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Preface

The year 2016 witnessed a tremendous scientific discovery which is surely to become
perhaps one of the greatest discoveries of all time: a direct detection by Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) of the gravitational waves produced
in the event of coalescence of binary black holes. One more time, general relativity
triumphed after one hundred years of its profound foundations. Using general relativ-
ity the tiny fluctuations of test masses in the arms of the earth-based detectors were
unambiguously identified as caused by the propagating curvature (and metric) fluc-
tuations generated at the last few moments of in-spiraling black holes located more
than a billion of light years away from us. As we are putting the final touches on
this book, we feel lucky to have written it in this extremely exciting times in gravity
research. Even though, this is not a book about gravity waves per se, themathematical
technique introduced over here is essentially similar to the one used for calculating
gravitational waves in the weak-field region of their source. Besides that, we discuss
the conservation laws, symmetries of spacetime, etc., which allow us to give a unique
physical meaning to the integration parameters that appear in the exact or linearized
solutions of Einstein’s equations. Moreover, as we lay out the details below, we shall
also consider these issues in generic gravity theories that modify Einstein’s gravity at
large and small distances.

Conservation of mechanical energy and linear momentum in various experiments
had been discovered already by the great Galileo. Later on, it was realized that heat is
also a form of energy which is always conserved. Those discoveries turned out to be
themajor achievements in physics of the nineteenth century that led to the substantial
developments such as the formulation of the laws of thermodynamics, electrodynam-
ics, etc. Solid theoretical foundation for these empirical observations was given in the
series of remarkable papers by Emmy Noether published about the same time when
general relativity was formulated by Albert Einstein. It is very hard to overestimate
the importance of Noether’s contribution as Feza Gursey noted “before Noether’s the-
orem the principle of conservation of energy was shrouded in mystery, leading to the
obscure physical systems ofMach andOstwald. Noether’s simple and profoundmathem-
atical formulation did much to demystify physics.” Notably, the Noether’s fascinating
observation was that time translation of a physical system in the Minkowski space is
associated with conservation of energy. In fact, the Noether’s reasoning applies not
only to a time translation but to all other spacetime’s symmetries of the Minkowski
space as well as to the intrinsic symmetries of a given theory.

In contrast to the spacetime of special relativity, a generic spacetime in general
relativity or in any other metric theory of gravity is curved and, thus, lacks space-
time symmetries. For example, one of the simplest solutions of general relativity – the
Schwarzschild black hole – does not have a global timelike symmetry due to the exist-
ence of the horizon and, therefore, it is not amenable to a straightforward definition
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of energy. It triggers the question: what does it mean to have the conservation of
energy in time when there is no notion of a global time symmetry? Besides the prob-
lem of the global symmetries, there are others closely related to the local symmetries.
More specifically, in a curved spacetime, freely-falling observers feel themselves as if
they were in a flat spacetime due to the equivalence principle. It makes definitions of
energy, momentum and angularmomentum observer-dependent and, hence, ambigu-
ous. Therefore, lively discussions on how to formulate the conservation laws in curved
spacetime never stopped and have been sometimes highly heated. Particular problems
have been resolved differently within diverse approaches. Apart from a significant the-
oretical interest in finding a universal definition of conserved quantities, this problem
has ramifications on practical issues associated with the observations and measure-
ments. For these reasons, various definitions of conserved quantities have shown up
in the literature up to now.

Needless to say, over the past century, much has been published on the subject
under discussion, and the accumulated material clearly requires a systematization
and perhaps a collective treatment for further progress. So far, to the best of our
knowledge, no monograph has been devoted to the discussion of the problem of con-
struction of conservation laws in general relativity and in other metric theories even
though one can find various valuable reviews and chapters in books expounding on
this topic. With this monograph, we hope to fill this gap in this particular part of the
history and the developments of the most popular approaches to the construction
of conserved quantities. The book unifies various theoretical approaches, definitions
and computations of conserved quantities in Einstein’s theory of general relativity and
its modifications. Therefore, we expect the book to be useful, first of all, for advanced
researches working on these topics and in the adjacent fields of science. We have
undertaken serious efforts to make the presentation of the material logically consist-
ent and complete so that any diligent student of science engaged in gravity research
might use the book for a detailed self-study. Some parts of the book have a valu-
able methodological value and can be definitely implemented by college instructors
teaching an advanced level course on gravity.

Due to the non-linearity of the Einstein field equations, it is very difficult or even
impossible to find exact solutions in the most cases of physical interest. Therefore,
many theoretical studies and observational programs in general relativity are based
on various perturbative approaches to a background spacetime often taken as an
idealized highly-symmetric solution. Adequate formulation, derivation and analysis
of the spacetime perturbations as well as the corresponding conservation laws for
those perturbations, is a long-standing problem both in general relativity and other
metric theories such as the multi-dimensional modifications of Einstein’s theory of
gravity. This book addresses these topics in detail. Among the multitude of perturba-
tion methods used for solving the field equations, we single out the field-theoretical
approach based on the application of the variational calculus on spacetime mani-
folds. For definition and discussion of the conserved quantities, we intensively use the
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canonical Noether’s formalism alongwith the Belinfante procedure of symmetrization
of the energy-momentum tensor also known as the Belinfante correcting method. The
book presents the theoretical foundations of these ideas, discusses domain of their
applicability and notes on the prospects for their further development and general-
ization both in general relativity and in other metric theories, such as the ones with
arbitrary powers of curvature.

The field-theoretical treatment of perturbations in a metric theory of gravity is
the most universal one among the other existing formalisms in that it allows one to
reduce the geometric theory to the form of a standard field theory in a fixed spacetime
manifold. In this formulation the full metric tensor is decomposed to a background
value, whose geometric structure and time evolution are completely known, and a
perturbation part which is considered as the dynamical field variable. Instead of the
original intricate geometry, one then studies the properties of the field configuration
propagating in the given background spacetime. This helps one to benefit from all the
advantages of a field theory on the known (flat or curved) background: Lagrangian
and Hamiltonian methods, covariance, gauge invariance, etc. The background space-
time is also used as a reference manifold whereon physical laws are introduced and
conserved quantities are defined.

The Noether and Belinfante methods do not describe perturbations explicitly.
Rather, they present a bi-metric description of a dynamical system with respect to
a background solution which makes these methods very powerful and physically-
meaningful tools in constructing conserved quantities. The canonical Noethermethod
starts from the derivation of non-covariant Einstein pseudotensor and Freud super-
potential of dynamical perturbations in flat spacetime. Subsequent developments
include covariantization and generalization of the Noether formalism to curved back-
grounds with the construction of various superpotentials and conserved currents in
general relativity and in modified gravity theories. Belinfante pioneered a method
of symmetrization of the canonical quantities in field theories in the Minkowski
space. Later, the method was generalized to curved backgrounds where it furnishes
conserved quantities in general relativity and in modified theories.

The notion “perturbation” is frequently associated with an approximation or a
small quantity. This association remains also valid in the present book but we go
further and extend it formally to the case of finite perturbations. Indeed, the very
construction of the Noether and Belinfante methods allows us to treat perturbations
exactly with no approximation involved. Being a reformulation of a metric theory, the
field-theoretical formalism is exact aswell. If necessary, the field-theoretical equations
for the perturbations can be easily expanded into series and, thus, can be adjusted to
describe approximate solutions and weak field disturbances.

The book presents the formalism of the field-theoretical approach to the met-
ric perturbations and provides its developments both theoretically and in the light
of applications by making use of the Noether and Belinfante approaches. A signific-
ant part of the book is devoted to explaining these methods in application to general
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relativity. In fact, the reader interested merely in general relativity can limit oneself
to the first half of the book. In its second half, perturbation treatment of multi-
dimensional modified theories is presented. Here, the book also contains numerous
physical examples which elucidate the methods and practical settings used in the
theory.

Let us lay out the contents of the chapters. The first chapter is a fairly elementary
introduction written for students who want to understand the concept of conserved
quantities in classical and relativistic mechanics as well as in field theories in the
Minkowski space and for those researchers whowant to bemore informed on the clas-
sical development of this topic in general relativity. A particular attention is paid to
the mathematical formulation, proof and applications of the Noether theorems. Con-
served energy, linear and angular momenta are constructed in a wide class of field
theories with the Lagrangian depending on the field variables and their first deriv-
atives. Examples include a fundamental scalar field, ideal fluid and electrodynamics
in the Minkowski space. The chapter, then, continues with a more specialized sec-
tion focused on the history of constructing the conservation laws in general relativity.
Herein, Einstein’s arguments in support of the existence of the conserved quantities
in general relativity are discussed. The chapter provides a short outline of classical
pseudotensors and superpotentials in general relativity along with their systematiz-
ation which appears after the exemplary of applications of the Noether theorems.
The linearized approximation of general relativity is presented in the spirit of the
field-theoretical approach in the Minkowski space. As a result, construction of the
conserved quantities is provided and their connection with pseudotensors and super-
potentials is established. Physical aspects of the linearized general relativity are
illustrated with the examples of weak gravitational waves and isolated astronomical
systems.

The second chapter is devoted to the discussion of the field-theoretical formu-
lation of general relativity. We offer a historical description of earlier developments
commenced from Deser’s model of 1970. Then, we provide the Lagrangian-based
treatment of the Einstein’s theory considered as a theory of a tensor perturbation
propagating in an arbitrary fixed (either curved or flat) spacetime. The field-theoretical
equations are derived by making use of the least action principle. Differential conser-
vation laws for the symmetric (metric) energy-momentum tensor of the perturbations
are presented in the case of rather simple backgrounds taken either as the Minkowski
space or the Einstein spaces. Though such a field theory is equivalent to general
relativity in geometrical terms it allows us to apply the standard Noether formalism
to find out many useful special properties of general relativity which are not easily
seen in the standard geometrical formulation. One of these properties is the gauge
invariance which reveals that the metric perturbations can be treated as the gauge
(compensating) field. Based on this property and with the use of the localization tech-
nique, we provide a formulation of general relativity analogous to that of the standard
gauge field theories of the Yang–Mills type. As an example of further developments
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of the field-theoretical formalism, a self-consistent formulation of gravity theory with
massive gravitons is outlined.

In the third chapter, we develop the field-theoretical technique in general relativ-
ity to construct conserved quantities for isolated astronomical systems.We study these
quantities for such systems at spatial infinity by making use of the weak-field approx-
imation in the asymptotic regime. At the beginning of the chapter we introduce the
standard Arnowitt-Deser-Misner (ADM) formalism and its modification by Regge and
Teitelboim (RT) which have been developed mostly for the study of isolated gravitat-
ing systems. Then, we develop both the Lagrangian and Hamiltonian formulation of
the isolated systems in the framework of the field-theoretical approach. We choose
the Minkowski space as a background spacetime for the metric perturbations because
it coincides with the flat spacetime at infinity After that we construct the conserved
global integrals of motion and compare them with the standard ADM and RT integ-
rals. Discussion of the permissible fall-off behavior for the radial dependence of the
gravitational potentials that is weaker than the Newtonian one (∼ 1/r) for an isolated
gravitating system, is given.

In the fourth chapter, we use the field-theoretical formulation to demonstrate how
it can be applied to the description of exact solutions in general relativity with a field
configuration defined on a flat spacetime and on a curved background. In case of the
flat spacetime background, we pay particular attention to the treatment of the Schwar-
zschild solution and the closed Friedmann universe. Surprisingly, it turns out that it is
possible to reformulate the Schwarzschild solution in terms of the field configurations
defined on the flat background not only asymptotically at spatial infinity but also near
(both outside and inside) the event horizon as well as in the singularity limit. Traject-
ories of test particles, distribution of the energy density and that of the total energy of
the Schwarzschild black hole are discussed. The same technique applied to the closed
Friedmann universe reveals that it can be also considered in terms of a field configur-
ation residing in the Minkowski space. We describe the properties of its stereographic
projection onto the flat spacetime and find out that all global conserved quantities
vanish as expected by a topological argument. In the case of a curved background, we
examine different field configurations propagating on the anti-de Sitter (AdS) space-
time, derive a generalized Abbott-Deser superpotential, and calculate the total mass
of the Schwarzschild-AdS solution.

In the fifth chapter, we use the field-theoretical method to develop a theory
of cosmological perturbations on a Friedmann–Lemaitre–Robertson–Walker (FLRW)
background with three admissible spatial constant curvatures, k = (–1, 0, +1). As a
result we present the Lagrangian-based field theory of the cosmological perturba-
tions of the metric tensor coupled to the perturbations of the ideal fluid considered
as dark matter, and those of a massless scalar field considered as dark energy. All cos-
mological perturbations can be considered as generated by a primordial mechanism
existed at the epoch of the very early universe or as induced by bare perturbations
taken in the form of localized astronomical system formed after the recombination
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epoch. Gauge-invariant quantities for the perturbations and the equations governing
their evolution in the universe are derived. We examine a special case of the perturbed
field equations in a spatially-flat universe (k = 0) and demonstrate that the scalar
modes of the perturbations can be completely decoupled from their vector and tensor
modes. Mathematical technique developed in this chapter is useful to study grav-
itational waves created by distant astrophysical sources. Namely such gravitational
waves have been detected recently by the LIGO interferometers.

The sixth chapter is devoted to constructing the conserved currents and related
superpotentials in general relativity. Following Katz, Bičhák and Lynden-Bell (KBL)
we use the canonical Noether method applied to the KBL bi-metric Lagrangian to
construct the covariant conserved quantities on arbitrary curved backgrounds with
making use of arbitrary displacement vectors instead of the Killing ones. Then, gen-
eralization of the Belinfante symmetrization procedure from the Minkowski space
to curved backgrounds is worked out and applied to find out the Belinfante cor-
rections to the KBL conserved quantities. The currents and superpotentials in the
field-theoretical formulation are obtained after applying the Noether theorem. The
KBL, KBL-Belinfante and field-theoretical definitions of the conserved quantities are
compared. In particular, we show that the field-theoretical and Belinfante corrected
quantities become equivalent if the dynamical variables obey the field equations. Cri-
teria for choosing physically preferable currents and superpotentials are derived and
discussed. Then, we demonstrate how the KBL, KBL-Belinfante and field-theoretical
techniques work. We show that the FLRW solution can be viewed as a perturbation
with respect to the de Sitter space in the framework of the KBL formalism. It helps us
to define the energy of metric and matter perturbations in the Friedmann universe by
making use of the Killing vectors of the de Sitter space. We also study the, so-called,
integral constraints for the cosmological perturbations in a localized domain of space
in the framework of the KBL-Belinfante formalism. These constraints tightly connect
the magnitude of the matter perturbations inside the domain with the surface val-
ues of the metric perturbations at the boundary of the domain. These constraints are
important to study the subtle features in the pattern of the Sachs-Wolfe effect in cosmic
microwave background radiation.

The second half of the book is devoted to multi-dimensional modified metric
theories of gravity. Chapter 7 is a theoretical foundation for constructing the conser-
vation laws for perturbations in such theories. We consider arbitrary (not necessarily
metric-based) multi-dimensional field theory by incorporating to spacetime as an aux-
iliary external metric so that the original fields of the theory are considered as (finite)
perturbations with respect to the external metric. Such a presentation of the theory
allows a straightforward application of the Noether and Noether-Belinfante proced-
ures resulting in the related Noether identities which are covariant with respect to
the external metric. These generic identities are used to construct various conserved
currents and related superpotentials of the KBL, KBL-Belinfante and field-theoretical
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types for physical perturbations residing on the curved background in multi-
dimensional theories.

In chapter eight, the theoretical results of the previous chapter are used to dis-
cuss the conservation laws in the Einstein-Gauss-Bonnet (EGB) gravity which is one of
the most attractive modifications of general relativity as it appears in the low-energy
limit of string-generated theories and so admits a supergravity extension. The new
expressions for the EGB currents and superpotentials are derived in the most generic
form. We use them to calculate the mass of the well known solution for the multi-
dimensional Schwarzschild-AdS black hole and prove that it exactly coincides with
the mass obtained by other independent methods. We also use our expressions of the
EGB currents and superpotentials for giving physically meaningful interpretation to
non-trivial Kaluza-Klein black hole solutions in the EGB gravity.

Chapter 9 is devoted to the significant extension of the work by Abbott and Deser
(1982) where the Killing charges were introduced to study the perturbations on the
de Sitter and AdS backgrounds in general relativity. We generalize this approach to
higher-curvature theories with the generic Lagrangians depending on the Riemann
tensor. Both de Sitter and AdS spacetimes play a significant role in modern phys-
ics and, therefore, proper formulations of perturbations and construction of the
conserved charges on these backgrounds are vitally important. Gravity theories in
three-dimensional (2+1) spacetime are used as theoretical labs to test some ideas of
quantum gravity hence we provide detailed discussions of the charge construction
for the topologically massive gravity (the dynamical theory of gravity in this dimen-
sions) and apply the construction for studying the Banados-Teitelboim-Zanelli (BTZ)
black hole solution. To look at different aspects of the problem under discussion
we provide a second derivation of the Killing charges using the so called covariant
phase-space formulation of the theory and apply our results to the recently discovered
multi-dimensional rotating Kerr-AdS metric. A brief section at the end of the chapter
is included for discussing conformal properties of the conserved charges in a gravity
theory coupled non-minimally to scalar fields.

In the final chapter we focus on the problem of constructing the canonical
conserved quantities in covariant field theories possessing the intrinsic (gauge) sym-
metries of the field Lagrangian. The Noether procedure implemented in such theories
reveals that the conserved currents and superpotentials following from the gauge
invariance are both covariant and gauge-invariant while those associated with the
diffeomorphism invariance of the theory, do not possess such property. At present,
there is no generally accepted method for constructing currents and superpoten-
tials following from the diffeomorphism invariance which are simultaneously both
covariant and gauge invariant. This chapter illustrates the essence of this problem
with two particular examples: (1) a generally-covariant theory of the Yang–Mills field
minimally-coupled to scalar fields evolving on a given geometrical manifold and pos-
sessing the intrinsic (gauge) symmetry with the group SU(N); (2) a tetrad formulation
of general relativity possessing the intrinsic freedom of the tetrad rotations in tangent
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space at each point of spacetime manifold. We show that the origin of the aforemen-
tioned difficulties is rather subtle and has a profound geometric nature related to
the fact that in the field theories with intrinsic symmetries any local diffeomorph-
ism induces a family of transformations for the field variables with arbitrary gauge
parameters that brings about the ambiguity to the definition of the conserved cur-
rents. This differs drastically from the theories without the intrinsic symmetries where
any diffeomorphism induces a unique transformation of the field variables. We prove
that the modified Lie derivatives which are frequently used in attempt to remedy the
problem of the current’s ambiguity, do not resolve the problem. At last, we provide a
brief review of the main results obtained by the leading groups of researchers actively
working on the solution of this problem.

Appendix A is a brief, but hopefully a useful discussion of the main tensor opera-
tions. It also contains the introduction to shorthand (economic) index notations used
throughout the book to conduct calculations in the most rational and concise way.
The reader is encouraged to refer to this appendix when in doubt of some definitions,
such as the derivatives of tensors, operation of permutation of indices, variations of
geometric objects, etc. Appendix B deals with the retarded potentials relevant to the
discussion in Chapter 5 and contains the proof of their Lorentz invariance. Appendix
C summarizes the technical equations of the auxiliary fields used for derivation of the
conserved currents and superpotentials in the Einstein-Gauss-Bonnet theory.
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Constants
– c = 299792458 m ⋅ s–1 – the speed of light in vacuum;
– G = 6.67408 × 10–11m3 ⋅ s–2 ⋅ kg–1 – the Newtonian gravitational constant in 4-

dimensional (4D) spacetime;
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– * = *n = 2Kn–2Gn – Einstein’s gravitational constant in n-dimensional spacetime
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Coordinates
– {x, y, z} – the Cartesian spatial coordinates in 3-dimensional (3D) space;
– t – time coordinate in geometric units where c = 1;
– {t, x, y, z} – the Lorentzian spacetime coordinates;
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– {x1, x2, . . . , xn–1} = xi – curvilinear spatial or Cartesian coordinates in (n – 1)-

dimensional space; the Roman indices i, j, k, . . . take values 1, 2, . . . , n – 1;
– {x0, x1, x2, . . . , xn–1} = x! – curvilinear or Lorentzian coordinates in n-

dimensional spacetime; the Greek indices !, ", 𝛾, . . . run through values
0, 1, 2, . . . , n – 1;

– repeated (dummy) indices obey the Einstein summation rule, for example,
P!Q! ≡ P0Q0 + P1Q1 + P2Q2 + P3Q3 in 4D spacetime, and P!Q! ≡ P0Q0 + P1Q1 +. . . + Pn–1Qn–1 in n-dimensional spacetime, and so on.

Geometrical objects on a spacetime manifold
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n-dimensional spacetime.

– Q̄ – the “bar” aboveQ means a background value of the geometric quantityQ;
– ',- = diag{–1, +1, +1, +1} or ',- = diag{–1, +1, +1, . . . , +1} – the Minkowski metric

in the Lorentzian coordinates in 4-dimensional or n-dimensional spacetime;
– 𝛾,- – the Minkowski metric in curvilinear coordinates;
– g,- and ḡ,- – the dynamical and backgroundmetric, respectively, in an arbitrary

curved spacetime;
– g

!" ≡ √–gg!" – the “Gothic” metric that is the metric density of weight +1;
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– B1!" = A1!" – Ā1!" – the tensor that is a difference between the dynamical and

background Christoffel symbols;
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Fields on a spacetime manifold
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Algebra of the operators QA󵄨󵄨󵄨󵄨󵄨!" along with their other useful properties is given
in Appendix A.3;

– +!, t3,,b3,-, . . . – notations in calligraphic boldface (sometimes in Gothic) for
small letters, if they represent quantities of mathematic weight +1 (sometimes
+2 or more). For example, +! could be a density itself; t3, could be a density
expressed with the use of the tensor t3,: t3, = (–g)t3,, or b3,- = √–ḡb3,- where
b3,- is also a tensor, etc;

– L , R̄,U3
,, . . . – the capital calligraphic letters denote geometric quantities

of weight +1 (sometimes of other weights), analogous to previous item. For
example, L = √–𝛾L, R̄ = √–ḡR̄, U3

, = √–gU3
,, etc.;

– .! – arbitrary displacement vector in dynamical or fixed spacetimes;
– .!K – Killing vectors in the Minkowski space;
– ̄.! – Killing vectors in an arbitrary curved background spacetimes;
– +

K
! – conformal Killing vectors in the FLRW background spacetime.

Derivatives. For more detail see Appendix A.2
– 𝜕QA𝜕x! = 𝜕!QA = QA

,! – the partial derivative;
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– QA
;! – the covariant derivative of QA compatible with 𝛾,-;

– ∇̄!QA – the covariant derivative of QA compatible with ḡ,-;
– ∇!QA – the covariant derivative of QA compatible with g,-;
– £.QA – the Lie derivative of the quantity QA along the vector field .!:

– $QA

$q – the Lagrangian derivative of the quantity QA = QA(q; q,!; q,!").

Metric perturbations
– 𝜘,- = g,- – ḡ,-;
– l,- = g,- – ḡ,-;
– h

,- = g
,- – ḡ

,-, where g
,- = √–gg,-;

– h,- = h
,-/√–ḡ;

– the indices of tensor fields on the background manifold are lowered and raised
with the background metric ḡ!" and its inverse.

Remarks
– In Chapter 5 we use a number of additional specific notations which are given at

the end of Section 5.1;
– In Chapter 9 the notations are mostly consistent with the rest of the book. One

notable difference is that of the definition of a metric perturbation where we use
:h,- = g,- – ḡ,-;

– Other notations will be introduced and explained as they appear in text.





1 Conservation laws in theoretical physics: A brief
introduction

1.1 Conserved quantities in classical mechanics

A field theory is a mathematical formalism designed to describe fundamental forces
and elementary particles in terms of a self-consistent theoretical framework. Forces
can be described by fields that mediate interactions between separate objects. His-
torically, the basic definitions, conventions and concepts of field theories originated
from the Lagrangian formalism of classical mechanics. Therefore, before discussing
the field theory and its applications, it is reasonable to recall the Lagrangian formal-
ism of the classical mechanics for the reader’s convenience. This is the main goal of
the present section.

1.1.1 Some basic notions of non-relativistic classical mechanics

One of the primary concepts of classical mechanics is that of a reference frame. A ref-
erence frame is introduced to describe the relative motion in a system of N bodies.
The simplest reference frame consists of a spatial coordinate system attached to the
bodies of reference (observers) which are endowed with the ideal clocks to measure
the lapses of time. In classical mechanics, space and time are absolute entities being
independent of the motion of observers. Moreover, the space is Euclidean and discon-
nected from time. The Euclidean space is homogeneous and isotropic. Time is uniform
and has the same rate in all possible reference frames. Cartesian coordinates are
considered as the most convenient coordinate system covering the entire Euclidean
space although curvilinear coordinates, for example, spherical or polar coordinates,
are equally mathematically admissible and sometimes more apt, depending on the
symmetry of the problem.

Another important concept of classical mechanics is the notion of a point-like test
particle defined as an idealized material object whose size and internal structure are
inessential in the problemunder consideration, and can be neglected. The test particle
is characterized by its mass, m (usually considered to be constant, but it can depend
on time m = m(t) in some particular situations), and the position vector r = {x, y, z}
where {x, y, z} are the Cartesian coordinates of the particle which are assumed to be
differentiable functions of time t:

r = r(t). (1.1.1)

Here and everywhere else, vectors are denoted with boldface Roman letters. The
coordinates x = x(t), y = y(t), z = z(t) define three degrees of freedom of the test particle
and are mutually-independent scalar functions in the absence of constraints imposed
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2 1 Conservation laws in theoretical physics: A brief introduction

on the motion of the particle. Velocity and acceleration of the test particle are defined
as time derivatives of its position vector:

v ≡ dr
dt

≡ ̇r, a ≡ dv
dt

≡ d2r
dt2

≡ v̇ ≡ ̈r. (1.1.2)

In more general situations a mechanical system can consist of more than one particle
and have n degrees of freedom defined by n functions:

qi ≡ {q1(t), . . . , qn(t)} , (i = 1, . . . , n), (1.1.3)

which are called generalized coordinates. Masses of the particles may also depend on
time. The set of the generalized coordinates along with time forms the so-called con-
figuration space. We emphasize that the generalized coordinates are not necessarily
position vectors. Particularly, in the case of N non-interacting point-like particles, a
system without constraints possesses n = 3N degrees of freedom. The corresponding
generalized velocities of such a system are defined as

q̇i ≡ dqi(t)
dt

. (1.1.4)

Generalized accelerations are defined as the first time derivative of the generalized
velocities: q̈i(t) = dq̇i/dt.

The state of a mechanical system is fully defined if the generalized coordinates
and velocities are given at any moment of time.1 How can one determine the state or
possible states of a given system? To answer this question one has to solve the equa-
tions of motion of the particles that compose the mechanical system. The equations
of motion connect the particles’ accelerations with their coordinates and velocities
through the second Newton’s law which allow us to propagate the initial values of
the particle’s coordinates and velocities as time progresses. This is achieved by integ-
rating the system of equations of motion with respect to time under the given initial
conditions. Thus, the principal problem of mechanics which has to be solved is two-
fold: (1) to derive the appropriate equations of motion for the generalized coordinates
of the particles; (2) to integrate these equations to find the generalized coordinates as
explicit functions of time. Solution of this problem determines the real (actual) motion
of the system.

1.1.2 The least action principle

Soon after Newton had formulated his famous laws of mechanical motion it was dis-
covered that the most economical and elegant way to derive the equations of motion

1 In the present section we consider the Lagrangian description in mechanics only. Necessary ele-
ments of the Hamiltonian formulation for a non-relativistic particle is given in Section 3.1.3 where the
state of a system is defined by the generalized coordinates and momenta at any instant of time.
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is based on making use of a certain function, called the Lagrange function or simply
the Lagrangian, depending on generalized coordinates, velocities and time

L = L(qi, q̇i, t). (1.1.5)

The time dependence of the Lagrangian can be both implicit – through the coordinates
and velocities, and explicit, for example, through variability of masses forming the
mechanical system. If there is no explicit time-dependence of the Lagrangian, then,
one simply writes

L = L(qi, q̇i). (1.1.6)

If the system is not subject to the influence of external forces it is called a closed system
[283]. The system defined by the Lagrangian (1.1.5) is called an open system. It was
established that the behavior of each mechanical system in the time interval from t0
to t1 is determined by a functional

S[qi; t0, t1] = ∫t1

t0
dt L(qi, q̇i, t) (1.1.7)

which is called the action functional, or simply – the action.
It is postulated that the mechanical system moves in accordance with the prin-

ciple of a stationary action that tells us that in the case of an actual physical motion
of the system between two fixed moments of time, t0 and t1, the action acquires an
extremal value. Traditionally, “the extremal value” is understood as the least value
(or theminimum) of the action, and, thus, the stationary action principle is more com-
monly known as the least action principle. Frequently, this principle is also called the
variational principle because in order to calculate the lowest value of the action with
given initial and final points, one has to resort to the calculus of variations.

Let the dynamical variables qi(t) describe an actual motion yet to be determined.
Then, an infinitesimally disturbed motion, q󸀠i (t), can be expressed with the help of an
instantaneous variation, $qi(t), as follows: q󸀠i (t) = qi(t)+$qi(t). The first order variation
of the Lagrangian induced by the variation of the generalized coordinates, is

$L ≡ L(q󸀠i , q̇
󸀠
i , t) – L(qi, q̇i, t) =

𝜕L𝜕qi $qi + 𝜕L𝜕q̇i $q̇i. (1.1.8)

Employing the standard techniques of the variational calculus with respect to dynam-
ical variables [283] one obtains for the first order variation of the action:

$S ≡ S[q󸀠i ; t0, t1] – S[qi; t0, t1] = ( 𝜕L𝜕q̇i $qi)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨t1t0 + ∫t1

t0
dt ( 𝜕L𝜕qi – d

dt
𝜕L𝜕q̇i) $qi (1.1.9)

where here and everywhere else we use the Einstein summation rule with respect to
the repeated indices, AiBi ≡ ∑n

i=1 A
iBi.
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Let us assume that the initial and final end points of the system’s trajectory are
fixed and are not subject to the variation. It means that the end-point values of the
infinitesimal variation $qi(t) vanish: $qi(t0) = $qi(t1) = 0. Generically, if there are no
constraints, these are the only limitations on the variations $qi(t) which are otherwise
arbitrary functions of time. These boundary conditions along with the principle of
least action, $S = 0, demand the integrand of the integral in (1.1.9) to vanish, yielding𝜕L𝜕qi – d

dt
𝜕L𝜕q̇i = 0. (1.1.10)

These are the equations of motion which are often called the Euler-Lagrange equa-
tions; they present a system of n ordinary differential equations of the second order.
Thus, solutions of these equations must contain 2n constants that are fixed by the
initial conditions, qi(t0) and q̇i(t0), which fully determine the time evolution of the
system.

It is worth mentioning that the equations of motion are invariant under a non-
degenerate transformation of the generalized coordinates and time:

qi = fi(q
󸀠
i , t
󸀠), t = f (t󸀠), (1.1.11)

which brings about the Lagrangian function to a new form

L󸀠(q󸀠i , q̇
󸀠
i , t
󸀠) ≡ L (fi(q󸀠i , t󸀠), ̇fi(q󸀠i , t󸀠), f (t󸀠)) , (1.1.12)

where q̇󸀠i ≡ dq󸀠i /dt
󸀠 is the generalized velocity in the new variables. Now, applying

the least action principle in the transformed coordinates, it is straightforward to show
that the Euler-Lagrange equations derived from the Lagrangian (1.1.12), are𝜕L󸀠𝜕q󸀠i – d

dt󸀠
𝜕L󸀠𝜕q̇󸀠i = 0. (1.1.13)

These equations have exactly the same form as (1.1.10) and are equivalent to (1.1.10)
that can be easily shown with the use of (1.1.11).

Onemore important fact is that the Euler-Lagrange equations (1.1.10) are the same
for two Lagrangians that differ by a function which is a total derivative of time,

L̃(qi, q̇i, t) = L(qi, q̇i, t) +
dK(qi, t)

dt
. (1.1.14)

Transformation (1.1.14) is called a gauge transformation of the Lagrangian. It is
straightforward to check by substituting L̃ to equations (1.1.10) that all terms depend-
ing on K(qi, t) cancel out leaving the equations (1.1.10) invariant. This result is also
easy to understand from the integral formulation of the action (1.1.7). Indeed, integ-
ration of the total time derivative under the sign of the action integral (1.1.7) yields a
constant term depending merely on the boundary values of the generalized coordin-
ates but such a term does not, of course, affect the derivation of the equations of
motion.
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1.1.3 Noether’s theorem in classical mechanics

Equalities of the type I(qi, q̇i, t) = const which follow from integrating the system of
the Euler-Lagrange equations (1.1.10), are called the first integrals of motion. Among
them, there exist integrals connected to the property of the action functional to remain
invariant with respect to the group of transformations of the variables appearing as
arguments of the Lagrangian, namely the generalized coordinates qi and time t. This
property forms the basis of the importantNoether’s theoremwhich associates the para-
meters of the group of the invariance of the Lagrangian to conservation laws and
conserved quantities. Perhaps, the simplest formulation of the Noether theorem is as
follows:
– If the action functional is invariant with respect to a continuous group of transform-

ations depending on k parameters, then, there exist k identities which, after using
the Euler-Lagrange equations, yield k integrals of motion.

Let us discuss in more detail the Noether theorem in the case of a mechanical system
described by the action (1.1.7). It has been shown that the Euler-Lagrange equations
(1.1.13) are form-invariant under the most general case of transformations (1.1.11)
though they change the form of the Lagrangian (L → L󸀠) in accordance with (1.1.12)
which means that the form of the action (1.1.7) changes correspondingly. It is not the
case of theNoether theoremwhich is applicable only to a special case of the transform-
ations that do not change the action functional. We prove the Noether theorem below.

For the sake of simplicity, let us consider a continuous group of transforma-
tions T̂(%) whose action on the generalized coordinates and time depends on a single
argument %:

{qi(t); t} → T̂(%){qi(t); t} ≡ {q󸀠i (t󸀠); t󸀠} = { fi(qi(t), t; %); f (t; %)}. (1.1.15)

The group product is defined by the rule T̂(%2)T̂(%1) = T̂ (%3(%2, %1)) which may be non-
commutative in themost general case (the case of a non-abelian group). The existence
of the unit element of the group, T̂(0) = 1, suggests that functions fi(qi(t), t; %) and
f (t; %) are such that

qi(t) = fi(qi, t; 0). t = f (t; 0). (1.1.16)

Then, the linearized (with respect to a sufficiently small value of %≪ 1) independent
transformations for the generalized coordinates and time take the form:

qi(t) → q󸀠i (t
󸀠) = qi(t) + %$󸀠qi(t, %), $󸀠qi =

𝜕fi𝜕% (1.1.17)

t → t󸀠 = t + %. (t, %), . = 𝜕f𝜕% , (1.1.18)
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where

𝜕fi𝜕% ≡ 𝜕fi(t)𝜕% 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨%=0 , 𝜕f𝜕% ≡ 𝜕f (t)𝜕% 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨%=0 . (1.1.19)

The quantities $󸀠qi and . are called the infinitesimal generators of the group.
In what follows the instantaneous variation $qi of the generalized coordinate,

%$qi = q󸀠i (t) – qi(t), (1.1.20)

plays an important role. The instantaneous variation can be singled out from the
group generator $󸀠qi after expanding q󸀠i (t

󸀠) in the Taylor series around time t and
making use of (1.1.18):

$qi = $󸀠qi – .
dqi
dt

. (1.1.21)

Before proving the Noether theorem we need to discuss some mathematical tech-
niques of variational calculus in case of an arbitrary function F[qi(t), q̇i(t), t]. The
action of the group (1.1.15) transforms the function F to F󸀠:

F[qi(t), q̇i(t), t] → F󸀠[q󸀠i (t
󸀠), q̇󸀠i (t

󸀠), t󸀠] = T̂(%)F[qi(t), q̇i(t), t], (1.1.22)

where the dot above function of time indicates a time derivative, for example, q̇i(t) ≡
dqi/dt and q̇󸀠i (t

󸀠) ≡ dq󸀠i /dt
󸀠. By definition

T̂(%)F = F[T̂(%)qi(t), T̂(%)q̇i(t), T̂(%)t] = F[q󸀠i (t
󸀠), q̇󸀠i (t

󸀠), t󸀠], (1.1.23)

so that

F󸀠[q󸀠i (t
󸀠), q̇󸀠i (t

󸀠), t󸀠] = F[q󸀠i (t
󸀠), q̇󸀠i (t

󸀠), t󸀠]. (1.1.24)

In other words, the group operator T̂(%) changes merely the arguments of the function
F while its functional form does not change. Total variation of this function induced
by the continuous group of transformation, is defined as

%$󸀠F = F[q󸀠i (t
󸀠), q̇󸀠i (t

󸀠), t󸀠] – F[qi(t), q̇i(t), t]. (1.1.25)

The instantaneous variation of F is the difference between the transformed value
of the function F[q󸀠i (t

󸀠), q̇󸀠i (t
󸀠), t󸀠] taken at the instant of time t, and the value of the

function F[qi(t), q̇i(t), t] taken at the same instant of time,

%$F ≡ F[q󸀠i (t), q̇
󸀠
i (t), t] – F[qi(t), q̇i(t), t]. (1.1.26)
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Expanding F[q󸀠i (t
󸀠), q̇󸀠i (t

󸀠), t󸀠] on the right side of (1.1.25) in Taylor series with respect to
the variation of time and making use of definition (1.1.26) we get

$F = $󸀠F – . dFdt , (1.1.27)

where the last term is defined by the total derivative of F with respect to time:

dF
dt

= 𝜕F𝜕qi dqidt
+ 𝜕F𝜕q̇i dq̇idt

+ 𝜕F𝜕t . (1.1.28)

It is worthwhile to make a few remarks with regard to the meaning of the variations of
the function F:
(i) the relation (1.1.27) generalizes (1.1.21),
(ii) by definition (1.1.20) the variation (1.1.26) can be expanded in a Taylor series

with respect to the variations of its arguments as

$F = 𝜕F𝜕qi $qi + 𝜕F𝜕q̇i $q̇i, (1.1.29)

where the higher order terms have been truncated,
(iii) variation $F commutes with the total time derivative of F,

$(dF
dt

) = d
dt
($F), (1.1.30)

which makes it more advantageous compared with $󸀠F in calculations where
both operations of taking the time derivative and variation are present. Formally
it follows from the definition (1.1.26) where the unique time argument is con-
sidered. At the same time, the variation $󸀠F defined in (1.1.25) does not commute
with total time derivative of F.

The technique presented above is used for proving the Noether theorem which
demands that the action functional (1.1.7) is invariant with respect to the continuous
group of transformations (1.1.15), (1.1.16) and the mechanical system obeys the equa-
tions of motion (1.1.10). We consider the total variation of the action (1.1.7) induced by
the continuous group of transformation (1.1.15):

%$󸀠S = ∫
T󸀠
dt󸀠L[q󸀠i (t

󸀠), q̇󸀠i (t
󸀠), t󸀠] – ∫

T
dt L[qi(t), q̇i(t), t], (1.1.31)

where the integration is performed over a fixed time interval T = [t0, t1] and a
corresponding interval of time T󸀠 = [t󸀠0, t

󸀠
1] that is connected with T by the time

transformation.
We apply the variational technique (1.1.20–1.1.30) to the Lagrangian L along with

the transformations (1.1.17) and (1.1.18). We restrict ourselves with the linearized, in
regard to the group argument %, approximation. Then, the variation of the action
(1.1.31) is reduced to
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%$󸀠S = ∫
T
dt [dt󸀠

dt
(L + %$󸀠L)] – ∫

T
dt L(t)

= ∫
T
dt [(1 + %d.dt )(L + %$L + %dLdt .) – L(t)]

= % ⋅∫
T
dt [$L + d

dt
(.L)] , (1.1.32)

where $󸀠L and $L are defined in (1.1.25) and (1.1.26), respectively. Using (1.1.29) and
applying the Leibniz rule to reshuffle terms, we can rewrite (1.1.32) as follows,

$󸀠S = ∫
T
dt [( 𝜕L𝜕qi – d

dt
𝜕L𝜕q̇i) $qi + d

dt
(.L + 𝜕L𝜕q̇i $qi)] , (1.1.33)

where the terms enclosed in the first brackets in the integrand constitute the left-hand
side of the Euler-Lagrange equations (1.1.10). These terms appeared naturally in
(1.1.33) but we don’t demand at this point of the proof of the Noether theorem that the
Euler-Lagrange equations are satisfied. The Noether theorem requires the invariance
of the action functional under the group of transformation (1.1.15), that is the variation
$󸀠Smust vanish: $󸀠S = 0. Then, the integrand in (1.1.33) must vanish as well, bringing
the identity,

( 𝜕L𝜕qi – d
dt

𝜕L𝜕q̇i) $qi ≡ – d
dt

(.L + 𝜕L𝜕q̇i $qi) . (1.1.34)

The last step is to use in the right side of (1.1.34) equation (1.1.21) expressing the
variation $qi in terms of $󸀠qi, and to make substitutions $󸀠qi = 𝜕fi/𝜕% and . = 𝜕f /𝜕% in
accordance with definitions (1.1.17) and (1.1.18) for $󸀠qi and . , respectively. It yields,

( 𝜕L𝜕qi – d
dt

𝜕L𝜕q̇i) $qi ≡ d
dt

[( 𝜕L𝜕q̇i q̇i – L) 𝜕f𝜕% – 𝜕L𝜕q̇i 𝜕fi𝜕% ] . (1.1.35)

The identity (1.1.35) is called the Noether identity. It is valid for arbitrary variation of
the independent variables irrespectively whether the generalized coordinates qi obey
the equations of motion (1.1.10) or not. In case of an actual motion of the mechanical
system, the equations of motion are satisfied making the left side of the Noether’s
identity (1.1.35) zero. It allows us to define the integrals of motion:

I(qi, q̇i, t) = ( 𝜕L𝜕q̇i q̇i – L) 𝜕f𝜕% – 𝜕L𝜕q̇i 𝜕fi𝜕% = const, (1.1.36)

which are conserved quantities in the sense that dI(qi, q̇i, t)/dt = 0 where qi = qi(t)
satisfy the Euler-Lagrange equations of motion.

This concludes the proof of the Noether theorem.
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Integrals of motion and the intrinsic symmetries of the Lagrangian
The existence of the conserved quantities are intimately related to the transformation
symmetries of the Lagrangian describing the mechanical system. In order to reveal
the connection between the Lagrangian symmetries and the integrals of motion let us
rewrite the variation of the action (1.1.33) in the form:

$󸀠S = ∫
T
dt {( 𝜕L𝜕qi – d

dt
𝜕L𝜕q̇i) ($󸀠qi – q̇i. ) + d

dt
[ 𝜕L𝜕q̇i $󸀠qi + (L – 𝜕L𝜕q̇i q̇i) .]} , (1.1.37)

where we have used (1.1.21) in order to replace $qi with $󸀠qi. By a direct calculation
without making use of the equations of motion, we can reduce the variation (1.1.37) to
a more simple form

$󸀠S = ∫
T
dt [𝜕f𝜕% 𝜕L𝜕t + 𝜕fi𝜕% 𝜕L𝜕qi + 𝜕 ̇f𝜕% (L – 𝜕L𝜕q̇i q̇i) + 𝜕 ̇fi𝜕% 𝜕L𝜕q̇i ] , (1.1.38)

where we have made the substitutions . = 𝜕f /𝜕%, $󸀠qi = 𝜕fi/𝜕%, and again the overdot
denotes a total derivative with respect to time. Expression (1.1.38) allows us to connect
the conservation laws with the functional structure of the Lagrangian and its internal
symmetries with respect to the continuous group of transformations. Let us consider
several important cases.

First, let us assume 𝜕f /𝜕% = const ̸= 0 and 𝜕fi/𝜕% = 0. Then, 𝜕 ̇f /𝜕% = 𝜕 ̇fi/𝜕% = 0, and
the variation of the action (1.1.38) becomes

$󸀠S = 𝜕f𝜕% ∫T dt 𝜕L𝜕t . (1.1.39)

This expression points out that in the most general case of the Lagrangian depending
explicitly on time, L = L(qi, q̇i, t), its partial derivative 𝜕L/𝜕t ̸= 0, and the variation
$󸀠S of the action functional (1.1.7) does not vanish. It means that the Noether theorem
cannot be applied and the integrals of motion associated with the time translations
do not exist.2

On the other hand, if the Lagrangian does not depend on time explicitly, L =
L(qi, q̇i), it stays invariant with respect to the (constant) time shifts. In this case we
can use (1.1.36) for deriving one of the most important integrals of motion – energy,
usually denoted as E. Taking transformations (1.1.17) and (1.1.18) in the form fi(t; %) = 0
and f (t; %) = % yield 𝜕fi/𝜕% = 0, 𝜕f /𝜕% = 1, and the corresponding conserved quantity
(1.1.36) acquires the form:

E = 𝜕L𝜕q̇i q̇i – L. (1.1.40)

It is called the total energy of the system. The systems with the conserved energy
are called conservative [283]. In the case of an open system the Lagrangian depends

2 The same conclusion is extended, of course, for the more general case of function f (%, t) depending
on time so that 𝜕 ̇f /𝜕% ̸= 0.
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explicitly on time and the energy (1.1.40) is not conserved. Such a system is also called
non-conservative. It can be easily checked by taking the total time derivative of E that
in case of the Lagrangian depending explicitly on time, we have

dE
dt

= –𝜕L𝜕t . (1.1.41)

Second, let us consider (1.1.38) for the case of transformations, 𝜕f /𝜕% = 0 and the
constant 𝜕fi/𝜕% ̸= 0. Then, 𝜕 ̇fi/𝜕% = 0, and the variation (1.1.38) becomes

$󸀠S = 𝜕fi𝜕% ∫T dt 𝜕L𝜕qi . (1.1.42)

Expression (1.1.42) points out that in the case of the Lagrangian depending explicitly
on qi the action functional (1.1.7) cannot be invariant with respect to the constant
translations of the generalized coordinates qi and the Noether theorem cannot be
applied. Hence, in this case there are no integrals of motion associated with the
constant translations of qi. In the opposite case when the Lagrangian does not
depend explicitly on the generalized coordinates (but may depend explicitly on time),
the Noether theorem yields the integral of motion3 corresponding to the constant
translation of the coordinate qi:

Ii(q̇i, t) =
𝜕L𝜕q̇i = const. (1.1.43)

The coordinate qi which drops out of the Lagrangian is called an ignorable coordinate.
We should draw attention of the reader to a subtlety associated to the integrals

corresponding to the case of the constant translations of the generalized coordinates.
Let us consider an example of a Lagrangian describing time evolution of a mechanical
system consisting of two particles with generalized coordinates q1i and q2i. Let the Lag-
rangian depend explicitly on the difference of the coordinates: L = L(q2i – q1i, q̇1i, q̇2i).
We consider the case of a constant translation such that both coordinates are shifted
by the same amount: 𝜕f2i/𝜕% = 𝜕f1i/𝜕% = :i = const. Variation of the action (1.1.38)

$󸀠S = :i ∫
T
dt [ 𝜕L𝜕q1i + 𝜕L𝜕q2i ] = 0, (1.1.44)

and the Noether theorem can be applied in spite of the explicit dependence of the
Lagrangian on the generalized coordinates.

