on additional
distance indicators (‘details-on-demand’), as shown in Fig. 5. These display the
ratio of centroid-to-centroid distances—like the radar—and minimum object-to-
object distances between the selected and the remaining clusters. If this ratio
approaches 1, the respective clusters are well separated and the colored bars
are distant. In our example, this is the case for all clusters except for the red
one, where both bars nearly touch each other, showing that the minimal object
distance between the clusters is much smaller than the centroid distance. With
this, the user can now savely state that the pink and the red cluster should be
merged. To double-check, the red cluster can be selected and should show similar
relations to the pink one.

With the c&r view, it is also possible to evaluate whether or not a cluster
should be split. Candidates for a split show the following: In all three histograms,
the mode of the distribution is located in one of the medium-significance bins.
Additionally, they feature a reduced degree of self-assignment, but in contrast to
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Fig. 5. AUGUR c&r view with activated distance indicators

the merge case, they have equally strong relations to the remaining clusters and
are well separated in terms of the radar and distance indicators. Unfortunately,
these characteristics are no clear indication for a split, e.g., non-spherical clusters
can exhibit the same properties. To gain more certainty in decisions for split
candidates, the attribute view has been developed.

Attribute View. When we look at attributes in terms of clustering, we can
state the following: If an attribute has a uniform or unimodal distribution (in
the following Φ), it is not useful for clustering because the objects of the dataset
cannot be clearly separated in this dimension. In contrast, bi- or multi-modal
distributions are desired, since they can be used for object separation. When
we look at attributes on the cluster level, this is inverted. Regarding a cluster,
it is desirable that all of its attributes have unimodal distributions, since this
shows high intra-cluster homogeneity. A multimodal-distributed attribute would
imply that the cluster could be further separated in this dimension. Generally,
we desire the following: On the dataset level, attributes should be dissimilar to
Φ, while on the cluster level, they should resemble it as closely as possible. These
are the basics for our attribute view.

To calculate the similarity to Φ, we use a straightforward approach. We gen-
erate histograms, on the dataset and cluster level, for each attribute. From the
histogram bins, those that are local maxima are selected. From each maximum,
we iterate over the neighboring bins. If a neigboring bin contains a smaller or
equal number of objects, it is counted and the next bin is examined; otherwise,
the examination stops. With this, we can determine the maximum number of
objects and bins of this attribute that can be fitted under Φ. This is the value
we display in the attribute view. In Fig. 6, the attribute view is depicted for
the violet cluster E from our example. There are two hemispheres and a band of
numbers between them. The band shows the attributes of the dataset, ordered
by our computed values, and is used to select an attribute for examination (se-
lection has a darker color). The small hemisphere on the right shows the global
behavior of attributes. Each curve represents an attribute, while for the selected
attribute, the area under its curve is colored. The hemisphere itself consists of
two 90-degree scales, the upper for the percentage of objects and the lower for



286 M. Hahmann, D. Habich, and W. Lehner

Fig. 6. AUGUR attribute view indicating a split for the violet cluster

the percentage of bins that can be fitted under Φ. The start and end point of
each curve show the values for the attribute on these scales. If all objects and
bins fit under Φ, a vertical line is drawn and there is no color in the hemisphere.
All this also applies to the left hemisphere showing the attribute in the selected
cluster. For our example in Fig. 6, we selected attribute 1.

We can see a large colored area, showing that more than 50% of the objects
and bins do not fit under Φ. If, in addition, the selected cluster shows split
characteristics in the c&r view, the user may assume that this cluster should
be split. The benefit of this view lies in the fast and easy interpretability. More
color in the left hemisphere indicates a higher split possibility, while the amount
of color in the right hemisphere acts as a measure of confidence for the left. In
terms of Shneiderman’s mantra, this view can either be considered as ‘details-
on-demand’ or as an ‘overview’ and ‘zoom and filter’ for the attribute space.

4 Demo Details

The demo at SSDBM comprises an in-depth explanation of all necessary concepts
and the demontration of the AUGUR prototype, in which we will show how our
visualization and interaction concepts, in tight combination with our flexible
aggregation approach, can be used to conduct a visually-driven exploration of
scientific data sets. To distinguish our work, we will try to apply some basic and
well-known visualization techniques like, among others, scatterplots and parallel
coordinates [10] in our described scenario and show their limitations.

We will demonstrate how non-clustering experts are able to efficiently utilize
our proposed concepts to determine clustering results with high quality. For
this purpose, we will prepare a set of different artificial and realistic data sets
(biological domain) to show the applicability of our approach. The artificial data
sets will have different degrees of complexity regarding cluster shapes, density
of clusters, and outliers. With these data sets, we will simulate different tough
situations for data clustering. For the demonstration of the realistic data sets, we
will have results being determined by the corresponding data set owner. Using
these results, we will show how we can derive the results in a non-expert-oriented
way with our AUGUR prototype.
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5 Conclusion and Future Work

In this paper, we introduced our AUGUR visualization, which focuses on en-
abling the user to evaluate an ensemble clustering result and on providing de-
cision support for result refinement with our extended aggregation algorithm
proposed in [7]. There already exist a multitude of cluster visualization tech-
niques [10], which mostly try to visualize all objects of the dataset and are thus
limited if data sets exceed a certain size. Furthermore, some of these techniques
use complex visual concepts, which can hinder interpretation. In contrast, our
visualization is tightly coupled to our aggregation method [7]. We do not try
to visualize all objects of the data set but concentrate on the presentation of
clusters as well as cluster-cluster and cluster-object relations, derived from soft
cluster assignments. This result- and relation-oriented approach allows the in-
terpretation of data sets with arbitrary volume/dimensionality and supports the
user in making decisions concerning result refinement via the mentioned split
and merge actions. In addition, focusing on ‘what’ to visualize, namely clusters
and relations, allows the use of well-known and simple visual elements, e.g., pie
charts and histograms, when it comes to ‘how’ to visualize.

Future work for our AUGUR approach includes the development and inte-
gration of a recommender system, additional views on the details-on-demand
level, and scalability. At the moment, AUGUR can display up to 360 clusters in
WXGA resolution.
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Abstract. Rapid chemical database searching is important for drug dis-
covery. Chemical compounds are represented as long fixed-length bit vec-
tors called fingerprints. The vectors record the presence or absence of
particular features or substructures of the corresponding molecules. In
a typical drug discovery application, several thousands of query finger-
prints are screened for similarity against a database of millions of finger-
prints to identify suitable drug candidates. The existing methods of full
database scan and range search take considerable amounts of time for
such a task. We present a new index-based search method called “Chem-
Dex” (Chemical fingerprint inDexing) for speeding up the fingerprint
database search. We propose a novel chain scoring scheme to calculate the
Tanimoto (Jaccard) scores of the fingerprints using an early-termination
strategy. We tested our proposed method using 1,000 randomly selected
query fingerprints on the NCBI PubChem database containing about
19.5 million fingerprints. Experimental results show that ChemDex is up
to 109.9 times faster than the full database scan method, and up to 2.1
times faster than the state-of-the-art range search method for memory-
based retrieval. For disk-based retrieval, it is up to 145.7 times and 1.7
times faster than the full scan and the range search respectively. The
speedup is achieved without any loss of accuracy as ChemDex generates
exactly the same results as the full scan and the range search.

1 Introduction

Chemical database searching plays a crucial role in drug discovery. A group of
chemical compounds of interest for a drug are screened (searched) through a
database of millions of known compounds to find similar compounds with the
desired chemical properties. These compounds can then serve as candidates for
the drug to be further analyzed in details. Typically, several thousands of com-
pounds are screened routinely through chemical databases containing millions
of fingerprints in developing a single drug [1].

A chemical compound can be represented in three formats: 1-dimensional fin-
gerprint, 2-dimensional structure, and 3-dimensional structure. In the fingerprint
representation, a chemical compound is encoded as a fixed-length bit vector (an
array of 0’s and 1’s). Each bit corresponds to the presence (or absence) of a
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particular chemical feature such as the existence of certain type of atoms or sub-
structures (e.g. rings). Fingerprint encoding schemes of various lengths are used
in the popular chemical databases such as PubChem (881 bits) [2], ChemDB
(512 or 1024 bits) [3], and Daylight (2048 bits) [4].

Comparing a pair of 1-dimensional chemical fingerprints is clearly much faster
(though less detailed) than comparing a pair of 2- or 3-dimensional chemical
structures. As such, screening using fingerprints is routinely used as a first-
stage filtering step before going into more comprehensive analysis using 2- or
3-dimensional structures. A number of scoring schemes such as Tanimoto (also
known as Jaccard), Tversky, Pearson, Dice, and Kulczynski are available [5,6]
for comparing two given fingerprints. Among them, Tanimoto scoring scheme is
the most popular and widely used among the chemists [6].

The time incurred for screening thousands of query fingerprints against a
database of millions of chemical fingerprints can become quite considerable if
each fingerprint is linearly scanned through the chemical database. For instance,
while it takes only about 730 nanoseconds to retrieve and compare a single pair
of fingerprints on a PC, it takes about 14 seconds to scan a single fingerprint
query though the the NCBI PubChem database [2] of 19.5 million fingerprints.
For 1,000 queries, it takes about 14,200 seconds (about 4 hours) if the database
is to be read repeatedly for every query, and still 4,500 seconds (1 hour and 15
minutes) about even if the database is read only once for all queries. Since a total
of tens or even hundreds of thousands of fingerprints may need to be screened
against the database in a drug discovery exercise (sometimes interactively), it is
important to keep search times to a minimum.

A number of fast search schemes [7,5,8,9,10] have been proposed to reduce
the fingerprint screening time (see Section 2 for details). However, all of these
methods have their limitations either in terms of accuracy or speed. Among the
existing methods, Swamidass and Baldi’s range search [5] is the most promising
one because it achieves a sub-linear search system with a 100% accuracy.

Our objective is to further reduce the retrieval time of the state-of-the-art
Swamidass and Baldi’s range search without sacrificing any accuracy. In our
approach, we opt to use an indexing scheme, which has been typically used for
speeding up the retrievals of various kinds of databases [11].

We propose a novel indexing scheme using an early-termination strategy
named “ChemDex” (Chemical fingerprint inDexing) for rapid searching of
chemical fingerprint database. First, we horizontally rearrange (sort) the fin-
gerprints in the database by the total number of 1’s they contain. Then, we
vertically rearrange (shuffle) the bit order in each fingerprint so that the start
region of the fingerprint is generally more populated with 1’s than its end re-
gion. After the re-arrangements, we sub-divide the fingerprints vertically into k
equal-size slices. We then build a two-tier index based on the number of 1’s in
the whole fingerprint and its fragments in the slices.

When a new fingerprint of a chemical compound (or a family of compounds) is
screened against a database, the objective is to rapidly retrieve all the previously
characterized compounds contained in the database that are similar to the query
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within a user-specified similarity threshold based on a given similarity measure.
In this work, we use the industry-standard Tanimoto score [6] to measure the
similarity of the fingerprints. Given the user-specified similarity threshold, the
search range (lower and upper bounds) is first established. Then, we use a slice-
by-slice chain scoring scheme to filter out the unpromising answers. First, all the
fingerprint fragments from the first slice within the search range are accessed,
and the partial score for each fingerprint is evaluated with the help of the infor-
mation in the index. For the second slice, only the fragments whose first slice’s
partial scores are greater than the similarity threshold are accessed. Then, the
second slice’s partial scores of the accessed fragments are evaluated, and only
the qualifying fragments from the third slice are accessed, and so on.

Filtering the fragments slice-by-slice reduces the number of fragments being
accessed as we laterally traverse the slices. The total time taken is thus signifi-
cantly decreased as compared to processing fingerprints in full within the search
range. We will formally prove that the partial score for each slice is the upper
bound for the final score. In other words, our approach does not leave out any
good answer and there is therefore no loss in accuracy with our approach to
speed up the search.

As evaluation, we have conducted an experiment of searching 1,000 queries
against the NCBI PubChem database [2] of about 19.5 millions fingerprints. For
memory-based retrieval, where the whole database is read from disk into memory
just once and maintained there throughout all queries, our proposed ChemDex
scheme is up to 109.9 times faster than the full database scan, and up to 2.1
times faster than the state-of-the-art Swamidass and Baldi’s range search [5]
that retrieves the full-length fingerprints within lower and upper bounds. For
the traditional disk-based retrieval, where the required portions of the database
are read one or more times from disk into memory upon request by the program,
ChemDex is up to 145.7 and 1.7 times faster than the full database scan and
the range search respectively. As mentioned, ChemDex is 100% accurate as it
generates exactly the same result as the full database scan and the range search.

In addition to chemical fingerprint database searching, our proposed bit vector
indexing and chain scoring schemes can potentially be used in a range of other
applications [12,13,14,15,16] where a large volume of fixed-length bit vectors is
involved and Tanimoto score is used to compare them.

2 Related Works

Pairwise sequence comparison methods such as Blast [17] and index-based se-
quence retrieval methods such as [18] are used in the searching of DNA and pro-
tein sequence databases. These methods may be extended to cater for chemical
fingerprint bit vectors when they are encoded as character sequences. However,
they are primarily designed to deal with variable-length sequences rather than
fixed-length ones like chemical fingerprints, and thus are not much suited to
handle the latter.

The inverted index search method has been successfully used for searching the
fixed-length text document vectors for information retrieval [10]. Since chemical
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fingerprints are also fixed-length bit vectors, one can use the inverted index
search for the problem of chemical fingerprint retrieval. However, though very
effective in processing the text document vectors, our experimental results shows
that inverted index search performs poorly for the chemical fingerprint vectors
which are relatively much denser with the number of 1’s. The performance of the
inverted index search for the NCBI PubChem database is reported in Section 4.

Speed is clearly a major concern when designing algorithms for searching
chemical databases as we are dealing with large databases. Several researchers
have proposed algorithms that traded speed for accuracy. For example, Lim et
al. [9] suggested a search scheme using an inverted index built on the selected
features in the fingerprints. While the method is faster than the full database
scan, it is not 100% accurate as only limited set of features are considered. Day-
light Inc. [7] has developed a lossy compression method to generate the smaller
fingerprints by means of fingerprint folding. Scanning the compressed fingerprint
database is faster than scanning the original database. But, this speedup is again
achieved with a loss of accuracy.

Baldi et al. [8] proposed a lossless compression method to generate the smaller
fingerprints and use them for faster database searching. Because the compression
is lossless, uncompressed similarity between molecules can be computed exactly
from their compressed representations. However, the retrieval time remains linear
since all the compressed fingerprints in the database still need to be scanned
through.

Swamidass and Baldi [5] have then invented a method that achieves a sub-
linear retrieval system without any loss of accuracy. Their method reduces the
search space by establishing the lower and the upper bounds of the search range.
It can be applied either on the original fingerprints or the compressed ones pro-
posed in [8,7]. Yet, even after defining the search range, the number of finger-
prints to scan through still remains considerably high. In our proposed ChemDex
method, we will further reduce the retrieval time of the Swamidass and Baldi’s
scheme without sacrificing any accuracy. The performance comparison of the
two methods is given in Section 4.

3 Method

3.1 Fingerprint Similarity Measure

We use the most popular industry-standard Tanimoto (also known as Jaccard)
similarity score [6] to determine the similarity of two given chemical fingerprints.
Tanimoto score S for two fingerprints A and B is calculated as:

S(A, B) =
|A ∩ B|
|A ∪ B| (1)

where |A ∩ B| is the number of 1 bits that are common to both A and B, and
|A∪B| is the number of 1 bits that occur in both or either of A and B. For two
16-bit fingerprints A and B in Figure 1, their Tanimoto score S(A, B) = 6/11 =
0.5454. The possible range for a Tanimoto score is from 0 to 1.
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       A  =  1  0  1  0  1  0  0  1  1  1  0  1  0  0  1  1 

       B  =  1  0  1  1  1  1  0  0  1  0  0  1  0  0  0  1 

       ---------------------------------------------------- 

 A  ∩  B  =  1  0  1  0  1  0  0  0  1  0  0  1  0  0  0  1  =   6 
 A  U  B  =  1  0  1  1  1  1  0  1  1  1  0  1  0  0  1  1  =  11 

 

Fig. 1. Calculating Tanimoto score of two fingerprints

In real-life implementations, a bit vector is usually encoded as an array of
integers. For example, a 512-bit fingerprint is encoded as an array of 16 32-
bit integers. In this case, |A ∩ B| can be easily computed using bitwise AND
operations on integers and obtaining the number of 1’s by a fast bit counting
method such as pre-computed bit counting [19]. |A∪B| can be simply calculated
as |A| + |B| − |A ∩ B|.

Note that in addition to chemical fingerprint comparison, Tanimoto score is
also widely used to compare various types of fixed-length binary feature vectors
in other applications such as data cleaning [12], all-against-all document simi-
larity [13], stereo image matching [14], video sequence matching [15], embedded
software error detection [16], etc. As such, our approach can also be potentially
used for speeding up database retrieval in these applications.

3.2 Rearranging Fingerprints Horizontally

In the first step, we rearrange (sort) the order of fingerprints in the database
according to the numbers of 1’s they contain. This is achieved by an external
(disk-based) sorting of fingerprints. The purpose of the horizontal rearrangement
is to make the fingerprints ready to be indexed in the future (see Section 3.5).
Figure 2 depicts an example of horizontally rearranging fingerprints.

3.3 Rearranging Fingerprints Vertically

Next, we rearrange (shuffle) the bit order of the fingerprints so that the start
region of the fingerprint is generally denser with 1’s than its end region. In this
second step, we first count the frequency of 1’s for each bit position (column), and
rearrange the order of columns so that the column with the highest frequency
of 1’s comes first. The purpose of this vertical rearrangement is to improve the
filtration power of the lower-order slices — after the database is partitioned into
slices as discussed in the next section. (Vertical rearrangement is an indispensable
step in our ChemDex method. Without it, the search efficiency of the method
is found to be greatly reduced. However, we are not able to show the statistics
here because of the space limitation.) An example of vertically rearranging bits
is demonstrated in Figure 3.

3.4 Dividing Fingerprints into Slices

After rearranging the fingerprints both horizontally and vertically, we partition
them into k equal-size slices vertically. The purpose of partitioning is to enable
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 Original Fingerprints                                          No.  
                                                             of 1’s 

 Fingerprint #1  1  0  1  0  1  0  0  1  1  1  0  1  0  0  1  1   9 

 Fingerprint #2  1  0  1  1  1  1  0  0  1  0  0  1  0  0  0  1   8 

 Fingerprint #3  1  0  0  1  0  1  0  1  1  0  0  0  1  0  1  1   8 

 Fingerprint #4  1  0  0  0  1  0  0  1  1  0  0  1  0  0  0  0   5 

 Fingerprint #5  0  0  1  0  0  0  1  1  1  1  1  0  0  0  0  0   6 

 Fingerprint #6  1  0  0  1  1  0  0  1  1  0  0  1  1  0  0  0   7 

 Fingerprint #7  0  1  1  1  0  1  1  1  1  1  1  0  1  0  1  1  12 

 Fingerprint #8  1  0  1  1  0  0  1  1  1  1  0  1  0  0  1  1  10 

 

 Horizontally Rearranged Fingerprints                           No.  
                                                             of 1’s 

 Fingerprint #4  1  0  0  0  1  0  0  1  1  0  0  1  0  0  0  0   5 

 Fingerprint #5  0  0  1  0  0  0  1  1  1  1  1  0  0  0  0  0   6 

 Fingerprint #6  1  0  0  1  1  0  0  1  1  0  0  1  1  0  0  0   7 

 Fingerprint #2  1  0  1  1  1  1  0  0  1  0  0  1  0  0  0  1   8 

 Fingerprint #3  1  0  0  1  0  1  0  1  1  0  0  0  1  0  1  1   8 

 Fingerprint #1  1  0  1  0  1  0  0  1  1  1  0  1  0  0  1  1   9 

 Fingerprint #8  1  0  1  1  0  0  1  1  1  1  0  1  0  0  1  1  10 

 Fingerprint #7  0  1  1  1  0  1  1  1  1  1  1  0  1  0  1  1  12 

 

Fig. 2. Rearranging fingerprints horizon-
tally

 
 Original Fingerprints 

 Original Bit Order  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 

                     ---------------------------------------------- 

 Fingerprint #4      1  0  0  0  1  0  0  1  1  0  0  1  0  0  0  0 

 Fingerprint #5      0  0  1  0  0  0  1  1  1  1  1  0  0  0  0  0 

 Fingerprint #6      1  0  0  1  1  0  0  1  1  0  0  1  1  0  0  0 

 Fingerprint #2      1  0  1  1  1  1  0  0  1  0  0  1  0  0  0  1 

 Fingerprint #3      1  0  0  1  0  1  0  1  1  0  0  0  1  0  1  1 

 Fingerprint #1      1  0  1  0  1  0  0  1  1  1  0  1  0  0  1  1 

 Fingerprint #8      1  0  1  1  0  0  1  1  1  1  0  1  0  0  1  1 

 Fingerprint #7      0  1  1  1  0  1  1  1  1  1  1  0  1  0  1  1 

                     ---------------------------------------------- 

 Frequency           6  1  5  5  4  3  3  7  8  4  2  5  3  0  4  5 

 

 Vertically  

 Rearranged  

 Fingerprints 

 Fingerprint #4      1  1  1  0  0  1  0  1  0  0  0  0  0  0  0  0 

 Fingerprint #5      1  1  0  1  0  0  0  0  1  0  0  1  0  1  0  0 

 Fingerprint #6      1  1  1  0  1  1  0  1  0  0  0  0  1  0  0  0 

 Fingerprint #2      1  0  1  1  1  1  1  1  0  0  1  0  0  0  0  0 

 Fingerprint #3      1  1  1  0  1  0  1  0  0  1  1  0  1  0  0  0 

 Fingerprint #1      1  1  1  1  0  1  1  1  1  1  0  0  0  0  0  0 

 Fingerprint #8      1  1  1  1  1  1  1  0  1  1  0  1  0  0  0  0 

 Fingerprint #7      1  1  0  1  1  0  1  0  1  1  1  1  1  1  1  0 

                     ---------------------------------------------- 
 Rearranged Bit      9  8  1  3  4 12 16  5 10 15  6  7 13 11  2 14 

 Order 

 

Fig. 3. Rearranging fingerprints vertically

retrieval and processing of smaller fingerprint fragments rather than the full-
length fingerprints.

3.5 Building Index

For fast retrieval, a two-tier index is constructed. The entries in the first tier
correspond to the number of 1’s in the fingerprints. For an m-bit fingerprint, the
dimension of the first tier is m + 1 (0 to m). Each entry in the first tier points
to the records in the second tier having that number of 1’s. Since the number
of fingerprints in large databases (usually millions or more) is much larger than
the number of bits in a fingerprint (hundreds to thousands), a majority of first
tier entries each points to multiple records in the second tier.

Each record in the second tier contains an abstract of the information of an
individual fingerprint: its ID, the number of 1’s in the full-length fingerprint, and
the number of 1’s in the fingerprint fragments in each of its slices. The number
of records in the second tier is the same as the number of fingerprints in the
database. Each second tier record points to the fingerprint fragments in the slice
files which are stored on disk or in memory.

On an average modern PC, both the first and the second tiers of the index for
a large database (like the NCBI PubChem database of 19.5 million fingerprints)
can be stored in memory. Although the second tier stores the information for
every fingerprint in the database, its record size is much smaller than that of an
actual fingerprint. For example, while the size of an 881-bit PubChem fingerprint
is 112 bytes, the size of a second tier entry for a 2-slice partitioning is only 10
bytes, and that for a 4-slice partitioning is only 14 bytes. Thus, for the PubChem
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database, the size of the second tier for a 2-slice (4-slice respectively) partitioning
will be 186 MB (260 MB respectively), which can be conveniently stored in a
modern PC with a memory capacity of 1 GB or above.

A small example of the two-tier index with 2-slice partitioning is illustrated
in Figure 4.

3.6 Query Evaluation

When a query fingerprint Q is submitted together with a similarity threshold t,
its bit order is rearranged in the same way as the fingerprints in the database
(see Section 3.3), and it is divided into k fragments as those in the database (see
Section 3.4). Then, the number of 1’s in it, |Q|, is counted, and the lower and the
upper bounds of the number of 1’s for the database’s fingerprints to match with
the query are calculated. We can compute these bounds based on the equations
given in Swamidass and Baldi [5].

Lower(Q, t) = ceiling(|Q| × t) (2)

Upper(Q, t) = floor(|Q| / t) (3)

For example, if the number of 1’s in the query is 7 and the similarity threshold
is 0.75, its lower bound is ceiling(7×0.75) = 6, and its upper bound is floor(7 /
0.75) = 9. That means we only have to look at the database’s fingerprints with
their numbers of 1’s between 6 and 9, and simply ignore the others.

Now, let us further reduce the amount of data to be accessed within the upper
and the lower bounds using an early-termination approach. We propose a chain
scoring scheme that incrementally calculates a fingerprint’s partial score for each
slice up to the final score in the last slice. If the partial score at a certain slice
is less then the given similarity threshold, this fingerprint is discarded without
having to access the remaining slices any further.

First, we access the fingerprint fragment from Slice #1, and calculate its
partial score with the help of the information stored in the index second tier.
For a query fingerprint Q and a target fingerprint F , their partial score S1(Q, F )
for Slice #1 is calculated as:

S1(Q, F ) =
|Q1 ∩ F1| +

∑k
j=2 min(|Qj |, |Fj |)

|Q1 ∪ F1| +
∑k

j=2 max(|Qj |, |Fj |)
(4)

where Q1 and F1 are Slice #1’s fingerprint fragments of the query and the target
respectively, and |Qj| and |Fj | are the number of 1’s in their remaining slices 2..k
respectively. |Qj | and |Fj | can be readily obtained from the index’s second tier.

Since Slice #1’s partial score assumes the maximum possible matches in each
of the remaining slices 2..k, it is the upper bound of the actual final score. (We
will prove this in Lemma 1.) Consequently, if a partial score of a fingerprint is
less than the similarity threshold, its final score can never be greater than or
equal to that threshold. This means that accuracy is maintained as we will not
be losing any of the good answers. (We will prove this in Theorem 1.)
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Thus, when we access the fingerprint fragments from Slice #2, only the quali-
fied ones with their partial scores greater than or equal to the similarity threshold
need to be examined. The unqualified ones can be discarded immediately with-
out having to look at its fingerprint fragments in Slice #2 and the later slices.
For the qualified ones, their Slice #2’s partial scores are calculated, and the
process is carried on only for those qualified ones to Slice #3, and so on. In this
way, we repetitively reduce the number of fingerprint fragments to be retrieved
from each slice as we laterally traverse the slices. The partial scores for the slices
2..k − 1 are calculated in the same manner as that for Slice #1.

Si(Q, F ) =
|Q1..i ∩ F1..i| +

∑k
j=i+1 min(|Qj |, |Fj |)

|Q1..i ∪ F1..i| +
∑k

j=i+1 max(|Qj |, |Fj |)
(5)

where 2 ≤ i ≤ k − 1.
The partial score Sk(Q, F ) for the last slice k is the essentially the final score

S(Q, F ) of the fingerprint F .

S(Q, F ) = Sk(Q, F ) =
|Q1..k ∩ F1..k|
|Q1..k ∪ F1..k| (6)

Let us now prove the upper bound property of the partial scores.

Lemma 1. For a query fingerprint Q and a target fingerprint F , their partial
score Si(Q, F ) for any slice i (1 ≤ i ≤ k−1, where k is the total number of slices
a fingerprint is partitioned) is the upper bound for the final score S(Q, F ).

Si(Q, F ) ≥ S(Q, F )

Proof. Without loss of generality, let us take i = 1 and look at the partial score
S1(Q, F ) for Slice #1.

Since the size of the intersection of two sets is at most that of the smaller set,
for some non-negative integer xj (2 ≤ j ≤ k), we have:

min(|Qj|, |Fj |) ≥ |Qj ∩ Fj | ⇔ min(|Qj |, |Fj |) = |Qj ∩ Fj | + xj

Again, since the size of the union of two sets is at least that of the larger set, for
some non-negative integer yj (2 ≤ j ≤ k), we have:

max(|Qj |, |Fj |) ≤ |Qj ∪ Fj | ⇔ max(|Qj |, |Fj |) = |Qj ∪ Fj | − yj

We can then rewrite Equation 4 as:

S1(Q, F ) =
|Q1 ∩ F1| +

∑k
j=2(|Qj ∩ Fj | + xj)

|Q1 ∪ F1| +
∑k

j=2(|Qj ∪ Fj | − yj)

=
|Q1 ∩ F1| +

∑k
j=2 |Qj ∩ Fj | +

∑k
j=2 xj

|Q1 ∪ F1| +
∑k

j=2 |Qj ∪ Fj | −
∑k

j=2 yj
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But, since xj and yj (2 ≤ j ≤ k) are non-negative integers, we have:

k∑

j=2

xj ≥ 0 and
k∑

j=2

yj ≥ 0

Again, since subtracting a non-negative integer from the quotient and adding
another non-negative integer to the divisor of a non-negative fractional number
makes the resultant number smaller than or equal to the original number, we
finally have:

S1(Q, F ) ≥ |Q1 ∩ F1| +
∑k

j=2 |Qj ∩ Fj |
|Q1 ∪ F1| +

∑k
j=2 |Qj ∪ Fj |

=
|Q1..k ∩ F1..k|
|Q1..k ∪ F1..k| = S(Q, F )

Similarly, Si(Q, F ) ≥ S(Q, F ) for the other slices i = 2 to k − 1.

Now, we will prove the accuracy property of the filtration by the partial scores.

Theorem 1. Any filtration using the partial scores Si(Q, F ) (1 ≤ i ≤ k − 1)
does not discard any good answer.

Proof. Given the similarity threshold t, at any slice i, we filter out a fingerprint
F which satisfies the condition:

Si(Q, F ) < t

From Lemma 1 we have:
S(Q, F ) ≤ Si(Q, F )

Thus, we finally have:

S(Q, F ) ≤ Si(Q, F ) ∧ Si(Q, F ) < t ⇒ S(Q, F ) < t

This means if the partial score of a fingerprint is less than the similarity thresh-
old, its final score will also be less than this threshold, and we can safely reject it.
Thus, filtration using the partial scores will not discard any good answer whose
final score is greater than or equal to the similarity threshold. In other words, a
100% accuracy is guaranteed.

An example of evaluating a query is demonstrated in Figure 4. The records
that are accessed are highlighted in gray. The fragments for Fingerprint IDs #5,
#6, #2, #3, and #1 are accessed from Slice #1, and those for Fingerprint IDs
#2 and #1 are accessed from Slice #2. Only Fingerprint ID #2 is returned as
the answer as its score is greater than 0.75.

Suppose the size of a full-length fingerprint is l bytes. For our example, if
the full database scan is used, 8l bytes will be processed (i.e. accessed from
memory/disk and compared to the query). If the range search method [5] is
used, 5l bytes will be processed. Using our ChemDex method, only 7 half-length
fingerprint fragments of size 7 × 0.5l = 3.5l bytes are processed. Thus, we have
improved the speed by 8 / 3.5 = 2.29 times compared to the full database scan,
and 5 / 3.5 = 1.43 times compared to the range search in this example.
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Query: 1  0  1  1  0  1  1  1          0  0  1  0  0  0  0  0
            No. of 1’s in Slice #1 = 6       No. of 1’s in Slice #2 = 1 
            No. of 1’s in whole fingerprint = 7

Similarity Threshold:   0.75 

Two-tier Index Structure 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

                                                 No. of 1’s in 
                                              Whole   Slice  Slice
                             Fingerprint ID   Finger  #1     #2
                                              print 

Fingerprint #4 5 5 0 
Fingerprint #5 6 3 3
Fingerprint #6 7 6 1
Fingerprint #2 8 7 1
Fingerprint #3 8 5 3
Fingerprint #1 9 7 2
Fingerprint #8 10 7 3 
Fingerprint #7 12 5 7 

1 1 1 0 0 1 0 1    0 0 0 0 0 0 0 0  
1 1 0 1 0 0 0 0    1 0 0 1 0 1 0 0    S1 = 0.30 
1 1 1 0 1 1 0 1    0 0 0 0 1 0 0 0    S1 = 0.56 
1 0 1 1 1 1 1 1    0 0 1 0 0 0 0 0    S1 = 0.88;   S = 0.88 
1 1 1 0 1 0 1 0    0 1 1 0 1 0 0 0    S1 = 0.36 
1 1 1 1 0 1 1 1    1 1 0 0 0 0 0 0    S1 = 0.78;   S = 0.60 
1 1 1 1 1 1 1 0    1 1 0 1 0 0 0 0 
1 1 0 1 1 0 1 0    1 1 1 1 1 1 1 0 

 Slice #1                                                     Slice #2 

First Tier 
(in memory) 

Second Tier 
(in memory) 

Main Database 
(in memory  
or on disk) 

Fig. 4. ChemDex’s two-tier index and evaluation of a query using it. The records that
are accessed are highlighted in gray.

4 Results and Discussions

4.1 Experimental Setup

We use the PubChem [2] database from NCBI (National Center for Biotechnol-
ogy Information, USA) downloaded in November 2008. It contains 19,501,867
(about 19.5 millions) fingerprints. The length of a fingerprint is 881 bits. We
encode the fingerprint into an array of 28 32-bit integers. (28×32 = 896. Since
we only have 881 bits, the last 15 bits of the last integer are used as padding.)

The statistics of the number of 1’s among the PubChem fingerprints is as
follows: the minimum is 0 (i.e. some fingerprints have no 1’s at all), the max-
imum is 290, the median is 146, the mode is 156, the mean is 139.71, and the
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standard deviation is 42.58. The distribution of the number of 1’s in the Pub-
Chem fingerprints is given in Figure 5.

The statistics of the number of 1’s in different bit positions (columns) is as
follows: the minimum is 1 (i.e. only 1 out of 19,501,867 bits is set to 1 in the least
populated column), the maximum is 19,450,390 (i.e. 99.74% of the bits are set
to 1 in the most populated column), the mean is 3,092,714.87, and the standard
deviation is 4,431,637.98. The distribution of the number of 1’s in the columns
before and after the vertical rearrangement (Section 3.3) is given in Figure 6.

From the database, we randomly select 1,000 fingerprints to serve as queries.
As the mean of number of 1’s in the query fingerprints is 138.69 and the standard
deviation is 42.90, we can say that the query data set has a similar distribution
of the number of 1’s as the entire database.

We search these 1,000 queries against the PubChem database of 19,501,867
fingerprints using 7 different Tanimoto similarity thresholds: 1.00, 0.95, 0.90,
0.85, 0.80, 0.75, and 0.70. We do not include the similarity thresholds lower than
0.70 in our experiments. The lower thresholds are not useful for real-life drug
discovery applications as they tend to generate large volumes of results which
are impractical to be further analyzed in a meaningful way. For reference, the
PubChem’s search website [20] uses an even higher value of 0.80 as the lowest
possible threshold value.

We run our experiments on a standard PC with Intel Pentium D 2.8 GHz
CPU, 4 GB RAM, and 300 GB SATA2 disk drive, running the 32-bit version
of Windows Vista. All the programs are written in C++ and compiled with
Microsoft Visual C++ 2008 Express Edition using the maximize speed (/O2)
optimization. We execute the programs with high system priority (using start
/high command), and make sure that no background service such as anti-virus
or Windows file indexing is running during the executions of the programs. We
also make certain that every data file involved in the experiment is in a single
disk fragment by using JKDefrag [21].
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We will consider the problem of fingerprint database retrieval in two scenarios:
memory-based and disk-based. For each scenario, we search the 1,000 query
fingerprints against the PubChem database using five methods: (1) full database
scan (baseline), (2) inverted index search [10], (3) Swamidass and Baldi’s range
search [5], (4) ChemDex with 2-slice partitioning, and (5) ChemDex with 4-slice
partitioning.

4.2 Memory-Based Retrieval

In the memory-based scenario, we have enough memory to hold all the data file(s)
that are required to evaluate the queries. When processing multiple queries as
a batch, all the required data files are loaded from disk into memory only once,
and are maintained there throughout the processing of all queries.

For the full database scan method, the whole PubChem database (2,083 MB)
is loaded into memory. This takes an average of 9 seconds.

For the Swamidass and Baldi’s range search method [5], the whole fingerprint
database plus an index file indicating the the number of 1’s in the fingerprints
(a total of 2,194 MB) are loaded. This takes an average of 10 seconds.

For ChemDex with 2-slice partitioning, 2 half-length fingerprint fragment files
plus the first tier and the second tier index files (a total of 2,269 MB) are loaded.
This takes an average of 10 seconds.

For ChemDex with 4-slice partitioning, 4 quarter-length fingerprint fragment
files plus the first tier and the second tier index files (a total of 2,343 MB) are
loaded. This takes an average of 10 seconds.

For the inverted index search method, the size of the inverted index for the
entire PubChem database is 10,394 MB, which is too big to be held in our PC
with 4,096 MB (4 GB) of memory. Thus, we split the original database into 4
smaller databases of approximately equal sizes, build 4 smaller inverted indexes,
load each index at a time and use it for the processing of all the 1,000 queries,
and finally consolidate the results form 4 inverted indexes. The total time taken
to load the four inverted indexes into memory is 47 seconds. (In fact, we have
also tried variable-byte encoding [22] to compress the inverted index into 2,609
MB which can be fit into the memory. However, because of the overhead of
decompression incurred when accessing the compressed index, the searching time
is even longer by a factor of 1.5. We do not show the results of the compressed
index for the sake of clarity.)

The running times of the five methods for this memory-based retrieval exercise
are presented in Figure 7. Note that each time figure does not include the one-
time cost of loading the relevant data file(s) from disk into memory. For all the
five methods, care was taken such that none of the data is read more than once
from disk, even in the case of the inverted index search method where we had
to split the database into 4 smaller databases.

For each method, the average volume of data processed (accessed from mem-
ory and compared with their respective counterparts in the query to calculate
the Tanimoto score) for a query is shown in Figure 8.
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Fig. 8. Average volumes of data to be
processed for a query

Except for the inverted index search, the distribution of the times taken for
memory-based retrieval (Figure 7) is more or less proportionate to the distri-
bution of the data volumes that is processed (Figure 8). This is because the
time taken to access any fingerprint (or a fragment of it) from memory is virtu-
ally constant. As such, the 4-slice version of ChemDex gives consistently better
results than its 2-slice version does, since a smaller data volume needs to be
accessed and processed in the former. Therefore, the best strategy for ChemDex
in memory-based retrieval is to always use the 4-slice partitioning.

When compared with the full database scan, ChemDex (4-slice version) is
clearly much faster in all cases. In the best case, it is 109.88 times faster than
the full scan (for the similarity threshold t = 1.00). In the worst case, it is still
3.18 times faster (for t = 0.70).

In comparison with the range search, ChemDex (4-slice version) is 2.09 times
faster than it in the best case (for t = 0.80), and still 1.66 time faster than it
(for t = 1.00) in the worst case.

In relation to the inverted index search, ChemDex (4-slice version) is 123.93
times faster than it in the best case (for t = 1.00), and still 3.65 time faster than
it (for t = 0.70) in the worst case.

It is interesting to learn here that the performance of the inverted index search
is even worse than that of the full database scan. While inverted index search
was reported to perform well in other areas like text database retrieval [10], our
experiments have revealed it to be unsuitable for the task of chemical fingerprint
retrieval. This is due to the relatively dense nature of the chemical fingerprints.
The average density of 1’s in PubChem’s fingerprints with respect to their length
is 139.71/ 881 = 0.1586 = 15.86%, whereas the average densities of the docu-
ment vectors in text databases are normally much lower (for example 0.86% for
MEDLINE medical abstract database and 1.82% for Time Magazine’s news ab-
stract database [23]). Thus, a large volume of information needs to be accessed
from all the inverted lists corresponding to the 1’s in the query. For one query,
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the average amount of inverted list information required to be accessed from
memory is 5,035 MB, which is 2.4 times of the 2,083 MB fingerprint information
needed to be accessed for the full database scan (The overall difference in their
running times is less than 2.4 times because the full database scan involves a
relatively expensive operation of bit counting, whereas the inverted index search
does not.)

Let us investigate the filtration power of ChemDex. Figures 9 and 10 show the
average numbers of half-length and quarter-length fingerprint fragments accessed
from the different slices for the 2-slice and the 4-slice versions of ChemDex
respectively (do note that the Y-axis in each figure is in log-scale). It can be
observed in Figure 9 that the number of fingerprint fragments accessed from
Slice #2 is only a small fraction of that of Slice #1. This means that a large
number disqualified fingerprints have been filtered out from the processing of
Slice #1. Similarly, the numbers of fragments accessed from Slice #2, #3, #4
are only small fractions of that of Slice #1 in Figure 10. As a result, the total
volumes of data required to be accessed by ChemDex (both for 2-slice and 4-slice
versions) is much lower that of Swamidass and Baldi’s range search which needs
to access all the full-length fingerprints within the specified search range.

4.3 Disk-Based Retrieval

Since the size of a chemical database can potentially grow up to 1060 com-
pounds [24], it is possible in the future that the growth of the database size
outpaces the amount of memory that is generally affordable. When the size of
the database becomes too large to fit into memory, we have to employ a tradi-
tional disk-based retrieval approach. In disk-based retrieval, all the data file(s)
are primarily stored on disk, and only the required pieces of data are read from
disk into memory as requested by the program. For example, in the full database
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scan, for a particular query, a database fingerprint at a time is read from disk
into memory to compare with the query. For another query, the same fingerprint
will have to be read again from disk.

In addition to the limited memory situation, the disk-based scenario is also
applicable to a situation in which queries are necessary to be processed one-by-
one due to their different arrival times (as opposed to the batch processing of
the queries as discussed in the above Section 4.2). This is particularly important
if the fingerprint database search program is to be run on a general office PC or
laptop rather than on a dedicated server. It is obviously not desirable to hold a
large database in memory when not in use, since this can adversely affect the
performances of the other applications running on the same machine.

Their running times the four different methods are presented in Figure 11.
(The result of the inverted index search again turns out to be even worse than
that of the full database scan, and hence is excluded for the sake of clarity.)
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disk-based retrieval

ChemDex achieves the best results using the 4-slice partitioning for the simi-
larity thresholds of 0.80–1.00, and with the 2-slice partitioning for the thresholds
of 0.70–0.75. Thus, the optimization of ChemDex for the disk-based retrieval can
be achieved by keeping the indexes and database files for both the 2-slice and the
4-slice versions, and using the 2-slice one if the user-specified similarity threshold
is less than 0.8, and the 4-slice one otherwise.

ChemDex, using the above optimization, is clearly much faster the full data-
base scan in all cases. In the best case, it is 145.71 times faster than the full scan
(for the similarity threshold t = 1.00). In the worst case, it is still 1.99 times
faster (for t = 0.70).

In comparison with the range search, ChemDex (using the optimization) is
1.69 times faster than it in the best case (for t = 0.95), and still 1.22 times faster
than it (for t = 0.70) in the worst case.

It can be noticed from Figure 8 that the volume of data to be processed for
ChemDex (for both the 2-slice and 4-slice versions) is much lower than that of
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the range search. However, unlike memory-based retrieval, the time incurred in
processing the data here is not as proportionately reduced. (Compare Figure 8
with Figure 11.) This is because the range search can read in all data blocks
containing the full-length fingerprints from disk consecutively, whereas ChemDex
can only read in Slice #1 in the consecutive manner. For the remaining slices,
the fingerprint fragments to be read in can be sparsely located, and ChemDex
cannot benefit from the effect of disk buffering in accessing them. As a result, the
time taken to access the fingerprint fragments in the later slices can be relatively
high compared to that for accessing the sequential fragments in Slice #1.

The uptick in the response time observed on the curve for ChemDex (4-slice)
in Figure 11 is because of the dramatic surge in the number of sparse quarter-
length fragments to be read from Slices #2, #3, and #4 for the lower thresholds
of 0.70–0.75. (See Figure 10 whose Y-axis is in log-scale.)

4.4 Preprocessing Costs

The proposed ChemDex method requires some preprocessing steps to rearrange
the fingerprints and to build the index. Table 1 shows the preprocessing times
for the PubChem database using 2-slice and 4-slice partitionings.

Table 1. ChemDex’s preprocessing times for the PubChem database

Step Procedure Time (seconds)
2-slice 4-slice

1 Rearranging fingerprints 835 835
horizontally (Section 3.2)

2 Rearranging fingerprints 1,937 1,937
vertically (Section 3.3)

3 Dividing fingerprints 205 316
into slices (Section 3.4)

4 Building Index (Section 3.5)
(a) First tier 84 84
(b) Second tier 78 126

Total 3,139 3,298

Although the full database scan does not require any preprocessing and the
range search method requires only Steps #1 and #4(a) of preprocessing, it
should be noted that ChemDex’s preprocessing costs are only one-time costs.
So, when thousands of queries are evaluated routinely and/or interactively, the
time savings by ChemDex overrides the time spent in the preprocessing.

5 Conclusion

In this paper, we have presented a chemical fingerprint database search system
named “ChemDex”. ChemDex uses an index-based early-termination approach
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in which the large chemical fingerprint database is both horizontally and ver-
tically rearranged, partitioned into slices, and then indexed. A chain scoring
scheme is then used for query evaluation: the fingerprint fragments from the ini-
tial slices are retrieved and their partial scores (upper bounds of their respective
final scores) are calculated with the information stored in the index; the process
continues into the subsequent slices only if the computed partial score is greater
than or equal to the given similarity threshold. This chain scoring scheme enables
the search space to be pruned effectively without any loss of accuracy.

We have tested our proposed method using the NCBI PubChem database
with about 19.5 million fingerprints and 1,000 randomly selected queries. Our
experimental results show that in the memory-based scenario, ChemDex is up to
109.9 times faster than the full database scan and up to 2.1 times faster than the
state-of-the-art range search. In the traditional disk-based scenario, ChemDex is
up to 145.7 times and 1.7 times than the full database scan and the range search
respectively. ChemDex is able to achieve these speedups while maintaining the
same level (100%) of accuracy as the slower methods.

Methods such as ChemDex is important for drug discovery as the chemical
compound database search space can potentially grow considerably beyond its
current typical value of a few million molecules towards the estimated 1060 size
of the virtual space of small organic molecules [24]. In addition, the proposed bit
vector indexing and chain scoring schemes in ChemDex can also be applicable
in other domains whereby very large databases of fixed-length bit vectors are
involved. As future work, we will explore some such other applications as doc-
ument processing, image and video processing, error detection, etc., where the
proposed techniques can also be exploited.
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Abstract. State-of-the-art numerical solvers in Earth Sciences produce multi ter-
abyte datasets per execution. Operating on increasingly larger datasets becomes
challenging due to insufficient data bandwidth. Queries result in difficult to han-
dle I/O access patterns. BEMC is a new mechanism that allows querying and
processing wavefields in the compressed representation.

This approach combines well-known spatial-indexing techniques with novel
compressed representations, thus reducing I/O bandwidth requirements. A new
compression approach based on boundary integral representations exploits proper-
ties of the simulated domain. Frequency domain representation further compresses
the data by eliminating temporal redundancy found in wave propagation data.

This representation enables the transformation of a large I/O workload into a
massively-parallel CPU-intensive computation. Queries to this representation re-
sult in largely sequential I/O accesses. Although, decompression places heavy de-
mands on the CPU, it exhibits parallelism well-suited for many-core processors.
We evaluate our approach in the context of data analysis for the Earth Sciences
datasets.

1 Introduction

Massive datasets representing multi-dimensional fields are common in many disciplines
of science [16]. Fields describe N-dimensional continuum spaces by assigning scalar
or vector quantities to each point in the space. Field datasets found in computational
sciences correspond to discrete representations of continuum fields. Advances in simu-
lation methodologies coupled with enabling technological trends, such as faster multi-
core processors and increased storage capacity, allow scientists and engineers to collect,
generate and store increasingly larger fields. As a result, we have become very good
at generating gigantic datasets. For example, computations running on current high-
performance computing platforms generate datasets with sizes in the order of tens of
terabytes (TB) and soon petabytes (PB) [3].

On the downside, we have outstripped our capacity for analyzing these datasets. The
main goal of high-resolution numerical simulation is to provide insight about physical
phenomena. As the resolution and dataset sizes increase, it becomes difficult to store
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these datasets at simulation time. Similarly, moving, querying, processing and analyzing
these datasets becomes extremely hard. To work around some of these challenges, often
a large portion of the data is discarded and instead just a few selected data points or
small regions are stored by the simulation for later analysis and publication.

We propose a new mechanism, named BEMC, for compactly representing, storing
and querying large simulation-generated seismic wavefields. Wavefields are four di-
mensional vector fields that describe wave propagation phenomena. BEMC is specifi-
cally designed to support and enable new data analytic applications in Earth Sciences.
The aim is two-fold. First, reduce the I/O bandwidth and storage capacity require-
ments at simulation time through a compact wavefield representation. Second, facilitate
post-simulation analysis through efficient queries and reconstructions of subsets of the
wavefield, especially for analytics performed in the frequency domain. Many analysis
operations only require portions of a large wavefield at a time. A user might be inter-
ested in studying a phenomenon confined to a region of interest. BEMC represents large
wavefields as compressed data structures that support spatial queries. Only a relatively
small portion of the compressed dataset needs to be accessed and decompressed when
analyzing a subset of the wavefield.

BEMC is a domain-specific compression scheme that takes advantage of spatial re-
dundancy present in many wavefields. BEMC uses a novel approach based on bound-
ary integral equations and their corresponding discretization into the boundary element
method (BEM) [9,24]. It is coupled with a frequency-based encoding method to further
push the limits of wavefield compression while keeping the ability to perform spatial
searches on the wavefield.

The basic idea behind BEMC is to only store the computed solution (wave dis-
placement values) for carefully chosen points in the wavefield. These points lie at the
boundary of various regions in the simulation input model. In a 3D domain, the region
boundaries are the 2D surfaces that wrap each of the 3D regions. At query time a BEM
microsolver performs a numerically intensive computation to reconstruct the data for
a query point from the solutions at the boundary of the region that contains the query
point.

The BEM microsolver computation is highly parallel and the compressed data is laid
out to exploit the sequential streaming bandwidth of storage systems. The result of the
combined approach is that I/O intensive analysis tasks become highly-parallel compute-
intensive tasks. With the advent of many-core processors, with hundreds of processing
elements per chip, we believe this compression approach will be extremely useful in
alleviating I/O bandwidth constraints.

BEMC yields up to 3:1 data size reduction when applied to wavefields based on
unstructured octree meshes. Combining BEMC with a frequency-based wave compres-
sion results in up to 10:1 factors on these datasets. The location of boundary points
is known prior to the simulation. This results in a 66% reductions in the I/O band-
width requirements at simulation time, since the simulation needs to output values
for boundary points only. A post-simulation step transforms the boundary values to
a frequency-domain compressed representation to achieve the final 10X compression
ratio.
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BEMC is independent of the simulation method used in the generation of the syn-
thetic wavefield. It can be used to represent wavefields produced by simulation ap-
proaches such as Finite Differences Methods (FD) [25], octree-based Finite Element
Methods (FEM) [3], unstructured tetrahedral FEM [7] and Boundary Element Methods
(BEM) [24]. BEMC can be applied to other wave propagation problems, and in general
to other domains where the problem can be formulated in terms of boundary integral
equations. For explanation purpose and without loss of generality, we present BEMC in
the context of wavefields generated by octree-based FEM numerical solver.

2 Seismic Wavefield Analysis

The goal of large-scale ground-motion simulations is to enhance our understanding of
how the ground shakes during strong earthquakes. Simulating physical processes, such
as seismic wave propagation during strong earthquakes, involves computing the solu-
tion to a set of governing equations. Non-trivial scenarios have no closed-form solution
and the solution is obtained through numerical methods such as FD [25] and FEM [6].
These simulations take as input a model of the ground (material model), construct a
discrete simulation mesh from the material model and solve a set of partial differen-
tial equations on the mesh (See Fig. 1). The simulation produces a large 4-dimensional
wavefields and a corresponding mesh. Wavefields are spatio-temporal datasets that de-
scribe wave propagation processes by assigning a quantity to each point in space. In the
context of ground-motion simulations, a seismic wavefield describes ground proper-
ties such as displacement, velocity and acceleration of points in the ground at different
moments in time during an earthquake [3]. The analysis of these wavefields has great
value for scientists and the community in general. Data analysis produce derived data
for applications such as: verification and validation of the simulation process; analysis
of interaction with buildings and other man-made structures; real-time damage estima-
tion; material model inversion; and, visualization. Efficient access to these wavefields
is key for such analysis applications. The mechanisms presented here help alleviate the
I/O requirements needed to store the wavefield (Dataset 3 in Fig. 1) at simulation time
and provide a searchable representation for the data analysis tasks.

Material
Model (1)

Numerical
Simulation (2)

Wavefield (3)

Mesh (4)

Data
Analysis (5)

Fig. 1. Physical simulation process. A material model (1) is the input to a numerical simulation
process (2), which produces an output wavefield (3) and a corresponding simulation mesh (4).
The produced datasets (3) and (4) are used for post-simulation data analysis (5).
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3 Compactly Storing Wavefields

Many datasets from various domains in computational sciences exhibit spatial coher-
ence. The values represented by the field vary in a smooth manner across points in space
and time. This is certainly the case for simulation-generated ground-motion wavefields
where displacement values vary smoothly in a volume of the wavefield. Despite their
spatial coherence, wavefields generated by FEM numerical simulations are difficult to
compress since they contain floating point (FP) values associated with the nodes of
an irregular mesh. Compressing FP values is challenging because small differences in
absolute value yield large changes in the FP bit representation. Moreover, unstructured
meshes used in FEM simulations adapt to variations in the properties of the input model
parameters, thus greatly eliminating spatial redundancy in the corresponding output
wavefield. FEM octree-based meshes and corresponding output wavefields commonly
require 1/8 of the space needed to represent a FD mesh for the same problem. It is
hard to use image compression techniques in this case due to the irregular nature of
the meshes used to generate the wavefields, as many image compression approaches
operate on regularly spaced grids. The question is then: How can spatio-temporal co-
herence be exploited to compress massive wavefields? BEMC exploits wavefield spatial
coherence through domain-specific formulation based on Boundary Integral Equations
and Green’s functions. This approach can be used to compress datasets generated using
FEM, FDs or other method. The main idea is to make use of a property of the input
material model (Dataset 1 in Fig. 1) to compress the output wavefield (Dataset 3). This
is based on the observation that the input material models used in simulation (Dataset
1) have large homogeneous regions. Then, for any point inside a homogeneous region
in the input (Dataset 1), we can compute the corresponding output displacement values
(in Dataset 3) in terms of the (output) displacement values of the points that lie on the
region boundary.

3.1 Model Homogeneity

Material models used for simulations comprise large homogeneous regions. This is de-
picted in Fig. 2 (a), where 5 homogeneous regions (different shades of gray) make up a
simulation domain. Simulating physical phenomena in complex structures requires the
use of full-domain methods such as FEM and FD. Meshes for these methods divide the
domain into small discrete mesh elements depicted by dotted squares in the figure. The
element corners are referred to as mesh nodal points or simply nodes. Homogeneous re-
gions in the input model are also divided into small mesh elements to satisfy numerical
stability requirements for the simulation. Finer resolution meshes increase simulation
accuracy. For example, simulating higher wave frequencies requires finer meshes. As a
mesh becomes finer, more elements are needed to fill up the same homogeneous region.
In the simulation output wavefield (Dataset 3 in Fig. 1), the wave displacement values
at mesh nodal points inside homogeneous regions vary relatively smoothly within each
region. Although the values have small differences from node to node, the variations
are significant enough and thus need to be explicitly stored.

BEMC reduces wavefield storage requirements by exclusively keeping values for
nodes located on region boundaries, i.e., lying on the thick lines in Fig. 2 (a). A discrete
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Fig. 2. (a) Material model homogeneity. This 2D sketch shows the composition of a hypothetical
material model for ground-motion simulation. This corresponds to Dataset 1 in Fig. 1. It contains
various homogeneous regions (different shades of gray), separated by boundaries (thick lines).
The size and properties of these regions can vary by various orders of magnitude.
(b) Node Count Ratio. This is the achievable compression for regions of different sizes and aspect
ratios. The X axis is the number of boundary elements needed to wrap the segment. The Y axis
shows the reduction in the number of mesh nodes compared to a regular volume mesh with the
same resolution as the boundary mesh.

representation of region boundaries is made up of 2D boundary elements (BE) embed-
ded in a 3D space. In the 2D illustration in Fig. 2 (a), the BEs correspond to the thick
lines between two mesh points at the boundary of the regions.

A boundary mesh representation only requires nodes at the boundary. Values for
nodes inside a region can be safely discarded. Figure 2 (b) shows the storage reduction
obtained by only storing boundary node values. The X axis is the boundary mesh size
in number of elements. The Y axis shows the ratio of boundary node count to volume
node count for a boundary mesh of the given size. Different lines show the ratio for
hexahedral regions for various 3D aspect ratios — 1:1:1, 1:1:2, etc. Compression ratios
below 0.3 are possible for regions with more than 1500 boundary elements.

3.2 Compression Steps

The BEMC comprises the steps shown in Figure 3: Model Segmentation (6), Boundary
mesh generation (7) and Wavefield data extraction (8). These steps are explained below.
The inputs for BEMC are: the full domain wavefield to be compressed (3), the input
material model used to generate the wavefield (1) and the full 3D domain simulation
mesh (4). The BEMC process produces a compact output representation comprised of a
segment index (9), a boundary mesh (10) and the wave data associated with nodes along
the boundaries of homogeneous regions (11). The segment index and boundary mesh
are used to support spatial range queries. The segment index is used as a spatial index,
and the boundary mesh provides the mapping from the segment boundary to wave data
associated with points along the boundary for the segments. At query time, the data
for a query point inside a segment is reconstructed from the data associated with the
boundary nodes.
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Compressed Wavefield

Segment Index (9)

Boundary Wave 
Data (11)

Boundary Mesh (10)

Compression

Segmentation (6)

Boundary Mesh
Generation (7)

Boundary Data
Extraction (8)

Material Model (1)

4D Wavefield (3)

Unstructured
Mesh (4)

Fig. 3. Steps for the BEMC compression phase. Its inputs are a wavefield (3), the correspond-
ing unstructured mesh (4) and the material model (1) for the region covered by the wavefield.
This phase consists of the following processes: Segmentation (6), Boundary Mesh Generation (7)
and Boundary Data Extraction (8). They produce a compressed boundary wavefield with three
components: a segment index (9), a boundary mesh (10) and associated wave data (11).

Model Segmentation. The goal of this step is to find a set of homogeneous regions
or segments in the input model and produce a spatially-indexed segment set. A region
is considered to be homogeneous if all of its material properties remain constant in its
volume. Extracting homogeneous regions becomes challenging due to the large model
sizes, currently in the order of tens to hundreds of gigabytes. Segmentation is an active
area of research with applications to medical imaging and computer vision [31]. Most
readily available implementations of algorithms for image segmentation target the case
where the image fits in main-memory [13]. Researchers in the area of scientific visual-
ization have proposed methods for iso-surface extraction [11], model simplification [12]
and near real-time rendering [18] of large spatial datasets.

In order to deal with large 3D material models, we developed a simplified out-of-core
segmentation procedure [19] that leverages the internal representation of material mod-
els and octree meshes used in FEM ground-motion simulation [3,27]. The general idea
is to use an octree FEM mesh as a segmentation template, and check the mesh against
the material model to eliminate any over-segmentation –whenever possible coarsen the
mesh where it is too fine. These octree-based meshes are stored on disk as indexed lin-
earized octrees using the CMU etree library [26]. The mesh elements are cubes that
correspond to nodes of the octree. The order for the elements’ on-disk representation
corresponds to a pre-order traversal of the corresponding octree. The segmentation
process performs a pre-order traversal of the octree mesh elements and checks the ho-
mogeneity of a set of 8 sibling octants elements by querying to the material model.
If the octants are homogeneous they are coalesced into a single parent octant. If the
octants cannot be coalesced, they are output as individual segments.

This algorithm has complexity O(n) and requires little in-memory state. This ap-
proach requires a single pass over the mesh elements. It uses the streaming bandwidth
of storage devices very efficiently, as the pre-order traversal of the octree structure re-
sults in sequential I/O accesses. The implementation has a very small footprint. It only
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requires state for eight siblings octree nodes1 in the path from the tree root to the current
leaf node. The state size has an upper bound of 8×tree depth. The octree depth for
commonly used seismic meshes varies between 12 and 20 [19].

The resulting segments are constrained to simple shapes, simplifying the generation
of the corresponding boundary mesh. However, this approach does not fully take ad-
vantage of model homogeneity as it does not coalesce homogeneous segments that do
not align properly across octree boundaries, i.e., when they are not children of the same
parent octant.

Boundary Mesh Generation. This stage reads the material segment set and the full-
domain mesh in order to generate discrete boundary meshes (BM) for the homogeneous
regions. The resulting BMs discretize the segment boundaries such that they can be later
used to reconstruct any point inside using a numerical computation. A BM comprises a
set of 2D boundary elements (BE) embedded in a 3D space. The corresponding element
corners are the boundary mesh nodes (BN).

This procedure reads each segment and subdivides each segment face into smaller
rectangular boundary elements according to the material properties of the segments on
both sides of the face. The size of the BE is chosen such that it satisfies the numerical
requirements for the numerical computation in the reconstruction process. Whenever
possible, the BE size is the same as the size of the faces of the elements in the unstruc-
tured mesh. Matching the BE size to the one of the FEM elements can be done based
on two simulation parameters (points per wavelength and maximum wave frequency),
thus access to the complete unstructured FEM mesh is not needed. Boundary mesh
nodes are generated in a second pass over the generated boundary mesh elements. This
is an involved process that assigns two identifiers to each node: a segment-local id and
a mesh global id. The corresponding mapping is stored as part of the boundary mesh
output. The global node identifiers are used for laying out and addressing the wave data
associated with boundary nodes.

Wavefield Data Extraction. This process extracts the actual wave data associated with
boundary nodes. It accounts for the bulk of the data size reduction. The first step is
to build an auxiliary structure for mapping between boundary mesh node ids and full-
domain mesh node ids. If the BM generation above produces meshes with BEs that are
aligned with the FEM elements, then there is a one-to-one mapping between boundary
mesh nodes and nodes in the full domain mesh. Additional interpolation operations on
the associated boundary data are avoided when the boundary mesh nodes are aligned
with full domain mesh nodes. This process iterates over the boundary nodes and uses
the node mapping structure to locate and extract the corresponding data from the 4D
wavefield.

The wave data is transposed from the space domain to the time domain. Popular
ground-motion solvers produce wave data one time step at a time and store it in a space
domain representation (space× time), where the dataset is a collection of volumes each
corresponding to a snapshot in time [3,21]. Given a time step t, values for all the mesh
nodes are adjacently stored, then all the values for time step t +1, and so on. To further
compress the data and facilitate its reconstruction at query time, the wave data is stored

1 Child nodes with the same common parent.
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in a time domain representation (time× space). In the time domain, the data is stored as
a sequence of time series. The extracted wave data is transposed with an efficient out-of-
core scheme optimized for matrices with extremely large aspect ratios, e.g., 1000:1 [19].

Simulation-generated seismic wavefields often are band-limited, i.e., they contain
useful wave data in a limited frequency range. In particular, the numerical solver pro-
duces wave data up to a specified maximum frequency for the simulation. This offers
an opportunity to achieve higher compression. We developed a frequency-based com-
pression scheme named effective-zero encoding. First, the wave data is transformed to
the frequency domain using an available FFT implementation. Then, an effective zero
value is independently computed for each node wave spectrum [19]. In the frequency
spectrum, a wave number has an effective-zero value if its magnitude is below a user
defined threshold relative to the cummulative energy of the spectrum. Only non-zero
values are stored in the frequency spectrum for a boundary node.

4 Wavefield Reconstruction

Wavefield reconstruction is formulated as queries for a point q in the wavefield. The
query set can include arbitrary points in the domain–it is not limited to points in the
original full-domain mesh. Spatial range queries are possible due to the chosen storage
representation and can be satisfied by reading only the portion of the dataset covered
by the query range. The first step involves looking up q in the segment index to find the
homogeneous region containing q (See Fig. 4). Reconstructing the data for q is achieved
through one of the following methods:

1. If q coincides with a boundary mesh node, then return the data associated with the
mesh node.

2. When q is on or near the boundary, interpolate from the data associated with the
corners of the closest boundary element.

3. When q is far from the boundary, execute a microsolver to compute the wave data
from the values at the region boundary.

A query point is near the boundary if its distance to the closest BE is less than a user
specified parameter, which by default is 1/4 of the BE edge length. In all the cases
above, satisfying the query only requires access to small subsets of the compressed
wavefield, thus reducing I/O bandwidth usage and computation. The compressed layout
is such that it induces sequential I/O accesses.

4.1 Microsolver Computation

For cases where q is far from the region boundary, the answer is computed by applying
the Boundary Element Method (BEM) [9,24]. A microsolver carries out the required
numerical computation using as input the compressed boundary wavefield. This process
is divided into two steps: Phi computation (13) and Wave data computation (14). The
BEM mathematical formulation and the corresponding steps are explained below.

BEM Formulation. Without loss of generality, assume we have a query point q ∈
Ω,Ω ⊂ ℜ3, where Ω is a homogeneous 3D region with a boundary S (See Fig. 5 for
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Compressed Wavefield

Segment Index (9)

Boundary Wave 
Data (11)

Boundary Mesh (10)

Query Computation

Spatial Lookup (12)

Phi Computation (13)

Wave Data
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4D Wavefield (16)

Phi Sets (15)

Fig. 4. BEM decompression phase. At query time, the data for query points is reconstructed
from the boundary wavefield representation. The computation involves three steps: Spatial Index
Lookup (12), Phi Computation (13) and Query Wave Data Computation (14).

an illustration in two dimensions). Reconstructing the displacement values for a point
inside Ω involves numerically computing the boundary integral shown in Eq. 1.

u(q) =
∫

S
φ(ξ)G(q,ξ)dSξ (1)

The discrete approximation is shown in Equation 2. This is roughly equivalent to divid-
ing the boundary S into discrete boundary elements ξi and summing the contributions
of all boundary elements ξi along the boundary S as shown in Fig. 5.

u(q) =
n−1

∑
k=0

φ(ξk)G(q,ξk)×A(ξk) (2)

Here, u(q) is a vector containing the displacement in the frequency domain for a point
q, φ(ξk) weights the contribution to u(q) from ξ relative to other points (or BEs) on the
surface S. A(ξk) is the area of the BE ξk. G(q,ξk) is the Green’s function [5] between q
and a boundary element ξk. G(q,ξk) can be analytically computed based on the material
properties of the region Ω and the coordinates of q and ξ. See Appendix A for details.

Phi Computation. The phi values φ(ξ) in equations 1 and 2 are initially unknown. The
first phase of the microsolver computes the φ(ξ) terms for the Ω region. The computed
φ(ξ) depend exclusively on the region material properties and boundary displacement
values. Once the phi values are computed, they can be reused across other query points
in the same region.

Equation 1 also holds for boundary points as shown in Fig. 6. Thus, computing the
phi values is achieved by using Eq. 2 with points at the boundary, by letting q = ξi. In
this case, u(ξi) are known values stored in the boundary wavefield (Dataset 11 in Fig. 4)
and G(ξi,ξ j) can be analytically computed. This enables setting up a system of N linear
equations with N unknown φ(ξi) values, where N is the number of boundary elements.2

2 More precisely, the number of equations and unknowns is 3N once u(ξi), φ(ξi) and G(ξi,ξ j)
are expanded into their individual 3D components.
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Fig. 5. Query point computation. Comput-
ing values associated with a query point q,
in a homogeneous region Ω, from the φ(ξi)
values associated with boundary elements
ξi ∈ S (outer line).
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u( j)

G( i, j)

Fig. 6. Phi computation. The φ(ξi) values
are unknown. They are computed from the
known displacement values at the boundary
u(ξ j) by solving a system of linear equa-
tions.

ξi︷ ︸︸ ︷
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(ξ0ξ0) · · · G(ξ0ξi) · · · G(ξ0ξn−1)
G(ξ1ξ0) · · · G(ξ1ξi) · · · G(ξ1ξn−1)

...
...

...
G(ξ jξ0) · · · G(ξ jξi) · · · G(ξ jξn−1)

...
...

...
G(ξn−1ξ0) · · · G(ξn−1ξi) · · · G(ξn−1ξn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

φ︷︸︸︷
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φξ0

φξ1

...
φξi

...
φξn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

u︷ ︸︸ ︷
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(ξ0)
u(ξ1)

...
u(ξi)

...
u(ξn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 7. Matrices representing the linear system of equations corresponding to the Gω ×Φω = Uω
equation. This system is solved to obtain the unknown φ values for a frequency ω. Gω contains
the (known) coefficients of the Green’s tensors, Φω is the vector of unknown variables and Uω is
the vector of known displacement values obtained from the simulation wavefield.

Figure 7 shows the matrix system resulting from these equations. The discretization de-
tails can be found elsewhere [19,24]. Equation 1 is undefined for the entries along the
matrix diagonal, more precisely G(ξi,ξi) is undefined. These singularities are resolved
through numerical integration using quadratures of odd order [22]. All these computa-
tions are carried out in the frequency domain. A system of equations needs to be solved
for each frequency (wave number) that has a non-zero u(ξ) value. The last step in the
compression phase eliminates frequencies with effective zero values. This also reduces
the number of systems of equations that need to be resolved at query time.

Query Value Computation. After computing the phi values, the data for q is obtained
from Eq. 2. The data for q is the sum of the products between the φ(ξi) and the corre-
sponding Green’s tensor G(q,ξ j). Figure 5 illustrates the process.
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5 Evaluation

The goal of this evaluation is to answer the following questions: (1) What level of com-
pression can be achieved with BEMC? and (2) What is the computational cost of re-
constructing a query point with the BEM microsolver? These questions are answered
below.

5.1 Quake Unstructured Wavefields

Table 1 shows the characteristics of the wavefields used in the experiments. These are
seismic wavefields generated using a state-of-the-art numerical solver for seismic wave
propagation problems. They cover a 100km×100km×37.5km region in Southern Cal-
ifornia that includes Los Angeles and San Fernando basins. The first table column con-
tains the dataset name, which corresponds to the maximum resolved wave frequency.
The second and third columns respectively show the number of mesh elements and
nodes. The fourth column displays the wavefield size in Gigabytes.

Table 1. Unstructured 4D Wavefields

Wavefield Mesh Size
Name Elements Nodes (GB)

LA 0.50 Hz 8,026,868 8,634,452 116
LA 0.70 Hz 17,970,403 19,372,567 260
LA 1.00 Hz 64,128,816 66,548,707 893

Table 2. BEMC Compression Ratio

Wavefield BEMC BEMC
+ freq.

LA 0.50 Hz 0.71 0.14
LA 0.70 Hz 0.51 0.13
LA 1.00 Hz 0.27 0.07

5.2 BEMC Compression

In order to find out the effectiveness of BEMC, we applied the method on the wavefields
shown in Table 1. We constructed boundary meshes for these wavefields and compared
the number of mesh nodal points versus the number of nodes in the FEM hexahedral
mesh for the same wavefield. The boundary mesh is constructed using the approach
described in Section 3. Remember that this approach might not capture all the homo-
geneity of the model, thus not allowing the BEMC compression to take advantage of all
the spatial redundancy.

The compression ratio (output size / input size) for the different wavefields is
shown in Table 2. Column 2 contains the compression ratio achieved exclusively from
the dimensionality reduction –storing only values at the boundary. As the wavefield
simulation frequency increases, BEMC produces better compression. This is expected
as an FEM mesh needs to subdivide a homogeneous region with higher resolution as
the maximum simulation frequency increases. Compressing the LA-0.5Hz wavefield
with BEMC produces only 30% storage savings, however for the LA-1.0Hz the sav-
ings are 73%, this is a 3.7:1 compression factor. The implication is that the number of
boundary elements per region is larger for the LA-1Hz wavefield, which has an effect
on computation performed by the BEM microsolver at query time.
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The third column in Table 2 shows the compression ratio obtained when applying the
frequency-based encoding technique (described in Section 3.2) to the boundary wave-
fields. The combined scheme achieves a compression ratio of 0.07 (14.3:1 factor) in the
best case on the LA-1Hz wavefield, and a 0.14 ratio (7:1 factor) in the worst case for
the LA-0.5Hz wavefield.

Combining these two approaches, not only reduces storage requirements, but also
computation requirements. At query time, the BEM microsolver only needs to compute
values for frequencies that are non-zero. This represents a 5X reduction of computation
for the best case (LA-0.5Hz) and a 4X reduction for the worst case (LA-0.7Hz).

5.3 BEM Microsolver Computation Cost

The following micro-benchmark was used to determine the computational cost of the
BEM microsolver. For regions of different sizes (measured in the number of elements
along the boundary), we measured the time needed to compute the data for a query
point inside the region. The boundary mesh and wave data were already in memory,
allowing to measure the actual compute cost. The microsolver is implemented as a
library of C++ classes. In the phi computation phase, the system of linear equations is
solved by calling LAPACK [4] functions with low-level BLAS [8] routines provided
by ATLAS [29]. Theses experiments were carried out on dual SMP machines with 3.6
GHz x86 64 processors, 2 MB L2 cache per processor and 8 GB of memory running
version 2.6.15 of the LinuxTMkernel. The numerical libraries were configured to use
2-processors. The system setup and query phases are done sequentially on a single
processor.

Figure 8 shows the microsolver compute time per frequency. The X axis indicates
the region size in number of boundary elements, the Y axis contains the elapsed time in
seconds. Each bar is divided into the following BEM microsolver phases: Setup, Solve,
and Query computation. The table in Fig 8 shows the corresponding values in seconds.

Not surprisingly, the query time grows linearly with the region size, setup time is
O(n2) and solving time is O(n3). This puts a practical limit on the achievable
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compression ratio, in the sense that homogeneous regions cannot grow too large, other-
wise the query computation time becomes too high.

A typical homogeneous region contains in the order of a 100 wave numbers in its
frequency spectrum. Thus the total required computation is about 100X larger. How-
ever, with the increase in the number of available processor cores, the solving time for
the system of equations can be reduced. Moreover, the computation for different fre-
quencies (wave numbers) can proceed independently in parallel in separate chips or
compute nodes. The setup and compute phases are performed once per region, intro-
ducing a one-time cost. Subsequent query points for the same region can be computed
from the already obtained solution in linear time, thus amortizing the setup and solving
costs.

We can trade off the achieved compression ratio to reduce the query latency by pre-
computing the phi values and storing them on disk. The raw size of the phi set is 2X
the size of the compressed displacement field for the boundary points. However, both
additional storage size and computational reductions can be obtained by devising a
multi-resolution scheme for storing the phi set, such that the representation for lower
frequencies has a coarser boundary element mesh (i.e., fewer phi values) and higher
frequencies have finer-resolution boundary meshes.

6 Related Work

The goal of data compression is to reduce the number of bits needed to represent the
data. Compression techniques exploit data features such as redundancy. Clever encod-
ing schemes reduce the number of bits required to represent a data symbol. Such tech-
niques include arithmetic coding, Huffman coding, Golomb-Rice codes among others
[1]. Lelewer and Hirschberg present a good survey of these and other techniques [17].
Run-length encoding (RLE) is commonly used in many applications, including the com-
pression of non-photographic images, that is, diagrams produced using drawing tools.
BEMC employs a form of implicit RLE encoding to avoid storing the effective zero
values of a frequency spectrum.

There are various approaches that exploit data features commonly found in text files.
These include Lempel-Ziv-Welch (LZ and LZW) and the Burrows-Wheeler transform
(BWT) [10]. The LZW and BWT methods are respectively used in the popular gzip
and bzip2 compression tools. These approaches work well on text data and binary
executable programs.

Lossy compression schemes achieve higher compression factors at the cost of some
information loss. Upon decompression, the output is an approximation of the input.
Image formats such as JPEG [28] use lossy compression methods based on a discrete
cosine transform [2]. JPEG compression takes advantage of the fact that photographic
images have smooth variations from one pixel to the next one. Audio compression
techniques exploit the fact that the stream of data to compress corresponds to sound
waves [20,30]. Approaches for compressing floating-point values have been recently
developed [14,15,23]. These approaches are complementary to BEMC, as they could
be used as a post-processing pass to effectively encode the residual floating point data
for points at the boundary.
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7 Conclusion

Generating, querying and otherwise analyzing simulation-generated wavefield datasets
becomes difficult as their data size increases. We presented BEMC, a novel approach
for compactly representing large seismic wavefields. A key feature of BEMC is that
it enables spatial range queries in the compressed domain, only a small portion of the
data needs to be retrieved from storage at query time. BEMC uses a domain-specific
approach based on the boundary element method (BEM) to reconstruct the wave data.
A query-time microsolver is used to carry out the BEM numerical computation. We
believe that this approach can be generalized and applied to other wave propagation
problems and in general to other domains that can be formulated in terms of boundary
integral equations.

Our evaluation shows that dimensionality reduction alone offers up to a 3.7X com-
pression factor when applied to large seismic wavefields. The combined BEMC ap-
proach yields compression factors up to 14X. The frequency-based encoding used in
BEMC contributes to the reduction of both storage and query-time computational
requirements.

A Boundary Integral Equations

ui(p) =
∫

S

2

∑
j=0

φ j(ξ)Gi j(p,ξ)dSξ (3)

Gi j(x,ξ) = [ f2δi j +( f1 − f2)γiγ j]/4πµr (4)

The following is the corresponding expansion for the terms in the Green’s function
(Gi j(x,ξ)). The parameters involved in the equations are shown as well.

f1 =
β2

α2

[
1− 2i

qr
− 2

(qr)2

]
e−iqr +

[
2i
kr

+
2

(kr)2

]
e−ikr

f2 =
β2

α2

[
i

qr
+

1
(qr)2

]
e−iqr +

[
1 +

i
kr

− 1
(kr)2

]
e−ikr

γ j = (p j − ξ j)/r

r2 = (p0 − ξ0)2 +(p1 − ξ1)2 +(p2 − ξ2)2

µ = ρβ2

q = ω/α = P-wave number

k = ω/β = S-wave number

δi j = 1 if i = j;0 otherwise

Description
p Point (3D coordinates)

u(p) 3D displacement at p
φ(ξ) Phi vector for BE ξ
δi j Kronecker’s delta
q P-wave number
α P-wave velocity
k S-wave number
β S-wave velocity
ρ Region’s mass density
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Abstract. High performance computing (HPC) systems utilize parallel file sys-
tems that are striped over large number of disks to address the I/O performance
requirement of data intensive applications. These large number of disks are typ-
ically configured into RAID groups for resiliency. Such arrangements of on-line
disk storage systems constitutes one of the major consumers of power in HPC
centers. Many disk power management (DPM) schemes have been suggested
where by the power consumed by these disks is reduced by spinning them down
after they experience long idle periods. Spinning the disks down and up results
in additional energy and response time costs. For that reason, DPM schemes are
effective only if the disks experience relatively long idle periods and the scheme
does not introduce a severe response time penalty. In this paper we focus on
RAID storage systems where by, depending on the RAID level, a group of disks
are formed into RAID units. We introduce a dynamic block exchange algorithm
which switches data between such units based on the observed workload such
that frequently accessed blocks end up residing on a few “hot” units thus allow-
ing the majority of RAID groups to experience longer idle periods. We validated
the effectiveness of the algorithm with several real-life and synthetic traces show-
ing power savings of up to 50% with very small response time penalties.

Keywords: Energy Saving, RAID System Configuration, Energy-aware storage.

1 Introduction

Large scale scientific computing research and applications are generating and exploring
information contents of extremely large datasets most of which are maintained online
for easy accessibility to a community of researchers. These large datasets are retained
and managed on thousands of traditional rotating disks and sometimes supported by
mass storage systems when the data is to be migrated to deep archive.

As prices of disks are getting cheaper in terms of dollars per gigabyte, the prediction
is that the energy costs for operating and cooling these rotating disks will eventually out-
strip the cost of the disks and the associated hardware needed to control them [1]. As
a result, there are now many research programs in industry, government and academia,
which address reducing energy costs at data centers. Disk storage vendors are intro-
ducing more energy efficient hard disks drives with rotating platters (HDD) [2] as well
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as Solid State Drives (SSDs)[3] whose energy consumption is only a fraction of that
of HDDs. Examples of such initiatives and programs for energy efficient computing
currently underway include:

– The Green Grid Consortium that include such companies as IBM, Microsoft, Google,
NetApps, EMC2, etc.

– DiskEnergy at Microsoft Research [4].
– The GreenLight project at UC San Diego,
– The Leadership in energy Efficient Computing (LEEC) at LBNL,
– The Green-NET Project in INRIA

Currently it is estimated that disk storage systems consume about 25–35 percent of the
total power used in data centers [5]. This percentage of power consumption by disk
storage systems will only continue to increase, as data intensive applications demand
fast and reliable access to on-line data resources. This in turn requires the deployment
of power hungry faster (high rpm) and larger capacity disks.

Reducing the energy consumption of the disk storage system has been addressed in
many recent research works. Research efforts are directed at several levels such as phys-
ical device level, systems level and dynamic power management (DPM) algorithms.
At the physical device level, disk manufacturers are developing new energy efficient
disks [6] and hybrid disks (i.e., disks with integrated flash memory caches). At the sys-
tem level, a number of integrated storage solutions such as MAID [7], PARAID [8],
PERGAMUM [9] and SEA [10] have emerged all of which are based on the general
principle of transitioning the disks automatically to a low-power state (standby) after
they experience some pre-determined period of inactivity. This period of inactivity is
also called idleness threshold in the literature.

Disks cannot service any I/O requests when they are in the standby state. For that
reason, a read or write I/O request targeted to a standby disk causes it to spin-up and
return to the active state before it can service it. This of course comes at the expense of
a longer response time to satisfy the I/O request as well as a penalty in terms of energy
costs incurred by the transitioning from the standby to the active state.

In this paper we focus on algorithms for conserving energy in storage systems config-
ured as RAID. These are commonly found in many high performance scientific comput-
ing centers where applications require parallel access to disks as well as fault-tolerance.
We compare our results with another technique used to conserve energy in RAID envi-
ronments called PARAID.

Dynamic power management (DPM) algorithms have been proposed to make deci-
sions in real time when disks should be transitioned to a lower power dissipation state
while experiencing an idle period. Analytical solutions to this online problem have been
evaluated in terms of their competitive ratio. This ratio is used to compare the energy
cost of an online DPM algorithm to the energy cost of an optimal offline solution which
knows the arrival sequence of disk access requests in advance. It is well known [11]
that for a two state system where the disk can be in either standby or in idle mode there
is a tight bound of 2 for the competitive ratio of any deterministic algorithm. This ratio
is achieved by setting the idleness threshold, Tτ, to β

Pτ
where β is the energy penalty (in

joules) for having to serve a request while the disk is in standby mode, (i.e., spinning
the disk down and then spinning it up in order to serve a request) and Pτ is the rate of



324 E. Otoo, D. Rotem, and S.-C. Tsao

energy consumption of the disk (in watts) in the idle mode. We call this value the com-
petitive idleness threshold. This work however, addresses only independent disks and
not when disks are configured into units of RAID groups where for example to maintain
RAID-5 storage configuration, a minimum of 3-disks are grouped into a RAID Group
(RDG) unit. In this paper we focus on energy savings on configurations of RAID units
where the I/Os are mainly for read requests. Figure 1 shows a schematic diagram of the
storage configuration for energy efficient resilient storage. We consider write requests
to be handled efficiently by using any one of the energy-friendly approaches presented
in the literature. For example, in [9] it is recommended that files will be written into
an already spinning disk if sufficient space is found on it or written into any other disk
(using best-fit or first-fit policy) where sufficient space can be found. The written file
may be re-allocated to a better location later during a reorganization process. Another
recently proposed strategy for energy saving for writes is called Write Off-Loading [4].
This technique allows write requests to spun-down disks to be temporarily redirected
reliably to persistent storage elsewhere in the data center.

Our approach for extending the disk idle period is to exchange data between RAID
groups (RDGs) such that the most frequently accessed data ends up residing on a few
of the RDGs which are kept almost always spinning (active state) while the rest of
the RDGs can be powered down most of the time. Our block exchange algorithm also
makes sure that the active disks are not overloaded beyond an acceptable response time
threshold.

The general idea is best explained in terms of temperatures of the disks and of Ex-
change Blocks (XB), where each XB may consist of several physical disk blocks. The
temperature of a disk is determined by the arrival rate of requests to it. The higher the
arrival rate of requests to an RDG, the hotter it becomes. An XB is designated as hot
if it is accessed frequently otherwise it is considered cool. Our algorithm performs two
types of exchanges. First, it exchanges relatively cool XBs from hot disks with hot XBs
taken from cool disks. Second, in order to guarantee acceptable response times, hot
disks that are overloaded with too many hot XBs are cooled off by removing hot XBs
from them to cooler disks.

1.1 Contributions of This Paper

In this paper, we propose a new dynamic block exchange algorithm which can save
up to 50% of energy consumption while satisfying response time constraints. We use
a queuing model and measurements of observed workloads in order to re-distribute
the workload among the disks by exchanging blocks such that a small fraction of the
disks are kept spinning while the rest can be placed in standby mode. The algorithm is
intended to be used with off-the-shelf disk storage systems configured as RAID systems
with or without the presence of SSD drives. We present efficient data structures for
mapping disk blocks to disks. We then present the results of simulating the performance
of our proposed dynamic exchange block algorithms and compare these with those of
PARAID [8] using SimPy [12]). Results show that our power saving algorithm achieves
over 50% savings in energy with small response time penalties when applied to both real
life and synthetic workloads.
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The remainder of the paper is organized as follows. More details about related rel-
evant work are provided in Section 2. In Section 3 we present the exchange algorithm
and the computations that are needed to determine which RDGs participate in block ex-
changes and give some details of the data structure to identify hold and cold blocks to be
exchanged in Section 4. Experimental results are presented in section 5 and we conclude
with Section 6. The details of the exchange algorithms are presented in the Appendix.

2 Related Work

The implementation of energy efficient storage systems has received much attention
lately from governement, industry and academia. Hardware vendors are now offering
energy-efficient hard disk drives (HDD), Solid State Devices (SSD) as alternatives to
HDD and also hybrid disks [13] that utilize SSDs as caches to HDDs. SSDs typically
use non-volatile flash memory or battery backed RAM which offer great energy savings
since there are no mechanical parts involved. However their prohibitively high cost in
terms of dollars per gigagabyte makes them an ineffective option for replacing HDDs
in large data centers [14].

Energy efficient storage systems including both hardware and software are offered
by companies such as COPAN mainly targeting write-once/read-occasionally (WORO)
data. Their solution is based on the MAID (Massive Array of Idle Disks) platform
which guarantees that only about 25% of the disks in each enclosure are powered at
any one time. Another energy efficient prototype storage system for this kind of data,
called Pergamum, has been recently reported in [9]. It is based on a distributed net-
work of disk-based storage appliances using the hybrid-disk approach. Pergamum uses
a relatively small NVRAM attached to each node, called Tome, to allow storage of data
signatures (used in disk recovery) and also metadata.

A different approach is taken by the experimental system Hibernator [15] which
assumes the availability of multi-speed disks. The system divides the disks into tiers
where disks in different tiers can spin at different speeds. The system dynamically as-
signs speeds to different tiers based on observed workloads while also automatically
migrating data between the disks in order to save energy while satisfying response time
constraints. A storage system called PARAID (Power-Aware RAID) presented in [8]
introduces a skewed striping pattern that allows RAID devices to use just enough disks
to meet the system load. The system “shifts gears” based on the observed workload by
varying the number of powered-on disks to meet the response time constraints while
conserving energy. We denote by PARAID(N,M) a PARAID system based on RAID
groups each consisting of N disks where the number of active disks in a group can be
shifted down to M. The main difference between these systems and the block exchange
algorithm in this paper is that both Hibernator and PARAID allow exchange of blocks
only within a single RAID group whereas our algorithm exchanges data blocks between
different RAID groups (RDGs). We assume block-level striping of the files across the
available disks in an RDG. The blocks in a stripe together with the parity block form
an RDG segment of blocks. As a result we exchange segments of data blocks between
RAID groups (see illustration in Figure 5). Nevertheless, we will use the term Exchange
Block (XB) when we mean a segment of data blocks since the algorithm also applies to
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non-RAID configuration. For example each RAID group can be configured simply as a
single disk.

Other differences between our work and the Hibernator is that the Hibernator as-
sumes multispeed disks which are not currently available whereas in this paper we
assume a RAID group can only be in either of two states (active or standby) and a tran-
sition state (an idle mode). PARAID needs to reserve extra space on active disks for
storing the replicated data from the standby disks.

Concentrating frequently accessed blocks on a few disks in this paper, is similar in
concept with the popular data concentration (PDC) concepts of [16]. However, PDC
exchanges popular ”files”, instead of ”data blocks”. Exchanging fixed-size blocks is
transparent to the file system implemented on top of the storage. The use of low level
block exchanges on storage systems and how block table maps are utilized for this
purpose are describd in [17,18].

Other algorithmic approaches to conserve energy include power-aware caching poli-
cies where replacement is based on minimizing energy consumption rather that min-
imizing cache misses. Several caching algorithms that use dynamic programming are
presented in [19,20]. Several interesting theoretical results have been published during
the last decade in the area of Dynamic Power Management (DPM) for disk systems.
Many of these results are reviewed in [11]. Most of this work assumes a single disk and
attempts to find an optimal idle waiting period (also called idleness threshold time) after
which a disk should be moved to a state which consumes less power. Requests can only
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be served when the disk is at the highest power state (active state) and there is a penalty
associated with moving from a lower power state to the active state. The problem is that
of devising dynamic on-line algorithms for selecting optimal idleness threshold times,
based on observed idle periods between request arrivals, to transition the disk from one
power state to another. The most common case has only two states namely, active state
(full power) and standby (sleep) state. The quality of these algorithms is measured by
their competitive ratio which compares their power consumption to that of an optimal
offline algorithm. It has been shown that in the two state case a competitive ratio of 2 is
the best possible. Another type of theoretical work uses a probabilistic model checking
tool PRISM used to explore DPM using probabilistic models. The main characteristics
of related studies in the area of energy efficient disk systems are summarized in Table 1.

3 Features of the Exchange Algorithm

3.1 The Storage Configuration

Figure 1 illustrates the storage architecture. It consists of an array of conventional disk
storage configured into identical RAID Groups (RDG). A RAID (Redundant Array of
Inexpensive Disks), is a form of storage system in data centers that provides high per-
formance and fault tolerance at a relatively low cost. Each RDG in our system can be
configured as RAID-0, RAID-1, RAID-4 or RAID-5. We will assume, from now on,
that each RDG is configured as a RAID-5 unit. A RAID Group uses a Solid State Drive
(SSD) as a large cache to stage data read from and written into an RDG. Using an SSD
for each RDG is attractive since it is fast, durable, noiseless and energy efficient and
currently is also available in large capacities of the order 64,128,256 GiB [3]. An I/O
sub-system, complete with I/O nodes, maintains a large number of RDGs. Clients inter-
act with the I/O subsystems by writing and reading files either as a parallel file system
or as Storage Area Network (SAN), with the provision that each block of a file must be
entirely contained in an RDG unit. A good conceptual view of our systems is that of
nested RAID-5+0 [21] (see Figure 5. We call the set of disk blocks (also termed disk
chunks) in an RDG that form a stripe an RDG segment. Our configuration allows for
migrating RDG segments (as explained subsequently) of disk blocks from one RDG to
another.

