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'A wave is never found alone, but is mingled with as many other waves
as there are uneven places in the object where the said wave is produced.
At one and the same time there will be moving over the greatest wave of
a sea innumerable other waves proceeding in different directions.'

Leonardo da Vinci, Codice Atlantico, c. 1500. (Translation by E. MacCurdy, The
Notebooks of Leonardo da Vinci.)

'Since a general solution must be judged impossible from want of analysis,
we must be content with the knowledge of some special cases, and that
all the more, since the development of various cases seems to be the only
way of bringing us at last to a more perfect knowledge.'

Leonhard Euler, Principes generaux du mouvement desfluides, 1755.

'Notwithstanding that...the theory is often not a little suspect among
practical men, since nevertheless it rests upon the most certain principles
of mechanics, its truth is in no way weakened by this disagreement, but
rather one must seek the cause of the difference in the circumstances which
are not properly considered in the theory.'

Leonhard Euler, Tentamen theoriae de frictione fluidorum, 1756/7.
(Translations by C. A. Truesdell, Leonhardi Euleri Opera Omnia, Ser. 2, vol. 12.)
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PREFACE

When, over four years ago, I began writing on nonlinear wave interactions
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apparently diverse fields as rigid-body and fluid mechanics, plasma
physics, optics and population dynamics. But it soon became plain that
full justice could not be done to all these areas - certainly by me and
perhaps by anyone.

Accordingly, I chose to restrict attention to incompressible fluid mech-
anics, the field that I know best; but I hope that this work will be of interest
to those in other disciplines, where similar mathematical problems and
analogous physical processes arise.

I owe thanks to many. Philip Drazin and Michael Mclntyre showed me
partial drafts of their own monographs prior to publication, so enabling
me to avoid undue overlap with their work. My colleague Alan Cairns has
instructed me in related matters in plasma physics, which have influenced
my views. General advice and encouragement were gratefully received
from Brooke Benjamin and the series Editor, George Batchelor.

Various people kindly supplied photographs and drawings and freely
gave permission to use their work: all are acknowledged in the text. Other
illustrations were prepared by Mr Peter Adamson and colleagues of St
Andrews University Photographic Unit and by Mr Robin Gibb, University
Cartographer. The bulk of the typing, from pencil manuscript of dubious
legibility, was impeccably carried out by Miss Sheila Wilson, with assistance
from Miss Pat Dunne.

My wife Liz, who well knows the traumas of authorship, deserves special
thanks for all her understanding and tolerance; as do our children Peter
and Katie, for their welcome distractions.
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xii Preface

Many have instructed and stimulated me by their writing, lecturing and
conversation: I hope that this book may do the same for others. I hope,
too, that errors and serious omissions are few. But selection of material
is a subjective process, and I do not expect to please everyone!

Such writing as this must often be set aside because of other commitments.
But for two terms of study leave, granted me by the University of St
Andrews, this book would have taken longer to complete. Things were ever
so: in 1738, Colin Maclaurin wrote to James Stirling as follows -

' . . . it is my misfortune to get only starts for minding those things
and to be often interrupted in the midst of a pursuit. The enquiry,
as you say, is rugged and laborious.'

St Andrews, September 1984
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Chapter one

INTRODUCTION

1 Introduction
Waves occur throughout Nature in an astonishing diversity of

physical, chemical and biological systems. During the late nineteenth and
the early twentieth century, the linear theory of wave motion was
developed to a high degree of sophistication, particularly in acoustics,
elasticity and hydrodynamics. Much of this 'classical' theory is expounded
in the famous treatises of Rayleigh (1896), Love (1927) and Lamb (1932).

The classical theory concerns situations which, under suitable simplifying
assumptions, reduce to linear partial differential equations, usually the
wave equation or Laplace's equation, together with linear boundary
conditions. Then, the principle of superposition of solutions permits
fruitful employment of Fourier-series and integral-transform techniques;
also, for Laplace's equation, the added power of complex-variable methods
is available.

Since the governing equations and boundary conditions of mechanical
systems are rarely strictly linear and those of fluid mechanics and elasticity
almost never so, the linearized approximation restricts attention to
sufficiently small displacements from some known state of equilibrium or
steady motion. Precisely how small these displacements must be depends
on circumstances. Gravity waves in deep water need only have wave-slopes
small compared with unity; but shallow-water waves and waves in shear
flows must meet other, more stringent, requirements. Violation of these
requirements forces abandonment of the powerful and attractive mathe-
matical machinery of linear analysis, which has reaped such rich harvests.
Yet, even during the nineteenth century, considerable progress was made
in understanding aspects of weakly-nonlinear wave propagation, the most
notable theoretical accomplishments being those of Rayleigh in acoustics
and Stokes for water waves.

1
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2 Introduction

Throughout the present century, development of the linear theory of
wave motion in fluids and of hydrodynamic stability has been steady and
substantial: much of this is described in the books of Lin (1955), Stoker
(1957), Chandrasekhar (1961), Lighthill (1978) and Drazin & Reid (1981).
In contrast, the present vigorous interest in nonlinear waves and stability
in fluids dates mainly from the 1960s. Particularly deserving of mention
are the monographs of Eckhaus (1965), Whitham (1974), Phillips (1977)
and Joseph (1976) and the collections edited by Leibovich & Seebass (1974)
and Swinney & Gollub (1981). Related works by Weiland & Wilhelmsson
(1977) on waves in plasmas and Nayfeh (1973) on perturbation methods
are also of interest to fluid dynamicists.

The great scope, and even greater volume, of recent work on nonlinear
waves and stability pose a daunting task for any student entering the field
and a continuing, time-consuming challenge to all who try to keep abreast
of recent developments. Comprehensive, yet broad, surveys of research in
this area become increasingly difficult to write as the subject expands. But
collections of more narrowly-focused reviews by groups of specialists
often fail to emphasize the many similarities which exist between related
areas; similarities which can reveal fresh insights and generate new ideas.

The underlying theme of the present work is that of wave interactions,
primarily in incompressible fluid dynamics. But similar mathematical
problems arise in a variety of other disciplines, especially plasma physics,
optics, electronics and population dynamics: accordingly, some of the
work cited derives from the latter fields of study.

Many fascinating and unexpected wave-related phenomena occur in
fluids. For instance, water-wave theory has experienced a revolution in the
last two decades: solutions are now available, for waves modulated in space
as well as time, which exhibit properties as diverse as solitons, side-band
modulations, resonant excitation, higher-order instabilities and wave-
breaking. Recent progress has been no less dramatic in nonlinear hydro-
dynamic stability: the role of mode interactions in the processes leading
towards fully-developed turbulence in shear flows is now fairly well
understood, and the discovery of low-dimensional 'chaos' in certain fluid
flows and in corresponding differential equations is of great current
interest. Throughout the history of mathematical analysis, fluid mechanics
has provided a challenge and source of inspiration for new theoretical
developments: there is every indication that this situation will persist for
generations to come.

Chapter 2 is devoted to linear wave interactions, but the remainder of
this work concerns aspects of nonlinearity. The underlying assumptions
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1 Introduction 3

are usually those necessary for development of a weakly nonlinear theory:
that is to say, linear theory is considered to provide a good starting point
in the search for better, higher-order, approximations. However, the
nonlinear evolution equations which result from such approximations are
sometimes amenable to exact solution: when this is so, an account of their
properties is given.

Nonlinear problems are treated in broad categories, on the basis of
mathematical rather than physical similarity. Chapter 3 provides a general
theoretical introduction; then Chapter 4 treats wave-driven mean flows
and waves modified by weak mean flows. Chapter 5 deals with cases of
three-wave resonance driven by nonlinearities which are quadratic in wave
amplitudes; Chapter 6 concerns nonlinear evolution of a single dominant
wave-mode which experiences cubic nonlinearities and Chapter 7 mainly
considers interaction of several (typically three or four) wave-modes
coupled by cubic nonlinearities. Chapter 8 briefly considers local secondary
instabilities and aspects of turbulence. Included in most categories are
problems concerning surface waves, internal waves in stratified or rotating
fluids and wave-modes in thermal convection and shear flows. Inviscid,
and so in some sense conservative, systems are treated side by side with
dissipative ones, in order to demonstrate similarities and differences.
Typically, the resulting nonlinear evolution equations are soluble analyti-
cally in conservative cases, but have rarely been solved other than
numerically in dissipative ones. Numerical work which attempts to
encompass high-order nonlinearities beyond the range of present analytical
techniques is discussed where appropriate.

The use of non-rigorous, sometimes non-rational, procedures - most
notably series truncation - is a feature of much work of undoubted interest
and value. Unlike Joseph (1976), I have not scrupled to give a full account
of the 'state of the art': but it must firmly be borne in mind that the
connection between a theoretical model so derived and physical reality is
often unclear and perhaps less close than the original author's enthusiasm
led him to believe. It is also true that many of the physical configurations
so readily envisaged by theoreticians can be rather intractable for experi-
mentalists: even the most obvious restriction to channels of finite length,
width and depth immediately causes difficulties! The tendency to make
comparisons between theories and experiments which are not strictly
comparable is natural and widespread. Theories which are rationally
deduced, for some limiting case, have restricted domains of validity which
may not overlap with available experimental evidence: comparisons made
outwith this range of validity are no more rational - indeed may be less

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:20 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.002



4 Introduction

so - than those based on less rigorous theories. Throughout this work, the
existing experimental evidence is discussed.

Mechanical systems normally vibrate when displacements from equilib-
rium are resisted by restoring forces. Examples in fluid mechanics are
sound waves, surface gravity and capillary waves, and internal waves
sustained by density-stratification, uniform rotation or electromagnetic
fields. Such waves may exist in fluid otherwise at rest and they are usually
damped by diffusive processes associated with viscosity, thermal or
electromagnetic conductivity. But doubly or triply diffusive systems are
known to support other instabilities, such as 'salt fingering'.

Relative motion of parts of the fluid, maintained by moving boundaries
or applied stresses, modifies wave properties and admits new, possibly
unstable, modes. The (Kelvin-Helmholtz) instability of waves at a velocity
discontinuity and the centrifugal (Rayleigh-Taylor) instability of differen-
tially rotating flows were among the first to be successfully analysed by
linear theory. In unstable rotating flows, the centrifugal force is analogous
to the destabilizing body force due to buoyancy in fluid layers heated from
below: the latter causes convective (Benard) instability.

Surface tension provides a restoring force on plane surface waves; but
it causes instability of cylindrical columns or jets of liquid. This occurs for
geometrical reasons related to the total curvature of the deformed surface,
and is analogous to certain instabilities of magnetic flux tubes. Variations
in surface tension, due to gradients of temperature or concentration of
adsorbed contaminants, may also enhance or inhibit instabilities.

The linear instability of parallel and nearly-parallel flows in channels,
boundary layers, unbounded jets and wakes is profoundly influenced by
the presence of one or more 'critical layers' where the local flow velocity
is close to the phase velocity of a wavelike perturbation. When the primary
velocity profile has no inflection point, there are no unstable inviscid
modes. But viscosity plays a dual role: as well as providing dissipation,
it can also admit new unstable modes which continually absorb energy
from the primary flow at the critical layer. Such viscous instability has
similarities with Landau damping of plasmas.

Density stratification and the presence of boundaries also play dual
roles. A gravitationally-stable density distribution may suppress shear-flow
instability; but it can also admit new modes which may interact linearly
or nonlinearly to give instability. Likewise, a boundary may enhance
viscous dissipation, largely due to the intense oscillatory boundary layer
in its vicinity; but it can also reflect wave energy generated elsewhere within
the flow and so encourage wave growth.
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/ Introduction 5

These few examples serve to illustrate the variety and subtlety of
instability mechanisms in fluids. Excellent detailed accounts of linear
stability theory are presently available, which it is pointless to duplicate
here. The existence of linear instability of a particular flow indicates that
this flow cannot normally persist, but will evolve into another type of
motion if given an arbitrary small disturbance. However, it is sometimes
possible to stabilize a flow by eliminating potentially unstable modes: the
party trick of inverting a gauze-covered glass of water is an example, for
the gauze prevents growth of the longer wavelength gravitationally-unstable
modes not already stabilized by surface tension. Of more practical interest
are recent attempts to suppress boundary-layer instability by artificially
creating a wave with phase such as to 'cancel' the spontaneously-growing
mode. Such stabilization by controlled vibration is effective in dynamical
systems with just a few degrees of freedom - for instance the inverted
pendulum - but may also induce new parametric instabilities.

If interest is restricted to a finite region of space, say the surface of an
aeroplane wing or turbine blade, the mere existence of instability is not
the only important aspect. One needs to know whether a disturbance of
certain size initiated at some location, say part of the leading edge, will
attain significant amplitudes within the region of interest; and, if so, where
the greatest amplitudes will occur. Hence, consideration of spatial, as well
as temporal, growth is important.

Though linear theory may successfully yield criteria for onset of
instability to small disturbances (and sometimes may not!) a finite
disturbance can assume a form remote from that of the most unstable
linear mode. It may happen that nonlinear effects stabilize the disturbance
at some small fixed amplitude and that its form broadly resembles the single
linear mode from which it evolved.

An instance of this is the toroidal-vortex motion in Taylor-Couette flow
between concentric rotating cylinders, at Taylor numbers marginally above
the critical one for onset of linearinstability.Otherexamples are near-critical
Benard convection and wind-generated ripples in rather shallow water at
just above the critical wind speed. In all such cases, there is a stable solution
of the nonlinear equations in the immediate vicinity of the critical
conditions for onset of linear instability: this solution bifurcates at the
critical point from the trivial zero-amplitude solution.

But, when nonlinear terms have a destabilizing influence, there is no
stable small-amplitude solution near the critical point and large enough
disturbances typically evolve to more complex states. As one moves further
from the linear critical conditions, even those constant-amplitude solutions
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6 Introduction

which were stable may lose their stability and support spontaneous growth
of other modes. In a similar way, water waves, which are neutrally-stable
according to linear theory, exhibit nonlinear instability and modulation.

When a flow becomes very irregular, it is normally described as being
turbulent. In fully-developed turbulence, there is no discernible regularity
of spatial or temporal structure: Fourier spectra in both space and time
are then continuous and broadband, without distinct peaks. When not
fully developed, turbulence may be intermittent, confined to localized
regions which propagate within an otherwise laminar (though disturbed)
flow. A weaker sort of turbulence is found in certain flows which retain
a dominant periodic structure amid the broadband 'noise': an example
is Taylor-Couette flow at very large Taylor numbers, where spatially-
periodic toroidal vortices persist.

Still weaker apparently chaotic motions may occur due to the mutual
interaction of a small number of modes: though the temporal structure
may be broadband, usually with a few dominant peaks, the spatial
structure remains highly organized. Behaviour of this kind, indicative of
a ' strange attractor' in the solution space of the governing equations, has
deservedly received much recent attention. Both Benard convection and
Taylor-Couette flow can exhibit such behaviour. However, frequent use
of the word ' turbulence' in this connection seems misplaced: although the
motion is certainly 'chaotic' in time, it remains highly organized in space.

Sometimes, instability and subsequent nonlinear growth have no
connection whatever with turbulence. The capillary instability of liquid jets
leads to breaking into discrete droplets, usually of regular size; other
interfacial instabilities also lead to droplet formation and entrainment.
Low Reynolds-number flow of thin liquid films, down an incline under
gravity or horizontally under an airflow, may support large-amplitude but
still periodic waves or may break up to form dry patches.

Throughout most of this work, the governing equations are the incom-
pressible Navier-Stokes equations,

(d/dt + u • V) u = -po l Vp + f + v V2u,'

V u = 0.

Here, u(x, t) and p(\, t) respectively denote the velocity vector and pressure
at each point x and instant / and f is a body force per unit mass. The fluid
density p0 is taken to be constant, though this constant may differ in
different fluid layers; also, continuous changes in density, assumed small
compared with p0, may be incorporated into the gravitational body force
(the so-called Boussinesq approximation). The kinematic viscosity v is also
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/ Introduction 7

assumed constant and is related to the dynamic viscosity coefficient /i by
v = fi/p0. Equation (1.1a) yields three scalar momentum equations, one
for each co-ordinate direction, and (1.1b) is the continuity equation.

Equations (1.1) are frequently expressed in dimensionless form, relative
to characteristic scales of mass, length and time. If the latter are defined
by a length L, velocity V and the density p0, dimensionless counterparts
of (1.1) are

vr.i, .wwT__w » ^ M * " 1 (Ua,b)'

with the new variables related to the old by U = a/ V, P = p/p0 V
2,

F = fL/ Vz. The new space co-ordinates, if Cartesian, and dimensionless
time T are respectively
(X,Y,Z) = (x/L,y/L,z/L), V, s (3/3 ,̂3/3Y,d/dZ), T=tV/L.

Viscosity is now represented by the Reynolds number R = VL/v. In the
following chapters, lower-case symbols are sometimes used to denote these
dimensionless variables: there should be no risk of confusion.

The choice of scales for non-dimensionalization is to some extent
arbitrary, but strong conventions exist. For example, plane Poiseuille flow
through a plane channel is usually characterized by the half-width of the
channel and the maximum flow velocity at mid-channel, yielding the
dimensionless velocity profile

( 7 ( Z ) = 1 - Z 2 ( - 1 < Z < 1 ) . (1.2)

Similarly, boundary-layer flows may be non-dimensionalized relative to
the (local) free-stream velocity and displacement thickness.

When there occur variations of temperature 6, and so of density, (1.1)
must be supplemented by the thermal equation and by an equation of state
expressing variation of density with 0. In the Boussinesq approximation,
the former becomes

(3/3/ + u-V)<9 = KV26 (1.3)

where K is thermal diffusivity, and consequent density variations from p0

are considered sufficiently small to be retained only in the gravitational
body force pg per unit volume. The dimensionless counterpart of (1.3) has
K replaced by Pr~*R~l where Pr = V/K is the Prandtl number.

A steady state u = uo(x), p = po(x) which satisfies (1.1) may experience
a perturbation to

u = u0 + eu'(x, t), p = po + e/>'(x, /),
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8 Introduction

where e is a small parameter characteristic of the initial magnitude of the
perturbation. From (1.1),

(6/6f + uo-V)u' + (u'-V)u0 = — pzl Vp' + f' + vV2u' — e(u'-V)u',l

Vu' = 0, } ( L 4 a ' b )

where ef' denotes any perturbation of the body force from its steady-state
value. When the disturbance is sufficiently small, it may be justifiable to
neglect the term e(u'v")u' in (1.4a): if so, the resultant set of equations
for the disturbance is linear and may be solved to find a first approximation
to the true perturbed solution. Weakly-nonlinear theory then builds on this
by constructing the solution as a series in ascending powers of e.

When viscosity is negligible, equations (1.1) reduce to Euler's equations.
If the body force f is conservative (say f = — VQ), these greatly simplify
for irrotational flows: for then the vorticity V x u remains zero at all times
if zero initially. Accordingly, the velocity is expressible as u = V<}> in terms
of a scalar velocity potential ^(x, i) and (1.1b) immediately yields Laplace's
equation. Integration of (1.1 a) along any line element within the fluid gives

(1.5a, b)

and the arbitrary function/(/) may be absorbed into <f> without loss. Here,
the nonlinear Euler's equations have reduced exactly to the linear Laplace's
equation, without restriction on any disturbance amplitude, and/> is given
directly by (1.5a) once $ is known. However, in many cases to be discussed,
the boundary conditions remain nonlinear and so solution is not
straightforward.

The physical condition at solid boundaries is that the velocity of the fluid
immediately adjacent to the boundary equals that of the boundary: i.e.
u(x, t) = ub(x, i) on the boundary surface B(\, t) = 0. Here, ub denotes the
velocity of material particles of the boundary. The boundary itself must
satisfy a kinematic condition connecting ub with the boundary position
B = 0. However, for inviscid flows, the 'no-slip' boundary condition must
be discarded and only the velocity component normal to the boundary is
prescribed: i.e. (u — ub)-ft = 0 where ft is the unit normal to the boundary.

At free surfaces and fluid interfaces, there are both kinematic and
dynamical boundary conditions. Continuity of velocity (or, for inviscid
flows, the normal component of velocity) across interfaces is required; also
the location of the interface is related to the velocity of particles comprising
it by a kinematic condition. In addition, dynamical boundary conditions
express the force balance at the interface. In Cartesian form, the stress
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/ Introduction 9

tensor <rti (i, j — 1,2,3) within either fluid (designated by superscripts
1, 2) and the unit normal ft = n̂  at the interface satisfy

(<$>-«$>) A, = Tt ( i = l , 2 , 3 ) (1.6)

with summation over/ Here, Tt = T represents interfacial forces per unit
area; when these derive solely from surface tension, T equals y(V-ft)ft
where y is the coefficient of interfacial surface tension. The stress tensor
<ri} is related to u = ut and p by

arv - -pSt] +/i(dut/dx} + dUj/dxt) (1.7)

where x = xt denote Cartesian co-ordinates and Si} is the Kronecker delta.
At a free surface, <ry is zero for the absent fluid.

Since these boundary conditions apply at the moving interface, the
position of which may be unknown, approximations valid for small
displacements from some known location are usually employed. The
boundary conditions applicable to inviscid water-wave theory are set out
in §§11 and 14. Both the kinematic equation and the pressure boundary
condition are inherently nonlinear; further nonlinearities result from
constructing the approximate boundary conditions at the mean level of the
water surface.

On nomenclature, note that Figures are numbered by Chapter but
equations by section. For instance, Figure 6.1 is in Chapter 6 and equation
(6.1) is in §6, Chapter 2.
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Chapter two

LINEAR WAVE INTERACTIONS

2 Flows with piecewise-constant density and velocity
2.1 Stability of an interface

We begin by considering the flow shown in Figure 2.1. Two
inviscid incompressible fluids of effectively unlimited extent have respective
constant densities px, p2 and horizontal velocities U, 0. Their common
interface is situated at z = 0. Gravitational acceleration g acts downwards,
in the — z direction, and there may be an interfacial surface tension y.

Figure 2.1. Kelvin-Helmholtz flow configuration.
z
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2 Piecewise-constant density and velocity 11

We envisage that, superimposed on this flow, there is an irrotational
disturbance such that the interface is displaced to z = r/(x, y, t) where / is
time and y the horizontal co-ordinate perpendicular to the flow U. The
associated velocity perturbations have the form u = V0 where ^ is a
velocity potential satisfying Laplace's equation in either fluid. The dis-
turbances are assumed to decay to zero as |z|->oo. The pressure p is
known, in terms of the velocity field, from equation (1.5a).

At the interface, kinematic boundary conditions relate the velocity in
either fluid to the displacement r/(x, y, t). There is also a dynamical
boundary condition expressing the force balance across the interface,
between pressure, gravity and surface tension. These relationships yield
three nonlinear boundary conditions, in <f> and rj, to be satisfied at the
interface.

For sufficiently small disturbances, these nonlinear boundary conditions
may be replaced by linear approximations applied at the undisturbed
surface-level, z = 0. A typical Fourier component of the displacement
7]{x, y, t) has the form

z = ti(x, y,t) = e Re [exp i(kx+ly — o)f)\

where k, I are horizontal wavenumber components, assumed real, and
<o(k, I) is a possibly complex frequency. The associated velocity potential
which decays as | z | ->oo is

u)t)] (z > 0)

expi(jbc + ly-&>/)] (z < 0)

where m = (k2 + I2)l denotes the modulus of the wavenumber vector (it, /).
The kinematic conditions at z = 0 yield

Ax — \m "'(w — kU), A2 = — im"'w

and the dynamical boundary condition yields the linearized eigenvalue
relationship for w = (o(k, /) as

(Pi-pjgm + ym3 = pzatt+Piiaj-kU)2. (2.1)

Full details of the derivation of these results are given in Lamb (1932 art.
232) (see also Drazin & Reid 1981 and §11.2 following).

This quadratic equation for u> has either two real roots or a complex-
conjugate pair. For real roots, there are two wave-modes which propagate
with constant amplitude. For complex-conjugate roots, w = wr±iwi
(WJ > 0) subscripts ' r ' and ' i ' indicating real and imaginary, the mode
with the positive imaginary part grows exponentially with time / while
that with negative imaginary part decays. When there exists such an
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12 Linear wave interactions

exponentially-growing mode for some wavenumber pair (k, /), the primary
flow is unstable. If there is no such mode for any (k, I), the flow is regarded
as stable to linearized disturbances. Note that stability, in this sense, does
not imply the decay of all disturbances as r->oo, but merely the absence
of growing modes with the chosen form: modes with real w are neutrally
stable. Formal definitions of stability in the sense of Liapunov are
discussed, for example, by Drazin & Reid (1981, p. 9) and Knops & Wilkes
(1966) but these need not be considered here.

On defining the horizontal co-ordinate x' s m~\kx+ly) in the direction
of the wavenumber vector (k, I) (i.e perpendicular to wave crests), it is seen
that waves propagate in the direction of increasing x' with phase speed
(i)r/m. The value of (o/m, as given by (2.1), is dependent on k and /: the
waves are therefore dispersive and (2.1) is called the (complex) dispersion
relation for w(k, I). Various special cases deserve attention.

When U — 0, the primary state is one of rest and

which are real roots whenever (p2—p1)g+ym2 is positive. When p2 > py,
they represent interfacial capillary-gravity waves. When p2 < pu the
heavier fluid is on top and there is gravitational instability of all wave-
numbers with m2 < (p1—p2)g/y. that is, sufficiently long waves are
unstable but short waves are stabilized by surface tension if present. An
identical instability exists when g is replaced by an acceleration in the
direction of increasing density. This is usually known as Rayleigh-Taylor
instability.

When px = p2, y = 0 and U * 0,

2((o/kU)2 - 2{w/kU) + 1 = 0 (2.3)

giving roots

Here, there exists an unstable mode for all non-zero values of k, with
exponential growth rate &>j = \\kU\. This is the well-known Helmholtz
instability of a vortex sheet.

For p2 > px and non-zero y and g, the combined restoring forces of
gravity and surface tension prevent this instability whenever the discrimi-
nant of the quadratic equation (2.1) is positive. The condition for
instability, with given k and /, is therefore

p P (2-4)
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2 Piecewise-constant density and velocity

There exists instability, for some k and /, if and only if

13

As \U\ is progressively increased from zero, the first unstable mode
appears on exceeding the critical value Ue, this mode having wavenumber
components (&c,0) with kc = \g(p2-pi)/y$. The instability criterion for
oblique wave-modes with wavenumber vector (k, /) is the same as that for
two-dimensional modes (m, 0) but with the reduced velocity k U/m replacing
U. This is just the component U cos 6 of the primary flow in the direction
of the wavenumber vector (k, I), 6 being the angle between (k, I) and the
flow direction (1,0). This instability is known as Kelvin-Helmholtz
instability.

The energy associated with a mode with real frequency w is transmitted
with the horizontal group velocity

Figure 2.2. Typical dispersion curves u> vs. k of Kelvin-Helmholtz flow, (a) U = 0,
(b) U < Uc, (c) U > Uc. Complex conjugate roots occur along the dashed portion
of(c).

(c)
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14 Linear wave interactions

This is also the velocity of propagation of the envelope of a slowly-
modulated 'almost periodic' wave-train (see §11). When U is zero, cg is
parallel to the wavenumber vector; but this is not so in the presence of
a primary flow. When U = 0, the dispersion relation describes capillary-
gravity waves. For sufficiently short waves, | ee \ then exceeds the phase
speed | a>/m |; but long waves dominated by gravity have | cg | < | w/m \.
Equality of | cg | and (o/m occurs at the wavenumber m = kc defined above,
where the phase speed is a minimum. When w is complex, so also is the
group velocity and its close connection with energy propagation is lost.

The various possible forms of the dispersion curves co(k, 0) for two-
dimensional wave-modes, as U varies, are shown schematically in Figure
2.2. The upper and lower branches intersect when U = Uc and k = kc. For
U > Uc, there are complex conjugate roots w with real parts lying along
the dashed line in Figure 2.2(c). Instability associated with the appearance
of complex-conjugate roots is a common occurrence when different
branches of the dispersion curve approach one another. But this condition
is neither necessary nor sufficient for instability, as is shown in the next
section.

2.2 A three-layer model
We now consider a fluid with

'px \UX (z>h)
,, U=\u2 {\z\<h) (2.5)

[p3 [U3 (z<-h)

where px < p2 < p3. Gravity acts along the — z-axis and there may be
interfacial surface tensions y and y' at the respective interfaces z — h and
z — —h. When U1 — U2 = U3~ 0, the fluid can support capillary-gravity
waves on either interface, suitably modified by the presence of the other.
A wave-mode with periodicity expi(kx+ly—<ot) centred on one interface
is only weakly influenced by the other interface provided mh > 1. In such
cases, equation (2.2) yields a good first approximation for waves on the
upper interface; and a similar expression with p2, p3, y' replacing ply p2,
7 is applicable to modes on the lower one. But these approximate
dispersion curves intersect, at some value of m, whenever

this is shown schematically in Figure 2.3 (a). Near the intersections, the
linear coupling between the modes becomes significant. Unlike the example
of Kelvin-Helmholtz instability, it is obvious on physical grounds that no
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2 Piecewise-constant density and velocity 15

instability can occur here; but the structure of the exact dispersion curves
is altered near the intersections.

A complete linear analysis of this problem (Cairns 1979; Craik & Adam
1979) shows that the roots do indeed remain real near the 'intersections':
the curves do not actually intersect but exchange their identities as shown
in Figure 2.3(6). The alternative type of behaviour, exemplified by
Kelvin-Helmholtz instability, is shown schematically in Figure 2.3 (c), the
range of unstable wavenumbers being indicated.

Exact dispersion curves for three-layer flows of type (2.5) are given by
Craik & Adam (1979) for cases with U2 — U3 = y' = 0 and various values
of Uv Two of these are reproduced in Figure 2A(a),(b). Modes labelled
1 and 2 are gravity waves on the lower interface; those labelled 3 and 4
are capillary-gravity waves on the upper interface, which are modified by
the vortex sheet. In Figure 2.4 (a), there are four real roots for all values of
k and it is seen that modes 2 and 3 exchange their identities near k = 1.2.
This is close to the intersection point of the dispersion curves for waves
on either interface, treated independently. In Figure 2.4(6) modes 1 and

Figure 2.3. (a) Typical approximate dispersion curves for the three-layer model (2.5)
with U, = Ut = U3 = 0, treating the interfaces as independent of one another, (b)
Nature of the exact solution near the mode 'intersections', showing interchange of
identities, (c) Alternative behaviour near 'intersections', characteristic of Kelvin-
Helmholtz instability.
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16 Linear wave interactions
, 4

OJ 0

co 0

-1 -

Figure 2.4. Frequency vs. wavenumber dispersion curves for the three-layer flow (2.5),
with £/2 = U3 = / = 0, y = 74gs-2, h = 8 cm, g = 981 cms"1, p, = 1.015,
p3= 1.020, p 3 = 1.026gcnr3. Case (a) shows 1^ = 8.0cms"1 and case (b)
[/, = 8.7 cm s"1 (from Craik & Adam 1979).

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:20 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.003



2 Piecewise-constant density and velocity 17

3 have 'crossed' giving rise to two bands of instability associated with
complex-conjugate roots. The interaction of modes 2 and 3 is therefore of
the type shown in Figure 2.3 (b) while that of modes 1 and 3 is of the type
shown in Figure 2.3 (c). Craik & Adam further show that the crossing of
modes 3 and 4 at a still greater value of Ul yields another band of
instability, this simply being the Kelvin-Helmholtz instability of the upper
interface.

Note that when p2 = p3, the flow remains stable at larger values of U
than when ps>p2- The introduction of the apparently 'more stable'
density distribution with heavier fluid below promotes instability by
supporting additional wave-modes, one of which interacts with a wave on
the upper interface to give earlier instability: this phenomenon was first
remarked on by Taylor (1931).

2.3 An energy criterion
A useful criterion for predicting the nature of mode interactions,

without calculating the exact dispersion curves, is given by Cairns (1979).
His account is based upon considerations of wave energy analogous to
those in plasma physics. He envisages the generation of a particular
wave-mode, centred on one interface, by suitable (notional) periodic forces
applied at some location z = Zg+r/^x, t).

The amount of work (per unit horizontal area) expended in driving up
the wave from zero amplitude is regarded as defining the wave energy £
per unit horizontal area.

Cairns shows that this wave energy <f is related to a suitably-defined
dispersion function D(a>, k) by

Here, A is the amplitude of the periodic vertical displacement of fluid
particles centred at z = z0, the dispersion relation is Z)(w, k) = 0 and
attention is restricted to two-dimensional waves with / = 0. In fact, the
function D(o),k) is equal to P(zg +) — P(z0 —), where AP(zo + ) and
AP(z0 —) are the amplitudes of the pressure fluctuations just above and
below z = z0, evaluated by considering the periodic flows in z > z0 and
z < z0 respectively. For natural modes of the system, these must be equal.
In plasma physics, the function D((o,k) is identified with the plasma
dielectric 'constant'. There is a close connection between this treatment
and the averaged Lagrangian formulation of Whitham (1965): see § 11.4.

For the Kelvin-Helmholtz flow of Figure 2.1, Z>(w, k) is found to be (cf.
(2.1) and Cairns' equation 5)

D(cj,k) = (pi-pjg
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18 Linear wave interactions

when z0 is chosen to be just below the interface z — 0. It follows that

g = \\A\*k^u>[(pl+p,)u>-plkU] (2.6)

where A is the interfacial wave amplitude. Substitution from the dispersion
relation Z)(w, k) = 0 yields

the + and — signs corresponding to the greater and lesser roots w
respectively and the positive square root being taken. Kelvin-Helmholtz
instability occurs when the expression in square brackets is negative, in
agreement with the result found above: here we suppose that this
expression is positive.

When U > 0, the greater root of w is positive for all k > 0 and the energy
g of this mode is therefore positive. The lesser root to is certainly negative
for sufficiently small positive values of U and then carries positive energy
g. But this root a> may become positive, for some k, at large values of U.
An instance of this is shown in Figure 2.2(6) with kx < k < k2; another
is shown in Figure 2.4(a) for mode 3 with 0.1 < k < 0.8. In such cases,
the wave energy g is negative.

The realization that waves may possess either positive or negative energy
g is the key to understanding the two types of mode interaction near
'intersection points' of the approximate dispersion curves obtained by
regarding the interfaces as uncoupled. When two approximate dispersion
curves cross, and the respective modes have energies of the same sign, then
the exact dispersion curves 'exchange identities' when they approach one
another and both roots remain real. But when two modes cross and have
energies of opposite sign, the coupling causes complex conjugate roots to
appear when the modes are sufficiently close. The form of the dispersion
curves is then as shown in Figure 2.3(c), with instability near the
'intersection' point.

The reason for this behaviour is easily demonstrated. The exact
dispersion relation for the three-layer flow (2.5) with U2 = U3 = 0 has the
form (cf. Cairns 1979)

Z)j(w, k) £>2(w, k) = (pi oj*/k2) cosech2 2kh (2.7)

where D1 = 0 and D2 = 0 are the respective dispersion relations for waves
on either interface, with the other replaced by a plane rigid wall. The
right-hand side, an exponentially-small quantity when kh is large, represents
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2 Piecewise-constant density and velocity 19

the coupling between the modes. This has negligible effect except when the
roots of Z>! = 0 and D2 = 0 are close. In this case, let

for some k where w2—w, = 8, a real quantity with | S/^ | small. On setting
to = wx + A in (2.7) one obtains the leading-order approximation

This has the form

with K positive if the energies S of the waves have the same sign and K
negative if the signs of S differ. In the former case, the roots A are real
and no instability occurs. In the latter, they are complex conjugates
whenever | S/K | < 2: instability then occurs whenever the roots a)1 and w2

are sufficiently close.
Application of the above energy criterion remains valid for all multi-

layered flows with piecewise-constant density and velocity. For continuous
velocity and density profiles, though, the situation is complicated by the
occurrence of critical layers within the flow where energy may be exchanged
between waves and mean flow. The situation is then somewhat analogous
to Landau damping in plasmas (Briggs, Daugherty & Levy 1970).

2.4 Viscous dissipation
The above consideration of wave energy also provides some

insight into the dissipative role of viscosity. We illustrate this for the
vortex-sheet configuration (Figure 2.1), following Cairns (1979): (see also
Landahl 1962; Benjamin 1963; Ostrovsky & Stepanyants 1983). Let the
lower fluid have kinematic viscosity v, while the upper fluid remains
inviscid. Since the lower fluid is at rest apart from the periodic disturbance,
viscosity must continuously extract energy from the system. In this case,
a positive-energy wave must gradually decay as its energy diminishes. In
contrast, a negative-energy wave must grow to accommodate the gradual
decrease in energy!

For example, in Figure 2.2(6) which has a flow velocity below that for
Kelvin-Helmholtz instability, mode 2 has negative energy for kt < k < k2.
Such wavenumbers must therefore be destabilized by the viscosity of the
lower fluid, while all other waves are damped. The dispersion relation then
has the form

(2.8)
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20 Linear wave interactions

where D(<u, k) = 0 for inviscid flow. When wo(A:) is a root of the latter
equation, a good approximation to the solution of (2.8), when v is
sufficiently small, is <o = oi0 + SOJ where

Since 8u> is imaginary, this approximation denotes growth or decay
according as the sign of the wave energy, given by (2.6), is negative or
positive.

This instability is of a different sort from the Kelvin-Helmholtz type.
In the language of plasma physics (e.g. Bekefi 1966) the latter is a 'reactive'
instability where one mode reacts on another to produce complex conjugate
roots, while the present type is an example of' resistive' instability. Growth
rates of the resistive instability are typically much smaller than for the
reactive.

The effect of dissipation by viscosity within a particular layer of fluid
possessing uniform velocity U may be inferred by determining the sign of
the wave energy in the reference frame moving with this velocity U. If the
wave appears in this frame to have positive energy, then the local viscous
dissipation tends to diminish the wave amplitude; if negative, the amplitude
will tend to increase. Of course, the envisaged flow is a rather artificial one;
and one cannot normally regard viscosity as zero in one part of the flow
and non-zero in another. For instance, in the rest frame of the upper fluid
of the Kelvin-Helmholtz flow of Figure 2.1, the wave which the lower fluid
perceived as having negative energy appears to have positive energy:
viscosity in the upper fluid therefore tends to cause this mode to decay and
the influences of the upper and lower fluid viscosities are in conflict.

Furthermore, the above treatment assumes that the major part of the
viscous dissipation is accomplished by the straining of the irrotational flow
field. While this is so for wave motion with interfaces which are virtually
free from tangential stress and in the absence of (or with sufficiently
distant) rigid horizontal boundaries, this is not always the case. A nearby
upper or lower rigid boundary, or an interface between two viscous fluids,
usually has a rather strong periodic viscous boundary layer in its vicinity
and this may account for the bulk of the dissipation (see §3.2 below),
thereby contradicting result (2.9). Nevertheless, the present account serves
to demonstrate the rather unexpected, but frequent, destabilizing role of
viscosity. A further example of resistive instability is that of a uniform shear
flow with free surface above and rigid boundary below (Miles 1960; Smith
& Davis 1982).
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3 Constant density, continuous velocity profile 21

Benjamin (1963) proposed a three-fold classification of unstable disturb-
ances. His class C instability is of the Kelvin-Helmholtz, or reactive, type.
His class A instability is the resistive type in which negative-energy waves
grow by a net extraction of energy from the system by dissipation. His class
B instability corresponds to the instability of a wave of positive energy by
the net addition of energy from an external source. However, categories
A and B are not entirely distinct: the choice of a different reference frame
may change the energy sign of a disturbance and so the category to which
it belongs. Unfortunately, this classification is not particularly helpful for
shear flows with critical layers, where energy may be transferred between
mean flow and wave.

Finally, we observe that bounded flows of homogeneous viscous fluid,
with prescribed velocities at the boundaries, are globally stable at sufficiently
small Reynolds numbers (Synge 1938; Joseph 1976). But this is not
necessarily so for flows with free surfaces or internal interfaces. Examples
of small-/? instability are those of Benjamin (1957), Craik (1966,1969), Yih
(1967) and Hooper & Boyd (1983). Variable tangential stresses at the mean
interface level typically play an important role in causing such instability
at small dimensionless wavenumbers.

3 Flows with constant density and continuous velocity profile
3.1 Stability of constant-density flows

Vortex-sheet profiles cannot persist, being eroded by viscosity into
continuously-varying shear layers. The study of such discontinuous profiles
is therefore based on the expectation that they retain characteristic features
of continuous shear-layer profiles, while allowing simpler mathematical
treatment. This is indeed so, but care is required in interpreting the results.

A fundamental difference between vortex-sheet profiles and continuous
ones is the appearance, in the latter, of one or more critical layers whenever
the phase velocity of the wave lies between the maximum and minimum
flow velocities. In the linear inviscid approximation, the governing equation
is singular at such locations. For a primary parallel shear flow U(z) of
constant-density fluid with kinematic viscosity v, a small two-dimensional
wavelike disturbance has velocity perturbations

u' = dfr/dz, W = —dijf/cix,

i/r = e Re {<f>(z) exp [ik(x—ct)]}, c = cT+ici.

This dependence of u' and w' on the perturbation stream function i/r
ensures that the continuity equation (1.1b) is identically satisfied. The
eigenfunction <p(z) may be shown to satisfy the Orr-Sommerfeld equation

(3.1a)
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22 Linear wave interactions

where the prime denotes d/dz. This is just the vorticity equation, obtained
by eliminating the pressure p from the momentum equations (1.1a).

The complex frequency (o(k) equals kc and the wavenumber k is real for
purely temporal growth or decay. At rigid plane boundaries, say at z = zx

and z2, the appropriate boundary conditions are

0 = 0, 0' = O {2 = 2^2^. (3.2a, b)

The latter of these must be ignored for inviscid flows, v = 0, when the order
of the equation (3.1) is reduced from four to two. Equation (3.1a) with
v = 0,

(U-c)(<f>"-k2<P)-U"<?> = 0, (3.3a)

is known as Rayleigh's equation. When U" = 0, Rayleigh's equation in turn
reduces to 0" = k?<j>, which is equivalent to Laplace's equation for \jr.

The customary introduction of dimensionless variables, relative to
chosen velocity and length scales V and h, leads to a similar equation with
U, c, k, 2 replaced by their dimensionless counterparts and v~l replaced
by the Reynolds number R = Vh/v. The dimensionless wavenumber kh is
customarily denoted by a and the dimensionless form of (3.1a) is

( t / - c ) ( 0 " - a 2 0 ) - ^ Y = (ia/?)-1(^iv-2a2^"+aV) (3.1b)
where U, c and z now represent dimensionless quantities. Similarly, the
dimensionless form of Rayleigh's equation for inviscid flow is

(t/-c)(0"-aV)-tr0 = O. (3.3b)

The eigenvalue problem for c = c(a.,R), posed by (3.1b) and (3.2) or
alternative boundary conditions, with C/(z) given, has received much
attention, the most up-to-date account being that of Drazin & Reid (1981).
When acR is sufficiently large, the general solution of Rayleigh's equation
(3.3) for inviscid flow gives good approximations, over most but not all
of the flow domain, to two of the four independent solutions of (3.1). The
remaining two solutions depend explicitly on the Reynolds number R. The
inviscid solutions normally have singular derivatives at locations z = zc

where t/(zc) = c, and they do not satisfy the no-slip condition (3.2b) at rigid
boundaries. Accordingly, modification of the inviscid solutions takes place
near critical layers and walls.

Much effort has been devoted to the development of asymptotic
techniques, incorporating the viscous terms, to obtain acceptable approxi-
mations for 0(z) and c. Indeed, this was for long the only means of
progress; but the development of high-speed computers and improvements
in numerical techniques now provide a ready means of solving (3.1)
directly. A comprehensive account of the asymptotic theory, including
recent successes in achieving uniformly-valid representations, is given by
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3 Constant density, continuous velocity profile 23

Drazin & Reid (1981), who also review the better-known computational
methods.

For the present, we confine attention to results for the particular
dimensionless shear-layer profile

U - tanhz,
which illustrate the connection with the vortex-sheet model. The inviscid
problem, with unbounded flow, was studied by Gotoh (1965). He found
two modes with imaginary parts cx of c which approach + 1 as the
dimensionless wavenumber a approaches zero. The real parts cr of both
modes approach zero as a-*0. This long-wave limit is in complete accord
with result (2.3) for the vortex sheet, on taking account of the change
of reference frame. However, as a increases, the imaginary parts ct of
both roots decrease, approaching asymptotes q / a = —0.376 and —2.22
respectively as <x->oo (Drazin & Reid p. 238). The mode which is unstable
at small a has Cj = 0 at a = 1 and is damped for all a > 1. The shear
profile therefore exerts a stabilizing influence on the flow in the absence
of viscosity.

The corresponding viscous problem was treated by Betchov & Szewczyk
(1963) who found the curve of neutral stability in the a-R plane. At every
Reynolds number, no matter how small, there exist unstable modes with
sufficiently small wavenumbers a, the band of unstable wavenumbers
becoming ever smaller as R decreases (Drazin & Reid p. 239). In
dimensional terms, the Helmholtz instability persists for waves long
compared with both the shear-layer thickness h and the viscous length-scale
(p/

3.2 Critical layers and wall layers
The critical layer plays an important role in the instability of

parallel flows of homogeneous fluid: see §9 and, for a fuller account,
Drazin & Reid (1981). Inviscid flows satisfy the Rayleigh equation (3.3)
and the presence of lateral boundaries at z = zl,zi requires
0(zx) = $J(z2) = 0; alternatively, for unbounded and' semi-bounded' flows,
{i->0asz->-oo or +oo. For a neutrally-stable wave (c, = 0), the mean
dimensionless Reynolds stress T = — (u'w') = — \a Im{0'0*} is constant
except at any critical layer z = zc, where it has a discontinuity

r(zc + ) - T(ZC - ) = \om{U'U U'c) \<pc\\

the subscript c denoting evaluation at zc. Here, * denotes complex con-
jugate and the overbar an x-average. But the above boundary conditions
require that T vanishes at zx and z2. If there is just one critical layer,
neutral and amplified disturbances may exist if and only if U" vanishes
somewhere in the flow domain. This and other general theorems are
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24 Linear wave interactions

reviewed by Drazin & Reid. If there is more than one critical layer, the
sum of all the discontinuities in T must vanish for neutral disturbances.

For continuous, monotonically increasing profiles of boundary-layer
form, there is one critical layer when Umin < c < f/max. For plane
Couette-Poiseuille channel flows, there may be one or two. If U" does not
change sign, there can be no unstable or neutrally-stable inviscid modes.
However, viscosity admits additional modes, the Tollmien-Schlichting
waves, some of which may be unstable. The mathematical reason for the
appearance of these additional modes is the increased order of the
governing equation, from the two of Rayleigh's equation to the four of
the Orr-Sommerfeld equation. In physical terms, when aR > 1 and c is
0(1), there are thin oscillatory viscous boundary layers with thickness
0[{a.R)~^] adjacent to the wall; also viscous modifications in a layer of
thickness 0[(aR)~§ about z = zc. These may permit neutral or growing
waves with finite values of r in the inviscid region between critical layer
and wall, since T is able to decrease rapidly to zero within the viscous wall
layer.

Near the walls, the viscous modes resemble the flow induced by
oscillating a rigid boundary in its own plane, the wavelength 2n/a typically
being large compared with the O[(aR)~%\ wall-layer thickness within which
the viscous modes rapidly decay. In place of an oscillating boundary, it
is the inviscid flow just beyond the wall layer which oscillates: the inviscid
and viscous modes must combine to satisfy the no-slip condition at the
stationary wall. Similar viscous modes also occur at deformable boundaries
where different boundary conditions must be met (see §§9-10).

For the Blasius boundary layer on a flat plate, unstable modes exist for
all R = Uo S(x)/v greater than the critical value Rc = 520 (Jordinson 1970).
Here Uo is the free-stream velocity and S(x) the displacement thickness.
This result was obtained by solving the Orr-Sommerfeld equation,
neglecting the weak non-parallelism of the flow. The pioneering experiments
of Schubauer & Skramstad (1947, but first issued in 1943) revealed at least
approximate agreement with quasi-parallel linear theory and more complete
data were obtained by Ross, Barnes, Burns & Ross (1970). Despite some
as yet unresolved points of detail concerning non-parallelism, the agreement
between linear theory and experiment is gratifyingly good.

The influence of flow divergence has been variously treated. Bouthier
(1973), Gaster (1974) and Saric & Nayfeh (1975) developed approximate
procedures for flow at near-critical Reynolds numbers. Their results show
some reduction of Rc due to non-parallelism and agree even better with
experiment than do those of quasi-parallel theory. Rational asymptotic
analyses of Smith (1979a) and Bodonyi & Smith (1981) determine the
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3 Constant density, continuous velocity profile 25

asymptotes to the lower and upper branches of the neutral stability curve
as R -> oo. The influence of non-parallelism then leads to rather complicated
flow structures. Extrapolation of their results to lower 0(1O2) Reynolds
numbers at which experimental data are available again yields quite
satisfactory agreement. However, such extrapolation is 'non-rational', for
the respective analyses employ R~^ and R~& as small parameters and the
latter equals 0.7 when R — 103, for instance.

For plane Poiseuille flow, satisfactory agreement between linear theory
and experiment was only recently achieved, by the experimental work of
Nishioka, Iida & Ichikawa (1975). The critical Reynolds number for this
flow is Rc = 5772 and, at such high Reynolds numbers, great care is
necessary to achieve conditions free from nonlinearity and the influence
of side walls and entry region. Without such care, subcritical instability
and transition to turbulence occurs for all R > 103 or so. In fact, as R
increases, the range of validity of linear theory is confined to ever-smaller
wave amplitudes. The neutral curve in the a-R plane, which separates
regions of stability and instability, is shown in Figure 6.3 of §20.

For plane Couette flow (Romanov 1973) and for Poiseuille flow in a pipe
of circular cross-section, linear theory indicates no normal mode instability;
but a rigorous proof for the latter flow is still lacking. In practical terms,
nonlinear mechanisms will govern the stability of these flows.

The role of the critical layer is also crucial in the generation of water
waves by wind. This was first elucidated by Miles (1957a). There is a critical
layer in the airflow above downwind-propagating water waves provided
their phase velocity does not exceed the maximum wind speed. On
assuming the airflow to be 'quasi-laminar' (though, in fact, turbulent
fluctuations ought not to be ignored), Miles showed that this induces a
mean Reynolds stress T much as described above. In the absence of such
Reynolds stress, the pressure fluctuation p' at the air-water interface is in
exact antiphase with the upwards surface displacement i\ and the only
possible instability mechanism is the Kelvin-Helmholtz one discussed in
§2.1. A non-zero Reynolds stress is associated with a phase-shift of p'
relative to i/, and this phase-shift is responsible for instability at wind
speeds far smaller than those required for Kelvin-Helmholtz instability.
The rate of working of p' on a neutrally-stable wave is

W = —p' 9i//0/ = \ck Imp'rj*

per unit area, which is positive when p' has a component in phase with_
the wave-slope dij/dx. Instability, and so wave generation, occurs when W
exceeds the rate of energy dissipation by viscosity within the water.

Miles' original inviscid theory was extended by Miles (1959), Benjamin
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26 Linear wave interactions

(1959) and others to viscous airflows. Agreement is good with subsequent
direct computations (Caponi, Fornberg et al. 1982) of the airflow over
small-amplitude waves. However, as expected, the calculated airflow over
larger waves, and the corresponding pressure distribution, are rather
different from linear estimates: then, separation eddies form in the troughs
of the waves.

The linear quasi-laminar theory has also been integrated with another,
complementary, theory of Phillips (1957) which dealt with waves generated
in response to imposed (turbulent) pressure variations convected by the
airflow (Phillips 1977; Barnett & Kenyon 1975). The influence of small-scale
turbulence in the vicinity of the critical layer was discussed heuristically
by Lighthill (1962) and a more comprehensive theory of turbulent airflow
was developed by Davis (1972, 1974). However, such theories remain far
from complete.

Experiments in laboratory channels by Cohen & Hanratty (1965) and
Plant & Wright (1977) - see also the reviews by Barnett & Kenyon (1975)
and Hanratty (1983) - show satisfactory agreement with the quasi-laminar
theory only for rather short waves. In thin layers of water, the energy
transfer is insufficient to overcome increased viscous dissipation: in this

Figure 2.5. Experimental results of Craik (1966) on onset of wind-generated waves
in thin horizontal films of water.
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4 Variable density, piecewise-constant velocity 27

case, there is a range of depths for which the interface is stable. But a new
type of instability appears in sufficiently thin films (typically, with depths
d of order 0.3 mm or less) with small Reynolds numbers. In this, waves
grow because the restoring forces of gravity and surface tension are
overcome by a combination of normal and tangential stresses at the
interface, the latter becoming increasingly important as kd-+0 where k is
the dimensional wavenumber (Craik 1966): see Figure 2.5.

Of less practical concern, but of interest in the context of mode
interactions, is a possible coupling between Tollmien-Schlichting waves of
a laminar airflow and the water-wave mode. Under appropriate circum-
stances, the real phase velocities cr of the two modes may nearly coincide
for a range of wavenumbers k. This leads to a rather abrupt increase in
the growth rates of the surface-wave (Miles 1962; Blennerhassett 1980;
Akylas 1982).

Many surface additives, particularly oils and detergents, have a remark-
able capacity to inhibit wave generation by wind and to damp out waves
already present. Varying surface concentrations of such additives produce
changes in surface tension and the interface acquires elastic or elastico-
viscous properties whereby it resists local extension or contraction (see, for
example, Miles 1967; Smith & Craik 1971). In effect, the interface now
possesses additional natural modes of oscillation, comprising periodic
extensions and compressions of the free surface. These are strongly
coupled to the underlying watermotion, through modified surface boundary
conditions. The strength of the viscous boundary layer, and so the rate of
dissipation, just beneath the surface is greatly enhanced (see § 10.1 below).
The limiting case of an inextensible surface is particularly easy to treat
mathematically. In this case, the damping rate of deep-water gravity waves
is just half the maximum possible damping rate when the extensional mode
and water wave are most strongly coupled, and much greater than for a
clean surface. Scott (1979) gives a comprehensive bibliography of such
work.

4 Flows with density stratification and piecewise-constant velocity
4.1 Continuously-stratified flows

Flows in which the density varies continuously with height are
of particular interest in meteorology and oceanography. For these, it
is customary to simplify matters by making the so-called Boussinesq
approximation. In this, the influence of density variations upon the
gravitational force is retained but such variations are ignored in the fluid
inertia. This is an acceptable procedure whenever the maximum density
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28 Linear wave interactions

variation is small compared with the mean density: this is certainly so in
the ocean and is often, but not always, a satisfactory approximation in the
atmosphere.

In these circumstances, a small two-dimensional wavelike disturbance
has the form

u' = iijr/dz, w' = — di/r/dx,

xjr = e Re {<j>(z) exp [ik(x - ct)]} (4.1)

where e is small and the eigenfunction <j>{z) satisfies the equation

(U-c)(<f>"-k20)-U"tj) + N*(f>/(U-c) = 0 (4.2)

for inviscid flow. This was first derived by Taylor (1931), Goldstein (1931)
and Haurwitz (1931) and is normally named after the first two authors.
Here N(z) s (—gp^1dp0/dz)^ is the buoyancy (Brunt-Vaisala) frequency;
po(z) is the density distribution in the undisturbed state, stably-stratified
so that dpo/dz < 0 everywhere, with z measured vertically upwards; g is
gravitational acceleration and U(z) is the primary velocity-profile in the
horizontal x-direction.

On setting C/(z) = 0 and 0(z) = constant, it is seen that there exist
solutions corresponding to vertical oscillations with frequencies ± N. More
generally, in regions where U(z) and N(z) are constant, there exist
propagating internal-gravity waves with <f> oc exp (+ im z) where m is real
and non-negative. The possible phase speeds are

c = U±N(k2 + m2)-i

(where signs need not correspond to those in the exponent of $), which
are respectively faster and slower than the free stream U. The corresponding
frequency is <o = kc and the group velocity of the modes <}> oc exp(+iwz)
has horizontal (in the x-direction) and vertical components

(wg, wg) = (9w/8fc, do)/dm).

This gives

(«g - U, we) = ± Nm(k* + w2)-? (m, - A:),

showing that, relative to the free stream U, the group velocity is perpen-
dicular to the wavenumber vector (k, m) and so parallel to the wave crests.
Since energy is transmitted with the group velocity, it is clear that wave
energy is transported upwards by the mode with c < U and downwards
by the mode with c> U. Similarly, the modes <j> oc exp(—imz) have
wg ^ 0 according as c $ U.
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4 Variable density, piecewise-constant velocity 29

4.2 Vortex sheet with stratification
As an illustrative example, we consider the Helmholtz profile

with constant positive TV and U. The corresponding density distribution
/90(z) decreases exponentially with height z. As boundary conditions, we
relax the requirement that i/r^O as |z|->-oo in order to admit the
propagating modes, and require instead that rjr remains finite as |z|->oo.
We let 0(z) equal ^ (z ) and <j>2(z) in the respective regions z > 0 and z < 0
and denote the disturbed interface by z = TJ(X, t) where

T)(X, t) = e Re{expik(x—ct)}

and k is known.
Appropriate solutions are

m^ (z > 0) "
m** (z < 0)

the positive roots for m, and m2 being taken. Also A,B,C and D are related
by the kinematic conditions

A + B _ C+D
c-U~ c

while a further boundary condition is furnished by the pressure-balance
across the interface. When m1 and m2 are real, <p remains bounded at
infinity and these three boundary conditions are clearly insufficient to
determine the four constants A, B,C, D and the phase-speed c(k); in fact,
two of these constants may be assigned arbitrary values.

In the region z < 0, the wave modes have frequencies

(o=

Suppose that w, as well as k, is a given positive quantity: then m2 is uniquely
determined. When m2 is real, the terms of <fi2 in C and D then represent
waves with downwards and upwards-propagating energies respectively.
Then C may be regarded as a reflected wave. Likewise, in z > 0, A and
B represent waves whose energy propagates downwards and upwards
respectively whenever c> U and ml is real; but these directions are
reversed when c < U.

If the frequency w is such that w2 > iV2, m2 is imaginary. Since <f>2 remains
bounded at infinity, it is then necessary to set C = 0: the resultant wave
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30 Linear wave interactions

amplitude <f>% decays exponentially as exp (| m2 \ z) away from the interface
and the wave is said to be 'evanescent' in z < 0. Likewise, in z > 0, mt

is imaginary whenever (w — Uk)2 > N*; in this case one must set B = 0 and
<px decays as exp (— | mx \ z) as z increases. Both ^>1 and <j52 are evanescent
when w < — N, N < u> < Uk — N or to > N+Uk. The three interfacial
conditions determine whether there are permissible eigenvalues (o(k) in
these ranges.

When (o(k) is such that both w, and m2 are real and c = u>/k > U > 0,
we may consider a given wave D, incident on the vortex sheet from
z = — co, as giving rise to reflected and transmitted waves C and B. The
wave A incident from z = + oo is meantime chosen to be zero. The
reflection and transmission coefficents | C/D | and | B/D \ are determined
by the interfacial conditions to be (cf. Lindzen 1973; Acheson 1976)

C 1 G Bl^U)
v

D l+Q D c(\+Q)
where

Q_m1(c-Uy
m2c

2

Since | C/D | < 1 for all Q > 0, partial reflection occurs. When Q—\, there
is no reflection and the transmission coefficient attains its greatest value
(m.i/ml)i. Qualitatively similar results are obtained for propagating modes
with c < 0.

A rather different picture emerges for propagating modes with
0 < c < U. Then, the transmitted wave in z > 0 is A, while B may be chosen
as zero. The reflection and transmission coefficients (with A replacing B)
have the same form as (4.5), but now Q is minus the above expression. This
means that the reflection coefficient always exceeds unity in such cases.
Moreover, a singularity occurs at Q = — 1, when both the reflection and
transmission coefficients become infinite. This phenomenon has become
known as over-reflection, the singular case being called resonant over-
reflection. The latter case arises when the system can support outgoing
' reflected' and' transmitted' waves in the absence of an incident wave. This
intriguing phenomenon was first noted by Miles (1957b) and Ribner (1957)
in the context of acoustics, but was not recognized for internal gravity
waves until the work of Jones (1968).

In the absence of incoming wave energy, the only possible neutral modes
are those which correspond to resonant over-reflection. For these,
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4 Variable density, piecewise-constant velocity 31

where 0 < c < U and mx, mz are as defined above. Substitution for wt and
w2 yields a cubic equation for c,

(c-\U)[c2-Uc + \(U2-N2/k2)] = 0 (4.6)

with the three roots

\\U, m1 = mt = (—-k*) >0,
c =

ck (U-c)k

The first of these roots exists only for A;2 < 47V2/ U2, there being no solution
with pure imaginary wx and m2 which remains bounded at infinity. The
latter pair of roots exists provided k2 > N2/U2, since c must lie in the range
0 < c < U for over-reflection. They are real for N2/U* < k2 < 2N2/U2

and become complex conjugates when k2 > 2N2/U2. The appearance of
conjugate roots signals the onset of a Kelvin-Helmholtz instability:
sufficiently short waves are always unstable, however strong the
stratification.

4.3 Over-reflection and energy flux
An understanding of over-reflection is acquired by examining the

energy flux. Unlike the evanescent wave-modes in homogeneous fluid
layers, internal waves which propagate vertically to infinity have infinite
wave energy per unit horizontal area. One must calculate the rate of work
done in maintaining such a wave, as it continuously transmits energy to
infinity. To do this, consider just half the flow, either above or below the
interface z = i](x, /), and suppose that an applied periodic pressure
distribution/?^, t) at the interface maintains an outgoing wave of constant
amplitude. The rate of working W by p is just

W= f/roftds

where s denotes arc-length along the interface, h is the unit normal directed
into the region considered and u is the fluid velocity vector at the interface.
For the upper region, we have the linear approximations

7/ = e Re {exp [ik(x - c/)]}, ds = dx, h = ( - dij/dx, 1),

u = (U, 0) + e Re {iK(m, -k) exp i(kx+mz-kct)} (z > 0)

where K — c— U by virtue of the kinematic boundary condition.
For an outgoing wave, m = — m, for c > U and + m1 for c < U, where
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It follows that

pwdx\

where w is the O(e) z-velocity component evaluated at z = 0. The average
of W, per unit length of the interface, is therefore

W = (-^~j)pw = pocW^ = -|eVo(c-Uf c Re{m*k} (4.7)

where * denotes complex conjugate and the overbar signifies an x-average.
Here, we have used the result relating p to the O(e) x-velocity u' (cf.
Acheson 1976), that

p = po(c -U)u'

which follows directly from the .x-momentum equation.
When c < 0 or c> U and m is real, W is positive for an outgoing wave.

The positive upwards component of group velocity w-then transmits
positive wave energy to z = + oo. But, when 0 < c < U, W is negative; in
which case there is a flux of negative wave energy towards z = + oo.

For the lower fluid z < 0, where there is no primary flow,

where m — m2 (> 0) for c > 0 and —m% for c < 0 for outwards wave
propagation towards z = — oo. Since W is positive in both cases, these
waves transmit positive energy towards z = — oo.

During over-reflection, a positive-energy wave incident on the vortex
sheet from z = — oo with wave speed c either less than zero or greater than
V can only generate transmitted and reflected waves with positive energy.
Partial reflection therefore takes place. But an incident wave with
0 < c < U necessarily generates a transmitted wave with negative energy,
and the negative energy carried off to +oo can only be offset by a
reflected positive-energy wave with amplitude greater than that of the
incident wave.

Resonant over-reflection occurs when the interfacial conditions admit
outgoing-wave solutions with equal and opposite energy flux in the
upwards and downwards directions. That is, the upward-propagating
negative-energy wave and the downward-propagating positive-energy
wave together yield zero total energy flux away from the interface. Waves
radiate away from the vortex sheet and there is a constant-amplitude
interfacial disturbance.

The addition of a jump in density at the interface admits interfacial
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4 Variable density, piecewise-constant velocity 33

gravity waves. Then, it is possible for waves to grow by radiative instability;
for, when an interfacial wave resonates linearly with an outward propa-
gating internal wave-mode, both grow if their respective energies have
opposite signs. Examples of such instability are given by Ostrovsky &
Tsimring (1981) and Ostrovsky, Stepanyants & Tsimring (1983).

They discuss a Kelvin-Helmholtz configuration with homogeneous
upper fluid of density Pl and uniformly (but weakly) stratified lower fluid
with constant Brunt-Vaisala frequency N and reference density p2. When
the upper fluid has depth h and the lower fluid is unbounded, the linear
dispersion relation is then

Pl(c- Uf cothkh+P2c[c2-(N/k)*]l-(Pi-Pl)g/k = 0

if surface tension is ignored. Note that this is consistent with (2.1) as N->Q
and kh ->oo.

At sufficiently large wavenumbers k, Kelvin-Helmholtz instability
occurs (though this may be inhibited by surface tension); also, there is a
separate unstable range of smaller wavenumbers, owing to downwards
radiation of positive-energy internal waves with the same real frequency
as negative-energy interfacial waves. This takes place when the slower of
the two interfacial modes has 0 < cr < N/k, the condition cr > 0 ensuring
that this mode has negative energy (see §2) while downward-radiating
internal waves must have cT < N/k.

It should be noted that not all the O(e2) energy resides in the O(e)
periodic fluctuations, but that an O(e2) mean-flow modification also
contributes. This fact, and also the relationship between energy and ' wave
action', are demonstrated in §11.

4.4 The influence of boundaries
For the simple Kelvin-Helmholtz flow of Figure 2.1, but with

plane rigid boundaries at z = a and z = —b (a,b > 0), the instability
criterion differs from (2.4) by the replacement of the factor Pl p2(Pl +p2)~

1

of the left-hand side by Pl P2{Pl tanh (mb)+p2 tanh (ma)}'1 (Rayleigh 1896,
vol. 2, p. 378). Since this factor is always greater than that for unbounded
flow, the boundaries have a destabilizing effect on all wavenumbers. The
phase speed of capillary-gravity waves with U = 0 is reduced by the
presence of the boundaries and so a lower value of Ucan cause coalescence
of the two modes.

However, in another sense, the presence of boundaries is stabilizing, in
that the growth rate of unstable modes is usually decreased. This is
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exemplified by the Kelvin-Helmholtz profile with pl = p2 and y = 0 with
boundaries at z = a and — b. For this, the eigenvalue relation (2.3) is
altered to

\kU)

for which the unstable root has \m{<i)/kU} < \ for all non-equal value of
a and b.

For continuously-stratified flows, the presence of boundaries has a more
dramatic effect. This is most simply demonstrated for the Helmholtz profile

ft/ (z>0), 1
U{z>-\0 ( - / / < z < 0 ) I (4.8)

N2 = constant ( — H < z < oo)J

with a rigid plane boundary at z = — H. Since the vertical velocity at the
boundary must vanish, the stream function in — H < z < 0 has the form
given in (4.4), but with

C
- = - e .

The solution in this region therefore comprises both upwards- and
downwards-propagating components. It follows directly from (4.5a) that

Q = +^!i£ L = j c o t (m2 H) (4.9)

when no wave is incident from z = + 00. The dispersion relation defined
by (4.4) and (4.9) is a special case of that examined by Lalas, Einaudi &
Fua(1976).

This relation yields an infinite number of modes, for given k, many of
which are unstable. A comprehensive discussion and computed dispersion
curves for some of these modes are given by Lalas et al. These new modes
appear because the region between boundary and interface acts as an
(imperfect) waveguide. A wave-component incident on the interface from
below may be either partially reflected or over-reflected, while a wave
incident on the boundary is totally reflected. A 'trapped' mode suffers
repeated reflections, its amplitude increasing or decreasing with each
reflection at the interface. Over-reflected waves are therefore unstable and
partially-reflected waves are damped.