Third, let us consider now the conservation laws for the case of time-dependent
translation of time and/or generalized coordinates. In this case we operate with

3 Notice that we have chosen the sign of the integral (1.1.43) opposite to the sign of the corresponding
quantity in (1.1.36). This convention is more suitable in the discussion of the integrals of motion of
mechanical system of N particles given in the Section 1.1.4.
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the group of transformations having the non-vanishing time-dependent generators:𝜕 ̇f /𝜕% ̸= 0, 𝜕 ̇fi/𝜕% ̸= 0. For this reason, the variation of the action (1.1.38) does not van-
ish even if the Lagrangian, L = L(q̇i), that is it does not depend explicitly on time and
the coordinate qi is ignorable,

$󸀠S = ∫
T
dt [𝜕 ̇f𝜕% (L – 𝜕L𝜕q̇i q̇i) + 𝜕 ̇fi𝜕% 𝜕L𝜕q̇i ] ̸= 0. (1.1.45)

The Noether’s theorem is not applied to such a situation in the most general case.
Nonetheless, it may turn out that for the variation (1.1.45) of the action its integrand
equals to a total time derivative

𝜕 ̇f𝜕% (L – 𝜕L𝜕q̇i q̇i) + 𝜕 ̇fi𝜕% 𝜕L𝜕q̇i = dK
dt

, (1.1.46)

where K = K(𝜕f /𝜕%, 𝜕fi/𝜕%, qi, t) is some function of time, generalized coordinates and
the generators of the group of transformations.4 In this particular case, the Noether
theorem can be extended and the integrals of motion (1.1.36) are modified to

I(qi, q̇i, t) = ( 𝜕L𝜕q̇i q̇i – L) 𝜕f𝜕% – 𝜕L𝜕q̇i 𝜕fi𝜕% + K = const. (1.1.47)

Let us consider an example of the time-dependent transformation: 𝜕f /𝜕% = 0 and𝜕fi/𝜕% = :it with :i = const. The function K entering (1.1.47) can be found from solving
the equation (1.1.46) which takes, in the case under consideration, the following form

:i
𝜕L𝜕q̇i = dK

dt
, (1.1.48)

if and only if, there exists a function Ki such that K = :iKi, and

dKi
dt

= 𝜕L𝜕q̇i . (1.1.49)

The new integral associated with the above-mentioned symmetry is5

Ni = –Ki + t
𝜕L𝜕q̇i . (1.1.50)

We discuss this integral in more detail in Section 1.1.4 – see equation (1.1.62).

4 It is crucial to emphasize that K is a function but not a functional (integral) of time.
5 Notice that for the sake of convenience we have chosen the sign of the integral (1.1.50) opposite to
the sign of the corresponding quantity in (1.1.47).
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1.1.4 Conserved quantities for a system of non-relativistic particles

In the framework of non-relativistic mechanics, the arena for describing physical phe-
nomena is a 3-dimensional Euclidean space usually associated with the Cartesian
coordinates xi = {x1, x2, x3}, or xi = {x, y, z}. Time is considered separately and does
not depend on space. The Newtonian spacetime is homogeneous and isotropic so that
the infinitesimal group of transformations that leaves the Lagrangian of the Newto-
nian mechanical systems invariant, consists of a time shift, three independent spatial
translations along the Cartesian coordinate axes and three rotations about them.
According to the Noether theorem, these symmetries point out to the existence of 7
integrals of motion.

Besides these, the Euler-Lagrange equations of the Newtonian systems are invari-
ant with respect to the, so-called, Galilean transformation which introduces the class
of the inertial reference frames. The inertial frame is defined by the property of a free
test particle to remain at rest or tomove uniformly along a straight line with a constant
velocity with respect to it. The Galilean transformations are defined by the following
equations

t󸀠 = t; x󸀠i = xi + Vit (1.1.51)

where Vi = {V1,V2,V3} is a constant velocity. The Galilean transformation connects
two arbitrary chosen, inertial frames with the Cartesian coordinates xi and x󸀠i. Three
components of the velocity Vi are additional three parameters entering the invariance
group of the Newtonianmechanics. Thus, this group depends on 10 parameters and is
called the Galilean group [11]. Euclidean space and time with the Galilean transform-
ation (1.1.51) is called the Galilean spacetime which is the physical basis for applying
the Noether theorem to obtain 10 of the first integrals for any conservative system.

We consider a system of N point-like particles with constant masses ma (a =
1, . . . ,N) embedded to 3-dimensional Euclidean space covered by Cartesian coordin-
ates xi which play the role of generalized coordinates qi of the particles. The Lag-
rangian of the conservative system of N particles with constant masses does not
depend on time explicitly and is of the type (1.1.6),

L = 1
2
∑
a
maẋ

i
aẋ

i
a – U(rab), (1.1.52)

where xia = xia(t) are coordinates of the particle a, x
i
b = xib(t) are coordinates of the

particle b, the overdot denotes a time derivative, ẋia = dxia/dt. The potential U(rab)
describing the interactions between the particles, is a scalar function depending only
on the relative distance rab = |riab| between the particles riab = xia – xib which makes it
invariant with respect to translations and rotations of the coordinate system in space.
It is more conventional to use the vector notation by denoting three-dimensional vec-
tors with bold letters, ra = {x1a, x2a, x3a}, va = ̇ra = {ẋ1a, ẋ2a, ẋ3a}. In the vector notation, the
Lagrangian (1.1.52) reads
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L = 1
2
∑
a
mav2a – U(rab). (1.1.53)

The Lagrangian (1.1.53) does not depend on time explicitly and, hence, is invariant
with respect to constant time translation. It gives the integral of energy that we have
already defined in expression (1.1.40). Thus, substituting L from (1.1.53) into (1.1.40)
one obtains

E = 1
2
∑
a
mav2a + U(rab), (1.1.54)

which is a sum of two terms – the kinetic and potential energy of the system. It is
worth mentioning that had we assumed the masses ma of the particles as variable
ma = ma(t), it would make the Lagrangian explicitly dependent on time. In that case
the total energy E would not be conserved but changing in accordance with (1.1.41) as
follows 6

dE
dt

= –1
2
∑
a

dma
dt

v2a. (1.1.55)

The homogeneity of the Euclidean space is reflected in the invariance of the system
with respect to three spatial translations. They are defined as ra → r󸀠a = f a(ra, %) =
ra + %, where % is a constant vector of the spatial translation, % = {%1, %2, %3}. Then,𝜕f a/𝜕% = $ = {$ij} – the unit matrix, and (because the time is unchanged) 𝜕f /𝜕% = 0.
Hence, the corresponding conserved quantity (1.1.43) acquires the form:

P = ∑
a

𝜕L𝜕va = ∑
a
pa = ∑

a
mava, . (1.1.56)

It is called the total linear momentum of the system which is the sum of the momenta
pa =mava of the individual particles. The integral of the linear momentum exists
irrespectively of whether massesma depend on time or not.

Now, let us construct a conserved quantity and a conservation law, which follow
from the isotropy of the Euclidean space which means that all directions in space are
equivalent and the Lagrangian is invariant with respect to rotations. Under a rotation,
the radius vector of a particle is transformed as ra → r󸀠a = f a(ra,9) = ra + [9 × ra],
where 9 is a constant vector of an infinitesimal rotation. Then, 𝜕f a/𝜕9 = D(ra) is
the antisymmetric matrix with the components depending on the radius-vector of
the particle, D(ra) = {Dij} = :ijkrka where :ijk is a fully-antisymmetric Levi-Civita sym-
bol. The corresponding conserved quantity (1.1.36) applied to the Lagrangian (1.1.52)
acquires the form:

M = ∑
a

𝜕L𝜕va ⋅ D(ra) = ∑
a
[ra × pa] = ∑

a
ma[ra × va], (1.1.57)

6 The potentialU(rab) could also depend onmasses and so it could also change, consider gravitational
interaction as an example. In this case, formula (1.1.55) should include one more term.
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where the signs “dot” and “cross” between two vectors denote the Euclidean dot and
cross product of the vectors respectively [283]. The vector integral ofmotionM is called
the total angular momentum of the system. The angular momentum is conserved even
if masses ma of the particles depend on time. Note that the appearance of the cross
product in equation (1.1.57) shows that this formalism is restricted to 3 dimensions
and the angular momentum is not a true vector but a pseudo vector. In more than
3 dimensions, one observes that the proper generalization of angular momentum is
an anti-symmetric rank 2 tensor that is not reduced, in general, to a cross product
between vectors.

At last, one has to analyze the invariance with respect to the infinitesimal Galilean
transformations (1.1.51) with the constant velocity V = % considered as a small para-
meter of the group. Thus, the infinitesimal group of the Galilean transformation is
given by equations

r󸀠a = f a(ra, %) = ra + t%, v󸀠a = ̇f a(ra, %) = va + %, (1.1.58)

from where one has for the group parameters,𝜕f𝜕% = 0, 𝜕f a𝜕% = t. (1.1.59)

This is a special case of time-dependent transformations which we have considered
above at the end of Section 1.1.3. Equation (1.1.49) for the Lagrangian (1.1.53) reads

dK
dt

= ∑
a
mava =

d
dt

∑
a
mara. (1.1.60)

Notice that the last term in (1.1.60) can be written in the form of the total derivative if
and only if, masses ma of the particles do not depend on time. Integration of (1.1.60)
yields

K = ∑
a
mara. (1.1.61)

Then, equation (1.1.50) defines the conserved quantity which is called the integral of
the center of mass of the system,

N = –∑
a
mara + t∑

a
mava. (1.1.62)

It is worth emphasizing that similar to the case of the integral of energy, the integral
of the center of mass does not exist if massesma of the particles depend on time. This
is because in such a case, equation (1.1.60) takes the form dK/dt = ∑a ma(t)va whose
right-hand side does not admit transformation to the total time derivative and makes
it non-integrable.

The center ofmass of the system is defined by a vectorR = R(t) which is introduced
by the following identity

MR ≡ ∑
a
mara (1.1.63)
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where

M = ∑
a
ma, (1.1.64)

is a constant total mass of the system of particles. Then, the integral of the center of
mass takes the traditional form

N = –MR + P t, (1.1.65)

where P is the conserved linear momentum of the system (1.1.56) which is directly
related to the velocity of the center of mass

V = P
M
. (1.1.66)

It allows us to reformulate (1.1.65) in the following form

R = R0 + Vt, (1.1.67)

where R0 = –N/M is the constant radius-vector defining position of the center of mass
at time t = 0. This equation tells us that the center of mass of the entire system of
particles moves uniformly along a straight line with a constant velocity V .

In many applications it is convenient to use an inertial frame whose total linear
momentum vanishes, P = 0, and its origin is placed at the center of mass, R0 = 0.
Then, R = 0 at any instant of time and the origin of the frame remains at rest at the
center of mass of the system of particles.

1.1.5 The Minkowski space and the Poincaré group

Now, we turn to special relativity which corrects certain shortcomings of the clas-
sical mechanics by unifying the time and Euclidean 3-space into a fabric of spacetime
continuum where space and time are no longer absolute but depend on the vantage
point of the observer. Such a 4-dimensional spacetime is called the Minkowski space
or spacetime. The Minkowski space admits the existence of the inertial frames of ref-
erence whose properties are similar to the ones in classical mechanics. Description of
physical phenomena is invariant irrespective of the choice of the inertial frame. There-
fore, transformations between the inertial frames are described by a 10-parameter
group of transformations which is called the Poincaré group. It includes 4 translations
along each spatial dimensions and time, 3 rotations in the Euclidean space, and 3
Lorentz boosts which generalize the Galilean transformations of classical mechanics
and are called the Lorentz transformations. The Poincaré group forms a geometrical
basis for applying the Noether theorem which yield 10 integrals of motion for a
closed system as in classical mechanics. One can also think of the Poincaré group
as the symmetry group of the Minkowski space which is a maximally symmetric flat
spacetime.
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The most convenient coordinates in the Minkowski space are the Lorentzian
coordinates which add time to the set of the three-dimensional Cartesian coordin-
ates. The time coordinate is defined as the product of time with the speed of light, c,
and is denoted x0 = ct. The Lorentzian coordinates are labeled with Greek indices,
x! ≡ {ct, x, y, z} ≡ {x0, x1, x2, x3}; and the Greek indices take values from the set
0, 1, 2, 3. Each set of the Lorentzian coordinates is associated with an inertial refer-
ence frame. Because two different inertial frames are connected by the elements of
the Poincaré group, in the Minkowski space any two Lorentzian coordinate systems
are connected by these transformations. A point in the Minkowski space is called a
world point or an event. The distance between two world points in the Minkowski
space is called an interval and is invariant with respect to coordinate transforma-
tions. The interval between two infinitesimally close events is denoted, ds, and ds2

is expressed in terms of the infinitesimal increments of the Lorentzian coordinates as
a pseudo-Euclidean quadratic form:

ds2 = –c2dt2 + dx2 + dy2 + dz2 = '!"dx!dx". (1.1.68)

The geometric object '!" ≡ diag{–1, +1, +1, +1} is known as theMinkowski metric. Here,
we have taken the plus sign convention for the spatial part of the metric; the other
choice, the minus sign convention is valid as well. Because the interval is invariant
with respect to arbitrary coordinate transformations, the Minkowski metric is a tensor.
Besides describing themetric properties of theMinkowski space, it is also used to raise
and lower the tensor indices of other geometric objects, vectors, tensors etc. residing
in the Minkowski space. Below, we use the units with the speed of light, c = 1.

The interval (1.1.68) in theMinkowski space can have either positive, or negative or
a null values. Depending on its value the interval is termed either spacelike, ds2 > 0, or
lightlike or null, ds2 = 0, or timelike, ds2 < 0, interval. All events separated by a lightlike
interval lie on a hypersurface in the Minkowski space, called the light cone. Vectors
attached to a particular event and lying inside the light cone are called timelike, those
lying outside of the light cone are called spacelike, and vectors lying on the light cone
are called null vectors. A curve in the Minkowski space is called spacelike, lightlike
or timelike if tangent vector taken at each point of such a curve is spacelike, lightlike
or timelike, respectively. Trajectory of a point-like particle in the Minkowski space is
called aworld line. Because particles ofmatter cannot propagate faster than light, their
world lines can be either timelike or lightlike but not spacelike. Each world line can
be parametrized with a continuous parameter to identify the position of the particle
in spacetime. The most convenient parameter for timelike world lines is called the
proper time, 4, which is related to the infinitesimal interval ds between two events on
the world line as follows:

(d4)2 = –ds2 = (1 – v2) dt2, (1.1.69)
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where v = {dxi/dt} is the three-dimensional, coordinate velocity of the particle. The
proper time is a real quantity that can bemeasured by an ideal clockmoving along the
world line, attached to the particle, under consideration. Notice that for an observer
at rest, d4 = dt, that is the proper time 4 and the coordinate time t coincide.

As we mentioned above, the Poincaré group is a 10-parameter group of trans-
formations in the Minkowski space consisting of 4 translations and 6 rotations of the
Lorentzian coordinates. The generators of this group can be found by studying the
coordinate transformations that leave the metric intact. This boils down to studying
the isometries of the spacetime. The group is generated by the Lie transformations
along the curves whose tangent vectors are known as the Killing vectors, .!K ; K =
1, 2, . . . , 10 . The Poincaré group leaves the Minkowski metric invariant which means
that the Lie derivative, £, (see Section 1.2.3 and Appendix A.2.3) of the Minkowski
metric vanishes:

£.K'!" = 0. (1.1.70)

It leads to the first order Killing differential equation [154]

.K(!,") = 0, (1.1.71)

where the brackets denote symmetrization. The Killing equation has 10 linearly inde-
pendent solutions consisting of four translations, .!K = .!" , and three rotations along
with three boosts, .!K = .!["𝛾] where the square brackets denote anti-symmetrization. In
the Lorentzian coordinates the set of 10 Killing vectors, .!K , of the Minkowski space is
given by the following expresssions,

.!0 = –$!0, .!i = $!i , .!["𝛾] =
1
2
('1".!𝛾 – '1𝛾.!" ) x1. (1.1.72)

The “minus” sign for the timelike Killing vector agrees with the choice of the metric
signature in this book (–, +, +, +). Partial derivatives of the Killing vectors with respect
to a particular coordinate (denoted by a comma with an index after it indicating the
corresponding coordinate) follow immediately from (1.1.72):

.!" ,1 = 0, .!["𝛾],13 = 0. (1.1.73)

and they can be used to check the consistency of the Killing equation (1.1.71).

1.1.6 A point-like particle in special relativity

Let us extend the definitions and concepts related to themotion of a point-like particle
from classical mechanics to the realm of special relativity. These notions will be used
later on for the derivations of conservation laws and conserved quantities in the N-
body system. It is convenient to parametrize the world line of the particle with its
proper time 4 which is invariant with respect to coordinate transformations.



18 1 Conservation laws in theoretical physics: A brief introduction

An infinitesimal displacement along the world line of the particle is dx! = u!d4
where the 4-vector

u! ≡ dx!

d4 = dx!

dt
1√1 – v2 , (1.1.74)

is called the 4-velocity, whereas v is a 3-dimensional velocity defined in (1.1.2). Because
the parameter of the particle’s world line was chosen as the proper time, the 4-
velocity gets normalized, u!u! = –1. The 4-acceleration of the particle is defined as
the derivative of 4-velocity with respect to the proper time, a! ≡ du!/d4.

The motion of a free point-like particle follows from the principle of the least
action with the action functional taken in the form:

S = m∫P1

P0
u!dx

! = m∫P1

P0

dx!dx!

d4 = –m∫P1

P0
d4, (1.1.75)

where m is the rest mass of the particle (a constant), and the action is calculated
between two fixed events P0 and P1.7

The action (1.1.75) can be easily reduced to its canonical form (1.1.7) if we choose
the coordinate time t as the new parameter along the world line of the particle. This
procedure turns the action (1.1.75) to

S = ∫t1

t0
dt L(r, v) (1.1.76)

with the Lagrangian function

L = –md4
dt

= –m√1 – v2, (1.1.77)

and the instants t0 and t1 correspond to the pointsP0 and P1 on the particle’s world line
respectively. The action (1.1.76) is convenient for the 3-dimensional Lagrangian form-
alism but we are looking for its 4-dimensional version. To this end we notice that the
action (1.1.76) is invariant under a re-parametrization of the world line of the particle:
4 → + = +(4),

S = ∫+1

+0
d+L(x!, ẋ!), (1.1.78)

The Lagrangian L = L(x!, ẋ!) with the new parameter, +, takes the form

L = –m√–'!"ẋ!ẋ", (1.1.79)

where ẋ! = dx!/d+ is a 4-dimensional dynamical variable generalizing the 3-
dimensional velocity v of the particle.

7 In the case, when mass depends on time, m = m(t), one cannot derive a conserved energy for the
same reason as in non-relativistic mechanics.
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The action, such as (1.1.78), is called a parameterized action, whereas the Lag-
rangian function (1.1.79) is called a singular Lagrangian, see [140, 193, 378] for more
details. The idea behind the new parameter is that it makes all variables in the action
dynamical variables, whereas the parameter + serves merely as an argument of integ-
ration (external ‘time’) and plays an auxiliary role having no direct physical meaning.
It can be replaced with another parameter,

+̃ = +̃(+). (1.1.80)

The action (1.1.76) is invariant with respect to such replacements. The goal of introdu-
cing the new parameter into the action will become more transparent when we shall
discuss the Hamiltonian formulation of the parameterized action for a point particle
(see text from equations (3.1.105–3.1.112)).

Variation of (1.1.78) with respect to the coordinates x!(+), all of which are now
considered as dynamical variables, is completely analogous to the variation of (1.1.7)
in (1.1.9). This results in 4-dimensional equations of motion generalizing (1.1.10):𝜕L𝜕x! – d

d+
𝜕L𝜕ẋ! = 0. (1.1.81)

The Lagrangian (1.1.79) does not depend on the coordinates x! explicitly. There-
fore, equations (1.1.81) tell us that there is a conserved quantity, 𝜕L/𝜕ẋ!, called the
4-momentum of the particle:

p! ≡ 𝜕L𝜕ẋ! = m
'!"ẋ"√–'!"ẋ!ẋ" . (1.1.82)

It is straightforward to verify that after raising the index (1.1.82) can be written as:

p! = mu!. (1.1.83)

Making use of the definition (1.1.74) of the 4-velocity we can write the components of
4-momentum (1.1.83) in terms of 3-dimensional coordinate velocity v of the particle:

p0 = mc√1 – v2/c2 , (1.1.84)

p = mv√1 – v2/c2 , (1.1.85)

where we restored the speed of light c to find out the non-relativistic limit of the above
expressions in case when c→∞. In this limit the time component p0 of 4-momentum
generalizes the classical expression for the kinetic energy of the particle:mv2/2. How-
ever, special relativity tells us that the particle has a non-vanishing energy even if its
velocity vanishes. This is the rest energy of the particle E0 = mc2. The quantity (1.1.85)
represents the relativistic 3-momentum generalizing the classical linear momentum
of the particle: p = mv.
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1.1.7 Conserved quantities for a system of relativistic particles

In order to describe a system ofN non-interacting point-like particles in special relativ-
ity it is natural to follow the prescriptions of Section 1.1.6 and parameterize the world
line of each particle with a single parameter, x!a = x!a(+). The Lagrangian, La, for each
particle is

La = –ma√–'!"ẋ!aẋ"a, (1.1.86)

where ma is a constant mass of the particle, and the overdot denotes differentiation
with respect to the parameter +. The Lagrangian of the entire system of the particles is
the sum of the individual components: L = ∑a La and the action is

S = ∫ d+∑
a
La. (1.1.87)

Variation of (1.1.87) with respect to 4N generalized coordinates x!a(+) leads to the equa-
tions of motion of the a-th particle. Because the Lagrangian (1.1.86) does not depend
on x!a(+) explicitly, the equations of motion have the form of the conservation law:

dpa!
d+ = 0; pa! ≡ 𝜕La𝜕ẋ!a , (1.1.88)

where p!a is the linear momentum of a-th particle.
The Lagrangian (1.1.86) is a particular case of (1.1.6). Thus, the Noether conserved

quantities (1.1.36) and (1.1.47) are easily derived by applying the infinitesimal 10-
parameter Poincaré group ofmotions generated by the Killing vectors (1.1.72). To apply
the formalism of the Noether theorem of Section 1.1.3, we use the replacements: t → +,
qi → x!a, and q̇i → ẋ!a. We, first, consider transformation of coordinates x!a induced by
the Killing vectors .!K = .!" , see (1.1.72), contracted with a constant parameters %",

x!a → x󸀠!a = x!a + .
!
" %

". (1.1.89)

This transformation does not change the Lagrangian, and leads to the conservation
law of the linear momentum following directly from (1.1.36) where (in accordance with
the transformation equation) we also use the replacements f → 0, fi → .!" %

",

d
d+ ∑a 𝜕La𝜕ẋ!a .!" = d

d+ ∑a pa!.
!
" = 0. (1.1.90)

This law means the total 4-momentum of the system of particles,

P! = ∑
a
p!a = ∑

a
mau

!
a, (1.1.91)
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is conserved

dP!

d+ = 0. (1.1.92)

The infinitesimal rotations in the Minkowski space about various axes of the Lorent-
zian coordinates are presented by 6 small parameters,9!" = –9"!, multiplied with the
Killing vectors .!K = .!["𝛾], see (1.1.72),

x!a → x󸀠!a = x!a + .
!
["𝛾]9

"𝛾 = x!a +
1
2
('"1.!𝛾 – '𝛾1.!" ) x1a9"𝛾. (1.1.93)

Then, substituting transformation (1.1.93) to (1.1.47) and replacing t → +, qi → x!a, and
q̇i → ẋ!a, f → 0, fi → .!["𝛾]9

"𝛾, yields

d
d+ ∑a 𝜕La𝜕ẋ!a .!["𝛾] = d

d+ ∑a pa!.
!
["𝛾] = 0. (1.1.94)

This law means the existence of the total 4-angular momentum of the system of
particles,

M!" = ∑
a
(x!ap"a – x"ap!a) , (1.1.95)

which is conserved

dM!"
d+ = 0. (1.1.96)

The total 4-angular momentum consists of three purely spatial components,

Mik = ∑
a
(xiapka – xkapia) , (1.1.97)

that represent amatrix of a 3-angular momentum of the system. Note that, even though
we have worked in four dimensions, this result is valid for any number of dimensions,
for the angular momentum appears as an antisymmetric tensor (not just a pseudo-
vector specific to 3 spatial dimensions as noted earlier). The other 3 components of
(1.1.95) are a 3-vector,

Ni ≡ M0i = ∑
a
(x0apia – xiap0a) (1.1.98)

representing the, so-called, Lorentzian momentum.
If we take now the parameter + = t and set x0a = t, the components of the linear

momentum of a particle takes the form of equations (1.1.84), (1.1.85). In this case the
components of the conserved quantity (1.1.91) take a familiar form of the total energy,
E = P0, and the linear momentum, P = {Pi} of the system, respectively,
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E = ∑
a

mac2√1 – v2a/c2 , (1.1.99)

P = ∑
a

mava√1 – v2a/c2 . (1.1.100)

These relativistic expressions generalize the total energy (1.1.54) and the linear
momentum (1.1.56) of classical mechanics in the case of non-interacting massive
particles.

In the same parametrization the 3-angular momentum (1.1.97) is equivalent to a
3-vector

M = ∑
a

ma[ra × va]√1 – v2a/c2 . (1.1.101)

that generalizes the angular momentum of classical mechanics (1.1.57).
The conserved 3-vector (1.1.98) can bewrittenmore explicitly in the following form

N = –∑
a

mara√1 – v2a/c2 + t∑a mava√1 – v2a/c2 . (1.1.102)

One can see that (1.1.102) generalizes the integral of the center of mass (1.1.65) of clas-
sical mechanics. Dividing both sides of (1.1.102) by the total energy of the system, E,
one obtains relativistic equation of motion of the center of mass of the system of N
particles

R = R0 + Vt, (1.1.103)

where a constant vector R0 = –N/E, a constant velocity of the center of mass, V = P/E,
and the radius-vector R of the center of masses is defined by the identity

ER = ∑
a

mara√1 – v2a/c2 , (1.1.104)

which should be compared with its classical counterpart (1.1.63). Relativistic equation
of motion of the center of mass (1.1.103) generalizes the analogous equation (1.1.67) of
classical mechanics. Thus, for a conservative system of point-like particles, the con-
served Lorentzian momentum states that there exists a center of mass defined by a
radius-vector Rwhich moves with a constant velocity V .

1.2 Field theory in the Minkowski space

1.2.1 The action

Theory of physical fields in the Minkowski space is an important ingredient of modern
particle physics. The starting point of the theory is the Lagrangian which governs the



1.2 Field theory in the Minkowski space 23

behavior of the fields and their interaction with the other fields and/or matter. Devel-
opment of the Lagrangian formalism of physical fields (also calledmatter fields) in the
Minkowski space is very similar to the general scheme of the Lagrangian formalism in
mechanics which has been introduced in the previous section.

Each field is a tensor or tensor density whose components are smooth functions
of the spacetime coordinates,

6A ≡ 6A(x!). (1.2.1)

Themulti-indexA stands for the tensor indices of the field (or a set of fields) which can
be either covariant, or contravariant or a mixed type in a single piggyback notation.
x! = {x0, xi} = {x0, x1, x2, x3} are arbitrary coordinates in the Minkowski space with x0

and xi being the time and 3-dimensional spatial coordinates respectively. In what fol-
lows, we sometimes drop the coordinate index and use a simpler notation,6A = 6A(x)
if it does not bring a confusion. A short description of tensors and tensor densities is
given in Appendixes A.1 and A.3.

In the Lagrangian formalism of the field theory all four coordinates x! are equi-
valent and play the role of independent arguments generalizing the independent
argument of time t in the Lagrangian formalism of mechanics. The field components
6A are treated as generalized coordinates and are genuine dynamical variables. The
Lagrangian L of a physical field is, inmost cases, a function of the dynamical variables
and their first partial derivatives with respect to coordinates, L = L(6A,6A

,!) where
the comma with an index after it denotes a partial derivative with respect to the cor-
responding coordinate. In principle, the Lagrangian can also depend on coordinates
x! explicitly but we shall not consider this case because it complicates the mathemat-
ical formalism and it is not relevant to most of the physical cases. Dependence of the
Lagrangian on higher derivatives of the field 6A is allowed but in this section we don’t
consider this case.

The action functional of the field theory in the Minkowski space is originally
defined in the Lorentzian coordinates

S = ∫
K
d4xL(6A,6A

,!) (1.2.2)

where d4x = dx0dx1dx2dx3 is the element of a coordinate volume, and K denotes a
4-dimensional domain of integration. Being a scalar, the action (1.2.2) has to be
invariant under arbitrary coordinate transformations. Hence, any type of curvilinear
coordinates in (1.2.2) are allowed andmust be included to the Lagrangian formalism in
a self-consistent way. This requires generalization of the concept of a partial derivative
of tensor fields entering the action (1.2.2) since partial derivatives do not transform as
tensors under arbitrary coordinate transformations. The derivative of a tensor field
which transforms properly under arbitrary coordinate transformation is called the
covariant derivative. The covariant derivative is an essential attribute of calculus on
spacetime manifolds with curvature.
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Let us introduce curvilinear coordinates x󸀠! = x󸀠!(x") which are functions of the
Lorentzian coordinates x!. The Minkowski interval (1.1.68) is invariant with respect to
coordinate transformations

ds2 = '!"dx!dx" = 𝛾!"dx󸀠!dx󸀠", (1.2.3)

where, here and everywhere else, 𝛾!" = 𝛾!"(x󸀠) denotes the Minkowski metric in the
curvilinear coordinates. Equation (1.2.3) defines the tensor law of transformation of
the Minkowski metric tensor

𝛾!" = '13
𝜕x1𝜕x󸀠! 𝜕x3𝜕x󸀠" . (1.2.4)

Coordinate transformations of other tensor quantities are explained in Appendix A.1.
For example, the Killing vectors (1.1.72) of the Minkowski space are transformed

in accordance with the law of transformation of vectors:

. 󸀠!K = .1K
𝜕x󸀠!𝜕x1 . (1.2.5)

The Killing vectors in curvilinear coordinates satisfy a covariant Killing vector equa-
tion which generalizes (1.1.70):

£.K𝛾!" = 0 → .K (!;") = 0 (1.2.6)

where the indices are lowered or raised with the use of 𝛾!" and 𝛾!". The covariant
version of equation (1.1.73) is, respectively,

.!" ;1 = 0, .!["𝛾];13 = 0. (1.2.7)

We note again that indices K = { ", [ "𝛾]} numerate the Killing vectors, therefore the
coordinate transformation does not act on them. In (1.2.7) and below, the semicolon
with an index after it, denotes the covariant derivative in the Minkowski space with
respect to the corresponding coordinate in accordancewith notations and conventions
adopted in Appendix A.3.

Briefly speaking, a covariant derivative of tensor density 6A is defined as follows:

6A
;, ≡ 6A

,, + C
0
,1 6A󵄨󵄨󵄨󵄨󵄨10 , (1.2.8)

where C0,1 denotes the Christoffel symbols constructed from the metric 𝛾!" and its
partial derivatives:

C0,1 =
1
2
𝛾03 (𝛾3,,1 + 𝛾31,, – 𝛾,1,3) . (1.2.9)

A permutation operator 6A󵄨󵄨󵄨󵄨󵄨10 is a complicated algebraic combination of the field 6A

contracted with the Kronecker symbols $!" and originating from the transformation
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properties of the covariant derivative of the tensor field. For example, for a tensor
density of the weight +1, 6A ≡ M3

!", one has:

M3
!"󵄨󵄨󵄨󵄨󵄨󵄨10 = –M3

!"$10 – M0
!"$13 + M3

1"$!0 + M3
!1$"0. (1.2.10)

which should be used in (1.2.8) yielding

M3
!"

;, = M3
!"

,, – C
0
,0M3

!" – C0,3M0
!" + C!,1M3

1" + C",1M3
!1. (1.2.11)

The permutation operator 6A󵄨󵄨󵄨󵄨󵄨,- defined in (A.3.5) in themost general form, is quite uni-
versal and appears in all types of derivatives of tensor fields on geometric manifolds
like the covariant derivative (A.3.7), Lie derivative (A.3.8), and an antisymmetric cov-
ariant derivative of tensor densities (A.3.9). The algebra of the permutation operator
6A󵄨󵄨󵄨󵄨󵄨,- is explained in Appendixes A.3.1 and A.3.2.

The action (1.2.2) depends on the infinitesimal volume of integration d4x in the
Lorentzian coordinates. We should establish its connection with the invariant meas-
ure of integration in curvilinear coordinates. To this end, let us consider two arbitrary
coordinate charts in the Minkowski space, x! and x󸀠!, connected by an invertible
coordinate transformation, x! = x!(x󸀠). The coordinate four-volumes, d4x and d4x󸀠,
are related to each other by the determinant of the matrix of the transformation,
J = det [𝜕x󸀠!/𝜕x"] also known as the Jacobian of the transformation,

d4x󸀠 = Jd4x. (1.2.12)

Now let us consider the coordinate transformation of the metric tensor

𝛾!"(x) = 𝛾󸀠,-(x󸀠)𝜕x󸀠,𝜕x! 𝜕x󸀠-𝜕x" . (1.2.13)

Applying the rule of calculation of determinants from the product of matrices, yields

𝛾 = J2𝛾󸀠, (1.2.14)

where 𝛾 = det 𝛾!"(x) and 𝛾󸀠 = det 𝛾󸀠!"(x󸀠). Equation (1.2.14) tells us that the sign of the
determinant of the metric tensor is invariant under coordinate transformations. If we
choose the Lorentzian coordinates the sign of the determinant of the metric tenor is
det '!" = ' = –1. We conclude that the sign of the determinant of the metric tensor in
arbitrary coordinates is always negative, 𝛾 < 0. Accounting for this fact, when extract-
ing the root square from equation (1.2.14), and substituting the result into equation
(1.2.12), brings about the equivalence

√–𝛾󸀠d4x󸀠 = √–𝛾d4x. (1.2.15)

It tells us that the invariant measure of integration on spacetime manifold is√–𝛾d4x.
Now, we return to the formulation of action (1.2.2) in arbitrary coordinates. First

of all, we notice that the measure of integration in the Lorentzian coordinates can be
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rewritten as d4x = √–'d4x. Second, the Lagrangian function is a scalar that depends
on the tensor fields6A. To make it a scalar the tensor indices of the fields must be con-
tracted with the help of the Minkowski metric. It means that the Lagrangian function
includes the Minkowski metric explicitly: L(6A,6A

,!) = L(6A,6A
,!, '!"). As a result

the action (1.2.2) is to be rewritten in the Lorentzian coordinates to the following form:

S = ∫
K
d4x√–'L (6A,6A

,!, '!") . (1.2.16)

Next, one transforms (1.2.16) to arbitrary curvilinear coordinates. In doing this trans-
formation, theMinkowskimetric, '!", has to be replacedwith its counterpart 𝛾!" in the
curvilinear coordinates, and the partial derivatives of the dynamical variables, 6A

,!,
have to be replaced with the covariant ones, 6A

;!. It brings the action (1.2.16) to the
covariant form:

S = ∫
K
d4x√–𝛾L (6A,6A

;!, 𝛾!") ≡ ∫
K
d4xL (6A,6A

;!, 𝛾!") . (1.2.17)

whereL ≡ √–𝛾L is a scalar density of weight +1which ismore convenient to use in the
applications of variational calculus on curved spacetime manifolds. In what follows,
it isL whichwe call the Lagrangian instead of L. In the Lorentzian coordinatesL = L.

1.2.2 Variational field equations

The principle of the least action used in mechanics to obtain the equations of motion
for particles can be also applied to a theory of continuous distribution of matter –
physical fields, 6A. The main idea of the principle is that among all virtually possible
configurations of the fields under consideration only those are physically admissible
(and stable) which correspond to a minimal value of the action S. Application of this
principle gives us the field equations which are the analogs of the equations of motion
of particles in mechanics.

We don’t include in this section the metric tensor to the number of dynamical
variables. Therefore, when applying the least action principle to S given in equation
(1.2.17) one has to vary the fields6A but not themetric or coordinates. A corresponding
variation of the fields is

$6A ≡ 6󸀠A(x) – 6A(x), (1.2.18)

where the primed fields, 6󸀠A, are functions which are different from 6A in the most
general way.

Mathematically the variations of the type (1.2.18) are very convenient because, by
definition, they commute with the operations of taking partial (but not covariant!)
derivatives of the fields,

$ (𝜕!6A) = 𝜕! ($6A) , (1.2.19)

contraction of indices, etc.
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The variation of the field variables in (1.2.18) leads to a variation of the action

$S = S󸀠 – S = ∫
K
d4xL (6󸀠A,6󸀠A;!, 𝛾!") – ∫

K
d4xL (6A,6A

;!, 𝛾!") . (1.2.20)

The principle of the least action demands that physical system evolves along those
trajectories of the variables, which conform to equation $S = 0. Recalling (1.2.19),
expanding the Lagrangian in the first term of (1.2.20) into the Taylor series and keeping
only the linear terms, the variation of the action takes the form

$S = ∫
K
d4x [ 𝜕L𝜕6A $6

A + 𝜕L𝜕6A
,!
$6A

,!] . (1.2.21)

Using partial derivatives permits us to make use of (1.2.19) to integrate the second
term on the right side of (1.2.21) by parts. Then, we assume that variations of the
field variables giving rise to variation $S vanish on the boundary 𝜕K of the domain
of integration K in (1.2.20):

$6A󵄨󵄨󵄨󵄨󵄨𝜕K = 0. (1.2.22)

This assumption allows us to discard the surface terms as they vanish on the
boundary 𝜕K.

Finally, one arrives at

$S = ∫
K
d4x $L

$6A $6
A, (1.2.23)

where the expression

$L
$6A ≡ 𝜕L𝜕6A – 𝜕𝜕x! ( 𝜕L𝜕6A

,!
) (1.2.24)

is called the Lagrangian derivative [266]. In the case, when the Lagrangian depends
on the second derivatives of the field variable, the Lagrangian derivative is defined by
equation (A.2.38) in Appendix A.2.4. The principle of the least action demands $S = 0
for an arbitrary variation $6A. The only possible way to satisfy this principle, is to
demand the vanishing of the Lagrangian derivative of L ,

$L
$6A = 0. (1.2.25)

Equation (1.2.25) is the Euler-Lagrange equation generalizing the mechanical analog
of this equation (1.1.10) to the field theory.

The Lagrangian derivative (1.2.24) is given in terms of the partial derivative of the
Lagrangian with respect to the partial derivatives of the field. It can be re-formulated
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in terms of the covariant derivatives making it apparently covariant. Indeed, let us
represent the Lagrangian L in the form where the partial derivative of 6A appears
explicitly:

L (6A,6A
;!, 𝛾!") = L (6A, 6A

,! + C
-
!, 6A󵄨󵄨󵄨󵄨󵄨,- , 𝛾!") , (1.2.26)

where we have used the general definition (1.2.8) for covariant derivatives. Then, the
first term in (1.2.24) has the following form:

𝜕L𝜕6A = 𝜕∗L𝜕6A + 𝜕L𝜕6B
;!

𝜕(C-!, 6B󵄨󵄨󵄨󵄨󵄨,- )𝜕6A = 𝜕∗L𝜕6A – ( 𝜕L𝜕6A
;!
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨,- C-!, , (1.2.27)

where the symbol ∗ means a partial derivative with respect to the filed 6A with the
covariant derivative of the filed 6A

;! being fixed; and the second term in (1.2.27) has
been calculated with the use of the algebra of the permutation operators |,- given
in Appendix A.3.2 (we have used (A.3.16) and (A.3.23)). Equation (1.2.26) also points
out that 𝜕L𝜕6A

,!
= 𝜕L𝜕6A

;!
. (1.2.28)

Then, after substituting (1.2.27) and (1.2.28) in the Lagrangian derivative (1.2.24) and
taking into account the definition of the covariant derivative (1.2.8), one can recast
(1.2.24) in terms of the covariant derivatives

$L
$6A ≡ 𝜕∗L𝜕6A – ( 𝜕L𝜕6A

;!
)
;!
, (1.2.29)

quod erat demonstrandum. It is worth emphasizing that, in fact, all equations of
variational analysis in curvilinear coordinates of the Minkowski space and, more gen-
erally, on curved manifolds, can be written down in terms of covariant derivatives of
the Lagrangian instead of its partial derivatives. The proof can be accomplished by
direct calculations given, for example, in [316, 430].

Even though the derivation of the field equations for6A does not involve variation
of the Lagrangian (1.2.26) with respect to the metric tensor 𝛾!", it will be useful in the
calculations that follow. Therefore, we give it here. The Lagrangian derivative with
respect to the metric tensor is defined similarly to (1.2.24):

$L
$𝛾13 ≡ 𝜕L𝜕𝛾13 – 𝜕𝜕x! 𝜕L𝜕𝛾13,! . (1.2.30)

We calculate the partial derivative of L with respect to the metric tensor with the
technique being similar to that shown in equation (1.2.27). It brings (1.2.30) to the form

$L
$𝛾13 = 𝜕∗L𝜕𝛾13 + 𝜕L𝜕6B

;!

𝜕(C-!, 6B󵄨󵄨󵄨󵄨󵄨,- )𝜕𝛾13 –( 𝜕L𝜕6B
;"

𝜕(C-", 6B󵄨󵄨󵄨󵄨󵄨,- )𝜕𝛾13,! )
,!
. (1.2.31)
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Then, after using the definition (1.2.9) to calculate the partial derivatives from the
Christoffel symbols, we transform (1.2.30) to an explicitly covariant form:

$L
$𝛾13 = 𝜕∗L𝜕𝛾13 – 1

2
[ 𝜕L𝜕6B

;"
6B󵄨󵄨󵄨󵄨󵄨,- (𝛾-(1$3)" $!, + 𝛾-(1$3), $!" – 𝛾!-$(1, $3)" )]

;!
. (1.2.32)

This expression is a particular case of the Lagrangian derivative with respect to the
metric given in Appendix A.3.3 (see (A.3.44)) where we use the notation g!" for the
general case of the metric tensor on manifold instead of 𝛾!" which is the Minkowski
metric in curvilinear coordinates.

At last, it is important to remark that any covariant derivative in the Lagrangian
which can be represented as a divergence, does not contribute to the Lagrangian
derivative (1.2.24) and, consequently, does not change the field equations (1.2.25). One
can see this, following a simple logic. Add to the Lagrangian L a divergence: L →
L + div, where div = D!

,! from a vector density D! = D!(6A, 𝛾,-). WhenD! vanishes
on the boundary of integration, it preserves the numerical value of the action. The
divergence of the vector field does not contain the second derivatives and is written as

D!
,! =

𝜕D!𝜕6A 6
A
,! +

𝜕D!𝜕𝛾,- 𝛾,-,!. (1.2.33)

Applying the operator of the Lagrangian derivative (1.2.24) to this expression, one
easily obtains

$(𝜕!D!)
$6A ≡ 0, (1.2.34)

$(𝜕!D!)
$𝛾,- ≡ 0. (1.2.35)

The identities, like (1.2.34) and (1.2.35), are also valid in more general cases as
explained in Appendix A.2.4 (see, for instance, formulae (A.2.40) and (A.2.41)).

1.2.3 The Noether theorems

We discuss in this section two important theorems on conserved laws in the field
theory formulated and proved by Emmy Noether. These theorems find numerous
applications and, for the sake of generality, we consider them in the case of the Lag-
rangian that depends not only on the first but also on the second derivatives of the
field variables, thus, extending the Lagrangian (1.2.17):

S = ∫
K
d4xL [8A(x),8A

,!(x),8A
,!"(x)] . (1.2.36)

where the set of the dynamical variables 8A = {6B,m!"} represents both the matter
and metric fields. Here, the tensor m!" can be either the Minkowski metric '!", or the
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Minkowski metric in curved coordinates 𝛾!", or a metric ḡ!" of a background curved
spacetime, or a dynamical metric g!" on a curved spacetimemanifold. We have shown
the arguments of the Lagrangian as being chosen in the form of partial derivatives
because they are more convenient for doing variational calculations due to the prop-
erty (1.2.19). Of course, the Lagrangian is a covariant scalar density and depends in
reality on the covariant derivatives of the fields.

Let us consider an arbitrary group of infinitesimal transformations of the coordin-
ates and the field variables, generalizing the group (1.1.15) in mechanics. Restricting
our consideration to a linear approximation, we represent the variations of the
coordinates and the fields under such transformations as

$x! = x󸀠! – x!, (1.2.37)

$󸀠8A(x) = 8󸀠A(x󸀠) – 8A(x), (1.2.38)

which generalize (1.1.18) and (1.1.17), respectively. In the framework of the primed
system, one can shift to the previous values of the coordinates, x󸀠 → x,

8󸀠A(x + $x) = 8󸀠A(x) + 𝜕8A(x)𝜕x! $x!. (1.2.39)

Now we introduce the other variation of the field variables:

$8A(x) = 8󸀠A(x) – 8A(x) = $󸀠8A(x) – 𝜕8A(x)𝜕x! $x! (1.2.40)

that is infinitesimal as well. The advantage of (1.2.40) with respect to the variation
defined in (1.2.38) is that it commutes with the partial derivatives

$ (𝜕!8A) = 𝜕! ($8A) , (1.2.41)

as in (1.2.19) for arbitrary variations defined in (1.2.18). We emphasize, at the same
time, the variation (1.2.38) does not commute with covariant derivatives.

Transformations (1.2.37), (1.2.38) induce a perturbation of the action (1.2.36), $󸀠S =
S󸀠 – S which in linear approximation reads

$󸀠S = ∫
K󸀠
d4x󸀠L 󸀠 [8󸀠A(x󸀠),8󸀠A,!(x󸀠),8󸀠A,!"(x󸀠)]

– ∫
K
d4xL [8A(x),8A

,!(x),8A
,!"(x)] . (1.2.42)

As the coordinates x󸀠 are dummy arguments of integration, and since the change in
the boundary K󸀠 is infinitesimal by assumption, the two integrals in (1.2.42) can be
transformed to
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$󸀠S = ∫
K
d4xL 󸀠 [8󸀠A(x),8󸀠A,!(x),8󸀠A,!"(x)]

– ∫
K
d4xL [8A(x),8A

,!(x),8A
,!"(x)]

+ ∮
𝜕K
ds,$x,L [8A(x),8A

,!(x),8A
,!"(x)] , (1.2.43)

where 𝜕K is the boundary of the four-dimensional domain of integration, and ds, is
a 3-dimensional element of the integration on the boundary. Equation (1.2.43) can be
recast to the following form by making use of four-dimensional divergence theorem

$󸀠S = ∫
K
d4x [$L + 𝜕(L $x!)𝜕x! ] . (1.2.44)

The variation of the Lagrangian

$L = L 󸀠 [8󸀠A(x),8󸀠A,!(x),8󸀠A,!"(x)] – L [8A(x),8A
,!(x),8A

,!"(x)] (1.2.45)

generalizes both (1.2.44) and (1.1.26), and we have introduced a shorthand notation
for L ≡ L [8A(x),8A

,!(x),8A
,!"(x)] which we shall also use in the text that follows.

Now, we demand the invariance of the action (1.2.36) with respect to transform-
ations of the group which means setting $󸀠S = 0. It makes the integral on the right
side of (1.2.44) vanish whichmeans that its integrandmust be zero. However, the right
hand side can be amended with a divergence of a vector density B! that is chosen in
the form of a solenoidal (divergenceless) field,

$L + 𝜕(L $x!)𝜕x! ≡ 𝜕B!𝜕x! , (1.2.46)

where, B! = B!(8A,8A
,!) is a vector density of weight +1. Although the divergence in

the right side of (1.2.46) vanishes identically it does not mean that the field B! is nil
itself. Indeed, it can be always chosen in the form of a divergence B! ≡ b!"," from a
skew-symmetric tensor density b!" = b[!"] ̸= 0. Such divergenceless vector fields play
an essential role in constructing conserved quantities. For this reason, and for the
sake of generality, we continue to consider the vector density B! explicitly. We have
to note that B! can be either a part of or have no relation to the Lagrangian under
consideration. Nonetheless, by using it, one can modify and correct the conserved
quantities derived from the Lagrangian by the direct Noether’s procedure.

It is necessary to remark the following. Some authors permit on the right hand
side of the identity (1.2.46) a divergence that does not vanish identically,

$L + 𝜕(L $x!)𝜕x! ≡ 𝜕B!
1𝜕x! , (1.2.47)

see, for example, [240]. Indeed, sometimes symmetries under consideration lead just
to an identity of the type (1.2.47), not to (1.2.46). However, because in this book we
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do not consider models which lead to the identities of the type (1.2.47) we do not use
(1.2.47) in what follows.