Files in each RDG unit are striped according to the configured RAID level of the
RDGs. One primary objective of the system is to concentrate active files in a small
enough number of active RDG units without compromising the aggregate I/O band-
width that satisfies the required response time of data accesses. Two approaches to
achieving this is by dynamically migrating either entire files or RDG segments from an
RDG with less I/O requests to others with high I/O activity but with just enough load
on the active RDGs that the overall bandwidth is sufficient to meet the response time
requirements. In this manner the less active RDGs can be idle long enough for the entire
RDG unit to be spun down.

The SSD caches may prolong the idle times of RDG units and extend the shutdown
periods of an RDG unit. In this paper the unit of exchange is called an XB (exchange
block) which consists of one or more RDG segments.
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Fig. 1. Overview of RAID configured energy
smart disk storage

Fig. 2. Two ways of XB exchanges

3.2 Arrival and Departure Rates

Before introducing the exchange system, we first define the arrival and departure rate for
an RDG. The arrival rate for an RDG means the arrival rate of block requests received
by the RDG but excluding the requests introduced by the block exchanges. We divide
the timeline into epochs of T seconds and predict the mean arrival rate R for the next
epoch as a weighted average of our predicted arrival rate Rpred and the measured arrival
rate Rmeas of the previous epoch. The rate R is computed by the following equation,

R = w ·Rpred +(1−w) ·Rmeas,

where the constant w represents the weight of the previously predicted arrival rate. As
shown later, when R exceeds a given threshold the arrival rate of the RDG becomes
too high and its requests should be off-loaded to other RDGs. In computing R, we
intentionally ignore the portion of the arrival rate caused by block exchanges in order
to prevent off-loading an RDG whose load is caused only by exchanges and not by real
data requests.

The predicted departure rate D includes serviced requests due to either original data
requests as well as requests caused by exchanges. To ensure proper update of D under
heavy workload, we update D after every K requests are serviced, instead of the fixed
time epochs used for computing R. We use the following equation to compute D,

D = w ·Dpred +(1−w) ·Dmeas,

where Dpred is our previous prediction and Dmeas is the average of the measured depar-
ture rate over the latest K requests, i.e., Dmeas = K/q where q is the number of seconds
it took to service the last K requests. Using such a definition, the departure rate of a
hot RDGs reflects whether the disk is still suitable to share more workload from other
RDGs immediately, particularly when the RDG becomes busy. Including the exchange
workload in the computation of D can stop an RDG from a short term overloading
due to exchange. In this work, we set w to 0.875, T to 10 sec, and K to 128 based on
analyzing several real workload traces.
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3.3 Hot and Cool RDGs

We maintain a sorted list L of the n RDGs in decreasing order of their D (departure rate)
values. Each time the value of D changes for any RDG, it is moved to its appropriate
position in L according to the sort order. As shown in Figure 2, the system divides L
into two groups. The first m RDGs in L are characterized as hot while the other n−m
RDGs are characterized as cool.

We refer to the unit of data exchanged between RDGs by the algorithm as XB (ex-
change block) and this may consist of one or several RAID stripes. We use two types of
block exchanges. The first type of exchange is performed after a block is accessed on
a cool RDG. The algorithm interchanges the XB containing this block with an XB that
was not accessed recently residing on a hot RDG starting the search for the first such
XB with the RDG at position m in L followed by position m−1 etc. The logic behind
this type of exchange is to ”lower” the temperature of cool RDGs to further reduce their
request arrival rate and thus extend their idle time periods. The second type of exchange
is used to avoid overheating of hot RDGs that may cause long queuing delays and ex-
cessive response times. This exchange is performed after accessing a block on a hot
RDG at position j in L where 1≤ j < m if it is determined that the RDG is overloaded.
In this case, the XB containing the accessed block will be interchanged with an XB that
was not accessed recently in RDGs ”cooler” than j in the hot group. The search for
such an XB starts from an RDGs at position m, m−1, . . . , j + 1 until a first such XB is
found.

The number, m, of hot RDGs is dynamically determined based on the arrival rate
of user requests. If the arrival rate is high, then more RDGs would be included in this
group. These hot RDGs are never shut down in order to serve the bulk of arriving
requests efficiently. On the other hand, the cool RDGs are supposed to have long idle
time periods allowing greater power saving. The calculation of m is described in the
subsequent subsection.

3.4 Sustainable Rate of RDGs

As explained above, the goal of the block exchange system is to dynamically balance the
load of the hot RDGs. By moving out the frequently-accessed XBs from an overloaded
one, the arrival rate of the RDG would be reduced and the response time of requests
can be efficiently shortened. However, the penalty associated with this exchange is that
it can potentially cause more RDGs to move to an active state in order to serve the
user requests. Let us denote by t the constraint on expected response time acceptable to
users. We now show how to calculate the maximum arrival rate that is sustainable by a
hot RDG while still satisfying t. In the remainder of this paper, we will call this rate the
sustainable rate of an RDG and denote it by S(R).

In [22] we analyzed the energy savings and response time trade-offs, and presented
an analytical model to estimate the power cost and response time of an RDG under
different arrival rates and service times of requests. We now describe how S(R) is com-
puted. From [22], we know that the expected response time, E[J] in the hot RDGs is

E[J] =
ρ

1−ρ
E[S2]
2E[S]

+ E[S].
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Fig. 4. The potential power saving ratio of
EXGBLK under different request arrival rates

where ρ is the load, i.e., ρ = R ∗E[S], R is the arrival rate, and E[S] is the expected
service time of requests. In our case, based on the disk characteristics given in Figure 2
and the real life workload of [23], we get E[S]=0.022 and E[S2]=5.24E-4. Figure 3 plots
the relationship between the expected response time, E[J] and the arrival rate S[R] for
a single hot RDG as calculated from the above expression. From the figure, we can
see that, to achieve a response time constraint t = 0.05, the sustainable rate of an RDG
S(R) should be set to 30 requests per second assuming block exchange operations are
executed.

Then, after determining S(R), we can calculate the number m of hot RDGs as follows,

m =

⎡
⎢⎢⎢⎢⎢

n
∑

i=1
Ri

S(R)

⎤
⎥⎥⎥⎥⎥

where Ri is the arrival rate of the ith RDG.
Also, based on our analysis model, we can estimate the potential power saving by our

block exchange algorithm called BLKEXG. For example, in Figure 4 we plot the power
saving ratio as a function of P the percentage of requests arrivals (including exchanges)
to the cool RDGs for different values of m (the hot RDGs).

Figure 4 shows the normalized power saving of BLKEXG, compared to the NPS (no
power saving) case over different P and m, respectively. In this figure we assume the
system consists of n = 24 RDGs with t = 0.08, from which we derive S(R) to be 35
based on Figure 3.

3.5 Thresholds for Starting Block Exchanges

There are three thresholds, LowTH, TargetTH, and HighTH, applied to each RDG to
determine whether to proceed with a block exchange. Since our goal is to keep the
arrival rate of each hot RDG close to its S(R), sustainable rate of an RDG, we set
TargetTH to S(R). Then, as described in Procedure Recv() (please see the Appendix),
to achieve a load balance among the hot RDGs, whenever a request arrives for blocks
in a hot RDG, ranked j in L, we check whether its arrival rate is higher than the high
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threshold HighTH. If it is, then the RDG is marked as a hotspot. For each of the requests
arriving to the RDG, after serving the request, the ExgBlk function is called to locate
the XB which contains the requested block. Then, the XB is exchanged with an un-
accessed XB starting the search from the RDG currently ranked m in L (hot RDGs
with the lowest departure rates) and proceeding to m− 1 up to j + 1. In the search,
RDGs marked as hotspot will be skipped due to their heavy loads. Note that since the
currently accessed RDG is ranked j, then the search is stopped after the rank j+1 since
continuing the search will only encounter RDGs with ranks smaller than j which must
have higher D (departure rates).

The procedure to locate an un-accessed block in a selected RDG is called GetUnac-
cessedXB() and is described in Section 4 and uses a tree data structure. It returns -1 if
all blocks on the RDG are accessed.

Such an exchange will proceed whenever a request arrives to the hotspot RDG until
the arrival rate of the RDG is lower or equal to the TargetTH. Then, the hotspot mark
will be removed. Let us now turn to the procedure for extending the idle time of the cool
RDGs which is similar to the above procedure. Whenever a request arrives for blocks
in a cool RDG, we examine whether the arrival rate of the RDG is lower than the low
threshold LowTH. If it is, after serving the request, we call ExgBlk to locate the XB
which covers the requested block and then exchange the XB with an un-accessed XB
located at a hot RDG starting the search with the RDG with the lowest departure rate
(ranked m).

Note that here we exchange blocks with a hot RDG based on measurements of de-
parture rate (the lowest departure rate), instead of the lowest arrival rate. The reason is
that an RDG with low arrival rate may be busy serving the queued requests. Also, since
the exchange itself also adds loading to the selected hot RDG, by picking the hot RDG
with the lowest departure rate, we can further avoid the selected RDG from short-term
overloading caused by the exchange operations. Also note that due to the dynamic sort-
ing of the RDGs based on their departure rates, the blocks are exchanged with different
hot RDGs at different times thus leading to load balancing among them.

4 Data Structures for Block Mapping

4.1 How to Select Blocks for Exchanges

As described in Section 3.3, we need to pick a non-frequently accessed XB from the
coolest hot disk for the exchange. Thus, we need a method to quickly find such an XB
on a disk. To simplify the problem, let’s first assume we want to distinguish between
the XBs accessed at least once from the ones who have never been accessed called un-
accessed XBs. The naı̈ve way to satisfy this goal is to allocate a bit vector (initialized
to all 0’s) which we call XB-Access-Vector where each bit in the vector corresponds to
one XB on the disk. Once an XB is accessed, we turn its corresponding bit to 1 if it is
0. Then, to find an un-accessed XB, one can sequentially search the XB-Access-Vector
until encountering a 0 bit. However, this method needs N-bits of space and O(N) search
time, where N is the number of XBs in one disk. To reduce the search time, we propose
a binary tree structure as shown in Figure 6 which we call double-bit tree (DBT).
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Fig. 5. Illustration of XB exchanges in a RAID-0 + MAID configurations

Each internal node of the DBT consists of two bits called the left-bit and the right-bit.
The leaves of the DBT are formed from the entries of the XB-Access-Vector, i.e each
bit corresponds to an XB and it is set to 0 or 1 according to whether the corresponding
XB was accessed or not respectively. The left-bit (right-bit) of an internal node in a
DBT is set to 0 if at least one of the leaves in its left (right) sub-tree are 0 otherwise it
is set to 1. To find an un-accessed XB, one starts searching from the root of the DBT,
if both left and right bits at the root are 1 all XBs at the leaves have been accessed and
the search stops. Otherwise we search recursively in the left sub-tree of the root if the
left-bit=0 or search in the right sub-tree if left-bit=1. For reference purposes we call
this DBT search procedure GetUnaccessedXB. It is easy to see that GetUnaccessedXB
operates in O(logN) steps. Updating the DBT once an un-accessed XB gets accessed
is done by changing the bit at the leaf corresponding to that XB to 1 and updating the
internal nodes on the path from the leaf to the root as necessary. The update procedure
simply changes the left-bit (right-bit) of a parent node to 1 if both the left and right bits
of its left (right) child are 1. This can also be done in O(logN) steps.

4.2 Block Exchange Information

We can now build a slightly more complex data structure that monitors the access fre-
quency of XBs across a time window of s time units and decides whether an XB is
frequently accessed during the time window. To do this we maintain a set of XB-Access-
Vectors (XAB) called XAB(Ti) for the last s time units T1,T2, ...,Ts. We then compute
an additional vector called Total-XB-Access-Vector where each of its entries is a func-
tion g (based on some weighted average) of the corresponding entries in XAB(Ti) for
i = 1,2, ..,s. The DBT is then built using the Total-XB-Access Vector entries as its
leaves. An example of this is given in Figure 7 for s = 3. In the formula below we give
more weight (Wi = 2i−1) to more recent accesses than ones that occurred in the past but



Dynamic Data Reorganization for Energy Savings in Disk Storage Systems 333

Fig. 6. The Tree Structure to locate Block Ac-
cesses
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Fig. 7. Information retained to track frequently
accessed XBs

at the same time our function also gives some fixed weight to the frequency of accesses
independent of when they occurred. This is represented by the addition of 1 to each Wi

in the expression for exp( j). In this case the function g( j) which determines the value
of the jth bit in the New Total-XB-Access-Vector is set as follows

exp( j) =
3

∑
i=1

XAB(Ti)[ j](Wi + 1)

and

g( j) =
{

1
0

exp( j)≥ 5
otherwise

5 Experimental Results

5.1 Simulation Configuration

We developed a simulation model to examine the block exchange system proposed in
Section 3. The simulation environment was developed and tested using SimPy [12],
as illustrated in Figure 8. The environment consists of a workload generator, a block
dispatcher, and a group of hard disks. Table 1 shows the characteristics of the hard disk
used in the simulation. With the specifications taken from [6] and [24] we built our own
hard disk simulation modules. A hard disk is spun down and set into standby mode
(see Figure 9) after it has been idle for a fixed period which is called idleness threshold
[16],[25].

The workload generator supports two different ways to produce block requests. First,
the generator can follow a Poisson process to produce requests at a rate R to access
disks. Based on the statistics collected from the real workload [23], we set the number
of disks to 24 and the data size required by each request to 8, 16, 24, or 32KB with
even probabilities. Then, the arrival requests to disks are generated based on a Zipf
distribution whose cumulative density function F(x) is given by

F(x) = P(x < i) = (i/N)θ ∀1≤ i≤ N.
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Fig. 8. Configuration of disks used in the sim-
ulation
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Fig. 9. Power usage modes of a disk drive

Table 2. The characteristics of the hard disk

Description Value
Disk model Seagate ST3500630AS
Standard interface SATA
Rotational speed 7200 rpm
Avg. seek time 8.5 msecs
Avg. rotation time 4.16 msecs
Disk size 500GB
Disk load (Transfer rate) 72 MBytes/sec
Idle power 9.3 Watts
Standby power 0.8 Watts
Active power 13 Watts
Seek power 12.6 Watts
Spin up power 24 Watts
Spin down power 9.3 Watts
Spin up time 15 secs
Spin down time 10 secs

where N=24 and its skew parameter θ is set to log 0.8/log 0.2, which means 80% of
all requests would go to 20% of disks. Similarly, we divided the space of a disk into
500 segments. Then, the Zipf distribution is used again to determine the frequency of
requests for blocks in each segment, where N is set to 500.

Besides producing workload based on probability model, the workload generator
can produce requests based on a log of block access to a storage system. Two realistic
workload logs are used in our experimental results. The first log is the I/O trace from
OLTP applications running at two large financial institutions [18]. There are 4099352
writes requests interleaved with 1235632 read requests for the blocks distributed on
24 storage devices. The mean rate of arrival requests is 123.5/s. The second log is
HP Cello99 trace [HP], collected by the HP Storage Research Lab. Since the whole
one-year workload is too large, we consider the trace beginning from 1999-05-01 to
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1999-05-12 in the simulation, this period is about 6 times the period that was used in
PARAID work. The extracted trace involves 23 storage devices, accessed by 30M write
requests and 20M read requests during the time period.

In the experiments, the sustainable rate of a device was set to 35 requests per sec-
ond. The high threshold (HighTH in Section 3) is 1.3 times of 35, or 45 while the low
threshold (LowTH) is half of 35, i.e. 17.5. To compare the effects of the block ex-
change algorithm on power saving and response time, we also examined the effects of
DPM with fixed idleness thresholds and PARAID(5,3) [8], denoted as PARAID in the
following results. Dynamic power management (DPM) algorithms have been proposed
in [11] to determine on-line when the disk should be transitioned to a lower power
dissipation state while experiencing an idle period. Based on the description and con-
figuration in PARAID, we also implemented PARAID(5,3) in our simulation, which
provides two tiers of service capacity. When the request load is high, all 5 hard disks
would be kept spinning to serve requests as a generic RAID-5 device. However, when
the load becomes lower than a threshold, only 3 disks would be active and the other 2
disks would be spun down to save energy. To ensure that all data on the 2 spun-down
disks can be accessed during the power-saving tier, PARAID initially has to reserve a
specific amount of space in the 3 spinning-always disks to duplicate the data and their
corresponding error correction code from the 2 spun-down disks. This reservation im-
plies that deploying more PARAID systems may be necessary to provide the same total
free space of the RAID-5 systems. To model this situation, we examine a special case of
PARAID, denoted as PARAID* to provide the same free storage space as RAID-5 sys-
tems by deploying more PARAID systems. In fact, because a PARAID(5,3) system has
to duplicate the data from the 2 inactive disks into the 3 spinning-always disks and in ad-
dition generate the error correction code for these data, 3/8 of space in a PARAID(5,3)
system is sacrificed. That is, about 38 PARAID(5,3) systems are necessary to provide
the same free space of 24 RAID-5 systems.

5.2 Power Saving Results for OLTP Workload

Figure 10 shows the power saving ratios of DPM, BLKEXG, PARAID, and PARAID*
under the OLTP workload, the ratios are normalized with the power cost of 24 RAID-5
systems with disks that are always spinning. As shown in the figure, for this workload,
simply using DPM can save 10% of power only. The reason is that the mean arrival
rate for each device in the workload, 123.5/24 or 5.15/s, is too high for DPM to save
power. From earlier results of [22,26], DPM can only save power if the arrival rate for
a disk is smaller than 0.029/s. Finally, compared to DPM which saves at most 10%, the
BLKEXG system can save up to 50% of the power cost.

Figure 11 further displays the power cost for each RAID device. Obviously, by con-
centrating frequently accessed blocks into the hot devices from the cool devices, only
three devices are necessary to be active (always spinning) to serve requests. The other
21 device can have longer idle periods to save power and thus their mean power cost
is only 15W. On the other hand, by using DPM, although some devices may have long
idle periods which are sufficient to produce beneficial power savings, the other devices
are still too busy to save any power.
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Fig. 10. Power saving ratio of DPM,
BLKEXG and PARAID

Fig. 11. The power cost of each device under
DPM, PARAID, and BLKEXG

Fig. 12. The mean idle period of each device
under DPM, PARAID, and BLKEXG

Fig. 13. Comparison of response times for dif-
ferent power saving mechanisms

Figure 12 shows the mean idle period of devices under these power saving mech-
anisms. Using this figure, we find that BLKEXG can increase the length of the idle
period by a factor of almost 100 times of that under DPM or PARAID, by concentrat-
ing blocks into the hot devices. The BLKEXG curve shows that the ”hottest” devices
are chosen to always spin as they have short idle times due to the concentration of fre-
quently accessed blocks on them, this however makes the other devices have long idle
periods sufficient to produce power savings.

5.3 Response Time Results for OLTP Workload

Saving power often implies an increase in response time. Therefore, it is important to
measure the response time penalty due to the power saving policy. Figure 13 shows the
response times of requests using DPM, BLKEXG, and PARAID. Again, while DPM
only saves 10% of power, it seriously impacts the performance, i.e. increases the re-
sponse time by a factor of more than 7.5 of that of devices without power saving (NPS),
i.e. from 0.01s to 0.07. On the other hand, using BLKEXG only increases the response
time to 0.022 while saving 50% of power cost. Obviously, deploying the block exchange
system is a preferable option.
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5.4 Power Saving and Response Time Results for the CELLO99 Workload

We now examine the power saving and response time provided by BLKEXG, DPM,
PARAID, and PARAID* under the CELLO99 workload. Figure 14 shows the power
saving ratio for each saving mechanisms, compared to the case where power saving
modes of devices are disabled. The results display that BLKEXG can save 64% of
energy, which is double the savings achieved by simply using the DPM mechanism and
16% more than PARAID. In fact, since PARAID has to keep at least 3 disks spinning,
it is hard to save more energy in this case. Moreover, as shown in Figure 14 (the bar
corresponding to PARAID*), if the total free space provided by a storage system is
considered, then PARAID would save only 12% of energy since more PARAID systems
are required to provide the same free space as that by others.

Fig. 14. Comparison of power savings of HP
Cello99 for different power saving mecha-
nisms

Fig. 15. Comparison of response times of HP
Cello99 for different power saving mecha-
nisms

Figure 15 shows the response time for each power saving mechanism. Undoubtedly,
the devices without power saving mode always provide the shortest response time. Also,
BLKEXG provides shorter response time than PARAID while saving more energy. On
the other hand, although BLKEXG provides 1.5 times of response time of the DPM
mechanism, it saves 2.2 times of energy. Finally, it is surprising that PARAID* does not
provide shorter response time as compared with PARAID although PARAID* has more
devices to serve requests.

5.5 Results for Synthetic Workload

To further verify BLKEXG under different heavy workloads, we used synthetic work-
loads with different arrival rate of requests and measured the effect on power saving and
response time of the BLKEXG system. We also, measured power savings and response
times for DPM and PARAID for comparison. Figure 16 shows the power saving ratios
of these mechanisms under this workload. The ratios are normalized with the power
cost of 24 RAID-5 systems with disks that are always spinning. The results show that
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Fig. 16. Power saving ratios of different
schemes under varying request arrival rates

Fig. 17. Response times of requests for differ-
ent schemes under varying arrival rates

BLKEXG can save 80% of power while PARAID provides 40% of power saving and
DPM only provides about 5% on average.

Figure 17 shows the response time of requests provided by these power saving mech-
anisms. Similar to the results under the real workloads, DPM causes very long response
times particularly when the arrival rate is low, because each request has a high probabil-
ity of arrival during the periods where the hard disks are in standby mode and then has to
wait a long time for the spinning up of the disks in the device. However, since BLKEXG
would concentrate frequently-accessed blocks into hot devices, most requests would be
redirected to these devices and only a few requests which are directed to the cool de-
vices may suffer such long response time delays. Therefore, the response time under
BLKEXG is much shorter than DPM. On the other hand, although PARAID provides
similar short response times as BLKEXG, it saves only 40% of energy, which is just
half of BLKEXGs.

6 Conclusion

In this paper, we presented a response time sensitive dynamic block exchange algorithm
for reducing energy consumption of storage systems configured as RAID-5 systems and
compared this with a similar RAID-5 energy saving system given by PARAID. Our al-
gorithm operates by measuring arrival rates at each of the RDG and then dynamically
re-distributing the workload by exchanging data segments of RDG blocks when neces-
sary. We also presented the necessary data structures for quickly identifying blocks that
need to be exchanged. Using real life workloads we showed that the algorithm leads to
the concentration of the bulk of the disk access traffic on a small fraction of the avail-
able disks. This allows the remaining disks to experience longer idle periods which in
turn makes the DPM (dynamic power management) procedures much more effective.

Extensive experiments with our block exchange algorithm showed that it is much
more efficient than simply using known DPM procedures or the PARAID approach.
In contrast to PARAID, our algorithm does not need to copy data from stand-by disks
within an RDG and therefore more space efficient. For typical workloads, our algorithm
is more efficient than PARAID by a factor of 2 in terms of energy savings.
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Appendix: Algorithms

The following functions are used in the algorithm, for lack of space we simply explain
here what each of them does.

(1) GetMappedDevID(): Get the current ID of the device to be accessed by a request.
(2) GetMappedBlockID(): Get the address of a block on a device.
(3) ForwardToDev(): Forward a request to a device.
(4) GetCorrespondingXB(): Locate the XB (exchange block containing a given block).
(5) GetDevIDWithRank(): Get the ID of a device with a given rank in L.
(6) Exchange(): Perform an exchange between two XBs.

Procedure Recv(Req,HotSpot)

begin
Input: Req: Received Request
Output: HotSpot: a bit vector where each bit corresponds to a storage device
id dev← GetMappedDevID(req) ;
id blk← GetMappedBlockID(req) ;
ForwardToDev(id dev,id blk) ;
if (isHot(id dev) then

if Req(id dev)≥ HighTH then
HotSpot[id dev]← 1

else
if Req(id dev) < TargetTH then

HotSpot[id dev]← 0

if HotSpot[id dev]=1 then
ExgBlk(id dev,id blk)

else
if Req(id dev) < LowTH then

ExgBlk(id dev,id blk)

Function ExgBlk(id dev,id blk)

begin
Input: id dev: device id, id blk: block id
id XB← GetCorrespondingXB(id blk) ;
for i← m downto 1 do

nid dev← GetDevIDWithRank(i);
if HotSpot[nid dev] = 1 then continue ;
if nid dev = id dev then break ;
nid XB← GetUnaccessedXB(nid dev) ;
if nid XB < 0 then continue ;
Exchange(id dev,id XB,nid dev,nid XB) ;
break ;
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Abstract. We present a technique for organizing data in spatial
databases with non-convex domains based on an automatic character-
ization using the medial-axis transform (MAT). We define a tree based
on the MAT and enumerate its branches to partition space and define
a linear order on the partitions. This ordering clusters data in a man-
ner that respects the complex shape of the domain. The ordering has
the property that all data down any branch of the medial axis, regard-
less of the geometry of the sub-region, are contiguous on disk. Using
this data organization technique, we build a system to provide efficient
data discovery and analysis of the observational and model data sets
of the Chesapeake Bay Environmental Observatory (CBEO). On typi-
cal CBEO workloads in which scientists query contiguous substructures
of the Chesapeake Bay, we improve query processing performance by a
factor of two when compared with orderings derived from space filling
curves.

1 Introduction

We present a system that provides efficient disk access when querying spatial
structures across multiple, heterogeneous data sets defined over a non-convex
spatial domain. Non-convex means that the line segment connecting two points
in the domain is not guaranteed to be contained within the domain’s interior.
We built the system to support data discovery and analysis of environmental
data sets from the Chesapeake Bay, which exhibits non-convexity: estuaries are
long and skinny with a large number of winding, tendril-like tributaries. Non-
convexity arises in many other systems, such as medical applications (the circu-
latory system), manufactured systems (road networks and indoor air systems),
and other natural systems (turbulent structure and flow in porous media).

Querying spatial data has emerged as an important topic in database man-
agement systems, for both scientific databases [1,2] and geo-spatial services, such
as geotagging, urban computing [3], and collaborative sensing [4]. The Chesa-
peake is the most intensively studied estuary in the United States. Our databases
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Fig. 1. A Hilbert ordering applied to
the Chesapeake Bay. The Potomac
River is highlighted.

include more than 15 observational data
sets from buoys, shallow-water sensors,
cruises, aircraft observations, etc. along-
side high-resolution water-quality and hy-
drodynamic models. Providing scientists
with the ability to compare, correlate,
and join data among these data sets has
transformed our understanding of critical
Bay processes [5], such as hypoxia (oxy-
gen depletion) and the variable influence
of flow and nitrogen load on water qual-
ity and the benthic community. For exam-
ple, using high-resolution model output to
inform the interpolation of water-quality
measurements from 40 measurement sites
has produced more accurate maps of salin-
ity and dissolved oxygen over 10 years of
data than were previously possible [6].

Traditional approaches for organizing spatial data on disk do not meet the
requirements of Chesapeake Bay data sets specifically and data drawn from
non-convex spatial domains in general. Two aspects make the problem challeng-
ing: (1) the non-convex boundaries define a complex notion of spatial proximity
among data and (2) the support of queries across multiple, heterogeneous data
sets requires a regular decomposition of space.

Data organizations that do not respect the boundaries of non-convex spatial
domain lead to poor I/O performance when querying spatial structures. Most
decompositions of space, e.g. tessellations, space-filling curves, region trees, and
packed R-trees [7], group data by Euclidean distance. However, data points near
each other in Euclidean space may have a weak spatial relationship. For example,
Figure 1 shows how a Hilbert curve fails to cluster the region of space associated
with the Potomac River (shaded). If one uses the linear ordering following the
curve to define the address space, the Hilbert curve will break up data from the
river into many disjoint regions.

A regular decomposition of the spatial domain creates a global addressing
scheme that makes comparing and joining data from different data sets possible
[8]. The index value (lookup key) of a data point derives from its location in
space alone. For this reason, regular decompositions are called data independent.
Owing to data independence, data will have an index value that only depends
on its spatial position, making it possible to compute joins across multiple data
sets. Similarly, spatial properties of the index are preserved and we can compute
nearest neighbors and clusters across multiple data sets.

We provide a data organization and indexing system based on a regular-
decomposition that captures the complex spatial relationships of non-convex
domains. We call this Rings for regular indexing of non-convex geometric spaces.
Rings employs a computational geometry construct, the medial-axis transform
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(MAT), to automatically characterize the domain. Based on the MAT, we parti-
tion space and create an index on the partitions. Rings defines a primary index
for our databases in that we lay the data out on disk in index order by using
Rings indices as the primary keys in a sorted relation.

Rings derives its performance benefits from encoding the geometry of the
domain in the index and data layout. It represents the medial-axis as a tree and
enumerates its branches to generate the indices. In doing so, all data down any
branch of the MAT, regardless of the geometry of the sub-region, are contiguous
in index space and on disk. For Chesapeake Bay data, this means that any
substructure—an estuary, river, or bay—consists of a contiguous index range
and can be read sequentially from disk. Rings preserves index contiguity at
multiple scales in support of self-similar structures, e.g. Rock Creek occupies a
contiguous sub-region of the Potomac River’s contiguous index range.

We evaluate the performance of Rings in comparison to indexes derived
from space filling curves. On workloads derived from queries submitted to the
Chesapeake Bay Environmental Observatory, our implementation improves
query processing times by a factor of two for queries of contiguous substructure.
An evaluation against randomly generated shapes shows further performance
improvements as non-convexity increases.

2 Related Work

The Medial Axis Transform: Introduced by Blum more than four decades
ago, the Medial Axis Transform [9] is a computational geometric structure char-
acterizing the “central skeleton” of a shape. In 2-d, it comprises a network of
curves, whereas in higher dimensions it can be made up of surface patches,
volume elements, and higher degree manifolds up to co-dimension one. The
MAT characterizes the general structure of the shape and has found applica-
tions in varied disciplines, such as path planning [10] and image segmentation in
medicine [11], studying drainage patterns in watersheds [12], surface reconstruc-
tion in computer graphics [13], and routing in sensor networks [14].

The computation of the MAT has proved difficult for all but the simplest of
polyhedral models, and numerous approximating methods have been proposed.
These have included using morphological thinning [15,16], adapting quadtrees to
define the MAT [17], approximating the MAT by the vertices of a Voronoi dia-
gram defined by a dense sampling of the boundary [18], modifying the underlying
spatial metric [19], pruning the set of interior edges in a Delaunay triangulation
computed from the union of boundary and Voronoi vertices [20], and using the
center points of a constrained Delaunay triangulation to define the skeleton [21].

Regular Decompositions: The simplest regular decomposition divides space
into a grid of square (2-d) or cubic (3-d) cells. To construct an index from a
grid, one defines a linear-ordering over the cells. For simplicity, this can be done
in a row-major or column-major order. Many applications choose to use space-
filling curves, such as the Z-order or Peano-Hilbert curve, which cluster data
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spatially [8]. Space-filling curves reduce the number of accesses to indexes for
query regions that are square, circular, or simple polygons [22].

Region quadtrees in 2-d [23] and region octrees in 3-d [24] recursively partition
space into successively smaller squares or cubes. By themselves, the trees are just
spatial search structures and do not define a linear ordering. Locational codes
derive labels for each leaf based on a Z-ordering of the grid implied by the
smallest leaf nodes [8].

The Astrophysics community has adopted the Hierarchical Triangular Mesh
(HTM) [25] regular decomposition for indexing and data organization. The HTM
defines a space-filling curve for spherical coordinates using a quad tree: it ap-
proximates a sphere by starting with an octahedron and recursively refining each
triangle into 4 sub-triangles.

Space filling curves and locational codes cannot respect non-convex bound-
aries. Even if the underlying grid identifies the boundary, e.g. a region tree that
has small cells along the boundary and bigger cells elsewhere, the linearization
remains insensitive to the structure of the domain.

Other Spatial Indexing Techniques: R-trees [26] index objects in space by
providing navigation paths to minimum-bounding rectangles. While the structure
is data defined, one could produce a regular decomposition from R-trees by trian-
gulating the spatial domain and building an R-tree over the triangles. However,
when indexing triangles, R-trees have many overlapping minimum bounding rect-
angles [27], which requires the navigation of multiple tree paths. R+-Trees [28]
mitigate this by dividing objects into disjoint bounding boxes. As with other spa-
tial search data structures, R-trees do not order data on disk. The preferred tech-
nique for placingR-tree data onto disk, called Hilbert-packing [7], uses space-filling
curves to define a linear order on the R-tree’s bounding rectangles.

Papadomanolakis et al. describe a system for indexing unstructured tetrahe-
dral meshes [27]. When searching for a point (or nearest neighbors), they use a
Hilbert-curve to find a mesh cell near the point and then conduct a local search
based on mesh connectivity. We adopt similar search techniques, using a pixe-
lation of all space to identify a nearby point on the MAT and then search the
local structure of the MAT to identify a point, neighbor, or range. They do not
address data placement on disk.

The MAT in Geospatial Applications: The medial-axis transformation has
been used for cartographic and hydrological applications, because it preserves
topological structure. McAllister and Snoeyink [29] use the medial-axis to char-
acterize rivers, e.g. match shores, calculate width, and estimate volume. Gold
et al. [30] use the medial-axis transform to generalize objects while maintaining
the spatial relationships between them. Neither previous work applies the MAT
to data organization or system design.

3 Motivating Applications

Estuarine studies are increasingly data-intensive, pulling in a heterogeneous
mix of observational and model-derived data to gain further understanding of



346 E. Perlman et al.

hydrological and biochemical processes. The Chesapeake Bay Environmental Ob-
servatory (CBEO) provides the infrastructure for developing new methods for
interacting with data [5]. Our collaborators have been using the CBEO to query
Bay structures for several years [31]. Our goal in this work is to improve the I/O
performance of their workloads.

One project studies how changes in the level of dissolved oxygen effect animal
species in benthic (bottom) regions. One of the better datasets for this study
comes from the tidal region near Calvert Cliffs Nuclear Power Plant, where
detailed monitoring has taken place since 1968. This data is combined with
other data, both modeled and measured, to gain a better understanding of how
the benthic community composition changes with respect to dissolved oxygen.

Individual estuaries are often studied as their own microcosm. The Patuxent
River in Maryland is one such tributary. Testa et al. [32] have studied the long-
term changes in the water quality with both measured data and a box model that
estimates the estuary’s time-dependent water circulation. Using these methods,
the authors were able to link anthropogenic and environmental events, e.g. iden-
tifying how new sewage treatment techniques resulted in nutrient changes.

Spatial interpolation techniques are widely used in estuarine science to es-
timate the distribution of variables over all space from a discrete number of
measurements. Kriging is one such method for generating spatial predictions by
using a model of the spatial correlation of the measurements to predict unknown
values as a function of location. Murphy et al. [6] have extended traditional krig-
ing techniques to use the output from a water-quality model as a covariate to
improve the interpolation of data collected from fixed locations. Ongoing work
includes the integration of non-Euclidian cost functions, such as water-distance
and hydrodynamic travel time, with these techniques.

The workloads presented by these applications have several common features
that inform the design of Rings. They all perform data fusion, bringing data
together from heterogeneous sources to facilitate new scientific discovery. Rings
supports this efficiently through a regular decomposition of space which provides
for consistent indexing across multiple data sources. Also, many queries focus on
regions of interest that correspond to physical structures. This arises naturally,
because the different structures express different properties: hydrodynamics, geo-
chemistry, land-use, etc. Rings captures structure through the use of the medial-
axis transform, which automatically identifies spatial features and clusters data
by structure.

4 Methodology

In this section, we describe how we generate an index from a shape file. We also
outline how to process point, range, region, and water-distance queries using this
index. The input to this process is a polygon that describes the spatial domain.
We will output a triangulation of the space, a linear ordering of the triangles,
and auxiliary data structures to be used for query processing.
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Fig. 2. Finding the MAT: We take simple polygon (left), subdivide edges to cre-
ate a Gabriel-conforming graph and construct a Delaunay Triangulation (center), and
connect the circumcenters of adjacent triangles to define the approximate MAT (right)

4.1 Approximate Medial-Axis

The fundamental principle underlying our approach is the use of the medial-axis
transform (MAT) to characterize the spatial domain. The MAT is commonly
referred to as the skeleton. For 2-d domains, it is a series of curves that rep-
resent the “centerline” of the shape. In Rings, we generate a piece-wise linear
approximation of the MAT.

Our approach is to construct a Delaunay triangulation of the vertices and
use the edges of the dual Voronoi diagram to define the MAT. However, the
Delaunay triangulation does not necessarily preserve the edges of the original
polygon. To address this, we subdivide the edges of the polygon to guarantee
that each sub-edge has the property of being a Gabriel edge [33]. Formally, this
means the circle that has a Gabriel edge as its diameter contains no other vertex
in the polygon. Using Gabriel edges has several advantages:

1. The edges of the original polygon are a subset of the Delaunay triangulation
as the end-points of each edge satisfy the empty circle property [34].

2. Each Delaunay triangle is entirely interior or entirely exterior to the bound-
ing polygon.

3. The circumcenters of interior Delaunay triangles and the Voronoi edges con-
necting two such triangles are interior to the polygon.

As a result, the Delaunay triangulation of the vertices provides a well-defined
partition of the spatial domain, and our derived approximate MAT, generated by
connecting the circumcenters of adjacent triangles, is guaranteed to be contained
within the domain.

Figure 2 illustrates our MAT construction. Starting with an initial polygon,
we subdivide the edges to ensure that the sub-edges are Gabriel-conforming and
compute the Delaunay triangulation. Then, we obtain the approximate medial
axis by connecting the circumcenters of adjacent interior Delaunay triangles.

4.2 Linearizing the MAT

Subsequent steps will require the MAT to take the form of a tree with no cycles.
This is the case for genus-0 boundaries, i.e. simple, connected, closed polygons.
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For non-genus-0 boundaries, we fill in all holes interior to the domain, creating a
genus-zero boundary. This approach is simple and appropriate when the interior
structures are small. For the Chesapeake Bay, the holes are a series of small
islands. Leaving the islands in would produce a MAT that encircles every island
and may not represent the outline of the shape well. The issue of holes can
also be addressed more generally by building a MAT and breaking the cycles
to construct a tree (e.g., computing the minimum spanning tree). Many other
tendril-like structures, however, are not easily reducible to trees; for instance,
road networks are highly interconnected. Nonetheless, it is always possible to
find a spanning tree that covers the entire network, the selection of which may
be tuned for a specific application.

4.3 Index Generation

Fig. 3. Spatial index generated from
the polygon in Figure 2

Using the MAT to guide the process, we
assign a unique index to each triangle.
The index serves as a spatial identifier,
with data points inside and objects inter-
secting the triangle labeled by the trian-
gle’s index. Using the fact that adjacent
vertices in the MAT correspond to adja-
cent Delaunay triangles in the triangula-
tion of the polygon, we index the triangles
using a simple tree traversal. Starting at
a leaf of the tree, we traverse the tree in
depth-first order and label each triangle
we encounter with a unique, consecutive
identifier. At branch points, we index all
of the vertices on one branch before pro-
ceeding to the indexing of triangles on the second branch. (Figure 3 shows an
example where the indexing was started at the top-left triangle.)

This generates an indexing in which the triangles within a branch of the MAT
are assigned consecutive addresses. Since the branches correspond to logically
distinct regions (estuaries, rivers, bays, etc.) we obtain an indexing that charac-
terizes the spatial domain.

Order of Medial Axis Traversal: Once a starting node is selected, the index-
ing of triangles remains deterministic until we reach a branch point. The choice
of which branch to traverse first can give rise to markedly different indexing of
the domain. We consider two different approaches.

When encountering a branch in the MAT, we select which branch to follow
based on the weight of the subtree down that branch, i.e. the sum of the area
of the descendant triangles. In the first technique (Figure 4(b)), we traverse the
least-weighted subtree first. In the second (Figure 4(c)), we traverse the heav-
iest subtree first. Traversing the least-weighted subtrees first gives a smoother
indexing of the shape, including all of the micro-structure on the sides of each
tributary. Smoothness would seem to be best, by our intuition, but does not
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(a) (b) (c) (d)

Fig. 4. Our primary shape, a union of the Chesapeake Bay outline combined with
the outline of the water-quality models with an extra 1 km buffer. The approximate
medial-axis is shown in (a). We also show several gray-scale visualizations of the indexes
generated by traversing the MAT, including the results of using a least-weight-first
ordering for branch traversal (b), using heaviest-weight-first ordering (c), and using
heaviest-weight-first with a threshold for minimal area branches (d).

cluster large structure. Traversing the heaviest subtrees first, yields a consecu-
tive “main stem” of the bay and each of the tributaries. However, it introduces
discontinuities in the index where small structures break off from larger ones.

We strike a compromise by including small, border areas into the heaviest first
policy (Figure 4(d)). Specifically, we choose a threshold weight (area) and use
heaviest if both branches are above the threshold and least-weighted otherwise.
We choose this approach for the Chesapeake Bay with a threshold of 2.5% of
the total weight of the shape, which has the effect of combining the shallows on
the boundary of the main stem with the main stem itself.

Auxiliary Data Structures
The index encodes spatial locality in a linear ordering of the Delaunay triangu-
lation and defines an organization on disk based on that ordering. However, it
does not naturally associate points in space with that index.

We use an additional lookup table to determine the triangle(s) associated
with a point or region of space. We generate the lookup table by rasterizing the
domain onto a low-resolution pixel grid. For each pixel, we store a list of the
triangles that intersect the pixel. The table is generated once for each shape.
The resolution process for a point within this pixel traverses the list until it
finds the triangle that contains the point.

The size of the lookup table needs to be chosen with consideration. Too fine
a pixelation produces an overly large lookup table, which consumes cache space.
Too coarse a pixelation would result in too many triangles intersecting each pixel,
which could slows query evaluation. For the Chesapeake Bay, we chose a grid of
150,000 (350x500) pixels to render the 22,729 indexed regions (triangles). The
data structure consumes only 1.17MB of memory. The domain covers 29.6% of
the pixelated area with an average list length of 2.54 triangles per covered pixel.
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The maximum length of the list is 54 triangles and only 53 pixels have 25 or
more candidates. In practice, these long lists are not a concern as they occur in
narrow regions with many small triangles which rarely contain data.

We also maintain an adjacency map that lists the adjacent triangles for each
triangle. We use the adjacency map to quickly traverse the local structure of the
MAT and the triangulation.

4.4 Query Processing

We use the MAT index, lookup table, and adjacency map to implement spatial
selection queries.

Index Lookup/Point Query: As described in the previous section, this basic
operation finds the index value for a coordinate location, and is used most fre-
quently with data ingest.

Range and Polygon Queries: Queries in which the user specifies either a
Euclidean distance from a point or a polygon of interest are processed by iden-
tifying candidate triangles that intersect the query. We consult the lookup table
to find pixels that overlap the query. We include all the data from triangles that
are entirely inside the query. Additionally, the data from triangles that intersect
the query boundary are evaluated to determine if they are inside the range.

Approximate Water-Distance Range Query: Users may specify a range
query in terms of water distance, i.e. the length of the shortest path between
two points that lies entirely inside the shape (domain). This query has real-world
implications, e.g. travel time between two points. It also could be a more useful
distance metric for interpolation than Euclidean distance [35]. For simplicity, we
implement water distance approximately. We sum the length of the medial-axis
in the traversal between two points. Having selected the portion of the medial-
axis, we process the query as a range query.

The accuracy of approximate water distance depends upon the aspect ratio
and size of the triangles. Our value will never be less than the actual water
distance. In the future, we will consider supporting shortest path queries [36] for
obtaining the exact distance.

5 Implementation

Our software consists of a utility that generates the spatial index from a shape
file and database routines that use the precomputed index to process queries.

The preprocessor was written in C++ and uses triangulation routines from
Cgal [37]. Our input files are typically ArcGIS shape files containing a polygon
with the region of interest. The index generation process on our Chesapeake Bay
outline of 80,000 points takes several seconds to run on a standard PC.

Compiling map files: We “compile” all of the generated data into C# class
files. This includes all metadata, the pixelated look-up table, triangle vertices,
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SELECT IndexFromLatLong(@map, 39.46678, -75.87466)
(a) Finding the index value for a specific location

SELECT data.* FROM MedialRangeWalk(@map, 39.0257, -76.2017, @range)
AS m JOIN wqm57k.dbo.WQM_data AS data ON m.IndexID = data.IndexID
ORDER BY range

(b) Table-valued function that performs a water-distance range query.
SELECT * FROM DirectionalMedialWalk (@map, 37.97155, -76.330637, +1)
AS m JOIN eotb.EOTB_data WHERE m.IndexID = eotb.IndexID

(c) Retrieve all EOTB data upstream from a specified point.
SELECT cims.*,MedialDistanceBetweenPoints
(@map, 39.2833, -76.6097, cims.Latitude, cims.Longitude)
AS Distance FROM cims.Station_info AS cims ORDER BY Distance

(d) Get the approximate water-distance between Baltimore and each station.

Fig. 5. Sample SQL Queries

and adjacency map. We chose these data structures for ease of implementation,
requiring only basic array indexing to retrieve the vertices for a triangle. We will
explore a winged-edge [38] structure in the future for a more compact storage
format.

Database Implementation: We implement query processing routines that use
these data structures in Microsoft’s SQL Server. We use a combination of user-
defined scalar and table-value functions (TVFs). All functions are written in C#
using SQL’s common language runtime interface [39].

We store data in sorted database tables, using the MAT-index value as the
primary key for a clustered index. Our largest datasets have a large volume
of data output for all data points at regular time intervals. We cluster these
datasets first by time and then by index. Queries to these databases tend to
select distinct regions of data across specific time-ranges for comparison.

Range Queries: Range queries, both regular and water-distance, are imple-
mented as table-valued functions. A list of all candidate regions which overlap
the range query are returned. We obtain the requested data by joining the can-
didate indexes with the data tables. Finally, we apply a filter to the result to
eliminate data located within the border index regions yet outside the query
range. Water-distance queries are done through a similar interface (Figure 5(b)).
Another variation of the range query allows for a complete traversal from a point
on the medial-axis. For example, a simple query can be written to select all data
contained within the Potomac river (Figure 5(c)) by traversing upstream from
the mouth.

Calculated Columns: We also implement the water-distance query in a user-
defined function. This allows it to be called as a subroutine to a larger query that
performs further data analysis. Figure 5(d) shows an SQL query that retrieves
a list of CIMS monitoring stations sorted by their approximate water-distance
from the Baltimore Inner Harbor.
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6 Evaluation on CBEO Data

We have implemented Rings on the Chesapeake Bay Environmental Obser-
vatory (CBEO) and evaluate its performance using workloads derived from the
queries submitted to the CBEO. We characterize the CBEO’s workload by query
type and built workloads that cover the entire spatial domain for each query
type. The CBEO’s users tend to study a specific region. For example, one sci-
entist queries the Patuxent River, an entire estuary. For this, we have generated
workloads that randomly select space-constrained water-distance ranges. We also
examine the performance of circular range queries that are unconstrained by
boundaries, because they are the most fundamental geospatial range query.

We start by looking at the indexes generated on our primary dataset, the
Chesapeake Bay. Figure 4 shows the medial-axis and visualizations of the indexes
generated on the spatial domain. The shape comprises the union of the outline of
the Chesapeake Bay with the cells of the water quality models. We then expand
the boundary by 1 km in order to include the stations that take tidal samples.

Our experiments use the CBEO’s most popular data set: the 56,920-cell water
quality model. The water-quality model has cells of roughly equal surface area
that cover the entire bay and major estuaries. We use a 1 month subset of the
output totaling 1.7 million rows of 296 bytes each for a total data size of 522MB.

We compare Rings against other spatial organization techniques. We imple-
ment two space filling curves: our implementation of a Z-order curve and the
hierarchical triangular mesh (HTM) index [1,25] used widely by the Astronomy
community. HTM supports geospatial as well as celestial coordinates. We also
provide latitude-longitude addressing (approximately row major ordering).

For each ordering, we create a database table that contain the same data.
Tables are sorted by (time, index). For Rings and HTM, the index is derived
from the index address of the triangle containing the data point. For Z-order, it
is the locational code of the square containing the data point.

For all results, we measure the time spent reading the data table. For each
query, we consult the index in memory and retrieve a list of the index elements
that could satisfy the query; triangles for Rings and HTM, and squares for Z-
order that intersect the query region. Our timed operation is the JOIN between
the list of specific index values and the data tables sorted by spatial index. SQL
optimizes this as a HASH JOIN between this list and a non-clustered index created
on each data table for all (time, index) pairs.

Range Queries: This experiment compares the performance of all data organi-
zation schemes on circular range queries. The circular range ignores boundaries
and returns data points from multiple non-connected water regions. Thus, we
expect Rings to realize no advantage when compared with HTM or space-filling
curves. The query geometry more closely matches the shape of the recursive
triangle or rectangular decomposition of space used by HTM and space-filling
curves respectively than it does the MAT used by Rings.

The experiment selects 200 points uniformly at random in the interior of the
Chesapeake Bay and its tributaries. The same points and ranges are used for all
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Fig. 6. Index performance for range queries on the water-quality model. Rings’ per-
formance is comparable to the other spatial organization techniques.
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Fig. 7. Index performance for water-distance range queries on the water-quality model

indexes. We do this for ranges from 5 km to 250 km in 10-50 km increments.
The Chesapeake Bay outline extends roughly 350 km from north to south and
230 km from east to west.

We show both the average runtime per query and the runtime normalized
to that of Rings in Figure 6. Even though these range queries which do not
employ the structure of the Bay, Rings’ performance matches the performance
of Z-order and exceeds the performance of HTM.

For some queries, Rings performs more work than the Z-order curve because
it has to read more data. It generates a list of candidate triangles, reads all data
within those candidate triangles, and filters out data not within the range. This
can be problematic when the triangles are as large or larger than the range of
the query. This occurs with smaller ranges in the main stem.

In contrast, Rings benefits when the query region is long and skinny and
includes space exterior to the boundary. HTM and Z-order curve grow their
index recursively in triangles and squares respectively, which prevents them from
indexing long skinny structures contiguously. In contrast, Rings adapts to the
local geometry.

Water-Distance Range Queries: When constraining the range by the geom-
etry of the domain, Rings improves performance. As with the previous experi-
ment, we select 200 points uniformly at random, however this time we use the
water-distance instead of the Euclidean distance. That is, the query selects all
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Fig. 8. Scatter plots comparing index performance for estuary queries between Rings
and both HTM (left) and Z-Order (right), each with linear regression and locally
weighted smooth (lowess) curve. Both plots are normalized to Rings.

data for which the shortest path to the query point interior to the Chesapeake
Bay is less than the specified range. We do this for ranges from 5 to 500km in
increments of 10-30km. As Figure 7 shows, Rings improves performance in all
cases. The improvement is most dramatic for smaller ranges.

Rings cuts the query time in half for for ranges up to 50 km. The improve-
ments are most dramatic for queries that select a substantial amount of data
from tributaries. It is not uncommon to see an individual query speedup a fac-
tor of six when comparing Rings with the Z-order. For queries in the main stem,
the structure of the MAT is less helpful. Similarly, larger ranges reduce the ben-
efit, because the queries are less selective. For a range that covers the entire Bay,
the query will result in a table scan. Our results reflect this as the performance
of all indexes begin to merge at large ranges.

Estuary Queries: Scientists frequently use the CBEO database to query con-
tiguous substructures, e.g. the Potomac or the Patuxtent River (see Section 3).
This usage pattern was the original motivation for the design of Rings.

To evaluate the performance of Rings when querying such substructures,
we create a random workload based on the DirectionalMedialWalk query (see
Figure 5(c)). In this experiment, we select points from the interior of the domain
uniformly at random. If the point is on the main stem or in the ocean region, we
discard it. Otherwise, we query all data upstream from that point. Our scientists
use this query to select an entire tributary by picking a point on the MAT at
the mouth of that tributary. The query is particularly convenient, because the
scientist does not need to specify geographic boundaries.

For estuary queries, Rings reduces the query time in half, on average, when
compared with the Z-order or HTM. Figure 8 shows these results as a function of
the length of the estuary from the randomly selected point to the farthest point
upstream. The length is, in some sense, the query diameter of a water-distance
query. The results show a tremendous amount of variance, because performance
depends upon the geometry of the query region. The few queries in which HTM
and Z-order outperformed Rings are short queries, most of which were centered
near the source of the rivers.
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7 Evaluation on Random Shapes

In order to demonstrate the applicability of Rings beyond our prototypical ap-
plication, we evaluate its performance on randomly generated shapes of varying
complexity. We use a 642 (4096-cell) Z-order curve as a basis for comparison. We
execute two queries on the random data: (1) a rectangular range query shows
that Rings preserves performance even when the query space matches the index
space and (2) a water-distance distance query indicates the performance benefits
when the query conforms to the spatial structure.

Fig. 9. Shapes with 15, 50, 200 and
500 edges

Shape Generation: We generate shapes by
splitting boundary segments on a polygon by
repeatedly moving their midpoints. We begin
with a boundary defined by four points ar-
ranged as a square. We create each new edge
by selecting a random segment to divide with
a new point. We then move that point a ran-
dom direction and distance (bounded by a de-
fined amplitude). We verify that the new seg-
ments do not intersect or coincide with any
existing segment, because both would lead to
an invalid polygon. If the move fails this test,
we try again. This process is repeated until all
of the desired points have been inserted. Four
sample shapes are shown in Figure 9. We chose
to generate square shapes so that they align
well the Z-order curve used in comparison.

A metric based on the distance between points in the interior of the shape
characterizes the “complexity” of the generated shapes. This metric is defined
as the ratio of the Euclidean distance to shortest interior path between the
points. The metric captures the distinction between Euclidean distance and
water-distance, a distinction that motivated the design of Rings. We compute
this as an average over 2000 points randomly selected from within the interior
of the shape. The Rings medial axis gives an upper bound on point-to-point
interior distance, which we use in the calculation.

Experimental Results: For both distance queries, we examine the number of
non-contiguous ranges of data that the queries access. The number of ranges
roughly corresponds with the number of disk seeks needed to read the data.
The data set consists of 10,000 points randomly placed within the interior of
the shape. For each experiment, we perform 5,000 randomly generated queries.
Each range query is centered at a randomly chosen point interior to the shape.
The rectangular range queries were restricted to be between 10% and 80% of the
shape’s bounding box. The range used for water-distance queries was a random
value between 5% and 50% of the shape’s perimeter.
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Fig. 10. The number of index regions necessary to resolve a query as a function of
shape complexity

The rectangular query results show that Rings provides roughly equivalent
performance to the Z-order curve with higher variance (Figure 10). The number
of disjoint data regions in the Z-order curve index vary relatively little because
the Z-order curve indexes the entire space not the domain. Rings exhibits similar
performance with some increase in the disjoint data regions as the shape becomes
more complex. As the shape increases in complexity, each rectangular query
region intersects the boundary of the shape more times. But, even for shapes
much more complex than the Chesapeake Bay, Rings compares favorably.

For the water-distances queries for which it was designed, Rings accesses very
few disjoint regions of data. In contrast, the Z-order curve has to access many
disjoint regions of data and performance worsens as shape complexity increases.
Because the domain defines the query region, the query region has a complex
boundary that intersects the Z-order curve many times. For Rings, the number
of disjoint regions increases very little as the shape grows in complexity. Disjoint
regions arise only when the query region spans multiple internal structures, i.e.
when the tree defined by the MAT forks and the query does not cover both
branches in their entirety. Comparing these results with the complexity of the
Chesapeake Bay reveals that the Chesapeake lies at the low end of the range for
which the non-convex complexity results in marked performance improvements
and more complex systems would realize even bigger benefits.
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8 Conclusions

We have presented Rings, an organization system for spatial databases based
on the automatic characterization of non-convex domains. The key behind our
approach is the use of the medial-axis transform for indexing the data and sup-
porting efficient traversal of spatial structures. Our system was designed for
environmental data sets and, more specifically, for the Chesapeake Bay Envi-
ronmental Observatory’s (CBEO) heterogeneous collection of observations and
models. In empirical evaluation, we have found that Rings is competitive with
traditional indexing methods for general range queries and improves performance
substantially on queries that take into account the geometry of the domain.
These queries arise naturally in the CBEO, because the users study structures,
such as rivers and estuaries, that are contiguous within the interior of the Bay.
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Abstract. Graphs are prevailingly used in many applications to model
complex data structures. In this paper, we study the problem of super-
graph containment search. To avoid the NP-complete subgraph isomor-
phism test, most existing works follow the filtering-verification framework
and select graph-features to build effective indexes, which filter false re-
sults (graphs) before conducting the costly verification. However, search-
ing features multiple times in the query graphs yields huge redundant
computation, which leads to the emergence of the computation-sharing
framework. This paper follows the roadmap of computation-sharing frame-
work to efficiently process supergraph containment queries. Firstly,
database graphs are clustered into disjoint groups for sharing the compu-
tation cost within each group. While it is shown NP-hard to maximize the
computation-sharing benefits of a clustering, efficient algorithm is devel-
oped to approximate the optimal solution with an approximation factor of
1
2
. A novel prefix-sharing indexing technique, PrefIndex, is then proposed

based on which efficient query processing algorithm integrating both fil-
tering and verification is developed. Finally, PrefIndex is enhanced with
multi-level sharing and suffix-sharing to further avoid redundant compu-
tation. An extensive empirical study demonstrates the efficiency and scal-
ability of our techniques which achieve orders of magnitudes of speed-up
against the state-of-the-art techniques.

1 Introduction

Recently, graph structured data have been increasingly adopted in applications
such as Bio-informatics, Chemistry, Social Networks, WWW, etc. For instance,
graphs are used to model protein interaction networks and chemical compounds
in Bio-informatics and Chemistry, respectively. Efficient query processing is thus
strongly demanded by graph database.

Graph containment search is defined as supergraph containment search [2] and
subgraph containment search [12]. Given a query graph q and a graph database
D = {g1, ..., gn}, supergraph containment search finds all the graphs in D con-
tained by q, while subgraph containment search finds all the graphs in D con-
taining q. In Chemistry, given a newly found molecule (query graph) and a
large number of descriptors (data graphs indicating chemical properties), we
can predict its chemical function based on the descriptors it contains. In pat-
tern recognition, given a graph structured background (query graph) and various
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Fig. 1. Supergraph Containment Search

objects (data graphs), we may detect the foreground objects contained in the
background. More applications can be found in [2, 12]. Regarding Figure 1, the
result of supergraph containment search of query graph q is ga.

Since the subgraph isomorphism test is NP-complete [4], most works adopt
the filtering and verification framework. While a feature-based index filters most
false results in the filtering phase, survived candidate graphs are checked in the
verification phase. Unlike its extensively studied dual version [3, 5–7, 9, 10, 12,
13, 16, 17], supergraph containment search is comprehensively investigated in
only two studies [2, 14]. cIndex, proposed in [2], adopts historical query-log to
select features for maximizing pruning power. Regarding Figure 1, assume that
fa and fb are two features. cIndex first tests if q contains fa and fb. As fb is not
contained by q, gc is filtered; while ga and gb survived to be candidates as fa is
contained by q. As fa is a subgraph of ga and gb, it will be searched for two more
times in q for the verifications of ga and gb. Generally speaking, if a feature f is
contained by n candidates, the subgraph isomorphism test on f against q will
be repeated (n + 1) times (including one test in the filtering phase).

To avoid redundant subgraph isomorphism test cost, [14] proposes GPTree, a
computation-sharing framework. It encodes each graph or feature in a sequence
called GVCode. The GVCodes of a group of graphs or features are organized in
a tree called GPTree such that a common subgraph of these graphs or features
is stored only once as a prefix of the tree. This finally yields a forest structured
database or index. GPTreeTest, the proposed subgraph isomorphism algorithm,
verifies a group of graphs or features altogether by sharing the computation
(subgraph isomorphism test) cost of the common subgraph within the group.
For instance, in Figure 1, one feature group Gf (for fa, fb), two database groups
Ga (for ga, gb) and Gb (for gc) are built. The computation cost of the common
subgraphs g′ and g′′ are shared within Gf and Ga, respectively. However, with
further observations, GPTree has the following defects: (1)Computation cost can
not be shared between filtering and verification, as the common edge b − c of
Gf and Ga can not be shared between them; (2)Computation cost can not be
shared between database groups, as the common edge b − c of Ga and Gb can
not be shared between them; (3)GPTree prefers to select large-sized common
subgraphs for sharing, which goes against the fact that large-sized subgraphs
are usually infrequent and not likely to be shared by many graphs.
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Motivated by the above observations, this paper proposes a novel computation-
sharing framework with the aim to maximize the computation-sharing benefits.
The main contributions of this paper are summarized as follows.

– We propose to cluster database graphs into disjoint groups such that graphs
in each group contain a common feature f . While it is shown NP-hard to
optimize the computation-sharing benefits, an efficient greedy algorithm is
used to approximate the optimal solution with an approximation factor of 1

2
.

– Based on QuickSI traversal technique [9], a novel prefix-sharing indexing tech-
nique PrefIndex and a query processing algorithm PrefSearch are developed
to share computation cost between filtering and verification.

– A group encoding technique is proposed to efficiently construct PrefIndex for
a group of graphs based on the effective ordering of their GVCodes.

– Multi-level sharing and suffix-sharing techniques are proposed to enhance Pre-
fIndex for sharing computation cost among database groups and further shar-
ing computation within each database group, respectively.

Organization. The rest of the paper is organized as follows. Section 2 gives
preliminaries and formalizes the problem. Section 3 presents the database clus-
tering, feature selection and index construction techniques. Section 4 proposes
our sharing-aware query processing algorithm integrating filtering and verifica-
tion. Section 5 presents our multi-level sharing and suffix-sharing techniques.
Experimental results and related work are reported in Section 6 and 7, while
Section 8 concludes our study.

2 Preliminaries

2.1 Problem Statement

For presentation simplicity, our study only focuses on simple, vertex-labeled
graphs. A simple graph is an undirected graph with no self-loops nor multi-
ple edges between any two different vertices. From now on, a database graph
is called a data graph, while a query graph is called a query. All data graphs
are assumed to be connected. Nevertheless, our approach can be immediately
extended to directed or edge-labeled graphs.

Given two sets of labels, ΣV and ΣE , a graph g is defined as a triplet (V (g),
E(g), l) where V (g) and E(g) denote the vertex set and edge set of g, respectively.
l is a mapping: V (g) → ΣV which assigns a label l(u) to each vertex u ∈ V (g).

Definition 1 (Subgraph Isomorphic). Given two graphs g = (V, E, l) and
g′ = (V ′, E′, l′), g is subgraph isomorphic to g′, denoted by g ⊆ g′, if there
is an injective function f : V → V ′ such that (1) ∀v ∈ V , f(v) ∈ V ′ and
l(v) = l′(f(v)); (2) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′ and l(u, v) = l′(f(u), f(v)).
Under the above conditions, g (g′) is a subgraph (supergraph) of g′ (g).

Definition 2 (Induced Subgraph). Given a graph g, a graph g′ is an induced
subgraph of g, if and only if (1) g′ is subgraph isomorphic to g under an injective
function f ; (2) ∀u, v ∈ V (g′), if (f(u), f(v)) ∈ E(g), (u, v) ∈ E(g′).
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Definition 3 (Supergraph Containment Search). Given a graph database
D = {g1, g2, ..., gn} and a query graph q, find the answer set Dq which consists
of each gi ∈ D such that gi ⊆ q.

2.2 Computation-Sharing Framework

cIndex [2] is the first filtering-verification framework for supergraph containment
search. It applies the exclusive logic to filter data graphs; namely, if a feature
f �⊆ q, any data graph g such that f ⊆ g can be filtered. However, sequentially
testing each feature (candidate graph) against the query involves huge redundant
computation cost in the filtering (verification) phase.

GPTree [14], the first computation-sharing framework, directly extends the
filtering-verification framework to avoid the redundant computation cost in cIn-
dex. Inspired by DFS code [11] and QISequence [9], GPTree proposes a new
graph encoding technique called GVCode. Based on a spanning tree t of a graph
g, it encodes g into a sequence represented by a regular expression Codeg =
[[SiE

∗
ij ]

V (g)]. Each entry Si is the mapped image of a vertex v in g. While Si.l
keeps the label of v, Si.p stores the entry corresponding to the parent vertex of
v in t. Once S1 is fixed, t is viewed as a tree rooted at the vertex corresponding
to S1 and thus S1.p = 0. Each edge in g but not in t is recorded as a back edge.
If Si has back edges, they are kept in {Eij}.

Table 1 gives two GVCodes of ga and gb in Figure 1. The corresponding vertex
of Si is in the bracket. The bold lines in Figure 1 show the spanning trees of ga

and gb. As g′′ in Figure 1 is represented as a three-entry prefix from S1 to S3

in both Codea and Codeb, a tree structured organization of Codea and Codeb,
called GPTree, can be built to share the three-entry prefix as a common prefix.
Note that a common prefix must be an induced subgraph of all graphs in the
group and the GVCode of a graph is not unique.

Based on QuickSI [9], GPTreeTest, a new subgraph isomorphism test algo-
rithm is proposed to verify a group of graphs sharing a common prefix. Regarding
Table 1, GPTreeTest first searches in q a subgraph isomorphism mapping of the
common prefix from S1 to S3. A found mapping is then extended in a depth
first fashion to search a whole mapping for the rest Codea and Codeb under the
common prefix, respectively.

Table 1. The GVCodes of ga and gb

Type (Si.l, Si.p)

S1(v2) (c, 0)

S2(v1) (b, S1)

S3(v3) (a, S2)

E31 [edge : S3]

S4(v4) (a, S3)

S5(v5) (a, S4)

Type (Si.l, Si.p)

S1(v7) (c, 0)

S2(v6) (b, S1)

S3(v8) (a,S2)

E31 [edge : S3]

S4(v10) (b, S1)

S5(v9) (a,S1)

Codea Codeb
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The framework of GPTree can be outlined by four phases: (1) Mine frequent
subgraphs from the database and build a feature-based index F = {f1, ..., fn}.
Each fi is attached a graph-ID list listfi = {g.id|fi ⊆ g ∧ g ⊆ D}. (2) Mine
common induced subgraphs from features and data graphs respectively. Greedily
select the largest common induced subgraphs and divide features and data graphs
into disjoint groups such that each group G shares a common induced subgraph
g′. Graphs in each group G are encoded to share Codeg′ as a common prefix,
based on which a GPTree is built for G. (3) For filtering, each feature group
is tested by GPTreeTest to obtain the candidate set Cq = D − ⋃

f listf(f �⊆
q ∧ f ∈ F). (4) For verification, each database group is projected on Cq and all
non-empty projected database groups are verified by GPTreeTest to obtain the
answer set Dq.

3 PrefIndex

Our Framework. We propose a novel computation-sharing framework called
PrefIndex, which directly selects a feature as the common subgraph shared by
a group of data graphs. Since a feature is encoded as a common prefix of all
the data graphs in the group, its test cost can be shared between filtering and
verification. The whole framework is outlined as follows.
1. Mine frequent induced subgraphs from the database and cluster all data

graphs into disjoint groups {(fi, Gi)|1 ≤ i ≤ k} such that for each graph g in
a group Gi, fi is an induced subgraph of g and a selected feature.

2. Encode each graph g in a group Gi into Codeg of which Codefi is a prefix.
Organize all GVCodes of graphs Gi into a PrefIndex tree.

3. Apply our query processing algorithm integrating filtering and verification
to process each group Gi by sharing the computation cost of Codefi .

3.1 Cost Model and Feature Selection

Given a data graph g and a query q, if f ⊆ g, the subgraph isomorphism test cost
of g may be approximately represented by costf + cost(g−f). Given a group Gi

of graphs sharing a common induced subgraph fi, if we test all graphs in Gi by
sharing the test cost of fi (to process fi only once), the cost gain (computation-
sharing benefits) approximately equals (1). Assume that no pre-knowledge is
given on q, (1) may be interpreted as the expected gain for any q.

Given a database D and a set D = {(fi, Di)|1 ≤ i ≤ m} where each Di

contains all graphs in D which share fi as a common induced subgraphs, we call
fi and Di master feature and master group of fi, respectively.

Definition 4 (Disjoint Database Cover). Given a set D = {(fi, Di)|1 ≤
i ≤ m} of master features and master groups and assume that

⋃
i Di = D,

G = {(f ′
j, Gj)|1 ≤ j ≤ k} is a disjoint cover of D conforming D if and only

if (1) ∀(f ′
i , Gi), ∃(fj , Dj) ∈ D such that f ′

i = fj and Gi ⊆ Dj; (2) ∀Gj �=
G′

j , Gj

⋂
G′

j = ∅; (3) ∀g ∈ D, ∃Gj ∈ G such that g ∈ Gj.
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Given a disjoint cover G of D, the total cost gain by sharing the test cost of the
master feature within each master group is in (2).

gainGi = costGi − cost′Gi
= (|Gi| − 1) × costfi (1)

gainG =
∑k

i=1(|Gi| − 1)costfi (2)

Definition 5 (Maximized Gain (MG)). Given a database D and a set D =
{(fi, Di)|1 ≤ i ≤ m} of master features and master groups such that ∀g ∈ D,
∃Di ∈ D, g ∈ Di, find a disjoint cover G of D such that gainG is maximized.

Theorem 1. The problem of Maximized Gain is NP-hard.

Proof. In a special case of MG where each costfi equals a constant c, gainG =
c× (n−k). Consequently, solutions of MG in this case aim to minimize k, which
makes MG exactly a minimum set cover problem (NP-hard) [4].

Assume that each data graph contains at least one feature. Algorithm 1 is
adopted to approximate the optimal disjoint cover with the maximum gainG .
Let G be a set of already selected disjoint groups (G is empty at the beginning).
Let g(G) be all the data graphs currently covered by G. For each Di with a
master feature fi, let costfi

×(|Di−g(G)|−1)

|Di−g(G)| be the average gain from each remain-
ing data graph in Di − g(G). The greedy algorithm iteratively selects a group
(fi, Di − g(G)) with the highest average gain, until G covers all the data graphs.

Algorithm 1. Clustering

Input . D: a graph database {g1, ..., gn};
D: a set of features and master groups {(f1, D1)..., (fm, Dm)};

Output . G: a disjoint cover of D;
G := ∅; S := D;;1

while D − g(G) �= ∅ do2

Select (fi, Di) ∈ S with the maximum
costfi

×(|Di−g(G)|−1)

|Di−g(G)| ;3

Insert (fi, Di − g(G)) to G;4

S := S − {(fi, Di)};5

return G;6

Example 1. Given D = {g1, ..., g5} in Figure 2, for each fi, its master group Di

and cost costfi are in the left two tables, respectively. Consider clustering (a)
of PrefIndex by Algorithm 1. For the first iteration, the average gains from D1

to D4 are 2, 2, 5
2

and 8
3
, respectively. Consequently, (f4, {g1, g4, g5}) is selected.

Then g1, g4 are removed from D1, while g5 is removed from D3. The average
gains of D1 and D3 become 0, while the average gain of D2 remains unchanged.
For the second iteration, (f2, {g2, g3}) is selected. Finally, we obtain a disjoint
cover G = {(f4, {g1, g4, g5}), (f2, {g2, g3})} with a total gain of 12.

Time Complexity. Due to the greedy nature of Algorithm 1, the worst case
time complexity is O(n2 × m) where n and m are the numbers of data graphs
and features, respectively.
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f1 f2 f3 f4

g1 g2 g3 g4 g5

ave gainG1 = 8/3 ave gainG2 = 2

D1 g3, g5

D2 g2, g3

D3 g4, g5

D4 g1, g4, g5

cost f1 4

cost f2 4

cost f3 5

cost f4 4 G1 G2

f1 f2 f3 f4

g1 g2 g3 g4 g5

ave gainG1 = 5/2 ave gainG2 = 2
G1 G2 G3

ave gainG2 = 0

(b) GPTree Total  Gain = 9(a) PrefIndex Total  Gain = 12

Fig. 2. Example of Database Clustering

Accuracy Guarantee. Let OPT and A denote the total gains of the optimal
solution and Algorithm 1, respectively. The following theorem can be proved.

Theorem 2. A ≥ 1
2OPT .

Proof. Let G = {(fi, Gi)|1 ≤ i ≤ l} be the optimal solution of MG and OPTGi

be the gain of group Gi; the total gain OPT of G is (3). Let the number of
graphs in Gi be nGi; the average gain aGi of Gi is (4).

OPT =
∑l

i=1 costfi × (|Gi| − 1) =
∑l

i=1 OPTGi (3)

aGi = costfi
×(nGi

−1)

nGi
(4)

Since the gain of any group with only one graph is 0, we only consider those
groups with at least two graphs. Let G′ = {(f ′

j, G
′
j)|1 ≤ j ≤ l′} be the greedy

solution generated by Algorithm 1 and A be the total gain of G′. Assume G′
j is

selected at the jth iteration. By removing any graph g /∈ G′
j from Gi, we obtain

Gj
i = Gi

⋂
G′

j(1 ≤ j ≤ l′). By removing any group Gj
i = ∅, Gi can be parti-

tioned into a set of disjoint subgroups {Gj1
i , ..., Gjk

i } such that (1)
⋃k

t=1 Gjt

i = Gi;
(2)∀t, t′(1 ≤ t < t′ ≤ k), jt < jt′ .

Let the average gain of Gjt

i in the greedy algorithm be a′
t and the number

of graphs in Gjt

i be n′
t (

∑k
t=1 n′

t = nGi). Two observations can be made based
on the partition of Gi. (1) Only the last subgroup Gjk

i may have a gain of 0 in
the greedy solution, since G′

jk
may have only one graph and Gjk

i is not empty.
If another group G′

jt
(jt < jk) has only one graph and Gjt

i is not empty, a new
subgroup Gjk

i

⋃
Gjt

i can be obtained to yield a gain greater than 0. (2) Due to
the greedy nature of Algorithm 1, a′

1, the average gain of the first subgroup
Gj1

i in the greedy solution, must be no less than aGi , Otherwise, Gi instead
of G′

j1
will be selected for the j1th iteration in the greedy solution. It can be

concluded that the gain of Gj1
i

⋃
Gjk

i in the greedy solution is at least 1
2 of that

in the optimal solution. For each rest subgroups Gjt

i (t �= 1, k), due to the greedy
nature of Algorithm 1, (5) can be immediately verified. By replacing costfi in
(5) with (4), we have (6). Let the gain of Gi in the greedy solution be AGi . By
(6), we have (7), which leads us to our conclusion that A ≥ 1

2OPT .

a′
t′ ≥ costfi

×(nGi
−∑ t′−1

t=1 nt−1)

nGi
−∑ t′−1

t=1 nt

(5)
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a′
t′ ≥ nGi

×(nGi
−∑ t′−1

t=1 nt′−1)

(nGi
−1)×∑ t′−1

t=1 nt

× aGi ≥ 1
2 × aGi (6)

AGi =
∑k

t=1 a′
t × nt ≥

∑k
t=1

aGi
×nt

2 = 1
2OPTGi (7)

Remark. Generally speaking, the subgraph isomorphism test runs in an expo-
nential time in the worst case and is algorithm, graph topology and graph size
dependent. While our algorithm and its analysis apply to any given cost formula,
|V (f)| is used to approximate costf in our implementation.

3.2 Computation-Sharing Comparison

On computation-sharing strategy, PrefIndex differs from GPTree in two ways.
Firstly, GPTree selects common induced subgraphs for features and data graphs
respectively, while PrefIndex directly selects common induced subgraphs of data
graphs as features and shares the computation between filtering and verification.
Secondly, GPTree greedily selects common induced subgraphs with the highest
cost (largest size). Since larger subgraphs are usually unlikely to be contained by
many graphs, PrefIndex uses a more natural heuristic to greedily select features
with the highest average gain.

Consider clustering (b) of GPTree in Figure 2, though f3 has the highest cost,
it contributes less than f4 as its master group has less data graphs, which only
leads to a total gain of 8. In our experiments, PrefIndex outperforms GPTree in
all cases on computation-sharing benefits.

3.3 Index Structure

In PrefIndex, each feature f is encoded into a common prefix of the GVCode of
each graph g in its master group Gf . This requires that f must be an induced
subgraph of each g in Gf . We extend gSpan [11] to mine frequent, discriminative,
induced subgraphs. D is initialized with the mined induced subgraphs and their
master groups and then fed into Algorithm 1 for feature selection. Although
a feature f may be contained by a data graph g not in Gf as a non-induced
subgraph, such information is not recorded in PrefIndex due to mining efficiency.

The index structure of PrefIndex is outlined as follows: (1) Given a disjoint
cover G = {(fi, Gi)|1 ≤ i ≤ k} generated by Algorithm 1, encode each g in
a group Gi into Codeg by having Codefi as its prefix. In practice, QuickSI
algorithm [9] is used to efficiently identify subgraph isomorphism mappings from
fi to g. (2) Each entry Si of Codeg only stores the label of its corresponding
vertex in g, its parent vertex in Codeg and its back edge information. Figure 3(a)
shows a PrefIndex of graphs ga and gb in Figure 1. The effective ordering of
common prefixes and suffixes is discussed in the next section.

4 PrefIndex Search

This section firstly presents our querying algorithm for a group of graphs based
on PrefIndex and then proposes two techniques to further enhance PrefIndex: (1)
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Fig. 3. PrefIndex

Ordering GVCodes efficiently for PrefIndex; (2) Sharing pruning power among
master groups. Given a disjoint cover G = {(fi, Gi)|1 ≤ i ≤ k}, the PrefIndex of
Gi is denoted by PIi = {Codeg|g ∈ Gi}. We aim to share the test cost of Codefi

between filtering and verification. Codefi is first processed to check whether a
subgraph isomorphism mapping exists from fi to q. The test of Codefi is enforced
to be conducted only once for Gi, which leads to the following fundamental
theorem. The trivial proof is omitted here.

Theorem 3. If a query q contains a data graph g, for each prefix Code′ of
Codeg, there must be a subgraph isomorphism mapping from Code′ to g.

4.1 Algorithm

Algorithm Sketch. Based on Theorem 3, for each group Gi, our algorithm
probes PIi in a depth first fashion. For each Codeg in PIi, once a mapping
P ′ is found from a prefix Code′ of Codeg to q, the algorithm checks if P ′ can
be extended to cover the next vertex in Codeg. If impossible, it backtracks in
PIi to search the next mapping from Code′ to q. Since Gi may contain many
graphs, the last vertex of Codefi may link to many suffix branches. The algorithm
backtracks from the last vertex of Codefi , if all suffix branches under this vertex
have been explored in a depth first fashion. The algorithm terminates when no
new mapping can be found for the first vertex of Codefi or all GVCodes in PIi

are detected to be subgraph isomorphic to q. The algorithm consists of two parts:
PrefixQ and SuffixQ in Algorithm 2 and 3.

Example 2. Regarding the example in Figure 1, assume the database is clustered
based on disjoint cover G = {(fa, G1 = {ga, gb}), (fb, G2 = {gc})}. In Figure 3,
the two tables show the GVCodes of ga and gb, while Figure 3 (a) and (b) show
the PrefIndex of G1 and the query.

In our algorithm, S1 is first mapped to u1 in q as their labels match. S2 is
then mapped to u2 as their labels and parents match; similarly, S3 is mapped
to u3 as their labels, parents and back edges match (S3.l = b, S3.p = S2 and the
back edge (S3, S1)). An intermediate mapping P1 from Codefa to q is found.
This corresponds to the filtering phase.

In verification phase, P1 is respectively extended for the suffixes of Codea and
Codeb. For both Codea and Codeb, P1 fails to extend to S4 as all adjacent vertices



PrefIndex: An Efficient Supergraph Containment Search Technique 369

of u3 are either already mapped or unable to meet S4.p = S1. Consequently, P1

is abandoned and it backtracks from S3 to search a new mapping. It then finds
that no new mapping can be found for S3 while keeping the existing mappings
of S1 and S2. After it backtracks for one more depth, no new mapping can be
found for S2 while keeping the existing mapping of S1. Finally, it starts from
S1 again and finds another intermediate mapping P2 from {S1, S2, S3} to {u4,
u2 u3}. For Codea, u5 and u6 are mapped to S4 and S5 respectively , which
verifies ga as an answer. For Codeb, the extension fails at S5. Since P2 is the last
mapping from Codea to q, the query processing of G1 terminates.

Algorithm 2. PrefixQ(G, Codef , P, F , q, d)
Input . G: a group of data graphs represented as GVCodes (PrefIndex);

Codef : the common prefix;
P : a vector, initialized with ∅;
F : a vector, initialized with 0;
q: a query graph;
d: the mapping depth;

Output . Gq: the answer set of q for G;
if d > |Codef | then1

for each g ∈ G do2

if SuffixQ(Codeg, P , F , q, d) then3

Gq := Gq

⋃{g};4

5

G := G − Gq ;6

if G = ∅ then7

return Gq;8

9

S := Sd(∈ Codef ); E := Ed(∈ Codef );10

if d = 1 then11

V := {v|v ∈ V (q) ∧ l(v) = S.l ∧ Fv = 0};12

else13

V := {v|v ∈ V (q) ∧ l(v) = S.l ∧ (v,PS.p) ∈ E(q) ∧ Fv = 0};14

for each v ∈ V do15

for each back edge e ∈ E do16

goto line 13 if e �∈ E(q);17

Pd := v; Fv := 1;18

Gq := Gq

⋃
PrefixQ(G, Codef , P , F , q, d + 1);19

G := G − Gq ;20

if G = ∅ then21

return Gq;22

Fv := 0;23

return Gq ;24

PrefixQ processes the common prefix Codef of a group G and calls SuffixQ to
complete the searching. It is in a recursive, depth first search fashion presented
in Algorithm 2. The output Gq is the answer set for G. P = {P1,P2, ...} stores
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the vertex mappings from Codef to q. Pd = vi means Sd ∈ Codef is mapped to
vi in q. F = {F1, ...,F|V (q)|} stores the vertex state for each vi in q. Fi = 1 means
vi is already mapped to a vertex in Codef . The mapping depth d indicates the
current vertex Sd ∈ Codef to be mapped. PrefixQ firstly checks if the current
mapping P covers all the vertices of Codef . Condition d > |Codef | (line 1)
implies that a mapping P from Codef to q is found. SuffixQ (to process each
suffix respectively) is then called (line 3) to extend P . Once a mapping from
Codeg to q is successfully extended, g is moved from G to Gq. PrefixQ terminates
when all GVCodes in G are detected subgraph isomorphic to q (line 7) or all
mappings have been exhausted (line 13 and then line 22) for S1 of Codef .

SuffixQ processes a suffix under Codef ; namely, Codeg−Codef . It has the same
input and also follows a recursive, depth first search fashion. The correctness of
Algorithm 2 and 3 is immediate from Theorem 3. Although costing exponential
time in the worst case, they are very efficient in practice.

Algorithm 3. SuffixQ(Codeg, P, F , q, d)
Input . Same as PrefixQ;
Output . Boolean: Codeg is a subgraph of q;
if d > |V (q)| then1

return True;2

S := Sd ∈ Codeg; E := Ed ∈ Codeg;3

V := {v|v ∈ V (g) ∧ l(v) = S.l ∧ (v,PS.p) ∈ E(q) ∧ Fv = 0};4

for each v ∈ V do5

for each back edge e ∈ E do6

goto line 5 if e �∈ E(q);7

Pd := v; Fv := 1;8

if SuffixQ (Codeg, P , F , q, d + 1) then9

return True;10

Fv := 0;11

return False;12

4.2 Effectively Ordering GVCode

Given a graph g with m vertices, there are m! different possible GVCodes. As
shown in [9], a good ordering of a query q can determine earlier if a subgraph
isomorphism mapping from q to a graph g exists. Thus the edges (labels) in q
with lower occurrence rates should have a higher priority to be allocated earlier
in Codeq to reduce the number of intermediate mappings to be considered. As
our problem is the dual problem of that in [9], edges (labels) in a data graph g
with lower occurrence rates in the database are ”signatures” of g and should be
allocated earlier in Codeg for early pruning. When constructing PrefIndex PIi

for a group Gi with a feature fi, QISequence ordering technique is firstly applied
on Codefi and then on each suffix under Codefi in the same way.
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Fig. 4. Enhancing Pruning Power

4.3 Enhancing Pruning Power

In Figure 4, three graphs are clustered into two groups G1 = {ga, gb} with fa and
G2 = {gc} with fb. Since gb contains fb, gb can also be pruned if fb fails to pass
the filtering phase. To share pruning power among different groups, two lists of
graph IDs, M(Master)-List and R(Reference)-list are added at the last vertex of
Codefi in PIi. M-list consists of IDs of the graphs in Gi, while R-List consists of
IDs of the graphs not in Gi but containing fi. Regarding G2, M -ListG2 = {gc}
and R-ListG2 = {gb}. When PrefixQ detects that fb �⊆ q, gb can be pruned from
G1 by not invoking SuffixQ on gb. To realize this, the first SuffixQ call in each
Gi is enforced to happen only after PrefixQ calls on all groups are finished and a
filtering list R is obtained. In each survived Gi, SuffixQ is only invoked on those
graphs not in R.

PrefixQ can be immediately modified to accommodate the above require-
ments. If PrefixQ reaches the depth |Codef | + 1 of G for the first time, SuffixQ
is not invoked until the depth |Codef ′ |+1 of all other G′ is either reached for the
first time (survived groups) or detected impossible to reach (R-lists of pruned
groups are added to R). The modified algorithm is presented in Algorithm 4.

Algorithm 4. PrefSearch (PS)

Step 1. For each (fi, Gi) (1 ≤ i ≤ k), probe Codefi with PrefixQ to check if a
subgraph isomorphism mapping Pi exists from Codefi to q.
If Pi is found for the first time, we add (Pi, P Ii) to the verification job list J ;
otherwise, we add the R-List of fi to the filtering list R.

Step 2. For each (Pi, P Ii) ∈ J , conduct verification on PIi by invoking SuffixQ
starting from the end of Codefi in a depth first search against q, while ignoring
those Codeg whose IDs are in R.

5 Hierarchical PrefIndex Search

This section explores two further computation-sharing opportunities missed by
GPTree: (1) sharing computation among common prefixes of multiple groups;
(2) sharing computation among multiple suffixes in each group. We propose to
organize the PrefIndexes of multiple groups in a hierarchical structure.
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Fig. 5. Hierarchical PrefIndex

Multi-level Sharing. Regarding Figure 4, assume that (d) and (e) are the
PrefIndexes of G1 = {ga, gb} and G2 = {gc}. Although fa and fb contain the
same induced subgraph, an edge (b, c), the chance to share it between G1 and G2

is missed since it is not the prefix of PI1, To address this, a level 2 PrefIndex can
be obtained by applying PrefIndex on all selected master features. Generally, a
level n PrefIndex can be obtained by applying PrefIndex on all sub-features of
level n − 1. The procedure can be iteratively performed until no new common
subgraphs are identified at the current level.

Regarding Figures 4, we first mine frequent induced subgraphs from fa and fb

as sub-features and then apply feature selection to construct a 2-level PrefIndex.
Figure 5 (a) shows a 2-level PrefIndex where edge (b, c) (sub-feature) is shared.

Suffix-Sharing. In PrefixQ, SuffixQ is recursively invoked for each survived
suffix. Note that multiple suffixes in a group are still likely to share common
entries. As in Figure 5 (a), two entries Codea.S4 and Codeb.S4 have identical
information as well as the common prefix. By sharing them as a common prefix
of these two suffixes, the resulted PrefIndex is organized in Figure 5 (b).

Greedy algorithm and PrefIndex technique are adopted to explore the common
prefixes of suffixes within each group. All possible next vertices in all suffixes
which connects to the common prefix are identified and classified into different
types based on label, parent and back edge information. We greedily selecting
the vertex contained by the most suffixes and encode the vertex as the next entry
of GVCodes of these suffixes. The greedy selection terminates when all types are
contained by only one suffix. Frequent induced subgraph mining is not used here
since the subgraph graph corresponding to each suffix is not always connected.

Building HiPrefIndex. PrefIndex technique is firstly applied on data graphs
to build the first level index. Then we iteratively build index on common sub-
features identified on each next level. Finally, suffix-sharing is applied within
each group to complete the hierarchical PrefIndex which is called HiPrefIndex.
If the generated HiPrefIndex is forest structured, a dummy root, which links to
the top of each PrefIndex, is inserted into HiPrefIndex.

Searching HiPrefIndex. The querying processing on HiPrefIndex starts from
the (dummy) root of HiPrefIndex and probes HiPrefIndex in a depth first fashion.
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PrefixQ and SuffixQ can be immediately modified to support query processing on
HiPrefIndex. For space limits, the details are not presented here.

Space-Time Efficiency vs Pruning Power. A branch in HiPrefIndex may
correspond to more than one data graph. Regarding Figure 5 (b), the left branch
of (S3, S4) leads to ga and gb. Given the query in Figure 1, the prefix correspond-
ing to fb is not contained by q. Since we know gb also contains fb, in order to
remove gb in the filtering phase, we need to record graph IDs along each edge in
HiPrefIndex to share pruning power. This increases not only the storage space
but also the computation cost to check graph IDs on each edge. Thus we ignore
such information and do not share pruning power in HiPrefIndex.

6 Performance Evaluation

We evaluate the performance of our techniques by comparing with GPTree.
The following techniques are examined: (1) Indexing techniques PrefIndex and
HiPrefIndex in Section 3 and 5. (2) Querying algorithms PrefSearch and HiPref-
Search in Section 4 and 5. (3) Querying algorithms GPTree(A) and GPTree(E)
in [14]. GPTree(A) differs from GPTree(E) as it approximately mines frequent
closed subgraphs to save index construction cost, which yields an (incomplete)
feature set contained by the (complete) feature set of GPTree(E). We obtain the
code of GPTree from its authors [14]. All algorithms are implemented in C++
and compiled by GNU GCC. Experiments are conducted on PCs with Intel Xeon
2.4GHz dual CPU and 4G memory under Debian Linux.

Datasets: AIDS and AIDS10K. Two real datsets are used. AIDS Antivi-
ral dataset, denoted by AIDS, contains 43,905 graph structured chemical com-
pounds. It is a popular benchmark for studying graph queries downloaded from
Development Therapeutics Program. To compare with GPTree based on its ex-
periment settings, a subset of AIDS with 10K graphs, denoted by AIDS10K, is
downloaded from http://www.xifengyan.net/software.htm.

Database and Query Set. For fair comparison, we adopt the experiment set-
tings in [14]. We mine frequent subgraphs from AIDS10K with frequency ranging
from 0.5% to 10% and randomly select 10K graphs as the default database, while
the default query set is exactly AIDS10K.

6.1 Efficiency on Real Dataset

The default database and query set is used to evaluate the efficiency of our
techniques. The default query set is divided into 5 groups from Q1 to Q5. The
answer set size of queries in Q1 falls in [0, 20), while those of the rest groups
from Q2 to Q5 fall in [20, 40), [40, 60), [60, 80) and [80,∞). Both techniques
mine candidate features from the default database with a minimum frequency
of 1%.
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Table 2. Index Construction

PrefIndex HiPrefIndex GPTree(A) GPTree(E)

Index Construction (sec) 311.5 313.6 129.7 697.9

Index Size (# of Features) 268 268 1301 1278
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Query Processing. Figure 6 shows average query response time within each
query group1. PrefSearch and HiPrefSearch outperform GPTree(A) and GP-
Tree(E) for up to 2 orders of magnitudes in query processing, while GPTree(E)
slightly outperforms GPTree(A). Although HiPrefSearch disables some of its
pruning power, it outperforms other techniques due to its multi-level and suffix-
sharing techniques.

Pruning Power. Figure 7 shows average pruning power measured by candidate
size within each query group. The pruning power of PrefIndex is very similar to
that of GPTree(E) and GPTree(A), while GPTree(E) outperforms GPTree(A)
due to its complete frequent closed subgraph mining. Since HiPrefIndex disables
a part of its pruning power to share more computation as discussed in Section 5,
its pruning power is not evaluated here.