This instability due to repeated reflections is quite distinct from the
radiative instability mentioned in §4.3. Flows which can admit both
mechanisms together deserve study.
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5 Continuous density and velocity profiles 35

5 Flows with continuous profiles of density and velocity
5.1 Unbounded shear layers

For inviscid flows with continuous velocity profiles U(z), the
presence of a critical layer significantly modifies the above results. A full
discussion of the various classes of disturbance is given by Banks, Drazin
& Zaturska (1976) and Drazin, Zaturska & Banks (1979). The former deal
with flows between lateral boundaries and unbounded flows such that
iV2(z)->0 as | z | ->oo: for these, no modes propagate at infinity. The latter
consider flows with N2(z) -* N% (constants) as z -> + oo for which such
propagating modes exist.

Any unstable mode of the inviscid velocity profile with N\z) = 0 is
modified by buoyancy and all instabilities disappear if the local Richardson
number J{z) s N2(dU/dz)~2 is nowhere less than \. This is the 'Miles-
Howard theorem' (Drazin & Howard 1966). But buoyancy sometimes has
a destabilizing effect when J(z) < £ somewhere within the flow (Howard
& Maslowe 1973). In addition to any unstable, or marginally-stable, modes
there are exponentially-damped modes, all having phase velocities with
^min < cr < ^max- There also exist classes of constant-amplitude internal
gravity waves with cr > £/max and cT < Umin and a continuous spectrum
of singular neutral modes associated with algebraic, rather than expo-
nential, decay of disturbances. If N2 < 0 anywhere, gravitationally-
unstable modes of course occur.

Many general results, together with those for particular profiles of l/(z)
and N2(z), are described by Drazin & Howard (1966), Hazel (1972) and
in the above-mentioned papers. Typical of unbounded shear layers is the
hyperbolic-tangent velocity profile with constant Brunt-Vaisala frequency,
discussed in detail by Drazin, Zaturska & Banks (1979). In dimensionless
variables, this is

l / = t a n h r , iV2 = J (constant) ( - o o < z < o o ) . (5.1)

If a = kh denotes the corresponding dimensionless wavenumber where h
is the length-scale which characterizes the shear-layer thickness, the
Taylor-Goldstein equation (4.2) yields neutrally stable solutions

y = a 2 ( l - a 2 ) , c = 0 (5.2)

and unstable solutions exist at all points of the ct-J plane enclosed by this
curve and the axis 7 = 0.

In the unstratified case, 7 = 0, all sufficiently-short waves (a > 1) are
damped, as described previously. Now buoyancy provides a further
restoring force which acts to inhibit Kelvin-Helmholtz instability, especially
at longer wavelengths. It is readily seen that instability disappears for all
J > I in agreement with the general Richardson-number criterion.
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36 Linear wave interactions

In addition to this mode with cr = 0, Drazin, Zaturska & Banks found
two other unstable modes with equal and opposite non-zero phase
velocities cr. These exist for 0 < / < 0.13 approximately and have values
of a somewhat less than the smaller root of (5.2). These modes resemble
the propagating neutral modes of (4.6) associated with resonant over-
reflection at a vortex sheet, but now have ct > 0 for a range of a on account
of the role played by the critical layer.

Among the various limiting cases discussed by Drazin et al. is that with
a2 ~> 0 and J/a.2 -> 2, for which the dispersion relation simplifies to

c3 + ( l - i / / a 2 ) c = ia. (5.3)

If the right-hand side were zero, this equation would have roots c = 0,
c = ±{\J/a2 — 1)̂  which precisely correspond to the roots (4.6) for the

Figure 2.6. Dispersion curves of cr and c, vs. a for the stratified shear layer U = tanh z,
N2 = J (constant): c{ is shown by a continuous line when cT =t= 0 and a dashed line
when cr = 0. Case (a) corresponds to J/a2 = 0.91, case (6) to J/a2 = 0.95 (from
Drazin, Zaturska & Banks 1979).
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5 Continuous density and velocity profiles 37

vortex sheet when account is taken of the change of origin. The right-hand
side derives from the critical layer and this provides a coupling between
the three modes which is absent for the vortex sheet. Unstable roots exist
at values of J/a2 greater than 2, for which the vortex-sheet modes are
stable.

Computed dispersion curves of cr and cs versus a at various fixed values
of J/a2 are given by Drazin et al. Two of these are reproduced in Figure
2.6(a),(b). In Figure 2.6(a) for J/a2 = 0.91, the dashed line denotes the
unstable (Kelvin-Helmholtz) mode with cr = 0. Conjugate modes with
cr 4= 0 are unstable for a range of a near that of the neutrally-stable mode
with cr = 0. In contrast, Figure 2.6(b) for J/a2 = 0.95 shows a double
bifurcation of the modes. At J/a2 = 1.5 Drazin et al. find a single
bifurcation. At J/a.2 — 3, there is no bifurcation and no unstable mode with
cT = 0. At this last value of J/a2, the eigenvalues of the corresponding
vortex sheet are c = 0, c = + 2~* and there is no Kelvin-Helmholtz
instability. Drazin et al. find modes with cr close to the latter values but
with small growth rates (q > 0) for 0 < a < 0.1. Presumably, a third mode
with cT x 0 is now damped.

In fact, this rather complicated behaviour may be modelled qualitatively
by the root locus of simple cubic equations (see §6 below). Possible forms
of the dispersion curves for the three roots are sketched in Figure
2.7 (a), (b),(c).

Figure 2.7(a) shows no bifurcation and corresponds to Figure 2.6(a);
two conjugate modes with cT 4= 0 pass on either side of the mode with
cr = 0. Figure 2.1 {b) shows a double bifurcation, as in Figure 2.6{b), the
modes with zero, positive and negative cT now being connected. Figure
2.7(c) shows a single bifurcation, such as occurs for J/a.2 = 1.5, the modes
with cr 4= 0 having disappeared at small a to be replaced by two more
modes with cr = 0. The solid lines denote unstable modes (q > 0), the
dashed curves damped ones.

5.2 Bounded shear layers
It was seen above that the presence of boundaries introduces

additional unstable modes of the stratified Helmholtz profile (4.3). Not
surprisingly, this is also the case for continuous profiles. Einaudi & Lalas
(1976) have examined the ' tanh' profile (5.1) with rigid walls situated at
z = a and z = — b (a, b > 0). Lalas & Einaudi (1976) considered the same
profile bounded below at z — — b but unbounded above, thereby allowing
upwards wave-propagation towards z = oo. These authors take account
o f non-Boussinesq' inertial terms associated with the variation with height

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:20 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.003



38 Linear wave interactions

Figure 2.7. Sketches of possible forms of three-mode dispersion curves in

space.
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5 Continuous density and velocity profiles 39

of the mean density profile, such terms being neglected in the Taylor-
Goldstein equation (4.2). The effect of these is represented, in their work,
by a parameter cr which denotes the ratio of shear-layer thickness to a
vertical length-scale of the density profile. The value of cr is typically small
and the inclusion (or neglect) of such terms does not then induce
substantial changes in the results.

Figure 2.8, from Lalas & Einaudi (1976), shows the stability boundaries
of four modes in the J-a plane and Figures 2.9 (a), (b), (c) give correspond-
ing growth rates <xci and phase velocities cr versus a for various J. Mode I
is close to result (5.2) except at small a, the phase velocity rather rapidly
decreasing from 0 to —1 as a->0 and the region of instability being
somewhat greater. This destabilization of long waves accords with the
effect of boundaries, noted earlier, upon Kelvin-Helmholtz instability of
the vortex sheet. The unstable over-reflecting modes II and III are typically
much less strongly amplified than the Kelvin-Helmholtz mode I and are
confined to smaller wavenumbers. The boundary in these cases is situated
at z = —10, which is quite distant from the region of strong shear.
Naturally, for smaller values of b, the influence of the boundary on mode
I is more pronounced. For given values of / and a, there is a finite range
of b within which each of the higher modes is unstable. For instance, mode

Figure 2.8. J vs. a stability boundaries of the first four modes, for stratified flow
U = tanhz, N* = J (constant), <r = 0.1, with a rigid wall at z = - 1 0 but unbounded
as z-»-+ oo (from Lalas & Einaudi 1976).
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40 Linear wave interactions

III with a = 0.01, J= 0.1 and a = 0.1 is unstable only for 2.5 < b < 7.5
approximately. Unstable modes, apart from mode I, are always 'propa-
gating' (i.e. the local vertical wavenumber m is real) for large z. Nearer the
boundary, to quote Lalas & Einaudi,' they are either mostly propagating
or mostly evanescent dependent on the actual value of/'.

With both upper and lower boundaries, there can be no energy flux to
infinity, wave components being reflected at both walls. Trapped waves
impinging on a vortex-sheet profile from either side may be partially- or
over-reflected and the possibilities for instability are enhanced, but this
picture is modified by the shear for continuous profiles. Einaudi & Lalas
(1976) have studied the first three modes of the profile (5.1) in such cases.

Figure 2.9. Growth rates ac, and phase velocities cr versus a for various J. The flow
is as for Figure 2.8: (a), {b) and (c) show modes I, II and III respectively (from Lalas
& Einaudi 1976).
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5 Continuous density and velocity profiles 41

For mode I and moderate values of a and b, shorter waves are more stable
and longer waves less stable than in unbounded flow. The additional
unstable modes appear at smaller wavenumbers than those of mode I,
certainly when the boundaries are not too close; but some, and eventually
all, of these modes disappear as a and b are reduced. For instance, modes
II and III are not unstable for a = b < 5.3 and the instability of mode I
is itself suppressed for a and b less than about 1.2. The presence of
boundaries therefore plays a dual role. Their reflection of waves encourages
instability by over-reflection at the shear layer; but they also rule out
propagating wave solutions with vertical wavelengths 2n/m, long compared
with the channel width a+b. As a+b decreases, more such modes are
rendered inadmissible until, for sufficiently small values, no instability is
possible.

The case of a partially-reflecting, partially-transmitting upper boundary,
associated with a sudden increase in N2, has also been considered by Lalas
& Einaudi (1976). For this, they find that the distinct mode structure
disappears and there are no longer separate stability boundaries for each
mode, as in Figure 2.8. Instead, the transition from one mode to another
is continuous, and the neutral curve in the J-a plane is also a continuous
one. But the shape of this curve clearly indicates the vestiges of a three-mode
structure.

In flows with several layers, separated by partially- or over-reflecting
interfaces, a mode may be over-reflected at one interface but only partially
reflected at the next. With the added complications of critical layers and
reflections from other, more distant, interfaces, some effort would be
required to discover whether repeated reflections increase or decrease the
wave amplitude.

5.3 The critical layer in inviscid stratified flow
The mean Reynolds stress T = —p^tTw and rate of work done W

in maintaining a wave are related, from (4.7), by W = —cr. Since
T = 2P0 I m {0'0*} where * denotes complex conjugate, it follows from (4.2)
that dr/dz = 0 when ci = 0, except possibly at any_ critical layers z = zc

where U(zc) = c. The Reynolds stress, and hence W, are constant except
near such critical layers, where they may suffer discontinuities. In regions
where W is constant, so also is the vertical energy flux wg E, where E is
the net energy density of the disturbance (see § 11.5) and wg the vertical
group-velocity component.

The structure of solutions of (4.2) near the critical layer was discussed
by Booker & Bretherton (1967) for cases with local Richardson number

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:20 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.003



42 Linear wave interactions

J'= N2(zc)[U'(zc)]-* greater than \. Cases with J < \ were examined by
Eltayeb & McKenzie (1975). Near zc, a Frobenius series solution of (4.2)
has leading-order terms

lzc-z)h~^ (z<zc)
A2 zc) \z > zc)

A — __ | D f±7ffi A — \ R f* — if ft

where /t s (J—$ is real and positive when J > \. When J < \, identical
results hold with ju = iv where v is positive.

For J > \, let z = z1+S where Zj is close enough to zc for the above
approximation to hold and suppose that | S/(z1 — zc) | <̂  1. We may then
write

where miz^) may be interpreted as a local vertical wavenumber. Wave
components with exponent \ + i/i have positive vertical group velocity
Wgizj) and those with exponent \—i/i have negative w^z^. For the former,
mizy) is negative below and positive above the critical layer; for the latter,
vice versa. Since m{z^) -> ± oo as z1 -> zc, waves are strongly refracted near
the critical layer and the group velocity cg(zt) of each component becomes
more nearly horizontal. The wave energy density increases without limit
as zx-->zc. An approximate 'ray-theory' analysis (Bretherton 1966; cf.
§11.5) shows that an incident wave-packet takes an infinite time to reach
zc and so becomes 'trapped' in the critical layer. The critical layer may
therefore act as an absorber of wave energy which is either dissipated by
viscosity or transferred to the mean flow near zc. The wave component
Ax incident from below yields a 'transmitted' component Bx with
|B1/A11 = exp( — n/i). The transmitted component has much smaller
amplitude, since exp (— n/i) is very small except for / close to \. Equivalent
results hold for downwards-travelling components. Van Duin & Kelder
(1982) give some exact solutions for the reflection and transmission
coefficients of internal waves incident on the shear layer (5.1). The
smallness of waves penetrating a critical level was confirmed experimentally
by Thorpe (1981).

The vertical energy flux of a wave incident from below is

and that of the ' transmitted' wave is

Clearly, the energy of the incident wave is positive and that of the
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5 Continuous density and velocity profiles 43

transmitted wave is negative. The net rate of accumulation of (positive)
wave energy near the critical layer is therefore

the outgoing wave being associated with increased, not decreased, absorp-
tion of positive energy. The positive-energy wave is totally absorbed and
the negative-energy wave is emitted, rather than transmitted, at the critical
layer.

Eltayeb & McKenzie (1975) considered a wave incident on the shear
layer ro (*<<»

U = \ Uoz/L (OsSzsSZ,), N2 constant. (5.4)
[u0 (z>L)

When c < 0 or c> Uo there is no critical layer. The vertical energy flux
H^is therefore constant, the wave components all have positive energy and
partial reflections occur at the interfaces z = 0, L. When 0 < c < Uo, W
is constant on either side of the critical layer zc = cL/U0. When
J = N2L2/Ul> \, the critical layer absorbs energy and a reduced-
amplitude negative-energy component is emitted. In addition there are
reflections from the interfaces. That from the first interface encountered
is of greatest importance, all others being attenuated on each passage
through the critical layer. There is no over-reflection for J >\.

For J <\, the above identification of positive and negative-energy waves
breaks down. Near zc, the local vertical structure of the wave components
is exponential, as exp(±/i#) where n = v(z1 — zc,)

-1 and v = (\ — J)l. The
respective energy fluxes W_, W+ below and above z(. are then

W_ = pQ v Im {A* A2}, W+ = -Po v Im {** Bt} = -/>„ v Im {A* A2 c*™}.

A wave incident from z = — oo with 0 < c < Ux and J < \ suffers partial
reflection at z = 0. The transmitted wave is no longer a propagating mode
throughout the shear layer, but decomposes into exponentially growing
and decaying parts as it approaches ẑ  in order to maintain the constant
value of W_. The values of Ax and A2 are known, in terms of the incident
wave amplitude^ from _the matching conditions at z = 0. The respective
energy fluxes Wi and WT of incident and reflected waves in z < 0 must
satisfy

accordingly, over-reflection takes place in z < 0 whenever W_ is negative.
In such cases, the critical layer acts as a source of positive energy for the
region z < 0. For the flow (5.4), Eltayeb & McKenzie show this occurs
when J < 0.1129. For the region z > L, the critical layer acts as a source

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:20 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.003



44 Linear wave interactions

of negative energy whenever W+ < 0, the net rate of accumulation _of
(positive) energy near zc being W_ — W+. In the limit v -> \ {J -> 0), W+^-lV_
and over-reflection from the shear layer takes place with no absorption
at the critical layer, just as for the vortex sheet (4.8). Instability due to
resonant over-reflection may occur with cr = |f/0.

Other such flows are discussed by Lindzen & Barker (1985).

5.4 Diffusive effects
The influence of viscosity upon the stability of stratified flows has

received comparatively little attention. One might reasonably expect that
the eigenfunctions <j> satisfy an equation with left-hand side as in the
Taylor-Goldstein equation (4.2) and right-hand side as in the Orr-
Sommerfeld equation (3.1). This is broadly true, except near the critical
layer, where such an equation remains singular though the Orr-Sommerfeld
equation does not. This singularity persists because, in deriving (4.2), use
is made of an equation for the density distribution p(x, z, f) in the form
Dp/Dt = 0. This states that the density of particular fluid particles remains
unchanged throughout their motion.

With
p(x,z, t) = Po(z)+e Re{/5(z) e"**-""},

this gives
(U-c)p = (dpJdz)<t> (5.5)

and it is this approximation for p which yields the singular term of (4.2)
containing N2. In order to remove this singularity, it is necessary to
incorporate diffusive effects. These arise from thermal conductivity,
diffusivity of solutes or both. Such terms are significant within the
critical-layer region, but are unimportant near isothermal (and iso-solutal)
walls where the boundary condition p = 0 is automatically satisfied by
(5.5). For other boundary conditions, diffusive effects may be significant
in thermal (solutal) boundary layers near the walls. The structure of the
solutions in the vicinity of the critical layer was analysed by Baldwin &
Roberts (1970) and is essentially the same as for compressible shear flows,
studied long before by Lees & Lin (1946).

For the modes presently under discussion, the influence of viscosity and
other diffusive agents is broadly similar to the unstratified case. In
particular, the rapid change in Reynolds stress across the critical layer
persists, still spread over a layer of thickness 0[(aR)~i] when the ratio of
thermal diffusivity to kinematic viscosity is O{\). The jump in T is the same
as that given by inviscid theory on indenting below the singularity zc in
the complex z-plane. However, we note that there are other, essentially
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6 Models of mock coupling 45

diffusive, modes which can lead to instability of a rather different kind (see

§6).
Following the discussion of §4.3, it might appear that the negative-energy

wave components of over-reflection at a vortex sheet would be susceptible
to resistive instability associated with viscous dissipation. However, this
does not occur for these propagating modes since, as z-> + oo, they always
have positive energy in the rest frame of the fluid. Their amplitude is
therefore diminished by viscous dissipation over most of the flow region.
Accordingly, no such resistive instability precedes the Kelvin-Helmholtz
instability of an unbounded vortex sheet with constant A'2. But the
presence of a density discontinuity at the interface can support interfacial
modes which are resistively unstable at velocities U below that for
Kelvin-Helmholtz instability. This is also likely to be so for stable
continuous density distributions such that N*(z)>0 as z-> + oo. There is
then no energy propagation to z = ± oo and the energy of bound modes,
evanescent as |z|-*oo, may be treated as in §2. Detailed calculations of
such cases have yet to be carried out, and it may well turn out that this
destabilizing mechanism is normally offset by the stabilizing role of the
interfacial viscous boundary layers (cf. §2.4).

6 Models of mode coupling
6.1 Model dispersion relations

When several modes interact, the dispersion relations exhibit
behaviour of seemingly bewildering complexity: the cases discussed above
well illustrate this diversity. Nevertheless, the local characteristics of such
dispersion relations are frequently well represented by the roots of simple
algebraic equations. Examination of simple models provides an aid to
better understanding of many exact dispersion relations.

We first consider the quadratic dispersion relationship

D((o, p) = [(o- m^p)] [w - a)2(p)] = €&* (e 3s 0, - n < <j> s? n),

(6.1)

where p is a variable real parameter and e, 0 are real constants. For
instance, the parameter p may represent wavenumber a at fixed R or
Reynolds number R at fixed a. When e is sufficiently small, good
approximations to the two roots are

where ( )} denotes evaluation at w = <Oj. But this approximation breaks
down at any values of p such that \(o1—w2| ^ O{&). For instance, the
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46 Linear wave interactions

resistive instability (2.8) has co1 and w2 real, (f> = — \ir and e proportional
to viscosity. The O(e) contribution (2.9) then yields the growth rate OJ^P).

More generally, the complex roots <<>(/?) = wr + iw, of (6.1) follow
continuous curves in three-dimensional (wr, co^ p) space. If | w, — w21 > O(e^)
everywhere, roots 1 and 2 retain their identities as separate curves.
Locally-strong interaction takes place where | wx — w21 is O(a) or less and
this may or may not lead to interchange of mode identities. Suppose that
| Wj— o)2\ has a minimum at/) = pm and that \o)1—(o2\

2 > e except near pm.
Then the modes interchange identities near/?m if and only if the two curves

O(p) = (w, - w2)
2, A(/>) = (w, - w2)

2 + 4e e1^

traced out in the complex plane as p varies enclose a region containing the
origin. Note that A{p) is the discriminant of the quadratic equation (6.1).
There is bifurcation only if A = 0 for some p: if | A | becomes very small
locally, but does not vanish, there will be 'near bifurcations' where the
curves almost meet.

Such local behaviour is displayed by the exact (computed) dispersion
relations of many flows. Good examples are plane Poiseuille flow (Grosch
& Salwen 1968), the Blasius boundary layer (Mack 1976; Antar & Benek
1978), Poiseuille pipe flow (Salwen & Grosch 1972; Salwen, Cotton &
Grosch 1980) and stratified plane Couette flows (Davey & Reid 1977a, b;
Gustavsson & Hultgren 1980).

Figures 2.10 (a), (b) reproduce the results of Salwen, Cotton & Grosch
(1980) for the first azimuthal harmonic with periodicity exp \[6+<z(x — ct)\,
when a = 1.0 and R varies. At R = 61 there is an almost exact bifurcation
of modes 2 and 3. At slightly lower values of a, this bifurcation is less
perfect. Modes 2 and 4 also experience near-bifurcation around R = 240,
with identity interchange. In contrast, modes 1 and 2 do not exchange
identity: however, they do so at a = 1.0 for the third and fourth azimuthal
harmonics (Grosch & Salwen 1968).

In Davey & Reid's (1977a, b) results, precise bifurcations occur because
of the symmetry of the problem, damped modes having cr = 0 and
propagating ones equal positive and negative values cT. Some of the latter
modes have cr outwith the range of U(z) and so may be identified as
internal gravity-wave modes: these are absent in constant-density flow.
Others, with Umin < cT < f/max, exist also for constant density and have
crH>- Umin or f/max asa^->oo. At small R, the eigenvalues a q match the
decay rates of viscous or thermal (density) diffusion. Along any one
continuous curve, the physical character of the mode may change from,
say, a gravitational to a diffusive mode.
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6 Models of mode coupling 47

Figure 2.10. Real and imaginary parts cr, c, of the complex phase velocity c vs. R at
a = 1.00 for four modes of the first azimuthal harmonic ocexpi(0+jc-c/) in
Poiseuille pipe flow (from Salwen, Cotton & Grosch 1980). Note the' near-bifurcations'
at R * 61 and 240. These are the four least damped modes as R-+0; but at R = 10«
they are 1st, 19th, 2nd and 15th respectively.
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48 Linear wave interactions

Eigenvalues often group into separate families (see §7.1). Also, the
nature of the discrete spectrum may change with R. For boundary-layer
flows, there are few discrete modes at low R, but these increase in number
as R increases. Discrete modes of the Orr-Sommerfeld equation, as R >co,
need not correspond to discrete modes of the inviscid Rayleigh equation.
Such matters are examined in the following section.

A model of thermal instability in horizontal layers of viscous fluid heated
from below (see Drazin & Reid 1981 or Chandrasekhar 1961 for a full
account) is given by the algebraic equation

(to + ia-j)(w + i<x2) = S

for real constants «r,, er2 and S. In the absence of buoyancy, a1 and <r2 reduce
to the decay rates of dynamical and thermal modes, respectively due to
viscosity and thermal conductivity. The mode-coupling provided by
buoyancy is denoted by S. Unstable roots exist if and only if S < — crl <r2,
a result equivalent to the critical Rayleigh-number criterion for onset of
convection.

For 'doubly-diffusive' instability with, say, thermal and solutal diffus-
ivities operating in addition to viscosity, the corresponding model has a
cubic left-hand side, the additional factor (w+io-3) being associated with
decay of variations in solute concentration (cf. Turner 1973, Chapter 8;
Huppert & Turner 1981).

Acheson (1980), among others, has noted that the introduction of a
statically-stable density distribution may render a flow unstable by intro-
ducing new dynamical modes to the system. Most simply, suppose that a
system supports only a decaying mode, w = i<r0, associated with some
dissipative process. The introduction of a statically-stable density distri-
bution admits a new dynamical mode, which in the absence of dissipation
would be unattenuated; say w = w0 with w0 real. Weak coupling between
the modes gives a dispersion relation of the form

(w-io-0)(w-w0) = ee1«i

and the dynamical mode is approximately

If <j> = \v, this mode has a positive growth rate

toj = -

which is a maximum when w0 = o-0. This is a variant of the resistive
instability discussed in §2.4. Similar magnetohydrodynamic instabilities
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6 Models of mode coupling 49

occur, with the propagating mode sustained by the magnetic field rather
than buoyancy.

Another example of destabilization by mode coupling is given by the
cubic equation (5.3), which has the form

c(c2 — c%) = ia

when / / a 2 > 2, with approximate roots

c = - iacp2 + 0(a2), c = ± c0+^iac^2 + O(a2)

when a is small. Here the propagating modes are destabilized and the
stationary mode stabilized. For J/a.2 < 2, the corresponding equation is

c(c2+ cr2) = ia

for which the stationary mode c x 0 is destabilized when a is small.

6.2 Mode conversion in inhomogeneous media
Recently, Cairns & Lashmore-Davies (1983a, b) have proposed an

interesting model for mode coupling in inhomogeneous media. Let (o^k, x),
o)2(k,x) be the approximate dispersion relations of two modes, when
regarded as uncoupled. These vary slowly with x on account of the
inhomogeneity. Suppose that there is a 'mode-crossing point' x = x0 at
frequency w0 where these modes coalesce. Near x0, the (coupled) dispersion
relation may be approximated by

(to — Wj) (to — to2) = S. (6.3)

Here, S is a small number, taken as real, and wt(A;0, x0) = (o2(k0, x0) = w0

say, for some wavenumber k0. The frequencies w of the coupled modes are
well approximated by w, and w2 far from x0.

A disturbance comprising both modes is regarded as having constant
frequency w0 and two slowly-varying wavenumbers k = k^x), k2(x) which
coalesce into k0 near JC = x0. As the waves pass through the linear
resonance region, their interaction causes substantial changes in the
amplitudes. Outside the resonance region near x0, slower amplitude
modulations take place owing to the inhomogeneity: the latter, but not
the former, are described by Whitham's theory of slowly-varying waves
(see §11.3).

At fixed frequency w0, let k = k0 + S, x = x0 + £ where 8, £ are small in
the resonance region. Expanding Wj, w2 about (A:o, xa) gives the leading-order
approximation

where a, b,f, g denote the appropriate partial derivatives of wl5 w2 at (k0, x0).
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50 Linear wave interactions

The relation (6.3) then yields

8o (6.4)

where 80 is 8 at (ko,xa).
The local dispersion relation (6.4) may be associated with a differential

equation for the disturbance amplitude, with k identified with the operator
— id/d£; but straightforward replacement of k in (6.4) to yield a second-
order equation is both ambiguous and unjustified as the latter is incom-
patible with energy conservation. Instead, (6.4) must be converted to a pair
of coupled differential equations for two wave amplitudes Ax and A2,
namely

where A = (#0/a/)i It is readily verified that this satisfies energy
conservation,

when af> 0, the amplitudes being normalized so that the \A}\
2 denote

energy flux. When af < 0, the respective group velocities differ in sign and
iA is real in (6.5): in this case, the energy equation is

On eliminating A2 from (6.5) and making the substitutions

AM) = exp [i*0 g-J i (

one obtains Weber's equation

d hfr/d? + [ido(ag - bf)-1 + {- K8] f = 0

provided gf~l > bar1. Its solution is a parabolic cylinder function .£>„(£)
which has known properties. Accordingly, the asymptotic solutions for Alt

and hence A2, are known as £•->•—oo and g-^+oo.
These asymptotic solutions may be employed to find the changes in wave

amplitude which take place on crossing the resonance region. A wave Al

incident from g < 0 is partly transmitted into £ > 0 and partly converted
into wave A2. The energy transmission coefficient is

and that for the converted wave is 1 — T. Conversion of A2 to Ax is of course
similar. These remarkably simple results hold for waves with both like and
differing signs in the energy equation, and they agree with detailed analyses
of particular problems in plasma physics.
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7 Eigenvalue spectra and localized disturbances 51

This method extends Whitham's theory of slowly-varing waves to
encompass direct, linear resonance. Though rigorous justification is still
lacking, this may reasonably be expected, perhaps via an averaged
Lagrangian. Extension to include effects of damping and temporal variation
seems feasible, but equations equivalent to (6.5) would not then conserve
energy flux.

7 Eigenvalue spectra and localized disturbances
7.1 The temporal eigenvalue spectrum

A plane parallel flow u° = [t/(z),0,0] of homogeneous fluid,
supporting small (linearized) wavelike disturbances, has the form
u = u°+u' where

iw<]}, ( / = 1,2,3).
The complex frequency, w = wr + iwt, depends on the wavenumbers a, /?,
the Reynolds number R and any other flow parameters. For spatially-
periodic wave-modes, a and /? must be real.

The velocity components wy of a given initial disturbance may be
represented as a double Fourier integral

u ; (x , 0) = f r £/,(«, /?; z) exp [i(ax+fiy)] d a d/?, 0 = 1 , 2 , 3 ) .
J J —00

The subsequent evolution of the disturbance with time t is determined by
the decomposition of the U}{ct, /?; z) into a set of eigenfunctions, each of
which has its own exponential time-variation, exp (—iwt). For a given flow
and given real wavenumber components (a,/?), there may be many
eigenvalues w for which the flow disturbance satisfies prescribed homo-
geneous boundary conditions. The possible complex values of w comprise
the temporal eigenvalue spectrum.

On restricting attention to the transverse velocity component u3 = w,
one obtains the linearized equation

R-1V*w. (7.1)

When w(x, y,z, t) consists of a single mode w oc Re{0(z) exp[ia(x—ct)]}
with (D = ac, this reduces to the Orr-Sommerfeld equation (3.1) for 0(z).
On applying to (7.1) a double Fourier transform in x and y,

J{a, p; z, t) = ^ j j °° exp [- i(ax+fiy)] fix, y, z, t) dx d^

and a Laplace transform in time,
poo

g{s\z)=\ e-«g(z,
Jo
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52 Linear wave interactions

the resultant transformed equation is (cf. Case 1961; Gustavsson 1979)

)t_0,
(7.2)

The left-hand side is just the Orr-Sommerfeld operator for oblique
wave-modes and the right-hand side is determined by the initial disturbance.
With boundary conditions w = dw/dz = 0 on plane boundaries z = 0,
z = H, the corresponding conditions on <b are <l> = <I>' = 0 o n z = 0 and
H. The homogeneous equation (7.2), with zero right-hand side, clearly has
four linearly-independent solutions in 0 < z < H; from these, the solution
of the inhomogeneous equation and given boundary conditions for <I> may
be constructed by the method of variation of parameters. Inversion of the
Laplace transform yields

| °
Jp—io

w(a, ft;z,t) = (2m)-1 | est <D ds
Jp—ioo

where the constant p is chosen to give a path of integration to the right
of all singularities of <J> in the complex s-plane. This integral may be
evaluated by the method of residues on choosing a contour T which
encloses all singularities. A line Re {p} = constant and a semi-circular arc
at infinity would suffice provided there is no branch cut associated with
a branch point of <I>. The poles of $ then yield a discrete spectrum of
eigenvalues. For viscous flows in finite domains 0^z^H(H=l without
loss of generality), the number of discrete eigenvalues is infinite and there
is no continuous spectrum. The associated eigenfunctions then form a
complete set (Lin 1961; DiPrima & Habetler 1969). On the other hand,
inviscid flows (R = oo) with finite H have a continuous spectrum (Dikii
1960a, b; Case 1961) and the relationship between the inviscid spectrum
and the viscous spectrum as R->co is a matter of some subtlety.

For unbounded viscous flows, such as jets and shear layers, and for
boundary-layer flows with just one wall, the discrete spectrum of the
Orr-Sommerfeld operator contains only a finite number of modes. In such
cases, the associated eigenfunctions cannot comprise a complete set and
there must be a continuous spectrum. Gustavsson (1979) has identified the
contribution of this continuous spectrum to the contour integral around
F as due to the appearance of a branch point of O, the contour being
deformed to pass around the branch cut. The continuous spectrum may
also be found directly from the Orr-Sommerfeld operator by relaxing the
boundary condition O-»0 as z^oo to require only boundedness as z->oo.
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7 Eigenvalue spectra and localized disturbances 53

The following simple example, given by Grosch & Salwen (1978), dispels
any air of mystery surrounding the appearance of the continuous spectrum
for H = QO. The wave equation

has solutions of the form u =J{x) eiwt where

With boundary conditions M(0, /) = w(l, i) = 0, there is an infinite set of
discrete eigenvalues wn = nn with corresponding orthonormal eigenfunc-
tions / „ = 2~i sin(nnx) (n = 1,2,3, ...)• But for the infinite domain
0 < x < oo with boundary conditions

u(O,t) = O, u(x,t)->0 as x->oo,

there is a finite number of discrete eigenvalues: in fact, none! With the
relaxed boundary condition

u(x, t) bounded as JC->OO,

the spectrum is continuous, with 'improper' eigenfunctions

f{x; (D) = (2n)~% sinwx

for all real non-negative values of w. In the finite case, an arbitrary
disturbance may be represented by a Fourier sine series, summed over the
discrete spectrum, while in the infinite case a Fourier integral over the
continuous spectrum is required.

In the free stream, where U{z) -> (^(constant) as z->oo, the Orr-
Sommerfeld equation (3.1) reduces to

(Z>2 - A2) (Z>2 - k2) <D = 0, A2 = ia.R( Ut-c) + k2, D = d/dz,

with four independent solutions

0, «exp (A ,z ) ( /= 1,2,3,4), A ^ - A , A2 = A, A3 = - a , A4 = a.

Here, (f>u 02 are 'viscous' solutions and 03, $J4 are 'inviscid' solutions. On
choosing Aj and A2 to have negative and positive real parts respectively,
it is seen that only 0X and (j>3 decay to zero as z->oo. The discrete
eigenvalues c are those for which a linear combination of $x and (j>z can
be found which satisfies the two boundary conditions at the wall z = 0.

Additionally, there are solutions which remain bounded as z->oo. These
arise when A2 is real and negative; that is, when

cr=Ult Ci=-(k* + P)/ocR

where / is an arbitrary real and non-zero number. There are then three
permissible solutions ^ x exp(A;z), with Ax = — i/, A2 = +i/, A3 = —a,
bounded as z -> oo. Clearly, it is always possible to find a linear combination
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54 Linear wave interactions

of these which satisfies the two boundary conditions at z = 0. These
solutions make up the continuous spectrum of the temporal stability
problem. They all travel with the free-stream velocity Ul and have damping
rates no smaller than k2/a.R. Their form is

as 2^00. The first two terms represent waves propagating towards and
away from the wall respectively (though without energy flux in the
z-direction); the third is a 'wall mode' which decays exponentially with z.
Grosch & Salwen (1978) find 'reflection coefficients' \B\ which are less
than unity for a Blasius boundary-layer flow, but which may be as great

Figure 2.11. Real and imaginary parts cT, c, of the complex phase velocity c vs. R at
a = 0.179 for the first 15 modes of Blasius flow. The continuous spectrum lies along
cr = 1 with q < -a/R (from Mack 1976).
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7 Eigenvalue spectra and localized disturbances 55

Figure 2.12. Eigenvalues of Blasius flow in the cT-Ci plane at a = 0.179 and four
Reynolds numbers R: (a) 1000, (b) 2000, (c) 5000, (d) 10000 (from Mack 1976).
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56 Linear wave interactions

as O(103) for a jet profile. The explanation of such large values of | B | is
unknown.

Jordinson (1971), Mack (1976), Grosch & Salwen (1978) and Antar &
Benek (1978) have examined, numerically, the temporal eigenvalue
spectrum of the Blasius boundary layer. The results of Antar & Benek
nicely demonstrate how part of the discrete spectrum for a finite domain
becomes increasingly dense and close to the continuous spectrum for an
infinite domain as the size of the domain is increased. Mack (1976) has
shown that there are just seven modes in the discrete spectrum for R = 580,
a = 0.179, p = 0; of these, only the first is unstable. As R increases, more
modes emerge from the continuous spectrum: at the same wavenumber
and R = 5000, there are at least fifteen and probably more, all damped.
Such modes are shown in Figures 2.11 (a), (b) and 2.\2{a)-{d); apart from
mode 1, they fall on two distinct curves in the cr-Cj plane at each fixed R.
The continuous spectrum lies along the line cr = 1, ct < —ac/R. Salwen
& Grosch (1981) established that, for temporal evolution of two-dimen-
sional disturbances in unbounded parallel flow, the discrete eigenmodes
and continuous eigenfunctions form a complete set: this generalizes the

Figure 2.13. Distribution of eigenvalues of antisymmetric disturbances for plane
Poiseuille flow at a = 1.0, / ? = 104. O /^-family, V P-family, • S-family (from Mack
1976).
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7 Eigenvalue spectra and localized disturbances 57

work of DiPrima & Habetler (1969), who proved the completeness of the
discrete eigenfunctions in bounded flow. The nature of the continuous
spectrum for non-parallel unbounded flows was briefly considered by
Bouthier (1983).

Grosch & Salwen (1968), Orszag (1971) and Mack (1976) computed the
temporal eigenvalue spectrum of plane Poiseuille flow. The eigenvalues are
discrete and infinite in number, divided into three families: see Figure 2.13.
The y4-family is finite in number and qualitatively resembles the discrete
spectrum of Blasius flow; the P- and S-families resemble results found by
An tar & Benek (1978) for Blasius flow infinite domains, which correspond
to the continuous spectrum of the unbounded case.

So far, we have considered only the transverse velocity component w,
governed by (7.1). For two-dimensional disturbances independent ofy, this
is sufficient; but there also exist j-dependent modes for which w is
identically zero. To see this, we need only consider the equation for the
transverse vorticity component, <DZ = dv/dx—du/dy. This is

=-u'%> ( 7-3 )

with w given by (7.1). A j-dependent w therefore acts as a source of vertical
vorticity, by tilting the spanwise vortex lines associated with the primary
flow U(z). But the homogeneous equation for w2, with zero right-hand side,
has its own eigenvalue spectrum, which must be taken into account in a
complete description of three-dimensional disturbances. The spectrum is
just that of the equation

D^xjf - i*R(U- c') \lr = 0, c' = c + ik*/aR (7.4)

where c is the complex phase speed of wavelike disturbances of the form
o)z oc r[r(z) exp [i(ax+fty — act)]. The appropriate boundary conditions are
\]/ = 0 on z = 0, H, or i/r finite as | z | -»oo in the unbounded case.

This eigenvalue problem is identical with that for two-dimensional
temperature (or density) modes in plane stratified flows, examined by
Davey & Reid (1977a, b) and already discussed in §6 above. Gustavsson
& Hultgren (1980) and Gustavsson (1981 )consider the interesting possibility
of linear resonance, when an eigenvalue c of (7.2) coincides with one of
(7.4). They find such resonant cases for plane Couette and plane Poiseuille
flow and it is likely that they exist for most flows. The solution of (7.3)
then contains a term in t exp (— iotct). Although all modes have ct < 0 for
plane Couette flow, this term grows to a maximum amplitude before
decaying. The largest amplitudes are apparently attained for modes with
|/?/a| >̂ 1, which are highly-elongated in the streamwise direction.
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58 Linear wave interactions

The eigenvalue problem (7.4) has been considered analytically by
Murdock & Stewartson (1977) for the discontinuous velocity profile U = 0
(0 < z < 1), U = 1 (1 < z < oo). The structure of the spectrum is believed
to resemble, qualitatively, that of the Orr-Sommerfeld equation. Murdock
& Stewartson point out that the continuous temporal spectrum may be
reinterpreted as a discrete spectrum of modes of heat conduction type, with
z replaced, in z > 1, by the similarity variable z/$ rk

For inviscid flows between plane parallel walls at z = 0 and z = H,
exponentially-growing modes may occur only if U" = 0 somewhere in
0 < z < H. However, even when U" =f= 0 everywhere, there exist inviscid
disturbances which grow algebraically with time t (Shnol' 1974; Landahl
1980). These are essentially three-dimensional, being associated with
longitudinal stretching and tilting of vortex lines. The total kinetic energy
of an initially-localized disturbance may indeed increase at least as fast as
linearly with time /, largely because the stream wise extent of the disturbance
grows in proportion to t. The presence of viscosity would lead to the
eventual decay of such linear disturbances (Gustavsson & Hultgren
1980; Hultgren & Gustavsson 1981). Corresponding two-dimensional
disturbances always decay algebraically in time, in stratified as well as
homogeneous flows (see, most recently, Brown & Stewartson 1980; also
Blumen 1971 for a discussion of three-dimensional disturbances). All such
disturbances may of course be represented in terms of the eigenfunctions
of the complete three-dimensional temporal eigenvalue spectrum.

7.2 The spatial eigenvalue spectrum
As an alternative to specifying initial disturbances at t = 0, we now

consider disturbances which are known, for all times t, at a particular
location, say on x = 0. Such situations frequently arise in experimental
configurations, where a known disturbance may be continuously driven
by a wave-maker or vibrating ribbon. The spatial evolution of the
disturbance, with x, is then required. For disturbances of fixed (real)
frequency w and (real) spanwise wavenumber /?, it is necessary
to find the complex eigenvalues of the downstream wavenumber,
a(/?, &>, R) = ar+i<Xi. The spectrum of a for the Orr-Sommerfeld equation
has been investigated for Blasius flow by Jordinson (1971), Corner,
Houston & Ross (1976), Grosch & Salwen (1978) and Salwen & Grosch
(1981). As well as a finite discrete spectrum, there is a continuous spectrum
with four branches. Two of these branches represent waves travelling
upstream into the region x < 0; the other two describe downstream
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7 Eigenvalue spectra and localized disturbances 59

propagation into x > 0. All modes of the continuous spectrum decay
exponentially with distance away from the source at x — 0.

Murdock & Stewartson (1977) also studied the structure of the spatial
eigenvalue spectrum of equation (7.1) with real frequency w = ac. They
found that the continuous spectrum may be re-expressed as an infinite but
discrete spectrum of modes of diffraction type.

For bounded viscous flows, there is an infinite discrete spectrum. The
least stable spatial mode of plane Poiseuille flow has been calculated by
Itoh (1974a, b) and agrees satisfactorily with the experiments of Nishioka
et al. (1975).

An exact, but complicated, linear solution with specified localized
periodic forcing is given by Jones & Morgan (1972): they consider an
inviscid compressible fluid with Helmholtz vortex-sheet velocity profile
subjected to acoustic radiation from a fixed, pulsating, line source. Such
are the analytical complexities, even for this simple idealized flow, that
modelling of more realistic flows demands approximation, via numerical
and asymptotic methods. Mack & Kendall (1983) recently made such a
study of the motion downstream of oscillatory point and line sources of
disturbance in the Blasius boundary layer. Their theoretical results agree
well with their own experiments and also those of Gilev, Kachanov &
Kozlov (1982).

7.3 Evolution of localized disturbances
As discussed above, the evolution of a prescribed initial disturbance

may be described by Fourier-Laplace transforms. In practice, a complete
solution is rarely available in simple form; but good approximations may
be obtained on making certain assumptions.

For each given real wavenumber pair (a, /?), it is reasonable to retain
only the contribution from the least-damped (most unstable) eigenvalue
a>(a, /?), since this must eventually dominate the higher eigenmodes - and
usually does so after just a few wave periods. Also, the contribution from
the continuous spectrum may be neglected, when there exist unstable (or
less-heavily damped) discrete modes for some range of (a, /?).

In such cases, the disturbance is well-represented by a double Fourier
integral over a and /?,

M;.(X, 0 ~ I ] tfy(ct,/?;z)exp[i(ax+/?y-au)]dad/?, (7.5)

where w = occ(<x, /?) is the complex dispersion relation for the least-damped
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discrete mode at each (a, (5) and U} is the contribution of this mode to up

determined by the initial conditions.
It often happens that the most unstable mode is two-dimensional, with

wavenumber components (a, fi) = (a0,0) say. Then, a satisfactory
approximation to w(a, /?) in the vicinity of (a0,0) at fixed Reynolds number
R is given by a truncated power series in (a—a0) and /?2; viz. w =
where

/3wr\ , 1 /32wr\ . x, 1 /32wr\ m

\ 3 a / 0 2V3a2/0 2\3/?2yo

(7.6)

2\3a2/0 2\CfPJa

Here, wi0 is the maximum temporal growth rate and both (32Wi/3a2)0 and
(32Wi/3/?2)0 are negative. Also (3wr/3a)0 is the group velocity of the most
unstable mode.

Employing such a representation, both Benjamin (1961) and Criminale
& Kovasznay (1962) derived the asymptotic behaviour of the integral (7.5).
For disturbances initially localized near the origin x = y = 0 (i.e. when the
phases of Uj(a, /?; z) are strongly correlated) they found solutions of the
form

Uj(x,t) a 17/00,0; z)rl exp(w
(7.7)

X = x—(3wr/3a)0 /, / -> oo

where stf and 08 are complex constants with $2r, &T > 0. Contours of
constant amplitude at each time t and on each plane of constant z are
therefore ellipses. This result is apparently supported by Benjamin's
experiment of an unstable film of water on an inclined plane, which shows
a nearly circular wave-envelope. The centre of disturbance X = y = 0
propagates downstream with the group velocity (3wr/3a)0 and no wave
amplification occurs outside the ellipse ^/rA"2+^r y

% = wl0/
2. Also, the

wave amplitude within the packet satisfies a nearly Gaussian distribution,
with characteristic widths (t/s/r)i, (t/@r)l in the respective X and y
directions. Accordingly, the linear dimensions of the unstable wave-packet
vary as t, but most of the disturbance is concentrated within a distance
of order O(&) from the centre. Since X/t and y/t are O(w|0) within the
unstable region, the visible wave crests deviate only slightly from a plane
two-dimensional wave-train whenever wi0 is small.

Gaster (1968, 1979) and Gaster & Davey (1968) observed that a more
appropriate expansion procedure than (7.6) is that about the saddle point
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(a*,/?*) of the integral (7.5), where a* and /?* are complex quantities
defined by

The resultant solution differs from the above elliptical patch, but coincides
with it near the centre of disturbance. Gaster's (1968) results incorporated
an incorrect assumption which led to a spurious caustic, but this is
corrected in Gaster (1979).

Gaster (1975) and Gaster & Grant (1975) undertook a detailed compu-
tational and experimental study of localized disturbances in the Blasius
boundary layer. In their computations, the continuous Fourier represen-
tation (7.3) was replaced by a superposition of many discrete wave-modes.
Their well-known results (see Figure 2.14) show rather crescent-shaped
wave-packets with curved wave crests, which are very different from the
elliptical patch predicted by Benjamin and Criminale & Kovasznay. For
two-dimensional disturbances only, but including the effect of boundary-
layer growth, Gaster's (1982a, b) critical comparison of approximate
methods shows that direct computation and the saddle-point method are
in good agreement.

An analytical approach by Craik (1981, 1982a) employed a model
dispersion relation which coincides with (7.6) close to (ao,O) but better
represents the directional properties of three-dimensional wave-modes.
Simple solutions for various limitingcases were obtained by the saddle-point
method. These represent curved wave-packets and successfully reconcile
(7.7) with Gaster's computed results. For much of the parameter range,
the wave-envelopes and wave crests are curved concavely in the upstream
or downstream direction respectively, according as the group velocity
(3wr/3a)0 is greater or less than the phase velocity (or0/a.0. But there are
also solutions with roughly circular wave-envelopes, which typically occur
when the group velocity and phase velocity are nearly equal: the latter
situation may correspond to Benjamin's experiment.

A rather different method, based on ideas of ray theory, was used by
Itoh (1980a) to study two-dimensional wave-packets in plane Poiseuille
flow and is readily extended to three-dimensional packets (N. Itoh, private
communication).* His method correctly yields the neutral wave-envelope -
beyond which no unstable waves are observed - but may not accurately

* and pp. 59-64, Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi),
IUTAM, Elsevier (1984).
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62 Linear wave interactions

describe growing wave-modes. Craik (1982a) obtains good agreement with
Itoh's curved wave-envelope and also draws attention to cases o f splitting'
wave-packets with two maxima, one on either side of the centre line. The
latter may arise when the most unstable waves are oblique modes with
non-zero y#, as often occurs at Reynolds numbers substantially above the
critical one for onset of instability. Oblique modes are also prominent in

Figure 2.14. Comparison of experimental and computational results for a wave-
packet 76 cm downstream of the excitation point (from Gaster 1975). Flow is from
top right to bottom left.

(a) Experiment

(b) Theory
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7 Eigenvalue spectra and localized disturbances 63

Spooner & Criminale's (1982) computational study of localized disturbances
in an Ekman boundary layer.

Yet another approach employs multiple scales, where the complex wave
amplitude A(x, y, t) of a nearly-monochromatic wave-train with
wavenumbers (a0,0) is assumed to vary only slowly with respect to x, y
and t. One may then formally replace u>, a. and /? in the dispersion relation
w = w(a, /?) by differential operators

w + ie/S/, cc-id/dx, fi-id/dy

respectively, acting on the amplitude A(x, y, t) (Newell & Whitehead 1969;
Hocking, Stewartson & Stuart 1972). The co-ordinate scaling

T = et, £, = e\x — al t), n) = eiy,

where ax = (8w/8a)0 and e is a small parameter which characterizes the
amplitude modulation, leads to a linear Schrodinger equation

HA' h S € Wl0> ( 7 ' 8 )

at leading order in e. Here the amplification rate w10 is assumed to be O(e).
Among the solutions of this equation is the elliptical packet (7.7). Different
co-ordinate scalings are required to recover differential equations with
curved wave-packets as solutions (Craik 1981). Though the saddle-point
seems simplest and most natural for linear wave-packets, a multiple-scales
approach is obligatory for weakly nonlinear problems (see Chapter 6).

When the instability arises from the coalescence of neutral inviscid
modes, with resultant complex-conjugate frequencies, the form of localized
wave-packets is rather different from that just described. The partial
differential equation governing an almost two-dimensional wave-packet is
then no longer (7.8), but a linear Klein-Gordon or telegraph equation,

d2A/dt2-ad2A/dx2-bd2A/dy2-dA =0, (7.9)

in an appropriately-chosen reference frame (see Weissman 1979 and § 18).
The approximate linear dispersion relation in this frame is just

(w - w0)2 = a(k - k0)
2 + bl2 - d,

where w is frequency and k = (k, I) is the wavenumber vector. The term
dis small and denotes a small departure from the critical conditions co = w0,
(k, I) = (k0,0) for onset of instability. In the unstable case, a, b and d may
be normalized to unity without loss.

Then, w = wo + w', (k,l) = (ko,0) + (k',l) where u'2 = k'2 + l2-l and a
wave-packet evolves as

Re N
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64 Linear wave interactions

where D denotes the unstable portion of wavenumber space, k'2 + l2 ^ 1.
The saddle-point method may be applied much as above to determine

the asymptotic form of solutions as /->oc. Note, also, that the general
solution of the telegraph equation is known (Copson 1975, p. 86).
Weissman (1979) gave an asymptotic approximation independent ofy and
with | x | <̂  t. A more general asymptotic representation is given by Craik
& Adam (1978), who found that the saddle-point method fails at x/t — ± 1,
where the saddle-points go off to infinity. Even in the absence of instability,
the large-time linear evolution of arbitrary localized disturbances may be
dominated by the contribution from Fourier modes near points of direct
(linear) resonance (Akylas & Benney 1982).

This chapter ends with a cautionary note on the use of discontinuous
velocity profiles, when arbitrary initial disturbances are permitted. The
eigenvalues (2.4) of Helmholtz instability imply that growth rates approach
infinity as k ->oo: Craik (1983) has observed that in such cases linear theory
predicts that some, though not all, initial disturbances attain infinite
amplitudes after a finite time. Moreover, some bounded initial disturbances
exhibit this singularity at all times, however small, after initiation! Of
course, the discontinuous profile ceases to be a realistic approximation for
waves with length comparable to the shear-layer thickness: such waves
cannot have indefinitely-large growth rates.
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Chapter three

INTRODUCTION TO NONLINEAR THEORY

8 Introduction to nonlinear theory
8.1 Introductory remarks

Nonlinear theories are of three more or less distinct kinds. In one,
properties of arbitrarily-large disturbances are deduced directly from the
full Navier-Stokes equations. Consideration of integral inequalities yields
bounds on flow quantities, such as the energy of disturbances, which give
stability criteria in the form of necessary or sufficient conditions for growth
or decay with time. An admirable account of such theories is given by
Joseph (1976). They have the advantage of supplying mathematically
rigorous results while incorporating very few assumptions regarding the
size or nature of the disturbances. Sometimes, these criteria correspond
quite closely to observed stability boundaries. The bounds for onset of
thermal (Benard) instability and centrifugal (Rayleigh-Taylor) instability
in concentric rotating cylinders are particularly notable successes. Often,
however, the bounds are rather weak: this is especially so for shear-flow
instabilities, where local details of the flow typically play an important role
which cannot be (or, at least, has not been) incorporated into the global
theory.

The second class of theories relies on the idea that linearized equations
provide a satisfactory first approximation for those finite-amplitude
disturbances which are, in some sense, sufficiently small. Successive
approximations may then be developed by expansion in ascending powers
of a characteristic dimensionless wave amplitude. These are known as
weakly nonlinear theories, and they have proved successful in revealing
many important physical processes. Some of these theories have been
developed with full regard to mathematical rigour, yielding firm results for
particular limiting cases. Others rely on more heuristic methods in which
questions of convergence of amplitude expansions, or the validity of their

65
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66 Introduction to nonlinear theory

truncation at some chosen order, are left unresolved. The justification for
adopting an unrigorous approach must rest on its success in modelling
situations of real scientific interest which are not yet amenable to exact
mathematical representation. In practice, many important theoretical
ideas, eventually formulated with full rigour, have grown from heuristic
models; and many apparently 'irrational' theories have stimulated
valuable new experiments and provided new insights into old ones.

The third class may be called numerical simulations, which attempt to
follow the development of some initial disturbance by direct computation.
Recently, considerable successes have been achieved in this area and
further rapid advances may confidently be predicted, despite the complexity
and sensitivity of the numerical procedures. Since the present work has
mode interactions as its theme, it is primarily concerned with theories of
the second and, to lesser extent, the third class, which have been most
successful in describing the evolution and interaction of wavelike
disturbances.

8.2 Description of a general disturbance
For definiteness, we first consider finite-amplitude disturbances to

a parallel shear flow U(z) of constant-density fluid, between plane rigid
boundaries at z = 0, H. The exact equations of motion are the Navier-
Stokes equations (1.1)'. Since the boundary conditions are here linear and
homogeneous, all nonlinearities are contained in the convective term
(u-V)u. For other flow configurations, particularly those with fluid
interfaces or free surfaces, nonlinearities may also appear in the boundary
conditions. For instance, irrotational, inviscid water waves exactly satisfy
Laplace's equation within the fluid, but the free-surface boundary con-
ditions are nonlinear.

When the disturbance is independent of the spanwise co-ordinate y, the
flow may be represented by

u(x, z, 0 = [U(z) + V¥/cSz, 0, -e*/3jc]

where *?(*, z, t) is a disturbance stream function. The nonlinear equation
for *P, deduced from the Navier-Stokes equations, is (cf. Eckhaus 1965;
Itoh 1977a)

(L - M 3/30 *¥ = JNPF, «P] (8.1)

where the operators L, M and N are defined as

L = R-lMi-(UU-U")i!/Zx, M =

,<D ] s — - — — — M0> + ( — - — _ _
\ 6z 6x dx dzj \ dz dx dx dz
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8 Introduction to nonlinear theory 67

and R is the Reynolds number. The boundary conditions are
S4*/Sx = 3*F/8z = 0 on z = 0, H. A treatment of three-dimensional dis-
turbances would follow similar lines, but is omitted for simplicity.

The temporal eigenvalue spectrum of the linear operator L — M d/dt,
which is just that of (7.1), was discussed in §7.1. For each Fourier
component i/r(a; z, t) exp(iajc) of *P at fixed R and finite H, there exists
a complete set of discrete eigenfunctions ^ ( n )(a, z) and eigenvalues (on(a)
(n = 1,2,..., oo). Accordingly, any ^-independent disturbance of finite
amplitude may be expressed formally as an eigenfunction expansion

V(x,z,t)=\ I, A<n\a.,t)^(a,z)eiaxda.. (8.2)
Ja~ — oo n—1

For// = oo, thecorrespondingrepresentationmustincludethecontribution
of the continuous spectrum.

Adjoint linear eigenfunctions 0(n)(a, z) are found from

(L'-M8/8/)<D = 0,

L / s i r 1 M 2 - (MC/- t / " )a /3x , a*/8;c = cXD/dz = 0 (z = 0,//).

Each 0(n)(a, z) satisfies the adjoint Orr-Sommerfeld equation

[({/-wn/a)(D2-a2) + 2f/'D-(ia/?)-1(D4-2a2D2-(-a4)]^<") = 0

and boundary conditions

fin) = D0<"> = 0 (z = 0, H)

with D = d/dz and the same eigenvalues wn(a.) as above. The functions
5^(n)(z), <f>(n\z) may be orthonormalized so that

f" 0<»»(D2-a2)^<n>dz = Smn
Jo

for each wavenumber a (cf. Eckhaus 1965, Chapter 6), together with any
convenient normalization of the functions \jr{n).

At this stage, it is convenient to confine attention to flows which are
periodic in x, thereby replacing the Fourier integral (8.2) by a Fourier
series. Solutions of (8.1) which are strictly periodic in x at some instant
/ remain so at all times. Such solutions may, but need not, possess a single
dominant Fourier mode. In general, all Fourier components of the form
exp(ikax) are present, as

*V(x,zj)= £ «P t(z,/)e i*" ( * = 0 , ± l , ± 2 , . . . ) (8.3)

where a is a fixed wavenumber. Also, each component Tfr(r, /) may be
decomposed into a sum of linear eigenfunctions,

r), (8.4)
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68 Introduction to nonlinear theory

where \jfk
n){z) is the nth Orr-Sommerfeld eigenfunction with wavenumber

ka. To ensure a real physical disturbance, it is necessary that A(J%> — [Ak
m)]*

where * denotes complex conjugation.
Separation of the Fourier components of (8.1) gives

1 l—x.

(8.5)

where the operators Lk, Mk and N are obtained from L, M and N on
replacing 5 ^ / c x by (iotqjVg.

On substituting (8.4) in (8.5), multiplying by the corresponding adjoint
eigenfunction &k

n)(z) and integrating over z from 0 to //, an infinite set
of coupled nonlinear equations is found for the unknown amplitude
functions Ak

n)(t), namely

Jo

m,p,q = 1,2,3,.../

(8.6b)

where w "̂1' = <>Jm(koi) is the wth eigenvalue at wavenumber ka and
iw'T = [iwjtm)]*. Also, since ^Lr4 = ^%* and ^<r^ = <{><£*, it follows that

rr'". r>, «) = [o-fm .P.*)]*.

The nonlinear interaction between eigenmodes is expressed exactly on
the right-hand side of (8.6a). The interaction of any two modes with
wavenumbers (k — l)x and la. influences a third mode with wavenumber
ka. The strength of each interaction is determined by the interaction
coefficients <T^-""-U) defined in (8.6b). Results similar to (8.5), (8.6a) and
(8.6b) may be derived for a continuous wave spectrum, with summation
over k and / replaced by integrations (cf. Ikeda 1977). Unfortunately, but
predictably, little progress can be made in solving these equations without
the introduction of further assumptions.

For other physical configurations, the theory may be similarly con-
structed. Ripa (1981) has formulated the problem of general nonlinear
wave-interactions for two geophysical systems, inviscid barotropic Rossby
waves and internal gravity waves without primary flow. The general
interaction equations for a continuous spectrum of inviscid surface gravity
waves are comprehensively discussed by Yuen & Lake (1982) and West
(1981). For these, the eigenmodes are just solutions of Laplace's equation
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8 Introduction to nonlinear theory 69

and the free-surface boundary conditions supply the nonlinearity. In this
case, amplitude equations equivalent to (8.6a) may be deduced without
integrating over the flow domain (see Chapters 6 and 7).

8.3 Review of special cases
(0 All modes damped
The simplest - and least interesting - case is that where all eigen-

modes are damped. This is certainly so if each initial mode amplitude
Ajn)(O) is sufficiently small that

00 00

I—oo p, q—1

for every k and m. Then, every wave component decays to zero as r-»-oo,
tending asymptotically to the linear approximation

A^"\t) = Cjtm) exp(—i<4m> t), Cjfcm) constant.

(if) Single dominant neutral mode
If all free linear modes, except one, are damped and the exceptional

mode is maintained at a constant amplitude a with frequency Q, either
naturally or driven by suitable applied forces, there exists a non-zero
time-periodic equilibrium state containing all harmonics. On choosing the
forced mode to have k = + 1, m = \ and setting A[l} = \a exp( — \Qt),
A(*l = \a exp (iQ/) where a is small and real, each A^m) may be ordered as

| A<1\ | = O(a); | A^ \, | AW \ < O(a2); "1

provided each \o-^f>p^)((o[m} — fcQ)"11 has magnitude of order 0(1) or less
relative to a. Successive approximations may then be constructed, as
ascending power series in a. The first few terms are

The first term represents the fundamental forced mode, the second group
of terms an O(a2) mean flow induced by the self-interaction of the forced
mode, and the third group the various components of a second harmonic.
The higher harmonics are absent at O(a2), but the procedure may be
continued to any desired order. The series may be expected to converge
for sufficiently small values of a, but an appreciation of the actual radius
of convergence requires detailed knowledge of all interaction coefficients.
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70 Introduction to nonlinear theory

If the higher eigenstates ^jtm)(z) (m > 1) are heavily damped compared
with the first eigenstate fttfKz) at each k, satisfactory approximations may
sometimes be obtained on retaining only the modes with m = 1. This will
be so whenever

(all m > 1)

at the value of z considered.
In the same way, a single dominant mode which is damped according

to linear theory as r/r1 = aijr^iz) e~at exp[i(ax — Sit)], where Cl = Re(w^')
anda- = Im( — to^Xwilldrivemean-flowandsecond-harmoniccomponents
proportional to a2e~2at and a2 e~2<rt exp[2i(ax — Qt)] respectively. If
only the >Jr\l) mode is present initially, the requirement that there is
no mean flow or second harmonic at t — 0 necessitates the presence,
for all t^O, of O(a2) free modes of the form ^<,m) exp(-iw</"> t),
i/r(

2
m) exp[i(2ax — &4m)/)]. Only if the respective damping rates of these

modes exceed 2a do the forced components dominate them after a
sufficient time has elapsed.

When the fundamental O(a) wave is amplified according to linear theory
(a- < 0) and |<r| is 0(1) relative to a, the convergence of the amplitude
expansion is certain to break down at sufficiently large times: this is clear
since successive terms behave as O{qn e"|orl()-

(Hi) The Landau equation
If the dominant mode is not maintained at constant amplitude and

its linear growth or damping rate a is very small, of order a2, the analysis
requires modification to account for changes in amplitude. Then, O(a3)
terms on the right-hand side of (8.6a), for k — 1, are of the same order
as the linear term crA^K The linear approximation for the temporal
evolution is inadequate and the appropriate evolution equation for the
wave amplitude is found to have the form (see § 18)

(8.8)

This is generally known as the Landau equation (Landau 1944) and
A = Ar + iAj as the Landau constant, a complex number which is determined
by the linear eigenfunction ^ i 1 ' and its adjoint (pf. The cubic nonlinearity
arises through interaction of the fundamental O(a) mode with O(a2)
mean-flow and second-harmonic components which it drives. This non-
linear term is stabilizing or destabilizing according as Ar < 0 or Ar > 0.

Provided higher-order terms may be ignored, a linearly-damped mode
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8 Introduction to nonlinear theory 71

(cr > 0) will grow, if Ar is positive, whenever its amplitude | A{1} | exceeds
(<rA~x)2. Similarly, a linearly unstable mode (<r < 0) decays if Ar < 0 and
| A^ | exceeds (aA'1)^. In both cases, an equilibrium ' threshold' amplitude
\A[l)\ — (o-A~1)^ separates growing and decaying solutions. When <r and
Ar have opposing signs, the nonlinear term reinforces the linear growth or
decay rate and there is no equilibrium solution of the truncated equation.

As a flow parameter, typically the Reynolds number R, varies, so
do the constants cr and A. At Reynolds numbers very near the critical
value Rc for onset of linear instability, we may write

At R = /?c, there is a bifurcation of equilibrium solutions of (8.6). The
trivial solution | A^ |2 = 0 and the non-trivial solution

intersect at R = Rc. The latter solution curve lies in the region R ^ Rc if
(do-/di?)o/A<.c) is positive and in R ^ Re if it is negative. Since a is normally
negative (i.e. linear wave growth) for R> Rc and positive (linear wave
decay) for R < Rc, the bifurcating solution (8.9) is said to be supercritical
when A{.e> < 0 and subcritical when A£c) > 0. These cases are shown
schematically in figures 3.1 (a), (b), where the regions of growth and decay
predicted by (8.8) are indicated by arrows (cf. Stuart 1963; Drazin & Reid
1981).

In the supercritical case, all waves decay when R < Rc but initially-small
wave amplitudes A^ grow to the equilibrium amplitude of (8.9) when
R > Rc. In the subcritical case, all amplitudes grow when R > Rc, and only
those with amplitudes less than (8.9) decay to zero when R < Rc. Of course,

Figure 3.1. Schematic representation of bifurcating equilibrium solutions near Rc of
Landau equation (8.8): (a) supercritical case Aj.c) < 0, (b) subcritical case Mr

c) > 0.
Solid lines denote stable solutions and dashed lines unstable ones; arrows indicate
regions of growth or decay.

^ (a) T (*)
l^i i2] I /4I2 !

V

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:22 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.004



72 Introduction to nonlinear theory

equation (8.8) is only a local approximation, formally justifiable in the limit

Waves cannot grow to indefinitely large amplitudes. There may be
equilibrium solutions at larger | A {x) | beyond the range of the approximation
(8.8). More likely, other wave-modes attain magnitudes comparable with
A[V and a more complicated quasi-equilibrium state may be reached. When
this state contains a continuum of strongly interacting modes in both
wavenumber and frequency space, it is one of turbulence.

After Landau (1944), the nonlinear theory of hydrodynamic stability of
shear flows was advanced by Stuart (1958,1960) and Watson (1960). Stuart
(1960) derived (8.8) together with an expression for A by amplitude-
expansion techniques. A subsequent rigorous derivation of the bifurcating
periodic solutions also leads to result (8.9) (Joseph & Carmi 1969). More
recently, higher-order amplitude expansions have been carried out in the
quest for greater accuracy and wider range of validity (see §22).

(iv) Modulation in space and time
For nearly uniform wave-trains with amplitudes which vary

slowly with both x and t, Stewartson & Stuart (1971) developed a rational
nonlinear theory which is formally valid as R^ R(r The complex amplitude
Bj(x, 0 = eA then satisfies a nonlinear Schrodinger equation

dA d2A
•̂  a2 ~^f — hA+A I A 12A (8.10)

(see Zakharov 1968; Taniuti & Washimi 1968; Watanabe 1969; DiPrima,
Eckhaus & Segel 1971 for earlier related work). The scaled space and time
variables £, T are g = e(x — cgt), T = e2t and the small parameter e is chosen
proportional to | R— Rc \i; the O(l) scaled growth rate h is just —e~'V and
cg = 6Q/8a is the dimensionless group velocity. An account of this theory
and various extensions is given in Chapter 6. The case A = 0 reduces to
the equation for a linearized wave-packet noted in §7.3.