The variation of the Lagrangian in (1.2.45), $L , can be represented in terms of the
variations of its arguments:

$L = 𝜕L𝜕8A $8
A + 𝜕L𝜕8A

,,
$(8A

,,) +
𝜕L𝜕8A

,,-
$(8A

,,-). (1.2.48)

Because the operations of taking the $-variation and the partial derivatives com-
mute, the variation (1.2.48) of the Lagrangian can be reshuffled and presented in the
following form:

$L = $L
$8A $8

A + 𝜕, [ $L
$8A

,,
$8A + 𝜕L𝜕8A

,,-
$8A

,-] , (1.2.49)

where the notation

$L
$8A = 𝜕L𝜕8A – 𝜕,( 𝜕L𝜕8A

,,
) + 𝜕,-( 𝜕L𝜕8A

,,-
) (1.2.50)

stands for the Lagrangian derivative generalizing the Lagrangian derivative (1.2.24) to
the case of the Lagrangians depending on the second derivatives of the field variables
(for more detail, see (A.2.38) and (A.2.42) in Appendix A.2.4), and we have used short-
hand notations for the operators of partial derivatives 𝜕- ≡ 𝜕/𝜕x-, 𝜕,- ≡ 𝜕,𝜕-. We have
also defined a Lagrangian derivative with respect to the partial derivatives of the field
variables,

$L
$8A

,,
= 𝜕L𝜕8A

,,
– 𝜕- 𝜕L𝜕8A

,-,
. (1.2.51)

Finally, substituting (1.2.49) into the identity (1.2.46), one brings it to the following
form,

$L
$8A $8

A ≡ 𝜕- [– $L
$8A

,-
$8A – 𝜕L𝜕8A

,,-
$8A

,, – L $x- + B-] . (1.2.52)

This equation is customarily called themain Noether’s identity.
Notice that deriving the identity (1.2.52) one does not impose any limitations on

the field variables besides their differentiability. Furthermore, derivation of (1.2.52)
does not set any constraints on the variations of the variables at the boundary of the
integration domain K in (1.2.43). The vector density B! is divergenceless, 𝜕!B! = 0,
but otherwise remains arbitrary inside the domain of integration of the action. Its par-
ticular choice depends on the physical problem under consideration. For example, the
procedure of symmetrization of the canonical energy-momentum tensor which will be
discussed in Section 1.2.4 will lead to a specific choice of this vector field.
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For particular applications of the Noether identity (1.2.52) we have to specify
the transformation group (1.2.37), (1.2.38) of the dynamical variables and use it for
calculating the variations entering (1.2.52). We consider this procedure in the next
Sections.

The first Noether’s theorem
The first Noether’s theorem is formulated as follows.
– If the action functional, S, is invariant with respect to transformations of a finite

n-parameter (with n constant parameters %a) Lie group Gn, then, there exist n lin-
early independent identities relating the Lagrangian derivative to a divergence of a
vector density field.

To prove it we use the general identity (1.2.52). Transformations of coordinates
and field variables (1.2.37) and (1.2.38) making up the finite group Gn, are linearly
proportional to coordinates and field variables,

$x! = %aX̂ax!, (1.2.53)
$󸀠8A = %aĴa8A, (1.2.54)

where %a are arbitrary constant parameters with the group index a = 1, . . . , n, while
X̂a and Ĵa are operators generating the transformations of the group Gn but not
depending on the fields 8A and/or their derivatives.

Let us now pick up the generators X̂a in the form of partial derivatives, X̂a = .,a 𝜕,,
contracted with n vector fields, .,a = .,a (x), of displacements. Then, the perturbations
(1.2.53) and (1.2.40) which enter (1.2.52), take the form:

$x! = %a.!a , (1.2.55)
$8A = %a (Ĵa8A – .,a 𝜕,8A) . (1.2.56)

Substituting (1.2.55) and (1.2.56) into (1.2.52), where we set for a divergenceless vector
density B, ≡ %aB,

a , and dropping off the constant parameters %a, one obtains the
identity

(Ĵa8A – .,a 𝜕,8A) $L
$8A ≡ 𝜕, (J ,

a + B,
a) . (1.2.57)

The set of n quantities J ,
a presents the Noether currents:

J ,
a = – [ $L

$8A
,,
(Ĵa8A – .!a 𝜕!8A)

+ 𝜕L𝜕8A
,,-

(Ĵa8A
,- – .!a8

A
,-!) + L .,a] . (1.2.58)

Equations (1.2.57) and (1.2.58) prove the first Noether’s theorem. There also exists the
inverse theorem [266] but we do not consider it here.
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A direct consequence of the first Noether’s theorem is that if the action functional
is invariant with respect to the group transformation and the Lagrangian derivative
on the left side of (1.2.57) vanishes, then, the corresponding Noether currents J

,
a are

conserved,

𝜕,J ,
a = 0. (1.2.59)

The corrected currents are also conserved:

𝜕, (J ,
a + B,

a) = 0. (1.2.60)

Now, we recall that 8A = {6B,m!"}. Then, if the metric m!" is a fixed (background)
field, then the Lagrangian derivative $L /$8A does not vanish because $L /$m!" ̸= 0.
However, even in this case the conservation laws analogous to (1.2.59) or (1.2.60)
can be established. Such a possibility will be shown, for example, in deriving the
conservation law (1.2.99).

The second Noether’s theorem
A local gauge group, an infinite Lie group, can be obtained from a finite group Gn by
replacing the constant group’s parameters %a by n continuous fields %a(x), then Gn →
G∞n. Such a procedure is called the group’s localization. For example, the group of
coordinate transformations in spacetime is a Lie group G∞4 := x󸀠! = f !(x), where f !(x)
are smooth differentiable functions.

The infinite Lie groups are used to study the continuous symmetries of the action
functional S. It turns out that these symmetries are directly associatedwith a set of cer-
tain differential equations. This is the essence of the second Noether’s theorem which
is formulated as follows:
– If the action functional, S, is invariant with respect to transformations of a Lie group

G∞n parametrized by n differentiable fields and their derivatives up to the order
k, then there exist n identical relations between the Lagrangian derivatives and
derivatives from them up to the order k.

Let us prove this theorem. Assume that the action (1.2.40) is invariant under the action
of transformations of the group G∞n. Let $x! and $󸀠8A are linearly proportional to
functions %a(x) (a = 1, 2, ..., n) and their derivatives. This extends the case of a finite
group Gn to the generators which are continuously differentiable functions. For the
sake of simplicity we consider here only the first derivatives of %a(x) (k = 1) as the
case of the higher derivatives (k > 1) is technically similar but more tedious. Thus,
generalization of (1.2.55) and (1.2.56) to the case of the Lie group is:

$x! = %a(x).!a , (1.2.61)

$8A = %a(x)9A
a (8,8,!,8,!") +

𝜕%a(x)𝜕x! 9A!
a (8,8,!,8,!"), (1.2.62)



1.2 Field theory in the Minkowski space 35

where again, .,a = .,a (x), and we have included all terms depending on the derivatives
of the field variables to functions 9A

a and 9A!
a defining the group structure.

Substituting (1.2.61) and (1.2.62) into themain Noether’s identity (1.2.52), where we
set for a divergenceless vector density B, ≡ %a(x)B,

a , and making use of the Leibniz
rule for differentiation by parts, result in:

[9A
a
$L
$8A – 𝜕, (9A,

a
$L
$8A)] %a ≡ 𝜕- (I - + %aB-

a) . (1.2.63)

Here the current I - is defined as

I - ≡ –{ $L
$8A

,-
[%a9A

a +
𝜕%a𝜕x! 9A!

a ] + 𝜕L𝜕8A
,,-

𝜕, [%a9A
a +

𝜕%a𝜕x! 9A!
a ]

+ %a (L .-a + 9
A-
a
$L
$8A)} . (1.2.64)

Now, we integrate this identity, apply the Gauss’s theorem, and assume that %a(x) and
their derivatives vanish at the boundary of the integration domain K. This yields the
integral identity,

∫
K
d4x [9A

a
$L
$8A – 𝜕, (9A,

a
$L
$8A)] %a(x) ≡ 0. (1.2.65)

Because %a(x) are arbitrary functions inside the domain of integration, one obtains a
set of n differential equations for the Lagrangian derivatives (of the first order in the
case under consideration)

𝜕, (9A,
a

$L
$8A) – 9A

a
$L
$8A ≡ 0. (1.2.66)

This proves the second Noether’s theorem. There is also an inverse theorem [266] but
we do not consider it here.

Let us define in the space of the Lie group the inverse object –19b
B, such that

–19b
B,9

A,
b ≡ $AB, where $AB is the tensor product of the Kronecker symbols with the

indices belonging to the space of the field variables. Then, the differential equation
(1.2.66) can be presented in a covariant form:

D, (9A,
a

$L
$8A) ≡ 0 ; (1.2.67)

D, ≡ 𝜕, – Gb
a,, Gba, ≡ –19b

B,9
B
a

where D, means a covariant derivative constructed with the help of a generalized
connection Gba, introduced in the space of the Lie group.
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The important point to notice is that equation (1.2.63) not only associates the Lag-
rangian derivatives with the set of identities (1.2.66), the same (1.2.67), but also states
that the current (1.2.64) is conserved identically,

𝜕-I - ≡ 0. (1.2.68)

The vector fieldB- entering (1.2.63) is divergenceless, 𝜕-B- = 0, on its own. Therefore
the corrected current is conserved identically as well,

𝜕- [I - + %a(x)B-
a] ≡ 0. (1.2.69)

Concluding the point, it is necessary to make some remarks.
First, setting in (1.2.61) and (1.2.62) %(x) = % = const, one finds that the identity

(1.2.63) is simplified to the identity (1.2.57), current (1.2.64) is simplified to the currents
(1.2.58).

Second, the identities of the general type (1.2.66) and (1.2.68) are the basis for
constructing the Klein and the Klein-Noether systems of identities and constructing
superpotentials, see Sections 1.4.1, 6.1.2 and 7.1.1.

Third, the currents in (1.2.68) and (1.2.69) are conserved identically, independently
onwhether the equations ofmotion are satisfied or not. If the equations ofmotion hold
and the Lagrangian derivative $L /$8A disappears from the expression (1.2.64) then
the current,I ,, transforms to the formJ , given in (1.2.58), and the identities (1.2.68)
and (1.2.69) become physically sensible conservation laws:

𝜕-J - = 0, (1.2.70)𝜕- [J - + %a(x)B-
a] = 0. (1.2.71)

Fourth, a possibility to include divergenceless vector density B, = %a(x)B,
a into the

current (1.2.64) allows us to develop the procedure of the Belinfante symmetrization
of the canonical energy-momentum tensor of perturbations in general relativity and
arbitrary metric theories, see Sections 6.2 and 7.2.3, respectively.

Diffeomorphisms and the Lie derivatives
Until now, we have not yet specified the group of transformations that leaves the
action functional invariant. The corresponding variations of the field variables gen-
erated by the action of the group can be split in two categories:
– Intrinsic variations. They are generated by the gauge transformations of the

dynamical field variables which change their functional form in the corres-
ponding functional space. The intrinsic variations are not related to coordinate
transformations at all, and do not change the values of the background fields.

– Extrinsic variations. They are generated by coordinate transformations. They
change both the functional form of the dynamic variables and that of the back-
ground fields.
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The intrinsic and extrinsic variations are associated with different symmetries of the
physical system and should be clearly distinguished one from another. In this book
we focus primarily to the metric theories of gravity and pay more attention to the sym-
metries and corresponding conserved quantities generated by the extrinsic variations.
Our classification of the field variations coincide with the anatomy of variations in the
Section 3.9.4.1 in the book [267].

Let us make an infinitesimally small deformation of coordinates in the spacetime
manifold M :

x󸀠, = x, + .,(x), (1.2.72)

where a smooth vector field .! defines a congruence of integral curves alongwhich the
coordinate grid is dragged. We demand that the transformation (1.2.72) preserves the
local differentiable structure of the manifold M . Such a differentiable mapping from
themanifoldM to a newmanifoldM 󸀠 is called a diffeomorphism. In what follows, we
assume that .! vanishes on the boundary of integration of the action. Recall also that
infinitesimal deformation (1.2.72) generalizes the time shift (1.1.18) in mechanics.

Under the action of the diffeomorphism (1.2.72) all geometrical objects, say 8A(x),
residing on the manifold M are mapped to the objects, 8󸀠A(x󸀠), residing on manifold
M 󸀠 in accordance with their transformation properties. In the linear approximation
the change is given by

8󸀠A(x󸀠) = 8A(x) + 8A(x)󵄨󵄨󵄨󵄨󵄨,- 𝜕,.-, (1.2.73)

where the permutation operator 8A(x)󵄨󵄨󵄨󵄨󵄨,- is identical to that in (1.2.8) and defined by
the transformation properties of 8A(x) (see Appendices A.1 and A.3.1 for more detail).
Diffeomorphism (1.2.72) and transformation (1.2.73) correspond to the infinitesimal
perturbations (1.2.53) and (1.2.54) of coordinates and the field variables respectively:

$x, = .,(x), (1.2.74)

$󸀠8A(x) = 8A(x)󵄨󵄨󵄨󵄨󵄨,- 𝜕,.-. (1.2.75)

The transformed fields8󸀠A(x󸀠) reside on the deformedmanifoldM 󸀠 and cannot be dir-
ectly compared with the objects on themanifoldM . To compare the geometric objects
in M 󸀠 with those in M , one has to pull them back from M 󸀠 to M by making use of
the, so-called, Lie dragging or Lie displacement along the integral curves of the vector
field .!. This procedure consists of two parts: first, we transform the geometric object
8A in accordance with equation (1.2.73), and, second, we shift the argument of 8󸀠A(x󸀠)
from the point x󸀠 to the point x by making use of the Taylor expansion, so that

8󸀠A(x󸀠) = 8󸀠A(x) + .!𝜕!8A(x) + O (. 2) . (1.2.76)

After that we drop off all terms which are non-linear in .! and compare 8󸀠A(x) with
8A(x) at the same point of M . The difference
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$8A(x) = 8󸀠A(x) – 8A(x), (1.2.77)

between 8󸀠A(x) and 8A(x) is the standard definition of the Lie derivative of 8A(x), see
e. g. [409],

$8A ≡ £.8A. (1.2.78)

We would like to draw the attention of the reader to the fact that for historical reasons
definition of the Lie derivative (1.2.78) which we use in this book, has an opposite sign
with respect to the definition used in standard mathematical textbooks on differen-
tial geometry like [409]. It is also useful to point out that variation (1.2.77) has been
already used in our calculations, see (1.1.26–1.1.27) and (1.2.40). In case of (1.2.78), this
variation is fully extrinsic as it is induced by the diffeomorphism (1.2.72).

Explicit expression for the Lie derivative (1.2.78) can be obtained after combining
(1.2.73) and (1.2.76–1.2.78) which yields:

£.8A ≡ –.,𝜕,8A + 8A󵄨󵄨󵄨󵄨󵄨,- 𝜕,.-. (1.2.79)

This expression is given in terms of the partial derivatives but can be reformulated in
an explicitly covariant form. To this end we use definition of the covariant derivative
(1.2.8) to rewrite the partial derivatives in (1.2.79) as follows,

𝜕,8A = 8A
;, – C

!
," 8A󵄨󵄨󵄨󵄨󵄨"! , (1.2.80)𝜕,.- = .-;, – C-,".". (1.2.81)

Substituting (1.2.80), (1.2.81) into (1.2.79) and elaborating on terms depending on the
Christoffel symbols, show that all such terms cancel out, yielding

£.8A = –.,8A
;, + 8A󵄨󵄨󵄨󵄨󵄨,- .-;,. (1.2.82)

We have provided derivation of (1.2.82) in terms of the covariant derivatives of flat
spacetime but, in fact, any curved spacetime manifold with a pseudo-Riemannian
metric yields the same result (see, e. g., (A.3.27) in Appendix A.3.3). We discuss other
important properties of the Lie derivatives in Appendix A.2.3.

1.2.4 Conserved quantities in field theories

The differential, integral and global conservation laws
It is very important for physical applications to find out the consequences which fol-
low from the Noether theorems. The key quantities are currents, J ,, which satisfy a
differential conservation law,

𝜕,J , = 0, (1.2.83)
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Figure 1.1: A volume V as a truncated cylinder in a
n-dimensional spacetime manifold.

that can be interpreted as an equation of continuity,

𝜕0J 0 = –𝜕iJ i. (1.2.84)

Usually, J , are vector densities of weight +1. If this is the case, the expression 𝜕,J ,

is a scalar density and the conservation law (1.2.83) can be rewritten in an equivalent
covariant form:

D,J
, = 0, (1.2.85)

where D, is a generalized notation for a covariant derivative that is interpreted
depending on the problem under consideration either as a covariant derivative
defined with the use of a flat metric in curvilinear coordinates, or as that of a pseudo-
Riemannianmetric of a fixed backgroundmanifold, or as one of a physical metric on a
dynamical spacetime manifold, etc. For example, the transition from the partial to the
covariant divergence of the vector density in case of the dynamical metric, see (A.2.12)
in Appendix A.2.1. Also, the currents J , and the conservation laws for them (1.2.83–
1.2.85) are valid in case of an arbitrary n-dimensional pseudo-Riemannian spacetime
manifolds with the metric signature (–, +, +, . . . , +).

What are the global consequences of the covariant conservation law (1.2.85)? To
answer this question it ismore convenient to operatewith the differential conservation
law of the vector density written down in the form of the partial derivative (1.2.83).
Let us consider an n-dimensional volume V in a spacetime whose boundary consists
of an (n – 1)-dimensional timelike cylinder S and two (n – 1)-dimensional spacelike
cross-sections, G0 and G1. For the sake of simplicity we assume that S is defined by
the condition x1 = r = const in an appropriate coordinate frame; each of the cross-
sections, G0 and G1 are defined by their own constant time: t0 and t1 respectively, see
Figure 1.1. Each of the cross-sections G are restricted by the boundary 𝜕G that is an
intersection of Gwith S. Because equation (1.2.83) represents a scalar density of weight
+1, it can be easily integrated over the volume V. Applying the Gauss (Stokes) theorem
to (1.2.83), one gets,
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∫
V
dnx𝜕,J , = ∫

G1
dn–1xJ 0 – ∫

G0
dn–1xJ 0 +∮

S
dtdn–2xJ 1 = 0, (1.2.86)

where we have employed our choice of the coordinate system for making simplifica-
tion in the last term of (1.2.86), dnx = dtdn–1x = dtdx1dn–2x, and dn–1x = dx1dn–2x is the
element of integration on the cross-sections G, while dn–2x is the element of integration
on the boundary 𝜕G. Notice that the relation (1.2.86) contains the integral quantity

P = ∫
G
dn–1xJ 0 (1.2.87)

where the integrand is the time component of the current,J 0, that is interpreted as a
density of P. If one imposes a boundary condition on the last term in (1.2.86) such as

∮
S
dtdn–2xJ 1 = ∫t1

t0
dt∮
𝜕G
dn–2xJ 1 = 0, (1.2.88)

then, (1.2.86) states that P is independent of the choice of the cross-section G, which
means that it is conserved and does not depend on time. If the condition (1.2.88) does
not hold, then P is not conserved.

Let us clarify the physical meaning of the boundary condition (1.2.88). Let us
assume that the difference $t = t1 – t0 is infinitesimal. Then the equality (1.2.86) can
be rewritten in the form:

dP
dt

= –∮
𝜕G
dn–2xJ 1. (1.2.89)

The relation (1.2.89) tells us that if the flux of the vector fieldJ i through 𝜕G is absent,
then the quantity P does not depend on time; if the flux is not zero, then P is not
conserved.

Generally, if the boundary condition (1.2.88) is satisfied, the quantity (1.2.87) is
called an integral conserved quantity; in the case when the boundary 𝜕G goes to
infinity, the quantity (1.2.87) is called a global conserved quantity.

The canonical conserved quantities
The conserved quantities obtained on the basis of the Noether theorem outlined in
the previous sections are called the canonical conserved quantities. In this section we
demonstrate the principles of construction and properties of the canonical quantities
by studying a simple example of a field theory in theMinkowski space in arbitrary cur-
vilinear coordinates with an action taken in the covariant form (1.2.17). To shorten the
formulae we use again a unified notation for the matter fields, 6A, and the Minkowski
metric, 𝛾!", by denoting 8A = {6A, 𝛾!"}. Then, the action (1.2.17) is rewritten as

S = ∫
K
d4xL (6B,6B

;!, 𝛾!") = ∫
K
d4xL (8A,8A

,!). (1.2.90)
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This is a simplified case of the action (1.2.36) without second derivatives of the fields
that directly permits us to use the results of the Noether theorems.

We assume that the group transformations used in the first Noether’s theorem
are diffeomorphisms (1.2.72) transforming the fields as shown in (1.2.73) and inducing
variations (1.2.74) and (1.2.75) of coordinates and fields. Comparing (1.2.75) with (1.2.54)
we see that the operator Ĵa entering (1.2.54) is

Ĵa8A = 8A󵄨󵄨󵄨󵄨󵄨!" 𝜕!."a . (1.2.91)

Replacing this expression for Ĵa to both sides of equation (1.2.57) and recalling the
definition (1.2.79) of the Lie derivative, we can recast the Noether identity (1.2.57) in
the following form:

$L
$8A £.a8

A = 𝜕, (J ,
a + B,

a) , (1.2.92)

where the Noether current

J ,
a = – 𝜕L𝜕8A

,,
£.a8

A – L .,a , (1.2.93)

and the vector field density B,
a is solenoidal

B,
a ,, = 0. (1.2.94)

Let us now return to the original variables, 6B and 𝛾!", and write (1.2.92) and (1.2.93)
in a more explicit form:

$L
$6A £.a6

A + $L
$𝛾!" £.a𝛾!" = 𝜕, (J ,

a + B,
a) , (1.2.95)

J ,
a = – 𝜕L𝜕6A

,,
£.a6

A – 𝜕L𝜕𝛾!",, £.a𝛾!" – L .,a . (1.2.96)

We notice that the Lagrangian derivatives are covariant as shown in (1.2.29) and
(1.2.31), the Lie derivative is covariant according to (1.2.82), and expressions 𝜕L /𝜕6A

,,
and 𝜕L /𝜕𝛾!",, are covariant as well, see (1.2.28) and (1.2.31). This remark elucidates
the covariant nature of expressions (1.2.95) and (1.2.96). In particular, current (1.2.96)
is a covariant vector density of weight +1.

Now, we specify that the finite group of transformations (1.2.55) and (1.2.56) is
the Poncaré group of motions of the Minkowski space with the displacement vectors
.!a being ten Killing vectors, .!K = {.!" , .!["𝛾]}. Components of the Killing vectors are
given in (1.1.72) and (1.2.5) in the Lorentzian and curvilinear coordinates, respectively.
Because the Poincaré group does not change the Minkowski metric, the Lie derivative
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£.K𝛾!" = 0, see (1.2.6), and all terms being proportional to the Lie derivative of the
metric tensor vanish. It reduces equation (1.2.95) to a simpler form

$L
$6A £.K6

A = 𝜕, (J ,
C + B,

K) , (1.2.97)

while the Noether canonical current (1.2.96) reads

J ,
C (.

!
K ) = – 𝜕L𝜕6A

;,
£.K6

A – L .,K

= 𝜕L𝜕6A
;,
(.!K6A

;! – 6A󵄨󵄨󵄨󵄨󵄨!" ."K ;!) – L .,K . (1.2.98)

Assuming that the field equations (1.2.25) hold, equations (1.2.97), (1.2.94) lead to a
differential conservation law for the canonical current (1.2.98):

𝜕,J ,
C = 0. (1.2.99)

Ten canonical integral quantities (1.2.87) corresponding to the ten Killing vectors are:

PC(.!K ) = ∫
G
d3xJ 0

C (.
!
K ). (1.2.100)

They are analogous to the ten conserved quantities in mechanics of massive point
particles, see (1.1.91) and (1.1.95).

To study physical properties of the canonical current (1.2.98) associated with
its conservation, we notice that by employing the Killing equations (1.2.6) it can be
written down in the following form:

J ,
C = C(3,.3K + 3,"3.K[3;"], (1.2.101)

where we have introduced the following notations,

C(3, ≡ 𝜕L𝜕6A
;,
6A

;3 – L $,3, (1.2.102)

3,"3 ≡ – 𝜕L𝜕 (6A
;,) 6A󵄨󵄨󵄨󵄨󵄨"3 . (1.2.103)

Here, the quantity C(3, is called the canonical energy-momentum tensor density8 and
3,"3 is a spin (or helicity) tensor density both being of weight +1.

8 In some applications the canonical energy-momentum tensor C(3, = C(3,/√–𝛾 is more useful
instead of the tensor density C(3,.
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In many important cases the energy and momentum of a closed physical system
are conserved. Therefore, we are interested in formulating the conservation law of
the canonical energy-momentum tensor density C(3,. They can be derived from the
conservation law of the canonical current J ,

C associated with different Killing vec-
tors. First, let us pick up the Killing vectors of translations in the Minkowski space,
.!K = .!" , and substitute them to (1.2.101). Equation (1.2.7) tells us that the Killing vec-
tors of translations are covariantly constant, .!";1 = 0, so that the second term in the
right side of (1.2.101) drops out, and the canonical current (1.2.101) corresponding to
the translational symmetry, is reduced to

J
,
C (.

!
" ) = C(3,.3" . (1.2.104)

The conservation law (1.2.99) applied to (1.2.104) along with (1.2.7) yields

C(3,;,.3" = 0. (1.2.105)

which tells us that the energy-momentum tensor density is conserved

C(3,;, = 0. (1.2.106)

The conservation law (1.2.106) is necessary but not sufficient for a number of applic-
ations. The fact of the matter is that the canonical energy-momentum tensor density
C(!" is not symmetric, C(!" ̸= C("!, excluding the simplest cases, and can not be used
alone to describe the conservation law for angular momentum of the system.

To find out the skew-symmetric part C([!"] of the energy-momentum let us again
turn to the canonical current (1.2.101) and use the conservation law (1.2.99) for it. But
now we consider the Lorentzian rotations that are the infinitesimal spatial rotations
and boosts in the Minkowski space generated by the corresponding Killing vectors,
.!K . For these vectors the canonical current (1.2.101) takes the following form

J ,
C (.

!
K ) = C(3,.3K + 3,13.K[3;1], (1.2.107)

.3K ≡ .3[!"], (1.2.108)

where the term, C(3,.3[!"], is associated with the orbital momentum of the system
and 3,13.([!"])[3;1] describes the spin or intrinsic angular momentum of the system.
Applying the conservation law (1.2.99) to the canonical current (1.2.107) along with
equations (1.2.7), (1.2.106) yields

([!"] = 3,[!"];,. (1.2.109)

It tells us that in themost general case the canonical energy-momentum tensor density
of a physical system is not symmetric, and its skew-symmetric part is associated with
the divergence of the system’s spin.
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Fortunately, it is possible to build a symmetric tensor density of energy-
momentum. A procedure was proposed by Belinfante [35] and is called the Belinfante
symmetrization which we now discuss.

The Belinfante symmetrization
Belinfante [35] noticed that the conserved current in the right side of (1.2.97) is defined
up to a solenoidal vector density B!

K added to the canonical current (1.2.101). The
solenoidal vector field can always be chosen in the form of a divergence from a
skew-symmetric tensor density b!"𝛾 = b[!"]𝛾 of weight +1 such that

B!
K ≡ (b!"𝛾.𝛾K);" . (1.2.110)

Indeed, taking the divergence of both sides of (1.2.110) we get

B!
K ;! ≡ 0. (1.2.111)

Belinfante introduced a new conserved symmetrized current

J !
B = J !

C + B!
K , (1.2.112)

with J !
C defined in (1.2.101) and B!

K defined by (1.2.110) where

b!"𝛾 ≡ 3𝛾[!"] + 3![𝛾"] – 3"[𝛾!]. (1.2.113)

The tensor density b!"𝛾 is called the Belinfante correction.
The Belinfante energy-momentum tensor density is defined as a linear

combination

B(!" = C(!" + b"𝛾!;𝛾, (1.2.114)

which is supposed to be symmetric, B(!" = B("!. In order to prove that the Belinfante
energy-momentum is indeed symmetric, let us consider the skew-symmetric part of
(1.2.114). Because of (1.2.109), we have

B([!"] = 3𝛾[!"];𝛾 + b𝛾[!"];𝛾. (1.2.115)

Now we substitute the Belinfante correction b!"𝛾 to (1.2.115) which immediately tells
us that B([!"] = 0, q.e.d. Thus, indeed, B(!" is symmetrical in ! and ". For this reason,
it is called the symmetrized energy-momentum. Because the conservation law (1.2.99)
was used in proving (1.2.115), and it assumes that the field equations are satisfied, one
concludes that Belinfante’s symmetrization procedure is also valid under the same
condition.
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Due to the antisymmetry of the Belinfante correctionb!"𝛾 in ! and " in (1.2.113) and
by the conservation law (1.2.106), the energy-momentum (1.2.114) is also conserved
differentially,

B(!";" = 0, (1.2.116)

of course, if the equations of motion hold as well.
Making use of the vector density (1.2.110) in the definition of the Belinfante cur-

rent (1.2.112) and combining it with (1.2.101), we construct the currentJ "
B . We can see

that it is expressed solely in terms of the Belinfante energy-momentum tensor density

J "
B = B(!".!K , (1.2.117)

where all of the ten Killing vectors have been used. The symmetry of B(,- and its
conservation law (1.2.116) lead to the conservation of the Belinfante current,

𝜕"J "
B = B(!".K(!;") = 0. (1.2.118)

This follows also after using (1.2.112), and taking into account the conservation of the
canonical current (1.2.99) and the identity (1.2.111). Then, by the general recipe (1.2.87),
one constructs ten integral quantities

PB(.!K ) = ∫
G
d3xJ 0

B (.
!
K ). (1.2.119)

The metrical energy-momentum and conserved current
Now, let us turn to the second Noether’s theorem to study the physical system
(1.2.90) where we shall again separate the dynamical variables in the matter fields
and the metric tensor, 8A = {6A, 𝛾,-}. We assume that the variations of coordinates
and variables (1.2.61) and (1.2.62) in the second Noether’s theorem are induced by a
diffeomorphism defined by (1.2.74) and (1.2.78) with (1.2.79) that are

$x! = .!(x), (1.2.120)

$6A = £.6A = –.!6A
,! + 6A󵄨󵄨󵄨󵄨󵄨"! .!,"

= –.!6A
;! + 6A󵄨󵄨󵄨󵄨󵄨"! .!;", (1.2.121)

$𝛾,- = £.𝛾,- = –.!𝛾,-,! + 𝛾,-󵄨󵄨󵄨󵄨"! .!," = .,;- + .-;,. (1.2.122)

By comparing (1.2.120) and (1.2.121) with (1.2.61) and (1.2.62) we notice that the role
of the continuous parameter %a(x).!a (x) is played simply by .!(x) and the following
identifications are implied:

9A
a → –6A

,!, 9A"
a → 6A󵄨󵄨󵄨󵄨󵄨"! , (1.2.123)
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along with

9,-
a → –𝛾,-,!, 9,-"

a → 𝛾,-󵄨󵄨󵄨󵄨"! = $,!𝛾"- + $-!𝛾",. (1.2.124)

Then for the system (1.2.90) the current (1.2.64), that is conserved identically (1.2.68),
together with divergenceless vector density (1.2.69), acquires the form:

I ,
B = I , + B,

= – 𝜕L𝜕6A
,,
£.6A – 𝜕L𝜕𝛾!",, £.𝛾!"

–( $L
$6A 6A󵄨󵄨󵄨󵄨󵄨,- + $L

$𝛾!" 𝛾!"󵄨󵄨󵄨󵄨󵄨󵄨,-) .- – L ., + B,. (1.2.125)

Using the same arguments, which have been applied for proving the covariance of
expressions (1.2.95) and (1.2.96), one can prove that the current I , is a covariant
vector density of weight +1.

Now, we calculate the current, I ,, by making use of the translation Killing vec-
tors of the Minkowski space, .! → .!K = .!" , see (1.1.72). In doing this we shall pick up
B, in (1.2.125) to be the Belinfante vector density B, → B

,
K where B

,
K is defined in

(1.2.110). We also use definitions (1.2.102), (1.2.103) along with the Belinfante energy-
momentum B("! introduced in (1.2.114). Taking into account the Killing equations for
the metric tensor, £.K 𝛾!" = 0, and assuming that the field equations, $L /$6A = 0, are
satisfied, one obtains

I ,
B = (B(-, – S(-,) .-K . (1.2.126)

Here, a new quantity

S(!" ≡ 2 $L
$𝛾!" , (1.2.127)

is called the metrical energy-momentum tensor density which is just symmetric in
! and " by the above-given definition, S(!" = S("!. The metrical energy-momentum
tensor S(!" = S(!"/√–𝛾 is also used in physical applications.

Because both tensor densities in the right side of (1.2.126) are symmetric, and the
current I ,

B is conserved by (1.2.69), we conclude that

S(-,;, = B(-,;,. (1.2.128)

However, B(,- is conserved by (1.2.116). Thus, due to (1.2.128) the symmetrical energy-
momentum density is conserved as well,

S(3,;, = 0. (1.2.129)
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The equality (1.2.128) also assumes that the two tensor densities entering it are equal
up to a divergence of a skew-symmetric tensor density of a third rank o!,-. How-
ever, because of (1.2.128) and the symmetry of both tensor densities, S(,- and B(,-,
we conclude that o!,- must be fully skew-symmetric with respect to all three indices:
o!,- = o[!,-] which contradicts to the symmetry of the energy-momentum tensor dens-
ities. The only way to resolve this issue is to set o!,- ≡ 0, which reveals that the two
energy-momentum tensor densities are equal,

S(,- = B(,-. (1.2.130)

Effectively, it means that the current of the second Noether’s theorem is zero under the
conditions of the present consideration,

I
,
B = 0. (1.2.131)

Making use of the metrical energy-momentum, same as the Belinfante corrected
energy-momentum, we can introduce the symmetrical current,

J
,
S (.

!
K ) ≡ S(-,.-K , (1.2.132)

where all of the ten Killing vectors are used and which is differentially conserved:

𝜕,J ,
S (.

!
K ) = 0, (1.2.133)

similar to the Noether’s canonical current (1.2.99) and the Belinfante symmetrized cur-
rent (1.2.118). It allows us to construct the corresponding integral quantity of the type
(1.2.87):

PS(.!K ) = ∫
G
d3xJ 0

S (.
!
K ). (1.2.134)

Discussion
Let us summarize the findings of this subsection. We have discovered the con-
sequences of the first and second Noether’s theorems in application to the conser-
vation laws of the physical system described by the action functional (1.2.90) in the
Minkowski space. The first Noether’s theorem associates the global symmetries of the
action of the physical system with the canonical current J !

C being composed of the
canonical energy-momentum tensor density C(!" and spin 3!"𝛾. The canonical tensor
density C(!" is conserved but not symmetrical. The Belinfante symmetrization pro-
cedure introduces a new energy-momentum tensor density B(!" which is symmetrical
and conserved. A corresponding symmetrized current J !

B can be build out of the
Belinfante energy-momentum tensor density alone.

The second Noether’s theorem associates the local symmetries of the action of
the physical system with a conserved current I ! and introduces the metrical energy-
momentum tensor density S(!" which is symmetrical and conserved. A symmetrical
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current J !
S is build out of the metrical energy-momentum tensor density alone. The

conservation law of the corrected currentI !
B establishes the equality of the Belinfante

and metrical energy-momentum tensor densities which makes the current I !
B = 0 on

the equations of motion of the physical fields and for translation Killing vectors.
It turns out that on the equations of motion, Noether’s canonical, Belinfante’s and

metrical currents are tightly interrelated,

J !
B = J !

S = J !
C + (b!"3.3K );", (1.2.135)

where b!"3 is made of the spin tensor densities 3!"3, and all the currents are defined
for the ten Killing vectors of the Minkowski space, .3K . Respectively, corresponding
integral quantities, (1.2.100), (1.2.119) and (1.2.134), are connected as follows:

PB = PS = PC +∮
𝜕G
dsib0i3.3K , (1.2.136)

where 𝜕G is a two-dimensional boundary of the 3-dimensional volume G, and dsi is a
surface element of integration on 𝜕G.

One concludes that the values of PB and PS can coincide with that of PC, in
case when the closed surface integral from b0i3.3K disappears. It can happen for vari-
ous reasons: (1) the system can be closed so that the physical fields 6A vanish on the
boundary 𝜕G; (2) a fall-off behavior of the fields is rapid enough to make the surface
integral nil in case when 𝜕G → ∞; (3) the parity of the fields annihilates the surface
integral.

It is important to notice the role of divergence, div = 𝜕!B!, in the overall Noether’s
formalism of the conserved quantities. The divergence, being vanishing, does not con-
tribute to the Noether identity but it linearly couples with the conserved currents
which are, thus, defined with a certain degree of freedom of the solenodial vector field
B!. The condition of the symmetry imposed on the energy-momentum tensor dens-
ity singles out the divergence in the form of the Belinfante correction (1.2.110) which
connects the canonical Noether’s current with the symmetrized Belinfante current in
a unique way. The second Noether’s theorem and the symmetry condition imposed
on the energy-momentum tensor density equate the Belinfante and metrical energy-
momentum tensor densities. It shows that the symmetric energy-momentum tensor
density in the Minkowski space is unique.

1.2.5 Examples of field theories in the Minkowski space

It is useful to illustrate the applications of the Noether theorems with some examples
of simple, but physically important field theories. We consider the Lagrangian of
Maxwell’s electromagnetic field, the ideal fluid and a free relativistic scalar field. We
apply the Noether variational formalism to derive the field equations and to construct
the corresponding conserved energy-momentum tensor densities for the fields under
consideration.



1.2 Field theory in the Minkowski space 49

Electromagnetic field
The independent dynamical variable of electromagnetic field is a vector-potentialA! =
(A0,Ai) = (6,A), which unites the components of electric and magnetic fields in the
form of the electromagnetic tensor [285, 315]

F!" = A";! – A!;". (1.2.137)

Covariant derivatives in F!" can be replaced with the partial derivatives because,
due to the antisymmetry of the electromagnetic tensor, all terms with the Christoffel
symbols entering the covariant derivatives, are canceled out completely. Hence, the
covariant derivatives in the expression for the electromagnetic tensor are irrelevant
but they will be formally kept in the definition (1.2.137).

The Lagrangian for free electromagnetic field is

Lem = √–𝛾
160 F,-F,- =

√–𝛾
160 𝛾13𝛾,-F1,F3-. (1.2.138)

The second form of the Lagrangian in (1.2.138) disentangles the metric tensor from the
dynamical field variables which are A! with the lower index, but not A! = 𝛾!"A". Now,
we substituteLem and 6A ≡ A! into (1.2.29), take the variational derivative and obtain
the equations of motion of free electromagnetic field in curvilinear coordinates:

$Lem
$A!

= (𝜕Lem𝜕A!;" );"
= – 1

40√–𝛾F!";" = – 1
40F !"

," = 0, (1.2.139)

where F !" ≡ √–𝛾F!".
Now, let us consider the intrinsic (gauge) transformation of the field variables:

A󸀠! = A! + 𝜕!%(x). (1.2.140)

One can easily check that the electromagnetic tensor (1.2.137) is invariant under trans-
formation (1.2.140). Hence, the Lagrangian (1.2.138) and the field equations (1.2.139)
are invariant under (1.2.140) as well. Transformations (1.2.140) are the simplest
example of the transformations (1.2.61) and (1.2.62) where $x! = 0,9A

a = 0, and9A!
a = 1

with %a(x) = %(x). The identity (1.2.66) of the second Noether’s theorem in application
to electrodynamics is,

1
40 𝜕!"F !" ≡ 0, (1.2.141)

which is apparently valid due to the antisymmetry of F !".
Now, let us construct the canonical energy-momentum tensor density (1.2.104)

with using the Lagrangian (1.2.138):

C("! =
𝜕Lem
A,;!

A,;" – $!"Lem = √–𝛾
40 (F!1A1;" – $!" 14F,-F,-) . (1.2.142)
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This expression is neither symmetric nor gauge invariant with respect to transforma-
tion (1.2.140) but we can use the Belinfante symmetrization to fix it. The spin density
(1.2.103) for the Lagrangian (1.2.138) is

3,-1 = –√–𝛾
40 F,-A1, (1.2.143)

bringing about the corresponding Belinfane correction (1.2.113) in the form of

b,-1 = √–𝛾
40 F,-A1. (1.2.144)

Eventually, the Belinfante energy-momentum tensor density (1.2.114) acquires the
form:

B(!" =
√–𝛾
40 (F1!F1" – 1

4
𝛾!"F,-F,-) . (1.2.145)

which is apparently symmetric and gauge invariant because it depends solely on the
electromagnetic tensor in contrast to the canonical energy-momentum (1.2.143).

We can also obtain the metrical energy-momentum tensor density (1.2.127) by
varying the Lagrangian (1.2.138) with respect to the metric tensor and to check by
inspection that it coincides with the energy-momentum (1.2.145).

The ideal fluid
The ideal fluid is characterized by the following thermodynamical quantities: the
particle rest-mass density 1, the specific intrinsic energy of the fluid per particle F,
and the pressure p which obeys the equation of state, p = p(1). The total energy dens-
ity is : = 1 (1 + F). The dynamical description of the ideal fluid is based on the specific
enthalpy of the fluid,

, = : + p
1 = 1+ F + p

1 . (1.2.146)

The primary dynamical variable is an auxiliary scalar field, so-called Clebsch potential
I, which is also called the velocity potential. In the case of a single-component ideal
fluid it is introduced by the following relationship [411]

,u! = –I,! = –I;! (1.2.147)

where the four-velocity u! of the fluid is normalized: u!u! = –1. Thus, the specific
enthalpy can be expressed in the following form:

, = √–𝛾!"I;!I;". (1.2.148)

The entropy of the ideal fluid remains constant which excludes it from consideration.
The intrinsic energy of the ideal fluid, F, is related to pressure, p, by the first law of
thermodynamics,
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dF + pd( 11) = 0. (1.2.149)

It can be used to derive the following thermodynamic relationships,

dp = 1d,, (1.2.150)
d: = ,d1, (1.2.151)

which mean that all thermodynamic quantities are solely functions of the specific
enthalpy ,, for example, 1 = 1(,), F = F(,), etc.

Lagrangian description of the ideal fluid as a dynamical system on spacetime
manifold is provided with the Lagrangian defined as Lfl = –√–𝛾p. Taking into
account (1.2.146), it is more instructive to re-write the Lagrangian in the form:

Lfl = –√–𝛾p = √–𝛾 (: – 1,) , (1.2.152)

with the specific enthalpy defined in terms of the Clebsch potential (1.2.148). It corres-
ponds to the kinetic energy of the fluid. Now, substitutingLfl and6A ≡ I into (1.2.29),
one obtains the equations of motion of the ideal fluid:

$Lfl
$I = [√–𝛾(𝜕:𝜕1 𝜕1𝜕, – ,𝜕1𝜕, – 1) I;!

, ]
;!
= 0. (1.2.153)

Combining (1.2.151) and (1.2.147), one can reduce the fields equations (1.2.153) to a
simpler form

$Lfl
$I = (√–𝛾1u!);! = (√–𝛾1u!),! = 0, (1.2.154)

which is the continuity equation as expected.
Now, we derive the canonical energy-momentum (1.2.104) for the Lagrangian

(1.2.152):

C(!" =
𝜕Lfl𝜕I;"

I;! – $"!Lfl = √–𝛾(1,I;"I;! + $"!p)
= √–𝛾 [(: + p) u"u! + $"!p] (1.2.155)

where the first equality in (1.2.155) was obtained with the help of (1.2.151) and defini-
tion (1.2.148), whereas the second equality in (1.2.155) was obtained with making use
of (1.2.146) and definition (1.2.147). The canonical energy-momentum (1.2.155) turns
out to coincide with a well-known energy-momentum tensor density of an ideal fluid
[178, 315].

Lowering the index " in (1.2.155), we can easily see that C(!" is symmetrical. Thus,
there is no need in applying the Belinfante symmetrization. Indeed, the spin density
(1.2.103) corresponding to the Lagrangian (1.2.152) is



52 1 Conservation laws in theoretical physics: A brief introduction

3!"3 = – 𝜕Lfl𝜕 (I;!) I|"3 = 0, (1.2.156)

because I|"3 = 0 for any scalar.
Finally, we notice that the expression C(!" coincides with the metrical energy-

momentum (1.2.127) obtained by variation of the Lagrangian Lfl with respect to 𝛾!":
S(!" ≡ 2$Lfl

$𝛾!" = C(!". (1.2.157)

In conclusion, we summarize that in the case of the ideal fluid all three types of the
energy-momentum tensor densities coincide.

A scalar field
Lagrangian of a relativistic scalar field 6 is

L6 = √–𝛾 [ 12𝛾!"6;!6;" – V(6)] , (1.2.158)

where V(6) is the potential energy of the field. Again, a covariant derivative of a scalar
field is simply a partial derivative, 6;! = 6,!. Now, substituting L6 and 6A ≡ 6
into (1.2.29), one obtains the equations of motion for the scalar field in curvilinear
coordinates:

$L6
$I = –√–𝛾(6;!

;! +
𝜕V(6)𝜕6 ) = – (√–𝛾6,!),! –√–𝛾𝜕V(6)𝜕6 = 0. (1.2.159)

The canonical energy-momentum tensor density is obtained after substituting the
Lagrangian (1.2.158) to the general definition (1.2.104). It yields:

C(!" =
𝜕L6𝜕6;"

6;! – $"!L6 = √–𝛾 (6;"6;! –
1
2
$"!6

;16;1 + V(6)) . (1.2.160)

Lowering the index " in (1.2.160), one finds that C(!" is symmetrical. Therefore, like in
the case of the ideal fluid, there is no need for symmetrization, and all three types of
the energy-momentum tensor densities coincide: C(!" = B(!" = S(!".

1.3 General relativity: fundamental mathematical relations

1.3.1 Lagrangians for the gravitational sector of general relativity

The main idea suggested by Einstein for constructing relativistic gravity theory which
he called general relativity, was to identify the components of the pseudo-Riemannian
metric, g!", with the potentials of the gravitational field which also serve as ten inde-
pendent dynamical variables. Hilbert got interested in this geometric approach and
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joined Einstein in the quest for the fundamental equations governing the gravitational
field. While working on this problem, the two great minds were not competing but
complementing each other. Hilbert was tackling the problem as a mathematician,
using methods of variational calculus. Einstein was more physically intuitive, paying
more attention to the conservation laws in the new theory, see discussion in the
review [364].

Historical facts and ideas lying in the foundation of general relativity are pretty
much well-known and can be found in a number of standard textbooks [285, 315].
Here, we discuss only the least action principle in general relativity and its applica-
tions to the derivation of the Einstein equations and the conservation laws. We start
from the postulating the Lagrangian of a free gravitational field.

The Hilbert Lagrangian
Hilbert assumed that the equations of gravitational field are to be derived from the
principle of the least action with the Lagrangian, LH, of the gravitational field which
has to be a covariant geometric object made in the simplest way from themetric tensor
and its derivatives – a Ricci scalar density,

LH = √–gR = R. (1.3.1)

The Ricci scalar is built out of the metric and its first and second derivatives. It may
look like the application of the principle of the least action to the Lagrangian with the
second derivatives of the dynamical variables gives rise to the field equations of a third
or even a forth order. However, the Ricci scalar depends on the second derivatives of
the metric linearly without coupling them with the first derivatives. Therefore, taking
a variational derivative of such a Lagrangian can not bring about the higher-order
derivatives of the metric tensor in the field equations, which remain the differential
equations of the second order.

To find the Lagrangian (1.3.1) in explicit form we introduce the curvature tensor
also known as the Riemann tensor:

R,!-" = 𝜕-A,!" – 𝜕"A,!- + A1!"A,1- – A,!1A1"-. (1.3.2)

Contracting this expression with respect to the indices , and -, one finds the Ricci
tensor,

R!" = 𝜕-A-!" – 𝜕"A-!- + A1!"A-1- – A-!1A1"-. (1.3.3)

The Ricci or curvature scalar that is used in the Lagrangian (1.3.1), is built out of the
Ricci tensor by contracting it with the metric:

R = g!"R!". (1.3.4)
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The important geometric object entering formulae (1.3.2)–(1.3.4) is called the Christof-
fel symbols

A,!" =
1
2
g,1 (𝜕"g1! + 𝜕!g1" – 𝜕1g!") , (1.3.5)

which has 40 independent components in four dimensions. The Christoffel symbols
are not forming a tensorial quantity as it compensates the non-covariant transforma-
tion law of partial derivatives. The covariant derivative, ∇!, of a tensor density IA is
defined as follows:

∇!IA = 𝜕!IA + IA󵄨󵄨󵄨󵄨󵄨13 A3!1, (1.3.6)

where the permutation operator IA󵄨󵄨󵄨󵄨󵄨13 is defined in Appendix A.3.1 (see formula (A.3.7)
for more detail). Necessary properties of the operation (1.3.6) with participation of
quantities (1.3.5) are given in Appendix A.2.1.