Index Construction. Table 2 shows index construction cost and index size
measured by number of features. While most of the cost for both techniques is
spent on the frequent subgraph mining, the effective ordering of GVCode of Pre-
fIndex and HiPrefIndex only consumes less than 0.8% of the total cost. PrefIndex
slightly outperforms HiPrefIndex due to the extra cost spent on mining multi-
level subgraphs and common suffixes. GPTree(A) costs much less construction
time as it approximately mine a small feature set. GPTree(E) costs the most
index construction time since it mines not only a complete feature set but also
common induced subgraphs from features and data graphs respectively. For fair
comparison, we only focus on GPTree(E) for the rest experiments.

6.2 Scalability on Real Dataset

Varying Database Size. We first evaluate the scalability of our techniques by
varying database size. For this reason, AIDS instead of AIDS10K is adopted to
generate databases of various size. We first randomly select 10K graphs from
1 The X-axis represents the average number of answer graphs in each group.
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AIDS as the query set from which we mine frequent subgraphs via the same
way as in the overall performance and randomly select 5K, 10K, 15K and 20K
frequent subgraphs to form 4 databases from D1 to D4.

Figure 8 shows average query response time for each database. The increment
of query response time is almost linear for PrefSearch and HiPrefSearch with
increasing database size. HiPrefSearch is still up to an order of magnitude faster
than GPTree(E). Figure 9 shows average pruning power for each database. The
pruning power of PrefIndex is similar to that of GPTree(E), which confirms the
advantage of PrefSearch and HiPrefSearch over GPTree(E) mainly comes from
the maximized computation-sharing benefits. Figure 10 shows index construction
cost for each database. PrefIndex and HiPrefIndex always needs similar index
construction time. It is because HiPrefIndex mines frequent subgraphs from a
sequentially decreasing set of sub-features on each level, while common prefixes
of suffixes are searched only within each group. GPTree(E) costs the most time
due to the extra cost on mining common induced subgraphs.

Varying Data Graph Size. We then evaluate the scalability of our techniques
by varying data graph size (in # of vertices). We randomly select 10K graphs
from AIDS as the query set from which we mine frequent subgraphs via the
same way as above and randomly select 5K frequent subgraphs of 10 vertices as
database D1. We construct other four database from D2 to D5 by selecting 5K
frequent subgraphs of 12, 14, 16, and 18 vertices respectively.

 0

 5

 10

 15

 20

 25

 30

10 12 14 16 18

A
ve

ra
ge

 Q
ue

ry
 T

im
e 

(m
s)

Averge Data Graph Size (# of vertices)

PrefSearch
HiPrefSearch

GPTree(E)

Fig. 11. Query Response

 0

 200

 400

 600

 800

 1000

 1200

10 12 14 16 18

A
ve

ra
ge

 C
an

di
da

te
 S

et
 S

iz
e

Average Data Graph Size (# of vertices)

PrefIndex
GPTree(E)

Fig. 12. Pruning Power

100

101

102

103

10 12 14 16 18

C
on

st
ru

ct
io

n 
T

im
e 

(s
)

Average Data Graph Size (# of vertices)

PrefIndex
HiPrefIndex
GPTree(E)

Fig. 13. Construction

The query response time, pruning power and index construction time for
each database are respectively reported in Figures 11, 12 and 13. Note that the
gap on query response time between PrefIndex and GPTree(E) are dramatically
furthered with increasing data graph size, since the benefits of multi-level and
suffix-sharing are more likely to be obtained on large graphs. While the pruning
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power for both techniques remains similar, index construction cost of PrefIndex
and HiPrefIndex are very close and increase less significantly than GPTree(E).

6.3 Scalability on Synthetic Dataset

We evaluate the scalability on synthetic dataset by varying database size. A
graph generator from [3] is used. A default query set of 10K graphs is generated
by setting the average graph size to 30 vertices, while the average density ( |V |

|E|)
is set to 1.3. The distinct number of labels is set to 10 and distributed uniformly.
The default database and 4 databases of 5K, 10K, 15K and 20K graphs are
constructed in the same way as above.
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The query response time, pruning power and index construction time are
respectively recorded in Figure 14, 15 and 16. Although PrefSearch and HiPref-
Search outperform GPTree(E) on query response time and index construction
cost, the gap between the techniques shortens a lot. Due the uniform distribution
of vertex label, the number and size of frequent subgraphs greatly decrease and
thus yields limited computation-sharing opportunity. However, PrefIndex still
has its advantage over GPTree(E) as expected.

7 Related Work

Many studies have been done on graph containment search. While the subgraph
containment search has been extensively studied, the supergraph containment
search does not draw attentions from database community until most recently.

The filtering-verification framework is popular among most related work on
subgraph containment search, which uses effective indexing techniques to filter
most false results before the costly verification. Shasha et al. propose a path-
based index, GraphGrep [5], which is known as the first feature-based index for
subgraph containment search. To enhance the pruning power, frequent subgraph
mining techniques such as gSpan [11] and F3TM [15] are developed. Yan et al.
develop an effective indexing approach gIndex [12] based on frequent, discrimi-
native subgraphs. Due to the expensive cost of frequent subgraph mining, Zhang
et al. and Zhao et al. propose TreePI [13] and (Tree+Δ) [16] independently to
index frequent subtrees. Cheng et al. propose a verification-free framework FG-
Index [3] to further avoid subgraph isomorphism test. Besides the feature-based
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index approaches, He et al. propose a clustering-based approach, called C-tree [6],
to index graph closures (integration of graphs) in a B-tree like structure. It is the
first work to support both exact and similarity subgraph containment search.
Other clustering-based approaches include [8] and [1]. Moreover, Williams et al.
[10] focus on the efficiency of processing small data graphs, while Jiang et al.
[7] convert subgraph containment search to a string search problem. Recently,
Shang et al. [9] present an efficient verification algorithm QuickSI.

On supergraph containment search, the first work cIndex proposed by Chen
et al. [2] adopts historical query-log information to select features with maxi-
mized pruning power. Zhang et al. propose GPTree [14], a computation-sharing
framework to share computation cost respectively in the filtering phase and veri-
fication phase. To address the defects of GPTree, our techniques propose efficient
clustering and query processing algorithm to further share computation cost be-
tween filtering and verification, while multi-level and suffix-sharing techniques
provide other opportunities to avoid redundant computation.

8 Conclusions

In this paper, a novel computation-sharing framework is proposed for super-
graph containment search. All data graphs are clustered into disjoint groups for
computation-sharing within each group. While the optimization problem MG is
shown NP-hard, efficient greedy heuristic is used to approximate the optimal so-
lution with an approximation factor of 1

2
. Based on the compact index structure,

PrefIndex, an efficient algorithm PrefSearch integrating filtering and verification
is proposed. PrefIndex is enhanced with multi-level sharing and suffix-sharing
techniques to explore further sharing opportunities. An extensive empirical study
demonstrates the efficiency and scalability of our proposed techniques which
achieve orders of magnitudes of speed-up against the state-of-the-art techniques.

References

1. Berretti, S., Bimbo, A.D., Vicario, E.: Efficient matching and indexing of graph
models in content-based retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 23(10),
1089–1105 (2001)

2. Chen, C., Yan, X., Yu, P.S., Han, J., Zhang, D.-Q., Gu, X.: Towards graph con-
tainment search and indexing. In: VLDB, pp. 926–937 (2007)

3. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query pro-
cessing on graph databases. In: SIGMOD Conference, pp. 857–872 (2007)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

5. Shasha, D., Wang, J.T.-L., Giugno, R.: Algorithmics and applications of tree and
graph searching. In: PODS, pp. 39–52, 200

6. He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE,
p. 38 (2006)

7. Jiang, H., Wang, H., Yu, P.S., Zhou, S.: Gstring: A novel approach for efficient
search in graph databases. In: ICDE, pp. 566–575 (2007)



378 G. Zhu et al.

8. Messmer, B.T., Bunke, H.: A decision tree approach to graph and subgraph iso-
morphism detection. Pattern Recognition 32(12), 1979–1998 (1999)

9. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. PVLDB 1(1), 364–375 (2008)

10. Williams, D.W., Huan, J., Wang, W.: Graph database indexing using structured
graph decomposition. In: ICDE, pp. 976–985 (2007)

11. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM, pp.
721–724 (2002)

12. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach.
In: SIGMOD Conference, pp. 335–346 (2004)

13. Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: ICDE,
pp. 966–975 (2007)

14. Zhang, S., Li, J., Gao, H., Zou, Z.: A novel approach for efficient supergraph query
processing on graph databases. In: EDBT, pp. 204–215 (2009)

15. Zhao, P., Yu, J.X.: Fast frequent free tree mining in graph databases. In: ICDM
Workshops, pp. 315–319 (2006)

16. Zhao, P., Yu, J.X., Yu, P.S.: Graph indexing: Tree + delta ≥ graph. In: VLDB,
pp. 938–949 (2007)

17. Zou, L., Chen, L., Yu, J.X., Lu, Y.: A novel spectral coding in a large graph
database. In: EDBT, pp. 181–192 (2008)



Supporting Web-Based Visual Exploration of
Large-Scale Raster Geospatial Data Using Binned

Min-Max Quadtree

Jianting Zhang1,2 and Simin You2

1 Department of Computer Science
The City College of the City University of New York

138th Convent Avenue, New York, NY 10031
jzhang@cs.ccny.cuny.edu

2 Department of Computer Science
The Graduate Center of the City University of New York

365 Fifth Avenue, New York, NY 10006
syou@gc.cuny.edu

Abstract. Traditionally environmental scientists are limited to simple display
and animation of large-scale raster geospatial data derived from remote sensing
instrumentation and model simulation outputs. Identifying regions that satisfy
certain range criteria, e.g., temperature between [t1,t2) and precipitation between
[p1,p2), plays an important role in query-driven visualization and visual explo-
ration in general. In this study, we have proposed a Binned Min-Max Quadtree
(BMMQ-Tree) to index large-scale numeric raster geospatial data and efficiently
process queries on identifying regions of interests by taking advantages of the
approximate nature of visualization related queries. We have also developed an
end-to-end system that allows users visually and interactively explore large-scale
raster geospatial data in a Web-based environment by integrating our query pro-
cessing backend and a commercial Web-based Geographical Information System
(Web-GIS). Experiments using real global environmental data have demonstrated
the efficiency of the proposed BMMQ-Tree. Both experiences and lessons learnt
from the development of the prototype system and experiments on the real dataset
are reported.

Keywords: Binned Min-Max Quadtree, raster geospatial data, Web-GIS, visual
exploration.

1 Introduction

Advancements in remote sensing technology and instrumentation have generated huge
amounts of remotely sensed imagery. It has been estimated that remotely sensed im-
agery is acquired at the rate of several terabytes per day [1]. In addition to raw imagery
data, derived data products targeting at domain-specific applications are fast growing as
well. For example, regional and global coverage of Land Cover, Land Surface Tempera-
ture, Albedo and Vegetation Indices are among a fraction of MODIS data product table
[2]. Still yet, numerous environmental models, such as Weather Research and Forecast
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(WRF [3]), have generated even larger volumes of geo-referenced raster model output
data with different combinations of parameters, in addition to increasing spatial and
temporal resolutions. Traditionally environmental scientists are limited to simple dis-
play and animation of raster geospatial data in a desktop computing environment. Very
little visual exploration functionality has been provided despite the continuous com-
munity software development efforts, such as the Integrated Data Viewer (IDV) from
UCAR [4] and WorldWind from NASA [5]. A general purpose, high-performance spa-
tial database backend is highly desirable in supporting visual explorations of large-scale
raster geospatial data. Unfortunately, most of existing spatial database research and de-
velopments focus on vector geospatial data.

The limited support for binary raster data in the form of quadtree indexing that
have been implemented in leading spatial databases, e.g., Oracle Spatial [6] and Mi-
crosoft SQL Server Spatial [7], are primarily designed for query filtering on vector
spatial data rather than querying numeric raster data natively. We also argue that the
pyramid-alike approaches, such as Oracle GeoRaster [8], ArcGIS tiled map services
[9] and MapServer[10]/TileCache [11] are mostly designed for fast simple display pur-
poses and are not suitable for supporting interactive visual explorations that involve
ad-hoc queries on raster cell values. Efficient data structures, indexing techniques and
coordination between browser-based applications and servers are essential to support
such queries for interactive visual explorations in a Web environment.

In this study, we propose to use a binned min-max quadtree data structure to index in-
teger or real value rasters to facilitate query-based visualization and visual explorations
[12][13][14] [15][16] of large-scale raster geospatial data. By quantizing numeric raster
cell values into a set of bins based on the histogram of a raster, the complexity of the
resulting quadtree can be greatly reduced. The memory footprint of the quadtree can be
sufficiently small to reside in main memory to efficiently answer exploratory queries,
such as finding regions whose temperature are between [t1,t2) and precipitation are be-
tween [p1,p2). Our work along the direction is largely motivated by the binned bitmap
indexing implemented in FastBit [17] with adaptation to more efficient support of find-
ing Regions of Interests (ROIs) in large geo-referenced raster environmental datasets.
We term the problem as ROI-finding query which obviously is an extension to finding
individual data items as in [12][13]. The problem is similar to the one addressed in
[18] and we have adopted a different approach. The data structure can be parallelized
across multiple shared-nothing machines to effectively support visual explorations of
large-scale geospatial raster data in a Web environment. A prototype that integrates our
in-house developed query processing backend based on the proposed data structure and
the commercial ArcGIS server software demonstrates the feasibility and effectiveness
of the proposed approach. Our technical contributions cover the following three aspects:

– We have proposed a novel binned min-max quadtree data structure to index non-
binary rasters. The data structure is efficient for processing queries in support of
interactive visual explorations of large-scale raster data by taking advantages of the
approximate nature of visualization related queries.

– We have developed a Web-based end-to-end system that allows users interactively
and visually explore large-scale raster geo-referenced raster environmental data by
coordinating Web clients and query processing backend.
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– Experiments using a real environmental data have demonstrated the efficiency of
the binned min-max quadtree data structure. The experiments also have provided
experiences and lessons to further improve the performance of the Web-based
system.

The remainder of the paper is structured as follows. Section 2 introduces related works
on visual explorations of raster geospatial data and managing and indexing of raster
geospatial data in a database environment. Section 3 presents the binned min-max
quadtree data structure. Section 4 provides the architecture and the components of the
prototype system to support Web-based visual explorations. Section 5 presents our ex-
periments on the WorldClim global precipitation data at the 30 arc-seconds resolution.
We report both experiences and lessons learnt from the development of the prototype
system and experiments on the real dataset. Finally, Section 6 concludes the paper and
outlines future research directions.

2 Background and Related Work

Visual explorations play an important role in seeking casual relationships among en-
vironmental factors and the possible relationships between human activities and their
environmental consequences. As the majority of environmental data have a geospatial
and a temporal component, research on exploratory spatial and spatiotemporal anal-
ysis [19] [20][21] can be generally applied. Quite a few research prototypes, such as
GeoDa[22] and GeoVista [23] are available for vector geospatial data (including the
associated attribute data) and they are quite successful in social, economic and health
domains. On the other hand, while numerous image clustering, segmentation and clas-
sification algorithms have been applied to satellite imagery, only a handful research on
visual explorations of the correspondences between pixel values and class labels have
been reported [24][25]. The recently emerging object-oriented classification algorithms
and their applications in remote sensing imagery have provided an opportunity for vi-
sual explorations of remotely sensed image data [26][27]. On the environmental model
output side, most of existing developments focus on overlaybased display, map gen-
eration and animation. Little progresses have been evidenced on exploratory analysis
with the exception of iso-surface generation. As an example, UCARs IDV[4] is capable
of generating iso-surfaces from 3D atmospheric model outputs. However, the capabili-
ties of linking geospatial phenomena (objects or events) with the underlying raster data
(sensor observations or model outputs) are still lacking despite the availability of several
pioneering theoretical works (e.g. [28]). It is beyond the scope of this paper to provide
a comprehensive solution to visual explorations of raster geospatial data. Rather, our
focus is on efficient implementation of a few generic operations to facilitate such visual
explorations on large-scale raster geospatial data. More specifically, we target at the
ROI-finding queries.

A few options are available to manage geospatial raster data in databases based on
existing database technologies. First of all, each individual element can be treated as a
tuple in relational table and traditional relational database technologies can be applied.
Second, the raster data can be treated as multidimensional arrays and subsequently
N-Array or nested table techniques can be applied in object-relational databases [29].
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Finally, large raster data can be decomposed into small units and stored in databases as
Large Binary Objects or BLOBs [30]. While each of the approaches has their suitable
application scenarios, none of them can be used to process ROI-finding queries effi-
ciently. Studies also have shown that multidimensional array supports implemented in
mainstream databases are far less efficient than using native scientific data formats when
scaling up to large datasets [29]. While the recently emerging column-store database
techniques optimized for read-only or append only data [31][32] might provide an op-
portunity to reevaluate the suitability of relational and object-relational database tech-
nologies for geospatial raster data, it is likely that extending existing spatial indexing
techniques remain to be the most effective way to process the ROI-finding queries.

We note that column-store based database layouts are similar to popular scientific
data formats, such as NetCDF[33] and HDF5[34] in many aspects. We believe that
one of the biggest problems in handling geo-referenced gridded environmental data in
existing databases is the lacking of proper indexing mechanisms that take spatial or
spatiotemporal autocorrelations into consideration. In fact, as discovered in [18], while
sophisticated bitmap indexing techniques such as those implemented in FastBit [17] are
very efficient in finding individual raster cells, it is more computationally expensive to
assemble them into regions and return the regions as query results, i.e., assembling tu-
ple IDs into regions. In contrast, our approach is based on spatial indexing that indexes
regions and returns regions that satisfy searching criteria directly without incurring ex-
pensive post-processing cost. We also note that our work on indexing raster geospatial
data complements existing works on array query definition language [35][36][37] and
physical data layout of multidimensional data[38][39][40].

The most popular spatial indexing techniques include R-trees, quadtrees, octtrees
and kd-trees. We refer readers to the overview papers and books for more detailed in-
formation [41][42]. Various quadtrees have been used to index both vector and binary
raster data. On the other hand, interval tree [43],octree [44][45] and kd-tree [46][47]
techniques have gained considerable popularity in deriving static and time-evolving iso-
surfaces with or without ray-tracing. There are two problems in directly applying octree
and kd-tree techniques to visual explorations of large scale gridded environmental data.
First, techniques developed for iso-surface generation and/or ray-tracing usually have
large memory footprints. While they are suitable for fine-scale offline rendering, it may
be too costly for online visual explorations in a Web environment. Usually only lim-
ited resources are allocated to a Web browser. Data communication overheads between
browsers and servers are much higher than those in tightly coupled desktop or clus-
ter computing environments. Second, these techniques are mostly designed for tracing
boundaries (iso-surfaces) and intersecting with linear objects (ray-tracing) and it is not
straightforward to apply them to identify ROIs.

There are also works trying to extend quadtree techniques for binary rasters to
grayscale or color images [48] [49][50]. However, most of existing studies along the
direction focused on image encoding or compression with only few of them actually
targeted at efficient query processing which are more relevant to visual explorations
of scientific data. The difference between image compression and query processing is
that the former focuses on the tradeoffs between disk storage and compression com-
putation while the later focuses on the tradeoffs between the filtering and refinement in
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processing a query using an acceptable memory footprint. Previous research on quadtree
based data structures and query processing focused on storage and manipulation of clus-
ters of (overlapped) images. We refer readers to [51][52][53][54][55] and the review
article by Manouvrier[56] for more details. These data structures are not tailored for
read-only applications and they may not be suitable for supporting visual explorations
of large-scale raster data, especially in a Web environment. Furthermore, most of the
works utilized or followed a B-Tree indexing approach and assumed portions of the
indices are dynamically loaded into memory. In contrast, our approach quantizes raw
data into bins and tries to build a memory-resident index with desired memory foot-
print. The memory-resident index ensures fast filtering in query processing and returns
regions that approximate true query results before subsequent refinement.

Our approach is largely motivated by the binned bitmap indexing reported in [57] and
the multi-scale bitmap indexing reported in [58]. The binned bitmap indexing approach
has been successfully applied to large-scale query-based interactive visualization using
techniques such as Parallel Coordinate Plot or PCP [59]. A similar bin-hashing strat-
egy has been applied to query driven visualization before rendering resulting records
as point clouds [60]. One drawback of directly applying binned bitmap indexing for
visual explorations of geospatial raster data is that when value ranges of a query are
wide, it is likely that a large number of cells will be returned independently. It could
be very expensive to transport the individual query results from query backend to client
machines and paint these cells individually in a Web browser. The rendering speed in
Web browsers could be improved by specifying regions instead of individual pixels.
The advantages and practical needs of returning regions from a query are also identified
by a recent work by Sinha[18] which is based on the FastBit. The authors proposed to
identify regions from the bit vector of a query result which had been observed to be
very computationally expensive. As such, while we recognize the generality of bitmap
indexing that is suitable for both structured and unstructured data items, we argue that
our approach is more suitable for ROI-finding queries for visual exploration purposes.

With respect to Web-based visual exploration of geospatial data, previous works
focused on the mashup techniques by dynamically compositing images generated at
the server sides [61][62]. However, very few of the reported works have taken query
efficiency into consideration. Most of them assume that the server side programs are
sufficiently fast and the bandwidth is large enough for interactive visualizations. As
detailed in Section 3, the hierarchical nature of quadtree data structures allow pruning
quadrants that do not intersect with the spatial extents that are under investigations by
users. This not only speeds up query response times but also reduce the data volumes
of query results need to be transported to clients. In addition, any lower level quadrants
whose spatial extents are less than single pixel based on visualization scales at the
clients can be pruned as well, which further reduce query response times and query
result data volumes.

3 Binned Min-Max Quadtree

In this section, we first define the ROI finding queries before presenting the binned
min-max quadtree data structure and its construction and query processing algorithms.
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Given a set of rasters representing environmental variables {Fi|0 ≤ i < n} over a spa-
tial domain D whose value ranges are

{
V H

i

}
and

{
V L

i

}
respectively, a ROI find-

ing query Q identifies regions in D whose cells Cj satisfy the compound condition{
Cj |V1j ∈ [V QL

1 , V QH
1j ] op V2j ∈ [V QL

2 , V QH
2 ] ... op Vkj ∈ [V QL

k , V QH
k ]

}
where op

can be either conjunctive and disjunctive and 0 < k < n. V QL
i and V QH

i represent
the lower and high bounds of query Q for variable i. While the formulation does not
impose any relationships among the resulting raster cells, since we divide domain D
into quadrants in quadtree indexing and evaluate the compound condition against rele-
vant quadrants, the resulting cells are naturally reported as a collection of quadrants that
satisfy the compound query criteria. Instead of reporting the cells individually from the
query result, using a collection of quadrants may significantly save memory consump-
tion and improve query results rendering for visualization purposes. Assuming that a
quadtree for each environmental variable has been constructed, it is not difficult to see
that evaluating the compound condition can be achieved by synchronized traversal of
relevant quadtrees as described in (Manouvrier et al 2002) and will be omitted here
due to space constraints. We next focus on the construction of a single quadtree and
evaluating a single condition on a quadtree.

The Binned Min-Max Quadtree, or BMMQ-Tree for short, is directly motivated by
both binned bitmap indexing [57] for scientific data and min-max octree/kd-tree for
isosurface generation and ray tracing[47]. As discussed above, while min-max octrees
and kd-trees are efficient in pruning tree branches that do not contain the iso-values
being used, building a full octree or kd-tree using the finest resolution data may con-
sume too much memory and slow down index construction and query processing. The
binned bitmap indexing is more efficient and more suitable for large scale scientific
data when compared with classic bitmap indexing. The downside is that the resulting
cells in binned bitmap indexing do not naturally form regions and the post-processing
to assemble cells into regions could be very computationally expensive. The proposed
BMMQ-Tree combines the advantages of min-max octree/kd-tree indexing and binned
bitmap indexing. Furthermore, our empirical studies have shown that, while environ-
mental data are well-known for significant spatial autocorrelation due to the first law
of geography [63], neighboring cell values are often slightly different. This makes tra-
ditional quadtree-based indexing techniques that require the uniformity of quadrants
inappropriate. By binning cell values using proper boundary values, quadrant unifor-
mity can be derived and mature quadtree indexing techniques (such as linearization
and query processing in databases) can be applied. In this sense, our BMMQ-Tree data
structure is an extension to traditional region quadtrees by associating each quadrant
with a min and a max value of a quadrant. The min and max values are bin indices
which can be bytes (8 bits for 256 bins) or short integers (16 bits for 65,536 bins),
which normally are just a fraction of the storage requirement for a quadtree node. On
the other hand, BMMQ-Tree branches can be efficiently pruned if the nodes min/max
values do not overlap with the range of the query being evaluated. We next present the
tree construction and query processing in more details.

Fig. 1 illustrates the process of constructing a BMMQ-Tree. The process first de-
termines bin boundaries. While quite a few options are available, we decide to use
a histogram based quantile approach for simplicity. The open source GDAL package
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Fig. 1. Illustration of Binned Min-Max Quadtree Construction

[64] has provided an API to efficiently generate histograms for major image and raster
data formats which further makes the histogram based approach desirable from imple-
mentation perspective. After the histogram with desired low/high boundary and bins
has been retrieved, we loop through the histogram bins to determine the quadtree bins
as the following. For each of the histogram bins, if its count is larger than the average
count of the quadtree bins (calculated as the total valid raster cells divided by the de-
sired quadtree bins - denoted as NA), then it is qualified as a quadtree bin; otherwise it
will be combined with previous histogram bins until the combined count is larger than
NA. Due to the bin formulation policy, the resulting number of bins can be less than the
desired bins.

The main process of BMMQ-Tree construction is as the following. First, the 2D
raster data being indexed is read into main memory following the sequence of BMMQ-
Tree nodes that are being constructed. Each cell value is first quantized based on the
bin boundary values. After the four cells that form a quadrant are processed, if their bin
indices are exactly the same, then they will be combined to form a quadrant with the
same min/max value. The process then moves to the next quadrant based on the quadtree
space tessellation (row-major or column-major). The combination is also performed re-
cursively to determine the min/max bin indices for each quadtree node. It is clear that
the memory requirement in the BMMQ-Tree construction process is never larger than
the size of the constructed quadtree plus four quadtree nodes and the data buffer to
hold the values of raster cells being processed. We are in the process of exploring the
possibilities of GPGPU based parallel constructions of BMMQ-Trees which is likely to
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Fig. 2. Query Processing Based on Binned Min-Max Quadtree

reduce index construction times significantly. On the other hand, as most georeferred
environmental data are read only, offline index creation and online query processing are
independent of each other. While it is difficult to compare our approach with approach
presented in [18] directly, we consider our approach trades offline index construction
times with online query processing times by forming uniform quadrants which are in-
termediate between connected components and individual raster cells. We next turn to
online query processing using BMMQ-Trees.

Query processing using BMMQ-Trees is illustrated in Fig. 2 using an example. First,
the low and high boundary values [40,50) are mapped to the low and high ends of bin
indices 1 and 2, respectively. The boundary values corresponding to the resulting bin
indices [37,52) completely contain the query low and high boundary values to avoid
true negatives. Second, starting from the root, each quadrant is recursively visited. If
the min-max indices range does not overlap with the indices range corresponding to the
query range, then all quadrants under the node corresponding to the current quadrant
can be safely pruned. In Fig. 2 (top-left part), non-leaf nodes not in the shaded rect-
angles have been pruned. The recursive query processing stops under two conditions.
First, a leaf node is reached which indicates that either a raster cell at the finest reso-
lution is reached or all the raster cells in the quadrant corresponding to the node have
the same bin index. Second, the quadrant corresponding to the node has a spatial ex-
tent less than a single pixel based on visualization scales at the client side. Assuming
the width and height of visualization canvas at the client side are Wc and Hc and the
width and height measured as the real-world coordinate system (e.g., latitude/longitude)
are Wr and Hr, respectively, the quadtree level to stop recursive query processing can be
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easily calculated as Lstop = floor(log2(min(Wr/Wc, Hr/Hc))). It is clear that false
positives may be introduced (the shaded cells in the lower-right part of Fig. 2) due to
the binning nature of the data structure and the less-than-single-pixel stopping policy.
While this may be a problem for querying databases exactly, it turns out that allowing
false positives reduces the structural complexities of query results and hence the data
volumes to be transported to the clients as well as rendering times at the client side.
More discussions are provided in the experiments section.

4 System Architecture and Implementation

The primary focus of this research is to develop an end-to-end system that can ef-
fectively facilitate environmental scientists to explore large-scale geo-referenced raster
data. Compared to desktop applications, a Web-based interface is more preferable.
However, normally only limited resources are allocated to a Web browser and graphics
rendering accelerators are usually not accessible to browser-based applications. Data
communication overheads between browsers and servers are much higher than those
in tightly coupled desktop or cluster computing environments. As such, careful design
to take the characteristics of both client and server sides into consideration is essential
in visual exploration of large-scale raster geospatial data in a Web environment. In our
prototype system, the client side is based on the Rich Internet Application (RIA) frame-
work using Adobe Flex programming [65]. The server side is a combination of com-
mercial ArcGIS server technologies [9] and our in-house developed distributed query
processing modules that implement the binned min-max quadtree based indexing as de-
scribed above. The overall architecture is shown in Fig. 3 and more details on each of
the components will be provided subsequently. Note that some components in Fig. 3 in-
volve both offline and online parts and both of them will be introduced in the respective
subsections.
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Fig. 3. Prototype System Architecture
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4.1 Visual Exploration Client Module

We have adopted Adobe Flex programming [65] to develop the client module for the
following considerations. First, the Flex RIA framework has built-in rich graphics func-
tionality and allows users control rendering canvas at the pixel level which is much more
powerful and flexible than traditional Ajax based solutions. Second, it also allows more
complex and immediate interactions with users which are crucial in visual explorations.
Third, quite a few popular visualization packages, such as ArcGIS [66], have provided
Flex APIs which makes the choice very attractive compared to the similar frameworks.
Nevertheless, we believe that our design is also applicable to other RIA frameworks,
should an alternative be more desirable for practical reasons.

The client module provides graphics user interfaces (GUIs) and interacts with users.
Fig. 4 provides a snapshot shows the layout of the GUIs. A tree interface shows the cat-
alog of available raster datasets based on their semantic classifications. Users can search
and subsequently select a subset of rasters as the candidates for explorations. For the
chosen rasters, histograms can then be visualized to help users determine ranges of val-
ues for subsequent visual explorations. The ”Query” button serves as the entry point
to translate the query criteria represented by GUIs into a query string to be passed to

Data Source Tree

Specifying query value and
bin indices ranges (min/max)
based on dataset histogram

Information panel displaying
numbers of hits and different
types of processing times

Base map visualization

Overlaying
resulting
quadrants

Fig. 4. Prototype System Snapshot and Web Client GUI Layout
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the appropriate query processing backend. The query string currently includes spatial
extent, bin index range and desired level of details. There are different options to visu-
alize query results at the client side. We have chosen to ask the backend to send back
the results in the form of a collection of (x, y, level) triples, convert these triples into
geographical coordinates and generate polygons so that they can be easily visualized in
Flex-enabled runtime engines embedded in Web browsers through ArcGIS Flex API.
While this approach is simple to implement and works well when the numbers of result-
ing quadrants are in the order up to a few thousands, we have found that the performance
degrades as the numbers of resulting quadrants increase when the desired levels of de-
tails are high in some tests. We are in the process of exploring an image-based option
that clients ask servers send back the query results in the form of binary images so that
they can be visualized in Web browsers using less memory and computation resources.
The visualization module is also responsible for requesting proper tiles from ArcGIS
Server Manager and displays the returned images representing raw data with a prede-
fined coloring schema. Note that client requests to the query processing backend and
ArcGIS servers are completely independent. More information on this part is provided
in Section 4.3.

4.2 Distributed Query Processing

As discussed before, the BMMQ-Tree based indices can be distributed across multiple
shared-nothing machines to make visual exploration related query processing scalable.
While there are quite a few options for workload distribution in facilitating parallel
computing, the approach used in this study is based on a combination of spatial and
categorical criteria which certainly lefts rooms for further refinements. As an example,
the GLCF MODIS data from the University of Maryland comes with five parts [67],
namely Africa, EuraAsia, North America, South America and Oceania. Each part has
images at about 60 time periods and each image for a single period has 7 bands. Thus
it is natural to decompose the spatial domain by the five parts. Depending on the avail-
able machines, the raster images in each part can be further decomposed by time and/or
by bands. There are advantages and disadvantages of using fine and coarse level paral-
lelization in this context. Using more computer nodes certainly reduces workload per
node but also increases monetary costs. Furthermore, for processing conjunctive queries
that involve multiple rasters (layers), if these rasters are indexed by a same computer
node, query optimization is possible by early termination during synchronized traver-
sals of co-located quadtrees.

4.3 Tiled Map Visualization Using ArcGIS

Fast visualizing and examining raw data are among the basic requirements for visual
explorations of environmental data. Major Internet map providers, such as Google map
and Microsoft Live map use the tile cache technology to speed up map rendering. GIS
server software, such as ArcGIS [9] and MapServer+TileCache[10][11] provide similar
functions to allow users to publish their own data as tiled maps that can be visualized
in a variety of client software. We choose ArcGIS due to its technical maturity and
easy of use. Map tiles at the different scales for all rasters have been generated in Ar-
cGIS server. The ArcGIS Flex API [66] has made it easy to use tiled maps hosted by
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ArcGIS servers in Web-based client applications. Note that, in our prototype design,
visualizing the raw data is completely independent of processing ROI-finding queries.
The resulting regions derived from ROI-finding queries can be overlaid on top of base
maps to maximize the benefits of visual explorations. For example, users can compare
raster cells inside the resulting ROIs with those nearby. While processing ROI-finding
queries involves identifying cells from all relevant rasters which can be computationally
intensive when sophisticated indexing technqiues are used, displaying base map only
involves determining appropriate pre-generated image tiles under the spatial extent of
the current active view, which is much less computationally expensive.

5 Experiments and Evaluation

5.1 Data and Experiments Setup

The experiments are designed for two purposes. First, we would like to examine the
efficiency of the proposed binned min-max quadtree. It is clear that the sizes of the
resulting quadtrees increase when the numbers of quadtree bins increase. At the same
time, the false positives will decrease and the numbers of returned ROIs will increase.
There are tradeoffs among disk/memory consumptions of constructed indices, rates of
false positives, data communication costs and client visualization rendering costs. The
later two are proportional to the number of returned ROIs. As we are not able to provide
an analytical cost model for the binned min-max quadtree at this moment, the empirical
results are important in understanding the efficiency of the data structure in real appli-
cations. Second, we would like to examine the overall performance of the end-to-end
prototype system.

The data communication time also includes the overheads of data passing through
different protocol stacks in the middleware and Web server in addition to data trans-
port time over the network. To minimize the network traffic instabilities, in our exper-
imens, the client machines and the server machines are co-located within our campus
network. The client visualization rendering time includes parsing returned quadrants
data of triples (x, y, level), converting the triples to squares in the real-world coordi-
nate system that is being used at the client side and rendering the squares to the client
visualization canvas embedded in a Web browser. We plan to use the current climate
data published by WorldClim [68][69]. The dataset is the interpolations of observed
data from 1950-2000 and includes monthly precipitation, minimum temperature and
maximum temperature (12 month) and 18 derived bioclimatic variables at the global 30
arc-seconds ( 1 kilometers) resolution. Thus the number of grid cells is 432000*216000
for each of 12*3+18=54 rasters. Due to space limit, we only report the experiment re-
sults using the January precipitation data. For the January precipitation data, the number
of cells with valid values is 222,265,892, which is about 23.82% of the total number of
cells in the raster dataset. The percentage is slightly less than the percentage of land over
the earth surface as there are no data for cells to the south of 60 degrees. The minimum
and maximum precipitation values are 0 and 1003 millimeter, respectively. We have set
the maximum level of the BMMQ-Tree to 16 as 216 = 65536 is already larger than
432000. We have used three bin numbers (8, 16 and 32) in our experiments for the rea-
sons discussed above. The numbers of the leaf nodes of the corresponding quadtrees are
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8,491,370, 15,036,155 and 25,877,417, respectively. These numbers translate to 110:1,
62:1 and 36:1 compression rates. We have performed extensive tests using different
combinations of value ranges, spatial extents and quadtree bin numbers.However, due
to space limit, only the results for precipitation range [90,300] with eight different spa-
tial extents are reported in the following subsections. The cell selectivity rates of the
eight queries vary from 0.23% to 5.76% using the total number of valid cells as the
denominator.

5.2 Results of Query Processing

Results show that the query response times for the eight queries measured at the server
side using the three bin numbers are 51-160, 42-162 and 47-252 milliseconds, respec-
tively. All the response times are just fractions of a second which clearly shows the ef-
ficiency of the proposed BMMQ-Tree data structure in facilitating ROI-finding queries.
As discussed previously, queries based on BMMQ-Tree are approximate in nature. Our
experiments show that the larger bin sizes the smaller false rates, which is expected.
The minimum and maximum false rates for B=32 are 12% and 53%, respectively, with
an average of 23%. Visual inspections show that false positives are close to true posi-
tives and the resulting quadrants highlights the locations of true positives in a simplified
manner which are often desirable in visual explorations.

5.3 Results of End-to-End Performance

As discussed before, the end-to-end performance of each query-driven visual explo-
ration operation has three components: server query response time (TServer Query), data
communication time (TData Comm) and visualization rendering time (TV is Rendering).
Due to space limit, we only report the three components for the eight queries using bin
size 32 and the queries stop at the quadtree level 12 (determined based on ess-than-
single-pixel stopping policy discussed in Section 3). In addition to showing the three
categories of times for the eight queries in Table 1, we also report the resulting numbers
of quadrants at the first column of the table (NQ).

From Table 1, it is clear that both the data communication times and the visualization
rendering times are proportional to the resulting number of quadrants which is expected.
Compared with the server query response times, data communication times are gener-
ally one order greater and the visualization rendering times are more than one order

Table 1. End-to-end Performance Measurements with B=32 and MaxLevel=12 (in milliseconds)

Query ID NQ TServer−Query TData−Comm TV is−Rendering

Q1 13990 18.35 180.7 5329
Q2 12941 16.39 163.7 4741
Q3 31936 36.49 340.3 21667
Q4 13904 18.21 341.3 5790
Q5 3771 5.35 108.7 1262
Q6 15313 18.67 300.0 6647
Q7 21507 25.66 306.7 11705
Q8 11143 13.82 174.7 3896
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greater than the data communication times. While the server query response times are
excellent and the data communication times are adequate for visual explorations (less
than 1 second), the visualization rendering times may be too large for the purpose.

To further investigate the rendering bottleneck incurred by ArcGIS Flex API, we
have performed additional experiments on querying a value range of [200,1000] at the
tree level 9 to 12 using the globe as the spatial extent. Note the value range corresponds
to bins [22-14] with B=32. The results show that the visualization rendering time is
acceptable for level=9 (0.693s) and level=10 (2.238s) while it becomes impractical for
level=11 (8.2s) and level=12 (73.9s). We suspect that ArcGIS Flex API may be the bot-
tleneck in rendering tens of thousands of squares. We are in the process of implementing
our native square rendering algorithms in Adobe Flex. Another option would be request-
ing the query processing backend send back compressed images rather than individual
quadrants as discussed in Section 4.1. On the other hand, we note that quadrants at level
10 have an approximate spatial resolution of 0.5 degree which is comparable to many
datasets being used for global studies.

5.4 Discussions

As BMMQ-Tree and binned bitmap indexing [57] share many similarities, it is desirable
to compare the two indexing approaches. However we found that direct comparisons
are both inappropriate and difficult. First of all, binned bitmap indexing seeks to answer
queries exactly at the individual data element (raster cell) level while BMMQ-Tree
is primarily designed for visual explorations that allow approximate queries. Second,
BMMQ-Tree query results naturally approximates connected components which are
more suitable for further analysis of raster geospatial data. In contrast, binned bitmap re-
quires expensive post-processing to find connected component [18]. BMMQ-Tree query
results represent an intermediate step between individual raster cells and more complex
connected components. Third, binned bitmap may generate large numbers of individ-
ual data element identifiers whose data volumes generally are too big to be transported
to Web browsers for visualization purposes. Differently, BMMQ-Tree allows specify
a maximum query level for a quadtree and thus reduce resulting data volumes at the
expenses of higher false positive rates. The feature may be desirable in many visual
exploration applications.

We believe exact queries based on FastBit can enhance our prototype system in the
following way. For each client query, we first direct the query to FastBit and obtain
the exact number of cells in the query result. We then direct the query to our query
processing backend based on BMMQ-Tree indexing using a stopping quadrant level
determined based on the less-than-single-pixel stopping policy discussed at the end of
Section 3 and calculate the false positive ratio. Users then can determine whether to
increase the stopping quadrant level based on the false positive rate. When the exact
number of cells in a query result set is less than a predefined number (e.g., 10,000),
the coordinates of the cells can be transported to the client side and visualized in Web
browsers directly. Integrating FastBit with our prototype to allow visualization of exact
query results is underway.
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6 Conclusions and Future Work

Lacking interactive query-driven visualization supports for large-scale raster geospatial
data in a Web environment has motivated us to develop a binned min-max quadtree data
structure to index raster geospatial data. A prototype system that integrates commercial
ArcGIS system with our query processing backed has been developed to demonstrate
the feasibility and identify pitfalls. Experiments show a mixture of successes and fail-
ures. The BMMQ-Tree data structure is successful in the sense that it takes advantages
of the approximate query nature of visual exploration based applications in both spatial
and value dimensions. Our experiments show that BMMQ-Tree based indexing is able
to process the WorldClim January Precipitation with nearly 1 billion cells in less than a
quarter of a second for a query value range across multiple bins using a 32-bin, 16-level
BMMQ-Tree. The resulting numbers of quadrants are in the order of a few thousands
to a few hundreds of thousands whose data transport delays between servers and Web
browsers range from excellent to acceptable. However, our experiment results also re-
vealed that the ArcGIS Flex API that we used to render the resulting quadrants in Web
browsers perform poorly for numbers of quadrants beyond a few thousands.

For the future work, our focus would be improving the visualization rendering speed
at the client side. We will explore both options discussed in the text. We also want to
integrate FastBit exact query with our prototype so that users can be aware of the quality
of approximate query based visual explorations and retrieve exact query results when
necessary. Finally, we are interested in profiling users queries and select better quadtree
bin boundary values, in addition to providing more choices in automatically generating
quadtree bin boundary values. We are expecting to work with environmental scientists
more closely on this matter.
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Abstract. As scientists continue to migrate their work to computa-
tional methods, it is important to track not only the steps involved in
the computation but also the data consumed and produced. While this
provenance information can be captured, in existing approaches, it often
contains only weak references between data and provenance. When data
files or provenance are moved or modified, it can be difficult to find the
data associated with the provenance or to find the provenance associated
with the data. We propose a persistent storage mechanism that manages
input, intermediate, and output data files, strengthening the links be-
tween provenance and data. This mechanism provides better support
for reproducibility because it ensures the data referenced in provenance
information can be readily located. Another important benefit of such
management is that it allows caching of intermediate data which can
then be shared with other users. We present an implemented infrastruc-
ture for managing data in a provenance-aware manner and demonstrate
its application in scientific projects.

1 Introduction

As the volume of data generated by scientific experiments and analyses grows,
it has become increasingly important to capture the connection between the
derived data and the processes as well as parameters used to derive the data.
Not surprisingly, the ability to capture the provenance of data products has
been a major drive for a wide adoption of scientific workflow systems [1,2,3].
By tracking workflow execution, it is possible to determine how an output is
derived, be it a data file, an image, or an interactive visualization.

However, the common practice of connecting workflows and data products
through file names has important limitations. Consider, for example, a workflow
that runs a simulation and outputs a file with a visualization of the simulation
results. If the workflow outputs an image file to the filesystem, any future run
will overwrite that image file. If different parameters are used, or the simulation
code is improved and the updated workflow is run, the original image is lost.
If that image file were managed with a version control system, the user could
retrieve the old version from the repository. However, if the user reverts the
output image to the original version, how does she know how it was created?
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Since there is no explicit link between the workflow instance (i.e., the workflow
specification, parameters and input files) and the different versions of its output,
determining their provenance is challenging. If we examine the provenance logs
for the workflow runs, we will see that there are two runs that create the specified
image file, one with the older simulation routine and the second with the newer
one. We may be able to check timestamps in order to guess, but this is far from
ideal. This problem is compounded when computations take place in multiple
systems, and recording the complete provenance requires tying together multiple
workflows through their outputs and inputs. As files are overwritten, renamed,
or moved, provenance information may be lost or become invalid. As a result,
maintaining an accurate provenance graph which ties processes and the data
they manipulate requires a time-consuming and error-prone process.

While version control systems effectively track changes to files, such systems
can only determine that changes have occurred, not how they came about.
Provenance-enabled workflow systems, on the other hand, are able to capture
how changes came about but do not provide a systematic mechanism for main-
taining data provenance in a persistent fashion, i.e., given a file it may not
be possible to determine which workflow instance generated it. We posit that a
tighter integration between scientific workflows and file management is necessary
to enable the systematic maintenance of data provenance.

Contributions. In this paper, we propose a new framework which, by coupling
workflow provenance with the versioning of data produced and consumed by
workflows, captures the actual changes to data as well as detailed information
about how those changes came about. A persistent store for the data ensures that
old inputs and results can be retrieved, and we can tie each version of a result
to the provenance that details how the result was generated. We introduce the
notion of a strong link which reliably captures the connection between a workflow
instance and data it derives, and describe an algorithm for generating these links.
Instead of relying on the user or ad-hoc approaches to automatically derive file
names, strong links are identifiers derived from the file content, the workflow
specification, and any parameters. As a result, they accurately and reliably tie
a given workflow instance and its input and derived data.

Besides simplifying the process of maintaining data provenance, this approach
has several benefits. By automatically capturing versions of data, it seamlessly
supports exploratory tasks without requiring users to curate the data (e.g., man-
aging the file names). It also provides a general mechanism for the persistent
caching of both intermediate and final results—this is in contrast to previous
approaches which supported only in-memory caching [4,5]. The caching mecha-
nism can be used not only to speed up workflow execution, but also to support
check-pointing for long-running computations. In addition, the use of a man-
aged data repository allows the creation of workflows that are location agnostic:
unlike workflows that point to files in the filesystem, workflows can be shared
and run in multiple environments unchanged. Last but not least, our approach
is general and can be combined with existing workflow systems. We describe
our implementation in the VisTrails system and present a case-study, where the



Bridging Workflow and Data Provenance Using Strong Links 399

Module: GetCensusData
Parameter: input_ le

Value: /data/census10.dat
Module: ParseCensusData

Parameter: readAllFields
Value: True

...
Module: RenderPlot

Parameter: output_ le
Value: /data/plots/map.png

MANAGED STORE

...
Module: GetCensusData

Parameter: input_ le
Value: Reference

- ID: 322e6f3a-0484-11df-b2...

-Name: census10.dat

-Tags: united states 2010

-Local le: /data/census10.dat

-Version: 678be78a76d134...
...

FILE NOT FOUND!

!
FILE

PROVENANCE PROVENANCE

Fig. 1. When provenance information references file-system paths, there is no guarantee
those files will not be moved or modified. We propose references that are linked to a
persistent repository which maintains that data and with hashing and versioning allows
for querying, reuse, and data lineage.

persistent data provenance infrastructure was deployed in a real application:
managing data products in the context of the ALPS project [6].1

Outline. We begin by introducing our persistence scheme in Section 2, and
then show how it can be applied to support data provenance in Section 3. In
Section 4 we describe how our approach can be used to extend workflow caching
strategies and for publishing scientific results. In Section 5, we describe how
managed repositories can be shared among multiple users for both data access
and caching. We describe an implementation of our scheme in Section 6, and
describe its use in the ALPS project in Section 7. We highlight related work in
Section 8 before concluding with future directions in Section 9.

2 Persisting Data Provenance Links

By integrating file management and version control with workflows, we aim
to maintain stronger provenance by referencing data in a versioned, managed
repository instead of via file paths (see Figure 1). This repository stores input,
output, and intermediate data products, and can be used to facilitate caching
and data sharing.2 Similar to version control systems, this repository stores
multiple versions of files, but to connect to workflow provenance information, it
also contains metadata that represents identity and annotations.

Our approach to this problem is user-driven. As a user designs a workflow,
she can specify which results (or input data) should be persisted in the reposi-
tory. As we describe in Section 6, a possible implementation is to provide special
workflow modules that can be connected to the output ports of modules whose
results should be persisted (see the ManagedIntermediateDir module in Fig-
ure 6). When users run workflows using data from the repository, we can ensure
that future provenance queries can not only identify the data involved in the
computations but also retrieve the actual data. In addition, given provenance of

1 http://alps.comp-phys.org
2 In the remainder of the text, we use the terms “repository” and “managed store”

interchangeably.
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a workflow execution, we can reproduce it using the exact versions of the data
used in the original execution. In these provenance applications, there is no need
to archive data according to specific path-name conventions or remember to
keep each separate version of the input data. Also, the automatic and transpar-
ent identification and versioning require little user involvement in maintaining
these stronger links.

In what follows, we start by describing a scheme to derive reliable and repre-
sentative ids for linking data products and their provenance. We also present the
file-management infrastructure and the attributes we maintain in the managed
repository, the differences in our storage depending on the role of the data, and
how data should be updated and stored. Note that while we discuss file man-
agement, the techniques described can be easily extended to directories as well.

2.1 Deriving Strong Links

Our approach to deriving strong links was inspired by the in-memory caching
mechanism proposed by Bavoil at al. [4] and the content hashing used in version
control systems including git [7]. We use the signatures of workflows to identify
intermediate and output data derived by the workflows, and content hashing to
identify input data.

The central idea of caching in workflow systems is that any self-contained
piece of a computation can be reused if the computation is deterministic and
its structure, input data, and parameters do not change. For dataflows, we can
formalize this concept by defining the upstream subworkflow of a module m in
a workflow W as the subgraph induced by all modules u � W for which there
exists a path from u to m in W (including m itself). Note that the existence of
such a path implies that the results of u may have an effect on the computation
of m. Then, if any module or connection in the upstream workflow of m changes,
we must recompute m. Conversely, if the upstream workflow does not change, we
need not recompute m, and can reuse results from a previous execution. Thus,
for any other workflow W � that contains an upstream subworkflow U that also
exists in W , we can reuse the intermediate results of U from W in W �.

Caching thus requires the identification of equivalent subworkflows. This would
be expensive if we needed to perform graph matching, but we instead use a re-
cursive serialization of the upstream workflow that allows us to quickly check the
cache. We define the default label of a module m, ��m�, as the serialization of
its type and parameter values ordered by parameter name. Note that individual
module types can override this default label to better capture module state; for
example, a module linked to a specific file would define its label based on the
contents of the file—if that file changes, the label changes. Similarly, the label
of a connection c, ��c�, is the serialization of the types of the ports it connects.
Then, a canonical serialization of the upstream subworkflow of a module m is
defined recursively as

S�m� � ��m� �
�

c � UC�m�
S�source�c�� � ��c�
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Fig. 2. The upstream signature S(M) for a module is calculated recursively as the
signature of the module concatenated with the upstream signatures of the upstream
subworkflow for each port and the signature of the connection

where UC�m� is the set of upstream connections into m sorted by ��c�, source
returns the source (upstream) module of the given connection, and

�
is con-

catenation. The upstream signature is the SHA1 hash of this serialization.
Figure 2 shows an example workflow and the serialization of the upstream

subworkflow of the ReadCensusFieldmodule. Note that the upstream subwork-
flow will not always be a tree, but the recursive serialization always branches
like it is. This allows two topologically different upstream subworkflows to have
the same signature, but when this happens, the computations must be identi-
cal. For example, consider a subworkflow with a single module m that connects
upstream to two other modules. Whether those two modules connect upstream
to a single module n or to two identical modules that both do the same com-
putation as n will not affect the downstream computation of m. In addition,
by using memoization, we can keep this computation efficient despite the added
branching.

For input files, we define the signature as the hash of its contents. Then, if
the file’s contents changes, its signature changes even though its path or other
identifying information may not. Note that we store the content hash separately
as well so a file that is the output of one workflow and the input of another
can be identified in both ways. Thus, the signature provides a strong link that
contains a precise and accurate representation of the workflow fragment that
derived a given result. As we describe in Section 3, we use this signature as the
means to link a data product to the computation that derived it.

2.2 File Management

We are concerned with three roles for files in workflows: inputs, outputs, and
intermediate data. Note that a single file may fill different roles depending on
the workflow it is used in; an output from one workflow may be used as the input
to another. Thus, the distinction between roles does not affect the use of data
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in any situation, but rather determines what metadata can be captured, stored,
and utilized. An output file can store information about the process that created
its contents but an input file selected from the filesystem cannot. Similarly, an
intermediate file need not be annotated at all if is used for caching, but files that
are to be used again should be named and tagged to allow users to query for
them.

Each file in the repository is uniquely identified by a combination of an id
and a version string, and annotated with user-defined and workflow-generated
information including its signature and content hash. By allowing a collection
of files to share the same id, a reference to that id can be configured to always
retrieve the latest version. This is helpful to a user who wishes to run a workflow
with the latest version of a data set but does not wish to manually configure
which is the latest version. On the other hand, reproducing a workflow execution
exactly requires a particular version of the data, and thus identifying data by
both the id and version guarantees that the exact data will be retrieved.

Input Files. An input file must reference an existing file, whether it is already
in the managed store or only in the local system. Upon selection, we either use
the existing identifier (from the store), or create a new unique identifier for the
data. Note that we can detect whether the contents of a file already exists in the
repository by computing the hash and checking for that hash in the repository.
By default, changing the contents of the file creates a new version while changing
the selected file creates a new id and version. Users can configure this behavior
if necessary.

Output Files. The main difference between output and input files is that input
files are not affected by changes in the rest of the workflow. For outputs, any
changes to the part of the workflow that is upstream of the output file may
affect its contents. In addition, it is less clear when an output is a new entity
and when it is a new version of an existing entity. When only parameters change,
the output is likely a tweaked version of the original, but when the input files
are switched, the output is more likely new. By default, we create new versions
for each execution but allow users to change this behavior in order to version the
outputs. Like inputs, output files can be both stored in the persistent store for
future reference and use and saved to a local file for immediate use or inspection.

Intermediate Files. An intermediate file is exactly the same as an output file
except that it is not a sink of the workflow; execution continues after the file is
serialized and the contents are used in further calculations. Such files can be used
as checkpoints for debugging, but they can also be used to cache computational
results in order to speed further analyses. Note that an intermediate file need not
be manually annotated or named; it is defined by its signature–the serialization
of the upstream subworkflow.

Customization. It may be necessary for users to configure the behavior of the
persistence of files in the store in order to link similar files or maintain separate
identities for data products. By selecting an existing reference and linking it to
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a local file, a user can tie the reference to a new local file. In addition, users can
decide whether files are only persisted in the managed store or if they are also
saved to local files. If they use a local file, they can configure whether the contents
of the file should take precedence or whether a new version should always be ob-
tained from the repository. Similarly, if the local file contents change, a user can
choose whether those changes should always be persisted to the managed store.

3 Linking Provenance

Below we discuss how we exploit the strong provenance links to answer impor-
tant queries. We also suggest how stronger links from data to provenance can
be accomplished. With the advent of extensible file formats (e.g., HDF53), it
is possible to include direct links to provenance or even the provenance itself
with the data. Finally, we present an application of the improved results from
provenance queries in publishing scientific results.

3.1 Algorithms for Querying Linked Provenance

Perhaps the most basic provenance query is one that retrieves the lineage of a
data product, specifically what input data and computations contributed to the
result [8]. With only the provenance of the execution, a user may find the path
to an input but even if a file still exists at that location, there is no guarantee it
has not been modified. To protect against such problems, users store the exact
data used with the provenance, manually archive all of the data, or add archival
as part of the workflow process [9]. With our file management scheme, we can
store the id, version, and content hash of any input as part of the provenance.
Then, for lineage queries, we can return references that can be accessed from the
provenance store using the id and version and verified using the content hash.
Most workflow systems that support provenance capture also provide support
for determining lineage queries [8].

Note that the content hash also gives us a way to locate the provenance of
files that are un-managed and may have been moved to a different location or
had their names changed. We begin by hashing the contents of the file, then
query the managed store for this content hash. The resulting entries have ids
and versions for which we can then search our provenance for. Because the
provenance contains these stronger references, we can also identify and return
the input data via the managed store. An outline of this algorithm is shown
in Figure 3.

Because we abstract workflows from a specific filesystem, the provenance of
the workflow executions can be tied directly to the exact inputs and outputs.
This ensures better reproducibility because the exact content can be retrieved;
with links to the file names, we have no guarantee that the files at those locations
were unchanged. To reproduce a workflow execution, we retrieve the workflow

3 http://www.hdfgroup.org/HDF5
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Fig. 3. Given a file which has been moved and renamed, we can use the managed file
store and provenance to first locate the managed copy, and we can locate the original
input files as well

specification and execute it using the data pointed to by the managed file refer-
ences. Recall, however, that some workflow specifications may include only data
identifiers and not the versions of the data used. This allows a user to re-run
a workflow with the latest data which is not what we desire for reproduction.
Thus, we need to examine the provenance for the execution, retrieve the exact
version specified by the provenance and modify the specification.

Another provenance query that our strong links solves is the lineage of data
when the input of one workflow is the output of another. In the Second Prove-
nance Challenge [10], teams were asked to answer provenance queries from out-
puts that were the result of running data through three consecutive workflows.
One issue was the identification of data as it was transferred from the output of
one workflow to the input of another. With the managed store, we allow users to
designate inputs as the output of another workflow by assigning them the same
id. Thus, when the first workflow changes, the second workflow will incorporate
the changed results. Even if users do not use the same identifiers, we can per-
form provenance queries using the content hashes to link data across different
workflows.

3.2 Embedding Provenance with Data

We have demonstrated methods to find the provenance of data by searching a
provenance store for the hash of a given file. However, such methods depend on
access to the provenance store. An alternative approach is to embed provenance
with the data itself. With many file formats including HDF5 supporting anno-
tations, it is possible to embed provenance information or links to provenance
with the data. In directories of data, we can add an additional file that contains
the same information. Then, verifying data or regenerating a data product can
be accomplished by examining the provenance stored with the data.

We have developed a schema that allows a user to either link to or di-
rectly encode provenance information in a file. Information represented in this
schema can be serialized to XML and embedded in an existing file or saved to a
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Fig. 4. Embedding provenance with data: provenance can be either saved to a separate
file or serialized to XML and embedded in an existing file

separate file. Figure 4 shows an example of a workflow using this schema. While
a provenance link can refer to a local file, we provide support for accessing a
central repository of provenance information. With a central repository, if the
file is transferred to a different user or machine, the link remains valid. With a
local reference, it will be more difficult to link back to provenance information.

4 Using Strong Links

4.1 Caching

Caching the intermediate results of workflow computations is useful to avoid
redundant computations. If a user executes a workflow, we can reuse any inter-
mediate results from that first execution in future executions [4]. Using our file
management for intermediate files, we are able to add support for caching files
to existing in-memory caching which means that cached data can be persisted
across sessions. With this extension, we can also consider how to share cached
data between different users as well. We begin by reviewing the in-memory work-
flow caching algorithm and then introduce an extension for caching across ses-
sions using the managed file store.

In-memory Caching. Using the upstream signatures, we build a cache by label-
ing each intermediate result with its upstream signature. Dataflow computation
proceeds in a bottom-up fashion; a sink (a module with no outgoing connections)
requests data from all of its inputs which may in turn request data from their
inputs and so on. Our caching algorithm works by hijacking this request for data
and checking if the upstream subworkflow has already been calculated, returning
the result from the cache when it exists instead of doing the computations.
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Before executing any workflow, we compute the upstream signatures for each
module in the workflow. Note that the recursive computation of all signatures is
easily memoized. During workflow execution, before a module is set to execute,
we check if that module’s upstream signature exists in the cache. If it does, we
return the result from the cache. If not, we proceed with the computation, and
after the module finishes executing, we store the results of the computation in
the cache labeled by the upstream signature.

There are some modules that may not perform deterministic calculations. We
allow the module developer to designate such modules as non-cacheable. After
a workflow with one or more such modules executes, we immediately remove all
modules downstream of such a module from the cache.

Persistent Caching. We can extend the in-memory caching techniques to per-
sist results to disk, allowing users to cache results across sessions or share inter-
mediate results. Note that we need a serialization of the results of any module
type in order to mirror the entire in-memory cache. In addition, saving every
intermediate result to disk can needlessly slow down computation. For these
reasons, we have developed persistent caching as a user-driven technique for in-
termediate files. We allow the user to connect a new module to the workflow that
designates that the upstream subworkflow of the module should be cached. For
non-cached computation, this module receives a file and passes it downstream.
However, when the module finds that the signature associated with needed
file exists in the cache, it retrieves the linked file without doing the upstream
calculations.

This allows any module with serializable results to be persisted in a disk-
based cache, but we can improve this process using the file management scheme
described in Section 2.2. Using this scheme, additions to the cache are managed
as intermediate files and cache lookup is a simple query to the store. In addition,
users need not identify or in any way configure the intermediate files using for
caching; the store assigns identity and stores signature information automati-
cally. When the upstream workflow of the caching module changes, the cache
lookup fails, and the store adds a new version of the intermediate file. Thus, a
user does not lose any intermediate results when exploring different workflow
configurations.

4.2 Publishing

When publishing scientific results, it is important to describe the lineage of a
result. Providing data sets and computer code allows scientists to verify and re-
produce published results and to conduct alternate analyses. In the past years,
interest in this subject has increased in different communities which led to dif-
ferent approaches for publishing scientific results (see [11] for an overview). Our
schema for embedding provenance with data can be combined with these ap-
proaches. In particular, it simplifies the process of packaging workflows and re-
sults for publication. In addition, we have also implemented a solution that
allows users to create documents whose digital artifacts (e.g., figures) include a
deep caption: detailed provenance information which contains the specification
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of the computational process (or workflow) and associated parameters used to
produce the artifact [12].

5 Sharing Data

We have shown that maintaining workflow data in a managed store allows us to
quickly locate existing data, store accurate provenance, and cache intermediate
results across sessions. Additional benefits can be gained from having multiple
users share the repository. For example, if one user has run a time-intensive
step of a calculation, making that result available to other users allows them to
proceed with later steps without each re-computing the same result. Similarly,
if one user has already added a specific file to the store, other users with access
to that store can access the data without locating and copying the same data.
Below, we describe both centralized and decentralized approaches for sharing
managed data across systems, and note that the advantages and disadvantages
mirror those encountered with version control systems.

Centralized Storage. With a central store, users may either read and write
directly to a common repository or transfer data between a local repository and
a central repository. If users have access to a common disk, it may be possible to
simply store all managed files and metadata in a single store on that disk. Then,
all users will access the same repository and automatically have access to each
other’s input, output, and intermediate files. However, this solution may become
impractical for large numbers of users. A second problem is that whenever users
do not have access to that disk, they are unable to access their managed data.

When a central store is added to individual local repositories, a user will
always have access to the local repository but can also retrieve from and add to
a central repository. This allows a set of geographically distant users to share
common data. In addition, it allows users to maintain and access local data even
when disconnected from the central store. However, we maintain an extra copy of
the data in this case, and there may be overhead in transferring files, especially
if the distance from the central store is far. In addition, it requires building and
maintaining infrastructure.

Decentralized Storage. In a decentralized approach, users would advertise
their data and allow other users to transfer data directly from their repository.
A search for a particular piece of data by, for example, name or signature, would
query individual systems instead of one store. If the desired file is found, it is
transferred directly from the source location to the requesting user. Thus, unlike
with the central store, data is only transferred when it is needed. Combined
with P2P approaches, the transfer may be distributed over several machines.
However, if a particular machine is offline, the data generated on that machine
may not be available.

A hybrid approach that supports a central table of files but decentralized
storage would allow users to locate files even if they were not currently accessible.
Users would not push data to or pull files from the repository but rather register
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the available files as they are added and whenever that data is requested, directly
transfer it to the requesting machine.

6 Implementation

We added file management to the VisTrails system [13] by introducing a new
package that included module types for input, output, and intermediate files and
directories. The package also includes code to set up the managed store as well
as navigate and update it through configuration dialogs. Our goal was to add
this support in a way that changes little in workflow structure while providing
ways for users to directly locate and identify data during workflow construction.
Thus, users that normally only configure the path of an input file can do exactly
the same for a managed input file module. In addition, adding an output file
has fewer requirements; a user only needs to connect the data to be persisted to
a managed output file module. The system generates unique ids and signatures
automatically. At the same time, we provide methods for annotating data and
configuring its storage and use.

The interface of our prototype implementation is shown in Figure 5. We define
three new module types for files: ManagedInputFile, ManagedOutputFile, and
ManagedIntermediateFile and their equivalents for directories. As described in
Section 2.2, all share a common set of attributes and options. The key
difference between inputs and outputs (or intermediates) is that outputs have a

Fig. 5. The ManagedInputFile configuration allows the user to choose to create a new
reference from a file on his local filesystem or use an existing reference from the managed
store
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workflow-dependent signature. Thus, an input file needs to be manually identified
by the user while an output file can be totally identified by its upstream signature.

A user can select a file by either referencing an existing identifier or by creating
a new reference. When referencing a file that already exists in the managed store,
the user can search the repository for metadata including name, tags, user id,
date added, or a specific id or version. When creating a new reference, the user
may provide a name and tagging information, and for input files, the local file
that contains the data.

By default, an identifier for an input file changes when a new local path is
selected but does not change if the contents of the file changes. In the second case,
we maintain versions of the data, but update the “current version” whenever the
contents changes. Thus, any user that wishes to use this data in another workflow
will always get the latest data by referencing that identifier. Note that users may
choose to link data to an existing reference even if that reference was initially
linked to different data.

Storing Data. We use the git version control system [7] to manage files because
it stores content independent of filesystem structure, and an SQLite database4

to store its metadata. Thus, when the managed store is initialized for the first
time, we create a git repository along with a database to store file information.
While a reference is created and annotated during workflow design, the data is
not persisted until execution. Upon execution, we save the file in the repository
with its id (a UUID) as its name. We use git to add and commit the version
of the file, and retrieve the content hash (git uses SHA1) and the version id (a
SHA1 hash of the commit). Then, we update the database with the id, version,
content hash, signature (if applicable), name, tags, user, and modification date.

Finding Data. In order to locate existing data, we provide methods to match
content hashes and signatures as well as query the store for specific metadata like
name or tag information. When a user selects a file, we can check the repository
to see if that content has already been added by querying the database for the
selected file’s hash. If it does exist, we can prompt the user to reuse the existing
reference. Additionally, when we execute a workflow, we can check to see if an
intermediate file’s signature matches one that already exists; if so, we can reuse
that file instead of computing the upstream workflow. Finally, the configuration
for managed file selection includes a free-text query field for the managed file
database. A user can query for a specific name or tag to locate matching files
that can be used as references. This is accomplished by querying the SQLite
database and retrieving the matching id and, optionally, version.

7 ALPS Case Study

We have used the file management solution implementation for VisTrails with
the ALPS project5 (Algorithms and Libraries for Physics Simulations) [6]. ALPS
4 http://www.sqlite.org
5 http://alps.comp-phys.org/
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is an open source software package that makes modern, high-performance algo-
rithms for the simulation of quantum systems available to experimental and the-
oretical condensed-matter physicists. Typically, a simulation with ALPS consists
of three steps:

�Preparing the input files describing the model to be simulated.
� Simulating the model using one of the ALPS programs. Such a simulation can
take between minutes on a laptop for very small test cases and weeks on large
compute clusters or supercomputers for demanding applications.
�Collaboratively evaluating the “raw” simulation output by exploring & analyz-
ing the data, comparing it to experimental data, and creating figures.

In one specific use case, we have simulated a quantum Heisenberg spin ladder, a
model for quasi-one-dimensional copper oxide materials where magnetic excita-
tions are suppressed at low temperature by an energy gap Δ [14]. The purpose
of the simulation is to determine this gap Δ by calculating the magnetic sus-
ceptibility χ as a function of the temperature T and fitting it to the expression
χ�T � � 1�

T
exp�Δ�T [15]. We first use the “looper” program [16] of ALPS to

calculate χ�T � and then use the exploration features of VisTrails to explore the
data and find the optimal range �Tmin, Tmax	 for the non-linear fit. The results
of this exploration are shown in Figure 6.

Persistent caching and provenance adds a number of important advantages
for the ALPS users:

�Caching persistent files on a shared filesystem means that after one physicist
runs the simulation, her colleague can modify the evaluation part of the workflow
and explore the data without having to redo the time-intensive simulation.
� Identifying the cached files with the workflow signature avoids potentially crit-
ical mistakes of using old simulation results when input parameters to the sim-
ulation change. In our experience, simulations have often been recomputed only
to ensure that the data has been produced with the latest version of codes and
input files.
�Embedding provenance information in the data and figures gives immediate
access to the provenance including any aspect of the simulation a physicist might
wish to know. Since most projects involve collaborations with other scientists—
often at different institutions—facilitating the exchange of data is very valuable.
A common source of confusion is incomplete documentation of data sent to
collaborators. Embedded provenance information has been invaluable in making
remote collaborations more efficient.
�Decoupling the executions of different parts of the workflows using persistent
data enables physicists to explore data without the need to always rerun the
entire workflow—while still having the workflow provenance accessible when
needed.

In Figure 6, we show one ALPS workflow along with plots resulting from an
exploration of the fitting range parameter. The modules colored in blue, includ-
ing the time-consuming simulation module “AppLoop”, were not run when this
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Fig. 6. An ALPS workflow colored by execution information and the results of a pa-
rameter exploration (i.e., multiple runs of the same workflow with different parameter
values) of the fitting range. The colors of the modules indicate their status: blue mod-
ules were not executed because the data was found in a persistent directory on disk,
yellow modules were cached in memory and green modules were executed.

workflow was executed to create the plots because the output of the simulation
had previously been persistently cached. Only the evaluation part of the work-
flow was re-executed when the fit range �Tmin, Tmax	 was modified. Note that
the SimulationID module is striped blue and yellow; this is because it has two
outgoing connections, one used in a file stored in the persistent cache and the
other as part of a computation using the in-memory cache. Changing its value or
structure would thus invalidate both cached results and all others downstream.

8 Related Work

Data provenance consists of the trail of processing steps and inputs that led to
the creations of a given data object. Tracking changes to files and entire direc-
tory structures is well-studied, and version control systems have been developed
exactly for this purpose [17,18]. However, such systems can only determine that
changes have occurred, not how they came about. More recently, version control
systems that focus on tracking content and directory structure separately have
been developed (see e.g., [7]). Such systems identify files with hashing, and if
duplicate files exist, the content is stored only once in the repository.
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A number of workflow systems have been developed to help automate and
manage complex calculations. The structure and abstraction provided by such
systems have made them appealing to wide assortment of scientific domains.
Many of these systems [19,20,13] have included provenance capture to docu-
ment the process and data used to derive data products [1,3]. Standard prove-
nance captured by these systems, however, is not sufficient to identify exactly
which workflow generated a specific file. In fact, in recent exercises to investigate
requirements for querying and integrating provenance information, the lack of
effective means to identify intermediate and final results of workflows has been
identified as an important challenge in provenance management [10,21,22]

Techniques have been developed to track provenance in databases [23]. These
track fine-grained provenance, i.e., changes to individual data items. In contrast,
our approach is targeted to (whole) files. In future work, we plan to investigate
how we can adapt our system to utilize database provenance given encapsulated
changes.

There is a significant amount of work with workflows that access and maintain
curated data. In these cases, the provided ids or URIs are usually guaranteed
to exist, and thus provenance information with them. Plale et al. have exam-
ined the issues involved in maintaining and cataloging large meteorological data,
and noted the importance of allowing users to search and access this data [24].
Simmhan et al. have proposed data valets as a workflow-based method for fa-
cilitating the management of stores on the Cloud [25]. Note that if data for
computations comes from or is persisted to a curated source, a separate man-
aged store is not required to ensure access to those files. However, maintaining
local copies of these files does allow users to run workflows even when they
cannot connect to the store.

For curated scientific data, the identification of that data is important. There
are standards for such identification including LSID [26] and DOI [27]. Our
primary goal is orthogonal to these: we aim to maintain strong links between
data and its provenance. We are not concerned with registering ids for our local
persistent stores and use UUIDs to identify data. Identifying data by content
hashes is has been accomplished using the MD5 and SHA1 hashes. Hashing has
also been used in the context of secure provenance to maintain the confidentiality
and integrity of provenance [28]. We use hashing to both identify and search for
content as well as compute signatures for upstream subworkflows.

The problem with maintaining the data with workflows has been examined
before. Some systems have provided specific modules for file management as
part of workflow execution [9]. For example, after generating a data product, the
result is not only displayed but also archived in a specific location or disk. This
approach works well for static workflows, but for exploratory tasks, archival is
not often included. The cacher package for R6 provides a way to export verifiable
statistical analysis and data in a tamper-proof scheme that utilizes hashing [29].

While we developed our store to aid users who use local files as data sources,
our discussion of sharing the data in these stores overlaps many issues that

6 http://www.r-project.org
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have been considered. There already exist a number of solutions for managing
scientific data on the grid and in cloud environments. GridFTP [30] and storage
resource managers [31] have been developed to efficiently access data sets by
utilizing networked resources. Such solutions can help provide faster access to
data and infrastructure for transferring data across persistent stores.

9 Conclusion and Future Work

We have presented file management infrastructure that can be integrated with
workflow systems to provide strong links to data in provenance information. In
addition, we have discussed how such links can be used to solve provenance
queries, facilitate persistent caching, and impact scientific publishing. Finally,
we have described our implementation of this system in VisTrails and its use in
the ALPS project.

One important aspect that we have not addressed is how the persistent store
should be managed. In theory, keeping all of the data manipulated by workflows
would ensure full reproducibility, but this is impractical for large amounts of
data. In future work, we plan to investigate different strategies for determining
when data can be purged from the store; for example, cached data that has
not been annotated. While our current implementation supports a rich class
of queries over the information in the repository, we would also like to sup-
port queries that involve workflow specification and the data involved—for ex-
ample, finding a workflow with a ParseCensusData module that accesses the
census2010.dat file.

Another area for future study is the automatic identification of intermediate
files for caching. While users can identify important way points, it can be te-
dious to add such modules to a large collection of workflows. By examining the
timestamps of module execution in provenance, we may be able to determine
which steps are time-intensive and could benefit from caching. Also, the size of
the intermediate result may also be important; if a large file is generated by a
time-intensive step, but the next step strips unneeded information away, it may
be more efficient to store the file after the extra information has been removed.
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L., Gull, E., Gürtler, S., Honecker, A., Igarashi, R., Körner, M., Kozhevnikov, M.,
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Abstract. This paper presents LIVE, a complete DBMS designed for applica-
tions with many stored derived relations, and with a need for simple versioning
capabilities when base data is modified. Target applications include, for example,
scientific data management and data integration. A key feature of LIVE is the use
of lineage (provenance) to support modifications and versioning in this environ-
ment. In our system, lineage significantly facilitates both: (1) efficient propaga-
tion of modifications from base to derived data; and (2) efficient execution of a
wide class of queries over versioned, derived data. LIVE is fully implemented;
detailed experimental results are presented that validate our techniques.

1 Introduction

Motivated by scientific data management, data integration, information extraction, and
other applications that require storing and processing both base and derived data, we
have developed LIVE, a new kind of DBMS. LIVE incorporates a lightweight version-
ing capability and lineage tracking in an environment of base and derived relations.
There has been considerable past work on data modifications and incremental view
maintenance (refer to [15] for a survey) as well as on support for versioning and tempo-
ral aspects in databases (refer to [13,20]). LIVE distinguishes itself from this previous
work in the following ways:
• Derived data maintenance: Lineage in LIVE generalizes various kinds of infor-

mation (such as keys [9], pointers [19], and predicate properties [6]) traditionally
exploited for incremental view maintenance. LIVE supports the best possible incre-
mental view maintenance algorithms for a wide class of views and modifications.

• Versioning: LIVE provides a lightweight versioning system primarily to support
data modifications in our motivating applications. LIVE’s versioning system works
together with lineage to enable efficient query processing over derived, versioned
relations. In the future, LIVE’s versioning system together with lineage will also
support a seamless combination of propagating and nonpropagating base data mod-
ifications; in the nonpropagating case, the lineage of “current” derived data may
identify “old” base data. This feature is of particular use in scientific applications.

• Probabilistic data: Some of our motivating applications require managing proba-
bilistic (uncertain) data. Probabilistic data may arise as a result of imprecise
information extraction, for example, or because of uncertain mappings in data in-
tegration. LIVE supports probabilistic data without additional mechanisms. Thus,
all of the the lineage, versioning, and query processing capabilities of LIVE can
be applied to probabilistic as well as conventional data.
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LIVE is an offshoot of the Trio project at Stanford [23], which is a system for manag-
ing data, uncertainty, and lineage. The specific goal of LIVE is to support modifications
and versioning in an environment of stored, derived relations. As we shall see, adopting
Trio’s lineage functionality significantly eases propagating modifications and answer-
ing queries in this environment.

We note that SciDB [1], a recent proposal outlining the requirements of a general-
purpose DBMS for scientific applications, includes derived data, lineage, versioning,
and probabilistic data as key features. Similarly, a recent paper [16] laying out chal-
lenges in data integration includes derived data, lineage, and probabilities. We believe
LIVE’s overall combination of capabilities, and how they work together seamlessly and
efficiently, is an important step towards supporting these application areas.

In the following, we briefly describe the main contributions made by this paper. Re-
lated work is discussed in Section 7, and we conclude in Section 8.

Unified Data Model (Section 2): LIVE is based on a unified data model, LDM, which
is derived from Trio’s ULDB data model [5]. LDM incorporates base and derived re-
lations, probabilistic data, lineage, and versioning. As is typical [8], LDM captures
probabilistic data by attaching a probability (or confidence) in the range [0,1] to each
tuple, indicating the likelihood of that tuple being present. As queries are performed,
LIVE creates the lineage of derived data items, connecting them to the input data from
which they were derived. In the standard versioning fashion, each LDM tuple includes
a start version number and an end version number, between which the tuple is “valid.”

Modifications and Versions (Section 3): We extend the typical relational modification
primitives (insert, delete, and update of tuples) to include modifications of tuple prob-
abilities. We then formalize all of the modifications in the presence of probabilities,
based on the accepted possible-worlds [3] semantics of probabilistic databases. Finally,
we specify how the primitive modification operations create versioned relations. Again,
our goal is to incorporate lightweight versioning capabilities whose main function is to
support meaningful data modifications in an environment of base and derived relations.
We do not support historical modifications, for example; modifications are always ap-
plied to the “current version” of the database.

Query Processing (Section 4): Also in the interest of supporting only a lightweight
versioning capability, we do not support rich constructs for referencing versions or his-
tories. Queries over an LDM database are expressed as regular queries, and they pro-
duce a versioned answer: the result is an LDM relation representing the query result
across all versions. Queries can include a special clause that restricts the result to data
valid in the current version—often more useful than the full versioned result, and more
efficient to compute. Furthermore, a user can view the snapshot of any relation (base or
derived) as of any version.

We specify the semantics of query answering in LDM and present detailed algo-
rithms. We will see that the LDM model introduces some subtleties with respect to
defining lineage and probabilities on query results, especially in the presence of nega-
tion. Determining start and end versions on query results adds little overhead: LIVE’s
lineage feature enables a clean algorithm to compute versions on result tuples effi-
ciently. In the special case of negation, for which we prove intractability of computing
exact version-intervals, lineage enables an efficient approximation.
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Propagating Modifications (Section 5): Next we address the problem of modifying
derived relations automatically when there are modifications to the relations from which
they were derived, analogous to the well-known materialized view maintenance prob-
lem. Lineage provides us with critical information enabling efficient incremental view
maintenance techniques for a wide class of modifications and derived relations.

System and Experiments (Section 6): LIVE is fully implemented, including the entire
suite of data modification and versioning capabilities described in this paper. We believe
ours is the first DBMS that incorporates data modifications and a lightweight versioning
system for derived relations over ordinary and probabilistic data. Moreover, the lineage
feature of LIVE enables elegant algorithms for propagating modifications and query
processing. We describe the implementation of LIVE and include performance results.

2 LIVE Data Model (LDM)
In this section we describe LDM, the data model on which LIVE is built. We begin by
introducing how lineage is represented and created in LIVE (Section 2.1), then we de-
fine LIVE’s probabilistic data (Section 2.2), and finally we add versioning (Section 2.3).
Many of these features are similar to previous work in their respective areas and not
particularly novel, but they are a necessary basis for the system and for the new contri-
butions in the remainder of the paper. Our model for lineage is adopted from Trio [5,11],
so it is only briefly reviewed here.

2.1 Lineage

Whenever a derived relation is created in LIVE, lineage is tracked and stored automat-
ically. Lineage connects derived tuples to the (base or derived) tuples from which they
were derived.

Suppose we have two relations: People(Name,State,Job) lists people’s state and
occupation, while Photo(Num,Name) identifies the names of people appearing in num-
bered photos. (We call them P(Name,S,J) and Ph(N,Name) for short.). We begin with
the following sample data, including tuple identifiers (denoted ID)1:

ID Ph(N, Name)

11 (1,Amy)
12 (1,Bob)
13 (1,Carl)
14 (1,Dale)

ID P(Name, S, J)

21 (Amy,CA,Engineer)
22 (Bob,NY,Analyst)
23 (Carl,IL,Teacher)
24 (David,PA,Manager)

Suppose we join Photo and People, then project attributes Number and State.
We obtain derived relation States(Number,State), listing the states of the people
appearing in photos:

ID States(Num, State)
31 (1,CA) λ(31) = 11 ∧ 21
32 (1,NY) λ(32) = 12 ∧ 22
33 (1,IL) λ(33) = 13 ∧ 23

1 Our system automatically generates, and manages identifiers. Identifiers are exposed in the pa-
per only for presentation, however, all notions of “tuple values” and duplicates do not consider
tuple identifiers.
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Lineage, denoted by λ, is shown alongside each tuple. In general, the lineage of a tu-
ple in a derived relation is a boolean formula over other tuple identifiers. Intuitively,
a derived tuple exists because the existence of the tuples in its lineage formula make
the formula evaluate to true. Joins generate conjunctions as seen in this example, while
other constructs (e.g., duplicate elimination) generate disjunctions, and yet others (dif-
ference) generate negation. We will see shortly that lineage is also closely tied with the
semantics of derived probabilistic data.

2.2 Probabilities

Each tuple in an LDM relation may optionally be annotated with a value in the range
[0, 1], denoting the probability that the tuple is present in the relation. (The absence
of a probability is equivalent to probability 1.) We adopt the standard possible-worlds
interpretation for probabilistic databases [8]: The possible-worlds of each base relation
R consist of omitting the tuples in R that have probability < 1 in all possible combina-
tions. Restricting ourselves to base relations, the possible-worlds of a database combine
the possible-worlds of the base relations in all possible ways. Each possible-world has a
probability associated with it. The probability of a possible-world is given by the prod-
uct of the probabilities pi of each tuple ti present in the world, and (1 − pi) for each
tuple omitted in the world. The possible-world probabilities are guaranteed to sum to 1.

When a query Q is executed on an LDM database D with probabilities, the result
is an LDM relation R, including lineage, whose possible-worlds represent the result of
applying Q to each possible-world of D. When R is added to D as a derived relation,
lineage is created as described in Section 2.1. This semantics for derived data with lin-
eage extends the possible-worlds model in a natural way: Possible-worlds for a derived
relation are only combined with those possible-worlds for base relations such that the
following property holds. A derived tuple is present in a possible-world if and only if
its “transitive” lineage formula, i.e., expanded to refer to base tuples only, evaluates to
true based on the presence (true) and absence (false) of referenced base tuples. Note in
particular that derived relations do not increase the number of possible-worlds.

A very nice property observed elsewhere [5] is that the probability associated with
a derived tuple t is the probability of its transitive lineage formula computed using the
given probabilities for the base tuples. We will soon see that version intervals for derived
tuples also can be computed through lineage, with an even more efficient algorithm.

Example 1. Let us add probabilities to the Photo relation (indicating uncertainty in
identification), but suppose all tuples in the People relation still have a probability 1.0.

ID Ph(N, Name)

11 (1,Amy):1.0
12 (1,Bob):0.6
13 (1,Carl):0.3
14 (1,Dale):0.1

The data and lineage in our join result States remains the same. To compute the prob-
ability of one of its tuples, say 32, we evaluate the probability of its lineage formula
λ(32) = 12 ∧ 22; Pr(32) = Pr(12 ∧ 22) = 1 ∗ 0.6. �
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2.3 Versioning

Next we add versions to our data model. Most parts of the versioning model are stan-
dard, but a few subtleties do arise due to lineage and probabilities.

Each tuple in an LDM relation now includes a start version and an end version, which
are non-negative integers or ∞. Suppose a tuple t has start version s and end version
e, denoted by the interval [s, e]. Then, intuitively, the tuple is valid for all versions v
such that s ≤ v ≤ e. We use start(t) and end(t) to denote the start and end versions of
tuple t.

The database D maintains a current version vD. Initially, the database starts at ver-
sion 0, i.e., vD = 0, and all tuples have the interval [0,∞]. (∞ denotes the special
version number greater than all integer versions. Intuitively, a tuple valid till ∞ means
the tuple hasn’t expired.) As data modifications are committed to D, the current ver-
sion number vD is increased, and the intervals of modified tuples are updated. (It is
also possible to create an already-versioned database, but that seems to be a less likely
scenario.)

We defer until Section 3 a formal definition of how precisely modifications create
versioned relations. Section 4 covers (among other topics) more details on how versions
interact with derived relations and lineage. In the remainder of this section we define
the snapshot of an LDM relation, and we use snapshots to define formally the semantics
of versioned LDM relations in terms of possible-worlds.

Definition 1 (Snapshot). Given an LDM relation R whose current version is vD , the
snapshot of R at version v ≤ vD (denoted R@v) is a non-versioned LDM relation
obtained by eliminating from R all tuples t such that v < start(t) or v > end(t). In the
snapshot of a derived relation, the lineage of a tuple t′ is obtained by replacing every
tuple identifier i in λ(t′) with false if i’s version-interval does not include v. If now
λ(t′) ≡ false, t′ is not included in the snapshot. The probability of t′ in the snapshot is
determined by its lineage in the snapshot in the standard fashion. �
A valid LDM relation R must satisfy some basic properties: Every tuple t in R must
have start(a) ≤ vD (recall vD denotes the current version), and if end(a) ≥ vD then
end(a) = ∞. Intuitively, all tuples must have come into existence at or before the cur-
rent version, and any tuple that is valid at the current version is valid at and beyond
the current version; i.e., no tuple could already have been deleted after the current ver-
sion. We then have the following straightforward result, which says that the database is
constant from version vD onwards.

Theorem 1. Given an LDM database D whose current version is vD , for versions
v1, v2 ≥ vD , the snapshot D@v1 is the same as the snapshot D@v2 . �
Just as probabilistic databases encode a set of possible-worlds, LDM databases with
versions encode a list of sets of possible-worlds: one set for each version v ≥ 0.

Definition 2 (Possible-Worlds). Given an LDM database D whose current version is
vD, the set of possible-worlds of D at version v is the set of possible-worlds of D@v. �

Example 2. Consider the relation Photo from our running example extended with ver-
sioning (Table 1(a)). Version-intervals for each tuple are marked as superscripts. Sup-
pose the current version of the database is vD = 2. For example, the tuple (1,Amy) is
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Table 1. Table for Example 2

ID Ph(N, Name)2

11 (1,Amy)[0,1]:1.0

12 (1,Bob)[0,∞]:0.6

13 (1,Carl)[0,0]:0.3

14 (1,Dale)[1,1]:0.1

Ph@1(N, Name)

(1,Amy):1.0
(1,Bob):0.6
(1,Dale):0.1

(a) (b)

valid for versions 0 and 1, and the only tuple valid in the current version is (1,Bob).
The snapshot of Photo at version 1 is shown in Table 1(b). (Tuple identifiers are omitted
from the snapshot.) �

Just as the question of completeness arises in the theory of non-versioned probabilistic
databases [3], the corresponding question arises here: whether LDM is complete for
versioned probabilistic databases. That is, given some vD and a set of possible-worlds
Pi for 0 ≤ i ≤ vD, is there an LDM database D whose current version is vD, and
∀i : 0 ≤ i ≤ vD , the possible-worlds of D@i are equal to Pi?

Theorem 2. LDM is complete for versioned probabilistic databases. �

All proofs are omitted in this version of the paper due to space constraints; they appear
in the full version available online [12].

3 Modifications

Recall that LIVE supports modification of the current version of the database and not
historical modifications. In this section, we define LIVE’s set of primitive modification
operations. We provide a formal semantics based on possible-worlds, and we specify
how the modification operations create versioned LDM relations. In this paper we as-
sume modifications are allowed on base relations only, then are propagated to all derived
relations using the algorithms to be presented in Section 5.

LIVE supports a declarative SQL-based language for modifying relations. As in
SQL, a statement in this language results in a set of primitive modification operations
executed by the system. In LIVE the primitive modifications are:
• insert a new tuple
• delete an existing tuple
• update the value of one or more attributes in an existing tuple
• update the probability of an existing tuple

3.1 Semantics

We define the semantics of each of the primitive modification operations in terms of
their effect on the set of possible-worlds [8]. Consider a relation R with possible-worlds
{R1, . . . , Rn} (for a given version). Let possible-world Ri have probability pi, i =
1..n.



422 A. Das Sarma, M. Theobald, and J. Widom

Insert tuple: Suppose we insert into R a tuple t with probability p(t). The resulting
set of R’s possible-worlds is {R1

1, R2
1, R1

2, R2
2, . . ., R1

n, R2
n}, where for i = 1 . . . n:

R1
i adds tuple t to Ri and has probability pi ∗ p(t); R2

i = Ri and has probability
pi ∗ (1 − p(t)). If the new set of possible-worlds contains any duplicate worlds, then
their probabilities are summed and one world is retained: Duplicate worlds are possible
worlds with the identical set of tuples.

Delete tuple: Suppose we delete a tuple t from R. The resulting set of R’s possible-
worlds for the new R is {R′

1, . . . , R
′
n}, where each R′

i deletes t from Ri if it is present.
The probabilities remain unchanged, however when tuples are deleted from possible-
worlds, duplicate worlds are always created. As with insertion, duplicate worlds are
merged and probabilities added. For instance, two possible-worlds differing only in one
tuple are merged, when this distinguishing tuple is eliminated.

Update value: When one or more values in an existing tuple are updated, R’s possible-
worlds are modified by replacing the old tuple in every possible-world with the corre-
sponding new tuple. Probabilities remain unchanged, and duplicate worlds are
merged.

Update probability: Modifying the probability of a tuple does not change the set of
possible-worlds, but only changes their probabilities, following the semantics of LDMs.

3.2 Execution

Now consider execution of modifications. We assume any number of modification state-
ments may be performed together. A commit operation then increments the version
number and installs the modifications permanently in the new version. (Note that the
much-studied details of versioning systems, such as the interaction between versions
and transactions, are neither a focus nor contribution of this paper.)

Consider an LDM relation R whose current version is vD.
1. Insert Tuple: When a tuple t is inserted into R, t is assigned the version-interval

[vD + 1,∞].
2. Delete Tuple: When a tuple t is deleted from R, it is retained in R as is, except

end(t) is modified to be vD.
3. Update Value: When a tuple t is updated to t′, it is treated as a deletion of t and

an insertion of t′. That is, end(t) is modified to be vD , and tuple t′ is inserted with
version-interval [vD + 1,∞].