(v) Three- and four-wave resonance
When several dominant wave-modes are present, their mutual

interaction is significant. This is especially so when some of these modes
resonate. The simplest and most important case is three-wave resonance.

Suppose that three dominant linear modes have the form

Re {a;(0 exp [i(k,- x - Re w, t)]} 0 = 1 , 2 , 3 )

with small respective amplitudes a}. Interaction of any two such modes,
say ; = / ) and q, yields O(a2) quadratic te rms-of (8.1) or any other
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8 Introduction to nonlinear theory 73

nonlinear equation or boundary condition - with periodicities

exp {i[ ± (kp • x - Re <op t) ± (kQ • x - Re <oq t)]}.

Three-wave resonance occurs when any of these terms has the same
(x,/)-periodicity as that of the third wave-mode: i.e. when

k , ± k 2 ± k 3 = 0, Re{bjl±(l)2±oj3} = 0 (8.1 la, b)

with corresponding signs being chosen.
A satisfactory O(a2) approximation to (8.6a) when k, + k2 = k3 and

= Re{w3} is

r1a1 = A, a* a3 + O(a3) ]

a2 = A2af a3 + O{a3) I (8.12)

a3 = A3 ax a2 + O(a3) J

where

These equations for three-wave resonance, and their extension to wave
amplitudes with spatial as well as temporal variation, have many interesting
properties, discussed in Chapter 5. Note that whenever the linear growth
rates — vi are O(a) or less, the linearized approximation is unacceptable.

Not all systems exhibit three-wave resonance. Ironically, one of the first
searches for such resonance (Phillips 1960, 1961), among inviscid surface
gravity waves, yielded negative results and Phillips bravely continued his
analysis to third order in a, to determine the cubic interaction coefficients
of resonant quartets with

k ! - | - k 2 -k 3 -k 4 = 0 , w , + w 2 - w 3 - w 4 = 0. (8.13)

The resultant equations then have the form

4

da,/d/ = ia, £ glk \ak\
2 + iJf(ox at a3 a4 + O(a%

(8-14)

da2/d; = ia2 £ g2k | ak |2 + iJfoj2 at a3 a4 + O(a*),

da 3 /d / = \a3 £ g3lc\ak\
2 + i J fw 3 a ,a 2 a* + O(a4),

* r - l

4

da4/d/ = ifl4 £ gik\ak\
i + iXw4a,a2o* + O{a%

k-\

where grs (r,s = 1,2,3,4) and JT are known real constants and the (real)
linear wave freqencies wj equal (g \k}\)l where g is gravitational acceleration.
The properties of this system of coupled equations, and similar systems
which arise in other contexts, are discussed in Chapter 7.
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74 Introduction to nonlinear theory

When the amplitudes of resonant wave-modes vary slowly in space x
as well as in time, the derivatives d/dt must be replaced by partial-
differential operators d/dt + c<,J) • V where ĉ > denotes the (possibly complex)
group velocity of each mode and V is the gradient operator in the propa-
gation space of one, two or three dimensions.

Three important subclasses of three- and four-wave interactions deserve
special attention. These are (a) degenerate classes of three-wave resonance
such as kl = k2 = 2k3, iox = w2 = Jw3; (b) four-wave interactions among
'sidebands', k, = k2 = k3 — 3 = kt+S where 8 is small; (c) three- and
four-wave interactions between wave-modes of very different length scales,
(e.g. k2 = kj — 6 and k3 = S where | <S | <̂  | k, |) or very different frequencies
(e.g. w2 = w, — A, <o3 = A with |A|<^|w, | ) . Such cases are discussed
below, mainly in Chapters 5 and 7.

(vi) Wave-driven mean flows
Small-amplitude wave-trains usually have the capacity to induce

mean flows and to modify pre-existing ones by their O(a2) self-interaction.
Not only do such flows contribute at O(a3) to the evolution of the wave:
they are frequently very important in their own right, as agents for the
transport of mass and momentum. Such flows are subject to both inviscid
and viscous effects and the outcome often depends rather sensitively on
their relative magnitudes. For flows with a free surface, nonlinear boundary
conditions are important as well as nonlinearities within the fluid. Amplitude
modulations in space also induce mean flows. In the presence of a
pre-existing primary flow or a free surface, wave-driven O(a2) mean flows
make a significant contribution to the total energy of the disturbance. Such
considerations are among those addressed in the following chapter.
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Chapter four

WA VES AND MEAN FLO WS

9 Spatially-periodic waves in channel flows
9.1 The mean-flow equations

Incompressible flows comprising a primary unidirectional shear
flow and a small-amplitude two-dimensional wave-train have the dimen-
sionless form

u = (u, v, w) = [U(z) + 9^/3z, 0, - ^ / ]

fix, z, 0 = e Re (0(z) exp [iot(x - ct)]} + f s(x, z,t).J

Here, ^ is the disturbance stream function, e is a small real constant
characteristic of the wave amplitude and f2 denotes contributions to \jr
which are O(e2) or smaller. The flow is confined between rigid walls at z = 0
and z = H, where / /may be normalized to unity except for boundary-layer
flows. For the latter, H = oo and the normalized boundary-layer thickness
may be taken as unity.

The complex wave velocity c = cr+iCj is an eigenvalue and 0(z) is the
corresponding eigenfunction of the dimensionless Orr-Sommerfeld
equation (3.1b).

As indicated in the preceding chapter, the only O(e2) contributions to
5̂ 2 are a mean-flow component independent of x and a second-harmonic
proportional to exp(±2iax). The equations for the O(e2) mean flow
[w(2),0, w(2)] and pressure pl2) are found from (1.1)' to be

cz

w<2> = - M
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76 Waves and mean flows

the overbar denoting an x-average. By continuity, the boundary conditions
w(2) = 0 at z = 0, H require H>(2) and so 3/?(2)/3z to be zero everywhere.
Accordingly, 3/J ( 2 ) /3X must be a function of t only, since M(2) is independent
of x. This pressure gradient may be externally and arbitrarily imposed.
Two choices are commonly made: either dp^/dx = 0, giving a constant
imposed pressure gradient independent of e, or the amplitude-dependent
pressure gradient yielding constant mass flux at each instant t. The latter
choice requires that

f
Jo

(9.3)

The nonlinear term on the right of (9.2a) is just —3(w>v)/3z, the <9(e2)
mean Reynolds stress gradient. For inviscid flows, and in regions where
viscosity may be neglected when <xR is large, this term becomes

3z
(9 4)

where <j>(z) satisfies Rayleigh's equation (3.3). As q-^0+ , expression (9.4)
approaches zero except at any critical levels z = zc where U(zc) = c.

For neutral waves, the inviscid solution <j>'{z) normally has a logarithmic
singularity at such critical levels (see e.g. Drazin & Reid 1981) and the
Reynolds stress — uw there has a discontinuity of magnitude
|7ra(U"J\ {/cl)l0cl2> where the subscript ' c ' denotes evaluation at zc. A
study of the asymptotic structure, near zc, of solutions of the Orr-
Sommerfeld equation reveals the same jump in Reynolds stress, but spread
by viscosity over a layer of thickness O[(aR)~i]. The inviscid approximation
for the Reynolds stress is valid, outside this thin layer, whenever
I ci I ̂  O[(ctR)~k] and e is sufficiently small to permit linearization. Also,
it is valid everywhere along the real z-axis, except close to the walls, for
amplified waves with ct §> O[(aR)~i]. In contrast, for damped waves, there
is a finite interval around zc within which the inviscid estimate is invalid
(Lin 1955; Drazin & Reid 1981).

Near the walls, the linear eigenfunction <j>(z) has a boundary-layer
structure, with viscous effects confined to regions of thickness O[(aR)~^\.
These viscous boundary layers remain distinct from any O[(aR)~i] critical
layer centred on zc unless cT is close to the flow velocity U at either wall.
We assume in the following that this is so: when not, a different asymptotic
theory as a.R-+co or a direct numerical approach is required.

Though methods for numerical solution of the Orr-Sommerfeld equation
are well established, the use of asymptotic approximations is justified on
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9 Spatially-periodic waves in channel flows 77

two grounds: they yield firm results in limiting cases, where numerical
solutions are usually least reliable, and help provide valuable physical
insight into the processes of instability. It is true, however, that asymptotic
theories now play a less central role than previously. Very full discussions
of the asymptotic solutions of the Orr-Sommerfeld equation are given by
Reid (1965) and Drazin & Reid (1981).

9.2 Particular solutions
If the mean pressure gradient is held constant, /?<2> = 0 and

solutions of (9.2a) which vary as exp (2<ZCJ /) are

sinh [/t(z - Zj)] (dZ/dZi) dzt

+ A cosh fiz+B sinh /iz> (9.5)

where

fi = (2aCiR)K J{z) = i<x(<f>'<p* - $$'*).

The solution which satisfies M<2) = 0 on z = 0 and z = H has A = 0 and

B = -cosech/ t i / sinh {(i(H-zx)} (df/dzj dz,. (9.6)
Jo

For a,cxR P 1, (9.5), (9.6) and Rayleigh's equation (3.3) together yield
the inviscid approximation

. U" I <h I2uS*) = je e «.——r—^ (9.7)

a result most easily obtained from (9.2a) by ignoring the term in
R~l

 62H(2)/C3Z2. As q ->0+, this solution develops a singularity at the criti-
cal layer zc where U(zc) = cT unless U" or <j> vanishes there. Result (9.5)
shows how viscosity modifies this singular solution, the singularity as
Ci~>0+ being replaced by a narrow jet-like profile of width O[(aciR)'^\.
Note that the thickness of this jet greatly exceeds that of the oscillatory
viscous critical layer for <j>{z) when O[{<xR)~l] <^cx< O[(a/?)"^].

When acj R < 0(1), the inviscid expression (9.7) for the mean flow M<2)

is never a good approximation, even though the linear eigenfunction 0(z)
may be well-represented by inviscid theory over most of the flow domain.
For the mean flow, viscous diffusion operates on a time-scale which is O(R)
whereas the nonlinear forcing terms evolve with time-scale ^[(acj)"1]: the
former must greatly exceed the latter for the inviscid approximation (9.7)
to hold.
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78 Waves and mean flows

If a q R <^ 1 but <fi(z) remains well-approximated by the inviscid linear
solution, M<2) approaches the 'quasi-steady' approximation

r _ 7 Yl e2ac, ( (V <- z \
• Zc->J c ' ^ z ^ z c / ,n o\

on either side of any critical layer. However, the constants Kx and K2 cannot
immediately be evaluated by applying the no-slip boundary conditions at
z = 0 and z = // , because the inviscid approximation to <j>(z) is invalid in
the viscous wall layers of thickness O[(aR)~i]. The effect of these boundary
layers is considered below.

If one imposes a constant-mass-flux condition (9.3) in place ofp(2) — 0,
there is normally an additional O(e2) pressure gradient P which induces
a further contribution to M<2). The inviscid approximation (9.7) is an
exception, for it already satisfies (9.3). To the quasi-steady approximation
(9.8) a term in \RPz(z — H) must be added, with appropriate P. For
boundary-layer flows (H = oo), there can be no such pressure gradient and
(9.3) cannot normally be satisfied for x-periodic wave-trains. Furthermore,
the quasi-steady solution can become established throughout the infinite
flow domain only when Kx = Kz = 0.

Since the complete solution «<2)(z, /) must correspond to some given
initial state M(2)(Z, 0), the above particular solutions which vary as exp (2aCj f)
must be supplemented by a complementary function comprising the free
modes of the diffusion equation. When H is finite, these are

£ Cne-»<sin[(/fcrn)M (9-9)

with eigenvalues crn — R'^nn/H)2 determined by the no-slip boundary
conditions M<2>(0) = u(2)(H) = 0. The constants Cn may be found in terms
of the initial distribution «<2)(z,0) and particular solution (9.5). Since all
these modes decay with time, (9.5) eventually dominates when the waves
are neutrally-stable or amplified. But this is not necessarily so when the
waves decay with time. Solution (9.5) then dominates, as f->oo, only if the
slowest damping rate at

1 = R~1(n/H)2 of the free modes exceeds 2a | Cj |.
The corresponding diffusive solution for boundary-layer flows with H = oo
is readily constructed.

9.3 The viscous wall layer
In a thin oscillating boundary-layer of thickness O[(aR)~i] adjacent

to each wall, the Orr-Sommerfeld equation (3.1) for the wave motion may
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9 Spatially-periodic waves in channel flows 79

be approximated by

\aR( Uw-c)<t>"-0iv = O, (9.10)

where C/w is the value of U(z) at the wall. This approximation is valid
provided acR\Uw — c\ is sufficiently large (Drazin & Reid 1981, Chapter
4). Its general solution is

f^Ae-^+B^+C+Dz, A = [ia/?(t/w-c)]i, (9.11)

the terms in C and D being vestiges of the inviscid solution. Of the two
independent viscous solutions, one grows and the other decays with
distance from the wall. Only the latter may be retained, in order to match
with the inviscid solution in the region beyond the wall layer.

For the wall layer adjacent to z = 0, the solution which satisfies the
boundary conditions 0(0) = 0'(O) = 0 has B = 0, C = -A and D = AA.
On substituting this approximation for <j>(z) into (9.2a), the solution for
«<2) which varies as exp (2aCj t) in the wall layer may be found. Provided
ak i l 4 1,

in this layer and so the time-derivative may be ignored. Also, any O(e2)
pressure gradient has negligible effect. The appropriate quasi-steady
approximation follows by direct integration, on using the boundary
condition M(2)(0) = 0. Just beyond the wall layer, at z — 8 say, where
| A18 > 1 but 8 < 1 still, M(2> is found to equal

«<>>(*,O = ie>e '" e . t
|^

i )J_ ' c | (9.12)

at leading order. Moreover, D is just the value of <j>\0) given by the inviscid
outer solution.

Result (9.12), together with a similar one at z = H, supply the missing
conditions required to determine the arbitrary constants of the quasi-steady
approximation (9.8). Note that (9.12) is independent of Reynolds number
R (provided this is large). The induced velocity (9.12) just outside the wall
layer therefore persists even as R^-co, provided (9.10) remains a valid
approximation within the wall layer.

The above result is also applicable to the flow induced near the bottom
of an open water channel along which propagates a train of constant-
amplitude surface gravity waves (Longuet-Higgins 1953; Phillips 1977).
Experiments by Collins (1963) and others show satisfactory agreement
with (9.12), which then gives a corresponding dimensional velocity

(9.13)
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80 Waves and mean flows

Figure 4.1. Wave-driven mean flow correction uw for critical plane Poiseuille flow:
(a) with constant mass flux (from Reynolds & Potter 1967), (b) with constant pressure
gradient. The normalized coordinate z equals 0 at the channel centre and 1 at the wall.
Approximate widths of viscous critical layer and wall layer are denoted by i—i.
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10 Periodic waves on deformable boundaries 81

where a is the wave elevation at the free surface, k the dimensional
wavenumber, h the mean water depth and <o the wave-frequency. A much
earlier example, in acoustics, of a mean flow driven by an oscillatory
boundary layer was given by Rayleigh (1896, p. 340). Further examples
are discussed by Stuart (1966), Riley (1967) and Kelly (1970).

Wave-driven mean flows in closed channels have been calculated
numerically, from (9.2) and the Orr-Sommerfeld equation, by Reynolds
& Potter (1967), Pekeris & Shkoller (1967) and others. Figure 4.1 (a)
shows Reynolds & Potter's steady-state velocity profile u(2)(z) for plane
Poiseuille flow at the critical point for neutral stability: a =1.02,
R = 5772, c - 0.264 in the usual normalization.

Since Reynolds & Potter employed the constant mass-flux condition
(9.3), their profile (a) is nearly parabolic in the region between the two
critical layers. The lower curve (/>) shows the corresponding mean flow with
zero mean pressure gradient. The location and approximate width of the
viscous critical layer and wall layer are indicated. This curve is in broad
agreement with the asymptotic result (9.8), despite the fact that the critical
layer is rather close to the wall in this example.

10 Spatially-periodic waves on deformable boundaries
10.1 The Eulerian drift velocity of water waves

When a bounding surface of the flow is deformable, the boundary
conditions adopted above are inappropriate. For surface capillary-gravity
waves with no primary flow U, the presence of viscosity, however small,
modifies the linearized inviscid flow near the free surface. This modification
takes the form of a thin oscillatory boundary layer of (dimensional)
thickness O[(v/u)fi\, adjacent to the curved free surface, where v is
kinematic viscosity and w is the wave frequency. In the presence of a
primary shear flow, a similar boundary layer occurs, with equivalent
dimensionless thickness 0{[a,R(Us — cr)]~*} where US is the (dimensionless)
flow velocity at the mean free surface. This boundary layer is rather similar
in structure to that at a plane rigid wall discussed above, but it is best
described in curvilinear co-ordinates which follow the deformed surface
(Longuet-Higgins 1953; Craik 1982b).

If the surface is truly free, supporting no tangential stress, this oscillatory
boundary layer is rather weak, having vorticity which is O(aka>), where ak
is the maximum wave-slope at the surface. By proceeding to O[(ak)2], one
may find the mean flow induced within this weak boundary layer. When
the deformable surface is free of stress, there is found to be a non-zero
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82 Waves and mean flows

velocity gradient just beyond the viscous layer. For free-surface waves in
water of depth h which is otherwise at rest, this is

d«<2Vdz, = -2a2k*aj cothkh (z, = 0+) (10.1)

where w<2> is now the dimensional mean horizontal velocity just beyond
the oscillatory boundary layer and zx is dimensional distance measured
vertically downwards from the mean surface level.

For waves on an interface between viscous fluids of differing densities,
the oscillatory boundary layers on either side of the interface are stronger,
with vorticity which is O[ak(i)J^,]. Here, Rw = u)/k2v g> 1 is a 'wave
Reynolds number'. Such boundary layers induce mean flow gradients
stronger than (10.1), of magnitude O[a2/c2w/?i] when the viscosities of the
two fluids are comparable. Details are given by Dore (1970,1978a, b), who
points out that, even at an air-water interface, result (10.1) ceases to be
a good approximation for waves more than a few metres in length.

A similar increase in the strength of the oscillatory boundary layer,
particularly important for short waves, may be brought about by contami-
nation of an otherwise free surface by oil, detergents or other organic
substances. Such contaminants impart to the surface an elasticity due to
local changes in surface tension associated with their varying surface
concentrations. Scott (1979) gives a comprehensive bibliography of work
on surface-contamination effects. Such contamination greatly enhances the
attenuation rate of short waves by viscosity, because of the increased
vigour of the shearing oscillations within the boundary layer. It also gives
rise to an enhanced mean flow gradient. In the limiting case of an
inextensible surface which supports no mean concentration gradient of
contaminant, Craik (1982b) has shown that (10.1) is replaced by

dM<2)/dzj = -2~ia2k2(o coth2khJ^,. (10.2)

This is likely to be a satisfactory approximation for sufficiently short
capillary-gravity waves with a contaminated surface. Indeed, it seems that
(10.1) may never be a good approximation at a contaminated air-water
interface!

For water waves with no primary mean flow, there is no critical layer.
Accordingly, the predicted quasi-steady second-order Eulerian velocity
outside the oscillatory boundary layers at z1 = 0 and h is just

M<2, = (du<2>/dz l)o(zI-/0 + (w(2))A (0+ < z, < *_) (10.3)

when /><2> = 0. Here, (u<2\ is given by (9.13) and (dM<2>/dz1)0 by (10.1),
(10.2) or similar result. For waves in channels closed at the downstream
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10 Periodic waves on deformable boundaries 83

end, the zero-mass-flux condition must apply instead of p(2) = 0. The mean
surface would then adjust itself to incline at a slight angle to the horizontal,
so that gravity can supply the necessary small pressure gradient
6/>(2)/3x = pF. The velocity profile (10.3) is then augmented by a term
\v~lPzl (z1-h), with P chosen to satisfy (9.3).

As the depth h increases, so does the time necessary to establish a
quasi-steady mean flow. At shorter times, the solution u(2)(z, t) has a
boundary-layer structure. The thickness of the boundary layers at the
surface and the bottom increases with time and the quasi-steady flow is
eventually established, unless other factors intervene. If the wave-train is
not effectively infinite in length, but is generated by a wavemaker at some
fixed location, the quasi-steady mean flow retains a boundary-layer
structure near the wavemaker: the boundary layers then grow in thickness
with downstream distance, rather than time. Such problems have been
treated by Dore (1977) and Dore & Al-Zanaidi (1979). In infinitely deep
water, an ever-deepening boundary layer would occur; but Madsen (1978)
has shown that inclusion of the Coriolis force again permits a steady-state
solution.

If a spatially-periodic wave-train decays with time under viscous
action - as it must unless externally maintained - the quasi-steady
solution (10.3) dominates the diffusive modes (cf. equation 9.9) only if the
decay rate is sufficiently small. This was overlooked by Liu & Davis (1977)
whose particular solution was generalized by Craik (1982b). Coriolis
terms were included by Weber (1983).

Craik (1982b) also gives a physical explanation of the mean flow
boundary condition for du(2)/dzl. In an Eulerian representation, all the
mean momentum

J( = ipcoa2 coth kh (10.4)

per unit horizontal area within the fluctuating motion is concentrated
between the horizontal planes containing the crests and troughs of the
waves (Phillips 1977, p. 40). A decaying wave loses this momentum at a
rate 2aM where cr is the exponential decay rate of the waves. This rate
of momentum loss induces a stress just below the level of the troughs. Part
of this is a constant Reynolds stress —puw transmitted to the bottom
boundary layer: this part equals 2&J( where

<r = \k(2(i)vfi cosech 2kh

is the decay rate due to bottom friction alone. The remainder, 2(«r—CT)J(,
equals the mean Eulerian stress ppdu^/dz^ Since the presence of surface
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84 Waves and mean flows

contamination or a superposed viscous fluid increases the decay rate cr
above that for a truly free surface, it naturally causes an increase in
(iu{2)/dzx. For waves maintained at constant amplitude by externally-
imposed spatially-periodic normal stresses at the surface, similar mean
velocity gradients are induced, the momentum of the fluctuating motion
then being continuously replenished by the imposed stresses.

The second-order mean Eulerian velocity w<2) differs from the mean
velocity of individual fluid particles. The latter is a Lagrangian mean, say
w^', and the difference i42) = u^ — u(2) is known as the Stokes drift. For
a truly inviscid fluid, M<2) would be identically zero, since there would be
no boundary layers to drive the flow; but a second-order Stokes drift «42)

remains, as Stokes (1847) first showed. However, for real fluids, results like
(10.1) and (10.2) demonstrate that the induced Eulerian velocity M(2) can
never be ignored, as it does not vanish when the viscosity approaches zero.
The Lagrangian velocity gradient dw^/dzj just below a clean free surface
is precisely twice that given by (10.1), because of the contribution from
the Stokes drift. For interfacial waves, and for waves at a contaminated
surface, the Stokes-drift contribution to du^/dz is normally a small part
of the whole.

Various measurements of drift-current profiles M^2> have been made,
most notably by Russell & Osorio (1958), but none shows satisfactory
agreement with theory over the whole water depth. There are formidable
experimental difficulties in controlling surface contamination and in
eliminating end and side-wall effects. Also, the unidirectional drift-current
profiles calculated above are almost certainly unstable to spanwise-varying
disturbances for all but the smallest of wave amplitudes (see Craik 1982b
and §13.2 below).

Mean flows generated by standing surface gravity waves and interfacial
waves may be calculated rather similarly; see Longuet-Higgins (1953),
Dore (1976), Crampin & Dore (1979).

10.2 'Swimming' of a wavy sheet
In a pioneering study of the propulsive mechanisms of micro-

organisms, Taylor (1951) considered the idealized model of an almost plane
infinite sheet which undergoes small wave-like distortions. If w and k are
the frequency and wavenumber of such undulations of periodicity
exp [i(kx — cut)], in a reference frame fixed relative to the unperturbed sheet,
a characteristic Reynolds number is R = io/vk2 where v is the kinematic
viscosity of the surrounding fluid. Taylor considered R to be sufficiently
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10 Periodic waves on deformable boundaries 85

small to allow the Stokes approximation: in this case, the streamfunction
\jr satisfies the biharmonic equation in x and z,

V2( V V ) = 0, V2 = 82/6x2+82/9z2,

u = dfr/dz, w = — dft/dx.

Here, (u, W) are the Cartesian velocity components along and normal to
the plane z = 0 denoting the unperturbed sheet position.

Since the biharmonic equation is linear, nonlinearity enters the problem
only through the kinematic boundary conditions on the sheet, that

u(xs, z9, t) = - j ^ , w(xs, zs, t) = ~ , (10.5)

where [xs(t), zs(t)] denote the position co-ordinates of material points of
the sheet. For plane waves,

xs = x+acos(kx—u)t—<j>), zs = bsin(kx—(ot) (10.6)

at leading order in wave amplitude, where the real constants a, b and $
depend on the nature of the distortion of the sheet. For instance, when
a 4= 0 and 6 = 0, the sheet remains plane and performs purely tangential
oscillations involving extension and compression, while, if b 4= 0 and a = 0,
the leading-order displacement is purely perpendicular to the sheet and any
extension or contraction enters only at O(b2).

A small-amplitude expansion of ft may be developed in ascending
powers of ak and bk, together with a Taylor expansion of the boundary
conditions (10.5) about (JC, 0, t). Imposition of the remaining far-field
boundary conditions 9M/9Z, n>->-0asz->-±oo leads to a non-zero second-
order mean velocity, as z^-+ oo, of

u=Us = frk(b* + 2abcos<}>-ai). (10.7)

Clearly Us is the (right-to-left) swimming speed of the sheet relative to the
undisturbed fluid at infinity. The magnitude and sign of Us depend on
the values a, b and <j> (see Childress 1981, for further details).

Taylor (1951) continued this analysis to higher order in wave amplitude
for the case of a strictly inextensible sheet; for this, a — 0 and the kinematic
conditions (10.5) yield

u = \a)kb* cos[2(foc -ti)i)] + O(b*),

w = —(t>b cos (kx — u>t) + O(b3)

on the surface z = b sin (kx — ojt). The resultant second-order mean velocity
as z->-+ oo is found to be

u = Us = &kb\l -$b2k2) + O[(bk)6]. (10.8)
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Taylor's analysis was generalized to all finite Reynolds numbers R by
Tuck (1968) and Brennen (1974) (see also Childress 1981). In this
extension, nonlinear inertia terms contribute to the solution, the biharmonic
equation being replaced by the full two-dimensional vorticity equation.
Nevertheless, it must be assumed that the wave amplitude b is such that
nonlinear convective terms remain small compared with viscous ones: that
is, R is finite but bkR <̂  1 as well as (bk)2 <^ 1. Tuck found that

Us = \ojkb2

2F(R)
+o[(kby. (10.9)

which is consistent with (10.7) as R^*0 and yields precisely one half of
Taylor's value as R^cc and kb-^-0.

Quite clearly, the wavy sheet is not an acceptable model for flagellar
propulsion o f long-tailed' micro-organisms like spermatozoa. But, despite
the obvious idealizations, this model is believed to be relevant to certain
types of ciliary propulsion, with the wave-envelope describing the
positions of the tips of closely-spaced beating cilia (Brennen 1974;
Blake & Sleigh 1975).

The above solutions have the property that no net force is exerted on
any portion of the sheet. Suppose, on the other hand, that a long but finite
wavy sheet must develop a net thrust in order to overcome the viscous drag
on a 'head' or other inactive portion of the body. This can only be
accomplished by the exertion of an equal and opposite force on the
surrounding fluid through a mean tangential stress. But, in this event, there
is no quasi-steady x-independent solution when the surrounding fluid is
unbounded. Instead, a boundary-layer structure must develop, growing
either with x or /.

As a simple example, consider the configuration of Figure 4.2. In this,
an infinitely long slender body has a plane lower boundary situated a

Figure 4.2. Slender-body configuration which cannot support constant progressive
motion by means of undulations.
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11 Modulated wave-packets 87

distance h from a plane stationary wall, the upper boundary undulates with
constant amplitude and the surrounding fluid extends to z = oo. The
Stokes approximation is assumed to hold. To sustain a constant swimming
speed — Us, the upper boundary must provide a net thrust —pvUJh per
unit area to counteract the viscous drag on the inert lower boundary: but
this is impossible! If released from rest, the body would at first accelerate;
but as the viscous boundary layer above the upper surface deepens, the
swimming speed must eventually decay to zero. The best swimming
strategy in this instance is one of' stop-go': thrust is provided with least
diminution in speed when the upper boundary layer is thin. In contrast,
if the lower boundary undulates and the upper is inert, a uniform
swimming speed can be maintained.

11 Modulated wave-packets
11.1 Waves in viscous channel flows

Suppose that a primary unidirectional shear flow U(z) is modified
by a slowly-modulated, almost two-dimensional wave-train, with horizontal
local (downstream) wavenumber everywhere close to a0. The velocity field
has the form

u = U(z) + e dijrjdz + O(e2), v = O(e2),

where

i/r, = Re {A(x, y, t) <j>{z) exp [icco(x - ct))}; (11.1)

e is a small parameter which characterizes the wavemotion and A(x, y, t)
is a complex amplitude function which varies slowly in space and time.
When the mode with wavenumber a0 is neutrally stable (c; = 0), the slow
modulation is best described by new co-ordinates

E, = e(x-cgt), i} = ey, T = e2t (11.2)

where cg = d(acT)/da is the real part of the wave's group velocity.
Obviously, in the linear approximation, all weak amplitude modulations
of a neutrally stable wave-train are carried along with the group velocity
cg. Evolution on the slow time-scale T is associated with cubic nonlinearities
studied in Chapter 6, and plays no part in the analysis at this stage.

As in Davey, Hocking & Stewartson (1974), the quasi-steady mean-flow
and pressure modifications may be expressed as

= e2[w2, v2, w2] + e3[u3, v3, w3] +... 1
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88 Waves and mean flows

where u2, v2, w2, u3, v3, w3 are functions of z, £, ij and T. The resultant 0(e2)
mean-flow equations are (cf. equations 9.2)

= \icc0R\A \*D[W-W], 1

I (11.4a,b,c)

Dw2 = 0, (D = d/dz). J

The first two are just the momentum equations in the x and y directions
and the third is the equation of continuity. Also, at O(e3), the continuity
equation is

8M2/8£ + dvjdrj + Dw3 = 0. (11.4d)

For definiteness, we follow Davey et al. (1974) and confine attention to
the critical neutral mode of plane Poiseuille flow between parallel walls at
z = + 1. For this,

t / ( z ) = l - z 2
 ( - 1 < Z < 1 ) , R = 5112, a o =1 .02 (11.5)

and (j>(z) is an even function of z. The boundary conditions are
u = v = w = 0onz=±l and a solution of (11.4a-c) is

u2 = - K1 - z2) R e/\/8g + \A |« S(z),

h (ii.6)

where 5(z) is an even function of z defined by

5(z) = -{ia.R f (<{>*<?>'-<f><p*')dz (0 < z < 1).

Also, from (11.4d),

and so
32P:

For a given amplitude distribution /!(£, J/,T), the 6>(e) pressure field may
be found from (11.7) and the O(e2) mean flow determined from (11.6).

For modulations independent of the spanwise co-ordinate ij,

3P,/3£ = 3/?"11-4 I2 fs(z)dz (11.8)
Jo

there being no O(e2) pressure gradient when | A | = 0. Accordingly, v2 = 0
and

f (11.9)
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which satisfies the constant-mass-flux condition (9.3) at each station £.
Numerical computation, employing the eigenfunction <f){z) of the critical
neutral mode of plane Poiseuille flow normalized so that 0(0) = 2,f yields

S(z)dz = -87.2. (11.10)
Jo

Here, R~* dS/dz is just the wave Reynolds stress, which is virtually zero
in the inviscid region \z\< zc- between the two critical layers. The term
| A |2 S(z) of M2 is therefore nearly constant in this region and it varies almost
linearly with z between critical layer and wall layer in accord with the
asymptotic result (9.8). Result (11.9) is precisely that of Reynolds & Potter
(1967), shown in Figure 4.1 (a).

For ^-dependent modulations, the spanwise pressure gradient cannot be
ignored and one first must solve the Poisson equation (11.7) before
determining the velocity components (11.6).

The above quasi-steady theory also holds for small linear growth or
decay rates, such that \acci\R-4 1, on retaining exponential factors in
exp (2aq t). However, the quasi-steady state is attained only if sufficient
time is available for the effect of viscous diffusion to penetrate throughout
the mean flow. Since this viscous time scale is O(R) and variations in | A |2,
convected past a fixed observer, occur on a time scale which is
Oicg11 AidA/dx)"1|}, the quasi-steady solution is attained only when the
modulations are sufficiently weak that

|ctcj|, lA^dA/dxKR-1. ( l l . l la ,b)

Of course, this is tacitly assumed by the scaling (11.2), for e is an over-riding
small parameter which approaches zero and R is a fixed, though fairly
large, finite constant. But (11.1 lb) is a very stringent condition requiring,
when R is O(103), that the wave amplitude changes little over as many as
a thousand wavelengths.

An unsteady, inviscid alternative to the above quasi-steady approxi-
mation may be developed when the dimensionless ^(e"1) length scale
| AidA/dx)'11 of the modulation, or the amplification time scale {ac^1,
is small compared with R. Such an approximation led to result (9.7) in the
case of spatially-uniform waves. When the modulated wave amplitude has
the form A = B(g, rj) eaei*, the viscous terms D2u2 and D2v2 of (11.4) are
replaced by respective acceleration terms

— eR{2aci — cg 9/9£) u2, — ei?(2aCj — cg 9/9£) W2> ^i = e""1^

t This normalization accords with Davey et al.\ 0(0) = 1 as their definition of fl

differs from (11.1) by a factor of 2.
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90 Waves and mean flows

for solutions which vary in time as exp (2ac11). It readily follows that P1 = 0
everywhere for localized wave-packets with P1->0 as |g | and |i/|->ce.
Accordingly, the required particular solution is

ioce2acit , f00

w2 = - D[(j>*(p'— <j>(j)*'\ exp[2acj(§ — E,^)/Cg\ \ B(E,, if) | 2 d£ , ,
4ecg jg

v2 = 0, (11.12)

which generalizes the inviscid approximation (9.7) to cover modulated
waves.

For modulated wave-packets in boundary-layer flows of unbounded
extent as z -» oo, a quasi-steady approximation can never be valid throughout
the flow domain, even when q = 0, unless M2 is identically zero above the
critical layer. If the x-dependence of the boundary-layer profile can be
neglected - and this is not justified in general - an outer, inviscid solution
with i \ = u2 = 0 may have to be matched to a time-dependent viscous
solution with non-zero M2, valid in a layer of ever-growing thickness. For
the asymptotic suction boundary-layer, which is independent of x, the
constant velocity component normal to the wall is responsible for extra
convective effects, which limit the extent of the viscous region and so permit
a quasi-steady flow. This case has been studied by Hocking (1975).

11.2 Waves on a free surface
Considerable modifications are necessary to deal with weakly

nonlinear modulated waves on a free surface. This is because of the
nonlinear kinematic and stress boundary conditions at the deformable
boundary. The role of these boundary conditions is most simply demon-
strated for a modulated train of gravity waves in strictly inviscid fluid and
it is this which is first discussed. But it should not be forgotten that
second-order flows driven by viscous, oscillatory boundary-layers do not
generally vanish in real fluids as R^oo.

A rather general treatment of slowly-varying non-dissipative wave-trains
is that pioneered by Whitham (1965 et seq.) and extended by Hayes (1973)
(who lists relevent articles to that date). This employs a locally-averaged
Lagrangian or Hamiltonian representation. In skilled hands, this powerful
tool copes successfully not only with small local variations in wavenumber
and frequency about fixed real values, but also with substantial overall
changes, such as occur in fluid of varying depth, provided these changes
take place sufficiently gradually. This theory is fully described in Whitham's
own monograph (1974) and elsewhere (e.g. Leibovich & Seebass 1974) and
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11 Modulated wave-packets 91

so is not systematically expounded here; but several aspects are discussed
later (§§11.4-11.5).

Unfortunately, Whitham's formulation lacks any definite measure of the
'slowness' of the modulation required for the theory to remain valid, for
no small parameter is explicitly introduced (but see Whitham 1970). As
Davey & Stewartson (1974) point out, 'since the rigorous theory of such
equations is in its infancy many students feel a certain unease in using
their solutions widely, particularly as the leading term of some asymptotic
expansion': though further advances have been achieved since this
statement was made, it remains broadly true.

For the moment, we continue to employ a multiple-scales approach,
following that developed by Hasimoto & Ono (1972) and Davey &
Stewartson (1974). This yields results in agreement with Whitham's while
providing an explicit scheme of approximation. In one sense, a multiple-
scales analysis is more restricted than an averaged-Lagrangian method in
that it necessarily deals with weak modulations about a fixed frequency
and wavenumber; in another, it is more general, for extension to dissipative
flows is relatively straightforward in principle, whereas no Lagrangian then
exists. Attempts to extend Whitham's variational method to dissipative
flows (Usher & Craik 1974; Jimenez & Whitham 1976; Itoh 1981) have
had some limited success.

Following Davey & Stewartson (1974), we consider an in viscid liquid
of depth h with lower rigid boundary z = —h and undisturbed free surface
at z = 0. There is no (3(1) primary flow and the surface supports a
modulated wave-train with elevation z — Qx, y, t) given by

£ = vettg-^Ad, 7/, T) exp [\{kx -cot)]+c.c. + O(e2),

where ' c . c ' denotes complex conjugate. Here, k, w are the dimensional
wavenumber and frequency of the wave-train, g, rj, T are the dimensional
counterparts of (11.2), e is a small parameter which characterizes the
wave-slope and g is gravitational acceleration. The dispersion relation for
gravity waves is

a) = (gkoj*, <r = tanh kh

and the group velocity cg is Aw/dk.
The liquid motion is described by a velocity potential <f>(x, y, z, t), with

u = V<}>, which satisfies Laplace's equation in — h < z < £. The bottom
boundary condition is just d<f>/dz = 0 on z — — h. The nonlinearities arise
in the two surface boundary conditions, namely the kinematic and pressure
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92 Waves and mean flows

conditions at z = f:

6z 3* 3x6* dydy' U JJ

^ gf. (11.14)

The O(e) wave motion is

0u = eA ^ exp [i(fcx - <at)] + c.c. (11.15)

Because of the modulations, one must include an O(e) aperiodic function
ei>oM<V'T) m t n e velocity potential and an 0{e2) aperiodic surface
displacement e2£02(£, r/, T) in the expansions of <fi and £in powers of e. From
(11.14),

*£oi = c g ( 3 9 i 0 1 / 3 | ) - ^ ( l - ^ ) M | 2 . (11.16)

Also, on integrating Laplace's equation over the depth h and using (11.13)
and (11.16) one obtains

This coupled system may be integrated to yield <j>n and £02 subject to
appropriate boundary conditions: e.g. the 'far-field' boundary conditions
V<fi01->0 as £,2 + i)2^*oo, for a localized wave-packet with amplitude A
which decays to zero sufficiently far from its centre.

The O(e2) horizontal mean flow e2[3^01/3^, 3^0 1 /3J/] is independent of
depth 2 and, to preserve continuity, there is a consequent O(e3) depth-
dependent vertical velocity component

-e3(z+/?)(3V3^ + 32/3i/2)^01. (11.18)

When the modulation is independent of the spanwise variable y, the
horizontal mean O(e2) velocity is solely in the x-direction, of magnitude

and the O(e2) mean surface displacement e2£O2 is

(11.20)

The constant is chosen to conserve the total volume of fluid: for a localized
wave-packet, with \A\2 < o(|x| -1) ad |JC|->OO, it approaches zero.

For waves in deep water (kh ^ 1), w and cg are independent of h and
a- = 1: accordingly both mean flow and surface displacement approach
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11 Modulated wave-packets 93

zero as kh ̂ -oo (provided the wave-packet remains long compared with the
depth: ekh < 1). However, the local x-momentum of the mean flow,
integrated over the depth, remains finite, as

JK1*s-2p<*k*u-1\A\* = -tfwcP (M->oo) (11.21)

per unit area of surface, where a is the modulated surface-wave amplitude.
This exactly cancels the local mean momentum (10.4) associated with the
fluctuating motion of deep-water waves. The cancelling of these contribu-
tions implies that, although work must be done, no net impulse need be
exerted in order to generate a wave-packet in deep water. But, for finite
depths h, the mean-flow momentum and that of (10.4) do not exactly cancel
and the wave-packet possesses a finite net momentum. If, in creating a
localized disturbance, an excess (or defect) of momentum is supplied over
that required by the wave-packet, additional small changes in surface level
are produced which eventually propagate far away from the main
disturbance with the speed ± (gh)i of long surface waves. A comprehensive
discussion of questions relating to 'wave momentum' is given by Mclntyre
(1981 and forthcoming monograph).

Results (11.19) and (11.20) establish that when a localized inviscid,
two-dimensional wave-packet propagates through otherwise undisturbed
water, the induced mean flow which accompanies the packet is usually in
the direction opposite to that of the packet's progress and the mean surface
level is depressed below its equilibrium value. This is so provided cg < (ghfi,
which is generally satisfied for gravity waves. Since cg->(gh)l as £/?->-0, the
effect is most pronounced in relatively shallow water. Observational and
experimental evidence support these conclusions for waves of small
amplitude (Longuet-Higgins & Stewart 1962; Leblond & Mysak 1978) but
one must guard against unwarranted extrapolation beyond the range of
validity of the theory. In particular, breaking waves exhibit an opposite
effect.

Results (11.19) and (11.20) may be derived rather more simply, if
somewhat less rigorously, by introducing the concept of' radiation stress'
(Longuet-Higgins & Stewart 1960,1962). In the present context, this is the
depth-integrated quantity

511(g,r)=f (p+pu*)dz~\ pg(£-z)dz (11.22)

where u = 3^/3x and overbars denote local horizontal or time averages,
taken over the fundamental wavelength or wave period. The first integral
represents the total averaged x-momentum flux across each vertical plane
£ = constant and the second denotes that part of the flux attributable to
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94 Waves and mean flows

hydrostatic pressure alone. At leading order in e, d/dt = — cg 8/3x and the
depth-integrated equations of continuity of mass and momentum reduce
to

g = 0,
g = — 8 S U / 9 J C

where

(cf. Longuet-Higgins & Stewart 1962). Here, M is the total mean horizontal
momentum, defined as

M
a

= pudz
J-ft

and £ is the O(e2) mean surface displacement. The term
derives from the horizontal hydrostatic pressure gradient associated with
the mean surface slope. The solution corresponding to (11.19) and (11.20)
is just

— Su

which yields the O(e2) depth-averaged mean velocity

where Jt is the momentum (10.4) within the fluctuating motion only. Since
the mean flow is irrotational, M2 cannot vary with z and this expression
reduces to (11.19).

Of course, the above inviscid results are modified by viscosity, because
boundary conditions similar to (9.13) and (10.1) or (10.2) must be applied
just outside the viscous boundary layers at the bottom and the free surface.
If, in contrast to (11.11b), \A~xAAjAx\ f> i?~\ the influence of viscosity
is confined to thin, but growing, boundary layers as the wave-packet goes
by. For example, a wave-packet of finite length L would leave behind it
boundary layers of thickness O[(vtL)l], where tL — L/cg is the time taken
for the wave-packet to pass. Subsequently, these boundary-layer flows
further spread and decay by viscous diffusion. Inevitably, analysis of such
problems is rather involved: the most comprehensive treatment so far is
that of Grimshaw (1981b). Grimshaw (1977,1979a, 1982) has also studied
the mean flows generated by internal-wave-packets, both with and without
viscous dissipation and primary shear flow. The internal-wave problem is
further complicated by possible resonances involving the modulated mean
flow and long internal-wave-modes (see also §19).
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11 Modulated wave-packets 95

11.3 Wave propagation in inhomogeneous media
Longuet-Higgins & Stewart (1961, 1962) employed a 'radiation

stress tensor' Sa/} to determine the evolution of water waves in inhomo-
geneous environments with variable depth or horizontal current (see also
Phillips 1977; Leblond & Mysak 1978). The local 0(e2) depth-integrated
mean energy density E associated with O(e) fluctuations u' only is

ro
E = p \ u'2 dz = \pga2

J-ft
for gravity waves with local amplitude a. (Recall that kinetic and potential
energies are equal for such conservative oscillations.) Suppose that such
waves propagate through a known slowly-varying, depth-independent,
horizontal current U(x, y, t) and that the depth h also varies slowly.

When the imposed current variations are large compared with any O(e2)
induced mean flow, the former may be retained while disregarding the
latter and it may be shown that E evolves subject to

0,1

t
at 0(e2), with summation over repeated indices. Here, Vx = (3/3x, d/dy),
cg is the group velocity observed in a frame moving with the local mean
flow U, k = {kx,k^ denotes the horizontal wavenumber vector and w the
local frequency as seen by an observer moving with the current velocity
U. Accordingly,

cg = 3w/3k, w2 = gIkI tanh \kh\.

Note that Sa/3 is determined, at O(e2), from the O(e) wave field and that
equation (11.23) is linear in E.

The wave-train is assumed to remain 'coherent': that is, it may always
be described, locally, in terms of a single wave-mode of wavenumber k.
Its frequency relative to the fixed reference frame is w' = w + U k , where
o) satisfies the usual linear dispersion relation given above. The periodicity
may be written as exp(i#), with x = k-x—&/r+A, where A is some phase
shift. The quantities k, w, A may vary slowly in space and time and lines
of constant phase carry constant values of x- To define k and w
unambiguously, one chooses k = V#, « ' = —3^/3/. It follows that

V x k = 0, 3k/3f+V(w + U-k) = 0. (11.24a,b)

The latter is sometimes called the equation of 'conservation of wave
crests'. For given U(x, y, t) and h(x, y, t), the variations in k, w and /sinay
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96 Waves and mean flows

be calculated from the above equations. The approximate equations out-
lined above constitute' ray theory', so named by analogy with geometrical
optics. They remain valid provided the wave-train is coherent, slowly-
varying and of sufficiently small amplitude to permit linearization. We here
consider just two illustrative examples, others being given by Longuet-
Higgins & Stewart (1961, 1962); Peregrine (1976), Phillips (1977) and
Leblond & Mysak (1978).

Case (a): U = 0. With variable depth h(x, y) but no 0(1) mean flow,
solutions with time-independent k must have constant frequency w, from
(11.24b). For simplicity, we restrict attention to the shallow-water case
| kh | -4 1; then, the dispersion relation is w = (gh)% | k |, on choosing the
positive root, and cg = (gh$k/\k |. Also from (11.24a), dkjdx = dkjdy,
where k = (£x, k2).

A solution of (11.23) and (11.24) for which h, kt and E depend on x only

Ux) mo+kio)ho -i*
Ki\x) — h(x) ' ~

E{x)~W)Hxy ( }

where kx, k2, is and h take the constant values fc10, kw, Eo and h0 respectively
at x = 0. The wavenumber component k1 remains real for all x if and only

1

everywhere. If h{x) increases towards the value

at some x = x*, kx-^Q and E^oo there. Although the 'slowly-varying'
approximation breaks down before this point is reached, relatively large
amplitudes must nevertheless arise as waves approach this depth.

Wave refraction occurs because the phase speed increases with depth.
The x-component of group velocity falls to zero at x* and wave energy
can penetrate no further in this direction. In this event, a caustic forms
at x* and elementary ray theory breaks down. A more complete analysis
(Leblond & Mysak 1978, pp. 337-41; Lighthill 1978, §4.11), but still based
on the linear approximation, resolves the singularity and finds the solution
near x* to have the form of an Airy function. The waves are turned back
as a reflected wave-train with equal and opposite magnitude to the
incoming one and the solution beyond x* decays rapidly to zero. If the
depth approaches a constant value h^ > h* beyond x*, this decaying
solution is an 'edge wave' with amplitude proportional to exp( — Kx) as
x-^oo, where K=
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/ / Modulated wave-packets 97

Figure 4.3 shows ray trajectories for trapped waves which suffer total
reflection at a vertical barrier x = 0 and which are 'turned back' by
refraction at the caustic x*. Trapped waves and edge waves are known to
occur near coastlines.

Case (b): h constant. With constant depth but variable mean flow,
U = [U^x, y), U2(x, y), 0], it is necessary that

However, this condition may be relaxed if a small depth-dependent
upwelling component U3 is introduced (cf. Phillips 1977, Ch. 3). For
simplicity, we consider a unidirectional shear flow Ux = U^y), U2 = 0 and
deep-water waves (/i->oo) for which w2 = g \ k |.

Time-independent solutions have

a)' = w+U-k = w0 (constant), Vxk = 0:

those also independent of x have constant kx = k10 say, with k2(y) and
U^y) related by

S2(£?o+*D = K - ^ i o ) 4 - (11.26)

Also, from (11.23b),

Ek2

for deep-water waves and (11.23a) reduces to

= constant. (11.27)
t-2 4.J-2

If Ux(y) is a shear-layer profile with t / ^ 0 as y^— 00, and waves with
k = (klo,k3o) as y^— 00 propagate towards it, the changes in k2 and E
within the shear layer are given by (11.26) and (11.27). However, (11.26)
has real roots k2 only when

K - tfi *io I > I sKo I*,

Figure 4.3. Ray trajectories showing wave trapping by reflection at a barrier x = 0
and 'turning' at a caustic x = x*.

h(x)
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98 Waves and mean flows

Consequently, when k10 > 0 and max U1 = V > 0, the waves can propa-
gate right through the shear layer only if

Otherwise, they cannot pass the value y* where U(y*) — V*, at which both
k2 and cg2 become zero and E^ao.

In the latter case, the wave is totally reflected and there is an evanescent
wave beyond y*. This reflection does not occur at the critical layer where
<o'/kw = U, but before it is reached: this contrasts with the situation
discussed in §5.3 for internal waves. The linear solution near the caustic
may be constructed, by the WKB method, in terms of the Airy function
as mentioned above. However, if the local wave amplitude near such a
caustic becomes too large, nonlinear effects may interfere with the
predicted total reflection and local dissipation of energy by wave breaking
may occur.

With little modification, the above theory may be applied to study the
effect of large-scale internal waves on relatively short ocean surface waves
(see §14). Gargett & Hughes (1972) have drawn attention to short-wave
modulation and apparent caustic formation, with local wave breaking, in
this context. Internal waves are normally rendered visible at the ocean
surface by such changes in the surface-wave field.

11.4 Wave action and energy
Because the radiation-stress tensor Sa/3 enters equation (11.23a),

the energy E within the fluctuating motion is not conserved as the wave
evolves, even in the absence of dissipation. This is because E is just a part
of the total O(e2) energy associated with the disturbance; the remainder
coming from any O(e2) mean flow. However, (11.23) may be recast as a
conservation law, not of E, but of the wave action si = E/a>, as

i>s//to + V1-[(U+cJj*] = 0. (11.28)

This was first introduced by Whitham (1965) and its derivation was further
generalized by Bretherton & Garrett (1968) and Hayes (1970). In Cases
(a) and (b) above, results (11.25) and (11.27) follow directly from (11.28).

A compact derivation of this result comes from considering a suitably-
chosen averaged Lagrangian density ££(k, &>', a; x, t). The average is taken
over the phase x °f the waves and the explicit dependence on the space
variables x and t is weak. With 'modal waves' for which spatial variation
in one or more co-ordinate directions is not periodic — for instance the
depth-dependence of water waves - ,5? takes the form of an integral over
such co-ordinates and x denotes the remaining 'propagation space'
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co-ordinates (e.g. x, y above). The parameter a characterizes the local
wave amplitude.

For coherent wave-trains, the function i£ satisfies a variational principle
with respect to variations in amplitude a and phase x — k x —ca't+A,
namely

— = 0, — ( )+Vx- = 0. (11.29a, b)

Because of the averaging, SC is independent of x- Also, by definition,
Xt — — <*>' and Vx = k and so the latter equation is

= O, A- • - £ .
ow ok

The equation d^C/da = 0 yields a nonlinear dispersion relation and the
linear one is recovered on letting a^O. In the presence of a slowly-varying
mean flow U(x, t), the latter dispersion relation has the form
« ' = U-k+Q(k) relating k to w'. Accordingly,

8k

where cg = oQ/ok, and a result of the form (11.28) is established.
It remains to show that A may be identified with s4 = E/(o, with

w = Q(k). In a reference frame moving with velocity V, A is conserved and
B is altered by the addition of the quantity A\ (Hayes 1970). Accordingly,
A may be evaluated by constructing S£ in any reference frame and the most
convenient choice has V exactly equal to the local mean flow U. In this
frame, 3if/flw' equals 3r/3w, where T is the kinetic energy. Also, T is
proportional to (wa)2 and so 3r/3w = 2T/o). For linear waves, IT = E in
this frame, and the result follows. In any other frame, with observed mean
flow U, the frequency is w' = w+U-k, and the O(e2) energy density E'
associated with the fluctuations is

E' = E+p I U-u'dz
J-h

= E+ (U • k) (pa*a>/2k tanh kh)

0)

Accordingly,

A = E/o) = E'/oj'. (11.30)

Notice that E' is the energy density directly associated with the O(e)
fluctuations only. It does not take into account contributions to the total
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100 Waves and mean flows

energy density associated with O(e2) mean changes ^2' in surface level or
any wave-induced mean flows u ^ additional to the given U, though these
contributions are typically of comparable magnitude. It should also be
noted that, although a conservation equation for A exists for fully
nonlinear waves (see § 12.2), the wave action A may be identified with E/u>
only in the weakly-nonlinear limit.

For surface waves, the total O(e2) disturbance energy density, relative
to that when no wave is present, is

S = E'+\pU*&!>+pytuP> (11.31)

when the fixed level of zero potential energy is chosen at the undisturbed
free surface. If, say, the channel bottom were chosen instead, an additional
term pghQ® must be added. In view of this arbitrariness of definition, no
simple relationship between S and A should be expected here. In particular,
S does not satisfy a conservation law of the form (11.28). In contrast, an
example is given in the next section for which the total disturbance energy
and wave action density are so connected.

11.5 Waves in inviscid stratified flow
Consider a train of small-amplitude internal gravity waves propa-

gating through a stably stratified fluid which supports a primary shear
flow [U(z), 0,0]. For simplicity, the Boussinesq approximation is assumed
to hold and wavelengths are supposed small compared with the length-scale
of variations of U(z) and the density p(z). Consistent with (11.24a, b),
we further suppose that the frequency «/ and horizontal wavenumber
components kx, k2 are constant and we set k2 = 0, though the latter is not
an essential restriction. Also, there is now a vertical wavenumber component
k3 which is a function of z only, and the local wave amplitude is assumed
to depend only on z and t.

The linear dispersion relation yields the 'ray-theory approximation' (cf.
§4.1)

a/ = to+k, U(z), <w» = N\z) k\/{k\+k%z))
where N2(z) is the local Brunt-Vaisala frequency (—gp^1dp/dz% The
requirement that to' is constant yields

Uz) = +fc1[iV
2(W'-/c1 U)--l$. (11.32)

The horizontally-averaged energy equation for such disturbances is, at

Uu'w')/dz (11.33)

at each level z. Here, primes denote O(e) fluctuations, M(2) is the wave-induced
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11 Modulated wave-packets 101

O(e2) mean flow correction, p0 is the constant reference density and E is
the horizontally-averaged energy density at each z associated with the O(e)
fluctuations (cf. Acheson 1976).

Now, for plane waves,

w = {-Uz)/KW
by continuity, and

E(z, i) = \p£F+tf*+N<£*) = Po^ft!+ *©/*!
where g denotes the O(e) vertical displacement of fluid particles. Clearly,
E is positive definite: unlike the depth-integrated result (11.30), no term in
U here occurs in E, whatever the reference frame.

Equation (11.33) may be rewritten as

d^/dt + d^/dz = 0, (11.34)

5 = E+p0 Uu(2\ & = WW+po UWW,

where $ is the total O(e2) mean energy density of the disturbance. Clearly,
$ may take either positive or negative values. This expression is simpler
than the depth-integrated gravity-wave result (11.31) owing to the absence
of free-surface terms.

Integration of the linearized x-momentum equation yields

p' = Po(c- U) u'-podU/dz r w' dx

and so

p'w' = po(c — U) u'w'

where c = w'/^i is the constant horizontal phase velocity of the waves.
Accordingly,

6 = p0 aJTw'.

Also, the mean O(e2) x-momentum equation is

Podu<»/dt = -,0o3O7F)/8z. (11.35)

Result (11.34) turns out to be the wave-action equation

8.s//9*+e(wgj/)/ez = 0 (11.36)

multiplied by the constant &>', where wg = da>/dks is the vertical component
of group velocity and

rf = S/u)' = E/a>. (11.37)

Here, wave action and total disturbance energy $ are directly related. It
follows that

' = Po fc-i TTw7 = wgs/
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102 Waves and mean flows

and, from (11.35) and (11.36), that

pou™ = kxsi = c~^S (11.38)

since w(2) = 0 when si = 0.
This remarkably simple result for the induced mean flow u<2) has no

counterpart in the superficially-similar case of surface gravity waves
treated in §11.3(b): in the latter, the matter is complicated by variations
of mean surface level.

The particular case of over-reflection in uniformly stratified Helmholtz
flow (4.8) has already been discussed in §4.4. As a packet of incident
x-periodic internal waves with local energy density ET travels upwards
through the lower fluid in which U = 0, it induces an O(e2) horizontal mean
flow w<2) = El{p0 c)~\ in accordance with (11.38). This disappears after the
wave-packet has passed. A reflected wave induces a similar mean flow. In
the upper fluid, where U = U^ the mean flow modification w<2) is positive
or negative in accordance with the sign of the transmitted disturbance
energy $ — ST. When &T is negative, the local reduction —pu(i)Ux of mean
kinetic energy is

- U-L <ST/c = C/^f/j - c)"1 £ T

which exceeds the local energy density ET of the fluctuations. The
upwards-transmitted disturbance then carries a net energy defect, while the
reflected disturbance transmits positive net energy downwards. It is for this
reason that the amplitude of the reflected wave must exceed that of the
incident wave. The mean flows induced during over-reflection of such a
wave-packet are illustrated schematically in Figure 4.4 (a). In most respects,
the above discussion follows Acheson (1976), who also incorporates
hydromagnetic effects.

In resonant over-reflection, there is no incident wave but 'transmitted'
and ' reflected' waves of opposite energies radiate away from the vortex
sheet. In this case, the mean-flow modification is as indicated in Figure
4.4 (b). It is of interest to note that the radiating waves do not continuously
erode the velocity discontinuity: it is merely decreased from its original
value by a fixed O(e2) amount. In contrast, a Kelvin-Helmholtz instability
leads to the eventual (in fact, rapid) smoothing of the discontinuity, as in
Figure 4.4 (c). In the former case, the vortex sheet acts as a continuous
transmitter of waves; in the latter, it produces an intense disturbance of
finite duration.

Resonant over-reflection, without instability, provides a means of
redistributing energy without greatly disrupting the primary shear flow
which supports it. Lindzen (1974) has suggested this as a possible
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11 Modulated wave-packets 103

Figure 4.4. Schematic representation of mean flow modifications of a vortex-sheet
profile as time increases, for (a) a packet of over-reflecting waves meeting the vortex
sheet; (b) resonant over-reflection; (c) Kelvin-Helmholtz instability (after Acheson
1976).
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104 Waves and mean flows

mechanism for generating clear-air turbulence at large altitudes. However,
there are few known cases of resonant over-reflection for which the velocity
profile is not unstable to other wavenumbers (see Acheson 1976, for a
magnetohydrodynamic case) and, for most of these, instability reappears
when more realistic velocity profiles are employed (Drazin, Zaturska &
Banks 1979). The true importance of over-reflection in meteorology and
oceanography has yet to be established: see Fritts' (1984) survey of
atmospheric wave-phenomena.

11.6 Mean flow oscillations due to dissipation
In the preceding section, changes in mean flow are driven by a

vertical gradient of Reynolds stress, which occurs only when the local wave
amplitude is changing with time. However, when dissipation is taken into
account, such stress gradients may be supported by time-independent wave
amplitudes. For water waves, this was shown in §10.1: here we consider
a related internal-wave phenomenon.

As an internal wave, maintained at constant amplitude at some level
z = 0, propagates upwards, it is progressively attenuated by viscous and
other dissipative processes. Because the wave amplitude diminishes with
height z, there is an associated Reynolds stress gradient 9T/9Z which
contributes to the governing equation

8M 62M _ 1 3T

cit 6z2 p0 6z

for the mean horizontal flow u. In equilibrium,

"z
u{z) = -(vp0)-

1 rdz + Az + B
Jo

where A and B are constants which vanish identically if u remains bounded
as z-»oo and w(0) = 0.

Holton & Lindzen (1972), Plumb (1977) and Plumb & McEwan (1978)
have investigated the mutual interaction of waves and mean flow in such
circumstances. Not only do the waves drive the mean flow: the presence
of the mean flow slightly modifies the attenuation rate of the waves. With
a single train of internal waves, generated at z = 0, Plumb (1977) concluded
that a steady state is always established after a sufficient time has elapsed.

A much more interesting situation exists when two wave-trains are
present. Plumb (1977) and Plumb & McEwan (1978) considered such
wave-trains as having equal and opposite horizontal phase velocities: this
corresponds to a standing wave maintained at z = 0. By symmetry, there
is an equilibrium solution with zero mean flow, since mean-flow contri-
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12 Generalized Lagrangian mean formulation 105

butions from the respective wave-trains cancel. But this solution some-
times turns out to be unstable. The presence of a weak mean flow breaks
the symmetry and alters the local attenuation rate of one wave component
relative to the other. This, in turn, produces a Reynolds stress gradient
which acts on the mean flow. Computations by Plumb (1977), both for
a 'fully' nonlinear model and a weakly nonlinear approximation, revealed
time-periodic oscillations of the mean flow. Experiments were conducted
by Plumb & McEwan (1978), in an annular channel with flexible bottom
made to perform standing-wave oscillations. Mean-flow reversals, of
roughly one-hour period, were observed in the salt-stratified water within
the channel. A similar mechanism is believed to be responsible for observed
reversals, every 26 months or so, of the mean wind in the lower equatorial
stratosphere.

Such phenomena deserve further theoretical and experimental investi-
gation. The importance of dissipative processes, with sometimes un-
expected manifestations, is all too easily overlooked.

12 Generalized Lagrangian mean (GLM) formulation
12.1 The GLM equations

It has long been recognized that the second-order Eulerian mean
flow is not usually identical to the second-order averaged drift velocity of
individual fluid particles. As mentioned in §10.1, the O(e2) Eulerian
velocity is zero for constant amplitude inviscid water waves, but fluid
particles travel with a non-zero Stokes drift velocity ws(z) which diminishes
with depth. In a Lagrangian (particle) formulation, the Stokes drift
contains all the mean momentum. In contrast, the Eulerian representation,
with time-averages at fixed points in space, yields zero mean momentum
except above the level of wave troughs. Only at those points, which are
sometimes in the water and sometimes not, is there a non-zero average.

Rather different, but complementary, views of the flow are given by the
Eulerian and Lagrangian representations. Traditionally, the former has
predominated, but recent work has shown that a Lagrangian approach is
often helpful. The stimulus for the latter work has come from the
derivation of exact equations for Lagrangian-mean flows, by Andrews &
Mclntyre (1978a, b) following earlier attempts by Bretherton (1971) and
others. The' generalized Lagrangian mean' (or' GLM') equations connect
a Lagrangian velocity uL(x, t) and density /3(x, t) to a ' pseudomomentum'
vector p(x, t), per unit mass. For weakly nonlinear waves, the pseudo-
momentum p may be evaluated, at order C(e2), directly from the linear
wave solution and so the O(e2) Lagrangian velocity uL may be found. The
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106 Waves and mean flows

O(e2) Eulerian velocity may be recovered from the Lagrangian velocity on
subtracting the 'generalized Stokes drift' us(x, t) which can also be
evaluated at O(e2) from the linear solution. For many systems which
support waves and weak mean flows, the GLM equations yield the mean
flows more readily than would an Eulerian analysis, particularly where
nonlinear free-surface boundary conditions are involved. We here give a
brief outline of the GLM theory and some applications.

The GLM description is a hybrid Eulerian-Lagrangian one in which the
GLM flow is described by equations in Eulerian form, with spatial position
x and time / as independent variables rather than initial particle position
and time. Let the particle displacement associated with the waves be £(x, i)
where the (suitably-defined) Lagrangian mean of £ is zero. The GLM
operator ( ) entails averaging over particles at the displaced positions
x+£: i.e.

j4(x, tf = ^(x, t), 0£(x, 0 = 0(x+{, 0, (12. la, b)
where ( ) denotes a corresponding Eulerian average over positions in
space. Averaging may be carried out over time t for time-periodic flows
or over a single space co-ordinate x4 for flows which are spatially-periodic
in xt; alternatively, an ensemble average may be taken over some other
suitable label, such as the phase of waves at some fixed position and time.
The best choice of average depends on the problem to be examined.

Associated with any Eulerian velocity vector field u(x, i), there is a
uniquely defined ' related velocity field' v(x, t) such that, when the actual
fluid particle at x+£ moves with its velocity u(x+^, i); a notional particle
at x may be regarded as moving with velocity v(x, /). Here, v(x, t) satisfies

(3/8*+T-V) [x+«(x, 0] = u(x+£, 0;

|(x, t) has zero Eulerian mean, £(x, t) = 0, and v(x, t) is a mean quantity
such that v(x, 0 = v(x, i). So defined, v(x, t) is the required Lagrangian-mean
velocity, uL(x, t). The Lagrangian means of all other flow quantities are
similarly defined but it proves convenient to treat the density rather
differently.

From the compressible Navier-Stokes equations, Andrews & Mclntyre
(1978a, b) derived the exact equations of GLM motion. For homentropic
flows, the GLM momentum and continuity equations simplify to

x aL)i + Ef = -Xf-J^n,
(12.2)

D ls9/3(+flL-V. (12.3)
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12 Generalized Lagrangian mean formulation 107

Here, Ft denotes all external body forces per unit mass except the GLM
Coriolis force per unit mass £2xuL, where ft is the constant angular
velocity of a rotating reference frame; the vector field p = pt(x, i) is the
pseudomomentum per unit mass defined as

m (i2-4)
(not to be confused with pressure p) and X = XL + X' is a function which
represents all dissipative terms. Symbols identified by the label ( )l are
'wave quantities' with zero mean, such that

Also, the 'wave fields' £(x, t) and u!(x, t) are related by the kinematic
condition

u' = D\ (12.5)

Cartesian tensor notation is used throughout, with ( )j = d/dxp
( ),t — 3/9' a n d summation of repeated indices over the values 1, 2,3.

The density p(x, i) of the' related flow' 0L(x, t) is defined so as to satisfy

(12.3), and is connected to the actual fluid density p£(x, i) = p(x+£, t) by

p = pfJ, / s d e t {*„+&,,} (12.6)

where / i s the Jacobian of the mapping x->x+£. We note that constant-
density flows, p£ = constant, do not usually give rise to a constant density
p of the related flow field. But this definition has the major advantage that
p is a mean quantity, p(x, i) = p(x, t).