The Einstein Lagrangian
Even though the Lagrangian (1.3.1) gives the field equations of the required second
order, the presence of the second derivatives in LH creates a problem in definition
of the energy of weak gravitational waves [152]. Einstein had tried to fix it and pro-
posed his own Lagrangian for the gravitational field that does not depend on the
second derivatives of the metric tensor [150]. He noticed that the Hilbert Lagrangian is
effectively split in two parts, one of which is a divergence,

LH = LE + 𝜕!W !, (1.3.7)

where

W ! ≡ √–g (g"𝛾A!"𝛾 – g!"A𝛾"𝛾)
= √–gg!"g,- (g",,- – g,-,") . (1.3.8)

The divergence does not affect the field equations and can be dropped from the action.
Note that currently we are not analyzing the conservation laws. The remaining part,
LE, is the Einstein Lagrangian, [285]:

LE = √–gg,- (A!,"A"-! – A!!"A",-) , (1.3.9)

which does not contain the second derivatives of themetric. It is important to emphas-
ize that the Einstein Lagrangian is not covariant because its coordinate transformation
is not tensorial. Hence, it can be nullified at any given point of spacetime mani-
fold by choosing at that point the normal Riemannian coordinates. For this reason,
the Einstein Lagrangian makes sense only in the integral expression for the action
functional.



1.3 General relativity: fundamental mathematical relations 55

The gravitational Lagrangians have dimension [cm–2] while the action S has a
dimension of [erg ⋅ sec]. The principle of correspondence with the Newtonian theory
introduces the constant of proportionality –c3/160G which appears explicitly in front
of the gravitational part of the action. For the sake of simplicity, frequently we prefer
to use the geometric system of units in which c = G = 1. Then, the Hilbert action has
the form:

SH = – 1
160 ∫

K
d4xLH, (1.3.10)

whereas the Einstein action is

SE = – 1
160 ∫

K
d4xLE, (1.3.11)

where K is the 4-dimensional domain of integration.
Because LH differs from LE merely by a divergence, the Einstein action (1.3.11)

differs from the Hilbert action (1.3.10) by a surface integral taken on the boundary 𝜕K
of K from the quantity W ! due to the Gauss’s theorem,

SE = SH +∮
𝜕K

dS!W
!. (1.3.12)

If we impose on the variations of the metric tensor and its first derivatives the
boundary conditions

$g!"
󵄨󵄨󵄨󵄨󵄨𝜕K = 0, $g!",𝛾

󵄨󵄨󵄨󵄨󵄨𝜕K = 0, (1.3.13)

the surface integral in (1.3.12) vanishes and does not contribute to the variation of the
action. Hence, from the point of view of variational calculus, both types of the action
are equivalent for the purpose of derivation of the Einstein field equations. Notice that
if we derive the Einstein equations from the action (1.3.11) the first condition in (1.3.13)
is sufficient.

1.3.2 The Einstein equations

The source of the gravitational field of a physical system in general relativity is the
energy-momentum tensor of matter composing the system. In order to describe the
interaction of matter with gravitational field in general relativity the principle of
minimal coupling of gravity with matter is employed. This principle establishes the
simplest form of the coupling of gravity and matter and it is governed by the prin-
ciple of equivalence, according towhich any physical equation of special relativity can
be turned into its general-relativistic counterpart by replacing the Minkowski metric,
'!" (or 𝛾!" in curved coordinates), with the relevant metric of the curved dynamical
spacetime, g!", and by replacing any partial derivative, 𝜕! (or (; !) in curved coordin-
ates), with a corresponding covariant derivative, ∇!. The minimal coupling of matter
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to gravity leads to a natural appearance of the gravity field variable (the metric) and
its first derivatives (the affine connection in the form of the Christoffel symbols) in
the structure of the matter Lagrangian, LM, the original definition of which usually
comes from special relativity, for simple cases see (1.2.17). Thus, the action functional
of matter fields,IA, is presented in general relativity as

SM = ∫
K
d4xLM (IA,∇!IA, g!") . (1.3.14)

Because the interaction of gravity with matter is incorporated to the matter Lag-
rangian,LM, the overall action S for gravitational field (we choose Hilbert’s definition
(1.3.10)) andmatter interactingwith gravitational field, (1.3.14), is a linear combination
of two terms

S = ∫
K
d4xLEH , (1.3.15)

where the total Lagrangian

LEH = – 1
160LH + LM = – 1

160R + LM (1.3.16)

is sometimes called the Einstein-Hilbert Lagrangian.
To obtain the Einstein equations one has to vary the action (1.3.15) with respect to

the metric g!", in a fashion similar to that used to calculate the variation of the Lag-
rangian with respect to the matter fields 6A in the Minkowski space. One reminds that
the variation of the metric and its first derivatives are chosen to be nil on the boundary
of the integration domain in correspondence with (1.3.13). Calculating variation of the
action, $S, by parts in (1.3.15) with respect to the metric variation, one obtains

$S = ∫
K
d4x(– 1

160
$LH
$g!"

+ $LM
$g!"

) $g!", (1.3.17)

where the Lagrangian derivatives taken with respect to the metric are

$LH
$g!"

≡ 𝜕LH𝜕g!" – 𝜕,( 𝜕LH𝜕g!",,) + 𝜕,- ( 𝜕LH𝜕g!",,-) , (1.3.18)

$LM
$g!"

≡ 𝜕LM𝜕g!" – 𝜕,( 𝜕LM𝜕g!",,) . (1.3.19)

Substituting into (1.3.18) the Hilbert Lagrangian LH defined in (1.3.1), one gets the
Einstein tensor density:

G!" ≡ $LH
$g!"

≡ $R
$g!"

≡ R!" –
1
2
g!"R, (1.3.20)
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where the covariant expression in the right side of (1.3.20) has been obtained with
the help of (A.3.44) and (A.2.45) in Appendix A. The Lagrangian derivative (1.3.19) of
the matter Lagrangian LM defined in (1.3.14) yields by definition the metrical energy-
momentum tensor density of matter:

T!" ≡ 2$LM
$g!"

. (1.3.21)

The fact that this definition indeed leads to a covariant expression can be verified
again bymaking use of (A.3.44) and (A.2.45) in Appendix A. The readermay notice that
(1.3.21) is a generalization of the energy-momentum tensor density of matter (1.2.127)
in a field theory in the Minkowski space.

The Einstein equations for the gravitational field are derived, as usual, from the
principle of the least action that demands $S = 0 in (1.3.17). Then, a combination of
(1.3.18–1.3.21) yields the variational equations for the gravitational field generated by
matter:

G!" = 80T!". (1.3.22)

The Einstein tensor density in the left side of this equation depends only on the metric
tensor and its first and second partial derivatives while the energy-momentum tensor
density of matter in the right side of (1.3.22) depends on thematter fields which are the
source of gravity, as well as on the metric tensor and its first derivatives. After dividing
both sides of (1.3.22) by√–g we get the Einstein field equations in the usual form:

G!" = 80T!", (1.3.23)

where the Einstein tensor

G!" ≡ 1√–g $R
$g!"

≡ R!" –
1
2
g!"R, (1.3.24)

and

T!" ≡ 2√–g $LM
$g!"

, (1.3.25)

is themetrical energy-momentum tensor.
Because the total set of dynamical variables of the system (1.3.15) consists of mat-

ter variables, IA, along with the metric variables, one has to add the field equations
forIA to the system of gravitational field equations (1.3.23), and the total system of the
equations has to be solved simultaneously. The matter field equations are derived by
varying the total action (1.3.15) with respect to the matter variablesIA which yields,

$LM
$IA = 𝜕LM𝜕IA – ∇! 𝜕LM𝜕∇!IA = 0. (1.3.26)
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This covariant equation is a particular case of amore general equation (A.3.37) derived
in Appendix A.3.3. It is worth emphasizing some important points which we will
explore below.

First, the Einstein equations in the form of equation (1.3.23) have been obtained
by varying the action with respect to the contravariant metric components g!" which
are taken as independent dynamical variables of gravitational field. However, this is
not the only possible choice of the dynamical variables in general relativity. In fact,
an arbitrary metric density can be used as a dynamical variable, for more details see
(2.2.114–2.2.117) in Section 2.2.6. One of the most commonly used choice of the dynam-
ical variable is a tensor density with weight +1 which is denoted by the Gothic letter,
g
,- ≡ √–gg,-. In this case, the field equations follow from the variational principle

$S = ∫
K
d4x$LEH

$g,- $g,- = 0, (1.3.27)

where the Lagrangian derivative can be easily connected to $LEH/$g!" used in
derivation of (1.3.22) by the matrix of transformation

𝜕g!"𝜕g,- = 1√–g [$(,! $-)" – 1
2
g,-g

!"] . (1.3.28)

The Einstein equations following from the variational principle (1.3.27), takes on the
form

R,- = 80 (T,- – 1
2
g,-T) , (1.3.29)

where we denoted the trace T ≡ g!"T!". One of the advantages of the variational prin-
ciple (1.3.27) is that the Ricci tensor (1.3.3) is obtained directly by taking the variational
derivative from LH with respect to the Gothic metric as

R,- ≡ $LH
$g,- ≡ $R

$g,- . (1.3.30)

Of course, the mathematical content of the Einstein equations in the form of (1.3.29)
and (1.3.23) is the same.

Second important point to which we would like to bring attention of the reader
is the application of the second Noether’s theorem and the integral quantities fol-
lowing from the Hilbert action (1.3.10). In other words, we wish to elaborate on the
identities (1.2.66) and (1.2.67) for the case corresponding to the Hilbert Lagrangian
(1.3.1). Because the Lagrangian LH is a covariant quantity, a scalar density of weight
+1, the variation of SH is invariant under one-parametric group of diffeomorphisms
which is described by the variations (1.2.61) and (1.2.62). In our case the variations are
represented as follows:
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$x, = .,(x), (1.3.31)

$g,- = £.g
,- = –.!𝜕!g,- + g,-󵄨󵄨󵄨󵄨!" 𝜕!.". (1.3.32)

Thus, comparing (1.2.61) and (1.2.62) with (1.3.31) and (1.3.32), respectively, one derives
the group’s structure coefficients

9A
a = –8A

,! → –g,-,!, (1.3.33)

9A!
b = 8A󵄨󵄨󵄨󵄨󵄨!" → g,-󵄨󵄨󵄨󵄨!" . (1.3.34)

With the help of these coefficients we write the identity (1.2.66) for the Hilbert
Lagrangian (1.3.1):

– g,-,"
$LH
$g,- ≡ 𝜕! (g,-󵄨󵄨󵄨󵄨!" $LH

$g,- ) . (1.3.35)

Reshuffling terms in (1.3.5) with the use of simple relations, like g1!𝜕"g,1 = –g,1𝜕"g1!,
etc., one can express a partial derivative of the metric tensor in terms of the Christoffel
symbols,

g,-,! = A,!1g-1 + A-!1g,1. (1.3.36)

Substituting this equality into identity (1.3.35), one has

𝜕! (g,-󵄨󵄨󵄨󵄨!" $LH
$g,- ) + A3!" g,-

󵄨󵄨󵄨󵄨!3 $LH
$g,- ≡ ∇! (g,-󵄨󵄨󵄨󵄨!" $LH

$g,- ) ≡ 0. (1.3.37)

Thus, following definition (1.2.67) with the quantities (1.3.33) and (1.3.34), the Christof-
fel symbols can be interpreted as a gauge field

A!"𝛾 ≡ –1(g,-󵄨󵄨󵄨󵄨"!) ⋅ (–g,-,𝛾) . (1.3.38)

The identity (1.3.37) is just the identity (1.2.67) formulated for the case of the Hilbert
Lagrangian (1.3.1). Substituting to (1.3.37) the Lagrangian (1.3.1), one finally arrive to
an interesting differential identity for the Einstein tensor defined above in (1.3.20) and
(1.3.24),

2∇!G"
! = 2√–g∇!G"! ≡ 0 (1.3.39)

which is known as the Bianchi identity. Thus, differentiating the Einstein equations
(1.3.23) and keeping in mind (1.3.39), one obtains the differential conservation law for
the matter metrical energy-momentum:

∇!T"! = 0, (1.3.40)

which is fully consistent with the matter equations of motion (1.3.21).
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It is worth noticing that the Einstein way of derivation of the field equations was
based on the requirement that the differential laws of motion of matter must be con-
sistent with the field equations. Knowing the conservation law (1.3.40), Einstein was
searching for an appropriate tensor in the left side of the field equations such that its
divergence had to satisfy the identity of the type (1.3.39). Now, we know that for the
Hilbert Lagrangian the only tensor of such type is the Einstein tensor G!".

1.4 Classical conserved quantities in general relativity

1.4.1 The third Noether’s theorem

Elaborating on the results of the first and second theorems, Noether has formulated
the statement often referred as the third Noether’s theorem [73, 74, 85, 266, 398] which
is explicitly present in her paper’s Section 6 “An Assertion of Hilbert” [278, 335], and
formulates like this:
– If the action S is invariant under an infinite continuous group of transformations

G∞n, then a quantity constructed from the Lagrangian derivatives is expressed
through a double divergence of a special quantity, the so-called superpotential.

However, Noether had neither proved this statement nor provided a mathematical
recipe for the superpotential construction. This is perhaps because an analogous
statement had been proven by Klein (Klein’s boundary theorem) in his work [258] that
appeared prior to the Noether’s paper. Furthermore, it was Klein who supplied the
recipe for the superpotential construction.

In this subsection, we follow the book by Mitzkevich [316] to prove the third
Noether’s theorem. The procedure is applied directly to an arbitrary covariant field
theory with the Lagrangian being a scalar density of the weight +1 to explore the
invariance of the Lagrangian with respect to diffeomorphisms. Assuming further
application of this study to themetric theories of gravity, we work with the Lagrangian
which depends on the field variables, 8A, as well as on their first- and second-order
derivatives. Such dependence is common to all metric theories which Lagrangians
depend algebraically on the Riemann tensor9.

Let us consider an arbitrary field theory with the action (1.2.36). Considering its
invariance with respect to diffeomorfisms, we use the variations

$x! = .!(x), (1.4.1)
$8A = £.8A = –.!𝜕!8A + 8A󵄨󵄨󵄨󵄨󵄨!"𝜕!." (1.4.2)

as a particular case of variations (1.2.61) and (1.2.62). Then, themain Noether’s identity
(1.2.52), now without the permissible term B-, is rewritten in the form:

9 This includes general relativity.



1.4 Classical conserved quantities in general relativity 61

$L
$8B £.8

B + 𝜕! [ $L
$8B

,!
£.8B + 𝜕L𝜕8B

,"!
(£.8B)," + .!L ] ≡ 0. (1.4.3)

Here, we prefer to use the partial derivatives of the dynamical variables because in the
metric theories the field variables are components of themetric tensor which covariant
derivatives vanish identically, and the formalism may stall.

Substituting (1.4.2) into (1.4.3), reshuffling the terms by making use of the Leibniz
rule, and converting the divergences, one can arrange terms in the series with respect
to the vector field .!, defining the diffeomorphism, and its first and second partial
derivatives:

– [ $L
$8B8

B
,! + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"!)] .!

+ 𝜕! [U3
!.3 + M3

!4𝜕4.3 + N3
!4"𝜕"4.3] ≡ 0, (1.4.4)

where the (tensor) coefficients of the expansion are fully determined by the Lag-
rangian and its derivatives

U3
! ≡ L $!3 +

$L
$8B 8B󵄨󵄨󵄨󵄨󵄨!3 – $L

$8B
,!
𝜕38B – 𝜕L𝜕8B

,"!
𝜕"38B , (1.4.5)

M3
!4 ≡ $L

$8B
,!
8B󵄨󵄨󵄨󵄨󵄨43 – 𝜕L𝜕8B

,4!
𝜕38B + 𝜕L𝜕8B

,"!
𝜕"(8B󵄨󵄨󵄨󵄨󵄨43) , (1.4.6)

N3
!4" ≡ 1

2
[ 𝜕L𝜕8B

,"!
8B󵄨󵄨󵄨󵄨󵄨43 + 𝜕L𝜕8B

,4!
8B󵄨󵄨󵄨󵄨󵄨"3] . (1.4.7)

Notice that in order to derive the coefficient (1.4.7) the symmetry property has been
used, N3

!4" = N3
!"4, that follows directly from (1.4.4) due to the commutation

property of the second partial derivatives.
Executing the operation of the partial derivative in the identity (1.4.4) and taking

into account that the vector field .3, and all its partial derivatives are independent
and arbitrary at each point of spacetime manifold, we come to the conclusion that all
coefficients coupled with .3, and its partial derivatives must be separately equal to
zero. It yields the system of identities:

𝜕!U3
! ≡ $L

$8B8
B
,3 + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"3) , (1.4.8)

U3
! + 𝜕+M3

+! ≡ 0, (1.4.9)

M3
(!") + 𝜕+N3

+(!") ≡ 0, (1.4.10)
N

(!"𝛾)
3 ≡ 0. (1.4.11)

The system (1.4.8–1.4.11) was engineered by Klein [258]. Therefore, we shall refer to
this system as the Klein identities. After differentiating (1.4.9) and using (1.4.10) and
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(1.4.11) one obtains that 𝜕!U3
! ≡ 0. This means that the right hand side of (1.4.8) must

be equal to zero identically as well,

$L
$8B8

B
,! + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"!) ≡ 0. (1.4.12)

It repeats the claim (1.2.66) of the second Noether’s theorem. Taking into account the
historic development of the theory, we call the system (1.4.8) – (1.4.12) as the Klein-
Noether identities.

The identity (1.4.12) suggests that instead of (1.4.4) one can use independently
(1.4.12) and

𝜕! [U3
!.3 + M3

!4𝜕4.3 + N3
!4"𝜕"4.3] ≡ 0. (1.4.13)

The vector density entering under the divergence is the current

I !(. ) ≡ – [U3
!.3 + M3

!4𝜕4.3 + N3
!4"𝜕"4.3] . (1.4.14)

The minus sign is chosen for making a correspondence with the minus sign in front of
the gravitational (metric) action, like in (1.3.10) or in (1.3.11). Thus, the identity (1.4.13)
is rewritten as

𝜕!I !(. ) ≡ 0. (1.4.15)

Because it is the identity, the current has to be expressed through a tensorial quantity
(superpotential), I !(. ) ≡ 𝜕"I !"(. ), a double divergence of which has to be equal to
zero identically: 𝜕!"I !"(. ) ≡ 0. Let us show this is indeed true. Due to the symmetry
with respect to the last two indices in (1.4.7) and the identity (1.4.11), one has

N3
!4" + N3

4"! + N3
"!4 ≡ 0. (1.4.16)

Substituting (1.4.9) into (1.4.14), using (1.4.10) and (1.4.16), one obtains

I !(. ) ≡ 𝜕" (M3
"!.3 + 2N3

"!+𝜕+.3) . (1.4.17)

Due to (1.4.15), we should expect that a divergence of the right hand side of (1.4.17)
would vanish. However, this is not obvious at the first glance. Nevertheless, there is a
possibility to show this explicitly. Let us add the identical zero term, 43𝜕"+ (N3

[+"]!.3) ≡
0, to the right side of (1.4.17). Then, after using (1.4.10) and (1.4.16), one gets

I !(. ) ≡ 𝜕" (–M3
[!"].3 + 2

3
𝜕+N3

[!"]+.3 – 4
3
N3

[!"]+𝜕+.3) . (1.4.18)
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Now, the expression in brackets in the right side of (1.4.18) is explicitly antisymmet-
rical in ! and ", and its divergence vanishes. Therefore, both expressions for the
current, (1.4.17) and (1.4.18), can be rewritten in the form of the divergence,

I !(. ) ≡ 𝜕"I !"(. ) (1.4.19)

where

I !"(. ) = M3
"!.3 + 2N3

"!+𝜕+.3, (1.4.20)

corresponds to (1.4.17) and

I !"(. ) = –(M3
[!"].3 – 2

3
𝜕+N3

[!"]+.3 + 4
3
N3

[!"]+𝜕+.3) (1.4.21)

corresponds to (1.4.18) respectively. The quantities likeI !" are called the superpoten-
tials. In both cases 𝜕!"I !"(. ) ≡ 0. Thus, the identity (1.4.19) can be considered as one
being equivalent to the conservation law (1.4.15) for the current.

Summing up the results, one rewrites the identity (1.4.4) in terms of the superpo-
tential,

– [ $L
$8B8

B
,! + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"!)] .! ≡ 𝜕!"I !"(. ). (1.4.22)

This identity represents the statement of the third Noether’s theorem while the iden-
tity (1.4.19) corresponds to the Klein boundary theorem mentioned above. Finally,
repeating calculations from (1.2.83) to (1.2.87), one defines a conserved quantity,P(. ),

P(. ) = ∫
G
d3xI 0(. ). (1.4.23)

which is effectively reduced to a surface (boundary) integral

P(. ) = ∮
𝜕G
dsiI

0i(. ), (1.4.24)

due to the identity (1.4.19) and definition (1.4.21). This integral relation supports Klein’s
assertion given in his boundary theorem related to the formulation of conserved
quantities.
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1.4.2 Pseudotensors and superpotentials

The metric tensor in general relativity (and other metric-based theories of gravity)
plays a double role. From one side it describes the geometric properties of space-
time manifold but on the other side is a dynamical field. This double role of the
metric tensor is a source of theoretical difficulties in the problem of construction of
conserved quantities associated with gravitational field. For example, the total sym-
metric energy-momentum tensor for gravity and matter vanishes identically due to
fact that the field equations hold. Indeed, in general relativity variation of the action
(1.3.15) with the Lagrangian (1.3.16) with respect to g!" gives the total symmetric
energy-momentum tensor density10:

T tot
!" ≡ 2$LEH

$g!"
= – 1* (G!" – *T!") (1.4.25)

that disappears due to the Einstein equations (1.3.22). Therefore, the application of
the Noether theorems to the case of the metric-based theories requires development
of a more sophisticated procedure to constructing the canonical quantities corres-
ponding the Noether currents. Einstein himself was the first who had suggested such
a quantity – the Einstein energy-momentum pseudotensor for gravitational field. Ein-
stein’s idea was modified and used by other researchers who had suggested their own
formulations of the pseudotensor of gravitational field and the corresponding super-
potentials leading to the conserved quantities formulated in the form of a surface
integral like that shown in (1.4.24).

It should be noticed that the pseudotensors and corresponding superpoten-
tials, are only Lorentz covariant that is covariant under a linear transformation of
coordinates but they are not transformed as tensors under general coordinate trans-
formations. Besides, there is no unique recommendation for their construction. In
this subsection, we outline the most interesting examples of the pseudotensors and
superpotentials, which will be remarked later on in other chapters of the present
book. Historically, various pseudotensors have been constructed by applying different
(in some cases non-standard) approaches. However, we do not follow the historical
development of the topic because it may be too confusing for the reader. To facilitate
understanding of this subject, we unify the methods of construction of pseudotensors
and superpotentials by making use of the Noether and Klein results as a powerful
mathematical instrument.

Einstein’s pseudotensor and Tolman’s and Freud’s superpotentials
The results of the third Noether’s theorem are valid, if the action (1.2.36) of the theory
is invariant with respect to diffeomorphisms. A question arises: can one apply these

10 Here we restore the dimensional Einstein constant, *, useful for applications.
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results to the action (1.3.11) with the non-covariant Einstein Lagrangian (1.3.9)? Gener-
ally speaking, the answer to this question is negative. However, let us assume that the
transformation (1.4.1) is a simple coordinate shift:

$x! = .! = const, (1.4.26)

with .! being a constant vector of translation along x!. It is evident that under such a
transformation the Lagrangian (1.3.9) is invariant and the Noether theorem is applied.
Therefore, it makes sense to substitute (1.4.26) into the formulae of previous subsec-
tion to obtain physically sensible results. Because the vector field .3 is constant all
partial derivatives of .3 vanish, and the current (1.4.14) takes the form:

I ! → I !
(3) = {–U 3

!}E = – 1
2* ( 𝜕LE𝜕g1+,! 𝜕3g1+ – $!3LE –

$LE
$g1+

g1+
󵄨󵄨󵄨󵄨󵄨󵄨!3) . (1.4.27)

We substitute the Einstein Lagrangian (1.3.9) to the right side of (1.4.27) and perform
calculations. By simple inspection we can easily single out in the right side of (1.4.27)
two terms:

Et3! ≡ – 1
2* ( 𝜕LE𝜕g1+,! 𝜕3g1+ – $!3LE) , (1.4.28)

G3
! ≡ 1

2
$LE
$g1+

g1+
󵄨󵄨󵄨󵄨󵄨󵄨!3 , (1.4.29)

where Et3! is the Einstein pseudotensor complex constructed merely of the metric
tensor and its first partial derivatives, while G3

! is the Einstein tensor density which
we have already met in (1.3.20).

Explicit expression for the Einstein pseudotensor complex is

Et3! =
1
2*[g

14 (A+1+A!43 + A!14A++3 – 2A!1+A+43)
–g

14 (A'14A+'+ – A'1+A+'4) $!3
+g

!+ (A414A1+3 – A4+4A113)] . (1.4.30)

It was constructed by Einstein in 1918 [150–152] as the canonical energy-momentum
for describing the energy carried out by the linearized gravitational waves.

Since the Einstein pseudotensor complex is a tensor analogue of the Noether’s
current, we can build a corresponding superpotential (1.4.20):

I !" → I !"
(3) = {M3

"!}E = – 1
2*

𝜕LE𝜕g,-," g,-󵄨󵄨󵄨󵄨!3 . (1.4.31)
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Substituting the Einstein Lagrangian (1.3.9) into (1.4.31), one obtains the superpoten-
tial, {M3

"!}E = T3
!", in the explicit form:

T3
!" = √–g

2* (2g1!A"13 + 2$[!3 g"]0A110 – g!"A113 – $!3A",-g,-) . (1.4.32)

Historically, it was the first superpotential in general relativity that has been con-
structed (by making use of a different approach) by Tolman [439] and carries his
name.

Of course, the current (1.4.27) and the superpotential (1.4.31) satisfy the identities
(1.4.13) and (1.4.19):

𝜕!I !
(3) ≡ 0 → 𝜕! {–U 3

!}E ≡ 0, (1.4.33)

I !
(3) ≡ 𝜕"I !"

(3) → {–U 3
!}E ≡ 𝜕" {M3

"!}E . (1.4.34)

Identities (1.4.33) and (1.4.34) are valid for arbitrary functional value of the metric
tensor irrespectively whether they obey the field equations or not. To introduce a phys-
ical content one has to use the field equations governing the physical system. In the
case of general relativity one has to use the Einstein equations (1.3.22), which allow us
to rewrite the identity (1.4.33) in the form of a differential conservation law,

𝜕! (Et3! + T3
!) = 0, (1.4.35)

for the sum of the Einstein pseudotensor, Et3!, and the energy-momentum tensor
density of matter, T3

!. Note that in vacuum, T3
! = 0, equation (1.4.35) is transformed

into the differential conservation law for the Einstein pseudotensor only:

𝜕! (Et3!) = 0. (1.4.36)

In the same way the identity (1.4.34) transforms into the conservation law:

Et3! + T3
! = 𝜕"T3

!". (1.4.37)

Of course, by the general consideration given in the previous subsection, one has𝜕!"T3
!" ≡ 0 although this identity is not apparent in (1.4.32). This might be seen eas-

ily if one could represent (1.4.32) explicitly as a skew-symmetric tensor density. This
is usually achieved by making use of a trick used in derivation of (1.4.21) but it does
not work in the case under consideration because {N3

"!𝛾}E ≡ 0 for the Einstein Lag-
rangian. Fortunately, there is another way around found by Freud [179] who suggested
to change the Tolman superpotential (1.4.32) as follows:

F3
!" = T3

!" + 1
*𝜕+ (√–gg!["$+]3 ) . (1.4.38)
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This change does not violate the right side of (1.4.37) because taking divergence
from the second term in (1.4.38) yields an identical zero, 𝜕"+ (√–gg!["$+]3 ) ≡ 0.
Straightforward calculation of the sum of two terms in (1.4.38) gives

F3
!" = √–g

* (g1[!A"]13 + $[!3 g"]0A110 – $[!3 A"],-g,-) (1.4.39)

that is the famous Freud superpotential [179]. This superpotential is apparently skew-
symmetric and allows one to write the conservation law (1.4.37) in the following form,

Et3! + T3
! = 𝜕"F3

!", (1.4.40)

where it is evident that 𝜕!"F3
!" ≡ 0 due to the antisymmetry of the Freud superpoten-

tial with respect to indices ! and ".

The Mitzkevich and Møller conserved quantities
Now let us consider a pseudotensor and a superpotential corresponding to the action
(1.3.10) with the Hilbert Lagrangian (1.3.1) and the diffeomorphism with the constant
coordinate translation (1.4.26). The current (1.4.14) takes on the form:

I ! → I !
(3) = {–U 3

!}H
= – 1

2* ( 𝜕LH𝜕g,-,"! 𝜕"3g,- + $LH
$g,-,!

𝜕3g,- – $!3LH – $LH
$g,- g,-󵄨󵄨󵄨󵄨!3) , (1.4.41)

that again can be naturally split in two parts:

Ht3! ≡ – 1
2* ( 𝜕LH𝜕g,-,"! 𝜕"3g,- + $LH

$g,-,!
𝜕3g,- – $!3LH) , (1.4.42)

G3
! ≡ 1

2
$LH
$g,- g,-󵄨󵄨󵄨󵄨!3 . (1.4.43)

Here, Ht3! is the pseudotensor constructed with the use of the Hilbert Lagrangian
(1.3.1)

Ht3! =
1
* (g1(!A")14A4"3 – g

1(!A")13A44" – g
14A[!"4A"]13

– g
1(!A")13," + g

!1A44(1,3) +
1
2
$!3R) (1.4.44)

and the Einstein tensor density, G3
!, appears in (1.4.43), like in (1.4.29), because

the Hilbert and Einstein Lagrangians differ by a total divergence whose variational
derivative vanishes.
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Now we consider the antisymmetric superpotential (1.4.21) that (for constant .!)
acquires the form:

I !" → I
!"
(3) = {–M3

[!"] + 2
3
𝜕+N3

[!"]+}
H
. (1.4.45)

Using the formulae (1.4.6) and (1.4.7) for 8B = {g,-} with the Hilbert Lagrangian (1.3.1)
one obtains

{M3
!"}H = 1

2* (2A!13g"1 – g
!"A113 – $!3A

"
,-g

,-) , (1.4.46)

{N3
!"+}H = 1

4* (2$!3g"+ – g
!"$+3 – g

!+$"3) . (1.4.47)

Then, the superpotential (1.4.45) is reduced to a simple expression

I !"
(3) ≡ X3

!" = √–g
* g1[!A"]13. (1.4.48)

The quantities (1.4.44) and (1.4.48) have been suggested independently and almost at
the same time by Mitzkevich [319] who followed the Noether procedure, and by Møller
[321] who relied upon phenomenological arguments without applying the Noether
theorems.

Of course, the quantities (1.4.41) and (1.4.45) satisfy the identities (1.4.13) and
(1.4.19):

𝜕!I !
(3) ≡ 0 → 𝜕! {–U 3

!}H ≡ 0, (1.4.49)

I !
(3) ≡ 𝜕"I !"

(3) → {–U 3
!}H ≡ 𝜕" {–M3

[!"] + 2
3𝜕+N3

[!"]+}
H
. (1.4.50)

Notice that the pseudotensor (1.4.44) has been obtained by direct calculation of deriv-
atives in (1.4.42). A more economical way to get it is to use a combination of (1.4.41),
(1.4.48) and the identity (1.4.50).

The relations, (1.4.49) and (1.4.50), are identities being valid for arbitrary metric
tensor. To introduce a physical content to them one has to use the Einstein equations
(1.3.22). Then the identity (1.4.49) becomes a differential conservation law,

𝜕! (Ht3! + T3
!) = 0, (1.4.51)

for the sum of the pseudotensor, Ht3!, and the matter energy-momentum tensor dens-
ity, T3

!. Again, in vacuum, T3
! = 0, and (1.4.51) is transformed into the differential

conservation law for the pseudotensor only:

𝜕! (Ht3!) = 0. (1.4.52)

In a similar way the identity (1.4.34) transforms into a conservation law:

Ht3! + T3
! = 𝜕"X3

!". (1.4.53)
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Neither Einstein’s nor the Mitzkevich-Møller pseudotensors and superpotentials are
covariant. This restricts the range of applications of these quantities which are
well defined only in the coordinates that are Lorentzian at infinity. The Einstein
pseudotensor, like the Einstein Lagrangian itself, has some advantages in that it
depends on the first derivatives only which permits to formulate the integration prob-
lem in a more economical way due to the Dirichlet boundary conditions imposed
merely on the components of the metric tensor but not on its derivatives. On the other
hand, the Mitzkevich-Møller pseudotensor (1.4.44) has its own advantage being “par-
tially” covariant. Namely, the components Ht30 of the pseudotensor are transformed
as a 4-dimensional vector density under coordinate transformations of a particular
type x󸀠k = f k(xl), x󸀠0 = x0 + f 0(xl) while the corresponding components of the Ein-
stein pseudotensor do not. This property was one of the main requirements imposed
by Møller on the conserved quantities in general relativity.

The above derivation of the Einstein and Mitzkevich-Møller conserved quantit-
ies can be generalized and applied to an arbitrary Lagrangian consisting of a linear
superposition of the Einstein Lagrangian, LE, and a divergence,

L = LE + div, (1.4.54)

where the divergence (div) depends on the metric, g,-, and its derivatives of an arbit-
rary order. The results of the third Noether’s theorem are fully applicable to such
a Lagrangian after a corresponding generalization of its derivation by including the
terms containing the higher derivatives of the metric tensor. Making use of the group
diffeomorphism (1.4.26) one can associate with the Lagrangian (1.4.54) its own canon-
ical pseudotensor, Ct3!, and superpotential. By choosing different expressions for the
divergence we can get unlimited number of the pseudotensors and superpotentials.
Analogously to (1.4.27) and (1.4.41) one can construct out of the Lagrangian (1.4.54), a
current

I ! → I !
(3) = {–U 3

!} = Ct3! +
1
*G3

! (1.4.55)

depending on the canonical pseudotensor Ct3!; and analogously to (1.4.31) and (1.4.45)
one can construct a superpotential corresponding to (1.4.54):

I !" → I !"
(3) = S3

[!"]. (1.4.56)

Papapetrou’s symmetrization
Most of the pseudotensors discussed above have a serious problemwith the definition
of an angular momentum of an isolated gravitating system. For example, both the Ein-
stein and Møller pseudotensors are non-symmetrical and cannot be directly used to
describe the conservation law for the angular momentum. One needs to modify these
expressions to make them symmetrical or to construct new symmetric pseudotensors
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as described in review [443]. This problem is similar to that we havewith the canonical
energy-momentum tensor of the field theories in the Minkowski space which are not
symmetric due to the possible presence of spin, like in (1.2.109).

One way to resolve the problem is to construct a symmetric energy-momentum
complex by the Belinfante procedure presented in (1.2.113–1.2.118). Such a procedure
has been applied to symmetrization of the Einstein pseudotensor by Papapetrou [351].
However, his approach has a deficiency as it relies upon making use of the Minkowski
metric for raising and lowering indices of tensors residing on a curved manifold.
In other words, Papapetrou’s procedure assumes that the dynamical metric, g,-, is
placed to the background Minkowski space with the Lorentzian coordinates which
contradicts to the spirit of general relativity.

Nonetheless, Papapetrou calculated the spin density for the Einstein Lagrangian
(1.4.6) by working with the Lorentzian coordinates and operating with the partial
derivatives of the metric tensor in the equation (1.2.103) defining the spin density.
Following Papapetrou, one obtains:

E3!"3 =
1
2*

𝜕LE𝜕 (g,-,!) g,-󵄨󵄨󵄨󵄨"3 (1.4.57)

= 1
2* [(g!"$-3 + $!3g"- – g

!-$"3) A11-
–(g,"$-3 + $

,
3g

"- – g
,-$"3)A

!
,-] .

Then by the rule (1.2.113) one constructs the corresponding Belinfante correction,

Eb!"𝛾 =
1
* (g,[!'"]-A𝛾,- + g

,𝛾'-[!A"],- – ',𝛾g-[!A"],-) , (1.4.58)

which allows us to symmetrize the Einstein pseudotensor (1.4.30) by the Belinfante
rule (1.2.114):

Pt3! = Et3! + 𝜕" (Eb!"𝛾'𝛾3) . (1.4.59)

After straightforward but tedious calculations and raising the subscript index 3 with
the Minkowski metric, '3", one obtains the Papapetrou energy-momentum complex

Pt!" =
1
* [ 12 (g!"'13 – '!"g13) A+1+,3 + (g13'+(! – '13g+(!) A")+1,3
+ '13 (g+'A(!+1A")'3 + A+3'A(!+1g")' – 2A+3+A(!'1g")')
+ 1
2
('13g!"A+1+A'3' + g

+''!"A31+A13')
+ g

+' (A313A(!+' – A3+'A(!13 – A3+1A(!'3) '")1] . (1.4.60)

The symmetry of this expression is the advantage with respect to the canonical
energy-momentum complexes (1.4.30) or (1.4.44). On the other hand, it contains the
second derivatives of the metric tensor that can be viewed as a disadvantage.
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Application of the Belinfante correction modifies the Freud superpotential, F3
!",

as well. By adding 𝜕"(Eb!"3) to both sides of the conservation law (1.4.40) and using
(1.4.59), one gets

Pt3! + T3
! = 𝜕"P3

!" (1.4.61)

where the quantity at the right side of this equation is known as the Papapetrou
superpotential:

P3
!" = F3

!" + Eb!"3 =
1
*𝜕+ (g1[!'"]+ – g

+[!'"]1) '13. (1.4.62)

Let us make some remarks. First, the Papapetrou symmetrization applied to an arbit-
rary canonical pseudotensor in (1.4.55) and superpotential (1.4.56) related to the
Lagrangian (1.4.54), yields the same results (1.4.60) and (1.4.62). This means that the
divergence in the Lagrangian (1.4.54) is irrelevant to the result of the Belinfante-
Papapetrou symmetrization. Later on, in Section 7.1.4, we will show it explicitly at a
more general level.

Second, construction of the Belinfante correction in (1.4.57) and (1.4.58) was based
on the application of the (external) Minkowski metric, ',-, for raising and lowering
indices. However, the Minkowski metric is a supplementary structure on the dynam-
ical curved manifold. One may be tempted to use the dynamical metric g,- to rise and
lower indices in the Papapetrou symmetrization procedure. However, this will make
the Papapetrou pseudotensor exactly equal to the Einstein tensor with an opposite
sign, thus, yielding

Pt3! +
1
*G3

! → – 1*G3
! + 1

*G3
! ≡ 0. (1.4.63)

In other words, the making use of the full metric in the Papapetrou symmetrization
procedure leads to a degeneracy, that has been noticed and demonstrated for the first
time by Szabados [426, 427], see also [25].

Generic approach to pseudotensors and superpotentials
Constructing canonical pseudotensors and superpotentials in (1.4.54) – (1.4.56) by
making use of the Noether theorem offers a solid systematic approach to discus-
sion of the conservation laws in general relativity. However, the way of constructing
pseudotensors and superpotentials is broader than the standard canonical approach
suggests. Indeed, in the canonical formalism the basic identity (1.4.19) with the current
(1.4.55) and superpotential (1.4.56) has the form:

Ct3! +
1
*G3

! ≡ 𝜕"S3
!", (1.4.64)

where S3
!" = S3

[!"] is skew-symmetric with respect to the indices ! and ". How-
ever, the identity like (1.4.64) can be always written down and used for defining a new
pseudotensor by picking up a corresponding new superpotential even if it does not
originate in the Noether formalism [364]. Let us demonstrate it.
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To this end let us pick up a curved pseudo-Riemanian manifold with a metric and
its partial derivatives defining its geometric structure. We construct an arbitrary anti-
symmetric quantity S ∗3

!" = S ∗3
[!"] out of the metric which automatically satisfies

the differential identity, 𝜕!"S ∗3 !" ≡ 0 due to the commutation of the second partial
derivatives. Next, we introduce a new quantity

t∗3! ≡ 𝜕"S ∗3 !" – 1
*G3

!, (1.4.65)

which is usually called an energy-momentum pseudotensor of gravitational field.
Using the Einstein equations (1.3.22) to replace the Einstein tensor in (1.4.65), one
obtains

t∗3! + T3
! = 𝜕"S ∗3 !". (1.4.66)

The reader can easily recognize that (1.4.66) is nothing else but another form of the
Einstein equations. The quantityS ∗3

!" plays the role of the superpotential with a van-
ishing double divergence. Thus, taking divergence from both sides of (1.4.66) yields a
differential conservation law

𝜕! (t∗3! + T3
!) = 0 . (1.4.67)

The above equations describe a generic formalism of construction of gravitational
pseudotensors of weight +1. Landau and Lifshitz [285] had derived the gravitational
pseudotensor of weight +2 which we discuss below in more detail. Goldberg [196] was
able to further generalize the Landau-Lifshitz approach and suggested a whole family
of symmetric pseudotensors and superpotentials with an arbitrary (integer) weight +n.

It is clear that formulae (1.4.65–1.4.67) offer unrestricted possibilities in construct-
ing various pseudotensors and superpotentials. At the same time, they disclose a wide
ambiguity in construction of conserved quantities in general relativity and show that
there is no unique definition. The ambiguity can be restrained by making reasonable
assumptions about physical and/ormathematical properties of pseudotensors like the
absence of themetric tensor derivatives of higher order, symmetry, simplicity, physical
meaningfulness, etc.

The Landau-Lifshitz pseudotensor
As an example of application of the generic formalism of pseudotensorswe present the
derivation of the famous Landau-Lifshitz pseudotensor and the corresponding super-
potential [285]. The Landau-Lifshitz superpotential S 3!"

LL is defined in terms of the
metric tensor density g

!" = √–gg!" having weight +1 as a quadratic combination:

S 3!"
LL = 1

2*𝜕1 (g3!g1" – g
3"

g
!1) , (1.4.68)

which apparently has weight +2.
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The general equation (1.4.65) extended to the tensor density of weight +2, defines
the Landau-Lifshitz pseudotensor:

t!"LL = 𝜕1S !"1
LL – 1

*√–gG !". (1.4.69)

Direct calculation of (1.4.69) yields:

t!"LL = 1
2* [(2A3,-A131 – A3,1A1-3 – A3,3A1-1) (g!,g"- – g

!"
g
,-)

+ g
!,

g
-3 (A",1A1-3 + A"-3A1,1 – A"31A1,- – A",-A131)

+ g
",

g
-3 (A!,1A1-3 + A!-3A1,1 – A!31A1,- – A!,-A131)

+ g
,-

g
31 (A!,3A"-1 – A!,-A"31)] . (1.4.70)

The advantage of the Landau-Lifshitz pseudotensor is that it contains only the first
derivatives of the metric tensor and, at the same time, is symmetric. Thus, it sim-
ultaneously bears the advantages of Einstein’s (1.4.30) and Papapetrou’s (1.4.60)
pseudotensors. The difference of the Landau-Lifshitz pseudotensor (1.4.70) from other
pseudotensors is that it has weight +2 while the other pseudotensors have weight +1.
It is interesting to notice that Babak and Grishchuk [21] showed how to apply the Lag-
rangian formalism to derive a covariant analog of (1.4.70) with a more commonly used
weight +1, see Sections 2.4.1 and 2.4.1.

Using the Einstein equations in equation (1.4.69), one obtains a conservation law:

t,-LL +√–gT ,- = 𝜕"S ,-"
LL , (1.4.71)

which differential form is

𝜕- (t,-LL +√–gT ,-) = 0 . (1.4.72)

The covariance problem of pseudotensors
All pseudotensors are non-covariant - they are not transformed as tensors under
arbitrary coordinate transformations which makes the physical interpretation of the
conserved quantities in general relativitymore difficult. The problem has been already
known to Einstein who was trying to circumvent it by applying some reasonable
arguments preventing the appearance of unphysical results. In particular, he noticed
that in spite of the fact that the pseudotensors are not covariant the local con-
servation laws, like (1.4.67), are similar to the continuity equation which describe
a local balance between the densities of energy and linear momentum of matter
and gravitational field as well as between the density of the linear momentum and
stresses of matter and gravitational field. To justify the physical meaningfulness
of the pseudotensor, Einstein [151] appealed to an example of a physical system
consisting of two point-like gravitating masses kept in an equilibrium by a rigid
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rod placed between them. The linear momentum of the whole system including
the gravitational field is nil while the rod has a mechanical stress described by
Ti

j in (1.4.67) which compensates the stress of the gravitational field described by
t∗i j. Einstein had also suggested a simple method for “localization” of gravitational
field and calculation of its energy in case of an isolated astronomical system [150]
which is based on introduction of the global coordinates smoothly matching the
“Galilean space” and “Galilean coordinates” at infinity. Finally, he had used his
energy-momentum complex to describe physical properties of weak gravitational
waves which he considered as the small perturbations with respect to the Minkowski
metric [152].

Einstein’s ideas have received further development in the mathematical approach
based on introducing to the dynamical spacetime manifold with the metric tensor g,-
a fixed Minkowskian background with the Minkowski metric ',- = diag(–1, +1, +1, +1)
in the Lorentzian coordinates. The full metric g,- is linearly decomposed into the
Minkowski metric and a perturbation l,- which is considered as a tensor in the
Minkowski space. In this approach one can operate with arbitrary curvilinear coordin-
ates, x!, introduced on the backgroundMinkowskianmanifold. So that thementioned
decomposition for description of the gravitational waves takes on the form

g,- = 𝛾,- + l,-, (1.4.73)

where 𝛾,- is the Minkowski metric in the curvilinear coordinates. All geometric objects
residing on the background manifold can be made covariant by replacing the par-
tial derivatives in the Lorentzian coordinates to the covariant derivatives with the
Christoffel symbols C!,- constructed from the Minkowski metric 𝛾,- in the curvilinear
coordinates (see (1.2.9)).

The covariantization procedure described above allows us to construct the con-
served quantities bymaking use of the Killing vectors .3K of the backgroundMinkowski
space which are defined in the Lorentzian coordinates by (1.1.70). The left hand side in
(1.4.66) is reformulated as the conserved vector density (current) defined as

J ∗!(.K) ≡ (√–𝛾)1–n (t∗3! + T ∗3
!) .3K , (1.4.74)

where we have generalized the pure gravitational energy-momentum complex in
(1.4.66) to a pseudotensor t∗3! of a generic weight +n and a matter energy-momentum
tensor density T ∗3

! of a generic weight +n also11. We emphasize that if t∗3! is non-
symmetrical we can use only four translational Killing vectors to build four conserved
currents while for the symmetric t∗3! all ten Killing vectors can be used.

11 See, for example, the Landau-Lifshitz equation (1.4.71) with the related quantities t∗,- = tLL,- and
T ∗,- = √–gT,- of weight +2.
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The generalized conservation law (1.4.67) takes on the following form:

𝜕!J ∗!(.K) = 0, (1.4.75)

which can be integrated in a close analogy with (1.2.83). The corresponding integral
conserved quantity is:

P∗(.K) = ∫
G
d3xJ ∗0(.K). (1.4.76)

The superpotential in the right side of (1.4.66) can be also covariantized:

J ∗!"(.K) = (√–𝛾)1–nS ∗3 !".3K , (1.4.77)

where we have again generalized it to the weight +n. Finally, one can rewrite (1.4.66)
in a fully covariant form:

J ∗!(.K) = 𝜕"J ∗!"(.K), (1.4.78)

which allows us to represent the conserved quantity (1.4.76) in the form of a surface
integral:

P∗(.K) = ∮
𝜕G
dsiJ

∗0i(.K) = ∮
𝜕G
dsi(√–𝛾)1–nS ∗3 0i.3K . (1.4.79)

The Komar superpotential
The covariantization of the classical pseudotensors and superpotentials by making
use of the background Minkowski manifold is a useful mathematical device to bet-
ter understanding the nature of the conservation laws in general relativity and the
other field theories on curved manifolds. Nonetheless, this approach suffers from
criticism that the background Minkowski space is not directly observable in general
relativity. Furthermore, the conserved quantities crucially depend on the choice of the
background manifold which brings about an uncertainty in their definition.

Komar [265] have found a genuine covariant definition of the conserved quantit-
ies in general relativity which does not depend on the splitting of the metric tensor in
the backgroundmetric and a perturbation like in (1.4.73). Komar [265] worked with the
Hilbert Lagrangian (1.3.1) which is generally covariant. In this case, constructing the
conservation laws can done with the help of arbitrary displacement vectors .,(x), like
in (1.4.1), instead of the constant coordinate shifts (1.4.26). Komar used the general
expression for the current (1.4.14) and for the superpotential (1.4.21). After substitut-
ing the quantities (1.4.46), (1.4.47), and (1.4.50) into these expressions he obtained a
covariant current and a famous Komar superpotential:

K !" = √–g
* ∇[!."] . (1.4.80)
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Notice that if we chose ., = const in (1.4.80) it becomes equivalent to the Møller
superpotential (1.4.48), and the Komar current goes to the Møller current (1.4.44).
Unfortunately, in spite of the great advantage to be covariant the Komar superpotential
has a major problem – it does not reproduce the correct angular momentum-to-mass
ratio in the Kerr solution, see, e. g., [250, 316]. We discuss this problem in next section
in more detail.