4. Update Probability: When the probability p of a tuple t is modified to be p′, it
is treated as a deletion of t with probability p and an insertion of t′ = t with
probability p′. That is, end(t) is modified to be vD, and tuple t′ = t is inserted with
probability p′ and version-interval [vD + 1,∞].

Example 3. Consider the People relation from our running example, but now with
probabilities, versions, and slightly modified data, shown on the left below. The database
is currently at version vD = 0, indicated by the superscript on the relation name.
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ID People(Name, State, Job)0

22 (Bob,NY,Analyst)[0,∞]:1.0

23 (Carl,IL,Teacher)[0,∞]:1.0

24 (David,PA,Manager)[0,∞]:0.6

ID People(Name, State, Job)4

22 (Bob,NY,Analyst)[0,3]:1.0 ← (4)
23 (Carl,IL,Teacher)[0,2]:1.0 ← (3)
24 (David,PA,Manager)[0,∞]:0.6← (2)
25 (Frank,CA,Eng.)[1,∞]:0.3 ← (1)
26 (David,PA,CEO)[2,∞]:0.3 ← (2)
27 (Bob,CA,Student)[4,∞]:1.0 ← (4)

On the right we show the People relation after the following modifications in se-
quence, committing after each operation (We mark the modification alongside affected
tuples; the final database version is vD = 4.): (1) With probability 0.3 engineer Frank
from CA is now known, so a tuple inserted. (2) We decide that David is possibly (30%
chance) a CEO as well, so a tuple is inserted. (3) Carl retires, so his tuple is deleted. (4)
Bob decides to go to graduate school in California, so his tuple is updated, changing his
job from Analyst to Student and his state from NY to CA. �

4 Query Evaluation

We now address the problem of query evaluation in LDM. In query results, we are now
interested not only in the data, probabilities, and lineage, but also in the version-intervals
of each result tuple.

Definition 3 (Query Answer). Given an LDM database D whose current version is
vD and a query Q over relations R1, . . . , Rn in D, the result of Q is an LDM relation
R whose tuples have lineage to tuples in R1, . . . , Rn. The resulting LDM database
D′ containing D and R still has current version vD. For each version v ≤ vD , the
possible-worlds of D′

@v are the possible-worlds obtained by executing Q on D@v. �

Intuitively, the versioned possible-worlds of the result of a query correspond to applying
the query to the set of possible-worlds at each version of the database. (Recall from
Section 2.2 that, further, the result of a query over a set of possible-worlds is defined as
logically applying the query to each possible-world.)

In Section 4.1 we specify how version-intervals are computed in query results. Then,
in Section 4.2 we consider queries that specifically filter data based on their version-
interval. Section 4.3 discusses the subtleties surrounding probability values in query
results over LDMs.

4.1 Version-Interval Computation

We first address query evaluation for queries that generate “positive” lineage, then ex-
tend our algorithm for all queries (i.e., also negative lineage). We then briefly discuss
pushing interval computation into the query execution engine.

Positive Lineage. We say that a relation R has positive lineage if the lineage of every
tuple in R contains only positive literals. Results of queries involving select, project,
join, union, and duplicate-elimination always have positive lineage.

Consider a query Q over input relations R1, . . . , Rn that generates positive lineage.
Conceptually we answer Q in two steps:
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1. Data Computation: We compute the result S of Q by treating R1, . . . , Rn as LDM
relations without versions; i.e., we disregard the version-intervals of tuples in this
stage. The tuples in S and their lineage can be computed using the query processing
algorithms in [5].

2. Version Computation: We use the lineage of each tuple in S to compute its version-
interval.

Let us look at performing Step 2. (We discuss performing Steps 1 and 2 together in
Section 4.1.) Given a tuple a in the result S, we want to know all the versions of S in
which a is present in some possible-world. Recall from the semantics of LDMs that a is
present only if its lineage λ(a) is true. Therefore, we need to know all versions in which
λ(a) can be evaluated to true. The following theorem, whose proof follows directly
from the discussion below, describes how this set of all versions can be computed.

Theorem 3 (Version Interval Computation). Consider a tuple a in a result relation,
with lineage λ(a) referring to tuples a1, . . . , am in the input relations. Let the version-
intervals of a1, . . . , am be I1, . . . , Im. The version-interval I of a is computed by eval-
uating a formula f obtained from λ(a) as follows:

1. In λ(a), replace every instance of each tuple ai by its version-interval Ii.
2. In the resulting expression, replace logical AND (∧) with the intersection opera-

tor ∩ of intervals, and replace OR (∨) with the union operator ∪. �

Corollary 1. The version-interval of a tuple a with positive lineage λ(a) can be com-
puted in PTIME in the number of tuples in λ(a). �

The above theorem translates the boolean lineage formula into an expression over
version-intervals of tuples, such that the result of the new expression gives the version-
interval of the resulting tuple. If the lineage formula contains (ai ∧ aj), replacing it by
Ii ∩ Ij yields the versions in which ai ∧ aj can be true. Similarly, Ii ∪ Ij gives the
versions in which ai ∨ aj can be true. In general, replacing each boolean operator by
the corresponding set operation and evaluating the formula yields the set of all versions
in which λ(a) can be true, i.e. all versions in which a appears in some possible-world.

Notice that the original query Q that produced the result relation is not needed for
computing version-intervals—they can be computed using just lineage and version-
intervals for the input data. Lineage allowed us to decouple the two steps, instead of
performing version computation as part of query evaluation.

Example 4. Consider Photo and People modified once again and omitting probabili-
ties for this example:

ID Photo(Number, Name)

12 (1,Bob)[2,∞]

13 (1,Carl)[4,6]

14 (2,Frank)[0,1]

ID People(Name, State, Job)
22 (Bob,NY,Analyst)[0,3]

23 (Carl,IL,Teacher)[0,2]

25 (Frank,CA,Eng.)[1,∞]

27 (Bob,CA,Student)[4,∞]

As before, suppose States(Number,State) is obtained by joining the two rela-
tions. After Step 1 (data computation), we have the following result tuples and lineage:
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ID States(Number, State)
41 (1,NY) λ(41) = 12 ∧ 22
42 (1,IL) λ(42) = 13 ∧ 23
43 (2,CA) λ(43) = 14 ∧ 25
44 (1,CA) λ(44) = 12 ∧ 27

In Step 2 we compute the version-intervals of each tuple. For example, the interval
of tuple 41 is [2,∞]∩ [0, 3] = [2, 3]. We may obtain an empty interval for some tuples,
in which case the result tuple is extraneous, and is removed. For example, the interval
of 42 above is [4, 6] ∩ [0, 2] = ∅. The final result after interval computation is:

ID States(Number, State)
41 (1,NY)[2,3] λ(41) = 12 ∧ 22

43 (2,CA)[1,1] λ(43) = 14 ∧ 25

44 (1,CA)[4,∞] λ(44) = 12 ∧ 27

Now let us consider a further derived relation Region(State), obtained from re-
lation States by projecting onto attribute State and eliminating duplicates (which
generates disjunctive lineage). The resulting relation after data and version computa-
tion is:

ID Region(State)
51 (NY)[2,3] λ(51) = 41

52 (CA)[1,1]∪[4,∞] λ(52) = 43 ∨ 44

As illustrated by Tuple 52 in our example, it is possible that the version-interval com-
puted based on Theorem 3 consists of a set of disjoint intervals as opposed to a single
interval. Disjoint sets of intervals are encoded in LIVE by creating multiple tuples, each
with a single interval. �

Arbitrary Lineage. Now we consider computing version-intervals of result relations
with arbitrary lineage. Specifically, the lineage of a tuple may now also contain negation,
typically generated by a query involving the difference operator (e.g., R1 EXCEPT R2).

As a first step, we ensure λ(a) is a DNF formula with all negations pushed down
to literals (using De Morgans laws), which is how lineage formulas are stored in LIVE
anyway. Just as before, we replace every conjunction with intersection, disjunction with
union, and positive literal ai with ai’s version-interval Ii.

However, we now replace every negated literal ¬aj with the interval [0,∞]. One
would have expected replacing ¬aj with the complement of the interval Ij , but that is
incorrect. Consider a tuple aj , whose probability is less than 1. Recall we are trying to
find the version-interval in which ¬aj could be true. Clearly for any version v not con-
tained in Ij we could have ¬aj true since aj is not present at version v; in addition, even
for some version v ∈ Ij , aj has some probability of not being present, hence ¬aj could
still be true. Therefore,¬aj is replaced by [0,∞] while constructing the expression over
version-intervals. After that, the version-interval of each tuple is computed as before.
If we know aj has probability 1 in Ij , then we can make the intuitive replacement of
¬aj with I ′j , the complement of Ij , to compute the exact version-interval. However,
the following theorem shows that the hardness of checking for probability 1 in proba-
bilistic databases [10] makes exact version-interval computation also intractable. Fur-
ther, it shows that the algorithm described above correctly computes version-intervals
in PTIME when probabilities are known, i.e., computed.



426 A. Das Sarma, M. Theobald, and J. Widom

Fig. 1. Pushing version-interval computation into query plans with negation

Theorem 4. Computing the version-interval of a tuple a with arbitrary lineage λ(a)
referring to tuples a1, . . . , am is:

• PTIME when all ai’s probabilities are known.
• NP-hard when probabilities of ai’s are unknown (i.e., not computed). �

Despite this “negative” theorem, in the absence of negation our algorithm can always
compute version-intervals in linear time. In the presence of negation, if probabilities are
known then our algorithm is still linear. If probabilities are not known, our algorithm
finds the best conservative interval based purely on lineage and input version-intervals.

Pushing Interval Computation into Query Plans. Lineage enables version-interval
computation to be performed as a separate step, but we may also wish to perform
version-interval computation during query execution. In the absence of negation, we can
do so in a standard fashion: select and project operators retain the version-interval
of the input, the duplicate-elimination operator takes the union of the version-
intervals of the input tuples, and the join operator intersects the version-intervals of
the input tuples. If the version-interval of an intermediate tuple in the query plan is
empty (for instance, as a result of a join), the tuple is dropped.

When a query includes negation, computing version-intervals within a query plan is
not always possible, as shown in the following example.

Example 5. Consider performing an intersection of relations R and S, each containing
one tuple (a) with probability < 1, using two query plans: (1) (R ∩ S), and (2) (R −
(R − S)). (Assume R and S have no duplicates so the two query plans are equivalent.)

Let the tuples in R and S be denoted r and s and let their version-intervals be [0, 10]
and [5, 15] respectively. Figure 1 shows the operator-by-operator interval computation
based on both the query plans. The lineage formulas for the final result tuple are equiv-
alent: r ∧ s for the first plan and r − (r − s) ≡ r ∧ ¬(r ∧ ¬s) for the second plan.
Plan 1 produces the correct output version-interval [5, 10]. However, in the second plan
an incorrect version-interval of [0, 10] is produced. �
In the above example, intuitively the reason the interval computation is incorrect is
that the same tuple is involved in multiple levels of negation, not taken into account
in operator-by-operator interval manipulations. Even without double-negations, inter-
val computations within a query plan with negation may be incorrect. Hence, for such
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queries it is necessary to support some “lineage-like” method for decoupling data and
interval computation.

LIVE pushes version-interval computation into the query plan whenever possible.
We have also built suitable indexes on start and end version columns to enable effi-
ciently combining and intersecting version-intervals in the query plan.

4.2 Filtering Based on Versions

LIVE provides two constructs that enable filtering data based on their version.

1. Valid-At Queries: The clause “valid at <version-number>” can be added to
any regular LIVE query, to filter out input tuples not valid at a particular version. For
example, “Select * from People valid at 3” selects from People all tuples
whose version-interval contains 3. Note that while valid-at queries filter out data based
on a specified version, their result is still a versioned LDM relation.

2. Snapshot Viewing: Our system allows users to view snapshots of LDM relations
using the command: “View <table-name> at <version-number>”, e.g., “View
People at 4” displays People@4. The result is a non-versioned LDM relation.

4.3 Probabilities

An important subtlety arises when combining derived relations, probabilities, and ver-
sioning. The subtlety occurs only in query results with disjunctive lineage, typically due
to duplicate elimination. While a tuple can be present in multiple versions of data, its
probability may vary across versions.

A simple example illustrates the issue. Consider a modified States base relation.

ID States(Number, State)
41 (1,NY)[0,3]: 1.0
43 (1,CA)[0,∞]: 0.5

If we perform a duplicate-eliminating projection onto Number, the result contains a
single tuple [1]. The probability of [1] from versions 0 to 3 is 1.0, because tuple 41 is
present with probability 1.0. However, the probability from versions 4 onwards is 0.5,
because from version 4 onwards only tuple 43 is present.

All information needed to determine probabilities for any version is included in result
lineage, but there is a question of presentation and clarity. One possibility would be to
split tuples based on probabilities, remembering somehow that duplicate-elimination
has been performed so the result is a set. For example, in the query result above we
could have two result tuples with value [1], the first having version-interval [0, 3] and
probability 1.0, the second having version-interval [4,∞] and probability 0.5. LIVE
does not use this approach. Rather, LIVE displays the probability for the current version
vD as default, and historical probability values can be shown on request.

5 Propagating Modifications

Next we address the problem of propagating the modifications on base data described
in Section 3 to derived relations that are dependent on the modified data. It suffices to
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consider propagating modifications to derived relations that are derived directly from
modified base data. Modifications can be propagated to an entire LDM database in
topological order: Once the set of relations, say I(R), derived from a modified base
relation R are modified, then relations derived from I(R) are modified, and so on.

As we worked on the propagation component of data modifications, and studied the
considerable body of related previous work on materialized view maintenance, we re-
alized that most algorithms for incremental view maintenance (particularly to handle
deletions) exploit some technique or extra information that, if one looks carefully, is re-
ally a type of lineage. Thus, the lineage maintained by LIVE allows us to apply the most
efficient propagation techniques, without requiring, gathering, or maintaining additional
information. Specifically, we are able to identify data in derived relations that refers to
modified data easily. Furthermore, we are able to propagate deletions for all types of
queries, including negation, incrementally and without using the original query. (Dele-
tions from the right side of a difference operator have traditionally been a particularly
difficult case.) Next we give one example of how our propagation algorithm handles
deletions. Detailed algorithms for propagating all types of modifications are given in
the full version of our paper available online [12].

Deletion with EXCEPT: Consider derived relation T obtained by executing “R1 EX-
CEPT R2”, where R1 and R2 are base relations. Deleted tuples in R1 are again propa-
gated to T by recomputing the version-intervals of affected tuples in T . The only case
when recomputation of version-intervals in T doesn’t give the correct answer is when
we delete tuples from R2: Suppose there’s a tuple a in R1 that also appears in R2 with
version-interval [0,∞] and probability 1.0. Then when R1 − R2 is executed, since the
tuple a is certainly present in R2, it does not appear in the result relation. However, if
the tuple gets deleted from R2, then a needs to be included in the result.

If a set S of tuples is deleted from R2, we modify T as follows. For each distinct
tuple value a in S, check whether T contains tuples with value a:
1. If yes, recompute the version-intervals of the tuples in T with value a.
2. If not check whether any tuple in R1 has value a. For each such tuple a1 in R1:

(a) Insert a new tuple a1 in T .
(b) Let s1, . . . , sk be all R2 tuples with a1’s value. Set lineage of the newly added

tuple in T to (a1 ∧ ¬s1 ∧ . . . ∧ ¬sk), and then compute its version-interval.

Effectively, we only need to insert tuples into T that were not included because R2

contained certain tuples with the same value. For remaining tuples in T , if they refer to
modified tuples, we recompute their version-intervals; else, they are unchanged. Again,
the task of determining which tuples in T refer to modified tuples is eased by lineage.

6 System and Experiments

6.1 System Description and Setup

Like Trio [23], LIVE is layered on top of a conventional DBMS. It encodes LDM rela-
tions in standard relational tables, and lineage of each derived LDM relation is materi-
alized into a separate table. In addition to data columns, each tuple in the encoding has
a column for the probability, two system columns—start and end—corresponding to



LIVE: A Lineage-Supported Versioned DBMS 429

start and end versions respectively, and some extra columns to encode lineage. (Details
of the exact encoding are omitted due to space constraints.)

LIVE uses the PostgreSQL 8.2 open-source DBMS as its relational back-end. Ex-
periments were conducted on a Quad-Xeon server with 16 GB RAM and a large SCSI
RAID. For all queries, we report actual wall-clock runtimes (in seconds) to execute the
query and place the result in a new LDM relation. Lineage and version-intervals (but not
probabilities) are computed and stored. Query execution time is measured over a “hot”
cache, i.e., by running a query once and then reporting the average runtime over three
subsequent, identical executions. Our experiments focus on investigating the overhead
of modifications and version management in LIVE and its effects on query processing,
compared to a non-versioned LIVE implementation.

Our dataset is based on a synthetically created set of TPC-H [22] tables using
a scale-factor of 1. For modifications and queries, we consider different subsets of
the Lineitem and Orders tables, by varying the selectivity of selections over the
Orderkey attribute from 0.1% to 1% of the input table size. To make the TPC-H data
probabilistic, we independently and randomly assigned a probability in [0, 1] to each
tuple. In our dataset, Lineitem contained 6,000 (at a selectivity of 0.1%) to 60,000
(at a selectivity of 1%) tuples, and Orders contained between 1,500 and 15,000 tuples
respectively. We note that other recent work [4,10,11] on probabilistic databases has
used similarly generated synthetic data sets based on TPC-H for experimental studies.

In addition to indexes over data columns, to facilitate answering predicates over the
version columns, we create a multi-attribute B+ tree index over the concatenation of
(start, end) and a B+ tree index over end for each input table in LIVE. Ensuring
nonempty intersection of a set of version-intervals [s1, e1], . . ., [sn, en] then translates
to the predicates maxi(si) ≤ mini(ei). For valid-at and snapshot queries referring to a
given version v, we include predicates si ≤ v ≤ ei for each table in the FROM clause.
Hence, queries may use range scans over the B+ tree indexes, in addition to other in-
dexes that may be involved in the data-related part of the query processing. Unless
mentioned otherwise, all versioned query executions in our experiments combine data
and version computation using the predicates above, as described in Section 4.1.

6.2 Experimental Results

Baseline Runs Without Modifications. We start by comparing the performance of
LIVE with versioning turned off against version-enabled LIVE. In Figure 2(a) we use a
join of Lineitem and Orders on Orderkey, varying join selectivity from 0.1% to
1%. No modifications have been performed at this point. As expected, Figure 2(a) shows
join query executions as linear functions of the join selectivity (the join multiplicity is
constant at 1). The gap between the two plots indicates the overhead of processing the
two system columns for start and end intervals in the encoding: We notice only a small
(10-12%) overhead in the execution times.

Scalability. Next we study the same join query, but when an increasing number of
tuples that go into the join have been modified in both the Lineitem and Orders
tables. Each modification performs a tuple update, whose effect is to close one interval
and create a new tuple as described in Section 3.2. Figure 2(b) displays runtime as a
function of the number of tuples that have been modified, varying modification selec-
tivity from 0.1% to 1%. The join selectivity is fixed at 1. We see that our versioning
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(a) Overhead of join query processing
with versions enabled, no modifications.

(b) Scalability of query processing for
varying amounts of modified data.

(c) Query execution time when the amount
of modified data increases non-linearly.

(d) Overhead of version computation in
join query processing.

(e) Overhead of version computation for
different operators.

(f) Valid-at query execution time com-
pared to versioned and non-versioned
queries.

Fig. 2. Experimental results (execution time measured in ms)

algorithm clearly scales linearly with the amount of data modified. Figure 2(b) also
shows that query execution time almost exactly doubles when all tuples that go into the
join have been modified once (at a modification selectivity of 1%), compared to execut-
ing the same join query without modified data as depicted before in Figure 2(a). This
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conforms to the best-possible case, since for each modified (and hence expired) tuple,
a new tuple with a different version-interval is inserted into each of the input tables,
which also exactly doubles the amount of versioned tuples in the result at 1% update
selectivity.

Figure 2(c) addresses query processing behavior when different fractions of tuples
are modified progressively, i.e., more than once. The first point corresponds to 0.1% of
the data being modified, the second point reflects performance when the initial 0.1%
plus an additional 0.2% of data has been modified, and so on. The figure plots two
lines: one for a constant join query with selectivity 0.1%, and the other for varying the
selectivity of the join from 0.1% to 1%, thus corresponding to the number of tuples
being modified. As expected, we notice a nonlinear increase in execution time for both
cases, because the total amount of data modified and hence the number of versioned
tuples, is increasing nonlinearly.

Overhead of Version Computation. In Figure 2(d) we study the overhead of com-
puting version-intervals in query results, again when increasing fractions of data are
modified. It turns out almost no overhead is induced by processing tuples with both
overlapping and non-overlapping versions, because we are able to push the version
predicate into the query. In Figure 2(d), one plot refers to the execution time when
version-intervals are computed on result tuples, and the other refers to the execution
time to obtain the same result but without version computation. For the former plot,
each tuple that goes into the join has been modified exactly once, while for the lat-
ter plot, the same number of tuples were inserted (but not modified), so that version
computation was not necessary.

Figure 2(e) depicts the overhead of version computation for different query opera-
tors, with 1% of the data being modified and queried in each case. As we can see, for all
types of operators the overhead of version computation remains very small. Moreover,
the plots show that the trend is similar for joins and other queries; hence our focus on
join queries for the major part of our experiments.

Versioned vs. Valid-at Queries. Recall LIVE supports restriction of queries to spe-
cific versions, called “valid-at” queries. Figure 2(f) compares the execution time of the
versioned join query with selectivity 1%, with the corresponding valid-at query, which
only selects data valid at the current version. The fraction of data modifications is varied
from 0.1% to 1%. The execution time of the versioned query grows linearly with the
amount of data modified. However, the execution time of the valid-at query remains al-
most the same as the execution time of the join query when no data is modified (marked
by the horizontal line in Figure 2(f)). Hence modifications and versioning in LIVE adds
little overhead when we want to query only the current (or any fixed) version: The
execution time primarily depends on the amount of data valid at the specified version.

7 Related Work

Due to space constraints, we provide a compressed related-work discussion and an ab-
breviated bibliography; extensive discussion and a full bibliography appear in the online
full version [12]. To the best of our knowledge, LIVE is the first implemented DBMS
with unified support for lightweight versioning, probabilistic data, and lineage, in an
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environment of stored derived relations over base data that is modified over time.
Broadly, related work falls into four categories:

Probabilistic and uncertain data. Despite the significant amount of research on uncer-
tain and probabilistic databases, little work has focussed on modifications, and none on
versioning. Moreover, the few papers on modification [2,17,18,24] primarily consider
language issues, but unlike our paper, don’t focus on the problems of query answering,
propagation and systems issues.

Lineage. We do not make a new contribution to the great deal of work in lineage (see
[21,14]). Rather, we adopt Trio’s model and algorithms for lineage [5], and we use
them to support efficient management of modifications and versioning in our system,
including update propagation and query processing.

Versioning. Incorporating versions and notions of time in databases has been studied a
great deal (refer to [13,20]). Recently, [7] developed techniques for archiving (through
versioning) of scientific data represented as XML. Our paper is different from [7] in
several respects: While [7] works with XML data, we are interested in relational data
(with probabilities and lineage). The focus of our paper is SQL query answering over
versioned relations, with a lightweight versioning capability primarily to support data
modifications; however, the focus of [7] is to “merge” newer versions of XML data with
an existing versioned data for archival, and to support evolutionary queries. We note
that, to the best of our knowledge, no versioning system has been closely integrated
with data lineage, derived relations, and probabilistic data.

View Maintenance. A large body of work studies incremental view maintenance in
traditional relational databases (see [15]), and is devoted to exploiting additional in-
formation and features to enable incremental computation. For instance, reference [9]
exploits information about keys, [19] uses pointers to base data, while [6] analyzes
predicates in queries and properties of modified data. Lineage generalizes the kinds of
information exploited by previous work, and thus enables applying similar propagation
techniques for a wider class of queries and modifications.

8 Conclusions

This paper describes LIVE, a fully implemented DBMS designed for applications re-
quiring base and derived relations that are modified over time. LIVE incorporates a
lightweight versioning system and it supports probabilistic data, for both base and de-
rived relations. The key feature integrating LIVE’s variety of capabilities is lineage:
lineage supports efficient propagation of modifications from base to derived data, and
efficient processing of a wide variety of queries on versioned data. The suite of capa-
bilities supported by LIVE are of particular interest in scientific data management (as
well as other application domains discussed earlier), as evidenced by the recent SciDB
proposal [1]. Several directions for future work arise, including handling modifications
to derived data, “partial propagation” of modifications, and lineage updates.
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Abstract. Scientific applications are more and more faced with very
large volumes of data and complex, resource-intensive workflows that
process or analyze these data. The recent interest in web services and
service-oriented architectures has strongly facilitated the development of
individual workflow activities as well as their composition and the dis-
tributed execution of complete workflows. However, in many applications
concurrent scientific workflows may be served by multiple competing
providers, with each of them offering only limited resources. At the same
time, these workflows need to be executed in a predictable manner, with
dedicated Quality of Service guarantees. In this paper, we introduce an
approach to Advance Resource Reservation for service-oriented complex
scientific workflows that optimize resource consumption based on user-
defined criteria (e.g., cost or time). It exploits optimization techniques
using genetic algorithms for finding optimal or near-optimal allocations
in a distributed system. The approach takes into account the locality of
services and in particular enforces constraints imposed by control or data
flow dependencies within workflows. Finally, we provide a comprehensive
evaluation of the effectiveness of the proposed approach.

Keywords: Scientific Workflows, Advance Resource Reservation, Qual-
ity of Service.

1 Introduction

Service-Oriented Architectures (SOA) have become widely adopted both in in-
dustry and research environments: standardized messages and message exchange
formats such as WSDL and SOAP facilitate loose coupling, thus enabling ser-
vice consumers and providers to interact in a much more flexible fashion than
previously. One particularly interesting aspect of these SOAs is the possibility
to combine several services into workflows (also known as “programming in the
large”).

Beyond the pure provisioning (or using) of functionality, however, both service
providers and consumers usually have other interests: providers will strive for
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Fig. 1. Sample Weather Forecast Workflow

the best possible usage of their provided resources in order to maximize profit;
conversely, consumers may want to execute an entire workflow as fast as possible,
or as cheap as possible (or combinations thereof).

Consider the sample workflow given in Figure 1, which is a simplified version
of an actual scientific workflow presented in [5] and is used for producing weather
forecasts. Reasonable non-functional criteria that an end user might specify for
the execution (of the entire workflow) could be “as fast as possible”, or “as cheap
as possible, but with a deadline so that the results are available for the evening
news”. All of the operations are available as Web Services (WS) and may be
provided by one or more service providers. Assume that details on timing and
data quantities of individual operations are as indicated in Figure 1. This implies
that the overall execution of a single instance of this workflow is in the range of
several hours – the exact duration strongly depends on the available resources.
Thus, in this constellation, we consider that workflow as a good example of a
Scientific Workflow, as it is characterized by large volumes of data and contains
long-running, CPU-intensive operations [17,21].

To meet the aforementioned non-functional requirements, we propose a work-
flow engine (called DWARFS: Distributed Workflow engine with Advance Reser-
vation Functionality Support) that is capable of providing Quality of Service
(QoS) guarantees to the end users. When multiple independent clients run work-
flows concurrently, these clients are generally competing for the limited resources
that providers have available. Our approach is based on the notion of Advance
Resource Reservations (AR for short), which, in simple terms, reserves all re-
quired resources for running a workflow before the actual workflow execution.

The goal of the AR component of the DWARFS workflow engine is to find
a combination of resource reservations at the providers of the individual oper-
ations that can satisfy the client’s needs in terms of QoS, and to set up the
required reservations, using negotiations based on WS-Agreement, so that the
following execution of the workflow is guaranteed to meet these requirements.
While we have presented an overview of the DWARFS system in [11], this paper
focuses in detail on the planning phase. In particular, the contribution of this
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paper is an approach to make the execution of Scientific Workflows predictable by
exploiting genetic algorithms for finding the optimal or near-optimal allocation
of all resources needed at runtime (e.g., CPU, storage, specialized instruments,
network bandwidth). The approach takes into account the locality of services
and also enforces the different constraints imposed by control or data flow de-
pendencies within a workflow. Finally, we provide a comprehensive evaluation of
the effectiveness of the proposed approach.

The rest of this paper is structured as follows: Section 2 introduces the
DWARFS system model. The optimization task is specified in Section 3. Sec-
tion 4 presents in detail the application of genetic algorithms for advance reser-
vation of resources. The results of a comprehensive evaluation of the DWARFS
approach to AR is given in Section 5. Section 6 discusses related work and Sec-
tion 7 concludes.

2 System Model and Assumptions

In this section, we shortly describe our overall approach, including basic assump-
tions. First and foremost, we assume that the operations that the workflow uses
are provided in a SOA, i.e., that there are (possibly many) competing service
providers that offer the required operations. We suppose that for the planning, we
have the required knowledge about the infrastructure (such as which operation
providers and workflow engines exist, network connectivity characteristics, etc.).1

2.1 Resources

Any operation invocation is assumed to require some resources for its execution.
The most obvious case is that operation invocations require processing power
(i.e., CPU cycles). However, “almost anything” involved in an operation can be
considered a resource that needs to be taken into account when invoking an
operation.

As an example, Figure 2 shows a more complete case of the resources that may
need to be (co-)allocated for a particular operation execution at a specific service
provider P: The actual operation requires reservations for CPU (2) and some
hardware instrument (5). As the invocation takes place over the network, the
system also considers reservations for bandwidth, required for the data upload
(pre-invocation, (1)), and the download of the computed result (post-invocation,
(3)), between the workflow engine E and the provider P. Finally, the provider
specified that the client needs to reserve a certain amount of storage (4) for the
entire duration of the operation call. Thus, even in this simple example, there are
five resources involved, including dependencies on the timing of their allocation
requirement. Note that the need for co-allocating multiple resources using such
dependencies is the rule, not the exception. Requirements to only allocate a

1 That information could for example be acquired using registries such as UDDI, or
by any other means – an in-depth discussion is out of scope in this context.
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Fig. 2. Required Resource Allocations for Operation Call

single resource are rare, and are simply treated as the most elementary case of
a co-allocation.

The information about which resources need to be allocated for a particular
operation invocation is made available by the service provider. Staying with the
example shown in Figure 2, a simplified form of these co-allocation constraints
could look as follows:

– CPU: This invocation requires 25 billion CPU cycles and may use a maxi-
mum of 50% of the available computing power (for instance because this is
a single-threaded operation deployed on a dual-core machine).

– Hardware: For the duration of the computation, you must reserve one mass
spectrometer.

– Storage: For the duration of the invocation, you must reserve an amount
of storage equal to twice the sum of the expected input and output sizes.

Finally, in addition to this information, every provider also makes available in-
formation about the current usage of each resource it provides (i.e., the amount
of committed allocations already reserved by other clients; an example is shown
in Figure 3), and the cost function for the respective resource. In the spirit of a
SOA, all of this information is made available using standardized formats and
usual mechanisms, e.g., embedded in, or referenced from, the service’s WSDL or
other public metadata.

These items also illustrate the relation between resource requirements and the
actual duration of the resulting allocation: The duration is actually determined
dynamically by the allocation request itself, and the available resources. While
the provider specifies a maximum of 50% for the CPU allocation, clients may
want to acquire less (say, a maximum of 20%, but a guaranteed minimum of 10%
at all times), thus making the call take longer, but become cheaper. For more
in-depth information about the calculation, provision, and usage of these data,
please refer to [11].
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Fig. 3. Example of Resource Usage Representation

2.2 Distributed Workflow Engine

While the discussion so far has mostly presented provider-side aspects, it has also
touched one system-wide issue: the flow of data between the operation provider
and the invoking workflow engine. Essentially, bandwidth capacity within the
system is modeled as “just another resource” – so clearly, the network locations
of the provider and the engine also influence the execution, especially when very
large amounts of data are to be transmitted.

As opposed to traditional centralized workflow engines, DWARFS is meant to
be a distributed workflow orchestration engine, which means that there are actu-
ally several co-operating workflow engines that can orchestrate a single workflow,
and “move along” the network as the process execution evolves. Besides avoiding
possible single hot-spots, this helps in leveraging operation locality – e.g., in the
simplest case, choosing an execution engine that is close (in terms of network)
to two consecutive operations in the workflow for invoking them will usually
yield faster throughput. Finally, another advantage of executing long-running,
resource-intensive Scientific Workflows by a set of distributed workflow engines is
the possibility to seamlessly parallelize the orchestration of concurrent workflow
instances across several engines.

3 The DWARFS Approach to Advance Reservation

As we have discussed, any workflow execution within DWARFS is subject to
some user-defined QoS constraints. In order to meet these constraints, the re-
sources that will be required at runtime need to be reserved in advance at the
respective providers. In simple words, the question is thus: which combination
of reservations fulfills the user’s requirements best?

There are a multitude of variables that influence how suitable a particular
combination is:
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– Chosen providers for operations: There are possibly many providers
offering the operations required for every single activity within the workflow,
differing in the resulting cost, and execution time.

– Operation providers’ resource availability: Every operation invoca-
tion needs to be able to reserve the required resources, as specified by the
provider. However, because every provider keeps track of already allocated
resources, not all theoretically possible reservation requests are actually fea-
sible (or are only feasible at a later time, thus delaying the execution).

– Resource allocation requests: While providers state which resources are
required and give bounds on their usage, this information may allow for
flexibility. As shown in the previous section, some allocation requests may
be modified to weigh execution time against cost.

– Workflow Engine instance for activity: Since we are dealing with a dis-
tributed execution engine, every workflow activity may be handled by any
available workflow engine in the system. This choice again affects the over-
all planning, as for example network throughput (and availability) between
different engines and operation providers differ.

– Timing: Because of the abovementioned aspects – especially those on the
availability of resources – even small changes in the planned timing may
substantially influence the overall outcome. As an example, starting the
workflow execution a few seconds later may be able to use resources at a
provider that was previously fully loaded, and thus result in a faster overall
execution time.

Given the above discussion, it becomes clear that there is an extremely vast
space of potential solutions to explore. For instance, the comparatively small
experimental setup we used (see Section 5) has over 180 billion combinations
of merely choosing a workflow engine and a provider for all activities – not yet
counting the additional, essentially infinite, factor of possible resource allocation
variations and timing offsets.

On the other hand, the inherent unpredictability of the system (caused by
pre-existing provider-side resource allocations) makes it impossible to use tradi-
tional (precise) optimization techniques such as linear or non-linear optimization.
Rather, this class of problem suggests using a metaheuristic approach.

We have investigated a number of possible metaheuristic approaches; in the
end, we have decided to use Genetic Algorithms (GA), mainly because of three
factors [4,1]: i) in general, they avoid getting trapped in local optima as good
as, or better than, other approaches; ii) a GA usually converges relatively fast;
iii) GAs are a relatively simple and easy-to-understand, yet powerful concept.

4 The DWARFS Planner Implementation: Optimizing
Allocations Using a Genetic Algorithm

Genetic algorithms use an optimization approach that mimics natural selec-
tion as it happens in the real world: Each possible solution to the problem to
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be solved is represented as a genotype (or individual), represented by a single
chromosome. The chromosome consists of a number of genes which can have
different values (allele). Finally, a population consists of a number of individuals
with different gene expressions. A fitness function is used to assign each indi-
vidual within the population a value which determines its suitability in reaching
the optimization goal.

The actual optimization then takes place by evolving the population into a
new generation of individuals. For finding new problem solutions, two approaches
are generally employed: mutation (i.e., randomly changing the value of a random
gene), and crossover (mating of two individuals by recombining their genes). As
these operations increase the value of genotypes, the fitness function is used to
select the best individuals – considering both the originally existing individuals,
and the newly created ones – and carry them over to the next generation (survival
of the fittest).

4.1 Chromosome Layout

In trying to use a GA for our goal, the first question to be answered is: how can
one represent a specific (possible) workflow instance, along with the required
resource reservations, as a combination of genes that can be mutated and that
form a chromosome? Because of the structure of a workflow definition, using a
simple array of genes seemed too limiting. Rather, we use a feature of the JGAP
framework [14] called SuperGene, which allows to build tree-like structures of
genes. The actual allele values are then only stored in the leaf nodes (real genes
in the GA sense) of the tree, but all internal tree nodes can be considered genes
as well and as such mutated (delegating the actual mutation to child nodes).

Figure 4 shows an example of such a chromosome, representing a trivial work-
flow that consists of a single activity. Note that the representation of a workflow
as a chromosome is directly derived from the workflow definition itself – there is
no “one size fits all” chromosome representation suitable for all workflows. For
instance, the sample process introduced in Section 1 results in a chromosome
containing a total of 126 genes.

In the following, we will shortly walk through the example and explain the
chromosome layout. For the genes that actually mutate (the leaf nodes of the
tree), we provide a description of the values the allele can take. Note that many
of the issues that have been mentioned in Section 3 have a direct correspondence
with one of the presented genes.

– WorkflowActivityGene: This is the root gene of an entire workflow and
essentially acts as a container for the other genes. It is also planned to be
usable as a nested gene in order to represent sub-workflows (similar to the
InvokeActivityGene), however this is left for future work.

– StartActivityGene and EndActivityGene: These genes represent ex-
plicit entry and exit points of the process. For example, all workflow activi-
ties that do not have at least one predecessor are represented by genes that
will depend on the StartActivityGene, and the EndActivityGene depends
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Fig. 4. Chromosome Layout for a trivial Process

on all activities not having successors. In addition, these genes make sure
that the workflow start and end are actually scheduled at the same workflow
engine, so that the SOA semantics of “a workflow invocation is perceived as
just another web service” can be maintained.

– WFEngineGene: This gene represents the workflow engine executing the
activity denoted by its parent gene. The possible allele values are in principle
all workflow engines known to exist in the infrastructure.

– StartActivityNestedTransferGene and EndActivityNestedTransfer-
Gene: these genes represent the transfer of the input/output data from/to
the end user, and the resources that are required for these transfers.

– DataTransferGene: These genes are inserted whenever data produced by
one activity is required as input by another activity. In other words, they rep-
resent the data edges in the workflow graph2. Note that the actual resources
that are affected depend on the source and target of the data transfer – i.e.,
if the source and target are actually the same workflow engine, this activity
results in zero overhead, whereas physical network transmissions will require
real allocations and influence the timing.

– InvokeActivityGene: This is a gene that models a remote operation
invocation.

– OperationProviderGene: This gene represents the chosen provider for
the operation represented by its parent gene. Possible allele values are all
providers known to offer the operation.

2 For mere control flow edges, a (simpler) ControlTransferGene implementation
exists (not used in the example).
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– InvokeActivityInvocationGene: This gene represents the actual invoca-
tion (and required allocations). It has dependencies on its parent and sibling
genes for determining the allocations.

– CoAllocationGene: All genes that are shown in white dotted boxes are ac-
tually subclasses of this gene. The CoAllocationGene itself is responsible for
finding the required allocations for the resources indicated by its subclasses.

– CoAllocationStartGene: This gene simply consists of an allele containing
a number which influences the start timestamp at or after which possible
allocations are to be found.

– CoAllocationValuesGene: This gene contains an allele that represents the
variable part of the coallocation to be found. It is actually an array of values
(so strictly speaking, contains more than one mutable part). For example,
it may contain the minimum and maximum values to request for resources
that have to be co-allocated.

4.2 Exploitation of the Information Represented in the
Chromosome

Every gene within the chromosome can be mutated independently, and every
possible allele combination results in an – in principle – valid schedule (even if it
may still be considered unsuitable with regard to the envisaged QoS constraints,
e.g., because it takes longer than a user-specified deadline).

However, the alleles only denote the most basic information that is required to
deduce the characteristics of the schedule that the individual represents. In fact,
the interpretation of the genotype (answering questions such as: “when does it
terminate, how much does it cost, which resources do I need to reserve?”) is
rather complex.

Figure 5 presents a close-up look into the inner structure of the InvokeAc-
tivityGene, and its relation with its predecessor and successor genes. The gray
boxes with bold text represent the actual alleles as introduced previously, while

Fig. 5. Chromosome Interpretation and Interdependencies
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white boxes stand for computed values. The two dark gray boxes at the bottom
can be considered static: they are given as input parameters for the optimization
run. The arrows depict dependencies.

It is relatively straightforward to see that those dependencies are reflecting
the structure, as well as integrity constraints, of the workflow. For example, the
earliest possible start for an activity is the maximum of the timestamps when all
of its predecessor activities have finished. All other genes have a similar structure,
which in fact yields a directed acyclic graph of dependencies, when looking at
the chromosome as a whole. This graph is spanning all of the alleles within the
genotype: in order to determine e.g., the end timestamp of the EndActivityGene,
all of the alleles of the entire workflow have to be inspected, and essentially all
computations within the graph need to be performed. The computationally most
expensive operation is to determine feasible co-allocations.

In order to reduce the computational overhead, we are caching already cal-
culated results. When an allele is mutated, only the depending calculations are
notified and re-performed, stopping whenever no further changes occur. This
may still mean a considerable amount of re-calculations if an allele early in the
workflow is mutated.

4.3 Fitness Functions

A fitness function assigns each chromosome a fitness value representing its suit-
ability for solving the envisaged optimization criteria, and allows the algorithm
to evolve towards better solutions.

We have implemented two straightforward fitness functions that represent the
most sensible QoS requirements: A CostFitnessFunction which considers the to-
tal cost of all allocations generated by an individual, and a DurationFitnessFunc-
tion which considers the total runtime. Both functions have “smaller is better”
semantics. While the raw values of cost or duration are easily understandable,
they are not ideal as fitness measures. We rather perform the same multi-step
transformation for both cost and duration, which results in normalized values.
The fitnesses are calculated for the entire population at once, thus resulting in
relative fitness values (i.e., how does the individual perform within this gener-
ation). The resulting values are such that each individual i of a population P

is assigned a fitness value fi, where fi ∈ [0, 1], and
∑

i∈P

fi = 1. Larger values

indicate a better fitness.
Even though this transformation results in the fitness values losing the clearly

defined semantics the absolute values provide, they still remain correctly ordered
and maintain the fitness proportions. However, this distribution offers two im-
portant advantages: i) the values are directly suitable for realistic crossover can-
didate selection, and ii) the values are combinable. While the first item is left for
future work, the second can readily be used to formulate combining fitness func-
tions such as “the cost is 10 times as important as the duration”, thus allowing
for essentially arbitrary combinations (and weighing) of otherwise incomparable
QoS domains. We are also using the possibility of combining fitness functions for
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defining constraints like “Optimize for cost, but be ready by a certain deadline”.
In the latter example, as long as the deadline is not met by any individual (i.e.,
all would have a fitness of 0), the original weight factors of 1 and 0 are reversed,
thus resulting in an (initial) optimization for deadline only until at least one
individual meets the deadline constraints.

5 Evaluation

For evaluating the planner, we have used the workflow presented in Figure 1. For
simplicity, the parameters (and thus the characteristics of the data and the oper-
ation runtimes) remain fixed for every workflow invocation, unlike the dynamic
behaviour discussed in [11]. The workflow is scheduled 50 times on an initially
empty infrastructure (i.e., no ARs exist before the first planning). The intervals
between the planning runs are randomly chosen from a normal distribution be-
tween 0 (directly after the last planning run) and 3 hours later; additionally,
the planned earliest start of the execution is uniformly distributed between 0
(directly after planning) and 5 hours after planning. The client that starts the
invocation is randomly selected for each run. The QoS criteria that were used as
optimization goal were also randomly chosen according to the following scheme
(actual absolute numbers for the test run are in parentheses):

1. 30 % duration only (10)

2. 10 % cost only (8)

3. 20 % duration, but respecting a given budget (9)

4. 20 % cost, but respecting a given deadline (14)

5. 10 % weighing cost 80% over duration 20% (5)

6. 10 % weighing duration 20% over cost 80% (4)

5.1 Experimental Setup

The infrastructure that we simulated for all evaluations consists of 9 hosts that
act as service providers, 3 available workflow engines, and 3 client hosts (from
which the workflow instances are to be started). This setup is small enough to
eventually saturate some hosts’ resources, but large enough to induce a search
space which is too large for näıve optimizations such as exhaustive search. All
hosts in the system have a network capacity of 100 MB/s both for incoming and
outgoing bandwidth, however the hosts are located in three separate networks
which differ in available bandwidth between them. The networks and machines
are shown in Figure 6.

The hosts acting as operation providers have been set up as shown in Table 1.
This setup and deployment has been randomly auto-generated, so as to avoid
any possible form of “human bias”. We have knowingly refrained from using
any kind of exact numbering (GHz, FLOPs or the like) for the CPU classes,
but rather classified them as slow, medium, and fast; however, there is a linear
relationship between these classes: medium is twice as fast as slow, and fast is
three times faster. On the other hand, if the optimization goal is cost only (and
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Fig. 6. Experimental Setup: Networks and Hosts

Table 1. Operation Provider and Host Specifications

Host A1 A2 A3 B1 B2 B3 B4 B5 B6

CPU class medium fast fast medium medium slow medium slow fast
Storage 200GB 100GB 300GB 100GB 400GB 400GB 400GB 400GB 200GB

Op. 1 100% 100% 100% 100%
Op. 2 25% 25% 50% 100%
Op. 3 25% 25% 25%
Op. 4 25% 100% 50% 25%
Op. 5 25% 50%
Op. 6 100% 50% 100%
Op. 7 50% 100% 50% 50% 50%
Op. 8 50% 50% 25%
Op. 9 25% 50% 50% 100% 100%
Op. 10 25% 25% 50%
Op. 11 25% 25% 25% 50%

only CPU is considered), it could be beneficial to use a slower host, as the “unit
cost” for CPU are 0.25, 0.5, and 1.0 for slow, medium, and fast, respectively3.

For a concrete example of how to interpret the table, consider operation 8
(ARPS to WRF Converter) of the sample workflow, which states 1200 seconds
as its runtime. This number is to be interpreted as “If running on a fast host
and at 100% of the CPU, it would take 1200 seconds”. From the table, we can
deduce that the fastest actually possible invocations for operation 8 are i) 3600
seconds if run on host A1 at 50%4, ii) 2400 seconds if run on host A3 at 50%,
or iii) 14400 seconds if run on host B5 at 25%.

All operations require reservations for storage exactly equal to the sum of the
input and output sizes; all providers have the same cost function for storage,
and all hosts have the same cost function for bandwidth. Please note that we

3 The cost advantage may be outweighed by having to reserve other resources for the
correspondingly longer time, though.

4 3600 = 1200 * 1.5 (downgrade from fast to medium) * 2 (downgrade from 100% to
50%).
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Fig. 7. Quality of the Evolution of the Planning using known Optimum

Table 2. Qualitative Analysis of 100 Scheduling Runs with known Optimum

criteria average standard dev. min. max. 90th perc. 95th perc.

duration 13116.88 228.26 12758 13865 13415 13606

% of optimum 104.1 1.8 101.3 110.1 106.5 108.0

effectiveness (%) 96.1 1.6 90.9 98.7 93.9 92.3

Minimum generation to reach effectiveness of:

75% 159.77 87.71 28 498 263 321

90% 538.62 302.20 87 1892 942 1080

95%a 1073.38 392.74 400 1985 1643 1867
a Not all runs reached 95% effectiveness; the statistics are for the 79 runs that did.

currently apply a virtual unit for the costs. In future work, we plan to consider
the exact costs incurring at the providers’ sites by exploiting an economic model
for ARs.

5.2 Evaluation: Result Quality of ARs for a Single Run

Because of the reasons outlined in Section 3, it is generally not possible to
analytically calculate how close the found solution is to the actual absolute
optimum. However, we have manually calculated the absolute optimum for a
feasible case, namely an optimization for duration only on an empty system,
with the client being fixed to Client-C. The absolute achievable optimum in this
case is 12597 seconds (approximately 3.5 hours). Figure 7 graphically shows how
the algorithm evolved in 5 test runs, while Table 2 presents a more detailed
analysis of 100 runs.

Figure 8 shows the CPU reservations that one of those runs has made at
different providers. Note that at the beginning of the process, there are indeed
overlapping boxes, representing parallel execution of activities on multiple hosts.
The gaps between the shown reservations correspond to data transfers (we have



Optimizing Resource Allocation for SWF 447

Fig. 8. Combined Usages of one single Process

not depicted bandwidth reservations, as those would clutter the figure). Finally,
it is worth mentioning that the workflow is scheduled to be run by two different
workflow engines: Activities 1 through 8 are executed by WF-A, then control
(and data) is handed over to WF-B for executing activities 9 through 11. This is
one example of how multiple engines may leverage network locality to the target
providers.

5.3 Evaluation of Resource Allocations after 50 Runs

Of the 50 planning runs, two did not achieve the required QoS criteria; both were
optimizations for duration, with a minimal possible budget that was set too low.
All other runs were successfully finished and made the resulting reservations in the
system.

Figure 9 shows the evolution of cost and duration for one sample workflow
scheduling. In this case, the goal was to optimize for cost, while keeping the
duration of the process under a given deadline (120,000 seconds, which is roughly
10 times higher than the minimum that can be achieved when scheduling a single
run on an empty system). The convergence rate of the criteria to be optimized is
similar to the ones shown in Figure 7. Since cost is the primary optimization goal
(which is achieved by using fewer resources and thus “traded” for runtime), and
because resources are already partly allocated by previous runs, the duration is
significantly higher than in the case depicted in Figure 7. In fact, the duration
generally stays close to the deadline, as this allows to achieve the best cost.

As each successfully scheduled workflow reserves resources, the initially un-
allocated infrastructure is gradually getting filled. Figures 10 shows how the
reservations of CPU at hosts B4 and B3 are evolving as new workflows are sched-
uled. The graphs are simple three-dimensional extrusions of the resource repre-
sentation shown in Figure 3, where the added dimension (towards the “back” of
the graph) is the number of already scheduled workflows.
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Fig. 9. Sample Process Optimization: Evolution of Cost and Duration

Fig. 10. CPU Reservations of Hosts B4 and B3 during Evaluation Run

We have chosen to present these two hosts because they exhibit an interesting
case: B4 is much more heavily loaded than B3. The explanation lies in the setup
of the infrastructure: B4 provides the fastest available alternative for the (long-
running) operations 9 and 10, whereas B3 is slow. B3 is thus being used mostly
by processes which prefer a cheap execution – which in turn means that even the
slow CPU is not used up to its capacity –, or as an emergency alternative when
all faster alternatives are booked out for so long that the slow host becomes the
fastest available one.

5.4 Performance Evaluation

The experiment was run on a normal modern laptop. Each optimization run
evolved a population of 32 individuals over 2000 generations. All runs took about
35 ms to evolve one generation, resulting in a total runtime of around 70 seconds
per optimization.

Since the biggest share of the complexity of the calculations is in finding possi-
ble co-allocations, we also decided to evaluate a worst-case scenario, in which all
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clients (all 50 runs) would want to start the workflow at the same time, optimiz-
ing for duration only. This naturally results in the system usage rapidly evolving
towards a state where almost all resources are fully loaded almost all of the time.
This in turn means that finding “free spots” for allocations should take longer
and longer with every scheduled workflow. Our measurements have confirmed
this expectation: the worst-case behaviour shows a relatively linear increase in
the time required for planning that starts at the 6th schedule attempt – i.e.,
once the infrastructure is “booked out” by the previously scheduled processes.
The 50th run took around 11 minutes, i.e., 10 times longer than the average.

The AR approach presented in this paper explicitly addresses complex, long-
running Scientific Workflows. For clients of these workflows, planning and ad-
vance reservation is a significant qualitative benefit that leads to predictable
executions. In particular, due to the long execution time of a single workflow in-
stance, the planning phase itself is not considered time-critical, and an overhead
of several seconds up to a few minutes seem absolutely acceptable – especially
since in the worst-case scenario with longest planning time due to already booked
resources, possible allocations – and thus possible execution times – will be de-
layed anyhow (e.g., since a workflow cannot be started immediately due to lack
of resources).

6 Related Work

Scientific Workflows have received considerable attention in the last years; this
has among others resulted in complete production-ready systems like Kepler [13],
Taverna [15], JOpera [16], Trident [19], VIEW [12] or VisTrails [7]. While they
provide sophisticated support for the execution of Scientific Workflows or for
analyzing the provenance of workflow results, none of them address the pre-
dictability of the execution.

To provide such predictability, several proposals have been made. For in-
stance, [3] shows how QoS criteria for a workflow can be computed based on
attributes of the contained services; in contrast to DWARFS, it does not at-
tempt to actually enforce those criteria. In fact, most of the research to give
QoS guarantees comes from the related field of Grid computing: [6] and [20] pro-
pose using ARs for pre-allocating resources to Grid jobs. The GridCC project
presents an approach that combines workflow execution with Advance Reserva-
tions [9]; our work differs in one important aspect: whereas in Grid environments,
the user is supposed to know the resources that are required, we argue that in
a truely service-oriented architecture, this is dynamic information that differs
between – and must be obtained from – the service providers.

The actual optimization problem we presented is closely related to classical
scheduling problems. Many publications have demonstrated that GAs are in-
deed an effective approach to solving scheduling problems at various levels of
complexity, e.g., for scheduling jobs for multiprocessor systems [10] or in the
Grid [8]. The work presented in [2], similarly to our proposal, uses GAs to find
optimal workflow schedules according to QoS criteria; however, they do not ex-
plicitly consider the involvement of (limited) resources. Conversely, [18] presents
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how GAs can be used to schedule scientific workflows in an ASKALON Grid
environment. Resource availability is taken into account by migrating tasks at
runtime if resource shortage occurs, whereas DWARFS explicitly addresses the
limitation of resources at planning time by using Advance Reservations, in an
attempt to limit such rescheduling operations.

7 Conclusion and Future Work

In this paper, we have presented the DWARFS approach that employs Advance
Resource Reservations to enable the predictable execution of Scientific Workflows
with user-definable QoS criteria. Based on the providers’ specifications of the
resources needed for executing the operations they offer, DWARFS supports the
definition and usage of reservations. To that end, we have devised a Genetic
Algorithm that can be used to find near-optimal combinations of the required
resource allocations to meet the requested QoS, and provided an evaluation of
its qualitative and quantitative performance.

Our current and future work includes some further improvement of the GA
implementation, with the two main topics being the addition of a crossover
operator (which may increase the convergence rate), and an exploration of pos-
sible performance improvements in situations where the infrastructure is heavily
loaded. While this optimization phase results in a plan of resource reservations
to be made, the actual integration of these reservations with the SOA (i.e., the
providers), using the WS-Agreement protocol, lacks an implementation and is
part of our future work, as is the integration with the actual execution and
enforcement of the resource reservations. We also plan to include more sophisti-
cated strategies for shipping data within the workflow, and partial re-planning
and re-negotiation of reservations during the execution of a workflow. The latter
is of high practical relevance when, for instance, a provider fails to meet the QoS
level that it committed to.
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Abstract. Fault-tolerance and failure recovery in scientific workflows is still a 
relatively young topic. The work done in the domain so far mostly applies clas-
sic fault-tolerance mechanisms, such as "alternative versions" and "checkpoint-
ing", to scientific workflows. Often scientific workflow systems simply rely on 
the fault-tolerance capabilities provided by their third party subcomponents 
such as schedulers, Grid resources, or the underlying operating systems.  When 
failures occur at the underlying layers, a workflow system typically sees them 
only as failed steps in the process without additional detail and the ability of the 
system to recover from those failures may be limited. In this paper, we present 
an architecture that tries to address this for Kepler-based scientific workflows 
by providing more information about failures and faults we have observed, and 
through a supporting implementation of more comprehensive failure coverage 
and recovery options. We discuss our framework in the context of the failures 
observed in two production-level Kepler-based workflows, specifically XGC 
and S3D. The framework is divided into three major components: (i) a general 
contingency Kepler actor that provides a recovery block functionality at the 
workflow level, (ii) an external monitoring module that tracks the underlying 
workflow components, and monitors the overall health of the workflow execu-
tion, and (iii) a checkpointing mechanism that provides smart resume capabili-
ties for cases in which an unrecoverable error occurs. This framework takes  
advantage of the provenance data collected by the Kepler-based workflows to 
detect failures and help in fault-tolerance decision making.  

Keywords: Scientific Workflows, Fault-tolerance, Distributed Computation, 
Scientific Data Management. 

1   Introduction 

Scientific Workflow Management Systems (S-WfMS) have proven to be a valuable 
tool in designing and managing scientific simulations as well as integrating data 
analysis and visualizations [1]. As workflows become more complex, they also  



 A Fault-Tolerance Architecture for Kepler-Based Distributed Scientific Workflows 453 

 

become more vulnerable to internal and external failures. In tun, this calls for fault-
tolerance during workflow execution [2]. 

Classical fault-tolerance solutions can operate well in the context of modern scien-
tific workflow systems, e.g., Pegasus [3]. However, some limitations arise from the 
nature of the scientific workflow engines, characteristics of workflow models, and the 
failure rates and bounds that an application domain is willing to tolerate. Scientific 
workflows may include long-running, loosely coupled and repetitive computational 
steps that require the tolerance of failures during run-time with minimal impact on the 
overall execution. Fault-tolerance approaches to scientific workflows should provide 
run-time failure avoidance and/or mitigation within workflow models and at different 
levels of an execution infrastructure. They also should be able to adapt to workflow 
evolution and to changes in its operational environments.  

In this paper, we discuss fault-tolerance (FT) challenges observed for some of the 
high-end scientific workflows studied by the Scientific Process Automation group 
(SPA) of the Department of Energy (DOE) Scientific Data Management Center 
(SDM) [4]. The workflows, and FT framework we are discussing, are implemented 
using the Kepler workflow management system [5]. The ultimate goal of the FT 
framework is to provide an appropriate end-to-end support for detecting and recover-
ing from failures during execution of scientific workflows.   

We organized the remainder of the paper as follows. In Section 2, we discuss two 
typical simulation workflows and analyze their vulnerabilities. In Section 3, we show 
a classification of failures arising in the context of these two use-cases. Section 4 
presents our FT framework that addresses the issues we have identified; we also dis-
cuss the advantages and limitations of our solutions. In Section 5, we discuss some of 
the related work, and finally Section 6 concludes the paper and discusses future work. 

2   Use Cases: XGC and S3D Workflows 

XGC [6] and S3D [7] are numerical simulation codes that scientists at the Oak Ridge 
National Laboratory and Sandia National Laboratory use to study fusion plasma ef-
fects and combustion phenomena, respectively. Kepler-based workflows, e.g., [8], 
have been developed for both automating the processing steps involved in deploying 
these codes on supercomputers and analyzing the outcomes of the runs.    

Both workflows are part of a family of workflows involving similar steps known as 
deployment and monitoring workflows. After computational codes have been 
launched on a supercomputer, these workflows monitor and manage outputs from 
long-running computations. Tasks include movement of data files to an analysis com-
puter, archiving the data, and generation of visualizations based on the progress of the 
computations. Due to their similarity, these workflows also exhibit similar categories 
of failures. Below, we provide scenarios that highlight possible failures within these 
workflows.  

In a Kepler workflow a computational step is called an actor. Actors are intercon-
nected by communication channels through which the data flow in the form of tokens. 
Execution of the whole workflow is controlled by one of a number of special schedul-
ers called Directors. In addition, our environment includes a provenance framework 
[9], and a web-based GUI called dashboard [10], both developed as part of the DOE’s 
SDM initiative. 
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3   Failure Classification 

In order to understand the problem better, we have developed a classification of run-
time failures that have been observed for the previously described workflows.  

Our analysis of workflow failures shows the range of issues that fault-tolerance 
mechanisms need to handle in our case. Based on a log analysis of more than 1000 
production runs, the failures and error-states encountered are summarized in Table 1. 
Note that many failures, in a sense, are transparent to the workflow, and thus do not 
interrupt normal workflow execution; unfortunately, in that case, even if the workflow 
finished successfully the underlying simulation results would be invalid. 

The problems listed in Table 1 can be classified based on which layer of the execu-
tion environment in which they originate. We have three execution layers: the Work-
flow Layer provides control, directs execution, and tracks the progression of the  
simulation; the Middleware Layer provides all services required for executing the 
simulation; and the Hardware/OS Layer is where the simulation codes run, data are 
stored, etc. A failure or an error-state occurring at one layer can propagate causing 
additional issues. For simplicity, we only list descriptions of what we consider was 
the root-cause for different failure groups shown in Table 1. 

Run-time failures can be quite expensive. For XGC [6] the workflow runtime can 
vary between two and six hours depending on the simulation, with about 2/3 of the time 
being spent on supercomputers. We found that on average XGC workflows fail about 
8% of the time. Wasting up to 5% of allocated supercomputing recourses is probably 
 

Table 1. Root-cause analysis. Uncaught exceptions occur mostly during the early stages of the 
workflow; and deadlocks are usually caused by underlying faults. 

Description Failure Frequency 
Uncaught Exception 3% 

Deadlock 10% 

Missing Modules/Libraries 3% 

Data Movement Failure 10% 

Incorrect Input 5% 

Incorrect Output 10% 

Authentication Failed 10% 

Job Submission Failed 5% 

Service not Reachable / Responding 10% 

Machine Crash / Down 3% 

Network Down 3% 

Out of Disk Space 3% 

CPU time limit exceeded 10% 

File Not found 10% 

Other (Out of Memory, Job Stuck…) ~5% 

 100.00% 
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Fig. 1. Failure percentages by “Layer” 

not good. When one considers more complex situations, such as coupled workflows [8] 
where one workflow controls both the simulation and the analysis, and the runtime can 
be as long as two days, workflow failures becomes even more of an issue.  

Figure 1 provides a layer-oriented analysis of the data in Table 1. We see that nearly 
70% of the originating issues occur either at the Hardware/OS layer or the Middleware 
layer. These error-states/failures can be difficult to detect. Also, in our experience, 
most of the time they do not propagate to the workflow layer in time, or with sufficient 
information attached, for the workflow to actively address the impact and resume exe-
cution. Therefore, workflow-level fault-tolerance mechanisms need to be supple-
mented with methods that actively monitor lower layers and communicates adequate 
information to the workflow-layer in time for a recovery action to take place. 

4   Fault-Tolerance Framework 

As already mentioned, the environment in which SDM workflows execute can be 
divided into three layers: The Workflow layer, the Middleware layer, and the 
OS/Hardware layer. The Workflow layer is the driver behind the wheel providing 
control, directing execution, and progress tracking. The framework we are proposing 
has three complementary mechanisms: a) a forward recovery mechanism that offers 
retries and alternative versions at the workflow level, b) a checkpointing mechanism, 
also at the workflow layer, that resumes the execution in case of a failure at the last 
saved good state, and c) an error-state and failure handling mechanisms to address 
issues that occur outside the scope of the Workflow layer. 

4.1   Forward Recovery 

Forward recovery mechanisms attempt to compensate for failures and keep the work-
flow execution going without a major externally visible interruption such as re-
execution of the whole workflow. To confine failures, a system must automatically 
recognize error-states, for example by checking execution results for correctness. 
There are two main approaches to detecting error-states caused during execution: a) 
acceptance testing of the results via executable assertions [11], and b) use of alternate 
version(s) [11, 12].  

Results they deliver then need to be compared to determine which one is correct, 
and then either the correct result is passed on to the rest of the workflow, or a “grace-
ful” failure exit needs to be taken. The best-documented techniques and most  
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commonly used for tolerating faults in software-based systems are the Recovery 
Block (RB) approach [12] and N-version programming (NVP) [13] In either case, 
there needs to be a decision mechanism that deals with the situation where it may not 
be possible to recover from a failure. 

To implement our strategy, we developed a Contingency actor. Its early predeces-
sor – a fault-tolerant web-services actor is discussed in [2] along with performance 
gains that can be achieved. The Contingency actor executes in the Workflow layer 
and provides an RB framework. Several sub-workflows may be associated with this 
actor: one sub-workflow represents the primary set of tasks to execute. When a failure 
occurs, this sub-workflow can be re-executed with the original inputs if we believe 
that the failure is a transient one, or an alternative sub-workflow can be executed 
instead. Furthermore, the actor may pause execution between sub-workflow execu-
tions if some other action needs to be taken. 

 
 

 

Fig. 2. Example Contingency configuration 

Figure 2 shows an example configuration of the Contingency actor. The primary 
task, implemented in a sub-workflow, called “primary-ssh”, is to ssh to a server and 
execute a script. When the Contingency actor receives new input from upstream ac-
tor(s) for the first time, it executes the primary sub-workflow. The user chooses the 
first (primary) sub-workflow to execute: it may either be the same sub-workflow each 
time, or the last successfully executed sub-workflow. In the previous example, “pri-
mary-ssh” should always be tried first since the script runs faster on that server.  
However, if this server is perhaps unreachable for a long period of time, then it may 
be faster to skip retrying the primary server, and (immediately) go to the secondary 
server. In this case, Contingency can be configured such that if “primary-ssh” fails but 
“secondary-ssh” succeeds, subsequent input will execute “secondary-ssh.”  

4.2   Checkpointing 

Another approach for providing fault tolerance is checkpointing. Checkpointing is a 
widely used technique. It consists of storing a snapshot of the current application 
state, and using it for restarting the execution in the case of a failure [14]. There are 
many ways for achieving application checkpointing.  

If a workflow uses checkpointing, tasks that were successfully completed before 
the workflow abnormally stopped may not have to be re-executed.  This results in a 
smaller subset of the original workflow. For example, Pegasus [3] provides this  
capability with Rescue DAGs. However, care must be taken when deciding which 
successfully completed tasks do not need to be repeated. Unlike Rescue DAGs in 
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which each task is stateless, a workflow actor may have accumulated information 
during the course of many invocations before the workflow stopped. 

4.3   Watchdog Process 

A watchdog process is a common tool used with computer hardware. It consists of a 
hardware-timing device that triggers a system reset if the main program, due to some 
fault condition, neglects to regularly service the watchdog (writing a “service pulse” 
to it) [15].  

We apply this concept to Scientific Workflows and extend it. A watchdog process 
monitors different components used by our system and alerts the system (typically the 
workflow), or the end-user, when an issue is detected. We call the proposed solution 
shown in Figure 3 the Error Handling Layer, which acts like a watchdog process.  

 

 

Fig. 3. Error Handling Layer 

The Error Handling Layer is a module that runs separately from the normal execu-
tion environment. Its primary task is to monitor the components and processes on 
which the Workflow Layer depends but cannot monitor. For example, visualization 
applications that reside in the Middleware Layer are tracked to check their availability 
and serviceability.  If a problem is detected, the Error Handling Layer analyzes it 
based on previous data, and sends an appropriate signal and possible course of action 
to the Workflow Layer to handle it. 

The Error Handling Layer is made of several interacting components. It is de-
signed to allow other layers to simply “plug” in without the need to modify or extend 
the Error Handling Layer itself. The following is a brief description of the different 
components and how they interact: 
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• Faults Taxonomy module: This module contains XML descriptions of the 
warnings and errors that occur in the different layers.  

• Provenance Tracker: This module reads information from the provenance da-
tabase [9] relating to previous runs, failures and error-states. This information 
is useful to determine the best way to handle an error. 

• Capture Module: This module listens to the different problem reporting mod-
ules embedded in different layers, and forwards that information to the Analy-
sis Module along with saving it to a database. 

• Analysis Module: This is the kernel of the Error Handling Layer. It processes 
the errors recorded by the Capture Module, and based on the error taxonomy 
and provenance data decides on the best solution to address an issues. Once a 
solution is decided upon, the Analysis Module informs the Workflow Layer of 
the corrective measures that needs to be taken. 

• Reporting Module: This module reports the failures, interrupts, error-states 
and warnings detected to the Workflow Monitoring Dashboard to allow the 
end-user to track the problems that are occurring during a run. 

One possible extension for the architecture presented above is adding control flows 
from the Error Handling Layer to all other layers instead of just the workflow layer. 
This allows us, for example, to restart modules and components in other layers that 
might have become unresponsive.  

5   Related Work 

This section provides an overview of fault-tolerance capabilities of several well 
known S-WfMS. 
 
Pegasus. Pegasus (Planning for Execution in Grids) [3] relies on Condor [16] for task 
scheduling and resource management, and uses DAGMan [16], as the underlying 
execution engine. Pegasus relies heavily on DAGMan for FT support.. It recovers 
from most failures with the help of DAGMan’s Rescue DAG [17].  Workflow level 
redundancy is also used and light-weight checkpoints are supported.  

Taverna. Fault-tolerance support in Taverna [18] is limited to retries and alternative 
versions [19] at both the services level and the workflow level. Several retry types are 
supported such as exponential back-off of retry times.  

Triana. Support for fault tolerance in Triana [20] is generally user driven and interac-
tive in Triana. For example, faults will generally cause workflow execution to halt, 
display a warning or dialog, and allow the user to modify the workflow before con-
tinuing execution. Machine crashes, network errors, missing files and deadlocks are 
recognized, but recovering from or preventing them is not supported.  

Other. There are several other Scientific Workflow Management Systems, such as 
VisTrails [21], Escogitare [22] and Swift [23]. They present similar capabilities to 
other WFMS and offer partial or no fault tolerance support, and each is adapted to a 
particular science niche and depends on different types of infrastructure.  
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6   Conclusion and Future Work 

This paper has presented a Fault-Tolerance framework for dataflow-based scientific 
workflows. We identified a number of failure scenarios that are not handled well, or 
at all, at the workflow level. We developed a hybrid fault-tolerance approach that 
provides fault tolerance for workflow, middleware and hardware layers of an infra-
structure collectively. Although it was implemented for Kepler-based workflows, the 
methodology can be applied to a variety of scientific workflow management systems. 
The key aspect of the framework is its capability to bridge the gap between the differ-
ent layers of a scientific workflow execution infrastructure by propagating sufficient 
information about the failures at different layers, thus allowing the workflow layer to 
either compensate for those failures or gracefully terminate. We plan to work on the 
implementation of new design primitives and patterns for different scenarios related 
to fault-tolerance in order to allow the modular use of the developed strategies by 
workflow designers.  
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Abstract. The Resource Description Framework (RDF) format is being used by 
a large number of scientific applications to store and disseminate their datasets. 
The provenance information, describing the source or lineage of the datasets, is 
playing an increasingly significant role in ensuring data quality, computing trust 
value of the datasets, and ranking query results. Current provenance tracking 
approaches using the RDF reification vocabulary suffer from a number of 
known issues, including lack of formal semantics, use of blank nodes, and 
application-dependent interpretation of reified RDF triples. In this paper, we 
introduce a new approach called Provenance Context Entity (PaCE) that uses 
the notion of provenance context to create provenance-aware RDF triples. We 
also define the formal semantics of PaCE through a simple extension of the 
existing RDF(S) semantics that ensures compatibility of PaCE with existing 
Semantic Web tools and implementations. We have implemented the PaCE 
approach in the Biomedical Knowledge Repository (BKR) project at the US 
National Library of Medicine. The evaluations demonstrate a minimum of 49% 
reduction in total number of provenance-specific RDF triples generated using 
the PaCE approach as compared to RDF reification. In addition, performance 
for complex queries improves by three orders of magnitude and remains 
comparable to the RDF reification approach for simpler provenance queries.    

Keywords: Provenance context entity, Biomedical knowledge repository, 
Context theory, RDF reification, Provenir ontology. 

1   Introduction 

An increasing number of scientific applications are storing and disseminating their 
datasets using the Resource Description Framework (RDF) format [1] [2] [3]. The 
Biomedical Knowledge Repository (BKR) project at the U.S. National Library of 
Medicine is creating a comprehensive repository of integrated biomedical data from a 
variety of sources such as biomedical literature, structured data sources (for example 
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the NCBI Entrez system [4]), and terminological knowledge sources (for example, the 
Unified Medical Language System (UMLS) [5]) [6]. BKR represents the integrated 
information in RDF, for example, the RDF statement “lipoprotein→affects 

→inflammatory_cells”1 was extracted by a text mining tool from a journal article 
(with PubMed identifier PMID: 17209178) and states that lipoprotein (denoted as 
“subject” of the RDF triple) affects (denoted as “property” of the triple) 
inflammatory_cells (denoted as the “object” of the triple). 

In addition to the biomedical data, BKR also records and uses provenance 
metadata describing the history or lineage of the RDF statements. The provenance 
information identifies the source of an extracted RDF triple, temporal information (for 
example, the date of publication of a source article), version information for a 
database, and the confidence value associated with a triple (indicated by a text mining 
tool). The provenance information is essential in the BKR project to ensure the 
quality of data and associate trust value with an RDF triple. It has specific 
applications in the four services offered by the BKR namely, enhanced information 
retrieval (search based on the named relationship linking two entities), multi 
document summarization, question answering, and knowledge discovery.  

The RDF reification vocabulary [7] has been traditionally used by Semantic Web 
applications to track provenance in RDF documents. The RDF reification vocabulary 
consists of the four terms rdf:Statement,2 rdf:subject, rdf:predicate, and 
rdf:object. A variety of problems have been identified in the use of RDF 
reification vocabulary for provenance tracking in Semantic Web applications. 

The RDF specification [8] states that the RDF formal semantics does not extend to 
the reification vocabulary, and the intended interpretation of an RDF document using 
reification is application dependent (i.e., it may vary across applications) [7]. Further, 
the RDF specification states that entailment rules do not hold between an RDF triple 
and its reification [8]. The use of blank nodes, which have no “global meaning” 
outside a particular RDF graph [8], makes it difficult to use reasoning [9] and 
increases the complexity of query patterns since the queries have to explicitly take 
into account an extra entity. In addition to the limited formal semantics, use of  
RDF reification approach leads to a disproportionate increase in the total size of the 
RDF document without corresponding enhancement in information content of the 
RDF document. This adversely affects the scalability of large projects, such as BKR, 
that track provenance of hundreds of millions of RDF triples. A detailed discussion of 
the limitations of RDF reification and related approaches such as RDF named graph is 
given in [10]. 

In this paper, we introduce a new approach for RDF provenance tracking called 
Provenance Context Entity (PaCE). PaCE is part of a broader framework for 
provenance management in scientific applications called PrOM [10].  

1.1   Contributions and Overview 

The contributions of this paper are three-fold: 

                                                           
1 We use the courier new font to represent RDF and OWL statements. 
2 The rdf namespace represents the http://www.w3.org/1999/02/22-rdf-syntax-ns 

Internationalized Resource Identifier (IRI). 
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1. Define the PaCE approach to track provenance in RDF-based Semantic Web 
applications without use of reification vocabulary and blank nodes (Section 2),  

2. Define the formal semantics of PaCE, using model theory, by extending the 
existing RDF and RDFS formal semantics to ensure compatibility with existing 
RDF tools and implementations (Section 2),  

3. Demonstrate the practical feasibility of PaCE through implementation in the 
BKR project (Section 3), and evaluate the advantages of PaCE in terms of storage 
and query performance as compared to the RDF reification approach.  

2   Foundations of Provenance Context Entity 

The intuition for the PaCE approach is that the provenance associated with RDF 
statements provides the necessary contextual information for applications to interpret 
two RDF statements to be equivalent or distinct. Contexts as formal objects have long 
been used in Artificial Intelligence (AI) applications, such as Cyc [11] and also to a 
limited extent in the Semantic Web, to facilitate processing of information that do not 
have a global frame of reference [12]. A detailed discussion of the existing work in 
context theory is given in [10]. 

 

 

Fig. 1. (a) Representation of provenance context for the BKR project, (b) a sensor application, 
and (c) Provenir ontology schema 

2.1   Provenance Context and RDF Generation 

The contextual information in the BKR project consists of the provenance information 
about the source of an RDF statement, that is, the journal identifier or the UMLS 
identifier or the Entrez Gene identifier. In other words, this provenance context is a 

(c)

(a) 

(b) 
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formal object instantiated in the form of set of concepts and relationships that capture 
the necessary contextual provenance information to enable application to correctly 
interpret RDF statements. Similar to the provenance context defined in the BKR 
project (Figure 3(a)), other Semantic Web applications can also define a relevant 
provenance context for interpreting their RDF dataset. For example, an application in 
the sensor domain can define its provenance context to consist of sensor used to 
collect data readings, the geographical location of the sensor, and the timestamp value 
associated with a data reading (Figure 3(b)). To formalize the notion of provenance 
context, we define it in terms of the foundational model of provenance called provenir 
ontology (Figure 3 (c)) [10]. The provenir ontology is a upper-level provenance 
ontology representing a minimum set of provenance concepts common across 
domains and is modeled using the description logic profile of the W3C Web Ontology 
Language (OWL-DL) [13]. 

The provenir ontology consists of three primary concepts of “data”, “agent” and 
“process” linked by ten relationships adapted from the upper-level Relation 
Ontology [14] (Figure 3 (c)). An application can define its provenance context either 
in terms of the provenir ontology or in terms of a domain-specific provenance 
ontology, which extends provenir ontology. The use of the provenir ontology to 
define a provenance context has several advantages including the flexibility to model 
domain-specific provenance at a fine level of granularity, while ensuring consistent 
modeling and the support for RDF and OWL inferencing [8]. 

 

 
 
 

 
The PaCE approach allows an application to decide the level of granularity in 

modeling provenance of an RDF triple. For example, Figure 2 illustrates the three 
possible implementations of the PaCE approach in the BKR project that create 
distinct RDF triples extracted from two separate journal articles (though they share 
the same S, P, and O). The first implementation (Figure 2 (a)) is an exhaustive 
approach and explicitly links the S, P, and O to the source journal article and the 
second implementation (Figure 2 (b)) is a minimalist approach that links only the S of 
a RDF triple to the source article. The second implementation, on the other hand, 
requires the application to make additional assumption while processing the RDF 
triples, that the whole triple is extracted from the same source as the source of S.  

Fig. 2. Implementation of the PaCE mechanism to track provenance of RDF triples extracted 
from two journal articles 
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The third implementation (Figure 2(c)) takes an intermediate approach that creates 
two additional provenance-specific triples but requires the application to assume that 
the source of the O is the same as the S, and the P. The choice to associate explicit 
“derives_from” property with one particular RDF component (S or P or O) in the 
minimalist (Figure 2 (b)) and the intermediate (Figure 2(c)) is arbitrary and has 
minimal impact on the provenance tracking functionality of the application. 

It is important to note that, in contrast with the reification approach, none of the 
three variants of the PaCE approach requires the use of RDF reification vocabulary or 
the use of blank nodes. Further, the reification approach creates a total of six RDF 
triples (Figure 1) for each RDF triple, while the exhaustive implementation of the 
PaCE approach creates a total of four triples for one RDF triple. Overall, the PaCE 
approach is an incremental and simple mechanism that does not define additional 
vocabulary or require changes to existing RDF data stores. We now introduce the 
model theoretic semantics of PaCE inferencing. 

2.2   Model Theoretic Semantics of PaCE Inferencing 

The primary motivating factor for defining the formal semantics of PaCE is to provide 
a way to determine the validity of the inferencing process for Semantic Web 
applications that use the PaCE approach to track provenance. The definition of the 
model-theoretic semantics of PaCE is a straightforward modification of the existing 
RDFS semantics and allows us to infer additional provenance information for triples 
by virtue of having similar source. Let provenance context pc of an RDF triple α (= 
(S, P, O)) be the common object of the predicate provenir:derives_from 
associated with the triple. We define an RDFS-PaCE-interpretation I of a vocabulary 
V to be an RDFS-interpretation of the vocabulary V ∪ VPaCE that satisfies the 
following additional condition (meta-rule): 
• For RDF triples α = (S1,P1,O1) and β = (S2,P2,O2), (provenance-determined) 

predicates p and entities v, if pc(α) = pc(β) then  (S1, p, v) = (S2, p, v) and, (P1, p, 
v) = (P2, p, v) and,  (O1, p, v) = (O2, p, v) 

Provenance-determined predicates and entities are specific to an application domain. 

 

 
Fig. 3. (a) PaCE inferencing, (b) The relative number of provenance-specific triples created 
using PaCE and RDF reification  

 

 (b) 
(a) 



466 S.S. Sahoo et al. 

Furthermore, a graph R1 PaCE-entails a graph R2 if every RDFS-PaCE-
interpretation that is a model of R1 is also a model of R2. To illustrate the PaCE 
inference process, we consider two RDF statements in the BKR project (Figure 3). 
Given that the two RDF statements have equal provenance contexts  
(PubMed identifier: PMID17209178) additional provenance information, such  
as the confidence score (formalized via provenance-related predicate 
has_confidence_value and value confidence_value_2), associated  
with one of the triples can be inferred for the other RDF triple 
(flow_cytometry→measures→interleukin-1_beta) denoted by dotted 
arrows in Figure 3. We note that PaCE-entailment is strictly stronger than RDFS-
entailment in the sense that all inferences which can be drawn using simple, RDF, or 
RDFS-entailment are also PaCE entailments. This is a deliberately conservative step 
on top of the existing Semantic Web recommendations that enables PaCE to be 
compatible with existing OWL and RDF tools and applications, and also allows 
implementing the PaCE-semantics by making reference to RDF reasoners as black 
boxes. In the next section, we describe the implementation of the PaCE approach in 
the context of the BKR project. 

3   Implementation and Evaluation 

A practical challenge for implementing the PaCE approach in the BKR is to formulate 
an appropriate provenance context-based URI (URIp) scheme that also conforms to 
best practices of creating URIs for the Semantic Web, including support for use of 
HTTP protocol [15]. The design principle of URIp is to incorporate a “provenance 
context string” as the identifying reference of an entity and is a variation of the 
“reference by description” approach that uses a set of description to identify an entity 
[15]. The syntax for URIp consists of the <base URI>, the <provenance 
context string>, and the <entity name>. This approach to create URIs for 
RDF entities also enables BKR (and other Semantic Web applications using the PaCE 
approach) to group together entities with the same provenance context. For example,  

• http://mor.nlm.nih.gov/bkr/PUBMED_17209178/lipoprotein 
• http://mor.nlm.nih.gov/bkr/PUBMED_17209178/affects 

• http://mor.nlm.nih.gov/bkr/PUBMED_17209178/ 
inflammatory_cells 

are entities extracted from the same journal article. Using this URI scheme, RDF 
statements were generated for the original triples (extracted from the biomedical 
literature by a text-mining application or found in the UMLS Metathesaurus). 

The base dataset (B) used in the evaluation comprises of 23,433,657 RDF triples 
extracted from two sources: the biomedical literature (PubMed) and the UMLS 
Metathesaurus. The open source Virtuoso RDF store version 06.00.3123 was used for 
the experiments running on a Dell 2950 server (Dual Xeon processor) with 8GB of 
memory. A total of 500,000 9kB buffers were allocated to Virtuoso RDF store. 

3.1   Provenance-Specific RDF Triples 

To evaluate the number of provenance-specific RDF triples generated using the two 
approaches, we augment the base dataset B with provenance information representing 
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the source information of each triple. For the PaCE approach, we create three datasets 
representing the exhaustive (E_PaCE), minimalist (M_PaCE), and intermediate 
(I_PaCE) approaches illustrated in Figure 2 (a), (b) and (c), respectively. For the RDF 
reification dataset (R), we use the standard method (presented in Section 1). Figure 
3(b) shows that the reification approach requires twice as many RDF triples (~152 
million) for the representation of provenance information compared to the E_PaCE 
approach (~89 million). This 49% difference between E_PaCE and R represents a 
significant reduction in storage requirements (~85 million fewer triples) for the BKR 
project. Analogously, the M_PaCE and I_PaCE approaches create 72% and 59% 
fewer provenance-specific triples compared to the reification approach. 

3.2   Performance of Provenance Queries 

We use four representative categories of provenance queries in the BKR project to 
evaluate the query performance on the four datasets (E_PaCE, M_PaCE, I_PaCE and 
Reification). We describe the pattern of the four queries and their significance in the 
BKR project: 

Query Pattern 1: List all the RDF triples extracted from a given journal article (e.g., 
journal article identified by PMID17209178). This query is used to retrieve all the 
triples from a given source. 

Query Pattern 2: List all the journal articles from which a given RDF triple was 
extracted (e.g., lipoprotein→affects→inflammatory_cells). This query 
identifies the source(s) of a given triple. 

Query Pattern 3: Count the number of triples in each source (biomedical literature 
and UMLS Metathesaurus) for the therapeutic use (predicate = treats) of a given drug 
(e.g., Thalidomide). This complex query illustrates the use of the BKR as a 
knowledge base for a query answering application (e.g., which diseases are treated by 
a particular drug?). 

Query Pattern 4: Count the number of journal articles published between two dates 
(e.f., 2000-01-01 and 2000-12-31) for a given triple (e.g., thalidomide → treats 
→ multiple myeloma). This typical information retrieval query leverages the 
provenance information associated with each triple. A more complex version of this 
query is used in Section 3.3 for time series analysis. 

We conducted the query performance evaluation in two phases. In the first phase 
the four queries are evaluated for fixed values, namely, the value underlined in the 
query description above. In the second phase, queries are evaluated using a larger set 
of values. The queries are expressed in SPARQL syntax, the RDF query language 
[16]. The queries are not listed in the paper due to space constraints and are available 
online along with the result set.3 The numbers reported for the “fixed” value queries 
(first phase) are the average of last 5 of a total of 20 runs. The first phase of the 
evaluation starts with a “cold” cache for each query pattern. The results in Figure 4 
demonstrate that query performance for PaCE is generally better than or similar to 
reification. As expected, M_PaCE generally performs better than I_PaCE, and 
I_PaCE better than E_PaCE. However, reification performs better than I_PaCE for 

                                                           
3 Query and result set available at: http://wiki.knoesis.org/index.php/ProvenanceContextEntity. 
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Query 1 and better than both I_PaCE and E_PaCE for Query 3. Query 4 is a complex 
query that uses the SPARQL FILTER to restrict publication dates to a particular range 
(January 1 to December 31, 2000). In this query, the query performance for E_PaCE 
is more than two orders of magnitude better than for R. 

In the second phase of the evaluation, we aim to reflect the real-world requirements 
of the BKR project. Toward this end, each of the four query patterns is executed with 
different values, as if by different users. In practice, we use sets of 100 values for each 
query pattern. The resulting set of 100 queries is run 5 times (immediately following 
the first phase of evaluation for each dataset) and the average of the 100 queries for 
the last run is presented (Figure 5). The results confirm the trend seen in the first 
phase of evaluation, with the added observation that for Query Pattern 3 the 
difference between E_PaCE and R has decreased (R no longer outperforms E_PaCE 
significantly). In contrast, for the complex Query Pattern 4, the query performance 
for E_PaCE has further improved and is more than three orders of magnitude better 
than for R. The second phase of evaluation also confirms that in a real-world scenario 
the query performance of PaCE is comparable to reification for simple provenance 
queries and significantly better for complex provenance queries. We now evaluate the 
query performance for an analytical query in the BKR project. 
         

 

3.3   Application to Time Profiling of Scientific Results 

An important objective of many applications and funding agencies is to understand 
the trend in research focused on a specific topic in biomedicine over a period of time. 
We extend the Query Pattern 4 discussed in the previous section to define a query 

Fig. 4. Query performance for fixed values 

Fig. 5. Query performance for query patterns using a set of 100 values 

Fig. 6. (b) Fig. 6. (a)  
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that collates the number of journal articles published over a period of 10 years for 
mentions of the therapeutic use of the drug Thalidomide over time. Figure 6 (a) shows 
a histogram created directly from the query results. The query performance is similar 
to what was observed for Query Pattern 4, that is, E_PaCE is three orders of 
magnitude faster than R (Figure 6(b)). This example query demonstrates the 
feasibility representing and exploiting provenance information in large triple stores 
serving real-world applications. 

4   Conclusion 

We show that that challenge of provenance tracking in RDF datasets can be 
effectively and efficiently addressed by using the PaCE approach in place of the RDF 
reification vocabulary. The PaCE approach uses the formal objects called provenance 
contexts that are defined in terms of the provenir upper-level provenance ontology to 
create provenance-aware RDF triple. The evaluations demonstrate that using the 
PaCE approach to create provenance-specific RDF triples not only reduces the 
number of triples by at least 49% but also improves the performance of complex 
provenance queries by three orders of magnitude.  
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Abstract. The Taverna workflow management system is an open source
project with a history of widespread adoption within multiple experimen-
tal science communities, and a long-term ambition of effectively support-
ing the evolving need of those communities for complex, data-intensive,
service-based experimental pipelines. This short paper describes how the
recently overhauled technical architecture of Taverna addresses issues of
efficiency, scalability, and extensibility, and presents performance results
based on a collection of synthetic workflows, as well as a concrete case
study involving a production workflow in the area of cancer research.

1 Introduction

Taverna [7] is a workflow language and computational model designed to support
the automation of complex, service-based and data-intensive processes. Although
Taverna has been successfully applied in domains as diverse as bioinformatics,
astronomy, medical research, and music, it is perhaps best known for its appli-
cation to the Life Sciences [4], where it has been used to support experimental
investigation into a variety of research areas, including gene and protein sequence
and structure annotation, proteomics, microarray analysis, text mining, systems
biology, and more. The first version, launched in 2004 [13], has enjoyed broad
adoption over the years1, owing in part to a fairly intuitive model for service
composition, and to a growing number (in the order of tens of thousands) of
available services, mostly community-provided and free to use, and to Taverna’s
ability to invoke ad hoc scripts and Java object methods.

Taverna combines a dataflow model of computation, whereby a workflow con-
sists of a set of processors (representing software components such as Web Ser-
vices) that are connected through data dependencies links, with a functional
model that accounts for collection-oriented processing. This hybrid model is de-
signed to strike a balance between expressivity and simplicity, with the ultimate
goal of empowering users, who may have only a rudimentary understanding of
programming, to assemble complex workflows. While the model and its theoret-
ical underpinnings [16] have remained largely stable over the years, the evolving
1 In 2008 there were over 4000 active users of Taverna, for over 57,000 downloads total.
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requirements of e-science applications have recently prompted a radical re-design
of the architecture, which we will refer to as “Taverna 2” (T2 for short) to dis-
tinguish it from the previous version, T1.x.

This paper presents the salient features of the new architecture2. The new
architecture has two main goals. Firstly, to improve the scalability of workflow
execution, both in terms of data volume and execution times, over its predeces-
sor. Secondly, to provide third-party developers with clear configuration points
for performance tuning, and with extensibility points for adding new high-level
constructs, such as a while-loop, to the dataflow model, in order to facilitate
workflow design in paradigmatic scenarios. More specifically, the following ar-
chitectural requirements have inspired the design of the T2 architecture:

Parallelism. Models of computation that combine dataflow and functional mod-
els are known to facilitate parallel execution [10], making the exploitation of
the parallelism provided implicitly by the workflow specification a realistic goal.
Potential parallelism can be found both amongst processors (inter-processor),
by statically determining data dependencies amongst processors in the dataflow
graph, as well as amongst multiple invocations of the same processors (intra-
processor data parallelism), i.e., on individual elements of an input collection.

Configurability. Each processor may have different operational requirements, for
example regarding its tolerance to transient error conditions in the underlying
service invocation. Thus, it should be possible to fine-tune the behaviour of each
processor independently from that of the others.

Openness. It should be possible for third party contributors to extend the func-
tionality of the execution model in a principled way. For example, interacting
with asynchronous services that require periodic polling to check on result avail-
ability, does not fit the data-driven model well. While in T1.x the model can be
“stretched” to simulate polling processors, T2 accommodates this requirement
by implementing a limited form of while-loop construct by exploiting a generic
extensibility mechanism, called the dispatch stack.

Separation of data and process spaces. For data-centric computing to scale to
arbitrary data volumes, the data space should be managed separately from the
process space, and, whenever possible, data should be passed from one processor
to the next by reference rather than by value.

This paper describes how the design principles listed above have been trans-
lated into a coherent architectural design for T2, and presents performance re-
sults for the current implementation.