In general, equations (12.2) and (12.3) must be supplemented by an
equation of state linking pressure and density. The GLM equations are
then complete if the wave field is known and may in principle be solved
to find the GLM flow associated with any specified wave field §(x, t). Of
course, the wave field is itself usually dependent on the mean state: in this
sense, the above equations are not complete. But, for weakly nonlinear
systems, the O(e) wave field is frequently known and equations (12.2) and
(12.3) are then sufficient to yield the O(e2) mean flow supported by the
waves.

For small-amplitude waves but 0(1) mean state, a Taylor expansion of
(12.1b) gives

where ^(x, t) = $ x , t)+<f>'(ji,t) and <?>'(x,t) denotes the Eulerian wave
field. Accordingly,

and the mean fields ^L(x, /), ^(x, t) differ by the 'Stokes correction'

, 0 = $^-$= Irfj+hW*l K + O(e3). (12.7)
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108 Waves and mean flows

In particular, result (12.7) yields the'generalized Stokes drift' us = uL —a.
For incompressible (Boussinesq) flows, such that V • u' = 0 and the

density p£ of each fluid particle is constant,

Accordingly,

and the Lagrangian-mean velocity field is not usually divergence-free.
Fortunately, it often happens that the O(e2) variations of p drop out of
the O(e2) equations for nL.

When the mean flow u is also weak, of order O(e2), (j>1 = <j>' + O(e2) and
0 s = £] <t>'] + O(e3). If the Coriolis force is absent, one then has, from (12.4),
(12.5) and (12.7),

When the wave field E,} is time-periodic, this gives pt = uf + O(e3); a result
which establishes the equality at 0(e2) of the pseudomomentum ppt per
unit volume and the O(e2) mean momentum per unit volume, psf. In
general, physical momentum and the pseudomomentum pi are not equal
but Pi and u\ are exactly related by

V x ( u L - p ) = 0

whenever the wave fluid is irrotational.

12.2 Pseudomomentum andpseudoenergy
The wave action stf defined in § 11.4 was originally introduced to

describe an 0(e2) property of weakly nonlinear waves. But the concept of
wave action has been powerfully generalized by Andrews & Mclntyre
(1978b), who derived an exact equation of the form

DL/1+/5~1V-B = jf . (12.9)

The right-hand side J f is zero for conservative motions and is here
disregarded. The generalized wave action density A is defined as

£J7| (12.10)

where fi is the label over which averages are taken. The non-advective flux
of wave action B is

and Ky is the (i, y)th cofactor of the Jacobian /defined in (12.6). For waves
periodic in xu (I may be chosen as — xx; then A is identical to the
^-component of pseudomomentum, A = pv
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12 Generalized Lagrangian mean formulation 109

For plane-periodic, small-amplitude waves of frequency w' in a (locally)
constant mean flow U, u* = u' = D § and £ oc expi(k-x—w't—8) correct
to O(e). On choosing fi as the phase S varied over (0,2v), we have
£,/? = w~xD ^ = w~lu'wherew = w'—k-U is the intrinsic wave frequency
observed in the local rest frame of the fluid. From (12.10),

A 111''"/1

which establishes that the integral of A over depth coincides with stf of
(11.28) at O(e2) when £1 = 0. General relationships between A and other
GLM quantities, such as the flux of pseudomomentum and the 'pseudo-
energy' are discussed by Andrews & Mclntyre (1978b), within an energy-
momentum-tensor formalism. Also, the O(e2) concept of 'radiation
stresses' is connected to the exact GLM formulation by Andrews &
Mclntyre (1978a).

Briefly, for inviscid flows, a tensor T^, where /*, v stand for xt (i = 1,2,3)
or t, satisfies a set of conservation relations

^ = 0. (12.11)

The component Ttt is thepseudoenergy per unit volume and the components
Ttj (J = 1,2,3) denote its flux. These are defined (see Andrews & Mclntyre
1978b, §5) as

Ttt=pe-L-L0,

Tt} = uf pe+p££mrtKmj (12.12)

where

L is the total Lagrangian density and Lo the 'undisturbed' Lagrangian
obtained from L by retaining all mean and ignoring all fluctuating
quantities.

12.3 Surface gravity waves
As a first simple example, we consider the linear wave field

u' = V$,

**.*,0 = "Tsthfc/^3 «k<**-«O+0(*) (-*<*< 0)
(12.13)

of inviscid surface capillary-gravity waves with frequency w given by

W2 = (gk+p-'Lyk*) tanhkh

(cf. §11.2 above). The associated periodic particle displacements £,t
(i =1 ,2 ,3 ) satisfy g M = u't + O(e2), where e = ka, and the Stokes drift
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110 Waves and mean flows

velocity wf = (tfi, 0,0),

(1)ka2cosh[2k(z
s_ 2sinh2A:/!

is immediately given by (12.7). The corresponding 0(e2) solution of (12.2)
is uf — Pi = uf. It immediately follows that the O(ez) Eulerian mean flow
u{ is zero. Also, at 0(e2), (12.6) gives

plp-\= -\{kdf cosh2[k(z+h)]/sinh2kh.

The reduction in mean density p of the related velocity field may be
explained, physically, in terms of a mean O(e2) change in level of an
averaged set of fluid particles, as compared with that when no wave is
present. This is most readily understood by considering a marked set of
particles which, in the absence of waves, lie at equal intervals in x along
a given line, say z = z0. In a reference frame moving with the wave, these
particles are observed to be more closely spaced at wave crests than at wave
troughs. Their average height therefore exceeds z0 by an 0(e2) amount. A
similar line of particles initially situated on z = z0 + 8 experiences a slightly
greater or lesser O(e2) mean displacement according as 8 > 0 or < 0,
because the local wave amplitude increases with height. As a result, the
apparent mean density p associated with the slab of fluid initially between
z = ZQ and z = zo + 8 decreases in order to conserve mass. It must be
emphasized that this 'divergence effect' of the related velocity field uL is
a property of the averaging procedure: the physical density of the fluid of
course remains constant.

With averages taken over —x, the wave action density A and pseudo-
momentum component px are the same. Integrating over the liquid depth,
we here have

j / = f p1dz = -[° (8g,/8x)ii;dz
J - f t J - f t

and
CC fo Q ro

(V • B) dz = (QBJdx) dz = - — p' 8&/3JC dz
J-h J-ft OX J-h

at O(e2). Since the latter integral is just 3(cg s/)/dx, where cg = dw/dk, and
D L j ^ = djtf/dt at O(e2), result (11.28) with U = 0 is recovered from (12.9).
A similar equivalence between (11.28) and (12.9) for small-amplitude
waves is readily verified for other examples discussed above.
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12 Generalized Lagrangian mean formulation 111

12.4 Inviscid shear-flow instability
The GLM formulation was used by Craik (1982c) to describe

growing waves in unstable shear flows [ U(z), 0,0] between plane boundaries
at z = zx and z = z2. In a reference frame moving with the wave velocity
cT, the disturbance stream function of a small-amplitude two-dimensional
wave-train is (cf. §9.1)

f{x,z, i) = e eaci* Re{0(z) eiaxi} + O(e2)

where x1 = x—cTt. We assume that ct ^ 0. The corresponding linearized
velocity components (u[, 0, u3) and displacements (£x, 0, £3) aref

u[ = e eaci * Re {0'(z) etex»}, "!, = e eaci« Re {- ia^(z) e iazi},

g3 = e eaci* Re

u — 'icj ia(u — u

\, a=u-cT.

(12.14)

From (12.7), the generalized Stokes drift us = («f, 0, M|) is found to be

— + C.C. +

/ •

(12.15a,b)

As aq->0, wf^-O and

except near the critical layer where u vanishes. This singularity exists even
for viscous flows, since it derives from the linearized kinematic condition
D £ = u'(x+§, 0- The linear approximation there breaks down and there
is a region of closed streamlines - the Kelvin 'cats' eyes' - centred on the
critical layer for which the chosen averaging procedure is invalid.

The pseudomomentum p = (px, 0, p3) has

— — Ip2 P2ac, t

(12.16a, b)

As aCi->0, p3->0 for inviscid disturbances but not for viscous ones.
The O(e2) Eulerian mean flow M<2) for inviscid disturbances was found

to satisfy (9.7). This may also be derived from the GLM equations (12.2),

t Recall that primes denote d/dz only when applied to functions of z only.
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112 Waves and mean flows

(12.3) and (12.6), which reduce to

when there is no 0(e2) pressure gradient. The last of these equations is an
identity and the other two yield

Substitution from (12.14), (12.15) and (12.16) gives

M<2> = M^-Kf-M = !S"3 (12.17)

for the O(e2) Eulerian velocity. This is just result (9.7).
Since the net Eulerian mass flux must remain constant in the absence

of any pressure gradient,

2 u<2> dz = P 2 s"Ifdz = 0. (12.18)
i Jz1

The inflexion-point criterion that u" must change sign in [zt,z2] is an
immediate consequence.

For inviscid flow with averages taken over —xlt the conservation law
(12.9) yields

Qt = p dA/dt = - 8(/?' 8£3/8x)/8z
at O(e2) where p' is the O(e) Eulerian pressure fluctuation. Integration
across the flow between rigid boundaries at z = zt and z2 immediately
yields

ptAz = constant:

net pseudomomentum in the Xj-direction is conserved. Moreover, the
constant is zero since px = 0 at / = — oo. From (12.16a) this implies that

= 0, (12.19)

from which follows the well-known result that the wave velocity cr lies
within the range of the flow velocity.

In the present case, the pseudoenergy density satisfies

from (12.11), and net pseudoenergy is conserved,

f
Jz,
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13 Spatially-periodic mean flows 113

since Tt3 vanishes on plane boundaries z = zx and z2 and Ttt is zero at
t = — oo. But Ttt here reduces to

at O(e2) (see Craik 1982c) and so

z = 0. (12.20)f
J*lEquations (12.19) and (12.20) together imply that w2 — C\+A« changes

sign within [zls z2] for all constants A: a result which leads immediately to
Howard's (1961) semicircle theorem (cf. Eckart 1963).

The total energy is

f2*1 = E+p «<%dz
Jz,Jz,

where

Jz,
£• = Je2/) e2ac.« (| 95' |2 + a21 ^ |2) dz

J
is the energy within the fluctuations. Substitution for w(2) from (12.17) and
use of (12.14) and Rayleigh's equation (3.3) yields $ = 0. Also, because
of (12.18), $ remains zero in any parallel reference frame with u replaced
by U—cT. Accordingly, spontaneously-growing disturbances in inviscid
unstratified flows have zero total energy as well as zero net pseudo-
momentum and pseudoenergy.

Applications of GLM theory to stratified shear flows are reviewed by
Grimshaw (1984).

13 Spatially-periodic mean flows
13.1 Forced motions

The quadratic interaction of two O(e) wave-modes with amplitudes
ai and periodicities exp[i(ky-x —Wy/)] + c.c. where j = 1, 2, \ = (x,y)
and k = (a, /?) yields O(e2) forcing terms of the form
b± expti(k1±k2)-x—i(w1±w2)?]+c.c. when ft* are proportional to axa2

and ax a* respectively. When kx = k2 and to1 = w2, the given wave-modes
coincide and the forcing terms drive a spatially-uniform mean flow and
a second harmonic.

More generally, on writing kf = k1±k2 , the respective Fourier com-
ponents in k£ satisfy equations of the form

(L± 8/8f+M±)953± = 6±¥ l i ± 2 (z) e(
wii+w«>* e - ^ r t ^ r ) * , (13.1)

where L*, M± are known linear operators in 8/9z, and "F^ ± 2 may be

found in terms of the linear eigenfunctions of the given wave-modes. The
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114 Waves and mean flows

corresponding homogeneous equation, with zero right-hand side, together
with appropriate homogeneous boundary conditions, defines an eigenvalue
problem for the frequency. This yields a set of discrete eigenvalues w±3

(« = 1,2,...) and sometimes a continuous spectrum. In particular, for
two-dimensional modes with k, = {a}, 0), the appropriate homogeneous
equation is just the Orr-Sommerfeld equation for wavenumbers o^io^.

Any solution of (13.1) may be expressed as a sum (or integral) over a
complete set of the linear eigenfunctions of the homogeneous problem with
time-dependent coefficients. If a>1 ± w2 coincides, or nearly coincides, with
an eigenvalue «±g, a three-wave resonance occurs. In this case, the third
mode need not remain small compared with the two original modes.
Consideration of such resonance is deferred to the next chapter. Here, we
assume that wx± w2 are not close to any linear eigenvalue «±3 and that the
solution 03± remains of order O(e2) at all times. We also assume that the
growth rates Im{w±3} of all linear eigenmodes of (13.1) are less than
<oli±(u2i, so that <j>£ is eventually dominated by a particular integral of the
form Q>£ exp[—i(<olr±<o2T)t] exp[((ou±(oii)t] where

[-i(Wl±W2)L±+M±]<D3± = b±V1,±2(z).

When two wavenumbers kl5 k2 have identical real frequencies wlr = w2r,
and <i>u = w2l = 0, the forcing terms in exp[ + i(k1 —k2)-x] and the corre-
sponding particular integral are independent of time t. This gives rise to
a spatially-periodic mean flow. Such flows may result from symmetry of
the wave fields, as with two equal oblique waves exp [i(ax+fly—o)t)] with
real frequency w in a parallel flow [U(z), 0,0]. More generally, if two
wavenumbers kx, k2 have nearly equal frequencies, | (<O1 — OJ2)/OJ1 \< I, the
forced solution fa varies slowly in time.

The best-known observations of wave-induced spatially-periodic mean
flows are those in Klebanoff, Tidstrom & Sargent's (1962) study of
three-dimensional disturbances in the unstable Blasius boundary layer. A
small-amplitude, nearly two-dimensional, Tollmien-Schlichting wave was
generated by a ribbon which vibrated with fixed frequency. As the wave
progressed downstream, growing in amplitude, marked spanwise variations
in amplitude spontaneously appeared. To control the spanwise wavelength
and phase of these variations, small strips of adhesive tape were placed
at equal intervals on the plate, beneath the vibrating ribbon. The local wave
amplitude at fixed x and z then varied almost periodically with spanwise
distance y, about a non-zero mean. Also, a spanwise-periodic mean flow
developed, in the form of'longitudinal vortices' which varied only slowly
with x. A somewhat similar development of three-dimensionality was

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:27 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.005



13 Spatially-periodic mean flows 115

found by Nishioka, Iida & Ichikawa (1975), in plane Poiseuille flow. The
longitudinal-vortex structure is generally believed to play an important
part in inducing transition to turbulence (e.g. Tani 1969). Certainly,
turbulent 'spots' are observed to develop first at spanwise ('peak')
locations where the local wave amplitude is greatest (see §27.2).

Benney & Lin (1960) first proposed a theoretical model of the develop-
ment of such longitudinal vortices, which was subsequently extended by
Benney (1961, 1964). They considered a wave field comprising O(e)
two-dimensional and span wise-periodic modes - say, a exp(iax—iwf) and
b exp(iax±ifly~ iu>'t) plus complex conjugates - with wr = u>'r and small
amplification rates «j, <o{. They then calculated the resultant mean flow
components in ab* exp (+ i/ly) and | b |2 exp (+ 2i/?_y) plus conjugates. The
former derive from the interaction of the two-dimensional mode with an
oblique mode; the latter from the interaction of the two oblique modes.
In addition, there are j-independent mean flow components in | a |2 and
| b |2 from the self-interaction of each mode. The resultant mean flows were
found to have a longitudinal-vortex structure qualitatively similar to that
observed by Klebanoff et al. However, this theoretical model postulates,
rather than explains, the existence of a strongly j-periodic wave field
downstream of a nearly uniformly-vibrating ribbon. In addition, the model
has been criticised by Stuart (1962a) and others on the grounds that the
linear frequencies wr, <D'T in fact differ by around 15% at wavenumbers
corresponding to the experimental data.

Antar & Collins (1975) improved upon Benney's model analyses both
by relaxing the assumption wr = o)'T to account for the actual frequency
mismatch Awr = wr—a>'T and by computing second-order flows for actual
Blasius and Falkner-Skan velocity profiles. The component of mean-flow
distortion with spanwise wavenumber fi then oscillates in time with
frequency Aw while that with wavenumber 2fl does not. An alternative
model, proposed by Nelson & Craik (1977), concerns waves of equal
frequency, but with a mismatch Act in downstream wavenumber. Mean
flow components then have wavenumbers (Aa, /?) and (0,2/1). The latter
model seems closer to Klebanoff et al.'s experimental situation and
deserves a more detailed study. It is also possible that higher-order
nonlinearities, especially those at O(e3), may lead to synchronization of
wave-modes with the same downstream wavenumber (see §26). Examples
of Antar & Collins' calculated mean-flow structure are shown in Figure
4.5, while Figure 4.6 reproduces some of Klebanoff et al.'s experimental
data. Fuller discussions of mean-flow distortion in unstable boundary
layers are given by Tani (1980) and Craik (1980).

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:27 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.005



116 Waves and mean flows

Figure 4.5. Theoretical results of Antar & Collins (1975) for streamline pattern of
wave-driven longitudinal vortices in Blasius flow at Rs = 1630, a8 = 0.1336,
p& = 0.0614, where S is displacement thickness. Cases (a), (b), (c) correspond to
Al/A2 = 25, 1, 0.025 respectively, where ^/^ measures the ratio of two-dimensional
to oblique-wave amplitudes.
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13 Spatially-periodic mean flows 117

Figure 4.6. Experimental results of Klebanoff, Tidstrom & Sargent (1962) showing
'peak-valley' and longitudinal-vortex structure in the Blasius boundary layer, (a)
shows spanwise variations of mean (U,V) and r.m.s. fluctuating (u',v') velocity
components in the downstream and spanwise directions, at a fixed downstream
location and fixed distance z from the wall: circles denote measurements at z = 0.31 S,
crosses at 0.11 S. (b), overleaf, shows z-distributions of mean velocity Fat two span-
wise locations separated by 0.4 in. and two downstream locations: those marked
by O> V correspond to the position further downstream.
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118 Waves and mean flows

A rather similar model was proposed by Craik (1970) in an early attempt
to describe the phenomenon of 'Langmuir circulations'. These are
structures of longitudinal-vortex type which commonly develop in bodies
of water subjected to moderate winds. Craik (1970) calculated the O(e2)
spanwise-periodic flows associated with a pair of equal surface gravity
waves with periodicities e exp(iocx±ifiy~\iot) propagating through an
inviscid 0(1) primary shear flow u = [Kz, 0,0]. Without shear, there is no
Eulerian mean flow; but when K is non-zero there is a spanwise-periodic
distortion of the mean vorticity field. Leibovich & Ulrich (1972) gave a
neat physical interpretation of this process in cases of weak O(e2) mean
shear. Then the linear wave field is irrotational and has a Stokes drift which
contains a spanwise-periodic component. Since vortex lines and fluid
particles coincide in inviscid flows, the Stokes drift must induce spanwise-
periodic distortions of an initially-uniform vorticity field. The spanwise-
periodic x-component of vorticity at first grows linearly with time t, and
this induces a further distortion of the mean flow to give a spanwise-periodic

Fig. 4.6b. For caption see previous page.
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13 Spatially-periodic mean flows 119

x-velocity component which grows initially as t2. Viscous diffusion must
inhibit the growth of the vortices and lead to an ultimate steady state.

Craik & Leibovich (1976) and Leibovich (1977a) subsequently derived
the general equations governing weak O(e2) mean flows in the presence of
arbitrary O(e) fluctuations. The mean vorticity equation was found to be

(e /aT-^V 2 ) to = (e>-V)(u + u s ) - ( u + us)-V«J (13.2)

at leading order. Here, the mean Eulerian velocity, vorticity and generalized
Stokes drift are e2u, e2e» and e2us respectively, while T = e1t and vt = e~ V
The viscosity v is supposed small, of order O(e2), where e characterizes the
wave-slope. The average ( ) is taken over a time-scale large compared with
the periods of the O(e) wave-components but small compared with the slow
O(e~2) time-scale of the mean flow evolution. Note that the influence of
the waves in (13.2) is entirely represented by the Stokes drift us, in line with
the convective processes described above. This, and the associated
momentum equations, were initially derived using an Eulerian formulation,
and entailed considerable effort, since the Stokes drift us does not arise
naturally in such a representation. Subsequently, Leibovich (1980) derived
these equations much more simply from the GLM equations (12.2) and
(12.3). Craik (1982d) similarly showed that stronger mean flows, with an
O(e) downstream component, satisfy nearly identical equations which
differ only by scaling factors in the definitions of u, e>, vx and T. For
instance, if the mean flow is initially given as e[u(z), 0,0] and the known
O(e) wave-field provides a spanwise-periodic Stokes drift e2[«s(j/, z), 0,0],
the inviscid GLM equations (12.2) and (12.3) yield

bu1/&r = -(du/dz)u3,

d{MJdz-duJdy)/dr = -(du/dz)(difi/dy), L (13.3)

J
at leading order for the O(e2) Eulerian mean flow modification e 2 ^ , M2, M3).
(Note that the pseudomomentum here equals the Stokes drift at O(e2).)
At first, the spanwise-periodic longitudinal vorticity, and hence u2 and «3,
grow linearly with time T while the downstream component Mj develops
as T-2.

For weak mean flows, Leibovich (1977a) and Leibovich & Radhakrish-
nan (1977) have computed the developing longitudinal vortex system
driven by a pair of oblique waves, with viscous terms included. Laboratory
experiments of this configuration by Faller & Caponi (1978) and Faller
& Cartwright (1982) confirm the appearance of such vortices.

For strong 0(1) primary shear flows, the GLM equations are normally
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120 Waves and mean flows

insufficient to determine the developing vortices, because distortions of the
initial Stokes drift and pseudomomentum cannot be neglected as in (13.3)
(the case studied by Craik (1970) is an exception). The GLM equations
must then be complemented by those governing the evolution of the wave
field.

13.2 Wave-driven longitudinal-vortex instability
Craik (1977, 1982d) and, for stratified flows, Leibovich (1977b)

and Leibovich & Paolucci (1981) have considered the stability of unidirec-
tional shear flows in the presence of O(e) two-dimensional surface gravity
waves independent of the spanwise direction. The disturbances are regarded
as x-independent, of longitudinal-vortex form.

When the primary flow is weak, of magnitude O(e2), let

u = [0(e)wave &eld] + e2[u0(z) + Sii1, Sdftfiz, -8dft/dy] + O(e3,e282)

where ux and ijr depend on y, z and T = e2t, and 8 is sufficiently small to
permit linearization. The mean-flow equations then reduce to

(3 /3T - vx V
2) ux = (du°/dz)

(3/Sr - v1 V
2) V2^ = (dws/dz)

where the primary flow e2u°(z) and Stokes drift e2t^(z) are known (cf. Craik
1977).

These equations bear a close similarity to those governing thermal
(Benard) and centrifugal (Rayleigh-Taylor) instability. Boundary con-
ditions ux = 0, Vijr = 0 hold at a rigid bottom z = — H (or ux, V^->0 as
z -+ — oo). At the mean free surface, z = 0, the kinematic and tangential-stress
boundary conditions give

dujdz = 0, dxjr/dy = (32 /3j 2 -3V3z2)^ = 0.

It is readily shown that instability occurs, unless inhibited by viscosity,
whenever the gradients of w° and MS have the same sign in some part of
the flow domain. Leibovich & Paolucci (1981) comprehensively discuss
such instability of time-dependent mean flows induced by a constant
surface stress: such flows are unstable for all but exceedingly-small wave
amplitudes. For stronger, but still weak, primary flows of magnitude O(e),
the stability analysis is virtually identical. Treatment of strong 0(1) shear
flows with O{e) plane waves is necessarily more complex, but a rather
similar instability mechanism is still likely to operate in such flows (Craik
1982d), with pseudomomentum rather than Stokes drift playing a central
role.
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13 Spatially-periodic mean flows 121

Langmuir circulations are certainly responsible for the parallel
'windrows' often observed in lakes (see Figure 4.7) and similar longi-
tudinal-vortex structures are an important ingredient of all turbulent shear
flows. Such longitudinal vortices provide an efficient mixing mechanism
which is believed to play a part in determining the location and structure
of the thermocline in lakes and oceans (see Leibovich's (1983) review); but
other factors such as temperature 'fronts' or 'ramps' (Thorpe & Hall
1982) and intermittent Kelvin-Helmholtz instability of internal-wave
modes (Thorpe 1971, 1973) also contribute.

Even without the wind to supply a constant surface stress, surface
gravity waves induce an O(e2) Eulerian drift velocity by viscous action (see
§ 10.1). It would appear that unidirectional drift-velocity profiles like (10.3)
are inherently unstable to spanwise-periodic perturbations.

The physical mechanism for instability of weak primary flows is readily
understood in terms of vortex-line deformation. An initially-unidirectional
shear flow w° has vortex lines extending uniformly in the ̂ -direction while
the Stokes drift ws of a plane-wave field depends only on depth z. A small
spanwise-periodic x-velocity perturbation ut provides a small periodic

Figure 4.7. Photograph of windrows (Banana River). Those normally observed are
rather less regular than this. (Photograph by A. Woodcock, published in Stommel
1951.)
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122 Waves and mean flows

component of vertical vorticity: the resultant vortex lines are 'wavy' and
lie in vertical planes. In the absence of viscosity, vortex lines travel with
the fluid particles: accordingly, they are tilted by the Stokes drift gradient
difi/dz to yield a periodic component of longitudinal (x-) vorticity.
This induces periodic upwelling and downwelling which convects the
x-momentum of the primary flow w°(z). When difi/dz and du°/dz have the
same sign, this momentum supplements the perturbation ux and leads to
instability: when the signs are opposite, ux is diminished and the flow is
stable.

An alternative, complementary, physical interpretation is given by Craik
(1982d). In this, the forcing term is identified with that of centrifugal
Taylor-Gortler instability on curved walls, a mean O(e2) curvature
deriving from the x-averaged curvature of streamlines in the wavy flow.
These equivalent kinematical and dynamical explanations typify the
different insights provided by Lagrangian and Eulerian viewpoints.

A rather different physical model for generation of Langmuir circulations
was proposed by Garrett (1976). The amplitudes of short gravity waves
are modified by their interaction with variable horizontal currents associated
with large-scale longitudinal vortices. Garrett envisages enhanced viscous
or turbulent dissipation where the wave amplitudes are greatest and a
resultant radiation stress acting to maintain the spanwise-periodic mean
flow. Though Garrett's physical hypotheses are less secure than those of
the Craik-Leibovich theory, it is reassuring that this alternative mechanism
acts to reinforce the circulations.

The longitudinal-vortex instability is quite distinct from the Lin-Benney
type of mechanism, in which vortices are forced by a pre-existing spanwise
structure of the wave field. In contrast, the instability mechanism operates
with two-dimensional waves independent of the spanwise co-ordinate.
Further work is necessary to assess the importance of such instability in
strong shear flows such as boundary layers. A recent theory developed in
the latter context by Benney (1984) has similarities with that of Craik
(1982d): see §20.3.
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Chapter five

THREE-WAVE RESONANCE

A derivation of the three-wave resonance equations (8.12) was outlined in
§8, for wave amplitudes a}(J = 1,2,3) depending only on time t. Here, a
fuller account is given of such resonance, including cases where the wave
amplitudes a;- vary slowly in both time and space.

Many investigations of resonance followed Phillips' (1960, 1961) pion-
eering studies: Phillips (1981a) himself gives an interesting overview.
Inviscid surface gravity waves in still water do not exhibit three-wave
resonance with quadratic interactions. The lowest-order resonance then
involves quartets of waves, with cubic nonlinearities. Discussion of such
higher-order terms is mostly deferred to Chapters 6 and 7. Three-wave
resonance in conservative systems is examined in § 14 and §15; systems with
linear growth or damping are treated in § 16; non-conservative interactions,
such as arise in shear flows, are considered in § 17.

14 Conservative wave interactions
14.1 Conditions for resonance

McGoldrick (1965) showed that three capillary-gravity waves
may interact resonantly, although gravity waves cannot. The frequencies
of three two-dimensional waves with periodicities a}exp(ik}x—i(o}t)
(7 =1,2,3) are

for positive wavenumbers kj. Here, y denotes the coefficient of surface
tension. If k3 is chosen to equal &1+fc2, the resonance condition
Wj + w2 = o)3 is met when kt and k2 satisfy

(l+r) + (l +r)(l + 7r+rft
r(9+14r+9r2) ' ( }

T = ykl/2pg, r^kJK
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124 Three-wave resonance

This may be rearranged as a cubic equation in r, with coefficients
depending on T.

For waves propagating in different horizontal directions,

aj exp (ik} • x — \mi t), k3 = k t+k a , x = (x, y),

the frequencies o>} are as above, with k} replaced by |k^|. Roots of
w3 = w/l+w2 are then best located by computation or graphical construc-
tion: see Simmons (1969) for the latter.

In stratified fluid, three-wave resonance exists among internal gravity
waves and between two surface gravity waves and one internal wave (Ball
1964; Thorpe 1966). In the latter case, the wavenumber kx and frequency
a>1 of the internal wave are typically much smaller than those of the surface
waves. Accordingly, let

u)1 = <i>3 — w2 = Aw, kj = k3 — k2 = Ak

at resonance, where Aw and |Ak| are small. Since the frequencies and
wavenumbers of the surface waves are nearly equal,

w 3 «w 2 + (3w/3k)2-Ak.

But 3w/3k is the group velocity cg of the surface waves and so the resonance
condition becomes

Aw « cg • Ak.

This means that the horizontal phase velocity of the internal wave,

AwAk

equals the component of cg in the direction of Ak. When all three waves
travel in the same direction, resonance occurs when cln = cg.

In most regions of the ocean, lowest-mode internal waves on the
thermocline cannot have | cin | greater than about 50 cm s~\ and | cg | is as
small as this only for rather short surface waves, of under 60 cm
wavelength. But when the directions of k2 and Ak differ, the internal wave
resonates with longer surface waves. One should therefore expect a
periodic surface-wave field to generate internal waves which propagate at
a considerable angle to that of k2.

Internal waves on the thermocline are frequently visible in aerial
photographs as periodic light and dark bands. These bands indicate
regions of differing' surface roughness', brought about by modification of
the surface waves by the long internal waves. Such interactions of long and
short waves may conveniently be treated by regarding the short waves as
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14 Conservative wave interactions 125

propagating in a slowly-varying current: variations of the short-wave field
may then be found as described in § 11.

Internal waves in stratified fluid of finite depth have a denumerable set
of frequencies w(n> (n = 1,2,...) for every horizontal wavenumber k. Each
yields a separate surface in w-k space and these surfaces characterize
families of modes with differing vertical mode-structures. For three-wave
resonance to occur among these, Thorpe (1966) showed that the waves
cannot belong to the same family. Longuet-Higgins & Gill (1967) and Ripa
(1981) consider resonance in various other systems of geophysical interest.

14.2 Resonance of capillary—gravity waves
McGoldrick's (1965) derivation of the three-wave resonance

equations was generalized by Simmons (1969) and Case and Chiu (1977)
to waves with amplitudes varying slowly in both space and time. Before
describing Simmons' variational method, we outline Case & Chiu's
perturbation analysis.

The in viscid equations and boundary conditions for deep-water capillary-
gravity waves are

= 0 ' u = - ' -oo < * < £ ( * , * / ) ;

(14.2a-e)

P = -yi((x, y, i)

Here, 4> is the velocity potential, £(x, y, i) the free:surface elevation, y the
coefficient of surface tension and K(X, y, t) the surface curvature. Since
K = V • n where n is the unit outwards normal to the free surface
z = £(*, y, t),

For small-amplitude waves, the kinematic and pressure boundary
conditions at the deformed free surface may be approximated by conditions
at the mean level z = 0, through Taylor expansions about this value. At
O(a2), where a is a dimensionless measure of wave-slope, these are

the terms on the left-hand sides being O(a) and those on the right O(a2).
Subscripts t and z denote partial differentiation.
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126 Three-wave resonance

At leading order, O(a), let

<p = I ^(x, z, i) eV, £ = I tyx, 0,

^- = iw;- kjx{P}{x, z, t) exp [i(k;- • x + w;- /)]

- g3(x, z, 0 exp [i(k; • x - w3- 0]} + c.c,[ (14-5)

Aj = Pj(x, 0,0 exp [i(k3- • x + w} 0]
+ gy(x, z, 0 exp [i(ky • x - w;- 0] + c.c. ,

with x = (x, j>), kj = | k̂  | and k3-, ŵ- chosen so that

k2 = k1+k3 , o)2 = u)1 + o)s. (14.6)

The functions Pj, Qj are O(a) and slowly-varying in x, z and /, with
derivatives which are O(a2). From (14.2a), Pj and g;- approximately satisfy

8/»y/9z = -i*71(k,-V^) ) 62J/9z = - i ^ - 1 ( k ; - V ^ ) . (14.7)

Substitution of (14.5)—(14.7) in the boundary conditions (14.4) and
isolation of Fourier components eventually yields

along with similar equations for the Pj with v;- and ŷ  replaced by — v;- and
— jj. In these, the v3 = (8w/3k)3 denote the linear group velocities of the
waves. But the v; do not arise ' naturally' in this derivation and must be
reconstituted from the linear dispersion relation. The coupling coefficients
jj are found to be

y1 = \{kx u>il(u>l + 0)1) + (w3 k3 -oj2k2- kx w^1 w2 w3)

+k 2 • k3[w2 kz1 - co3 ks1 — o)2 u)3 kt{k2 k3 OJ^1]},

y2 = \{k2 <i>2\(i)\ + col) — (<t)1 fej + (o3 k3 — k2 o)^1 Wj w3)

3 k ^ k3 a)^1]},

2ki- k3 w^1 wx w2)

+ kx • k2[w2 /c^1 - wj A;̂ 1 - wx o>2 k3(kr k2 o)^"1]}.

Here, two independent resonant wave triads are present, since the Qj and
Pj modes have equal and opposite frequencies ±u>j. When |P^| = Ig^l.
these may be viewed as a resonant triad of standing waves.

The variational approach of Simmons (1969) gives the same results
rather more quickly. This was inspired by Whitham's (1965, 1967)
variational method, with local averaging of a suitable Lagrangian i ? over
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14 Conservative wave interactions 127

the 'short' length scales and 'fast' time-scales of waves. But Whitham's
method was not directly applicable to resonant triads, for it allowed slow
variations in frequency and wavenumber incompatible with (14.6).
Modifying a previous Lagrangian formulation by Luke (1967), Simmons
chose

L(<?>,Qdxdydt,
allx, y

J

Variation of Z£ is subject to constraints 8<f> = 0 at times t0 and t1 for all
x, y, z. Variation of <f> alone, by 8<f>(x, y, z, i) yields

r nxw*^ dKd/+r \\
along with two other integrals which vanish if 8<j> is restricted to be
zero at x = + oo and y — ± oo. The volume integral is taken over the
domain V comprising — oo < z ^ £(x, y, i) and the horizontal plane
S — { — oo < x < oo, — oo<_y<oo}. Since the variation 8<f> is arbitrary,
each term in square brackets must vanish. The volume integral yields the
field equation (14.2a) and the two surface integrals the boundary con-
ditions (14.2c) and (14.2e). Similarly, variation 8£ of £(x, y, i), subject to
the restriction that 8£ — 0 at x = ± oo and y — ± oo, gives the dynamical
boundary condition (14.2d) with/j eliminated through (14.2b).

The next step is to substitute into Z£ expressions equivalent to (14.5),
(14.6) for resonant waves, and then to construct the averaged Lagrangian
3? taken over horizontal distances and times large compared with the
wavelengths and wave periods but short compared with the modulations
in wave amplitude. The algebra at this stage is rather tedious, but less so
than in Case & Chiu's method. One then postulates arbitrary variations
8Qj of each complex wave amplitude Q} and constructs the associated
Euler-Lagrange equations

) +\ (

\d(c>q/dt)) + dx \d(dq/dx)) + dy \d(dq/dy)

= Q} 0 = 1 , 2 , 3 ) .
At O(a2) these simply yield the linear dispersion relation for each wave-
mode; but at next order they give the interaction equations (14.8). A
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128 Three-wave resonance

similar Lagrangian formulation of three- and four-wave resonance in
plasmas is given by Turner & Boyd (1978).

Simmons actually considered independent variations of real amplitudes
bt and phases ̂  of wave components of the form

hj = b} cos(kj-x-ojj t+ijj) (j = 1,2,3)

withk1+k2+k3 = (O1+CO2+OJ3 = 0. These lead to the equivalent interaction
equations

fi b\)\ = Oj b2 b^Jki/tJi) sin ij,

bf{dVi/St+V • (v4 Vt)} = ^ fe2 b^Jkt/uJ cos 9 (i = 1,2,3)

4/ = - £ o^+1(l+fc,-t,+1) (fc^stj, (-04.9)

where k̂- are unit vectors along the directions of wave propagation. The
variational approach leads naturally to the simple form /fej/w^ for the
interaction coefficients, which was obscured in the 'direct' perturbation
analysis. This form was confirmed by Hasselmann (1967a) for more
general conservative systems.

Equations (14.9) hold for all resonant triads with non-equal wave
numbers k̂ . If, say, kx = k2 = — |k3, further terms which normally have
zero spatial averages must be retained, for the wavenumber kt is then in
resonance with its own second harmonic. This case was separately dealt
with by Simmons and has also been considered, using perturbation theory,
by Nayfeh (1970). The phenomenon of second-harmonic resonance of
capillary-gravity waves in deep water was first encountered by Wilton
(1915), who found that a Stokes expansion in powers of wave amplitude
became singular at certain wavenumbers (see §22.1). The greatest of these
is kx = 2~i(pg/y)i, which is just result (14.1) with r = 1. This corresponds
to ripples of wavelength 2.44 cm in clean water. Wilton's other singularities
relate to higher-order resonances; the next, at k = 3~^(pg/y)K is a 'four-
wave ' resonance between k and its third harmonic.

The form of (14.8) may be inferred from a simple, but general, heuristic
analysis. If the linear dispersion relation is Z>(w, k) = 0, slow modulations
of each complex wave amplitude Qj satisfy

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:28 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.006



14 Conservative wave interactions 129

where the nonlinear terms' n.l.t.' denote quadratic interactions. Also, small
perturbations <5k, 8u> of wavenumber and frequency satisfy

fe(6Z)/Sw) + 5k-(eZ)/9k) = 0

at leading order, and so

3Z>/3Z>_6W,
"ei^/a^-e^-^ 0-1,2,3),

the group velocity of each wave-mode. Accordingly,

iaZ>/3wy(8/a/+vV)g, = HjQtQt 0 : * k * /)

for resonant triads with Wj+Wg+Wg = 0 and kj+kg+kg = 0.
If, further, the Q} and Z)(w,k) are defined as in §2.3, each mode has

energy density

where 3D/3w = 2pco | k |~* for capillary-gravity waves. Since total energy
density E1 + E2 + E3 is conserved for spatially-uniform resonant wave-trains,
each interaction coefficient /t; must have the same constant value A, in line
with (14.9); but there is no obvious shortcut for evaluating this constant,
which is — pj for capillary-gravity waves.

It follows that the general conservative interaction equations for
resonance with kj+kjj+kg = Wj+Wj + Wg = 0 are

s} =

with renormalized amplitudes

such that

- I

14.3 Some properties of the interaction equations
When the Aj depend on / alone, exact solutions of (14.10) are

known in terms of elliptic functions. When the three signs s} differ, these
solutions are mostly periodic, but there are non-periodic limiting cases.
These solutions were found independently by Jurkus & Robson (1960),
Armstrong et al. (1962) and Bretherton (1964) - the universality of
three-wave resonance in optics, electronics, plasma physics and fluid
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130 Three-wave resonance

mechanics not being matched, then as now, by rapid communication!
When the three signs Sj are the same, a singularity may, or may not, develop
at a particular value of /: such a singularity signifies an 'explosive'
breakdown of the equations after a finite time. Such solutions were given
by Coppi, Rosenbluth & Sudan (1969). All these are described below in
§15.1. Long before, the case with Aj(t) real and differing signs s} was solved
by Euler (1765): the equations are then Euler's equations for free rotation
of a rigid body about a fixed point.

An 'explosion', in which all three wave amplitudes simultaneously
become infinitely large, does not violate energy conservation: Ex + E2 + E3

remains constant, with the participating waves having energies E, of
differing sign. For most waves in fluid at rest, including surface, interfacial
and internal waves, 9£>/9&i is necessarily proportional to w | k I"1: therefore,
such resonant waves with wr + w2 + w3 = 0 must have (9D/3w)y of differing
sign, positive definite energies E}, and bounded periodic modulations.

Interactions among waves of differing energy sign need not lead to
breakdown: this only occurs when the wave of greatest absolute frequency
|w| has energy of different sign from the other two. In other words,
breakdown occurs only if the wave actions Ej/o)j have the same sign.
Examples where this occurs are frequent in plasma physics (see, for
example, Weiland & Wilhelmsson 1977). Craik & Adam (1979) have shown
that the three-layer Kelvin-Helmholtz flow (2.5) supports resonant triads
of both the explosive and periodic types, even when the flow is linearly
stable. In contrast, the resonant triads identified by Ma (1984a) in simple
Kelvin-Helmholtz flow (cf. §2.1) exist only when the flow is linearly
unstable.

In addition to energy conservation, there are three other conserved
quantities of (14.10), expressed by the Manley-Rowe relations

= ^[s3\A3\*-s1\A1\*] = 0. (14.11)

From these, it is obvious that the Aj remain bounded whenever the signs
Sj differ. Equivalently, each st \ Aj |2 may be replaced by the wave actions
Ej/ojj.

When the Aj of (14.10) depend on a single variable, £ = erx+/?r (a, /?
constant), similar solutions are easily constructed (Armstrong, Sudhanshu
& Shiren 1970). For near-resonance, with kj-|-k2-|-k3 = 0 but small
frequency mismatch Aw = &>1 + w2 + w3, equations analogous to (14.10)
have additional exponential factors exp(—i Aw?) on the right-hand side.
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14 Conservative wave interactions 131

These, too, yield Jacobi elliptic function solutions (Armstrong et al. 1962),
though Ex+E2+E3 is no longer constant.

When two of the waves, say A2 and A3, are much smaller than the third,
Alt and each depends on t alone, (14.10) yield the linearized approximation

dAJdt = 0, dAJdt = s2 A* A*, dAJdt = s3 A* A*
or

AX = A\ (constant), dMfc/d;2 = s2 s3 \ A\ |2 Ak (k = 2,3).

Obviously, A% and A% are periodic, with frequency \A\ | if the signs s2, s3

are opposite; and exponential, with growth and decay rates ±|-4J| if
s2 s3 = 1. For waves in fluid at rest, s} = sgn oij and the waves A2, A3 remain
small compared with Ax except when Ax corresponds to the wave of
greatest absolute frequency. When | w21 is largest, the wave Ax is unstable
to wave-modes A2, A3 (Hasselmann 1967b). In plasma physics, Ax is called
a 'pump wave' when it can pump up A2 and A3 from infinitesimal levels;
and the instability of the latter is usually described as 'parametric-reso-
nance' instability. When all three signs Sj are the same, growth of A2 and
A3 is limited by the depletion of Ax at larger amplitudes; periodic
modulations occur as described by the elliptic-function solutions.

A 'pump-wave approximation' may also be applied to (14.10) to
describe modulations in both time and space, when one wave is dominant
(Craik & Adam 1978), but this inevitably breaks down if the magnitudes
of the Aj become comparable, unless the 'pump wave' is artificially
maintained at constant amplitude. The governing equations may then be
combined as a linear Klein-Gordon (or telegraph) equation (7.9) which
is easily solved.

General conservation laws of (14.9), derived by Simmons (1969) for
capillary-gravity waves, are

E (6/8f+vV)£i = 0, 2 (3/3f+v(-V)Mi = 0,

Here, Mt denotes the momentum (per unit horizontal area) of the ith mode.
Corresponding conservation laws of (14.10) are

(14.12)

These yield energy conservation and the Manley-Rowe relations (14.11)
when the At depend on / only. When the A( depend on the two variables

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:28 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.006



132 Three-wave resonance

x, t and each as ;t-s*+ oo, (14.12) readily reveals that the quantities
/*oo p

(s.lA^-sJA^dx,
J — 00 J

(s2\A2\*-s3\A3\*)dx,

are constants. Similar constants of motion exist when the At depend on
more than one space variable, provided A^O sufficiently rapidly as
|x|->oo. The solution of (14.10) for waves modulated in both space and
time is accomplished by the method of inverse scattering, described in
§15.2.

14.4 Wave-interaction experiments
(i) Capillary-gravity waves
The resonance of three capillary-gravity waves, analysed in § 14.1,

was first investigated experimentally by McGoldrick (1970a). He demon-
strated the second-harmonic resonance of two-dimensional waves with
fej = k2 = — §&3 = {pg/2y)t and confirmed that viscous damping is well-
represented by linear theory. Figure 5.1, taken from his results, shows
typical waveforms at resonance and not, when a single wave is excited
mechanically.

Recent experiments of Bannerjee & Korpel (1982) exhibit resonance

Figure 5.1. Capillary-gravity waveforms downstream of a sinusoidally vibrating
wavemaker (from McGoldrick 1970a). Cases (a) and (b) are off resonance and show
typical'gravity type' and 'capillary type' waves (frequencies 8.82 cs"1 and 11.0c s"1

respectively). Cases (c) and (d) show second-harmonic resonance (frequency about
10 c s"1); (d), 25 cm further from wavemaker than (c), has amplitude reduced by
viscosity. Wave amplitude in (a) is about 0.11 mm.

(d)

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:28 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.006



14 Conservative wave interactions 133

among waves with differing directions of propagation. A mechanically
generated wave k3 = (k, 0) gave rise to obliquely-propagating subharmonics
kx 2 = (%k, ± I) with half the fundamental frequency. As reinterpreted by
Hogan (1984b), their results show satisfactory agreement with theory. One
difficulty, which must be accounted for, is that viscous damping of the
waves induces a significant second-order mean flow and this, in turn, causes
a frequency shift of the waves.

Kim & Hanratty (1971) also demonstrated second-harmonic resonance
of capillary-gravity waves in shallow liquid layers and found evidence of
higher-harmonic generation. These higher harmonics were further investi-
gated by McGoldrick (1972), who attributed them to higher-order
near-resonances of the form k2 = Arfc1,w2 x N^ (integer N 5= 2):cf.§22.2.
Clearly, the Mh harmonic must have phase speed close to that of the
fundamental: it is then generated as a parametric instability by Mh order
nonlinearities and the resultant wave profiles typically have N crests per
period. In contrast, Kim & Hanratty attempted to explain their higher-
harmonic generation by quadratic interactions among four waves with
wavenumbers nk (n = 1,2,3,4): this would be effective only if the waves
were weakly dispersive, with nearly equal phase speeds.

The onset of three-dimensionality in wind-generated ripples, reported
by Craik (1966)-see Figure 2 .5-may also be due to three-wave
resonance.

(if) Internal gravity waves
Davis & Acrivos (1967) showed that an internal wave, propagating

along a diffuse stratified layer between fluids of different densities, may
become distorted from its original sinusoidal shape by the growth of a
three-wave resonance. This was revealed by use of neutrally-buoyant dyed
droplets which showed surfaces of constant density: their photographs are
reproduced in Figure 5.2(a),(b),(c). The 'lumps' which develop in the
stratified layer give rise to local turbulent mixing.

McEwan (1971), McEwan, Mander & Smith (1972) and McEwan &
Robinson (1975) investigated standing internal gravity waves in fluid with
linear density variation with depth. The first and second of these studies
concern the degeneration of a single forced mode into more complex
structures through three-wave resonances. The third deals with parametric
instability of waves due to periodic oscillations of the container; this may
be viewed as a limiting case of three-wave resonance where one wave,
represented by the moving container, is much longer than the other two.
When, because of geometrical constraints of the apparatus, the given
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134 Three-wave resonance

Figure 5.2. Progressive * disintegration' of an internal wave due to three-wave
resonance (from Davis & Acrivos 1967).

(a)

(b)

(c)
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14 Conservative wave interactions 135

fundamental wave can participate in only one resonant triad, the resultant
motion is easily understood in terms of the growth of two other modes;
but when several participating triads co-exist the behaviour is much more
complex. Similar effects were demonstrated, for progressive internal waves,
by Martin, Simmons & Wunsch (1972), who considered up to five triads
with a member in common. Such cases are analysed in §16.2 (v) and (vi).

(Hi) Surface and internal waves
With two interfaces, or with a free surface above continuously

stratified fluid, resonant interactions occur between surface and internal
waves. There are many oceanographic observations of such interacting
modes - see, for example, Gargett & Hughes (1972) - but few quantitative
investigations in the ocean. Experiments in a large tank were conducted
by Lewis, Lake & Ko (1974) and Koop & Redekopp (1981). In the former,
a layer of water was bounded above by a free surface and below by a denser
freon-kerosene mixture. Since the density difference across the lower
interface was quite small, resonant triads comprised relatively short
surface gravity waves and a long wave at the lower interface. Both surface
and internal waves were generated mechanically with the same direction
of propagation. It was confirmed that the strongest modulations of the
former occurred when their group velocity was close to the phase velocity
of the interfacial wave, in agreement with theory (see §14.1). The study
of Koop & Redekopp concerned similar interaction of long and short
waves on the two interfaces of a three-layer configuration (see § 19.1).

A novel application of three-wave interaction theory is that examined
by Davies (1982), Davies & Heathershaw (1984) and Mei (1984): they
consider propagation of a wave-train over fixed periodic sandbars on the
bottom. When the incident waves have wavenumber and frequency (k, w)
and the zero-frequency bottom undulations have wavenumber 2k, their
interaction produces resonant reflected waves with wavenumber and
frequency (—k,(o). Because the undulations have fixed amplitude, the
'pump-wave approximation' then applies and solutions are readily con-
structed. Predicted reflection coefficients in resonant and non-resonant
cases agree quite well with the experimental results of Davies & Heathershaw
(1984). Such partial reflection can induce second-order drift currents which
act to maintain or enhance the sandbars by sediment transport. This
resonant excitation of reflected waves is similar to Bragg reflection of X-rays
by crystal lattices (see e.g. Pinsker 1978).

As yet, no experiment has been undertaken, in fluid mechanics, to
demonstrate the potentially explosive conservative interactions among

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:28 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.006



136 Three-wave resonance

waves with differing energy signs. The situation envisaged by Craik &
Adam (1979) is certainly realizable, at least approximately, in the laboratory.
Corresponding, and more difficult, experiments in plasmas were undertaken
by Hopman (1971), though the expected 'explosion' turned out to be
rather undramatic. Experiments on the wonconservative interaction of
waves in shear flows are discussed in §17.1.

15 Solutions of the conservative interaction equations
15.1 The one-dimensional solutions

Here we give the solutions of the three-wave interaction equations
when the amplitudes A} depend on the single variable t. In doing so, a small
frequency mismatch Aw = w1 + w2 + w3 is incorporated, so that the
governing equations are

dAJdt = sx A* A* e~iAat, dAJdt = s2A* A* e-1 A*V
O5-1)

These equations yield constant total energy E1 + E2 + E3 only at exact
resonance, Aw = 0. Otherwise, E1 + E2 + E3 oscillates periodically with
frequency Aw. This may seem paradoxical, for the original system is
non-dissipative and energy conserving; but the effect is a simple consequence
of treating combinations of modes with slightly differing frequencies as
single modes. For instance, two linear wave-trains

pcos(kx-Qt), qcos[kx-(Q + S)t]

yield net energy i(p2 + q2) when summed separately; but
i(/>2 + 1 2 + 2/><7 cos 8t) when regarded as a single, slowly-modulated wave-
mode. Accordingly, we regard (15.1) as the equations of conservative
three-wave resonance, even when Aw + 0. An account similar to that
following is given by Weiland & Wilhelmsson (1977).

On writing bj — \A}\,ri} =phAp (15.1) may be rewritten as four real

equations

db1/dt = s1 b2 b3 cos y, db2/dt = s2 bx b3 cos y

dbz/dt — s3 bx b2 cos rj, drj/dt = Aw — I

where ?; = 1/1 + 2̂ + ̂ 3 + Awf. A similar formulation applies for amplitudes
depending on x only, with small wavenumber mismatch AA: = k1 + k2 + k3

and matched frequencies wx + a>2 + w3 = 0.
The Manley-Rowe relations (14.11) are satisfied by (15.1): these may

be written as

sJLbl(t)-bl(O)] = s2[bt(t)-bl(O)] = sM(t)-bl(0)] = *(t).
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75 Solutions of the interaction equations 137

A further constant of motion is

T = blb2 b3 sin r/ — \ AOJSJ bj,

for any choice of j = 1, 2, 3.
On using these, (15.2) reduces to a single equation for x{i),

dx/dt = ± 2{[Sl x + b\ (0)] [s2 x + bl(0)] [ss x

= ±{-2TT(X)}1, (15.3)

where the + signs indicate that of cos?;. Since at least two of the s}

Figure 5.3. Typical potential function n(x) when Aw = F = 0: (a)

oscillates between — 6|(0) and b\(0); (b) sl = 1, x grows without bound.
= - 1 , x

-61(0)

(a)

_ \
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138 Three-wave resonance

(j = 1,2,3) are equal, there is no loss in setting s2 = s3 = 1 and in taking
the term s}bj(O) as bl(0).

Equation (15.3) has the form

\(dx/dtf + n{x) = Q (15.3)'

where n(x) is a cubic function, negative in cases of interest. Clearly, n(x)
may be thought of as a potential. If Aw = F = 0, n(x) is typically as in
Figure 5.3 (a) when ^ = — 1 and as in Figure 5.3 (b) when st = 1. In the
former, the wave actions EJ/CJ^ have differing signs; in the latter they have
the same sign and the signs of the energies E} differ. For s1 = — 1, the
solution x(t) must oscillate in the potential well. For sx = 1, x(t) must
always become infinite: in fact, it does so 'explosively', in a finite time.

This explosive growth is inhibited, but not eliminated, by non-zero
frequency mismatch Aw which changes the location of the roots of n(x).
Explosive growth then occurs only with sufficiently large initial amplitudes.
The constant of motion F is related to the initial phases of the waves and
the coupling is strongest when Aw = F = 0. When F 4= 0, the roots of n(x)
remain real when st = — 1 but two may be complex conjugates when s1 = 1.
Solutions for F =t= 0, s1 = — 1 remain periodic and those with F =)= 0, s1 = 1,
Aw = 0 remain explosive for all initial amplitudes.

The solution of (15.3) may be given explicitly as an elliptic integral,

t=±\ [
Jo

which gives x{i) in terms of ' sn ' and 'en' Jacobi elliptic functions
(Abramowitz & Stegun 1964). Corresponding solutions for the amplitudes
bj are as follows (cf. Weiland & Wilhelmsson 1977; Coppi, Rosenbluth &
Sudan 1969).

bx = [bt(O)-x(t)f, bk = [b%(0)+x(t)f (* = 2,3),

x(t) = (a2-ax) sn2[(a1-

where x1 > a2 > a3 are the three real roots of the cubic n(x) = 0. Cases
of equal roots are simpler but require separate treatment. Solutions have
period

|*2TT

(l-A:sin2M)
Jo
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15 Solutions of the interaction equations 139

(ii) s1 = 1; real roots 0 > ax > a2 > a3.

6, = [ftJ(O)+ *(/)]* (7=1,2 ,3) ,

x(r) = (a t - a3) {sn2 [(f „ - t) (a± - a3)*, fc']}'* + a3,

Here, t^ denotes the time of explosion.

(Hi) st= 1; real non-positive ax, complex conjugate a2, a3.
0=1,2,3),

These also explode at finite time.

(iv) s1 = 1; real roots with ax < 0 < a2 < a3.
Solutions oscillate in the potential well at < x < <x2. These periodic

solutions resemble (i) and arise when the initial amplitudes bj(O) lie below
the threshold for explosion imposed by frequency mismatch Aw.

When F = Aw = 0, there are particularly simple solutions of (15.2) when
two or more wave amplitudes are initially equal. These are

(a) bx = b tanh (bt), b2 = b3 = b sech (bt), cos tj = — 1,

[st = - 1 , bt(0) = 0, b2(0) = b3(0) = b];

(b) b1 = b tan (bt), b2 = b3 = b sec (bt), cosij — 1,

[$i = 1, bt(0) = 0, b2(0) = 63(0) = 6];

(c, d) bj = (Zr1 - 0"1 O = 1,2,3), cos v = 1
and

^ = (ft-1 + 0"1 0 = 1 , 2 , 3 ) , cos r, = - 1 ,

[ $ i = l , &i(0) = b2(0) = 63(0) = b].

Note that (b) and (c) explode at t = n/2b and t = \/b respectively.

15.2 Inverse-scattering solution in two dimensions
For modulations in one space dimension and time, or in two space

dimensions only, Zakharov & Manakov (1973, 1975) and Kaup (1976)
have obtained solutions of (14.10) by the method of inverse scattering.
Subsequently, solutions for modulation in two space dimensions and time
(or three space dimensions alone) were given by Zakharov (1976), Cornille
(1979) and Kaup (1980). This work is admirably reviewed by Kaup,
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140 Three-wave resonance

Reiman & Bers (1979) and Kaup (1981b) (frequent misprints in the former
are mercifully corrected in the reprints). Here, a brief account is given of
the two-dimensional case, with A} depending on x and t.

First, let the indices 1, 2, 3 be ordered such that c1< c2< c3 where ct

denotes the x-component of v}. The strategy, as in all inverse-scattering
problems, is to find an associated linear eigenvalue problem which helps
towards constructing the solutions of the nonlinear equations (14.10).

The eigenvalue problem of Zakharov & Manakov is

( i d / d r - c 1 0 « i = K11iiI + K1,!i,,1

( id /dx-c 2 g)u 2 = V2lUl+V23u3, I (15.4)

<id/dx-c,Qut=Vnu1+V»ut,\

where u = (uu u2, u3) is an eigevector, £ the eigenvalue and Fy are six
unknown 'potentials' related to the unknown amplitudes Aj(x, t) by

—\A
i i/ _ „ „ is*V —

V - (15.5)

The amplitudes A} are assumed to be localized in x so that Vtj-+0 as
|x|->oo.

Suppose that u<TC) = wjn) (n = 1,2,3) are three linearly-independent
solutions, each associated with an eigenvalue £, which satisfy respective
boundary conditions

wjn) « *;„ exp (—ic^ ̂ x), x -> — oo,

(» =7)

Note that these are consistent with (15.4). Each solution may be thought
of (loosely) as a different wave-mode incoming from x = — oo.Asx->+oo,
Vfj -> 0 and each solution must behave as

ujn) « an](£, t) exp ( - \ct gx), x -> + oo.

The anj may be viewed as a 'scattering matrix' which relates the outgoing
to the incoming wave field. On using (14.10) and, in particular, the
invariant properties (14.12), it may be shown - with some effort - that the
eigenvalue £ is independent of t and that the time-dependence of ai}(£, t) is
exponential, as

««(& 0 = ««(£, 0) exp Wcx c2 c3(cji - cri)]. (15.6)
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75 Solutions of the interaction equations 141

Accordingly, if ay(£, 0) can be found for the initial wave-envelopes A}(x, 0)
it is known at all later times. But the spectrum of eigenvalues £ and the
associated ay(f, 0) may be found by solving the linear eigenvalue problem
at t = 0, since the Vti are then known. The problem then reduces to
reconstructing the potentials Vi} at all later times / from a knowledge of
the scattering data £ and ay(£, t). The formal solution of the latter
'inverse-scattering' problem may be expressed as that of a linear integral
equation.

The disadvantage of having to solve the third-order eigenvalue problem
(15.4) was circumvented by Kaup (1976) for cases where the three wave-
envelopes are initially well separated. Then, the third-order problem may
be replaced by three second-order ones, each applicable in regions where
one wave amplitude is dominant. These three problems yield three
scattering matrices,

d$ =

af =

1
0

. 0

s<3>
1,(3)

.0

0
i) _

i )

b(3)

a(3)

0

0

a d )

0"
0
1.

0
J,(2)

0
1
0

0
a< 2 ) .

with each a(r), a(r), /><r), Z>(r) known in terms of Ar. In fact, each a<p derives
from a 'pump wave approximation' in which a single wave-mode Ar is
dominant. For instance, (15.4) reduces to

( id /dx-c 1 O"i= V12 Kg,
(id/dx-c2£)w2= V21ut, I (15.7a)

J
when only ,43 is non-zero. Rescaling yields a corresponding second-order
problem of the form

= qu2, (d/dx-iA)«2 = rux. (15.7b)
Independent solutions t4m) (k, m= 1,2), incident from x = - oo as

behave as x->+ oo like

fc L a(A)e l A a : J (x-^+oo),

where a, b, a, 5 and the eigenvalue A depend on the potentials q and r.
These correspond to the scattering matrix a\f above, (with superscript 3
added), the amplitude of u3 being unaltered.
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142 Three-wave resonance

With the separate envelopes initially ordered 3, 2, 1 from left to right,
the overall scattering matrix at t = 0 is just

If the envelopes again separate at sufficiently large times, say tt, (which does
not always happen!) the final scattering matrices affl(£,tt) have similar
form and

) = a®a®alf (t = tt), (15.8)
the relative positions of the envelopes being reversed in accordance with
c1< c2 < c3. Results analogous to (15.6) relate each initial and final
scattering matrix ajp. Inversion of the scattering data yields the respective
wave amplitudes after interaction has been completed: but this simpler
treatment does not yield the solution during interaction.

The complete formal solution of the inverse-scattering problem, in terms
of a linear integral equation, is not usually amenable to further analytic
reduction. Nevertheless, a class of closed-form w-soliton solutions is
available. These are associated with a discrete 'bound-state' spectrum of
eigenvalues £ (or A) which corresponds to poles of the ratios b(r)/air) and
which exists only when the signs s} differ. Each a(r) may be thought of
(loosely) as a wave incident from x = + oo which yields a transmitted wave
of unit amplitude as x ->—oo and a ' reflected' wave of amplitude £(r)

(actually, 6<r) is 'converted', not reflected, into another member of the
resonant triad). The bound-state spectrum of £ arises, analogously with
resonant over-reflection, when 'transmitted' and 'reflected' waves occur
in the absence of an incident mode.

In addition to these bound-state soliton solutions, there is a continuous
spectrum of £ with non-singular b(r) /aSr\ Since (14.10) are non-dispersive
in the linear limit, the contribution from this continuous spectrum does
not decay with time (as it does for the Korteweg-de Vries equation, for
example) but remains on an equal footing with the solitons. Nevertheless,
investigation of the properties of the soliton solutions provides valuable
insight.

For a given eigenvalue £, a ratio b(r)/aSr) may be singular at t = 0 but
not at the final time tt, or vice versa. Precisely, zeros of a(r> and a(r> present
at t = 0 persist at t = tt for the fast and slow envelopes r = 1 and 3, but
all zeros of a(2) present at / = 0 are absent at t = tt. This means that the
middle envelope always loses any solitons it may originally possess, but
that solitons are not usually lost from the fast and slow envelopes. A
middle-envelope soliton with eigenvalue £(2) is converted to solitons of the
slow and fast envelopes with respective eigenvalues £W, £® with
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15 Solutions of the interaction equations 143

Figure 5.4. Soliton exchange interactions, computed by Kaup, Reiman & Bers (1979).
Mode flj (with intermediate group velocity) dominates at t = 0 but mode a^ (smallest
group velocity) is also present. Subsequently, one, two or more pulses of a3- and the
third mode ak are emitted. Reference frame chosen with vt — 0, fs = ~yk. (a)
|ay /oj | = 0.02 and pulse length L/Lc = 3.25 initially; (A) |Oj/Of | = 0.002 and
L/Lc = 6.4 initially. (Courtesy of Amer. Phys. Soc).

(or y)
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144 Three-wave resonance

g(i) 4. g(3) _ g(2) jhese three solitons therefore form a resonant triad. If,
exceptionally, the initial data provides fast and slow envelopes with
solitons at such eigenvalues gW, £<3) and with appropriate phases, these
annihilate one another to produce a £(2) -soliton in the middle envelope,
but this would subsequently disintegrate back into £(1) and £(3) solitons if
it met any other disturbance. Such 'soliton exchange interaction' by
nonlinear resonance is not confined to (14.10): it arises also for solutions
of the Korteweg-de Vries and nonlinear Schrodinger equations (Miles
1977a,b;Kaup 1981b).

Soli ton exchange interactions occur for (14.10) when the wave of
greatest frequency has the middle group velocity and the signs s}

(J = 1,2,3) differ. Examples of such interaction, obtained numerically by
Kaup et al. (1979), are shown in Figure 5.4. But soliton exchange is
prohibited in other cases.

One such is 'stimulated back-scattering', where the highest-frequency
wave has fastest or slowest group velocity and all three wave energies have
the same sign (e.g. sl = s2 = 1, ss = — 1). Then, neither the high-frequency
wave nor the middle envelope can ever possess solitons. Interaction of a
laser and ion acoustic wave, to produce a backscattered (i.e. slower) laser
pulse, is of this kind.

The assumed separation of the wave-envelopes at t > tt breaks down
in 'explosive' cases. These occur when the high-frequency envelope has
energy of opposite sign to the other two waves (i.e. the signs s} are the same)
and travels with the middle group velocity. Solutions may then develop
a singularity after a finite time, or may not, depending on the initial data.
Numerical examples, from Kaup et al., are shown in Figures 5.5(a),(b):
the latter explodes but the former does not. In Kaup's (1976) formulation,
an earlier 'explosion' is indicated by inconsistencies in the scattering data
at tt: neither the fast nor slow envelope can ever contain solitons in this
case, but neither can the middle envelope retain its solitons at ?,. Solutions
bounded for all t exist only when the middle envelope contains no solitons
at t - 0.

The n-soliton solution, for Sj of differing signs, has the following form
for each (non-overlapping) envelope (Kaup et al., Appendix B):

(15.9)

^ (T= 1,2,3),

A, = it,,, Sv =

N = Nfj = D^(?/4 + q})
 1 exp [ — (r,t + rjj) x'], x' = x — cr t—xr

(xr constant),.
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15 Solutions of the interaction equations 145

Figure 5.5. Collision of initially rectangular pulses in potentially explosive cases: (a)
non-explosive, with | aj/at | = 0.25 at t = 0; (b) explosive, with | cij/a( | = 0.35 at / = 0
(from Kaup, Reiman & Bers 1979, courtesy of Amer. Phys. Soc).
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146 Three-wave resonance

where a, = af1, bj = &<r) (r = 1,2,3) are elements of the three scattering
matrices a$ corresponding to the 7th eigenvalue-pair A = + Â . These
bound-state positive and negative eigenvalue pairs are pure imaginary and
the summation yields two terms for eachy, k. The scaled eigenvalues A are
related to the original eigenvalue £ by

A« = &(c, - c2), A<2) = J£(c, - C l), AW = &(c, - cj

for the respective envelopes (cf. equation 15.7a, b). Also, from (15.5) and
(15.7), the amplitudes Ar are related to qir) by

a(X) =
 S2S»A1 (2) _

9 [(CcMccdf q

< 7 ( 3 ) = ;

Each soliton travels with its linear group velocity cr in the non-interacting
region but ap bj and so D3- take different values before and after interaction.
Fuller details are given by Kaup et al.

The trivial one-soliton solution (J = k = n = 1) is

?w = -2Vl sgn(-D1) seci[2iil(x'-x0)]

with x0 defined by

IDJI = 2i;1exp(2i/1x0).