The problem of constructing various both not covariant and covariant approaches
to pseudotensors and superpotentials has been tackled by a number of notable relat-
ivists including Bergman [38], Goldberg [196], Mitzkevich [316], Møller [323], and the
others. A comprehensive review of early work on pseudotensors and superpotentials
was given by Trautman [443].

1.5 Applications

It is instructive to apply the results of the previous sections to physical models
describing isolated astronomical systems like a single or binary star, the solar system,
globular stellar cluster, etc. We shall consider the case of slowly moving sources with
a weak gravitational field when the relativistic effects of curved spacetime are small
and a, so-called, linearized approximation of general relativity is sufficient. It means
that themetric tensor perturbations are considered as functions describing small devi-
ations from the Minkowski space which are found by solving the linearized Einstein
equations with the help of the conventional methods of mathematical physics. We
employ this approach in this section to discuss the problem of energy carried out by
weak gravitational waves emitted by the isolated gravitating systems.

1.5.1 Linearized general relativity

The action and the field equations
Let us consider the Einstein equations in the form (1.3.23). They have been obtained by
the variation of the gravitational Lagrangian with respect to the contravariant metric
tensor g!". We linearize (1.3.23) with respect to the Minkowski space by making use of
the following decomposition,

g!" = 𝛾!" + l!", (1.5.1)

and assuming that the absolute value of the metric tensor perturbations, l!", are
small compared with the components of the Minkowski metric 𝛾!" in curvilinear
coordinates, |l!"| ≪ |𝛾!"|.

The linearized approximation of the Chistoffel symbols (1.3.5) reads:

A!,- = C!,- + B!,-, (1.5.2)
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where C!,- are the Christoffel symbols (1.2.9) made out of the Minkowski metric in the
curvilinear coordinates, and

B!,- = –1
2
(l!,;- + l!-;, – l-,;!) , (1.5.3)

is the linearized perturbation of the Christoffel symbols, and the semicolon denotes
the covariant derivatives with respect to the metric 𝛾!".

We shall consider gravitational field in vacuum, thus, neglecting the energy-
momentum tensor density of matter in (1.3.23). Then, keeping in mind (1.5.1) and
(1.5.3), we calculate the linearized part of the Einstein tensor in (1.3.23) in the form,

GL
!" ≡ 1

2
(l!";1;1 + 𝛾!"l13;13 – l1!;"1 – l1";!1 – 𝛾!"l00 ;1;1 + l00;!") . (1.5.4)

Linearized Einstein equations describing gravitational field in vacuum are:

GL
!" = 0, (1.5.5)

which also implies that the linearized Ricci tensor RL!" vanishes, R
L
!" = 0.

The field l!" can be thought as a dynamical field propagating in the Minkowski
space in accordance with the principle of the least action which variation with respect
to l!" leads to equations (1.5.5). The corresponding LagrangianL G of the gravitational
action for the field l!" can be taken as the Hilbert LagrangianLH in (1.3.9). We expand
the Hilbert Lagrangian in the Taylor series with respect to l!",

LH = L g
0 + L g

1 + L g
2 + . . . , (1.5.6)

and take into account that the curvature of the Minkowski space is nil and the linear-
ized Riemann tensor vanishes. It yields L g

0 = 0 and L g
1 = 0 correspondingly. The

remaining quadratic term L g
2 can be simplified by discarding all terms which form

the divergence. After long and tedious calculations it results in

L g
2 = 1

2√–𝛾 (l13;0l10 ;3 – l13;3l00 ;1 + 1
2
l0
0
;1l4

4;1 – 1
2
l13;0l13;0) . (1.5.7)

The reader can check by inspection that (1.5.7) coincides with the Einstein Lagrangian
(1.3.9) if one discards all terms of the third and higher order with respect to l!".
Eventually, the action for free gravitational field l13 is

S2 = – 1
2*c ∫ d4xL g

2 , (1.5.8)
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where * = 80G/c4. One can easily check that by varying the action (1.5.8) with respect
to l!" yields expression (1.5.4),

$L g
2

$l!"
= G L

!" = √–𝛾GL!", (1.5.9)

and, consequently, the least action principle leads to equations (1.5.5).

Energy-momentum tensor of a weak gravitational field
Formulae (1.5.4–1.5.9) represent the linearized general relativity in vacuum as a cov-
ariant theory of a weak gravitational field l,- in the Minkowski space. Therefore, one
can apply the formalism developed in the Section 1.2 to derive the energy-momentum
tensor of the gravitational field.

First, we calculate the canonical energy-momentum given by formula (1.2.104).
Substituting the Lagrangian (1.5.7) to this formula, yields

C(3! = – 1
2* [ 𝜕L g

2𝜕l,-;! l,-;3 – $!3L g
2 ]

= –√–𝛾
4* [2l!,;-l,-;3 – l,-;!l,-;3 – l11;,l,!;3 – l11;3l,!;, + l11;3l00 ;!

– $!3 (l14;0l10 ;4 – l14;4l00 ;1 + 1
2
l0
0
;1l4

4;1 – 1
2
l14;0l14;0)] . (1.5.10)

Second, we calculate the Belinfante corrected energy-momentum related to the theory
(1.5.8). Formula (1.2.103) yields the spin density:

3!"3 =
1
2*

𝜕L g
2𝜕 (l,-;!) l,-󵄨󵄨󵄨󵄨"3 = √–𝛾

2* [(l!1;3 + l!3;1 – l13;!) l"1
+ (l11;! – l!1;1) l"3 – 1

2
$!3l

"4l11;4 –
1
2
l!"l11;3] . (1.5.11)

The corresponding Belinfante correction is calculated with the use of the definition
(1.2.113):

b!"𝛾 = 3𝛾[!"] + 3![𝛾"] – 3"[𝛾!] (1.5.12)

= √–𝛾
* (l1[!l"]𝛾;1 + l1[!;"]l𝛾1 + 1

2
𝛾𝛾[!l"]1l00;1 + 1

2
l00

[;!l"]𝛾) .
Finally, we use expression (1.5.12) to symmetrize the canonical energy-momentum by
applying the rule (1.2.114). Thus, combining (1.5.10) and (1.5.12), we obtain
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B(3! = C(3! + b!"3;"

= √–𝛾
2* [l1!;0l30 ;1 – 2l10(;!l3)1;0 + l00 (;!l3)1;1 + l!3;1l10 ;0 + l!0;1l30;1

+ 1
2
l01;!l01

;3 – 1
2
l00

;!l11
;3 – 1

2
l!3;0l

1
1
;0

+ 1
4𝛾!3 (2l14;0l10 ;4 + l00 ;1l00;1 – l14;0l14;0)

+ 2l1(!l3)1
;0
;0 – l

01l!3;01 – l
01

;1
(;!l3)0 + l

1
1;0

(;!l3)0

+ 1
2
𝛾!3l01l44;01 + l!3 (l01;01 – 3

2
l11

;0
;0)] . (1.5.13)

It is important to remark that the symmetrized energy-momentum (1.5.13) coin-
cides with the metrical energy-momentum defined following the rule (1.2.127) if the
equations (1.5.5) are taken into account,

S(!" = – 1*
$L g

2
$𝛾!" = B(!" (1.5.14)

that can be checked by a direct calculus.

Gauge invariance
Energy-momentum tensors of weak gravitational field (1.5.10), (1.5.13) and (1.5.14) are
differentially conserved in accordance with equations (1.2.102), (1.2.14) and (1.2.129)
of a field theory in the Minkowski space as a consequence of the invariance of the
action (1.5.8) in the linearized general relativity with respect to the coordinate trans-
formations in theMinkowski space. However, there is another type of invariance of the
action which also leads to important physical results. This is a so-called gauge invari-
ance. In order to understand this concept, let us consider transformation of the field
variables l,- induced by an arbitrary vector field .!,

l󸀠,- = l,- + .,;- + .-;, (1.5.15)

without changing coordinates and the metric 𝛾,-. Transformation (1.5.15) can be inter-
preted as an intrinsic gauge transformation similar to the gauge transformations in
electrodynamics (1.2.140) or in the Yang-Mills field theory [266]. Indeed, the linear-
ized field equations (1.5.5) remain invariant under transformation (1.5.15). At the same
time the Lagrangian (1.5.7) under the gauge transformation (1.5.15) is invariant up to a
divergence that does not influence the field equations (1.5.5).

To study the consequences of the gauge invariance let us turn to the second
Noether’s theorem. We rewrite transformation (1.5.15) in the form of (1.2.61) and
(1.2.62). Because the coordinates and the metric tensor are not changed we have,
$x! = 0 and $𝛾,- = 0. On the other hand, the field variables change,
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$l,- = .! ⋅ 2C(,!1𝛾-)1 + .!,1 ⋅ 2$(,! 𝛾-)1 (1.5.16)

where C!"𝛾 are the Christoffel symbols constructed with the use of the Minkowski
metric 𝛾,-, see (1.2.9). Thus, the coefficients in the transformation (1.2.62) of the field
variable are as follows: %a → .!, 9A

a → 2C(,!1𝛾-)1 and 9A!
a → 2$(,! 𝛾-)1. Then, the

identity (1.2.66) is represented as

C,!1𝛾-1 $L g
2

$l,- ≡ 𝜕1 ($,!𝛾-1 $L g
2

$l,- ) . (1.5.17)

Thus, keeping in mind (1.5.9), one finds easily that (1.5.17) transforms into the linear-
ized Bianchi identity

G L
!1

;1 ≡ 0. (1.5.18)

We remark that the identity (1.5.18) is quite analogous to the identity (1.2.141) in elec-
trodynamics that follows from the gauge invariance of the electromagnetic potential.

1.5.2 Weak gravitational waves in general relativity

The Lorentz gauge
Solutions of equations (1.5.5) describe the metric perturbations with respect to the
background Minkowski space. These perturbations are physically interpreted in gen-
eral relativity as representing a weak gravitational field in vacuum. Any coordinates
can be used to analyze the perturbations. For the sake of simplicity, we use the Lorent-
zian coordinates which allow to eliminate the background Christoffel symbols C!,-.
The invariance of (1.5.5) under the gauge transformation (1.5.15) means that there is a
freedom in definition of the components l,- associated with the choice of the vector
field .!. The arbitrariness of the vector field allows us to impose four gauge conditions
on the components of the metric perturbation l,-.

One particular choice of the gauge conditions is the most useful. It is called the
Lorentz gauge as it allows us to reduce equation (1.5.5) to the d’Alembert (wave) equa-
tion. Similar gauge is used in electrodynamics to describe the wave solutions of the
Maxwell equations. Let us redefine the new field variables in the form of a linear
combination of the old variables,

h,- = l,- – 1
2
',-l11. (1.5.19)

The Lorentz gauge is defined by the differential equation

𝜕-h,- = 0, (1.5.20)
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that can be always fulfilled by making a relevant choice of .! in (1.5.15). The Lorentz
gauge allows us to cancel out a number of the gauge-dependent terms in equations
(1.5.5) which is simplified and reduced to the wave equation

◻h,- ≡ h,-,1
,1 = h,-,i

,i – 1
c2

𝜕2𝜕t2 h,- = 0, (1.5.21)

where ◻ denotes the d’Alembert operator. Equation (1.5.21) still describes any weak
gravitational field in vacuum but it is the most convenient for studying propagation
of weak gravitational waves. According to general relativity the fundamental speed c
entering the d’Alembert operator is equal to the speed of light in vacuum. It means
that weak gravitational waves in general relativity propagate with the speed of light c.

The condition (1.5.20) does not completely fix the gauge freedom in the choice of
the components l,- – a residual gauge freedom remains. Indeed, the reader can easily
check that the gauge transformation (1.5.15) applied to the wave equation (1.5.21) does
not change it if ., also satisfies the wave equation

◻., = 0. (1.5.22)

The residual gauge freedom can be fixed depending on the particular physical situ-
ation under consideration. In case of weak gravitational waves this is done by
choosing a, so-called, transverse-traceless (TT) gauge.

TT gauge
Let us consider a weak gravitational wave propagating along a positive direction of
x1 = x coordinate. In this case the wave equation (1.5.21) takes the following form

( 𝜕2𝜕x2 – 1
c2

𝜕2𝜕t2) h,- = 0. (1.5.23)

Solution of this equation, for the given direction of propagation of the wave, is an
arbitrary function

h,-(t, x) ≡ h,-(ct – x). (1.5.24)

The gauge condition (1.5.20) applied to this solution is, 𝜕0h0- + 𝜕1h1- = 𝜕0h0- – 𝜕0h1- =
0, where the partial derivative operator 𝜕0 = c–1𝜕t. After integrating this equation
and choosing the constant of integration equal to zero which is always possible,
we conclude that the Lorentz gauge condition (1.5.20) is equivalent to the following
restriction:

h0- = h1-. (1.5.25)
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Now, we make use of the residual gauge freedom related to ., satisfying (1.5.22),
and impose additional four restrictions on the components of the metric tensor per-
turbations. More specifically, we demand that the time-space components of the
perturbation vanish,

h0i = 0, (1.5.26)

along with the trace of its spatial components

h11 + h22 + h33 = 0. (1.5.27)

Combining (1.5.25) with (1.5.26), (1.5.27) one finds that among ten components of h,-

merely two components, h23 and h22 = –h33 are left non-zero. This fixes the gauge
completely and makes it clear that a free gravitational field has only two degrees of
freedom which characterize the state of polarization of a gravitational wave.

Physical meaning of the gauge condition (1.5.26) is associated with the transverse
character of the gravitational wave perturbation. The wave vector, k!, of a monochro-
matic gravitational wave is k! = 9n!, where 9 is a circular frequency of the wave, and
n! is a null vector '!"n!n" = 0. In case of a plane wave propagating along a positive
direction of x axis, the null vector n! = (1, 1, 0, 0) in the Lorentzian coordinates. The
condition (1.5.25) is equivalent to

n,h
,- = 0, (1.5.28)

which means that the metric perturbation is orthogonal (transverse) to the direction
of propagation of the wave. The condition (1.5.26) means that the metric perturbation
is purely spatial that is for an observer moving with a four velocity u! the condition

u,h
,- = 0, (1.5.29)

holds. In case of the static observer, u! = (1, 0, 0, 0) in the Lorentzian coordinates, and
the condition (1.5.29) coincides exactly with (1.5.26). Finally, one can easily check that
the remaining condition (1.5.27) is equivalent to

h,, = ',-h,- = 0. (1.5.30)

which means that the physical components of the metric perturbation, in case of a
weak gravitational wave, are traceless. The gauge satisfying the Lorentz condition
(1.5.28) along with the two other conditions, (1.5.29) and (1.5.30), limiting the residual
gauge freedom, is called the transverse-traceless gauge or simply TT-gauge. In con-
clusion, it is worth noting that the TT gauge condition (1.5.30) leads to the equality,
h,- = l,-, which can be useful in practical calculations.
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Energy-momentum tensor of a plane gravitational wave
It is instructive to study how the various energy-momentum complexes introduced in
this section describe the energy and momentum carried out by a plane, weak grav-
itational wave. To derive the corresponding expression for the energy we use the TT
gauge imposed by the conditions (1.5.28–1.5.30). The plane gravitational wave propag-
ates in the direction of a null vector n, which is orthogonal to the wave front. Hence,
the partial derivative of the metric tensor perturbation

l,-,! =
n!
c

̇l,-, (1.5.31)

where the overdot denotes a partial derivative with respect to time t.
At first, we consider the energy-momentum tensors (1.5.10) and (1.5.13), (1.5.14) of

the linearized general relativity in the Lorentzian coordinates where √–' = 1. They
contain a number of terms being quadratic with respect to the products of the metric
tensor perturbation. However, a careful inspection of all terms reveals that most of
the quadratic terms vanish in the TT gauge. For example, the quadartic terms like
l,-,3l!,,- vanish due to the gauge condition (1.5.28) and equation (1.5.31), the terms like
l,-,1l,-,1 = 0 due to the equation (1.5.31) and the condition that vector n! is null, etc. It
is straightforward to prove that all the energy-momentum tensors are reduced in the
TT gauge to a rather simple and unique expression

C(!" = B(!" = S(!" =
1
4* l

,-,!l,-
," = n!n"

4* ḣ,-ḣ,-, (1.5.32)

where we have used definition (1.5.19) and the fact that the trace of l,- is zero in the TT
gauge, which yields l,- = h,-.

Now, let us calculate various pseudotensors in the quadratic approximation for
a weak gravitational wave in the TT-gauge. We begin from the Einstein pseudotensor,
Et3!, defined in (1.4.30). Recall that the Lagrangian (1.5.7) is a quadratic approxim-
ation of the Einstein Lagrangian (1.2.18). Therefore, one can expect that the energy-
momentum tensor (1.5.10) coincides with the Einstein pseudotensor (1.2.53) in the
quadratic approximation with respect to the metric tensor perturbation (1.5.1) if one
uses the Lorentzian coordinates. Straightforward calculation shows that this expecta-
tion is true. Thus, the Einstein pseudotensor Et3! calculated for the plane gravitational
wave gives (1.5.32) in the TT gauge.

One might suppose that the Papapetrou pseudotensor, Pt3!, given in (1.4.60) and
the Belinfante corrected energy-momentum tensor (1.5.13) coincide with the Einstein
pseudotensor in the quadratic approximation. This turns out to be not true. The reason
is that the operations of taking the quadratic approximation and the Belinfante sym-
metrization procedure do not commute resulting in different approximate forms of
the Belinfante correction, Eb!"3, in (1.4.58) and that, b!"3, in (5.1.12). Therefore, strictly
speaking, the Papapetrou pseudotensor (1.4.60) differs in the quadratic approxima-
tion from that of the Einstein pseudotensor, Et3!, by a divergence of quantity, Eb!"3,
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given in (1.4.58). Nonetheless, one can easily prove by inspection that after imposing
the TT-gauge condition the divergence 𝜕"(Eb!"3) = 0. Thus, the quadratic approxima-
tion of Pt3! is different from Et3! merely by gauge terms which vanish in the TT gauge.
We conclude that Pt3! also gives (1.5.32) for the plane gravitational waves in the TT
gauge.

Considering the Møller pseudotensor, Ht3!, in (1.4.44) one finds that only its part
–*–1G3

! is not zero under the TT-gauge conditions. The linear part of –*–1G3
! is equal

to zero by the wave equation (1.5.21). The quadratic part of –*–1G3
! is just equal to

(1.5.32) again.
Noticing that the Komar pseudotensor coincides with the Møller’s one for the con-

stant vector field ., = const entering its definition, we conclude that it gives the same
result (1.5.32) for the energy-momentum tensor of gravitational waves in the quadratic
approximation in the Minkowski space.

The Landau-Lifshitz pseudotensor, t!"LL , is given in (1.4.70). Using decomposition
(1.5.1) with (1.5.3) in the Lorentzian coordinates, calculating the quadratic approx-
imation, and applying again the TT-gauge condition, one finds that in case of the
plane gravitational waves the Landau-Lifshitz pseudotensor yields formally the same
expression (1.5.32).

The expression (1.5.32) can be interpreted as a tensor density of weight +1 in
the Minkowski space which may be important in calculations in curvilinear (e.g.,
spherical) coordinates.

Now let us use expression (1.5.32) for describing the energy density E of a plane
gravitational wave. It is given by projection of C(!" on four-velocity of observer u!:
E = C(!"u!u". Plane gravitational wave has two physical degrees of freedom (polar-
izations). In case of the wave propagating along x axis they are h23 = h32 ≡ h×
(cross polarization), and h22 = –h33 ≡ h+ (plus polarization). Then, u! = (1, 0, 0, 0),
n! = (1, 1, 0, 0), and one has for the energy density of the way:

E = 1
2*c2 (ḣ2+ + ḣ2×) . (1.5.33)

The energy flux is given by a vector quantity S ! = C(!"u" which is reduced for the
wave propagating along x axis to S ! = E n!.

The result (1.5.33) is unique and identical for all known pseudotensors. It
describes the energy density carried out by a plane gravitational wave with twomodes
propagating in the Minkowski space. Because there is a large ambiguity in the defini-
tions of conserved quantities in general relativity, expression (1.5.33) can be used as a
testbed for checking applicability and self-consistency of new possible definitions of
the conserved quantities which are suggested time to time in gravitational physics.

1.5.3 The energy of an isolated gravitating system in general relativity

Another model that is practically important in astrophysical applications especially
those which are concerned with the emission of gravitational waves, is an isolated
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astronomical system. The simplest solution of Einstein’s field equations correspond-
ing to such a system is the Schwarzschild solution which describes gravitational field
outside of a spherically-symmetric distribution of mass. The mass distribution can be
static or commit a radial motion – it does not affect the external gravitational field
due to the Birkhoff theorem. The metric tensor of the Schwarzschild solution can be
written down in several forms depending on the choice of time and spherical coordin-
ates. The most commonly used choice of the coordinates follows the original work of
Schwarzschild that yields the metric tensor in the following form:

ds2 = –(1 – rg
r
) c2dt2 + 1

1 –
rg
r

dr2 + r2 (d(2 + sin2 (d62) , (1.5.34)

where a constant parameter rg is called gravitational radius of the body that generates
the gravitational field. The metric (1.5.34) is singular at the radial distance r = rg.
Therefore, it can describe gravitational field of a physical body (star, planet, etc.) if,
and only if, the body has a radius R exceeding rg. In case of R ≤ rg the gravitational
field becomes so strong that the body inevitably collapses to a black hole with the
(spherical) event horizon located at the radial distance rg.

The gravitational radius rg is a constant of integration of the Einstein equations
for the spherically-symmetric Schwarzschild solutionwhich is directly associatedwith
a total (Tolman or relativistic) mass m of the body by matching the Schwarzschild
solution to the Newtonian gravitational field at spatial infinity in the limit of r → ∞.
It yields a unique relation,

rg =
2Gm
c2

. (1.5.35)

Because the mass m has a clear, unambiguous physical meaning, the Schwarzs-
child solution can be used as a testbed for checking the applicability of different
pseudotensors and corresponding superpotentials for correct evaluation of the con-
served quantities in various cases of astronomical isolated systems through the
surface integration at spatial infinity like that shown in (1.4.79) with (1.4.77).

Let us discuss the conserved quantities given in the form of a surface integral
(1.4.79) with the superpotential (1.4.77) which is the most convenient way for calcu-
lations because one needs to know only the asymptotic values of the metric tensor
and other geometric quantities defining the superpotential on the surface of integ-
ration that can be taken in case of the Schwarzschild solution at spatial infinity.
Because the Schwarzschild solution is spherically-symmetric the spherical coordin-
ates are the most convenient coordinates for calculations. Therefore the integration
requires a covariantization in a way of the integral (1.4.79) that has been constructed
in any curvilinear coordinates.

We, first, pick up an arbitrary classical superpotential S3
!" and rewrite the

condition (1.4.77) in the form:

J !"(.3K ) = (√–𝛾)1–nS3
!".3K = √–𝛾S3!".3K , (1.5.36)
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where S3!" is a tensor in the Minkowski space. The covariantization demands to
replace the partial derivatives with the covariant ones in the Minkowski space,
and to use the covariantized Christoffel symbols B,!" instead of their non-covariant
counterpart (1.3.5). It means that we have to make a replacement:

A,!" → B,!" =
1
2
g,1 (g1!;" + g1";! – g!";1) . (1.5.37)

The fact that the covariantized Christoffel symbols B,!" are a tensor of rank 3 in the
Minskowski space can be also derived from the relation,

B,!" = A,!" – C,!", (1.5.38)

between the dynamical Christoffel symbols (1.3.5) and the background Christoffel
symbols constructed with the use of 𝛾,-, see (1.2.9).

Covariantization of the Freud superpotential (1.4.39) by making use of the proced-
ure explained above, yields:

F3
!" → F3

!" = 1
*
√–g√–𝛾 (g1[!B"]13 + $[!3 g"]0B110 – $[!3 B"],-g,-) . (1.5.39)

The covariant version of the Møller superpotential (1.4.48) is:

X3
!" → X3

!" = 1
*
√–g√–𝛾g1[!B"]13. (1.5.40)

In order to represent the Papapetrou (1.4.62) and Landau-Lifshitz (1.4.68) superpoten-
tials into the covariant form we use the known formulae for the partial derivatives of
the metric tensor:

𝜕3g,- = g,1A13- + g-1A13,, 𝜕3√–g = √–gA113. (1.5.41)

Then, the covariantized Papapetrou superpotential (1.4.62) is:

P3
!" → P3

!" = 1
*
√–g√–𝛾 [B,,+ (g1[!𝛾"]+ – g+[!𝛾"]1) + B[!+,𝛾"]1g+,

– B[!+,𝛾"]+g1, + B1+,𝛾+[!g"], – B++,𝛾1[!g"],] 𝛾13, (1.5.42)
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whereas the covariantized Landau-Lifshitz superpotential (1.4.68) is given by:

LLS3
!" → LLS3

!" = 1
*
(√–g)2(√–𝛾)2 [2B,,+ (g1[!g"]+ – g+[!g"]1)

+ B[!+,g"]1g+, – B[!+,g"]+g1,

+ B1+,g+[!g"], – B++,g1[!g"],] g13. (1.5.43)

The asymptotic form of the Schwarzschild solution (1.5.34) in spherical coordinates
x! = {x0, x1, x2, x3} = {ct, r, (,6}, is the Minkowski metric

ds2 = –c2dt2 + dr2 + r2 (d(2 + sin2 (d62) , (1.5.44)

which determinant√–𝛾 = r2 sin (.
We apply the integration formula (1.4.79) for calculating the total energy E =

P(.!0 ) corresponding to the Killing vector .!0 = (–1, 0, 0, 0). It yields

E = lim
r→∞

∫0

0
d(∫20

0
d6 r2 sin ( S!01.!0 (1.5.45)

where S001 is one of the above given expressions (1.5.39), (1.5.40), (1.5.42), (1.5.43) for
the covariantized superpotentials – Freud, Møller, Papapetrou, etc.

We use the metric tensor coefficients for the Schwarzschild solution (1.5.34):

g00 = – 1
1 – rg

r

, g11 = 1 –
rg
r
, g22 = 1

r2
, g33 = 1

r2 sin2 (
(1.5.46)

and the Minkowski metric coefficients in the spherical coordinates (1.5.44):

𝛾00 = –1, 𝛾11 = 1, 𝛾22 = 1
r2
, 𝛾33 = 1

r2 sin2 (
. (1.5.47)

The ordinary Christoffel symbols of the Schwarzschild solution (1.5.34):

A010 = –A111 =
rg
2r2

1
1 – rg

r

, A100 =
rg
2r2

(1 – rg
r
) ,

A122 = –r (1 – rg
r
) , A133 = –r sin2 ( (1 – rg

r
) ,

A221 = A331 =
1
r
, A332 = cot (, A233 = – sin ( cos (, (1.5.48)

whereas the Christoffel symbols of the Minkowski metric in the spherical coordinates
(1.5.44) are:
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C221 = C331 =
1
r
, C332 = cot (

C122 = –r, C133 = –r sin2 (, C233 = – sin ( cos (. (1.5.49)

Using (1.5.48) and (1.5.49) one can easily obtain the covariant B!,- by making use of
equation (1.5.38).

To calculate the total energy (1.5.45) it is enough to find out the asymptotic
behaviour of the component of the superpotentials F001, X001, etc. at spatial infin-
ity for r → ∞. Thus for the covariantized superpotentials by Freud, Papapetrou and
Landau-Lifshitz we find:

F0
01 ∼ P0

01 ∼ L0
01 ∼ –

rg
*
1
r2
, (1.5.50)

but the Møller superpotential behaves differently,

X0
01 ∼ –1

2
rg
*
1
r2
. (1.5.51)

Recalling the definition of the gravitational radius rg in (1.5.35) and that of the Ein-
stein constant, * = 80G/c4, one gets from the integration formula (1.5.45) for the cases
(1.5.50):

E = mc2, (1.5.52)

whereas for the case of the Møller superpotential (1.5.51):

E = 1
2
mc2. (1.5.53)

We conclude that the Freud, Papapetrou and Landau-Lifshitz superpotentials are
physically meaningful as they yield the correct value for the total energy of the body
while the Møller superpotential has a problem.

It was discussed above that the Komar superpotential (1.4.80) is reduced to the
Møller one if ., = const. This means that the Komar superpotential also gives the
problematic result (1.5.53) that is known as Komar’s anomaly.

Similar calculations can be performed for the Kerr solution describing axially-
symmetric gravitational field of a rotating star. The Kerr solution has another con-
served quantity – the total angular momentum. The Papapetrou and Landau-Lifshitz
superpotentials, being related to symmetrical pseudotensors, can be used for calcu-
lations of the total angular momentum and give physically meaningful result with a
normal ratio of the mass to angular momentum. However, the Komar superpotential,
being universal to using all possible Killing vectors, again reveals an anomaly in case
of the Kerr solution. The anomaly can be cured, see, for example, the Katz work, [250]
and the construction (6.1.24) in Section 6.1.2.



2 Field-theoretical formulation of general
relativity: The theory

2.1 Development of the field-theoretical formulation

2.1.1 Geometrical formalism and field theories

In the framework of special relativity all physical systems (massive bodies, particles,
radiation, fields of interaction, etc) exist in a fixed geometry – the Minkowski space
that has no curvature. The flat spacetime (geometrical structure), being an arena for
physical interactions, is a passive background for the physical systems, whereas the
matter fields are active (dynamical) objects. We shall call such theories as field the-
ories. In the modern field theories, the background geometry can be also chosen
as a predetermined curved spacetime, such as an anti-de Sitter (AdS) space, FLRW
cosmological geometries, black hole geometries, etc. (see, e. g., [50]).

General relativity was the first theory, where the spacetime acquired the status of
a dynamical entity. This means that the metric, which describes the geometry of the
spacetime, is a dynamical field like the other fields that reside in the spacetime. Gen-
eral relativity is not the only example of the theory with dynamical gravitational field,
various theories of gravity, which generalize general relativity, have been suggested.
Besides the metric, some other geometrical fields, like torsion, non-metricity, etc., can
be also considered as dynamical fields. Collectively, we shall classify these theories as
geometrical theories.

It is intuitively clear that the conceptual basis for constructing conservation laws
in the framework of field theories is significantly simpler than that in geometrical
theories where together with matter fields, one has to find and describe the dynamical
evolution of geometry. A natural question arises. Can one transform a geometrical
theory to the form of a field theory with a fixed background spacetime? The idea of
reformulating a metric theory in the form of field theory (field-theoretical formula-
tion) has a natural foundation. For example, in studying geometric perturbations
in a metric theory, one chooses a background spacetime (be it curved or flat) and
examines evolution of the perturbations with respect to the chosen background. The
present chapter is devoted to the development of the principles of constructing the
field-theoretical formulation of general relativity.

2.1.2 Earlier perturbative formulations of general relativity

Let us return to the general relativity action (1.3.15) with the Einstein-Hilbert Lag-
rangian (1.3.16), which represent a system of the metric field g,- and the matter fields
IA, a set of tensor densities, see Appendixes A.1 and A.3.1. Variation of (1.3.15) with

DOI 10.1515/9783110351781-002
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respect to g!" gives the Einstein’s equations in the form (1.3.22), which can be rewritten
in the more conventional form (1.3.23).

The study of perturbations in general relativity was started by Einstein himself. In
1918, in the framework of general relativity he [152] considered gravitational waves in
the Minkowski space background. In the ensuing decades, perturbations in general
relativity were considered regularly, mostly, in the Minkowski space. The history of
developing the field-theoretical formulation of general relativity as a separate theor-
etical method began in 1940s–1950s see, for example, papers [84, 219, 220, 223, 279,
342, 390, 438, 455]. The work by Deser [120] stands out as the final benchmark in this
series.1

Combining the results of the aforementioned works, we will show how the
Einstein equations can be rewritten in the perturbative form by making use of a
simple logic. In order to proceed in this way we turn to the results of Section 1.5.1
related to the linearized general relativity. Let us define the metric perturbations l,-

on a flat background in the Lorentzian coordinates as

g,- = ',- + l,- . (2.1.1)

It is the type of the decomposition done in (1.5.1). Next, let us substitute (2.1.1) into the
Einstein equations (1.3.23). Then, the terms linear in the metric perturbations at the
left hand side are

GL
,-(l) ≡ 1

2 (l,-,!,! + ',-l!",!" – l!,,-! – l!-,,! – ',-l"",!,! + l"",,-) , (2.1.2)

in which the indices are raised and lowered by '!" and '!". Observe that the expres-
sion (1.5.4) transforms to the expression (2.1.2) if the Lorentzian coordinates are used,
thus (2.1.2) is the left hand side of the linearized general relativity equations (1.5.5).
Next, let us transfer all the nonlinear terms to the right hand side of (1.3.23). Then,
they, together with the matter energy-momentum tensor, are treated as an effective
energy-momentum tensor, teff,- . Thus, the Einstein equations (1.3.23) are rewritten in
the equivalent form as

GL,-(l) = 80 [–(80)–1(G,-(' + l) – GL,-(l)) + T,-(I
A, ' + l)] ≡ 80teff,- . (2.1.3)

The divergence of the left hand side of (2.1.3) is equal to zero identically, 𝜕-G,-L ≡ 0,
see (1.5.18), then

𝜕-t,-eff = 0 (2.1.4)

which is a differential conservation law for the effective energy-momentum.

1 Wemust say that, the present book does not claim to be an authoritative and exhaustive work on the
history of the developments in this context, but, rather, we take the pragmatic and pedagogical path
and mention only the most pertinent works.
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The above development can be interpreted as a Lagrangian based theory of the
gravitational field l,- with self-interaction and the matter fields IA in the Minkowski
space. In this interpretation, the metric perturbations l,- play the role of a dynamical
field, and teff,- is to be obtained by varying the action with respect to the background
metric, as in the case of a symmetric energy-momentum (1.2.127). Now, following the
introduction in work of Deser [120], we outline the main steps of constructing such a
field theory that is fully equivalent to general relativity.

The first step. The principle of equivalence and theoretical considerations (see,
e. g., textbook [315]) point out that the most preferable type of gravitational field is the
tensor field, l,- describing spin 2. The linear equations of this field in the Minkowski
space are

GL,-(l) = 0 , (2.1.5)

where the differential operator is defined in (2.1.2). They are the linearized equations
of general relativity (1.5.5). Thus, they can be obtained by varying the corresponding
quadratic Lagrangian L g

2 (l, ') defined in (1.5.7). The equations (2.1.5) are invariant
with respect to the well known gauge transformation of the field:

l󸀠,- = l,- + .,,- + .-,, , (2.1.6)

see (1.5.15). By this invariance, first, the identity 𝜕-G,-L ≡ 0 follows, see (1.5.18); second,
the tensor field l,- has only two physical degrees of freedom, see Section 1.5.2.

The second step. Assuming that the gravitational field is induced by matter fields,
one has to choose the symmetric energy-momentum tensor T,-(I, ') of matter fields
IA as the source of GL

,-(l). Then, one obtains

GL
,-(l) = 80T,-(I, ') . (2.1.7)

Due to the identity (1.5.18) one has 𝜕-T,- = 0. However, this contradicts the equations
of motion of the fields IA interacting with the gravitational field l,-. How can one fix
this disagreement? Recall that the equation (2.1.7) is assumed to be obtained by vari-
ation of the total Lagrangian with respect to l,-, whereas the right hand side of (2.1.7)
is assumed to be obtained by variation of the matter Lagrangian with respect to the
backgroundmetric, like in (1.2.127), where the Minkowski metric is represented in cur-
vilinear coordinates. In order to reconcile the two different variations, it is necessary
to make the replacement L M(I, 𝛾) → L M(I, 𝛾 + l) in the matter Lagrangian where
the variation with respect to 𝛾,- and l,- are equivalent. Then, automatically, the same
exchange is provided in thematter energy-momentum tensor T,-(I, ') → T,-(I, '+ l).
This reflects the universality of the gravitational interaction, which is postulated from
the beginning.

The third step. Now, one has to include the gravitational self-interaction. To this
end, one adds the symmetric energy-momentum tensor of gravitational field 2tg,-(l),
corresponding to L g

2 , to the right hand side of (2.1.7) together with T,-(I, ' + l).
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It turns out that the tensor 2tg,-(l) can be obtained from the variational principle only
if a cubic term is added to the Lagrangian, L g

2 + L g
3 . Then, one needs to consider the

next iteration, and so on. As a result, one obtains the final variant of the gravitational
equations:

GL,-(l) = 80 [∞∑
n=2

nt
g
,-(l) + T,-(6, ' + l)] ≡ 80 (tg,- + tm,-) . (2.1.8)

It turns out that the equations (2.1.8) are equivalent to the Einstein’s equations
(1.3.23). One can prove that this is, indeed, the case, if one identifies the sum of
the Minkowski metric and the gravitational field perturbation with the full (effective)
metric, see [342]:

',- + l,- ≡ g,- . (2.1.9)

As a result, the background metric ',- and the field l,- disappear from the considera-
tion completely, and the dynamical metric g,- is left alone, restoring general relativity
in its original formulation.

2.1.3 Deser’s field-theoretical model

Generalizing the earlier works, Deser [120] suggested the field-theoretical formula-
tion of general relativity on the Minkowski background in a closed form without
expansions in difference from (2.1.8). The basic principle is the same:
– A consistent field theory of gravity in the Minkowski space is constructed as a theory

of the spin-2 tensor field with self-interaction.

The matter fields are coupled to gravity a universal way analogous to the case
discussed above, therefore for the sake of simplicity we do not consider the matter
fields in this subsection at all.

Unlike the previous case, Deser used the first order formalismwhere the independ-
ent dynamical variables are the components of two fields h

,- and B!,-, where h
,- is a

symmetric tensor density of weight +1, B!,- is a tensor of the rank 3. At the beginning,
Deser considers the linear theory with the action

S = – 1
160 ∫ d4xL g

2 (h,B) , (2.1.10)

where the Lagrangian is

L g
2 (h,B) ≡ h

,- (B!,-;! – B!,!;-) + γ,- (B!,-B"!" – B!,"B"!-) , (2.1.11)

and γ,- = √–𝛾𝛾,-, 𝛾 = det 𝛾,-. Since, later on, we will need variations with respect to
the background metric we use curved coordinates in the Minkowski space. Thus we
consider the Minkowski metric in the form of 𝛾,- instead of ',-. As a result we use the
covariant derivatives {;!} constructed with the help of the metric 𝛾,- and defined in
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(1.2.8) with the corresponding Christoffel symbols C!,-, see (1.2.9). Of course, in the
case of the Lorentzian coordinates, one has 𝛾,- = ',- and C!,- = 0.

Varying (2.1.10) with respect to the dynamical variables one obtains the gravita-
tional field equations of the first order:

2G
,-
! = –h

,-
;! + $(,! h

-)"
;" + γ,-B"!" + γ1"B(,1"$

-)
! – 2γ"(,B-)!" = 0, (2.1.12)

2G
B
,- = B!,-;! – B!!(,;-) = 0 . (2.1.13)

Combining these equations, one easily obtains

GL,-(h) ≡ 1
2 (h,-

;!
;! + 𝛾,-h!";!" – h!,;-! – h!-;,!) = 0 , (2.1.14)

where the notations h,- ≡ h
,-/√–𝛾 are used. Substituting h,- ≡ l,- – 1

2𝛾,-l!! into
(2.1.14), one finds that it coincides with (2.1.5), see also (1.5.5). Thus, the action (2.1.10),
indeed, describes a spin 2 tensor field.

The metrical energy-momentum tensor of the linear gravitational field h
,- is

2t
g
,- =

2√–𝛾 (– 1
160

$L g
2 (h,B)
$𝛾,- ) (2.1.15)

= – 1
80 [($1,$3- – 1

2𝛾,-𝛾13) (B!13B"!" – B!1"B"!3) – Q4
,-;4]

with

2Q4
,- ≡ –𝛾,-h!"B4!" + h,-B4!"𝛾!" – h4,B!-! – h4-B!,!

+ h"4 (B!,"𝛾!- + B!-"𝛾!,)
+ h", (B4-" – B!"1𝛾14𝛾!-)
+ h"- (B4," – B!"1𝛾14𝛾!,) . (2.1.16)

To account for the self-interaction of the gravitational field one has to require that the
energy-momentum tensor (2.1.15) is the source of the gravitational field and appears
in the right hand side of equations (2.1.14). Thus, one gets

GL
,-(h) = 80 2t

g
,-(h,B) . (2.1.17)

But, here, there is a contradiction: this equation has to follow from a cubic in h
,- and

B!,- Lagrangian, whereas (2.1.11) is only quadratic.
To include the self-interaction in a consistent way, Deser suggested a novel trick.

Following the analogywith the theory of the Yang-Mills fields, he added the cubic term
to the gravitational Lagrangian (2.1.11) as follows,

L g(h,B) = L g
2 (h,B) + h

,- (B!,-B"!" – B!,"B"!-) . (2.1.18)
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The important property of the additional term is that it does not contain the metric at
all. Thus, it does not contribute to the energy-momentum tensor, that is formally

tg,-(h,B) = 2t
g
,-(h,B) . (2.1.19)

On the other hand, instead of the first order equations (2.1.12) and (2.1.13) one has

G ,-
! = 2G

,-
! + h

,-B"!" + h
1"B(,1"$-)! – 2h"(,B-)!" = 0 , (2.1.20)

GB
,- = 2G

B
,- + B

!
,-B"!" – B!,"B"!- = 0 . (2.1.21)

It turns out, rather remarkably, that the combination of the new first order equations,
(2.1.20) and (2.1.21), gives exactly:

GL,-(h) = 80tg,-(h,B) , (2.1.22)

where the right hand side is the metric energy-momentum tensor (2.1.19) correspond-
ing to (2.1.18)!

Recall that the goal of the above consideration is to construct a theory being equi-
valent to general relativity. Let us show how to reach this goal. After making use of the
following identifications

γ,- + h
,- ≡ g

,-,
C!,- + B!,- ≡ A!,- (2.1.23)

one finds that the equations (2.1.20) and (2.1.21) take on the following form:

G ,-
! = –g

,-
,! + $(,! g

-)"
," + g

,-A"!" + g
1"A(,1"$-)! – 2g"(,A-)!" = 0, (2.1.24)

GB
,- = A!,-,! – A!!(,,-) + A!,-A"!" – A!,"A"!- = 0 . (2.1.25)

These are the Einstein equations in the Palatini formulation, where the fields g
,- and

A!,- are considered as independent variables. Let us show that the equations (2.1.24)
and (2.1.25) represent the Einstein equations in the usual formulation. Keeping in
mind g

,- = √–gg,- and using (A.2.9–A.2.11), one finds that (2.1.24) is equivalent to
(1.3.5). This means that GB

,- = R,-, see (1.3.5). Thus, the equations (2.1.25) become the
vacuum Einstein equations in the standard form.

Let us compare also the Lagrangians. Adding the Lagrangian (2.1.18) by the terms
γ,-R,-(𝛾) and h

,-R,-(𝛾), which are equal to zero for the flat background, and substitut-
ing the identification (2.1.23), one finds easily that (2.1.18) is equivalent to the Hilbert
Lagrangian in the Palatini form:

LH = g
,- (A!,-,! – A!!,,- + A!,-A"!" – A!,"A"!-) (2.1.26)
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with g
,- and A!,- as independent variables. Varying (2.1.26) with respect to A!,- and

g
,-, one obtains exactly (2.1.24) and (2.1.25). Thus, the system represented by (2.1.18–
2.1.22) is equivalent to general relativity in vacuum.

The equations (2.1.22) were constructed in absence ofmatter sources. Thematter is
introduced to the theory appropriately by adding thematter energy-momentum tensor
to (2.1.22), which takes on the form:

GL
,-(h) = 80 (tg,- + tm,-) = 80ttot,- . (2.1.27)

The divergence of the left hand side of (2.1.27) is equal to zero identically, then for the
same reason as in (2.1.4) one has

t,-tot;- = 0 (2.1.28)

that is the differential conservation law for the total energy-momentum.
We stress again that the use of the components of h,- in the role of dynamical vari-

ables (not h,-, l,- or others) has permitted us to construct the theory of perturbations
of gravitational field in the closed form being equivalent to general relativity without
expansions in the Taylor series.

2.1.4 Various methods of the construction

Here, we discuss different approaches to represent general relativity in the field-
theoretical form. The above recipes were based on the relativistic formulation of
the theory from the very onset. They recommend to begin the construction in the
Minkowski space. On the other hand, general relativity generalizes the Newtonian
gravity which is a non-relativistic theory. It is important to overview the steps of this
drastic conceptual transformation, from gravistatic (Newtonian law) to gravidynamics
(Einstein’s equations). Following Grishchuk [203], themain points of this are as follow.

Let us begin from the Newtonian law B> = –40G1 and reformulate it to make
it compatible with special relativity. To satisfy the relativistic requirement: first, the
mass density 1 has to be generalized to 10 components of the matter stress-energy
tensor T,-(I, '); second, the single component of the Newtonian potential > should
be replaced with 10 gravitational potentials; third, the Laplace operator should be
replaced with the d ’Alembert operator ◻; thus the Newtonian equation is rewritten
in the form:

◻h,- = 160T,-(I, ') , (2.1.29)

where ◻h,- ≡ '!"h,-,!" ≡ h,-,!,!. Fourth, recalling the equations (1.5.21) with (1.5.20),
one assumes that in (2.1.29) the gauge condition 𝜕-h,- = 0 is implied. Therefore to
relax this assumption and to reestablish the full gauge invariance of (2.1.29) one has
to add to its left hand side some additional terms. It turns out that the gauge invariant
extension of (2.1.29) is
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GL,- ≡ 1
2 (h,-,!,! + ',-h!",!" – h!,,-! – h!-,,!) = 80T,-(I, ') (2.1.30)

which exactly coincides with (2.1.7), recall that h,- = l,- – 1
2'

,-l!!. After taking into
account both, fifth, the universality of the matter coupling and, sixth, gravitational
self-interaction, one obtains the field-theoretical formulation of general relativity in
the form (2.1.8).

Of course, from the theoretical point of view, it is very important to construct
general relativity (or any other geometrical theory) in the field-theoretical form, by
relying upon the principles of a field theory in the Minkowski space, as above. This
approach has not only its own theoretical merit but can be highly efficient in prac-
tical calculations of approximate solutions of the Einstein equations by making use of
their perturbative expansion with respect to a small parameter and doing successive
iterations. It works as follows. The first (main) step is the decomposition of dynamical
variables of general relativity into the background quantities and perturbations. The
next step is the derivation of the field equations for the perturbations which are con-
sidered as independent dynamical variables. Usually the background spacetime (flat
or curved) is determined by the problem under consideration and is taken as a known
solution to the Einstein equations.

Let us demonstrate the decomposition method in the case of Deser’s field
approach to general relativity. We take the Hilbert Lagrangian in the Palatini form
(2.1.26) with independent variables g

,- and A!,-, make decomposition of the dynam-
ical variables

g
,- = γ,- + h

,-,
A!,- = C!,- + B!,- , (2.1.31)

take into account that for the flat background R,-(𝛾) = 0 and treat the perturbations
h
,- and B!,- as independent dynamical field variables. Then, the Palatini Lagrangian
(2.1.26) transforms to the Deser’s Lagrangian (2.1.26).

The advantages of the decompositionmethod are, first, it is rather straightforward
and explicitly connected to the ordinary geometrical formulation of general relativity,
and second, it is well adapted for constructing the field-theoretical formulation of an
arbitrary metric theory. In Section 2.2, the decomposition method will be applied to
reformulate general relativity as a field theory on an arbitrary curved background.

It is natural to assume that the field-theoretical formulation of general relativity
can be constructed based on the gauge invariant properties of the field equations.
Recall that the initial linear equations (2.1.5) are invariant under the transformations
(2.1.6). One can check that this invariance is not preserved at the next steps of the
iteration procedure, and must be extended in such a way that the final form of the
field equations become invariant with respect to total diffeomorphisms in the exact
sense. Keeping in mind all of these, one can try to construct the field-theoretical for-
mulation of general relativity as a gauge theory. Such a construction is presented
in Section 2.3. Using analogies with the gauge theories of the Yang-Mills type, we
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suggest a non-standard way of a localization that is postulated as a “localization” of
Killing vectors of the background spacetime instead of the usual localization of group
parameters.