Workflow modelling for data-intensive scientific applications is, of course, not
new. One of the recognized challenges of scientific workflow management sys-
tems is to provide abstract modelling constructs that are then automatically
instantiated as an orchestration of concrete tasks that execute on an underlying
2 More details can be found in a complete techreport, available online at
http://bit.ly/9RglCZ



Taverna, Reloaded 473

parallel architecture [2,6]. This is the approach taken for example by the Pegasus
system [3], with the goal of decoupling the logical specification of the workflow
from the pool of resources required to execute it. In this paradigm, resources are
allocated by the scheduler incrementally and dynamically. In a similar fashion,
Chimera [5] provides a dedicated language (VDL) for the partial specification
of logical workflows. A complementary, bottom up approach, is to start with a
job management system, like Condotr, and then provide users with a model for
building complex workflows from a pool of individual jobs [1]. Another exam-
ple of concrete and well-known mechanism used for the specification of complex
dataflows is shell pipes, proposed in [19].

In Sec. 2 we briefly present the dataflow computation model that underpins
parallel and pipelined workflow computation, describe the configurable and ex-
tensible processor execution model, and present the main architectural solutions
for parallelism. Sec. 3 provides performance figures for the current implemen-
tation, and finally in Sec. 4 we present the architecture in action on a concrete
case study from the caGrid project.

2 Workflow Processing Model and Architecture

We now describe some of the architectural solutions used to realize the principles
enunciated in the introduction. The overview architectural diagram is shown
in Fig. 1.

A Taverna workflow, described in detail in [16] is specified by a directed
graph where nodes, called processors, represent software components, typically
Web Services or local scripts. A processor node consumes data that arrives on
its input ports and produces data on its output ports. Each arc in the graph
connects a pair of ports, and denotes a data dependency from the output port
of the source processor to the input port of the sink processor. In this model,
data items are either of a simple type (string, number, etc.), or are lists of items,
nested to arbitrary levels.

Fig. 1. Overview block diagram of Taverna 2 architecture
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Conceptually, a workflow computation proceeds by pushing data through the
directed data links from one processor to all of its successors, starting with
the items that are presented on the workflow inputs. A processor is ready to
execute when all of its inputs ports are populated with a data item. A processor’s
execution consists of the invocation of an associated activity, for example a Web
Service or a local script, and produces new data items on its output ports. These
are then propagated along the outgoing arcs.

A workflow specification is compiled into a multi-threaded object model (im-
plemented in Java), where processors are represented by objects, and data trans-
fers from output to input ports of downstream processor objects are realized
using local method invocations between objects. Data-driven computation is re-
alised by mapping each processor to an object, which independently starts its
own execution in a separate thread, as soon as all of its (connected) input ports
are populated with a data item, and it transfers its output along the arcs upon
completion.

In T2, data elements are only loaded into the execution process space on
demand, when required by some processor’s input port, and are swapped out
again to a separate persistent storage when they are no longer needed. Thus,
while the same data may be transferred back and forth from storage multiple
times, the total amount of main memory required by an execution is bounded.
The max memory footprint is determined by the size of each data item and the
number of concurrent threads that require in-memory data at any given time.
As shown in the use case presented in Sec. 4, the max number of active threads,
a parameter that can be configured independently for each processor, can be
used to control the total amount of memory required.

Such separation of the data from the workflow execution space is achieved by
registering all values that are produced during a computation with a new Data
Manager (DM). The DM’s main function is to index the values by assigning
to them a unique data reference (a URI) and store them into a database, from
where a processor that requires the values as part of its input can retrieve them
using the reference.

2.1 Configurable Processing

The exact sequence of operations that occurs upon invocation of an activity
associated to a processor is configurable, making for a flexible and extensible
workflow execution model. The interceptor design pattern is used to configure
each individual processor. Specifically, a dispatch stack consisting of an extensible
set of layers is associated to each processor. Each layer is responsible for a
particular feature, typically associated with Quality of Service. In the standard
configuration, the stack consists of the following layers, as shown in Fig. 2(a):

Parallelise: this layer ensures that, when iterations over lists are involved, in-
dependent concurrent threads are created to process each list element;
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Fig. 2. Processor dispatch stack

Error Bounce: is responsible for immediately terminating an execution when
any of the inputs are in an error state. This protects the underlying activities
from being invoked on invalid input;

Failover: detects the failure of an activity associated to the processor, and is
responsible for selecting an alternate activity, if available (recall that activities
can be added and removed dynamically);

Retry: provides tolerance to transient errors in the underlying activity, by re-
peatedly attempting the same invocation for a configurable number of times.

Each of these layers exposes a set of configuration parameters to the workflow
designer. The stack is activated by a request message to the processor, consisting
of the data on the input ports. The message is pushed down the stack, where each
layer performs its function and, if needed, forwards a new version of the request
to the next layer. At the bottom of the stack, the Invoke layer performs the actual
invocation of an activity; in the case of a Web Service invocation, for instance,
this layer is a Web Service client that maps the incoming request to a SOAP
message, and manages the interaction with the service. The result is mapped
to a response message, which finds its way back up along the stack, where it is
intercepted by each layer, possibly transformed, and forwarded. Ultimately, the
processor invocation terminates and the response is forwarded to downstream
processors along the data links.

In this architecture, a private instance of the dispatch stack is associated to
each processor, making it configurable independently of the others. Also, the
interceptor pattern naturally allows new layers to be added to the standard
stack shown in Fig. 2(a). Useful additional layers that are already available as
part of the current release include the while-loop layer, shown in Fig. 2(b), as
well a Provenance layer, designed to generate audit events from the processor’s
execution as a basis for collecting workflow provenance [12].

2.2 Parallelism and Pipelining

The majority of Taverna workflows, for the most part in the bioinformatics
domain, are rather more data-intensive than compute-intensive. Typically, these
workflows perform some form of “on-the-fly data integraton” on large collections
of data values retrieved from a variety of databases through their Web service
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interfaces, exposed as Taverna processors. In this setting, each of the available
parallel threads tends to carry a potentially large data item, such as an image,
while involving a relatively small amount of computation. Thus, in general the
workflow engine has to deal with a large number of intra-processor threads, each
typically representing a Web Service invocation, which is likely to dominate
the execution time. The emphasis is therefore on balancing the amount of intra-
and inter-processore parallelism, while avoiding excessive load on the third-party
services.

Inter-processor parallelism, which is available for processors that have no data
dependency amongst them, is achieved by letting those processors begin execu-
tion in a new thread as soon as they receive their input data. The stack execution
model also ensures intra-processor parallelism, by exploiting a model of implicit
iteration on collections. The model is described extensively in [16]. Briefly, when
a list value appears on a port where a simple type is expected, each element of the
list is processed independently from the others3. This is a case of SPMD parallel
processing [8], where the same function is applied concurrently to multiple data
elements, and potentially results in multiple independent pipelines (see also the
“Multiple instances with a priori runtime knowledge” pattern described in [17]),
and is achieved in T2 by having the Parallelise layer allocate one thread to each
element in the input collection, with an appropriate setting for the max number
of threads. Since this layer is at the top of the stack, this has the effect of acti-
vating the processor on multiple concurrent requests (which may succeed or fail
independently of one another). The collection of all the corresponding responses
is then collated into a new output list, which is forwarded to the next processor.
Since the requests may be served at different speeds, the elements of the response
collection may be produced in arbitrary order. The Parallelise layer deals with
this by simply waiting for the last element to arrive, before emitting the entire
output list, with its order preserved. Additionally, however, a chain of processors
which both iterate on their inputs, say P1 and P2, provide an opportunity for
pipelining, as follows. The Parallelise layer of P1 forwards each response element
as soon as it arrives, without waiting for the others and regardless of its position
in the collection. In P2, each such element is again independent of the rest of the
list, so the Parallelise layer of P2 can consume it immediately as part of a new
thread. When extended to a chain of iterating processors, this strategy results
in multiple, parallel pipelines, where both intra- and inter-processor parallelism
is maximized. Clearly, any processor that requires to see the entire input before
starting its processing represents a serialization point in the pipeline.

This form of superscalar and streaming pipelining [14] provides the basis for
efficiently supporting workflow processing over streams of data, i.e., sequences
of discrete input elements of unbounded length that are continuously produced
by a source. Biomart4[15] is an example of a service that supplies its output in
a streamed fashion.

3 The cited paper describes a much more general model that accounts for iterations
on the cross product of multiple list-valued inputs.

4 www.biomart.org
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3 Performance Evaluation

In this section we compare T2’s execution times and memory usage with those
of T1.x, under a variety of experimental conditions. Focusing on intra- and inter-
parallelism, we have programmatically generated a test workflow for performance
analysis. The workflow consists of a linear chain of processors, each of which
is made to iterate over elements of an input list of varying size. This simple
workflow is sufficient to test the effect of both intra-processor parallelism, i.e.,
concurrent processing of the list elements, and pipelining through the chain of
processors, as explained in Sec. 2.2. We have used this workflow to assess the
execution times and memory usage for both T1.x and T2, with varying length
of the input list and sizes of the list elements (strings). All experiments were
conducted using a Taverna workbench running on a Java 6 JVM on a PC with
2GB of RAM and 2.3GhZ dual core processor. The workflows and source code
used for all measurement are publicly available5. All processors invoke the same
echo remote Web service, deployed on a concurrent server on a dual core machine
on the same local network.

The experiments support the intuition that, when the workflow is structured
in a way that makes pipelining available, T2 exploits it effectively, at the cost
of an increase in memory usage, while T1.x must rely solely on intra-processor
parallelism. Furthermore, the T2 Data Manager with a database back-end (as
opposed to an in-memory data model) make the engine scalable over large data
inputs. In the rest of the section we analyse these results in detail.

Fig. 3. Comparison of memory usage and execution times between T1.X and T2 with
varying thread limits

Fig. 3 compares the T1.x memory usage with that of T2 in two Data Manager
configurations, namely (a) using a database (embedded Derby) or (b) in-memory
data (in the latter, intermediate values are kept in memory throughout the entire
execution). For these measurements, the workflow iterates over a list of 1,000
strings, each 10,000 characters in length, using 1 thread for each processor. The
charts illustrate the trade-off between overall parallelism and memory usage. In

5 http://code.google.com/p/ws-menagerie/
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particular, configuration T2(a) provides a “safe” option in that it guarantees
bounded memory usage, at the cost of increased execution time over the faster
T2(b). The shorter execution time of T2 over T1.x is due to pipelining, which is
not available in T1. In this case, although each processor runs a single thread,
each processor in the chain is activated as soon as the previous processor has
produced one element of the output list. Thus, up to 10 concurrent threads exist
in the system, each requiring a string to be loaded into memory. In T1, however,
setting the max number of threads to 1 results in a serial computation through
the entire chain.

Next, varying the max thread setting on each processor when comparing T1.x
vs T2 reveals the impact of inter-processor parallelism, available only in T2, on
overall memory usage and execution times. This is illustrated in Fig. 3, where the
times are measured across different settings of the max number of threads. The
plot for T2 suggests that, for this test workflow, this setting is not as critical as it
is in T1.x. One reason is that, even with a small number of threads available for
intra-processor parallelism, in T2 pipelining provides substantial inter-processor
parallelism, resulting in lower overall execution times. A similar performance in
T1.x requires 16 threads per processor or more.

Finally, Fig. 4 confirms that the T2 Data Manager ensures bounded memory
usage that scales well with the size of the input and intermediate values. Not only
does memory allocation stabilizes as the execution progresses, but, importantly,
this is true across a range of data sizes that vary by an order of magnitude.

4 Case Study: Performance of a caGrid Workflow

Taverna is the workflow model of choice for the caGrid project [18], which pro-
vides a service-based infrastructure consisting of data and computation resources
designed to assist in-silico scientific investigation in cancer research [9]. As a spe-
cific case study, in this section we compare the performance of T2 against T1.x
using a caGrid production workflow6 used to carry out cancer diagnosis based on
microarray analysis [11]. The workflow begins by extracting hybridization data,
obtained from samples that belong to two different lymphoma types, from a mi-
croarray database. The data is then normalized and used to learn a classification
model for lymphoma type prediction, using the Support Vector Machine (SVM)
and K-Nearest Neighbour (KNN) algorithms. The model can then be used to
classify lymphoma types from an unknown microarray dataset.

Our observations confirm the insight provided by the results presented in the
previous section, regarding the time/memory trade-off available in T2. Specifi-
cally, Fig. 5 shows similar execution times (380sec. for T1.x and 450sec for T2
with a similar total number of threads, 40 vs 47), but better memory manage-
ment for T2. The main difference between the two execution models is that
T2 resolves references to microarray datasets, each about 10MB in size, on de-
mand, transferring them from disk to process space and flushing them after use.
6 The workflow, not reproduced here due to space constraints, is available from the

myExperiment web site, at http://www.myexperiment.org/workflows/746
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Fig. 4. Memory usage in T2 for different
input strings lengths

Fig. 5. Memory footprints for the lym-
phoma workflow in T1.X and T2

Fig. 6. Pipelined portion of the lym-
phoma workflow

thread
pool size

exec time
(sec)

max
memory
(MB)

max
thread
count

1 41 317 47

2 29 355 49

5 24 383 55

10 21 442 56

Fig. 7. Execution times and memory us-
age by thread pool size

This makes better use of memory but involves additional disk transfers. The in-
memory model of T1.x saves transfer time but results in unbound memory usage.

As a second experiment aimed at showing the effect of pipelining, we have
monitored the execution time and memory usage under different settings of max
threads per processor, for a portion of the same caGrid workflow consisting of
a linear chain of processors (Fig. 6), which are made to iterate over an input
list of 10 experiment IDs. The results, shown in Fig. 7, indicate a near-linear
correlation between max-thread setting on the processors and execution time,
up to 10 threads per processor. A higher number of threads would bring dimin-
ishing returns, however, since the amount of real concurrency available on the
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Java-based workflow engine is limited by the number of cores that the JVM can
use (2, in this experiment), and at the same time those threads saturate the
concurrent server where the Web services execute, making it a bottleneck.

5 Conclusions

We have presented the salient scalability and extensbility features of the Tav-
erna 2 workflow management system, which make it suitable for data-intensive
scientific applications. These features include, among others: (i) a runtime en-
vironment in which the available intra- and inter-processor parallelism that are
implicit in the dataflow model are exposed as multiple execution threads, and
(ii) extensibility and configurability points based on the interceptor pattern.

Our performance results, measured on a suite of programmatically generated
workflows that exhibit both processor iteration and pipelining, indicate that
T2 with RDBMS-based data storage offers good control of workflow execution
memory while exhibiting competitive execution time.

Finally, we have presented a concrete case study that highlights the memory
usage / execution time trade-offs on a production workflow from the caGrid
project.
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Abstract. The performance of similarity measures for search, index-
ing, and data mining applications tends to degrade rapidly as the di-
mensionality of the data increases. The effects of the so-called ‘curse
of dimensionality’ have been studied by researchers for data sets gener-
ated according to a single data distribution. In this paper, we study the
effects of this phenomenon on different similarity measures for multiply-
distributed data. In particular, we assess the performance of shared-
neighbor similarity measures, which are secondary similarity measures
based on the rankings of data objects induced by some primary distance
measure. We find that rank-based similarity measures can result in more
stable performance than their associated primary distance measures.

1 Introduction

Effective solutions for data indexing and data mining tasks often require that
an appropriate measure of object-to-object similarity be provided. Operations
such as the retrieval of objects similar to a query object are facilitated using
a nearest-neighbor search with an appropriate distance measure. Any use of a
similarity measure involves the implicit assumption that the data objects nat-
urally form groups that can be regarded as arising from different generation
mechanisms, and sharing common statistical characteristics. In the context of
unsupervised learning, these groups can be clusters that follow some local ‘natu-
ral’ distribution. Sometimes, the learning process seeks to model the generation
mechanism by fitting the data to known distributions; in other cases, only the
groups themselves are sought. In outlier detection, the similarity measure is used
to distinguish those objects that are conspicuously dissimilar from the majority
of objects. In the context of classification, each class of the training set may be
composed of one or more natural clusters, possibly together with outlier objects.
In all contexts, we expect that a nearest-neighbor query based at an object from
a particular natural grouping should rank objects from the same grouping ahead
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of other objects in the data set. In real-valued feature spaces, Lp norms or the
cosine of the angle between the pair of vectors are commonly used to express
similarities between vectors.

In general, similarity measures based on distances are sensitive to variations
within a data distribution, or the dimensionality of a data space. These variations
can limit the quality of the solution, the efficiency of the search, or both. For
Lp norms in high dimensions, questions have been raised by several researchers,
including Beyer et al. in [1], as to whether the concept of the nearest neighbor
is meaningful. Intuitively, the key result of [1] states that if the ratio of the vari-
ance of the length of any point vector (denoted by ‖Xd‖) with the length of the
mean point vector (denoted by E[‖Xd‖]) converges to zero with increasing data
dimensionality, then the proportional difference between the farthest-point dis-
tance Dmax and the closest-point distance Dmin (the relative contrast) vanishes:

If lim
d→∞

var
( ‖Xd‖

E[‖Xd‖]
)

= 0, then
Dmax − Dmin

Dmin
→p 0.

For a broad range of data distributions and distance measures, the relative con-
trast does diminish as the dimensionality increases. This concentration effect of
the distance measure reduces the utility of the measure for discrimination. This
phenomenon — recognized as one aspect of the curse of dimensionality — is
quite general, and occurs for a broad range of data distributions and distance
measures. In [2], the behavior of integer Lp norms in high dimensional spaces
has been studied. The authors showed by means of an analytic argument that
L1 and L2 are the only integer norms useful for higher dimensions. In addition,
they studied the use of projections for discrimination, the effectiveness of which
depended on localized dissimilarity measures that did not satisfy the symmetry
and triangle inequality conditions of distance metrics. In [3], fractional Lp dis-
tance measures (with 0 < p < 1) have been studied in a similar context. The
authors provide evidence supporting the contention that smaller values of p offer
better results in higher dimensional settings. These well-known studies generally
assumed that the full data set followed a single data distribution, subject to
certain restrictions. In fact, when the data follows a mixture of distributions,
the concentration effect is not always observed; in such cases, distances between
members of different distributions may not necessarily tend to the global mean
as the dimensionality increases. As briefly noted in [1], if a data set is composed
of many natural groupings or clusters, each following their own distribution, then
the concentration effect will typically be less severe for queries based on points
within a cluster of similar points generated according to the same mechanism,
especially when the clusters are well-separated.

The fundamental differences between singly-distributed data and multiply-
distributed data are discussed in detail in [4]. The authors demonstrate that
nearest-neighbor queries are both theoretically and practically meaningful when
the search is limited to objects from the same cluster (distribution) as the query
point, and other clusters are well separated from the cluster in question. The
key concept is that of pairwise stability of clusters, which is said to hold when-
ever the mean distance between points of different clusters dominates the mean
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distance between points belonging to the same cluster. When the clusters are
pairwise stable, for any point belonging to a given cluster, its nearest neighbors
tend to belong to the same cluster. Here, a nearest-neighbor query of size on
the order of the cluster size can be considered meaningful, whereas differentia-
tion between nearest and farthest neighbors within the same cluster may still
be meaningless. Note that for many common distributions these considerations
may remain valid even as the dimension d tends to infinity: for example, two
Gaussian distributions with widely separated means may find that their separa-
bility improves as the data dimension increases. However, it should also be noted
that these arguments are based on the assumption that all dimensions bear in-
formation relevant to the different clusters, classes, or distributions. Depending
on the ratio of relevant versus irrelevant attributes, and on the actual separation
of sets of points belonging to different distributions, irrelevant attributes in a
data set may impede the separability of different distributions and thus have the
potential for rendering nearest neighbor query results less meaningful.

The observations of [4], and the important distinction between the effects
of relevant and irrelevant attributes, both seem to have received little if any
attention in the research literature. Despite the demonstrated deficiency of con-
ventional Lp norms for high-dimensional data, a plethora of work based on
the Euclidean distance has been dedicated to clustering strategies, which ap-
pear to be effective in practice to varying degrees for high-dimensional data [5].
Many heuristics have recently been proposed or evaluated for clustering [6, 7, 8,
9, 10, 11, 12, 13, 14], outlier detection [15, 16, 17, 18], and indexing or similarity
search [6, 19, 20, 21, 22, 23] that seek to mitigate the effects of the curse of di-
mensionality. While some of these strategies, such as projected or subspace clus-
tering, do recognize implicitly the effect of relevant versus irrelevant attributes
for a cluster, all these papers (as well as others) abstain from discussing these
effects, let alone studying them in detail. In particular, the concept of pairwise
stability of clusters as introduced in [4] has not been taken into account in any
of these papers. Although their underlying data models do generally assume (ex-
plicitly or otherwise) different underlying mechanisms for the formation of data
groupings, they motivate their new approaches with only a passing reference to
the curse of dimensionality. Indeed, it has been observed recently that many
questions regarding these effects remain open [24]. Thus, a more detailed study
of the effects of the curse of dimensionality on such heterogeneously distributed
data sets in the presence of both relevant and irrelevant features is needed. One
main objective of this paper is to attempt to address this need.

An interesting alternative to traditional similarity measurement is the defini-
tion of secondary measures based on the rankings induced by a specified primary
similarity measure (such as an Lp norm, or the cosine measure). The simplest
and most common of these methods involves the use of shared nearest-neighbor
(SNN) information, in which the similarity value for an object pair (x, y) is a
function of the number of data objects in the common intersection of fixed-sized
neighborhoods centered at x and y, as determined by the primary measure. The
primary similarity measure can be any function that determines a ranking of the
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data objects relative to the query. It is not even necessary for the data objects
to be represented as vectors.

The most basic form of shared nearest-neighbor similarity measure is that of
the ‘overlap’. Given a data set S consisting of n = |S| objects and s ∈ N

+, let
NN s(x) ⊆ S be the set of s-nearest-neighbors of x ∈ S as determined using
some specified primary similarity measure. The overlap between objects x and
y is defined to be the intersection size

SNN s(x, y) = |NN s(x) ∩ NN s(y)|. (1)

Other similarity measures have been proposed based on the overlap, such as the
cosine measure:

simcoss(x, y) =
SNN s(x, y)

s
, (2)

so called as it is equivalent to the cosine of the angle between the zero-one set
membership vectors for NN s(x) and NN s(y). This was used in [25,26] as a local
density measure for clustering.

For computing the nearest neighbors in high dimensional data, SNN measures
have been reported to be effective in practice, and supposedly less prone to the
curse of dimensionality than conventional distance measures. SNN measures have
found use in the design of merge criteria of agglomerative clustering algorithms
[25, 27, 28], in approaches for clustering high-dimensional data sets [26, 29], and
in finding outliers in subspaces of high dimensional data [30]. However, in all of
these studies, no systematic investigation has been made into the advantages of
SNN measures over conventional distance measures for high-dimensional data.

The main contributions of this paper are as follows: (i) We present the first
study of the effects of high data dimensionality for the more realistic scenario
of data mixture models (as opposed to data following a single distribution), for
a number of popular distance measures. (ii) We evaluate the performance of
secondary similarity measures based on SNN information, as compared to the
primary distances from which the rankings are derived. We demonstrate empir-
ical evidence for the claim that SNN is more robust in higher dimensions than
primary distances in widely varying settings of data set characteristics. (iii) We
also provide interpretations for this observation: since the ranking of points is
usually still meaningful in high dimensions, the overlap of the neighborhoods of
two points in a common natural grouping can be expected to be substantially
large, leading to a high SNN similarity value. The size of the overlap of neigh-
borhoods of points from different groups is expected to be rather small, result-
ing in a low SNN similarity value. (iv) We derive several SNN-based secondary
distance measures with the potential for good results for distance-based appli-
cations even when the curse of dimensionality limits the discrimination power of
the underlying primary distance functions. In such situations, the distance-based
implementation most likely performs worse than the SNN-based application for
most choices of a primary distance function.

In the following section, we explore different aspects of the curse of dimension-
ality, and distinguish between the truth and myths surrounding this
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phenomenon. We present the framework for our experimentation in Section 3.
In Section 4, we evaluate how dimensionality affects the performance of SNN
similarity, in contrast to that of the underlying primary similarity. In Section 5,
we validate our findings on several real world data sets. This will motivate the
formalization and discussion of possible distance measures based on the SNN
dissimilarity, in Section 6. The results of the study are summarized in Section 7.

The data sets studied, the plots shown throughout this paper, as well as
further information and experimental results and plots, are all available online
via http://www.dbs.ifi.lmu.de/research/SNN/.

2 The Curse of Dimensionality Reconsidered

As mentioned earlier, previous studies of the effects of the curse of dimensionality
on Lp norms mainly assume a common data distribution for all attributes of a
given data set. Here, we investigate the effects of the curse in the presence of
heterogeneous data distributions (for a more detailed discussion, see [5]):

Problem 1: Poor Discrimination of Distances
Concepts such as proximity, distance, or neighborhood become less meaningful

with increasing dimensionality due to a loss of contrast of distances.
This is the fundamental problem studied in [1, 2, 3]. For any data mining,

indexing, or similarity search application, this effect is a serious impediment to
the successful treatment of high-dimensional data.

Problem 2: Presence of Irrelevant Attributes
Among the features of a high dimensional data set, for any given query ob-

ject, many attributes can be expected to be irrelevant to that object. Irrelevant
attributes can interfere with the performance of similarity queries for that object.

The relevance of any particular attribute may vary across different groups
of objects within the same data set. Since natural clusters of the data are de-
termined only by some subset of the available attributes, the presence of many
irrelevant attributes may impede the efforts to identify these groups. The perfor-
mance of distance measures may be seriously compromised even by a relatively
small number of irrelevant attributes. As the total number of dimensions in-
creases, one would expect more and more features to be irrelevant to a given
query object. Many publications seem to confuse the problem of irrelevant at-
tributes with that of Problem 1, but they are in fact different — it is not im-
possible to have poor discrimination of distances even when all attributes are
relevant, and good discrimination even when many attributes are irrelevant.

Problem 3: Presence of Redundant Attributes
Similarly as with Problem 2, in a data set containing many attributes, there

may be correlations or redundancies among subsets of attributes that also lead to
special difficulties for data mining, indexing, or similarity search applications.

This issue relates to the concept of ‘intrinsic dimensionality’ of a data set. For
spatial queries, the observation that the intrinsic dimensionality of a data set in
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many cases is lower than the representational dimensionality (due to interdepen-
dencies among attributes) is often presented as a justification of strategies for
obviating the curse of dimensionality [31,32,33,34]. It should be noted that there
are scenarios where correlations among attributes do exist, but the problem of
discrimination of distances still applies [1]. The correlations among attributes
may be different within differing natural groups of a data set.

Since Problems 1 and 2 are often not well-differentiated in the literature, in
our experimental studies, we will take care to demonstrate the differences in
their natures and effects. In contrast with the earlier studies in [1,2,3], we limit
our investigation here to mixtures of data distributions (as in [4]) as a realistic
scenario for data mining or indexing or other similarity search applications.

3 Experimental Framework

3.1 Data Sets

To study the effects of the curse of dimensionality, we require a series of data
sets that scale in dimensionality without introducing bias. After controlling for
dimensionality, each of the sets in the series must be constructed so as to share
common characteristics to the greatest degree possible. This is difficult to achieve
with real world data, as the different attributes often vary in their scales and ex-
pressivity. When generating low-dimensional examples from a high-dimensional
data set, it is not always clear how to select the projective dimensions fairly.
In addition, well-defined ground truth sets necessary for assessing the expres-
siveness of query results are typically unavailable for large real data sets. The
use of synthetic data allows us to study individual effects separately, while real
data sets usually prevent the isolation of different influences. For these reasons
we construct several series of artificial data sets using pseudo-random genera-
tors with largely fixed parameters, avoiding those parameter choices leading to
data sets with groupings that are either too difficult or too easy to discriminate.
Unless stated otherwise, the synthetic data sets were constructed with the fol-
lowing characteristics: n = 10, 000 points grouped into c = 100 clusters in up to
dmax = 640 dimensions. Cluster sizes are randomized with a mean of n

c = 100
and standard deviation n

10·c = 10, with the size of the last generated cluster
adjusted so that the total number of points is n. When generating data sets
for a series, those sets with dimensionality d < dmax were generated so that
their attributes coincided with the first d attributes of all other data sets having
dimensionality greater than d.

For each object, attribute values were generated depending on whether the
attribute is to be considered ‘relevant’ or ‘irrelevant’ for the formation of the
cluster to which the object belongs. If the i-th attribute is deemed relevant to
the j-th cluster, the value of this attribute for all members of c are normally
distributed with a standard deviation in the range σj,i ∈ [0.05 : 0.8], and a mean
in the range μj,i ∈ [σj,i

2
: 1 − σj,i

2
]. These ranges were chosen to avoid overly

compact or overly wide distributions, as well as boundary effects, while still
providing a wide variety of distributions and overlaps. No additional clipping or
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normalization was applied. Any attributes irrelevant to the cluster were assigned
noise values uniformly distributed in the interval [0 : 1].

For the experimentation, 6 synthetic data series were created, each consist-
ing of 7 sets of differing dimensionality d = 10, 20, 40, 80, 160, 320, 640: (i) All-
Relevant : in this series, all attributes were generated so as to be relevant for
all clusters. (ii) 10-Relevant : in this series, the first 10 attributes are relevant
for all clusters, the remaining attributes are irrelevant. (iii) Cyc-Relevant : in
this series, the i-th attribute is relevant for the j-th cluster when i mod c = j;
otherwise, the attribute is irrelevant. This series has n = 1, 000 and c = 10.
(iv) Half-Relevant : in this series, for each cluster, an attribute was chosen to be
relevant with probability 1

2 , and irrelevant otherwise. The selection of attributes
was consistent within a cluster, and performed independently of the selection for
other clusters. (v) All-Dependent : this series is derived from All-Relevant intro-
ducing correlations among attributes. (vi) 10-Dependent : this series is derived
from 10-Relevant introducing correlations among attributes.

For the correlated data sets All-Dependent and 10-Dependent, the i-th at-
tribute value Xi was generated by computing Xi = Yi for 1 ≤ i ≤ 10, and
Xi = 1

2 (Xi−10 + Yi) for i > 10, where Yi is the attribute of the correspond-
ing uncorrelated data set All-Relevant or 10-Relevant. This way of introducing
correlations is inspired by Example 3 in [1].

These 6 series provide us with the means to study different aspects of the curse
of dimensionality. Data series All-Relevant is the basic setting referred to in the
statement of Problem 1. However, the sets differ from those considered in other
studies [1, 2, 3], and conforms with [4] in that the data objects are partitioned
into clusters (as are all our data sets). Data sets 10-Relevant and Cyc-Relevant
relate exclusively to Problem 2 in different settings. The clusters are further
distinguished in the data set Cyc-Relevant, where every attribute is relevant for
exactly one cluster. In the series Half-Relevant, we give up control of the number
and choice of relevant attributes. Half the attributes are expected to be relevant
to a given cluster, but the selection of relevant attributes varies (independently)
from cluster to cluster.

Our synthetic data sets do not satisfy the IID (independent and identically-
distributed) assumptions used in the proofs of [1], as the sets are composed
of multiple clusters that overlap in some dimensions and are well-distinguished
in others. However, the analysis of [24] applies when dimensional values are
comparable in their extent and exhibit the same properties as for normalized
data.

As intended, our synthetic data sets show the typical behavior ascribed to
the curse of dimensionality. Figure 1 plots the numerator and denominator of
the contrast formula Dmax−Dmin

Dmin
for individual data sets, to demonstrate that

Dmin (the solid symbols) indeed grows much faster than the difference Dmax −
Dmin (the hollow symbols). The plots indicate that Dmin grows exponentially
faster than Dmax −Dmin . Plots for the correlated data series and other distance
functions can be found on our web page, as well as plots showing the contrast
directly.
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Fig. 1. Curse of dimensionality: Dmax − Dmin compared to Dmin

In addition to the synthetic data sets described above, we also considered real-
world data sets for our study. Real-world data sets suitable for this study are
difficult to obtain, since they should have a reasonable size, number of classes,
dimensionality, comparable dimensions and of course a solid ground truth. Re-
sults for real data can be difficult to interpret due to a lack of knowledge of
the underlying data distributions, even when ground-truth class knowledge is
available. Nevertheless, we report experimental results for 3 real data sets. The
first real data set we used is the Multiple Features data set [35]. It consists of
2000 instances from 10 classes (corresponding to the digits 0 to 9). There are
two variants, one with 649 dimensions (coming from multiple feature extraction
algorithms and giving the data set its name), and another with 240 dimensions
(the pixel averages features, which is the largest subset of directly comparable
features). The second set considered is the Optical Recognition of Handwritten
Digits data set [35]. It consists of 5620 instances from 10 classes (also correspond-
ing to the digits 0 to 9) in 64 dimensions, in the form of an 8× 8 grid of integer
values in the range of 0 to 16 obtained by downsampling from a larger 32 × 32
grid. The third real data set comes from the ALOI image database [36], each im-
age being described by 641 dense features based on color and texture histograms
(for a detailed description of how the vectors were produced, see [37]). The full
ALOI database consists of 110, 250 images of 1, 000 objects taken from different
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orientations and in different lighting conditions, each object being treated as a
class. We used only the first 22, 050 instances of the data set, covering the first
205 objects, with an average class size of approximately 107 objects.

3.2 Distance Measures

As primary distance measures we considered for our experimental evaluation a
range of different Lp distances, in particular the Manhattan (L1) and Euclidean
(L2) distances, and the p = 0.6 and p = 0.8 fractional Lp distances. In addition,
we used also the cosine distance, referred to here as arccos , as it is computed
as the arc of the cosine similarity. All these distance measures can be used as
the primary distance for the computation of a secondary similarity simcoss,
as defined in Equation 2. For our experiments, we use the distance measure
1 − simcoss, and compare the performance of this secondary distance measure
with the corresponding primary distance measure to assess whether the accuracy
is improved. There are other possibilities for constructing distance measures from
similarity measures. The particular choice of method, however, does not affect
the ranking of query results, although it may influence the contrast. We will
discuss this further, in Section 6.

3.3 Evaluation Criteria

The purpose of a distance function is to facilitate the separation of data objects
similar to the query from those objects which are not similar. The discriminative
ability of a given distance function can best be evaluated by computing a nearest-
neighbor ranking of all data points with respect to a given query point. Ideally,
at the top positions of the ranking, we would find all objects drawn from the
same natural cluster as the query object, followed by the objects from outside the
cluster. To evaluate the discriminative ability of dissimilarity functions without
referring to the actual values, we compute Receiver Operating Characteristic
(ROC) curves that compare the true positive rate with the false positive rate.
For each query, the objects are ranked according to their similarity to the query
point. We can compute the matching ROC curve and the corresponding area
under the curve (AUC) for each ranking result. An AUC of 1.0 indicates perfect
discrimination — all relevant objects are ranked ahead of all other objects. An
AUC of 0.5 indicates a total lack of discriminative ability, as this value is what
would be expected with a uniform random permutation of the query result set.
An AUC significantly less than 0.5 indicates a reversed ordering. The ROC curve
and its AUC value provide a summary for a single ordering of points — that
is, for a single query object. By generating a ROC curve and AUC value for
each data object, the mean AUC value and standard deviation could then be
used to rate the quality for a particular distance function. However, we expect
points near the center of a cluster (the mean of the generating distribution) to
discriminate well for many distance functions. On the other hand, for points near
the border of a cluster or in the overlap of clusters, values of the dissimilarity
measure will most likely perform less well. Therefore, at data generation time,
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we assign to each point a centrality rank, based on both its deviation from the
mean and the size of the cluster, so as to normalize across clusters of differing
sizes. The point generated for cluster M that is closest to the mean of M is
assigned a centrality of 1, and the point of M that is farthest from the mean of
M is assigned a centrality of 0. To obtain readable graphs, the ROC AUC values
then are aggregated into bins based on their centrality values. This allows us
to plot the degradation of the distance function with respect to the centrality
of a point within its distribution. For the plots shown in this paper, we will be
using three bins for the central 20%, outer 20% and middle 60%. In the online
material, 20 bins are used (each representing 5% of the data). In these plots we
will also show the standard deviation along with the mean ROC AUC value.

4 Effects of the Curse of Dimensionality

At first glance, the fact that our synthetic data sets exhibit the typical symptoms
of the curse of dimensionality would seem to indicate that these data series are
not amenable to indexing or mining. However, such a conclusion would be unnec-
essarily pessimistic. Especially for data sets with many relevant attributes (such
as the All-Relevant series), any given number of clusters should become dis-
tinguishable when the number of relevant attributes becomes sufficiently large.
This intuition is justified by examples such as the combination of kernels and
support vector machines (SVM): the number of dimensions is increased in order
to be able to separate classes linearly by hyperplanes. In fact, what is stated as
a condition for the pairwise stability of clusters in [4], we would expect to hold
for any two clusters where the number of discriminative attributes dominates.
This is not an essentially original contribution of our study but confirms prior
results. We provide, however, evidence for this effect in the online material.

One point that must be stressed is that while the curse of dimensionality tells
us not to rely on the absolute values of distances, it is still viable to use distance
values to derive a ranking of data objects. An ε-range query is dependent upon
the choice of an appropriate value of ε, and thus suffers from the lack of contrast,
whereas a k-nearest neighbor query will retrieve the top k neighbors indepen-
dently of their absolute distance values. Hence, the computation of k-nearest
neighbor queries and rankings has the potential to be viable in higher dimen-
sions, whereas that of ε-range queries likely does not. Furthermore, although the
curse of dimensionality contrast formula holds for all our data sets, the ranking
results are not tied solely to the data dimensionality, and can in certain situ-
ations improve significantly with increasing dimensionality, as reported in [1].
The conclusion we draw is supported by the research literature as well as by our
experiments on our synthetic data sets:

Conclusion 1: Relevant vs. Irrelevant Attributes
The quality of the ranking – and thus the separability of the different generating

mechanisms – may not necessarily depend on the data dimensionality, but instead
on the number of relevant attributes in the data set.
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Fig. 2. Ranking quality with different SNN distances based on Euclidean distance at
640 dimensions

More specifically, there are two contrary effects of an increase in dimensional-
ity when the number of relevant attributes is high: the relative contrast between
points tends to decrease, but the separation among different generating mecha-
nisms can increase. On the other hand, if the data dimensionality is high and the
number of relevant dimensions is rather low, the curse of dimensionality fully
applies, and hampers any analysis task. In retrospect, this is an important yet
unsurprising conclusion to draw. Nevertheless, as mentioned in Section 1, it has
not gained much recognition in the research literature to date.

As a further original contribution of this study, we evaluate the behavior
of SNN as a secondary similarity measure. Motivated by the findings sketched
above, an improved performance can be expected for a rank-based similarity
measure such as SNN, whenever the ranking provided by the primary similar-
ity measure is meaningful. Figure 2 compares results for the secondary distance
measure with different SNN reference sizes s, based on Euclidean distance as
the primary distance measure, for dimension d = 640. The performance of the
corresponding primary distance is given on the left side of each diagram as a
reference. Results for lower dimensionalities are comparable, and are shown in
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Fig. 3. Ranking quality for the All-Relevant set with different SNN distances based
on L2

the following figures. For easily separable data sets such as All-Relevant, most
choices of s yield excellent results. On Half-Relevant and Cyc-Relevant, the best
results are achieved for choices of s of the same order as the cluster size (100).
This can also be seen for All-Relevant on lower dimensionality, where the con-
trast between the results is better. On the barely separable 10-Relevant data set,
even larger values of s seem to be needed, although the average ROC AUC score
is not significant, being below 0.6. Figure 3 shows the same plots for different
dimensionalities of the All-Relevant data set. It can be seen that by using an
SNN distance, a considerable improvement can be achieved given that the data
set is sufficiently separable, and that the parameter s is chosen roughly in the
range of the cluster size. In particular, the secondary distance performs very
well at high dimensionalities, and is reasonably robust with respect to the choice
of s. The observations on the correlated data sets (given in the supplementary
material) are quite similar. To summarize, we can draw the following conclu-
sion from our experiments (see http://www.dbs.ifi.lmu.de/research/SNN/
for the complete results with all distance functions on all data sets).
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(d) ALOI

Fig. 4. Distributions of intra-class and inter-class distances (Euclidean distance)

Conclusion 2: Ranking Quality Improvement
Our experiments suggest that the use of an SNN similarity measure can signif-

icantly boost the quality of a ranking compared to the use of the primary distance
measure alone, provided that the primary distance already provides some degree
of distinguishability of clusters.

The experimental results confirm that although the discrimination of primary
distances worsens with increasing data dimensionality, the natural data group-
ings may still be separable and, if so, the neighborhoods of query points would
contain many points from the same grouping. Clearly, for two points from a com-
mon data grouping, when increasing the value of s, the probability that their
neighborhoods have significant overlap increases as well. On the other hand, if
s is substantially larger than the size of the grouping, many objects from dif-
ferent groups are contained in the neighborhoods of the two points, and the
performance of secondary distance measures become less predictable.

5 Experiments on Real Data

Experiments on artificial data allow more control over parameters such as the
data dimension, and are more amenable to studying effects on the performance
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Fig. 5. Distributions of intra-class and inter-class SNN distances (based on Euclidean
distance)

of distance measures in isolation. Real-world data, on the other hand, is consid-
erably more difficult to control in this way. Nevertheless, in this section we offer
experimental results for real-world data sets in order to validate and confirm
some of the effects observed for artificial data. As seen in Figure 4, on all the
real data sets considered, the distance distributions are approximately Gaussian
(which is to be expected in high dimensionalities for the Lp norms, due to the
central limit theorem). It is also apparent that these data sets will be reasonably
separable, as the overlap of the distance distributions is not very large. The re-
sults for other primary distances are comparable. Figure 5 shows the histogram
results when using an SNN-based distance. The data set groupings have become
very well separable. The effects of s on the results for real-data are as one would
expect from the experiments on artificial data: Figure 6 displays the results for
various sizes of s. Choosing s to match the class size gives reasonable results;
however, the best performances are achieved with even larger values of s. Only
when s approaches the full data set size does performance drop. The benefits of
using SNN on the ALOI data set are minimal, as the groupings of that set are
already very well separable for primary distances.
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6 Distance Measures Based on SNN

Let us recall, as described in Section 1, the observations reported by previous
studies on the behavior of distance measures: (i) The relative contrast in Eu-
clidean distances between nearest and farthest neighbor decreases with increas-
ing dimensionality of the data [1]. (ii) This effect is stronger for Lp distances
with higher values of p, while it remains weaker for the Manhattan distance
L1 [2]. (iii) Fractional distances — Lp distances with p ∈ (0 : 1) — may even
increase the relative contrast compared to Lp norms with p ∈ N

+ [3]. The re-
sults of our experiments have not only confirmed these observations, but they
also dispel some incorrectly held beliefs regarding the effects of dimensionality,
through the investigation of data sets drawn from a mixture of distributions,
each with varying relevance of attribute subsets.

Despite the performance limitations due to the presence of irrelevant at-
tributes and due to the curse of dimensionality, our experimentation shows that
traditional similarity measures can still serve as the basis of effective secondary
similarity measures.
Conclusion 3: Stability of SNN

As an alternative to traditional distance measures such as Lp norms or the
cosine distance, the performance of similarity search and its applications in data
mining or indexing can be stabilized by using SNN secondary distance measures
in preference to primary distances.

There are several common ways to convert a similarity measure into a dis-
similarity measure. For the SNN similarity simcos (Equation 2) with a given
number of neighbors s considered, we propose as possible distance measures:
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dinv s(x, y) = 1 − simcoss(x, y) (3)
dacoss(x, y) = arccos (simcoss(x, y)) (4)

dlns(x, y) = − ln simcoss(x, y) (5)

While dinv , which has been used throughout our experiments, is simply a linear
inversion of the values, dacos penalizes slightly suboptimal similarities more
strongly, whereas dln is more tolerant than dinv for a broad range of higher
similarity values but approaches infinity for very low similarity values. In general,
any function f that is monotonically decreasing on the interval [0 : 1] with
f(1) = 0 can be used to transform the SNN similarity measure into a dissimilarity
measure. The functions only differ in their contrast at different ranges. All of
these functions are symmetric (since simcos is symmetric) and maintain the
same ranking. However, it should be noted that of the three, only dacos satisfies
the triangle inequality. While most retrieval results (based simply on rankings)
remain unaffected by different formulations of these secondary distances, the
effects on indexing and clustering may vary from formulation to formulation.
For example, the separation of clusters in terms of absolute distances depends
on the concrete choice of the distance measure and on the secondary distance
measure as well.

7 Conclusion

With the ever-increasing capabilities of automatic data generation, the demand
is rising for analysis methods that can cope with high dimensional data. The no-
torious curse of dimensionality and its implications for similarity measurement
have been the subject of several recent studies; however, these studies have eval-
uated only data sets generated according to a single distribution mechanism.
Moreover, a number of myths surrounding the effects of the curse of dimension-
ality have been supported by too loose interpretations of these studies. Seemingly
in contradiction to these studies, the SNN similarity measure has been reported
to be able to alleviate the effects of the curse for clustering.

In light of these considerations, this paper has made the following contribu-
tions. We have presented the first study of the effects of high data dimensionality
on a range of popular distance measures, for the more realistic scenario of data
mixture models as opposed to data following a single distribution. We exposed
some of the myths involving the curse of dimensionality, and partly confirmed
previously reported truths. We demonstrated that although the contrast of pair-
wise distances diminishes with increasing dimensionality (severely hampering all
distance-based algorithms), for realistic data sets with a mixture of local distri-
butions, the discrimination power of a distance measure depends more strongly
on the number of relevant dimensions, and can actually rise as the dimensionality
increases. On the other hand, simultaneously increasing the data dimensional-
ity and decreasing the number of relevant dimensions dramatically decreases the
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separability of local distributions. In such a scenario, it seems to be more suitable
to separate the groupings by means of projection into subspaces.

In addition, we evaluated the performance of secondary similarity measures
based on SNN information, as compared to the primary distances from which
the rankings are derived. We empirically confirmed that SNN is more robust
in higher dimensions than primary distances in all settings. We also provided
explanations for this observation: since the ranking of points is typically still
meaningful in high dimensions, the overlap of the neighborhoods of two points
in a common natural grouping can be expected to be substantially large, leading
to a high SNN similarity value; the size of the overlap of neighborhoods of
points from different groups is expected to be rather small, resulting in a low
SNN similarity value.

Last but not least, we derived several SNN-based secondary distance measures
with the potential for good results for distance-based applications even when the
curse of dimensionality limits the discrimination power of the underlying primary
distance functions. In such situations, the distance-based implementation most
likely performs worse than the SNN-based application for most choices of a
primary distance function.

In summary, for high dimensional applications, despite a deteriorating con-
trast in the chosen primary distance measure, we expect the incorporation of
ranking information to enhance the quality of rankings and query results.
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25. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and
densities in noisy, high dimensional data. In: Proc. SDM (2003)

26. Houle, M.E.: Navigating massive data sets via local clustering. In: Proc. KDD
(2003)

27. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large
databases. In: Proc. SIGMOD, pp. 73–84 (1998)

28. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared
near neighbors. IEEE TC C-22(11), 1025–1034 (1973)

29. Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal.
Data Min. 1(3), 157–176 (2008)
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Abstract. Many applications require to determine the k-nearest neighbors for
multiple query points simultaneously. This task is known as all-(k)-nearest-
neighbor (AkNN) query. In this paper, we suggest a new method for efficient
AkNN query processing which is based on spherical approximations for index-
ing and query set representation. In this setting, we propose trigonometric pruning
which enables a significant decrease of the remaining search space for a query.
Employing this new pruning method, we considerably speed up AkNN queries.

1 Introduction

Similarity search in databases is an important problem in content-based multimedia re-
trieval. Additionally, similarity queries are a useful database primitive for speeding up
multiple data mining algorithms on large databases. In the majority of approaches for
similarity search, the objects are described as points in a high-dimensional data space,
where each dimension describes the object value w.r.t. a given characteristic or feature.
These feature vectors are compared via metric distance functions such as the Euclidean
distance or other Lp-norms. Thus, the distance between two feature vectors v1 and v2

models the similarity between the corresponding objects. One of the most important
types of similarity queries in this setting are k-nearest-neighbor (kNN) queries, retriev-
ing the k objects in the database which have the smallest distance to a given query
vector q. The majority of the approaches developed so far focus on the efficient pro-
cessing of a single query at a time. However, in many applications like data mining and
similarity search, it is previously known that it is necessary to process a large number
of kNN queries to generate a result. More precisely, an AkNN query retrieves the k-
nearest neighbors in the inner set or database S for each object in the outer or query set
R. Let us note that the same type of query is also known as kNN join [1].

Multiple computational problems use AkNN queries: In multimedia retrieval, many
recent approaches model the image content as a set of local descriptors [2] or point
clouds [3]. An AkNN query efficiently retrieves the best matches for a set of local de-
scriptors in a given image database. Another area of application is data mining: [1]
surveys multiple data mining algorithms that can be accelerated by efficient methods
for AkNN computation like parallel kNN classification and k-means clustering. Fur-
thermore, it is possible to employ AkNN processing for deriving outlier factors like [4].

In this paper, we propose a new approach for processing AkNN queries. As our
method uses spherical page regions it employs an SS-Tree [5]. To define the pruning

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 501–518, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



502 T. Emrich et al.

area around the approximations, we introduce trigonometric pruning which accounts
for the fact that the relevant search space is not necessarily symmetric around the query
approximation. Since this pruning method is based on trigonometric relationships, we
refer to it as trigonometric pruning. One of its advantages is its capability to calculate
pruning areas which are based on query approximations and to considerably decrease
the remaining search space employed by other approaches like [3,6].

The rest of the paper is organized as follows. Section 2 surveys related work for
processing AkNN queries and kNN joins. In Sect. 3, we specify the problem and de-
scribe the methods and data structures our solution is based on. Section 4 introduces
our new pruning method and Sect. 5 then describes our new query algorithms. A per-
formance evaluation is presented in Sect. 6. The paper concludes with a summary and
some directions for future work in Sect. 7.

2 Related Work

There already exist several approaches for processing AkNN queries. The initial and
most simple approach is the computation of a separate kNN query on the inner set
S for each point in the outer set R. This method is often referred to as nested loop
join and can be accelerated by various search methods for kNN query processing. A
comprehensive survey can be found in [7]. Since this basic approach obviously is not
optimal w.r.t. the number of page accesses and distance computations, several dedicated
approaches for processing AkNN queries have been proposed. We first of all have to
distinguish index-based from scan-based solutions. In a scan-based solution, we assume
that both data sets are not organized in any form of index and thus, we have to scan the
complete data set for join processing. Examples for processing kNN joins without the
use of index structures are GORDER [8] and HANN [9].

In this paper, we assume that at least S is already organized in an index structure.
It is shown in the experiments in [6,9] that the use of an index structure can consider-
ably speed up kNN join processing. One of the first publications discussing kNN join
algorithms was [1]. In this paper, Böhm et al. demonstrate that kNN joins are useful
database primitives that can be employed to speed up various data mining algorithms
like k-Means clustering. The proposed algorithm is based on a new data structure called
multipage index (MuX) which introduces larger pages for fast I/O accesses which are
further organized into memory pages aiming at minimizing distance calculations. The
proposed join algorithm first retrieves the current page of R and then queries S with
the set of all query points. For each query point, the algorithm maintains its own active
page list. The current pruning distance is considered as the maximum element of any
query of these queues, and pages are refined w.r.t. the minimal distance to any query
element. A drawback of this approach is that it has an overhead of distance computa-
tions because each object in S has to be compared to all elements in the query page.
In [9] the authors discuss two methods for AkNN queries that assume that S is orga-
nized in a spatial index structure like the R-Tree [10]. The first index-based approach
discussed in [9] aims at improving the use of a disk cache when posing a separate NN
query for each query point. The second proposed method, called batched nearest neigh-
bor search (BNN), groups query points based on a Hilbert curve and poses one query
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for each group of points. The method considers the distance to the k-nearest neighbor
δk,x for each element x in the current query set. The maximum of these distances is
now used to extend the minimum bounding rectangle around the query set and thus,
describes the current pruning area. In [11], a kNN join algorithm based on the simi-
larity search method iDistance [12] is proposed. The paper describes a basic algorithm
called iJoin extending iDistance to the kNN join problem. Furthermore, two extensions
are proposed that employ MBR-approximations to reduce distance computations and a
dimensionality reduction approach to improve the performance on higher dimensional-
ities. Recently, two approaches have been published which reduce distance calculations
by not considering the particular elements in the current set of query points. Instead,
the pruning area is established on a minimum bounding rectangle around the query set.
[3] presents an approach for applications on large point clouds in image processing. In
this method, the set of query points is approximated by a minimum bounding rectan-
gle (MBR) which is posed as a query to an R-Tree organizing S. The authors propose
to employ the maximum distance that two points in two compared MBRs might have
to determine the current pruning range. This criterion is named MaxMaxDist. The au-
thors prove that their algorithm is optimal w.r.t. the number of pages that intersect a
query area spanned by the MaxMaxDist. The experiments are focused on the problem
of point clouds and thus, are directed at rather low dimensional settings. In [6], the
authors propose NXNDIST which is based on the observation that at each side of an
MBR, there must be exactly one contained data point which realizes the minimum dis-
tance. Thus, NXNDIST decreases the MaxMaxDist by allowing the use of the minimal
MaxDist for exactly one dimension. The result is a closer bound for MBRs that is guar-
anteed to contain at least one nearest neighbor to any query point in the query MBR in
the intersecting pages of S. In their solution, the authors additionally propose to employ
MBR-quadtrees as an index structure for S instead of R-Trees.

In contrast to all discussed approaches, our method uses spherical page approxima-
tions instead of MBRs. We employ the SS-Tree [5] for indexing S. Our main pruning
method, trigonometric pruning, describes the remaining search space based on the query
approximations only. However, opposed to previous approaches, the pruning area is not
built by symmetrically extending the query approximation in each direction. Instead, we
propose the use of an asymmetric pruning area to further limit the search space. Finally,
we show how our new approach can be effectively combined with existing pruning
methods to achieve a general improvement on data sets of varying characteristics.

3 All-k-Nearest-Neighbors Using Spherical Index Structures

In this section, we will formalize our task of AkNN queries and describe the index
structure used for our approach.

3.1 All-k-Nearest-Neighbors

As mentioned before, AkNN queries aim at retrieving the k-nearest neighbors for each
element of a given query or outer set R in the inner data set S. The set of the k-nearest
neighbors of point X in a set X is defined as follows:
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Definition 1 (k-nearest neighbors). Let X ∈ IRn be a query vector, let X ⊂ IRn

be a database of feature vectors and let d : IRn × IRn → IR be a distance metric on
IRn. Then, the set NNk(X, X) of the k-nearest neighbors of X in X for any k ∈ N is
defined as follows:

(i) |NNk(X, X)| = k

(ii) ∀ Y ∈ NNk(X, X), Ŷ ∈ {X \ NNk(X, X)} : d(X, Y ) ≤ d(X, Ŷ )

Definition 2 (AkNN Query). Let R, S ⊂ IRn be two data sets and d : IRn×IRn → IR
a distance metric on IRn. An all-k-nearest-neighbor (AkNN) query retrieves the result
set ANNk(R, S) ⊆ R × S for any k ∈ N for which the following condition holds:

∀ R ∈ R, S ∈ S : (R, S) ∈ ANNk(R, S) ⇒ S ∈ NNk(R, S) (1)

Our algorithm for efficiently processing AkNN queries is built on trigonometric func-
tions, which need to be valid in the underlying featurespace. In this paper we use the
Euclidean metric, the most popular distance metric for this kind of applications. Further-
more, we assume that the inner set S is organized in an index structure which is based
on spherical page regions. A spherical page region is specified by a centroid C ∈ IRn

and a radius r ∈ IR+ \ {0} and thus, it describes a hypersphere around C, containing
all points Pi with distance d(C, Pi) ≤ r. Although approximating page regions using
minimum bounding rectangles is more common for spatial index structures, there have
been several successful index structures employing spherical page regions [5,13].

3.2 The SS-Tree

As mentioned above, our method employs the SS-Tree [5], an efficient index structure
for similarity search based on spherical page regions. In the following, we will shortly
review the characteristics of the SS-Tree.

Definition 3 (SS-Tree). An SS-Tree in the vector space IRn is a balanced search tree
having the following properties:

– All nodes besides the root store between m and M entries. The root is allowed to
store between 1 and M entries.

– The entries of a leaf node are feature vectors in IRn. The entries of an inner node
are nodes, i.e. roots of subtrees.

– Each entry is bounded by a spherical page region containing all son entries.
– For a leaf node L, the center CL of the containing hypersphere BL is the centroid

of all contained feature vectors. The radius of BL, rL, is the maximum distance
between any entry vector L ∈ L and CL.

– For an inner node P , the center CP of the containing hypersphere BP , is the cen-
troid of the centroids CQ of the contained son pages Q ∈ P . The radius rP is
chosen as maxQ∈P (d(CP , CQ) + rQ).

In general, the structure of the SS-Tree is quite similar to the structure of the R-Tree
[10]. However, the page approximations are spherical instead of rectangular. Addition-
ally, the split heuristics for creating the tree are different. Instead of minimizing the
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overlap between two pages, the SS-Tree tries to minimize the variance within the en-
tries of its pages. Thus, when splitting a node, the split heuristics determines the di-
mension having the largest variance. In this dimension, the partition is selected, which
minimizes the variance of the resulting pages and for which both new pages contain at
least m entries.

3.3 Principles of AkNN Algorithms

Given two data sets R and S, where S is organized in an index structure. We want to
find the kNN of all elements R ∈ R. The most trivial approach would be to retrieve the
kNN for each element Ri separately by using the index structure organizing S. Obvi-
ously this is not very efficient, e.g. for two query points (in R) with a close proximity
the same pages of the index have to be read twice. An efficient algorithm needs to group
the points in R so that spatially close points fall into the same group. Afterwards these
groups, containing distinct subsets of R, are used as query sets.

For the ensuing step, it is important to decide which pages of S need to be examined
for finding the kNN of each element contained in a subset R ⊆ R. Therefore, the
search space, i.e. the space which could contain kNNs of an element R ∈ R, needs to
be defined. To successively minimize the search space, most algorithms start with the
search space containing S. Defining a pruning area has the opposite intention: define
the space which does not have to be further examined. This means, that all pages of S
lying completely in the pruning area can be discarded as candidates for the subset R.
Keep in mind that pages not completely covered by the pruning area can potentially
contain points lying in the search space and therefore need to be resolved. Since all
elements in the search space have to be considered in the further processing of R, the
goal is to minimize the search space as strongly and quickly as possible.

Minimizing the search space, respectively maximizing the pruning area, is the task
of a pruning criterion. The optimal search space would only contain the kNNs of all
R ∈ R. Therefore, a pruning criterion should try to estimate this optimum as well as
possible with low effort.

4 Pruning Criteria

In the following section, we describe MaxDist pruning and trigonometric pruning for
the case of a 1-nearest neighbor query for a query set R, using its bounding sphere BR.
In Sect. 4.2 we will then explain how to extend the pruning criteria to a kNN query with
k > 1. The notation used in the course of these analyses is summarized in Table 1.

4.1 MaxDist Pruning

Definition 4 (MaxDist, MinDist). Given a point P and a spherical region BR with
radius rR and center CR, the MaxDist of P to BR is defined as: MaxDist(BR, P ) =
d(CR, P ) + rR. The MinDist of P to BR is: MinDist(BR, P ) = d(CR, P ) − rR.

Given a spherical region BR and an arbitrary data point S0 ∈ S, we need to distinguish
the points of the inner set S which can potentially be the nearest neighbors of any of the
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Table 1. Definition of Parameters

n The dimension of the feature space
R The outer set (⊆ IRn)
S The inner set (⊆ IRn)
R ⊆ R , S ⊆ S Subsets of the outer set or the inner set
R ∈ R , S ∈ S Points from the outer set or the inner set (∈ IRn)
BR , BS Spheres ≡ blocks around the sets R, or S , respectively (∈ IRn)
Pcand Candidate set of points of the inner set (⊆ S)
rR , rS Radius of sphere BR or BS around set R or S
CR, CS Center point of sphere BR or BS around set R or S
Ii Some intersection point on the surface of a sphere

Fig. 1. Example for Min-/MaxDist pruning depending on the spatial position of S0 and S1

points enclosed by BR from the points which do not have to be examined. All points
Si with MinDist(BR, Si) > MaxDist(BR, S0) can be pruned.

Fig. 1 gives an example of comparing MaxDist(BR, S0) with MinDist(BR, S1). In
case I), S1 cannot be the nearest neighbor for any point contained in BR, because any
point in R is closer to S0 than to S1. In case II), there may be points in BR (e.g. points
lying on the leftmost side of the sphere) which have S1 as their nearest neighbor and
thus S1 cannot be pruned. Case III) reveals the shortcoming of the pruning criteria men-
tioned above: Although neither MaxDist(BR, S0) nor MinDist(BR, S1) have changed
in comparison to case II), it is clear that S1 cannot be the nearest neighbor of any point
contained in BR and could thus be pruned.

This example shows that not only the distances to a query region but also the spatial
relations between points of the outer set can play an important role for an optimal
pruning criterion.

4.2 Trigonometric Pruning

Hence, we propose to consider the spatial relations of points in order to reduce the
search space and thus avoid unnecessary page accesses. Therefore, a point Si close to
the query region BR is picked as pruning candidate. By exploiting the trigonometric
properties of the spatial relation of Si and BR, the search space is reduced.

In order to generalize the correctness of our approach in an n-dimensional space,
we will first show the correctness in 2D and afterwards extend the approach to n di-
mensions. To illustrate our approach, we will use the terms and variable declarations
corresponding to Fig. 2. Afterwards, we show that the distances between a point S and
a query region follow the function described in Definition 5 and thus, define a pruning
area. Next, we demonstrate how to combine these functions in order to decide whether
or not any of the points in S can be pruned (Sect. 4.2). Then, we extend the pruning
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Fig. 2. Trigonometric pruning with active region AR(S) in comparison with MaxDist pruning

criterion such that it also holds for pages, meaning it is possible to prune pages and
to use pages as pruning candidates. Finally, we give a geometric interpretation of the
approach that allows faster calculation of the pruning area.

Defining the Pruning Area. The following definition follows directly from the law
of cosines, using the triangle 	SCRI between a pruning candidate S, the center of
the page CR and an arbitrary point I on the surface of the page R. This situation is
illustrated in Fig. 2. In the following, we will define the Surface Distance describing the
distance of S to an arbitrary surface point I:

Definition 5 (Surface Distance dϕ(S, BR)). Let BR be a sphere around the center
point CR with radius rR, containing all elements R ∈ R ⊆ R of a subset of the outer
set. Let I be a point on the surface of BR, i.e. CRI = rR and let S be a point from the
inner set S. The surface distance SI follows the function

dϕ(S, BR) =
√

CRS
2
+ r2

R − 2 CRS rR cos (ϕ) , (2)

where ϕ = �SCRI is the angle between
−−−→
CRS and

−−→
CRI . If S is equal to the center

CR, ϕ is not defined, thus we set d∅(S, BR) = rR for S = CR.

As illustrated in Fig. 2, the distance between a candidate S and a point I on the
surface of the circle around CR fulfills Equation (2). Thus, we can define the active
region AR(S) as the remaining search space after considering S, because any point
inside the active region is closer to any position in R than S is.

Definition 6 (Active Region AR(S)). Let BR and S ∈ S be defined as above. The
region AR(S) contains all points P for which the distance to any point I on the surface
of BR is less than or equal to the distance of S to I:

AR(S) = {P ∈ IR2 | ∃ I on BR : d(P, I) ≤ d(S, I)} (3)

= {P ∈ IR2 | ∃ ϕ ∈ [0; 2π] : dϕ−δ(P, BR) ≤ dϕ(S, BR)} , (4)

where δ = �PCRS is the angle between
−−−→
CRS and

−−−→
CRP .



508 T. Emrich et al.

This definition is equivalent to the union of all circles starting at an intersection point
I of BR with radius d(S, I). AR(S) is visualized as the gray shaded area in Fig. 2.
Since the distance condition of (3) automatically holds for points I ′ within BR, AR(S)
contains only the points P ∈ S which can still be closer or equally close to any point
R ∈ BR than S and thus it forms a valid search space.

Extension to n Dimensions. The definition for the active region can be extended to
n > 2 dimensions. The points Si, Sj and CR span a 2D hyperplane H in any dimension.

Lemma 1. Let AR(Si) be the active region of an Si ∈ S for a data sphere BR with
R ⊆ R and let Sj ∈ S be another data point. If Sj ∈ S is not in AR(Si) in the
hyperplane H spanned by Si, Sj and CR, there cannot be any R ∈ BR s.t. d(R, Sj) ≤
d(R, Si) and Sj can be pruned.

The proof is omitted due to space limitations. The idea is to reduce the test on whether
or not Sj is within the active region of Si to the test of (3), which implicitly takes place
on the common 2D hyperplane H .

Pruning Points. Given two candidate points Si, Sj and a query region BR with center
CR and radius rR. Let δ be the angle �Si CR Sj . Then Sj can be pruned if

dϕ(Si, BR) < dϕ−δ(Sj , BR); ∀ϕ ∈ [0; 2π[ . (5)

If dϕ(Si, BR) > dϕ−δ(Sj , BR); ∀ϕ ∈ [0; 2π[ (6)

holds, Si can be pruned. If none of the conditions hold, neither Si nor Sj can be pruned.
W.l.o.g. ϕ can be limited to [0; 2π[. If neither (5) nor (6) holds, there is at least one ϕ,
where dϕ(Si, BR) = dϕ−δ(Sj , BR) and thus both Si and Sj are NN candidates for
the outer set R (see Fig. 3). This condition can be transformed to finding the roots of
function gSi,Sj ,BR(ϕ) = dϕ(Si, BR) − dϕ−δ(Sj , BR). A root of gSi,Sj,BR(ϕ) indi-
cates that dϕ(Si, BR) and dϕ−δ(Sj , BR) intersect such that neither of the points can
be pruned safely. In the case of CR = Si or CR = Sj , we only need to compare the
according MinDists.

As the computation of the roots of gSi,Sj ,BR(ϕ) is quite expensive, we calculate the
extrema by examining the roots of g′Si,Sj,BR(ϕ) as defined in Equation (7) and test
them on opposite signs.

g′Si,Sj,R(ϕ) = 2 CRSi rR sin(ϕ) − 2 CRSj rR sin(ϕ − δ) (7)

g′Si,Sj,R(ϕ) = 0 ⇒ ϕ1,2 = arctan
(

CRSi sin(aπ + δ)
CRSj cos(aπ + δ) − CRSi

)
(8)

with a = 0, 2

Obviously, there are only two possible roots ϕ1 and ϕ2 in the domain [0; 2π[ for g′Si,Sj ,R
because the numerator can only be zero if sin(aπ + δ) = 0. Using the signum function,
we can now differ between the following cases:

1. sgn(gSi,Sj ,BR(ϕ1)) = sgn(gSi,Sj ,BR(ϕ2)) :
⇒ ∀ϕ : gSi,Sj,BR(ϕ) �= 0 and thus ∀ϕ : dϕ(Si, BR) �= dϕ−δ(Sj , BR).
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Fig. 3. Distance functions dϕ(Si, BR), dϕ(Sj , BR) of two candidate points Si and Sj with
δ = �Si CR Sj

2. sgn(gSi,Sj ,BR(ϕ1)) �= sgn(gSi,Sj ,BR(ϕ2)) :
⇒ ∃ϕ∈ [0; 2π[: dϕ(Si, BR) = dϕ−δ(Sj , BR).

Only case 1 allows one of the points to be pruned. If gSi,Sj ,BR(ϕ) > 0 for all ϕ, Si can
be pruned since its active region AR(Si) completely contains the active region of Sj .
Analogously, Sj can be pruned if gSi,Sj,BR(ϕ) < 0 holds.

Pruning Pages. In order to reduce page accesses, we now extend trigonometric pruning
to prune pages without accessing the page itself.

Lemma 2. Let BR be a query region, BS a page from the inner set, let S0 be a pruning
candidate for the query region BR and let δ be the angle �S0 CR CS . Then, BS can
be pruned if dϕ(S0, BR) < dϕ−δ(CS , BR) − rS , ∀ϕ ∈ [0; 2π[.

Proof. According to Sect. 4.2, a point S can be pruned if gS,S0,BR(ϕ) > 0 ∀ϕ ∈
[0; 2π[. Since every point S ∈ S is at most rS away from the center CS , the following
condition holds because of the triangle inequality:

dϕ−δ(CS , BR) − rS ≤ dϕ−δ(S, BR), ∀S ∈ S.

Therefore, all points S ∈ S and thus the page bounded by BS can be pruned if
dϕ(S0, BR) < dϕ−δ(CS , BR) − rS , ∀ϕ ∈ [0; 2π[ (9)

�
Figure 4 illustrates the initial situation with a query region BR, a pruning candidate
S0 and a page BS containing points of the inner set. I is a point on the surface of
BR. The page BS can be safely pruned if its distance to any point I is larger than
S0I . Since we have a region BS rather than a point S, we use MinDist(I, BS). The
decision whether a page BS can be pruned, is based on the existence of at least one ϕ
for which dϕ(S0, BR) ≥ dϕ−δ(CS , BR)− rS . As in the previous section, we compute
the maxima of the difference of the two functions:

gS0,BS ,BR(ϕ) = dϕ(S0, BR) − (dϕ−δ(CS , BR) − rS) (10)

⇒ gS0,BS ,BR(ϕ) = gS0,CS ,BR(ϕ) + rS (11)

⇒ g′S0,BS ,BR(ϕ) = g′S0,CS ,BR(ϕ) (12)
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Fig. 4. Distances of the candidates S0

and BS to I for BR
Fig. 5. Geometric interpretation of the pruning
criterion. Pj can be pruned, if M does not inter-
sect the circle around CS .

Subtracting rS from dϕ−δ(CS , BR) causes the distance of CS to the intersection point
I to be translated along the y-axis by −rS units. Hence, the locations of the extrema of
gS0,BS ,BR(ϕ) are not different from the extrema of gS0,CS ,BR(ϕ) such that g′S0,BS ,BR(ϕ)
can be used for calculating the values of ϕ for testing (9) on whether or not the page
BR can be pruned.

Geometric Interpretation. A computationally cheaper and thus faster result can be
achieved by using the following geometric interpretation which is illustrated in Fig. 5:
Let Pi be a pruning candidate, let CS be the center of a page BS with radius rS and
let Pj be a point to be tested on whether it can be pruned or not. Then, Pj can be
pruned if dϕ(Pi, BS) < dϕ(Pj , BS) (as shown in 4.2). This condition is fulfilled if
Pi, Pj and PS build an isosceles triangle 	Pi Pj PS , with [Pi, PS ] and [Pj , Ps], rep-
resenting the two sides with equal length, so that PS is located on the perpendicular
bisector M of [Pi, Pj ]. If M does not intersect the circle around CS , there is no PS for
which PiPS = PjPS holds. Thus, Pj can be pruned if CSPM > rS with PM being
the orthogonal projection of CS onto M (cf. Fig. 5). CSPM can be calculated by Equa-
tion (13). Obviously, no additional coordinates than the ones given by Pi, Pj and CS

are needed.

CSPM =
−CSPi

2
+ CSPj

2

2PiPj

(13)

Picking Pruning Candidates. In this section, we explain which points should be se-
lected as pruning candidates. Generally, points close to the query region result in a
smaller active region, so that these points are preferable. The active region is further
reduced by comparing a point Sj to all pruning candidates Si ∈ Scand, since the result-
ing active region is equivalent to an intersection of the active regions of all Si. Hence,
more candidate points result in fewer page accesses at the price of an increasing num-
ber of distance calculations. The largest benefit is achieved if the pruning candidates
are equally distributed around CS because the resulting active region is minimized in
this case.

Extending the idea of trigonometric pruning from ANN to AkNN is very simple:
A point or page can be pruned if it is pruned by at least k pruning candidates. Hence,
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at least k pruning candidates have to exist before defining a search space smaller than
the whole space IRn. Resulting from these findings, we define the parameter ε, which
controls the maximum number of pruning candidates that should be considered for
pruning elements from S, by setting this number to k · ε.

5 The Trigonometric Pruning Algorithm

Algorithm 1 gives an overview of our query algorithm. In the following, we explain the
employed data structures and describe the complete algorithm. Finally, we propose an
extension for employing multiple pruning techniques.

5.1 Data Structures

Algorithm 1 requires the following data structures:
PQ: A priority queue handling all yet unconsidered pages for a query set R ⊆ R.

PQ is organized as a heap with the element with the smallest MinMinDist (extension of
MinDist for two pages) to the query region on top.

RES HT: A hash table storing one priority queue for each query point. Each queue
has a capacity of k and maintains the k-nearest neighbors for its query point. The call
RES HT.add(R, Si) adds Si to the priority queue of R.

PCLIST: A list containing the pruning candidates, ordered by their MinDist to the
query region. The maximum size of the list is defined by ε · k with k being the amount
of nearest neighbors that should be computed and ε ≥ 1 being an adjustable parameter.
The larger ε is chosen, the more pages can be pruned (as PCLIST grows and provides
more pruning power) which saves time consuming I/O-accesses at the cost of distance
calculations.

5.2 The AkNN Algorithm

Our algorithm starts with grouping the query set R into compact spherical approxima-
tions. We use BIRCH [14] to produce a list of compact regions in linear time and orga-
nize them in a list. This way, the resulting query regions can be described by compact
hyper spheres having a given maximum radius. Since the pruning area also decreases
with the radius of a query region, we use the algorithm proposed in [15] to calculate the
approximate smallest enclosing ball (SEB) for the data content of each region. Com-
puting SEBs costs extra CPU time, but it pays off fast with growing |S|, as the resulting
SEBs’ radii are about 10% - 20% smaller than the radii of the original spheres.

The main algorithm now receives a list of query regions from R and the number of
nearest neighbors k as input and proceeds as follows:

The query regions are processed successively and independently from each other.
First, a new query region is taken from the list. Afterwards, a list for storing prun-
ing candidates (PCLIST) and a priority queue (PQ) are initialized and the root of the
SS-Tree storing S is put into the page list PQ. The pages in PQ are ordered by the Min-
MinDist to the currently processed query region (BR). The SS-Tree is then traversed
in a best-first manner, as proposed by Hjaltason and Samet [16]. This is done by al-
ways removing the first node from the priority queue PQ processing it and putting all



512 T. Emrich et al.

Algorithm 1. The AKNN algorithm

AkNN(LISTqueryRegions, SSTREEinnerSet, k, RES HT)
0 : forall R ∈ LISTqueryRegions do
1 : PCLIST := new PCLIST(ε · k)
2 : PQ := new PQ()
3 : PQ.add(SSTREEinnerSet.root, -1)
4 : while PQ.hasElements() do
5 : if PCLIST.size = ε · k and PQ.smallestDistance > PCLIST.MaxDistk
6 : break
7 : node := PQ.removeFirst()
8 : if not canBePruned(node, R, PCLIST)
9 : forall child ∈ node
10 : if child is an inner node // i.e. a BS from the SS-Tree
11 : PQ.add(child, MinDist(child, R))
12 : else // i.e. an Si ∈ S
13 : if not canBePruned(child, R, PCLIST)
14 : PCLIST.add(child)
15 : forall queryPoint ∈ R // i.e. an Ri ∈ R
16 : RES HT.add(queryPoint, child)

child nodes (if available) back to PQ, as long as the queue is not empty or the stop-
ping criterion is triggered: The search for other kNN-candidates can be stopped if the
MinMinDist of the current node to R is larger than the MaxDist of the k-th pruning
candidate. In that case, the node and all its successors in the PQ can be pruned (cf.
Sect. 4.1).

If the algorithm cannot be terminated in this way, it tests whether the current node
can be pruned. This is done by the canBePruned() function, which prunes the node or
point w.r.t. the pruning techniques introduced in Sect. 4.2. If the node cannot be pruned
and its children are nodes of the SS-Tree, they are all added to the page list PQ. If the
children are data points, another test on whether or not they can be pruned ensues. If the
test is negative, they are added to the PCLIST and to all priority queues (via RES HT)
of query points contained in R. Let us note that it is possible that the points will be
eliminated from both data structures at a later point of time.

5.3 Combining Trigonometric Pruning with Other Criteria

In this section, we will discuss the use of different pruning criteria to further increase
the performance. Even if employing additional pruning techniques causes additional
computational cost, the cost is negligible if the combination yields a significant de-
crease of the search space and thus saves page accesses. In order to maximize the effect
of combining different pruning criteria, it is important that the combined criteria per-
form always at least as well as one criterion alone. In our case, this can be achieved
when trigonometric pruning (TP) is combined with a pruning criterion that also defines
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Fig. 6. The gray shaded area shows
the active region used by trigonomet-
ric pruning (see Definition 6) which
results from the intersection of the
three pruning areas of P1, P2, P3. The
dashed line [P1, P4] indicates the
GlobalDist(BR, S) which defines the
pruning area (dashed outer circle) used
by BNN in case of a 1NN query.

a pruning region so that the intersection of both
regions can be used as a new pruning region.

In our experiments, we combine TP with
BNN [9] which turned out to be one of the
best pruning criteria we examined. The fact that
the original BNN algorithm is proposed to be
applied on rectangular page regions is not a prob-
lem, as it can be transferred to spherical page
regions, such that BNN can be applied to the
SS-Tree as well. The authors of BNN propose to
query the inner set S with compact groups BRi ∈
R whereas each Ri ∈ BRi organizes its NNs
and according maximum-NNDist(Ri, S). The
largest value of NNDist(Ri, S) of all Ri ∈ BRi

defines the GlobalDist(BRi, S) of BRi. Pages
S can then be pruned if MinDist(BRi,S) >
GlobalDist(BRi, S) as S cannot contain a NN
for any Ri ∈ BRi. The disadvantage of the
BNN algorithm compared to TP is that the spa-
tial relation to other NN candidates is ignored.
This can lead to the case shown in Fig. 6 where
GlobalDist(C, S) degenerates and converges to
MaxDist in the worst case.

6 Experimental Evaluation

In the following, we outline the evaluation process of the methods suggested in this
paper. We compare them w.r.t. to I/O cost to the state-of-the-art methods BNN [9] and
MBA [6]. In order to make the approaches competitive for data sets of larger dimen-
sionality, we adapted the algorithm to the X-Tree [17] and the SS-Tree [5] instead of
using an R-Tree [10]. We display results for the following algorithmic settings:

– MP: AkNN-algorithm, using MaxDist on the SS-Tree
– XBNN: BNN, using S indexed in an X-Tree
– SSBNN: BNN, using S indexed in an SS-Tree
– TP: AkNN-algorithm, using TP (see Algorithm 1)
– TP+SSBNN: AkNN-algorithm combining TP and BNN in an SS-Tree
– MBA: MBA algorithm [6]

We have evaluated the algorithms on the following three real-world data sets, which
were also used in the evaluation of [6]:

– TAC: Twin Astrographic Catalog Version 2 [18]: a library of stellar coordinates
resulting in a set of 705 099 two-dimensional star representations.

– FC: Forest Cover Type data set, retrieved from the UCI KDD repository [19]:
581 012 data points with 10 real-valued attributes, each representing a 30x30 meter
square of a forest region.
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– COREL: Corel color histograms, which are also available at the UCI KDD reposi-
tory [19]. They consist of 32-dimensional color histograms for 68 040 images.

For all experiments we used a third of the data sets as outer set, the rest as inner set.
The page size was set to 1KB for TAC and 4KB for FC and COREL.

All experiments were run on a 64bit Intel R© XeonTMCPU (3GHz) with 16G RAM,
under Microsoft Windows 2003 R2, with Service Pack 1.

6.1 Results

In this section, we present the results of our experimental evaluation for the named al-
gorithms and data sets. Additionally, we will describe the effect of the employed param-
eters on the query performance. Due to space limitations, we cannot display all settings
for all data sets, but we give representative examples of the parameters involved.
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Fig. 7. Comparison of MBA, XBNN
and TP for k = 10. The figure displays
the sum of IO and CPU times for one
AkNN query.

Comparison to Other Approaches. In order to
compare the different approaches, we performed
all-10-NN queries with the mentioned AkNN-
algorithms on the three data sets and measured
the CPU-time and the number of page accesses.
To combine these two measures, we considered
each logical page access with 8ms. Fig. 7 illus-
trates that TP and BNN perform orders of mag-
nitudes better than MBA on all used data sets
in matters of the overall runtime. Similar results
were obtained with the parametric settings used
for the experiments described in the following
paragraphs. Therefore, we excluded the results
of MBA in the further diagrams because the re-
quired scaling would conceal interesting effects.

Dependency on k. In Fig. 8 we compare the named algorithm w.r.t. the number of
retrieved neighbors k on all three data sets. Though most methods compare their per-
formance on rather small values of k, larger values of k are often of large practical
relevance. In the context of search engines, it is quite common to provide large result
sets which are ordered with respect to the similarity to the query. Since the perfor-
mance mainly relies on the I/O operations, only page accesses are measured. While TP
and BNN perform comparable for smaller values of k, TP clearly shows a better per-
formance for larger values of k. For all data sets, our new combined approach (TP +
SSBNN) performed significantly better than all compared approaches.

Dependency on the Choice of ε. The ε parameter regulates the number of pruning
candidates and thus, it is the most important parameter for tuning the AkNN-algorithm
based on TP. Larger ε cause a smaller search space by the price of an increased number
of distance calculations. In Fig. 10, we summarize the effect of ε on the performance. As
expected, the number of distance calculations grows with increasing ε due to the larger
number of pruning candidates. Contrarily, more pruning candidates lead to a tighter
pruning effect, and thus the number of page accesses is reduced when increasing ε. For
all experiments in this paper we set ε = 5.
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Overall Runtime Performance. The direct comparison in matters of runtime is shown
in Fig. 9 and yields the following insights:

As most operations in the field of databases, the AKNN operation is I/O bound,
as CPU time is mainly consumed by distance calculations and represents only a small
portion of the overall performance.

Comparing MP and TP shows that TP reduces the page accesses by 30% - 40% in
contrast to MP. This is a consequence of the reduction of the search space as shown in
Fig. 2. This effect is very stable over all data sets, suggesting its independence from the
amount of dimensions.

The implementations of BNN on different underlying index structures (XBNN and
SSBNN) show that the SS-Tree is at least comparable to the X-Tree in the performed ex-
periments. Only for the 32-dimensional COREL data set, the X-Tree leads to a slightly
better performance. Considering that the SS-Tree is not as suitable for large dimensions
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as the X-Tree, these results demonstrate that spherical page regions are well-suited for
the AkNN problem.

The effect of TP compared to BNN is dependent on the data set. On the TAC data
set, TP clearly outperforms SSBNN by about 30%. On the FC and the COREL data set,
both pruning criteria perform similar and are both outperformed by the combination of
TP and SSBNN which reduces the costs by 8% − 15%.

This demonstrates that the proposed combination nicely compensates the additional
computation costs and that the better approximation of the search space can signifi-
cantly decrease the amount of page accesses.

CPU Consumption. As seen in Sect. 6.1, all AkNN-algorithms are clearly I/O bound.
However, through the use of buffers and caching strategies, the page accesses can be
dramatically reduced. Therefore, it is important to show that TP and TP+SSBNN apply
only a negligible computational overhead compared to SSBNN. The results shown in
Fig. 11 support this claim. Only at the high-dimensional COREL data set, SSBNN
is significantly faster with respect to CPU-time. Let us note that also in the presence
of buffers, the main challenge for AkNN-algorithms is to reduce the I/O operations.
Therefore, it is often beneficial for the overall runtime to reduce I/O operations by the
cost of CPU-time.

1,5

2

2,5

pa
ge

ac
ce
ss
es

[m
io
]

Hilbert

BIRCH

0

0,5

1

TAC FC COREL

p

Fig. 12. Grouping procedures of the outer set,
validated via XBNN

150

200

250

300

ag
e
ac
ce
ss
es

[t
ho

u] SSBNN

TP

TP+SSBNN

0

50

100

2 3 4

pa

dimension

Fig. 13. A-10-NN queries for synthetic clus-
tered data sets of varying dimensions

For all our compared methods it is necessary to group the outer set R into compact
query regions. In [9], the authors use a grouping approach based on a bulk-load using
the Hilbert order with a maximum threshold for the MBR volume and group size. They
argue that this procedure runs in linear time and leads to better page approximations
than, for instance, the data pages resulting from indexing R like S. This grouping pro-
cedure can also be transferred to spherical page approximations. However, we chose
BIRCH [14], which is a clustering algorithm with linear runtime. Even though this pro-
cedure uses spherical page approximations, we experienced that the groupings result-
ing from BIRCH show a better suitability even for the AkNN-algorithm based on the
X-Tree (XBNN) than those resulting from Hilbert grouping. Fig. 12 shows the experi-
ments on the three data sets for the two grouping algorithms. The Hilbert groups have
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been created by limiting the group volume to the average data page size of the inner
set’s X-Tree. The parametric setting of BIRCH has been chosen such that the number
of groups is comparable to the Hilbert grouping. For the algorithms based on spheri-
cal page approximations, the results showed even more evidence for using BIRCH as
grouping algorithm.

Synthetic Data Sets. We have also compared SSBNN, TP and TP+SSBNN on several
synthetic data sets. Fig. 13 displays the results of A-10-NN queries on clustered datasets
of varying dimensions. The 3000 clusters in the example data set of size 600,000 have
been generated using a Gauss-like process: For each cluster a centroid has been sam-
pled from a uniform distribution. The standard deviation used for generating the cluster
points was chosen uniformly for each dimension. The experiments show that the com-
bination of TP and SSBNN outperforms TP by approximately 10% and that it outper-
forms SSBNN by 20 to 30%. We note that this effect is stable for all dimensions – also
for dimensions not displayed here due to space limitations.

7 Conclusions

In this paper, we introduced a novel approach for processing AkNN queries. Unlike pre-
vious approaches, our method is based on spherical page regions and thus, we apply it
using an SS-Tree. To exclude pages from the search as early as possible, our algorithm
introduces trigonometric pruning which allows to consider an asymmetric pruning area
around a given query approximation. We propose a new AkNN algorithm which is
based on this new pruning method. Afterwards, we further extend AkNN processing to
employ multiple pruning criteria. Thus, it is possible to construct even tighter bounds
around the remaining search space and thus to further decrease the number of neces-
sary page accesses. In our experimental evaluation, we demonstrate that our proposed
methods decrease the all-over runtime as well as the page accesses necessary to process
AkNN queries on three real-world data sets. Especially for larger values for k, our new
method considerably improves the query times.

The application of our pruning principle on spherical page regions allows a simple
computation. In future work, we aim at extending the principle of trigonometric prun-
ing to non-spherical page regions. We believe that transferring the principle to other
approximations, such as MBRs, will open up new possibilities. Additionally, we inves-
tigate the transfer of our approach to other problems involving similarity search.
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Abstract. Similarity search and similarity join on strings are important
for applications such as duplicate detection, error detection, data cleans-
ing, or comparison of biological sequences. Especially DNA sequencing
produces large collections of erroneous strings which need to be searched,
compared, and merged. However, current RDBMS offer similarity oper-
ations only in a very limited and inefficient form that does not scale to
the amount of data produced in Life Science projects.

We present PETER, a prefix tree based indexing algorithm supporting
approximate search and approimate joins. Our tool supports Hamming
and edit distance as similarity measure and is available as C++ library,
as Unix command line tool, and as cartridge for a commercial database.
It combines an efficient implementation of compressed prefix trees with
advanced pre-filtering techniques that exclude many candidate strings
early. The achieved speed-ups are dramatic, especially for DNA with
its small alphabet. We evaluate our tool on several collections of long
strings containing up to 5,000,000 entries of length up to 3,500. We com-
pare its performance to agrep, nrgrep, and user-defined functions inside
a relational database. Our experiments reveal that PETER is faster by
orders of magnitudes compared to the command-line tools. Compared
to RDBMS, it computes similarity joins in minutes for which UDFs did
not finish within a day and outperforms the built-in join methods even
in the exact case.

1 Introduction

Similarity search and similarity join on string data has become a topic of inter-
est in the past years [4,10]. Applications arise in duplicate detection [15], error
correction [13] and data cleansing [5], to name only a few. They are also of ut-
termost importance in the Life Sciences. The characteristics of all organisms are
coded in their genomes, which can be represented as a very large string over an
alphabet of four letters. Approximately searching DNA sequences is important
in virtually all fields of modern genomics. In this paper, we will use ESTs as our
running example. ESTs(Expressed Sequence Tags) are short DNA sequences with
lengths mostly in the region of 300 to 800 bases that are commonly used to iden-
tify genes and their localization on a chromosome. However, to be cost-effective,
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ESTs are obtained by a single sequencing pass which yields in an estimated er-
ror rate of 1% [9]. Thus, few differences in ESTs often are simply due to errors
created by the sequencing process, which implies that searching and joining EST
data sets should always be carried out approximately rather than exactly. Since
the EST sets that are considered go in the millions1, efficient execution of such
similarity operations is crucial.

A large number of tools has been developed by the bioinformatics community
to speed-up similarity search [2,20]. Almost all of them focus on computing
local alignments [6] and use heuristics to achieve performance – at the cost
of accuracy. In contrast, we aimed at developing an algorithm that supports
global alignment (i.e., comparison of entire strings and not of substrings) and
that is exact. Furthermore, we want our algorithms to be operations inside a
relational database. The reason for this decision is that advanced analysis of
sequences often depends on the availability of additional information (such as
gene function, genomic annotation, biological pathways etc.), which nowadays
is mostly maintained in RDBMS [11]. Furthermore, our intention is to provide
a universal data structure for similarity operations not restricted to the Life
Sciences.

In this paper, we present PETER, an indexing algorithm for scalable approxi-
mate search and approximate join operations based on Hamming distance or edit
distance. PETER builds on a compressed prefix tree. One advantage of prefix
tree indexing is that the complexity of search queries only depends on the depth
of the tree, i.e., the maximal length of the indexed strings, and not on the num-
ber of indexed strings. Joins between sets of trees can be implemented efficiently
by computing the intersection of two prefix trees. However, it is not trivial to
sustain these advantages when moving from exact to similarity operations [16].
To this end, we refine algorithms for similarity search in prefix trees with var-
ious pruning and filtering techniques. Since we focus on retrieving very similar
strings, these reduce the search space significantly; this focus also allows us to
use a special alignment method (k-banded alignment) which is much faster than
normal edit distance computation. We show that our tool outperforms the Unix
command line tools agrep and nrgrep by magnitudes and also show that it en-
ables efficient similarity based search and join queries on large string collections
inside a RDBMS. At the downside, a restriction of our tool is that it is only
efficient for searching highly similar strings; however, this is the predominant
requirement in most applications we are aware of.

Compressed prefix trees [16], k-banded alignment [3] and the filtering tech-
niques we apply [1,4,16] have been published before. However, this is the first
work that combines these different ideas to speed up similarity search into a
single, homogeneous algorithm supporting both similarity search and similarity
joins. It is also the first work we are aware of that persistently integrates such a
method into an RDBMS, thus offering its capabilities to SQL users.

1 The largest collection of publicly available EST sequences is dbEST [14] with more
than 60 million EST sequences from 1745 organisms as of May 2009.
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Our paper is structured as follows. Chapter 2 contains an introduction to our
data structures and to similarity search in general. In Chapt. 3 we describe our
techniques for efficient similarity operations on compressed prefix trees. Chapter
4 gives details on the implementation. We present experimental results in Chapt.
5. Related work is discussed in Chapt. 6 and Chapt. 7 concludes the paper.