The collision of two single envelope solitons is the next simplest solution
(see Kaup et al.). At t->-— 00 this is

?<D ~ 21/j sech (2Vl zx) e \ q™ ~ 0,

q^ ~ 2Vs sech(2Vaz3) &**, z} = x-Cjt-xoj

where xop <pi are constants. Provided the eigenvalues A = i^1; ii/3 are such
that the corresponding values £l5 g3 of £ are not equal, these solitons are
non-resonant. They collide when t « (x10 — x30)(c3 — c^)"1 and for a time
produce a ^(2> soliton. But, as /-> 00, the qf(2> soliton decays, replenishing
the r̂(1) and q(3) solitons to

qM ~ 2^ sech (2^ zx - 8) e^+d\ q™ ~ 0,

q™ „ 2% sech(2r,3z3 * « >

(the eigenvalues A being assumed imaginary).
When £j = ^3, the two solitons are resonant with a third, for then

A(D + A(3) = ^ ( c g - q ) = A<2>. In this case,

qm „ g») ~ 0, qM ~ - 2V2 sech (2^2 z2) tfa
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15 Solutions of the interaction equations 147

as /->oo, where z2 = x—c21—x20 and

Clearly, the qm and ^<3) solitons have been converted to a <7<2) soliton which
completes the resonant triad.

The latter resonance occurs only in exceptional cases for which the initial
data yield equal eigenvalues £x and £3. Usually, the conversion process
operates in reverse: a given middle envelope qi2) soliton interacting with
an arbitrary small disturbance decays into fast and slow solitons which are
resonant with it. This is normally referred to as a 'decay instability'.

Similar inverse scattering solutions have been found for three-wave
interactions in inhomogeneous media. Then, a small wavenumber mis-
match, say Ak denoting imperfect resonance, varies linearly with distance
x; but the governing equations may still be transformed into (14.10)
(Reiman 1979). Inverse-scattering and Backlund-transformation solutions
for three-wave interaction with constant frequency or wavenumber mis-
match were earlier given by Chu & Scott (1975) and Chu (1975a): these
relate to cases where two of the three group velocities ci are equal.

15.3 Solutions in three and four dimensions
For propagation in two or three space dimensions and time, the

inverse scattering theory has been developed, along somewhat similar lines,
by Zakharov (1976), Cornille (1979) and Kaup (1980). Zakharov first
noted a broad class of explicit solutions, independently discovered using
elementary analysis by Craik (1978). These and further classes of solutions
have also been constructed, using a Backlund transformation, by Kaup
(1981a, b).

With three, or four, independent variables x, t available, it is possible
to choose characteristic co-ordinates Xi (' = 1,2,3) such that

6/8*, = 9 / 3 / + v V f a * v2 4= v3):

these are clearly linear combinations of x, t. If there is dependence on three,
rather than two, space co-ordinates and t, the fourth characteristic
co-ordinate Xt is chosen so that

(a/8/ + y , - V ) ^ = 0 (1=1,2,3).

In the amplitude equations, XiIS just a 'dummy variable' which acts like
a fixed parameter and so is ignorable. The three amplitude equations
(14.10) are then just

dAi/dXi = siAfAZ (15.10)

with i,j, k taken in cyclic order, equal to 1, 2 or 3.
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148 Three-wave resonance

Surprisingly, the inverse-scattering analysis reveals that the associated
linear eigenvalue problem yields no discrete bound states. Accordingly,
there are no three-dimensional n-solitons and the complete solution derives
from the continuous spectrum.

On introducing moduli b( and phases 6t, where At = bt exp (i6t), (15.10)
becomes

+ 8Z). j
Solutions with constant phases Bt = Q\ have

= 2(-l)N\s1s2s3—,— T — — -——- (1512)

where F(xv x%, #3) is
 a n v r e a l solution of the last equation which yields

positive values for each b\. The problem lies in finding such functions F.
That given by Craik (1978) is

F= —s1s2s3 In\fi(xi) +/2CV2) +-/sOfo)] (15.13)

with (— 1)^ = — sls2s9, thef((xt) being three not quite arbitrary differenti-
able functions. This class of explicit solutions also emerged as a special
case of Zakharov's (1976) inverse-scattering representation and a somewhat
similar solution, for propagation in x and t only, was given by Wilhelmsson,
Watanabe & Nishikawa (1977).

For initially-bounded envelopes, the functions ftixd at * = 0 must have
non-zero sum / t + / 2 + / s at all points of space. Some further restrictions
are necessary to ensure that the amplitudes bj are real, but the class of
solutions remains large. Initially-bounded envelopes 'explode' at a later
time if/i +f2 +f3 becomes zero at any point in space. Craik (1978) showed
this to be possible only when the three signs s} are the same, as expected.
He and also Kaup (1981a, b) give some particular examples of interacting
localized wave-envelopes. They also give a 'bursting criterion', in terms
of the available' energies' of initial wave-envelopes. A typical configuration
of interacting envelopes is shown in Figure 5.6. When one wave-mode is
locally dominant, a ' pump-wave' approximation suffices (Craik & Adam
1978), but this cannot represent the explosive instability.

More general solutions were derived by Kaup (1981a), using a Backlund
transformation. First, the linear scattering problem

(i,j,k= 1,2,3) (15.14)
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75 Solutions of the interaction equations 149

is defined, where i,j, k are cyclic. This comprises six equations for the three
functions fafa, #2> Xs)- These have three conservation laws,

3(^ I fa \2)/dx* = 9fe I f* \2)/dXi («" * *)
and so there exists a function -D(#15 #2> #3) wi*h

3 D / 3 ^ = - j f | ^ ( | * (1 = 1,2,3). (15.15)
If A] (J = 1,2,3) is any known solution of (15.10), the corresponding
functions fa and D may be found from these equations.

The Backlund transformation is

(15.16)
with D real and cyclic i, j , k. It is readily verified that A} is then also a
solution of (15.10)! The transformation therefore generates new solutions
from old.

The trivial solution A} = 0 yields

Aj = ijr* xjr^/D,
/ fan \

(w)|2dM)+constant°=k<\:
where each fa is an arbitrary, differentiable, complex function of the
corresponding single variable Xi- This class of solutions, called' one-lump'
solutions, is precisely that of (15.12)—(15.13). 'Two-lump' solutions A} are
next constructed by using the one-lump solution for A} in (15.14) and
(15.16) and calculating new functions ^ and D. Continuation of this
process generates an arbitrary number of W-lump' solutions. Kaup

Figure 5.6. Configuration of localized disturbances (a) before and (b) after interaction.
Each mode is contained within the domain Dj(j= 1,2,3) which moves in the direction
indicated.

(a)
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150 Three-wave resonance

(1981a) gives only the one-lump and two-lump solutions explicitly, the
latter containing six arbitrary functions compared with the one-lump
solution's three. Kaup conjectures that the two-lump solution may be
sufficiently general to describe the behaviour of all initially-localized wave-
envelopes, but this has yet to be shown.

In one sense, the three-dimensional TV-lump solutions may be regarded
as counterparts of the two dimensional N-solitons: in inverse scattering
theory, both derive from separable kernels of integral equations. In
another, these solutions are very different, for the three-dimensional
problem yields no discrete bound-state eigenvalues, such as give rise to
jV-solitons. A feature reminiscent of resonant soliton interactions is the
'decay instability' exhibited by some one-lump solutions: particular
A1 envelopes have been shown to convert completely into A2 and A3

envelopes on meeting a small amount of A2 and A3 (Case & Chiu 1977;
Kaup 1981b).

15.4 Long wave-short wave interactions
Interactions among short waves and long waves are resonant when

the group velocity cg of the short-wave envelope equals the phase velocity
cp of the long waves. This is just the condition

Ak = kt, Aw = cg Ak = (ol

where (kh, o)h) are the wavenumber and frequency of the long wave and
(Ak, Aw) are the limits (k-k',(o—w') as (&', w') approaches the short-wave
wavenumber and frequency {k, w). Obviously, this is a special case of
three-wave resonance.

With short-wave envelope At(X, T) and long-wave envelope B(X, T), the
governing equations in many cases take the form

Here, X - e§ (x -c g 0andr = e*/(cf. 19.2a, b). Equality of cg and cp allows
the dispersive term PXAXXX to be included in (15.17a), though this would
otherwise be of higher order (see § 19). Equations of this form were derived
by Grimshaw (1977) for resonant interaction of a packet of short surface
waves with a long internal wave. These were solved by Ma (1978) and Ma
& Redekopp (1979), using inverse scattering, for real coefficients.

With two short-wave envelopes Ax(X,i), A2(X,T) with differing wave-
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16 Linearly damped waves 151

numbers and frequencies but with equal group velocities cgl = cg2 = cp,
the corresponding equations are

(15.18)

These are discussed by Ma (1981), who gives their solution by inverse
scattering for real coefficients with f$x = /?2, yx = y2 and sgn A1A2 = 1. Such
cases are conservative, with waves of like energy sign. There are, in effect,
two degenerate resonant triads with the long wave in common. The
restriction cgl = cg2 constrains the choice of modes.

With rescaled co-ordinates, (15.18) transform to

and boundary conditions Sk, L^-0 as | X | ->oo are imposed. The method
of inverse scattering applies, in principle, also to interactions with N short
waves (k — 1,2, ...,N). The linear eigenvalue problem associated with
(15.19) is a fourth-order one, with complex eigenvalues £ = — £+i?/ say,
where g, ij > 0. The one-soliton solution is

(15.20)
L = - 2V* sech2 MX- Xo) + 2gr,r], c\ + c\ = 1, J

where Xo and the 'polarization vector' c = (c^c^) are known constants.
All such solitons travel to the left, with velocity — 2g, without change in
form.

Interaction of two such solitons, with different eigenvalues £ls £2 yields
solutions like (15.20) for both, as t->—oo and t^>+ oo. But the respective
values of xy> and cW) (j = 1,2) differ before and after interaction. The
centres of the two envelope solitons are shifted and the polarization vectors
c0 ) are changed because of redistribution of energy among the Sx and S3

wave-modes in either soliton. Nevertheless, the total energy of each mode,

poo poo poo

\S^dX, \S2\*dX, LdX,
J —00 J —OO J —OO

remains unchanged - a property not shared by other models of long
wave-short wave interaction (Ma 1978; Newell 1978).
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152 Three-wave resonance

16 Linearly damped waves
16.1 One wave heavily damped

When the nonlinear interaction remains of conservative type, but
the waves are linearly damped or amplified, the normalized amplitude
equations resemble (14.10) but have an additional term o-jAj (j = 1,2,3)
added to each left-hand side. A uniform wave-train, for giveny, would then
decay with exponential rate <Xy in the absence of the other two modes. (As
before, the resonant triad is taken to have the form k j + k a + k ^ O ,
0)1 + (O2+C03 = 0.)

The inverse-scattering solution exists only for cr,- = 0 and very few
solutions incorporating damping are known, for amplitudes varying in
both space and time. One relates to the case cr1 = a2 — 0 and <r3 very large.
Then, the equation for A3 yields the approximate solution

A3 = <r3 S3A± A2

and those for Ax and A2 yield

hh, (3/Sr+v2-V)/2 = IJ2,
(16.1)

= 2s2s3o-3-
1\A1\

2, I2s=2sls3<r3
1\A2"~

Solutions of these are given by Hasimoto (1974), Chu (1975b) and
Wilhelmsson, Watanabe & Nishikawa (1977) for amplitude variations in
x and t. Chu & Karney (1977) consider variations in x, y and t: this
extension derives from a straightforward change of reference frame since
derivatives of A3 are negligible compared with the large damping term.
When Ix, I2 depend on x and t, introduction of characteristic co-ordinates
reduces (16.1) to

a = i.2),
li f _x-c2t \ (16.2)

> 62 -cc1 — c2 c2 c1

where ct is the x-component of v̂ . The known class of solutions has

This is reminiscent of the one-lump solutions of (15.10) in three
dimensions.

16.2 Waves dependent on t only
(i) Equal damping rates
When the amplitudes depend on t only and each damping rate cr}

is the same, say <r, the governing equations may be reduced to the
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16 Linearly clamped waves 153

corresponding undamped equations. This is accomplished by the
transformation

B} = A} e
at, T = o - ^ l -e - 0 *) , (16.3a)

which yields
dBt/dr = st Bf Bt (i, j , k = 1,2,3 cyclically). (16.3b)

Solutions are then found as in §15.1. In explosive cases, the time of
explosion is

; 0 0 = - o - 1 l n ( l - o - T 0 0 )
where r^ is the time of explosion in the undamped case. Obviously, the
explosion is suppressed when a > T"1 .

In non-explosive cases, the Bt vary periodically in T, with period T, say;
but corresponding recurrences in real time t do not have uniform periodicity.
The intervals Atn between successive values r = nT (n = 0,1,2,...) are

which increase with n. Only a finite number of recurrences of Bt can take
place, since n+1 < (crT)*1; meanwhile, the actual amplitudes At

incorporate the additional decay factor exp (— cri).
When all three modes are amplified at the same rate, a- is negative and

an identical transformation applies. Because of the change in sign,
explosive instabilities appear sooner than in the unamplified case; while,
in non-explosive cases, the recurrence times Atn of Bt are ever-decreasing
and now infinite in number.

00 One wave damped
If only one wave, say As is damped, and the phases satisfy

?/1 + ??2 + 7/3 = Nn {N integer), the three-wave equations are (cf. 15.2 with
Aw = 0)

dbJdt = {-\)N
 Sl b2 b3, dbjdt = ( - 1 ) N s2 bx b3,

dba/dt + <rb3 = s3b1b2.

A constant of motion is y s s-^bf — s2b\. When sx, s2 differ in sign, the
substitution (Fuchs & Beaudry 1975)

b-i = 171« sin yS% b2 = \ y |i cos rjr (0 < ifr < \n)

yields
siny = 0,

y l 13y
When r > 0, this is identical to the equation of a damped, nonlinear, simple
pendulum.
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154 Three-wave resonance

(Hi) Three different damping rates
The general case is more difficult to handle. Weiland & Wilhelmsson

(1977) describe analytical approximations and numerical solutions both
for equal and differing signs Sj. Miles (1976b) also does so for the
degenerate case of two-mode interaction (A1 = A2 say).

(iv) Three-wave strange attractor
When the wave of greatest frequency is linearly amplified and the

other two are linearly damped, the temporal evolution of near-resonant
triads with k 1 = k 2 + k3, (o2 + w3 — o)1 = d is described by normalized
equations

d^/dt = bx + b2 b3 exp (\St), "1

dbjdt = -(r2b2-b1b*exp(-i8t), \ (16.4)

dbjdt = - o-3 b3 - bt bt exp (- \St), J

(corresponding to s2 = s3 = —Sj). The normalized damping rates cr2, a3 are
positive.

Wersinger, Finn & Ott (1980a, b) discovered that these equations have
a surprisingly rich structure, with solutions which exhibit bifurcations to
successively more complex periodic orbits and also the 'chaotic' behaviour
of a 'strange attractor'. On setting

bx = a, exp ( i^ ) , bk = ak exp (i0fc - \ASt) (k = 2,3)

and restricting attention to the special case a2 = a3, cr2 = <T3 = cr, (16.4)
become

da1/dt = flj + a\ cos <j>, dajdt = — a2(cr + ax cos <j>),

d(j>/dt = -S+a^ilal-al) sincf>, <f> = fi-fa-fa.

These depend on just two parameters, S and ar. Wersinger et al. undertook
a numerical study for 8 = 2 and 1 < tr ̂  25. When the initial phase <j> was
chosen in the range 0 < $ < n, it remained so at all subsequent times.
Wersinger et al. recorded their results by plotting a1 against a2 each time
the solution orbit crossed (f>(t) = \TT with d^/d/ < 0.

For small damping rates, 1 < cr < 3, ay and a3 grow without bound;
while, for 3 < cr < 8.5, all solutions approach a simple limit cycle about
a single fixed-point solution. At ar « 8.5, bifurcation occurs from the single
fixed point to one unstable and two stable fixed points: solutions then
approach a 2-point periodic limit cycle at large t. Further bifurcations, to
stable 4-point, 8-point, 16-point and 32-point limit cycles occur at
<r« 11.9, 12.8, 13.15 and 13.16 respectively. For 13.16 < o- < 13.20 and
13.20 < cr < 16.8, solutions had no observable periodicity and showed the
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16 Linearly damped waves 155

typical chaotic behaviour of a strange attractor, but a stable 48-point
periodic cycle was observed at a = 13.20. For 16.8 < a < 17.4, periodicity
reappeared as a stable 3-point limit cycle, but at a x 17.4 this bifurcated
to a 6-point cycle. Apparently chaotic behaviour resumed at a « 18.5 and
persisted to a = 25.

(t>) Equilibrium solutions with external forcing
With three damped waves and external forcing, equations for the

moduli and phases of the amplitudes are (cf. 14.9)

\ d(b\)/dt = b, b2 b2(Jkt/ut) sin v-<rt b\ + bt Ft cos (yt - i/,),

— blb263(A4/wt) cos^ + btFt sin(yt —1/4)
3

y='LVi ('= 1.2,3).
i-1

Here, the damping rates are <r4 and Ft, yt represent the respective
magnitudes and phases of the external forcing. If Ft and yi are constants,
steady-state solutions exist with i/4 = yi when yx+y2+y3 = (N—§n
(N integer). The amplitudes bt then satisfy

<rt b\ - Ft bt = ( - 1 )N b, b2 b^JkJiod (i = 1,2,3),

and the number of permissible solutions varies. They have the form

b, = b?(K) l^F^iajFI + KBrfU

where AT is a root of

McEwan, Mander & Smith (1972) examined such triads of standing
internal waves in stratified fluid, both experimentally and theoretically,
when only the wave of greatest absolute frequency is forced. Then,
F2 = F3 = 0 and the only steady-state solutions are

t)2, i/3 arbitrary,
and

Vi = 7i> bx = b10 = (B2 B3)~i, rj2 = (N— 2)n — yx —i)3, ~)

b2( - Bt B3)i = b3( - B, B2)i = ( - 1 + F, 071 b$$, y3 arbitrary. J " a>

The latter solution exists only if B2 B3 > 0 - when Bx B2 and B^ B3 are both
negative by (16.5) - and if cr^1 Fx > (B2 B3)~^. With weaker forcing than
this, only the former solution occurs.

As F1 is increased from zero, at first only the single wave bx appears,
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156 Three-wave resonance

but this solution is unstable for Ft ^ <ri(fl2 B3)~l and resonating waves b2

and b3 appear. As F1 increases beyond the critical value, the amplitudes
of b2 and b3 increase while that of the driven wave remains constant at
(B2 B3)~l. This behaviour was confirmed experimentally by McEwan et al.
Figure 5.7 shows an example of their experimental and theoretical results.
A single standing-wave mode was first produced and then a paddle, which
directly excited a second mode, was turned on. The results show
establishment of a three-wave equilibrium solution, comprising these and
a third, resonating, mode.

Chester (1968) and Miles (1976b) have analysed resonant oscillations of
water waves in closed containers subjected to periodic forcing, and related
experiments are described by Chester & Bones (1968). When the forcing
frequency w and the frequencies w,, w2 of standing-wave modes satisfy

Figure 5.7. Forced triad interaction among standing internal waves (from McEwan,

Mander & Smith 1972). Mode (1,2) was present initially and mode (3,1) was driven

by an oscillatory paddle. Three-wave equilibrium, with these and mode (2, — 1), was

eventually established. Q denotes amplitudes, N the number of paddle cycles; • . •

show measurements and solid lines theoretical results.

1.5

200 300

N (cycles)
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16 Linearly damped waves 157

W « o>! x \u)2, and when the wavenumbers satisfy k1 = \k2, Miles' coupled
amplitude equations are

This is a degenerate case of three-wave resonance with damping and
periodic forcing. Similar resonances of elastic structures containing a
liquid, under periodic forcing, were investigated both theoretically and
experimentally by Ibrahim & Barr (1975a, b). For harmonic two-mode
interactions, equations like Miles' were recovered; while three-mode
interactions satisfied equations like those of McEwan, Mander & Smith.

Waves in oscillating containers were also studied theoretically by
Mahony & Smith (1972) and Huntley & Smith (1973), but with imposed
vibrations of much higher frequency Q than those of standing water waves.
The latter are driven unstable by a limiting form of three-wave resonance,
W3 = wt—w2 say, where w, « <D2 « Cl > w3. The modulations of forced
components with frequencies &>„ w2 may then occur on the same O^1)
timescale as the standing-wave oscillations. Huntley's (1972) experiments
on waves in a rapidly-vibrated glass beaker and Franklin, Price &
Williams' (1973) acoustically-excited water waves gave dramatic demon-
strations of the phenomenon. With cubic nonlinearities retained in the
amplitude equations, the theoretical model successfully reproduced
observed features of hysteresis and nonlinear detuning.

It is appropriate also to mention parallel work on resonance and forced
oscillations in mechanical systems with just a few degrees of freedom:
Rott's (1970) multiple pendulum and Barr & Ashworth's (1977) weighted
elastic beams provide particularly elegant demonstrations of parametric
and internal resonances.

(pi) Coupled triads
When there exist two resonant triads with one member in common,

say

k, + k 4+k 5 = 0, to1+toi+ojb = 0,

there are five coupled amplitude equations, each with quadratic nonlineari-
ties. Undamped cases are discussed by Wilhelmsson & Pavlenko (1973)
(see also Weiland & Wilhelmsson 1977) for potentially explosive inter-
actions. Analytic solutions are found, in particular cases, in terms of
elliptic functions.

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:28 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.006



(a)

(b)

Figure 5.8. Shadographs of dyed layers showing resonance among standing internal waves (from McEwan, Mander & Smith 1972).
(a) shows initial single-mode state with dimensionless wavenumber (4, 2). (b) shows state after 430 cycles of paddle driving the (5, 1)
mode. This mode resonates both with (4, 2), (1, - 1 ) and with (3, 3), (8, 4), the latter of which have grown to prominence.
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16 Linearly damped waves 159

McEwan, Mander & Smith (1972) considered five damped internal
waves, with the common wave bx externally forced and having the greatest
absolute frequency. They showed that the steady state bx = 071 Fl5 b} = 0
(j = 2,3,4,5) is stable when 071 Fx is below the threshold value for both
triads, regarded separately. Otherwise, the only stable equilibrium state
corresponds to (16.6b) for the triad with lowest threshold, the remaining
two waves having zero amplitude.

Figure 5.8, from McEwan, Mander & Smith (1972), shows just such a
case. The initial configuration (a) is a single standing-wave mode, say k2.
Direct forcing of mode k t at first led to growth of this and the resonant
k3 component; but, after sufficient time, modes k4 and k6 grew to
prominence as shown in (b).

Explosive instability of triads and coupled pairs of triads of baroclinic
waves was recently discussed by Merkine & Shtilman (1984): their model
equations incorporate linear growth or damping and also cubic nonlineari-
ties. The mutual interaction of many coupled resonant triads was
investigated numerically by Loesch & Domaracki (1977); see also §19.3.

16.3 Higher-order effects
The influence of higher-order terms on three-wave resonance is

described, in part, by Weiland & Wilhelmsson (1977); see also Goncharov
(1981). Their equations have the general form

3
*-iA1 I xlk\Ak\

2,
fc-i

dA2/dt+a-2A2 = cX3A3A%-\A2 £ cc2k\Ak\
2,

= c*2A1A2-iA3

(16.7a, b,c)

for resonance with k3 = kj + ka, w3 = e^+Wa. In addition to the three
second-order coupling coefficients, there are nine third-order coefficients
a « (hj= 1,2,3). The real parts of a.^ contribute amplitude-dependent
frequency shifts and the imaginary parts yield extra growth or damping
terms.

For conservative systems, ô - = Im {<*„•} = 0 and (16.7) transform to
scaled equations like (15.2), namely

dbjdt = st bj bk cos y (i, j , k cyclic),
3

drj/dt = Aw — bx b2 b3 sin rj "£ Sj bj2.
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160 Three-wave resonance

But the frequency shift Aw is now an additional variable,

j f, p} = Re {a,, - an - a,,}.

A solution with all three waves equal and each st = 1 is

b} = b(t) = [y* + (t, - tf]-i 0 = 1 , 2 , 3 ) ,

sin r, = -

When y = 0, this is the explosive solution iv{c) of § 15.1; but, for finite y,
bj(t) reach a maximum of y"1 before decaying to zero. The explosion is
suppressed by nonlinear detuning of the resonance.

More generally, the conservative equations (16.8) may be cast in the
form (15.3)' since they, like (15.2), have constants of motion. But the
function n(x) is now a fourth, not third, degree polynomial. This again
yields solutions in terms of elliptic functions: the sn function when all four
roots of n(x) are real and the en function when two are real and two
complex. Since n{x) ~ 2y2x4 > 0 as | x \ ->oo, unbounded solutions cannot
occur. Except for a few limiting cases, like that above, the solutions are
periodic. Cases which are explosive in the absence of third-order terms
normally exhibit 'repeated stabilized explosions' as shown schematically
in Figure 5.9.

In non-conservative cases, only approximate analytic solutions are
known when c{j are non-zero; but it is a simple matter to solve any given

Figure 5.9. Repeated stabilized explosions (after Weiland & Wilhelmsson 1977).
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17 Non-conservative wave interactions 161

initial-value problem numerically. These, too, are discussed by Weiland &
Wilhelmsson. Bifurcating equilibrium solutions of (16.7) were considered
by Craik (1975): when only one wave, A3, is present, (16.7c) reduces to
a Landau-type equation (cf. equation 8.8),

This may have an equilibrium-amplitude solution with

| A31 = [Re or Jim oc33]\ = a(R) (R > Rc)

where R denotes a variable flow parameter which yields a(Rc) = 0 at the
critical value Rc. As R and a{R) increase away from Rc, initially-infinitesi-
mal, linearly-damped, wave modes At and A2 may eventually be driven
unstable by terms containing Aa in (16.7a, b).

A fuller discussion of three-mode interactions with cubic nonlinearities
is postponed until §§25-26, where examples of thermal convection and
shear-flow instability are treated.

17 Non-conservative wave interactions
17.1 Resonant triads in shear flows

Until now, we have mostly considered energy-conserving inter-
actions: even for the linearly-damped modes of §§16.1 and 16.2, the
interaction coefficients were of conservative form. For waves in shear flows,

Figure 5.10. Curves of constant cr and ct for three-dimensional disturbances with
wavenumber components (a, /?) in Blasius flow at R = 882. The curves of constant
Cj are shown only for /? ^ 0 and those of constant cr for /? > 0. Both curves
are symmetrical about /? = 0. The arrows designate resonant triads (from Craik 1971).

<*c, = 0-095
etc, = 0-095
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162 Three-wave resonance

Figure 5.11. Smoke-streak flow visualization photographs, by Saric and co-workers,
of growing disturbances in the Blasius boundary layer in air. Photographs (a), (b) and
(c) show the same location, for U^ = 6.8 m s"1 and disturbances of differing
amplitudes but same frequency (39 Hz) introduced upstream by a vibrating ribbon.
Case (a) with 11/ l / l /^ = 2.5 x 10~3 at onset of linear instability, shows two-dimensional
waves. Case (b), with |M'|/£/OO = 5.0 x 10~3 shows three-dimensional disturbances
with 'staggered peak-valley' arrangement characteristic of oblique-wave resonance.
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17 Non-conservative wave interactions 163

Case (c), with | u' l/U^ = 9.0 x 10~3 shows coexisting' staggered' and * aligned' peak-
valley structures. Case (d) shows a typical 'aligned' configuration with * A-vortices'
such as was observed by Klebanoff et al. (1962). Flow is from left to right.
(Photographs kindly supplied by Professor Saric.)

id)
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164 Three-wave resonance

this is not usually so and nonlinearity may be responsible for additional
energy transfer to or from the primary flow.

A weak shear flow may participate in three- or four-wave resonance just
as if it were a 'wave' with zero frequency (cf. Phillips 1966). But this
approach is unsuitable for strong shear flows. Raetz (1959, 1964) and
Stuart (1962b) first showed that resonant triads of Tollmien-Schlichting
waves can occur in boundary-layer flows and Kelly (1967, 1968) examined
subharmonic and three-wave resonance of inviscid modes for jet and
shear-layer profiles. In all this work, attention was confined to wave-modes
which are neutrally stable according to linear theory, although linearly
unstable modes also exist in these flows.

Craik (1968) showed that resonant triads of surface gravity waves and
interfacial gravity waves exist in sufficiently strong uniformly sheared
flows. When such waves share a common critical layer, there is a
surprisingly large O(R) viscous contribution to the quadratic interaction
coefficients, where R is the Reynolds number. The same was found to be
true for waves in general parallel shear flows, provided the critical layer
is far from boundaries (Craik 1971, Usher & Craik 1974). These triads
consist of one two-dimensional and two oblique wave-modes with
periodicities

exp [ia(x -cTt)}, exp [i{\ax ±fiy—\a.c'T t)\

which are in resonance provided cr = c'T. These are best located from curves
of constant cr plotted in the a-/? wavenumber plane at given Reynolds
numbers R. Such curves may be deduced from the Orr-Sommerfeld
eigenvalues cT+ic± = c(x,R) by using Squire's transformation. Examples,
from Craik (1971), are shown in Figure 5.10 for Blasius flow at R = 882.
Since cr and q are even functions of /? they are shown only for f$ 5= 0 and
/? ^ 0 respectively. The arrows denote two separate resonant triads. That
with a = 0.254 has the linearly-most-unstable mode as its two-dimensional
component; that with a = 0.46 has linearly-unstable oblique waves with
frequency equal to that of the linearly-most-unstable mode. Such resonant
triads can cause preferential amplification of particular oblique modes.

The classic boundary-layer experiments of Klebanoff, Tidstrom &
Sargent (1962) and the plane Poiseuille flow experiments of Nishioka, Iida
& Ichikawa (1975) showed the spontaneous growth of oblique modes with
frequency close to that of the fundamental, but provided no evidence of
the generation of subharmonic oblique waves with half that frequency. The
first such evidence in boundary layers was found by Kachanov, Kozlov
& Levchenko (1977) and this was later substantiated by Thomas & Saric
(1981), Kachanov & Levchenko (1984) and Saric & Thomas (1984). Saric
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17 Non-conservative wave interactions 165

& Thomas' work employed an ingenious smoke-wire technique for flow
visualization; typical results are shown in Figure 5.11 where the develop-
ment of spanwise-periodic oblique disturbances is clear. Kozlov &
Ramazanov's (1984) similar study of plane Poiseuille flow shows
structures as in Figure 5.\\(d).

The work of Levchenko and co-workers records the evolution down-
stream of a vibrating ribbon, of the complete frequency spectrum of
disturbances. At low excitation amplitudes, the development of a broad
band of rather low frequencies was noticed. When the ribbon was excited
with two frequencies <o0, cul simultaneously, sum and difference frequencies
Wo+Wj could be observed along with other higher-order combinations.
Judicious variation of the ribbon amplitudes and frequencies provided
clear evidence of three-wave resonance at downstream positions: see
Figure 5.12. When a^ = jw0, the oblique wave resonance is symmetric;

Figure 5.12. Measured frequency spectra of Kachanov & Levchenko (1984), at a fixed
location with R = 633 and fixed primary (&>„) oscillation frequency 120 Hz, for various
secondary excitation frequencies («,) detuned from symmetric resonance at jw0.
Curves labelled 1 to 5 correspond to detuning of - 3 0 , —10, —5, 0, +10 Hz
respectively. The twin low-frequency peaks of 2,3,5 are associated with non-symmetric
resonance, the single peak of 4 with symmetric resonance. Note contributions of higher
harmonics and of broadband low-frequency components deriving from resonantly
amplified non-controlled disturbances.

•a

-20 -

-40 -

100 200
/(Hz)
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166 Three-wave resonance

when not, there are two non-symmetric triads of the form {kQ, 0), (ku ± I),
(ko—kv + / ) as well as a range of near-resonant triads. This rapid growth
of oblique modes, without diminution of the two-dimensional mode, is the
clearest - indeed virtually the only - indication of' explosive' three-wave
interaction in fluids yet obtained. This is discussed further in §26.1.

Subharmonic resonance has also been detected in unstable shear layers
(Miksad 1972, 1973). Miksad's anti-symmetric shear layer was excited by
a loudspeaker at one or two chosen frequencies. Though evolution from
linear instability to turbulent breakdown covered only about five wave-
lengths, he could discern various sub-, super-, and sum-and-difference
harmonics of the imposed frequencies.

For symmetric wakes, Sato (1970) found no subharmonic resonance
with imposed disturbances of a single frequency. Miksad et al. (1982)
investigated similar wakes with two-frequency excitation and recorded the
amplitude and phase modulations of the various sum-and-difference
frequency combinations driven by nonlinear interactions. They, and also
Miksad, Jones & Powers (1983), suggest that phase modulations may play
a major role in bringing about the spectral broadening characteristic of
transition to turbulence.

17.2 The interaction equations
The O(a2) interaction equations may be derived as outlined in §8

with spatially-uniform wave amplitudes (cf. Craik 1971). With a primary
shear flow u = [U(z), 0,0], the two-dimensional wave has linearized velocity
components (u3, v3, w3) given by

u3 = dVJdz, vs = 0, H>3 = -e*F3/8x

with streamfunction

¥3 = Re{A3(t)<f>3(z) exp[ia(x-c?)]}.

The eigenfunction <f>3 and eigenvalue c = cr + iq are those of the Orr-
Sommerfeld equation

(17.1)
and appropriate homogeneous boundary conditions.

The oblique-wave velocity components (u},V},w}) (J = 1,2) are best
expressed as

yUj = laciij + fiVj, yv} = ± fiu} + \av},

with upper signs chosen for7 = 1 and lower fory = 2. The new horizontal
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17 Non-conservative wave interactions 167

velocity components up v} are those perpendicular and parallel to the
respective wave crests. Accordingly,

dx 0=1,2),

where fa{z), c — cr+icj are eigenfunction and eigenvalue of the modified
Orr-Sommerfeld equation

= 0
(17.2)

and given homogeneous boundary conditions. At resonance, the eigenvalues
c and c have equal real parts and this requirement selects a particular value
of p. The remaining velocity components v} satisfy

fa(U-Z)e,-lt-H%-y*6i) = TiU'flh (17.3)

(cf. equation 7.3).
On retaining terms of order O(a2) in the vorticity equations for each

Fourier component, one finds that

A2(t) L'[<j>2] = - (dAJdt) {<j>'2 -y*fc) + A3A*

M*) Ufa] = - (dAJdt) (& - a V.) 4-^x^

The functions G((z) (i= 1,2,3), which are omitted for brevity, involve
products of the <j>k, Vj and their derivatives and so may be evaluated from
linear theory. When ( ^ d j and (&2,v2) satisfy the same boundary
conditions - as is usual - Gx and G2 are identical, by symmetry.

The orthogonality conditions necessary for the existence of solutions of
these equations are obtained on multiplication by the respective adjoint
functions ifrt(z) (i= 1,2,3) and integration across the flow from boundaries
at, say, zx and z2. That is,

dAJdt

dAJdt \ f2{<j>l-y^2)dz = ASA* eaci' \ G2f2dz,

dAJdt

where rjrt are eigenfunctions of linear equations and boundary conditions
adjoint to those of <f>t. The functions fa, i/rt may be normalized in any
convenient manner. (Note that the notation differs from that of §8.2.)
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168 Three-wave resonance

In terms of the amplitudes a1 2 = Ax 2 exp (faq 0, «3 = Aa exp (aq t),
these are

flj/d? = |aq aj + At a3 a*,

I (17.4)

where each A4 is a ratio of the above integrals and terms of O(aa) are
omitted. Normally, At = A2 by symmetry. The omission of the higher-order
terms is formally justified only in the limit a->0 where a is a measure of
the wave amplitudes. The O(a2) nonlinear terms are then comparable with
the linear growth terms if | {acJX^ 21 and | a,cJX31 are O(a). But it is only
in exceptional cases that all three waves of a resonant triad are neutrally
stable, as the formal limit a^O requires. However, typical linear growth
rates are numerically small, and the At may be quite large. Accordingly,
it is reasonable to hope that the truncated equations (17.4) may yield
satisfactory approximations at sufficiently small but finite wave amplitudes;
but formal justification for omitting higher-order terms is lacking. The next
order O(a3) terms were considered by Usher & Craik (1975); these have
the form of those in (16.7) (see also §26.1).

Consideration of the asymptotic structure of the linear eigenfunctions
allows approximate evaluation of the interaction coefficients A4 for arbi-
trary primary flows U(z) at large Reynolds numbers R. When the critical
layer is located far from the boundaries zx and z2 and the wavenumber a.
is 0(1) - which is not usually so as R^ao but may nevertheless be true
at fairly large R - Craik (1968, 1971) found that |A 1 2 | is O(R) and |A3|
is O{\) relative to R for near-neutral waves and standard normalizations
of the <f>}. The rather unexpected O(R) contributions derive from the
immediate vicinity of the common critical layer, and depend crucially on
three-dimensionality through the velocity components 6}. Large interaction
coefficients for the next order O(a3) terms were also predicted by Usher
& Craik (1975). Though lacking validity in the formal limit R~>oo, these
results provided an early indication of the remarkable strength of nonlinear
interactions in shear flows at fairly large, finite, Reynolds numbers.

Large interaction coefficients for oblique waves may lead to enhanced
growth of three-dimensional modes, even when these are linearly damped.
The coefficients A4 were evaluated explicitly by Craik (1971) for boundary
layers approximated by straight-line profiles, but computer evaluation is
normally necessary. Computations by Hendricks, reported in Usher &
Craik (1975), give values of At for Blasius flow at R = 882 and various a.
The ratio of | Aj 2/A31 increases rapidly with a, from near 1 at a = 0.1 (when
the asymptotic theory is certainly invalid) to about 30 at a — 0.5.
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17 Non-conservative wave interactions 169

Later, Volodin & Zel'man (1979) calculated the At for R ranging from
650 to 1300 and confirmed that the ratio |A12/A3| remains fairly large.
Their analysis of three-wave resonance in Blasius flow considers spatial,
rather than temporal, wave evolution and attempts to incorporate the
effects of downstream variation of the primary flow. Then, spatial
derivatives are associated with the respective group velocities v̂  of each
wave, as in (14.10), but each v̂  may be complex.

An alternative derivation of (17.4) is given by Usher & Craik (1974).
In this, they extend to viscous flows the variational approach used by
Simmons (1969, see § 14.2 above) for inviscid water waves. To do this, they
employed a little-used variational formulation of the Navier-Stokes
equations, given by Dryden, Murnahan & Bateman (1956). Since the
Navier-Stokes equations are not self-adjoint, this variational formulation
involves additional functions, of no direct physical significance, which may
be regarded as a 'pseudo-velocity vector' and 'pseudo pressure'. In the
linear approximation, these extra functions are identified as the solutions
of the adjoint Orr-Sommerfeld problems. Apart from this additional
complexity, the derivation of the interaction equations proceeds much as
in Simmons' case and it entails rather less algebraic manipulation than does
the direct method described above.

Exceptionally, for plane Poiseuille flow between rigid boundaries, the
interaction coefficients Af are identically zero, by symmetry, when the three
participating waves have eigenfunctions ${ which are all even with respect
to the centre of the channel. Accordingly, the least damped modes do not
interact resonantly at this order: see §26.1. Resonant interactions in a
two-layer channel flow, with fluids of differing viscosity but the same
density, were considered by Hame & Muller (1975). Lekoudis (1980) has
examined the boundary layer on a swept wing for similar resonance.

Wave interactions in Blasius boundary-layer flows were further analysed
by Nayfeh & Bozatli (1979a, b, 1980). The first and third of these studies
confirm that exact resonance does not occur between two-dimensional
waves with frequencies wt and wa = Ŵj and that the spatial mismatch
A = kr — 2k2 is normally sufficiently large to suppress parametric instability
of this subharmonic. Moreover, because the primary flow develops with
downstream distance, modes which are resonant at one downstream
location become progressively detuned with distance from it. Their 1979b
paper concerns oblique interactions rather like those above, but with the
additional ingredient that the two-dimensional second harmonic with
perodicity exp[2ia(x—cTt)] lies close to a linear mode. In effect, they
consider two coupled near-resonant triads, one comprising the two-
dimensional wave and its harmonic with wavenumbers (a, 0), (2a, 0), the
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170 Three-wave resonance

other consisting of the wave (2a, 0) and the oblique waves (a, (}), (a, — fi).
These oblique waves have downstream wavenumbers and frequencies close
to that of the two-dimensional wave (a, 0) - cf. Figure 5.10.

17.3 Some particular solutions
Although numerical solutions of (17.4) are easily obtained, no

general analytic solutions, like those for conservative interactions, are
known. When A1 = A2 = A, the change of variables

£3 = ^a3, t>i, 2 = (^3 Xft ai, 2
yields dbjdt = a^ + b3 b%, dbjdt = ab2 + b3 fc?,l

dbs/dt = (rb3 + ̂ b1b2, e1*5 = A3 A/\ A3 A |, \ (17.5)

<r = aq, & = ^aq. J

Conservative interactions with d(\b1\
2+\bi\

s±\bz\
i)/dt = 0 exist when

expi^ = ± 1 but not otherwise. With arbitrary tfr, Craik (1971) gives two
particular solutions of the system (17.5).* The first is periodic, with

bl2 = [<r5-/cos 6 cos(0 - 6)f exp [i((91> 2 - at tan 0)],

b3 = ( - (r/cos 8) exp [i(03 - 2frt tan 8)]

where the real phases 0} (j = 1,2,3) satisfy 83—62 — 61 = 6 and

tan(0-0)co t0 = 2<r/<r.

This solution exists provided (<r + 2o-)2 cot20 + 8cr<T > 0; in particular,
when all three waves are damped or amplified according to linear theory.

When & = <r, a transformation like (16.3a) may be used. Equations like
(16.3b) are obtained, namely

dBJdr = BzB*, dBJdr = B3B*, dBt/*r = &B1Bt (17.6)

with Bj = bj e-<*, r = cr~\e* -1 ) .

A further class of solutions of (17.6) is then

Bt = B e \ B2 = B e1^, B3 = B3 e \

K e e e e

where K is an arbitrary positive constant, 0 is a root of

tan(0-0)co t0 = 2

and any two of the phases 0}(J = U 2,3) may be assigned arbitrarily.

Roots with cos 0 < 0 yield solutions B} which decay algebraically with
T. When cr > 0, the corresponding b} approach equilibrium values

* See also Stenflo, L. (1971) Z. Physik 243, 341-5.
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17 Non-conservative wave interactions 171

bk = - <r[cos 6 cos (<p -0)]-l eie* (k = 1,2), bz = ( - o-/cos 0) e10*

as t^-cc; when tr < 0 they decay to zero. Roots with cos6 > 0 yield
explosive growth of Bt with a singularity appearing at T = (.Kcosfl)"1.
Provided exp \j> # — 1, initial phases 0} may always be found which lead
to this singularity. Corresponding singularities of b} are attained at the
finite real time

t = or-1 log(l+o-/Kcosd)

provided <r > —Kcosd, but sufficient linear damping causes the bi to
decay. Such explosive growth may often be expected in shear flows, for
the interaction coefficients are then complex, with no simple phase-relation
between their arguments.* Of course, the assumptions underlying the
truncated equation (17.5) must fail before the singularity is reached.

Wang (1972) has derived upper and lower bounds for the solutions of
three-wave interacting systems with linear damping and frequency mismatch
and arbitrary coupling coefficients. These yield a sufficient condition for
the non-existence of explosive instability. Weiland & Wilhelmsson (1977)
also discuss the qualitative nature of solutions, with particular regard to
the presence, or not, of explosive growth and phase locking.

It seems that no exact solutions of the corresponding equations with
both spatial and temporal amplitude variations have yet been published,
for non-conservative interactions. The 'pump-wave' approximation was
developed by Craik & Adam (1978) in such cases with amplitudes that vary
in x, y and t. The system may then be transformed into the telegraph
equation, valid in regions where a single mode is dominant.

However, very recently, Craik (1985, to be published)! has re-examined
equations of the form (cf. 15.10)

QAJdxi = siA* A* (»> h k = 1,2,3 cyclically)

where the st are complex coupling coefficients s4 = exp (i^j). A new class
of solutions has been found which closely resembles the class of' one-lump'
solutions described in §15.3. These, like the conservative 'one-lump'
solutions, are phase-locked, with constant values of 6 = dx + d2+63 where
dt = ph At. But now 6 must be a root of

tan (0! - 6)+tan (0a - 6)+tan (03 - 0) = 0.

Such roots always exist and solutions for A( may exhibit explosive
instability after a finite time much as already described.

* See also Wilhelmsson, H., Stenflo, L. & Engelmann, F. (1970) / . Math, Phys. 11,
1738^12.

f Proc. Roy. Soc. Lond. A406, 1-12 (1986) and Proc. Roy. Soc. Edin. 106A, 205-7
(1987).
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Chapter six

EVOLUTION OF A NONLINEAR

WAVE-TRAIN

18 Heuristic derivation of the evolution equations
Evolution equations for linear wave-packets were discussed in

§7.3 above. The form of such equations is determined by the linear
dispersion relation. For weakly nonlinear wave-packets centred on a single
wavenumber and frequency, the appropriate governing equations may be
inferred heuristically by similar means.

Let a wave-packet have the form Re{A(x,t)expi(ko-x—a>ot)} where
(i) = d)0 is a real root of the linear dispersion relation

F(<v,k, V) = 0 (18.1)

when k = k0 and V = Vo. Fis some flow parameter, typically the Reynolds
number R or, for inviscid flows, a dimensionless measure of the velocity
scale. When the spatial and temporal modulations in wave amplitude
A(\, t) are slow compared with the characteristic wavelength 2n/\ k01 and
wave period 2TT/W0, the linearized evolution equation for A is found by
replacing w, k, Kin (18.1) by

wo+i8/9f, £0-i8/8x, Vo+V (18.2)

and applying the resultant partial differential operator to A(\, i). Here, x
denotes only the propagation space of the waves; non-periodic dependence
of the linear eigenmode on any other co-ordinate direction, such as the
depth for gravity waves, is removable from a suitably-defined amplitude
equation. The replacement (18.2), suggested by the work of Whitham
(1965), is not a strictly rigorous procedure, but it is both instructive and
fruitful. An early application was given by Benney & Newell (1967) and
the method was subsequently developed by Whitham (1974), Davey (1972),
Benney & Maslowe (1975), Weissman (1979) and others.

172
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18 Heuristic derivation of evolution equations 173

WhenF(w,k, V) = 0 takes the simple form w—fi(k, V) = 0 characteristic
of a single wave-mode, the amplitude equation is readily found to be

+ i^V'A = 0. (18.3)

Here, kt denote the Cartesian components of the wavenumber vector k,
x{ the propagation space co-ordinates and summation over repeated indices
is implied. All partial derivatives of £2(k, V) are evaluated at k = k0 and
V=V0.

For weakly nonlinear wave-packets, the same linear operator must arise,
but the right-hand side is no longer zero. If | A(x, i) | is O(e), the O(e2)
self-interaction of the wave normally yields a second harmonic in
A2 exp2i(kox—w01) and a mean flow contribution such as was found in
Chapter 4. Sometimes, as for inviscid surface gravity waves in deep water,
the O(e2) mean flow is identically zero (cf. § 11.2). In other cases, typically
those with two-dimensional modulations where A depends on t and only
that space co-ordinate parallel to k0, the mean flow is directly proportional
to | A |2. In both these situations, the interaction of the fundamental wave
with its own second harmonic and mean flow (if present) yields O(e3) terms
with the same periodicity as the fundamental, which are directly
proportional to \A\2A.

Such terms are of magnitude comparable with those of (18.3) when weak
modulations of A = eA are appropriately described by the scalings

T = e2t, £, = e[x-(8Q/6k) t], V = e2f\ (18.4)

At leading order, O(e2), (18.3) then shows that the wave-packet propagates
as a whole with the group velocity cg = 8Q/9k; while, at O(e3), it evolves
according to

~A. (18.5)

The usually complex constant A must be determined by detailed study of
each particular case. Clearly, it is the Landau constant and (18.5) reduces
to Landau's equation (8.8) in cases of purely temporal modulation, with
— i(dQ/dV)"T identified as the linear growth rate. Equation (18.5) is a
nonlinear Schrodinger equation, the properties of which are discussed in §21
below.

For three-dimensional wave-packets, the O(e2) mean flow is not usually
directly proportional to | A \2. For instance, with A — A(^x, g2, T), the 0{e2)
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174 Evolution of a nonlinear wave-train

mean flow K(2) associated with inviscid water waves satisfies an equation
of the form (11.17); that is,

32 \ 32

where a, K are constants. The nonlinear equation for A then resembles
(18.5) but has a right-hand side (A1\A\2+A2 B)A with suitable constants
A15 A2. This and (18.6) form a coupled system, the Davey-Stewartson
equations.

The equation for A may also be deduced from the nonlinear dispersion
relation, w = fi(k, V, \ A |2, fi) say, where B - e^B, if this is known. It is
readily seen that Aj = -id£l/d\A |2 and A2 = -i9Q/9JB with partial
derivatives evaluated at | A |2 = B = 0.

When the linear dispersion relation has the more general form (18.1),
similar arguments normally apply. The linear group velocity cg is then

and no difficulties arise unless 8F/9w = 0 at (k0, &„, Vo). But the latter case
is of genuine interest, for dF/dco vanishes whenever modes coalesce: for
instance, this is so at every point of the stability boundary of inviscid
Kelvin-Helmholtz instability. At the critical point for instability, dF/Sk
also vanishes but at other points of the stability boundary it does not. The
evolution equation then differs from those given above.

Following Weissman (1979), we set k-(k,l) and let ko = (fcc,0),
Vo — vc denote the critical wavenumber and flow velocity for onset of a
Kelvin-Helmholtz type instability. The linear dispersion relation and the
substitution (18.2) then yields an evolution equation

+i~ * c - i — , - i T - , Vc + V')A(x,y,t) = n.lt.
at ox oy /

where the right-hand side comprises appropriate nonlinear terms. When
9F/9w = 9F/3£ = 3F/9/ = 0 at (we, kc, 0, Fc) and 92F/3w 9/ = d2F/dk 9/ = 0
also, by symmetry, this becomes

the subscripts denoting partial derivatives evaluated at the critical point.
The nonlinear terms are typically similar to those described above. For
unbounded Kelvin-Helmholtz flows, there is no mean-flow distortion and
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18 Heuristic derivation of evolution equations 175

these terms have the form N \ A |2 A, where N is some constant. On writing

A=eA, X=e(x-ct), F = ej, T = et,

d=2Fvr/F<M1, c = -Fwt/Flltt, b^-Fa/

a = {F%k - F^ F^/Fl,, n =

equation (18.7) yields

Akylas & Benney (1980) give a rather similar derivation, but without
F-dependence.

The group velocity cg is now multiple-valued, with x and y components
(c±O2, ±bi): the chosen reference frame moves with the 'mean' group
velocity (c, 0) relative to the original co-ordinates. Equation (18.8) is a
nonlinear Klein-Gordon equation, which arises in the buckling of elastic
shells (Lange & Newell 1971) as well as in hydrodynamic instability: see
Weissman (1979) for other occurrences. Its linear counterpart was discussed
in §7.3. Another evolution equation with double-valued group velocity is
discussed in §19.3.

At other points on the neutral curve of a Kelvin-Helmholtz type of
instability, 3F/3w = 0 but dF/dk, dF/dl * 0: the latter derivatives vanish
only at the critical point. Wave-packets centred on such points turn out
to have evolution equations of the same form as the nonlinear Schrodinger
equation (18.5), but with the roles of x and t interchanged (Watanabe 1969;
Nayfeh & Saric 1972, Ma 1984b). However, such wave-packets are of less
interest since they are usually dominated by more rapidly-growing modes
with wavenumbers in the linearly-unstable range.

Exceptionally, more than two modes may coalesce at a given wave-
number. Then, 32F/3«2 = 0 and third or higher time derivatives must arise
in the corresponding evolution equation (see equation 19.5 below).

For long inviscid gravity waves in shallow water, yet another evolution
equation arises. For two-dimensional waves with frequency w and wave-
number k, the linear dispersion relation is (cf. §11.2)

and (o ->• 0 in the long-wave approximation kh ->• 0. In effect, the modulations
are about &0 = 0 and w0 = 0 and the corresponding weakly-nonlinear
amplitude equation is obviously
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176 Evolution of a nonlinear wave-train

Here, A is the actual surface-wave elevation, not the modulated amplitude.
Moreover, the nonlinear terms are found to be quadratic in A, namely
—%AdA/dx with suitably denned A (see e.g. Peregrine 1972). This is
because the nonlinearities 'felt by the wave' need no longer match its
periodicity: the second-harmonic and mean flow are themselves 'long
waves' like the fundamental. The resultant equation

is the celebrated Korteweg-de Vries equation, more simply expressed in
rescaled form as

SA AdA Q3A n

-^ + <rA—+-~ = 0. (18.9b)

OT 9 | eg3

A generalization of (18.9b) is

3,4 , 8A d*A d3A 6M
+ A + + f i + 0 ( 1 8 1 0 )

The corresponding linear dispersion relation for small-amplitude waves
with periodicity exp[i(£g—WT)] is

this gives instability for 0 < k < (a/y)* when a, /?, y are real and a, y > 0.
Equations of the form (18.10) have arisen in a variety of physical contexts.
For fluids, cases with /? = 0 approximate long waves in thin viscous layers
flowing down an incline (Benney 1966) and on the interface between two
viscous layers (Hooper & Grimshaw 1985). In the former case, the
destabilizing a-term derives from gravity or downstream pressure gradient,
but in the latter it may also be due to differing viscosities (cf. Yih 1967).
The stabilizing y-term represents the effect of surface tension. When
ft = y = 0, (18.10) reduces to a form of Burgers' equation, first proposed
as a model of turbulence (Burgers 1946). This may be transformed into
the heat equation and solved for arbitrary initial conditions (see e.g.
Whitham 1974). A three-dimensional counterpart of (18.10) with
A — A(£, 7), T) is considered by Lin & Krishna (1977).

19 Weakly nonlinear waves in inviscid fluids
19.1 Surface and inter facial waves

The evolution of weakly nonlinear surface waves in inviscid fluid
has been much studied. Hasimoto & Ono (1972) considered gravity waves
with slow amplitude variations in x and t; Benney & Roskes (1969) and
Davey & Stewartson (1974) incorporated modulations in x, y and t;
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19 Weakly nonlinear waves in inviscid fluids 177

Djordjevic & Redekopp (1977) and Ablowitz & Segur (1979) added surface
tension effects. All employed perturbation theory but a parallel development
using Whitham's method is practicable (Yuen & Lake 1975, 1982). For
linearly-stable interfacial waves in inviscid Kelvin-Helmholtz flow, the
analysis follows similar lines; but differences occur for modes located near
the stability boundary, for reasons outlined above.

For gravity waves on a free surface, the velocity potential satisfies
Laplace's equation within the fluid, together with the surface conditions
(11.13), (11.14) and the bottom boundary condition d<f>/dz = Q. Only
a brief outline of the perturbation analysis need be given here. The wave-
train has the same form as in §11.2, with fundamental periodicity
E = exp i(kx—u)i) and amplitude modulations described by the scaled co-
ordinates (11.2). The velocity potential <f> and free surface displacement £
are expanded in ascending powers of the wave-slope parameter e. Any
O(e2) mean flow driven by amplitude modulations is precisely as given
in (11.17). In the series expansions for 0 and £, there are also 0(e2)
terms with periodicity E, forced by the modulation of the fundamental.

A second harmonic is driven by the self-interaction of the fundamental:
this is O(e2) and proportional to A2E2 + c.c. except when 2w is close to the
natural frequency of a linear mode with wavenumber 2k. This exceptional
case is one of second-harmonic resonance, first identified by Wilton (1915)
and later elucidated by Nayfeh (1970) and McGoldrick (1970a, b, 1972)
for capillary-gravity waves and by Nayfeh & Saric (1972) and Weissman
(1979) for unbounded Kelvin-Helmholtz flows. This degenerate example
of three-wave resonance was discussed in §14.2 above; here we consider
non-resonant cases.

The perturbation analysis leads to a set of equations for the various
terms proportional to epE« (p = 1,2,3,..., q = 0, ± 1 , ±2 , ± . . . ) , and
these may be solved seriatim. The interaction of the fundamental O(e) wave
with the O(e2) mean flow and second harmonic yields O(e3) terms in the
nonlinear boundary conditions (11.13) and (11.14), some of which have
the same periodicity E*1 as the fundamental wave-train. Such terms cause
slow amplitude modulations of the fundamental waves, on the time scale
T = e2t. Once the solutions for the mean flow and second harmonic have
been found, evaluation of these terms is a straightforward, but rather
tedious task. Third-harmonic terms in e3E±3 are also present but play no
part in modifying the fundamental at this order. These may be disregarded
except in special cases of resonance between the third harmonic and
fundamental: for the latter, see Nayfeh (1970) and §22.2.

The expansions of <j> and £ contain respective terms in e3£$13(z) and
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178 Evolution of a nonlinear wave-train

e3.Ef13. These enter linearly into the boundary conditions at O(e3). Terms
in e3E may then be extracted from (11.13) and (11.14), evaluated at the
mean surface z — 0 by a Taylor expansion. These yield two algebraic
equations for ^13(0) and £13, in the form

where A is a known 2 x 2 matrix. The right-hand side contains all nonlinear
interaction terms with periodicity E, also linear terms involving partial
derivatives of A{£,, i\, r) which arise from the modulation of the wave-train.
Since the linear approximation is /\{<j>, Qtr = 0, the linear dispersion
relation is just det A = 0. The quantities bl and b2 must therefore satisfy
a compatibility condition in order that a solution (<j>13, £13) exists. It is this
compatibility condition which yields the governing equation for the
evolution of the amplitude modulations.

For surface capillary-gravity waves and stable waves in Kelvin-
Hehnholtz flow, this amplitude evolution equation and the O(e2) mean-flow
equation take the form derived heuristically above:

(19.1a, b)

where O = 4>01(E,, i\, T), subscripts £, rj, r denote partial differentiation and

Figure 6.1. Dependence of a, A, x and v on kh and T (from Ablowitz & Segur
1979). Curves indicate where the various coefficients change sign.
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19 Weakly nonlinear waves in inviscid fluids 179

A, /i, x, Xi> a a n d /? a r e known real constants. These equations were first
derived by Davey & Stewartson (1974). For capillary-gravity waves,
expressions for the various constants are given by Djordjevic & Redekopp
(1977) and Ablowitz & Segur (1979). In particular, we note that

a=\-(c\/gh),

that [i, Xi and /? are non-negative and bounded, and that a, A, x a n d
v = x~Xi(fi/a) change sign as shown in Figure 6.1. The two axes represent
dimensionless wavenumber kh and the surface tension parameter
T = k2y/pg. Each line denotes a simple zero of the designated coefficient
except those bounding region F, which denote singularities of v and x-
These singularities arise where

T= <r2(3 — cr2)"1, <r = \aahkh;

this is the condition for second-harmonic resonance, for which the present
perturbation expansion breaks down.

Cases where a = 0 are also singular. For these, cg = ± (gh)i and the
group velocity of the fundamental waves coincides with the phase speed
of much longer shallow water waves. This is also a degenerate three-wave
interaction: a long wave with small wavenumber K -4 k and frequency
Q = K(gh)* resonates with the fundamental wave of wavenumber and
frequency (k, w), and either of its ' sidebands' (k ± K, W + Q). This long-wave
resonance has been treated by Djordjevic & Redekopp (1977) for amplitude
modulations in x and t only. A new co-ordinate scaling

| = e%(x — cg f), T = dt

is required and the surface displacement and x-velocity associated with the
long wave are taken to be O(et). The governing equations are then

(19.2a, b)

with A as above and

<*i = - 2^2 cosech2 kh, S = k[l+^cg fc/w) (1 + T) cosech2 kh]

for capillary-gravity waves. Here, e^O(g,r) is the leading-order velocity
potential of the long wave.

A similar pair of coupled equations was derived by Grimshaw (1977)
and Koop & Redekopp (1981) for the resonant interaction of a packet of
internal gravity waves and a long internal wave-mode in stratified fluid.
Grimshaw also covers the case of near resonance, when an extra term in
<!>££ enters equation (19.2b). Such equations are likely to arise in many other
configurations where the group velocity of a modulated wave-train
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180 Evolution of a nonlinear wave-train

matches the phase velocity of a much longer wave. However, in water of
infinite depth, the equations governing such interaction of short and long
capillary-gravity waves do not take this form (Benney 1976): this is
because the second-order mean flow generated by self-interaction of the
short waves vanishes in the deep-water limit.

Solution of (19.2a, b) by the method of inverse-scattering is given by Ma
(1978) and Ma & Redekopp (1979) as mentioned in § 15.4. Complementary
numerical work is described by Bryant (1982). Newell (1978) proposed a
different model of long-wave/short-wave interactions,

Bt-\BXX = -AxB+iA2B-2io-\B\2B

in scaled form, for which exact solutions can also be found.
The interesting experiments of Koop & Redekopp (1981) concern

interacting waves on the two interfaces of a three-layer configuration. In
these, packets of relatively short gravity waves on the upper interface
resonate with long waves on the lower interface. Examples of their results
are shown in Figure 6.2, the long wave being generated by the short-wave
modulations. Their results are generally in fair agreement with theoretical
estimates which (somewhat empirically) incorporate viscous effects. How-
ever, long time-scale recurrent modulations predicted by inviscid theory
could not be confirmed in their apparatus.

For stable waves in Kelvin-Helmholtz flow of unbounded extent in z,
and for waves in water of infinite depth, the constants Xi and /? of (19.1)
are zero. The vanishing of/? is shown by (11.17), there being no O(e2) mean
flow in infinitely deep inviscid fluid. The wave-packet is then governed by
the nonlinear Schrodinger equation

iAT + AAu+/iAn = x\A\tA, (19.3)

the coefficient x resulting solely from the interaction of the fundamental
and the second harmonic. For unbounded Kelvin-Helmholtz flow,
Weissman (1979) gives x explicitly, in the form

where F(w, k, I, U) is the dispersion function. The value of x may be
positive or negative and it is singular, due to the vanishing of dF/da>, on
the neutral curve of Kelvin-Helmholtz instability.

Weakly nonlinear marginally-unstable waves near the critical point for
Kelvin-Helmholtz instability were first examined by Drazin (1970), for
purely temporal modulation. Spatial and temporal evolution of such waves
is discussed by Nayfeh & Saric (1972) and Weissman (1979), the latter of
whom gives the governing equation (18.8).
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19 Weakly nonlinear waves in inviscid fluids 181

Figure 6.2. Examples of resonant long-wave/short-wave interaction, from experiments
of Koop & Redekopp (1981). Modulated short waves generated at upper interface
cause long waves at lower interface of a three layer fluid, (a) periodic modulations;
(b) single wave packet; (c) 'dark-pulse' modulation.
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182 Evolution of a nonlinear wave-train

For wave-packets with amplitude-dependence on g and T only, the
appropriate mean-flow solution of (19.1b) is just

The system (19.1a, b) then also reduces to a nonlinear Schrodinger
equation for A of the form (19.3), but with x replaced by

For deep-water gravity-wave packets, Dysthe (1979), Janssen (1983) and
Lo & Mei (1985) consider a higher-order approximation to the evolution
equation. In this, the nonlinear Schrodinger equation is replaced by
another containing additional terms which, under the scaling (11.2), would
be vanishingly small. For water of finite depth, Prasad & Krishnan (1978)
propose a generalization of the Davey-Stewartson equations (19. la, b) to
account for more strongly curved wavefronts.

Further discussion of the properties of these various governing equations
and of related experiments is deferred till §21.

19.2 Internal waves
Grimshaw's (1977) investigation of internal gravity waves in

stratified fluid at rest also led to a modification of the Davey-Stewartson
equations. A further nonlinear term SA must then be added to the
right-hand side of (19.1a). S denotes the contribution from a discrete
spectrum of extremely long-wavelength internal-wave modes which are
excited by the amplitude modulations of the shorter waves. It has the form

S= *L
3 - 1

with known constants Sp and each W} relates to a single long-wavelength
mode. The functions W} satisfy a set of equations

[l-(C g /^)2]82^/9£2 + 92^/a?/2 = Vi&\A\*/?»i* (7= 1,2,...)

where cg is the group velocity of the fundamental packet, c} is the phase
velocity of the yth long-wave mode and each v} a known constant. The
resonant case Cj = cg requires separate treatment and was mentioned
above.

The linear theory of over-reflecting internal gravity waves was discussed
in §4.2, for continuous density stratification with constant N and the dis-
continuous Helmholtz velocity profile (4.3). For resonant over-reflection,
the linear dispersion relation (4.6) gives three modes, with Kelvin-Helm-
holtz instability at wavenumbers k2 > 2N2/U2. Grimshaw (1976, 1979b)
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19 Weakly nonlinear waves in inviscidfluids 183

has developed a weakly nonlinear analysis of such cases, for temporal, but
not spatial, amplitude modulation.

At wavenumbers below the cutoff value for linear instability, his
amplitude equation is

dA/dT = /3\A\2A + I (19.4)

where /is a known forcing term representing waves incident from z = + oo.
For the symmetric mode with c = \U, /? is found to be zero. Though this
mode and its harmonic are in resonance when k2 < N2/U2, the resonant
coupling is so weak that the harmonic remains O(e2). The vanishing of /?
suggests that unforced steady waves may indeed exist at the interface, with
internal waves radiating off to z = + oo in accordance with linear theory.

For the other pair of modes, /? 4= 0 and Re /? > 0, indicating a destabil-
izing effect. The interaction of the fundamental wave and the 0(e2) mean
flow is found to contribute only to Im/?: accordingly, the destabilization
of these linearly stable modes derives solely from the interaction of the
fundamental with its second harmonic. If the velocity discontinuity is
replaced by a very thin shear layer, equation (19.4) is modified only by
addition of a linear term yA to the right-hand side. The value of y is
negative for the symmetric mode and positive for the asymmetric modes
(Grimshaw 1981a).

At the cutoff value kc = 2%N/U for onset of linear instability, all three
modes of the vortex-sheet profile coalesce. Close to this value, with
k = fcc(l +e2K), the dispersion relation has the renormalized form

and the heuristic replacement (18.2) is just to' = id/dt. The corresponding
nonlinear equation for A(T), where T = et, is

dA QA
]Al

with no forcing. Grimshaw (1976) derives this equation and discusses some
of its properties.

The value of investigating such stable or marginally unstable modes is
open to question when, as here, other strongly-unstable linear modes are
present. On the other hand, it is instructive to know what influence weak
nonlinearities may have on over-reflection, even though the model
incorporates unrealistic features.
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184 Evolution of a nonlinear wave-train

19.3 Baroclinic waves
Baroclinic waves occur in rotating, stratified systems: they are

important in large-scale atmospheric and other geophysical flows and have
been studied in many laboratory experiments. They derive from the fact
that equilibrium states in rotating systems have non-coincident surfaces
of constant gravitational potential and constant density. Mathematical
models of baroclinic phenomena have been developed both for superposed
layers of immiscible fluids with differing densities and for fluid with
continuous density stratification. Baroclinic waves are linearly unstable in
the presence of sufficiently strong mean-flow variations. Weakly-nonlinear
analyses have been carried out for conditions close to those for onset of
linear instability. Reviews of baroclinic flow phenomena are given by Hide
& Mason (1975), Drazin (1978) and Hart (1979).

Spatial and temporal evolution of marginally unstable finite-amplitude
waves was studied by Pedlosky (1970, 1971, 1972) for a two-layer model
and corresponding analyses of continuously-stratified shear flows were
undertaken by Drazin (1972), Pedlosky (1979) and Moroz & Brindley
(1981, 1984).