In the modern theoretical models, instead of the Minkowski space, frequently one
considers a fixed curved spacetime as a background, such as the anti-de Sitter space,
cosmological models, black hole geometries, etc. Therefore, the field-theoretical for-
mulation of general relativity is necessary for studying perturbations on arbitrary
backgrounds. Such a generalization is presented in [206, 379] and is developed in Sec-
tion 2.2 using the decomposition method. Although the construction in these works
has been developed both in the first and in the second order formalisms, the only
latter is used here, since it is more convenient and suitable. To the best of our know-
ledge, Barnebey [29] was the first one to suggest the use of the second order formalism
for an exact (without expansions and approximations) description of perturbations in
general relativity.

Elements of the field-theoretical approach in general relativity presented in
[120, 206] appear independently in many studies. Recently, they have been actively
developed by Babak and Grishchuk [21]. They require only the first derivatives of
the metric perturbations in the total metric energy-momentum tensor. This has led
to a new field-theoretical formulation of general relativity in the Minkowski space,
where such a total energy-momentum tensor is the source in the field equations with
a non-linear left hand side, unlike the formulation in [120, 206]. On the basis of the
formulation of general relativity in [21], a promising variant of the gravitational theory
with non-zero masses of gravitons has been developed in [22]. The interested reader
can find the details of the Babak-Grishchuk theory in Section 2.4.

In presenting the developments of the field-theoretical method, it is worth men-
tioning the works by Pitts and Schive. In [374], a class of so-called “slightly bi-metric”
gravitation theories has been constructed. In [375, 376], the behaviour of light cones in
the Minkowski space and curved (physical) spacetimes has been examined. A special
criterion (based on the causality principle) for constructing a field-theoretical model
has been proposed as well. In [375], this criterion is used to show that if a spatially
flat FLRW big bang model is considered as a field configuration on a flat background,
then the cosmological singularity vanishes to past infinity in the Minkowski space.
The references to earlier works on the theoretical foundation of the field-theoretical
approach in general relativity can be found in papers [202, 203, 471]; the exhaustive
bibliography has been provided in [374–376], see also [364].

2.2 The field-theoretical formulation of general relativity

In this section, the field-theoretical formulation of general relativity on arbitrary
curved backgrounds is developed. The decomposition method derived above is
applied in the second order formalism, the properties are examined and discussed.
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2.2.1 A dynamical Lagrangian

Let us rewrite the Einstein-Hilbert action as

S = ∫
K
d4xLEH ≡ – 1

160 ∫
K
d4xR(g,-) + ∫

K
d4xL M(IA, g,-) . (2.2.1)

Following Deser’s recipe of the previous section for constructing the field-theoretical
formulation in general relativity, we note that for the role of the dynamical gravita-
tional variables we choose the components of the Gothic metric g

,-:

g
,- = √–gg,- . (2.2.2)

Thematter variables are components of a set of tensor densitiesIA, see Appendix A.3;
L M depends onIA and g

,-, and their derivatives up to the second order, although the
consideration can be generalized easily to an arbitrary finite order.

Now, after varying the action (2.2.1) with respect to the dynamical variables, one
obtains the gravitational and matter equations in the form:

$LEH
$g,- = – 1

160
$R
$g,- +

$L M

$g,- = 0 , (2.2.3)

$LEH
$IA = $L M

$IA = 0 . (2.2.4)

The equations (2.2.3) are the Einstein equations, the explicit form of which are

R,- = 80 (T,- – 1
2g,-T!

!) , (2.2.5)

see (1.3.29). Einstein’s equations of the usual form (1.3.22) have been obtained by the
variation with respect to g!". These equivalent forms are connected by the multiplier

𝜕g!"𝜕g,- = 1√–g ($!,$"- – 1
2g

!"g,-) , (2.2.6)

see (1.3.28).
Now, let us define the metric h

,- and matter 6A perturbations with respect to the
background quantities ḡ

,- and ĪA with the use of the decompositions

g
,- ≡ ḡ

,- + h
,- , (2.2.7)

IA ≡ ĪA + 6A . (2.2.8)

We stress that these are exact relations, there is no necessity for h
,- and 6A to be

infinitesimal.
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After that it is necessary to define a background (fixed) system. It is postulated
that the background quantities are described by the action:

S̄ = ∫ d4xL̄EH ≡ – 1
160 ∫ d4xR̄ + ∫ d4xL̄ M , (2.2.9)

where R̄ = R(ḡ,-) and L̄ M = LM(ḡ,-, ĪA). The corresponding background grav-
itational and matter equations have the form of the barred equations (2.2.3) and
(2.2.4):

$L̄EH
$ḡ,- = – 1

160
$R̄
$ḡ,- +

$L̄M

$ḡ,- = 0 , (2.2.10)

$L̄EH
$ĪA = $L̄ M

$ĪA = 0 . (2.2.11)

The explicit form of (2.2.10) is

R̄13 – 80 (T̄13 – 1
2 ḡ13T̄) = 0 . (2.2.12)

A Ricci-flat (including flat) background is used in many applications, in this case the
background equations (2.2.10) and (2.2.11) are transformed into the unique equation

R̄,- = 0. (2.2.13)

Background quantities ḡ
,- and ĪA are considered as known (although arbitrary) solu-

tions to (2.2.10) and (2.2.11), therefore they are classified as given (fixed) quantities.
To transfer to the field-theoretical formulation, we interpret the perturbations h

,-

and 6A as independent dynamical variables, representing the field configuration on
the background of the system (2.2.9–2.2.11). To describe such a configuration in the
framework of a field theory, one has to define the corresponding Lagrangian. From
the start we turn to Deser’s Lagrangian (2.1.18) rewriting it as

L g(h,B) = R(ḡ + h,C + B) – h
,-R,-(𝛾) – R(𝛾) . (2.2.14)

Here, R(ḡ + h,C + B) is obtained from R(g, A) = g
,-R,-(A) with R,-(A), see (1.3.5), after

incorporating the decompositions (2.2.7), (2.2.8). Recall that the Lagrangian (2.2.14) is
derived in the Minkowski space and for the vacuum case. Generalizing it for curved
backgrounds with the presence of matter, we define the Lagrangian for the fields h

,-

and 6A as

L dyn = LEH(ḡ + h, Ī + 6) – h
,- $L̄EH

$ḡ,- – 6A $L̄EH
$ĪA – L̄EH – 1

160 𝜕!D!

≡ – 1
160L g + L m . (2.2.15)
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Because it describes independent dynamical variables h
,- and 6A, it is called the

dynamical Lagrangian [379].

Properties of the dynamical Lagrangian
The construction of (2.2.15) is as follows. The decompositions (2.2.7) and (2.2.8) are
incorporated into the Lagrangian of the action (2.2.1); zeroth order and linear in h

,-

and 6A terms in Taylor series are subtracted; a divergence may be added. Zeroth order
term is the background Lagrangian, whereas the linear term is proportional to the
left hand sides of the background equations (2.2.10) and (2.2.11). Before variation,
however, one cannot take into account the fact that (2.2.10) and (2.2.11) hold. The
explanation of this will be given in Section 2.2.3, see the explanation of the formula
(2.2.46). The pure gravitational part is denoted asL g, whereas the Lagrangian for the
matter sector interactingwith the gravitational field is denotedL m. Now let us discuss
the properties of the dynamical Lagrangian (2.2.15).

First, at least, the choice (2.2.15) satisfies the main requirement, namely: the vari-
ation with respect to h

,- and 6A gives the equations equivalent to the equations of
the Einstein theory in the form (2.2.3) and (2.2.4). It is true because (a) by (2.2.7) and
(2.2.8), the variation of the first term in (2.2.15) can be changed with the variation with
respect to g

,- and IA; (b) it is assumed that the background equations (2.2.10) and
(2.2.11) hold; (c) the divergence does not contribute into the equations.

Second, it seems that, unlike (2.2.15), a simple substitution of the decompositions
(2.2.7) and (2.2.8) into the initial LagrangianLEH(ḡ + h, Ī +6) is the best variant for a
dynamical Lagrangian. However, then the variationwith respect to h

,- can be changed
by the variation with respect to ḡ

,-. But this means that the metric energy-momentum
tensor obtained by variation with respect to ḡ,- disappears on the field equations. It
is not a desirable situation because then the physical meaning of the metric energy-
momentum tensor is not clear. This does not make the situation better than in the
standard geometrical formulation in general relativity. Indeed, the totalmetric energy-
momentum in general relativity is connected directly with the variation of (2.2.1) with
respect to g

,-, but it disappears on the Einstein equations. The situation is improved
by including the linear terms into (2.2.15): namely, the variation of them with respect
to the background metric guaranties that metric energy-momentum is non-zero and
has a physical meaning.

Third, up to a divergence the Lagrangian (2.2.15) disappears for a vanishing
dynamical field configuration, it is natural and this property is guarantied by the
subtraction of the background Lagrangian.

Fourth, in general, in (2.2.15) a vector densityD! is not concreted. Its presence, on
the one hand, does not have influence for deriving the field equations, on the other
hand, it can modify boundary conditions under variations. In the simplest case, when
D! = 0 the pure gravitational Lagrangian is



2.2 The field-theoretical formulation of general relativity 101

L g = R(ḡ + h) – h
,-R̄,- – ḡ

,-R̄,-
= h

,- (∇̄1B1,- – ∇̄(,B3-)3)
+ (ḡ,- + h

,-) (B1,-B313 – B1,3B31-) , (2.2.16)

where ∇̄! is the covariant derivative constructed with the use of ḡ,-.
The formula (2.2.16) has been obtained as follows. The components of the tensor

B1,- are the perturbations of the Christoffel symbols

B!,- ≡ A!,- – A
!
,- = 1

2g
!1 (∇̄,g1- + ∇̄-g1, – ∇̄1g,-) , (2.2.17)

and depend on h
,- through the decomposition (2.2.7): g,- = g,-(g) = g,-(ḡ + h).

The definition (2.2.17) generalizes (1.5.38) for the case of a flat background. Also,
substituting A!,- from (2.2.17) into the Riemann tensor (1.3.2), one obtains

R+413 = ∇̄1B+43 – ∇̄3B+41 + B+1'B'43 – B+3'B'41 + R+413 . (2.2.18)

The gravitational Lagrangian (2.2.16) coincides with Deser’s Lagrangian (2.1.18) if the
background metric ḡ,- is changed with the metric 𝛾,- of the Minkowski space. To be
convinced, one can check that the definition (2.2.17) and the equations of the first order
(2.1.20) (plus (2.1.12)) coincide.

One of more popular choices [251] for D! is

D! ≡ g
!-B,,- – g

,-B!,- . (2.2.19)

Then the pure gravitational Lagrangian is represented as

L g = R(ḡ + h) – h
,-R̄,- – ḡ

,-R̄,- + 𝜕,D,

= – (B1,- – B3,3$1-)∇̄1h,-
+ (ḡ,- + h

,-) (B1,-B313 – B1,3B31-) . (2.2.20)

It depends only on the first derivatives of the gravitational variables h
,-. In the case

of a flat background the Lagrangian (2.2.20) transfers to the covariant Lagrangian
suggested by Rosen [390], which has been rediscovered in [250] and [204].

Fifth, the matter part of (2.2.15) is rewritten as

L m = L M (g + h, Ī + 6) – h
,- $L̄ M

$ḡ,- – 6A $L̄ M

$ĪA – L̄ M . (2.2.21)

Its a concrete form depends on the choice of LM .
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2.2.2 The Einstein equations in the field-theoretical formulation

To obtain the equations for the gravitational field h
!", one has to vary the action (2.2.15)

with respect to h
!":

$
$h!"

L dyn = $
$h!"

LEH(ḡ + h, Ī + 6) – $L̄EH
$ḡ!"

= 0 . (2.2.22)

In the first term, the variation with respect to h
!" can be changed with the variation

with respect to g
!". Then, keeping in mind the background equations (2.2.10), one

concludes that (2.2.22) are equivalent to the Einstein equations in the form (2.2.3).
Let us rewrite the equations (2.2.22) in a more appropriate form where the total

energy-momentum is the source for the linear part of the field equations, see (2.1.27).
Varying the action (2.2.15) with respect to ḡ

!" one gets

$
$ḡ!"

L dyn = $
$ḡ!"

LEH(ḡ + h, I + 6) – $
$ḡ!"

(h
,- $L̄EH

$ḡ,- + 6A $L̄EH
$ĪA + L̄EH) . (2.2.23)

Because in the first term in (2.2.22) the variation with respect to h
!" can be changed

with the variation with respect to ḡ
!" the first term in (2.2.23) vanishes on the

background equations (2.2.10). As a result, (2.2.23) goes to

– $
$ḡ!"

(h
,- $L̄EH

$ḡ,- + 6A $L̄EH
$ĪA ) = $

$ḡ!"
L dyn (2.2.24)

which is the other form of the field equations (2.2.22). Recall that the total energy-
momentum is related to the variation with respect to ḡ,-, therefore let us contract the
equation (2.2.24) with

𝜕ḡ!"𝜕ḡ,- = √–ḡ($!,$"- – 1
2 ḡ,-ḡ

!") . (2.2.25)

Dividing by √–ḡ and multiplying by 160, one gets the gravitational field equations in
the form:

GL
,- +I

L
,- = 80 (tg,- + tm,-) ≡ 80ttot,- . (2.2.26)

The left hand side of (2.2.26) is linear in h
,- and 6A, the right hand side represents

the total energy-momentum related to (2.2.15). The left hand side consists of the pure
gravitational part and matter part:
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GL
,-(h) ≡ 1√–g $

$ḡ,- h
13 $R̄
$ḡ13≡ 1

2 (∇̄11h,- + ḡ,-∇̄13h13 – ∇̄1-h 1
, – ∇̄1,h 1

- ) , (2.2.27)

IL
,-(h,6) ≡ – 160√–ḡ $

$ḡ,- (h
13 $L̄ M

$ḡ13 + 6A $L̄ M

$ĪA ) , (2.2.28)

where ∇̄13 = ∇̄1∇̄3. The right hand side of (2.2.26) is simply the metric energy-
momentum tensor related to the Lagrangian (2.2.15):

ttot,- ≡ 2√–ḡ $L dyn

$ḡ,- ≡ 2√–ḡ $
$ḡ,- (– 1

160L g + L m) ≡ tg,- + t
m
,-. (2.2.29)

The explicit form of the gravitational part is

tg,- =
1
80 [(–$1,$3- + 1

2 ḡ,-g
13) (B!13B"!" – B!1"B"!3) + ∇̄4Q4

,-] ; (2.2.30)

2Q4
,- ≡ –ḡ,-h

!"B4!" + h,-B4!"ḡ!" – h4,B!-! – h4-B!,!

+h"4 (B!,"ḡ!- + B!-"ḡ!,)
+h", (B4-" – B!"1ḡ14ḡ!-)
+h"- (B4," – B!"1ḡ14ḡ!,) . (2.2.31)

One can see that tg,- is not less than quadratic in the gravitational variables. The mat-
ter part is expressed through the usual matter energy-momentum tensor T,- of the
Einstein’s equations (2.2.5) as

tm,- = ($!,$"- – 1
2 ḡ,-ḡ

!") (T!" – 1
2g!"T01g

01)
– 2√–ḡ $

$ḡ,- (h
13 $L̄ M

$ḡ13 + 6A $L̄ M

$ĪA ) – T̄,- . (2.2.32)

Now, let us compare the gravitational equations (2.2.26) defined on an arbitrary curved
background with Deser’s equations (2.1.27) defined on a flat background in curved
coordinates.

First, the linear gravitational part of the equations (2.2.27) generalizes (2.1.14) on
arbitrary curved backgrounds.

Second, the quantities (2.2.30), (2.2.31) generalize the energy-momentum tensor
(2.1.15), (2.1.16) to arbitrary curved backgrounds. One can recall that B!,- in (2.2.30),
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(2.2.31) depends on the gravitational variables through (2.2.17), whereas B!,- in Deser’s
approach is the independent dynamic variable. However, the latter can be recalcu-
lated with the use of the equation of the first order (2.1.12) which is equivalent to
(2.2.17).

Third, unlike (2.1.27), the equations (2.2.26) contain an additional linear expres-
sion (2.2.28); it is because the background system includes the “background matter”.
In the case of Ricci-flat backgrounds (2.2.13) the expression (2.2.28) disappears from
(2.2.26) and it acquires the form of the equations (2.1.27).

Fourth, the matter energy-momentum, tm,-, in (2.1.27) is not concreted; the expres-
sion (2.2.32) represents it in a maximally general form on arbitrary curved back-
grounds including the “background matter”. Assuming expansions for (2.2.32) one
finds that it is not less than the second order in dynamical variables, like the
gravitational energy-momentum, tg,-.

Let us make other remarks. One can find that the expression, IL
,-, in (2.2.28) is

included as a part into the matter energy-momentum in (2.2.32). This permits one to
rewrite the equations (2.2.26) in the form:

GL
,-(h) = 80 (tg,- + $tM,-) = 80teff,- ; (2.2.33)

$tM,- ≡ tM,- – ̄tM,-
= ($!,$"- – 1

2 ḡ,-ḡ
!") (T!" – 1

2g!"T01g
01) – T̄,- . (2.2.34)

One can easily find that the equations (2.2.33) have the form of the equations (2.1.3)
and, in fact, generalize them to arbitrary curved backgrounds. However, the effect-
ive source teff,- does not follow from the total Lagrangian (2.2.15) by the variational
procedure. The matter part could be classified as a perturbation of

tM,- ≡ 2√–ḡ $
$ḡ,- L M (ḡ + h, Ī + 6) (2.2.35)

only.
At last, let us turn to the perturbed matter equations. They can be represented by

the same way as the gravitational equations. Thus, indeed, they can be rewritten in
the form:

$L dyn

$6A = –IL
A + t

m
A = 0 , (2.2.36)

or

IL
A = tmA , (2.2.37)
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where the linear left hand side is defined as

IL
A(h,6) ≡ – $

$ĪA (h
13 $L̄ M

$ḡ13 + 6B $L̄ M

$ĪB ) , (2.2.38)

whereas the source is represented by

tmA ≡ $L m

$ĪA . (2.2.39)

2.2.3 Functional expansions

The exact field-theoretical reformulation of the geometrical theory gives a possibility
to construct an approximate scheme easily and in explicit expressions up to an arbit-
rary order in perturbations. In this subsection, it is demonstrated. Assuming smooth
enough functions, let us expand the Lagrangian LHE(ḡ + h, Ī + 6) as

LEH = L̄EH + h
13 $L̄EH

$ḡ13 + 6B $L̄EH
$ĪB

+ 1
2!

h
!" $
$g!"

h
13 $L̄EH

$ḡ13 + h
13 $
$ḡ13 6

A $L̄EH
$ĪA + 1

2!
6B $

$ĪB6
A $L̄EH
$ĪA

+ . . . + div . (2.2.40)

The expansions, like (2.2.40), are used in quantum field theories [138] and called
as functional expansions. The relation can be proved, for example, by the method
of mathematical induction after a prolonged calculation. One of main properties of
such a calculation is that the Lagrangian derivatives (see (A.2.38) and (A.2.42) in
Appendix A.2.4) commute up to a divergence, for example, as

h
13 $
$ḡ13 6

A $L̄EH
$ĪA = 6A $

$ĪA h
13 $L̄EH

$ḡ13 + div . (2.2.41)

Also, one has to remember that the Lagrangian derivative of a divergence is identically
equal to zero, see (A.2.40) in Appendix A.2.4.

The perturbative Lagrangian (2.2.40) can be represented in a compact form with
the use of iterations,

LEH =
∞∑
k=0

L EH
k , (2.2.42)

where L HE
0 ≡ L̄HE. Here, for any k ≥ 1,

L HE
k = 1

k
(h

,- $L EH
k–1

$ḡ,- + 6A $L M
k–1

$ĪA ) , (2.2.43)
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is the Lagrangian perturbation defined iteratively by taking Lagrangian derivatives
from the Lagrangian perturbations of the previous iteration. In particular,

L EH
1 = h

,- $L EH
0

$ḡ,- + 6A $L M
0

$ĪA , (2.2.44)

L EH
2 = 1

2 (h
,- $L EH

1
$ḡ,- + 6A $L M

1
$ĪA ) , (2.2.45)

and so on.
Now, substitute the series (2.2.40) into the dynamical Lagrangian (2.2.15). One

can see that the zeroth order and linear terms have the opposite signs and, thus, are
self-compensated. It is exactly the reason why in the linear terms of the Lagrangian
(2.2.15), the background equations are not taken into account before variation. It is
because they are absent, and, in fact, the dynamical Lagrangian is quadratic in the
dynamical variables and has the form:

L dyn = 1
2!

h
!" $
$ḡ!"

h
13 $L̄EH

$ḡ13 + h
13 $
$ḡ13 6

A $L̄EH
$ĪA + 1

2!
6B $

$ĪB6
A $L̄EH
$ĪA

+ 1
3!

h
,- $
$ḡ,- h

!" $
$ḡ!"

h
13 $L̄EH

$ḡ13 + 1
2!

h
,- $
$ḡ,- h

!" $
$ḡ!"

6A $L̄EH
$ĪA

+ 1
2!

h
,- $
$ḡ,- 6

B $
$ĪB6

A $L̄EH
$ĪA + 1

3!
6C $

$ĪC6
B $
$ĪB6

A $L̄HE
$ĪA +

+ . . . + div . (2.2.46)

Following (2.2.42), the same can be rewritten in the compact form:

L dyn =
∞∑
k=2

L EH
k , (2.2.47)

One has to stress that the remarkable structure of (2.2.46) permits one to represent
the variation with respect to dynamical variables, h

,- and 6A, as the equations of
the type

$L dyn

$h,- = $
$ḡ,- (h

13 $L̄EH
$ḡ13 + 6A $L̄EH

$ĪA ) + $L dyn

$ḡ,- = 0, (2.2.48)

$L dyn

$6A = $
$ĪA (h

13 $L̄EH
$ḡ13 + 6B $L̄EH

$ĪB ) + $L dyn

$ĪA = 0. (2.2.49)

As is seen, they are exactly the equations (2.2.26) and (2.2.37), respectively, see (2.2.24)
and (2.2.38), which are the main equations of the field-theoretical formulation.
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Under necessary assumptions, the series (2.2.46) can be interrupted at the cor-
responding order. Then the approximate Lagrangian for the perturbed system can be
obtained. Its variation gives both the approximate field equations and the energy-
momentum tensor. For example, the quadratic approximation of (2.2.46) gives the
possibility
(a) to construct the linear equations

–
√–ḡ
2*

𝜕ḡ13𝜕ḡ,- (GL13(h) +IL
13(h,6))

≡ $
$ḡ,- (h

13 $L̄EH
$ḡ13 + 6A $L̄EH

$ĪA ) = 0 , (2.2.50)

–IL
A(h,6) ≡ $

$ĪA (h
13 $L̄EH

$ḡ13 + 6B $L̄EH
$ĪB ) = 0 , (2.2.51)

(b) to construct the quadratic energy-momentum tensor:

ttot,- = 2√–g $
$g,-

( 1
2!

h
!" $
$ḡ!"

h
13 $L̄EH

$ḡ13

+ h
13 $
$ḡ13 6

A $L̄EH
$ĪA + 1

2!
6B $

$ĪB6
A $L̄EH
$ĪA ) . (2.2.52)

The cubic approximation of (2.2.46) gives the possibility (a) to construct the field
equations including quadratic terms, which are related to the energy-momentum
tensor (2.2.52), and (b) to construct the energy-momentum tensor, including quadratic
(2.2.52) and cubic parts, etc. Thus, the representation of the dynamical Lagrangian in
the form (2.2.46) gives, in fact, the algorithm for constructing an approximate system.
Besides, such a structure of (2.2.46) explains simply the infinite series, for example, in
the equations of the type (2.1.8).

2.2.4 Gauge transformations and their properties

Diffeomorphism invariance of a geometrical theory is connected with mapping a
spacetime onto itself and is classified as an extrinsic symmetry. Gauge transformations
and gauge invariance in general relativity (and other metric theories) are connected
with the diffeomorphism invariance, see [154, 316] and (1.2.72–1.2.82) in Section 1.2.3.
The gauge invariance properties of the field-theoretical formulation of general relativ-
ity follows from the properties of general relativity itself, and this kind of invariance is
classified as intrinsic symmetry, as in electrodynamics. In this subsection, the defini-
tion of gauge transformations and their properties in the field-theoretical formulation
of general relativity are described. The presentation is based on the exact theory of
gauge transformations developed in the works [204, 206, 360, 361, 379].
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At first, one has to consider differentiable coordinate transformations

x󸀠! = f !(x") , (2.2.53)

which can be connected with the smooth vector field .!:

x󸀠! = exp(."(x) 𝜕𝜕x") x! = x! + .!(x) + 1
2!
.".!," +

1
3!

.0(.".!,"),0 + ... . (2.2.54)

Here, the exponent is understood as an operator; the transformations (2.2.54) are
understood as the exact, not infinitesimal, ones. Then the dynamical variables of
the geometrical formulation of general relativity, metric density and matter fields, are
transformed in the usual way, see Appendixes A.1 and A.3.1,

g
,-(x) → g

󸀠,-(x󸀠), (2.2.55)
IA(x) → I󸀠A(x󸀠). (2.2.56)

Now, let us provide the operation connected with the Lie displacement along the vec-
tor .!(x) in (2.2.54). Already the definition for Lie derivatives is given in (1.2.77–1.2.82),
and their properties are given in Appendix A.2.3. However, only the linear approxima-
tion in .! was used. Here, the transformations (2.2.53–2.2.56) are not approximate. As
a result, (2.2.55) and (2.2.56) lead to

g
󸀠,-(x) = exp£. g

,-(x) = g
,-(x) +

∞∑
k=1

1
k!

£k.g
,-(x) , (2.2.57)

I󸀠A(x) = exp£. IA(x) = IA(x) +
∞∑
k=1

1
k!

£k.I
A(x) . (2.2.58)

The exponent is also an operator,

exp£. = 1+ £. +
1
2!
£2. + . . . , (2.2.59)

and we will use the operator:

∞∑
k=1

1
k!

£k. → (exp£. – 1) . (2.2.60)

to make formulae more compact.
Assume that components of the geometrical objects JB are differentiable func-

tions of other geometrical objects 8A and their derivatives, but are not explicit
functions of coordinates. Assume also that 8A are transformed analogously to (2.2.57)
and (2.2.58),

8󸀠A(x) = exp £. 8A(x) . (2.2.61)
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Then a simple substitution givesJB(8󸀠A) = J󸀠B which means

JB(exp£. 8A) = exp£. JB(8A) . (2.2.62)

Taking into account this property, let us examine the invariance of the Einstein-Hilbert
Lagrangian in (2.2.1) and the Einstein equations (2.2.3) and (2.2.4) with respect to the
substitution of (2.2.57) and (2.2.58). One easily finds that the Lagrangian is invariant
up to a divergence:

LEH(g
󸀠,I󸀠) = exp£. LEH(g,I) = LEH(g,I) + (exp£. – 1)LEH(g,I)

= LEH(g,I) + div. (2.2.63)

The divergence has appeared because the Lagrangian is a scalar density of weight +1;
and, as usual, the divergence does not influence the equations of motion. The vari-
ation of the Lagrangian (2.2.63) with respect to g

,- and IA gives again (2.2.3) and
(2.2.4), respectively.

Substituting (2.2.57) and (2.2.58) into the operators of the equations (2.2.3) and
(2.2.4) and keeping in mind the rule (2.2.62), one gets

$L HE(g󸀠,I󸀠)
$g󸀠,- = exp£.

$L HE(g,I)
$g,- , (2.2.64)

$L HE(g󸀠,I󸀠)
$I󸀠A

= exp£.
$L HE(g,I)

$IA . (2.2.65)

Thus, if g,I satisfy (2.2.3) and (2.2.4) then g
󸀠,I󸀠 satisfy them as well. To this

end, transformations from (2.2.63) to (2.2.65) can be classified as a diffeomorphism
invariance.

Let us outline how the above invariance is transformed to the gauge invariance
in the framework of the field-theoretical formulation. From the beginning, one has to
define the gauge transformations for the dynamical variables h and6. First, define the
decompositions

g
󸀠,-(x) ≡ ḡ

,-(x) + h
󸀠,-(x) , (2.2.66)

I󸀠A(x) ≡ ĪA(x) + 6󸀠A(x) (2.2.67)

for the primed quantities at the left hand sides of (2.2.57) and (2.2.58). Notice that
the background fields in (2.2.66) and (2.2.67), ḡ

,-(x) and ĪA(x) are the same as in the
decompositions (2.2.7) and (2.2.8).We stress this point! Second, substitute both (2.2.7),
(2.2.8) and (2.2.66), (2.2.67) into (2.2.57) and (2.2.58). One easily obtains

h
󸀠,-(x) = h

,-(x) + (exp£. – 1) (ḡ,-(x) + h
,-(x)) , (2.2.68)

6󸀠A(x) = 6A(x) + (exp£. – 1) (ĪA(x) + 6A(x)) , (2.2.69)
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(a)

(b)

Figure 2.1: Perturbations in the cases (a)
and (b) are shown by arrows. They look
different but are tightly connected by the
gauge transformations.

where ḡ
,-(x) and ĪA(x) are canceled in both of the sides. The transformations (2.2.68)

and (2.2.69) themselves can be interpreted outside of coordinate and diffeomorphism
transformations. They influence the dynamical variables only, they do not influence
both the coordinates and the background quantities. Formally they do not provide a
mapping of the spacetime onto itself. Therefore such transformations are classified as
intrinsic (gauge) ones, unlike diffeomorphisms (extrinsic transformations).

The transformations (2.2.68) and (2.2.69) can be symbolically illustrated by the
Figure 2.1. In a geometrical theory both non-primed and primed quantities in (2.2.55)
and (2.2.56) represent the same solution: it is symbolized by identical curves in both
of the cases (a) and (b) at Figure 2.1. The choice of the same background fields, ḡ

,-

and ĪA, both in the initial decomposition (2.2.7), (2.2.8) and in the diffeomorphism
transformed decomposition (2.2.66), (2.2.67) is symbolized by different straight lines.
For example, the Minkowski metric ',- defined in different, initial and mapped, man-
ifolds are shifted one from the other. Then, of course, perturbations in the cases (a)
and (b) are different, but they are connected by the gauge transformations of the type
(2.2.68) and (2.2.69).

Now, substitute the transformations (2.2.68) and (2.2.69) into the dynamical
Lagrangian (2.2.15). One finds for the first term in (2.2.15),

L 󸀠EH(ḡ + h, Ī + 6) = LEH(ḡ + h
󸀠, Ī + 6󸀠)

= LEH(exp£. (ḡ + h), exp£. (Ī + 6))
= exp£.LEH (ḡ + h, Ī + 6) . (2.2.70)
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Keeping this in mind and substituting the transformations (2.2.68) and (2.2.69) into
the dynamical Lagrangian (2.2.15) one obtains finally:

L 󸀠dyn = LEH(ḡ + h, Ī + 6) + (exp£. – 1)LEH(ḡ + h, Ī + 6)

– h
󸀠,- $L̄EH

$ḡ,- – 6󸀠A $L̄EH
$ĪA – L̄EH – 1

160 𝜕!D 󸀠! . (2.2.71)

Using the structure of the dynamical Lagrangian (2.2.15), it can be rewritten as

L 󸀠dyn = L dyn – (h󸀠,- – h
,-) $L̄ EH

$ḡ,- – (6󸀠A – 6A) $L̄EH
$ĪA

– 1
160 𝜕! (D 󸀠! – D!) + (exp£. – 1)LEH(ḡ + h, Ī + 6) . (2.2.72)

This means that the dynamical Lagrangian is gauge invariant on the background
equations (2.2.10) and (2.2.11), and up to a divergence in the second line.

Now, let us examine the field equations (2.2.26) under the gauge transformations.
Combining (2.2.23–2.2.26), the field equations operator of (2.2.26) can be rewritten as

GL,- +I
L
,- – 80t

tot
,- = – 160√–ḡ 𝜕ḡ!"𝜕ḡ,- $

$ḡ!"
(LEH(ḡ + h, I + 6) – L̄EH) . (2.2.73)

Then, substituting (2.2.58) and (2.2.59), one finds after simple but long transforma-
tions,

GL
,-(h
󸀠) +IL

,-(h
󸀠,6󸀠) – 80ttot,- (h

󸀠,6󸀠) (2.2.74)

= GL,-(h) +I
L
,-(h,6) – 80t

tot
,- (h,6)

+ 1√–ḡ 𝜕ḡ13𝜕ḡ,- (exp£. – 1)[√–ḡ 𝜕ḡ$0𝜕ḡ13 (GL$0 +IL
$0 – 80t

tot
$0 ) – 160$L̄ HE

$ḡ13 ] .

That means: if the background equation (2.2.10) hold and the fields h,6 are solu-
tions to the field equations (2.2.26), then h

󸀠,6󸀠 are solutions to the same equations.
Analogous conclusions are valid for the matter equations in the field-theoretical form
(2.2.39).

The energy-momentum tensor is not gauge invariant even on the dynamical and
background equations. Indeed, from (2.2.74) under the transformations (2.2.68) and
(2.2.69), it follows

80t󸀠tot,- = 80ttot,- (h
󸀠,6󸀠) = 80ttot,- + G

L
,-(h
󸀠 – h) +IL

,-(h
󸀠 – h; 6󸀠 – 6) . (2.2.75)

The mathematical reason is that the background equations in the gauge transformed
Lagrangian (2.2.72) cannot be taken into account before the variation. In the case of a
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Ricci-flat background (2.2.13) one has IL
,- = 0, therefore the energy-momentum ttot,- is

not gauge invariant up to GL,- that is the covariant divergence (see (2.2.27)).
Let us turn also to the equivalent form (2.2.33) of the field equations with the

effective source teff,- . For the operator of the field equations GL
,- – 80teff,- the form of

the transformations (2.2.74) can be applied without changing. Then

80t󸀠eff,- = 80teff,- + G
L
,-(h
󸀠 – h) (2.2.76)

on the dynamical and background equations. Thus, the energy-momentum teff,- is not
gauge invariant up to a covariant divergence in the case of arbitrary curved back-
grounds, whereas ttot,- is not gauge invariant up to a covariant divergence on a Ricci-flat
background only.

Such a gauge non-invariance of the energy-momentum reflects the fact that energy
and other conserved quantities in general relativity are not localized. Unlike the other
derivations, see the discussion in textbook [315], the formulae (2.2.75) and (2.2.76) of
the field-theoretical formulation give a quantitative and constructive description of the
non-localization.

Inmany applications, it is important to consider equations and gauge transforma-
tions in linear, quadratic and the leading approximations. Assume that perturbations
and their derivatives are small: h

,- ≪ ḡ
,-, 6A ≪ ĪA, h,- ≈ 𝜕!h,- . . . and 6A ≈ 𝜕!6A ≈. . . . Assuming that the background equations (2.2.12) give a connection ḡ

,- ≈ f (*)ĪA

with a coefficient f (*) depending on the Einstein’s constant, one can set h,- ≈ f (*)6A,
etc. To present the main properties of the approximation scheme, let us rewrite the
equations (2.2.26), say, up to the second order in perturbations:

GL
,-(h) +I

L
,-(h, 6) – 80 2t

tot
,- (hh, h6, 66) = 0 . (2.2.77)

Assuming iterations, the perturbations can be expanded as h
,- = h

,-
1 + h

,-
2 + ... , and

6A = 6A
1 +6A

2 +... . Then one can obtain a solution to the equations (2.2.26) step by step.
Thus, to obtain the solution of (2.2.77) one has to find, firstly, h1 and 61 and, secondly,
h2 and 62. Besides, assume ., = .,1 + .,2 + ... with .,1 ≈ 𝜕!.,1 ≈ . . . ≈ h

,-
1 ≈ f (*)6A

1 and
.,2 ≈ 𝜕!.,2 ≈ . . . ≈ h

,-
2 ≈ f (*)6A

2 .
Now, let us present the linear version of the equations (2.2.77):

GL
!"(h1) +I

L
!"(h1, 61) = 0 . (2.2.78)

In a linear approximation the transformations (2.2.68) and (2.2.69) have the simple
form:

h
󸀠,-
1 = h

,-
1 + £.1 ḡ

,- = h
,-
1 – ḡ

,- ∇̄1.11 +√–ḡ (∇̄,.-1 + ∇̄-.,1 ) , (2.2.79)

6󸀠A1 = 6A
1 + £.1Ī

A. (2.2.80)
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Substituting (2.2.79) and (2.2.80) into (2.2.74) and saving the linear approximation,
one has

[GL,-(h1) +IL
,-(h1, 61)]󸀠 = [GL,-(h1) +IL

,-(h1, 61)]
+ ($1,$3, – 1

2 ḡ,-ḡ
13)£.1 [R̄13 – 80 (T̄13 – 1

2 ḡ13T̄)] . (2.2.81)

Thus, the linear equations are gauge invariant on the background equations only,
the fields h1 and 61 could not satisfy to (2.2.78). In the simple case of the Ricci-flat
background (2.2.13), the linear transformations have the form (2.2.79) only, without
(2.2.80). Then the formula (2.2.81) transfers to the formula G󸀠L,- = GL,-, which expresses
the gauge invariance of the linear spin-2 field, see (2.1.5) and (2.1.6). All of these are
the generalizations of the well known gauge invariance in the linear gravity under the
transformations (1.5.15).

The quadratic version of the equations (2.2.77) has the form:

GL!"(h2) +I
L
!"(h2, 62) – 80 (2tg!"(h1h1) + 2t

m
!"(h1h1, h161, 6161)) = 0 . (2.2.82)

The quadratic order of the gauge transformations (2.2.68) and (2.2.69) has the form:

h
󸀠,-
2 = h

,-
2 + £.2 ḡ

,- + 1
2!
£2.1 ḡ

,- + £.1h
,-
1 (2.2.83)

6󸀠A2 = 6A
2 + £.2Ī

A + 1
2!
£2.1Ī

,- + £.16
A
1 . (2.2.84)

Substituting (2.2.83) and (2.2.84) into (2.2.74) and saving the quadratic approximation,
one gets

[GL
,-(h2) +I

L
,-(h2, 62) – 80 2t

tot
,- (h1h1, h161, 6161)]󸀠

= [GL
,-(h2) +I

L
,-(h2, 62) – 80 2t

tot
,- (h1h1, h161, 6161)]

+ 1√–ḡ 𝜕ḡ13𝜕ḡ,- (£.2 + 1
2!
£2.1) [R̄13 – 80 (T̄13 – 1

2 ḡ13T̄)] +
+ 1√–ḡ 𝜕ḡ13𝜕ḡ,- £.1 [√–ḡ 𝜕ḡ$0𝜕ḡ13 [GL$0(h1)) +IL

$0(h1, 61)]] . (2.2.85)

Thus, equations (2.2.82) are gauge invariant on the background equations (2.2.12) and
on the linear equations (2.2.78). Of course, the procedure can be continued in the next
orders.

2.2.5 Differential conservation laws

The energy-momentum tensor is the one of the important entities in a field the-
ory in the Minkowski space. Its differential conservation together with symmetries
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of the Minkowski space permit one to construct integral conserved quantities. The
field-theoretical formulation of general relativity in the Minkowski space has also the
conserved energy-momentum with the same properties, see (2.1.4) and (2.1.28). Here,
these results related to energy-momentum are generalized to curved backgrounds.
More general conserved quantities, currents and superpotentials, on arbitrary curved
backgrounds are constructed and studied in detail later in Chapter 6.

To construct conservation laws and conserved quantities we use both the invari-
ance of the action

S = ∫
K
dx4L dyn (2.2.86)

with respect to a mapping of the spacetime onto itself and gauge transformations. In
both the cases, the vector field .! plays a crucial role. The main assumption below is
that .! and its derivatives are arbitrary and they vanish on the boundary 𝜕K of the
volume of integration K.

The diffeomorphism invariance of S in (2.2.86) is evident, indeed

$.S ≡ ∫
K
dx4£.L

dyn ≡ –∫
K
dx4𝜕! (.!L dyn) ≡ –∫

𝜕K
ds!.!L dyn ≡ 0 . (2.2.87)

On the other hand, let us consider the property (2.2.62) rewritten forL dyn in the linear
approximation and use (A.2.25) in Appendix A.2.3,

£.L
dyn ≡ 𝜕L dyn𝜕h,- £.h

,- + 𝜕L dyn𝜕h,-,! £.h,-,! + 𝜕L dyn𝜕h,-,!" £.h,-,!" (2.2.88)

+ 𝜕L dyn𝜕6A £.6A + ⋅ ⋅ ⋅ + 𝜕L dyn𝜕ḡ,- £. ḡ
,- + . . . + 𝜕L dyn𝜕ĪA £. ĪA + . . . .

Using here the formula (A.2.24) of Appendix A.2.3, one rewrites the identity (2.2.87) in
another form:

$.S ≡ ∫
K
dx4 [$L dyn

$h,- £.h
,- + $L dyn

$6A £.6A + $L dyn

$ḡ,- £. ḡ
,- + $L dyn

$ĪA £. ĪA] ≡ 0.

(2.2.89)
Here, surface terms have been suppressed because £. and its derivatives, like .! and
its derivatives, disappear at 𝜕K. Now, assuming that the field equations (2.2.22) and
(2.2.37) hold, using the explicit expressions for the Lie derivatives,

£. ḡ
,- = 2∇̄(,.-) , (2.2.90)

£. ĪA = –.,∇̄,ĪA + ĪA󵄨󵄨󵄨󵄨󵄨-, ∇̄-., , (2.2.91)
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and removing surface terms in (2.2.89) one obtains the equality:

√–ḡ∇̄-ttot,- + ∇̄- (tmA ĪA󵄨󵄨󵄨󵄨󵄨-,) + tmA ∇̄,ĪA = 0 , (2.2.92)

where the definitions (2.2.29) and (2.2.39) are used. One can see that on arbit-
rary curved backgrounds the total energy-momentum is not conserved differentially.
Rather, the relation (2.2.92) plays the role of the integrability conditions for the field
equations (2.2.22) and (2.2.37).

The gauge invariance of S in (2.2.86) is evident due to the gauge transformation for
the dynamical Lagrangian (2.2.72). Indeed, after taking into account the background
equations and suppressing the surface terms, one has

$.S ≡ ∫
K
dx4 (L 󸀠dyn – L dyn) ≡ 0 . (2.2.93)

The same identity must be obtained after a direct substitution of the gauge trans-
formations (2.2.57) and (2.2.58) into L dyn. In the linear approximation in .! and its
derivatives, one has

$.S ≡ ∫ dx4 [$L dyn

$h,- £. (ḡ,- + h
,-) + $L dyn

$6A £. (ĪA + 6A)] ≡ 0, (2.2.94)

where again the surface terms have been suppressed. Substituting the explicit expres-
sions for the Lie derivatives,

£. (ḡ,- + h
,-) = –.!𝜕! (ḡ,- + h

,-) + (ḡ,- + h
,-)󵄨󵄨󵄨󵄨"! 𝜕".! , (2.2.95)

£. (ĪA + 6A) = –.!𝜕! (ĪA + 6A) + (ĪA + 6A)󵄨󵄨󵄨󵄨󵄨"! 𝜕".! , (2.2.96)

into (2.2.94) and suppressing the surface terms, one obtains the identity that connects
the Lagrangian derivatives (field equations operators) with their derivatives. It is just
a conclusion of the second Noether’s theorem, see Section 1.2.3.

Let us turn to the relation (2.2.92) that shows that the total energy-momentum
tensor is not conserved ∇̄-ttot,- ̸= 0 on an arbitrary curved background, unlike (2.1.28)
on a flat background. This means that the divergence of the left hand side of (2.2.26)
is not equal to zero identically, unlike (2.1.28). To analyze this situation, the gauge
invariance can also be used. To examine the linear expressions at the left hand side,
it is enough to consider the quadratic approximation of the dynamical Lagrangian
(2.2.46) and use the corresponding approximation of the gauge transformation for the
Lagrangian L dyn in the identity (2.2.72).
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It is constructive to consider the gravitational and matter Lagrangians separately.
The way of deriving (2.2.72) permits this. Thus,

L g
2 = 1

2!
h
!" $
$ḡ!"

h
13 $R̄
$ḡ13 , (2.2.97)

L m
2 = 1

2!
h
!" $
$ḡ!"

h
13 $L̄ M

$ḡ13 + h
13 $
$ḡ13 6

A $L̄ M

$ĪA

+ 1
2!
6B $

$ĪB6
A $L̄ M

$ĪA , (2.2.98)

Substituting the gauge transformation (2.2.57) for h
!" into (2.2.97), keeping quadratic

in h and in . terms, integrating over K and suppressing the surface terms at 𝜕K, one
has

$.S ≡ ∫
K
dx4$.L g

2 ≡ ∫
K
dx4 ( $

$ḡ,- h
13 $R̄
$ḡ13)£. ḡ

,- . (2.2.99)

On the other hand, we integrate the identity (2.2.72), adopting it toL g
2 , again keeping

quadratic in h and in . terms and suppressing the surface terms at 𝜕K, and taking into
account the background equations,

$.S ≡ –∫
K
dx4 $R̄$ḡ,- £.h

,- . (2.2.100)

Now, equating (2.2.99) and (2.2.100), using the definition (2.2.27) and suppressing the
surface terms, one obtains

2∇̄,GL,-(h) ≡ h,!∇̄-R̄,! – 2∇̄! (h,!R̄,-) . (2.2.101)

This can be rechecked by a direct calculation applied to (2.2.27). Analogous steps
provided with L m

2 lead to the identity:

√–ḡ
80 ∇̄,IL

,- +I
L
A∇̄-ĪA + ∇̄" (IL

AĪ
A |"-)≡ – 1

2 ∇̄- (T̄,! – 1
2 ḡ,!T̄) h

,! + ∇̄! [(T̄,- – 1
2 ḡ,-T̄) h

,!] . (2.2.102)

Combining the identities (2.2.101) and (2.2.102), and taking into account the back-
ground equations (2.2.12) one has

√–ḡ
80 ∇̄, (GL,- +IL

,-) +IL
A∇̄-ĪA + ∇̄" (IL

AĪ
A |"-) ≡ 0. (2.2.103)

Substituting here the field equations (2.2.26) and (2.2.37) one obtains again the relation
(2.2.92).
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As was remarked, it is very important to consider the case of the Ricci-flat back-
ground (2.2.13), when ĪA ≡ 0 and L̄ M ≡ 0. The corresponding dynamical Lagrangian
is simplified to

L dyn = – 1
160L g + L m = – 1

160L g + L M (ḡ + h,6) . (2.2.104)

The field equations (2.2.26) transform to the form

GL
,- = 80 (tg,- + tm,-) ≡ 80ttot,- . (2.2.105)

Then, taking into account the identity ∇̄,GL
,- ≡ 0 for the Ricci-flat backgrounds, that

follows also from (2.2.101), one has the differential conservation law:

∇̄,ttot,- = 0 . (2.2.106)

The other important cases of backgrounds are presented by the Einstein spaces in
Petrov’s definition [372] that defines the background equations as

R̄,- = Dḡ,- , (2.2.107)

where D is a constant. Ricci-flat, de Sitter and AdS backgrounds are particular cases
of the Einstein spaces. The Lagrangian of the background system has the form:

L̄ HE = – 1
160 R̄ + L̄ M = – 1

160 (R̄ – 2D√–ḡ) . (2.2.108)

Here, the constant D is interpreted as “degenerated” matter that is not varied. Then,
the dynamical Lagrangian gets the form

L dyn = – 1
160L g + L m = – 1

160L g + [L M (ḡ + h,D) – h
,- $L̄ M

$ḡ,- – L̄ M] . (2.2.109)

ThenIL
,- = Dh,- and, thus, the field equations (2.2.26) acquire the simple form:

GL
,- + Dh,- = 80 (tg,- + tm,-) ≡ 80ttot,- . (2.2.110)

Then, because IL
A ≡ 0 for the Einstein space backgrounds (2.2.107), the identity

(2.2.103) gives

∇̄, (GL,- + Dh,-) ≡ 0 (2.2.111)

that leads to the conservation law:

∇̄,ttot,- = 0 . (2.2.112)
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In heuristic form the differential conservation law on AdS and de Sitter backgrounds
was used in [1]; in the Lagrangian description it was shortly noted in [206]; and, in the
paper [135], it was studied in more detail.