2 Preliminaries

Let Σ be an alphabet (we will usually use {a, c, g, t}). We use s, with subscripts
if required, to denote strings in Σ∗. Let n = |s| be the length of s. A substring
of s, denoted by s[i . . . j], starts at position i and ends at position j. We call
s[1 . . . j] prefix, s[k . . . |s|] suffix and s[i..j], (1 ≤ i ≤ j ≤ |s|), infix of s. Any infix
of length q is called q-gram. For a fixed q, s contains m = n − q + 1 q-grams. A
pair (i, s[i, . . . , i + q − 1]) is called positional q-gram [18].

2.1 Similarity Measures

Similarity-based operations must be based on a concrete similarity measure.
PETER supports Hamming distance and edit distance.

Definition 1 (Hamming distance). The Hamming distance dhd(s1, s2) of two
strings s1, s2 of equal length is the number of mismatching characters in s1 and
s2: dhd(s1, s2) = |{i|s1[i] �= s2[i]}|. We say two strings are within Hamming
distance k if dhd(s1, s2) ≤ k.

Obviously, computing the Hamming distance of two strings with |s1| = |s2| = n is
possible in O(n). However, Hamming distance is only defined for strings of equal
length, and also an inappropriate measure in most bioinformatics applications.
There, we are mostly interested in the minimal number of operations that turn
one string into the other, called the edit distance (or Levenshtein distance).

Definition 2 (Edit distance). The edit distance ded(s1, s2) of two strings
s1, s2 with |s1| = n, |s2| = m is the minimal number of insertions, deletions,
or replacements of single characters needed to transfrom s1 into s2. We say two
strings are within edit distance k, if ded ≤ k.

Using dynamic programming, the edit distance can be computed O(|s1| ∗ |s2|)
[13,19]. However, faster computation is possible when one is only interested in
highly similar strings. The k-banded alignment algorithm finds the edit distance
of two strings with edit distance of at most 2k in O(k ∗ max{|s1|, |s2|}).
Definition 3 (k-banded alignment). The k-band of an edit distance matrix
M is defined as: M [i, j] ∈ k-band ⇔ |i − j| ≤ k. If s1 and s2 are within edit
distance k, their optimal alignment path must lie in the k-band of M . Thus, all
cells of M that are not in the k-band can be ignored [3].
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2.2 Similarity Operators

There are various forms of defining similarity operator [13]. We support two such
operations: similarity search and similarity join.

Definition 4 (Similarity search). Given a string s, a set S of strings, and a
threshold k, ssearch(s, S) returns all s′ ∈ S for which d(s, s′) ≤ k.

Definition 5 (Similarity join). Given two sets S1, S2 of strings and a threshold
k, sjoin(S1, S2) returns all pairs (s1, s2), s1 ∈ S1, s2 ∈ S2 for which d(s1, s2) ≤ k.

As described before, we support Hamming and edit distance as distance function.
Note that both operations naturally also support exact search and exact joins,
simply by setting k = 0 for either distance measure. We will see in Chapt. 5 that
even exact joins on large collections of long strings are considerably faster with
PETER than using hash or merge joins.

2.3 Compressed Prefix Trees

Our fundamental data structure are compressed prefix trees [12], built on top
of a set of strings. Let R be a set of tuples (s, ID) where s ∈ Σ∗ and ID is a
unique identifier for s.

Definition 6 (Prefix tree index). A compressed prefix tree index T for R is
a rooted, directed tree that meets the following conditions:

1. Every node x is labeled with a sequence of characters ci ∈ Σ of length l ≥ 1.
The labels of any two children y, z of the same node x start with a different
character.

2. Every string s ∈ R maps to some node x ∈ T such that the concatenation of
all labels from T ’s root to x exactly is s. We call x string node and assign
the corresponding ID to x. If a particular string occurs several times in R,
all corresponding IDs are assigned to x.

3. (Compression of suffixes). Let x be the root of a subtree formed by a linear
chain of children x1, . . . , xm, where solely xm is a string node and has no
further children. Then, x, x1, . . . , xm are merged to a single node x′ whose
label is the concatenation of their labels. The ID of xm is assigned to x′.

4. (Compression of infixes). Let x be the root of a subtree formed by a linear
chain of children x1, . . . , xm, where no node is a string node and only xm

has more than one child. Then, x, x1, . . . , xm−1 are merged to a single node
x′ whose label is the concatenation of their labels. �

Conceptually, nodes may have labels of arbitrary length. Technically, we store
labels of string nodes without children (e.g., unique suffixes in R) in two parts:
A small part (usually 16 characters) is stored inside the node. The rest of the
suffix is stored in an extra file (see Sect. 4.2 for details). Furthermore, we attach
further information to every node, namely minimum/maximum string lengths
and a frequency vector (see Sects. 3.2 and 3.3).
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Fig. 1. Compressed prefix tree. Grey nodes are string nodes. Min/max specify mini-
mum and maximum string lengths, fv denotes the frequency vector (see text).

Figure 1 shows an example of a compressed prefix tree. It has simple nodes
(e.g., “A”), a compressed infix node (“CTG”), and a compressed suffix node
(“TGCCTGGTA”).

3 Similarity Operations on Prefix Trees

To our knowledge, similarity search in prefix trees based on pre-order traversal
was first studied in [16]. This method computes the similarity for a given pattern
p to all strings indexed in a prefix tree T while traversing T . While this does not
change the worst-case complexity of searching, large savings are achieved when
the indexed strings share many prefixes as these prefixes need to be compared
only once to a prefix of the pattern. Thus, the method is very well suited for
small alphabets and for very large string collections, as these properties increase
the number and average lengths of shared prefixes.

Shang et al. described shared prefix analysis in [16]. In the following, we
very briefly repeat the general idea but concentrate on our various extensions
which greatly increase effectiveness: switch from global alignment to k-banded
alignment, addition of filtering techniques for further search space pruning, and
extension of the method to also allow similarity joins. Filtering is performed
at two stages. For edit distance, we use a combination of length and frequency
filtering to prune whole subtrees. Whenever we reach a leaf, we apply a q-gram
pre-selection to suffixes. For Hamming distance, we only use length and frequency
filtering.

All extensions are described below. For space reasons, we focus on similarity
search and only briefly mention changes necessary to compute similarity joins.
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Consider a compressed prefix tree T for a set of strings R. Let p be a search
pattern and S another indexed set of strings. Let t be a node in T . By slight
abuse of notation, we use t both for the node and for the concatenation of
labels from root to the node t. Let k be a user-defined threshold for similarity
operations.

3.1 Shared Prefix Pruning

Clearly, t represents the shared prefix s[1 . . . |t|] of a set of strings all of which
must be descendants of t. Note that both Hamming and edit distance to p can
only grow with growing prefix length. Thus, the following holds:

1. Hamming-search: If dhd(t, p[1 . . . |t|]) > k, then all strings below t can be
pruned. Thus, traversal does not descend further from t.

2. Hamming-join: Both trees, T and S, are traversed simultaneously. Only
nodes with |s| = |t| need to be compared to each other. Let s ∈ S have
the same label length as t. If dhd(t, s) > k, then the subtrees starting at t in
T and s in S can be pruned.

3. Edit-search: Let p be aligned horizontal and t vertical in the k-banded dis-
tance matrix. All strings in the subtree below t share the same prefix t and
thus also share rows 0 to |t| in the matrix. If row |t| contains only values
larger than k, then no string below t can have a smaller edit distance to p.
This subtree can be ignored for further search.

4. Edit-join: Again, all strings below s share the same prefix. The same argu-
ments as for search hold, except that now we compare to a shared prefix in
S instead of a single p. Additionaly, the subtree also can be pruned if any
row contains only values larger than k.

3.2 Length Filtering

Trivially, t is a candidate for p regarding Hamming distance only if it is of equal
length as p. With respect to edit distance, t and p are worth examining only if
|t|−|p| ≤ k. To quickly check this property, we store two additional attributes at
every node - the minimum (min) and maximum (max ) string length of all strings
below that node. If (|max(t)+k| < |p|)∨(|min(t)−k| > |p|) holds, then no string
below t can be edit-similar to p. Similarly, if (|max(t)| < |p|) ∨ (|min(t)| > |p|)
holds, no string below t can be Hamming-similar to p. Thus, traversal will not
descend further. The same argument applies conceptionally to similarity join,
when p is replaced with a shared prefix in the joined tree S.

3.3 Frequency Distance Filtering

Aghili et al. [1] proposed frequency distance based filtering to reduce candidate
sets in similarity searching on strings. Consider a string s ∈ Σ∗. The correspond-
ing frequency vector fv(s) of s consists of |Σ| components, where component i
counts the number of occurrences of xi ∈ Σ in s.
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Definition 7 (Frequency distance). For {s1, s2} ∈ Σ∗, the frequency dis-
tance fD(s1, s1) is the minimum of the necessary number of applications of +1
or of −1 needed to transform fv(s1) into fv(s2).

Example 1. Consider s1 = acacctccgatt, s2 = acacatccgaaa with Hamming dis-
tance dhd = 3 and edit distance ded = 3. The corresponding frequency vectors
for s1, s2 are fv(s1) = [3, 5, 1, 3] and fv(s2) = [6, 4, 1, 1]. To transform fv(s1)
into fv(s2), we need to add 3∗(+1) for character a, 1∗(−1) for c, and 2∗(−1) for
t. The frequency distance sums up to fD(s1, s2) = min(|3∗(+1)|, |3∗(−1)|) = 3.

Actually, frequency distance is a lower bound to Hamming and to edit dis-
tance [1]. Thus, evaluation of frequency vectors gives a third method to stop
traversal of the index tree. We prune a subtree starting at t, if fD(t, p) − (|t| −
|p|) > k on both similarity search settings. Extension to join is straight-forward.

3.4 Q-Gram Filtering

Indexing methods based on q-grams are well-known to restrict search spaces
efficiently for edit distance operations. They take advantage of the observation
that two strings are within a small edit distance if they share a large number of
q-grams [17]. Actually, the number of matching q-grams acts as another bound
to edit distance [4].

Definition 8 (Mismatching q-grams). Let Qs1 , Qs2 be sets of positional q-
grams of s1 and s2, respectively. s1 and s2 are within edit distance k, iff |Qs1 ∩
Qs2 | ≥ max(|s1|, |s2|)−1−(k−1)∗q. A string s1 is not within edit distance k to
s2, if Qs1 contains at least |Qmis| = (|s1|−q+1)−(max(|s1|, |s2|)−1−(k−1)∗q)
positional q-grams that are not contained in s2.

The choice of q commonly depends on the average string length l. In this work,
we follow [13] and use q = log|Σ|(l). Unlike [4], we do not use q-grams for index-
ing, but for suffix pre-selection. As shown in Fig. 2, nearly 90% of all indexed
strings in our evaluation data set have large, unique suffixes. Determining the
k-banded edit distance for the whole string needs m ∗ (2k + 1) computations
for the suffix (with m smaller, but often not much smaller than |s|), whereas
the computation of positional q-grams for that suffix takes only m − q + 1 op-
erations. Thus, the costs for comparing mismatching q-grams are on average
smaller than computing the edit distance immediately. Therefore, when a leaf
with suffix s[x . . . |s|] of length m is reached, we compute all positional q-grams
for this suffix. For similarity searches, we also extract the suffix of length m from
the search pattern and evaluate Qmis on both sets. For approximate joins, we
evaluate Qmis only if we have reached a suffix leaf in both relations. We do not
apply q-gram filtering to Hamming distance queries as the costs for building and
evaluating q-grams are higher than comparing the suffixes directly.

4 Implementation

In this section, we describe implementation details on the primal functions of
PETER. All algorithms can be executed standalone from the command line, as
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operators inside a database, or as a library in other C++ programs. Our imple-
mentation allows for both indexing database relations and flat files. We provide
functionality for index building, searching, and insertion, deletion or modifica-
tion of indexed strings. PETER also contains an index optimization routine that
physically rearranges the trees and the suffix files in order to decrease the num-
ber of disk page accessions during tree traversal. This method should be called
after extensive changes to the index and the string set to prevent index degrada-
tion. Next to approximate search and join operations, we support exact searches
and joins as well as range queries, the SQL ’LIKE’-operator and prefix-based
searches.

4.1 Algorithms

Search. Algorithm 1 shows the pseudocode for similarity searching in a prefix
tree index. PETER essentially performs a depth-first traversal of the prefix tree
applying all pruning techniques presented in Chapt. 3. Before descending from
a node, we apply length and frequency filters. We also prune if we exceed the
allowed distance threshold. In case of edit distance searches, we check for every
reached string node whether the number of mismatching positional q-grams ex-
ceeds Qmis. The function getDistance checks a flag whether a Hamming or edit
distance search is performed and computes the new distance. When a match
was found, the pair of matching EST objects (each pair consists of the ESTs
and their UIDs) is added to the result set. Finally, the result set is returned to
the user and by default printed to stdout.

Join. When using the join operator (see Algorithm 2) on two relations, con-
ceptionally the intersection of two trees is computed. Both index trees T and S
are traversed concurrently, such that the tree with less nodes is traversed first.
Tree sizes are checked at startup. Length and frequency filtering are applied as in
the search algorithm. Global variables are used to store the number of processed
characters for the currently expanded strings in both trees. If we reach a string
node in tree T (or S, respectively), we fetch the complete string represented by
this node and perform a call to the search function, with the string as pattern,
the remaining subtree S′ of S (T ′ of T ) and the current distance value as param-
eters. We continue the distance computation for the next untreated characters in
the string and S′ (T ′). The result set contains all pairs of matching EST objects
and is constructed through the search algorithm. Finally, it is returned to the
user and printed to stdout.

4.2 Index Structure

Our index structure is physically stored in two files, the prefix tree and a suffix
file. In the prefix tree file, all nodes are stored contiguously in pre-order arrange-
ment. Nodes may have variable size. Each one consists of a node id, information
on the node type (string node or not), its label, references to all children, max.
and min. lengths, and a frequency vector. If a node is a string node, it also



Prefix Tree Indexing for Similarity Search and Similarity Joins 527

Algorithm 1. searchTree(Node x, EST p, int k, int d)
1: if isLeaf(x) ∧ getEditDistance()∧!passesQGramFilter(x) then
2: return
3: end if
4: newDistance← getDistance(x, p, d)
5: if newDistance > k then
6: return
7: end if
8: if hasID(x) then
9: addMatchingESTsToResultSet(s[1 . . . x], p)

10: end if
11: for all children y of x do
12: if passesLengthF ilter(y,p, k) ∧ passFrequencyF ilter(y,p, k) then
13: searchTree(y, p, k, newDistance)
14: end if
15: end for

Algorithm 2. joinTree(Node x, Node y, int k, int d)
1: newDistance← getDistance(x, y, d)
2: if hasID(x) then
3: pattern← getString(1, x)
4: searchTree(y, pattern, k, newDistance)
5: else if hasID(y) then
6: pattern← getString(1, y)
7: searchTree(x, pattern, k, newDistance)
8: end if
9: for all children x’ of x do

10: for all children y’ of y do
11: if passesLengthF ilter(x′, y′, k) ∧ passesFrequencyF ilter(x′, y′, k) then
12: joinTree(x′, y′, k, newDistance)
13: end if
14: end for
15: end for

contains the respective ID; if the node maps to more than one ID, we store a
reference to an index-sequential file that contains all IDs instead.

String nodes also store the length of the remaining suffix and its prefix (of the
suffix). As explained previously, this suffix can be quite large; actually, those suf-
fixes form the bulk of the size of the entire data structure. We therefore decided
to store all but short prefixes of the suffixes in an extra file, which allows us to
keep the prefix tree itself in main memory even for very large string collections.
Actually, the tree file for TX (5,000,000 strings, see Fig. 2) has a size of 549
MB on disk and 943 MB when the prefix tree is kept in main memory. Suffixes
of the suffixes are stored in an external file referenced from string nodes. Suffix
accession follows the lazy evaluation paradigm both for q-gram evaluation and
character comparison: if a suffix node is reached, the internal suffix is examined
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first. External suffixes are only loaded when needed. Very often, this method
allows to take decisions without accessing the suffix file.

Insert operations to the index are executed sequentially. First, our insert al-
gorithm searches by depth-first traversing the index tree the appropriate insert
position for the new EST string. We update the values for min/max for all an-
cestors while descending. Existing nodes might be modified, all newly created
nodes are appended to the end of the index file. In case the index file gets too
fragmented, we manually launch an optimizing routine that rearranges the index
and suffix file in preorder accession.

4.3 Integration into RDBMS

We integrated our programs as a shared library into a commercial RDBMS (name
omitted) using its built-in extension capabilities. These include user-defined in-
dexes (used for prefix tree) and user-defined table functions necessary to imple-
ment similarity joins. Integrating user-defined functions and indexes consists of
two parts: The first part is the program code, compiled as a shared library and
saved at a specific position in the file system. The second part involves decla-
rations and definitions directly executed on the server, including a reference to
the library.

When index and query functions are accessed for the first time in a session, the
server determines the location of the shared library. A listener process invokes
a session-specific agent and passes over the call including procedure and library
name and any parameters, if present. The agent loads the library and runs the
desired function, that, in our case, in turn opens the index (and later on the suffix
file if required). Any return values are passed back via the agent. Throughout
the session, this agent remains alive, which implies that initialization costs for
the agent emerge only once.

However, only the code is kept in memory, while any data loaded during exe-
cuting of the call are discarded by the agent. Caching or buffering of user-loaded
data is not supported. This is a severe drawback of the extension mechanism,
since it implies that, in our case, the entire prefix tree is loaded again for every
single call of a similarity search. As we will see in the next Chapter, this method
incurs a large penalty on any user-defined index compared to the server’s build-in
methods.

5 Experiments

We use ESTs (see Introduction) to evaluate the performance of PETER both
for similarity and for exact operations (k = 0). To this end, we extracted a
subset from dbEST as of 28.05.2009. We fixed |σ| = 4 and removed all sequences
containing characters other than A,C,G or T. Figure 2 shows properties of the
sets we used during the evaluation. Ti consists of EST sequences from the i-th
dbEST archive, Tij consists of a subset j of randomly chosen EST strings from
Ti, TX consists of randomly chosen EST strings from the dbEST archives 20 to
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Set # EST
strings

avg.
string
length

min/max
length

# tree
nodes

# ext.
suffixes

T1 307,542 348 14/3,615 589,062 293,764
T2 736,305 387 12/3,707 1,482,709 689,590
T2a 368,152 382 12/2,774 711,632 352,872
T2b 184,076 385 22/2,774 349,329 177,846
T2c 92,038 383 25/2,774 171,964 89,198
T2d 46,019 381 28/2,774 84,954 44,716
T2e 23,009 373 31/ 878 42,375 22,366
T3 10,000 536 16/3,707 16,310 8,774
T X 5,000,000 359 14/3,247 10,478,214 4,834,231

Fig. 2. Left: Properties of EST sets. Right: Index creation (line) wrt. set size (bar).

26. We show results for varying numbers of indexed strings,for varying k, and for
each filter technique (see Chapt. 3) in isolation. Index creation and optimization
was performed in advance and is not included in the measured times (but see
Fig.2). We observed that the time for index creation grows, as expected, linear
with the number of indexed strings.

We compare the performance of PETER against two competitors: The Unix
tools command line tools grep, agrep, and nrgrep, and build-in or user-defined
functions inside the RDBMS. We also tried to compare to other recently pub-
lished methods, such as [5,21], but none of these is available for download. In
particular, we acknowledge that comparison against Unix command line tools
are not completely satisfactory, as our method first builds an index of the set
to be searched. Therefore, it is more suited for searching the same set of strings
multiple times. However, we will show that index creation time is leveraged
already for very few searches (see Section 4.3). Note that [16] also compared
against agrep.

All experiments were performed on a Pentium-M 740 processor with 2 GB
RAM. For each experiment, we report the average of ten runs.

5.1 Effect of Pruning Strategies

We evaluated the effects of length, frequency, and q-gram filtering individually
and in all possible combinations using sets T1 and T3. For search queries, we per-
formed searches for all EST strings taken from T3 in T1 with different similarity
thresholds. For joins, we computed T1 �� T3.

Search results are shown in Fig.3. Overall, frequency filtering did not lead to
significant runtime improvements. We suppose that this is caused by the small
alphabet which makes the compared vectors very small. Length filtering leads
to improvements for Hamming distance searches in the range of 5% for k = 1
growing up to 76% for k = 8. Looking at edit distance searches, length filtering
performed even better, with improvements in the range of 10% for k = 1 growing
up to 86% for k = 8. Interestingly, q-gram filtering in edit distance searches
improved the execution time significantly only for k = 1 (10%) and k = 3
(13%). But combining length and q-gram filtering for small k improves average
execution times in the range of 18% for k=1, for k = 2 up to 58% and 81%
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Fig. 3. Search execution time of p ∈ T3 with k ∈ {1, 2, 3, 8} in T1 wrt. filters (log-scale)

Fig. 4. Join execution time of T1 �� T3 with k ∈ {0, 1, 2, 3, 8} wrt. filters (log-scale)

for k = 3. There is also a clear tendency that runtime improvements achieved
by filtering increase with increasing similarity thershold, i.e., they are the more
effective, the more differences are allowed.

In terms of join algorithms, frequency filtering again only has a neglible im-
pact(see Fig.4). For joins on Hamming distance, we observed that length filtering
improved the join execution time from 18% (k = 0) up to 40 % (k = 3). For edit
distance joins, single q-gram filtering leads to improvements in the range of 50%
for k = 0. For growing k, standalone length filtering was more effective. Again,
speed-ups roughly correlate with allowed differences.

Overall, a combination of length and q-gram filtering seems to be the best
configuration. Therefore, in all following experiments with PETER we always
used length filtering for Hamming distance and a combination of length and
q-gram filtering for edit distance.

5.2 Performance of Search

We compared the execution times of PETER for Hamming and edit distance
for various tresholds to Unix command line tools. We used grep for k = 0,
and agrep and nrgrep for k ∈ {1, 2, 3, 8}, respectively. First, we performed
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individual searches for each pattern p ∈ T3 in the indexed EST set T1. When
searching with the Unix tools all searches were started to match only complete
strings to the given pattern. As agrep is bounded with a maximum pattern
length of 32 characters, we used nrgrep to handle longer patterns.

For exact search, we outperform grep significantly with a factor of 63 for
Hamming distance and a factor of 50 for edit distance scoring enabled. As shown
in Fig.6(a), the impact of the pattern length was negligible for exact searches
in all tested methods. Figure 5 contrasts the average execution times of inexact
searches to agrep and nrgrep. For very short patterns, we outperform agrep
with factors in the range of 640 for k = 1 up to 1063 for k = 8 on Hamming
distance and a factor up to 450 for edit distance constraints. When searching
with patterns of arbitrary length, we are up to 60 times faster than nrgrep for
Hamming distance and up to 45 times faster for edit distance.

We observed a small influence of pattern lengths with growing tresholds (data
not shown). Searching for patterns of lengths 200 to 600 took slightly longer than
searching for shorter or longer patterns. This is not surprising as strings with
lengths in this range make up most of all strings in T1. Searching with Hamming
distance constraints has always better response times than edit distance, in the
range of 5% (k = 0) to 65 % with growing k. This is caused by costs for initializing
and computing the edit distance matrix.

Even if we add the costs for index creation to the evaluation, PETER amor-
tizes quite fast. For example, if we run multiple Hamming distance (edit distance,
respectively) searches in T1 with k = 1, it takes only 10 (15) searches to outper-
form the cumulated runtimes of agrep. Compared to nrgrep, it takes 125 (105)
Hamming distance (edit distance) queries until PETER is profitable.

5.3 Performance of Similarity Join

We compared the execution time of a natural join on T1 �� T2i in PETER to
the Unix command join. All joins were highly selective even for large tresholds
as indicated in Fig.7. Since join expects sorted flat-files as input, we performed
a preprocessing step on the corresponding EST sets that is not included in the
execution time of join. We thought this to be fair, as index creation times
also are not included in the measurements with PETER. Join almost always

Fig. 5. Search in PETER vs. Unix tools for p ∈ T3, k ∈ {1, 2, 3, 8} (log-scale)
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(a) Search p ∈ T3 in T1 (b) Join T1 �� T2i, i ∈
{a, b, c, d, e}

Fig. 6. Avg. execution times for exact searches (log-scale) and joins, k=0

Join |A × B| |A �� B| |A ��hd B| |A ��hd B| |A ��ed B| |A ��ed B|
k = 0 k = 1 k = 3 k = 1 k = 3

T1 �� T2 226,444,712,310 299 514 841 941 2,552
T1 �� T2a 113,222,202,384 187 326 374 239 463
T1 �� T2b 56,611,101,192 128 214 236 152 301
T1 �� T2c 28,305,550,596 78 127 178 75 232
T1 �� T2d 14,152,775,298 42 71 91 46 165
T1 �� T2e 7,076,233,878 28 41 55 33 106
T1 �� T3 3,075,420,000 1,048 1,053 1,059 1,058 1,082
T2e �� T3 230,090,000 54 70 106 94 258
T1 �� TX 1,537,710,000,000 37 115 372 354 992

Fig. 7. Join cardinalities for Hamming distance (��hd) and edit distance (��ed) join

outperforms our algorithm with ded = 0. For Hamming distance dhd = 0 PE-
TER beats join if the joined sets differ in size with a factor of at least 1.7, as
presented in Fig.6(b). Both observations are not surprising since an exact join
on sorted input only requires to linearly scan both files. For approximate joins,
we are not aware of any Unix command line tool that could handle this problem.
Comparing edit distance to Hamming distance joins, the latter always performed
in a range of 30% to 60 % better, mostly dependent on the given treshold (see
Fig.8). We observe an exponential growth of join execution times with respect
to the treshold although the result sets don’t grow exponentially. The reason for
this is that the search space increases exponentially with growing k. While tree
traversal, PETER descends further as k grows and for every additional node,
that is reached in T , there are |σ| additional subtrees examined in S.

5.4 Performance of PETER Inside a RDBMS

We compared PETER’s performance against exact and similarity-based search
and joins inside the RDBMS. For searching, we performed single SELECT queries
on the B*-indexed relation T1 for each EST string in T3. At all times and for
different pattern length, the built-in SELECT-operator achieves better runtimes
than a prefix tree based search, see Fig.9(a). Factors vary dependent on the pat-
tern length, in a range of 2 (|p| ≤ 400) to 1.3 (|p| ≥ 800). There are mostly two
reasons for this result. First, the operations in the prefix tree index are handled
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Fig. 8. Similarity join in PETER for k ∈ {1, 2, 3} on T1 �� T2i, T1 �� TX (log-scale)

(a) Search (b) Join

Fig. 9. PETER vs. RDBMS built-in operators for k = 0. For result sizes see Fig.7

via the extension interface which produces overhead for every call. Second, the
extension interface does not allow caching of data. While the internal implemen-
tation uses the internal buffer pool of the database to cache the most important
parts of the B*-index, this is not possible for user-defined indexing. Given these
severe drawbacks, it is noteably that PETER is only so little slower. Although
the page cache of the OS significantly speeds up the response times of subsequent
queries on the command-line (25–30% speedup on avg.), we could not observe
this effect inside the RDBMS (5–8% speedup on avg.). This indicates that a
more tight integration into the database kernel could give a data structure like
PETER significant advantages over B*-indexes (for large sets of long strings).

Regarding joins, we computed T1 �� T2i as a Hash join and as a Sort-Merge
join and compared these results to PETER. Joins on the prefix tree index always
outperformed both Hash join (with factors between 1.5 and 4) and Sort-Merge
join (with factors 3.8 to 10), see Fig. 9(b). Note that the problem of caching is
not a severe one here, as computing the join requires to load both indexes only
once. We find PETER’s performance for exact strings quite remarkable as they
– for large sets of long strings – beat the highly-tuned joins of a commercial
database system.

As there are no built-in functions for similarity operations inside the database,
we implemented them as user-defined functions (UDF) in the database’s
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Fig. 10. Comparison of prefix tree search to UDFs (log-scale)

programming language. The edit distance function computes the k-banded align-
ment score for two strings. Length filtering is included in both UDFs. We com-
pared the execution time of UDF-based similarity search and joins to PETER.
Fig.10 shows that PETER for similarity searches performs better by an order
of magnitude than using just UDFs. For Hamming distance search, prefix tree
indexing leads to a runtime improvement factor of about 520, for edit distance
searches of about 890. We also tried to perform similarity joins for k = 1 with
UDFs on T 2e �� T 3, but as the join operations did not finish within a day, we
aborted the execution. Similarity joins with prefix trees finished for k ∈ {1, 2}
in less than one minute.

6 Related Work

Prefix trees, compressed or uncompressed, have applications in many areas. They
are well known for representing multiple search patterns in exact pattern match-
ing [6], but have also been shown to perform well in frequent itemset mining
algorithms [7] or set joins [8].

Shang et al. [16] were the first that extended prefix trees with dynamic pro-
gramming techniques to perform inexact string matching. They have shown that
searches with one or no error perform several times better than agrep, but as
they do not apply any filtering techniques, agrep outperforms their implemen-
tation for larger k. Schallehn et al. [15] describe a prefix trie based index for
similarity search, joins and group operations for Oracle DB. The authors in-
troduce operators, all based on depth-first traversal, for duplicate detection in
heterogenous integration scenarios that outperform non-indexed similarity oper-
ators. They did not consider any pruning. Furthermore, prefix trees are generated
on-the-fly, while PETER computes them only once.

The filtering techniqes we use are contained in several other algorithms. Gra-
vano et al. [4] introduced an efficient similarity join algorithm that uses a q-gram
index to preselect similar strings. We could not compare PETER with this al-
gorithm as there is no implementation available. The benefit of using positional
q-grams was shown in [5]. As the authors implemented a sampling-based approx-
imation for similarity string joins, one cannot directly compare PETER to their
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tool. Furthermore, the system was specifically designed for use in Microsoft SQL
Server, whereas PETER is built on top of another RDBMS.

Xiao et al. [21] proposed to analyze mismatching q-grams for candidate prese-
lection in near-duplicate detection. They derived two new lower bounds for edit
distance, one of which we also use for suffix filtering. A direct comparison be-
tween PETER and this method would be difficult, as it directly targets duplicate
detection within one relation, while we have a far more general data structure.

Aghili et al. [1] use frequency filtering as part of a vector transformation.
They apply discrete wavelet and discrete fourier transformation for pre-filtering
approximate join candidates in biological databases. We could not compare PE-
TER with Aghili et al. since no implementation is available.

7 Conclusion

We presented PETER, an efficient data structure for similarity search and sim-
ilarity joins on large sets of long strings. We showed that PETER outperforms
all other methods we compared to, either inside or outside a RDBMS, in all per-
formed similarity operations. Interestingly, it also outperforms exact joins inside
a RDBMS.
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Abstract. Similarity search and data mining often rely on distance or
similarity functions in order to provide meaningful results and seman-
tically meaningful patterns. However, standard distance measures like
Lp-norms are often not capable to accurately mirror the expected simi-
larity between two objects. To bridge the so-called semantic gap between
feature representation and object similarity, the distance function has to
be adjusted to the current application context or user. In this paper, we
propose a new probabilistic framework for estimating a similarity value
based on a Bayesian setting. In our framework, distance comparisons are
modeled based on distribution functions on the difference vectors. To
combine these functions, a similarity score is computed by an Ensemble
of weak Bayesian learners for each dimension in the feature space. To
find independent dimensions of maximum meaning, we apply a space
transformation based on eigenvalue decomposition. In our experiments,
we demonstrate that our new method shows promising results compared
to related Mahalanobis learners on several test data sets w.r.t. nearest-
neighbor classification and precision-recall-graphs.

Keywords: similarity estimation, distance learning, supervised learning.

1 Introduction

Learning similarity functions is an important task for multimedia retrieval and
data mining. In data mining, distance measures can be used in various algo-
rithms for classification and clustering. To improve classification, the learned
distance measure can be plugged into any instance-based learner like kNN clas-
sification. Though clustering is basically an unsupervised problem, learning a
similarity function on a small set of manually annotated objects is often enough
to guide clustering algorithms to group semantically more similar objects. For
similarity search, adaptive similarity measures provide a powerful method to
bridge the semantic gap between feature representations and user expectations.
In most settings, the similarity between two objects cannot be described by a
standardized distance measure fitting all applications. Instead, object similarity
is often a matter of application context and personal preference. Thus, two ob-
jects might be similar in one context while they are not very similar in another
context. For example, assume an image collection of various general images of
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persons, vehicles, animals, and buildings. In this context, a picture showing a
red Ferrari will be considered as quite similar to a picture of a red Volkswagen.
Now, take the same images and put them into a different context like a catalogue
of rental cars. In this more specialized context, both pictures will most likely be
considered as dissimilar. An important assumption in this paper is that there is
no exact value specifying object similarity. Instead, we consider object similarity
as the probability that a user would label the objects as similar.

Learning a distance or similarity function requires a general framework for
comparing objects. In most established approaches to similarity learning, this
framework is provided by using Mahalanobis distances or quadratic forms. In
general, a Mahalanobis distance can be considered to be the Euclidean distance
in a linear transformation of the original feature space. Thus, Mahalanobis dis-
tances are metric distance functions guaranteeing reflexivity, symmetry and the
triangular inequality. Furthermore, the computed dissimilarity of two objects
might be increased infinitely. In this paper, we argue that these mathemati-
cal characteristics are unnecessarily strict and sometimes even against intuition
when trying to construct a similarity measure. For example, it is known from
cognition science that humans do not distinguish dissimilar objects to an infinite
degree. Thus, a human would not care whether object o1 is more dissimilar to the
query object q than object o2 after having decided that both objects o1, o2 have
nothing in common with the query object q. Furthermore, it is questionable if
characteristics such as strictness are necessary for successful similarity search. In
most feature transformations, it is possible that two different objects are mapped
to the same feature representation. Thus, even if we can guarantee that two ob-
jects having a zero distance are represented by the same feature description, we
have no guarantee that the corresponding objects should be considered to be
maximally similar as well.

In this paper, we describe similarity in a different way by considering it as
the probability that an object o is relevant for a similarity query object q.
The core idea of our similarity estimation approach is to consider each feature
as evidence for similarity or dissimilarity. Thus, we can express the implica-
tion of a certain feature i to the similarity of objects o and q as a probability
p(similar(o, q) | (o[i] − q[i])). To calculate this probability, we employ a simple
one-dimensional Bayes estimate (BE). However, to build a statement compris-
ing all available information about object similarity, we do not build the joint
probability over all features. We argue that in most applications considering a
single feature it is not sufficient to decide either similarity or dissimilarity. Thus,
to derive a joined estimation considering all available features, we average the
probabilities derived from each BE. Our new estimate is basically an Ensem-
ble of weak Bayesian learners. Therefore, we call our new dissimilarity function
Bayes Ensemble Distance (BED). A major benefit of BED is that dissimilarity
is very insensitive to outlier values in a single dimension which is a drawback of
classical Lp-norm based measures. The major factors to successfully employing
an Ensemble of learners are the quality and the independence of the underlying
weak classifiers. Therefore, we will introduce a new optimization problem that
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derives a linear transformation of the feature space, allowing the construction of
more descriptive BEs. To conclude, the contributions of this paper are:

– A discussion about Lp-norms and Mahalanobis distances for modelling ob-
ject similarity.

– A new framework for similarity estimation that is built on an Ensemble of
Bayes learners.

– An optimization method for generating a linear transformation of the feature
space that is aimed at deriving independent features which are suitable for
training high quality weak classifiers.

The rest of the paper is organized as follows. In Sect. 2, we discuss Lp norm
and Mahalanobis distances for modeling object similarity. Our new framework
for modeling object similarity is described in Sect. 3. In Sect. 4, we introduce an
optimization problem to derive an affine transformation that allows the train-
ing of more accurate Bayes estimates. Section 5 briefly reviews related similarity
learners. Afterwards, Sect. 6 illustrates the results of our experimental evaluation
comparing our new method with related metric learners on several UCI classifi-
cation datasets and two image retrieval data sets. Finally, Sect. 7 concludes the
paper with a summary and some directions for future work.

2 Lp-Norms and Problem Definition

The task of similarity learning is to find a function mapping a pair of objects
o1, o2 to a similarity value sim(o1, o2) describing how strongly the first object
resembles the other one in the best possible way. To train this function, it is
necessary to have training examples representing the notion of similarity which
underlies the given application. Let us note that there might be various notions
of similarity on the same data set depending on the application context or even
the current user.

Basically, there are two categories of examples used for learning similarity
functions. The first type is providing class labels to a training set indicating
that objects with equal labels are similar and objects with different labels are
considered as dissimilar. Most machine learning approaches in metric learning
use class labels because most of the proposed methods in this area aim at im-
proving the accuracy of instance-based learners. One important advantage of
this type of labeling is that there is a large variety of classification data sets
available. Additionally, having n labeled objects results in n·(n−1)

2 labeled object
pairs. Finally, in classification data sets the labeling is usually quite consistent
because the classes are usually reproducible by several persons. As a drawback
of this approach, it is required to find an universal set of classes before learning
a similarity function. Thus, this type of user feedback is difficult to use when
learning similarity measures for similarity search. The second type of user feed-
back is direct relevance feedback providing a similarity value for a set of object
pairs. Using relevance feedback allows to determine a degree of similarity for each
pair and thus, the similarity information is not necessarily binary. Additionally,
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relevance feedback does not require to define explicitly known classes and is thus
more attractive for similarity search systems. A drawback of relevance feedback
is that labelling a sufficiently large set of object pairs with similarity scores is
usually much more strenuous than labelling objects with classes. Furthermore,
it is often much more difficult to generate a consistent labelling because there
usually are no well-defined criteria for object similarity.

After describing the labels of our examples, we will now formalize our object
descriptions, i.e. the feature vectors. A feature is a type of observation about an
object and the corresponding feature value describes how an object behaves w.r.t.
this type of observation. Mathematically, we will treat a feature F as a numerical
value xF ∈ R. Considering a predefined number of features d leads to a feature
vector x ∈ R

d. Formally, a training example in our setting is a triple (x1, x2, y)
where x1, x2 ∈ R

d are two d-dimensional feature vectors and y ∈ [0, . . . , l] is a
dissimilarity score, i.e. a 0 represents maximum similarity whereas l describes
maximum dissimilarity. In case of class labels, we assign 1 to dissimilar and 0 to
similar objects. The most common approach for describing object similarity is
to sum up the differences of feature values which is the basis of Lp-norm-based
similarity. Given two feature vectors x1, x2 ∈ R

d, the Lp-norms are defined as:

Lp(x1, x2) =

(
d∑

i=1

|x1,i − x2,i|p
) 1

p

For p = 2, the Lp-norm is called Euclidean distance which is the most common
distance metric in similarity search and distance-based data mining. Semanti-
cally, we can interpret the Lp-norm as an evidence framework. Each feature
represents an observation about an object and the difference of feature values
determines how similar two objects behave with respect to this observation.
Since a single observation is usually not enough to decide similarity, all obser-
vations are combined. By summing up over the differences for each observation,
the Lp-norm describes the degree of dissimilarity of two objects. The parameter
p determines the influence of large difference values in some dimensions to the
complete distance. For p → ∞, the object distance is completely determined by
the largest object difference in any dimension. Let us note that the exponent 1

p
is used for normalization reasons only. Therefore, it is not required in algorithms
that require a similarity ranking.

Given a specialized application context, the standard Lp-norms have several
drawbacks:

1. Correlated features are based on the same characteristics of an object and
thus, they implicitly increase the impact of this characteristics when calcu-
lating the dissimilarity.

2. Not each observation is equally important when deciding about object sim-
ilarity. When, for instance, deciding between large and small people, the
height parameter will be more significant than the weight parameter.

3. In order to have a large distance w.r.t. an Lp-norm, it is sufficient to have a
considerably large difference in any single feature. Correspondingly, a small
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dissimilarity requires that both vectors display small difference values in each
feature. On the other hand, to decide dissimilarity, any single feature is suf-
ficient. This effect is a serious drawback because object similarity might not
necessarily always depend on the same set of features. Having an extraor-
dinarily large difference w.r.t. a single rather unimportant feature, could
thus prevent two otherwise identical objects from being found in a similar-
ity query. Thus, we argue that dissimilarity as well as similarity should be
decided based on a combination of several features.

To solve the problems (1) and (2), the Euclidean distance has been extended
to the Mahalanobis distance or quadratic form. The idea of this approach is to
employ an affine transformation of the original feature space which is applied
within the distance measure itself:

DMah(x1, x2) =
(
(x1 − x2)T · A · (x1 − x2)

) 1
2

In order to make DMah a metric, the transformation matrix A has to be positive
definite. In this case, A implies an affine transformation of the vector space B
where the Euclidean distance is equivalent to DMah in the original space.

(
(x1 − x2)T A(x1 − x2)

) 1
2 =

(
(x1 − x2)T BT B(x1 − x2)

) 1
2

=
(
(Bx1 − Bx2)T (Bx1 − Bx2)

) 1
2

When properly derived, this matrix A can achieve that the directions in the tar-
get space are uncorrelated. Additionally, the directions are weighted by their im-
portance to the given application. There are multiple methods to learn a proper
Mahalanobis distance like Fisherfaces [2], RCA [1], ITML [7] or LMNN [21]
which are described in Section 5.

However, the Mahalanobis distance does not adequately solve the third prob-
lem named above because the feature values are only linearly scaled. Thus, all
observed difference values are decreased by the same factor. Therefore, when
decreasing a very large difference value to limit its too strong impact in a com-
parison, the impact of the feature is limited in all other comparisons as well.
Thus, by preventing a too large impact in some distance calculations, we would
generate too small distance values in others. To conclude, Mahalanobis distances
are still equivalent to an Euclidean distance in a transformed data space and
thus, these methods are no solution to the third problem mentioned above.

3 Ensembles of Bayes Estimates

In the following, we formally describe our method. We start with the definition
of Bayes Estimates (BE) and Bayes Ensemble Distance (BED) on the original
feature dimensions. Afterwards, we introduce our solution to the problem of
correlated features and provide a new way to derive an affine transformation of
the feature space that allows the training of a meaningful BED.
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3.1 Bayes Estimates and Bayes Ensemble Distance

As mentioned above, we want to learn a function having a pair of feature vec-
tors as input and returning a similarity score as output. Similar to the Lp-norm,
we describe the comparison between two feature vectors x1, x2 ∈ R

d by their
difference vectors (x1 − x2), or (x2 − x1). Thus, our method assigns a similarity
score to each difference vector. Since both difference vectors should provide the
same dissimilarity score, we have to make sure that our similarity function is
symmetric with respect to the direction of the input difference vector. As men-
tioned before, our approach treats each dimension of the input space separately.
Thus, we define the Bayes Estimates (BE) for feature dimension i as simple
Bayes classifier receiving a difference value x1,i − x2,i as input. This classifier
distinguishes object comparisons of similar objects (sim) from comparisons of
dissimilar objects (dis). Thus, we learn two distribution functions over the dif-
ference values for similar objects and dissimilar objects. Additionally, we employ
a prior distribution describing whether similarity is less likely than dissimilar-
ity. As a result, we can calculate the conditional probability P (dis | x1,i − x2,i)
describing the dissimilarity likelihood for two objects under the condition of the
observed difference value in dimension i. Correspondingly, P (sim | x1,i − x2,i)
expresses the likelihood that two objects are similar and can be used as simi-
larity function. Formally, the Bayes Estimate (BE) for comparing two vectors
x1, x2 ∈ R

d w.r.t. dimension i is defined as:

Definition 1 (Bayes Estimate). Let x1, x2 ∈ R
d be two feature vectors. Let

ps and pd represent a prior distribution describing the general likelihood that
objects are considered to be similar. Then, the Bayes Estimate (BE) for x1 and
x2 w.r.t. dimension i is defined as follows:

BEi(x1, x2) =
pd · P ((x1,i − x2,i) | dis)

Ptotal(x1,i, x2,i)
,

where ptotal(x1,i, x2,i) is the sum of the similarity and the dissimilarity probabili-
ties (ps·P ((x1,i − x2,i) | sim) and pd·P ((x1,i − x2,i) | dis)) in the ith dimension.

To combine these probabilities, we take the average estimates over all dimen-
sions. Thus, we employ an Ensemble approach combining the descriptiveness of
all available features. Let us note that this approach is different from building
the joint probability for class dis like in an ordinary näıve Bayes classifier. This
approach would imply that in order to be similar, two objects have to be suffi-
ciently similar in each dimension. Correspondingly, dissimilarity would require
a sufficiently large difference value in all dimensions. Thus, the joint probability
could again be determined by a single dimension. By building the average, our
method underlies the more flexible understanding of similarity. Thus, neither a
very large difference nor a very small difference in a single dimension can imply
similarity or dissimilarity on its own. Formally, we define the Bayes Ensemble
Distance (BED) in the following way:
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Definition 2 (Bayes Ensemble Distance). Let x1, x2 ∈ R
d be two feature

vectors. Let ps and pd represent a prior distribution describing the general likeli-
hood that objects are considered to be similar. Then, the Bayes Ensemble Distance
(BED) for x1 and x2 is defined as follows:

BED(x1, x2) =
1
d
·

d∑
i=1

BEi(x1, x2)

From a data mining point of view, the BED is an Ensemble of d weak Bayesian
learners, each deriving a probabilistic statement from the corresponding feature.
Each learner distinguishes two classes, i.e. similarity and dissimilarity. Let us
note that our method does not directly distinguish degrees of similarity. Instead,
a quantitative view on object similarity is provided by the average probability
that both objects are similar.

An open issue to the use of BED is the type of probability distribution being
used to model the Bayes estimate. To select a well-suited probability density
function, we examined several data sets with respect to their difference vector
distribution for similar and dissimilar objects. Therefore, we built histograms on
the observed difference values in each dimension. Remember that the all distri-
butions have to be symmetric to the origin because of the pairwise appearance
of positive and negative distance values. An example for the histograms derived
from two image retrieval data sets is displayed in Fig. 1. In this and all other
examined data sets, we observed a normal distribution for similar objects. Very
similar or identical objects will usually display almost identical feature values.
For the distributions describing dissimilarity, we sometimes observed distribu-
tions that also resemble a normal distribution but displayed a larger variance.
In cases having well separated classes, the dissimilarity distribution often is split
into two components, one for positive and one for negative difference values.
Thus, the dissimilarity resembled a mixture model having two symmetric com-
ponents of equal weight where the first has a positive mean value and the second
component has a negative mean value. In our experiments, we employed Gaus-
sians as basis distribution. However, the general method is applicable for any
other type of distribution function, e.g. exponential power distributions.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

(a) Conf-hsv (10D)

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

(b) Conf-hsv (29D)

Fig. 1. Difference distributions for similar (solid lines) and dissimilar (dashed lines)
objects in a retrieval data set in dimension 10 and 29
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3.2 Training BEs

Training BEDs consists of determining the distribution parameters for each
dimension, e.g. mean and variance for a Gaussian. Furthermore, it is often useful
to determine prior probabilities for similarity and dissimilarity.

In the case that the examples are provided with class labels, it is easy to decide
whether an object comparison is counted for the similar class (sim) or for the
dissimilarity class (dis). If both objects belong to the same class, the observed
difference value contributes to the sim distribution. If both objects belong to
different classes, the observed difference vector contributes to the distribution
describing dis. For small data sets, it is possible to consider all possible difference
vectors occurring in the training set. However, this approach is not feasible for
large data sets because the number of difference vectors is increasing with the
squared number of training vectors. Thus, it is often advisable to select a subset
of the difference vectors instead of employing all available samples. To find this
subset, random sampling is applicable. In our experiments, we adapt the idea of
target neighbors from [21] and select the difference vectors corresponding to the
k-nearest neighbors of the same class and the k-nearest neighbors belonging to
any other class for each training object. We employed the Euclidean distance to
determine the target neighbors.

In case of labeled pairs, selecting examples is usually not an option because
each object comparison has to be manually labeled and thus, it is rather unlikely
that there will be too many examples for efficient training. However, labeling ob-
ject pairs allows to distinguish several degrees of similarity y ∈ [0..1], e.g. the la-
bel could indicate a similarity of 0.8 or 0.1. To employ these more detailed labels,
we propose to proceed in a similar way as in EM clustering and let the training
example contribute to both distributions. However, to consider the class labels,
we weight the contribution to the similar distribution by y and the contribution
to the dissimilar distribution by 1−y. This way, undecidable comparisons having
a label of 0.5 would equally contribute to both distribution functions, whereas
a comparison having a label of 1.0 would exclusively contribute to the similar
distribution.

In many applications, using a prior distribution can improve the accuracy
of similarity search and object classification. Especially when using BED for
nearest neighbor classification, we can assume that we know how many objects
belong to the same class and how many objects belong to any other class. In
these cases, we can determine the frequency |ci| of examples for each class ci ∈ C
in the training set and easily derive the prior probability for similarity:

ps =

∑
ci∈C |ci|2

(
∑

ci∈C |ci|)2 pd = 1 − ps

In other words, we know that there are |ci|2 comparisons of similar objects
within each class ci. Dividing the amount of these comparisons by all possible
comparisons computes the relative frequency of ps. Since we only distinguish
two cases, we can calculate pd as 1 − ps.
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In case of relevance feedback, directly determining the relative portion of
similarity in the training objects is also easily possible. However, depending on
the selection of the object pairs to be labeled it is often very unlikely that the
label distribution is representative for the distribution on the complete database.
Thus, it is often more useful to manually assign a value for the occurrence of
each class.

4 Optimizing the Feature Space for BEs

Employing BED on the original dimensions ensures that neither similarity nor
dissimilarity can be decided based on the difference value in a single dimension.
Additionally, the importance of each dimension is indicated by the distinction
of both distribution functions. However, correlated features still pose a problem
for the performance of BED. First of all, the advantage of using an ensemble
of learners strongly depends on their statistical independence. Additionally, it
might occur that the single BEs in the original dimension might be very infor-
mative. However, there often exist dimensions in the data space allowing a good
separation of the distribution function. An example is illustrated in Fig. 2. In the
displayed case, the distributions of similar and dissimilar objects are modeled as
multivariate Gaussians. If we consider the projection of both distributions onto
the x-axis, we cannot decide between the two distributions at all. Projecting the
Gaussians onto the main diagonal enables a clear separation. In this example, it
can be assumed that the BE on the main diagonal has a much stronger predic-
tive quality. To conclude, analogously to the Euclidean distance, BED can be
improved by a linear transformation of the input space which decreases feature
dependency and provides features allowing meaningful similarity estimation.

Formally, we want to find a set of base vectors W = [w1, . . . , wd] for trans-
forming each original vector x ∈ R

d′
into another d-dimensional feature space

where each new dimension allows to build a better BE. Since we want to have
independent learners, we additionally require that wi ⊥ wj for i �= j.

y

both distributions on main diagonal
x0

both distributions on x axis

Fig. 2. Distributions of similar (green) and dissimilar (red) objects. Top view of mul-
tivariate Gaussians (left) and projections onto different dimensions (right).
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To determine the suitability of a dimension to train a useful BE, we need to
find a criterion that is independent of the used type of distribution function.
A certain dimension in the feature space is useful in the case that the distance
values between similar objects are in average smaller than the distance values
of dissimilar objects. Let us note that the mean value for both distributions has
to be zero regardless of the underlying density function. Since distance values
always occur in pairs of negative and positive values, the mean is always zero
in each dimension. Now, a direction is well-suited if the distance values being
observed for similar objects are grouped closer to the origin than the values
being observed for dissimilar objects. To quantify this intuition, we calculate the
variance of the samples for both distributions sim and dis in dimension i and
build the difference between both values:

qi =
1
n
·
(

n∑
xd∈dis

(
x2

d,i − 0
) − n∑

xs∈sim

(
x2

s,i − 0
))

=
1
n
·
(

n∑
xd∈dis

x2
d,i −

n∑
xs∈sim

x2
s,i

)

If qi is large, the difference values between similar objects are generally grouped
more closely around zero than the difference values between dissimilar objects
in dimension i. If qi converges to zero, dimension i will usually not allow the
training of a useful BE.

To describe the variance along all possible dimensions in the space of distance
values, we can build the covariance matrix for similar and dissimilar difference
vectors.

(Σsim)i,j =
∑

xs∈sim

(xs,i − 0) · (xs,j − 0) =
∑

xs∈sim

xs,i · xs,j

Σdis is built correspondingly on the difference vectors of dissimilar objects.
Our task is to find a set of orthogonal dimensions for which the difference

between the variance of the dissimilar distribution and the variance of the sim-
ilar distribution is as large as possible. Formally, we can define the following
optimization problem:

Maximize L(wi) = wT
i Σdiswi − wT

i Σsimwi = wT
i · (Σdis − Σsim)wi

s.t. wi ⊥ wj

The following eigenvalue equation solves this problem:

λw = (Σdis − Σsim) · w .

To integrate the learned affine transformation into the training of BED, we can
either transform all feature vectors before training and testing by W or integrate
the transformation directly into the BE distance by rotating each difference
vector before it is processed. To conclude, the training of a BED is performed
as follows:
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1. Determine Σsim and Σdis from the labeled data.
2. Calculate W by solving the corresponding eigenvalue problem.
3. Rotate Σsim and Σdis by W .
4. Derive the variance values of the similarity and dissimilarity distributions

for each wi ∈ W .

Let us note that it is necessary to rotate the compared objects or their distance
vector using W before calculating BED.

A final aspect of this space transformation is that it allows to reduce the
number of considered dimensions. This can be done by selecting a fixed number
of features and keep only the top k dimensions w.r.t. the quality qi. Another
alternative is to determine a threshold τ and keep only those dimensions offering
a quality qi which is better than τ .

5 Related Work

5.1 Metric Distance Learning

Most distance learning methods use the Mahalanobis distance, represented by a
semi-definite matrix. The shared principle among all of those approaches is to
ensure that the relations among a dataset’s objects are transformed such that
they best represent an underlying characteristic of the data.

In the following, we give a short summary of existing metric learning ap-
proaches. For detailed surveys, see [24,23]. The main idea of unsupervised ap-
proaches is to reduce the feature space to a lower-dimensional space in order to
eliminate noise and enable a more efficient object comparison. The criteria for se-
lecting such a subspace are manifold. Principal Component Analysis (PCA) [10]
builds an orthogonal basis aimed at best preserving the data’s variance, Mul-
tidimensional Scaling (MDS) [6] seeks the transformation which best preserves
the geodesic distances and Independent Component Analysis (ICA) [5] targets
a subspace that guarantees maximal statistical independence. ISOMAP [19] by
Tenenbaum et al. is a non-linear enhancement of the MDS principle, in iden-
tifying the geodesic manifold of the data and preserving its intrinsic geometry.
Other unsupervised approaches (e.g. [16,3]) try to fulfill the above criteria on a
local scale.

Among supervised approaches, the first to be named is Fisher’s Linear Dis-
criminant (FLD) [8]. It maximizes the ratio of the between-class variance and the
within-class variance using a generalized eigenvalue decomposition. This method
has been extended by Belhumeur et al. [2] to the Fisherfaces approach. It pre-
cedes FLD with a reduction of the input space to its principal components and
can thus filter unreliable input dimensions. BED and especially the target func-
tion L share several important ideas with Fisherfaces. However, FLD assumes
that the data is partitioned into classes which are modeled using the Gaussian
distribution function, whereas BED does not require explicit object classes. Fur-
thermore, the BED is not determined to the use of Gaussian functions. Instead
BEDs employ the difference vectors and always try to distinguish the two basic
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statements of object similarity and object dissimilarity which can be modeled
by an arbitrary symmetric density function. Both methods generate covariance
matrices of difference vectors representing similarity (in FLD: the within-class
scatter matrix) and dissimilarity (in FLD: the between-class scatter matrix).
However, in FLD the matrices are built based on the difference vectors w.r.t. a
mean value whereas BED directly employs object-to-object comparisons. Where
FLD tries to find dimensions where the ratio between the variances of dissimilar-
ity and similarity are as large as possible, BED maximizes the difference between
the variances of the dissimilarity and the similarity distributions.

With RCA [1], Bar-Hillel et al. focus on the problem of minimizing within-
chunklet variance. They argue that between-class differences are less informative
than within-class differences and that class assignments frequently occur in such
a way that only pairs of equally-labelled objects can be extracted. These pairs
are extended into chunklets (sets) of equivalent objects. The inverse chunklet
covariance matrix is used for calculating the Mahalanobis distance. This step
should usually be preceded by dimensionality reduction. The main difference
between BED and RCA is that RCA does not build a distribution function for
object comparison corresponding to dissimilarity. Correspondingly, RCA only
requires examples for comparison between the objects of the same class. As a
result, the optimization which is provided by RCA is not aimed at distinguishing
both classes of difference vectors. Instead, RCA is mostly based on a whitening
transformation of the matrix which is similar to the within-class-scatter-matrix
of FLD.

NCA [9] proposed by Goldberger et al. optimizes an objective function based
on a soft neighborhood assignment evaluated via the leave-one-out error. This
setting makes it more resistant against multi-modal distributions. The result of
this optimization is a Mahalanobis distance directly aimed at improving nearest-
neighbor classification. The objective function is, however, not guaranteed to be
convex.

With Information-Theoretic Metric Learning (ITML) [7], Davis et al. propose
a low-rank kernel learning problem which generates a Mahalanobis matrix sub-
ject to an upper bound for inner-class distances and a lower bound to between-
class distances. They regularize by choosing the matrix closest to the identity
matrix and introduce a way to reduce the rank of the learning problem.

LMNN (Large Margin Nearest Neighbor) [21] by Weinberger et al. is based
on a semi-definite program for directly learning a Mahalanobis matrix. They
require k-target neighbors for each input object x, specifying a list of objects,
usually of the same class as x, which should always be mapped closer to x than
any object of another class. These k-target neighbors are the within-class k-
nearest neighbors. Hence, the loss function consists of two terms for all data
points x: the first penalizes the distance of x to its k-target neighbors and the
second penalizes close objects being closer to x than any of its target neighbors.
In [22], they propose several extensions, involving a more flexible handling of the
k-target neighbors, a multiple-metric variant, a kernelized version for datasets of
larger dimension than size and they deal with efficiency issues arising from the
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repeated computation of close objects. Nonetheless, LMNN requires a specialized
solver in order to be run on larger data sets.

5.2 Non-metric Distance Learning

In order to be metric, a distance has to fulfill the metric axioms (i.e. self-
similarity, symmetry, triangle inequality). In fact, several recent studies have
shown that these axioms (triangle inequality above all) are often not conform
with the perceptual distance of human beings [17,20] and thus not suitable for
robust pattern recognition [12]. Most of the approaches learning a non-metric
function as distance function only use fragments of the objects for the similarity
calculation between them (e.g. [18,12]). This can be useful for image retrieval and
classification, where only small parts (not a subset of features) of two images can
yield to perception of similarity, but is not applicable for object representations
in general. Another class of non-metrical distance learners are Bayesian Learners
as used in [13], which are also designed for the special case of object recognition
in images. In this work, we do not want to restrict similarity to images, but
rather present a more general view applicable for a broad range of applications.

6 Experimental Evaluation

In this section, we present the results of our experimental evaluation. As compar-
ison partner we selected the methods that are closest to our approach: Relevant
Component Analysis (RCA) and Fisher Faces (FF). Let us note that RCA re-
quires only chunks of data objects having the same class and no explicit class
set. However, since we used datasets having class labels, we provided RCA the
complete set of training objects for each class as a chunk. Furthermore, we com-
pared Bayes Estimate Distance (BED) to the standard Euclidean distance to
have baseline method. We evaluated all methods on several real-world datasets
to test their performance for classification and retrieval tasks. All methods were
implemented in Java 1.6 and tests were run on a dual core (3.0 Ghz) workstation
with 2 GB main memory.

6.1 Nearest Neighbor Classification

As mentioned before, our similarity learner can be applied for different applica-
tions. A first, well-established method is improving the quality of nearest neigh-
bor classification. For the classification task, we used several datasets from the
UCI Machine Learning Repository [14]. Evaluation on the datasets was per-
formed using 10-fold cross-validation and all 4 distance measures were used for
basic nearest neighbor classification. To train BED, we employed sampling based
on the target neighbors. In other words, we took the difference vectors of all train-
ing objects to the k-nearest neighbors within the same class and the k-nearest
neighbors in all other classes. To find out a suitable value for k, we screened over
a small set of suitable values between 5 and 20.
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Fig. 3. NN-Classification results on several UCI datasets

Table 1. Image Retrieval Data Sets

Dataset Instances Attributes Classes

Conf-hsv 183 32 35

Conf-facet 183 24 35

Conf-har 183 65 35

Flowers-hsv 1360 32 17

Flowers-facet 1360 24 17

Flowers-har 1360 65 17

The results for NN classification are shown in Fig. 3. BED displays the largest
accuracy in all 9 datasets. Though RCA achieves the same result on the labor
dataset, it impairs the Euclidean distance on data sets like waveform or balance
scale. The same observation can be made for FF. Though the accuracy is com-
parably good in all data sets, there also exist datasets where FF does not yield
an advantage even against Euclidean distance (breast-w). On the labor dataset,
it was not possible to learn a distance using FF due to a matrix singularity. To
conclude, BED leads to an up to 8% better classification of objects on the tested
datasets compared to the best of Eucl, FF and RCA. Thus, we can state that
BED can be employed to improve the results of instance-based learners.

6.2 Precision and Recall Graphs

We employed two image datasets for testing the performance of our new distance
measures for retrieval applications. The Conf dataset was created by ourselves
and contains 183 images of 35 different motives. The Flowers dataset was in-
troduced in [15] and consists of 1360 images of 17 different types of flowers.
From these two datasets, we extracted color histograms (based on the HSV
color space), facet features [4] and haralick features [11]. The characteristics of
the resulting feature datasets can be seen in Table 1. On these datasets, we
measured the retrieval performance using precision-recall-graphs. We posed a
ranking query for each image and measured the precision of the answer resulting
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Fig. 4. Precision-Recall Graphs on the Conf and Flowers dataset

from the remaining database for several levels of recall. In the retrieval task, we
employed very large numbers of difference vectors for training, to adjust BED
to achieving reasonable precision values for large levels of recall.

On the Conf dataset, BED shows an impressive boost of the retrieval qual-
ity using hsv-color-histograms (Fig. 4(a)), while it still leads to slightly better
results using facet or Haralick features (see Figures 4(b) and 4(c)) in contrast
to RCA. FF does not appear to be well-suited for these datasets, as it per-
forms even worse than the Euclidean Distance. On the Flowers dataset, retrieval
quality can again be improved by BED when using Facet and Haralick features
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Fig. 5. Different versions of BE on Conf-hsv

respectively (see Figures 4(e) and 4(f)). On the feature dataset consisting of the
hsv-color-histograms of Flowers, Fisherfaces lead to a better Precision-Recall-
Graph (Fig. 4(d)) than the other approaches, but note that this is the only
retrieval experiment where FF performed better than the Euclidean distance.
Thus, we can state the BED is suitable for retrieval tasks as well as for data
mining tasks.

6.3 Comparison to Its Components

In our last experiment, we examine the performance of BEDs compared to their
separated components. We trained BEs on the original dimensions (only BE)
of the feature space. Furthermore, we wanted to find out whether the learned
eigenvalue decomposition can be used for learning a Mahalanobis distance im-
proving classification results. To create such a transformation, we additionally
multiplied each eigenvector w by its inverse eigenvalue. The comparison was
performed for several retrieval datasets which all displayed similar results. An
example precision-recall graph of the Conf-hsv data set is presented in Fig. 5.
Using the BED without the rotation still increases the retrieval performance
compared to the plain Euclidean distance on the same feature space. Thus, even
without an affine transformation, the BED is capable of improving the retrieval
quality. A second very interesting result is that the rotation component of BEDs
does not yield any performance advantage when used as Mahalanobis learner.
Though the learned directions do optimize the BEs being observed in the new
dimensions, they seem to be unsuitable for improving the results obtained by
the Euclidean distance.

7 Conclusion

In this paper, we have introduced Bayes Ensemble Distance (BED) as new
adaptable dissimilarity measure. BED is applied to the difference vector of two
feature vectors. For each dimension, BED independently determines the likeli-
hood that both objects are dissimilar employing a simple Bayesian learner called
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Bayes Estimate (BE). The results of the BEs are combined by computing the
average prediction. Thus, the derived similarity score is less dependent on outlier
values in some of the dimensions. Since BED is dependent on the spatial rotation
of the data space, it is possible to optimize the vector space in order to derive
a feature space allowing the training of more descriptive and independent BEs.
In our experimental evaluation, we have demonstrated that BEDs can largely
increase the classification accuracy of instance-based learning. Additionally, we
have demonstrated the suitability of BED for retrieval tasks. For future work, we
plan to investigate efficiency issues when using BED for information retrieval.
Furthermore, we plan to apply the idea of BEs to structured objects like graphs.
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Abstract. There are abundant scenarios for applications of similarity
search in databases where the similarity of objects is defined for a subset
of attributes, i.e., in a subspace, only. While much research has been done
in efficient support of single column similarity queries or of similarity
queries in the full space, scarcely any support of similarity search in
subspaces has been provided so far. The three existing approaches are
variations of the sequential scan. Here, we propose the first index-based
solution to subspace similarity search in arbitrary subspaces.

1 Introduction

In the last decade, similarity search in high-dimensional data has gained special
interest. Several studies for research on data structures [1, 2, 3, 4, 5] showed that
the suitability of the sequential scan [6] compared to methods using partitioning
or clustering based data structures is dependent of the characteristics of the data
distributions. However, this key message has been neglected in many research
contributions [7,8,9,10,11,12]. Thus, it still appears to be well worth noting that
nearest neighbor search is meaningful if and only if the nearest neighbor of the
arbitrary query object is sufficiently different from its farthest neighbor. This is
in general the case whenever a data set exhibits a natural structure in clusters
or groupings of subsets of data.

While much effort has been spent on studying possibilities to facilitate effi-
cient similarity search in high-dimensional data, scarcely ever the question arose
how to support similarity search when the similarity of objects is based on a sub-
set of attributes only. Aside from fundamentally studying the behavior of data
structures in such settings, this is a practically highly relevant question. It could
be interesting for any user to search, e.g., in a database of images represented
by color-, shape-, and texture-descriptions, for objects similar to a certain image
where the similarity is related to the shape of the motifs only but not to their
color or even the color of the background. An online-store might like to propose
similar objects to a customer where similarity can be based on different subsets
of features. While in such scenarios, meaningful subspaces can be suggested be-
forehand [13,14], in other scenarios, possibly any subspace could be interesting.
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For example, for different queries, different regions of interest in a picture may
be relevant. Since there are 2D possible subspaces of a D-dimensional data set,
it is practically impossible to provide data structures for each of these possible
subspaces in order to facilitate efficient similarity search. Another application
where efficient support of subspace similarity queries is required are many sub-
space clustering algorithms [15] that rely on searching for clusters in a potentially
large number of subspaces (starting with all 1D subspaces, many combinations of
1D subspaces to 2D subspaces etc.). If efficient support of subspace range queries
or subspace nearest neighbor queries were available, virtually all subspace cluster
approaches could be accelerated considerably. Note that this problem is essen-
tially different from the feature selection problem [15,16].

In this paper, we facilitate efficient subspace similarity search in large and
potentially high-dimensional data sets where the user or the application can de-
fine an interesting subspace for each query independently (that is, similarity is
defined ad hoc based on an arbitrary subset of attributes only). To this end,
we extend our preliminary approach addressed in [17] with more thorough ex-
perimental evaluation and we propose a top-down indexing method to support
subspace similarity search.

In the remainder, we formally define the problem of subspace similarity search
in Section 2. We discuss related work and the algorithmic sources of inspiration
to our new solution in Section 3. We propose an index-based top-down approach
as an adaptation of the R-tree in Section 4 and, additionally, give a general and
theoretical comparison of this approach with [17]. An experimental evaluation
of all methods is presented in Section 5. Section 6 concludes the paper.

2 Subspace Similarity Search

A common restriction for the small number of approaches tackling subspace sim-
ilarity search (see Section 3) is that Lp-norms are assumed as distance measures.
Hence we will also rely on this restriction in the problem definition. In the fol-
lowing, we assume that DB is a database of N objects in a D-dimensional space
R

D and the distance between points in DB is measured by a distance function
dist : R

D × R
D → R

+
0 which is one of the Lp-norms (p ∈ [1,∞)). In order to

perform subspace similarity search, a d-dimensional query subspace will be rep-
resented by a D-dimensional bit vector S of weights, where d weights are 1 and
the remaining D − d weights are 0. Formally:

Definition 1 (Subspace). A subspace S of the D-dimensional data space is
represented by a vector S = (S1, . . . , SD) ∈ {0, 1}D, where Si = 1, if the ith
attribute is an element of the subspace, and Si = 0, otherwise. The number d of
1 entries in S, i.e., d =

∑D
i=1 Si is called the dimensionality of S.

For example, in a 3D data space, the 2D subspace representing the projection
on the first and third axis is represented by S = (1, 0, 1).

A distance measure for a subspace S can then be figured as weighted Lp-norm
where the weights can either be 1 (if this particular attribute is relevant to the
query) or 0 (if this particular attribute is irrelevant to the query), formally:
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Definition 2 (Subspace Distance). The distance in a subspace S between

two points x, y ∈ DB is given by distS(x, y) = p

√
∑d

i=1 Si |xi − yi|p, where xi,
yi, and Si denote the values of the ith component of the vectors x, y, and S.

Thus, a subspace k-nearest neighbor (k-NN) query can be formalized as:

Definition 3 (Subspace k-NN Query). Given a query object q and a d-
dimensional (d ≤ D) query subspace represented by a corresponding vector S
of weights, a subspace k-NN query retrieves the set NN (k, S, q) that contains k
objects from DB for which the following condition holds: ∀o ∈ NN (k, S, q), ∀o′ ∈
DB \ NN (k, S, q) : distS(o, q) ≤ distS(o′, q).

Some of the rare existing approaches for subspace similarity search focus on
ε-range queries. This is a considerable lack because choosing the number k of
results that should be returned by a query is usually much more intuitive than
selecting some query radius ε. Furthermore, the value of ε needs to be adjusted
to the subspace dimensionality in order to produce meaningful results. This is a
non-trivial task since recall and precision of an ε-sphere become highly sensitive
to even small changes of ε depending on the dimensionality of the data space. In
addition, many applications like data mining algorithms that further process the
results of subspace similarity queries require to control their cardinality [15].

3 Related Work

Established index structures (such as [18,19,20,21]) are designed and optimized
for the complete data space where all attributes contribute to partitioning, clus-
tering etc. For these data structures, the space of queries facilitated by the index
structure must be fixed prior to the construction of the index structure. While
the results of research on such index structures designed for one single query
space are abundant [22], so far there are some variations of the sequential scan
addressing the problem of subspace similarity search, implicitly or explicitly.

The Partial VA-File [23] as an adaptation of the VA-file [6] is the first ap-
proach addressing the problem of subspace similarity search explicitly. The basic
idea of this approach is to split the original VA-file into D partial VA-files, where
D is the data dimensionality, i.e. we get one file for each dimension containing the
approximation of the original full-dimensional VA-file in that dimension. Based
on this information, upper and lower bounds of the true distance between data
objects and the query are derived. Subspace similarity queries are processed by
scanning only the relevant files in the order of relevance, i.e. the files are ranked
by the selectivity of the query in the corresponding dimension. As long as there
are still candidates that cannot be pruned or reported using the upper and lower
distance bounds, the next ranked file is read to improve the distance approxi-
mations or (if all partial VA-files have been scanned) the exact information of
the candidates accessed to refine the exact distance.

Another approach to the problem is proposed in [24], although only ε-similarity
range queries are supported. The idea of this multi-pivot-based method is to
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derive lower and upper bounds for distances based on the average minimal and
maximal impact of a possible range of d dimensions, d ∈ [dmin, dmax]. The bounds
are computed in a preprocessing step for a couple of pivot points. To optimize
the selection of pivot points, also a distribution of possible values for ε is re-
quired. The lower and upper bounds w.r.t. all pivot points are annotated to
each database object. Essentially, this approach allows to sequentially scan the
database reading only the information on lower and upper bounds and to refine
the retrieved candidates in a postprocessing step.

The solution to subspace similarity search we are proposing in this paper
is based on the ad hoc combination of 1D index structures. The combination
technique is algorithmically inspired by top-k queries on a number of different
rankings of objects according to different criteria. Let us assume that we have
a set of objects that are ranked according to m different score functions (e.g.
different rankings for m different attributes). The objective of a top-k query is
to retrieve the k objects with the highest combined (e.g. average) score. In our
scenario, if we assume the objects are ranked for each dimension according to
the distance to the query object, respectively, we can apply top-k methods to
solve subspace k-NN queries with the rankings of the given subspace dimensions.
For the top-k query problem, there basically exist two modes of access to the
data given by the m rankings, the sequential access (SA) and the random access
(RA) [25]. While the SA mode accesses the data in a sorted way by proceeding
through one of the m rankings sequentially from the top, the RA mode has
random access to the rank of a given object w.r.t. a given ranking.

4 Index-Based Subspace Similarity Search – Top-Down

In this section, we propose the projected R-tree, a redefinition of the R-tree to
answer subspace queries. Let us note, though, that our solution can be integrated
into any hierarchical index structure and is not necessarily restricted to R-trees.

The idea of the top-down approach is to apply one index on the full-dimensional
data space. The key issue is that for a subspace similarity query, the minimum
distance between an index page P and the query object q in subspace S is prop-
erly defined because then, we can just use the best-first search algorithm without
any changes. The minimum distance between an index page P and the query
object q in subspace S can be computed as

mindistS(q, P ) = p

√
√
√
√
√

D∑

i=1

si ·
⎧
⎨

⎩

Pmin
i − qi if Pmin

i > qi

qi − Pmax
i if Pmax

i < qi

0 else
, (1)

where Pmin
i and Pmax

i are the lower and upper bound of the page P in the ith
dimension, respectively. It should again be noted that Eq. 1 is designed for the
rectangular page region of R-trees. For the implementation in this paper we used
an R*-tree [19] as underlying tree index.
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(3.2, P1a)

0.2

(b) Processing of a sample query.

Fig. 1. Subspace query using a projected R-Tree

4.1 Query Processing

When a query q arrives, it is processed in a best-first manner. The algorithm
maintains an active page list (APL) which contains pages of the index structure
ordered ascending by their mindist to the query. Note that since a subspace
query is processed, only the dimensions defined by the query are taken into
account for the calculation of the mindist . The algorithm starts inserting the
root of the index structure into the APL. In each iteration, the first page from
the APL is processed. If it is a directory node, its children are inserted into the
APL. If it is a leaf node, the distance of each point contained in the page to the
query is computed. Each point may therefore update the maxKnnDist, which
is the distance of the kth-nearest point found so far. The process stops if the
mindist of the first entry of the APL is larger than the maxKnnDist. In this case
none of the pages in the APL can contain an object being part of the k-nearest
neighbors of the query. Figure 1 illustrates an example of a subspace query.

4.2 Discussion

The top-down approach is a relatively straightforward adaptation and can be
regarded as complementary to the bottom-up approach discussed in [17]. In con-
trast to the bottom-up approach using one index per dimension, the top-down
approach just needs one index applied to the full-dimensional data space. As a
result, the top-down approach does not need to merge the partial results of the
rankings performed for each dimension in the corresponding subspace. Relying
on the full-dimensional indexing of a data set, the top-down approach can be
expected to perform better than the bottom-up approach where the dimension-
ality of the query subspace is approaching the dimensionality of the data set, if
the latter does not disqualify methods based on full-dimensional indexing. On
the other hand, as the index used in the top-down approach organizes the data
w.r.t. the full-dimensional space, the locality property of a similarity query which
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might hold for the full-dimensional space does not necessarily hold for the sub-
space the query relates on. Generally, the more the dimensionality of the original
data space differs from that of the query subspace, the smaller is the expected
effectiveness of the index for a given subspace query. In summary, depending on
the dimensionality of the query subspace, both indexing approaches qualify for
subspace similarity search. While the bottom-up method is more appropriate for
lower-dimensional subspace queries, the top-down approach should be used when
the dimensionality of the query subspace approaches that of the data space.

5 Evaluation

In this section, we evaluate the proposed methods. In particular, Section 5.1
compares the different algorithms for subspace indexing on real-world data sets,
whereas Section 5.2 focuses on the performance of the different heuristics for
the bottom-up approach proposed by the authors in [17] on synthetic data sets
having different characteristics (cf. Table 1).

Table 1. Data sets

Data set Type Size Dims

CLOUD meteorological data > 1, 000, 000 9

ALOI-8/ALOI-641 color histograms 110,250 8/64

UNIFORM synthetic, uniform 100,000 20

CLUSTERED synthetic, multivariate Gaussian clusters 100,000 20

5.1 Evaluation of Methods for Subspace Indexing

In this section, we compare the approaches DMI (Dimension-Merge-Index [17]),
PT (Projected R-Tree proposed in Section 4), PVA (Partial VA-File [6]) and
MP (Multi-Pivot-Based algorithm [24]) for subspace indexing. Unless stated
otherwise, we compare the different approaches on a data set with k = 1 and
k = 10 with increasing subspace dimension displayed on the x-axis.

In order to compare the different approaches, we performed between 1, 000
and 10, 000 k-NN queries for each data set. For DMI, PT and MP, we measured
all page accesses that could not be served by the LRU-cache. PVA does not
only perform random page accesses for reading data, but also implements a
heuristic that switches to a block read of pages if it turns out that multiple
subsequent pages have to be read. Therefore, we measured block read pages and
randomly accessed pages of PVA separately. In order to make the results of PVA
comparable to the results of the other approaches, we combined the amount of
block read pages with the amount of randomly accessed pages and calculated
an estimated read time. To achieve this, we assumed a seek time of 8ms and a
transfer rate of 60MB/s.

1 Amsterdam Library of Object Images.
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(b) 10-NN on CLOUD.
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(c) 1-NN on ALOI-8.

10000

100000

1000000

10000000

e
in
m
s

1

10

100

1000

1 2 3 4 5 6 7 8

Ti
m
e

Subspace dimensions

PVA

DMI

PT

MP

(d) 10-NN on ALOI-8.
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(f) 10-NN on ALOI-64.

Fig. 2. Queries with different subspace dimensions. Due to the long runtime and due
to the high amount of disc accesses of MP, we only executed tests on ALOI-8 and
omitted MP from the remaining experiments.

In Figure 2, we compare the proposed methods on real-world data sets. For
CLOUD (cf. Figures 2a and 2b) it can be seen clearly that DMI is superior or
equal to the other approaches up to a subspace size of 4 dimensions. For ALOI-8,
DMI is better or equal for a subspace size of up to 3 dimensions. In ALOI-64,
DMI outperforms PVA and PT up to 4 dimensions until it reaches a break even
point with PVA at a subspace size of 5 dimensions. Regarding the dimensionality
of the data set and the subspace dimensions where DMI is better or equal to
one of the other methods (3 on ALOI-8, 4 on CLOUD (9D) and 5 on ALOI-64),
we can state that DMI - such as PVA - performs better on data sets with higher
dimensionality, depending on the parameter k (exemplarily shown in Figure 3a
for ALOI-64). The obtained results confirm the discussion from Section 4.2. In all
tested settings DMI performs best as long as the dimensionality of the subspace
query is moderate. When the dimension increases, PT becomes superior to DMI.
PVA is a scan-based approach and well suited if a data set is hard to index (e.g.
very high-dimensional). CLOUD seems to be well indexable by the R*-Tree,
therefore PT performs better than PVA. The ALOI data sets in contrast are
rather hard to index (in particular ALOI-64 having a very high dimensionality).

5.2 Evaluation of Heuristics

The proposed heuristics for the bottom-up approach (cf. [17]) address different
problems of the data distribution. To accurately show their behavior we tested
the heuristics Round-Robin (RR), Global-MinDist (GMD) and MinScore (MS)
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Fig. 3

on synthetic data sets with different characteristics. We performed 1,000 10NN
queries on a 3D subspace and measured the page accesses needed by each dimen-
sion using our bottom-up approach and averaged the outcomes. The results are
illustrated in Figure 3b. On UNIFORM and CLUSTERED the more sophisticated
heuristics (GMD and MS) are superior to the näıve RR method, since they try to
find a better dimension instead of more or less randomly picking one. If the di-
mensions are scaled randomly, the GMD heuristics favors the dimension with the
minimal scale factor. However, this dimension does only increase the minimum
distance of all other objects by a small value. Therefore it can stop the filter step
very late, which results in many unnecessary page accesses.

6 Conclusions

In this paper, we proposed and studied new, index-based solutions for support-
ing k-NN queries in arbitrary subspaces of a multi-dimensional feature space.
Therefore, we studied two different approaches. One of the main problems we
addressed is how to schedule the rankings from the various dimensions in order
to get good distance approximations of the objects for an early pruning of can-
didates. The evaluation shows that our solutions perform superior to the most
recent competitors. As future work, we plan to study further heuristics based on
our results and to perform a broad evaluation to study the impact of different
data characteristics on all existing approaches for subspace similarity search.
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Abstract. To monitor skylines over dynamic data, one needs to continuously up-
date the skyline query results in order to reflect the new data values. This paper
tackles the problem of continuous skyline monitoring on a central query server
over dynamic data from multiple data sites. Simply sending the updates of tuple
values to the server is cost-prohibitive. Therefore, we propose an approach where
the central server collaborates with the data sites to monitor the possible skyline
changes. By doing so, the processing load is distributed over all the nodes instead
of only on the central server. Furthermore, the approach can minimize the band-
width consumption between the server and the data sites, which is often critical
in a widely distributed environment. Extensive experiments demonstrate that our
proposal is efficient and effective.

1 Introduction

A skyline query [4] returns from a multi-dimensional data set those points that are not
dominated by others. A point is said to dominate the other, if it is not worse than the
other in every single dimension and better in at least one dimension. Because of the
power in retrieving interesting data according to multiple criteria, skyline queries can
be used in many decision making applications.

In many applications, multi-dimensional data are often generated from multiple dy-
namic data sites (e.g., base stations managing sensors or web sites on the Internet).
Due to the dynamic nature of data sites, snapshot skyline queries in such environments
make little sense for data interpretation and decision making. Instead, continuous sky-
line monitoring is necessary in such environments.

By capturing the continuous query result changes as time elapses, such continuous
skyline monitoring is able to detect potential significant events. For example, geologists,
oceanographers and seismologists are able to conduct in tsunami forecast and forewarn-
ing by analyzing continuous multiple measures including water level, earthquake wave,
fall, etc. An efficient skyline monitoring over relevant data sites can determine a suc-
cessful warning of a deadly tsunami, which as a result may save millions of lives.

Another example is avalanche monitoring. The occurrence of avalanche is closely
related to the weather conditions, e.g., rapid rise of temperature, a strong wind, heavy
snowfall, as well as the strong solar radiation at the day. Consider that a large number
of weather stations with multiple sensors are installed in the mountain areas to monitor

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 565–583, 2010.
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the conditions of different places. Continuous skyline monitoring over such stations is
able to maintain the locations having the most avalanche-favoring conditions.

Continuous skyline monitoring can also be interesting in geographically distributed
environments. Within a trade day, for example, a stock trader needs to be continuously
aware of which stocks worldwide are worth investing, based on multiple attributes like
last sale price, last buy price, volume, etc. Apparently, a continuous skyline monitoring
over multiple dynamic stock information sources at different places (e.g., the US market
and the Europe market overlap in trading hours) will serve that purpose well.

Motivated by the aforementioned observations, we, in this paper, tackle the problem
of efficient continuous skyline monitoring in a distributed environment characterized by
a central server that acts as the query interface and multiple data sites each maintaining
a large number of dynamic data tuples.

Our solution for continuous skyline monitoring mainly consists of two phases: ini-
tialization and maintenance. In the initialization phase, the initial query result, i.e. the
global skyline, is obtained by correctly merging local skyline from all data sites. Based
on the initial skyline, all data tuples are categorized with respect to their membership in
local skyline and global skyline. Such a categorization is maintained in an efficient way
on both server and data sites.

To support accurate and efficient skyline monitoring under dynamic data updates, a
comprehensive case study for individual data updates is performed, which reveals the
minimal skyline changes that can happen as time elapses. Consequently, in the main-
tenance phase, possible skyline changes are captured accordingly via efficient collab-
oration between the server and the data sites. In this way, unnecessary processing on
server or data sites, and unnecessary communications between server and data sites are
avoided. Furthermore, the processing load are distributed over the server and the data
sites to avoid the server becoming the bottleneck.

In summary, we make the following major contributions in this paper. First, we
formalize the continuous skyline monitoring problem in a generic two-tier distributed
computing environment, and propose a two-phase solution for such an important prob-
lem. Second, we conduct a thorough case study on the possible incremental changes
of continuous skyline results. Third, we develop an efficient two-tier continuous sky-
line maintenance approach based on the case study. Fourth, we evaluate our proposal
through extensive experimental study.

The remainder of this paper is organized as follows. Section 2 briefly review the re-
lated work on skyline queries. Section 3 formalizes the problem statement. Sections 4
and 5 details respectively the initialization and maintenance phases of continuous sky-
line monitoring. Section 6 presents the experimental results. Finally, Section 7 con-
cludes the paper.

2 Related Work

Skyline queries in the centralized data storage. Borzonyi et al. [4] introduced two algo-
rithms Block Nested Loop (BNL) and Divide-and-Conquer (D&C). Chomicki et al. [5]
proposed a Sort-Filter-Skyline (SFS) algorithm as BNL’s variant. Tan et al. [18] pro-
posed Bitmap and Index algorithms. Kossmann et al. [10] proposed a Nearest Neigh-
bor (NN) method. Papadias et al. [16] proposed a Branch-and-Bound Skyline (BBS)
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method. Godfrey et al. [7] did a comprehensive analysis of previous skyline algorithms
without indexing supports.

Yiu and Mamoulis [22] proposed efficient algorithms to retrieve top-k points that
dominate the largest number of points [16]. Lin et al. [13] proposed to select skyline
points such that the total number of dominated points is maximized.

Dellis and Seeger [6] defined the reverse skyline query that returns the points whose
dynamic skyline [16] contains the query point. Morse et al. [14] proposed a lattice
based skyline algorithm for data on low cardinality domains. Lee et al. [11] proposed
to access points in Z-order in order to compute/update skylines more efficiently. Pei
et al. [17] defined probabilistic dominance for uncertain data where each record has
several instances.

Skyline queries in distributed and dynamic environments. Balke et al. [3] addressed
skyline operation over web databases where different dimensions are stored on different
data sites. Wu et al. [21] proposed a parallel execution of constrained skyline queries in
an overlay network. Huang et al. [8] proposed techniques for efficient distributed sky-
line query processing in MANETs. Zhu et al. [24] proposed a feedback-based skyline
algorithm for geographically distributed servers on the Internet.

Huang et al. [9] defined continuous skyline query in a moving setting where dynamic
distance between a moving object and all static data point is yet another dimension
in the skyline computation. Lin et al. [12] proposed an efficient skyline computation
method over sliding window data stream model. Tao and Papadias [19] addressed the
similar problem differently by lazy updates and pre-computation. Wu et al. [20] pro-
posed to efficiently maintain skyline with point deletions. Handling point insertion and
deletion are also addressed in [24]. Our setting in this paper is different in that updates
change point values continuously rather than inserting or deleting points.

Recently, Zhang et al. [23] studied the frequent skyline query over a sliding window
on continuous objects from dynamic data sites. Given a window W s

t (of size of s times-
tamps until t) and a threshold θ (0 < θ ≤ 1), such a query returns all objects that appear
in at leat θ ·s snapshot skylines of all the s ones within W s

t . This paper differs from [23]
in several important ways. First, each data site in our setting maintains a number of dy-
namic data tuples/records; while each client in [23] is a dynamic record. Second, our
work maintains the real continuous skyline over the dynamic data; while [23] actually
looks at several snapshot skylines within the given sliding window. In other words,
the query in [23] is still executed one-time, rather than being maintained continuously
as in our setting. Third, sampling based approximation is employed in [23] to reduce
communication cost; while our continuous skyline query always maintains the exact
skyline result efficiently. As a result, the solution in [23] cannot be applied directly to
our problem in this paper.

Monitoring of distributed dynamic data. Streaming data are often generated from
distributed sites. Hence there are much recent research effort devoted to studying con-
tinuously monitor over distributed dynamic data. Various query types have been studied.
For instance, Babcock et al. [2] studied how to monitor top-k data items efficiently by
adaptively setting filters at the data sites. Mouratidis et al. [15] adopted a similar ap-
proach to solve the problem of monitoring k nearest neighbors. Zhou et al. [25] studied
the problem of multi-join queries over distributed streams. In this paper, we target a
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much different type of queries, skylines, where we have to consider multiple ranking
criteria at the same time. Hence, a much different solution is needed.

3 Problem Setting

We consider a typical distributed setting adopted by existing literature, such as [2].
There is a central server responsible for returning the global skyline results. In addition,
there are a number of remote N data sites, namely S1, S2, . . . , SN . Each site maintains
a set of dynamically changing tuples each of which, for example, can be readings from
sensors at a particular weather station. The data sites will communicate with the server
for data update and perform local filtering to minimize the communication cost.

At any time t, the tuple set on data site Si (1 ≤ i ≤ N ) is captured in a local relation
Ri(t) with the scheme 〈idtuple , p1, p2, . . . , pd, t

∗〉, where pi (1 ≤ i ≤ d) is a value of
the corresponding attribute of interest, idtuple is the tuple identifier, and t∗ is the time
when the tuple is obtained from the corresponding data site. Note that idtuple practically
serves as the primary key of a local relation. In other words, only the latest instance of
any dynamic tuple is kept in a local relation. For a specific tuple tpid with identifier id ,
we use tpid (t) to denote its instance at timestamp t. For simplicity, we also use tp.attrs
to denote tuple tp’s all attributes from p1 to pd.

Accordingly, we have a dynamic (virtual) global relation Rg(t) that basically is the
union of all local relations at time t, i.e., Rg(t) =

⋃
1≤i≤N Ri(t). For the simplicity of

representation, we alter the global scheme to 〈idsite , idtuple , p1, p2, . . . , pd, t
∗〉, where

idsite indicates the site from which the tuple comes. As a result, 〈idsite , idtuple〉 serves
as the primary key of the global relation.

In environmental monitoring applications, weather stations attached with several dif-
ferent types of sensors are deployed to monitor the meteorological conditions [1]. Each
station, responsible for its own proximity, continuously reports a dynamic tuple of val-
ues, such as temperature, solar radiation, and wind speed. To ease management, sev-
eral stations will be grouped together and their data would be collected and relayed by
a common base station, which we call a data site in this paper. For example, Table 1
shows three local relations and the corresponding global relation.

Given two tuples tp1 and tp2, we define the dominance relationship between them
in terms of all their pi (1 ≤ i ≤ d) attributes. We say that tp1 dominates tp2, termed
as tp1 � tp2, if ∀1 ≤ i ≤ d, tp1.pi is no worse than tp2.pi; and ∃1 ≤ i ≤ d, tp1.pi

is better than tp2.pi. Note that “better” and “worse” are generic in the sense that they
have different indications in different contexts.

Refer to the example in Table 1. Intuitively, a higher value in any of the three reading
attributes indicates a higher chance of avalanche. A reading tuple tpi dominates another
one tpj , if tpi’s all attribute values are no smaller than tpj’s but at least one of tpi’s
attribute values is higher than tpj’s. As a result, the local skylines and the global skyline
are shown in Table 1(e) and (f) respectively.