At the critical point of linear inviscid instability, the group velocity cg

becomes double-valued, as in (18.8); but the form of the nonlinear terms
now involves wave-driven variations of the mean flow. As in the Davey-
Stewartson equations (19.1), a pair of coupled equations arises for the wave
amplitude A and mean-flow modification B. For modulations in x and t
only, these turn out to have the form

with suitably scaled variables. Here, cx, c2 are the two group velocities, ± a
is the (small) linear growth or decay rate and /? a real coupling coefficient.
Pedlosky (1972) gave solutions depending on a single variable, X-VT, with
constant V.

A derivation of these equations from a more general standpoint is given
by Gibbon & McGuinness (1981): the coefficients a, /? may then be
complex. These equations are solvable by inverse scattering (Gibbon,
James & Moroz 1979) and have soliton-type solutions. If A (and so a, /?)
is restricted to be real, the substitutions

A = (2/*)-* Qf+c2 A W B= ±(a//?)(l -cos«D)
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19 Weakly nonlinear waves in inviscidfluids 185

transform (19.6) into the sine-Gordon equation

3

which has well-known properties (see, e.g., Dodd et al. 1982).
In the purely time-dependent case, Gibbon & McGuinness (1982) have

argued that the counterparts of (19.6) in the presence of weak viscosity
should be

dM/dr+A1d^t/dr ±*A/SAB,\
dB/dT+ A2 B = d \A |*/dr+ A8 \A \\ J

the new A^-terms representing viscous damping. (But care is necessary:
Af/a must remain small as a->0 if the neutral curve is to be only slightly
affected - cf. Newell 1972.) With a, A1 allowed to be complex, but with
the other parameters real, the transformation

r = fir, fi = Re(A1)-|A3,

3C = (2fif£l-xA, & = 2/Jfi-1 A3-
x B

enables (19.7) to be rewritten as

(19.8)

d37dr = - 6iF + f(<F *<W + %<&*)]
where

<r = ^ - ^ 3 , 6 = 0 - ^ 2 , a =

When a and A1 (and so a and r) are real, so also may be A and B (and so
9£ and <&). Equations (19.8) then reduce to the Lorenz equations (Lorenz
1963; Yorke & Yorke 1981), which constitute the first studied strange-
attractor system. Properties of the complex system (19.8) are discussed by
Fowler, Gibbon & McGuinness (1983).

With stronger dissipation, equations (19.7) are inappropriate. Linear
instability is then no longer due to a coalescence of two neutral modes,
but to the crossing of a single previously-damped mode into the amplified
regime. Accordingly, second-order time derivatives should not arise in the
nonlinear evolution equations (cf. §18). The weakly-nonlinear evolution
of such viscous baroclinic waves was treated by Pedlosky (1976), allowing
for cross-stream variations in y as well as time t. His coupled equations
for (scaled) wave and mean-flow components <fi, u have the form

d<f>/dt-d*<f>/dy2 = 5^(1+") (s constant) 1

du/cst - Wu/dy* = d2\(t>\2/dy\ J
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186 Evolution of a nonlinear wave-train

where <j> is associated with the periodicity exp [ik(x—ct)]. Pedlosky imposed
'sidewall' boundary conditions M = ^ = 0 a t j = 0 and 1, which restrict
the cross-stream structure: there is then a discrete set of linear modes, as
$, w~>0, given by

</>m = A exp (<rm 0 sin (nary), <rm=s2- (mi?

where m is integer. The mth mode is unstable if s > nm.
When the first mode is slightly supercritical, s2 = n2+S say, its weakly-

nonlinear evolution is found from (19.9) to be given by

96 = $A(T) sin ny + smaller harmonics,

u = -\4>\2, r = 8t ( 0 < < M l ) ,

dA/dr = A - (3n2/4) \A\2 A.

This evolves to a finite-amplitude equilibrium, \A\ = 2(2>*-n)~l.
For arbitrarily large s, (19.9) admits time-independent solutions with

u(y) = -<f>*(y), d2<f>/dy2-s2<f>(l-<f>2) = 0, 0 real.

Those satisfying <f>(0) = 0 are Jacobian elliptic functions

<f»(y) = asn[^, v], 7) = asy/2w, a = 2h(v2+ l)~i

with modulus v. The remaining boundary condition </>(l) — 0 is satisfied
for values v such that asjl^v coincides with a zero of the elliptic function.
Pedlosky showed that, when jn < s < (j+ l)n with integer j , there are
exactly j such steady states. He also undertook a numerical investigation
of the temporal evolution of finite-amplitude disturbances, based upon
equations (19.9), and employing truncated Fourier-series representation in
y. The results indicated eventual equilibration at the steady state with
largest available amplitude, usually after an interval of decaying oscillations.
On the other hand, with weaker dissipation, Hart (1973) and Pedlosky
(1977) found finite-amplitude permanent oscillations and so the issue
remains unresolved. It is also worth remarking that, for s substantially
above n, it seems unduly restrictive to admit just a single Fourier mode
in x, but several in y.

Resonant triads of inviscid baroclinic waves were studied by Loesch
(1974) and Pedlosky (1975), for cases where one of the three waves is
marginally unstable. The governing equations for temporal evolution are
not then of the standard form (15.1) since the linear inviscid instability is
due to coalescence of modes. Rather, they have the (scaled) form

d^AJdT2-*^ = N, A^N, I At \2 + N21A2 \2 + N3 \A3 \

dAJdT=\N2A*A*, \ (19.10a,b,c)

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:34 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.007



19 Weakly nonlinear waves in inviscidfluids 187

when w1+w2+wa = O, k!+k2+k3 = 0 and subscripts 1 designate the
marginally unstable mode. Here, a is related to the linear growth rate and
the constants N} are real. Loesch gave several numerical solutions while
Pedlosky made analytical progress in cases with No — 0. The latter
correspond to waves Ax having no meridional (north-south) wavenumber
component: these are of particular interest because, when A2 = A3 = 0,
there are no cubic terms to suppress the linear wave growth. In such cases,
Nx < 0 while N2, N3 > 0.

A further scaling

T = r/a, A, = *(N2NJ*rx e \ A2 = <r(-N,N3)^r2 e J \

A^ai-N.N^r,^

then yields three real equations

d2rjdr2 = rx(l - r\ - rj), dr2/dr = rt r3, drs/dr = rx r2,

provided dx-
srd7,-\-dz is chosen to equal |TT. Pedlosky showed that the

solutions are oscillatory, with r\ — r\ constant. His rather cumbersome
account is simplified by the transformation

r2 — Acoshu, rs = Asinhu, r\ — r% = A2^0.

This readily leads to

rx = dw/dr = ±(u* + au+b-\Ai cosh 2K)*,

where a and b are constants determined by the initial data. The solution
is obviously periodic, with period

2 \u2 + au+b-lA2 cosh 2u)~i dw,
J«i

where ut and u2 are the values of u for which rx = 0.
Loesch & Domaracki (1977) extended this work to investigate the effect

of several co-existing resonant triads on a marginally unstable mode Av

Their numerical results for 5, 9 then 13 participating modes show
increasingly complex modulations; but these apparently remain quasi-
periodic, with two or three superposed periods. In contrast, Merkine &
Shtilman (1984) found instances of explosive growth among (three-wave)
triads and coupled (five-wave) triads, in the presence of weak viscous
effects: since their marginally unstable mode satisfies a first-order equation,
their systems resemble those discussed in Chapter 5.
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188 Evolution of a nonlinear wave-train

20 Weakly nonlinear waves in shear flows
20.1 Waves in inviscid shear flows

The simplest such flows to handle are constant-density flows with
broken-line velocity profiles, which yield explicit expressions for the hnear
dispersion relation and eigenfunctions. The absence of curvature of the
velocity profile, except at 'joins' between layers of differing vorticity,
means that the linear eigenfunctions of two-dimensional waves are non-
singular at any critical layer.

Benney & Maslowe (1975) investigate weakly nonlinear waves in the
presence of the primary velocity profiles

u =

the former of which has a plane rigid boundary at z — 0. For profile (20. la),
inviscid linear modes with periodicity exp[ik(x—ct)] have (cf. Tietjens

c=l-Ar1e~*sinhJfc.
A perturbation analysis, similar to that of § 19.1, again leads to result (19.3),
with the Landau constant x given by

In deriving this result, Benney & Maslowe ignored any contribution due
to modifications of the mean flow at 0(e2). This is apparently justified* for
their unbounded constant-density flows, but it would not normally be so
for bounded fluid layers of differing densities, under gravity. Then, mean
flow modifications are driven by spatial modulation of the wave-train and
coupled equations of the form (19.1a, b) must result.

Benney & Maslowe (1975) restrict their study of profile (20.1b) to
wave-modes with c — 0. By symmetry, this case corresponds to coalescence
of right and left propagating modes centred on the respective interfaces
(cf. §2). This is an instance of marginal stability, with neighbouring
unstable modes, and the governing amplitude equation is then

3 M / 3 T 2 = 0.201 i (dA/dX+2.ll KM*) (20.2)

with suitably scaled variables X, T. This has the form typical of wave-modes
near the neutral curve of Kelvin-Helmholtz instability, but not at the
critical wavenumber (see §18). Again, mean flow modifications may be

* Not so: see Balagondar, P. M., Maslowe, S. A. & Melkonian, S. (1987) Stud. Appl.
Math. 76, 169-85.
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20 Weakly nonlinear waves in shear flows 189

ignored in deriving this result since gravitational effects are absent. The
second time derivative also arises, for similar reasons, in the evolution
equation derived by Engevik (1982) for waves in some stratified shear
flows.

The linear stability of the inviscid shear-layer profile

w = tanhz ( - o o < z < o o ) (20.3)

was described in §3.1. The behaviour of weakly-nonlinear marginally
unstable modes was treated by Schade (1964) and Stuart (1967). Schade
considered purely temporal wave growth and Stuart confined attention
from the outset to nonlinear constant-amplitude disturbances. Any mean
flow modification was ignored. This is obviously permissible for constant-
amplitude waves in any inviscid parallel flow: the mean flow may be chosen
as (20.3) in the presence of such waves, without regard to the original
velocity profile in their absence. But the neglect of mean flow variations
requires justification when temporal or spatial amplitude changes are
admitted. The perturbation solutions are valid for sufficiently small linear
growth rates a,c% or, equivalently, for wavenumbers sufficiently close to that
of the linear neutral mode, here a— I. Stuart continued his analysis of
equilibrium disturbances to higher order, finding that disturbances with
the streamfunction (cf. §3.1)

f - e sech z cos [a(x - ct)\ + O(e2), c - 0,
have

a2 = 1 - | e a + f (1 + | In2)e* + 0(e6). (20.4)

Correspondingly, the equilibrium amplitude e is

the leading-order approximation of which agrees with Schade's result.
Benney & Maslowe (1975) show that the latter generalizes, with spatial

and temporal variation, to the amplitude equation

J^pA <20.5)
or n \dX 3 /

the linear group velocity 3w/9a = — 2i/n being purely imaginary and
deriving from the influence of the linear (viscous) critical layer. In contrast,
for the piecewise-linear profile (20.1 b), there is no critical layer contribution
and the linear group velocity is infinite for waves with c = 0, so leading
to (20.2). Benney & Maslowe further show that, for a nonlinear critical layer
(see §22.4), which sustains no jump in Reynolds stress, the tanhz profile
leads to an equation similar to (20.2). Attempts to incorporate viscous
effects for the profile (20.3) are discussed in §20.3 below.
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190 Evolution of a nonlinear wave-train

20.2 Near-critical plane Poiseuille flow
We here outline the derivation of the amplitude equation of a

weakly nonlinear wave-packet in plane Poiseuille flow (11.5), taking into
account amplitude modulations in x, y and t. The treatment broadly
follows that of Davey, Hocking and Stewartson (1974): this incorporates
as special cases the work of Stuart (1960), Watson (1960, 1962) and Chen
& Joseph (1973) on purely temporal and purely spatial growth and also
that of Stewartson & Stuart (1971) for modulations in x and t. Weinstein
(1981) has demonstrated that some differences of method in these papers
do not affect the results.

The flow is taken to be marginally unstable, at a Reynolds number R
just above the critical value Rc = 5772 for onset of linear instability. A
localized small disturbance initially centred on x = y — t = 0 at first
evolves according to linear theory, as discussed in § 7.3, into a slowly-varying
wave-train with streamfunction

f = Re {eA{g, v, r) ^ ( z ) exp [iao(x- c0 0] + O(e2)}. (20.6)

Here, a0 and c0 are the real wavenumber and phase speed of the neutral
mode at R = Rc and ^ ( z ) its corresponding (normalized) eigenfunction.
The scaled co-ordinates £,, rj,T are as denned in (11.2) where e is a small
parameter and A is regarded as 0(1).

Since R is close to Rc, we set
c,

and denote the precise linear eigenvalue c at this value of R with ac — a0

by
c = cT + iq = c0 + eHd^d^ a0) ~ \ d% = d1T+idxi

for suitable 0(1) real constants dlT, du. This choice fixes e2 as the small
linear growth rate oio q. (This differs from Davey, Hocking & Stewartson's
choice of e = a0 q : throughout, their e* is our e.)

Successive approximations are constructed by expressing the velocity
components (u, v, w) and pressure p as

u = MO(£, r/, T, z, e) + Re [Eu^i, i),r,z,e)

and similar expressions. Each function um may be expanded in powers of
e as

w0 = I - z2 + e2w02(£, 7),r,z

"i = eH11(£,97,T,z) + e2w12(g,i?,T,z

«2 = e2i/22(g, 1?» T, z)+
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20 Weakly nonlinear waves in shear flows 191

together with similar expansions for the corresponding components of v,
w and p. Those for v0 and w0 contain no 0(1) term in 1 — z2; also,

p0 = - 2Rrxx+constant+eP01+e2P02 +...,

the leading-order pressure gradient — 2R"1 being that which maintains the
primary flow.

The various coefficients of enEm (n,m — 0,1,2,...) which arise in the
governing Navier-Stokes equations (1.1 a, b)' must then be equated to zero.
That in eE yields the linear solution

Mn = A(g, t), T) Df^z), vn - 0, wn=- iac0 Ai/r^z),

where D = d/dz and ftt(z) is the Orr-Sommerfeld eigenfunction at
wavenumber a0 and R = Rc. For definiteness, the normalization i/r^O) = 2
may be adopted (this accords with Davey et al.'s normalization).

The O{e%) mean flow components (M02, V02, W02) are just as found in § 11.1
on applying the condition of constant mass flux: these are given by (11.6)
and (11.7). The other O(e2) components in E and E2 are also readily found
(see Davey et al., §2).

The evolution equation for A{E,,JI,T) is deduced from the O(e3E)
equations. These are three momentum equations and the equation of
continuity, connecting M13, V13, w13, Pl3 and lower-order functions. By
elimination of w13, v13 and P13, these reduce to a single equation for w13

of the form

where £C is just the Orr-Sommerfeld operator of (3.1b) and & is known
in terms of A, its partial derivatives, and the lower-order functions already
found. As described in §8.2, the function & must be orthogonal to the
adjoint function <&(z) of if. Accordingly, multiplication by <t(z) and
integration across the flow domain yields

This gives the equation for A in the form

^ ^---^^—^-^A + k AfA + qAB, (20.7)
OT at,2 oi)2 d1T

as already indicated in §18. Here,

and the O(e2) mean flow modification «02 is related to B by

u02 = | A |2S(z)+l(l - z 2 ) f1 S(z)dz(B-\ A I2)
Jo
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192 Evolution of a nonlinear wave-train

in agreement with (11.6). Also, from (11.7),

VBVBJ2111 (20 8)

(The substitution 8 = K(B+\A\2) in (18.5) and (18.6) yields equations of
the same form.)

In agreement with (18.5), the complex constants a2, b2 of (20.7) are
|i 82w/9a2, |i 62w/3/?2 respectively, evaluated at a = a0, j3 = 0, /? = i?c,
where w(a, /?, i?) = ac is the complex frequency of oblique linear modes
with periodicity expi(ax±fiy—u>t). The constants d1T, cln may also be
deduced from the linear dispersion relation, while

The Landau constant k is an integral of a rather lengthy expression which
need not be reproduced here.

Numerical integration at the neutral point for plane Poiseuille flow gives

Rc = 5772.22, a0 = 1.02055, c0 = 0.264, cg = 0.383

a2 = 0.187+0.0275 i, 62 = 0.004 66+0.0808 i,

^ = (0.168+0.811 i) 10"5, q = -1 .27 + 29.1 i, jfc = 30.8-173 i.

These values for k and q may be deduced from results of Reynolds & Potter
(1967); the others were computed by Davey et al.

For amplitude modulations independent of rj, M02 is directly proportional
to | A |2 and B is identically zero. The coupled system (20.7), (20.8) then
reduces to a nonlinear Schrodinger equation, with Landau constant k.
Since the real part of k is positive, the nonlinear terms exert a destabilizing
influence upon spatially-uniform waves. Periodic solutions with a = a0

therefore bifurcate subcritically from R — Re.
Ikeda (1977, 1978) has developed a higher order approximation to the

evolution equation for waves in plane Poiseuille flow. For wave amplitudes
independent of rj, the nonlinear Schrodinger equation is replaced by

where 6X, d2 are complex constants. This equation is simpler than Dysthe's
(1979) higher-order equation for deep-water waves, the latter being
influenced by the free-surface boundary conditions. Ikeda's higher-order
equations for wave amplitudes dependent on £, i\ and T form a coupled
system substantially more complex than (20.7) and (20.8).
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20 Weakly nonlinear waves in shear flows 193

20.3 Non-critical (nearly) parallel flows
For wave-modes at other values of (a, R) sufficiently close to the

neutral curve for linear stability, the governing equations are similar to
(20.7) and (20.8), but with different numerical coefficients. For these
modes, the linear growth or decay rate may again be characterized by an
arbitrarily small parameter e. But such cases are of less interest than the
critical one because of the presence of neighbouring more-strongly amplified
modes.

One might hope that similar equations would give acceptable approxi-
mations at values of (a, R) some distance from the neutral curve, provided
the linear growth or decay rate remains numerically small; but such hopes
appear to be unduly optimistic. There is an inherent difficulty: for, if the
linear eigenvalue is c —q+iq, with finite q, one cannot consistently
choose aq to be O(e) since c — cT is not an eigenvalue of the linear problem.
But retention of q at 0(1) negates the assumption that the linear growth
or decay is of no greater importance than the nonlinear contribution.

Certainly, a self-consistent series expansion may be constructed with
wave amplitude A, but not aq, characterized by a small parameter, as was
indicated in §8.3(ii). But truncation after a few terms is unlikely to succeed
at amplitudes Q large enough that | Q |2 is O(aq).

Reynolds & Potter (1967) and Pekeris & Shkoller (1967) sought to
overcome this dilemma by including ci in the linear Orr-Sommerfeld
equation but omitting it elsewhere. Reynolds & Potter omitted it from both
linear operators arising in the O(ea) harmonic and mean-flow equations;
Pekeris & Shkoller omitted it only from the latter. Reynolds & Potter
argued that their procedure should yield correct results for finite amplitude
equilibrium states, for then the O(e2) forcing terms are of constant
amplitude. With truncation at O(\ Q |3), the resulting Landau equation for
purely temporal growth is (cf. 8.8) dQ/dt—aciQ = k\Q\2Q. Many values
of the Landau constant k were computed, for a range of a and R, both for
plane Poiseuille flow and for plane Couette-Poiseuille flows with relative
motion of the channel walls. Since both authors considered only temporal
modulations, they were free to impose either constant mass flux or
constant pressure gradient; Reynolds & Potter chose the former and
Pekeris & Shkoller the latter. Despite these differences, their results for k
are in quite close agreement. Figure 6.3, from Pekeris & Shkoller, shows
the curve on which Re k — kT — 0, together with the neutral curve of linear
theory, for plane Poiseuille flow. Sub-critical equilibrium may be expected
only when q < 0 and kr > 0 and supercritical equilibrium when q > 0 and
kT < 0. When both kT and q are negative, both terms cause the wave to
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194 Evolution of a nonlinear wave-train

decay; while, when both are positive, they promote wave growth.
Corresponding results for two superposed horizontal layers of fluid with
differing densities and viscosities, flowing between parallel walls, have been
obtained by Blennerhassett (1980).

Figure 6.4 shows, for the first time, a direct comparison of predictions
of the subcritical equilibrium amplitude in plane Poiseuille flow. These
results, obtained by the methods of Reynolds & Potter and of Pekeris &
Shkoller, were kindly provided by A. Davey. Clearly, substantial discrep-
ancies result from the differing treatments of growth terms. Series trunca-
tion is a further source of error at larger \Q\.

The omission (or inclusion) of the growth terms from the harmonic and
mean-flow equations is of no consequence provided | act \ is sufficiently
small. But the necessary restriction on | a q | is severe and only those results
for (a, R) close to the linear neutral curve should be trusted. For a SJ 1.0
the magnitude of k increases rather rapidly with both a and R, reaching
several thousands at a = 1.2 and JR = 2.4 x 10* for example. This is in
rough accord with an asymptotic result of Usher & Craik (1975), that | k |
should vary as R§ for large JR, provided a and cT remain 0(1) and
| acx | R < 0(1). Unfortunately, the latter restrictions are not normally met
for channel flows as 7?->oo; but suitably compliant walls would admit such
behaviour. The increasing magnitude of | k | with R suggests that the radius
of convergence of the amplitude expansion decreases as R increases, as

Figure 6.3. Curves kr = 0 and q = 0 in a-R plane for plane Poiseuille flow (from
Pekeris & Shkoller 1967).
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20 Weakly nonlinear waves in shear flows 195

some inverse power of R. This partly explains the great sensitivity to
nonlinear effects of those flows which remain linearly stable up to fairly
large values of R.

A formally-valid asymptotic theory for i?->oo has been constructed by
Hall & Smith (1982) for wave-modes situated indefinitely close to the lower
branch of the neutral curve of plane Poiseuille and boundary-layer flows.

Figure 6.4. Subcritical equilibrium amplitude \Q\ = (-acj/fc,.)' versus frequency occT

for plane Poiseuille flow at R = 5000. Solid line, Pekeris & Shkoller's method
(constant pressure gradient). Dashed line, Reynolds & Potter's method (constant mass
flux). • , Reynolds & Potter's method but with constant pressure gradient. (Results
of A. Davey.) A and V are 3rd and 4th order results of Zhou (1982).
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196 Evolution of a nonlinear wave-train

Since a->-0 and c->0 as R^co on both branches, attention is thereby
confined to very long waves. Near the lower branch (but not the upper),
the critical layer and viscous wall layer merge into one. The Landau
constant k is then found to vary as J$. Surprisingly, for plane Poiseuille
flow, the lower branch of the curve kT = 0 does not remain below that of
q = 0, as suggested by Figure 6.3: consequently, linearly neutral modes
on the lower branch are destabilized by nonlinearity at sufficiently large
R. In contrast, kr is stabilizing for boundary layers. Hall & Smith also
consider the influence of forced wavelike distortions of a boundary wall.
Unfortunately, enormous Reynolds numbers seem to be required for the
validity of their asymptotic analysis, since /?~* must be small compared
with unity.

From Figure 6.3, it is seen that both aq and kT vanish at a point on
the neutral curve with a « 0.91, R « 6600. Struminskii & Skobelev (1980)
develop a higher-order approximation for waves in the neighbourhood of
this point, finding two equilibrium solutions (in addition to A — 0) for an
amplitude evolution equation of the form

dA/dt = A(*Ci + a1\A\2+a2\A\i).

Attempts to treat the nonlinear stability of flows which have no linear
neutral curve were made by Ellingsen, Gjevik & Palm (1970) and Coffee
(1977), who examined plane Couette flow, and Davey & Nguyen (1971),
Itoh (1977a, b) and Davey (1978), who considered Poiseuille pipe flow.
Ellingsen et al. and Coffee predicted finite-amplitude equilibrium solutions
for plane Couette flow, but recent computations by Orszag & Kells (1980)
suggest otherwise. Contradictory results were also obtained by Davey &
Nguyen, who followed the method of Reynolds & Potter, and by Itoh, who
treated the troublesome growth terms somewhat differently. Davey (1978)
examined the reasons for the latter discrepancy, interpreting the difference
as due to a rearrangement of terms of an infinite series. When the radii
of convergence of the respective series are unknown, there is no apparent
reason for favouring one rather than the other. Davey pragmatically
suggests that only when the two methods give results in close agreement
should either be trusted. Cowley & Smith (1985) have recently developed
an asymptotic theory for such flows, valid as R^ao.

Herbert (1983a) and Sen & Venkateswarlu (1983) recently re-examined
the question of convergence with a view to constructing valid high-order
amplitude expansions at finite R. The latter authors, like Davey & Nguyen,
found finite-amplitude equilibrium states for Poiseuille pipe flow. However,
direct numerical solution of the Navier-Stokes equations by Patera &
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20 Weakly nonlinear waves in shear flows 197

Orszag (1981) yielded only damped disturbances at values of a and R for
which equilibrium solutions are predicted by amplitude-expansion methods.
The issue is accordingly unresolved.

Weakly nonlinear, spatially-varying waves are discussed by Watson
(1962) and Itoh (1974b, c) for plane Poiseuille flow and for the Blasius
boundary layer. Linear modes are then spatially amplified or damped as
exp (—a? x) where x denotes distance downstream of a continuous source
of disturbance, such as a vibrating ribbon. Itoh finds coupled equations
for the complex wave amplitude A{x) and a measure B(x) of the mean-flow
modulation, in the form

(2*<>+AB+ti\A\*)A (20.9a, b)

higher-order terms in | A | and B having been neglected. Here, A, /i, K and
7 are real constants. These yield constant-amplitude solutions

fiK — Ay fiK—Ay

which agree with those of Watson (1962) as a.\ -> 0. But the range of validity
of the truncated equations (20.9) remains unclear for finite a?.

A further recent attempt to resolve the difficulties associated with finite
growth rates was made by Zhou (1982). In this, the primary flow is
regarded as perturbed from its actual form to another notional one which
yields a linearly-neutral mode. The (hopefully) small O(e) modification of
the primary flow then reappears at higher order in the perturbation
expansion. Zhou claims better agreement with the experiments of Nishioka
et al. (1975) than that hitherto obtained for the amplitudes of equilibrium
solutions. Some of Zhou's results are shown on Figure 6.4: agreement with
previous computations of k is not good. Furthermore, the data of Nishioka
et al. at larger acT - with which better agreement was claimed - are now
thought to be influenced by three-dimensional effects (see Figure 6.13).

Despite the fact that the 'tanh' shear-layer velocity profile (20.3) is not
a solution of the Navier-Stokes equations, the nonlinear stability of a
viscous fluid with this profile has been studied by various authors.
Maslowe (1977a, b) investigated both constant-density and stratified flows,
neglecting any mean flow distortion as the wave amplitude changes; but
this omission is hardly justifiable. Huerre (1980) avoided some of the
difficulties of dealing with the mean flow modification by incorporating
an artificial, unphysical, body force which keeps the mean flow parallel.
In any case, a homogeneous fluid with profile (20.3) is linearly unstable
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198 Evolution of a nonlinear wave-train

at all moderately large values of R, having a range of wavenumbers with
0(1) growth rates. The study of weakly nonlinear marginally unstable
modes is therefore of reduced physical interest.

The experiments of Miksad (1972) on an unstable free shear layer
reinforce this view. The complete process, from spatial amplification of
small wavelike disturbances to ultimate transition to turbulence takes place
within a short downstream distance of around five fundamental
wavelengths. Within this distance, Miksad discerns no fewer than six
distinct regions of behaviour, including linear growth, generation of
harmonics and subharmonics, development of three-dimensional longi-
tudinal vortices, secondary instability and breakdown into turbulence.
Though Miksad compares his results with those of various weakly-nonlinear
theories, any agreement can only be qualitative for such rapidly growing
disturbances (cf. Ho & Huerre 1984).

Brown, Rosen & Maslowe (1981) give a more satisfactory treatment of
stratified shear flows. Inclusion of stratification permits the study of a
marginally unstable mode that is also the least stable of all available
wavenumbers. Weakly nonlinear theory, with purely temporal modulations,
leads to a Landau-Stuart equation of the type (8.8).

Brown et al. find that, when R > 1, the Landau constant k is real and
O(R) (except when the Prandtl number Pr is unity). They also present
numerical results at several values of R showing that k changes sign as Pr
varies: the disturbance is supercritically stable (k < 0) at smaller values of
Pr, and unstable (k > 0) at larger. At larger amplitudes, nonlinear terms
within the critical layer greatly modify the evolution equation. This is
discussed in §22.4 below. In all the above mentioned work, the critical layer
region is dominated by viscosity, rather than nonlinearity.

Further difficulties are met in treating nearly, but not quite, parallel flows
such as jets, wakes and boundary layers. Liu's (1969) early treatment of
a plane compressible jet ignored these by assuming parallel flow and
neglecting the mean flow distortion; but Itoh (1974c), Herbert (1975),
Corner, Barry & Ross (1974), Smith (1979b) and others have variously
treated non-parallelism and mean flow distortion in discussing the Blasius
boundary layer.

The asymptotic suction boundary layer is simpler to treat, being
independent of x and t with primary flow

u = {U0[l - e x p ( - Wo z/v)], 0, - Wa}

where WQ is a constant suction velocity. For this, Hocking (1975) has shown
that marginally stable weakly nonlinear waves of the form (20.6) obey a
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21 Properties of the evolution equations 199

nonlinear Schrodinger equation, like (20.7) but with q = 0). He gives
numerical values for the coefficients at a = 0.1555 and R — 54370, these
being the values at the critical point of linear instability. The real part of
k is then positive, indicating that nonlinearity has a destabilizing effect.

Benney (1984) has recently proposed a yet-incomplete in viscid theory
for the development of three-dimensional disturbances in shear flows.
Consider an initially parallel shear flow «0(z) which sustains O{e) two-
dimensional constant-amplitude waves with periodicity exp [iac(x—ct)]. Let
this be given an infinitesimal spanwise-periodic disturbance comprising
mean-flow components

[u'o, v'o, w'o] = S eiK(x-cT) [Ug cos#y, ev0 s in^j , ew0 cos/?j],

X = ex, T=et, S « 1

and a corresponding O(8e) perturbation of the wave field. Here, u0, V0, W0

depend only on the normal-to-wall co-ordinate z. The governing equations
for the O(Se) wave field involve a term due to coupling of the original O(e)
waves and the O(S) mean-flow perturbation u'o; and the equations governing
the mean flow contain terms which represent the interaction, at O(e28), of
the original and perturbed wave fields. This set of equations is linear in
§ and, together with appropriate boundary conditions, defines an eigenvalue
problem for C = C(K, a, /?). Spanwise-periodic disturbances are unstable,
for a given real wavenumber a, if there exist roots with Im (C) > 0 for any
real values K and /?. Benney speculates that such instability may explain
the experimental observations of Klebanoff, Tidstrom & Sargent (1962):
but see also §26.2. Though developed from an entirely different standpoint,
Benney's theory is similar in essence to that earlier described by Craik
(1982d): see §13.2.

21 Properties of the evolution equations
21.1 Nonlinear Schrodinger equation with real coefficients

Equation (19.3), which has real coefficients A, /i, #, describes
amplitude modulations in time T and two space co-ordinates £ and i\. It is
not amenable to solution by inverse scattering, except in degenerate cases
where only one space co-ordinate is relevant. For this reason, no exact
three-dimensional solutions are known.

When modulations depend on a single space co-ordinate, say
ix — g cos 0+1/ sin 95 where $ is a fixed angle of orientation, (19.3) reduces
to

U r + A x ^ £ l = X M | M (21.1)

where Ar = A cos20+/t sin2^. In similar circumstances, the Davey-
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200 Evolution of a nonlinear wave-train

Stewartson equations (19.1a,b) also reduce to this form. This equation is
solvable by inverse scattering (Zakharov & Shabat 1972). With Atx < 0,
initially localized wave-packets evolve into discrete 'envelope solitons' and
a dispersive 'tail'. Each soliton propagates with unchanged form and
survives intact any interactions with other solitons. Such solitons are also
unaffected by non-resonant interaction with wave-packets centred on other
wavenumbers and frequencies. Recent accounts of the inverse scattering
theory for this equation are given by Ablowitz & Segur (1981) and Dodd
et al. (1982).

The simplest, one-soliton, solution for At x < 0 is

A = a\2AJx\* sechtafe-2^)] exp[i^x + U1(O*-A»)T], (21.2)
where b denotes a small arbitrary shift in fundamental wavenumber. The
width of the envelope is O{a~x) and so decreases with increasing amplitude
a. The actual number of solitons which emerge from an initial disturbance
increases with the ' strength' of that disturbance.

In contrast, there are no localized soliton solutions when Aj x > 0.
Smooth, initially-localized disturbances are then completely described by
the remaining dispersive part of the solution: the amplitude decays as r~i
as the disturbance spreads in space.

Hui & Hamilton (1979) give exact solutions of (21.1), for gravity waves
in deep water, which elucidate the directional properties of the envelope
modulations. For such waves with wavenumber components (klt fc2), the
frequency is Q — gi(kf + kf^. Accordingly, from (18.5), wave-trains with

A = -
Renormalization of A and T allows the choice A = — §, ii — \, x~\ of Hui
& Hamilton. Clearly, Ax x passes through zero when tan^J = +2~£ and so
solitary-wave solutions exist only for \<fi\ or 1180° — 01 less than 35°.
Within these sectors, there are also periodic solutions in the form of en
and dn elliptic functions. Solutions of permanent form - but not localized
ones-also exist outside these sectors: these are periodic sn elliptic
functions and solitary tanh solutions. The latter wave-envelopes have a
single depression, with A = 0 at its centre, and a finite constant wave
amplitude as Zx^ + cc. Hui & Hamilton also discuss wave groups
propagating along the characteristic directions with | tan <j> | = 2~*, with
application to Kelvin ship waves. These and other solutions of (21.1) are
usefully reviewed by Peregrine (1983). Modifications which take account
of slowly-varying depth or current are discussed by Turpin, Benmoussa
& Mei (1983).

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:34 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.007



21 Properties of the evolution equations 201

Good experimental agreement with the 'sech' soliton (21.2) was found
by Hammack, reported in Ablowitz & Segur (1979), for the envelope of
deep-water gravity waves in a narrow channel. Results at two distances
downstream of a suitably modulated wavemaker are reproduced in

Figure 6.5. Measured surface displacements, by Hammack, of envelope soliton at two
downstream locations in a narrow channel. Dashed curves show theoretical envelope
shapes (from Ablowitz & Segur 1979).
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202 Evolution of a nonlinear wave-train

Figure 6.5. Owing to viscous dissipation, the wave heights slowly decrease
with distance. The theoretical envelope breadth consequently increases in
accord with (21.2), but the experimental data display less broadening.
Further experiments on the evolution of localized disturbances in narrow
channels and on the interaction of envelope solitons are described by Yuen
& Lake (1975, 1982): again, agreement with the solutions of (21.1) is
satisfactory.

Another interesting feature described by (21.1) is the instability and
subsequent modulation of initially-uniform wave-trains, known as
Benjamin-Feir instability. Benjamin & Feir (1967) demonstrated the
progressive disintegration of initially-uniform waves as they propagate
downstream from a wavemaker performing sinusoidal oscillations.
Benjamin (1967) showed theoretically that energy passes from the
fundamental wave into 'sidebands' with slightly different wavenumber.
Though he did not employ (21.1), this equation leads to the same result,
as the more general analysis of Zakharov (1968) showed. The result is also
in agreement with somewhat earlier analyses by Lighthill (1965), who
employed Whitham's method, and by Zakharov (1966).

Let

A = [a + b+ exp (\K£X + \QT) + b_ exp ( - \Kgl - iQ*r)] exp ( - ia^r)

where Q, with its conjugate Q*, is an eigenvalue to be determined and ± eK
denote perturbations of the fundamental wavenumber. The final
exponential factor is just the Stokes frequency correction for finite-
amplitude waves. Substitute this into (21.1) and consider b + to be small
enough compared with the real constant a to permit linearization. Two
homogeneous equations for b+ and b_ result and these yield the eigenvalue
relation

(21.3a)

Imaginary, and so unstable, roots arise whenever

0<^ 2 <(-2 A ; /A 1 )a 2 ; (21.3b)

that is to say, there is a range of unstable wavenumbers ATor all amplitudes
a, provided A, # < 0. In particular, gravity waves are unstable to sideband
modulations with orientation of £, within ±35° of the fundamental
wavenumber vector. Maximum growth occurs at AT = ( — ̂ /A^a; this
is Im Q = x"2 and the corresponding dimensional growth rate is
I frequency x (wave-slope)2.

Computations of Lake et al. (1977) based on (21.1) indicated that the
wave and sidebands ultimately evolve into a periodic modulation-
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21 Properties of the evolution equations 203

demodulation cycle with repeated recurrence of a virtually 'pure' wave-
train. Such behaviour, known as Fermi-Pasta-Ulam recurrence, was first
discovered in lattice dynamics (Fermi et al. 1955) but was unexpected for
water waves. Experiments by Lake et al. provided some evidence for this
phenomenon, but results were restricted to just one cycle by the length of
their wave tank. They also found a reduction in carrier frequency rather
than true recurrence. A fuller discussion is given by Yuen & Lake (1982)
and Thyagaraja (1983). When more than one pair of sidebands is admitted,
the temporal evolution may become much more complicated (Caponi,
Saffman & Yuen 1982; see also §23.5).

Also important are three-dimensional modulations of the form

A - [a+b+ exp(iAg+iLi/+iQT)

+£>_ exy(-iKg-iLti -iQ*r)] exp(-uz2xr) (21.4)

where A satisfies the three-dimensional nonlinear Schrodinger equation
(19.3). Here, e(±K, ±L) denote prescribed wavenumber perturbations in
the | and if directions. Linearization with respect to b± yields the
eigenvalue relation

Q2 = (MP+pL*)(*K*+ttL*+2xeP), (21.5a)

which reveals instability whenever

0<K*<(-fi/A)L2 + (-2x/A)a*. (21.5b)

For gravity waves, — ji/A — 2 and A# < 0. Then, unlike result (21.3b),
unstable modes are not confined within narrow sidebands of the funda-
mental, since both L and Kmay be large while satisfying (21.5b). Further,
the maximum growth rate is attained everywhere along a curve with
L/K = tan $ — ± 2 ^ as asymptote. Of course, when eK and eL are of the
same order as the fundamental wavenumber kQ, the Schrodinger equation
(19.3) is no longer a valid approximation. Because such modes can grow,
disturbances initially confined to a narrow wavenumber band near
(k0,0) - and so well represented by (19.3) - eventually pass out of its range
of validity. Wave-trains in wide tanks are susceptible to these and other
three-dimensional modulations, as shown by Melville (1982) and Su et al.
(1982). Crawford et al. (1981) describe a more general theory of such
three-dimensional instabilities, based on that of Zakharov (1968), which
permits the interacting modes to have widely differing wavenumbers. In
effect, this is a four-wave interaction problem and so is deferred to the
following chapter.

The stability of spatially-varying solutions of (21.1) has also received
attention. Vakhitov & Kolokolov (1973) first showed that the envelope
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204 Evolution of a nonlinear wave-train

soliton (21.2) is stable to small perturbations which depend on gt and T
only: that is, the Benjamin-Feir instability of uniform wave-trains is
suppressed by the spatial variation. But spanwise-periodic perturbations
akin to (21.4) yield instability (Zakharov & Rubenchik 1974, Martin et al.
1980, Yuen & Lake 1982), for (21.2) and also for periodic 'dn' solutions
of (21.1). A more general discussion of the transverse instability of solitons,
for governing equations other than (19.3), is given by Ablowitz & Segur
(1981, §3.8). Unpublished observations of Hammack, briefly reported by
Ablowitz & Segur (1981, §4.3), show evidence of the transverse instability
of water wave-packets. Only when the channel is sufficiently narrow are
such instabilities suppressed and permanent two-dimensional envelopes
attained.

More dramatically, the three-dimensional nonlinear Schrodinger equa-
tion (19.3) may exhibit focusing at a finite time, when singularities
develop: this occurs when A, /* are both positive and x is negative. These
conditions are met for gravity waves (cf. Ablowitz & Segur 1979, equation
2.25 and note misprint in their 2.24d). In finite depth, the corresponding
equations are (19. la, b), which exhibit similar behaviour mentioned below.

The breakdown of localized solutions with radial symmetry was elegantly
demonstrated by Zakharov (1972). Then, (19.3) rescales to

where p denotes the radial co-ordinate. This has constants of motion

Ix = r p* \A |* dp, /2 = I"" (| %pA)/dp I2 + 2 \A |2 - | p 2 1 A I") dp
Jo Jo

and it is readily shown that

Accordingly,
"00

/?* | A |2 dp < 3/21
2 + Cx t+C2 (Q, C2 constant)

fe

JoJo
and solutions exist only for a finite time if the initial envelope A(p, 0) is
sufficiently large that /2 < 0. Zakharov extends this argument to more
general disturbances.

21.2 Davey-Stewartson equations with real coefficients
The three-dimensional Davey-Stewartson equations (19.1a,b)

have not been solved by inverse scattering for general real values of the
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21 Properties of the evolution equations 205

coefficients. But for capillary-gravity waves in the shallow-water limit
kh->Q,e4 (M)2 they rescale to
iAT—sAxx + AYY = s IA I2 A + A<&x,",

(21.6)

These latter are of inverse-scattering type and various two- and three-
dimensional soli ton solutions are given by Ablowitz & Haberman (1975),
Anker & Freeman (1978a) and Satsuma & Ablowitz (1979). Particular
solutions for intermediate depth are noted by Kirby & Dalrymple (1983).

The stability of uniform wave-trains in finite depth is governed by
(19. la, b), in place of (19.3) for infinite depth. Disturbances A representing
weak envelope modulations may be taken in similar form to (21.4), but
with a modified frequency correction which (by a change of reference
frame) incorporates any uniform part <D0 = BE, of the mean flow. Modifi-
cations to the mean flow take the corresponding form

Substitution in (19.1a,b) and linearization with respect to b± and/yields

Q2 = (AK^+ziL^iAK^+fin + l^lx-fyi^iocK^+L2)-1]}. (21.7)

This reveals the possibility of unstable modes at some (K, L) whenever

(A*2+fiL*) \x -fiXi K%ocK2 + L2)-1] < 0:

this result, derived by Davey & Stewartson (1974), was earlier deduced by
Hayes (1973) using Whitham's formulation.

For gravity waves, such unstable wavenumbers (K, L) always exist. For
capillary-gravity waves, the kh, k2y/pg parameter space divides into
regions shown in Figure 6.1 (cf. Djordjevic & Redekopp 1977; Ablowitz
& Segur 1979). Instability is present in all but region E. For plane
modulations with L — 0, the instability criterion reduces to (21.3) with Al5

X replaced by A, v = X~Xi(.fi/oc)- ^n regions A and D (where A/* < 0) and
in regions B and C (where a. < 0) the unstable domain extends to large
values of (K, L): in these, the developing disturbance presumably departs
from the range of validity of (19.1a, b) at large enough times r, just as
happens with (19.3). In region F, unstable wavenumbers are restricted to
sidebands with K, L of order a.

In region F, breakdown of equations (19. la, b) can take a different form:
some solutions are 'self-focusing', with initially-smooth modulations
developing a singularity after a finite time (Ablowitz & Segur 1979). No
experimental demonstration of this has yet been given for water waves;
but a similar phenomenon has been observed in nonlinear optics, where
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206 Evolution of a nonlinear wave-train

the nonlinear Schrodinger equation (19.3) applies (Vlasov, Petrishchev &
Talanov 1974).

21.3 Nonlinear Schrodinger equation with complex coefficients
For two-dimensional wave-packets with A — A(E,, r), the coupled

system (20.7), (20.8) reduces to the nonlinear Schrodinger equation

dA/dT-a2d*A/d£2 = {dJdlt)A + k\A\2 A (21.8)

with complex coefficients a2, dJd1T and k. An equation of similar form
results when A depends on just one spatial direction, £x = £ cos fi+y sin0
say. In this form, the wave-mode is taken to be linearly unstable, since

If aiT is also positive, (21.8) rescales without loss to

dA/dr-il+iaJd^A/di2 = A + (8r + i8i)\A\2A, (21.9)

where 8T = 1, 0 or — 1 according as the nonlinear term is destabilizing,
neutral or stabilizing. A particular exact solution, independent of §, has

< 2 U 0 )

where A = Ao at r = 0 (Hocking & Stewartson 1972). Result (21.10) is
independent of 8t and ' bursts' at a finite time whenever 8r > 0. Exact
solutions with periodicity exp iKE, behave similarly provided K2 < 1.

(i) Soliton solutions
When£r < 0, bursting of spatially-uniform solutions cannot occur

because the nonlinear term is stabilizing. Equilibrium of | A | is then
possible, with \A\ = \Ae\ = ( -£ r )~ i Also, Pereira & Stenflo (1977) give
an equilibrium solution localized in £, in the form

A = />(sech qg)1+ir e~iST (21.11)

for particular real constants p, q, r, s determined by the coefficients of
(21.8). This yields the soliton solution (21.2, with b = 0) as a special case;
but, unlike the latter, (21.11) normally represents a single solution, not a
family with an arbitrary amplitude parameter.

Interesting special cases of (21.8) are

A = 0, "1
\*A = 0,j (21.12a,b)

obtainable from (21.9) on rescaling when <5r = 0. Both represent decaying
waves when e > 0. When 0 < e -4 1, approximate solutions may be
developed by perturbation of the conservative equation (21.1), in an
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21 Properties of the evolution equations 207

alliance of inverse-scattering theory and 'two-timing' (Kaup 1976; Keener
& McLaughlin 1977). Numerical solutions of (21.12a, b) by Pereira (1977)
and Pereira & Chu (1979) display damped single and double solitons.

Segur (1981) investigated the viscous decay rate of a gravity-wave packet
initially of envelope soliton form. He assumed that the solution remained
close to (21.2) as the amplitude decreased, a supposition supported at
leading order in e by Pereira (1977) and also by experiment. Segur's result,
that the exponential decay rate of A{X, T) is twice as great as for uniform
wave-trains, is readily understood. The breadth of the envelope soliton is
of order [Maxx | A(X, T) I]"1 = a~l(T) and so the total energy E within the
envelope is 0{a) rather than O(a2) as for uniform wave-trains. With energy
dissipated at the same rate A = E~ldE/dT, one immediately obtains
arx da/dT'— A for the soliton and ar1 da/dT — |A for the uniform train.
In other words, exactly half the rate of reduction in amplitude of the soliton
is attributable to spreading of the packet.

(if) Sideband modulations
Equations (21.8) or (20.7) and (20.8) may be employed, as were

(21.1) and (19.1a,b) above, to investigate the modulational stability of
uniform wave-trains. Stuart & DiPrima (1978) did so for (21.8), taking

where Ao is constant and the small disturbance B has the form

B{£,T) = a{r) s^^+

/it+fi2 = 2/t0, y1 + 7i = 2y0.

For equilibrium,

The linearized equations for a(r), b(j) admit exponential growth, and so
instability, when an explicit but algebraically complex criterion involving
a%, dJd1T and k is met. Stuart & DiPrima investigated several special cases,
including those of Taylor-vortex and Benard flows: a relationship with
earlier work of Eckhaus (1963) is made clear.

Equation (21.9) (under the alias of the 'Ginzburg-Landau equation')
has been investigated numerically by Moon, Huerre & Redekopp (1983).
They examined cases with 8T — — \, ai = Si = c^1 where c0 is a variable
parameter, and chose initial conditions

A(x,0)= 1+0.2 cos qg

representative of a uniform wave-train modulated by a sideband. They

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:34 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.007



208 Evolution of a nonlinear wave-train

imposed periodic boundary conditions at x = +.n/q (which inhibit the
development of subharmonics \q etc.) and investigated a range of q with
various fixed c0 but mainly c0 = \. Note that ) >4 j = 1 is the equilibrium
amplitude of temporal oscillations with no ^-dependence and that infini-
tesimal sidebands oc exp (± iq£) are unstable for a range of q. The following
was observed for c0 = f as q was decreased.

Motion was simply periodic, with a single frequency u>1 and harmonics,
for q above 0.60 (though more complex motion apparently sets in near
q — 1); doubly periodic, with independent frequencies u,, w2 and combi-
nations, for 0.52 < q < 0.60; triply periodic for 0.49 < q < 0.52. Phase
locking into a limit cycle solution was found at q = 0.49, followed by a
chaotic regime in 0.41 < q < 0.49. A two-frequency state returned for
0.38 < q < 0.41, with all sideband energy transferred to 2q and Aq
wavenumber modes: this reflects the fact that the ±2q sidebands have
greatest linear amplification rate at q = 0.41. A further bifurcation set in
at q — 0.38, with modes q and 3q returning to prominence; chaotic
behaviour resumed in the range 0.20 < q < 0.377.

Analogous computations, for the conservative nonlinear Schrodinger
equation (c0 = 0) and Zakharov equation for deep-water waves, and for
non-conservative mode interactions in Taylor-Couette flow and Benard
convection, are discussed in §§ 23.5,24.4 and 25.2: rather similar transitions
were found.

(Hi) Bursting solutions
When 8T > 0 in (21.9), solutions A(£., T) may, or may not, develop

singularities at a single value of £ after a finite time. Such singularities are
no longer entirely due to focusing of a fixed amount of available energy,
as for (19.3): now, the available energy in the disturbance also increases
with time.

By judicious choice of similarity variables, Hocking & Stewartson (1971,
1972) investigated the structure of such localized bursting solutions, which
they found to be of two distinct types. One or both types may occur
throughout most of the at, Sx parameter space; but there are two
regions - broadly, with 13̂  \ and | a^1 | both large enough - where bursting
is impossible. Haberman (1973a, 1977) has considered how bursting
evolves from initial linear disturbances of the form (7.7). His analytical
results mostly agree with computations, for similar initial packets, by
Hocking, Stewartson & Stuart (1972) and Hocking & Stewartson (1972);
but he found only one type of singularity.

For linearly-damped cases, dJd1T in (21.8) is replaced by a constant with
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21 Properties of the evolution equations 209

negative real part. Then, with sufficiently large initial amplitudes and
k > 0, Hocking et al. (1972) found that bursts also occur. The three-
dimensional counterpart

a b A + k U \ A (21 13)

of (21.8) was also investigated by Hocking et al. (1972) and Hocking &
Stewartson (1971), who found some three-dimensional bursting solutions.

Marginally unstable disturbances in plane Poiseuille flow satisfy (20.7)
and (20.8), not (21.13); but plane modulations of the form A^T),
E,x = E,cos<j> + rj sm(f>, satisfy an equation like (21.8). Davey, Hocking &
Stewartson (1974), correcting Hocking & Stewartson (1972), show that
modulations skewed at angles | $ | > 57.3° to the flow direction may burst
but that those with | ^ | < 57.3° cannot. It is worth mentioning that, though
these envelopes are skewed at a considerable angle, the actual waves
must remain virtually straight-crested for the governing equations to hold.
Little is known yet about three-dimensional solutions of (20.7)-(20.8) with
complex coefficients, but bursting is sure to occur over much of the
parameter range.

Despite claims to the contrary, such bursting is not directly connected
with the development of turbulent spots in unstable shear flows. The theory
outlined above is confined to disturbances centred on a single wavenumber
and frequency, whereas turbulent spots are characterized by wavenumbers
and frequencies much greater than those of the fundamental wave. Of
course, since the 'burst' arises when the fundamental wave is modified so
rapidly that weakly-nonlinear theory breaks down, subsequent events such
as local secondary instabilities are liable to proceed rapidly.

21.4 Korteweg-de Vries equation and its relatives
Comprehensive accounts of the derivation and solution of the

Korteweg-de Vries equation (18.9) and of Benjamin's (1967) analogous
long-wave approximation for internal waves may be found elsewhere,
particularly Miles (1980), Ablowitz & Segur (1981) and Dodd et al. (1982).
The powerful method of inverse scattering, first developed for the Korteweg-
de Vries equation, has greatly advanced the understanding of nonlinear
wavemotion. It would be superfluous to add another account of the
method here: instead, only a few remarks are made with the aim of relating
the long-wave Korteweg-de Vries approximation to general water-wave
theory.

Packets of long surface gravity waves in water of finite depth h may be
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210 Evolution of a nonlinear wave-train

characterized by two dimensionless parameters: a depth-related amplitude
a/h and wavenumber kh. The limits a/h-+0 and kh-^O are non-uniform,
the result depending on the order in which these limits are taken. But
Freeman & Davey (1975) showed that introduction of A = (a/h)(kh)~* in
place of a/h leads to a uniform double limit A->0, kh^Q. They derive a
generalization of the Korteweg-de Vries equation, with spatial variation
in both i and TJ, which is valid as kh-^0 with A finite. This is

1
V (21.14a, b)

as earlier proposed by Kadomtsev & Petviashvilli (1970). Here, £ is the
(dimensionless) surface elevation and O the leading-order approximation
to the velocity potential. If, for small A, one sets

where A, O0 depend on scaled variables

the long-wave limit (21.6) of the Davey-Stewartson equations (19.1) is
recovered at 0(A) after a further slight rescaling (cf. Freeman & Davey).

Solutions of (21.14a, b) which represent obliquely interacting solitons
have been found (Miles 1977a, b, 1980). Resonant interaction of three such
solitons, reminiscent of three-wave resonance, occurs when conditions

k3 = k2±k1, ws = w2±w1

are met. However, k̂  and (Oj no longer represent wavenumbers and
frequencies. Instead, |1^ | represents the spatial 'length' of the/th soliton,
with the direction of k̂  normal to the wave crest; and o)} equals | k; | c} where
Cj is the speed of the/th soliton. The existence of such resonant triads of
solitons has important implications for reflection of solitary waves at a
rigid wall. At sufficiently small angles of incidence, regular reflection is
replaced by Mach reflection similar to that of shock waves, with three
resonant solitons meeting at a single point (Miles 1977a, b; Melville 1980).
Higher-order resonances are discussed by Anker & Freeman (1978b).

The range of validity of the Korteweg-de Vries equation, for wave
propagation in one space dimension, was recently clarified by Fenton &
Rienecker (1982). They obtained computer solutions of the full water-wave
equations, by means of truncated Fourier series, both for solitary waves
which overtake one another and for colliding solitary waves travelling in
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21 Properties of the evolution equations 211

opposite directions. For the former, some deviations from the Korteweg-de
Vries solutions were noted, but agreement was quite good. For the latter,
the Korteweg-de Vries equation is inadequate since the direction of
propagation is assumed a priori in its derivation.

Experimental confirmation of the Korteweg-de Vries model and demon-
stration of the properties of solitary wave interactions are given by
various workers, notably Hammack & Segur (1974, 1978), Weidman &
Maxworthy (1978), Koop & Butler (1981) and Segur & Hammack (1982).

The more general equation (18.10), which admits linear instability of a
range of wavenumbers, has been investigated analytically and numerically
by Cohen et al. (1976), Kawahara (1983) and Hooper & Grimshaw (1985).
A modal decomposition

A = £ An{r) exp(i«££), A^n = A*
— 00

is appropriate for spatially-periodic solutions and Ao may be taken to be
zero without loss of generality. The various An then satisfy

/ n n-1 \

dAn/dr = anAn — inkrri 2 A*Ar+n+\ E ArAn_r),
Vr-l r -1 /

With only a few linearly-unstable modes available, this set of equations
may justifiably be truncated at some n. In particular, if only n = ± 1 are
linearly amplified, a reasonable approximation may be the two-mode
equations

dAJdr = ax A1 — ikcrAz A\, Re ax = alr > 0,

d^42/dr = a2 A2 — iko-Al, Re a2 — a2r < 0.

This has the equilibrium solution

for real a. A three-mode model (n = ± 1, ±2, ±3) was considered by
Cohen et al.; Lin & Krishna (1977) investigated similar interactions of
two- and three-dimensional wave-modes in thin viscous films, using a
generalization of (18.10).

If k is reduced so that the n = ±2 modes enter the unstable waveband,
another two-mode equilibrium state becomes available, with A2 and Ai as
dominant components. Obviously, further reduction of k admits still
higher modes and more possible equilibrium states. Solutions may equi-
librate to one such state or may exhibit continual modulations, regular or
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212 Evolution of a nonlinear wave-train

irregular, with energy exchange among several modes. Kawahara's
numerical solutions for /? = 0 developed no regular pattern, but non-zero
dispersion led to formation of rows of'solitary-wave'-like pulses of equal
amplitude. No general analytic solution of equation (18.10) is available.
Consideration of (18.10) as a perturbation of the Korteweg-de Vries
equation, or of Burger's equation, might prove fruitful.

Though interesting in its own right, little weight should be attached to
(18.10) as a model of observable waves in thin viscous layers: these usually
have amplitudes a comparable with the mean depth h whereas (18.10) is
valid only for a/h <§ 1.

22 Waves of larger amplit ide
22.1 Large-amplitude surface waves

Nonlinear theory must be pursued to higher order if it is to
describe steep waves. For a uniform train of progressive, inviscid, surface
gravity waves of a given wavenumber k and amplitude a, Stokes (1847)
developed a perturbation expansion to third order in the wave-slope
parameter ka. The vertical surface displacement has sharper peaks and
broader troughs than a sine-wave, and the frequency exceeds that of linear
theory (see e.g. Lamb 1932; Kinsman 1969). Stokes (1880b) also introduced
a conformal mapping which transformed the free boundary problem to
that of finding the space co-ordinates as functions of velocity potential and
streamfunction. Wilton's (1915) extension of Stokes' analysis to capillary-
gravity waves encountered singularities now known to be due to resonance
of the wave with its harmonic (see §14 above).

Both the perturbation-expansion and conformal-transformation
methods have recently been allied with powerful computation to yield
solutions of high accuracy. A useful recent review is given by Schwartz &
Fen ton (1982). Schwartz (1974) and Cokelet (1977) carried the perturbation
series to around a hundred terms and used Pade approximants to sum the
series. The surface displacement and phase speed, the mass, momentum,
energy and their fluxes were all found for waves of various heights in water
of various depths. Particular attention was paid to determining the
properties of the highest and nearly-highest waves. The highest has a
pointed crest, with 120° included angle, as originally conjectured by Stokes
(1880a) and calculated by Michell (1893). But Longuet-Higgins (1975) and
Longuet-Higgins & Cokelet (1976) found that this wave does not have
greatest energy per wavelength, the wave of maximum energy having a
slightly lower, rounded, crest. Williams (1981) obtained similar results, via
an integral equation method, and showed that in the shallow-water limit
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22 Waves of larger amplitude 213

kh^O his results agree with the solitary-wave solutions of the Korteweg-de
Vries equation; so also do those of Fenton & Rienecker (1982).

The nature of wave breaking was clarified by Longuet-Higgins &
Cokelet (1978) and Longuet-Higgins (1981). Large-amplitude waves are
subject to normal-mode instabilities which destroy the upstream-
downstream symmetry and lead to plunging or spilling breakers (see
below). The 120° limiting solution is normally bypassed and this solution
would be very difficult to realize experimentally.

Exact solutions for finite-amplitude capillary waves were obtained by
Crapper (1957), Kinnersley (1976) and Vanden-Broeck & Keller (1980).
The wave troughs are then sharper than the peaks and the solution of
largest amplitude has 'bubbles' trapped in the troughs. The near-surface
particle displacements and associated mean drift velocity turn out to be
surprisingly large (Hogan 1984a). Schwartz & Vanden-Broeck (1979),
Rottman & Olfe (1979), Hogan (1980, 1981) and Chen & Saffman (1980b)
give numerical solutions for capillary-gravity waves.

For progressive gravity waves on an interface between fluids of differing
densities, pn and px, a sharp-crested wave cannot occur since this would
necessitate infinite velocity in the upper field. Interfacial waves were
examined by Holyer (1979), using similar numerical techniques, for fluids
of infinite depth. The highest wave has points on the interface with
longitudinal velocity equal to the phase speed. For free-surface waves,
these points occur at the peak of the 120° crests; but, as the density ratio
pu/pi increases from zero, they move away from the top of the crests and
approach the half-way points between crests and troughs as pu/pi tends
towards 1 —. For air over water, the maximum phase speed, momentum
and energy still occur at amplitudes below the highest possible; but for
Pu/Pi ^ 0-1 these properties were all found to increase monotonically with
amplitude. The maximum possible wave height increases with pn/p^: that
for air-water is just 2% greater than for a free surface, but it reaches 2|
times the free-surface value as pjp\ -> 1 — - Experiments of Thorpe (1968a)
show reasonable agreement with the results of third-order theory but the
observations are confined to relatively small amplitudes. Solutions found
by Meiron & Saffman (1983), which represent overhanging large-amplitude
interfacial waves, are certainly strongly unstable and so physically
unrealizable.

Finite-amplitude waves on the (stable) interface between fluids of
differing densities and velocities - i.e. the Kelvin-Helmholtz configuration
of §2.1 - were recently studied both analytically and computationally by
Saffman & Yuen (1982).
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214 Evolution of a nonlinear wave-train

For standing waves on the free surface of infinitely deep liquid, Schwartz
& Whitney (1981) carried out an expansion to 25th order. Earlier, Penney
& Price (1952) had suggested that the free-surface standing wave of
maximum height experiences a downwards acceleration of g at the crest,
when this is at its highest point; in which case, the crest should form a 90°
corner. Schwartz & Whitney's results support this conclusion, as do those
of Rottman (1982), but Saffman & Yuen (1979) disagree. Meiron, Saffman
& Yuen (1982) note a lack of uniqueness inherent in all such solutions for
standing waves, which makes their physical significance uncertain.
Nevertheless, experiments of Taylor (1953) and Edge & Walters (1964)
show that the highest wave certainly attains a crest angle close to 90°, for
air-water interfaces. For standing waves in water of finite depth, expansions
to third order are given by Tadjbaksh & Keller (1960) and Chabert-
d'Hieres (1960).

Standing gravity waves at an interface between infinite fluids are
discussed by Rottman (1982), who carried the series expansion to 21st
order, with Pade summation. A corner cannot occur at the highest crest
unless the density ratio pjpi is precisely zero. For other values, the wave
of maximum amplitude has a vertical tangent at some point: higher waves
would break by overturning. Though experiments by Thorpe (1968b) show
breaking, this takes place at smaller amplitudes and is thought to be due
to an instability associated with the shear layers induced by viscosity near
the interface.

Formal convergence of Stokes' expansion was proved by Levi-Civita
(1925) for progressive free-surface waves of sufficiently small amplitude.
Corresponding proofs for interfacial and for standing waves are lacking.
Convergence at large amplitudes has not been rigorously established for
any configuration, but the circumstantial evidence of the high-order
approximations appears strong. Proofs of the existence of large-amplitude
solutions are given by Keady & Norbury (1978) and Toland (1978). But
we shall see below that such uniform wave-trains are invariably unstable!

Other steady solutions, representing non-uniform and three-dimensional
wave-trains, are given by Chen & Saffman (1980a), Olfe & Rottman (1980),
Meiron, Saffman & Yuen (1982) and Roberts (1983). The first two papers
concern two-dimensional modulated wave patterns with successive crests
of differing heights, such that every alternate, or every third, crest is the
same. Meiron et al. give corresponding three-dimensional solutions, both
symmetric and skew-symmetric, which agree quite well with observations
of Su (1982), made in a wide outdoor basin (see Figure 6.8).
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22 Waves of larger amplitude 215

22.2 Higher-order instability of wave-trains
Longuet-Higgins (1978a, b), McLean et al. (1981) and McLean

(1982a, b) have reported a new type of instability for finite-amplitude
gravity waves, the existence of which was conjectured by Zakharov (1968).
Its discovery by Longuet-Higgins came from computations based on
Stokes' (1880b) conformal mapping representation of two-dimensional
gravity waves in deep water. McLean et al. and McLean (1982a, b)
considered a wider class of three-dimensional disturbances, for gravity
waves in both infinite and finite depths. Their computational method,
based on the exact (inviscid) equations, employed Stokes' perturbation
expansion.

Thus, the surface displacement of a finite-amplitude wave-train of
wavelength 2TT/& is represented as

£= I Ancosn(x-Ct)
»—0

with normalized x, t co-ordinates and with known Fourier coefficients An

and phase speed C depending on the wave-slope parameter ka. This wave
is perturbed by an infinitesimal three-dimensional disturbance

00

£' = exp \[p(x - Ct)+qy- £lt] I an exp in(x - Ct)+c.c.
n—oo

where Q = Cl(p, q, H) is an eigenvalue to be found. Instability arises when
Im Q #= 0, with roots Q occurring in complex-conjugate pairs.

McLean et a/.'s computations were accomplished by truncating the
expansions at high order, | n | < 20 or 50. They found two distinct regions
of instability in the p-q plane for various values of ka. Examples are shown
in Figure 6.6. The region nearer the origin (Type I instability) reduces to
that for modulational instability of the three-dimensional Schrodinger
equation (19.3) when | /> | , | ? | and ka are sufficiently small. It also
coincides, at larger p, q but small ka, with Phillips' (1960) four-wave
resonance (see §23.1, Figure 7.2). Yuen (1983) also reports on Type I and
II instabilities of linearly-stable waves in Kelvin-Helmholtz flow.

The outer region of (Type II) instability may be interpreted, at small ka,
as a degenerate five-wave resonance of the form

kt-(-k2 = k 3 +k 4 +k 5 , , l

where, in normalized form,

ks = k4 = k6 = (1,0), (x>3 — w4 = w5 = C — 1
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216 Evolution of a nonlinear wave-train

represent the fundamental wave-train and

k1 = (l+p,q), k2 = (2-/7,-9)

the perturbation. The linear dispersion relation

w = g*(** + /*)i, k = (*,/)

and (22.1b) yield

f p)2 + q2f = 3.

The highest growth rate occurs withp = f, when kj and k2 have the same
^-component, k = | : their x-phase velocity then coincides with C. At other
values of p, there are two distinct pairs kx, k2 corresponding to positive
and negative roots q.

Clearly, an acceptable description of the latter instability for small ka
could be given by weakly-nonlinear analysis of three discrete wave-modes,
pursued to fourth-order in the amplitudes. But this hardly seems worthwhile
in view of the available computational results for the exact equations.

These two types of instability are probably the first two members of an

Figure 6.6. Type I and Type II instability of finite-amplitude gravity waves in deep
water (from McLean et al. 1981). Cases (a)-(d) correspond to ka/n = 0.064, 0.095,
0.111,0.127 respectively.
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22 Waves of larger amplitude 217

infinite class of higher-order resonances among three discrete (linear)
wave-modes, as suggested by Zakharov (1968). These satisfy

where k0 = (1,0), w0 = 1 denote the fundamental wave-train and N is any
positive integer greater than 1. Since the characteristic growth rates of k}

and k2 are O[(ka)N] and ka < 0.443 even for the highest gravity waves,
instability at sufficiently large N is likely to be suppressed by viscosity.

Longuet-Higgins' (1978a, b) earlier investigations (also Hasselmann,
1979) were confined to two-dimensional sub- and super-harmonic modes
independent of y. His results agree with those of McLean et al. for q — 0.
For q = 0 and at small ka there is no Type I instability of the discrete
wavenumbers p = M/% (M = 1,2,..., 16) and p = ± M (M = 1,2,..., 7)
studied by Longuet-Higgins (though there is such instability at other values
ofp, notably Benjamin-Feir instability as/>->0). But, as ka was increased,
Longuet-Higgins found Type I instability among wavenumbers kx, k2

satisfying

kt+k2 = 2
the fundamental wavenumber and frequency being normalized to unity.
The corresponding frequency condition for four-wave resonance is

(i)1-\rd)i = 2

but this cannot be satisfied as ka-+0 for Longuet-Higgins' chosen wave-
numbers. Onset of Type I instability, as ka increases, is due to nonlinear
modification of the frequencies o>v w2 which causes the resonance condition
to be nearly satisfied over a finite range of ka. For large and small ka, the
waves are 'detuned' and no instability takes place. The domain of Type I
instability of two-dimensional disturbances is shown in Figure 6.7. The
most unstable Type I instability, at given ka, is two-dimensional.