At last, it is interesting to consider the representation (2.2.33) that is valid on an
arbitrary curved background. Due to (2.2.101), one concludes that the divergence of
the left hand side of (2.2.33) is not equal to zero identically, thus in general ∇̄,teff,- ̸=
0. However, for the Ricci-flat background (2.2.13), teff,- = ttot,- . Then the conservation
(2.2.106) can be rewritten for (2.2.33):

∇̄,teff,- = 0 . (2.2.113)

2.2.6 Different variants of the field-theoretical formulation in general relativity

In general relativity, components of each of different metrical variables,

g,-a = { (√–g)m g,- ,(√–g)n g,- , (2.2.114)

can be used as independent dynamical variables; m, n ∈ R and the index “a” corres-
ponds to a concrete choice from the right hand side. Each choice of a in (2.2.114) gives
a dynamical variable which is a one-to-one function of the others with a ̸= b in the
sense that taking the Lagrangian derivative is a linear operation

$
$g,-a

=
𝜕g!"b𝜕g,-a $

$g!"b
, (2.2.115)

which is not singular.
Thus the action of general relativity can be rewritten as

S = ∫ d4xLEH ≡ – 1
160 ∫ d4xR(ga) + ∫ d4xL M(ga,I) . (2.2.116)

After variation with respect to the dynamical variables g,-a , Einstein’s equations
acquire the generalized form:

– 1
160

$R
$g,-a

+ $L M

$g,-a
= 0 . (2.2.117)

Of course, by (2.2.115), all the variants are equivalent between themselves and are
equivalent to (2.2.3). We do not show the formulation on matter variables here. The
background action

S̄ = ∫ d4xL̄EH ≡ – 1
160 ∫ d4xR(ḡa) + ∫ d4xL M(ḡa, Ī) (2.2.118)
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and the background Einstein equations

– 1
160

$R̄
$ḡ,-a

+ $L̄ M

$ḡ,-a
= 0 (2.2.119)

have the corresponding to (2.2.116) and (2.2.117) barred form, respectively.
The decomposition of (2.2.114) defines the corresponding perturbations as

g,- = ḡ,- + 𝜘,-,
g,- = ḡ,- + l,-,
g
,- = ḡ

,- + h
,-,. . . = . . . + . . . . (2.2.120)

All of this can be presented in the unified form that induces the definition of
perturbations for arbitrary realm and n in (2.2.114):

ga = ḡa + ha := { h
,-
(m) = (√–g)mg,- – (√–ḡ)mḡ,- ,

h(n),- = (√–g)ng,- – (√–ḡ)nḡ,- . (2.2.121)

To simplify the formulae below, we also simplify the notations with respect to (2.2.114)
as ga, being ensured that this will not lead to confusions. Of course, each of variables
(2.2.114) can be presented as an algebraic function of another variable ga1 = ga1 (g

b
2 ).

Then after the decomposition (2.2.121) applied to each of variables ga1 and g
b
2 and using

the Taylor series one finds

ha1 = hb2
𝜕ḡa1𝜕ḡb2 + 1

2!
hb2h

c
2
𝜕2ḡa1𝜕ḡb2 𝜕ḡc2 + . . . . (2.2.122)

Thus, all of the perturbations defined in (2.2.120), or (2.2.121), are different.
Following the rules used in constructing (2.2.15), one defines the generalized

dynamical Lagrangian:

L dyn
a = LEH (ḡa + ha, Ī + 6) – ha $L̄EH

$ḡa – 6A $L̄EH
$ĪA – L̄EH – 1

160 𝜕-D-, (2.2.123)

where ha are independent dynamical gravitational variables. It is the basis for various
variants of the field-theoretical formulations of general relativity. Thus, analogous to
(2.2.22), the gravitational equations are obtained by varying the action (2.2.123) with
respect to ha:

$
$haL dyn

a = $
$haLEH(ḡ

a + ha, Ī + 6) – $L̄EH
$ḡa = 0 . (2.2.124)
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Defining the total metric energy-momentum tensor as usual

ttot,- (h
a,6) ≡ 2√–ḡ $L dyn

a
$ḡ,- ≡ 2√–ḡ 𝜕ḡa𝜕ḡ,- $L dyn

a
$ḡa , (2.2.125)

one finds

GL
,-(h

a) +IL
,-(h

a,6) = 80 ttot,- (h
a,6) . (2.2.126)

Here,

GL
,-(h

a) ≡ 1√–ḡ $
$ḡ,- h

a $R̄
$ḡa ≡ 1√–ḡ 𝜕ḡb𝜕ḡ,- $

$ḡb
ha $R̄$ḡa , (2.2.127)

IL
,-(h

a,6) ≡ – 160√–ḡ $
$ḡ,- (ha $L̄ M

$ḡa + 6A $L̄ M

$ĪA )
≡ – 160√–ḡ 𝜕ḡb𝜕ḡ,- $

$ḡb
(ha $L̄ M

$ḡa + 6A $L̄ M

$ĪA ) . (2.2.128)

Compare with (2.2.27) and (2.2.28).
Similar to the above discussion, one can conclude that the theory (2.2.123–2.2.128)

is equivalent to the Einstein’s theory (2.2.116) and (2.2.117). The properties of the theory
in the generalized representation (2.2.123–2.2.128) are the same as of the theory (2.2.15)
studied in the previous sections. The question appears: is there a difference between
the apparently different variants of the theory (2.2.123–2.2.128)?

To provide such a comparison one has to define the unified variables for (2.2.121):

h
,-
a = ha 𝜕ḡ,-𝜕ḡa :=

{{{{{
h
,-
(am) =

√–ḡ
√–ḡm

(h,-(m) – 1–m
2 ḡ,-h1(m)1) ,

h
,-
(an) =

√–ḡ
√–ḡn

(–h
,-
(n) +

1–n
2 ḡ,-h1(n)1) .

(2.2.129)

Then, taking into account the background equations (2.2.119) and the field equations
(2.2.124), the equations (2.2.126) are rewritten in the equivalent form:

GL,-(ha) +I
L
,-(ha,6) = 80ttot,- (ha,6) . (2.2.130)

One finds that if ha = h
,- (m = 1), then the equations (2.2.130) acquire the form of

(2.2.26). Of course, due to (2.2.122), a choice of two different arbitrary decompositions
as ga1 = ga1 + h

a
1 and g

a
2 = ga2 + h

a
2 give the difference

h
,-
a2 – h

,-
a1 = 12h

,- , (2.2.131)

which is not less than second order in perturbations. Because, by the comparison,
the difference (2.2.131) enters the linear expressions of equation (2.2.130) the same
difference exists between the energy-momentum tensors. Thus, in the case of the
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Ricci-flat background,

ttot,- (ha1,6) – t
tot
,- (ha2,6) (2.2.132)

= 1
2 [∇̄11(12h,-) + ḡ,-∇̄13(12h13) – ∇̄1-(12h 1

, ) – ∇̄1,(12h 1
- )] ,

where 12h,- = 12h,-/√–ḡ.
For the case of flat backgrounds, this ambiguity has been considered by Boul-

ware and Deser [71]. Later it has been examined in [379] in the case of arbitrary curved
backgrounds and in arbitrary metric theories. In Sections 6.3.2, 6.3.3 and 6.4.1, this
ambiguity is resolved theoretically comparing with the Belinfante corrected quantit-
ies; as a result, the advantage of the third decomposition from (2.2.120) is founded.
In the works [252, 369, 370] the same result is supported by comparing the BMS mass
flux [61] for a radiating isolated system with the mass flux obtained with applying the
Belinfante corrected and field-theoretical formulae.

2.2.7 The background as an auxiliary structure

The main property of the developed field-theoretical formulation of general relativity
is its equivalence to general relativity in the standard geometric formulation. Let us
demonstrate it explicitly. Firstly, let us turn to the gravitational equations. Combining
the equations (2.2.22–2.2.26) by taking into account the background equations (2.2.10),
one obtains for the field equation operators

GL
!" +I

L
!" – 80t

tot
,-

= ($,!$-" – 1
2 ḡ!"ḡ

,-) [R,- – 80 (T,- – 1
2g,-T

!
!)] . (2.2.133)

Secondly, let us turn to the matter equations. Keeping in mind (2.2.1) and (2.2.15),
(2.2.4) and (2.2.37) by taking into account the background equation (2.2.11), it is easy
to find

$L dyn

$6A = $L HE

$IA . (2.2.134)

How can one explain (2.2.133) and (2.2.134)? This means that if one substitutes

h
,- ≡ g

,- – ḡ
,- , (2.2.135)

6A ≡ IA – ĪA , (2.2.136)

see (2.2.7) and (2.2.8), into the left hand sides of (2.2.133) and (2.2.134), then one
finds that the background quantities ḡ

,- and ĪA vanish. Therefore the background
structures are not observed. Thus, the background spacetime and the background
matter fields are auxiliary in character.
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This means that the electromagnetic signal, for example, has no possibility
to detect the background spacetime. Then, one might wonder if the gravitational
waves have such a possibility? For the sake of simplicity consider the case of a flat
background without matter at all, then the field equations (2.2.26) acquire the form:

GL!" = 80tg!" . (2.2.137)

Here, the left hand side, defined in (2.2.27), has the term with the wave operator◻h!" = 𝛾,-h!";,-. Namely this could define the null geodesics in the Minkowski
space. However the right hand side of (2.2.137) defined in (2.2.29) has the terms, like
h,-h!";,-. This means that the Minkowski wave operator in (2.2.137) really is “curved”,◻󸀠h!" = (𝛾,- + ph,-)h!";,- where p is any constant, therefore it is impossible to define
the null geodesics in the Minkowski space and, consequently, the Minkowski space
itself.

It is very useful to illustrate an auxiliary character of the background space-
time considering how the gauge transformations influence the formulation of a test
particle’s motion. It is enough to consider the flat background. Then the action
functional can be defined by the Lagrangian of the type (2.2.104):

S = Sg + Sm = – 1
160 ∫ d4xL g + ∫ d4xL m , (2.2.138)

where L m = L M (γ + h,6). On the action for a free matter point in the Minkowski
space see Section 1.1.7. The field h

,-, the background metric density γ,- and the world
coordinates x! are involved in

Sm = –m∫ d4 , (2.2.139)

in the form d42 = –ds2 = –g,-dx,dx-, where with the use of (2.2.7) one can express
g,- = g,-(γ!", h13). The variation of Sm with respect to the coordinates gives the
equations of motion for a test particle. It is assumed that their solutions exist and are
the vector components of the particle “4-velocity”: u! ≡ dx!/d4.

Let us present Sm in a more suitable form:

Sm = ∫ d4x√–g1g,-u,u-; 1 ≡ m$( ⃗r – ⃗r0)√–3
gg00

d4
dt
, (2.2.140)

where $( ⃗r – ⃗r0) is the Dirac delta-function, gab is a spatial part of the tensor g!" and
3
g ≡ det gab. Thus, matter fields in (2.2.140) are 6A = {1, u!}.

Of course, the theory with the action (2.2.138) with (2.2.140) has to be gauge invari-
ant with respect the gauge transformations (2.2.68) and (2.2.69). In the case of the flat
background the transformations (2.2.68) and (2.2.69) for all the variables in (2.2.138)
with (2.2.140) are
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h
󸀠,-(x) = h

,-(x) + (exp£. – 1) (γ,-(x) + h
,-(x)) , (2.2.141)

1󸀠(x) = 1(x) + (exp£. – 1)1(x), (2.2.142)
u󸀠!(x) = u!(x) + (exp£. – 1)u

!(x). (2.2.143)

Of course, both the set h
,-(x), 1(x), u!(x) and the set h

󸀠,-(x), 1󸀠(x), u󸀠!(x) satisfy the
equations of the field-theoretical formulation of general relativity. However, in gen-
eral, u!(x) and u󸀠!(x) defines different trajectories in the same background spacetime.
This conclusion again stresses the fact that a background spacetime has an auxiliary
character.

2.3 Metric perturbations as compensating fields

2.3.1 “Localization” of background Killing vectors

Gravity theory as a gauge theory
In Section 2.2.4, it was shown that the gauge properties of the field-theoretical for-
mulation of general relativity are close to gauge properties of standard gauge theories
with intrinsic symmetries. Then, one expects that the field-theoretical formulation of
general relativity can be constructed as a classical gauge theory of the Yang-Mills type.
This section is devoted to such a way of construction.

The gauge approach in constructing general relativity starts from the pioneering
works by Utiyama and Kibble [256, 445]. Discussion on the following developments
in constructing gravity theories in the framework the gauge approach can be found in
the reviews [227, 243, 377, 444] and the references therein. To reduce a gauge theory of
gravity to general relativity one has to assume some additional assumptions [243]. For
example, in Utiyama’s work [445] torsion is suppressed “by hand”. Therefore, general
relativity is frequently classified as a pseudo-gauge gravitational theory [378].

Here, following [359], we suggest a way of constructing general relativity as a
gauge theory, which is close to the standard gauge methods, although it differs from
the standard localization. We assume an existence of a fixed spacetime, which has a
group of motions with the corresponding Killing vectors, and where the bare physical
fields propagate. Then one notices that the action of the bare fields is invariant (up to
surface terms) with respect to adding the Lie derivative of these fields along the Killing
vectors to the bare fields, whereas both coordinates and background fields do not
change. A newmethod of “localization” consists of the exchange of the Killing vectors
with arbitrary vectors. After that, the initial invariance of the action integral is destruc-
ted. Then, one requires to restore the initial invariance. As is seen, such a technique of
“localization” is close to the standard way of localization, when constants of a group
of transformations are exchanged with arbitrary functions. However, conceptually it
is not the same because finally one can repeat the new construction even without the
Killing vectors. Therefore we use quotation marks in the word “localization”.
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As a result of the “localization”, a compensating (gauge) field appears. Then one
requires it to have a universal character, which means that the compensating field has
the features of the gravitational field.

The simplest case
Let us consider the action integral for a covariant theory of matter fields 6A propagat-
ing in a fixed spacetime with the fixed metric, ḡ,-, of the simplest form:

S = ∫ d4xL 6
c (6

A; ∇̄!6A | ḡ,-) . (2.3.1)

For our goal it is more convenient to use partial derivatives

S = ∫ d4xL 6(6A;6A
,! | ḡ

,-; ḡ,-,!) . (2.3.2)

For the sake of simplicity, we assume that the background spacetime is Ricci-flat
(2.2.13). The generalization to more complicated backgrounds is possible and dis-
cussed below. Besides, it is more economical to choose a background metric with
upper indices, ḡ,-, although it can be chosen arbitrarily from the set of barred vari-
ables (2.2.114); this problem is discussed below as well. At last, we assume that the
background spacetime has Killing vectors (or, although one Killing vector), which we
denote as ̄.!.

After all the above, we define the transformation for the dynamical variables in
the form:

6󸀠A = 6A + $ ̄.6
A = 6A + £ ̄.6

A, (2.3.3)

where the definition of Lie derivative is given above in (1.2.79) and (1.2.82), see also
(A.2.23) and (A.3.8) in Appendix A. After substituting (2.3.3) into the Lagrangian of
the action (2.3.2), taking into account the Killing equations, £ ̄. ḡ

,- = 0, and using the
property (A.2.25), one has

L 󸀠6 = L 6 + $ ̄.L
6 = L 6 + £ ̄.L

6 = L 6 – 𝜕!( ̄.!L 6). (2.3.4)

Thus the action (2.3.2) is invariant with respect to the transformation (2.3.3) up to a
surface term.

Now, we “localize” the transformation (2.3.3), changing the Killing vector ̄.! with
an arbitrary vector .!. Then the property (2.3.4) is destructed. To save it, we include a
new (compensating) field lJ and define a new Lagrangian L 6l as

L 6l = L 6l(6A;6A
,! | l

J; lJ ,! | g
,-; ḡ,-,!) . (2.3.5)
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Both the set {J} of indices and the dependence ofL 6l on arguments are not determined
at the moment. Of course, for the Lagrangian L 6l we require also

L 6l󵄨󵄨󵄨󵄨󵄨󵄨l=0 = L 6 . (2.3.6)

To represent the transformation of the Lagrangian (2.3.5) in the form of (2.3.4) one has
to determine the field lJ and to find transformations for it analogous to (2.3.3). We will
find such a transformation in the form:

l󸀠J = lJ + $. lJ = lJ + .!(AJ! + lJ ,!) + .!,"(BJ!" + lJ |"!) , (2.3.7)

where, in the general case, the coefficients AJ! and BJ!" depend on 6A, lJ and ḡ,- and
their first derivatives. Thus, the functions lJ ,L 6l , AJ

! and BJ!" are unknown, and our
goal is to determine them.

From the start, substituting (2.3.3), with ̄.! → .!, and (2.3.7) into (2.3.5), and
requiring the analogy with (2.3.4), one has

L 󸀠6l = L 6l + $.L 6l

= L 6l + 𝜕L 6l𝜕lJ $. lJ +
𝜕L 6l𝜕lJ ,! ($. lJ),! +

𝜕L 6l𝜕6A $.6A + 𝜕L 6l𝜕6A
,!
($.6A),!

= L 6l + £.L
6l = L 6l – 𝜕!(.!L 6l) . (2.3.8)

Thus we require

$.L 6l = £.L
6l . (2.3.9)

We substitute here $. lJ from (2.3.7) and open £.L 6l by using (A.2.25),

£.L
6l = 𝜕L 6l𝜕lJ £. l

J + 𝜕L 6l𝜕lJ ,! (£. l
J),! +

𝜕L 6l𝜕6A £.6A + 𝜕L 6l𝜕6A
,!
(£.6A),!

+ 𝜕L 6l𝜕ḡ,- £. ḡ,- + 𝜕L 6l𝜕ḡ,-,! (£. ḡ,-),! . (2.3.10)

Because all the components .! and their derivatives are arbitrary at each world point,
coefficients at .!, .!," and .!,"𝛾 have to be equal to zero. As a result, the equation
(2.3.9) gives the system:

𝜕L 6l𝜕lJ AJ! +
𝜕L 6l𝜕lJ ," AJ!," = –𝜕L 6l𝜕ḡ,- ḡ,-,! – 𝜕L 6l𝜕ḡ,-," ḡ,-,!" , (2.3.11)

𝜕L 6l𝜕lJ BJ!
" + 𝜕L 6l𝜕lJ ,𝛾 (AJ!$"𝛾 + BJ!",𝛾)
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= 𝜕L 6l𝜕ḡ,- ḡ,-|"! + 𝜕L 6l𝜕ḡ,-,𝛾 [–ḡ,-,!$"𝛾 + ( ḡ,-󵄨󵄨󵄨󵄨"!),𝛾] , (2.3.12)

𝜕L 6l𝜕lJ ,𝛾 BJ!" = 𝜕L 6l𝜕ḡ,-,𝛾 ḡ,-󵄨󵄨󵄨󵄨"! . (2.3.13)

Consider the two cases, first, when L 6l depends on the derivatives ḡ,-,!:

𝜕L 6l𝜕ḡ,-,𝛾 ̸= 0, (2.3.14)

and, second, when L 6l does not depend on ḡ,-,!:

𝜕L 6l𝜕ḡ,-,𝛾 = 0. (2.3.15)

Because we would like to represent a universal compensating field then for each of the
two above cases we have to obtain the same field lJ with the transformation (2.3.7).

Let us turn to the equation (2.3.13), which, in fact, represents a system of four
(𝛾 = 0, 1, 2, 3) independent tensor equations. For the first case, the right hand side
of (2.3.13) is not equal to zero. Keeping in mind the universality of the interaction, the
matrix BJ!" has to have an inverse matrix –1BJ!" satisfying the relations

BJ!
" ⋅ –1BK!" = $JK , BJ!

" ⋅ –1BJ,- = $,!$
"
- . (2.3.16)

For the second case (2.3.15), the equation (2.3.13) is simplified to the equation

𝜕L 6l𝜕lJ ,𝛾 BJ!" = 0 . (2.3.17)

Because the relation (2.3.16) is universal for the second case, one gets

𝜕L 6l𝜕lJ ,! = 0 . (2.3.18)

After that the equations (2.3.11) and (2.3.12) are simplified to the equations:

𝜕L 6l𝜕lJ AJ! = –𝜕L 6l𝜕ḡ,- ḡ,-,! , (2.3.19)

𝜕L 6l𝜕lJ BJ!
" = 𝜕L 6l𝜕ḡ,- ḡ,-󵄨󵄨󵄨󵄨"! . (2.3.20)
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The latter, with the use of the equation (2.3.16), is transformed to

𝜕L 6l𝜕lJ = 𝜕L 6l𝜕ḡ,- ḡ,-󵄨󵄨󵄨󵄨"! ⋅ –1BJ!" . (2.3.21)

Here, notice the proportionality of derivatives with respect to lJ to derivatives with
respect to ḡ,-. Because one requires the universality of the interaction, one concludes
that a concrete form for the search Lagrangian (2.3.5) has to be derived as

L 6l = L 6l(6A;6A
,! | ḡ

,- +m,-) (2.3.22)

for the second case (2.3.15), where an addition m,- to the background metric satisfies
the equation:

𝜕m,-𝜕lJ = ḡ,-󵄨󵄨󵄨󵄨"! ⋅ –1BJ!" . (2.3.23)

Besides, the fieldm,- has the same transformation properties as the background met-
ric ḡ,-, besides it does not depend on ḡ,-, 6A and their derivatives; due to (2.3.18),m,-

does not depend on derivatives of lJ ,! as well. To satisfy the requirement (2.3.6) one
has to restrictm,- by the relation,m,-|l=0 = 0. Thus, one has to find a smooth function

m,- = m,-(lJ) . (2.3.24)

Because the operator on the right hand side of (2.3.23) has an inverse one there is a
one-to-one correspondence between lJ and m,-, and the relation (2.3.24) can be con-
verted into lJ = l(01)(m,-). Thus, without losing the generality, one can set lJ ≡ l,- ≡
m,-. Then, one easily finds from (2.3.19) and (2.3.20) the expressions

AJ! → A(,-)! = –g,-,! , BJ!
" → B,-!

" = g,-󵄨󵄨󵄨󵄨"! (2.3.25)

symmetric in , and -. Substituting these expressions into the formula (2.3.7), one
obtains the transformations for l01 in the form:

l󸀠01 = l01 + $. l01 = l01 + £. l
01 + £. ḡ

01 . (2.3.26)

Now, the above results have to be generalized to the more complicated first case
(2.3.14). Once again, relying on the requirement of universality of couplings of the field
l01, one has to conclude that the transformation (2.3.26) could be safe or restricted, but
it cannot be expanded. Thus, using (2.3.26), or the coefficients (2.3.25), in the system
(2.3.11–2.3.13) one finds easily step by step,

L 6l = L 6(6A;6A
,! | ḡ

,- + l,-; (ḡ,- + l,-),!) = L 6
c (6

A;∇!6A | g,-) , (2.3.27)
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where we have defined

g,- ≡ ḡ,- + l,- . (2.3.28)

It is the generalization of the identification (2.1.9), also this can be interpreted as a
decomposition in the second line in (2.2.120); ∇! is a covariant derivative construc-
ted with the use of the effective metric g,-. Thus, for the first case (2.3.14), the same
compensating field l01 and the transformations for them (2.3.26) are safe as well.

Higher derivative Lagrangians
Let us generalize the above results for the more general case, when instead of the
action (2.3.2) we start from the action

S = ∫ dx4L 6 (6A;6A
,!; . . . ;6A

,!,"...𝛾 | ḡ
,-; ḡ,-,!; . . . ; ḡ,-,!"...𝛾)

= ∫ dx4L 6
c (6A; ∇̄!6A; . . . ; ∇̄𝛾..."!6A | ḡ,-) (2.3.29)

where ∇̄𝛾..."! ≡ ∇̄𝛾 . . . ∇̄"∇̄!. Thus, instead of (2.3.5) we search for the Lagrangian in the
form

L 6l = L 6l (6A; . . . ;6A
,!,"...𝛾 | l

J; . . . ; lJ ,43...8 | ḡ,-; . . . ; ḡ,-,01...6) . (2.3.30)

We further transform (2.3.30) by making use of the assumptions and technique used
from (2.3.16) to (2.3.27), employing transformation (2.3.26) and applying the principles
of mathematical induction. One obtains,

L 6l = L 6l(6A;6A
,!; . . .6A

,!,"...𝛾 | ḡ
,- + l,-; . . . ; (ḡ,- + l,-),!"...𝛾)

= L 6l
c (6A;∇!6A; . . . ;∇𝛾..."!6A | g,-) , (2.3.31)

where ∇𝛾..."! ≡ ∇𝛾 . . . ∇"∇!.
Thus the gauge field l,- is coupled to matter fields in a universalway, therefore, by

the equivalence principle, l,- can be called the gravitational field.

2.3.2 The total action

Now, let us construct the total action for the fields, l,- and 6A, propagating on the
fixed background with the metric ḡ,-. Then Lagrangian

L l = L l(l,-; l,-,!; . . . | ḡ,-; ḡ,-,!; . . .) (2.3.32)
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for free gravitational field l,- has to be constructed. Following the recipe (2.3.8), after
substituting the transformations (2.3.26) into (2.3.32), we require

L 󸀠l = L l + $L l = L l + £.L
l = L l – 𝜕!(.!L l) . (2.3.33)

Then, step by step, one easily finds that

L l = L l (l,- + ḡ,-; (l,- + ḡ,-),!; . . . ) , (2.3.34)

analogously to the construction of (2.3.27).
The simplest way to represent a covariant Lagrangian with the use of the “effect-

ive” metric g,- defined in (2.3.28) is to construct the related curvature scalar, see [285],

L l = √–gR(ḡ,- + l,-) = R(g,-) . (2.3.35)

Here, we consider such a choice only, although there are unrestricted possibilities to
construct a covariant Lagrangian, see Chapter 7, for the free gravitational field with
the use of the effective metric, but all of them is more complicated than (2.3.35).

Thus, the total Lagrangian acquires the form of the Einstein-Hilbert one with the
effective metric and sources fields:

LEH = – 1
160L l(ḡ + l) + L 6l (ḡ + l, 6) . (2.3.36)

The variation with respect to 6A and l,- gives the equations, which coincide with the
general relativity equations. Returning to the Section 2.2.6, one constructs a dynamical
action for dynamical variables 6A and l,- on a Ricci flat background:

S = ∫ d4xL dyn = – 1
160 ∫ d4xL g + ∫ d4xL 6l (2.3.37)

in the field-theoretical formulation of general relativity. Notice that, here, L g is con-
structed by the universal rule in (2.2.16) or (2.2.20) for the second decomposition
in (2.2.120).

2.3.3 Discussion of the results

Different definitions of gravitational variables
The choice of the background metric in the form of the contravariant components ḡ,-

in the bare Lagrangian (2.3.2) is not unique. Any other choice from the barred set ḡ,-,
ḡ
,-, . . ., leads to a sum (2.2.121) represented by the set (2.2.120). Each of the choice
leads to the corresponding variant of the field-theoretical formulations, which have
been presented and analyzed in Section 2.2.6.
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Exact (non-infinitesimal) gauge transformations
Let us replace the linear in .! gauge transformations with the full transformations
(2.2.68) and (2.2.69) that can be represented in the compact form:

6󸀠A = 6A + (exp£. – 1)6A, l󸀠,- = l,- + (exp£. – 1)(ḡ
,- + l,-) . (2.3.38)

Then each of the Lagrangians in (2.3.36) is invariant under transformations (2.3.38) up
to a divergence:

L 󸀠6l = exp£.L
6l = L 6l + (exp£. – 1)L

6l = L 6l + div ,

L 󸀠l = exp£.L
l = L l + (exp£. – 1)L

l = L l + div . (2.3.39)

The Lagrangian L dyn in the action (2.3.37) is invariant with respect to (2.3.26) up to a
divergence on the background equations, the same as in Section 2.2.4.

Arbitrary curved backgrounds
Up to now, we have worked on the Ricci-flat background (2.2.13). This means that the
background system defined by (2.2.10) and (2.2.11) is vacuum without matter fields
ĪA. How can one generalize the above construction to a non-Ricci-flat background
satisfying (2.2.12) with the presence of ĪA? Instead of the action (2.3.2) one has to use

S = ∫ dx4L 6 = ∫ dx4L 6(ĪA + 6A; (ĪA + 6A),! | ḡ
,-; ḡ,-,!) (2.3.40)

as a bare action. Instead of the initial transformation (2.3.3) one has to use the transfor-
mations:

6󸀠A = 6A + £ ̄. (Ī
A + 6A) (2.3.41)

that is “localized” to

6󸀠A = 6A + £. (ĪA + 6A) . (2.3.42)

The next steps are analogous to the above ones.

No group of motion
Notice that the background spacetime can have no Killing vectors. In this case, one
considers the search Lagrangian in the form:

L 6l = L 6l(ĪA + 6A; (ĪA + 6A),! | l
J; lJ ,! | ḡ

,-; ḡ,-,!) . (2.3.43)

To repeat the presentation in this section, it is enough to require the transformation of
the type (2.3.8) for the Lagrangian (2.3.43) with respect to the transformations (2.3.7)
and (2.3.42).



2.3 Metric perturbations as compensating fields 131

What is the gauge field?
The field l,- is not a connection and does not transform derivatives to gauge invariant
derivatives, like in the standard Yang-Mills type theories [266]. In this sense the field
l,- can be called as the compensating field only. One can see, for example, that in
(2.3.31) the tensor field,

B!,- = A!,-(ḡ + l) – Ā!,-(ḡ) , (2.3.44)

transforms the background derivatives ∇̄! in (2.3.29) to the dynamical derivatives∇!; A!,- are the Christoffel symbols constructed with the use of the effective metric
(2.3.28), whereas A!,- are the Christoffel symbols constructed with the use of the back-
ground metric. Thus, the role of the gauge field is played by the quantity B!,-. The
question is: how B!,- can be obtained by the standard gauge methods?

Let us rewrite the transformations (2.3.26) in the form

l󸀠,- = l,- + (A,-! – l,-,!) .! + (B,-!" + l,-|"!) .!," , (2.3.45)

where A,-! and B,-!" are defined in (2.3.25). Now, rewrite the coefficients (1.3.33) and
(1.3.34) relatively to (2.3.45):

9A
a → –(ḡ,- + l,-),! = –g,-,! , (2.3.46)

9A!
b → (ḡ,- + l,-)󵄨󵄨󵄨󵄨"! = g,-󵄨󵄨󵄨󵄨"! . (2.3.47)

One easily finds that the coefficients (2.3.46) and (2.3.47) coincide with the coeffi-
cients (1.3.33) and (1.3.34). However, let us rewrite the transformations (2.3.45) in the
covariantized form:

l󸀠,- = l,- – ∇̄!g,-.! + g,-󵄨󵄨󵄨󵄨"! ∇̄".! . (2.3.48)

This permits to derive covariantized coefficients analogous to (2.3.46) and (2.3.47),

9A
a → –∇̄!(ḡ,- + l,-) = –∇̄!g,- , (2.3.49)

9A!
b → (ḡ,- + l,-)󵄨󵄨󵄨󵄨"! = g,-󵄨󵄨󵄨󵄨"! . (2.3.50)

To construct the connection related to (2.3.48) one has to follow the recipe of (1.2.67)
and (1.3.38). However, now, instead of (1.3.36) one has

∇̄!g,- = B,!1g-1 + B-!1g,1 , (2.3.51)

where B,!1 is defined in (2.3.44). Then, instead of (1.3.38) one has

Gb
a, → –1(g,-󵄨󵄨󵄨󵄨"!) ⋅ (–∇̄𝛾g,-) = B!"𝛾 . (2.3.52)

Thus, indeed, B!"𝛾 could be called the gauge field.
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2.4 The Babak-Grishchuk gravity with a non-zero graviton mass

One of desirable properties of a physical theory is that the energy-momentum
tensor could be free of the second (highest) derivatives of the field variables. The
energy-momentum tensor of the gravitational field (2.2.29) and (2.2.30) in the field-
theoretical formulation of general relativity does not satisfy this requirement. Babak
and Grishchuk have analyzed this situation [21], and have improved it, reformulating
the original field-theoretical approach suggested in [206].

There are many fundamental results, which show that general relativity could be
(has to be) modified by adding “mass terms” into the Lagrangian. Babak-Grishchuk
modification [21] turns out to be useful in constructing such a gravitational theory,
and they suggested it in [22]. All the local weak-field predictions of their massive the-
ory are in an agreement with the experimental data. Otherwise, the exact non-linear
equations of the new theory eliminate the black hole event horizons and replace a
permanent power-law expansion of the homogeneous isotropic universe with an oscil-
lator behaviour. One variant of the massive theory allows “an accelerated expansion”
of the universe. The Babak-Grishchuk theories are described, analyzed and discussed
in the present section.

Concerning the gravitational theories withmassive gravitons in general, they con-
stitute a separate branch of the modern research in gravitational physics, see, for
example, chronologically [96, 136, 137, 238, 388, 393, 452] and references therein.
There are many applications of the theoretical models, see, for example, [23, 218, 476].
One of the problems in this way is, for example, the presence of ghosts. Such prob-
lems step by step are solved. Here, we do not consider such theories, and do not
analyze them. Only, the Babak-Grishchuk variant of the massive gravity is given as an
illustration of that how the field-theoretical approach could be fruitful in constructing
non-standard gravitational theories.

2.4.1 Second derivatives in the energy-momentum tensor

We present the results by Babak and Grishchuk [21, 22], which are based on the calcu-
lations (2.2.15–2.2.32) in Section 2.2. Consider the Minkowski space as a background
spacetime, when

R̄!1"3 = 0. (2.4.1)

Then, in fact, one can use the formulae (2.2.104–2.2.106) presented for the case
of the Ricci-flat background satisfying (2.2.13). Because a generalization to curved
backgrounds is possible we use here for a background metric and for a background
covariant derivatives the notations ḡ,- and ∇̄! (not 𝛾,- and “;!” as this corresponds to
a flat background).
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Here, it is more convenient to use h
,- defined in (2.2.7) as independent gravita-

tional variables, or corresponding quantities h,- = h
,-/√–g in formulae. Then, we

rewrite the formula (2.2.17) in these terms:

B+,- ≡ 1
2
[g,1∇̄-h+1 + g-1∇̄,h+1 – g,!g-"g+1∇̄1h!"

+ 1
2 (g!"$+,∇̄-h!" + g!"$+-∇̄,h!" – g!"g,-g+1∇̄1h!")] , (2.4.2)

where g,- and g,-, being functions of g
,-, with the use of (2.2.7) are thought as func-

tions of ḡ,- and h
,-. Substituting (2.4.2) into (2.2.30) and (2.2.31) one finds that the

energy-momentum tensor of the gravitational field, tg,-, depends on the second deriv-
atives of h,-. Attempts to exclude terms with second derivatives with the use of the
field-theoretical equations (2.2.105) lead to the energy-momentum, t󸀠g,-, at the right
hand side of (2.2.105)

t󸀠g,- = tred,- + Q!"
,- (tm!" – 1

2 ḡ!"ḡ
𝛾1tm𝛾1) + 1

160 ∇̄!"(h!(,h"-) – h,-h!"), (2.4.3)

where the reduced part of the energy-momentum tensor of the gravitational field, tred,- ,
indeed, has the first derivatives only:

tred,- = 1
320 [2∇̄1h,-∇̄3h13 – 2∇̄!h,!∇̄"h-"
+ g!" (2g13∇̄1h,!∇̄3h-" + g,-∇̄3h!1∇̄1h"3)
–4g"1g

!𝛾ḡ𝛾(,∇̄3h-)"∇̄!h13
+ 1

4 (2$
4
,$

9
- – g,-g

94)(2g1!g3" – g!"g13)∇̄4h13∇̄9h!"] . (2.4.4)

Concerning the matter part in (2.4.3), it is defined by the matter energy-momentum in
(2.2.105) and by the expression:

Q!"
,- ≡ h!(,ḡ-)

" + h"(,ḡ-)
! + h!(,h-)

" – 1
2 ḡ,-h

!" – 1
2h,- (ḡ!" + h!") . (2.4.5)

As a result, the second derivatives of the gravitational variables h,- participate any-
way in (2.4.3), and there are no possibilities to remove them “by hand”. Nevertheless,
can one reformulate the field-theoretical approach to exclude the second derivatives
in (2.4.3), preserving the equivalence to general relativity? The answer is given in
Section 2.4.2.

2.4.2 Modified Lagrangian and equations

Let us consider the gravitational Lagrangian

L g† = L g + D!"13R̄!1"3 (2.4.6)
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instead of the Lagrangian (2.2.20). This is a typical way of incorporating constraints
(here, they are (2.4.1)) with the use of undetermined Lagrange multipliers (here, they
are the components of D!"13). It is assumed that the tensor density D!"13 depends on
ḡ,- and h

,- only, without their derivatives,

D!"13 = D!"13(h,-, ḡ,-) , (2.4.7)

and satisfies the symmetries of the Riemann tensor: D!"13 = –D1"!3 = –D!31" = D"!31.
Then, the dynamical Lagrangian (2.2.104) transforms into

L dyn† = – 1
160L g† + L m = – 1

160L g† + L M (ḡ + h,6) . (2.4.8)

The field equations, which are obtained by the variation of (2.4.8) with respect to
h
,- are equivalent to (2.2.105). Indeed, the variation of the Lagrangian multipliers
in (2.4.8), see (2.4.6), do not contribute to the equations by the condition (2.4.1).
Thus, repeating the steps (2.2.22–2.2.29) the equations following from (2.4.8) acquire
the form:

GL
†

,- – 80t
tot†
,- ≡ GL,- – 80t

tot
,- = 0 . (2.4.9)

Then, where is the difference between (2.4.9) and (2.2.105)?
The energy-momentum tensor, ttot

†

,- , in (2.4.9) is defined by the standard variation
of (2.4.8):

ttot
†

,- ≡ 2√–ḡ $L dyn†

$ḡ,- = tg
†

,- + t
m
,- , (2.4.10)

where the modified gravitational energy-momentum tensor is

80tg
†

,- = 80tg,- – (√–ḡ)–1∇̄!" (D,-!" + D-,
!") (2.4.11)

instead of (2.2.30).
In general, Lagrange multipliers are determined after the solution to the total

system of equations corresponding to the Lagrangian, like (2.4.6). However, the restric-
tion (2.4.7) does not allow us to define components D,-!" which are left undetermined.
Their choice is free.We choose them in such away that the second derivatives in (2.4.3)
are suppressed by the modification (2.4.11). The unique possibility is

D,-!" = 1
4√–ḡ (h!-h", – h

!"
h
,-) . (2.4.12)
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Combining the definition (2.2.27), the equivalence of the expressions in (2.4.9) and the
relation (2.4.11), one concludes for the left hand sides in (2.4.9):

GL
†

,-(h) ≡ GL
,-(h) –

2√–ḡ ∇̄!"D,-!" (2.4.13)

≡ 1
2
∇̄!" [(ḡ,- + h,-)(ḡ!" + h!") – (ḡ,! + h,!)(ḡ-" + h-")]≡ 1

2(–ḡ)
∇̄!" [(ḡ,- + h

,-)(ḡ!" + h
!") – (ḡ,! + h

,!)(ḡ-" + h
-")] .

It is non-linear in h,-, and this is a price for the requirement to have tred,- without second
derivatives. Combining (2.4.3) and (2.4.11), one finds for the right hand side of (2.4.9):

ttot
†

,- = tred,- + Q!"
,-(t

m
!" –

1
2 ḡ!"t

m
1
1) + tm,- , (2.4.14)

where the pure gravitational part does not depend on second derivatives. Finally,
keeping in mind (2.2.101) and (2.4.12), one finds for the flat background (2.4.1),

∇̄,GL†,- ≡ 0 . (2.4.15)

Then, from (2.4.9) the conservation law,

∇̄,ttot†,- = 0 , (2.4.16)

follows.
Let us show explicitly that the dragged equations (2.4.9) are equivalent to the Ein-

stein equations in the usual form. Substituting the expressions (2.4.13) and (2.4.14)
into (2.4.9), multiplying it by (–ḡ), using the definitions (2.4.4), (2.4.5) and (2.2.32),
taking into account the decomposition (2.2.7), and, at last, applying the Lorentzian
coordinates in the background spacetime, one gets

1
2𝜕!" [(–g)(g,-g!" – g,!g-")] = 80(–g) (t,-LL + T,-) . (2.4.17)

Here, (–g)t,-LL = t,-LL is the Landau-Lifshitz’s pseudotensor presented in (1.4.70), whereas
the equality (2.4.17) itself is the same as (1.4.71) with (1.4.68). Thus, indeed, (2.4.17) are
the Einstein’s equations rewritten in the other form only. Besides, such a representa-
tion (1.4.12) evidently shows that the tensor density (–ḡ)t,-red defined by (2.4.4) can be
interpreted as the covariantized pseudotensor t,-LL .

2.4.3 Non-zero masses of gravitons

A new variant of massive gravity
The technique of including the Lagrange multipliers in (2.4.6) and (2.4.8) turns out
very useful in constructing the massive variant of the gravitational theory. From this
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point of view, an additional term similar to the term (2.4.12) could be included into
the Lagrangian (2.4.6). Let us describe a way of construction. Initially one considers
the curvature tensor R̃!1"3 of an abstract spacetime of a constant non-zero curvature:
R̃!1"3 = K (g̃!"g̃13 – g̃!3g̃1"), where K is with the dimensionality of [length]–2. Next,
one adds

D̃ ≡ D̃!"13R̃!1"3 =
1

4√–g̃ (h!3h"1 – h
!"

h
13) R̃!1"3 (2.4.18)

to the Lagrangian (2.4.6). Then, one changes g̃,- → ḡ,-, and a new additional term in
the Lagrangian (2.4.6) acquires the form

D̃ = 1
2√–ḡK (h!"h!" – h!!h"") (2.4.19)

in that one easily recognizes the Fierz-Pauli mass-term [175]. Developing this con-
struction, Babak and Gishchuk suggested to consider two independent quadratic
combinations of h,- in (2.4.19) separately. As a result, a two-parameter family of
theories with the additional mass terms in the gravitational Lagrangian (2.4.6):

L g‡ = L g† + (√–ḡ)–1 [k1(h!"h!") + k2(h!!h"")] , (2.4.20)

can be studied, where k1 and k2 have a dimensionality of [length]–2, like K.
Finally, instead of the total dynamical Lagrangian (2.4.8), one has

L dyn‡ = – 1
160L g‡ + L m = – 1

160L g‡ + L M (ḡ + h,6) . (2.4.21)

To obtain the related field equations one has to vary it with respect to h
,-. Then one

has to apply the technique used in (2.2.22–2.2.26). In the result, instead of (2.4.9), one
easily gets:

GL†
,- + 2k1h,- – (k1 + 2k2)ḡ,-h!

! = 80ttot
†

,- . (2.4.22)

To give a physical interpretation of k1 and k2, following to the technique by Ogievetsky
and Polubarinov [342], and by van Dam and Veltman [449], one considers the linear
approximation of (2.4.22):

1
2 (◻̄h,- + ḡ,-∇̄13h13 – ∇̄1-h,1 – ∇̄1,h-1) + 2k1h,- – (k1 + 2k2)ḡ,-h!! = 0. (2.4.23)

where ◻̄ ≡ ḡ!"∇̄!". The divergence of this expression
∇̄- [2k1h,- – (k1 + 2k2)ḡ,-h!!] = 0, (2.4.24)
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can be considered as a constraint that has to be satisfied, when solutions to (2.4.23)
are searched.

The case k1 + k2 ≠ 0
For this case, the system (2.4.23) and (2.4.24) is equivalent to

◻̄H,- + !2H,- = 0, (2.4.25)◻̄h!! + "2h!! = 0. (2.4.26)

Here, the quantity

H,- ≡ h,- – k1 + k2
3k1

ḡ,-h!
! – k1 + k2

6k21
∇̄,-h!! + k1 + k2

12k21
ḡ,-◻̄h!! (2.4.27)

satisfies the conditions ḡ,-H,- = 0 and ∇̄-H,- = 0. The parameters in the wave-like
equations (2.4.25) and (2.4.26) are

!2 = 4k1 , "2 = –2k1(k1 + 4k2)
k1 + k2

. (2.4.28)

They can be thought as inverse Compton wavelengths of the spin-2 graviton with the
mass m2 = !ℏ/c associated with the field H,- and of spin-0 graviton with mass m0 =
"ℏ/c associated with the scalar field h!!.

Studying the weak gravitational waves in the massive gravity, one finds certain
modifications of general relativity. Thus the spin-0 gravitational waves represented
by the trace h!! and the polarization state of the spin-2 graviton represented by the
spatial trace Hik'ik, both, unlike in general relativity, become essential. They provide
additional contributions to the energy-momentum flux carried by the gravitational
wave, and the extra components of motion of the test particles. However, gravitational
wave solutions, their energy-momentum characteristics and observational predictions
of general relativity are fully recovered in the massless limit ! → 0, " → 0.

The case k1 + k2 = 0
This variant of the theory represents the Fierz-Pauli type massive gravity, which
corresponds to " → ∞, see (2.4.28). The system (2.4.23) and (2.4.24) becomes
equivalent to

h!
! = 0, ∇̄-h,- = 0, ◻̄h,- + 4k1h,- = 0. (2.4.29)

However, even in the limit ! → 0, there remains a non-vanishing “comoving mode”
motion of test particles in the plane of the wave front. The extra component of the
motion is accounted for the corresponding additional flux of energy from the source,
typically, of the same order of magnitude as the general relativity flux. This, at least,
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is in conflict with the indirect gravitational-wave observations of binary pulsars [434].
Such theories probably have to be rejected.

2.4.4 Black holes and cosmology in massive gravity

To obtain solutions in the massive gravity and to provide a direct comparison with
general relativity effects, it is more convenient to represent the equations (2.4.22) of
the field-theoretical theory in a quasi-geometrical form with an effective metric g,-
close to general relativity. Using the invariance (2.4.9), let us rewrite (2.4.22) as

GL
†

13 – 80t
tot†
13 + 2k1h13 – (k1 + 2k2)ḡ13h!

!

= GL13 – 80t
tot
13 + 2k1h13 – (k1 + 2k2)ḡ13h!

! = 0 . (2.4.30)

Now, adopting (2.2.133) for the flat background case (2.4.1), one easily obtains from
(2.4.30):

($1!$3" – 1
2 ḡ!"ḡ

13) (GL†13 – 80ttot†13 + 2k1h13 – (k1 + 2k2)ḡ13h4
4)

= R!" – 80 (T!" – 1
2g!"T4

4) + 2(k1h!" + k2ḡ!"h44) = 0 . (2.4.31)

At last, multiplying (2.4.31) by ($!,$"- – 1
2g,-g

!") one obtains that the equations (2.4.22)
are equivalent to

G,- +M,- = 80T,-, (2.4.32)

where the Einstein’s equations are added by the massive term

M,- ≡ (2$!,$"- – g!"g,-) (k1h!" + k2ḡ!"h11). (2.4.33)

Of course, the Bianchi identity ∇-G,- ≡ 0 is valid an effective spacetime. Besides,
the matter equations determine the conservation ∇-T,- = 0, as usual. Thus, after the
differentiation of (2.4.33) one obtains

∇-M,- = 0, (2.4.34)

which must be considered as constraints for (2.4.32). Recall that g,- in (2.4.33) and
(2.4.34) are functions of ḡ!" and h!", then one recognizes that (2.4.24) is a linear
approximation of (2.4.34).

Thus, to find a solution to the new theory one has to search for the components
h,-, which satisfy the system (2.4.32) and (2.4.34). This consists of several steps: first,
one has to select appropriate coordinates in the flat background spacetime; second,
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one has to use the connection (2.2.7) between the gravitational variables and the
effective metric in order to substitute it in (2.4.32) and (2.4.34) and solve them; third,
after determining h,-, one again has to use the connection (2.2.7) for comparison with
solutions in general relativity.

Thus, let us illustrate how a search for static spherically symmetric solutions in
vacuum can be provided. Then, it is naturally to use the spherical coordinates, and
the metric of the background spacetime in the form:

d ̄s2 = ḡ,-dx
,dx- = –dt2 + dr2 + r2(d(2 + sin2 (d62). (2.4.35)

In these coordinates, non-zero components of the gravitational field h,- are written as

h00 = –A(r), h11 = B(r), h22 = C(r), h33 = C(r)
sin2 (

, (2.4.36)

where the functions A(r), B(r) and C(r) have to be found from the equations (2.4.32) in
vacuum, T,- = 0, by taking into account the constraints (2.4.34). Then three independ-
ent equations among (2.4.32) and (2.4.34) survive only. For a comparison, in general
relativity two independent equations survive only, when spherically symmetric static
solutions in vacuum are searched. The consideration is simplified if one assumes
! = ", however all the qualitative conclusions remain valid for ! ̸= ".