The dominance definition above also applies to the different instances of the same tu-
ple at different timestamps. For example, if tp1 at site 1 is updated to 〈−1.005, 365.292,
5.283〉 at 16:20, we say the new instance dominates the old one.
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Table 1. Snapshots of local/global relations and local/global skylines

idtuple temp. solar radi. wind speed t∗

tp1 -1.150 365.292 4.282 16:15
tp2 -4.713 146.223 2.556 16:18
tp3 -6.900 194.078 6.646 16:18
tp4 -1.280 363.165 2.548 16:18

(a) local relation #1
idtuple temp. solar radi. wind speed t∗

tp1 -8.588 82.417 3.763 16:18
tp2 -1.087 309.46 1.592 16:17
tp3 -9.713 337.642 2.573 16:18

(b) local relation #2
idtuple temp. solar radi. wind speed t∗

tp1 8.787 267.455 2.866 16:18
tp2 -5.588 156.858 1.383 16:18
tp3 -14.338 247.250 2.662 16:18

(c) local relation #3

idsite idtuple temp. solar radi. wind speed t∗

site1 tp1 -1.150 365.292 4.282 16:15
site1 tp2 -4.713 146.223 2.556 16:18
site1 tp3 -6.900 194.078 6.646 16:18
site1 tp4 -1.280 363.165 2.548 16:18
site2 tp1 -8.588 82.417 3.763 16:18
site2 tp2 -1.087 309.46 1.592 16:17
site2 tp3 -9.713 337.642 2.573 16:18
site3 tp1 8.787 267.455 2.866 16:18
site3 tp2 -5.588 156.858 1.383 16:18
site3 tp3 -14.338 247.250 2.662 16:18

(d) global relation
idsite local skyline
site1 {tp1, tp3}
site2 {tp1, tp2, tp3}
site3 {tp1}

idsite global skyline tuples
site1 {tp1, tp3}
site2 {tp2}
site3 {tp1}

(e) local skylines (f) global skyline

As all tuples are dynamic in our setting, the local skylines and the global skyline are
also dynamic. Our goal is to monitor the global skyline continuously in a distributed
environment as described above.

Problem: (Continuous Skyline Monitoring Query). A continuous skyline monitoring
query, termed as CSMQ , is issued against the global relation Rg . It is activated at some
time ts, the start time of the query, and terminated at some later time te, the end time of
the query. The query result is maintained from time ts to time te in the following set:

∀t ∈ [ts, te],CSMQ(Rg) = {tp | tp ∈ Rg(t) ∧ 
∃tp′ ∈ Rg(t), tp′ � tp}.

Our solution in this paper consists of two phases. The initialization phase, to be pre-
sented in Section 4, obtains the initial query result for a CSMQ query, and initializes
necessary settings to facilitate continuous query processing. The maintenance phase,
to be presented in Section 5, continuously updates the query result according to the
dynamic changes of relevant tuples.

4 Query Initialization

When a CSMQ query is activated at time ts, the initialization is conducted in the system
as follows. The server first sends query requests to all data sites. Each data site Si in
turn sends to the server its local skyline SKi(ts) that is a subset of its local relation.
The server initializes the global skyline SKg according to the global scheme. When the
server receives the local skyline from a data site, the incoming skyline will be merged
into the current global skyline. After all local skylines are received and merged, the
server obtains the initial global skyline and sends necessary control information back to
all data sites.

The merging procedure (shown in Algorithm 1) is intended to eliminate unqualified
temporary skyline points from both the temporary skyline result that is stored in SKg,
and the incoming skyline stored in SKin. Given a local skyline SKin from data site Si,
portion of SKin may not participate the final global skyline. We call that portion false



570 H. Lu, Y. Zhou, and J. Haustad

Algorithm 1. merge (Incoming local skyline SKin, data site identifier idsite , current
global skyline SKg)

1: SKfp [idsite ]← ∅
2: for each tuple tpi in SKin do
3: tpi ← 〈tpi.attrs, tpi.idtuple , idsite , tpi.t

∗〉
4: for each tuple tpj in SKg do
5: if tpi � tpj then
6: move tpj from SKg to SKfp [tpj .idsite ]
7: else if tpj � tpi then
8: move tpi from SKin to SKfp [idsite ]
9: break

10: SKg ← SKg ∪ SKin

positive skyline. We use an array SKfp [1..N ] to store all such false positive skylines for
all data sites.

At any timestamp, a tuple tp can be in one and only one state of three possibilities.
First, tp can be a non-skyline point. We term this state NS. Second, tp can be a local
skyline point on its data site but not a global skyline point with respect to all data sites.
We term this state FS, according to the aforementioned false-positive skyline definition.
Third, tp can be a global skyline point. We term this state GS.

Our goal in this paper is to efficiently maintain the set of all tuples in the GS state
when tuples are under possible updates. For that purpose, we are interested in the possi-
ble state switching for a single tuple. Figure 1 shows the state diagram of a single tuple.

NS

GS FS

Local Skyline

Fig. 1. Tuple State Diagram

Table 2. SKlg and SKfp

idsite SKlg SKfp

site1 {tp1, tp3} ∅
site2 {tp2} {tp1, tp3}
site3 {tp1} ∅

On each data site Si, we maintain the following structures: (1) Local skyline SKl,
the set of local skyline tuple identifiers. (2) Local global skyline SKlg, the set of local
skyline tuple identifiers that participate the global skyline. This corresponds to the tuple
state GS. (3) False-Positive skyline SKfp = {tp.idtuple | tp ∈ SKl} \ SKlg, the set of
local skyline tuple identifiers that do not participate the global skyline. This corresponds
to the tuple state FS.

On the server side, we maintain the following structures: (1) Global skyline SKg, the
set of global skyline tuples. (2) An array of false-positive skyline tuples SKfp [1..N ].
Here, ∀1 ≤ i ≤ N, SKfp [i] = Si.SKfp .
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Table 3. Change cases from time t to t′ (t′ > t)

tp(t) ∈ NS tp(t) ∈ FS tp(t) ∈ GS

tp(t′) ∼ tp(t) Case 1 (Q1, Q2) Case 4 (Q1, Q2, Q4) Case 7 (Q1, Q2, Q3)
tp(t) � tp(t′) Case 2 (–) Case 5 (Q4) Case 8 (Q1, Q3)
tp(t′) � tp(t) Case 3 (Q1, Q2) Case 6 (Q1, Q2) Case 9 (Q2)

Refer to the running example. The local data structures SKlg and SKfp are shown in
Table 2. After all local skylines are merged, the server initializes the relevant data struc-
tures, and sends to each data site all its false-positive skyline tuple identifiers. When a
data site receives that identifier set, it initializes local data structures accordingly. Note
that the server and the sites will make use of their initializations subsequently in con-
tinuous skyline monitoring, as to be detailed in Section 5.

5 Continuous Skyline Monitoring

In this section we elaborate how the result of a CSMQ query is continuously main-
tained in the presence of dynamic updates from data sites. To be able to design concrete
algorithms for the maintenance phase, we first proceed to discuss the cases of possible
skyline changes caused by dynamic tuples from data sites.

5.1 Cases of Possible Skyline Changes

As tuples get updated continuously, the global skyline also needs to be maintained ac-
cordingly and correctly. The initial skyline SKg(ts) obtained in Section 4 will serve as
the starting point of the continuous maintenance.

Suppose the correct skyline at time t ≥ ts is SKg(t) = {tp | tp ∈ Rg(t) ∧ 
∃tp′ ∈
Rg(t), tp′ � tp}, and data site Si gets an updated tuple as tp(t′) at a later time t′ > t,
we need to determine the correct skyline SKg(t′) at time t′. For that purpose, we need
to consider for tp(t′) all or part of the three particular questions as follows.

Question 1. Is tp(t′) dominated by no skyline point in SKg(t) (or SKl(t))? If positive,
tp(t′) will be in SKg(t′) (or SKl(t)).

Question 2. Does tp(t′) dominate any skyline point in SKg(t) (or SKl(t))? If positive,
relevant old skyline points will expire and be out of SKg(t′) (or SKl(t)).

Question 3. Does tp(t′), a global skyline point at time t, stop dominating any non-
skyline point solely dominated by tp(t) at time t? If positive, relevant old non-skyline
points will enter SKg(t′).

In addition, it is also of interest to know the answer to the following question, so that
the local and global structures for false positive skyline will be correctly updated. This
is necessary for facilitating further continuous query processing.

Question 4. Does tp(t′) stop being a false-positive global skyline point because it is
now dominated by some local skyline point? If positive, tp(t′) should be removed from
local SKfp and server side SKfp [1..N ].
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These questions, on the other hand, are closely related to two aspects: the membership
of tp(t) in SKg(t), and the dominance relationship between tp(t) and tp(t′). All possi-
ble cases with respect to these two aspects are listed in Table 3. In this table, each case is
attached with questions that can have positive answers, which indicates possible skyline
changes. We proceed to explain how SKg(t) will evolve to SKg(t′) in each case.

Case 1. In this case, it is possible that tp(t′) at time t is no longer dominated by any
skyline point in SKg(t) (Question 1), which makes it become a new skyline point and
SKg(t′) = SKg(t) ∪ {tp(t′)}. It is also possible that tp(t′) dominates a subset SK ⊆
SKg(t) (Question 2), which drives any point in SK out of the skyline. It is noteworthy
that Question 2 can have positive answer only if the answer to Question 1 has been
proved positive. As a result, the skyline will be SKg(t′) = (SKg(t) \ SK) ∪ {tp(t′)}.

Whereas the answer to Question 3 is negative in this case. Since tp(t) is not a skyline
point at time t, it must be dominated by some skyline point p ∈ SKg(t). As a result, any
non-skyline point dominated by tp(t) at time t must also be dominated by p, because of
the transitivity of dominance [4]. It is therefore impossible for tp(t) to solely dominate
any non-skyline point at time t.

Case 2. In this case, we have negative answers to all three questions. The answer
to Question 1 is negative, because tp(t′) must be dominated by some skyline point
p ∈ SKg(t) that dominates tp(t) at time t. The answer to Question 2 is also negative,
because otherwise the skyline point q ∈ SKg(t) would also be dominated by p afore-
mentioned and cannot be a skyline point at all. The answer to Question 3 is negative for
the same reason in Case 1. As a consequence, the skyline in this case will not change
from time t to t′, i.e. SKg(t′) = SKg(t).

Case 3. This case is similar to Case 1.

Case 4. This case is similar to Case 1, except that Question 4 should be checked because
tp may no long be a false positive global skyline point. The answer can be decided
locally as we only need to check the updating tp with all other local skyline points.

Case 5. This case is similar to Case 2, except that we need to check the answer to
Question 4.

Case 6. This case is similar to Cases 1 and 3. Here, tp(t′) dominates its old instance
tp(t) which was a local skyline point. Therefore, tp(t′) cannot be dominated by any
local skyline point, and it is unnecessary to check the answer to Question 4.

Case 7. In this case, answers to all three questions can be positive, because tp(t) is
a skyline point at time t. If the answer to Question 1 is positive, the skyline keeps
unchanged from time t to t′, i.e. SKg(t′) = SKg(t). Otherwise, the skyline will be
SKg(t′) = SKg(t) \ {tp(t)}.

It is still true that Question 2 can have positive answer only if Question 1 does. If the
answer to Question 2 is positive, the new skyline becomes SKg(t′) = SKg(t) \ SK ,
where SK is defined the same as in Case 1.

If the answer to Question 3 is positive, which guarantees a set P ⊆ Rg(t)\SKg(t) of
all those non-skyline points that are solely dominated by tp(t) at time t but not by tp(t′)
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at time t′, the skyline will become SKg(t′) = SKg(t) ∪ P . Here, checking Question 3
does not depend on the answer to Questions 1 or 2.

Case 8. This case is similar to Case 7, except that it is not necessary to check the answer
to Question 2. In this case, tp(t) dominates its new instance tp(t′), which makes it
impossible for tp(t′) to dominate any local/global skyline points. Because otherwise
tp(t) would have already dominated such skyline points.

Case 9. In this case we have positive answer to Question 1 and negative answer to
Question 3. Since tp(t) is a skyline point, tp(t′) with a higher dominating capability
must stay in the skyline and still dominate all those non-skyline points dominated by
tp(t). The answer to Question 2 can be positive, because tp(t′) may dominate some
old skyline points. Consequently, the new skyline becomes SKg(t′) = SKg(t) \ SK ,
where SK is defined the same as in Case 1.

With the case study on skyline changes, we are ready to design an efficient solution
to dynamically maintain skylines in the distributed environment.

5.2 Processing on the Updating Data Site

When an update for tuple tp comes to data site Si at time t′, the site needs to decide the
change case type. This requires availability of two pieces of information: the dominance
relationship between tp(t) and tp(t′), and whether tp(t) belongs to SKg(t) or not. The
former is obtained by comparing tp(t) and tp(t′); the latter is obtained by checking
the reduced local skyline signature SKlg. Both are done locally at data site Si. After
deciding the change case, site Si sends to the server a specific update message together
with corresponding information.

Cases 1, 3 and 6 are processed according to Algorithm 2. Here, Question 2 is only
checked when the answer to Question 1 is positive. Therefore, the process of checking
Question 2 continues only if tp(tc) is not dominated by any local skyline point (line 1).
Particularly, tp(tc) is added into the local skyline if the case type is not 6 (lines 2–
3). Furthermore, the old local/global skyline points that are dominated by tp(tc) are
eliminated accordingly (lines 4–8). Then, a specific update message is sent to the server
(line 9). Otherwise, tp(tc) is dominated and removed from SKfp (lines 10–11).

Case 4 is processed according to Algorithm 3. If the updating tuple tp(tc) now is
dominated by some local skyline point (line 1), it is removed from the local false-
positive skyline SKfp if its old instance is there (lines 2–3), and then a specific message
is sent to the server to remove tp from SKfp there (line 4). Otherwise, tp(tc) is not
dominated by any local skyline. Similar to the procedure for cases 1, 3 and 6, Question
2 is to be checked (lines 5–11).

Case 5 is processed according to Algorithm 4, which is similar to the first part of the
procedure for case 4.

Case 7 is processed according to Algorithm 5. Its first part (lines 1–6) is similar to
the counterpart in Algorithm 2. Next, it continues to check the answer to Question 3,
by obtaining those tuples that stop being dominated by their sole dominator tp at the
updating time (lines7–10). Here, DR(tp) denotes the dominating region [8] of a tuple
tp. All such tuples are added into the local skyline (line 11). Finally, a specific message
is sent to the server (line 12).
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Algorithm 2. updateCase136 (Updating tuple tp, current timestamp tc, local global
skyline SKlg)

1: if �tp′ ∈ SKl s.t. tp′ � tp(tc) then
2: if the case type is not 6 then
3: add tp(tc) to SKl

4: SKexp ← {id ∈ SKlg | tp(tc) � Ri[id]}
5: SKlg ← SKlg \ SKexp

6: SKexpf ← {id ∈ SKfp | tp(tc) � Ri[id]}
7: SKfp ← SKfp \ SKexpf

8: SKl ← {tp′ ∈ SKl | tp′.idtuple 
∈ SKexp ∪ SKexpf }
9: send 〈UPT MSG CASE 136, tp, SKexp , SKexpf 〉 to the server

10: else if tp.idtuple ∈ SKfp then
11: remove tp.idtuple from SKfp

Algorithm 3. updateCase4 (Updating tuple tp, current timestamp tc, local global sky-
line SKlg)

1: if ∃tp′ ∈ SKl s.t. tp′ � tp(tc) then
2: if tp.idtuple ∈ SKfp then
3: remove tp.idtuple from SKfp

4: send 〈UPT MSG CASE 4 Q4, tp.idtuple〉 to the server
5: else
6: SKexp ← {id ∈ SKlg | tp(tc) � Ri[id]}
7: SKlg ← SKlg \ SKexp

8: SKexpf ← {id ∈ SKfp | tp(tc) � Ri[id]}
9: SKfp ← SKfp \ SKexpf

10: SKl ← {tp′ ∈ SKl | tp′.idtuple 
∈ SKexp ∪ SKexpf }
11: send 〈UPT MSG CASE 4, tp, SKexp , SKexpf 〉 to the server

Case 8 is processed according to Algorithm 6. In this case, it is impossible for the
disadvantaged new instance of the updating tuple to dominate any local/global skyline
points. However, it is still possible that the new instance is dominated by some lo-
cal/global skyline points. It is also possible that such a local skyline point dominating
the tp(tc) may be dominated by tp’s old instance. Therefore, we here check the an-
swer to Question 3 first (lines 1–5), followed by steps of checking that to Question 1
(lines 6–10).

Algorithm 4. updateCase5 (Updating tuple tp, current timestamp tc, local global sky-
line SKlg)

1: if ∃tp′ ∈ SKl s.t. tp′ � tp(tc) then
2: if tp.idtuple ∈ SKfp then
3: remove tp.idtuple from SKfp

4: send 〈UPT MSG CASE 5, tp.idtuple〉 to the server
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Algorithm 5. updateCase7 (Updating tuple tp, current timestamp tc, local global sky-
line SKlg)

1: if �tp′ ∈ SKl s.t. tp′ � tp(tc) then
2: SKexp ← {id ∈ SKlg | tp(tc) � Ri[id]}
3: SKlg ← SKlg \ SKexp

4: SKexpf ← {id ∈ SKfp | tp(tc) � Ri[id]}
5: SKfp ← SKfp \ SKexpf

6: SKl ← {tp′ ∈ SKl | tp′.idtuple 
∈ SKexp ∪ SKexpf }
7: Pc ← {tp ∈ Ri | tp ∈ DR(Ri[tp.idtuple ])−DR(tp(tc))}
8: for each tuple tp′ ∈ Pc do
9: if ∃tp′′ ∈ SKl \ {tp(t)} s.t. tp′′ � tp′ then

10: remove tp′ from Pc

11: SKl ← SKl ∪ Pc

12: send 〈UPT MSG CASE 7, tp, SKexp , SKexpf , Pc〉 to the server

Algorithm 6. updateCase8 (Updating tuple tp, current timestamp tc, local global sky-
line SKlg)

1: Pc ← {tp ∈ Ri | tp ∈ DR(Ri[tp.idtuple ])−DR(tp(tc))}
2: for each tuple tp′ ∈ Pc do
3: if ∃tp′′ ∈ SKl \ {tp(t)} s.t. tp′′ � tp′ then
4: remove tp′ from Pc

5: SKl ← SKl ∪ Pc

6: if ∃tp′ ∈ SKl s.t. tp′ � tp(tc) then
7: SKexp ← {tp.idtuple}
8: SKl \ SKexp

9: else
10: SKexp ← ∅
11: send 〈UPT MSG CASE 8, tp, SKexp , Pc〉 to the server

Algorithm 7. updateCase9 (Updating tuple tp, current timestamp tc, local global sky-
line SKlg)

1: SKexp ← {id ∈ SKlg | tp(tc) � Ri[id]}
2: SKlg ← SKlg \ SKexp

3: SKexpf ← {id ∈ SKfp | tp(tc) � Ri[id]}
4: SKfp ← SKfp \ SKexpf

5: SKl ← {tp′ ∈ SKl | tp′.idtuple 
∈ SKexp ∪ SKexpf }
6: send 〈UPT MSG CASE 9, tp, SKexp , SKexpf 〉 to the server
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Case 9 is processed according to Algorithm 7, which is similar to its counterparts in
Algorithms 2 and 3.

5.3 Update Processing on the Server

Upon the receipt of an upstream update message from an updating data site, the server
processes the message according to the procedure described in Algorithm 8. If the mes-
sage type is UPT MSG Case 4 Q4 or UPT MSG Case 5, the updating tuple will be
moved out of the false positive skyline array since it is no longer a false positive global
skyline point (lines 1–2). Otherwise, the server needs to check the answers to Questions
1, 2 and 3 locally, and send corresponding downstream messages to involved data sites
(lines 3–37).

Specifically, other message types are processed as follows. First, a temporary ar-
ray is initialized to contain possible expiring global skyline points (line 4). Second,
those global skyline points that are no longer local skyline points on the updating
site are removed from the global skyline (line 6). Next, if the message type is not
UPT MSG Case 8, those false positive global skyline points that are no longer local
skyline points on the updating site are removed from the false positive skyline array
(lines 7–8).

After that, all tuples that may enter the global skyline are added into set gs (lines 9–
11), including the updating tuple and those sent by the site if it is a UPT MSG Case 7
or UPT MSG Case 8 message.

Subsequently, Question 1 is checked by comparing the updating tuple with the cur-
rent global skyline points not coming from the updating site (lines 12–24). If the updat-
ing tuple is dominated, the process will stop immediately (lines 15–20). Those existing
global skyline points that come from the updating site but are dominated by the up-
dating tuple are removed (line 17–18). Otherwise, all invalid global skyline points are
moved to the temporary array for later use (lines 21–22). After that, it is confirmed that
the updating tuple is not dominate and it is (still) a global skyline point. All remaining
tuples in gs are added into the global skyline, and a corresponding downstream message
is sent to the updating site (lines 23–24).

Furthermore, invalid global skyline points, which are still local skyline points on
their own data sites, are moved from the temporary array to the false positive skyline
array, and a corresponding downstream message is sent to each involved data site for
local update (lines 25–28).

Finally, in the case of a UPT MSG Case 7 or UPT MSG Case 8 message, Question
3 is checked for each particular data site, in order to identify those current false positive
skyline tuples that are no longer dominated (lines 29–37). All such tuples are obtained
by dominance comparison with the updating tuple and all current global skyline tuples
(line 33). If they do exist, they are moved from the false positive skyline to the global
skyline (lines 35–36), and a corresponding downstream message is sent to the involved
site for local update (line 37).

5.4 Passive Update Processing on Data Sites

When the server processes an update message, some data sites may receive downstream
messages from the servers. Such data sites (including the updating site) also need to do
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Algorithm 8. serverUpdate (Update message msg, data site identifier id)
1: if msg.type ∈ {UPT MSG Case 4 Q4, UPT MSG Case 5} then
2: remove the tuple identified by msg.tp.idtuple from SKfp [id]
3: else
4: for i from 1 to N do
5: SKexp [i]← ∅
6: SKg ← {tp ∈ SKg | tp.idsite 
= id ∨ tp.idtuple 
∈ msg.SKexp}
7: if msg.type 
= UPT MSG Case 8 then
8: SKfp [id]← SKfp [id] \msg.SKexpf

9: gs← msg.tp
10: if msg.type ∈ {UPT MSG Case 7, UPT MSG Case 8} then
11: gs← gs ∪ {tp ∈ msg.Pc | �tp′ ∈ SKg \ {msg.tp(t)} s.t. tp′ � tp}
12: for each tuple tp in SKg do
13: if tp.idsite = id then
14: continue
15: if msg.type 
= UPT MSG Case 9 and tp � msg.tp then
16: SKexp [id]← SKexp [id] ∪ {msg.tp}
17: if ∃tp′ ∈ SKg s.t. tp′.idtuple = msg.tp.idtuple ∧ tp′.idsite = id ∧msg.tp � tp′

then
18: SKg ← SKg \ {tp′}
19: remove msg.tp from gs
20: break
21: if msg.tp � tp then
22: move tp from SKg to SKexp [tp.idsite ]
23: SKg ← SKg ∪ gs
24: send 〈UPT MSG GS, {tp.idtuple | tp ∈ gs}〉 to data site Sid

25: for i from 1 to N do
26: if SKexp [i] 
= ∅ then
27: SKfp [i]← SKfp [i] ∪ SKexp [i]
28: send 〈UPT MSG GS2FS, SKexp [i]〉 to data site Si

29: if msg.type ∈ {UPT MSG Case 7, UPT MSG Case 8} then
30: for i from 1 to N do
31: if i = id then
32: continue
33: fps ← {tp ∈ SKfp [i] | msg.tp(t) � tp ∧ msg.tp(tc) 
� tp ∧ (�tp′ ∈ SKg \

{msg.tp(t)} s.t. tp′ � tp)}
34: if fps 
= ∅ then
35: SKfp [i]← SKfp [i] \ fps
36: SKg ← SKg ∪ fps
37: send 〈UPT MSG FS2GS, {tp.idtuple | tp ∈ fps}〉 to data site Si

passive updates on their local data structures accordingly. The passive update processing
on a relevant data site is described in Algorithm 9.

If the downstream message type is UPT MSG GS, it is sent to the updating data site
to indicate that the updating tuple and/or some other local points (sent in the Pc set in a
UPT MSG CASE 7 or UPT MSG CASE 8 message) are global skylines now. There-
fore, the corresponding tuple identifiers are added to the local global skyline (lines 1–2).



578 H. Lu, Y. Zhou, and J. Haustad

Algorithm 9. psvSiteUpdate (Update message msg)
1: if msg.type = UPT MSG GS then
2: SKlg ← SKlg ∪msg.id set
3: Px ← Px \msg.id set
4: SKfp ← SKfp ∪ Px

5: Px ← ∅
6: else if msg.type = UPT MSG FS2GS then
7: SKfp ← SKfp \msg.id set
8: SKlg ← SKlg ∪msg.id set
9: else if msg.type = UPT MSG GS2FS then

10: SKlg ← SKlg \msg.id set
11: SKfp ← SKfp ∪msg.id set

However, not all local skyline tuples sent to the server become global skyline points.
Some may be eliminated by the server. Accordingly, we need to put the identifiers of
such false positive skyline tuples to the local SKfp structure. To ease the processing,
we maintain on the updating site a local variable Px = {tp.idtuple | tp ∈ Pc or tp is the
updating tuple}. Particularly, Px is set after each local update is done. When processing
a UPT MSG GS message, the identifiers of those new false positive skyline tuples are
obtained by the difference between Px and the returned identifier set in the message
(line 3). Those tuples are merged to SKfp and Px is reset to empty (lines 4–5).

If the downstream message type is UPT MSG FS2GS, the involved tuple identifiers
will be moved from the local SKfp to SKlg , as such tuples are promoted into the
global skyline (lines 6–8). If the message type is UPT MSG GS2FS, the involved tuple
identifiers will be moved from the local SKlg to SKfp , because such tuples are no
longer global skyline points (lines 9–11).

It is noteworthy that a downstream message cannot force a tuple in the local SKlg

or SKfp to move out to enter the non-skyline set. For the local skyline membership to
expire, no matter the tuple is in the global skyline or not, the update causing the change
must come from the same data site. Such a change is processed before the data sites
sends a upstream message to the server, as described in Section 5.2.

5.5 Brief Analysis on Algorithm Costs

In this section, we briefly analyze the costs of those algorithms proposed above. Table 4
lists the notations used in this section. Table 5 lists the worst-case costs of main updat-
ing algorithms, where we regard the dominance comparison between two tuples as the
crucial operation.

Algorithms 2, 3, 4, and 7 need to compare the updating tuple tp with each local
skyline tuple in the worst case, which incurs the cost of O(si). In the worst case, Al-
gorithms 5 and 6 need to compare the updating tuple tp with all local tuples in order to
find all possible new local skyline points that used to be dominated by the old instance
of tp, i.e., set Pc in the algorithms. Furthermore, set Pc is compared against the local
skyline to find all those points that used to be dominated solely by the old instance of
tp. Therefore, their worst-case cost is O(ri) + O(|Pc| · si).
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Table 4. Notation

Nota. Description

S Cardinality of SKg

F Total number of false positive skyline points
ri Cardinality of Ri on the i-th data site
si Cardinality of SKlg on the i-th data site
fi Cardinality of SKfp on the i-th data site

Table 5. Worst-Case Costs

Algorithms Worst-Case Cost

Alg. 2 O(si)

Alg. 3 O(si)

Alg. 4 O(si)

Alg. 5 O(ri) +O(|Pc| · si)

Alg. 6 O(ri) +O(|Pc| · si)

Alg. 7 O(si)

Alg. 8 O(S · F )

The cost of Algorithm 8 mainly comes from two parts. It needs to compare the up-
dating tuple with all global skyline points, which incurs O(S) in the worst case. Also,
in the worst case for a UPT MSG Case 7 or UPT MSG Case 8 message, it needs to
compare each false positive skyline point with all global skyline points in order to de-
cide whether a false positive skyline point should be promoted into the global skyline
or not. This incurs the cost of O(S · F ). As a result, the worst case cost of Algorithm 8
is O(S) + O(S · F ) = O(S · F ).

6 Experimental Studies

6.1 Experimental Settings

We call the solution proposed in this paper the Global approach, and compare it with
two alternatives. In the Naive approach, each data site maintains its relation of up-to-
date tuples, and the server maintains the global relation Rg and the global skyline SKg.
A data site sends each tuple update to the server, which in turn triggers the global skyline
update accordingly. The update is done in two aspects: removing dominated points from
Rg , and adding qualified points from Rg \ SKg to SKg. In the initialization phase, the
server only computes the initial global skyline without obtaining any other information.

In the Local approach, each data site maintains its relation of up-to-date tuples and
its local skyline, and the server maintains the global skyline only. A data site only sends
to the server a tuple update that changes its local skyline. When the server receives a
tuple update, it updates the global skyline by checking the answers to Questions 1, 2,
and 3 defined in Section 5.1. Note that as no auxiliary information is maintained on the
server, it has to send necessary messages to relevant data sites to answer Question 3. We
claim the local approach as our contribution in the sense that it is a weakened version
of the global approach.

We consider three performance metrics in the experiments. (1) bandwidth consump-
tion, where we we count the total sizes of tuples and identifiers sent between the server
and the data sites, (2) server processing time, where we measure the average time spent
on performing the updates the results at the server, and (3) site processing time, i.e. the
average processing time on all the data sites for maintaining the updates over the sim-
ulation period. All the algorithms are implemented with Java 1.6 and the experiments
are run on a Linux desktop with an Intel Core 2 Duo CPU @1.86GHz and 2G RAM.
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Table 6. Parameter Settings

Parameter Settings

Dimensionality 2, 3, 4, 5
# of data sites 100, 200, . . . , 500, . . . , 800
Data distribution Random (Indep.), Anti-corr.

We fix the local cardinality of each site at 100 tuples, and update all tuples for 100
rounds. All tuple values on each dimension are normalized to the range [0, 1]. At each
round, the ratio of tuples that really get updated by default set to 1%, which will be var-
ied. The other experimental parameters are varied according to Table 6. Default setting
values are shown in bold. In the whole period of experiment, updates of each particular
tuple are generated according to a Gaussian distribution with a standard deviation of
0.05 and a mean of the tuple’s old value.

6.2 Experimental Results

Figure 2 reports the results on the effect of site number on anti-correlated data sets.
As the number of data site increases, all approaches degrade. Regarding the bandwidth
consumption, referring to Figure 2(a), the global approach is the best as it reduces a
considerable parts of tuples and messages that otherwise would be sent via the network.
Referring to Figure 2(b), the global approach incurs the least server processing time,
as it maintains the continuous skyline incrementally and updates the result only when
it is necessary. Referring to Figure 2(c), the global approach incurs slightly more site
processing time than the naive approach. This is merely because the latter actually does
no local processing at all but sending an updated tuple to the server whenever an update
happens locally.
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Fig. 2. Effect of Site Number on Anti-correlated Data Sets

Figure 3 reports the results on the effect of tuple dimensionality on anti-correlated
data sets. Higher dimensionality increases the costs of all approaches. The global ap-
proach still has the lowest bandwidth consumption and server processing time. Its gap
between the naive approach regarding the site processing time becomes apparent, be-
cause the local skyline sizes become larger as dimensionality increases.
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Fig. 3. Effect of Dimensionality on Anti-correlated Data Sets

The same kinds of results on random data sets are reported in Figures 4 and 5. Re-
garding bandwidth consumption, as shown in Figures 4(a) and 5(a), The global ap-
proach is still the best. Whereas the local approach catches up and outperforms it with
even less server processing time, according to Figures 4(b) and 5(b). Local skyline
sizes become smaller on random data sets, and therefore fewer updating tuples sent to
the server, which favors the local approach that updates the global skyline directly on
the server side.

Referring to Figures 4(c) and 5(c), the global approach reclaims its advantage by
short site processing time. This is because the smaller local skyline sizes reduce the
local processing cost by the global approach; whereas the naive approach still needs to
report each updating tuple to the server.
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We also varied the tuple updating ratio from 0.1% to 1%, and observed similar trends
for various ratios. Due to the space limitation, we omit such results here.

7 Conclusion

In this paper we address continuous skyline monitoring in distributed environments.
We target a generic type of computing environments with two-tiers: a server as query
interface and multiple data sites each managing a number of dynamic data tuples. Our
solution consists of two phases: initialization and maintenance. We propose a complete
set of techniques in order to maintain the continuous skyline results efficiently. First, in
the initialization phase, the initial query result is obtained and necessary membership
information is initialized on both tiers. Second, a comprehensive case study is con-
ducted to disclose the minimal skyline changes under dynamic data updates. Third, an
effective two-tier collaboration is proposed to process possible skyline changes and to
update the query results continuously in an incremental manner. The results of exten-
sive experiments demonstrate that our proposal is efficient and scalable in terms of both
communication costs and processing costs.
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Abstract. Data Stream Systems (DSSs) use cost models to determine if a DSS
can cope with a given workload and to optimize query graphs. However, certain
relevant input parameters of these models are often unknown or highly imprecise.
Especially selectivities are stream-dependent and application-specific parameters.

In this paper, we describe a method that supports selectivity estimation con-
sidering input streams’ attribute value distribution. The novelty of our approach
is the propagation of the probability distributions through the query graph in or-
der to give estimates for the inner nodes of the graph. For most common stream
operators, we establish formulas that describe their output distribution as a func-
tion of their input distributions. For unknown operators like User-Defined Oper-
ators (UDOs), we introduce a method to measure the influence of these operators
on arbitrary probability distributions. This method is able to do most of the com-
putational work before the query is deployed and introduces minimal overhead
at runtime. Our evaluation framework facilitates the appropriate combination of
both methods and allows to model almost arbitrary query graphs.

1 Introduction

Over the past few years, the field of data stream research has matured, and first com-
mercial products have appeared. There is still a lot of need of and potential for research
in distributing, estimating, and optimizing of queries.

Estimation of costs of data processing in data streams is crucial, especially if data
stream processing is distributed over battery-powered sensor nodes. This estimation
needs to know the data rates and the distribution of values. In our project Data Stream
Application Manager (DSAM) [1], we distribute queries over a network of heteroge-
neous Stream Processing Systems (SPSs) and Wireless Sensor Network (WSN) nodes.
This paper presents some of the theoretical results regarding the cost estimator of DSAM.

Like in a Database System (DBS), a query in a Data Stream System (DSS) consists
of a graph of operator instances (nodes) that are connected by inner streams. Each oper-
ator in a query may manipulate both the data rate and the distribution of values in a data
stream. The outgoing data rate of an operator is often influenced by the distribution of
values. In order to achieve good estimates for the whole query, characteristics of inter-
mediate data streams between operators are also relevant. This requires the propagation
of estimates through the entire graph. The manipulation of these characteristics (change
of variables’ formula) can be either measured, computed by analytic methods or it can
be approximated by numerical methods. Basically, an analytic method is preferable as

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 584–601, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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it is more precise and less computationally intensive. Some operators are unfortunately
not manageable with analytic methods. For the support of complex query graphs, how-
ever, it will be necessary to combine analytic and numerical propagation methods.

In simple cases, each data element of a data stream consists of one value. There are
some approaches that support density estimation of one-dimensional data stream items.
Heinz and Seeger present approaches that use kernels and wavelets to estimate densities
of one-dimensional data streams [2,3]. These approaches use measurements in order to
determine the density estimators.

To our knowledge, this is the first work addressing the propagation of densities within
query graphs of DSSs by using analytic or numerical methods. Further, it supports
multi-dimensional data stream elements. Our contribution to the problem of estimating
multi-dimensional densities operates on two levels: First, we propose both analytic and
numerical propagation of densities for relevant streaming operators and argue which
method is appropriate for each operator. Second, we propose a method for combining
these approaches as each operator has a best fitting method for propagating densities,
but a query graph may contain both kinds of operators.

We address related work in more detail in the next section. The core of this paper
starts with basic explanations and definitions for the estimation of Probability Density
Functions (PDFs) in Sect. 3. In the following two sections, we present the analytic prop-
agation method and the numerical propagation method. We make a synthesis of these
two methods using Kernel Density Estimators (KDEs) that includes some experimental
results before we conclude.

2 Related Work

There are several “historical” approaches that use probabilities for the estimation of
databases’ statistics. In [4], multi-dimensional histograms model attribute value distri-
butions. There are several formulas for the impact of operators on distributions. We
could not adopt these formulas directly for data streams as on the one hand they only
consider densities represented as histograms and on the other hand they postulate dis-
crete probability distributions. As they consider databases, e.g. the projection operator
uses duplicate elimination.

The Detailed Database Statistics Model (DDSM) [5] considers one-dimensional dis-
crete distributions, but with additional matrices that represent dependencies between
subdomains of attributes. This paper also describes statistics for estimating join sizes.
The influence of operators is evaluated for selection and join.

A survey [6] gives an overview of estimation of statistical profiles in database sys-
tems. This paper discusses the influence of statistical methods on cost estimation in
different database systems. Further, it discusses different methods of density estimation
and the influence of database operators on probability densities without giving concrete
formulas.

As mentioned in the introduction, [2] and [3] investigated density estimators over
data streams. These papers only consider measuring densities of existing streams. The
densities of intermediate streams are still unknown, if there is no actual system execut-
ing the respective query.
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Table 1. Comparison between modeling and simulation

Modeling Simulation

Method estimating measuring
Complexity complex cost model no cost model required
Effort lean implementation full system for simulation
Impediments imprecise a high load impossible at high load
Calculation Time fast results time for simulation
Optimizability high potential for optimizations simulation hardly optimizable

Simulating a query on a second system allows to estimate the costs of a query
graph [7]. This circumvents the need to estimate densities of intermediate streams, but
requires a second system only for simulation purposes. We summarize the benefits and
drawbacks of our approach (modeling) and the simulation approach in Table 1.

The usefulness of density estimates for the selectivity estimation of range queries is
described in [8]. This usefulness is further detailed in [9].

In [10], the cost model uses join and filter selectivities to estimate the rate of inter-
mediate streams in a DSS. This work assumes already known selectivities. Our contri-
bution allows to estimate the unknown selectivities.

Meyerhöfer [11] introduces a method to estimate the performance of software assem-
blies that is based on [12]. This is done by partitioning the range of a method’s input
variables by certain characteristics into input subdomains that are mapped to output
subdomains. We use query graphs analogously to the software assemblies.

3 Basics

In this section, we introduce our data stream model and describe the basics for es-
timating Probability Density Functions (PDFs) using kernels. We further present the
assumptions we made.

3.1 Data Stream Model

Like [13], we assume unbounded data streams of independent and identically dis-
tributed tuples X1, X2, . . . ∈ R

d with d real valued attributes. Timestamps are not
part of this model. There can be dependencies between attributes of one tuple. Hence
the attribute value distribution of a single stream is multidimensional.

3.2 Estimation of PDFs

There are different options to estimate the PDF of a data stream. If the underlying para-
metric model is known, the estimation of the unknown parameters based on a sample
is sufficient to determine the density of the stream. Nonparametric estimation is an
alternative approach with no need for information about the underlying model. One
well-known example for nonparametric estimation is KDE [14, 15].
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A Kernel Density Estimator (KDE) is constructed from a sample
X1, X2, . . . , Xk with Xi = (Xi,1, . . . , Xi,d), Xi,j ∈ R as follows:

f̂ (k)(x) =
1
k

k∑

i=1

d∏

j=1

1

h
(k)
j

K

(
xj − Xi,j

h
(k)
j

)
, x ∈ R

d. (1)

The kernel function K is an arbitrary one-dimensional symmetric PDF with mean 0.
This means that every tuple in the sample is represented by a “bump” (kernel) and the
KDE is the normalized sum of these kernels.

h
(k)
j is the bandwidth in dimension j for a sample of k tuples. The bandwidth de-

termines the width of the kernels. Different values for the bandwidth lead to different
resulting density estimates (Fig. 1).
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Fig. 1. The influence of the bandwidth on KDEs

One goal of density estimation is to minimize the difference between the estimated
and the real density. Hence the choice of the right bandwidth is crucial. The following
formula presented in [14] is one possible way to estimate the optimal bandwidth in
dimension j for a sample of k d–dimensional tuples:

h
(k)
j,opt ≈ σj

(
4

d + 2

)1/(d+4)

· k−1/(d+4). (2)

σj is the standard deviation of the sample tuples in dimension j.

3.3 Assumptions

For every input stream, we assume constant rates and fixed densities. The number of
tuples in a window is therefore known and fixed at runtime. Varying data rates could
lead to varying densities, if e.g. an operator has a time-based window and if the data
rate of the input stream and therefore the number of tuples in the window is varying.
If rates or densities change in a relevant way during runtime, a recalculation might be
necessary.

Our underlying model uses probability distributions over continuous values. With
limited precision, it works well for discrete data streams, if there is a sufficiently high
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number of uniformly distributed distinct elements in the stream. We cannot support
nominal attributes like strings. Specific values are approximated by defining an interval;
e.g. equi-joins are simulated by overlapping ranges. As grouping relies on finding tuples
with identical values in the grouping attributes, our approach does not support grouping.
A definition of interval-based grouping is out of the scope of this paper.

4 Analytic Propagation

To propagate the densities of streams in a query graph, we need to estimate the out-
put densities of all operators used in the graph. This can be achieved by modeling the
operators’ influence on their input densities. In this section, we describe the formu-
las we found for the operators described in [16], as it contains both adapted relational
and stream operators. Table 2 describes all variables used in the formulas that are not
explained in the text.

Table 2. List of identifiers

Identifier Description

f density of the output stream
n number of tuples in a window
fn density of an aggregate with windowsize n
g, g̃ density of an input-stream
p ∈ [0, 1] filter predicate
k number of attributes to be projected out
m number of attributes not to be projected out
� number of input-streams
gj density of the j-th input-stream
λj rate of the j-th input-stream
o number of attributes of the input-stream
oj number of attributes of the j-th input-stream
x = (x1, . . . , x�) = (x1,1, . . . , x1,o1 , . . . , x�,1, . . . , x�,o�

)
t = (t1, . . . , t�) = (t1,1, . . . , t1,o1 , . . . , t�,1, . . . , t�,o�

)
y = (y1, . . . , yo)
s = (s1, . . . , so)
G mapping function
G∗ inverse mapping function
JG Jacobian determinant of G

4.1 Union

The Union operator has � input streams and one output stream. All input streams have
the same schema, but they usually have different densities and input rates. Every tuple
that arrives on one input stream is immediately forwarded to the output stream. Hence
the output density is a weighted sum of the input streams’ densities.
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The weight for input stream i is λi∑
�
j=1 λj

. The more tuples arrive on one input stream

the higher its weight. The weights are normalized to guarantee that the result is a den-
sity. The output density is calculated as follows:

f(y) =
1

∑�
j=1 λj

�∑

j=1

λjgj(y). (3)

4.2 Filter

A Filter is an operator with a predicate P , one input stream, and one output stream.
A tuple is only forwarded to the output stream if it satisfies the Filter’s predicate. The
support of the output stream’s density is therefore the support of the input stream’s
density minus the subset of R

n for which the predicate P is not satisfied. The selectivity
of the Filter

∫
g(s)p(s) ds is needed to normalize the resulting density.

A function p is defined as:

p(y) =
{

1 if y satisfies the predicate P
0 else

.

The resulting density can therefore be described as follows:

f(y) =
1∫

g(s)p(s) ds
g(y)p(y). (4)

4.3 Join

The Join operator has � input streams and one output stream. Each input stream may
have a different schema and a different rate. A query defines a window for each input
stream. Join tests each possible combination of tuples in these windows if it matches
the join predicate P and forwards it to the output stream, if it satisfies the predicate.
The attribute value distribution of a tuple which is part of one of those combinations
is independent of the window sizes and the input streams’ rates. Hence the resulting
density is basically a product density with a filter applied to it. The function p is likewise
defined as it was for the filter.

f(x) =
1

∫
p(t)

∏�
j=1 gj(tj) dt

p(x)
�∏

j=1

gj(xj) (5)

If the predicate P is always satisfied, the Join would basically be a Cartesian product
between the windows over the input streams. Then the resulting density could simply
be described as:

f(x) =
�∏

j=1

gj(xj). (6)
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4.4 Projection

A Projection operator removes certain attributes from each tuple that arrives on its sin-
gle input stream. Therefore the resulting stream has a different schema. In the case
of data stream processing, only duplicate preserving projection is considered. Projec-
tion could also rename the attributes in the schema, but this does not affect the output
stream’s density.

For the sake of simplicity we assume that the m + k attributes are ordered in a way
that the last k attributes will be deleted by the Projection. If the input stream’s attribute
value distribution is g : R

m+k → R, the output stream’s distribution would be:

f(x1, . . . , xm) =
∫

g(x1, . . . , xm, τ1, . . . , τk) dτ1 . . . dτk. (7)

4.5 Aggregate

The Aggregate operator applies an aggregate function to all tuples in a window over
its single input stream. We assume that these tuples only have one attribute. All other
attributes are projected out as follows:

g(xj) =
∫

· · ·
∫

g̃(x1, . . . , xo) dx1 . . . dxj−1 dxj+1 . . . dxo.

Because we assume the rate to be constant, the number of tuples in a window is known,
even for time based windows.

Sum. The output density of the sum of n values is the convolution of the input densities.

fn(x) = (g ∗ . . . ∗ g)︸ ︷︷ ︸
n times

(x) (8)

Average. By means of the change of variables formula, the output density for the
average of n values can be derived from the formula for the sum of n values.

fn(x) = n · (g ∗ . . . ∗ g)︸ ︷︷ ︸
n times

(nx) (9)

Maximum. The distribution function of the maximum of n values is:

Fn(x) =
(∫ x

−∞
g(τ) dτ

)n

.

Hence the PDF of the output stream is:

fn(x) = F ′
n(x) = ng(x)

(∫ x

−∞
g(τ) dτ

)n−1

. (10)
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Minimum. The density of the minimum of n values is as follows:

fn(x) = ng(x)
(∫ ∞

x

g(τ) dτ

)n−1

. (11)

Count. Let δ be the Dirac delta function, with the property:
∫ ∞

−∞
δ(x) dx = 1.

The density of the count of n values can be described as:

fn(x) = δ(x − n) =
{

+∞, x = n
0, x �= n

. (12)

In reality, the rate is usually not constant but determined by the distribution of the inter-
arrival times. Therefore the output density depends on the PDF of the inter-arrival times.

4.6 Map

The Map operator applies a function G : R
m → R

m to every single input tuple x =
(x1, . . . , xm) producing output tuples y = (y1, . . . , ym). If G fulfills the requirements
of the change of variables formula, the output density is:

f(x) = g(G∗(x))
1

|JG(G∗(x))| . (13)

If G is an affine transformation G(x) = Ax + c then the output stream’s density can
be described as:

f(x) = g(A−1(x − c))
1

|det(A)| . (14)

4.7 BSort

The BSort operator approximately sorts its input stream by applying a certain number
of bubble-sort passes. Because the output tuples are the same as the input tuples but
possibly in a different order, the operator’s output density is the same as its input density.

f(y) = g(y) (15)

4.8 Resample

The Resample operator has two input streams and aligns tuples coming from the second
input stream with tuples from the first input stream. To achieve this, the Resample op-
erator interpolates tuples of the second input stream to match the time stamp of a tuple
from the first input stream.
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Under certain assumptions, a stream consisting of perfectly interpolated tuples has
the same attribute value distribution as the original stream. These assumptions are man-
ifold but out of the scope of this paper.

Let g1 be the density of the first input stream and g2 the density of the second input
stream. Assuming a perfect interpolation, the resulting density is:

f(y1, y2) = g1(y1) · g2(y2). (16)

4.9 Summary

In this section, we have explained our formulas for the analytic estimation of probability
distributions for several operators. These include the most important stream operators
(Filter, Join, Projection, Union, and Map) as well as several aggregates, the BSort, and
the Resample operator. For reference, the formulas are summarized in Table 3.

Table 3. Operators’ output densities

Operator Output Density

Filter f(y) =
1∫

g(s)p(s) ds
g(y)p(y)

Join f(x) =
1∫

p(t)
∏�

j=1 gj(tj) dt
p(x)

�∏

j=1

gj(xj)

Projection f(x1, . . . , xm) =

∫
g(x1, . . . , xm, τ1, . . . , τk) dτ1 . . . dτk

Aggregate Sum fn(x) = (g ∗ . . . ∗ g)
︸ ︷︷ ︸

n times

(x)

Aggregate Avg fn(x) = n · (g ∗ . . . ∗ g)
︸ ︷︷ ︸

n times

(nx)

Aggregate Max fn(x) = ng(x)

(∫ x

−∞
g(τ ) dτ

)n−1

Aggregate Min fn(x) = ng(x)

(∫ ∞

x

g(τ ) dτ

)n−1

Aggregate Count fn(x) = δ(x − n)

Union f(y) =
1

∑�
j=1 λj

�∑

j=1

λjgj(y)

Map f(x) = g(G∗(x))
1

|JG(G∗(x))|
Map (affine) f(x) = g(A−1(x − c))

1

|det(A)| , G(x) = Ax + c

BSort f(y) = g(y)

Resample f(y1, y2) = g1(y1) · g2(y2)
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5 Numerical Propagation

In the previous section, we described an analytic method for estimating densities. This
approach relies on finding formulas that describe each operator’s output density. Thus, it
is not applicable for operators for which no formulas are known (yet). This is a problem
as there is currently no consensus about the basic set of data stream operators. Addi-
tionally, some User-Defined Operators (UDOs) are hard or even impossible to model.

In order to overcome this problem, we developed a method for numerically estimat-
ing the output densities of operators.

This method consists of two steps: In the first step (configuration phase), we build a
numerical model that describes an operator instance’s behavior. As the model depends
on the operator’s configuration (e.g. filter predicate), it is computed when the operator
is instantiated and its configuration is known. This model is independent of the actual
input distributions which need not be known at this time.

The second step (application phase) is performed when the query graph is instan-
tiated. It combines knowledge of the actual input distributions with the model of the
operator in order to describe the output distributions.

The advantage of this two-step approach is that the computationally expensive model
building needs to be performed only once for each operator instance. The second step
has to be done every time an operator graph is instantiated. During optimization, several
query graphs may be instantiated for a single query. It is the optimizer’s duty to choose
the best one. Fortunately, the second step can be computed relatively quickly.

After outlining some requirements and limitations of this approach, we will describe
both steps in detail.

5.1 Requirements

In order to apply the numerical estimation, a number of requirements have to be ful-
filled. These requirements are detailed below.

Determinism. Obviously, operators have to act deterministically. An indeterministic
operator may behave differently between the test and the real execution, rendering the
test results worthless. Additionally, an operator’s output may only depend on its input
but not on its state because it is not feasible to model all possible states. We model
windows as additional input dimensions.

Continuity. As an operator cannot be tested with all possible input values, we must
assume that small variations in the input values only lead to small variations in the
output values. More formally, an operator has to be continuous on subsets of its domain.

Known Domain. In order to test an operator with an uniform input distribution, the
domain of the input streams has to be known in advance as it is not possible to test with
an uniform distribution on an infinite domain. This knowledge may be gained by testing
and stored in the metadata catalog.

For operators that have intermediate streams as input, the domain of the intermediate
streams has to be known as well. We solve this problem by topologically ordering the
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query graph and deriving the domain of the intermediate streams from the knowledge
about input streams and intermediate operators. This requires the operator graph to be
acyclic.

Independence Of Rates. As we do not model the influence of rates on an operator’s
behavior, we require that an operator is independent of the rates of its input streams. The
most common rate-dependent operators are time-based windows. We sketch an idea for
coping with time-based windows in Sect. 5.4.

5.2 Test with Uniform Distribution (Configuration Phase)

In order to describe the influence of an operator on its output streams, it is tested with
synthetic inputs. This yields a model of an operator’s behavior. The model is built when
the operator is deployed, as it depends on the configuration of the operator as well as
knowledge of its input domains.

The operator is tested with k input values that are randomly and uniformly chosen
from its input domains. The value of k has to be carefully chosen to balance accuracy
versus memory requirements. Each input value is stored together with its corresponding
output value. If a given input value does not produce any output, it is stored nevertheless,
together with a flag that denotes that no output was produced. This will be required for
selectivity estimation. Together the input and output values form the operator model.

5.3 Estimating Densities (Application Phase)

When the operator graph is instantiated, we measure the actual densities of input streams
and estimate the densities of intermediate streams. The input densities are then com-
bined with the operator model in order to yield the actual output densities.

For each combination of input and output values in the model, we compute a weight
which is based on the input densities. The estimated output density is a weighted sum
of kernels based on the output values in the previously calculated operator model.

The weight of each kernel is given by the following equation:

gi = u(G∗(X i)).

Here, u is the actual input density, G∗ is the operator’s inverse mapping function of the
operator model. Xi is an output value in the operator model.

As the integral over a density has to be 1, the weights have to be normalized. This
condition holds if the sum of all weights in (17) equals 1.

g∗i =
gi∑k

j=1 gj

Finally, we just have to apply a weighted version of (1) as suggested in [17]. The output
of this equation is the estimated output density.

f̂ (k)(x) =
k∑

i=1

g∗i
d∏

j=1

1

h
(k)
j

K

(
xj − Xi,j

h
(k)
j

)
, x ∈ R

d (17)

The optimal bandwidths h
(k)
j can be estimated with (2) in Sect. 3.2.
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Selectivity Estimation. The selectivity of an operator can be easily derived from the
available information. Remember that input values which produce no output are not
excluded from the operator model. Thus, after the weights of the kernels are known for
the actual input, the selectivity is just the ratio of the sum of weights for kernels without
output and the sum of weights for all kernels.

5.4 Further Work

The approach described in this section may still be improved in numerous ways. We
sketch the two extensions which in our opinion promise the greatest benefits.

Compression. The models for operators with high dimensions or large domains require
a large number of kernels for accurate results. This leads to high memory usage as well
as increased computational costs at runtime. One solution to this problem might be
cluster kernels [2].

The basic idea is to combine several kernels to a single one by means of clustering.
For best results, the right choice of clusters is crucial. This choice largely depends on
the function that computes the distance between two kernels. It turns out that neither the
distance between input values di nor the distance between output values do is a good
choice. The combination of these distances d =

√
d2

i + d2
o however gives adequate

results. Some additional thought is required to determine which information has to be
stored for each kernel. [2] discusses several possibilities.

Time-based Windows. As in Sect. 4, windows are modeled as additional dimensions.
This is not directly feasible for time-based windows, as their size is unknown which
leads to an unknown number of dimensions. It may however be possible to transform
an operator in a way that the window size is set to a fixed maximum value. Then the
actual window size depending on the rate is modeled as an additional parameter. For
this approach, it is necessary to determine an upper bound for the window size.

5.5 Summary

The approach described in this section allows to estimate the value distributions for op-
erators for which no analytic formula is known. If an analytic description of an operator
is available, it is preferred to the numerical approach. The numerical approach is how-
ever more general and allows to model e.g. user defined operators. As both approaches
have their merits, they should be combined.

6 Synthesis

The propagation of densities works by using the estimated output densities of an oper-
ator model as input densities of the successive operator models in the operator graph. If
the analytic method is applicable for modeling an operator, it should be used, because it
is more precise and less computationally intensive. The numerical approach can model
unknown operators such as UDOs. This section gives an overview of the integration
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Fig. 2. The operator graph used in our experiments

of both methods in query graphs and has a complex example query for evaluation pur-
poses. The evaluation uses our implementations of KDEs for the common data-stream
operators and a generic implementation that realizes the numerical approach. Finally,
we evaluate the results of our estimates and describe the impact of the number of kernels
on the quality of our estimations.

6.1 Integration of Analytic and Numerical Propagation

As the numerical method uses KDEs, we decided to implement the analytic meth-
ods with KDEs, too. This ensures compatibility of both methods that supports direct
combination of both kinds of operator models. As the estimation of the PDFs are im-
plemented as KDEs, all operator models use KDEs and are derived from an abstract
class KernelEstimator. It defines an interface that supports the determination of
the density for any multidimensional point, the dimensionality, and the support of the
density. For most of the operators having analytic formulas, we provided an implemen-
tation. We did not implement the formulas for Resample, BSort, and Aggregate Count
because they are trivial. The Map operator would require an implementation of the
change of variables formula, which is out of scope of this paper. However, our numeri-
cal approach is well suited to estimate the output densities of the Map operator.

The decision to use KDEs leads to some problems. A direct implementation of the
analytic model for the Join operator may create too many kernels. We decided to re-
duce some kernels by dropping them randomly; a more precise method would be using
cluster kernels [2]. The integrals with variable boundaries in the formulas for maximum
(10) and minimum (11) prohibit a direct representation as KDEs. Hence our implemen-
tation constructs a new KDE, which represents the output density calculated using our
exact method.

For the numerical method, we distinguish “configuration phase” and “application
phase”, as the generic implementation of the numerical method does not have intrinsic
formulas for the manipulation of PDFs. In the configuration phase, it is crucial to create
uniformly distributed input values. Input values that don’t generate output values also
have to be stored in order to determine the selectivity in the application phase later. In
the application phase, i.e. using this instance in a query graph, the output density of
the model operator can be determined by weighting the output values according to the
input density.
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1 stream S1(x1 float)
2 stream S2(x2 float)
3 stream S3(z1 float,z2 float)
4

5 UnionStream(x):
6 S1 UNION S2
7

8 AggStream(x):
9 SELECT SUM(x) FROM UnionStream[rows 10]

10

11 MapStream(z):
12 SELECT MAX(z1,z2) FROM S3
13

14 FilterStream(z):
15 SELECT z FROM MapStream WHERE z < 0.7
16

17 JoinStream(x,z):
18 SELECT x,z FROM FilterStream[rows 10],
19 AggStream[rows 10]
20 WHERE x/10-z < 0.25
21 AND x/10-z > -0.25
22

23 ProjectStream(z):
24 SELECT z FROM JoinStream

Listing 1. The CQL query belonging to the operator graph (Fig. 2)

6.2 Evaluation

We tested the methods presented in Sects. 4 and 5 with several synthetic data streams.
The densities of these streams consisted of sums of normal distributions N (μ, σ2) or
multidimensional normal distributions N k(μ, σ2). For this evaluation, we compared
output densities estimated with our approach to the actual output densities. We either
calculated the real output densities, if it was feasible, or, otherwise, we simulated the
operators and measured the resulting output densities with KDEs.

To evaluate the estimation of densities, we utilized the Mean Squared Error (MSE).
The actual density f was compared to estimated densities f̂

(n)
j , constructed from n

kernels, at 1000 random points xi,j equally distributed over the support of f . Because
of this randomness, we took the mean of 5 comparisons to get significant results.

MSE =
1
5

5∑

j=1

1
1000

1000∑

i=1

(
f(xi,j) − f̂

(n)
j (xi,j)

)2

(18)

We also evaluated the selectivity estimation using the Mean Relative Error (MRE).
Estimated selectivities ŝ

(n)
i , calculated with n kernels, were compared to the actual

selectivity s.

MRE =
1
20

20∑

i=1

∣∣∣s − ŝ
(n)
i

∣∣∣
s

(19)

We calculated the bandwidth for the KDEs using (2) from [14]. Our experiments showed
that this estimate for the bandwidth might not be the optimal choice. Hence we car-
ried out the tests for different bandwidths. In the following, h always represents the
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Fig. 3. Output density of a Filter operator with the predicate x < 0.5
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Fig. 4. Output density of the operator graph

bandwidth calculated with (2). Fig. 3 shows the output density of a Filter operator,
estimated with our implementation of the analytic method using different bandwidths.
The input density was N (1/2, (1/8)2) and the Filter’s predicate was x < 0.5. 1

2h
seemed to be the best choice for the bandwidth in our experiments (Fig. 3). Therefore
more precise methods to estimate the optimal bandwidth should be implemented. Some
possible methods are described in [15].
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Fig. 5. MSE and MRE of the operator graph

We also tested our methods with an operator graph, which is depicted in Fig. 2. The
corresponding Continuous Query Language (CQL) query [18] is shown in Listing 1.
The densities of the input streams of the Union operator were gS1 = N (1/4, (1/16)2)+
N (3/4, (1/16)2) and gS2 = N (1/2, (1/8)2) with equal rates. The density of the input
stream of the Map operator was gS3 = N 2(1/4, (1/16)2)+N 2(3/4, (1/16)2). Both the
numerical and the analytic method were utilized to estimate the output density of this
operator graph. The numerical method was used for the Map operator, and the output
densities of the other operators were estimated by means of the analytic method. Fig. 4
shows the estimated output density compared to the output density measured using a
KDE. Because of the Filter operator, the actual density should be zero for every value
greater than 0.7. This is neither true for the measured nor for the estimated density,
because they were both constructed from KDEs known for blurring discontinuities. In
Fig. 5, the MSE is depicted for some operators in the graph and different numbers of
kernels and it also shows the MRE for the selectivity estimates for the Filter and Join
operator in the graph.

Our evaluation shows that the prototypic implementation of our methods is able to
produce suitable density and selectivity estimates for a complex query graph.

7 Conclusions and Future Work

In this paper, we showed a well working method for estimating densities within query
graphs of DSSs. This work is especially important, if data rates of internal streams
are relevant for cost models as it is in distributed data stream processing. With our
approach, we can estimate densities of both inner and output streams within the query
graph without executing the query. This estimation facilitates choosing a good physical
plan.

We proposed formulas for calculating output densities for a core set of relevant
stream operators and called this “analytic propagation”. For other operators, we pro-
posed a numerical method that works without specific formulas. This might be neces-
sary for application-specific operators like UDOs.
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By means of an experimental evaluation, we used KDEs in order to integrate numeri-
cal and analytic propagation. The estimation used a concrete query graph. We compared
the calculated results of our estimations with the correct results of a simulation. This
comparison shows the accuracy of our approach.

In our future work, we plan to use this density estimation as a basis for selectivity
estimation in the cost estimator of DSAM. We hope to get better operator placement
decisions by having a more precise basis of decision-making.
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Abstract. Emerging multimedia communication environments, such as Enviro-
nment-to-Environment (E2E) systems, require detecting complex events in envi-
ronments using multimodal sensory data. Based on these spatio-temporal events,
systems select and send data from appropriate sensors. Most existing stream pro-
cessing systems consider temporal streams of alpha-numeric data and provide
efficient approach to deal with queries in these environments. In cases where
events are detected in different sensory data types, including audio and video col-
lected at different locations, new approaches need to be developed to represent,
combine, and process events to answer queries. In this paper, we present our ap-
proach in managing event stream processing to address the needs of a real time
E2E system being developed in our laboratory. We introduce the modeling of our
problem, and describe in detail the filtering and matching algorithms for querying
spatio-temporal event stream. Experimental results demonstrate the efficacy and
efficiency of our approach.

1 Introduction

Stream processing has been gaining attention in the database community in recent years
[1,2,3,4,5]. Clearly, there are many applications of streams, ranging from network mon-
itoring system and stock markets to emerging applications such as the RFID tracking
system. Among these applications, processing of event stream has attracted particular
interests lately. In these applications, event stream is usually modeled as a sequence
of tuples [3,4], each of which consists of a primary timestamp and several attributes.
One important task in these applications is to understand the current situation of the
system, based on which proper decision can be automatically made. To realize such
goal, it is important to develop query processing techniques that facilitate the definition
and detection of events in the streams. Efforts have been made to define complex event
processing (CEP) in information systems [6].

In many emerging applications, however, data streams may come from different live
sensors, such as video cameras and microphones. Such data streams pose a greater
challenge due to the more complex semantics of events in sensory data. Moreover,
many applications may require events to be defined based on spatially distributed sen-
sors where the semantics of events depends on both temporal and spatial relationships
between events. In these applications, sensory data stream is first processed for the
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appropriate features to be detected, and then transformed to stream of atomic events.
Afterwards the spatio-temporal atomic event streams are examined for the detection of
more complex events, which would aid the intelligence on situation level. Environment-
to-Environment(E2E) is such a multimedia communication system. We give a brief in-
troduction to E2E system before introducing our problem.

Environment-to-Environment (E2E) connection has been developed as a new form
of communication that allows users to connect their natural physical environments for
communications [7,8,9]. The goal is to design an architecture that pushes sensors and
other devices into a supporting role in the background and to focus on natural human
interaction. Figure 1 [9] shows the architecture for an E2E node. The ‘Data acquisition
and analysis’ (DAA) component converts data from each sensor into data events. The
translation of sensor based data events into application events uses a physical model of
environment. This is handled via the Environment Model (EM) which creates indices
between various sensors and overall physical environment. The actual semantic under-
standing of the event requires additional contextual information to be added by Situation
Model (SM). The SM represents all the domain-dependent information required to sup-
port application functionality. As can be seen, in this application, heterogeneous data
streams are collected at different locations and these streams are converted to atomic
data event streams, which should then be combined into higher level application event
streams. Many emerging applications in telepresence [10], surveillance [11], as well as
ethnographic studies [12] have similar characteristics.

Let us consider one example to illustrate the problems involved in our event process-
ing system. Suppose that we are dealing with a sensor rich environment where there
are cameras,microphones, RFID detectors, and motion detectors at many different lo-
cations to cover all areas of a multi-storey hospital building. The system should detect
events such as ‘Dr. Miller went from Radiation Therapy area to meet a patient Mr.
Jones in Oncology ward’. This event can be considered to be composed of sub-events
‘Dr. Miller leaving Radiation Therapy in the basement’, ‘Dr. Miller catching an eleva-
tor’, ‘Dr. Miller leaving elevator on the fifth floor’, ‘Dr. Miller walking to room 518’
and ‘Dr. Miller greeting Mr. Jones’. The five sub-events are depicted in Figure 3, each
of which consists of specific spatio-temporal information. For example, sub-event AE2

is captured in the elevator stopping at the basement. Considering the event occurrence
time, the five sub-events happened in sequential order.

In the rest of the paper, we call a sub-event in the previous example an atomic
event. Events that are constructed from atomic events are called composite events. The
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problem now becomes that given an atomic event stream with spatio-temporal informa-
tion, how our system detects pre-defined composite events efficiently.

1.1 Challenges and Contributions

To solve the problem, the following challenges should be carefully considered. First,
events in our problem carry spatial information. Suppose we are interested in events
at different locations, how to efficiently filter incoming sequences of atomic events is
a challenge. Second, real-life composite events usually involve concurrently as well as
sequentially occurred atomic events, which makes the processing of complex temporal
relationships between atomic events another challenge.

In this paper, we propose an event processing strategy to address the above chal-
lenges. To the best of our knowledge, there is no prior work on processing spatio-
temporal data in event streams. Our main contributions are: 1) We provide precise
semantics for the new class of spatio-temporal composite event queries in multimedia
communication systems; 2) We implement an Event Processor for efficient detection of
composite events, which includes a spatial filtering and a graph matching process; 3)
We conducted a comprehensive experimental study, the results of which demonstrate
the effectiveness and the efficiency of our system.

Rest of the paper is organized as follows. We introduce the problem formulation
in Section 2, and discuss the related work in Section 3. In Section 4, we describe the
general system architecture and the spatial filter component. Section 5 presents our
graph model and matching algorithms. Experiments and results are demonstrated in
Section 6. The paper is concluded in Section 7.

2 Problem Formulation

2.1 Atomic Event and Atomic Event Stream

Atomic event is the finest data and semantic unit in our system. It indicates the occur-
rence of a real life event, which captures one type of happening on one person at one
spatio-temporal point. We represent an atomic event using a tuple, as defined below:

Definition 1. An atomic event is a tuple e (Pid, Ts, Te, LocRec(x1, y1, x2, y2), Et),
where Pid is the person ID, Ts and Te are the start and end time respectively, and
LocRec is the location where the event happened, and Et is the event type.
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Different from [3,4,13,5], an atomic event in our system needs not to be instantaneous,
and can last for a period of time. This is because each atomic event corresponds to a real
life event, the span of which could be an interval. Instantaneous events are represented
as Ts = Te. Each time point in this paper is an integer in N; while the spatial geometry
considered is a 2D plane. (x1, y1) and (x2, y2) in LocRec define the coordinates of
the bottom-left and top-right corner of a rectangular respectively. When the location
of an event is a spatial point, we have x1 = x2 and y1 = y2. Event type Et could
be ‘walking’, ‘talking’, ‘entering room’ and etc. The complete set of Et that can be
recognized by the system is defined by the DAA component (Section 1.1).

The input to our system is a stream of atomic events.

Definition 2. An atomic event stream is defined as: AES = e1, e2, ..., ei, ..., where
each ei is an atomic event, and atomic events are ordered by their end time Te.

Atomic events may have same start and end time (Ts and Te). In our model atomic
events arrive in order of end time, and no out-of-order arrival is considered.

2.2 Temporal Relationships and Patterns

Temporal Relationships. Base temporal relationships between intervals were advanced
in Allen’s Interval Algebra [14], as shown in Table 1. Symmetric relations are omitted due
to space limitations. We adopt this proposal to describe the relationships between events.

Table 1. Temporal Relationships and corresponding Temporal Patterns

Base relationships Equivalent to
e1 takes place before e2 SEQ(e1.Te, e2.Ts)

e1 meets e2 EQ(e1.Te, e2.Ts)

e1 overlaps with e2 SEQ(e1.Ts, e2.Ts, e1.Te, e2.Te)

e1 starts e2 SEQ(EQ(e1.Ts, e2.Ts), e1.Te, e2.Te)

e1 during e2 SEQ(e2.Ts, e1.Ts, e1.Te, e2.Te)

e1 finishes e2 SEQ(e2.Ts, e1.Ts, EQ(e1.Te, e2.Te))

e1 is equal to e2 SEQ(EQ(e1.Ts, e2.Ts), EQ(e1.Te, e2.Te))

Basic Temporal Patterns. We now introduce five basic temporal patterns SEQ, EQ,
CONJ, DISJ, NEG, which are designed to express the temporal relationships of
atomic events. Each temporal pattern is specified by a temporal requirement, which
defines the occurrence and order of atomic events. Also, every temporal pattern is asso-
ciated with one induced time bound (ITB = [Ts, Te]) indicating the time boundary of
this pattern, which is computed from the time points of atomic events in the pattern.

First, SEQ and EQ are defined to express sequential and concurrent relationship
respectively. In the following definition, i ∈ [1, n], e is an atomic event, ti ∈ {s, e}.
1) Pattern P1 = SEQ(e1.Tt1 , ..., ei.Tti , ..., en.Ttn), requires that e1.Tt1 < ... <
ei.Tti < ... < en.Ttn . The induced time bound ITBP1 is [e1.Tt1 , en.Ttn ].
2) Pattern P2 = EQ(e1.Tt1 , ..., ei.Tti , ..., en.Ttn), requires that e1.Tt1 = ... = ei.Tti =
... = en.Ttn . ITBP2 = [e1.Tt1 , e1.Tt1 ].
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Besides these two patterns, we also support three general ones: conjunction (CONJ),
disjunction(DISJ) and negation(NEG). However, in most of the existing event stream
processors [4,3], when considering temporal relationships of events, only sequential
patterns (SEQ) are studied, while CONJ and DISJ are ignored.
3) Pattern P3 = CONJ(e1, ..., ei, ..., en), requires that each ei occurs, but no time or-
der is required among these events. ITBP3 = [min(ei.Ts), max(ei.Te)].
4) Pattern P4 = DISJ(e1, ..., ei, ..., en), requires that non-empty subset of these events
occurs, but no time order requirement among these atomic events.
ITBP4 = [min(ej .Ts), max(ej .Te)], j ∈ [1, n] and ej occurs.
5) Pattern P5 = NEG(e) (e is an atomic event), requires that e does not occur. Given
the infinity of time, it is infeasible to negate an event without proper time constraints.
Therefore in this paper, we consider a negation when it is bounded by two events. Pat-
tern P5 = NEG(e, ep.Ttp , eq.Ttq) (ep, eq are atomic events, tp, tq ∈ {s, e}), requires
no occurrence of e between ep.Ttp and eq.Ttq . ITBP5 = [ep.Ttp , eq.Ttq ].
Nested Temporal Patterns. Up till now, only atomic events are considered in the basic
temporal patterns. However, they could be easily extended to support nested temporal
patterns by treating (basic) patterns as atomic events and their corresponding ITB as
their time points. The definitions are omitted due to space limitations.

For example, given pattern P, and its associated ITBP = [Ts, Te], pattern P ′ =
SEQ(e1.Tt1 , ..., P, ..., en.Ttn) requires that e1.Tt1 < ... < P.Ts < P.Te < ... <
en.Ttn .

The temporal patterns are defined to help formulate composite events which will be
discussed in the following section.

2.3 Composite Events and Queries

Composite event is semantically more meaningful event. It is defined over a set of
constituting events, which can be atomic events or composite events. Users describe
their interests through the specification of composite event, which includes the temporal
patterns of constituting events as well as predicates on other attributes of atomic events,
i.e. PID, LocRec and Et. Predicates of Pid and Et are equality comparison on values,
e.g. Pid = 123, Et =′ walking′, while predicates of LocRec can be comparison on
either spatial points or area ranges, e.g. 4 <= x < 8, 7 <= y < 11. Besides, predicates
between sequential atomic events in pattern SEQ are also allowed. For example, the
specification can have the temporal pattern SEQ(e1.Ts, e2.Ts) and predicate e2.Ts −
e1.Ts < 2sec. At last, a window predicate is defined, which specifies the time limit that
one composite event could maximally last, e.g. in 10 mins.

The specification of a composite event essentially forms a standing query Q, pre-
registered in the system. When atomic event stream AES flow by, queries in the system
will be answered on the fly. In order to make it easier for users to specify composite
events, we use a SQL-like declarative language introduced in [3,5] to express queries.

An example of composite event and corresponding query is given as follows.
Example 1. Here is a scenario when Tom and John at the office in US start the

weekly meeting with Mohan in Singapore. Tom is in his office room 2059 equipped
with 8 cameras and 4 microphones (and many other devices as part of E2E). The system
determines that he is working on his desk (e1). At this time, John enters the room (e2).
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Then John talks to Tom about calling Mohan in Singapore for the meeting (e3). Tom
connects with Mohan for discussions (e4). For further discussions Tom and John will
go to the Lab in the CalIT2 building. Connectivity should be maintained so that the
discussion can continue from the Lab. To satisfy such requirement, our system should be
able to recognize the occurrence of this composite event. There are four atomic events
(ei, 1 ≤ i ≤ 4 as indicated above) constituting the composite event. Specification of the
composite event declaratively in SQL-like query language is the following:

SELECT SEQ(CONJ(e1, e2), e3, e4)
WHERE e1.P id =′ Tom′ AND e1.Et =′ working′

AND e2.P id =′ John′ AND e2.Et =′ entering room′

AND e3.P id =′ John′ AND e3.Et =′ talking′

AND e4.P id =′ Tom′ AND e4.Et =′ connecting′

AND e1.LocRec = Rec(Rm2059) AND e2.LocRec = Rec(Rm2059)

AND e3.LocRec = Rec(Rm2059) AND e4.LocRec = Rec(Rm2059)

Note that ’Tom’, ’John’, ’walking’ etc. actually refer to their Pid/Et values, while
Rec(Rm2059) refers to spatial coordinates of room 2059.

In the rest of the paper, ‘composite event’ and ‘query’ will be used interchangeably.

2.4 Problem

Our problem could now be formulated as: given composite events QS = {Q1, ...,
Qi, ..., Qn} registered in system and the incoming atomic event stream AES, find sub-
sequences of atomic events from AES that match queries in QS. A formal definition
of matching is defined as follows.

Definition 3. Given a query Q = (P, PS) specified by user, where P is a (nested) tem-
poral pattern and PS is a predicates set, a sequence of atomic events S = es1, ..., esi, ...,
esn is a match of Q if S satisfies both temporal requirement of P and every predicate
in PS.

3 Related Work

Much work has been done in active database systems on composite event detection
[13,15,16], and a comprehensive study of the semantics of composite events can be
found in [17]. Among the work, basic methods such as tree-based approach [13], Petri
Nets model [15] and finite automata [16] have been proposed. But, as noted in [5],
arbitrary tree plans in Snoop [13] may suffer from poor performance; Petri Nets are too
complicated to put into practice use; and concurrent relationships are not supported in
Ode [16].

Pub/Sub event systems [18,19] offer an asynchronous communication paradigm be-
tween publishers and subscribers, on which a large amount of user subscriptions can
be handled over event streams. However, the expressiveness of user interests is limited.
Especially complex temporal patterns are not addressed in these systems.

Meanwhile, data stream processors such as Telegraph CQ [1], STREAM [2] and
Borealis [20] have been proposed to handle continuous queries over stream data. Op-
erations such as projections, selections, aggregations and joins over time windows can
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be efficiently evaluated. Although the expressiveness provided by stream processors
is much more complex than that in Pub/Sub systems, stream data processors become
clumsy when processing complex temporal patterns, where every temporal relationship
in patterns have to be specified as an individual predicate and evaluated separately.

Recently, NFA-based event systems as Cayuga [4] and SASE [3] have been devel-
oped to support complex event detection over high-rate event streams. User queries are
transformed to NFA models, by which pattern matching is supported. However, as we
mentioned above, these systems only consider sequential pattern matching and do not
support concurrent temporal relationships among events as in our work. ZStream [5]
deploys tree-based query plans as in [16] and is able to process concurrent events and
their adjust query plans according to their cost model. However, their method may suffer
from the risk of generating large numbers of intermediate results, which is not ideal for
high volume event processing. Besides, complex spatial constraints, which are essential
in our applications, are not efficiently supported and utilized in existing systems.

Work [21,22] has also been done in the graphic area, utilizing hash functions for
spatial information compression. Similarly in the AI area, much work [23,24] has been
done on simple temporal problems. Algorithms have been presented to solve temporal
constraint satisfaction problems. We have borrowed from [23] the idea of splitting an
event into two nodes which represent start and end time respectively.

4 Event Processor

In this section, we introduce the main components of our event stream processor. We
propose a spatial filter that efficiently removes irrelevant incoming events based on their
spatial values. In Section 5, a matching algorithm is proposed that refines the filtering
result and detects the composite event.

4.1 System Architecture

We first describe the system architecture, as shown in Figure 2. The input to our system
is an atomic event stream AES ordered by Te. All composite events are pre-registered
as queries. The query engine consists of three main components: window predicate
processor, spatial filter and composite event matching processor. Window predicates of
queries are pushed to the front. If a composite event does not have a window predicate,
an appropriate timeout value (e.g. every 30 seconds, which is a tunable parameter in
systems) will be set up to stop the buffering process and form a window of atomic
events, which is then fed to the spatial filter. If the window of atomic events survives
the filtering, it is sent to the composite event matching process, which will generate the
final matching subsequences from the input stream.

4.2 Spatial Filter

We now introduce the design of spatial filter. When a window of incoming atomic events
is matched to a composite event, all the spatial predicates specified in this composite
event must be satisfied. It is desirable to have an approach that is able to check the
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satisfaction of all spatial predicates in one shot and avoid multiple examinations of
individual spatial predicate. Based on this observation, we propose a spatial filter that
utilizes fast spatial signature comparison to filter unrelated sequences of events.

We apply bloom filter as the data structure of spatial signature, for several reasons:
1) There is no false negative; 2) It is space-efficient; 3) By utilizing bloom filter, the
problem of 2D comparison is reduced to 1D comparison.

The construction of signature has the following steps: 1) partition the plane into grids
and assign an unique ID to each cell; 2) map the spatial areas covered by composite
events or incoming window of atomic events to cells. 3) compute the signature from the
cell IDs returned from Step 2. Given a set of atomic events ES = {e1, ..., en} and w dif-
ferent hash functions{h1, ..., hw}, the spatial signature of ES is a bloom filter (a bit vec-
tor) b of size m, with all bits bi sets to 1, where i = hk(ej .LocRec.to cell ids()) mod
m, i ∈ [1, m], j ∈ [1, n], k ∈ [1, w].

Spatial signature is built for both registered composite events as well as incoming
windows of atomic events. For each Qi in QS, we generate its spatial signature BQi .
Similarly, when an incoming window of atomic events ES arrives, we construct a spa-
tial signature bES for it by using the same hash functions. We then compare bES with
each BQi , if bES AND BQi = 0 holds, which means that ES does not cover any
spatial area of Qi, ES will be filtered out immediately. Otherwise, ES is forwarded to
the composite event matching component for further processing.

5 Composite Event Matching

In this section, we introduce the composite event matching processor, which is designed
to find a subsequence from the incoming window of atomic events that satisfies a given
query Q. When evaluating standing queries under streaming mode, it is inefficient to
buffer a large number of events for post processing in terms of both space and time
cost. We address this problem by first introducing a graph structure to effectively model
temporal patterns in queries. Based on this model, we propose a matching algorithm,
which is able to obtain query results by one-pass examination of incoming events.

5.1 Graph Representation

We model a composite event as a directed graph, which is an effective way to represent
relationships between atomic events. Consider a composite event Q, which consists of
a set of atomic events {e1, ..., en}. We discuss the construction of Q’s graph represen-
tation G(V, E) in this section.

First, we construct the node set V of G. For each ei of Q, if ei is non-instantaneous,
two nodes nei.Ts and nei.Te , tagged as ”start” and ”end” respectively, are added to V .
If ei is instantaneous, one node nei , tagged as ”none”, is added to V . Each node stores
attributes Pid, LocRec, Et, start/end tag and edge type. Edge type of node n rep-
resents the temporal pattern between node n and its parent nodes. It is assigned to each
node at edge construction step. The set of edge type is {root, subroot, seq, eq, conj,
disj, seq + neg, eq + neg, conj + neg, disj + neg}, details of which are given below.
Each node is also associated with one matching slot and a candidate list to store match-
ing instance and candidates. During edge construction, we will expand V by adding
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Fig. 4. Graph Elements

some function nodes, which are introduced to complete the graph and not intended to
be matched by any events. Particularly, we designate the node whose in-degree is 0 as
”source”, and the node whose out-degree is 0 as ”sink”.

Next, we introduce the construction of edge set E based on the temporal patterns of
Q. We first explain the edge building for 5 basic temporal patterns, examples of which
are illustrated in Figure 4. Let ei denote an atomic event, ti ∈ {s, e} and i ∈ [1, n].
1) SEQ(e1.Tt1 , ..., ei.Tti , ..., en.Ttn). One function node ns is added to V . For each
ei.Tti , we add one edge from nei.Tti

to nei+1.Tti+1
(i ∈ [1, n − 1]). Also an edge is

added from ns to ne1.Tt1
. In this graph, the source node is ns and the sink node is

nen.Ttn
. Edge type is set as root for the source node ns, and seq for all other nodes.

2) EQ(e1.Tt1 , ..., ei.Tti , ..., en.Ttn). Two function nodes ns and ne are inserted into V .
For each ei.Tti , one edge is added from ns to nei.Tti

, and another from nei.Tti
to ne.

The source is ns and the sink is ne. Edge type is set as root for ns, eq for ne, and seq
for all other nodes.
3) CONJ(e1, ..., ei, ..., en). Same as EQ, two function nodes ns and ne are added
to V . For each ei, we add one edge from ns to nei.Ts , one from nei.Ts to nei.Te , and
another from nei.Te to ne. The source is ns and the sink is ne. Edge type is set as root
for ns, conj for ne, and seq for all other nodes.
4) DISJ(e1, ..., ei, ..., en). Edges and function nodes are added in the same way as for
pattern CONJ . However, edge type is set as root for ns, disj for ne, and seq for all
other nodes.
5) NEG(ei, ep.Ttp , eq.Ttq) (ep, eq are atomic events, tp, tq ∈ {s, e}). One function
node ns is added to V . We add one edge from ns to nep.Ttp

, one from nep.Ttp
to

neq.Ttq
, one from nep.Ttp

to nei.Ts , and one from nei.Ts to nei.Te . The source is ns, and
the sink is neq.Ttq

. Edge type is set as root for ns, seq+neg for neq.Ttq
, and seq for all

other nodes. Specifically, we call the subgraph including nei.Ts and nei.Te a negated
subgraph, with nei.Ts as the negated source and nei.Te the negated sink. A negated
link to the negated sink is stored at neq.Ttq

. Note that this link is not an edge in graph G.
Based on the edge building of basic temporal patterns, we briefly introduce the con-

struction of nested graph pattern. Suppose pattern Pi is nested in Pj . For Pj , the graph
of Pi is treated as a blackbox, whose source and sink serve as interface. The construc-
tion is implemented in a hierarchical fashion. Graphs of inner nested patterns are built
first, which are then connected to the outside nodes through its interface. For example,
consider building the graph G′ for NEG(P1, P2, P3). We first created graphs for each
Pi. Then one edge is added from P2.ne to P3.ns, and one from P2.ne to P1.ns. For G′,
the source is P2.ns and the sink is P3.ne. The negated source is P1.ns and the negated
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Fig. 5. A Temporal Graph Example
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Fig. 6. Graph Example for Backtrack

sink is P1.ne. A negated link pointing to the negated sink is stored in P3.ns. Lastly,
we modify the edge type of P1.ns to subroot and that of P3.ns to seq+neg. Figure 5
shows example of a complex nested pattern. Each capital letter in the pattern represents
an atomic event or a time point.

Edges can be weighted. For example, consider one edge e = (n1, n2) with e.weight
= h, and the edge type of n2 is seq. Then the requirement is n1.time < n2.time <=
n1.time + h. This representation is especially useful when the time of an event needs
to be bounded in a range. If e is unweighted, then n1.time < n2.time.

5.2 Graph Matching Algorithm

We propose a graph matching algorithm based on the graph G of composite event Q.
We call nodes in G query nodes, and nodes created for input atomic events input nodes.
If an input node t satisfies temporal requirements and all other predicates of query node
n, t is matched to n. We call t an instance of n, and store it in n’s matching slot. If more
input nodes are mapped to n after t, they are stored in the candidate list L of n. G is
matched if all query nodes in G have been matched by some input nodes.

The graph matching algorithm is shown in Algorithm 1. The input is a window of
atomic events, and the output is a subsequence from the window that matches graph
G. First, for each incoming atomic event ei, method SplitEventsAndSort in line 2

Algorithm 1. Graph Matching M

begin1
T ← SplitEventsAndSort(e1, e2, ..., en);2
while T �= ∅ and !G.isMatched() do3

t← T.pop();4
n← G.getNodes(t);5
if n is NULL then deleteInputNode(T, G, t); continue;6
r ← G.checkMatches(n, t);7
if r is TRUE then continue;8
else deleteInputNode(T, G, t);9

end10
if G.isMatched() then return G.buildResult() ;11
else return FAILED;12

end13
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splits it and creates two input nodes nsi and nei , tagged as start and end respectively.
nsi and nei store the start and end time of ei as well as other attributes from atomic
events. Besides, a pointer to each other is saved, in case when matching of one input
node fails, the pair can be removed together. The method then sorts these input nodes
in ascending order of time. Next, we pop up input nodes and match them to nodes in
G. After one input node t is popped up (line 4), method getNodes(t) (line 5) finds
query nodes in G that have the same values on person id, event type and start/end
tag as t. To improve performance, we build one hash table H , which maps triplet
< person id, event type, start/end tag > to a set of query nodes in G. getNodes(t)
looks up hash table H , and returns a set of query nodes. t is then tested if it falls into the
spatial rectangle covered by any query node in this set. Notice that when there are iden-
tical atomic events in composite event, i.e. the same person at the same location doing
the same type of event but at different time, it is possible to match t to multiple n. In
this paper, we do not consider such case and leave it as future work. So t can be mapped
to at most one node. If t is not mapped to any query node, deleteInputNode(T, G, t)
is invoked to properly remove t and its associated pair node. The process goes back
to line 3. Otherwise, if t is mapped to n, checkMatches(n, t) is invoked to examines
whether t satisfies the temporal requirement of n. If this is true, t is stored in n; oth-
erwise, call deleteInputNode(T, G, t). The while loop (line 3-10) stops when input
nodes are exhausted or G is matched. If G is matched, the sequences of atomic events
from instances of query nodes in G are returned (line 11); otherwise, algorithm returns
FAILED (line 12).

Note that there are different selection criteria when returning matching instances.
For example, we can return the first matching sequence, or return every possible match-
ing sequences. In this paper, we return the first sequence for simplicity. Results of all
possible sequences can be easily supported if necessary.

Method checkMathces(n, t) examines the matching of incoming atomic events.
Clearly, matching of an input node t to a query node n given n’s temporal requirements
depends on several factors: 1) temporal relationships between node n and its parent
nodes; 2) whether n’s parents are matched, and the time of their instances; 3) edge
weights; 4) the time of t.

Several observations from edge construction are helpful in designing the algorithm.
1) Input nodes can only be mapped to non-function query nodes, whose edge type is
either seq or seq + neg; 2) Each non-function query node has only one parent, whose
edge type can be root, subroot, and seq; 3) Nodes whose edge type is subroot have
only one parent, which can have any edge type. Based on these observations, we design
the matching process (Algorithm 2). Note that before matching starts, if n has already
had a matching instance, t is directly inserted into candidate list and return.

As n’s edge type is either seq or seq+neg, n has one and only one incoming edge
denoted as e = (np, n). checkParents(np) is invoked (line 2) to check whether np

has been matched. If np has not been matched, n cannot be matched either, given the
sequential requirement between np and n. Therefore, FALSE is returned (line 3). If np

has been matched by some instance tp, the temporal requirement between np and n is
n.time > tp.time. If the edge is weighted by h, the temporal requirement is tp.time <
n.time <= tp.time + h. If t satisfies the requirement (line 5), and its edge type is
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Algorithm 2. checkMatches(n, t)

begin1
r, time← checkParents(n.np);2
if r is FALSE then return FALSE;3
else4

if t satisfies TimeRequirement(time) then5
if n’s edge type is seq then return TRUE;6
else7

if n is negated by negated pattern then return FALSE;8
else return TRUE;9

end10
else if t.time > tp.time + h and n’s edge type is seq then11
Backtrack(G, n); checkMatches(n, t);
else return FALSE;12

end13
end14

seq, then t is matched to n. We return TRUE (line 6). However, if the edge type of t is
seq +neg, further check on the occurrence of the negated pattern is required. Followed
the negated link of n pointing to the negated sink nneg , we call checkParents(nneg) to
test whether nneg is matched. If nneg is not matched, then t matches n (line 9). In case
it is matched, we need to backtrack from n. The matching instance and candidates of np

with time before that of nneg are removed. If np finds a new match among candidates,
we call checkMatches(n, t) to re-match t to n. Otherwise, np is left unmatched and t
cannot match n. If the edge e is weighted by h, and t and all future input nodes after
t cannot get matched as long as tp works as the instance of np, backtrack from n is
required (line 11). In all other cases, matching fails (line 12).

Method checkParents(np) mainly examines whether np has been matched and if
so, return the time of np. If np has been matched by an instance tp, tp.time is returned.
Otherwise, if np has not been matched and np is a non-function node, FALSE is re-
turned; if np is a function node, we need to analyze its relationship with its parents
and calculate its time from the parents. This step involves examination of all possible
edge type. Readers may refer to [25] for more details.

Method Backtrack(G, n) checks the candidates of n’s parent node np, and verify
whether np can be matched by one of them. If it is matched, return TRUE; otherwise,
return FALSE. Besides, negated subgraphs (if any) should be reset properly. Algorithm
details can be found at [25].

5.3 Complexity Analysis

Now, we discuss the complexity of our matching algorithm. Assume the size of the in-
coming window of atomic events is n. We first discuss the complexity of
SplitEventsAndSort. For each ei (i ∈ [1, n]), it is split into two input nodes, and
inserted to a priority queue. The complexity of inserting and sorting in a priority queue
is O(n log n), which is the complexity of SplitEventsAndSort. Complexity of match-
ing an input node depends on the number of its parent nodes. When checking re-
lationships of equality, conjunction and disjunction, more than one parent nodes are
examined. Therefore, the complexity relies on the maximum number of parent nodes in
these types of relationships. Assume the maximum in-degree in graph G is m1. Since
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each input node can be matched at most once, the complexity of matching an input node
is O(m1n). Similarly, when doing backtrack, the complexity of dropping a matched in-
put node depends on the number of its child nodes, as all its children need to be reset.
Assume the maximum out-degree of a node in G is m2. Since each input node can be
dropped at most once, the complexity of dropping a match is O(m2n). To sum up, the
complexity of Algorithm 1 is O(m1n + m2n + n log n).