At large values of ka, not far short of that for the highest wave,
Longuet-Higgins encountered Type II instability of the mode with k1 = §.
Owing to nonlinearity, this attains the same phase speed as the fundamental
(i.e. 2&i — 3, 2wj = 3) when ka « 0.41: this is the degenerate five-wave
resonance condition. These results clearly demonstrate the role of non-
linearity in tuning and detuning the resonance. But restriction to discrete
two-dimensional modes conceals McLean et a/.'s wider class of
instabilities.

The onset of Type II instability of two-dimensional modes almost
coincides with the attainment of the greatest possible amplitude of the first
Fourier component of the fundamental wave (not quite the highest wave).
The view that this instability is directly associated with wave breaking is
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218 Evolution of a nonlinear wave-train

Figure 6.7. Stability boundary for growth of two-dimensional perturbations of
uniform finite-amplitude gravity waves: o, results of Longuet-Higgins (1978); the
solid line is approximation (23.16) derived from Zakharov's equation (from Crawford
et al. 1981).
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Figure 6.8. Three-dimensional wave configuration resulting from oblique Type II
instability, for ok = 0.33 (from Su 1982).
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22 Waves of larger amplitude 219

supported by computations of Longuet-Higgins & Cokelet (1978). How-
ever, Type II instability of oblique modes is present at all fundamental wave
amplitudes. It may be that breaking is associated with the near-coalescence
of many members of the class of higher-order resonances noted above.

Experimental evidence of three-dimensional Type I and Type II insta-
bilities is reported by Melville (1982), Su et al. (1982) and Su (1982). At
relatively small wave-slopes, ak < 0.3, the Type I instability is stronger than
Type II and the most rapid growth is associated with two-dimensional
subharmonics of the fundamental. But oblique Type II instability is
dominant for 0.3 <ak < 0.44. The latter leads to three-dimensional
waves: see Figure 6.8. Steady-state solutions corresponding to these are
given by Ma (1982) and Meiron et al. (1982).

22.3 Numerical work on shear-flow instability
Truncation of the amplitude equation to exclude powers of | A \

higher than the third is justifiable only for rather small amplitudes. A
higher-order expansion scheme was developed by Herbert (1980), who
calculated the first seven coefficients a} of a series expansion

dA/dt = A 2 a,-Ml2'
J'-O

for temporal evolution in plane Poiseuille flow, both at the critical point
of linear theory and at R = 5000, a = 1.12. He found that the a3 increase
rapidly in magnitude withy" rather faster than R?, and that the signs of Re a}

alternate. The radius of convergence is therefore sure to be small.
Calculation of the first three a} by Gertsenshtein & Shtempler (1977)
yielded similarly large values. Since the disturbance is considered to evolve
under a constant mean pressure gradient, dP/dx = — G say, the Reynolds
number is best re-expressed as R — Rp = \Ghz/pv% where 2h is the channel
width. Herbert (1982) gives a useful review of theory and experiment
relating to the stability of plane Poiseuille flow.

Herbert (1983a) and Sen & Venkateswarlu (1983) re-examined the
question of convergence and provided the expansion procedure with a
more rational basis. The latter authors computed up to nineteen coefficients
of the series expansion and used Shanks' method to sum the infinite series
even when it diverges. Thereby, they calculated equilibrium amplitudes at
various a and R, employing extensions of both Reynolds & Potter's (1967)
and Watson's (1960) formulations. Convergence of the former was the
more satisfactory: at a - 1.15 and R - 5000,4000 and 3500 it successfully
yielded the equilibrium amplitudes, but below R — 3500 (at this a) a
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220 Evolution of a nonlinear wave-train

singularity of the series prevented this. These and other results suggest that
the | aj | increase rapidly with j , roughly in proportion to (3a/?y for the
range of a, R considered, with the usual normalization that $^(0) = 2.

Alternative methods, employing truncated Fourier series representations
of a constant-amplitude disturbance, were employed by George, Heliums
& Martin (1974), Zahn, Toomre, Spiegel & Gough (1974) and Herbert
(1977) to seek equilibrium solutions of the Navier-Stokes equations.
Figure 6.9 shows Herbert's results, with rather severe truncation after just
two harmonics, of the neutral surface in (R-oc-E) space, where J? is a
measure of the kinetic energy of a two-dimensional wavelike disturbance.
This surface intersects the plane E = 0 in the linear neutral curve, with
critical point at R = 5772, a = 1.02. A minimum critical Reynolds number
Re « 2702 for finite-amplitude equilibrium is attained at ae = 1.313, a
result which agrees closely with that of Zahn et al. A constant pressure
gradient was imposed in both sets of computations. Retention of more
Fourier modes causes some modification of the neutral surface: with four,
Re increases to 2935 at the wavenumber ae = 1.323.

Note that, for a range of wavenumbers a at each R, there are two
equilibrium values of E. The smaller value denotes the threshold amplitude
for subcritical nonlinear instability at prescribed a, R and this corresponds
to unstable equilibrium: a small increase in amplitude leads to growth and
a small decrease leads to decay. In contrast, the larger equilibrium value
of iiis stable to small amplitude changes; but this is a very restricted type

Figure 6.9. Herbert's (1977) results for the neutral surface in R-a-E space, with
truncation after two harmonics.
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22 Waves of larger amplitude 221

of stability which excludes disturbances of different wavenumber from that
associated with E. It seems likely that instability of real flows to disturbances
of the latter sort will prevent the attainment of these large amplitude
two-dimensional periodic states (see §26).

With even more powerful computational facilities, Orszag& Kells (1980)
and Orszag & Patera (1981) could retain up to 16 Fourier modes in x, and
16 in the spanwise direction y, while representing z-variations in terms of
33 Chebyshev polynomials. Thereby, they studied the temporal evolution
of various initial disturbances, reporting satisfactory convergence of the
truncated series and quite good agreement with Herbert's most accurate
equilibrium solution for two-dimensional waves. They concluded that the
threshold for finite-amplitude temporal instability of plane Poiseuille flow
is near Re — 2800, for initial disturbances with the form of a single
Orr-Sommerfeld eigenmode. But these, and Herbert's conclusions are at
variance with recent results of Rozhdestvensky & Simakin (1984), which
at first agree with those of Orszag & Kells but are continued to much
greater times.

Rozhdestvensky & Simakin carefully distinguish the Reynolds numbers
jRp based on pressure gradient, denned above, and i?a based on mass flux
Q, which equals SQ/3/ih. In the absence of any disturbance, these both
equal Vh/v where Fis the centreline velocity, but they take differing values
when a disturbance is present. Rozhdestvensky & Simakin claim that all
two-dimensional wavelike initial disturbances with a > 1 eventually decay
to zero if Rp < 3250. They found an equilibrium solution at Rv — 3250
(J?Q = 2855) for a = 1.25 and various other equilibria at higher Rp and
other values of a. It seems that Orszag & Kells allowed insufficient time
for true equilibration of their solutions: Rozhdestvensky & Simakin's
computations continued for dimensionless times T — 0(1O3), which corre-
spond to hundreds of wave periods, as compared with Orszag & Kells'
T = 150.

Rozhdestvensky & Simakin also report two-dimensional equilibrium
states with longer spatial perodicities, a <, 0.34 at Reynolds numbers Rp

as low as 2700. However, these states comprise more than one dominant
wave-mode, typically those with wavenumbers 3a and 4a which correspond
to rather lightly-damped linear modes.

Orszag & Kells' and Rozhdestvensky & Simakin's results for finite
three-dimensional and doubly-periodic disturbances are discussed in §26
below: meantime, we mention that such disturbances may grow at much
lower values of R than those for amplification of a single two-dimensional
wave-mode. In particular, for plane Couette flow, Orszag & Kells could
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222 Evolution of a nonlinear wave-train

find no undamped two-dimensional mode, but three-dimensional disturb-
ances grew for R « 1000.

It appears that convergence of the Fourier-truncation method is more
rapid than for the amplitude expansion technique (Herbert 1980). This may
be due mainly to the requirement of a critical layer dominated by viscosity
in the latter, which needs | A \ R% <4 1 as shown in §22.4. Though the ranges
of validity of both methods require further clarification, they seem destined
to play an important role in future developments.

Related experiments mostly concern the downstream evolution of
disturbances introduced by a vibrating ribbon and such configurations
have also been treated numerically. Fasel (1976), Fasel, Bestek & Schefen-
acker (1977) and Fasel & Bestek (1980) employed a finite-difference
scheme to solve the full Navier-Stokes equations with dependence on x,

Figure 6.10. Instantaneous disturbance velocities u\ W and span wise vorticity Of for
plane Poiseuille flow at R = 10000 and frequency <o = 0.2375, for (a) 3% and (b) 5%
input amplitudes. Direct numerical computations of Fasel & Bestek (1980).

- 2 . 4 1

(a) (b)
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22 Waves of larger amplitude 223

z and t. They studied finite disturbances in both plane Poiseuille flow and
the Blasius boundary layer on a flat plate. Their domain of integration
extended downstream for several wavelengths (typically five), the input
disturbance was chosen as a Tollmien-Schlichting wave described by the
linear Orr-Sommerfeld equation and the downstream boundary conditions
permitted 'free passage' of the disturbance. At sufficiently small input
amplitudes, good agreement was obtained with linear stability theory; at
larger amplitudes, nonlinearity normally had a destabilizing influence. For
Blasius flow, rather similar results were obtained by Murdock (1977) and
Murdock & Taylor (1977) using a spectral method which employs
Chebyshev polynomials.

Figures 6.10 and 6.11 display some of Fasel & Bestek's results. These
show growing disturbances in plane Poiseuille flow at R = 10000 and
frequency w = 0.2375, the input disturbances having a maximum stream-
wise velocity fluctuation which is 3% and 5% of the centre channel velocity.
Figure 6.10 shows the disturbance velocity components u', W and spanwise
vorticity O'. Considerable distortion from the virtually sinusoidal x-
variation of linear theory is apparent. Fourier decomposition of the signal
is shown in Figure 6.11: the second harmonic and mean flow distortion
are substantial but higher harmonics are still insignificant.

Nishioka, Iida & Ichikawa (1975) attempted to measure the threshold

Figure 6.11. Fourier components of u' in Figure 6.9, for 3% disturbance amplitude;
from Fasel & Bestek (1980). 0, mean flow distortion; 1, fundamental; 2, second
harmonic; 3, third harmonic.
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224 Evolution of a nonlinear wave-train

amplitude for subcritical instability of plane Poiseuille flow. Disturbances
of prescribed amplitude, introduced by a vibrating ribbon, either grow or
decay sufficiently far downstream (Figure 6.12). Measurements of the
threshold amplitude at R = 4000, 5000 and 6000 are shown in Figure
6.13 (a). The surprising decrease in threshold amplitude observed at larger
ID is believed to be due to three-dimensional effects. Herbert's theoretical
estimates, on retaining just two harmonics, are given in Figure 6.13(6) for
comparison. However, in view of the large time, or the correspondingly
large downstream distance, which is apparently necessary for true equi-
librium states to emerge, it is arguable that accurate experimental deter-
mination of these two-dimensional threshold equilibria is unattainable in
any apparatus yet constructed.

An earlier numerical study by Zabusky & Deem (1971) concerns rapidly
growing disturbances to velocity profiles representative of symmetric

Figure 6.12. Amplitude variations, with downstream distance x — x0, in plane Poiseuille
flow at R = 5000 and o> = 0.323. Experimental data of Nishioka et al. (1975). Note
eventual decay of small initial amplitudes and subcritical instability of larger ones.

denotes Herbert's (1977) theoretical threshold amplitude. ATS is the wavelength
(from Herbert 1982).
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22 Waves of larger amplitude 225

wakes and jets. They studied temporal evolution of spatially-periodic
two-dimensional disturbances. Many features were found to be in agreement
with laboratory experiments of Sato & Kuriki (1961) on the wake behind
a thin flat plate, even though the latter concerned spatial, not temporal,
growth. Such features include the development of a double vortex street
of counter-rotating elliptical vortices which themselves nutate to produce
a low-frequency oscillation. In contrast, unstable shear-layer profiles such
as (20.3) yield a single street of like-rotating vortices, which subsequently

Figure 6.13. (a) Predicted threshold amplitudes at various frequencies w, in plane
Poiseuille flow at R = 4000, 5000 and 6000, given by Herbert's (1977) JV" = 2
truncation (cf. Figure 6.4). (b) Measured threshold amplitudes versus <o, at the same
values of R, found by Nishioka et al. (1975).
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226 Evolution of a nonlinear wave-train

interact in pairs (Winant & Browand 1974). Similar structures have been
reproduced in the numerical studies of Patnaik, Sherman & Corcos (1976)
and Peltier, Halle & Clark (1978). An example is shown in Figure 6.14.

The successes of these various numerical studies give confidence in their
capacity to represent finite disturbances accurately beyond the range of
weakly nonlinear analysis. Nevertheless, weakly nonlinear theories will
long have a part to play in aiding physical understanding of nonlinear
processes, in supplying a check on numerical results and, hopefully, in
providing a source of fresh ideas for future progress.

22.4 The nonlinear critical layer
Obviously, weakly nonlinear theory cannot cope with strong

nonlinearities. For waves in shear flows, these first appear in the vicinity
of the critical layer z = zc. The linear theory for waves of constant
amplitude, outlined in §3.2, led to a jump in Reynolds stress across this
critical layer. A logarithmic singularity of inviscid theory was resolved by

Figure 6.14. Computed constant-density contours at various times of development of
Kelvin-Helmholtz instability of a viscous stratified shear layer. Dimensionless times
T in {dyif) are 0,0.5,1.0, 1.5, 2.0 and 2.42 (from Patnaik, Sherman & Corcos 1976).

(a)
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22 Waves of larger amplitude 227

viscosity, at large R, a phase shift of n from the logarithmic term occurring
across a viscous critical layer of width O[(aR)~i].

The width of the Kelvin 'cat's eyes' within the critical layer is O(ei)
where e is the wave amplitude at some distance from zc (Drazin & Reid
1981, p. 141). Neglected nonlinear terms are unimportant only if the
viscous critical layer thickness far exceeds the width of the cat's eyes: that
is to say, A = /J"1e~2 must be large compared with unity for linear and
weakly nonlinear theories to remain applicable.

The contrary assumption, that both A ^ 0(1) and e <4 1, underlies the
theory of the nonlinear critical layer. This was first developed independently
by Benney & Bergeron (1969) and Davis (1969), for A -> 0, and subsequently
improved and extended by Haberman (1972, 1976). A weakly nonlinear
theory still suffices outside the critical layer region of thickness O(p) but
strong nonlinearities are present within it. For A = 0 the logarithmic phase
shift <f>, and consequently the jump in Reynolds stress, is zero, whereas the
linear phase shift is n. Haberman's (1972) computations show how <j>
increases from 0 to n as A increases from zero to large values. For large
A, Haberman (1976) has shown analytically that

An analogous theory, differing in details, has been developed by Kelly &
Maslowe (1970) and Haberman (1973b) for weakly stratified flows; while
stronger stratification was investigated numerically by Maslowe (1972).
Benney & Maslowe (1975) and Huerre & Scott (1980) incorporate
nonlinear critical layers in their studies of marginally unstable waves in
shear layers.

The critical-layer solutions exhibit closed-streamline 'cat's eyes', which,
by virtue of the Prandtl-Batchelor theorem (Batchelor 1956), enclose
regions of constant vorticity. Towards the edges of these cat's eyes, it is
postulated that there are thin viscous layers across which the vorticity (and,
in the stratified case, density) changes, in order to match with the flow in
the outer regions. Though some doubts remained regarding the detailed
flow within these layers, these studies made an important contribution to
the analysis of nonlinear waves. A useful summary of the analytical details
is given by Maslowe (1981).

Since then, Smith (1979b), Smith & Bodonyi (1982a) and Bodonyi,
Smith & Gajjar (1983) have further elucidated the complex mathematical
structure of finite neutrally-stable disturbances in boundary layers as
R^-oo. Separate detailed analyses are necessary in various parameter
ranges; as the amplitude increases, the character of the critical layer
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228 Evolution of a nonlinear wave-train

changes from a nonlinear viscous one, like Haberman's (1972), to a
strongly nonlinear, primarily inviscid, sort. Corresponding amplitude-
dependent neutral disturbances in Poiseuille pipe flow were studied by
Smith & Bodonyi (1982b).

Precisely how, and whether, a linearly unstable mode or a finite initial
disturbance evolves in time towards such an equilibrium state is a matter
of some complexity. It is unlikely that such equilibrium states could persist
in real boundary-layer flows at the very large Reynolds numbers needed
for the validity of the asymptotic theory. These solutions certainly exist
and have an interest of their own; but their stability to other wave-
modes - and so their practical significance - remains unknown.

There have been some related studies of the temporal evolution of
finite-amplitude disturbances. For the shear-layer profile (20.3), Robinson
(1974) developed a nonlinear inviscid analysis for rapidly growing waves
which do not equilibrate. Later, Warn & Warn (1978), Stewartson (1978)
and Brown & Stewartson (1978a, b) provided much insight into the
development of marginally unstable Rossby waves and those in stratified
shear layers. This work is conveniently reviewed by Stewartson (1981). A
recent analysis by Gajjar & Smith (1985) considers unsteady nonlinear
critical layers in channel and boundary-layer flows.

Brown & Stewartson (1978b) give an inviscid analysis of the marginally
unstable stratified shear flow (5.1) with Richardson number J very close
to \. They demonstrate how nonlinear critical-layer effects develop on the
time scale / = 0{e~*), the wave amplitude A = eA(t) then satisfying an
evolution equation

dA/dt = ( ! - / ) i+<x 4 f 6 | I | 4 A

where a4 is a small positive constant, approximately 10~6. The unexpected
appearance of the factor t is at variance with Maslowe's (1977a) analysis
for a viscous shear layer, which led to a more conventional Landau-Stuart
equation of the form (8.8). This apparent discrepancy was reconciled by
Brown, Rosen & Maslowe (1981). The details are complex, being sensitive
to the relative strengths of viscous and thermal diffusion and of nonlinear
effects, on various evolutionary time scales. Depending on circumstances,
Maslowe's (1977a) cubic nonlinearity or Brown & Stewartson's quintic one
may dominate in the viscous problem.

Numerical studies by Beland (1976, 1978) of forced nonlinear Rossby
waves display their development and near-equilibration. The logarithmic
phase shift ^ is found to agree with Haberman's (1972) prediction: initial
absorption of the incident wave at the critical layer is later replaced by
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22 Waves of larger amplitude 229

reflection but virtually no transmission. The flow structure in the vicinity
of the critical layer resembles that of Figure 6.14.

Similarly, with strong stratification, an internal gravity wave approaching
the critical level where U= cT initially undergoes absorption, along with
just a little reflection and transmission. The linear theory of Booker &
Bretherton (1967) and others was described in § 5.3: their transmission and
reflection coefficients are O(e~m), where v = (/—|)i and these are small
for all moderately large values of / . In the absence of dissipation,
nonlinearity must eventually become important within the critical layer,
since wave energy steadily accumulates in its vicinity.

Brown & Stewartson (1980,1982a, b) and Burke (1983) have shown that
the linear results remain valid on the time scale 1 <̂  t <£ e~i; but that, when
t is O(e~%), nonlinear modification of the critical layer causes the reflection
and transmission coefficients to develop with time. When v P 1, leading-
order corrections are found: the transmission coefficient remains expo-
nentially small, O(e~"w), but the reflection coefficient increases to O^"1).
Accordingly, the critical layer begins to restore wave energy to the outer
flow by reflection, while continuing to act as an absorber and a very weak
transmitter. These results are in qualitative agreement with the numerical
studies of Breeding (1971, 1972) and of Jones & Houghton (1972).
Experiments of Thorpe (1981) and Koop (1981) confirm that there is little
transmission through the critical layer, but show no clear evidence of the
above nonlinear effects.

The nonlinear critical theory has been developed only for a single
dominant two-dimensional wave-mode. Though linear superposition of
solutions remains permissible at leading order outside the critical layer
region, this is not so within it. With two or more modes present, there must
be strong nonlinear coupling within critical layers: as yet, no attempt has
been made to construct a theory for such cases. Similarly, the stability of
the nonlinear critical layer deserves attention: its similarity to a row of
equally-spaced vortices suggests that instability and subsequent 'vortex
pairing' may occur.

22.5 Taylor-Couette flow and Rayleigh—Benard convection
These two are among the most fascinating of fluid flows, despite

their deceptively simple geometry. In Taylor-Couette flow, the fluid is
confined to the gap between concentric, differentially-rotating cylinders;
in Benard convection, fluid is confined between plane horizontal walls, and
would be at rest were the temperature of the lower wall not higher than
that of the upper.
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230 Evolution of a nonlinear wave-train

In the simplest theoretical formulations, the cylinder lengths and the
horizontal walls are regarded as infinite. If, also, the gap between the
cylinders is small compared with the radii of the cylinders, the linear theory
for small disturbances in the two flows takes identical form (see e.g.
Chandrasekhar 1961; Drazin & Reid 1981). Instability gives rise to a
stationary array of counter-rotating toroidal cells between cylinders, and
to parallel roll cells between horizontal heated walls, the former driven by
centrifugal forces and the latter by buoyancy. Since the roll cells of thermal
convection have no preferred direction of orientation, composite cells
comprising more than one Fourier mode in space commonly arise. The
configuration of the side walls of the apparatus, together with weak
nonlinearities, influences the type of convection cell, rectangular and
hexagonal ones being most common.

For these flows, the prediction of onset of instability, by linear theory,
agrees remarkably well with experiment. This is so largely because, near
the critical point of linear theory, weak nonlinear terms have a stabilizing
effect: the nonlinear equilibrium solution bifurcates supercritically from
the linear critical point because the Landau constant Ar (cf. §8) is negative.

A plethora of recent reviews describes the large quantity of analytical,
computational and experimental work concerning these two flow configur-
ations: see Palm (1975), Normand, Pomeau & Velarde (1977), Busse
(1978,1981a, b), DiPrima & Swinney (1981), DiPrima (1981) and Benjamin
(1981). Further details are given in §§24-25 of the following chapter.
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Chapter seven

CUBIC THREE- AND FOUR-WAVE

INTERACTIONS

23 Conservative four-wave interactions
23.1 The resonance condition

For some systems, no three-wave resonance is possible and the
strongest interactions take place among resonant quartets of waves. The
dominant nonlinearities are then of cubic order in wave amplitude and so
are much weaker than the quadratic nonlinearities of three-wave resonance.
But even in systems which admit three-wave resonance, phenomena
associated with four-wave resonances may be significant. For example, a
single capillary-gravity wave resonating with its own third harmonic,
mentioned in §14.2, is a degenerate four-wave resonance. So, too, is the
self-modulation of nearly uniform wave-trains examined in the previous
chapter, for then the 'four' participating modes are all identical, or
virtually so.

The general conditions for four-wave resonance are, of course,

k!±k2±k,±k4 = 0,
(23.1)

i i W2 i 0Js i W4 = "»

with corresponding signs, for participating modes with periodicities
exp + i(k3- • x — i»j t) (j — 1,2,3,4) and x = {x, y). The most studied reso-
nance is that among deep-water gravity waves. Since these do not admit
three-wave resonance, four-wave interactions provide the dominant
coupling between modes. This plays an important role in establishing the
spectrum of ocean waves, for direct wave-generation by wind operates
effectively only at rather short wavelengths (Phillips 1977). Three- and
four-wave resonance is also important in linking modes of different
physical types, especially in plasma physics, where a great diversity of
waves is available (see, e.g. Davidson 1972).

231
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232 Cubic three- and four-wave interactions

Phillips (1960, 1961) was the first to study four-wave resonance among
gravity waves, and he has since given several accounts of the subject: see,
especially, his monograph (Phillips 1977) and retrospective article (Phillips
1981a). Other early work was that of Longuet-Higgins (1962), Benney
(1962) and Hasselman (1962, 1963).

The dispersion relation for deep-water gravity waves is w = ± (g | k |)*,
which defines an axisymmetric double trumpet-shaped surface in u>-k-l
space, where k = (k, I). If a similar surface is constructed, with different
origin O' as in Figure 7.1, they intersect in some curve. Any two points on
this curve define four wavenumbers k3- (those shown in the figure having
/ = 0) which satisfy the resonance condition

(23.2a, b)

Movement of O' parallel to the w-axis yields a family of such curves. Their

Figure 7.1. Diagram in <o-k plane, with / = 0, which determines a resonant quartet
of surface gravity waves. The corresponding intersecting axisymmetric surfaces in (a-k-l
space are readily envisaged (from Phillips 1974).
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23 Conservative four-wave interactions 233

projection on the k-l plane is shown in Figure 7.2 and this denotes the
complete family of resonance curves if its scale and orientation is regarded
as arbitrary. This is because the dispersion relation for gravity waves has
no preferred direction and <o is proportional to a single power of | k |. For
other dispersion relations, as for capillary-gravity waves or (stable)
Kelvin-Helmholtz flow (see §2.1), variations with scale or direction occur
and so all possible origins O' must be considered in analogous graphical
constructions. The latter flows also admit stronger three-wave resonances.

23.2 The temporal evolution equations
For progressive gravity waves with wavenumbers satisfying con-

dition (23.2a), let A}{i) (j = 1,2,3,4) denote the complex amplitudes of the
free-surface displacements associated with each wave. The evolution
equations are found to have the form (Benney 1962; Bretherton 1964)

dA1/dt = iA1

dAJdt = \At

dAJdt =

(23.3)

Figure 7.2. Curves in k-l wavenumber plane given by resonance condition (23.2). Lines
from A and B to any pair of points on one such curve determine a resonant quartet
as shown (after Phillips 1977).
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234 Cubic three- and four-wave interactions

when interactions of higher than cubic order are ignored. If the resonance
condition (23.2b) is not nearly met, the terms in h contain rapidly-oscillating
exponential factors and these average to zero over the modulation
timescale. Only if the mismatch Aw from resonance is small need these
terms be retained.

The sixteen elements of the matrix atj are real and so also is h. Their
values depend on the wavenumber configuration and determination of
these is algebraically tedious. The terms in ai} modify the phases but not
the magnitudes of the amplitudes At: that is, they provide a nonlinear
modification to the phase velocities. The diagonal terms ati represent
Stokes' (1847) frequency shift due to self-interaction. Only the h terms act
to transfer energy between modes.

Benney's (1962) derivation employs techniques of perturbation theory
which are now standard. The governing equations are as (14.2), but with
surface tension y set equal to zero. The two free-surface boundary
conditions are just (11.13) and (11.14), which contain all nonlinearities.
These may be replaced by Taylor expansions about the mean surface z = 0,
namely,

(2 = 0) (23.4a, b)

correct to cubic order in wave amplitude. Elimination of £ then yields a
single boundary condition for <j>.

A velocity potential, satisfying Laplace's equation and the boundary
condition at z = — oo,

4> = e Re 2 Pt(t) e
l k ; r e^s + e2P0 0(t)

i

+ e 2 R e S Pt ra(Oe1<k!+km>-f
el

ki+kmlz

l,m

+ e3Re S /);,ro)n(Oe i(ki+km+kn)-re^+km+

I, m, n

describes a discrete set of wave-modes with wavenumbers k, ( /= 1,2,...)
in propagation space r = (x, y). Substitution into the nonlinear boundary
condition at z = 0 enables the various /"-functions to be found. The
parameter e characterizes the wave amplitudes.

In the linear approximation, (23.4a, b) reduces to

and so
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23 Conservative four-wave interactions 235

which yields two primary-wave frequencies ±(g\kt|)i For propagating
wave-trains, one or other value is selected, say wl for each k?: for standing
waves, both must be retained as in §14.2. At O(e2),

^ ^ + g | k , + k m | P , i m = 2(k ! -k m - |k , | |k m | )^(P i P m ) . (23.5)

Here, both sums and differences of the primary wavenumbers are retained
by allowing m to take both positive and negative values, with k_m = — km,
w_m = -wffl and P_m — P^, the complex conjugate of Pm. Since
no three-wave resonance is possible, free modes with frequencies
+ (gjkz+km|)2, for which the left-hand side of (23.5) vanishes, may be
disregarded. The remaining, forced, solution for Pt m has periodicity
o)l+(om and is proportional to PiPm: this is readily found from (23.5).

On proceeding to O(e3), terms in exp (ikz • r) may be extracted from the
nonlinear boundary conditions. The corresponding equation for Pt has the
form

dVj/d/'+wfP^i^e-1"!*/?, (/=1,2,...) (23.6)
for each primary wave amplitude. The nonlinear interaction terms repre-
sented by Ft derive from various sources. Those proportional to | Pk |

2 Pt

and Pi,-kPk automatically have the correct periodicity; others, proportional
to PrPmPn and PrPmn, have periodicity

e i (k r +k m +k n -k , ) • r e-i<«v+fc>m +un-a>l) t

and these terms match the periodicity of Pj only if the resonance conditions
(23.1) are satisfied. With eP}(t) re-expressed as (-iwylk,^1)^/?) e"1^',
where the A} denote slowly-varying complex amplitudes of the free-surface
displacements, (23.6) yield

<Lyd/ = - i « ^ J 5 0=1,2,3,4) .
With four wavenumbers satisfying (23.2a), these are just the evolution
equations (23.3) above. The complicated expressions for the coefficients
ay and h are given by Benney (1962).

23.3 Properties of the evolution equations
Equations (23.3) satisfy the conservation relations

d (\A
dt\ w2 / dt\ <i>3 J dt

(23.7)

which connect the wave actions of the modes. It follows that total wave
action is conserved,

«,•
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236 Cubic three- and four-wave interactions

SL result which is not true of three-wave resonance. Also, the energy
equation is

and this also vanishes by virtue of the resonance condition (23.2). As for
the three-wave case, £ t o t is not constant when there is a small detuning
Aw = feij+Wj—w3 —w4 from exact resonance, despite the fact that the
system is non-dissipative.

Because of (23.7), the four evolution equations (23.3) may be reduced
to an equation for a single variable x{t) just as in §15.1. Complete
analytical solutions may then be given in terms of Jacobian elliptic
functions (Bretherton 1964; Turner & Boyd 1978).

The extension to spatial, as well as temporal, modulations is accomplished
on replacing dAj/dt by {d/dt-\-\fV)Aj in (23.3), where v,- denote the
respective group velocities d(Oj/Skj: but this is justified only for waves in
deep water. With finite depth, spatial modulations in amplitude drive an
O(e2) mean flow as described in § 11.2 and this must be taken into account
when deriving the O(e3) interaction equations. Apparently, little work has
been done on this problem. In the deep-water case, uniformly-propagating
modulations which depend on a single variable, say T S t — ax—by with
constant a and b, obey equations of similar form to (23.3) and so may be
solved. Likewise, waves with equal linear damping rates may be treated
by transforming to a new 'time' co-ordinate, as in §16.2, which recovers
equations of undamped form (Bingham & Lashmore-Davies 1979).

Initial scepticism of the importance of resonances among gravity waves
was dispelled by the experiments of Longuet-Higgins & Smith (1966) and
McGoldrick, Phillips, Huang & Hodgson (1966). Two wave-trains, with
mutually perpendicular wavenumbers k1; k2 and corresponding frequencies
Wj, <o2 were generated mechanically from adjacent sides of a square wave
tank. When these were chosen to satisfy the resonance conditions

2kx = k2+k3 , 2wj = wa+ws,

the oblique mode k3 was seen to grow spontaneously with distance across
the tank. Quite good agreement was obtained with the theoretical initial
growth rate of k3 but the tank was not large enough to confirm the
existence of periodic modulations. At other, non-resonant, choices of kx

and k2, no significant k3 component was generated. Figure 7.3, from
McGoldrick et ah, shows measured frequency spectra for resonant and
non-resonant cases.
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23 Conservative four-wave interactions 237

Subsequent experiments on the modulational instabilities of initially
uniform wave-trains, already described in §21, demonstrated the resonant
growth of sidebands. At the other extreme, measurements of the evolution
of ocean-wave frequency spectra (see e.g. Phillips 1977) support the view
that resonance is responsible for broadening the spectrum to low frequencies
which cannot be generated directly by wind.

23.4 Zakharov's equation for gravity waves
Hasselmann (1962,1963) was first to consider resonant interactions

within a continuous spectrum of gravity waves. Later, in an important but

Figure 7.3. Gravity-wave frequency spectra measured by McGoldrick et at. (1966),
with two forced components/,,/,. Four-wave resonance occurs with/,//, = 1.775 at
component with frequency 2/,—f2. This component is not prominent in the non-
resonant case/,//,, = 1.600.

-, 1 0

0.1 =

Frequency (c.p.s.)
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238 Cubic three- and four-wave interactions

terse paper, Zakharov (1968) gave a rather different formulation. Only
recently has Zakharov's work gained deserved recognition through its
fuller rederivation by Crawford, Saffman & Yuen (1980), also described
in Yuen & Lake (1982).

Instead of referring the surface boundary conditions to the mean level
z = 0, Zakharov introduced the potential </>s at the free surface as a
dependent variable,

0-(M) = 0(r.£(r,O,O,

where r denotes (x, y), z — £(r, t) is the free surface and 0(r, z, t) the usual
velocity potential. It follows that

Vr <f>*(r, t) = Vr 0(r, £(r, r), 0 + &(r, £(r, 0, 0 Vr £(r,
where Vr = (8/6x, 6/8y).

The boundary conditions (14.2c, d) yield

and it remains to express $z in terms of <ps and ^. Zakharov showed that
these boundary conditions may be rewritten in the elegant Hamiltonian
form

£t = 8E/8<f>*, ft = -SE/9£ (23.9)

where E is the total energy and S/8<frs, 8/S£ denote variational derivatives;
but this reformulation was not used by Crawford et al.

The (double) Fourier transforms of the velocity potential <j> and surface
displacement f are defined as

1 f00
$(k, z,t) — — 4>(t, z, t) exp ( - ik • r) dr,

£n J_oo

£(k, 0 = i - T g(r, 0 exp ( - ik • r) dr,

where

by virtue of Laplace's equation (14.2a). The corresponding surface potential
is

^s(r, 0 = ^ j°° <t>(k, 0 exp [| k | §(r, 0] exp (ik • r) dk.

The convenient shorthand of dr and dk is used to denote dxdy and d&d/
respectively, where k = (k, I). For sufficiently small surface displacements,
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23 Conservative four-wave interactions 239

the exponential in |k |£ may be expanded by Taylor series. With g
expressed in terms of £, this yields

$«(*, 0 = T - f0 $00 exp (ik • r) dk

«Pl»(k+k1+k1)T]dkdk1dk t

with the time-dependence of <& and £ implied.
The Fourier transform $s(k, t) of <j>*(j, i) is therefore found as a series

of integrals involving <f> and £. This may be inverted iteratively, giving
$ in terms of $s and £ as

where d( ) denotes the delta function

It follows that ^ may be constructed as a convergent series in terms of
$s and £: accordingly, in the boundary conditions (23.8a, b), 4>z is now
known in terms of 08(r, t) and £(r, t).

These boundary conditions may be combined into a single equation by
defining the complex variable

b(k, t) = frKk) | k |"l)1/2£(k, 0+ i ( | | k | a r W V (k, 0- (23.10)

The free surface £ and potential 0 are recovered as a sum and difference,
respectively, of the inverse Fourier transforms of b and its conjugate b*.
The equation for b(k, t) is

bt(k)+iw(k)b(k)+i

f f° 1; k2) 6*(k,) 6*(k2) 5(k+k t+k2) dkj dk2
(ot;er)
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240 Cubic three- and four-wave interactions

k, k l t k2, k3) b(kt) b(k2) b(k3) d(k - k, - k2 - k3) dkx dk2 dk3

k, k1; k2, k3) b*{kx) b(k2) b(ks) ^ k + k ! - k 2 - k 3 ) dkx dk2 dk3

W^(k,k1,k2,k3)b*(k0b*(k2)b(k3)S(k+k1+k2-ki)dk1dk2dl

W^(k,k1,k2,k3)b*(k1)b*(k2)b*(k3)S(k+k1+k2+k3)dk1dk26

+ . . . = 0 , (23.11)

where the real interaction coefficients V(i), W(i) are known, but lengthy,
functions of the wavenumbers k, and frequencies w^Qq). These coefficients
are stated by Crawford et al. (1980) (also Crawford et al. 1981 and Yuen
& Lake 1982) who correct minor errors in Zakharov's account.

Zakharov (1968) derived this result rather differently. He first showed
that Hamilton's equations (23.9) are equivalent to

then calculated the right-hand side from the energy functional E.
The leading-order approximation bt = — \u>b yields the linear result. The

three double integrals in VU) represent quadratic interactions among
Fourier components. If we set

b(kp i) = eBjikj, t) exp [-ia>(k;) t]

where e is a measure of the small wave-slope | k | £, (23.11) yields

e X B2 S(k - k, - k2) exp [i(w - wx - wa) /] dkj dk2
Gt UJ

) (23.12)

at quadratic order, where I2 and /3 denote corresponding integrals in F(2>

and F (3). If no three-wave resonance is possible, the right-hand side is a
rapidly-varying function of t, and B may be decomposed into a dominant
0(1) slowly-varying part with O(e2) time derivative and a small 0{e)
rapidly-varying part, eB' say. The latter may be found by integrating
(23.12) directly with respect to t; for, only the dominant parts of Bx, B2

need be retained in the integrals, and they are constant on the 0(1)
timescale /. If three-wave resonance occurs, direct integration of (23.12)
is impossible: the integrals have slowly-varying parts and B evolves on the
timescale et.

With no three-wave resonance, the slow evolution of B on the timescale
eH is found by retaining the 0(e3) terms of (23.11). Some of these derive
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23 Conservative four-wave interactions 241

from the FW) integrals through products of the dominant O(e) part of b
and the known rapidly-varying part e2JS'; others come from the WU)

integrals and are of cubic order in the dominant part of b. Again, many
of these terms are rapidly-varying and may be 'filtered out' since they
do not contribute to the slow modulation of B. In particular, the
only resonances among deep-water gravity waves are those with
w + W! —w2 —w3 = 0 (where the w's are constrained to be positive without
loss of generality) and so the integrals in W{1), W(3) and WH) may be
suppressed. The final result has the form

, klf k2, k3) B* fi2 B3 S(k+kx - k2 - k3)

x exp [i(w 4- (D1—<o2—w3) t] dkx dk2 dk3, (23.13)

where Tis known in terms of the V(i) and W(2). This is Zakharov's integral
equation for the slow evolution of a weakly nonlinear wave field. Only
those modes for which \o)+o)1—o)2—(t)a\is O(e2w) or less need be retained
in the integral.

23.5 Properties of Zakharov's equation
Suppose that the Fourier spectrum B(k, t) comprises just four

discrete resonant modes,
4

I3\JS.y Ij — J£J Jj ylj Oyjfk — *^M/
» - l

with conditions (23.2) satisfied by the wavenumbers Kn and frequencies con.
It is readily confirmed that (23.13) then yields results (23.3).

Alternatively, for a narrow spectrum closely centred around a single
wavenumber k0 and frequency w(k0), the dispersion relation is
approximately

where a, b, c are constants, Kx is the component of k—k0 parallel to
k0 and K2 that perpendicular to k0. Obviously, a is the group velocity
of k0. In (23.13), r(k, k15 k2, k3) may be replaced by the constant,
To = r(k0, k0, k0, k0), which equals | k0 \

3/4n2. Also, 5(k, /) may be rewritten
as

B(k, t) = i ( k , i) exp [{{a^ + bK\ + cK\ + ...)t] (23.14)

to incorporate the frequency shift. Equation (23.13) then gives

<Kf + cK2+...)A

A* i 2 As <5(k+kx - k2 - k3) dkj dk2 dk3. (23.15)
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242 Cubic three- and four-wave interactions

The inverse Fourier transform of A is

A(T, t) = ^ Jj°° i(k, 0 exp [i(^ x + K2 y)] d ^ dK2

to leading order, with x measured along k0. Correspondingly, (23.15) gives

dt dx 2 V dx2 dy2

which is just the nonlinear Schrodinger equation (19.3). This derivation

was originally given by Zakharov.
Zakharov also examined the stability of periodic wave-trains (see §21.1)

and this work was extended by Crawford et al. (1981). A solution of
(23.13), which represents a uniform wave-train with wavenumber

'Boexp(-iToBlt), k = k0

k 4= k0.

The amplitude a0 of the wave is given, from (23.10), by

If this wave-train is perturbed by two modes with wavenumbers k0 ± K
and small amplitudes B±{t), the equations for B± are found from (23.13)
to be

i dBJdt = T1+ B2 Bt exp [ - i(Q + 2T0 Bl) t] + 2T2+Bl B+,

i dB_/dt = 71_ Bl B* exp [- i(Q + 2T0 Bl) t]+272_ Bl 5_,
T — 7Yk + K I I K I k l T — TCk 4-K k k k 4-K\

Q = 2«(k0) - w(k0+K) - w(k0 - K).

The substitution

B+ = B+ exp [ - iQ£2 + To Bl) t - \<rt],

Bl = B*_ exp [i(|Q + To B2.) t - iat]

leads to an eigenvalue problem with eigenvalues <r given by

(23.16)

This result is correct to O(klal) for all wavenumbers K such that the
frequency mismatch Q from exact resonance is O(T0 Bl) or less. In contrast,
the corresponding results (21.3) and (21.5), derived from the two- and
three-dimensional nonlinear Schrodinger equations (21.1) and (19.3), are
valid only for wavenumbers K small compared with k0: in particular, (21.5)
incorrectly predicts instability for all L/K close to +2~i Result (23.16)
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23 Conservative four-wave interactions 243

may also be derived from (23.3), with frequency mismatch Aw = Q,
A1=A2 = B and A3, At = B+, B_.

Crawford et al. (1981), also Yuen & Lake (1982), compare the stability
boundary Im{o-} = 0 with those of (21.3) and (21.5) and also with
Longuet-Higgins' (1978a, b) computations from the full nonlinear equations
(see §22.2). For two-dimensional disturbances, this comparison is shown
in Figure 6.7: result (23.16) is a clear improvement on the Benjamin-Feir
result (21.3) and gives reasonable agreement with the full nonlinear
computations even at quite large wave-slopes.

For three-dimensional disturbances, the unstable region given by (23.16)
is shown in Figure 7.4 for various wave-slopes: the fundamental wave-
number is k0 = (ko,0) and the perturbations have k+ = (ko±Kx, +Ky).
As k0 a0 approaches zero, the region of instability is situated narrowly
around Phillips' figure-of-eight curve for four-wave resonance with
2k0—k+ — k_ =0 . For fairly small koao, the unstable region resembles a
pair of touching' horseshoes' and, as k0 a0 further increases, the' horseshoes'
move apart due to stabilization of modes with small | K |. The unstable
region becomes increasingly concentrated near K = +0.78 k0 and finally
disappears when koao x 0.5. This reproduces, at least qualitatively, the
stabilization of Type I instability at large wave-slopes found by McLean
et al. (1981) and already discussed in §22.2. However, the Zakharov
equation (23.13) is no longer a rational approximation at such large
wave-slopes. Moreover, the Zakharov equation is incapable of predicting
the higher-order Type II instability which corresponds to five-wave
resonance. However, Zakharov's analysis has recently been extended by
Stiassnie & Shemer (1984) to incorporate the next-order five-wave

Figure 7.4. Regions of instability in Kx-Ky space as given by (23.16), for various values
of wave-slope koao: /coao = 0, &0a0 = 0.01,
kaa0 = 0.4, fcoa0 = 0.48 (from Crawford et al. 1981).

-0-25

-0-4
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244 Cubic three- and four-wave interactions

resonances in water of both infinite and finite depth: their extended
equation represents Type II instability fairly satisfactorily.

In principle, the evolution of any finite number of discrete modes may
be studied numerically, using Zakharov's equation. Caponi, Saffman &
Yuen (1982) - repeated in Yuen & Lake (1982) - have done so for a seven
mode system of two-dimensional waves, comprising a fundamental
k = (fco,0) and six sidebands k = (fc±,0), /c±=£0±nA/c (n = 1,2,3):
Ak/k0 was chosen to be 0.2. Initially, a uniform wave-train with wavenumber
k0 and amplitude a0 was prescribed, together with small 0(lO~6ao)
perturbations at the other wavenumbers. At sufficiently small koao

(= 0.05), the motion was periodic and the sidebands remained small; but
at k0 a0 = 0.1 quasi-periodic (Fermi-Pasta-Ulam) modulations occurred
as a consequence of Benjamin-Feir instability of the kf sidebands. At
koao = 0.2, both kf and k£ lie in the unstable domain of Figure 6.7 and
the modulations were found to be chaotically irregular. At k0 a0 = 0.45,
the sidebands kf, k£ are stable but kf now lies in the unstable domain:
then, seemingly periodic modulations at first occurred, but the kf and kf
modes later grew to prominence (because of their resonance with k0 and
kf) and chaotic behaviour ensued. At k0a0 = 0.5, all the sidebands are
stable and the periodic wave-train remained unmodulated - but Type II
instabilities may then be expected. In accord with expectations, corre-
sponding calculations based on the nonlinear Schrodinger equation (21.1)
showed similar quasi-periodic and chaotic modulations, but no restabil-
ization at large koao where (21.1) is not a good approximation.

Of much oceanographic interest is the evolution of a field of random
gravity waves. Following on from Hasselmann's (1962, 1963) work,
Longuet-Higgins (1976) and Alber (1978) considered the limiting case of
a narrow-band spectrum, for which the nonlinear Schrodinger equation
provides an acceptable starting point. In contrast, Crawford et al. (1980)
employed Zakharov's equation to investigate a narrow-band random
spectrum. All agree that Benjamin-Feir instability is suppressed by
sufficient randomness, but a homogeneous spectrum remains modulation-
ally unstable if the bandwidth is sufficiently narrow. Discussion of random
wave spectra is outside the scope of this work: recent accounts may be
found in Phillips (1977), Yuen & Lake (1982) and West (1981).

24 Mode interactions in Taylor-Couette flow
24.1 Axisymmetric flow

Finite-amplitude axisymmetric Taylor-vortex flow was first calcu-
lated by Davey (1962), by an amplitude-expansion method similar to that
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24 Mode interactions in Taylor-Couette flow 245

of Stuart (1960) and Watson (1960). Velocity perturbations have the form

u(r, z, t) = Re {A(t) u^r) exp (iaz)} + h.o.t.

where higher-order terms include harmonics, mean-flow distortion and
modifications of the leading-order eigenmode. Here, z and r denote
distances along and perpendicular to the axis of the cylinders, which
(meantime) are taken to have infinite length.

The amplitude equation has the typical Landau form (cf. §22.3)

dA/dt = a-A-axA \A \2 + a2A \A | 4 +. . . ,

where a{T, a) is the real eigenvalue of the corresponding linear stability
problem. The Taylor number Tis a dimensionless measure of the strength
of the rotation, proportional to the square of a Reynolds number
R = Q1r1 djv. Other parameters are the gap to inner radius ratio d/rt and
the ratio of outer- to inner-cylinder rotation speeds QJQV which may be
regarded as constants: the case Q2/Q1 = 0 and the small-gap approximation
d/r^O have received most attention. The Taylor number is usually
defined as

T=^4
where r2 = rx + d is the outer radius.

At the critical Taylor number To for onset of linear instability, <x changes
sign; also, Davey (1962) found ax to be real and positive near To.
Accordingly, there is a super-critical finite-amplitude equilibrium state

\A\**cr/a1 (T>T0)

with axial wavenumber a = a0 equal to that of the least stable linear mode.
Subsequently, DiPrima & Eagles (1977) calculated a2, and several higher-
order coefficients have been computed by Herbert (1981).

At each T> To, there is a finite bandwidth of linearly unstable wave-
numbers a, centred on a0, each of which may yield a finite-amplitude
equilibrium state. For Tonly slightly greater than To, when the bandwidth
is narrow, the stability of these states to 'sideband' disturbances with
wavenumbers a ± S has been investigated. This was first done by Kogelman
& DiPrima (1970), following an earlier general approach of Eckhaus (1963,
1965). Stuart & DiPrima (1978) have noted the similarity of Eckhaus'
mechanism to that of Benjamin & Feir (1967) already discussed in §21.1.
It was found that wavenumbers sufficiently close to a0 are stable equilibrium
states, but that those outside a band of width 3 ^ times that of the
linearly-unstable bandwidth are not. A later analysis by Nakaya (1974),
taken to higher order, found a slightly narrower bandwidth of stable vortex
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246 Cubic three- and four-wave interactions

flows. The nonlinear coupling between the modes a., a.+ 8 and a — S is
essentially a four-wave resonance with kx = k2 = a and all four frequencies
zero.

24.2 Periodic wavy vortices
The transition from axisymmetric Taylor vortices to wavy vortex

flow (see Figure 7.5) is also a four-wave interaction phenomenon. Davey,
DiPrima & Stuart (1968) considered the interaction of axisymmetric modes
with azimuthal velocity components

v = vc0(r, t) cos ocz, vs0(r, i) sin ocz

and two non-axisymmetric modes with

v = Re {vcl(r, t) cos az e1"?4}, Re {vsl(r, i) sin acz e1"*6}.

Here, vc0, vs0 are real and vcl, vsl are complex functions, n is an integer
and <j> is the azimuthal angle. To leading order, the ^-functions may be
written as

"co ~ Ac(i)f0(r), vs0 ~ As(t)f0(r),

vcl » Bc(t) ho(r), vsl at Bs(t) ho(r)

where Ac, As are real and Bc, Bs are complex functions with complex
conjugates B*, B*. Higher-order expansions may then be developed in
ascending powers and products of the A's, 5's and fi*'s. In this way, the
third-order amplitude equations were found to be

dAJdt = a0 Ac + a, AC{A\ + AD + Ac(a3 \ Bc |
2 + a41 Bs |

2

+ Ke{2atABBeB*},

(24.1a-d)

+ (b3 - b4) Bs Ac As + (bt - b2) B* Bl

dBJdt = b0

+ (b3 - bj Bc As Ac + (b, -

with known real a- and complex Z>-coefHcients. Real and imaginary parts
of the latter will be identified by subscripts r and i respectively.

The real Ae and As equations may be combined as a single complex
equation for A = Ac + iAs. Also, B+ = Bc — iBs and B_ = B* — iB* may be
identified as the respective complex amplitudes of modes with periodicities
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24 Mode interactions in Taylor-Couette flow 247

exp(iaz+i«0), exp(iaz—in</>). Equations (24.1) might therefore be recast
as

dA/dt =
(24.1)'

with the c- and ^-constants known in terms of the cfs and Z>'s.

Figure 7.5. Taylor-vortex flows at various values of R/Rc where Rc is the linear critical
Reynolds number, (a) R/Rc =1 .1 , steady axisymmetric Taylor vortices; (£)
i?/^ c = 6.0 and (c) R/Rc = 16.0, wavy vortices; (d) R/Rc = 23.5, waves have
disappeared (from Fenstermacher et al 1979).

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:40 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.008



248 Cubic three- and four-wave interactions

This demonstrates the connection with the four-wave resonance equa-
tions (23.3) with two modes identical; but now the coupling coefficients
are no longer real and the modes experience linear growth or damping.
Note that the linear frequencies of the modes A, B+ and B_ are
0, boi, —bQi respectively and so satisfy (23.2b). A similar analysis by
Nakaya (1975) allowed the axial wavenumber of the A- and fi-modes
to differ: the interaction criterion

8,n)-(<x-8,-n) = 0

is met and this includes both the axisymmetric sideband instability (n = 0,
8 4= 0) and wavy-vortex instability (8 = 0, n 4= 0).

From (24.1), it is easily seen that axisymmetric Taylor vortices have
Bc = Bs = 0, As = CAC and

A\ + A2
S = Ka0 e

2a»'(l -Kax e2(M)-i

for arbitrary constants C, K. The constant a1 is known to be negative and
there is a supercritical equilibrium state for a0 > 0 (T > To). Similarly, a
simple non-axisymmetric mode has Ac = As = 0 and

Bc = Ace elw(<-'o>, Bs = /?Be e-«-V,

Pie + Ale = P% /?e = ( - *or/*lr)*, « = *>oi - (6U V / M -

The stability of the axisymmetric equilibrium state to infinitesimal
non-axisymmetric disturbances is established by linearizing (24.1) with
respect to B+ and B_. Since Ac and As are then constant, with

As = CAC, A\ + A\ = -aja, > 0,

Bc and Bs may be taken as proportional to exp(A0 and A satisfies the
eigenvalue relationship

provided (24.1) may be truncated after the cubic terms. The largest growth
rate Ar occurs with C zero or infinity; that is, when As = Bc = 0 or
Ac = Bs = 0. For these cases, the non-axisymmetric mode grows whenever

( - ao/flj) sup (b3T, bir) >-bor. (24.2)

The right-hand side is the linear damping rate of this mode, and is positive
near 7̂ ,. The coefficients b0, b3, bi depend on the azimuthal mode number
n. As T increases above To, the equilibrium amplitude (— ao/a1)i of the
Taylor vortices increases from zero. The criterion (24.2) therefore yields
a set of critical Taylor numbers Tn{n= 1,2,3,...) for onset of instability
with azimuthal periodicity exp( + i«0).

In the small gap approximation, the azimuthal wavenumber is n/rt since
azimuthal arc length equals rx <j>. Also, the critical axial wavenumber a0
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24 Mode interactions in Taylor-Couette flow 249

equals 3.127/d and this is much larger than n/r^ for many integers n.
Consequently, the wavenumber vectors (a0, + n/rt) of the lowest non-
axisymmetric modes remain close to that of the fundamental and it comes
as no surprise that the first few critical Taylor numbers Tn lie close to ro.

Improved estimates of the Tn, based on retaining quintic terms in (24.1)
and relaxing the small gap approximation, were given by Eagles (1971):
his first few values, with Davey et al.'s (1968) added in parentheses, are
To = 3506 (3390), Tx = 3892 (3670), T2 = 3902 (3676), T4 = 3962 (3710),
for QJQ1 = 0, d/rx = 0.05 and a = a0 = 3.127/rf. Herbert (1981) later
developed a computational amplitude-expansion approach (similar to that
described in §22.3) which retained terms of up to 15th order for the
small-gap limit. Jones (1981) employed an amplitude and Galerkin
expansion to compute Tn for various gap ratios d/rv Their results are in
reasonable agreement with those just quoted and are probably more
accurate.

Transition to the lowest n = 1 mode was observed by Schwartz,
Springett & Donnelly (1964), but the first unstable non-axisymmetric mode
found by Coles (1965) and others was that with « = 4: the apparent
preference for the n = 4 mode is not understood. Measurements by King
et al. (1984) of the azimuthal wave speeds of non-axisymmetric modes
agree well with theory.

24.3 Effects of finite length
Experiments are necessarily conducted with finite, not infinite,

cylinders; but when the ratio of length to radius is sufficiently large,
reasonable agreement is normally obtained with theoretical results for the
infinite case. Coles (1965) studied the formation and destruction of stable
non-axisymmetric flows by very gradually increasing and decreasing the
rotation speed of his inner cylinder with the outer cylinder held fixed. A
repeatable sequence of events was recorded, with sharp transitions between
various states having/? Taylor vortices and n azimuthal waves, each stable
for some range of T. The transitions displayed marked hysteresis, according
to whether the rotation was increasing or decreasing: different (p, n) states
could be maintained indefinitely at the same rotation speed, that present
being dependent on the history of the motion. For no other flow
configuration has the non-uniqueness of stable solutions been demonstrated
so dramatically: all who solve boundary-value problems by computational
methods should ponder this work.

An even greater variety of flows was recently observed by Andereck,
Dickman & Swinney (1983), using an apparatus in which both cylinders
rotated. They describe' twisted' and' braided' Taylor vortices and vortices
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250 Cubic three- and four-wave interactions

with wavy inflow and/or outflow boundaries, as well as the more familiar
wavy-vortex flows. These complex flows have yet to be studied
theoretically.

Considerable attention has recently focused on end effects. Experiments
by Benjamin & Mullin (1981, 1982) and Mullin (1982) with rather short
cylinders have revealed that there exist many distinct stable axisymmetric
flows which satisfy the same boundary conditions. Transition between
modes with differing numbers of cells exhibits marked hysteresis as the
rotation speed and effective cylinder length are independently varied.
Transition to time-periodic flows associated with the appearance of
azimuthal waves was studied by Cole (1976), Mullin & Benjamin (1980)
and Mullin et al. (1981) for short cylinders. Figure 7.6, from Benjamin's
(1981) review, shows some of their results. The axes are R = Q1r1 d/v and
F = l/d where / is the annulus length. The curves denote the onset (and
hysteretic disappearance) of periodic flow for various axisymmetric cellular
modes. The sharpness and heights of the 'peaks' are remarkable: the
maximum values of R are an order of magnitude greater than estimates
for similar cells between infinite cylinders. In Benjamin's words, 'the
prospects for a definite theoretical account still appear remote', but

Figure 7.6. Results of Mullin & Benjamin (1980) on stability to azimuthal waves of
Taylor-vortex flows between short cylinders. Flows are normal two-cell mode (2),
three-cell mode (3), abnormal four-cell mode (A4) and normal four-cell mode (4).
Instability results on crossing the solid curves from below; instability disappears on
crossing dashed curves from above (from Benjamin 1981).
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24 Mode interactions in Taylor-Couette flow 251

(24.3)

qualitative insights are gained by approaches employing abstract mathe-
matics (e.g. Benjamin 1978).

End effects are more easily modelled for long, but finite, cylinders with
ends at z = +/. This was done by Hall (1980a,b, 1982) and Stuart &
DiPrima (1980). Axisymmetric modes denoted by Ac = A and As = B are
even and odd, respectively, in z and may then satisfy

dA/dt = <TA A+a20 A2+a02 W + a30 A3+a12

dBjdt = aBB+a11AB+a03B
3+a21A

2B+...,

far from the ends. As /->oo, crA/<rB-^-1, a20, a02 and a n approach zero and
a30, a12, a03, a21 become equal: these equations then resemble (24.1a,b)
without the Bs and Bc modes.

Small, but non-zero, quadratic coefficients a20, a02 and an, along with
slightly different linear growth rates and cubic coefficients, destroy symmetry
and indicate a preference for one or other mode. Odd equilibrium
solutions, in addition to the trivial 5 = 0, are

A=0 (T>TB),

which resemble the supercritical equilibrium states described above. As <rB

increases from zero at T = TB with a03 negative, these give the ' pitchfork'
bifurcation from B = 0 shown in Figure 7.7(a). Even solutions are in
equilibrium when

<TAA + awAi+a3()A
3 + O{Ai) = Q, 5 = 0,

where a20 is numerically small; the two non-trivial solutions show asym-
metric 'transcriticaP bifurcation from A = 0 as in Figure U(Jb). One
solution branch now extends to subcritical Taylor numbers.

The supercritical, dashed, portion of the curve is known to be unstable
with respect to small changes in A (see e.g. Joseph 1976). The solution with
A < 0 is stable to small changes in A; but it would be unstable to phase

Figure 7.7. Typical (a) 'pitchfork' and (b) 'transcritical' bifurcations. Solid portions
denote equilibrium solutions stable to amplitude perturbations, dashed portions
denote unstable solutions.

B

(b)
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252 Cubic three- and four-wave interactions

variations, and so evolve towards the solution with A > 0, if such phase
variations were compatible with the end-wall boundary conditions.

But equations (24.3) are appropriate only for end-wall boundary
conditions at z = + / which admit a purely azimuthal primary flow. In
fact, realistic end conditions drive flows with some axial and radial
dependence at all rotation speeds of the inner cylinder (cf. Benjamin &
Mullin 1981). Fourier decomposition shows that additional constant terms
eA, eB must then be added to the right-hand sides of (24.3): these constants
approach zero as /^oo, and eA or eB is zero if the boundary conditions
are respectively symmetric or antisymmetric. With non-zero values eA, eB,
the bifurcations are 'imperfect' and single-mode equilibrium solutions are
as shown schematically in Figure 7.8(a), (b), (c).

The dashed portions of the curves are unstable to small amplitude
changes. Some curves, but not others, admit a smooth transition between
the primary flow and Taylor-vortex flow as T is increased. Imperfect
bifurcations of similar kind were first analysed, for thermal convection in
finite containers, by Kelly & Pal (1976, 1978), Hall & Walton (1977) and
Daniels (1977). Mixed modes, with both A and B present, are discussed
by Hall (1980b, 1982) for Taylor-vortex flow and by Hall & Walton (1979)
for Benard convection. Benjamin (1978), Schaefler (1980) and Joseph
(1981) have demonstrated the generic nature of such solutions and clarified
their relationship to Thorn's (1975) catastrophe theory.

Figure 7.8. Equilibrium solutions with imperfect bifurcation, (a) B(T) for eB > 0
(inverted for eB < 0); (2>) A(T) for eA > 0; (c) A(T) for eA < 0.

A

(*)
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24 Mode interactions in Taylor-Couette flow 253

24.4 Doubly-periodic and' chaotic' flow
Wavy-vortex flow remains strictly periodic, with a dominant

frequency (ox and its harmonics, until the Reynolds number R is an order
of magnitude larger than its value Rc at onset of Taylor instability.
Fenstermacher, Swinney & Gollub (1979), employing a laser-Doppler
technique to measure the flow at a single point, found rather sudden onset
of a second, incommensurate frequency w3t at R/Rc = 10.1: see Figure
7.9. (Strictly, 'incommensurate' means that w3/wj is irrational; but, for
present purposes, it is taken to mean that no small integers m, n, less than
10 say, exist with m/n = (o^/io^). Gorman & Swinney (1982) identified w3

with a modulation of the wavy vortices, which was usually spatial as well
as temporal. Their visual observations showed a periodic 'flattening' of
one or more wavelengths around the annulus. The evolution with azimuthal
angle <j> and time t took various forms, characterized by a pair of integers
(n\k): here, n denotes the azimuthal mode number of the waves and k that
of the modulation. Gorman & Swinney's schematic representation of
several of these forms is reproduced in Figure 7.10.

The purely temporal modulations (cases «|0) might be thought to
correspond to periodic solutions of (24.1), with continuous energy exchange
among the modes A, Bc and Bs: after all, the rather similar four-wave
resonance equations (23.3) display periodic modulations. DiPrima (1981)
has noted that Eagles' (1971) calculated coefficients do not admit this
possibility, but these results relate to fairly small values of (R — Re)/Re.
Also, these truncated equations are formally valid only as the linear growth
rates a0, b0 simultaneously approach zero: and this is never so for n 4= 0!
The practical range of approximate validity of (24.1) is unknown, but is
unlikely to extend to R/Rc > 10.

Gorman & Swinney found their results to be qualitatively consistent
with a rather abstract but general theory of Rand (1981). They also seem
to be consistent with the growth of modes with azimuthal mode numbers
differing from that of the fundamental wavy vortices. In particular,
azimuthal modes n + l , n ± 2 , . . . interact resonantly with the n-mode (as
well as with the primary Taylor vortices) since their azimuthal phase speeds
are known to be the same: the growth of such modes might well induce
azimuthal modulations like those of Figure 7.10. Modes with slightly
different axial wavenumbers a could also play a part. Further computational
work may be expected to clarify the issue.

Shortly after the appearance of two incommensurate frequencies,

t Subscript 3 is used to accord with Fenstermacher et al.'s notation.
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254 Cubic three- and four-wave interactions

Figure 7.9. Measured time-dependence of radial velocity component and correspond-
ing frequency power spectra at various R/Rc (from Fenstermacher et at. 1979).
Values of R/Ro in (a)-{h) are 9.6, 10.1, 11.0, 15.1, 18.9, 21.7, 23.0, 43.9 respectively.

1 i-o

<

II11
3 2

(a)

IlllIffl
4 t

(b)

R/Rc

IIIw
6 {

= 9.6

f
3
a.

= 10.1

102

10°

10'2

10"4

«1

Ik Mid n^lUiw

J - ' i o '

2CJ3-CJ!u
2

3O)3—CO!

% ^

">3

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:40 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.008



24 Mode interactions in Taylor—Couette flow 255

Fenstermacher et al. (1979) observed the development, at about
R/Rc =12, of a weak broadband contribution to the frequency spectrum
measured at a single point. As R/Rc further increased, so too did the
intensity of this broadband 'peak' and also the background noise. The
sharp modulation-frequency peak w « w3 disappeared at R/Rc = 19.3 and

Figure 7.9(e-h). For legend see opposite.
(e) R/Rc = 18.9
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256 Cubic three- and four-wave interactions

the wavy-vortex frequency peak itself vanished at R/Rc = 21.9. The
spectrum then appeared to be continuous and so suggestive of fully-
developed turbulence. However, after similar events in a different apparatus,
Walden & Donnelly (1979) witnessed the surprising re-emergence of a
sharp spectral peak for 28 < R/Rc < 36.

Koschmieder (1980), DiPrima (1981), DiPrima & Swinney (1981) and
L'vov, Predtechensky & Chernykh (1983) review these and other related
studies. A notable feature of flows at large R/Rc is the persistence of a
strong Taylor-vortex configuration along with the 'turbulence'. The

Figure 7.10. Gorman & Swinney's (1982) schematic representation of periodic
temporal modulations, in reference frame rotating with the waves. Each diagram
represents evolution in time of a single vortex outflow boundary (not a stack of vortices
at fixed time). Heavy lines denote greatest 'flattening'. Corresponding values of (n \k)
are noted.
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24 Mode interactions in Taylor-Couette flow 257

robustness of these axisymmetric vortices is remarkable. So, too, is the fact
that the observed number of cells, even in 'turbulent' flow, is determined
by the past history of the flow and not just the operational value of R. Such
a 'memory' is inconsistent with most notions of strong turbulence.

Much attention has recently focused on theoretical analyses of model
systems of low dimension which display' strange attractor' behaviour: see,
e.g. Swinney & Gollub (1981). One such model, for three-wave interactions,
was described in § 16.2. The first, and most celebrated, was that of Lorenz
(1963), whose three-variable analogue of Rayleigh-Benard convection
exhibited apparently chaotic behaviour. Ruelle & Takens (1971) later
proposed that a generic feature of low-dimensional strange-attractor
models is the emergence of two incommensurate frequencies followed by
'chaotic' motion with a broadband frequency spectrum. With this work
and the experiments of Fenstermacher et al. (1979) in mind, Sherman &
McLaughlin (1978) investigated a set of five amplitude equations with
quadratic coupling. These exhibited transition from sharply-peaked to
broadband frequency spectra as a growth-rate parameter was varied, but
their model is not strictly applicable to the experiments. It may be
conjectured that equations (24.1) would display qualitatively similar
properties for some ranges of the parameters. There are obvious similarities,
too, with the computations of Yuen & Lake (1982) described above, on
sideband modulations of gravity waves.

More elaborate computational models have been constructed by Yahata
(1981, 1983a), who employed a Galerkin representation of axisymmetric
and « = 4 modes comprising 56 separate functions. Essentially, his
configuration represents four-wave interaction among modes (a,0),
(2a, 0), (a, 4), (a , -4) and mean flow (0,0). The results exhibit the
appearance and then disappearance of two and three dominant frequencies
(plus sum and difference harmonics) and the onset of chaotic motion. These
may have a bearing on Gorman & Swinney's modulated wavy (n | A:)-vortices
with k = 0, but the computations do not allow for azimuthal modulations.
Finally, it should be remembered that these chaotic motions take place in
a low-dimensional system comprising just a few spatially-periodic modes
(C'est chaotique, mais ce n'est pas la turbulence!). In contrast, much of
the 'noise' which comes to dominate turbulent flow at large R seems to
be associated with small spatial scales: these are evident in Figure 7.5 even
at the fairly low values R/Rc — 16 and 23.5. Recent overviews of 'order
in chaos' are given in Campbell & Rose (1983) and Barenblatt, Iooss &
Joseph (1983).
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258 Cubic three- and four-wave interactions

25 Rayleigh-Benard convection
25.1 Introduction

Thermally-driven convective instabilities in horizontal fluid layers
heated uniformly from below have many similarities with Taylor-Couette
flow. But there are also important differences: while the latter are strongly
anisotropic, with well-defined axial, azimuthal and radial dependence,
convective flows are usually much less so. Convection cells in layers of
infinite lateral extent have no preferred horizontal orientation and hori-
zontal anisotropy is weak in layers of large aspect ratio where the
horizontal dimensions greatly exceed the depth.

Convective instabilities may lead to stable rolls, with well-defined
wavenumber k, which are very similar to steady axisymmetric Taylor
vortices, both mathematically and physically. Governing dimensionless
parameters are the Rayleigh number R and the Prandtl number P, defined
as

y1gATd3 vR =
VK K

(Note that, in this section, R no longer denotes Reynolds number.) Here,
v and K are kinematic viscosity and thermal diffusivity, d the layer depth,
g gravitational acceleration, y1 the coefficient of thermal expansion and
AT the temperature difference between bottom and top boundaries.

Instability first sets in at a particular value kc of | k | when the Rayleigh
number R (a dimensionless measure of the importance of buoyancy over
diffusive processes) exceeds a critical value Rc. The value Rc depends on
the boundary conditions but not on the Prandtl number P of the fluid. With
rigid horizontal boundaries, Rc = 1708 for layers of infinite lateral extent
and the orientation of k is immaterial. In practice, however, lateral
boundaries play an important part in selecting a preferred mode, especially
when the aspect ratio is not large. For instance, rectangular side walls
usually favour rolls aligned parallel to the shorter side and circular walls
may give rise to concentric circular cells. Nevertheless, a marked lack of
uniqueness remains and many stable convective flows may satisfy identical
boundary conditions.

Cellular convection was first systematically examined by Benard (1900,
1901) in a shallow liquid layer with free upper surface, but there are many
earlier reports of the phenomenon (see Normand, Pomeau & Velarde
1977). The hexagonal cells observed by Benard correspond to three
superposed roll patterns, with wavenumbers kj- (J = 1,2,3) of equal
magnitude but differing in orientation by 120°. Motion may be either
upwards or downwards at the centres of cells depending on small vertical
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25 Rayleigh-Benard convection 259

asymmetries, such as the temperature dependence of fluid viscosity, and
on surface tension effects. In shallow layers like Benard's, horizontal
temperature-induced gradients in surface tension are more powerful than
buoyancy in driving the flow (Pearson 1958). Here, attention is mainly
focused on buoyancy-driven convection in layers confined by rigid top
and bottom boundaries. Previous reviews of theory and experiment
include those of Palm (1975), Normand, Pomeau & Velarde (1977) and
Busse (1978, 1981a, b). A rigorous approach to theoretical aspects is given
by Joseph (1976).

25.2 Instabilities of rolls
A weakly nonlinear amplitude-expansion analysis by Schluter,

Lortz & Busse (1965) extended earlier work of Gor'kov (1957) and Malkus
& Veronis (1958). This elucidated the properties of steady finite-amplitude
convection in horizontally-infinite layers between rigid parallel boundaries
at small positive values of R — Rc. They found that the only stable flows
are longitudinal rolls with a range of | k | centred on kc that is narrower
than the bandwidth for linear instabilities. (In contrast, configurations with
vertical asymmetry are subcritically unstable (R < Rc) to finite-amplitude
disturbances and hexagonal cells are preferred near Rc: see below.)

Near Rc, the instability of rolls with wavenumbers outwith this range
is due to growth of modes with wavenumbers closer to kc. For instance,
when k = (k, 0) and k is too small, an instability bends the roll axis into
a sinusoid, thereby exciting (resonant) modes (k, ± I) with greater
wavenumber (k2 + l2)*: both conditions (23.1) are satisfied since the rolls
have zero frequency. This is the 'zig-zag instability' observed by Busse &
Whitehead (1971) with angles of about 40° and 140° between the new and
original rolls. In contrast, rolls with k too far above kc - but still within
the linearly-unstable bandwidth - are normally replaced, through 'cross-
roll instability', by rolls at right angles with wavenumber close to (0, ke).
Both types of instability are shown in Figure 7.11 taken from Busse &
Whitehead (1971). Also possible is a two-dimensional Eckhaus instability
(Stuart & DiPrima 1978) of sidebands (k ±8,0) with the same orientation
as the original rolls.

Newell & Whitehead (1969) analysed roll cells with wavenumber
k = (kc, 0) and slowly-varying amplitude eA(x, y, t) at R just above Rc.
With suitably-scaled variables, the amplitude equation may be written in
the form
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(a)

Figure 7.11. Temporal development of (a) 'cross-roll' instability and (b) 'zig-zag' instability of convection rolls (from Busse & Whitehead 1971).
In (a), R = 3000, depth = 5 mm, k = 2n/\.64; times between successive photographs are 10, 4, 3, 7, 24min respectively. In (b), R = 3600,
depth = 5 mm, k = 2TT/2.8; times between photographs are 9, 10, 10, 26, 72 min.
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(b)

Figure 7.11 (b). For legend see opposite.
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262 Cubic three- and four-wave interactions

The Eckhaus instability, and similar sideband instability of oblique modes
k = (&„ + #!, ±S2) with \3j/kc \<\, may be deduced from this equation
much as outlined in §21.1 for gravity waves. The form of the linear
operator on the left-hand side is a consequence of the linear growth-rate
relation,

near (Rc,ke). Setting k = (kc+K,L) where K, L are small, gives

and transformations K^~ i 6/6JST, L^—ik\ 8/3 Y yield the required form.
(In contrast, the nonlinear Schrodinger equation results from dispersion
relations with a leading-order L-term proportional to L2.)

At larger R, a 'skewed varicose instability' affects even those rolls with
| k | x kc. This is apparently associated with the growth of 'subharmonic'
modes (\k, ± I) and so may be an instance of three-wave resonance.

A further type of instability differs from the above-mentioned (quasi-)
steady flows in being time-periodic. This oscillatory instability of steady
rolls sets in close to Rc if the Prandtl number P is very small and if both
upper and lower boundaries are stress-free: but transition is delayed to
larger R for rigid boundaries. For P%\, the rolls are sinusoidally
distorted as in the 'zig-zag' instability, but they also oscillate in time, either
as travelling or standing waves.

For onset of oscillatory instability, there is qualitative agreement
between calculations (Clever & Busse 1974; Lipps 1976) and experiment
for P < 2 (Krishnamurti 1970; Busse & Whitehead 1974), but observed
and theoretical frequencies differ somewhat. The similarity with onset of
wavy vortices in Taylor-Couette flow is striking, though oscillatory
standing waves have not been observed in the latter flow. At larger P, onset
of oscillatory instability is delayed to higher values of R, and other types
of instability (notably cross rolls) may appear first. The observed period
decreases as R increases.

Krishnamurti (1973) describes the periodicity, for large P and R, as due
to the orbiting of local hot or cold spots (with associated high shear)
around the roll-cell, rather than distortions of the cell axis. Behaviour of
this sort was reproduced in computations of Moore & Weiss (1973), for
free boundaries and with the motion artificially restricted to be two-
dimensional: with P = 6.8, as for water, their oscillations set in at around
R/Rc = 50. Lipps (1976) undertook a three-dimensional direct numerical
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25 Rayleigh-Benard convection 263

simulation for air (P = 0.7) between rigid upper and lower boundaries
and stress-free 'sidewalls' which admitted spatially-periodic solutions.
Previously two-dimensional rolls became wavy and time-periodic at
R « 6500 (R/Rc ~ 3.8); more complex spatial and time dependence set
in for R ^ 9000. Though the sidewall conditions admit only discrete cell
sizes, these results are convincing.

The current theoretical situation is more fully set out by Busse (1981a, b).
His map of the predicted region of stable finite-amplitude two-dimensional
rolls in k-R-P parameter space is reproduced in Figure 7.12. This region
is bounded by onset of various kinds of instability and summarizes results

Figure 7.12. Region of stable two-dimensional convection rolls in k-R-P space. This
is bounded by various types of instability: oscillatory (OS), skewed varicose (SV),
cross-roll (CR), knot (KN) and zig-zag (ZZ) (Busse 1981a, b).

CR

2.0/ 3.0 4.0 5.0
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264 Cubic three- and four-wave interactions

of several earlier numerical studies by Busse and Clever. These studies all
employed Galerkin representations of the rolls, as truncated series of
orthogonal functions; the imposition of small disturbances of the required
form led to linear eigenvalue problems which determined their stability.
Though these results are probably quite accurate, the range of validity of
such series-truncation methods is difficult to establish, other than
empirically.

25.3 Rolls infinite containers
The influence of aspect ratio modifes the picture. With large aspect

ratios, the multi-roll pattern which first emerges from random background
disturbances is patchy, with each patch containing rolls of differing
orientation. Dislocations at patch boundaries, where different cell structures
meet, move with time, causing some patches to shrink and others to grow.
An experimental study of the merging, or 'pinching', of artificially created
roll cells with the same orientation but differing wavenumber was made
by Whitehead (1976). Gollub, McCarriar & Steinman (1982) have recently
examined evolving convection patterns in layers of large aspect ratio.

In contrast, the theoretical configurations analysed by Kelly & Pal (1976,
1978), Daniels (1977) and Hall & Walton (1977, 1979) are strictly
two-dimensional, consisting of parallel rolls with fixed orientation. These
accounts of secondary and imperfect bifurcations, already mentioned in
§24.3 above, apply only rather close to the critical Rayleigh number Rc

for onset of convection.
For convection in a box of small aspect ratio, only a limited number

of flow configurations are possible and rather sharp transitions from one
to the other may be observed. For this reason, recent experiments have
concentrated on high-precision measurements in small-aspect-ratio appar-
atus of small scale. For instance, Gollub & Benson (1980) used laser-
Doppler measurement to study convection in a rectangular box about 1 cm
deep and less than 3 cm long, which typically contained only two or three
roll cells. Ahlers & Behringer (1978) employed cryogenic techniques to
study heat transfer in (normal) liquid helium *He. This was contained in
small cylinders of about 1 or 2.5 cm diameter and various aspect ratios
(r = radius/depth) from 2 to 57.

Though the above-mentioned instabilities are suppressed or delayed by
the proximity of sidewalls, the evolution of theflow as R is gradually raised
remains complex. The influence of Prandtl number, aspect ratio and
sidewall configuration are all important. Gollub & Benson (1980) described
four quite separate 'routes to turbulent convection' (by which they mean
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25 Rayleigh-Benard convection 265

the development of temporally-periodic flows into flows with broadband
frequency spectrum).

In the first, a two-cell configuration at P = 5.0 became oscillatory, with
some frequency wx, at R/Re = 27.2 (Re being the value of R for onset of
convection in an infinite layer, not in their apparatus); a second apparently
unrelated frequency w2 appeared at R/Rc = 32; then, at about
R/Rc — 44.4, these frequencies 'phase-locked' at w1/w2 « 7/3; next,
substantial broadband noise developed at the slightly higher R/Re = 46.0
and this increased while (D1/(D2 decreased as R/Rc was made larger;
ultimately, the peaks at wx and w2 became submerged in the broadband
spectrum.

In the second, a similar two-cell configuration at the lower Prandtl
number P = 2.5 became oscillatory at R/Rc = 17; sharp spectral peaks at
(o1 and its harmonics were observed until, at /J/i?c = 21.5, a period-doubling
subharmonic component |w2 appeared; by R/Rc = 26.5, the l ^ component
had dominated the fundamental, and a second subharmonic bifurcation,
to Jwj, set in; the flow became non-periodic at about R/Rc = 28 and the
peaks of the frequency spectrum merged with the broadband contribution
at about R/Rc = 40.

Three-cell configurations behaved very differently. At P = 2.5, for
example, period flow set in at R/Rc « 30 and apparently independent
frequencies w2, w3 appeared at 39.5 and 41.5; broadband noise began to
grow at R/Ro — 43. At higher P, similar behaviour was found, but onset
of a>2 and w3 was delayed to larger R/Rc.

Finally, instances were found where a)2/ct)1 was rather small, such that
the velocity records showed slow periodic modulations in the amplitude
of (^-oscillations. In a three-cell case with P — 5.0, the w2 modulations
appeared at R/Rc = 95 and intermittent noise of irregular duration set in
at R/Rc — 102; at greater R/Rc, a featureless broadband spectrum was
obtained.

Ahlers & Behringer (1978) reported onset of aperiodic 'turbulent' flows
at R/Rc close to 1 for their largest aspect ratio of F = 57; the value of R/Rc

at onset increased as F was reduced, reaching about 11 when F = 2.08.
Rather similar results were found by Libchaber & Maurer (1978). The
additional effect of a magnetic field on convection in mercury was explored
by Libchaber, Fauve & Laroche (1983).

Gollub & Benson could discern 'no simple rules for predicting which
sequence will occur for a given aspect ratio, Prandtl number, and mean
flow' but each of their observed sequences is characterized by mode
interactions. The route through two incommensurate frequencies to
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266 Cubic three- and four-wave interactions

broadband spectrum parallels the behaviour of Taylor vortices. The
subharmonic bifurcations are reminiscent of quadratic three-wave reso-
nance, but lack of information about the spatial structure precludes firm
identification. For the same reason, emergence of three distinct frequencies
defies precise interpretation: no direct connection with the theory of Ruelle
& Takens (1971) has yet been established, though qualitative similarities
exist. As to intermittent noise, it is tempting to draw parallels with the onset
of intermittent, spatially-localized, patches of turbulence in parallel shear
flows (see §27.2) but here, again, data on the spatial structure is lacking.

A 14-mode Lorenz-attractor model investigated by Curry (1978) and a
system of several modes solved numerically by Yahata (1982, 1983b)
reproduce various of the observed features, including period-doubling
bifurcations and transition to 'chaotic' time-dependence. However, these
mode-truncated models should not be regarded as precise representations
of the flow. An interesting example of an experiment which apparently does
correspond exactly to a known strange-attractor system of ordinary
differential equations is that described by Roux, Simoyi & Swinney (1983):
this concerns the remarkable Belousov-Zhabotinskii reaction of chemical
kinetics.

In a numerical study of doubly-diffusive thermosolutal convection,
Huppert & Moore (1976) solved the governing partial differential equa-
tions by finite differences and found transitions from time-periodic to
chaotic motion. Further work by Da Costa, Knobloch & Weiss (1981) and
by Moore et al. (1983) has revealed further details of the solution structure,
for two-dimensional convection with fixed roll spacing and stress-free
horizontal boundaries. As the thermal Rayleigh number RT was increased,
with other flow parameters assigned constant values, finite-amplitude
oscillatory rolls gave way to chaotic motion through a sequence of
period-doubling bifurcations. As RT was further increased, a narrow
'window' was found which yielded oscillatory solutions with three times
the original dimensionless period T = 1; these then passed through more
period-doubling bifurcations till chaotic motion was re-established. Solu-
tions at still larger RT yielded 'an inverse cascade of period-halving
bifurcations leading to solutions with period 1, followed by another
transition back to chaos through a period-doubling sequence'. Figure
7.13 (a)-(ti) shows examples of phase-plane trajectories and frequency
power spectra of the total kinetic energy. Cases (a, b) and (g, h) are the 2T
and 3T periodic limit cycles while (c, d) and (e, / ) describe 'semi-periodic'
chaotic motion.

A recent review by Swinney (1983), of order and chaos in nonlinear
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25 Rayleigh-Benard convection 267

Figure 7.13. Phase-plane trajectories of kinetic energy E versus its time-derivative is
and corresponding frequency power spectra <j>((o) of E (on logarithmic scale), found
by Moore et al. (1983). (a, b) RT = 10450, period-doubling r = 2 limit cycle with basic
frequency w0 « 30 (r = 1); (c,<f) i?T = 10475, 'semi-periodic' trajectories with noisy
but sharply-peaked spectrum; (e,f) RT = 10500, chaotic solutions with peaks only
at <o0 and harmonics; (g,h) RT= 10510, T = 3 limit cycle.
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268 Cubic three- and four-wave interactions

systems, mentions many other related experiments and recent theoretical
developments which cannot be discussed here: the richness of structure
revealed in recent years is both remarkable and bewildering.

25.4 Three-roll interactions
An interesting case of three-mode interaction for convection in

infinite rotating layers was studied by (Clippers & Lortz (1969) and Busse
& Clever (1979) (also reported by Busse 1981a). The latter's perturbation
analysis relates to three sets of rolls, each with the same wavenumber
modulus |k | , but orientations differing by 120°. Accordingly,

k1 + k2 + k3 = 0

and, since the corresponding frequencies are zero, quadratic resonance
might be expected. In layers of fluid otherwise at rest, each set of rolls is
stable provided R/Rc is not too far above unity, and one possibility is
finite-amplitude hexagonal cells. However, the mode-interactions are not
here of quadratic order: though the governing evolution equations have
the form of (16.7), the quadratic coefficients are identically zero (by reason
of vertical symmetry) and the dominant interactions are cubic. Also, the
linear-growth rates — <Tj are equal and the cubic coupling coefficients ai}-
are found to be imaginary with iccjjc > 0.

By means of symmetry arguments and the transformations
Gi = I % / ° > 11 Aj I2> r= - o-j t,

the governing equations may be recast as

(25.1)
= G,(l-G,-aG1-/?Ga)J

where a and /? are positive constants. For convection in layers at rest, a = /?
and possible finite-amplitude equilibrium states are the individual-roll
configurations

G,= l, G} = 0 ( / * » = 1.2 or 3),

and the hexagons

Gi = ( l + 2 a ) " 1 (z= 1,2 and 3).

Differing positive values of a and /? arise when the layer is rotating about
a vertical axis: then, individual rolls remain possible equilibrium solutions,
but these are unstable whenever one of a, /? is less than unity. The
equilibrium combined-mode solution is

0 '= 1,2,3)
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25 Rayleigh-Benard convection 269

and this is stable to small perturbations of the Gt if and only if a+/? < 2.
Accordingly, in the two regions of parameter space

R1 = {a,fi: 0 < a < 1, a+/3 > 2}, R2 = {a,/1: 0<@< l , a + / ? > 2 } ,

no equilibrium solution is stable.
Surprisingly, this absence of stable equilibrium solutions does not signal

transition to time-periodic flow: such oscillatory solutions cannot exist, at
least near Rc, when P > 1. Instead, solutions of (25.1) rapidly approach
the plane G1 + G2 + Gs= 1 and then wander around seeking, but never
attaining, one or other of the single-roll fixed points Gi = 1 (i = 1, 2 or
3). The solutions are neither periodic nor' chaotic' but spend ever-increasing
times in the vicinity of each fixed point. This behaviour was first described
by May & Leonard (1975), who investigated (25.1) as a model of
three-species competition in biological population dynamics. A similar
'period lengthening' was noted in §16.2 for damped three-wave
interactions.

Both May & Leonard (1975) and Busse (1981a) reject continued period
lengthening as unphysical, since the minimum value of each G; for each
cycle is ever-decreasing. In practice, random low-level disturbances inevi-
tably affect the temporal and spatial evolution, as apparently found in
experiments by Busse & Heikes (1980): the 'period' is then an irregular,
stochastic function.

Segel (1962) examined the interaction of two sets of roll cells with
parallel wavenumbers ku k2 of differing magnitude. The governing
equations, with vertical symmetry, are then as (25.1), but with one mode,
say G3, equal to zero. When rolls with wavenumbers k1 + k2 are not too
strongly damped, one would expect these to be driven unstable by the cubic
interaction.

In earlier theoretical investigations of hexagonal convection, Palm
(1960), Segel & Stuart (1962) and Segel (1965) incorporated vertical
asymmetry due to weak temperature dependence of the fluid viscosity;

v{T) = v0 + Av cos [n(T- ro)/(7; - To)], Av/v0 < 1,

say, where Tu To are the temperatures at stress-free lower and upper
boundaries respectively. At leading order, perturbation quantities may be
written in the form

<p = A1cos {ay + 6J + A2 cos [£a( y - 3h) - 02] + A3 cos [\a,(y + 3h) - d3].

Here, the A] and 6} depend on t only and are the (real) amplitudes and
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270 Cubic three- and four-wave interactions

phases of three roles inclined at angles of 60° to one another. A
perturbation analysis, taken to cubic order in A}, leads to equations of the
form

(25.2)
A2 = <rA2 — aAy A3 cos (6l + d2

A3 = aA3 — aA1A2 cos(0! + 02

A\ &1 = A\ 62 = A\ d3 = aAx A2A3 sin (0 t+

with terms of higher than cubic order omitted. These are equivalent to the
three complex amplitude equations (16.7) with real coupling coefficients.
Segel & Stuart (1962) retain terms in the second time derivatives, A}, but
these are negligible when At are small. The constant coefficients a-, p and
r are just those obtained by neglecting the temperature variations of v, but
a is proportional to Av. In other words, vertical asymmetry is responsible
for quadratic coupling which is absent in the symmetric case.

Below Rc, a- < 0 and there are no non-trivial equilibrium states if a = 0,
since p and r are positive. But quadratic coupling admits a class of
subcritical hexagonal cells,

Ax = A2 = A3 = A, dl-\-d2 + 03 = n,
with

A = \(r + ipY1 {a ± [a2+4<r(r + 2p)% a > 0,

Figure 7.14. Schematic representation of finite equilibrium states corresponding to
hexagons and rolls. A denotes amplitude, R the Rayleigh number; linear instability
(a- > 0) occurs for R > Rc. Solid curves are stable, dashed curves unstable, to
amplitude perturbations.
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25 Rayleigh-Benard convection 271

Figure 7.15. Hexagonal convection with a free surface: (a) R < Re, (b) R > Rc,
from Koschmieder (1967).
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272 Cubic three- and four-wave interactions

whenever c > — \a\r + 2p)~l. These are indicated schematically in Figure
7.14: the lower branch, with negative sign, is unstable to perturbations of
A and the upper branch is stable. Corresponding solutions, with the sign
of A reversed, are obtained for 61 + 62 + 8s = 0 and also for a < 0.

Above Rc, equilibrium solutions include the hexagons just described and
also individual rolls. Other equilibrium solutions of' mixed' type also exist,
but these are always unstable (Segel 1965). The regions of stability of
hexagons and rolls are indicated qualitatively in Figure 7.14. The hexagons
shown with A > 0 have upwards motion at the cell centres when Av < 0
and downwards motion when Av > 0; those shown with A < 0 (or
equivalently, A > 0 with 01 + 62 + 6S = 0) have opposite directions of
motion and are unstable to phase perturbations. It must be remembered
that the truncated equations (25.2) give valid approximations for the
equilbrium solutions only when a, a (and so A) are sufficiently small to
permit the omission of higher-order terms.

Palm, Ellingsen & Gjevik (1967) derived corresponding results for more
realistic rigid-rigid and rigid-free boundary conditions at the bottom and
top. Busse (1967) included temperature variations of thermal diffusivity K
and the coefficient of expansion yx. Busse's general formulation allowed
for interactions among a large number of discrete modes and bears a close
resemblance to the discretized form of Zakharov's formulation (23.11).
Scanlon & Segel (1967) discussed surface-tension driven hexagonal con-
vection. In all cases, stable hexagons were found in some parameter range
near Rc. Such hexagons were realized experimentally by Koschmieder
(1967) and others, for both R < Rc and R > Rc: see Figure 7.15. Time-
dependent interaction of differing hexagonal configurations has been
modelled numerically, at rather large R, by Toomre, Gough & Spiegel
(1982). Mode interactions of hexagonal configuration in baroclinic insta-
bility were studied by Newell (1972) and, more generally, by Loesch &
Domaracki (1977).

26 Wave interactions in planar shear flows
26.1 Three dominant waves

Cubic nonlinearities influencing three-wave resonant interactions
in parallel shear flows were already mentioned in §16.3: for temporal
modulations, the governing equations have the form (16.7). Non-resonant
three-wave interactions among arbitrary wavenumbers kt give rise to
similar cubic terms, without significant quadratic coupling; but then
further 'sum and difference' wavenumber components may grow to
prominence unless these experience stronger linear damping than the three
waves chosen.
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26 Wave interactions in planar shear flows 273

Both resonant and non-resonant cases were considered by Usher &
Craik (1975), who suggested, on the basis of asymptotic estimates for large
R, that particularly large cubic interaction coefficients may usually influence
the growth of symmetric oblique-mode configurations like those of §17.2.
These coefficients may be largest when interaction is resonant, for all three
modes then have the same critical layer.

The parametric excitation of resonant oblique-wave modes by a two-
dimensional wave was briefly discussed in §14.3, where only quadratic
nonlinearities were retained. With the configuration of § 17.2, the resonance
condition selects a particular value of the spanwise wavenumber /? which
might be expected to lie close to that of the most strongly excited mode.
But cubic (and higher) nonlinearities also act to modify the frequencies and
to enhance or suppress oblique modes: accordingly, these may shift the
preferred value of /? away from that at resonance. Moreover, in the special
case of plane Poiseuille flow, the quadratic coupling coefficients are zero
by reason of symmetry, for interactions among lowest, even, Orr-
Sommerfeld eigenmodes: obviously, there is then less reason for the
'resonant' value of/? to be strongly excited.

Experiments of Saric & Thomas (1984) and Kachanov & Levchenko
(1984) on the Blasius boundary layer all found evidence of subharmonic
oblique-wave growth roughly as predicted by Craik (1971): but observed
spanwise wavenumbers did not always agree closely with those predicted
by the resonance criterion. Also, subharmonic oblique waves in plane
Poiseuille flow are reported by Ramazanov (1985).

In an attempt to clarify the situation, Herbert (1983b,c; 1984) recently
made several computational studies. All of these concern the temporal
eigenvalues of infinitesimal, symmetric, oblique-wave pairs in the presence
of a finite-amplitude two-dimensional wave. His results of (1983b) for
plane Poiseuille flow appear to be inaccurate, though they, like those of
(1984), show the expected parametric growth of subharmonic oblique
waves at subcritical Reynolds numbers and a preferred /? with maximum
growth rate. Results of (1983c) for the Blasius boundary layer (neglecting
non-parallelism) display some interesting features which may be interpreted
as follows.

The evolution equations of near-resonant, infinitesimal, oblique modes
Alf A2 in the presence of a finite two-dimensional wave with supposed
constant amplitude Ao have the form (cf. 16.7 and Craik 1975)

Ax = a-A1 +fiA0 A * + A | Ao \*AU'
, (26.1)

A 2 = A A A f + A \ A \ 2 A
with truncation after cubic terms. In a reference frame moving with the
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phase speed w/a of the two-dimensional wave, <r (and so A1 2) incorporates
the effect of detuning from resonance. Setting A1 oc expst, A2 oc exps*t
yields eigenvalues

When | Ao | is sufficiently small, these are complex conjugates.
As |̂ 401 is increased, the two roots become real whenever \/i\2 > 4^Aj :

modes Ax and A2 are then phase-locked to the fundamental wave Ao. At
still larger \A0\, the roots become complex conjugates again. The waves
are driven unstable if, for some | Ao |, Re s > 0. Behaviour of this sort was
found by Herbert (1983c), but it must be noted that his series truncation,
like (26.1), is invalid for large \A0\.

Herbert (1983c) also discovered that higher eigenstates with the same
x-y periodicity as the Orr-Sommerfeld eigenmodes Ax, A2 may grow to
prominence. These new modes originate from the least damped modes of
the 'Squire equation' (7.4). If these are represented by A3 and Ax, the
linearized system (26.1) must be replaced by the four-mode equations

A3 = a'A3 + A0(fi'A* + v'A*) + \A^ (A'A1 + K'A3),

A, = i/

Here, ar' is the least-damped eigenvalue |ia(cr — c) of the homogeneous
form of (17.3), in a reference frame moving with the phase speed cr of the
wave Ao, and several additional quadratic and cubic coupling coefficients
arise. With Alt Aa oc expst and A%, At oc exp.?*J, the eigenvalues s are
found as roots of a fourth-degree polynomial. Two of Herbert's examples
show that as \A0\ increases, one of the two new roots coalesces with the
smaller of two real roots associated with Ax and A2: the resultant
complex-conjugate pair may, or may not, become unstable (Re s > 0)
depending on the chosen a, fi and R. In another example, the A1 and A2

modes are sufficiently detuned from resonance that their roots remain
complex conjugates as \A0\ is increased and a real root originating as a
'Squire mode' is the first to become unstable. Saric & Thomas (1984) have
invoked' Squire modes' to explain some of their experimental observations.
But this seems unconvincing since true 'Squire modes' have no velocity
component normal to the wall: it must be remembered that modes can
exchange their physical identities when dispersion curves pass close
together (cf. §§2.2, 6.1).

The experiments of Kachanov & Levchenko (1984) merit further
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description. By a vibrating ribbon, they excited modes with two frequencies,
&>! and w2 = |«1+Aw, the latter at first having much smaller amplitudes
than a two-dimensional mode with frequency w1 and wavenumber (<zlf 0).
Because of the frequency mismatch Aw, symmetric wavenumber pairs
(lai» +/?) with frequency w2 are not exactly resonant with the mode (a1; 0).
However, there are modes Qaj+£,/?), (|ax—$, —ft) for appropriate S and
/? with respective frequencies ^wt + Aw and fwj—Aw and these form
asymmetric resonant triads with (al5 0). The results of Kachanov &
Levchenko show the emergence of a frequency peak at |wj —Aw and
amplitude modulations consistent with the growth of asymmetric resonant
modes (Figure 5.12). In contrast with these quantitative experiments, those
of Saric & Thomas (1984) are flow-visualization studies, using an ingenious
smoke-wire technique. These show a characteristic 'staggered peak-valley
structure' with A-shaped corrugations of streaklines when subharmonic
modes are prominent; otherwise, a' regular peak-valley structure' emerges,
as in the earlier experiments of Klebanoff, Tidstrom & Sargent (1962).
Examples of these distinctive patterns are reproduced in Figure 5.11.

For plane Poiseuille flow, recent experiments of Kozlov & Ramazanov
(1984) and Nishioka& Asai (1985) concern the growth of three-dimensional
modes in the presence of a finite-amplitude two-dimensional Tollmien-
Schlichting wave: The latter find agreement with some of Herbert's results.

26.2 Analysis of four-wave interactions
The experiments of Klebanoff et al. showed clear evidence of

spanwise-periodic longitudinal vortices maintained by the wave motion.
This led Benney & Lin (1960) and Benney (1961, 1964) to examine
the quadratic interaction of a two-dimensional wave with periodicity
Aexpi(a.x—<of) and an oblique-wave combination of the form
5cos/?y expi(ax—wO- As already described in §13.1, this gave rise to
longitudinal vortices like those observed: their assumption that two- and
three-dimensional modes had equal x-wavenumbers and frequencies is
unjustified, but this was later relaxed by Antar & Collins (1975). Benney
& Lin did not continue their analysis to calculate the effect of cubic
nonlinearities on the waves and gave no means of estimating the preferred
spanwise wavenumber ft.

Stuart (1962b) first set out the analytical formalism leading to equations
for the temporal evolution of the complex amplitudes A and B, namely

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:40 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.008



276 Cubic three- and four-wave interactions

Omitted terms are of higher than cubic order and hopefully negligible for
small but finite amplitudes. The coefficients a0, b0 arise from linear theory.
If (o is chosen to be the real frequency of the mode with wavenumber (a, 0),
a0 is real and denotes the linear growth rate act; b0 is then complex, with
real part equal to the growth rate of oblique modes (a, +/?) and imaginary
part given by the frequency difference between these and the two-
dimensional mode. The connection between (26.3) and the four-wave
interaction equations (24.1)' with | B+ \ = | fi_ | is clear. The wavenumber
configuration satisfies

2(a,0)-(a , /?)-(a,-/?) = 0

but the frequencies are somewhat detuned from resonance.
The main task lies in determining the interaction coefficients a}, bj

(J = 1,2,3) by the method of amplitude expansion. Second-order terms in
A2, AB and B2 have x-t periodicity exp2i(ax — a>t), the AB and some of
the B2 terms also being ^-dependent. Others in | A \2, AB* and | B |2

represent mean-flow modification and include Lin—Benney longitudinal
vortices with spanwise wavenumbers /? and 2/?. These quadratic terms in
turn interact with the A and B waves (and conjugates) to yield cubic
nonlinearities, some with the same periodicity as the original waves. Much
as for the single-wave equation of §20, compatibility conditions for the
existence of solutions at this order yield the temporal evolution equations
(26.3). The various interaction coefficients are found as integrals over the
flow domain involving eigenfunctions of the linear and second-order
problems. Clearly, ax is the Landau constant for the two-dimensional
mode, but numerical determination of the other coefficients was not
carried out until Itoh (1980b) did so for plane Poiseuille flow. As in the
single-wave case, treatment of the growth-rate terms poses a dilemma (cf.
§20.3): Itoh supposed that mean flow and harmonic terms are in
equilibrium.

Itoh chose to re-express (26.3) in the real form

(26.4a, b,c)
d = 2 ph B- 2 ph A, 6X = ph (ia3), 62 = ph (ib3).

Neither for plane Poiseuille nor Blasius flow can exact resonance (boi — 0)
occur with the chosen wavenumber configuration. When detuning is
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26 Wave interactions in planar shear flows 277

sufficiently large that | boi | is by far the largest term on the right of (26.4c),
6 « 2boi t+0(O). Then, the 0-terms may be eliminated from (26.4a, b) by
averaging over the period n/boi of' fast' oscillations. Equilibrium solutions
are then possible when

\A\*{ao + a1T\A\* + a2I\B\*} = \B\*{b0r + b1T\A\* + b2r\B\*} = 0.

Corresponding equilibrium states in boundary-layer flows were earlier
considered by Volodin & Zel'man (1977).

If | B | is zero, the solution | A |2 = — ao/a1T denotes subcritical equilibrium
(cf. §8.3). As R is reduced below the critical Reynolds number for the
chosen a (where a0 = 0 but b0 < 0), the equilibrium value of | A \ increases
from zero and infinitesimal three-dimensional modes B are driven unstable
when | A |2 exceeds — bOT/blr = A\. Itoh has calculated this threshold
amplitude AT for onset of three-dimensional growth over a range of
spanwise wavenumbers fi at R = 5500, 5000 and 4500 and a. = 1. The
lowest threshold is attained at ft « 0.3 in each case. Itoh also found the
threshold amplitudes | A | for temporary growth of infinitesimal modes \B\
by considering sin(0+#2) to equal unity in (26.4b): these are of course
smaller than AT and would replace the former time-average threshold if
boi were sufficiently small to permit phase-locking of A and B modes with

A more general phase-locked criterion for sustained growth of (infini-
tesimal) |J?|is

cos (6 + 62) = (bu \A\- + ba- ^ \b,\~\

Equations (26.4a, b, c) may also be employed to examine finite-amplitude
solutions with \B\ = OQA |), but the equations are certainly invalid when
amplitudes are large. An erroneous symmetry argument advanced by
Orszag & Patera (1983) purports to show that two- and three-dimensional
modes are necessarily locked in phase: this physically absurd result is due
to an incorrect Fourier representation of the disturbance (which fortunately
does not invalidate their numerical results).

When a = 1, the amplitude \A\ denotes the magnitude of velocity
fluctuations normal to the wall at the channel centre, with the free-stream
velocity taken as unity. The least value, \A\ = AT, which can support
sustained three-dimensional growth is very small: Itoh's values are about
0.0031, 0.0047 and 0.0063 for ac = 1 and R = 5500, 5000 and 4500
respectively. These fall well below the corresponding equilibrium values
\A\ = (—ao/a1T)i of the two-dimensional mode. But whether neglected
higher-order terms are in fact negligible, even at such small amplitudes,
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278 Cubic three- and four-wave interactions

remains an open question; this could, and should, be answered by
extending to three-dimensional modes the methods employed by Sen &
Venkateswarlu (1983).

Hall & Smith (1984) recently carried out an asymptotic analysis, valid
as R ->• oo, of the weakly-nonlinear interaction of two or more non-resonant
oblique modes, each having wavenumbers close to the lower branch of the
neutral curve for linear stability. Of course, the choice of such wavenumbers,
when other linearly-unstable modes are available, is artificial; but this is
imposed by the requirements of rational asymptotic development in
powers of the small parameter R"k For two modes, Hall & Smith's
equations for downstream spatial evolution take the form

dA/dX = qt(X-Xt) A + {a1 \ A |2 + a2 \ B |2) A

dB/dX=qi(X-X2)B+(b1\A\2 + b2\B\2)B,

where Xu X2 are real and qp a}, bj complex constants. Dependence of the
respective linear-growth terms on scaled distance X derives from non-
parallelism of their boundary-layer flow. Hall & Smith emphasize that
non-parallelism can play a crucial role in determining the ultimate state
achieved from given initial (i.e. upstream) conditions: solutions may reach
a stable finite amplitude or terminate in a singularity. The calculated
constants yield ratios | a2T/alr | and | blr/b2T | (where r denotes real part)
which are typically rather large: that is to say, the mutual interaction of
even non-resonant modes is usually stronger than their self-interaction, as
Usher & Craik (1975) earlier inferred in less rigorous fashion.

Benney & Gustavsson (1981) have examined the nonlinear interaction
of an oblique Orr-Sommerfeld mode (A) and an eigenmode (B) of the
vertical-vorticity equation (7.4). As described in Gustavsson & Hultgren's
(1980) linear analysis (see §7.1), these two modes are envisaged to be close
to direct (linear) resonance and so have nearly the same periodicity
exp[i(ax+/?y — Git)]. Weakly-nonlinear evolution of the amplitudes A and
B then satisfies equations like (26.3), with a2 = a3 = b2 = 0 but with an
additional term c0A added to the expression for dB/dt. The imaginary
parts of a0 and bB describe the slight detuning of either mode from the
frequency w. Solutions may be examined much as for (26.3). Benney &
Gustavsson also consider interaction of several such modes. The practical
importance, or otherwise, of vertical-vorticity modes in hydrodynamic
stability needs further clarification.
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26 Wave interactions in planar shear flows 279

26.3 Direct computational approach
Direct numerical solution of the three-dimensional, time-depen-

dent Navier-Stokes equations has been accomplished by Orszag & Kells
(1980), Orszag & Patera (1983) and Rozhdestvensky & Simakin (1984).
Their spectral method was briefly discussed in §22.3, along with the
two-dimensional solutions. A two-dimensional disturbance consists of the
fundamental Fourier wavenumber component (a, 0), higher harmonics
(noc, 0) and mean-flow distortion; three-dimensional Fourier components
are chosen as («a, m/?) with integer n, m and some fixed /?. Accordingly,
subharmonic disturbances like those discussed in §17 and §26.1 are ex-
cluded. Earlier, rougher, computations by Maseev (1968) examined similar
configurations.

A particular solution, for plane Poiseuille flow at R = 2935 with
a = 1.3231 and /? = 1, is described by Orszag & Kells. A two-dimensional
wave was imposed with quite large initial amplitude close to that for
subcritical equilibrium; three-dimensional modes were then found to grow
exponentially with time from very small amplitudes, in accord with
expectations from (26.4). Figure 7.16, from Orszag & Patera, shows a series
of similar calculations with a = /? = 1.25 and various subcritical Reynolds

Figure 7.16. Evolution of three-dimensional modes in presence of an initially
dominant two-dimensional wave, for plane Poiseuille flow at a = /? = 1.25 and
various Reynolds numbers R; from Orszag & Patera (1983).
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280 Cubic three- and four-wave interactions

numbers. The chosen two-dimensional wave (a, 0) is initially large compared
with the imposed three-dimensional modes (a, +/?) but the Reynolds
numbers are too low to permit self-supporting finite-amplitude two-
dimensional disturbances. Though the two-dimensional wave decays, the
small-amplitude oblique modes grow rapidly for all R #5 1000. Of course,
truly infinitesimal oblique modes must ultimately decay again to zero, since
the wave which forces them itself decays: but initially-small, finite, oblique
modes might attain sufficient amplitude to support self-sustaining disturb-
ances. Orszag & Kells give such examples, the one reproduced in Figure
7.17 showing apparently chaotic modulations at R = Rp = 1250,
a = p = 1. (See p. 221 for definitions of Rp, R^).

The same authors have carried out corresponding computations for
plane Couette flow and pipe Poiseuille flow, neither of which sustains linear
instability. They found that 'with moderate two-dimensional amplitudes,
the critical Reynolds numbers for substantial three-dimensional growth are
about 1000 in plane Poiseuille and Couette flows and several thousand
in pipe Poiseuille flow'. They go on to conjecture that turbulence, once
established, might be sustained at somewhat lower Reynolds numbers than
this.

Rozhdestvensky & Simakin (1984) carried out similar computations of

Figure 7.17. Temporal evolution of mixed two- and three-dimensional disturbances
at R = 1250, a = p = 1 in plane Poiseuille flow; from Orszag & Kells (1980).
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26 Wave interactions in planar shear flows 281

plane channel flows for much longer times. At Rp = 1250, a. = /? = 1, they
found that their disturbance eventually decayed to zero; but they found
self-sustaining disturbances for /?p ^ 2100 (/?q ^ 1313), the lowest values
of i?p and i?q corresponding to a. = 1.25 and /? = 2.0. The value of i?q is
in broad agreement with various experiments (e.g. Patel & Head 1969)
which found transition to turbulence in plane channels for i?q :> 1000.
More surprising is the quite good agreement between the observed
(turbulent) mean-velocity profiles and those computed. Is it too much to
hope that this approach may lead to a satisfactory representation of
turbulent shear flows, despite the restriction to just a few three-dimensional
Fourier modes? Other numerical studies specifically related to turbulence
modelling are reviewed by Deissler (1984).

Orszag & Kells emphasize the computational difficulties of correctly
describing these flows. 'One disturbing feature is the high resolution in
both space and time that seems to be necessary';' low horizontal resolution
can give spurious predictions of transition [which] must be considered
carefully in future work... '

The importance of three-dimensional disturbances in promoting sub-
critical instability and transition to turbulence in shear flows is clear: a
two-dimensional viewpoint is seldom tenable. Three-dimensionality may
manifest itself by the four-wave interactions (with higher-order modifi-
cations) here discussed or a subharmonic three-wave mechanism of §§ 17.2
and 26.1. Possible alternative routes are interaction with pre-existing
span wise variations of the mean flow or boundary walls (Komoda 1967;
Nayfeh 1981; Dhanak 1983) and spanwise-vortex instability of the mean
flow in the presence of two-dimensional waves (Craik 1982d; Herbert &
Morkovin 1980; cf. §13.2). The roles of weak free-stream turbulence and
surface roughness in promoting subcritical instability in boundary layers
are well known but difficult to model mathematically (cf. Reshotko 1976;
Tani 1969, 1981). Other, more exotic, mechanisms are doubtless possible.

Further theoretical and experimental work on three- and four-wave
interactions is currently in progress: accounts presented at the Second
IUTAM Symposium on Laminar-Turbulent Transition (Novosibirsk,
1984) have just been published (Kozlov 1985). A long-awaited monograph
by Morkovin (1986?) will also discuss experiments on instability and
transition to turbulence.
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Chapter eight

STRONG INTERACTIONS, LOCAL

INSTABILITIES AND TURBULENCE:

A POSTSCRIPT

27 Strong interactions, local instabilities and turbulence: a postscript
27.1 Short waves and long waves

Small-wavelength disturbances may ride on large-amplitude long
gravity waves. The orbital velocities of fluid particles due to the long waves
provide a variable surface current through which the short waves propagate.
When this current is comparable with the propagation velocity of the short
waves relative to the long ones, their interaction is no longer weak.
Nevertheless, the characteristics of the short waves may still be described,
at least in part, by Whitham's theory of slowly-varying wave-trains in an
inhomogeneous medium (see §11.3). Phillips (1981b) deduced from wave
action conservation that capillary waves are likely to be 'blocked' by steep
gravity waves. In much the same way, Gargett & Hughes (1972) earlier
showed that short gravity waves may be trapped by long internal waves,
so leading to caustic formation and local wave breaking. Untrapped modes
also undergo amplitude modulations by the straining of the dominant wave
field.

Computations of Longuet-Higgins (1978a, b) and McLean et al. (1981),
already described in §22.2, display generation of short waves by high-order
instability of steep gravity waves. In addition, finite-amplitude wave-trains
necessarily contain bound harmonics, which travel with the fundamental
Fourier component. Weakly-nonlinear interaction of neighbouring fre-
quency components may also give rise to phase-locking of modes.

For these reasons, and doubtless others besides, measurements of the
phase speeds of Fourier components of wave fields often reveal significant
departures from the linear dispersion relation, even after allowance is made
for wave-induced mean currents. Ramamonjiarisoa & Coantic (1976),
Ramamonjiarisoa & Giovanangeli (1978) and others have observed a
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27 Postscript: strong interactions, turbulence 283

strong tendency for short waves to move with the phase speed of dominant
longer waves (see also Yuen & Lake 1982).

Waves on a sharp density interface produce an oscillatory shear layer
since the (inviscid) tangential velocity fluctuations on either side of the
interface are of opposing sign. When the wave amplitude is large, this shear
layer may exhibit Kelvin-Helmholtz-like instability, with billows of much
smaller scale than the fundamental wavelength. Thorpe (1968b) observed
such local instability induced by standing internal waves. This instability
causes mixing of denser and lighter fluid and may contribute significantly,
though intermittently, to thermocline erosion in sea and lakes.

Airflow over large-amplitude water waves is known to separate from
near the crests, with consequent eddy formation. If a 'trapped' eddy forms
on the downwind side of the crest, there is enhanced energy transfer from
wind to wave. Jeffreys' (1925) old 'sheltering hypothesis', originally
advanced to explain the generation of infinitesimal waves, is then more
relevant. However, the mutual interaction of finite-amplitude water waves
and a turbulent wind remains the most intractable of problems.

27.2 Local transition in shear flows
Growing disturbances in unstable shear flows induce increasingly

strongdistortionsof the instantaneous velocityprofile. Local, instantaneous
profiles are likely to develop one or more inflection points and so may
support a secondary inviscid instability like that of §3.1. When the primary
disturbance contains appreciable oblique-wave components, the strongest
inflectional, enhanced-shear profiles arise at 'peak' locations where the
waves are largest. The subsequent instability may be regarded as a
short-wave 'wrinkling' of this shear layer. Klebanoff, Tidstrom & Sargent
(1962) detected this, for the flat-plate boundary layer, first as a rapid one-,
two- or three-spike fluctuation in the hot-wire signal recording downstream
velocity at 'peak' positions; further downstream, more spikes appeared
and the small-scale disturbance soon evolved into a localized, but growing,
turbulent spot (Figure 8.1).

Instantaneous velocity profiles were measured by Kovasznay, Komoda
& Vasudeva (1962) for boundary layers and by Nishioka, Asai & Iida
(1980) for plane Poiseuille flow. Their results are qualitatively very similar:
viewed in a reference frame travelling downstream with the wave speed,
their sequences of velocity profiles at peak locations display a region of
enhanced shear inclined at an angle to the wall (Figure 8.2). On either side
of peak positions, the maximum intensity of shear diminishes.

The enhanced shear layer was for long attributed mainly to distortion
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284 Postscript: strong interactions, turbulence

Figure 8.1. Oscillograms of Klebanoff et al. (1962), of downstream velocity fluctu-
ations, showing progress of' breakdown' at various downstream distances xx from the
vibrating ribbon (JJ^/v = 3.1 x 105 ft"1, frequency 145 c s"1). The lower trace is a
sinusoidal reference signal.
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27 Postscript: strong interactions, turbulence 285

of the primary velocity profile by the spanwise-periodic Lin-Benney
vortices with accompanying oblique waves (cf. Tani, 1969). However,
instantaneous profiles are most strongly influenced by the waves themselves,
oblique waves being particularly effective because of the contribution of
the velocity component parallel to wave crests. It is the latter contribution
which explains the inclination to the wall of the high-shear layer (cf. Craik
1980).

Nishioka, Asai & Iida (1980) investigated the local secondary instability
of the high-shear layer by introducing artificial small-scale disturbances
and measuring their spatial growth rates for a range of imposed frequencies
much higher than that of the primary waves. Growth rates much larger
than that of Tollmien-Schlichting waves were recorded.

The secondary instability is strongly three-dimensional, the 'wrinkle' of
the high-shear layer being rapidly swept back on either side of the peak
location. Klebanoff et al. interpreted this as the origin of the discrete
'hairpin-eddy' structure known to develop further downstream. A similar
secondary instability, occurring within a localized packet of primary
waves, was described by Gaster (1978): this appears as a smaller-scale
'packet within a packet' which later manifests a tertiary instability to even
smaller scales. Flow-visualization experiments of Wortmann (1977) give
yet another view of these complex events. It seems that the secondary
instability at first comprises a small number of swept-back short waves;
but these quickly roll up, like Kelvin-Helmholtz billows, into discrete
vortices with strongly three-dimensional structure.

Attempts to develop a theoretical description of the secondary transition
have had only limited success. Greenspan & Benney (1963) tried to model
it by considering the linear stability of a set of two-dimensional inviscid
parallel flows. With a profile chosen to represent that just prior to
breakdown, they found rapid instability with a preferred wavenumber
about five times that of the primary wave: an encouraging result from an
over-crude model.

Later, Landahl (1972) and Itoh (1981) attempted to extend Whitham's
kinematic-wave theory to dissipative waves in a slowly-varying shear flow.
Landahl's formulation proved controversial and was strongly criticized by
Stewartson (1975), Tani (1980,1981) and others on grounds of mathematical
inconsistency. Itoh's attempt to resolve these was only partly successful
and the matter was re-examined by Landahl (1982). Though a totally
convincing theory is still lacking, the underlying idea, that short secondary
waves grow not only through local instability but also by focusing of wave
energy at particular locations, remains an attractive one. Such focusing
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can certainly take place when capillary waves ride on longer gravity waves,
for instance; however, secondary transition in shear flows is not only
dissipative but strongly three-dimensional. The Landahl-Itoh theory
confronted, without entirely resolving, the difficulties of handling dissi-
pation, but three-dimensionality was ignored.

The strength, and distance from the wall, of this high-shear layer
depends both on downstream distance x' = x — cT t and spanwise distance
z. Furthermore, its orientation does not normally coincide with that of
streamlines (viewed relative to the wave). Accordingly, it is doubtful
whether a quasi-parallel approximation is justified, even though the
wavelength of the secondary instability is rather small. Craik (1980)
conjectured that secondary instability may be most likely when the primary
waves are large enough to nearly 'match' streamlines and high-shear layer
over a substantial part of the primary wavelength: only in this event do
individual fluid particles 'see' a slowly-varying inflectional profile. Perhaps
the best hope of success lies in refining the resolution of full-scale numerical
models, like those developed by Orszag and Herbert for the growth of the
primary waves: at present, these cannot cope with the small spatial scales
of secondary transition.

The secondary transition is an important precursor of the development
of turbulence: the local 'spikes' or 'wrinkles' of the high-shear layer in
turn lead to local turbulent spots which grow and eventually merge to yield
a fully-turbulent state. Conversely, an artificially-introduced turbulent
spot generates oblique Tollmien-Schlichting waves somewhat analogous
to ship waves (Wygnanski, Haritonidis & Kaplan 1979). For reports of
other current work, see Kozlov (1985): especially the view of Kachanov
et al. (1985) that high-frequency 'spikes' indicate rapid deterministic
growth of high harmonics of oblique modes, rather than local secondary
instability.

27.3 Some thoughts on transition and turbulence
Much attention and effort has recently centred on the investigation

of 'coherent structures' in fully-developed turbulent flows. These are
wave-like or billow-like features which resemble laminar-flow phenomena:
they may persist amid the 'incoherent' turbulence for some time and
similar structures continually appear and then decay. Hussain (1983) has
recently reviewed much of the experimental literature and current quasi-
theoretical speculations in this area.

It has been repeatedly conjectured that these large-scale coherent
motions within turbulent flows may originate from linear instability of the
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mean velocity profile. Though the mean velocity profile doubtless plays a
part in the development of such disturbances, it is inconceivable to the
present writer that strong, large-scale turbulent fluctuations should not
also do so: to restrict attention to linear instability of the mean-flow profile
seems naive.

Apparently even more naive is the customary 'engineering approxima-
tion' for prediction of transition to turbulence in boundary-layer flows.
According to conventional lore, disturbances introduced at an upstream
location (typically the leading edge of an aircraft wing or turbine blade),
trigger transition to turbulence when their amplitude is increased in
accordance with linear theory by a factor of e^: the value of N is usually,
but not always, taken to be 9. This criterion pays no heed to the size of
the initial disturbance nor to any nonlinear mechanism. Nevertheless, it
is a firmly-established, simple, empirical criterion which would not have
survived in use were it totally unreliable (see e.g. Mack 1977). It may be
defended on two main grounds: firstly, the level of background disturbances
is often much the same for a variety of flow conditions; and secondly, the
time (and distance) of linear amplification of Tollmien-Schlichting waves
is much longer than the interval between onset of significant nonlinearity
and breakdown to turbulence. The latter view is supported by the known
rapid growth of weakly nonlinear three-dimensional disturbances and the
short timescale of local secondary transition. Ironically, it is the very
strength and rapidity of nonlinear growth mechanisms which enables them
to be neglected in the empirical e^ criterion!

A recent growth area is the development of computer codes for
describing fully turbulent flows, usually offered as a service to industry.
Almost all involve empirical modelling of small-scale ' sub-grid' motions
and so lack secure theoretical support: claims to accuracy, in a competitive
commercial market, may owe more to salesmanship than scholarship.
Notable and promising exceptions are the works of Patera & Orszag (1981)
and Rozhdestvensky & Simakin (1984) which simulate turbulent channel
flows at Reynolds numbers up to 5000 (see also Deissler 1984).

Parametrization of turbulent mixing processes is incorporated into
increasingly-elaborate large-scale computer models of atmospheric and
ocean dynamics. Employment of empirical 'eddy diffusion coefficients' to
model turbulence is widespread but defensible only faute de mieux. Models
of global weather patterns, for example, contain many free parameters, and
these may be adjusted to reproduce known realistic features with
considerable success. But the use of such models as predictive tools, to
estimate, say, the effect of melting the polar icecap, is fraught with dangers.

Downloaded from University Publishing Online. This is copyrighted material
IP139.153.14.250 on Tue Jan 24 02:27:43 GMT 2012.

http://dx.doi.org/10.1017/CBO9780511569548.009
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They are very likely to have been constructed to be 'robust', producing
small responses to small perturbations; but the real environment is not
necessarily so resilient. Various mechanisms, which have been described
in previous chapters, produce large responses to small disturbances in
relatively simple dynamical systems; is it reasonable to expect complex
systems to behave otherwise?

Undoubtedly, the next decade will see a further increase in the use and
power of computational methods and a likely decline in the application
of analytical, particularly asymptotic, techniques. However, the very
success of a direct computational approach carries its own dangers. The
user of a 'package' for solving the Navier-Stokes equations need not be
so conversant with underlying mathematical structure, nor develop as
much physical insight, as one whose work is analytically based. At present,
the best numerical work has grown naturally from the (relatively) firm
ground of weakly-nonlinear theory, and its practitioners are themselves
well-versed in analytical methods. Emphasis on adequate spatial and
temporal resolution has enabled reproduction and extension of known
results of linear and weakly-nonlinear theory. Inadequate resolution may
yield spectacular failures or, worse, results which are plausible but
incorrect. The development of 'computational fluid dynamics' as a
separate, self-contained, discipline must be resisted.

That the past twenty years have witnessed important theoretical advances
should be evident. But they have also seen extravagant claims, engendered
by over-enthusiasm for an attractive idea, which mislead the ill-informed
and are detrimental to science. The irrational temptation to extrapolate
results of rational theories beyond their range of validity is ever-present:
so too is uncritical belief in over-crude empirical modelling. The 'key' to
understanding nonlinear wave motion and transition to turbulence is not
any one of solitons, bifurcation theory, catastrophe theory, strange
attractors, period-doubling cascades, et cetera. Fashionable, and fasci-
nating, theoretical bandwagons add momentum to scientific progress but
can also carry the unwary up blind alleys. The richness of fluid mechanics
is such that many new surprises and insights still await discovery.
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adjoint eigenfunctions, 67, 167, 191
amplitude-expansions, high-order, 72, 196,

212-26
averaged-Lagrangian formulation, 17,

90-1, 98-9, 126-7

Backlund transformation, 146-50
baroclinic waves, 159, 184-7, 272
Benard convection, 48, 65, 120, 207-8,

229-30, 252, 257-72
Benjamin-Feir instability, 74, 202-6,

217-18, 243-5
bifurcation of eigenvalues, 37, 46-50

of equilibrium solutions, 71, 155-6, 161,
230, 249-52, 264

of periodic orbits, 154-5, 208, 265-6,
288

Blasius boundary layer, 24, 46, 54-9, 61-2,
114-18, 162-9, 197-8, 223, 273-7

boundaries, effect on stability of, 33-4,
37-^1, 249-52, 264-8

boundary-layer flow, 63, 90, 115, 198, 227,
281

see also Blasius boundary layer
Boussinesq approximation, 6, 27, 100
Brunt-Vaisala frequency, 28, 33, 100
Burger's equation, 176, 212
'bursting' solutions, 130, 135-9, 144-5,

148, 204-6, 208-9, 285

capillary-gravity waves, 12-21, 82-4, 205,
212-14

resonance among, 123-9, 132-3, 177-9,
231-3

catastrophe theory, 252, 288
caustic formation, 61, 96-8, 282
centrifugal instability, see Rayleigh-Taylor

instability

chaotic motion, 154-5, 208, 244, 253-7,
264-8, 280

conservation of energy, 130-2
of wave action, 98-104, 130-2, 235
of wave crests, 95

Coriolis force, 83, 107
critical layer, nonlinear, 189, 226-8

in stratified flow, 35-45
viscous, 19, 23-7, 76-81, 161, 168, 189

Davey-Stewartson equations, 174, 179,
182, 199-200, 204-6, 210

diffusive effects, double-, 48, 266
solutal, 44
thermal, 44
viscous, 19-21, 24, 44, 81-2, 89, 104-5,

227
doubly-periodic flows, 253-7, 265-6
drift velocity, Eulerian, 81-7, 105-13

Lagrangian, 84, 105-12, 213
Stokes, 84, 105-12, 118-22

edge waves, 97
eigenvalue spectrum, inverse-scattering,

140-6
spatial, 58-9
temporal, 35, 48, 51-8, 67

Ekman boundary layer, 63
energy of waves, 17-21, 28, 31-3, 42,

95-102, 236
flux of, 31-3, 41-4

exchange of mode-identity, 15, 18, 46-50
experim;nts: Benard convection, 258-68

boun iary-layer flows, 24, 59, 61-2,
162-6,273-5,281,283-7

char nel flows, 25, 162-6, 197, 223-5,
2 3, 281, 283-5

ela.' ic structures, 157
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(continued)
flow down incline, 60
internal waves, 133-6, 156-9
plasma waves, 136
shear layers, jets and wakes, 166, 225-6
surface and interfacial waves, 79, 84,

132, 135, 156-7, 180-1, 201-4, 211,
213-14, 218-19, 236-7

Taylor-Couette flow, 230, 247-57
wind-generated waves, 26-7, 133

'explosive' resonance, 130, 135-9, 144-5,
148, 153, 160, 171

Fermi-Pasta-Ulam recurrence, 203, 244
frequency mismatch, 136, 160, 217, 234-6,

242, 276
spectra, 165, 236-7, 253-7, 265-7

generalized Lagrangian-mean formulation
105-13

Ginzburg-Landau equation, 207
gravity waves, continuous spectrum of,

231, 236-42, 244
damping of, see viscosity
in inhomogeneous media, 90-103
instability of, 202-8, 213-19, 236-7, 242
internal, 27-45, 68, 98, 124-5, 133-5,

179
mean flows driven by, 79-84, 90-4,

100-10
resonance among, 123-5, 133-5, 231-44
surface and interfacial, 10-19, 25-6, 68,

73, 90-100, 109-10, 123, 176-82,
180-2, 209-19, 231-44

group velocity, 13, 28, 42, 60, 74, 87, 96,
124, 144, 189

Helmholtz flow, stratified, 29, 34, 102-4,
182-3

Helmholtz instability, 12, 64
heuristic derivation of evolution equations,

50, 63, 128-9, 172-6
Howard's semicircle theorem, 113

inflexion-point criterion, 112
inhomogeneous media, waves in, 49-51,

95-8, 147, 198, 200
see also non-parallel flow

instability, baroclinic, 159, 184-7, 272
convective, 258-72
see also Benard
due to double diffusion, 48, 266
due to mode coupling, 15-19, 45-9
due to repeated reflections, 34
due to resonant over-reflection, 30, 44
due to 'stable' density, 17
due to three-wave resonance, 133-4

Eckhaus, 207, 245, 259, 262
local secondary, 282-6
longitudinal-vortex, 120-2
of gravity waves, 202-9, 215-19, 242
of Taylor vortices, 244-57
parametric, 131-3, 242, 273^1, 277
radiative, 33
reactive, 20
resistive, 20, 45, 48
sideband, 202-8, 237, 244-5, 262
subcritical, 25, 71, 193-6, 220-6, 251
Taylor-Gortler, 122
see also Benjamin-Feir, Benard,

Helmholtz, Kelvin-Helmholtz,
Rayleigh—Taylor, shear-flow

internal waves, see gravity waves,
inverse-scattering, method of, 132, 139-47,

150-1, 180, 184, 200, 205, 207, 209

Jacobi elliptic function solutions, 129-31,
138-9, 160, 186, 236

Kelvin 'cat's eyes', 111, 227
Kelvin-Helmholtz flow, 10-19, 130, 174,

177-80, 213, 215, 233
stratified, 33
three-layer, 14, 18, 130

Kelvin-Helmholtz instability, 10-19, 25,
31-3, 35, 39, 45, 102, 121, 172, 180,
283, 285

Klein-Gordon equation, 63, 131, 175
Korteweg-de Vries equation, 144, 176,

209-12

Landau constant, 70-2, 173, 188, 192-9,
230, 276

Landau (or Landau-Stuart) equation,
70-2, 161, 173, 228, 245

Langmuir circulations, 118-22
Laplace's equation, 8, 66, 234
localized disturbances, linear evolution of,

59-64
longitudinal vortices, wave-induced,

113-22, 199,275,285
Lorenz equations, 185, 257
'lump' solutions for three-wave resonance,

149-50, 152, 171

Manley-Rowe relations, 130, 136
mean flow, wave-induced, 69-70, 74-122,

177, 191
spatially-periodic, 113-22, 199

mode conversion in inhomogeneous media,
49-51

mode-coupling, linear, 15-19, 27, 45-51
model dispersion relations, 37—8, 45—9
momentum, of wave motion, 83, 93-4
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Navier-Stokes equations, 6, 66, 169
numerical solutions of, 220-6, 279-81,

288
negative-energy waves, 18-21, 32, 42, 130
non-parallel flow, 24, 57, 198, 278

Orr-Sommerfeld equation, 21-2, 44, 48,
51-9, 75-81, 114, 166, 191, 223

adjoint, 67, 167, 191
modified, 167

over-reflection, 30-4, 40, 102-4
resonant, 30, 32, 36, 44, 102, 142, 182

peak-valley structure, 114-18, 162-5, 275
phase-locking, 115, 171, 265, 274, 277,

282-3
plane Couette flow, 25, 46, 57, 196, 221,

280
plane Poiseuille flow, 7, 25, 46, 57-9, 61,

80-1, 87-90, 162, 165, 190-7, 219-26,
273-81

Poiseuille pipe flow, 25, 46, 196, 228, 280
Prandtl number, 7, 258
pseudoenergy, 108-13
pseudomomentum, 105-13, 119-20
pump-wave approximation, 131, 135, 141,

171

radiation stress, 93-8, 109
Rayleigh number, 258
Rayleigh's equation, 22, 48, 76-8
Rayleigh-Taylor instability, 12, 65, 120

see also Taylor-Couette flow
ray theory, 42, 61, 96, 100
reflection, coefficient of, 30, 54, 135, 229

over-, 30-3, 40-1, 44, 102-4, 142, 182
partial, 30, 40, 43, 135, 229

refraction, 96-8
resonance, explosive, 130, 135-9, 144-5,

148
five-wave, 215-19, 2 4 3 ^
four-wave, 72-4, 231-49, 275-81
high-order, 215-19
linear (direct), 15-18, 27, 45-51, 57, 64,

278
long-wave short-wave, 98, 124, 135,

150-1, 179-82, 282
multiple-triad, 135, 157-9, 187, 274
second- and sub-harmonic, 74, 128,

132-3, 161-70, 177, 179, 211, 273-5
sideband-, 74, 179, 202-3, 237, 244-5,

262
soliton-, 142-4, 210
three-wave, 72-4, 114, 123-71, 240,

268-75
third-harmonic, 177
within wave spectrum, 237-44

Reynolds number, 7, 22, 245
critical, 25, 71, 190, 220, 277
wave-, 82

Reynolds stress, 23, 41, 76, 83, 89, 189,
226-7

Richardson number, 35, 41
Rossby waves, 68, 228

saddle-point method, 61-4
salesmanship, 287
Schrodinger equation, nonlinear, 72, 144,

173-5, 180, 182, 192, 199-209, 215,
242, 262

second-harmonic flow, 69-70, 75, 113
shear-flow instability, 10-49, 75-81, 87-90,

111-13, 161-70, 188-99, 219-29,
272-81

shear-layer, hyperbolic tangent, 23, 189,
197, 228

stratified, 35-45, 197
sine-Gordon equation, 185
soliton interactions, 142-7, 210, 288

solutions, 146, 151, 184, 200-1, 204-7
splitting of wave packets, 61—3
Squire modes, 57, 274
Stokes drift, 84, 105-12, 118-22
strange attractor, 154-5, 185, 257, 266, 288
surface contamination, effect on water

waves, 27, 82
surface tension, 9, 27, 82, 259, 272

see also capillary-gravity waves
swimming of wavy sheet, 84-7 *

Taylor-Couette flow, 12, 65, 120, 207-8,
229-30, 244-58, 262

Taylor-Goldstein equation, 28, 35, 39, 44
Taylor number, 245
telegraph equation, 63, 131, 171
thermal convection, see Benard convection
thermocline, 121, 124, 283
threshold amplitude, 71, 193-7, 219-25,

277
Tollmien-Schlichting waves, 21-5, 27,

51-62, 75-81, 87-90, 161-70, 219-26,
272-81, 283-7

transmission coefficient, 30, 50, 229
trapped waves, 34, 40, 42, 97, 282
turbulence, 72, 256-7, 281, 286-8

transition to, 25, 72, 209, 257, 281-8

variational principle, 91, 99, 125-9, 169,
238-40

viscosity, damping due to, 19-20, 27, 82,
104, 151-76, 185-6, 202, 207, 236

destablizing role of, 19-21, 24, 45,
104-5

temperature-dependent, 269
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vortex-sheet profiles, 10-21, 29-34, 58, Weber's equation, 50
102-4, 130, 182-3 Whitham's method, 17, 51, 90-1, 98-9,

126-7, 177, 202, 285
wall layer, viscous, 23-7, 76-81 Wilton's ripples, 128, 177
wave action, 33, 98-102, 108-10, 130, 138, windrows, 121

235
breaking, 213, 217-19, 282 Zakharov equation, 208, 218, 237-44, 272
focusing,' 204^6, 208-9, 285
generation by wind, 25-7, 133, 237, 283
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