6 Performance Study

We have implemented our event detection processor in C++ using compiler G++ 4.3 on
Ubuntu 9.04 in a machine equipped with a Core 2 Duo 2.4Hz CPU and a 2GB memory.
In this section, we evaluate the performance of our prototype system. We first study the
effectiveness of spatial filtering. We learn by experiments the appropriate size of bloom
filter and number of hash functions under different data. We also examine the effect
of grid partition over spatial filtering. Next we study how our graph matching algo-
rithm performs given the complxity of graphs and occurrence of backtrack. Extensive
experiments demonstrate the effectiveness and efficiency of our system.

6.1 Performance of Spatial Filtering

In order to test the performance of spatial filter, we generate queries and input atomic
events with spatial information only, which consists of spatial areas and points. Con-
sider a space of size 3000 × 3000. We first generate 10 queries, each consisting of
20 spatial areas as rectangles defined by bottom left node (x1, y1) and top right node
(x1 + rx, y1 + ry). x1 and y1 are randomly generated within [0, 3000) while rx and ry

are within [0, 60) such that point (x1 +rx, y1 +ry) is within the 3000×3000 space. For
each query, we then generate 10000 windows of atomic events, each consisting around
30 spatial points. We first generate spatial points that are varied around queries, as it
would be very hard for purely random generated spatial points to match a query. Given
a query spatial area (x1, y1, rx, ry), we generate one or several points (x, y) based on
the parameters shown in Table 2. Besides, we insert 1 or 2 randomly generated points
into each window at probability of 0.2 independently. Inserting extra randomly gener-
ated points is to add more variations to the input data.

Signature Size and Number of Hash Functions. In the first experiment, we examine
the effect of signature size and number of hash functions on the FPR (false positive
rate) of bloom filter. We fixed the cell size to 15 leading to a 200 × 200 grid over
the space. Each spatial area in the query covers 1 to 25 grid cells. Notice that there
are only points in the input data. If an input window covers at least one cell for each
spatial area specified in the query, we consider it a cell-based match of the query. A
true match of a query must be a cell-based match; while a cell-based match may not
be a true match of the origin query, as points may belong to a cell which is partially
covered by a query area. A false positive of bloom filter in our scenario is that when an
input window is considered a match of the query, it is not a cell-based matched of the
query. We vary the size of the bloom filter and number of hash functions and measure
the corresponding false positive. Assume n is the number of input windows that pass
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Table 2. Parameters of Data Generation

Variations to spatial points Probability

x = x1 + (1|2|3) × 15 0.2
y = y1 + (1|2|3) × 15 0.2
insert (1|2|3) spatial points,
x = x1 + dx, dx ∈ [0, 15), 0.1
y = y1 + dy, dy ∈ [0, 15).
x = x1, y = y1 0.5

Table 3. Queries and Test Data

Type Number of Input

True match 107.6
Cell-based match 380.4

Spatial filter 594.1

through spatial filter; m is the number of test data that are cell-based match of the query.
The FPR of bloom filter as n−m

n
is shown in Figure 7(a). For a query of 20 spatial areas

and an input window with around 30 points, a bloom filter with size of 30 bytes and
3 hash functions could achieve FPR less than 0.07.If we increase the bloom filter size
to 50 bytes, using 3 hash functions makes its FPR to be less than 0.006. Through this
experiment we found that a bloom filter of modest size could achieve very low FPR
and serves well for filtering purpose. Further, as we only need to maintain the spatial
signature for each query in the main memory, the space cost is low. Next we show the
savings of spatial filtering. We first measure the percentage of input data that could be
filtered by spatial filter (shown in Table 3). On average 107.6 test data are true matches
of the original query over the 10 sample queries and their corresponding 10000 input
data. Consider the 200× 200 grid over the space in the previous experiment. The worst
case false positive (> 0.3) is obtained when using a bloom filter of size 20 bytes and
only 1 hash function. Even in that situation, the spatial filter only returns on average
594.1 test data (shown in Table 3) and more than 9400 test data is filtered.

Cell Size. Next we examine the performance of spatial filter under different cell size.
We fixed the bloom filter with size 50 bytes and apply 6 hash functions, under which the
FPR is 0. We vary the cell size from 60 to 6. The results are shown in Figure 7(b). It is
easy to understand that the smaller the cell size, the more we could filtered. The smaller
the cell size is, the less probability that a non-match point is allocated with the same
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cell as the query area, leading to more accurate spatial signature. However, we could
already achieve that over 96% input are filtered with cell size of 15 in the 200×200 grid.

Although decreasing the cell size increases the filtering performance of spatial filter,
it is at the cost of throughput. In Figure 7(c) we plot the number of input data our
spatial filter could process per second under different grid partition. We can see that
the throughput of spatial filter decreases with smaller cell size. This is because when
the cell size decreases, an area in the query would cover more cells and they are all
hashed to the same value. In the implementation, we grouped all cells covered by an
area together and map them to one cell. When a cell id of a test data comes, we look it
up in these groups and find its corresponding cell and send that to the hash functions. A
smaller cell size means larger groups, which increases the look up time.

Number of Spatial Areas. Lastly, we examine the effect of number of spatial areas in
the query on the performance of spatial filter. We generate another 4 groups of queries
consisting of 4, 8, 12 and 16 spatial areas. Each group consists of 10 queries. For each
query, we generate 10000 input data. Queries and data are generated in the same way
as that of previous experiments. The underlying grid is 200 × 200. Similar to previous
experiments, we use a bloom of size 50 bytes and 6 hash functions. Assume n1 is
the number of input data returned by spatial filter after pruning, and n2 is the number
of test data that truly match the query. We measure n1−n2

n2
. The results are shown in

Figure 8. With increasing number of spatial areas in query, the pruning effect of spatial
filter decreases as more test data are returned compared to true matches of query. This
is because the errors brought by grid partition accumulate with increasing number of
spatial areas involved in a query.
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6.2 Performance of Graph Matching

Complexity of Query Graph. In this experiment, we study how the complexity of
a query graph affects the matching performance. Complexity of a query graph relies
on three factors: 1) size of the graph, 2) density of the graph, and 3) weight on edges.
The size of a graph is measured by the number of nodes, which is mostly decided by
the number of atomic events in the query composite event. It is also partly influenced
by temporal patterns, since different number of function nodes are introduced from
different patterns. Non-sequential patterns, i.e. EQ, CONJ and DISJ , bring in more
function nodes in graph construction. The density is measured by the number of edges in
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the graph, which is mainly decided by the number of non-sequential patterns between
atomic events as well as number of atomic events in each pattern. Weight on edges
specifies whether there is a temporal predicate between events.

To test the effects resulted from these factors, we implement a query graph generator
that randomly creates query graphs following the graph properties described in Section
5.3. Based on the analysis above, parameters and their associated values are set for
generator, as shown in Table 4. N expresses the total number of non-function nodes
in graph. P is the probabilities of non-sequential temporal pattern in graph. As said,
this probabilities also decides the number of function nodes. When P is 0, the graph
consists only sequentially related nodes and negation nodes. B captures the number of
nodes in a non-sequential relationship. P and B jointly determine the graph density.
C represents whether edges in graph are weighted or not. Weights are added only on
edges between nodes whose edge type is seq.

Table 4. Parameters of Graph Generator

Description Values

N :Number of Nodes 10,20,50,100
P :Percent of Non-seq

Patterns 0,0.3,0.6
B:Branch Num [3-5]

C:Weight with/without weights

Table 5. Parameters of Test Streams

Description Values

T :Backtrack Times [1...4]
Nb:Number of Nodes

Backtracked [2...8]
W :Percent of Data 0, 25%, 50%,

Backtracked 75%, 100%

Given a setting of above parameters, we generate a query graph in the following
way. We maintain a queue and a cnt as number of created nodes. The queue is initially
enqueued with a default root, and cnt is set to 0. While the queue is not empty, we
pop up a node n. Based on value of P , we randomly select a temporal pattern between
n and its children. We then pick a number childCnt from B’s value range, and set
min(childCnt, N − cnt) as the n’s children number. We update the count, create child
nodes, and enqueue them to the queue. Note that for NEG, in our experiments, only
negation on one atomic event is tested. So the negated subgraph is made up of start and
end node. The process stops when N − cnt becomes 0. Then we stop expanding from
children, and add enough function nodes to complete the graph.

Besides, we implement a test data generator which generates windows of test atomic
events. Given a query graph, a test window of atomic events can be easily profiled to be
either matched or not matched to the query. Queries and test data are stored as files in
disk and preloaded into memory before running the experiments.

Experiments are carried out based on the value settings in Table 4. For each param-
eter setting S, 10 query graphs are randomly generated. For each of the 10 graphs, we
randomly generate 10000 windows of test atomic events. In this experiment, we pro-
file the test data to be backtrack free, and the number of nodes in the test data is set
around [0.9N, 1.1N ]. We run matching of each query, and compute the average time
as the running time of S. For each setting S, throughput is calculated by dividing the
total number of windows, 10000, by the running time. Experiment result is shown in
Figure 9.
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Fig. 9. Throughput of Graph Matching

Figure 9(a) shows the system throughput when there is no weight on edges in query
graphs. We can see that the processing throughput is very large. When N = 10, P = 0,
throughput reaches 76920 windows of events per second. It is easy to find that through-
put drops as graph size grows, and the drop rate is roughly proportional to the number of
nodes. Even in the case when N = 100, P = 0.6, our system still processes as many as
3000 windows of test data per second. In real applications, one query composite event
usually has much fewer number of atomic events than 100. Besides, from the figure
we also see that graphs that have the same N but larger P take longer time to process,
and the matching of which yields less throughput. This is easy to understand since the
matching of a non-function node requires only one or two (in case of negation) check-
ings of parent nodes, while the matching of a function node needs checking B = [3−5]
parent nodes. But the difference of throughput is indeed very little, which means the
performance is still largely decided by the number of non-function nodes. Figure 9(b)
compares the throughput between graphs with and without weight on edges. It can be
seen that the performance of these two types of graphs are very close to each other.
Processing of the two cases are identical for backtrack-free data, except the calculation
of time requirement, whose influence on performance is almost neglectable.

Backtrack. In this section, we examine how backtrack affects the overall performance.
We know that backtrack happens at a node when: 1) matching instance of the node

is too ”old” and prevents its children from being matched by future input nodes, 2)
the node is negated, and we check whether it has any candidate that can’t be negated
(Section 5.3). In order to make backtrack happen in test data, we profile the test data
in three aspects, as shown in Table 5. First, we set the number of nodes that need to be
backtracked, Nb. For example, suppose we have a graph as in Figure 6. Now ne1.Ts and
ne2.Ts have been matched by instances at time 1 and 3. A node mapped to ne3.Ts arrives
at time 6. Given e3.Ts <= e2.Ts+2, ne2.Ts has to be backtracked. However, time of its
first candidate instance is 4, which can not match ne2.Ts as long as time of the instance
at ne1.Ts is 1. So backtrack from ne1.Ts is recursively called. Second, we select number
of times that backtrack happen in a test data, T . Thirdly, we can also tune the percentage
of test data in need of backtrack, W . Assume T and Nb are uniformly distributed over
their domains DT , DNb

, then the expected total number of non-function nodes checked
for a given percentage W in one matching process would be
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E(Ntotal) = N + W ∗ ∑
Ti∈DT

Ti/|DT | ∗ ∑
Nbi

∈DNb
Nbi/|DNb |

We set N = 12, 24, P = 0.3, and generate 2 queries for each N and P combination.
Then for each query, and a value from W , we generate 10000 groups of test data.
Throughput result is in Figure 9(c). When W = 0, no test data needs to be backtracked;
when W = 1, all the test windows have to backtrack for T = [1, 4] times. For example,
when N = 12, the total expected number of nodes backtracked when W = 1 in a graph
is Ntotal = 24.5, which is around twice of Ntotal = 12 for W = 0. We can see from
the figure, the throughput of W = 1 is roughly around half of W = 0. This observation
again demonstrates that the processing rate in our system is almost constant, and the
throughput is mostly decided by the number of processed nodes in a graph.

7 Conclusion

In this paper, we presented a formal discussion on spatio-temporal events detection in
multimedia communication systems. We analyzed the challenges, defined the model,
and proposed techniques to solve the problem. A spatial filter scheme that can effec-
tively prune unrelated events is designed. Also, we implemented the graph matching
algorithm that is able to detect temporal relationship efficiently. Experiments prove that
our work has large throughput ability as well as supporting complex semantic events.
In future, we plan to incorporate complex spatial relationships into the semantic of
complex events. Also, Kleene closure could be introduced to represent more complex
temporal relationships. With such extension on semantics, careful improvement on pro-
cessing techniques should also be designed. Besides, optimizations for multi-query pro-
cessing is one of our future work as well.
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Abstract. Reservoir sampling is a well-known technique for random
sampling over data streams. In many streaming applications, however,
an input stream may be naturally heterogeneous, i.e., composed of sub-
streams whose statistical properties may also vary considerably. For this
class of applications, the conventional reservoir sampling technique does
not guarantee a statistically sufficient number of tuples from each sub-
stream to be included in the reservoir, and this can cause a damage on
the statistical quality of the sample. In this paper, we deal with this
heterogeneity problem by stratifying the reservoir sample among the un-
derlying sub-streams. We particularly consider situations in which the
stratified reservoir sample is needed to obtain reliable estimates at the
level of either the entire data stream or individual sub-streams. The first
challenge in this stratification is to achieve an optimal allocation of a
fixed-size reservoir to individual sub-streams. The second challenge is to
adaptively adjust the allocation as sub-streams appear in, or disappear
from, the input stream and as their statistical properties change over
time. We present a stratified reservoir sampling algorithm designed to
meet these challenges, and demonstrate through experiments the supe-
rior sample quality and the adaptivity of the algorithm.

1 Introduction

Sampling is the process of selecting some members of a population for the pur-
pose of deriving estimates of the population using only the selected members [10]
[14]. The basic sampling scheme is random sampling in which each member of
the population has an identical chance of being in the sample. Random sampling
usually generates consistent and unbiased estimates of the original population,
and it has been used in a wide range of application domains such as approximate
query processing (e.g., [23]) and data stream processing (e.g., [20]).

For applications in which data are available in the form of an incoming stream,
sampling has two major challenges. First, the size of the data stream is usually
unknown a priori and, therefore, it is not possible to predetermine the sample
fraction (or sampling rate) before the sampling starts. Second, in most cases the
data arriving in a stream cannot be stored and, therefore, have to be processed
sequentially in a single pass. A technique commonly used to overcome these
challenges is the reservoir sampling [15] [22], which selects a random sample of
a fixed size without replacement from a stream of an unknown size.
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Table 1. Mean and standard deviation of bidding amount of two FCC auctions [2]

Auction Item Mean Std dev
FCC 700 MHz Guard Band 73964.29 24591.07
FCC Analog TV Stations 263800.00 39115.21

For many streaming applications, however, we make two key observations.
First, an input stream may be composed of sub-streams that correspond to
different groups whose statistical properties, specifically mean and variance, may
vary significantly. We refer to this class of data streams as heterogeneous data
streams. Second, the application may naturally demand using a sample to derive
estimates at the level of either the entire data stream or individual sub-streams.

Consider, for example, the application of the Federal Communications Com-
mission (FCC) auction system [2] through which auctions for licenses of elec-
tromagnetic spectrum are conducted electronically over the Internet. In this
application, an auction data stream is composed of multiple sub-streams each of
which represents the biddings in a particular auction. Moreover, an auction data
stream can be heterogeneous, as the mean and the variance of bidding amounts
vary significantly from one auction to another depending on the type of an auc-
tion item (see Table 1). From the application standpoint, the scope of sampling
differs in two ways. On one hand, a sample of all bidding amounts can be used to
perform a set of analyses on the entire auction data stream, e.g., the median of
bidding amounts across all auctions. On the other hand, a sample of the bidding
amounts in individual auctions can be utilized to generate the estimate for each
individual auction, e.g., the median of bidding amounts in each auction.

For such applications with heterogeneous data streams, the conventional reser-
voir sampling technique does not guarantee a statistically sufficient number of
tuples to be included in the reservoir for every sub-stream. The inevitable conse-
quence of this is a damage to the statistical quality of the sample. Furthermore,
the technique is only used for the purpose of maintaining one random sample of
a fixed size from all tuples seen so far in an input stream. Therefore, it is not
suitable when multiple random sub-samples are needed to obtain the estimates
of individual sub-streams. In other words, it is not appropriate for the purpose
of producing a sub-sample stored in a sub-reservoir for each sub-stream.

The research literature addresses an analogous heterogeneity problem in the
context of database systems through stratified sampling [9] [13]. In this sampling
scheme [10], a population is initially clustered into homogenous disjoint strata.
Then, a sample is taken randomly from each stratum. Stratified sampling is
particularly preferred if the statistical properties of strata vary considerably [14].
Statistical properties are typically mean and variance or, equivalently, coefficient
of variation (CV) which is the ratio of the standard deviation to the mean.

In no existing work, however, data stream has been the target of a stratified
sampling algorithm. When applied to data streams, stratified sampling inherits
the challenges of random sampling over a data stream and poses the follow-
ing additional challenges. First, usually neither the number of sub-streams nor
their statistical properties are known in advance. Thus, it is not possible to
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optimally allocate a stratified sample to sub-streams prior to sampling. Second,
the membership of a data stream and the statistical properties of the member
sub-streams may change over time. Hence, the allocation should have the ability
to adapt to these changes.

In this paper, we address the problem of maintaining a stratified reservoir
sample over heterogeneous data streams for applications that demand reliable
estimates at the level of either the entire data stream or individual sub-streams.
There are two specific problems to be solved. The first one is to allocate a given
fixed-size reservoir optimally among sub-streams, and the second one is to adjust
the allocation as new sub-streams appear or existing sub-streams disappear (e.g.,
due to punctuation) or their statistical properties change over time.

To solve the allocation problem, we adopt a statistical method known as the
power allocation [6]. By controlling what is called the power parameter, this
method allows to allocate a given sample size optimally [6] when the estimates
are required from the data stream or from the individual sub-streams. To adapt
to changes in data stream membership and sub-streams statistical properties,
uniformity of the sample of each sub-stream should be maintained as the cor-
responding sample size changes over time. For this we use a simple variation of
the adaptive-size reservoir sampling technique (from our prior work) [5], which
maintains the uniformity of a reservoir sample with a required degree of confi-
dence after the reservoir size is adjusted in the middle of sampling.

Two sets of experiments have been conducted using synthetic and real datasets.
In the first set of experiments, we compare the stratified and the conventional
reservoir sampling algorithms with respect to the sample quality – specifically,
sample accuracy and sample precision1 – for different number of input sub-
streams and for varying degree of heterogeneity among the sub-streams. The
results of this experiment show that the stratified algorithm outperforms the
conventional algorithm by nearly an order of magnitude in both sample quality
metrics. In the second set of experiments, we examine how adaptively the strat-
ified reservoir sampling algorithm adjusts the allocation of the fixed reservoir
sample size. The results of this experiment show the stratified reservoir sampling
quickly adjusting the sub-sample sizes when the CV s of the member sub-streams
change and when a new sub-stream appears or an exiting sub-stream expires.

Main contributions of this paper can be summarized as follows.

– It identifies and motivates the problem of stratified reservoir sampling over
heterogeneous data streams.

– It presents an algorithm for maintaining a stratified reservoir sample over
a heterogeneous data stream when the sample is used to obtain either one
estimate from the whole stream or multiple estimates from the sub-streams.

– It empirically shows the superiority of the proposed algorithm (with respect
to the precision and accuracy of the sample) and demonstrates its adaptivity.

1 Sample accuracy is the degree of closeness of the estimate to its true value. Sample
precision is the degree to which the estimates from different samples taken from the
same data set vary from one another.
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The rest of the paper is organized as follows. Section 2 gives an overview of
the reservoir sampling and stratified sampling techniques. Section 3 formulates
the research problem and presents the proposed stratified sampling algorithm.
Section 4 presents and discusses the experiment results. Section 5 reviews related
work. Section 6 concludes this paper and suggests future work.

2 Background

This section provides backgrounds on reservoir sampling and stratified sampling.

2.1 Reservoir Sampling

Reservoir sampling [15] [22] is a technique for selecting a uniform random sample
of a fixed size without replacement from an input stream of an unknown size.
Initially, the algorithm (see Algorithm 1) places all tuples in a reservoir r until
the reservoir (of the size of |r| tuples) becomes full. After that, each kth tuple is
accepted for inclusion in the reservoir with the probability of |r|

k
and an accepted

tuple replaces a randomly selected tuple in the reservoir.

Algorithm 1. Conventional Reservoir Sampling (CRS)
Require: |r| // size of a reservoir r
1: k = 0
2: for each tuple arriving from the input stream do
3: k = k + 1
4: if k ≤ |r| then
5: add the tuple to the reservoir
6: else
7: decide with the probability |r|

k whether to accept the tuple

8: if the tuples is accepted then
9: replace a randomly selected tuple in the reservoir with the accepted tuple
10: end if
11: end if
12: end for

Reservoir sampling guarantees that a reservoir always holds a uniform sample
of the k tuples seen so far [15]. After the kth tuple arrives, each of the k tuples
has the equal probability |r|

k to be included in the reservoir. That is, each of the(
k
|r|

)
different possible samples has the same probability 1

( k
|r|)

to represent r.

2.2 Stratified Sampling

Stratified sampling [10] [14] is a sampling scheme in which a heterogeneous pop-
ulation R is initially clustered into n disjoint homogeneous strata, R1, R2, ...,
Ri, ..., Rn, and then a sample ri is taken randomly from each stratum Ri. Every
member of R should belong to one and only one stratum (i.e., Ri ∩ Rj = φ
(i �= j) and R1 ∪ R2 ∪ ... ∪ Ri ∪ ... ∪ Rn = R). A stratified sample of a given
size is expected to have higher statistical precision (i.e., lower sampling error)
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than a random sample of the same size taken from the same population when
the statistical properties (i.e., mean and variance) of strata vary considerably.

Allocating a given sample size |r| to different strata is a fundamental issue in
stratified sampling. Obviously, the allocation is under the constraint on the the
sum of the sub-sample sizes assigned to individual strata, |r1|, |r2|, ..., |rn|:

n∑

i=1

|ri| ≤ |r| (1)

There are two allocation methods commonly used for a stratified sample, the
proportional allocation [14] and the Neyman allocation [14]. Under the propor-
tional allocation, the sample size of each stratum is determined in proportion to
the size of the stratum:

|ri| = |r| × |Ri|
|R| (2)

where R denotes the whole population, Ri denotes a stratum, and |R| and |Ri|
denote the sizes of R and Ri, respectively. Under the Neyman allocation, the
sample size of each stratum is determined in proportion to the standard deviation
as well as the size of the stratum:

|ri| = |r| × σi × |Ri|∑n
j=1 σj × |Rj | (3)

where σi denotes the standard deviation of Ri.

3 Stratified Reservoir Sampling

The proposed stratified reservoir sampling algorithm is described in this sec-
tion. As mentioned in Section 1, there are two technical issues to resolve in the
proposed algorithm: (1) determining the optimal sizes of sub-samples for each
sub-stream, and (2) maintaining the uniformity of sub-samples as their sizes
change. In this section, we first formulate the problem formally in Section 3.1
and discuss our approaches to the two technical issues in Sections 3.2 and 3.3
and then summarize them into one algorithm in Section 3.4.

3.1 Problem Formulation

The problem of allocating a fixed-size reservoir to sub-streams is an adaptive
optimization problem formulated as follows. An input data stream S consists of
n sub-streams S1, S2, ..., Sn. Each sub-stream Si (i = 1, 2, ..., n) is a sequence of
tuples si1 , si2 , ... such that Si∩Sj= φ (i �= j) and ∪Si = S. Given a total available
size of |r| tuples in a reservoir r, the objective is to allocate |r| optimally among
the n sub-streams subject to the following constraint at any point in time t:

n∑

i=1

|ri(t)| ≤ |r| (4)

where ri(t) denotes the sample allocated for Si at time point t and |ri(t)| denotes
its size. The optimality criterion is the sample quality, and there is some minor
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Fig. 1. An illustration of stratified reservoir sampling

difference in the specific criteria depending on which purpose (i.e., one whole
sample or individual sub-samples) the sample is used for (details in Section 3.2).

Figure 1 illustrates the processing of stratified reservoir sampling. It shows
that the sizes of sub-samples r1, r2, and r3 have respectively decreased, increased,
and decreased from t1 to t2 while the same total sample size remains the same.

3.2 Optimal Stratified-Reservoir Allocation

For the flexible aim of generating estimates from the whole sample or from sepa-
rate sub-samples, the commonly used Neyman allocation is not adequate enough
since it is geared for the former case only. To overcome this limit, we adopt an-
other statistical method, known as power allocation, [6]. The power allocation
method provides a way to allocate the sample to different strata whether the
sample is used to generate a single estimate for the underlying population as a
whole or multiple estimates separately for each of the underlying strata. This
flexibility is enabled by a control parameter called the power of allocation.

Formally, the size of a sample, |ri|, assigned to a stratum Ri is computed as

|ri| = |r| ×
σi ×

((∑|Ri|
j=1 yij

)q)
/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk ×

((∑|Rk|
j=1 ykj

)q)
/

( ∑ |Rk|
j=1 ykj

|Rk|

) (5)

where yij denotes the sampling attribute value of the jth member in Ri, σi

denotes the standard deviation of the sampling attribute values in Ri, and q
denotes the power of allocation.

When the stratified sample is used of the entire population, power allocation
aims to minimize the sampling variance of the estimator of the whole stratified
sample, where the sampling variance is formulated as

n∑

i=1

σi × |Ri| × (|Ri| − |ri|)
|ri| (6)

In this case, it achieves an optimal allocation by setting the power value to 1.
Note that this results in the exact Neyman allocation, that is

|ri| = |r| ×
σi ×

((∑|Ri|
j=1 yij

)1
)

/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk ×

((∑|Rk|
j=1 ykj

)1
)

/

( ∑ |Rk|
j=1 ykj

|Rk|

) = |r| × σi × |Ri|∑n
k=1 σk × |Rk| (7)
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When the stratified sample is used at the level of individual strata, Neyman
allocation may cause the sampling variances of some strata to be larger than
those achievable by considering strata individually. Power allocation’s remedy
for this deficiency is to allocate sub-sample sizes in proportion to CV of each
stratum, which is achieved by setting the power to 0. In this case,

|ri| = |r| ×
σi ×

((∑|Ri|
j=1 yij

)0
)

/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk ×

((∑|Rk|
j=1 ykj

)0
)

/

( ∑ |Rk|
j=1 ykj

|Rk|

) = |r| ×
σi/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk/

( ∑ |Rk|
j=1 ykj

|Rk|

)

(8)

Applying this power allocation to data stream gives the following formula for
determining sub-sample sizes at any point in time t.

|ri(t)| = |r| ×
σi(t) ×

((∑|Si(t)|
j=1 yij

)q)
/

( ∑ |Si(t)|
j=1 yij

|Si(t)|

)

∑n
k=1 σk(t) ×

((∑|Sk(t)|
j=1 ykj

)q)
/

( ∑ |Sk(t)|
j=1 ykj

|Sk(t)|

) (9)

where |ri(t)| denotes the size of a sub-sample allocated for a sub-stream Si at
time point t, σi(t) denotes the running standard deviation2 of the sampling
attribute values in Si up to t, and |Si(t)| denotes the number of tuples processed
up to t from Si.

3.3 Maintaining Sample Uniformity

As mentioned in Section 1, we use the adaptive-size reservoir sampling algorithm
(ARS) [5] (see Algorithm 2) to maintain the uniformity of each sub-sample as
its size decreases or increases as a result of optimal allocation.

ARS is based on the concept of uniformity confidence (UC), which refers to
the probability that a sampling algorithm generates a uniform random sample
after the sample size changes in the middle of sampling. A theoretical study in
[5] concludes that if the reservoir size decreases, the sample uniformity can be
maintained in the reduced reservoir with 100% confidence by randomly evicting
tuples from the original reservoir.

In contrast, if the reservoir size increases, it is not possible to attain 100%
confidence in the enlarged reservoir. It is possible, however, to ensure the uni-
formity confidence above a given threshold. The steps are as follows. First, ARS
finds the minimum number of incoming tuples that should be considered to refill
the enlarged reservoir such that the resulting uniformity confidence exceeds the
given threshold (Equation 10). Then, it decides probabilistically on the number
of tuples to retain in the enlarged reservoir and randomly evicts the remaining

2 Running standard deviation is required for the calculations in the power allocation
method. For this, we use an efficient recurrence relation [21], known as the updating
method, that is capable of calculating the standard deviation in a single scan of the
data and providing precise calculation even when the data values are relatively large.



628 M. Al-Kateb and B.S. Lee

number of tuples (Equation 11). Eventually, it fills the room available in the
enlarged reservoir from the incoming tuples.

UC(k, |r|, δ, m) =

∑|r|
x=max {0,(|r|+δ)−m}

(
k
x

)(
m

|r|+δ−x

)

(
k+m
|r|+δ

) × 100 (10)

p(x) =

(
k
x

)(
m

|r|+δ−x

)

(
k+m
|r|+δ

) (11)

In this paper, we use a simple variation of ARS in which the number of incoming
tuples required to refill an enlarged reservoir is computed as3

m =
δ × k

|r| (12)

Algorithm 2. Adaptive-size Reservoir Sampling (ARS)
Require: |r| // size of a reservoir r

k // number of tuples seen so far
ζ // uniformity confidence threshold

1: while true do
2: while the reservoir size |r| does not change do
3: continue sampling using CRS (Algorithm 1)
4: end while
5: if reservoir size is decreased by δ then
6: randomly evicts δ tuples from the reservoir
7: else
8: // i.e., reservoir size is increased by δ
9: find the minimum value of m (Equation 10) such that UC >= ζ

10: flip a biased coin to decide on x, the number of tuples to retain in the reservoir (Equa-
tion 11)

11: randomly evict |r| − x tuples from the reservoir
12: select δ + |r| − x tuples from the incoming m tuples using CRS (Algorithm 1)
13: end if
14: end while

3.4 Stratified Reservoir Sampling Algorithm

Based on the discussions above, our stratified reservoir sampling algorithm works
as shown in Algorithm 3. In this algorithm, the input stream S is treated as a set
of sub-streams S1, S2, etc, and ALGi refers to the sampling algorithm currently
in use for the sub-stream Si.

In the initialization phase of the algorithm (Lines 1-15), the first |r| tuples
in a data stream S are added to the reservoir while the running statistics of
sub-streams are being updated (Lines 3-4). The sampling starts using CRS for
all new sub-streams (Lines 5-8) and, once the reservoir becomes full, the size
of a sub-reservoir is initialized in proportion to the number of tuple seen so far
from the corresponding sub-stream (Lines 13-15).

In the sampling phase (Lines 16-41), each time a new tuple s arrives from
a sub-stream Si, the algorithm decides to sample s using CRS if Si is a new
3 The rationale for computing the value of m in this way is a simple heuristic that,

since r has been filled from k tuples so far, the room for additional δ tuples should
be filled in proportion to k

|r| , that is, δ × k
|r| tuples. This heuristic facilitates the

use of the ARS by eliminating the need to conduct an expensive search to find the
optimum value of m using Equation 10, which is an inverse-mapping problem.
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Algorithm 3. Stratified Reservoir Sampling (SRS)
Require: |r| // size of a reservoir r

q // power of allocation
Δ // sample reallocation time interval

// *************** initialization phase***************
1: for each new tuple s arriving from a sub-stream Si do
2: if reservoir r is not full then
3: add s to r
4: update the running statistics of Si

5: if Si /∈ S // i.e., Si is a new sub-stream then
6: S = S U {Si}
7: ALGi = CRS // start sampling using CRS
8: end if
9: else

10: break // go to line 13
11: end if
12: end for
13: for each Si ∈ S do
14: |ri| = size(Si) // initialize sub-reservoir sizes
15: end for

// ***************** sampling phase*****************
16: while true do
17: for each new tuple s arriving from a sub-stream Si do
18: if Si /∈ S // i.e., Si is a new sub-stream then
19: S = S U {Si}
20: ALGi = CRS // start sampling using CRS
21: end if
22: sample s into the sub-reservoir ri using ALGi // either CRS or ARS
23: update the running statistics of Si

24: if the time interval Δ has passed then
25: break // go to line 28 to calculate sub-reservoir sizes
26: end if
27: end for
28: for each sample ri allocated to sub-stream Si do
29: if Si expires from S // e.g., due to a punctuation then
30: S = S - {Si}
31: |ri(t)| = 0
32: else
33: calculate |ri(t)| for Si using Equation 9 with the given value of q
34: if |ri(t)| has changed as a result then
35: ALGi = ARS (Algorithm 2)
36: else
37: ALGi = CRS (Algorithm 1)
38: end if
39: end if
40: end for
41: end while

sub-stream (Lines 18-21). Then, the algorithm samples s into ri using the cor-
responding sampling algorithm (i.e., either CRS or ARS) while updating its
running statistics (Lines 22-23 and 28-40). Periodically, the algorithm reallo-
cates the reservoir size optimally among sub-streams (Lines 24-26). Specifically,
if a sub-stream has expired from the input stream (e.g., due to the presence of
a punctuation), the memory of the sub-reservoir of that sub-stream is released
(Lines 29-31). Otherwise, the algorithm calculates the optimal sample size for
the sub-stream (Line 33). If the size of ri changes as a result, then the algorithm
switches over to ARS to continue sampling the incoming Si tuples (Lines 34-35).
Note that ARS quickly resumes CRS once the size adjustment is handled. If the
size of ri does not change, then the algorithm samples the incoming Si tuples
using CRS (Line 37).
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4 Performance Evaluation

We conduct two sets of experiments. The first set of experiments evaluates the
performance of the stratified reservoir sampling (SRS) algorithm against the
conventional reservoir sampling (CRS) algorithm with respect to the sample
quality. The second set demonstrates the adaptivity of the SRS to the changes
of data stream membership and the statistical characteristics of member sub-
streams. In this section, the design and setup of the experiments are described
in Section 4.1 and the results of the experiments are presented in Section 4.2.

4.1 Experiment Design and Setup

Intuitively, two factors affect the performances of algorithms over a data stream
consisting of multiple heterogeneous sub-streams: the number of sub-streams
and the degree of heterogeneity among the sub-streams. These two parameters
are thus used in the comparisons between SRS and CRS.

Performance Metrics. The two kinds of sample quality mentioned in Sec-
tion 1 are used to compare the performances of SRS and CRS: accuracy and
precision. Specifically, we use the error in estimated mean (EEM), the difference
between the mean value estimated from the sample and the actual mean value,
as the metric of sample accuracy. The estimated mean for a random sample is
calculated as

1

|r| ×
|r|∑

i=1

yi (13)

where yi denotes the value of the sampling attribute of the ith tuple in a sample r
[10]. Extended from it, the estimated mean for a stratified sample is calculated as

|n|∑

i=1

⎛

⎝ |Si|
|S| ×

⎛

⎝ 1

|ri|
|ri|∑

j=1

yij

⎞

⎠

⎞

⎠ (14)

where yij denotes the value of sampling attribute of the jth tuple in a sub-sample
ri [10].

On the other hand, we use the standard error (SE), a common statistical
quantification of the sample precision, as the metric of sample precision. The
SE is a measure of how precise the sample is; the larger the SE, the lower the
statistical precision of the sample is, and vice versa. The SE for a random sample
is computed as √((

1 −
( |r|
|S|

))
×

(
σ2

|S|
))

(15)

where σ2 denotes the variance of the entire sample [10]. Extended from it, the
SE for a stratified sample is computed as

1

|S| ×
√√
√
√

n∑

i=1

|Si|2 ×
(

1 − |ri|
|Si|

)
×

(
σi

2

|ri|
)

(16)

where σi
2 denotes the variance of the ith sub-sample [10].
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Datasets. Experiments are conducted using both synthetic and real datasets.
Synthetic datasets are used to examine the effect of the statistical characteristics
of an input data stream on the quality of the sample. Now, we describe the
process of synthetic dataset generation and outline the profile of the real datasets.

Synthetic Datasets. A synthetic data stream is generated bottom up, that is,
by first generating sub-streams and then combining them to form one stream.
The sampling attribute value in each sub-stream Si has the doubly-truncated
normal distribution [19], i.e., the normal distribution with bounded lower and
upper ends. Formally, if a random variable X � N(μ, σ) has the normal
distribution such that ∞ ≤ l ≤ X ≤ u ≤ ∞, then X is considered to have
a doubly-truncated normal distribution with the probability density function

pdf (x; μ, σ, l, u) =
1
σ
φ

(
x−μ

σ

)

Φ
(

u−μ
σ

) − Φ
(

l−μ
σ

) (17)

where φ(x) is the probability density function of the standard normal distribu-
tion, and Φ(x) is its cumulative distribution function [19]. This distribution is
used in many applications like inventory management and financial applications,
in which the values are naturally constrained within a certain bound [16].

The datasets are synthesized from a different number of sub-streams (n) and
with a varying degree of heterogeneity among the sub-streams (DH). DH is
defined as the ratio of the inter-sub-stream variability to the intra-sub-stream
variability. With the variability expressed in terms of CV [6], we define DH as
the ratio of the standard deviation among the CVs of sub-streams (σ[CV ]) to the
average of the CVs of sub-streams (μ[CV ]). With the doubly-truncated normal
distribution in place, we know that the standard deviation of the sampling at-
tribute values of a sub-stream Si is bounded by half the range of these values.
This means that each CVi is bounded within the range of 0 to 1. Consequently,
DH is also bounded within the range of 0 to 1.

Given the values of n and DH, the synthetic dataset generator works as follows.
First, it sets the value of μ[CV ] to 0.5 (note 0 <μ[CV ]≤ 1) and calculates the value
of σ[CV ] accordingly. Second, it generates n random numbers from a doubly-
truncated normal distribution with μ[CV ], σ[CV ], l[CV ] = μ[CV ] − σ[CV ], and
u[CV ] = μ[CV ] +σ[CV ]. The n random numbers generated correspond to the CVs
of the n sub-streams. Third, for Si, the synthetic dataset generator uses the
value of CVi to assign the values of μ[Si] and σ[Si] randomly such that σ[Si]

μ[Si]
=CVi.

Finally, the generator produces the values of Si from a doubly-truncated normal
distribution with μ[Si], σ[Si], li = μ[Si] − σ[Si], and ui = μ[Si] + σ[Si].

Figure 2 shows an example of different datasets with varying degree of het-
erogeneity. In this example, the number of sub-streams is 10 and the values
of DH are set to 30%, 50%, and 70%. When DH is relatively low (e.g., 30%
in Figure 2(a)), we see that most of the sub-streams have wide and similar
spreads of sampling attribute values. The wide spread of each sub-stream indi-
cates that the variability within each sub-stream is high, and the similar spreads
among sub-streams indicates that the variability across sub-streams is low. These
two combined indicate a low degree of heterogeneity in the entire stream. In
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(a) Degree of heterogeneity = 30%
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(b) Degree of heterogeneity = 50%
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(c) Degree of heterogeneity = 70%

Fig. 2. Scatter plots of synthetic datasets with different degrees of heterogeneity

contrast, when the DH is relatively high (e.g., 70% in Figure 2(c)), we see that
most sub-streams have narrow and dissimilar spreads of the sampling attribute
values. This is the converse of the Figure 2(a) case above, and thus indicates a
high degree of heterogeneity in the entire stream.

Real Datasets. Two kinds of real datasets are used, one (SENS) in the wireless
sensor networks application and one (AUCT) in the auction application.

– The SENS real dataset is weather measurements from sensors deployed
through the Intel Berkeley Research lab to gather time-stamped topology
information, along with humidity, temperature, light and voltage values [1].
SENS is a projection of this data on two attributes, sensor mote id and
temperature measurement acquired from 55 motes. (Data from three motes
have incomplete readings and thus have been discarded.). SENS is charac-
terized with a low degree of heterogeneity. The low degree of heterogeneity
among the temperature readings of different motes is due to the fact that
temperatures of nearby regions are expected to be close to each other.

– The AUCT real dataset is for auctions conducted over the Internet through
the Federal Communications Commission (FCC) [2]. The entire dataset con-
sists of 55 auction sub-datasets. Each sub-dataset contains bidding informa-
tion of one auction. We have merged the 55 auction sub-datasets into one
single dataset. The order of tuples in the resulting dataset is shuffled and
the resulting tuples are projected on two attributes, auction ID and bidding
amount. AUCT is characterized with a high degree of heterogeneity. The
high degree of heterogeneity of the bidding amounts is intuitive since the
bidding amounts can vary to a large extent depending on the auction item.

4.2 Experiment Results

Sample Quality. In this set of experiments, we compare sample accuracy and
precision between SRS and CRS. Given that SRS is meant to support both the
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case of using a sample to obtain the estimate of the entire data stream and
the case of using a sample to obtain the estimates of individual sub-streams,
experiments are done to report the results in both cases. We refer to the former
case as the whole-sample case and the latter case as the sub-sample case4.
In the sub-sample case, the results are reported as the average square value of
the sample quality metric used. The results of the experiments demonstrate that
in both cases SRS outperforms CRS in sample accuracy as well as precision by
nearly an order of magnitude.

Whole-sample Case. Figures 3(a) and 3(b) show the SRS accuracy against the
CRS accuracy using the synthetic datasets for different degree of heterogeneity
and for different number of sub-streams, respectively. Figure 3(a) shows that
the degree of heterogeneity has a major influence on the sample accuracy. For a
low degree of heterogeneity, (e.g., 10%), we observe that there is only a minor
improvement of SRS accuracy over CRS accuracy. The level of improvement,
however, increases as the degree of heterogeneity increases. For a high degree of
heterogeneity, (e.g., 70% or higher), we see that the SRS accuracy is higher than
the CRS accuracy by more than an order of magnitude. The reason for this is
that CRS does not consider any heterogeneity between sub-streams whereas SRS
does. On the other hand, Figure 3(b) shows that the performance improvement of
SRS over CRS is more or less constant regardless of the number of sub-streams.
This makes sense because the accuracy of CRS is not affected by the number
of sub-streams (Equation 13) and because the accuracy of SRS is primarily
influenced by the size and the values of sub-streams (Equation 14).

Figures 4(a) and 4(b) show similar results for the sample precision by demon-
strating that the degree of heterogeneity has dominant effect on the precision.

Figure 5 shows the results from using the real datasets AUCT and SENS. The
results are consistent with the results from using the synthetic datasets. The
figure shows that the improvement of SRS over CRS is higher for for the AUCT
dataset than SENS with regard to both sample accuracy and sample precision.
This is due to the higher degree of heterogeneity of the AUCT dataset.

Sub-sample Case. Figures 6 and 7 show the results for sub-sample accuracy
and sub-sample precision, respectively, using the synthetic dataset. These results
report the average square value of EEM (for accuracy) and SE (for precision) per
sub-sample. As we see in Figure 6(a), the sub-sample accuracy of SRS improves
over the accuracy of CRS linearly with the degree of heterogeneity. Likewise,
Figure 7(a) shows a similar trend for the sub-sample precision. From Figure 6(b)
and Figure 7(b) we observe that the number of sub-streams is irrelevant to the
performance of both SRS and CRS at the level of individual sub-samples.

The results from using the SENS and AUCT real datasets in Figure 8 are
similar to those in Figures 6 and 7.

SRS Adaptivity. In this set of experiments, we demonstrate the adaptivity of
the SRS by showing the change in the allocation of a stratified reservoir sample as
4 In the experiments, q is assigned the values of 1 and 0 for the whole-sample case

and the sub-sample case, respectively. (Recall Section 3.2).
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Fig. 3. Whole-Sample accuracy - synthetic datasets
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Fig. 4. Whole-Sample precision - synthetic datasets
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Fig. 5. Whole-Sample accuracy and precision - real datasets

a new sub-stream appears in, or an exiting sub-stream expires from, the input
stream (i.e., with respect to data stream membership) and as the statistical
properties of individual sub-streams change over time (i.e., with respect to sub-
streams’ stationariness). Results presented in this section show the change in
sub-reservoir sizes over time for five sub-streams synthetically generated and
for five sub-streams selected from the AUCT and SENS real datasets. (Only
five sub-streams are used for better visibility. Results for a larger number of
sub-streams look similar.)
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Fig. 6. Sub-Sample accuracy - synthetic datasets

10 30 50 70 90
0

10

20

30

40

50

60

70

80

90

100

degree of heterogeneity (%)

(S
R

S
 S

E
 / 

C
R

S
 S

E
) 

(%
)

 

 

n=10 n=30 n=50 n=70 n=90

(a) Effect of the degree of heterogeneity

10 30 50 70 90
10

20

30

40

50

60

70

80

90

100

number of sub−streams

(S
R

S
 S

E
 / 

C
R

S
 S

E
) 

(%
)

 

 

DH=10% DH=30% DH=50% DH=70% DH=90%

(b) Effect of the number of sub-streams

Fig. 7. Sub-Sample precision - synthetic datasets
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Fig. 8. Sub-Sample accuracy and precision - real datasets

Figure 9 shows the adaptivity of SRS from using synthetic datasets. When
DH is low (10%) (Figure 9(a)), the sub-reservoir sizes for the sub-streams are
relatively close to one another compared with the case of a higher DH (90%)
(Figure 9(b)). The observed influence of the DH on the closeness of the sub-
reservoir sizes is reasonable since the allocation of sub-reservoir size is subject
to the heterogeneity of the sub-streams.

Figures 9(a) and 9(b) also show that the sizes of sub-reservoirs change more
frequently in the early stages of sampling and less frequently as the sampling
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Fig. 9. SRS adaptivity - synthetic datasets

progresses. The frequent change in the early stages is attributed to the signif-
icance of the difference in the sub-streams running statistics. As the sampling
progresses, the change in a sub-stream statistics relative to the changes in the
statistics of other sub-streams becomes smaller and, therefore, does not cause so
much frequent changes in sub-reservoir sizes. This trend is in part due to the fact
that the underlying sub-streams are stationary in their statistical properties.

In order to conduct experiments to study the influence of data stream mem-
bership and non-stationariness, we modify the generation of synthetic datasets
as follows. For data stream membership, we make the sub-streams appear in
sequence. For non-stationariness, we periodically re-generate n random numbers
that correspond to the CVs of n sub-streams such that the overall DH among
them is preserved (recall Section 4.1).

Figure 9(c) shows that when a new sub-stream appears in a data stream,
the SRS adapts to this situation by releasing memory from the sub-reservoirs of
existing sub-streams and allocating the released memory to the sub-reservoirs of
the new sub-stream. Figure 9(d) shows that when the running statistics of some
sub-streams change over time, SRS decreases (or increases) the sizes of some
exiting sub-reservoirs and increases (or decreases) the sizes of other exiting sub-
reservoirs. A reduced sub-reservoir size may increase afterwards, and vice versa.
The frequency of the change in sub-reservoir sizes is relative to the frequency of
the change in the running statistics of sub-streams. (Figure 9(e) shows the case
of more frequent change in the running statistics compared to Figure 9(d)).
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Fig. 10. SRS adaptivity - real datasets

Figure 10(a) shows the change of sub-reservoir sizes using SENS real dataset.
This dataset represents the case in which sub-streams all exist from the begin-
ning of the input stream and their statistics remain stationary over time. In other
words, readings from different sensors scattered to collect temperature informa-
tion in a certain area are likely to be generated altogether from the time the
data collection begins. Besides, the change of temperature readings is expected
to be similar at any time of the day. Consequently, all sub-reservoir sizes show
little change over time.

Figure 10(b) shows the change of sub-reservoir sizes using AUCT real dataset.
This dataset represents the case in which sub-streams are added one after an-
other and their statistics change over time. Indeed, in auctions applications, it
is unlikely that all auctions (represented by sub-streams) start simultaneously;
they are expected to start one after another. Besides, the bidding amount of
an auction item naturally increases over time, making the statistics of an auc-
tion sub-stream non-stationary. As a consequence, we see significant changes of
sub-reservoir sizes over time.

Figure 10(c) further shows the adaptivity of SRS under the scenario of auc-
tions going open and then closed while sampling progresses. When a new auction
opens, memory has to be released from existing sub-reservoirs and allocated to
the sub-reservoir of the newly opened auction sub-stream (see the point marked
with ∗). When an auction closes from further bids (because the auction is forced
to close, the auction expires, the auction item is sold, etc.), the sub-reservoir size
of the closed auction sub-stream is released and allocated to the sub-reservoirs
of the sub-streams of auctions still open (see the point marked with +).

5 Related Work

Reservoir sampling technique was proposed by McLeod [15]. Vitter [22] improved
the algorithm’s performance through more optimization studies. Reservoir sam-
pling has been used in many database applications including clustering [12], data
warehousing [7], spatial data management [17], and approximate query process-
ing [23]. Besides the conventional reservoir algorithm, various reservoir-based
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sampling algorithms have been proposed in the research literature for various
applications. Examples of such algorithms include reservoir sampling with re-
placement (i.e., with duplicates being allowed in the sample) [18], sampling from
an evolving dataset (i.e., in the presence of insertions and deletions) [11], biased
reservoir sampling (i.e., to bias the sample over time using a given bias func-
tion) [4], and adaptive-size reservoir sampling [5] (i.e., to allow the reservoir size
to be adjusted in the middle of sampling). In contrast to the existing research
on reservoir sampling, our work addresses the problem of stratifying a reservoir
sample rather than maintaining a single reservoir sample.

Stratified sampling has been used for approximate query processing in database
systems [3] [8] [9] [13]. Congressional sampling [3] proposes to use stratified sam-
pling approach to solve the problem of providing accurate approximate answers
of a set of grouped aggregation queries using pre-computed biased samples of
the data. In [8], stratified sampling is used in the problem of identifying an ap-
propriate sample selection for answering aggregation queries approximately with
the goal of minimizing error in the query result under a given query workload.
A comprehensive study of the work proposed in [8] is presented in [9]. The work
in [13] solves the problem of using stratified sampling to calculate approximate
results of low selectivity aggregation queries. All this work pertains to databases,
which makes our work different in addressing stratified sampling for data streams.

6 Conclusion and Future Work

In this paper, we studied the problem of maintaining a stratified sample over data
streams which consist of multiple sub-streams with large statistical variations.
First, we discussed the motivation of this new research problem in real-world
applications. Second, we discussed an optimal allocation method of a fixed-size
reservoir, which can be used whether the sample is needed to generate estimates
of the whole data stream or the sub-streams on an individual basis. Third, we
presented a sampling algorithm which uses the proposed allocation method to
adjust the allocation of a stratified reservoir sample among sub-streams adap-
tively as sub-streams appear in, or disappear from, the input stream and as
their statistical properties change over time. Finally, through experiments, we
demonstrated the adaptivity of the proposed algorithm and its superiority over
the conventional reservoir sampling algorithm with regard to the sample quality.

Several issues are open for future work. One issue is to extend the proposed
algorithm to handle multi-variate sampling situation in which an input stream
has multiple sampling attributes and an estimate is needed from each sampling
attribute. In this situation, it may be required to compromise the allocation of
a stratified reservoir sample with respect to the target estimates. Another is to
explore the utility of the proposed algorithm in more real-world applications.
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Abstract. We study the tree induction over a stream of perennial ob-
jects. The perennial objects are dynamic in nature and cannot be for-
gotten. The objects come from a multi-table stream, e.g., streams of
Customer and Transaction. As the Transactions arrive, the perennial
Customers’ profiles grow and accumulate over time. To perform tree
induction, we propose a tree induction algorithm that can handle peren-
nial objects. The algorithm also encompasses a method that identifies
and adapts to the concept drift in the stream. We have also incorpo-
rated a conventional classifier (kNN) at the leaves to further improve the
classification accuracy of our algorithm. We have evaluated our method
on a synthetic dataset and the PKDD Challenge 1999 dataset.

1 Introduction

Traditional mining algorithms designed for the analysis of stream data assume
that objects enter the horizon of observation, are processed to the effect of learn-
ing and adapting the model (e.g., a decision tree or a set of clusters), and are then
forgotten. This paradigm has been motivated by the obvious fact that it is prag-
matically impossible and practically unnecessary to maintain each data point
registered by a sensor or recorded in a server log for longer time than needed
to update the underlying model. However, in many applications, the ephemeral
data points constituting the data stream are part of complex perennial objects
that (a) may not be forgotten and (b) constitute themselves a stream. Stream
mining over perennial objects is a new problem for which conventional tech-
niques for model learning and adaptation must be reconsidered. In this paper
we propose a solution for the task of tree induction over a stream.

Perennial objects occur in more applications than one might think at first.
Consider a hospital that maintains records for patients with a chronic disease, a
company that keeps a customer warehouse, or a group of scientists that study a
system of at least two stars, one of which are visible while the others are perceived
only through the seemingly aperiodic effects they cause on the plasma, luminosity
and trajectory of the visible one. The patients, the customers and the stars (of yet
unknown number) are perennial objects, for which activities are recorded. The
more activities are recorded, the more is captured in the model of the objects.
At the same time, new objects are recorded: new patients with the same disease
are registered at the hospital, new customers are recorded in the warehouse,

M. Gertz and B. Ludäscher (Eds.): SSDBM 2010, LNCS 6187, pp. 640–657, 2010.
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while the observations on further star systems are recorded and can be exploited
for model learning. Hence, the perennial objects constitute themselves a stream.
Capacity limitations may force the deletion of old activities and even of old
objects (e.g., customers that have attrited since long or patients that deceased
long ago), but their properties must be remembered by the model for the case
that similar objects might show up.

The implications of perennial objects on stream mining are manifold. First,
perennial objects are relational by nature: they are composed of simpler objects
(1-n relationship) or associated to further objects of different kind (m-n relation-
ship). For example, patients are associated to test results, medical treatments
and pharmaceutical products given to them. Model learning over a static set of
such objects can be successfully accomplished with methods of multi-relational
data mining [1], but learning over a stream is a new problem, as we explained
in [2,3], where we have proposed first solutions. Second, perennial objects cause
concept drift of a very particular kind: in conventional classification, an object
has a given label, e.g., a customer is trustworthy or not, an Alzheimer patient
either exhibits pacing or does not; the label of a perennial object may change
though, i.e., the customer may stop being trustworthy, while the patient may
start exhibiting pacing (by the nature of the Alzheimer illness). Such drifts must
be captured by the model, while retaining the circumstances (data) before and
after the drift for use upon further similar objects. This calls for a new kind
of model adaptation. Finally, as mentioned before, even if some perennial ob-
jects must be moved out of storage, their contribution in the model should be
retained, at least for some (application-specific) time period.

In this paper, we propose a new approach for classification over a stream of
perennial objects, taking account of the above challenges. We build upon our ear-
lier work on multi-relational stream mining to combine the stream of perennial
objects and the streams of simpler objects (transactions, activities and similar)
associated to them into a “multi-table stream” upon which a classifier can be
applied. We then extend the incremental tree induction algorithm CVFDT pro-
posed by Hulten et al. [4] for a conventional data stream into an adaptive learner
for a stream of perennial objects. The extensions are twofold: the new algorithm
can deal with the fact that the objects are perennial, hence their contribution to
the model may not be forgotten, and with the concept drift incurring as some
perennial objects change their label.

The paper is organized as follows. In the next section we discuss related work;
since classification of perennial objects is a new problem, the publications of rele-
vance are those dealing with stream classification for conventional data streams.
In section 3, we present our new tree induction algorithm, including a method
for the aging of the objects that contribute to the tree nodes, and a method for
the adaptation of the nodes in the presence of the new art of concept drift. In
section 4, we compare our approach to a baseline algorithm for synthetic datasets
and for a real dataset to which we have imputed concept drift. The last section
concludes our study with a summary and a list of open issues.
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2 Related Work

One of the first works to address the issue of incremental tree induction was the
work of Schlimmer and Granger [5]. Their proposed method ID4 is an extension
to the ID3 method of Quinlan [6]. It processes each example (tuple/object with
its label) as it arrives and learns the tree incrementally. All statistics needed to
compute the entropy of each attribute and choose the one with lowest entropy,
Xa, are stored at the nodes. At a later timepoint, if Xa no longer has the lowest
entropy, it is replaced by the one with lowest entropy. In doing so ID4 also
discards all the sub-trees below node Xa. If the choice of decision attributes
changes often during training, then sub-trees will be discarded repeatedly. this
makes ID4 sensitive to the ordering of incoming examples, rendering certain
concepts unlearnable by the algorithm.

Utgoff proposed two methods for incremental construction of decision trees;
ID5 [7] and ID5R [8]. The basic idea of keeping the statistics at the nodes is
similar to [5]. However, instead of keeping concise statistics, they store complete
examples. The monitoring of entropy E(Xa) for a candidate attribute Xa is as
in [5]. However, when another attribute Xb exhibits the lowest entropy, ID5 re-
structures the tree only to ensure that Xb becomes the root; unlike the algorithm
in [5], it still keeps the original sub-trees without changing them. ID5R [8] also
shifts Xb at the root, but then proceeds recursively with re-structuring below it.
Due to this, ID5 is unable to guarantee that the tree would be similar to that of
an ID3 algorithm given the same examples, while ID5R does.

All of the above algorithms induce decision tree by a greedy search mechanism
that requires restructuring the tree, if the selection for a specific split attribute
Xa (the ”split decision”) needs to be revised. The method of Gratch induces
a decision that is significantly different from the greedy approaches [9]. Gratch
notes that the optimal split decision cannot be achieved without a finite sample,
so the proposed method ” selects an attribute that is within ε of the best with
probability 1− δ, taking as many examples as are sufficient to ensure a decision
of this [given] quality.”

More recently, Domingos and Hulten presented their incremental decision tree
induction method VFDT [10]. They note (with Catlett [11]) that a small subset
of training examples is sufficient to select the best split attribute for a given
node. They use the so-called Hoeffding bound to determine the number of train-
ing examples that are required. More formally, consider a real-valued random
variable r whose range is R. Suppose we have made n independent observations
of this variable and computed their mean r̄. The Hoeffding bound states that,
with probability 1 − δ, the true mean of r is in [r̄ − ε, r̄ + ε], where

ε =

√
R2ln(1/δ)

2n
(1)

At each timepoint, VFDT applies the Hoeffding bound upon the difference ΔG
between the information gain of the best split attribute G(Xa) and of the sec-
ond best attribute G(Xb). In particular, assume that the two attributes deliver
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(asymptotically) the same gain, i.e., they are interchangeable. The true mean
of their difference would then be zero and ΔG would be less than 0 + ε, where
ε is computed as in Eq.1 with n being the number of examples seen thus far.
Hence, if ΔG is found to be larger than 0+ ε, then the best split attribute Xa is
significantly better than the second one, and VFDT uses it as a new leaf node,
growing the tree upon it. If ΔG is less than ε, then VFDT postpones the split
until a best split is found that is significantly better than the second best.

Hulten et al. extended the VFDT to deal with concept drift: the CVFDT
updates the tree as soon as the learned concept starts to change [4]. They also
introduce a notion of window that stores only the most recent objects and re-
moves the old ones, i.e., those that fall out of the window.

Gama et al. makes use of The algorithm VFDTC of Gama et al. makes use
of a minimal set of statistics (they call them ”sufficient statistics”) calculated at
the leaves [12]. VFDTC is an extension of the original VFDT [10] that employs
Näıve Bayes at each leaf node to assign the node’s members to the classes with
help of these statistics. They show that they achieve better performance and
can also recognize concept drift by detecting performance degradation. Their
proposed system can also handle numerical attributes.

All aforementioned algorithms operate on a single stream of data and under a
fixed schema. As we explain in section 3.1, a multi-relational stream of perennial
objects implies combining individual streams at each timepoint; this combination
of streams incurs a change in the schema. Furthermore, stream classifiers assume
that objects are seen only once, while perennial objects are seen more than once
and experience changes - including changes in their label.

Partially relevant to our idea of stream classification upon multi-relational
objects is the SRPT algorithm proposed by McGovern et al. [13]: the algorithm
operates upon spatio-temporal data of numerical nature (e.g., timeseries of me-
teorological phenomena like wind updrafts), accompanied by nominal attributes
that summarize the timeseries or check conditions upon them (e.g., whether the
observed mean of a specific timeseries exceeds a specific threshold or whether
some explicitly defined event has been observed in the most recent timepoints)1.
The objective of SRPT is to probabilistically assign each object (e.g., a storm)
composed of multiple timeseries to a set of predefined classes (e.g., the classes
”positive”, ”negative” and ”maybe” for storms). Since the timeseries are read
incrementally, SRPT can be interpreted as a stream mining algorithm; since it
operates on multiple streams, it is relational. Dissimilarly to our problem specifi-
cation, though, SRPT does not deal with nominal attributes. Since the products
purchased by a customer or the medical treatments of a patient cannot transfer
to timeseries, and since SRPT assumes only a priori defined nominal meta-data,
SRPT does not seem to transfer to the problem we want to solve.

1 There is not much text in [13] on what art of summarization information should be
used in the general case, how it is to be computed and updated efficiently, nor about
the space it consumes. The authors mention possible examples of meta-information
for an example application, though.
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Table 1. Symbols and Parameters

Notation Description

XB schema of the multi-table stream

x a propositionalized object

ti the ith timepoint

w size of the sliding window as number of timepoints

Si set of non-propositionalized stream objects arrived in (ti−1, ti]

Wi set of propositionalized stream objects arrived in (ti−1, ti]

R root node of the tree induced by TrIP

T a node of the induction tree

aT,i age of node T at timepoint ti

QT,i accuracy of the subtree with root T at timepoint ti

varT,i variance in the accuracy of the children T at timepoint ti

sT,i support of node T at timepoint ti: number of objects in T at ti

δ confidence threshold for the computation of the Hoeffding Bound

τ tie breaker – used to do a split when the Hoeffding Bound results in a tie

n minimum number of objects that must be in a leaf node before it is checked
whether the node can be split; used to compute the Hoeffding Bound

l minimum number of objects that must be in a leaf node after a split

f minimum number of objects that must be in a node before a check for
concept drift is performed

st minimum support threshold in [0, 1] for a leaf before it starts to age

3 Our Classification Method for Perennial Objects

Our Tree Induction algorithm for Perennial objects (TrIP) has several compo-
nents. The first is an incremental propositionalization algorithm that combines
the stream of perennial objects with further streams (of perennial or ephemeral
objects) transferring them into a single stream for mining. This component is
coupled with a sliding window mechanism that replaces outdated perennial ob-
jects with their up to date version and forgets those that are not needed for the
current version of the model. The tree induction and adaptation with help of
alternate trees is based on CVFDT [4], but this component has been extended
to cover the particularities of perennial objects, including a new form of concept
drift. Object labeling at the leaf nodes is done with help of a conventional clas-
sifier, as does the VFDTc [12], but instead of Näıve Bayes we use the k-Nearest
Neighbors classifier. We present each component in turn in the following subsec-
tions. The notation and parameters are presented in Table 1.

3.1 Combining Multiple Streams

As discussed earlier (c.f. Section 1), perennial objects are composed of multiple
interrelated streams. We transform these streams into a single stream, a multi-
table stream, using the method presented in [2].

In the following, we use the tables in Figure 1 as a running example: we see
a multi-table stream composed of multiple tables arriving at different speeds.
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Transaction Customer

Product

Fig. 1. Objects of (a) a multi-table stream on customers, transactions and products,
(b) n-way join of the Customer data with transaction and product information and (c)
propositionalized version of the same target Customer

The stream of ”Customer” data is associated with a stream of products and a
stream of transactions. We observe the Customer stream as the target stream,
in the sense that this is the stream on which we want to perform classification,
exploiting also the information from the other streams. It is obvious that the
number of products purchased by each customer changes over time and so is the
information accumulated about each customer’s product preferences and regu-
larity of purchases. It is also obvious that a customer object must be joined with
all transactions of this account, and be thus kept for as long as such transac-
tions are expected; customer objects are perennial (and so are products). On
the other hand, the transactions themselves may be discarded immediately after
being read; they are ephemeral.

Using our method of [2] we assign a cache and secondary storage for long-term
maintenance to each stream of perennial objects and a sliding window to each
stream of ephemeral objects. In the example of Figure 1, a sliding window of
two time units (depicted by dotted arrows) is specified for ”Transaction” and
caches are defined for ”Customer” and for ”Product”; each of those caches can
accommodate two objects.

Propositionalization is performed incrementally at each timepoint ti on the
contents of each cache and window. It starts with a semi-join between the con-
tents of the cache for the target perennial stream T0 and the cache/window of
each stream Tj associated to T0. Hence, for each stream Tj that is in 1-to-m
or m-to-n relationship to T0, each object x ∈ T0 is associated with the set of
matching objects matches(x) ⊂ Tj .

Then, the propositionalization algorithm summarizes the objects in this set
into a single sub-object. To summarize the values of each numerical attribute A in
matches(x), we generate four attributes: the min, max, count and average of the
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Algorithm 1. TrIP: Tree Induc-
tion for Perennial Objects

Input . XB,S, n, f, w, k, l, δ

Create root node R1
Initialize counters2
for ti = t1 to STREAM END do3

Wi ← IncProp(XB,Si)4
foreach x ∈ Wi do5

if x.id ∈ (Wi−w,Wi−1] then6
RecursivelyForget(R, x)7

ClassifyNPresent(R, x, k)8
foreach n objects do9

GrowNAdaptSubtree(R, f, l)10

foreach x ∈ Wj | j = i− w do11
RecursivelyForget(R, x)12

Function
ClassifyNPresent(T, x, k)

Input . T, x, k
if T is leaf then1

cl = label of x /* kNN at leaf */2

Increase counters of statistics w.r.t. x3
if T is not leaf then4

Tc ← ParseIntoChild(x)5
cl = ClassifyNPresent(Tc, x, k)6

foreach Talt ∈ GetAltTrees(T) do7
ClassifyNPresent(Talt, x, k)8

return cl9

Function
RecursivelyForget(T, x)

Input . T, x

if x.tp ≥ T.tp ∧ x.ID ≥ T.firstID then1
Decrease counters of the statistics2
w.r.t. x
Tc ← ParseIntoChild(x)3
RecursivelyForget(Tc, x)4

foreach Talt ∈ GetAltTrees(T) do5
RecursivelyForget(Talt, x)6

Function
GrowNAdaptSubtree(T, f, l)

Input . T, f, l

if T is leaf then1
SplitUsingTheBestAtt(T)2
Select l atts with best gain for kNN3

else4
AgeTree(T)5
ReplaceWithAltTree(T)6
for every f objects seen do7

do ValidateSplit(T)8

forall Tc ∈ GetChildren(T) do9
GrowNAdaptSubtree(Tc, f, l)10

forall Talt ∈ GetAltTrees(T) do11
GrowNAdaptSubtree(Talt, f, l)12

A values seen in matches(x). To summarize each nominal attribute A, we gen-
erate as many columns(rA) for A as there are distinct values in

⋃
x matches(x)

at t0. The domain of A may change after t0, in the sense that previously unseen
values emerge, while old values are no more referenced. If the domain grows
larger than rA, then values are grouped into rA clusters on similarity: two val-
ues of A are similar, if they are referenced by similar objects. At the end of
the propositionalization phase, each object of the (perennial) target stream is
expanded by summarized attribute values from each stream associated with it.

3.2 Growing and Adapting a Decision Tree over Perennial Objects

TrIP grows a decision tree incrementally upon the propositionalized data. We
depict the high-level process as Algorithm 1. TrIP first initializes the root of the
tree (line 1). It takes as input the multiple interrelated streams Si at timepoint ti
and summarizes them into a single propositionalized window Wi (line 4). Then,
each object x from Wi is recursively presented to the model (line 8), starting from
R. The object is incorporated in the tree and when at least n objects have been
presented, TrIP expands the tree by leaf node splitting (line 10). Periodically,
TrIP updates and forgets outdated perennial objects (line 7 & 12).
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Dealing with Outdated Perennial Objects. The stream of perennial ob-
jects cannot be propositionalized once and forever: as new perennial or ephemeral
objects arrive, the target schema needs to be updated – adding, modifying and
deleting columns, as explained in section 3.1, as well as the perennial objects
seen thus far. Hence, TrIP employs a sliding window of length w timepoints: at
timepoint ti the newest block of objects Si (cf. Table 1) is read in and propo-
sitionalized into Wi. Then, outdated perennial objects must be forgotten. We
distinguish two cases, as described below.

Perennial objects are kept up-to-date by the arriving ephemeral objects that
reference them. If for a perennial object x, there is no ephemeral object seen
for the last w timepoints, then x carries no new information and is unlikely to
influence the current model. Hence, we remove such objects from the model.
Obviously, the objects themselves are not eliminated from secondary storage.

The second case of outdated perennial objects concerns object replacement.
In particular, let x be a perennial object and xj its content at timepoint tj ,
composed of the data in T0 and the propositionalized data on x from the other
streams. If a new instance xi arrives at ti > tj , then it replaces the old one.

The process of forgetting the impact of outdated perennial objects is under-
taken by Function RecursivelyForget(). To do so, it maintains for each node
T the timepoint tp at which it was created, as well as the identifier firstID of
the first object placed in this node. Then, at a timepoint t > tp, the function
ignores all objects that have appeared before tp for the last time and those that
have identifiers less than firstID and have not been seen within the last w time-
points. The statistics on the contents of node T and of its subtrees are updated
accordingly.

Growing a decision tree on a propositionalized stream. TrIP starts build-
ing the decision tree from the root R, which is originally the only node and a
leaf. For each node, TrIP maintains the same statistics in it as CVFDT: for each
encountered attribute A and value v of this attribute and for each class label k,
it counts the number of objects having A = v and label k. These counters are
initialized and maintained separately for each node as it is created.

When an object x arrives, it is recursively presented to the tree, starting
from the root node. The process is undertaken by Function ClassifyNPresent.
When x is presented to a node T , T first updates the relevant counter
(c.f. ClassifyNPresent, line 3) and then passes it down to the relevant child
node (lines 5 & 6). If the currently traversed node is a leaf, before an object is
incorporated, it is assigned a label (line 2).

Once n objects have been presented to a leaf node T , TrIP (like CVFDT)
considers T as a candidate for split and expands the tree. This process is under-
taken by the Function GrowNAdaptSubtree and is invoked recursively from TrIP.
First, it computes the gain G(Xm) for every attribute Xm Next, for the best and
second best split attributes Xa and Xb it calculates ΔG = G(Xa) − G(Xb) and
computes the Hoeffding bound ε on the true mean of ΔG with confidence δ (cf.
Eq. 1). As explained in Section 2, if ΔG > ε, then T is split on Xa, otherwise
the split decision is postponed and further objects are read and processed.
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NO YES NO YES

Fig. 2. Tree losing support as objects change their label

As a node sees more and more objects, n increases and ε decreases (cf. Eq. 1).
As long as ΔG remains less than ε, no split can be performed. To avoid spending
time on attributes with very close gain, TrIP, like CVFDT, uses a tie breaking
mechanism: once the value of ε drops below a threshold τ , the algorithm is forced
to make a split on the current best attribute.

Next to the leaf node splitting (line 2), Function GrowNAdaptSubtree also
selects the best attributes to be used in the classifier at the leaf nodes (line 3) and
is also responsible for node adaptation to concept drift. Adaptation is attempted
after the arrival of at least f objects at the node (line 8). We elaborate on these
steps hereafter.

Tree ageing and generation of alternate trees. Similarly to CVFDT, TrIP
maintains alternate trees as means for fast adaptation to concept drift. However,
concept drift upon a stream of perennial objects occurs in two ways: (1) some
perennial objects change their label as time passes; (2) the number of objects
associated with each label changes as time passes. The second type is the conven-
tional concept drift. The first type occurs only upon perennial objects because
of their very nature, and is independent of the second type. For both types of
drift, we must take account of the fact that changes in the number of objects
having a given label may be of temporary nature only. We explain this by means
of an example.

Example 1. Assume a partner matching site, in which a set of persons are reg-
istered. The objective is to learn the concept ”get a spouse”. Assume that the
tree T shown in Figure 2 to be the one learned till timepoint ti. The current
best split attribute is ”HasJob” with both left and right subtree accommodating
a sufficient number of objects. At a later timepoint tj , some objects currently
in the left subtree get a job and then a partner. This means that the number of
objects in the left subtree decreases and the gain for the attribute ”HasJob” may
drop as well. This renders the current split suboptimal and forces the algorithm
to choose a new split attribute and start growing an alternate subtree under it.

However, the original concept may well re-appear and the number of objects in
the left subtree may start growing again. When new objects that are consistent
with the replaced sub-tree start arriving again, it would take some time before
the algorithm re-learns the discarded concept. Hulten et al. also identified re-
learning of a discarded periodical concept as a direction for future work [4].
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TrIP checks for concept drift every f objects seen during maintenance (Algo 4,
line 8). TrIP inspects each node T if the split attribute Xs is still the best split
decision or not. In case Xs �= Xa, i.e., current split attribute Xs is not the best
split attribute any more, TrIP makes sure if an improved split can be installed
at T using Xa. If a new split can be made, it initializes an alternate sub-tree Talt

(rooted at parent(T )) with Xa as the new split attribute, separately. To avoid
excessive alternate tree generation, tie breaking condition is made tighter, i.e.,
ΔG ≤ ε < τ

2 . Hulten et al. points out that a simple approach would be to replace
T as soon as an alternate tree Talt with a split anchored at Xa is generated [4]
. This would ensure that the induced tree, rooted at R, is always as accurate
as possible. However, it would force Talt (with 2 leaves only) to do the job that
was earlier done by a whole sub-tree. Similarly to the CVFDT, TrIP waits for
the accuracy of alternate tree Talt to be greater than T and then replaces T
with Talt (Algo 4, line 6). However, due to the dynamic nature of the perennial
objects, TrIP employs a different method for the adaptation.

To deal with the pitfalls of accepting a short-lived concept, TrIP checks
whether the accuracy of the tree deteriorates, whether each node of the tree
still represents, i.e., ”is supported by”, an adequate number of perennial ob-
jects, and for how long the tree has (or has not) received support. Informally, we
model for a (sub-)tree (a) the quality of the concept in it, (b) the support, i.e.,
the number of objects accommodated in it and (c) its age as the time elapsed
since quality deterioration has started in it. By this, a tree of good quality is not
aging, even if its support drops.

More formally, TrIP calculates for each node T two coefficients, support and
quality. For the internal decision nodes (not the leaf nodes), these two coefficients
are further used for calculating the age aT,i of T at timepoint ti. The support
coefficient calculates the penalty for the children of T with support less that the
threshold st (cf. Table 1). The formula for support penalty for child c is shown
in Equation 2, where, sc,max is maximum observed support for child node c and
sc,i is the current support.

supportCoeff(T, ti) =
∑

c∈child(T )

{
sc,max−sc,i

sc,max
if sc,i < st × sc,max

0 if sc,i ≥ st × sc,max
(2)

The quality coefficient calculates the change in the classification accuracy of a
node at timepoint ti from that in ti−1.The formula for calculating the quality
coefficient is shown in Equation 3

qualityCoeff(T, ti) =
{

(1 − varT,i)ΔQT if ΔQT > (1 − δ)e

QT,i − 0.5 otherwise
(3)

where ΔQT = QT,i −QT,i−1 and QT,i and QT,i−1 are the classification accuracy
of tree T at ti and ti−1 respectively and varT,i is the variance in the classification
accuracy of the children of T (cf. Table 1). The variance among the children of T
is used to capture the case where one child/subtree c has much lower quality than
the other: then, the quality coefficient of T itself is not affected, thus preventing
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a premature aging of the whole subtree under T . The quality coefficient of c
itself will be low, hence c will age faster. Then, the age of an internal node at
timepoint ti is computed upon the age of the node at the previous timepoint,
and the node’s support and quality coefficients:

aT,i = aT,i−1 + supportCoeff(T, ti) − qualityCoeff(T, ti) (4)

The maintenance procedure is recursively invoked at each tree node T (cf. func-
tion specification and line 5). At node T , TrIP checks if the attribute Xs origi-
nally used to split the node is still the best split decision. If not , i.e., another
attribute Xa provides a split of higher gain, then TrIP starts growing an alter-
nate (sub-)tree Talt and split using Xa. Similarly to CVFDT, TrIP replaces T
with Talt only if (and after) the accuracy of T has dropped below that of Talt.
Dissimilarly to CVFDT, TrIP retains T even if its accuracy dropped, and then
starts increasing its age. T is discarded only if its age exceeds a certain thresh-
old, which is expected to capture background knowledge about periodicity in
the application. If the threshold is not exceeded, T is available and its quality is
checked at each timepoint: if its quality improves, it ”rejuvenates”, i.e., its age
decreases, as can be seen in Eq.4.

Using kNN classifier in the leaves of the decision tree. In the application
phase of conventional classification, an object moves down the tree and is ac-
commodated in the leaf describing it best. Then, the label assigned to the object
is usually the majority label of that leaf node. In the learning phase of stream
classification, objects also travel the tree down to a leaf node and are assigned
the majority label of that node, until there are enough objects collected to allow
for tree refinement. Gama et al. observe that this approach may be inconvenient:
the VFDT stream classifier [10] requires hundreds of objects before it can make
a decision about splitting a leaf further to improve the accuracy. The problem is
particularly acute if the classes are balanced at the leaf node: although there may
be means for separating the objects and growing the tree further, the algorithm
is prevented from doing so, until the node has grown very large. The VFDTC

of Gama et al. is therefore using a Näıve Bayes classifier to assign labels to the
objects of the leaf nodes [12].

In TrIP, we also invoke a classifier at each leaf node to decide about the labels
of the objects in it. Instead of Näıve Bayes, we opt for a k-nearest-neighbors
classifier (kNN). The overhead of kNN is higher than that of Näıve Bayes, but
it allows us to capture the similarity among perennial objects of different sizes
in a more seamless way. Moreover, to reduce the overhead, TrIP invokes kNN
for only a fraction of the attributes: it consults the statistics at the current leaf
and chooses l attributes with the best gain.

4 Experiments

We use two datasets, a synthetic and a real dataset, for our evaluation. The real
dataset, called “Financial” dataset, comes from the PKDD Challenge of 1999
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and is multi-relational. Both datasets are labeled. Our objective is to study the
performance of our methods over a stream of perennial objects. To this purpose,
we designed a variety of experiments that deal with the effect of window size
and tree aging on quality.

4.1 Experiments on Synthetic Data

Dataset “Marriage”. The synthetic data is called “marriage dataset”. It is
a small dataset with 3 features and 200 data instances that are used to test
specific aspects of TrIP. The objects in the dataset are dynamic. They are persons
labeled on whether they are likely to find a match or not on the basis of their
age, income and marital status. The underlying data generating process remains
static. However, the objects can change property values and their class labels.
This “movement” of objects gives impression.

Trip Variants for the Synthetic Dataset. For the marriage dataset, as there
are no multiple streams, we use w = 5, 7 time units and vary ageMAX = 0, 4,∞.
When ageMAX = 0, a subtree rooted at T that no longer has best split decision
at its root can be immediately replaced once the accuracy of alternate tree
Talt becomes better. When ageMAX = 4, T can be replaced by Talt only if
aT,i >= ageMAX . When ageMAX = ∞, T never gets replaced by Talt as it never
really reaches ageMAX . We name the strategies as Quick (QR), Deferred (DR)
and No Replacement (NR), respectively. The other tree parameters are: n = 4,
f = 8, δ = 0.9, τ = 0.1, st = 0.1. As the dataset has only three attributes,
simple majority voting is used for classification at the leaves rather than a kNN
classifier.

Experimental Results. The objects are persons who have registered them-
selves and evolve over time. They grow old, their income changes from year to
year and their marital status changes as well. The underlying data generating
process remains unchanged until t30, where we have imputed a concept drift for
the last 5 timepoints.

In the left part of Figure 3 we show the accuracy of strategies QR, DR and
NR forw = 5. From timepoint t1 to t10 all the strategies are in a learning

Fig. 3. The performance of strategies (left) w = 5, (right) w = 7 timepoints
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phase: they perform similarly and have identical trees. Until t6 the main split
attribute at the root was MaritalStatus and anyone already married was deemed
as unsuitable to find a match. By timepoint t6 the arriving objects are singles,
while most of the old ones have become single again. This renders the previous
split decision invalid. Strategies QR and DR start growing alternate trees. It
needs to be stressed here that conventional algorithm would try and forget the
concept;however it is important to keep the concept for objects that would come
in future and are consistent with it.

At timepoint t10 strategy QR replaces the subtree with invalid split decision
by the alternate tree with better accuracy. The alternate tree for strategy DR,
although it has better accuracy, does not replace the original subtree as it has
not yet reached ageMAX = 4. To adapt to the new data, strategy DR as well as
NR are forced to expand their trees by further split decisions.

From t10 to t20 all trees stabilize because the objects that arrive are mostly
consistent with them. Married individuals cause a fluctuation in the accuracy
for strategy NR.

Around t22 the new objects cause a drop in accuracy for all strategies. The
strategies QR and DR replace their subtrees: it is quite obvious that QR would
do a tree replacement; DR is forced to replace the tree because of aging for one
of its decision nodes. The drop in accuracy has greater effect than the loss in
support (c.f. Equation 3). As a result the tree with low accuracy ages faster. And
by the time the original tree in DR is overtaken by its alternate tree in terms of
accuracy, it reaches ageMAX and thus, is replaced.

Around t25 objects with MaritalStatus=true start arriving again. Strategies
DR and NR that have maintained the trees from earlier timepoints show no drop
in performance. However, these objects result in drop in accuracy for strategy
QR as it had replaced its tree at t10. It starts growing the alternate tree again
but it takes time before the outdated information can be replaced.

As new objects with a different concept are introduced around t30 , strategy
NR’s performance deteriorates. While strategies QR and NR recover by replacing
their tree with the alternate ones. We expected strategy NR to show the worst
performance during this period but even this one recovers. On closely inspecting
the results, it became apparent, that the due to an already expanded tree, it is
able to manage the incoming data in its leaves. Although the split decision w.r.t.
to gain criteria are not valid any more, it still has competent accuracy but is
more sensitive due to over fitting.

In the left of Fig 3, we show the performance for w = 7. The strategies behave
similarly to w = 5, expect strategy QR whose performance does not deteriorate
much during t20 to t30. This is probably due to the larger w as it is able to make
better informed split decision based on MaritalStatus than in w = 5.

4.2 Experiments on Real Data

The Dataset “Financial” of the PKDD ’99 Challenge. Financial dataset
is a multi-relational. The tables represent the activities (transaction and loans
request etc.) of bank customers. These customers have been granted loans and
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Table 2. Tables and their statistics

Tables
C C W W

Accounts Districts Clients Orders Cards Transactions

Objects
682

77 827 1513 170 191,556
(A/C)606 (B/D)76

Table 3. Strategies on Financial dataset

Acronym Accounts District Transaction r ageMAX δ τ n f k l

FIN1-DR 100 20
w = 30 3 5 0.95 0.2

200 400
2 3FIN2-DR 200 40 200 400

FIN3-DR 300 50 300 600

REF-DR ∞ ∞ w = 30 ∞ 5 0.95 0.2 400 800 2 3

are paying it back over a period 01/93 to 12/98. In Table 2, we depict the tables
of the Financial dataset; the target table is underlined. In the first column,
C stands for streams associated with a cache, W stands for window, rest are
used as static tables. A loan is associated with an account which in turn may
belong to one or more clients. The type of credit cards and orders made through
each account are recorded, however the main load comes from the transaction
stream. Already during PKDD Challenge classes A, C and B, D were merged
into loan-trusted and loan-risk, respectively. We do the same.

This dataset puts forwards a difficult learning problem. The class distributions
are not only very skewed to begin with; they also reflect the state of accounts
only when they have matured, i.e., class labels become applicable at a much
later timepoint than when the objects were introduced.

Trip Variants for Dataset “Financial”. For the Financial dataset, the
amount of information that becomes available as the multi-table stream pro-
gresses has an impact upon the quality of the classification results. This remem-
bered information is affected by the size of the cache and the sliding window over
individual streams. We have thus varied these values for the streams Accounts,
District and Transaction.

The strategies we use are depicted in Table 3. Strategy FIN2-DR uses a cache
of size 200 for the stream Account and of size 40 for the districts, a sliding
window of size window = 30 months for Transaction stream, 3 columns to store
nominal values (c.f. Section 3.1), ageMAX = 5 to perform deferred replacement,
update tree every n = 200 objects, check for concept drift every f = 400 objects
etc. We test these strategies against our reference strategy that has unlimited
storage and knows the future.

Due to large number of moving Account objects, the window size w = 30
used by TrIP to forget outdated objects (c.f. Section 3.2) has little impact.
Most objects are frequently updated and never become obsolete. We conducted
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experiments with ageMAX = 0, 5, 10. However, we report results for ageMAX =
5 as only two strategies (i.e., FIN1-DR and FIN3-DR) experience change in
performance after timepoint t60.

Evaluation Measure. Our evaluation measure is the ”Area under the ROC
curve” (AUC), a measure derived from the Receiver Operating Characteristic,
commonly known as the ROC curve. As the name implies, the ROC curve is a
plot: it combines two curves that measure the performance of a binary classifier.
In particular, let Cp, Cn be the number of positive, resp. negative examples, let
Tp be the number of positive examples recognized as such by the classifier, and
let Tn be the number of negative examples recognized as such by the classifier.

Following Bradley [14], a classifier’s sensitivity is defined as P (Tp) = Tp

Cp
,

while its specificity is P (Tn) = Tn

Cn
, i.e., the complement of the so-called “α-

error” 1−P (Tn). The ROC curve consists of the sensitivity curve and the α-error
curve, when the decision threshold is varied. The AUC is the area under those
two meeting curves; Bradley provides a formula for the computation of this
are (Eq. 7, page 2 of [14]). According to Wikipedia2, the AUC is equal to the
probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one.

Experimental Results. In the Financial dataset, the stream Account contains
perennial objects; a cache (c.f. Section 3.1) is used to accommodate the most
active accounts and the ephemeral transactions on them. Initially, all accounts
are empty. As transactions are recorded for an account, it becomes either “loan-
risk” or “loan-trusted” class.

In [15], it is pointed out that object identifiers may be useful in some learning
tasks. In a stream scenario, this may be more likely than in a static scenario: if
identifiers are generated sequentially. For example during the KDD Cup 2008, in
one of the tasks a leak was detected in Patient IDs [16]. This leak gave away the
information about a patient having breast cancer or not. Such a leak might not be
desirable in a real scenario. That said, some identifiers can convey demographic
information about the objects. For example, individual cheques in a cheque books
are sequentially numbered. If two accounts have similar cheque numbers it may
be likely that they belong to the same region where the books were issued.
This can implicitly convey demographic information that might not be present
explicitly. Therefore, we report two experiments for the financial dataset. In
one we exploit the identifiers of the ephemeral objects like transaction and card
that reference the accounts, while ignore the identifiers from these objects in
the other.

In Figure 4 we depict the performance of each strategy on the financial dataset
with w = 30. In the left side of the figure, we show the AUC values for strate-
gies with varying cache sizes, when the identifiers from the ephemeral objects
not exploited. Initially, the AUC values are zero as TrIP only gathers sufficient
statistics about the the incoming objects and does not grow the tree.

2 Lemma: ”ROC curve”, accessed Jan. 19, 2010.
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Fig. 4. Performance of different strategies over financial dataset (left) without IDs
(right) with IDs

Around t10, first splits are performed almost simultaneously for all strategies.
It must be stressed here that accounts are perennial objects defined by their
transactions. Initially there is only static information available about the ac-
counts, e.g., the information about the owner(s) and types of card they hold
etc. There is little or no information on transaction. Moreover, the class labels
attributed to the accounts reflect their state after many transactions have ac-
cumulated on them, i.e., they indicate their final states, which is unknown at
early timepoints. For this reason almost all the strategies perform poorly at the
beginning.

At the beginning, the arrival of accounts is rather slow. As the stream progress
and information accumulates, subsequent splits are performed faster. The first
strategy to experience a rise in AUC is FIN1-DR around timepoint t25. FIN1-
DR is also the strategy with the smallest cache of 100 accounts. By this time
more than 100 accounts have arrived. The propositionalization algorithm (c.f
Section 3.1) keeps those objects inside the cache that are referenced most often,
i.e., they have most ephemeral objects associated with them. For FIN1-DR with
its small cache size, this means that accounts with fewer transactions and less
information are not considered for propositionalization. It focuses on the infor-
mative accounts and shows large AUC. All other strategies have larger caches
and store less informative accounts as well. These account cannot be easily clas-
sified and result in bad performance. At later timepoints, (i.e., around t30) the
strategies FIN2-DR and FIN3-DR also register improvements in their AUCs.
They reach their cache size limits and start focusing on mature accounts.

Unlike other strategies, the performance of the Reference (with its infinite
cache size), deteriorates between timepoints t25 and t50. During this time many
accounts with very little information arrive, the Reference strategy remembers
all of them.

Although, the strategies with smaller cache sizes (i.e., FIN1-DR and FIN2-
DR) show good AUCs during the middle time period, they are also the most
unstable ones. Strategies with larger caches (i.e., FIN3-DR and Reference) have
a more stable performance. A possible reason is that due to their smaller sizes,
even a single misclassification for FIN1-DR and FIN2-DR gets severely punished
by the AUC measure as class distributions are fairly skewed.
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After timepoint t55, only very few new accounts arrive, the last one at t60. For
the next 12 timepoints, all accounts keep evolving as new transactions arrive for
them. The AUC for the Reference strategy also registers a rise towards the end
since there are no immature accounts to perturb it. It outperforms all strategies
as there is very little information loss.

In the right-side of the Figure 4 we depict the performance of the strategies
with the same parameter settings but with exploiting the identifiers. By con-
trasting the results to those at the left side of the Fig 4 we see that identifiers
from the referring ephemeral objects carry valuable implicit information and
all the strategies get a boost in their AUC values. The identifier attribute that
conveys most information is the Maximum Transaction ID from among the set
of transactions performed by an account while other identifiers are also utilized
at some timepoint or the other. The relative performance of the strategies with
and without identifier are quite similar. The strategies that benefit most are the
ones with small caches, i.e., FIN1-DR and FIN2-DR, during t35 to t45 and t20
to t35, respectively. At late timepoints, the Reference strategy again has best
performance.

5 Conclusion

We have presented TrIP, a tree induction algorithm for stream classification
over a new type of data - a stream of perennial objects. Unlike the objects in a
conventional stream, perennial objects, like patients or customers, may not be
forgotten as the stream progresses, because new data on them may yet arrive
and their properties may change - including their label.

Perennial objects are multi-relational by nature. We have built upon our ear-
lier work on multi-table stream mining to propose the TrIP algorithm that pro-
cesses a propositionalized stream of perennial objects and learns a decision tree
for the objects seen thus far. When perennial objects are not referenced for a long
time, TrIP moves them off the memory cache, so their impact on the model is
reduced. When perennial objects change their label, the model must be adapted.
For model adaptation, TrIP maintains alternate trees and chooses among them
on the grounds of their accuracy, support and age: TrIP lets a tree grow in age
as soon as its quality deteriorates, but rejuvenates it when its quality improves.
We have experimented with TrIP upon synthetic and real data and studied the
impact of the impact of tree ageing on model adaptation to concept drift and
the role of re-appearing objects on model learning.

Our work begins the investigation of a new problem. In this study, we have
focused on building a first classification algorithm for it, but many issues remain
to be dealt with. One issue is the tradeoff between remembering re-occurring
perennial objects and overfitting the model to them. Another, more technical
issue is the adaptation of further conventional stream classification algorithms
to streams of perennial objects, and the comparison of their performance.
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