Combining analytical and numerical techniques, Babak and Grishchuk demon-
strated that the solution of the massive theory is practically indistinguishable from
that of general relativity for all rg ≪ r ≪ 1/!, where r and rg are the radial coordinate
and the gravitational radius of the Schwarzschild solution, see (1.5.34) (1.5.35). For r
larger than 1/! the solution takes the form of the Yukawa-type potentials; therefore
they call this massive theory as the finite-range gravity.

The solution of the new theory also deviates strongly from that of general relativity
in the vicinity of r = rg, which is the location of the globally defined event horizon of
the Schwarzschild black hole in general relativity. In the massive gravity the event
horizon does not form at all, and the solution smoothly continues to the region r < rg
and terminates at r = 0 where the curvature singularity develops. Since the !rg can be
extremely small, the redshift of the photon emitted at r = rg can be extremely large,
but it remains finite in contrast with general relativity solutions. Infinite redshift is
reached only at the singularity r = 0.

In the astrophysical sense, all conclusions that rely specifically on the existence
of the black hole event horizon, are likely to be abandoned. It is very remarkable and
surprising that the phenomena of black hole should be so unstable with respect to
the inclusion of the tiny mass-terms, whose Compton wavelength can exceed, say, the
present-day Hubble radius.

Homogeneous isotropic solutions were also considered in the framework of the
massive gravity. Now one has to solve the system (2.4.32) and (2.4.34) with a non-zero
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matter energy-momentum tensor. The metric of the flat background spacetime is
considered to be in the form:

d ̄s2 = ḡ,-dx
,dx- = –dt2 + dx2 + dy2 + dz2, (2.4.37)

then the gravitational field components have to depend on time only and to have a
diagonal form:

h00 = –A(t), h11 = h22 = h33 = B(t). (2.4.38)

The matter sources are described by a perfect fluid model

T,- = (% + p)u,u- – pg,-. (2.4.39)

The conservation law ∇-T,- = 0 is reduced to the equation

%󸀠 + 3a
󸀠

a
(% + p) = 0. (2.4.40)

At last, the final simplification is the use of the equation of state in the form: p(t) =
q%(t) with the constant –1 < q < 1.

As a result of the above assumptions there are two independent field equations
from the set (2.4.32) and (2.4.34), unlike the case of general relativity where there is
only one. First, if the mass of the spin-0 graviton is zero, "2 = 0, the cosmological
solutions are exactly the same as those of general relativity, independently of themass
of the spin-2 graviton, i.e., independently of the value of !2. This result is expected
due to the highest spatial symmetry: the spin-2 degrees of freedom have no chance to
reveal themselves.

Then, for "2 ̸= 0 the technically simpler case, 4"2 = !2, was studied in full detail.
Qualitative results are valid for 4"2 ̸= !2. Thus, by combining analytical approximations
and numerical calculations it has been demonstrated that the massive solution has a
long interval of evolution where it is practically indistinguishable from the Friedmann
solution of general relativity. The deviation from general relativity is dramatic at the
very early times and very late times. The unlimited expansion is being replaced by
a regular maximum of the scale factor, whereas the singularity is being replaced by
a regular minimum. Smaller " values induce the higher maximum and the deeper
minimum, that is an arbitrary small mass term in the Lagrangian gives rise to the
oscillatory behaviour of the cosmological scale factor.

Following the logic of interpretation that !2 and "2 define the masses, they are
thought as positive. However, the general structure of the Lagrangian (2.4.21), see
(2.4.20), does not imply this. Then, if one allows !2 and "2 to be negative, the late
time evolution of the scale factor gives an “accelerated expansion” that is similar to
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the one governed by a cosmological D-term. The development of this point could be
useful in the light of the modern cosmological observational data [100].

2.4.5 Gauge invariance in the Babak-Grishchuk modifications

Here, we study the gauge invariance properties of the Babak-Grishchuk formulation
of general relativity given in Section 2.4.2 and of their variant of massive gravity
described in 2.4.3. From the start, we adopt the gauge transformations (2.2.68) and
(2.2.69) for the flat background (2.4.1). They acquire the form:

h
󸀠,-(x) = h

,-(x) + (exp£. – 1) (ḡ,-(x) + h
,-(x)) , (2.4.41)

6󸀠A(x) = 6A(x) + (exp£. – 1)6A(x). (2.4.42)

It is easy to state that the gauge invariance properties of the modification in Sec-
tion 2.4.2 are similar to those described in Section 2.2.4 in the framework of the
field-theoretical formulation of general relativity. Indeed, the Lagrangian (2.4.8) with
(2.4.6) differs from the Lagrangian (2.2.15), or (2.2.104) for the case of a Ricci flat
background, by the presence of the additional term proportional to the background
curvature tensor, see (2.4.1). Then, adopting (2.2.72) to the case of the Babak-Grishchuk
formulation of general relativity, one finds that the Lagrangian (2.4.8) is transformed
under the transformations (2.4.41) and (2.4.42) as

L 󸀠dyn
†
= L dyn† + 1

160 (h󸀠,- – h
,-) R̄,- + 1

160 (D󸀠!"13 – D!"13) R̄!1"3
+ (exp£. – 1)LEH(ḡ + h,6) . (2.4.43)

The second and third terms disappear by the condition (2.4.1), whereas the last term is
a divergence and does not contribute into the equations of motion. Thus Lagrangian
(2.4.8) is gauge invariant in the sense, like the Lagrangian L dyn in (2.2.72).

Adopting the formula (2.2.74) to the Babak-Grishchuk formulation of general
relativity and substituting (2.4.41) and (2.4.42) into (2.4.9), one finds

[GL†
,-(h) – 80t

tot†
,- (h,6)]󸀠 = GL

†

,-(h) – 80t
tot†
,- (h,6)

+ 1√–ḡ 𝜕ḡ13𝜕ḡ,- (exp£. – 1) [√–ḡ 𝜕ḡ$0𝜕ḡ13 (GL†$0 – 80ttot†$0 ) + R̄13] . (2.4.44)

If the background equations (2.4.1) hold, and if h,6 is the solution to the field equa-
tions (2.4.9) then h

󸀠,6󸀠 is the solution to the same equations. Analogous conclusions
are valid for the matter equations in the Babak-Grishchuk formulation of general
relativity field-theoretical form, as in (2.2.39).
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The energy-momentum tensor (2.4.10), see also (2.4.11), is not gauge invariant even
if the field-theoretical equations hold, the same as in (2.2.75). Indeed, keeping in mind
the transformation (2.4.44) and the expression (2.4.13), one has

80t󸀠tot
†

,- (h,6) = 80ttot
†

,- (h,6) + (–ḡ)–1(exp£. – 1) [(–ḡ)GL†
,-(h)] . (2.4.45)

Following the arguments in Section 2.2.7, based on the gauge invariance properties,
one concludes that the background spacetime has an auxiliary character. Indeed, the
gauge invariance properties follow from the fact that the background metric disap-
pears from the consideration. To show this it is easy to adopt (2.2.133) for the equations
(2.4.9):

($!,$
"
- –

1
2 ḡ,-ḡ

!") [GL†
!" – 80t

tot†
!" ] = R,- – 80 (T,- – 1

2g,-T
!
!) = 0 . (2.4.46)

This means that if one substitutes (2.2.135) and (2.2.136) into the left hand side of
(2.4.46) one can determine only the effective metric g,-. As a consequence, conserved
quantities are not localized, see (2.4.45), and the trajectories of test particles are gauge
dependent.

Now, let us turn to the massive gravitational theory in Section 2.4.3. This the-
ory is not gauge invariant. The reason is in the additional term in the Lagrangian
(2.4.21), see (2.4.20); as a consequence, the additional term appears in the equations
(2.4.22). Unlike (2.4.9), where the background metric is absent really, see (2.4.46), the
equations (2.4.22) it contain really the background metric that one can see from the
equivalent equations (2.4.32) with (2.4.33). However, because the gravitational field
h
,- is included into the matter Lagrangian in (2.4.46) in a universal way one cannot
to determine the Minkowski space with the use of matter fields, like electromagnetic
signals. However, characteristics of the background Minkowski space must be observ-
able by the gravitational waves due to the presence of the term (2.4.33) in (2.4.32). As
a result, in the case of observations conducted in the Minkowski space the energy-
momentum tensor in equations (2.4.22) has to be localized, similarly to an arbitrary
field theory in the Minkowski space, see Section 1.2.



3 Asymptotically flat spacetime
in the field-theoretical formulation

In the present chapter, considering an asymptotically flat spacetime at spatial infinity,
we develop the field-theoretical methods in general relativity laid out in the previous
chapter. Historically, asymptotically flat spacetime was studied more intensively
in the framework of the Hamiltonian formulation of general relativity. Therefore,
in Section 3.1, we review the Arnowitt-Deser-Misner (ADM) formulation of general
relativity in a reader-friendly form, we present its essential details and its modification
introduced by Regge and Teitelboim. In Sections 3.2 and 3.3, we elaborate on both
the Lagrangian and Hamiltonian forms of the field-theoretical description of the
asymptotically flat spacetime.

3.1 The Arnowitt-Deser-Misner formulation
of general relativity

3.1.1 The ADM action principle

The (3 + 1)-decomposition of a spacetime
This topic is pretty much standard by now and we follow the textbook [315]. Let a
spatial hypersurface G0 be marked by the time coordinate t = const. Then, a “later”
spatial section G1 is defined by t + dt = const with an infinitesimal dt. We require
that such hypersurfaces do not intersect, technically, the spacetime is globally hyper-
bolic and admits a spacelike foliation. Each spacelike hypersurface has its own space
coordinates (corresponding to space coordinates in spacetime) and a 3-dimensional
positive definite metric. For example, G0 has the metric gij(t, x, y, z) and G1 has the
metric gij(t + dt, x, y, z). However, separate, independent definition of G0 and G1 is not
enough to get the structure of a 4-dimensional spacetime. To resolve this problem one
has to connect G0 with G1. First, let us define a proper distance between G0 and G1
related to every point (x, y, z) on G0 in the orthogonal direction:

d4 = N(t, x, y, z)dt , (3.1.1)

whereN(t, x, y, z) is called the lapse function. Second, points on G1 can be shifted with
respect to the points on G0:

xi1 = xi0 – N
i(t, x, y, z)dt , (3.1.2)

where Ni(t, x, y, z) is called the shift (3-dimensional) vector. Now, we are in a position
to derive the interval between the world points x! = (t, xi) and x!+dx! = (t+dt, xi+dxi),
the line element reads

ds2 = –(Ndt)2 + gij (dxi + Nidt) (dxj + Njdt) . (3.1.3)

DOI 10.1515/9783110351781-003
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Rewriting this in a 4-dimensional form, one finally has

ds2 = g!"dx
!dx" , (3.1.4)

where, in the matrix form, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 g00 g0jgi0 gij

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (NsNs – N2) Nj

Ni
3
gij

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (3.1.5)

Notice that the spatial components of the full 4-dimensional metric gij, are equal to

those of 3-dimensional metric
3
gij, thus in (3.1.4) the components of the shift vector are

defined as Ni =
3
gijNj = gijNj. The components of the inverse matrix g!" are obtained

without difficulty as 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 g00 g0jgi0 gij
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
– (1/N2) Nj/N2

Ni/N2 ( 3
gij – NiNj/N2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (3.1.6)

Now, it is easy to calculate the determinant of g!" in terms of the 3-dimensional
quantities:

g = det g!" = –N2 3g , (3.1.7)

where
3
g = det gij = det

3
gij. In addition, it is necessary to define the components of the

unique vector n! being normal to G . Turning to the definition of the proper distance
(3.1.1), one has

n! = (–N, 0, 0, 0) . (3.1.8)

Making use of (3.1.6), one finds the contravariant form of the normal vector as

n! = (1/N, –Ni/N) . (3.1.9)

Then, indeed, one has n2 = n!n! = –1.
It is important to express the 4-dimensional curvature in terms of the above (3+1)-

decomposition. Concerning the 3-dimensional (intrinsic) curvature of a hypersurface
G, one uses simply all the notions given in Section 1.3.1 for the case of four dimensions,
by replacing the 4-metric g!" with the 3-metric

3
gij = gij. The Christoffel symbols of the

hypersurface
3
Aijk are constructed with

3
gij by the formula (1.3.5). Thus, the Riemann

tensor (1.3.2) is replaced with the 3-dimensional one,
3
R i

kjl; the Ricci tensor (1.3.3) is

replaced with the 3-dimensional one,
3
Rkl; and the scalar curvature (1.3.4) is replaced

with the 3-dimensional one,
3
R.

However, one must note that the 3-dimensional curvature of G is its intrinsic
curvature. Therefore, to have a full description, it is necessary to add an extrinsic
curvature, which describes the embedding of G into the 4-dimensional spacetime. For
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this purpose, let us consider the vector n!(xi) on G taken at the point with the local
coordinates (xi). Now we displace it along G by making use of the parallel transport
in 4-dimensional spacetime to the point with the local coordinates (xi + dxi) and com-
pare it with n!(xi + dxi). It is evident that the difference exists: it is proportional to dxi

and depends on the parallel transport of the normal vector,

(dn)j = ∇injdxi , (3.1.10)

where ∇k is the 4-dimensional covariant derivative with a space index only. A
3-dimensional rank-two tensor defined as

Kij = –∇inj = –NA0ij (3.1.11)

is called the extrinsic curvature of the hypersurfaces G embedded in the spacetime. To
derive (3.1.11) we have used the components (3.1.8), and the components A0ij of the
4-dimensional Christoffel symbols (1.3.5). Recalculating (3.1.11) with the help of (3.1.5)
and (3.1.6), one can rewrite the extrinsic curvature in the form:

Kij =
1
2N

( 3∇jNi +
3∇iNj –

𝜕gij𝜕t ) , (3.1.12)

where
3∇k is the 3-dimensional covariant derivative compatible with the 3-dimensional

metric. Another useful form of the extrinsic curvature (3.1.12) is

Kij = 1
2£ngij , (3.1.13)

where £n represents the Lie derivative along the normal vector n!. This equivalence
can be shown by a direct calculation using the definition of the Lie derivative, see
above (1.2.82).1

In the next part, we connect the 3-dimensional intrinsic curvature, construc-
ted with the use of

3
gij, and the extrinsic curvature, Kij, with the full 4-dimensional

curvature.

The projection technique in the (3 + 1)-decomposition
In the previous part, we have used the technique of foliation of spacetime into separ-
ate spatial hypersurfaces G. However, the technique of projecting geometrical objects
(physical fields) onto the spacelike hypersurfaces is also needed to have a complete
(3 + 1)-decomposition. We present this now, following the book [378].

Let us take a set of the spacelike non-intersecting hypersurfaces G in the para-
meterized form. This means that each of the hypersurfaces G is numerated by its own
parameter t. We suppose also that each local domain in spacetime is covered with its

1 Notice that formula (3.1.13) has another sign with respect to the analogous formula in [315]. The
reason is that in the present book we use the definition of the Lie derivative with the opposite sign for
£, see (1.2.82).
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own local coordinates x = (x!). Then the parameter t can be represented as a scalar
function f of the spacetime coordinates:

t = f (x) . (3.1.14)

Next, let the hypersurfaces G be covered with their own local coordinates x = (xi).
Then, a connection between the 4-dimensional coordinates, from one side, and the
3-dimensional coordinates with the parameter t, from the other side, can be provided
by the following relation,

x! = e!(x, t) , (3.1.15)

with four functions e!. By the construction, the use of (3.1.15) in the equality (3.1.14)
satisfies the latter identically.

After that we define a normalized basis of four vectors associated with the hyper-
surface G, which consists of the unit normal vector n! and a triad of tangential vectors
e!j defined as

e!j ≡ 𝜕je!; n!e
!
j = 0; n!n

! = –1 . (3.1.16)

One easily finds that vector n! is identified with the one given in (3.1.9). A 3-
dimensional metric on G is induced from the 4 dimensional metric as

3
gij = g!"(e(x, t))e!ie"j . (3.1.17)

If, in (3.1.15), x! = (t,x) with x0 = t one finds
3
gij = gij that is consistent, of course, with

(3.1.5). Defining e!j ≡ g!"
3
gije"i, we find the identities

e!
ie!j ≡ $ij; e"

ie!i ≡ $!" + n"n
! . (3.1.18)

Now we are in a position to represent an arbitrary 4-vector 󰜚! in terms of the basis
vectors (3.1.16) as 󰜚! = n!󰜚⊥ + e!j󰜚j , (3.1.19)

where 󰜚⊥ = –n!󰜚!; 󰜚j = e!
j󰜚! . (3.1.20)

To define the 3-dimensional connection,
3
Aijl, on G we use the same technique of pro-

jections in (3.1.19) and (3.1.20). Thus, the 3-dimensional covariant derivative can be
derived as

3∇i󰜚j = ∇" (󰜚le!l) e!je"i . (3.1.21)

Then, from here one easily finds
3
Aijl = (∇le!j)e!i , (3.1.22)
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from which the 3-dimensional Riemann tensor (intrinsic curvature of G) can be con-
structed. We define the following notations for the projections of the 4-covariant
derivatives: ∇j󰜚! ≡ e"j∇"󰜚! ,∇j󰜚i ≡ e!ie

"
j∇"󰜚! ,∇j󰜚⊥ ≡ –n"e!j∇!󰜚" ,∇⊥󰜚j ≡ –n!e"j∇!󰜚" ,∇⊥󰜚⊥ ≡ n!n"∇!󰜚" . (3.1.23)

For a constructive use of these definitions they have to be represented through
3-dimensional quantities at the spatial hypersurface G.

The extrinsic curvature is defined exactly as in (3.1.11). Then, by one of the
equalities in (3.1.16), it can be recast to the form:

Kij = n!∇je!i . (3.1.24)

One can see, then, that Kij and
3
Aijl are projections of ∇je!i onto the normal basis

(3.1.16), thus

∇je!i = –Kijn
! +

3
A l

ije
!
l . (3.1.25)

Now introduce the vector

N! ≡ de!

dt
(3.1.26)

and its projections onto the normal basis (3.1.16), N = –n!N! and Ni = e!iN!. Then
(3.1.26) can be rewritten as

N! = n!N + e!iN
i . (3.1.27)

It is clear that, here, N and Ni can be identified with the lapse function in (3.1.1) and
the shift vector in (3.1.2), respectively. It is also evident that the covariant derivative
along N! has to be identified with the time derivative:

d
dt

≡ N"∇" ≡ ∇N . (3.1.28)

To re-express definitions (3.1.23) in terms of the 3-dimensional quantities, one has to
find the deformations of the normal basis in spacetime, when the basis vectors are dis-
placed along the vector N!. Keeping in mind the identity N"𝜕"e!j ≡ 𝜕jN! that follows
from the definitions of e!j in (3.1.16) and N! in (3.1.26), using the rules of projections
(3.1.18–3.1.20) and the formulae (3.1.24) and (3.1.25), one obtains

∇Ne!j = ( 3∇jN – KijN
i) n! + ( 3∇jN

i – NKi
j) e!i . (3.1.29)
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With the use of (3.1.16) this equality leads to the following:

∇Nn! = ( 3∇jN – KijN
i) e!j . (3.1.30)

At last, combining (3.1.17) and (3.1.29), one gets

d
3
gij
dt

= ∇N 3
gij = –2NKij + 2

3∇(iNj) , (3.1.31)

which is nothing else but formula (3.1.12); the reason why in (3.1.31) we have a total
time derivative, unlike (3.1.12) with a partial time derivative, is that in (3.1.31)

3
gij is

defined by the general formula (3.1.17), whereas in (3.1.12) it is simply
3
gij = gij(xi, t).

Next, it is necessary to introduce the variation along the normal component of the
vector (3.1.27):

$⊥ ≡ Nn!∇! (3.1.32)

and the variation along the tangential component of the vector (3.1.27):

$|| ≡ –£Ni . (3.1.33)

Now, consider an arbitrary vector field 󰜚! and its projections 󰜚i and 󰜚⊥. From the begin-
ning, let us apply (3.1.32) to 󰜚⊥ = –n!󰜚!. After simple manipulations using the above
technique one arrives at

$⊥󰜚⊥ = Nn!∇!󰜚⊥ = –󰜚i 3∇iN – N∇⊥󰜚⊥ . (3.1.34)

From here one obtains

N∇⊥󰜚⊥ = –($⊥󰜚⊥ + 󰜚i 3∇iN) . (3.1.35)

Analogously, after application of (3.1.32) to 󰜚i = e!i󰜚! one obtains
N∇⊥󰜚i = –($⊥󰜚i + 󰜚⊥ 3∇iN + NKij󰜚j) . (3.1.36)

Now, let us apply the operator (3.1.33) to 󰜚i:
$||󰜚i = –£Nj󰜚i = Nj 3∇i󰜚j + 󰜚j 3∇iNj . (3.1.37)

On the other hand, since 󰜚i is a set of 3 scalars in 4 dimensions this can be rewritten in
the form:

$||󰜚i = ∇N󰜚i |N!=e! jNj
= 󰜚⊥NjKij + 󰜚j 3∇iNj + Nj∇j󰜚i , (3.1.38)
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where (3.1.29) has been used. Comparing (3.1.37) and (3.1.38) one has

∇j󰜚i = 3∇j󰜚i – 󰜚⊥Kij . (3.1.39)

Analogously one obtains

∇j󰜚⊥ = 3∇j󰜚⊥ – 󰜚iKij . (3.1.40)

The technique of projections (3.1.18–3.1.40) can easily be extended for a tensor of
arbitrary rank and for derivatives of arbitrary order.

Applying the above rules for projecting the identity(∇-, – ∇,-) 󰜚! ≡ 󰜚+R+!,- , (3.1.41)

one obtains the well known [153] Gauss-Codazzi equations:

R⊥kij =
3∇jKki –

3∇iKkj , (3.1.42)

Rklij =
3
Rklij + KkiKlj – KkjKli . (3.1.43)

Also, one obtains the equality

R⊥i⊥j = $⊥Kij + NKikKjk +
3∇jiN . (3.1.44)

We have made a rather long tour of projections but it is clear that the equalities
(3.1.42–3.1.44) are necessary to recast the Hilbert Lagrangian in the terms of the
(3 + 1)-decomposition. In addition to these, one has to use the following relations,

$⊥
3
g1/2 = N

3
g1/2Ki

i ,

$⊥ ( 3
g1/2Ki

i) = ∇N ( 3
g1/2Ki

i) – $|| ( 3
g1/2Ki

i) ,

$|| ( 3
g1/2Ki

i) = –£Ni ( 3
g1/2Ki

i) =
3∇j ( 3

g1/2NjKi
i) . (3.1.45)

Now, combining (3.1.7) and (3.1.42–3.1.45) one obtains the Hilbert Lagrangian in terms
of (3 + 1)-decomposition as

√–gR = N
3
g1/2R = N

3
g1/2 [ 3

R + KijK
ij + (Ki

i)2]
–2∇N ( 3

g1/2Ki
i) + 2 3g1/2 3∇j (KiiNj –

3∇jN) . (3.1.46)

Canonical action and the equations in general relativity
To obtain the canonical action of general relativity, let us integrate (3.1.46) over a 4-
dimensional volume V restricted by a timelike cylinder S and the spacelike sections
G0 and G1, see Figure 2.1. Thus, (3 + 1)-version of the Hilbert action acquires the form:
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S = ∫
V
d4x√–gR = ∫t1

t0
dt (L0 – HS –

d
dt
HG) . (3.1.47)

Here, we follow the standard notations adopted in [315, 378] and drop off, for simpli-
city, the coefficient “1/160” that is used in these books in the definition of the Hilbert
action. Thus, in (3.1.47),

L0 ≡ ∫
G
d3xL0 , L0 ≡ N

3
g1/2 [ 3

R + KijK
ij – (Ki

i)2] ;

HS ≡ 2∮
S
dsj

3
g1/2 ( 3∇jN – Ki

iNj) ;

HG ≡ 2∫
G
d3x

3
g1/2Ki

i . (3.1.48)

As usual, -i = xi/r and dsi = d2Kr2-i is the infinitesimal element of integration on the
2-dimensional surface 𝜕G surrounding the isolated system. To derive the last quantity
the relation (3.1.28) has been used.

Now, picking up the metric tensor components gij =
3
gij at G as generalized

coordinates, we define their time derivatives

ġij ≡ dgij
dt

(3.1.49)

as generalized velocities. Then, varying (3.1.47) with respect to ġij, ignoring the surface
integrals and using (3.1.12), we define the canonical momenta as usual

0ij ≡ 𝜕L0𝜕ġij = GijklKkl . (3.1.50)

Here the four-index object

Gijkl ≡ 1
2
3
g1/2 (2 3gij 3gkl – 3

gik
3
gjl –

3
gil

3
gkj) (3.1.51)

is the De Witt supermetric (which is sometimes called as the Wheeler-DeWitt super-
space metric) [139] whose inverse reads

Gijkl = 1
2
3
g–1/2 (gijgkl – gikgjl – gilgjk) , (3.1.52)

which is obtained via the condition GijklGklmn = $m(i $
n
j).

Finally, we are in a position to define the Hamiltonian of the gravitational field by
the standard way:

H = ∫
G
d3x0ijġij – L0 + HS +

d
dt
HG . (3.1.53)
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Here, one has to exchange the generalized velocities with the generalized momenta.
First, we use the relation (3.1.31) and combine (3.1.50–3.1.52)

Kij = Gijkl0kl . (3.1.54)

Second, substituting all of these into (3.1.53), we obtain the Hamiltonian function
related to the Lagrangian function in (3.1.47):

H[gij,0ij] = H0 + H̃S +
d
dt
HG , (3.1.55)

where Kij is expressed through 0kl with the use of (3.1.54). The space integral in
(3.1.55) is

H0 = ∫
G
d3xH0 , H0 ≡ N(,)H, . (3.1.56)

We denote the set of N⊥ ≡ N and Ni in (3.1.27) as

N(,) ≡ {N⊥,Ni} . (3.1.57)

Of course, the quantities N(,), being projections of N, onto the normalized basis
defined on G, have to be distinguished from the components of N, themselves in the
spacetime. We introduce the following short-hand notations:

H, ≡ {H⊥,Hj} ; (3.1.58)

H⊥ ≡ Gijkl0ij0kl –
3
g1/2

3
R , (3.1.59)

Hi ≡ –gij
3∇k0jk . (3.1.60)

The last two expressions can be rewritten as

H⊥ = –2
3
g1/2G⊥⊥ , (3.1.61)

Hi = 2
3
g1/2Gi⊥ , (3.1.62)

where G⊥⊥ and Gi⊥ are projections of the components of the Einstein tensor onto G.
The surface integral in (3.1.55) is

H̃S ≡ 2∮ dsj [ 3∇j ( 3
g1/2N) – 0i(iNj)] . (3.1.63)

At last, ignoring the term HG
󵄨󵄨󵄨󵄨t1t0 to represent fixed initial and final states, one derives

the canonical action with the Hamiltonian (3.1.55):

S [gij,0ij,N(,)] = ∫t1

t0
dt∫

G
d3x (0ijġij – H0) – ∫t1

t0
dtH̃S ; (3.1.64)
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Varying the action (3.1.64) with respect to the generalized momenta and the general-
ized coordinates by the standard way, one obtains the field equations

ġij =
$H0
$0ij

≡ 2 N
3
g1/2

(0ij – 1
2gij0

k
k) + 2 3∇(iNj) , (3.1.65)

0̇ij = –$H0
$gij

≡ –
3
g1/2 [N ( 3

Rij – 1
2g

ij 3Rkk) – ( 3∇ijN – gij
3∇kkN)]

+ N
3
g1/2

[ 12gij (0kl0lk – 1
2 (0

k
k)
2) – 2 (0ik0kj – 1

20
ij0kk)]

+
3∇k (Nk0ij) – 20k(i 3∇kN

j) . (3.1.66)

Here, the symbol $/$ is the 3-dimensional Lagrangian derivative, see Appendix A.2.4;
of course, the surface terms in (3.1.64) do not contribute to the result. Variation of
(3.1.64) with respect to the LagrangemultipliersN andNi leads to the equations, which
are interpreted as constraints:

H⊥ = 0 , (3.1.67)
Hi = 0 . (3.1.68)

The canonical equations (3.1.65) and (3.1.66) together with the constraints (3.1.67)
and (3.1.68) are equivalent to the vacuum Einstein equations in the standard 4-
dimensional covariant formulation.

Including the matter sector
The natural question is how to incorporate the matter sector into the canonical action
(3.1.64)? Without giving details, only to show the construction, we consider a simple
example of fields denoted as 6A with the action:

S = ∫ d4xL m (6A,∇,6A) = ∫ d4x√–gLm (6A,∇,6A) . (3.1.69)

Aswe did before, let us project both the fields6A → 6A and themetric, and their deriv-
atives onto the hypersurface G, see conventions (3.1.23) and definitions (3.1.35), (3.1.36),
(3.1.39) and (3.1.40). Now, we interpret 6A as generalized coordinates and define the
corresponding generalized momenta as

pA ≡ 𝜕L m𝜕6̇A
. (3.1.70)

Then, the canonical action corresponding to (3.1.69) can be derived as

S = ∫t1

t0
dt∫

G
d3x (pA(x)6̇A(x) – H m

0 ) – ∫t1

t0
dtHm

S , (3.1.71)
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where

H m
0 ≡ N(,)H m

, [6A, pA; gij, 𝜕,gij] . (3.1.72)

We notice thatH m
, does not depend on the lapse function and the shift vector, andHm

S
is a surface integral over S, see Figure 2.1, corresponding to the Lagrangian in (3.1.69).

To combine the matter action (3.1.71) with the gravitational action (3.1.64) one has
to redefine the notion (3.1.50) of the gravitational generalized momenta

pij = 0ij + Pij , (3.1.73)

Pij = 𝜕L m𝜕ġij . (3.1.74)

Next, it is more convenient to rewrite a matter super-Hamiltonian as

H m
⊥ = H m + 2KijP

ij . (3.1.75)

Then, the total canonical action for a gravitating system acquires the form:

S [gij, pij;6A, pA;N
(,)] = ∫t1

t0
dt∫

G
d3x (pijġij + pA6̇A – N(,)T,)

– ∫t1

t0
dt (H̃S + H̃

m
S ) , (3.1.76)

where H̃m
S is the surface integral revised after substituting (3.1.75). Keeping in

mind that

Kij = Gijkl (pkl – Pkl) , (3.1.77)

one derives

T, = {T⊥,Ti} , (3.1.78)
T⊥ = H m + H⊥

󵄨󵄨󵄨󵄨0ij=pij–Pij , (3.1.79)

Ti = H m
i – 2gij

3∇kp
jk . (3.1.80)

Analogous to (3.1.61) and (3.1.62), one can represent the last two expressions as

T⊥ = –2
3
g1/2 (G⊥⊥ – 1

2T⊥⊥) , (3.1.81)

Ti = 2
3
g1/2 (Gi⊥ – 1

2Ti⊥) . (3.1.82)

Here, one easily finds that the expressions at the right hand sides are the projections of
the field operator in the Einstein equations (1.3.22) onto G if one restores the coefficient
“1/160” in front of the Einstein tensor.
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Varying the action (3.1.76) with respect to the generalized momenta and the
generalized coordinates by the standard way one gets

ġij =
$N(,)T,
$pij

, (3.1.83)

0̇ij = –
$N(,)T,
$gij

. (3.1.84)

Varying the action (3.1.76) with respect to the Lagrange multipliers N and Ni, one
obtains the equations

T⊥ = 0 , (3.1.85)

Ti = 0 , (3.1.86)

which are interpreted as constraints. The canonical equations (3.1.83) and (3.1.84)
together with the constraints (3.1.85) and (3.1.86) are equivalent to the Einstein equa-
tions with matter sources in the standard 4-dimensional covariant formulation. Let
us remark once again that the surface terms in (3.1.76) do not participate in the
construction of (3.1.83–3.1.86).

3.1.2 Asymptotically flat spacetime at spatial infinity in general relativity

A concept of the asymptotically flat spacetime in general is usually used to model the
gravitational field of a real isolated gravitating system. Such a model has played an
important role in gravitational physics: see, for example, [16, 19, 33, 180, 226, 356, 357,
406, 419] and the numerous references therein. The asymptotically flat spacetime is
studied in two regimes: at spatial infinity and at null infinity, see the textbook [315]. In
the present chapter, we pay attention to the case of the spatial infinity only.

What makes the asymptotically flat spacetime so interesting? First, in spite of
its apparent simplicity, the model opens the possibility of studying the fundamental
properties of gravitational field. As an example, the proof of the positive energy the-
orem for an isolated system has been provided in theworks by Yau and Schoen,Witten
andNester [333, 407, 408, 463] specifically in asymptotically flat spacetimes. In its own
turn, this remarkable result stimulated a farther growth of keen interest to the model,
see, for example, [18, 31, 51, 52, 102, 103, 160, 186, 254, 347, 387, 413, 418, 428, 454].

Second, the model of the asymptotically flat spacetime is useful from the astro-
nomical point of view. Indeed, most of the astrophysical objects are isolated systems
up to a good approximation. In this regard, for example, in the work [328], based on
the concept of the asymptotically flat spacetime, a special variational principle has
been developed. With the use of such a principle one can construct mathematical
models both for the stationary rotating stars and for non-stationary collapsing stars.
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Third, the study of asymptotically flat spacetimes can be useful from the meth-
odological point of view because a large class of exact solutions in general relativity
represents such models. Then, some fundamental problems or properties of the
gravity theory can be analyzed or illustrated on the examples of the exact solutions.

When considering a real isolated system, one assumes that all of the physical
fields, including gravitational waves, are effectively occupying a restricted domain of
space. Thismeans that the leading term in the Taylor series of themetric tensor expan-
sion with respect to a small parameter has to coincide with the Newtonian potential.
Therefore, solution of the Einstein equations for an isolated system has to acquire the
form of the metric coefficients of the Schwarzschild solution very far away from the
system because the constant of integration in the latter is matched to the Newtonian
potential [385]. Besides, there are no coordinates where the fall-off could be stronger
than the one in the Schwarzschild metric.

To define the asymptotically flat spacetime one has to postulate the asymptotic
behavior of the fields at infinity. As the, perhaps, simplest definition, we use the one
given by Faddeev [160]:
(i) At the spatial infinity, world points are parameterized in a one-to-one corres-

pondence by the coordinates {x!} such that –∞ < x! < ∞.
(ii) Among all such possible coordinate systems one can find a chart where the

metric has the asymptotic behavior:

g,- = ',- + O(r–1) , g,-,! = O(r–2) (3.1.87)

for r → ∞; r2 ≡ 'ikxixk. Such coordinate systems are called asymptotically
Lorentzian systems. The notation Q = O(r9) corresponds to limr→∞[Q/r9] =
const.

(iii) There are no coordinate charts where the fall-off of the metric coefficients can
be stronger than in (3.1.87). Also, one excludes a possible asymptotic behavior
of the metric tensor as ∼ ln r, see, for example, [418].

(iv) A condition of effective localization of matter is defined by the requirement for
the asymptotic behaviour of thematter energy-momentum tensor in the Einstein
equations as

T,- = O(r–3–!) , ! > 0 . (3.1.88)

This requirement corresponds to the asymptotic behaviour of the Lagrangian for the
matter sources:

L M = O(r–3–!) , ! > 0 . (3.1.89)

The above conditions (i–iv) in the Lagrangian formulation can be re-expressed in
the framework of the Hamiltonian formulation given in Section 3.1.1. The behaviour
of the metric coefficients (3.1.87) are reformulated as the behaviour of generalized
coordinates gik and generalized momenta 0ik on the spacelike hypersurfaces, G. So,

gik = 'ik + O(r–1) , gik,l = O(r–2) . (3.1.90)
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Spatial coordinates {xk} on G, for which the behaviour (3.1.90) takes place, are called
the asymptotically Cartesian coordinates. The requirement to preserve the behaviour
(3.1.90) under asymptotic Poincaré transformations and using the Hamiltonian equa-
tions of general relativity (3.1.65) and (3.1.66) lead to a conclusion that generalized
momenta, 0ik, have the asymptotic behaviour:

0ik = O(r–2) . (3.1.91)

In order to preserve (3.1.90) and (3.1.91) under asymptotic deformations of G one
applies simple restrictions on the asymptotic behaviour of the lapse function, N, and
the shift vector, Ni:

N = 1+ O(r–1), N,l = O(r–2), (3.1.92)
Ni = O(r–1), Ni

,l = O(r–2). (3.1.93)

The definitions (3.1.90–3.1.93) in the Hamiltonian formulation are equivalent to
(3.1.87) in the Lagrangian formulation.

3.1.3 The ADM definition of conserved quantities

Since the surface integrals in (3.1.76) do not contribute to the Hamiltonian equations
of motion they usually are not considered. In this case, a Hamiltonian function of the
system is defined by the termsT, only. Therefore, in fact, the Hamiltonian function is
equal to zero due to the constraints (3.1.85) and (3.1.86):

H = ∫
G
d3xN(,)T, = 0 . (3.1.94)

Of course, such aHamiltonian function cannot describe the energy of the system in the
common sense. Lagrangians, which lead to such type of the Hamiltonians are called
as singular [140, 193, 378], or parameterized Lagrangians. Below, we present a case
with a singular Lagrangian using the simplest example of a point particle which was
also given in the ADM paper.

Parameterized action for a point particle
Let us recall the usual way of constructing the Hamiltonian formulation of the system
(1.1.7) with the Lagrangian function (1.1.5):

S = ∫ dtL(qi, q̇i); i = 1, . . . , n . (3.1.95)

Define the generalized momenta as

pi ≡ 𝜕L𝜕q̇i . (3.1.96)

Now derive the total differential of the Lagrangian function in (3.1.95):
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dL = 𝜕L𝜕qi dqi + 𝜕L𝜕q̇i dq̇i , (3.1.97)

where summation over the repeated indices from 1 to n is implied. Due to the definition
(3.1.96) and the Lagrangian equation (1.1.10), this can be rewritten as

dL = ṗidqi + p
idq̇i → d (piq̇i – L) = –ṗidqi + q̇idp

i . (3.1.98)

One can see that the quantity

H(p, q) = piq̇i – L (3.1.99)

depends on qi and pi only, and is called the Hamiltonian function. Comparing with the
definition of energy (1.1.40) one recognizes that H has to define the energy as well.
Thus, the action (3.1.95) is rewritten in the Hamiltonian form:

S = ∫ dt (piq̇i – H) . (3.1.100)

Varying (3.1.100) and taking into account (3.1.98), one obtains the (first order) Hamilto-
nian equations:

q̇i =
𝜕H𝜕pi , ṗi = –𝜕H𝜕qi . (3.1.101)

The total derivative of H with respect to time is

dH
dt

= 𝜕H𝜕qi q̇i + 𝜕H𝜕pi ṗi . (3.1.102)

Keeping in mind (3.1.101), one can see that H is conserved

dH
dt

= 0 . (3.1.103)

In fact, it is another form of the conservation law given previously in (1.1.40). At last,
the Hamiltonian action (3.1.100) provides the so-called [13] generating function:

G(t) = pi$qi – H$t , (3.1.104)

which generates time translations.
Now, let us assume that the time coordinate is another dynamical variable,

t ≡ qn+1, whereas a new parameter 4 plays the role of time. Then the action (3.1.100) is
rewritten in the form:

S = ∫ d4pjq󸀠j , j = 1, . . . , n, n + 1 , (3.1.105)
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where q󸀠 = dq/d4 and the constraint

Hc = pn+1 + H(p, q) = 0 (3.1.106)

should be imposed. The constraint can be incorporated into (3.1.105) with the use of a
Lagrange multiplier +:

S = ∫ d4 (pjq󸀠j – +Hc) . (3.1.107)

The Hamiltonian function in (3.1.107) is zero,

H4 ≡ +Hc = 0 , (3.1.108)

like the general relativistic Hamiltonian in (3.1.94). The generic problem for both of
the cases (3.1.94) and (3.1.108) is how can one transfer from the parameterized action
to the action in the usual form with a non-zero Hamiltonian? We show this using the
simplest example of the action (3.1.107).

If one substitutes solution of the constraint equation (3.1.106) into the action
(3.1.107) one finds

S = ∫ dqn+1 (pi dqi
dqn+1

– H(p, q)) . (3.1.109)

Expressions for the actions (3.1.107) and (3.1.109) show that qn+1 plays the role of “an
intrinsic coordinate”. On the other hand, equation for qn+1 exists and is given as

q󸀠n+1 = + dHc
dpn+1

. (3.1.110)

Then, keeping in mind the constraint (3.1.106), one concludes that +, being dynamic-
ally arbitrary, guaranties that qn+1 is dynamically arbitrary as well. This means that
we can choose qn+1 in an arbitrary way qn+1 = qn+1(4). The transfer from (3.1.107) to
(3.1.109) as qn+1 = 4 means that qn+1 is the intrinsic coordinate under this coordin-
ate condition. Then (3.1.110) defines +. The formulation (3.1.107) is 4-invariant that is
invariant with respect to replacements, 4̃ = 4̃(4). This is evident because (3.1.109) does
not depend on 4 at all. Thus 4 can be classified as an extrinsic coordinate. At last,
one notes that (3.1.107) and (3.1.109) provide the following two generating functions,
respectively,

G(4) = pj$qj , (3.1.111)

G(qn+1) = pi$qi – H$qn+1 . (3.1.112)

In (3.1.111) the constraint has been used. Besides, not only qn+1 can be used as an
intrinsic coordinate, in fact, it can be another variable qi or combination of the
variables.
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To conclude this part, we note that, in order to transfer from a parameterized
action to the usual Hamiltonian action one has to solve the constraint equation and
to impose a coordinate condition.

The ADM way of reconstructing a parameterized action in general relativity
In the rest of this subsection we follow the presentation in the key paper by Arnowitt,
Deser and Misner [13]. For the sake of simplicity we consider the vacuum case of
general relativity with the action (3.1.64), (3.1.56), without the surface terms,

S [gij,0ij,N(,)] = ∫t1

t0
dt∫

G
d3x (0ijġij – H0) (3.1.113)

with the Hamiltonian equations (3.1.65) and (3.1.66). One can see that (3.1.113) with
the constraints (3.1.67) and (3.1.68) is in the same form of (3.1.107) with the constraint
(3.1.106). The generating function corresponding to (3.1.113), analogously to (3.1.111),
after taking into account the constraints, is

G = ∫
G
d3x0ij$gij (3.1.114)

with 12 phase space variables. To transfer to the standard action with a nonzero
Hamiltonian one has, first, to solve 4 constraints (3.1.67) and (3.1.68), and, second,
to set 4 coordinate conditions. As a result, one has to obtain a generating function,
analogous to (3.1.112), in the form:

G = ∫
G
d3x [0A$gA – H0

0(0A, gA)$t + Hi
0(0A, gA)$xi] . (3.1.115)

Here, A = 1, 2, 0A and gA are rest of the phase space variables, and the last items
in (3.1.115) represent the generating functions for the translations $t and $xi. The
Hamiltonian action, corresponding to (3.1.115) is

S = ∫ dt∫
G
d3x [0AġA – H0

0(0A, gA)] (3.1.116)

with the Hamiltonian H0
0. Below we provide this program.

The linearized theory
Following ADM [13], to present the above declared transformations we apply the
program to an asymptotically flat system described in Section 3.1.2. In the present dis-
cussion, using this assumption, the linearized theory is developed. Let us rewrite the
constraints (3.1.67) and (3.1.68) in an approximate form,

gij,ij – gii,jj = P2
0(gij,0ij) , (3.1.117)

–20ij,j = P2
i(gij,0ij) . (3.1.118)
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On the left hand sides, one finds purely linear in gij and 0ij expressions; the place of
the indices (upper or lower) is not important because we use the behaviour (3.1.90)
and (3.1.91), and the 3-dimensional metric 'ij = $ij is used as the background one. On
the right hand sides, P2

0 and P2
i are quadratic in gij and 0ij.

To solve equations (3.1.117) and (3.1.118) one has to make the usual linear ortho-
gonal decomposition of gij and 0ij. We illustrate it on the example of any symmetric
tensor 󰜚ij = 󰜚ji. Thus, 󰜚ij = 󰜚ijTT + 󰜚ijT + 󰜚i,j + 󰜚j,i , (3.1.119)

where each of the quantities on the right hand side can be expressed uniquely as
a linear function of 󰜚ij. First, the quantities 󰜚ijTT represent the transverse traceless
components of 󰜚ij: 󰜚ijTT ,j = 0 and 󰜚iiTT = 0. Second, the quantities 󰜚ijT represent the
transverse components of 󰜚ij: 󰜚ijT ,j = 0, and are defined uniquely by the trace 󰜚T = 󰜚iiT :

󰜚ijT = 1
2 [$ij󰜚T – (1/∇2)󰜚T ,ij] , (3.1.120)

where the operator 1/∇2 is the inverse of the flat Laplacianwith the appropriate bound-
ary conditions. Third, the longitudinal parts of 󰜚ij reside in the remaining part of
(3.1.119): 󰜚i,j +󰜚j,i. Decomposing 󰜚i into its transverse and longitudinal (curl-less) parts,
one has 󰜚i = 󰜚iT + 1

2󰜚L,i. Thus, inversely, each of six quantities on the right hand side
of (3.1.119) may be expressed through 󰜚ij:󰜚i = (1/∇2) [󰜚ij,j – 1

2 (1/∇2)󰜚kj,kji] , (3.1.121)

󰜚T = 󰜚ii – (1/∇2)󰜚ij,ij , (3.1.122)

󰜚ijTT = 󰜚ij – 󰜚ijT [󰜚mn] – (󰜚i,j[󰜚mn] + 󰜚j,i[󰜚mn]) . (3.1.123)

Here, 󰜚ijT [󰜚mn] and 󰜚i,j[󰜚mn], are obtained with the use of (3.1.121) and (3.1.122).
Now, let us turn to the constraints (3.1.117) and (3.1.118) and substitute there the

decomposition (3.1.119). Keeping in mind (3.1.120–3.1.123), one finds

– ∇2gT = P2
0 , (3.1.124)

–2∇2(0iT + 0L,i) = P2
i . (3.1.125)

According to the Section 3.1.2, we use the boundary conditions in such a way that gT

and 0i vanish asymptotically. Then, because the structures of (3.1.124) and (3.1.125)
begin at the second order these equiations can be written as

gT = –(1/∇2)
lin
P

0 , (3.1.126)

–2(0iT + 0L,i) = (1/∇2) linPi , (3.1.127)
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where
lin
P

0 and
lin
P

i are obtained from P2
0 and P2

0 by setting gT and 0i equal to zero
there. In fact, we have shown that constraint equations are solved for gT and 0i in
terms of other variables as for the four extramomenta, just analogously to pn+1 as the
extra momentum in (3.1.106).

To see explicitly that
lin
P

0 and
lin
P

i generate the appropriate time and space transla-
tions, onemust return to the generating function (3.1.114). Inserting the decomposition
(3.1.119) for both gij and 0ij, one obtains

G = ∫
G
d3x [0ijTT$gijTT + 0ijT$gijT + 2(0i,j + 0j,i)$gi,j] . (3.1.128)

The cross terms in (3.1.128) have vanished due to properties of the orthogonal decom-
position. Integrating by parts and adding total variations, one transforms (3.1.128) into

G = ∫
G
d3x [0ijTT$gijTT – ∇2gT$(1/2∇2)0T – 2∇2(0iT + 0L,i)$gi]

= ∫
G
d3x [0ijTT$gijTT – P2

0$[–(1/2∇2)0T ] + P2
i$gi] . (3.1.129)

The form of (3.1.129) represents the form (3.1.115), only the final step in reduction to
the standard (non-singular) canonical form is to be imposed by coordinate conditions

t = –(1/2∇2)0T , (3.1.130)
xi = gi . (3.1.131)

Keeping in mind the relations of the orthogonal decomposition (3.1.121) and (3.1.122),
the conditions (3.1.130) and (3.1.131) can be rewritten in an alternative form:

0ii,jj – 0ij,ij = 0 , (3.1.132)
gij,j = 0 . (3.1.133)

Next, the linear part of the Hamiltonian equation (3.1.65) gives after the orthogonal
decomposition

d
dt
(gij + gji) = Ni,j + Nj,i . (3.1.134)

Recall that Lagrangemultipliers Ni = g0i are functions determined only when coordin-
ate conditions are imposed and must vanish at spatial infinity where the space is flat,
see (3.1.93). Inserting (3.1.131) into (3.1.134), one obtains that Ni = 0 everywhere. This
is consistent with the boundary conditions. Similarly, from (3.1.66) after the linear
approximation and the decomposition one obtains

d
dt

[–(1/2∇2)0T] = N . (3.1.135)
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Then the condition (3.1.130) implies N = (–g00)–1/2 = 1. This is consistent with the
required asymptotic limit , see (3.1.92).

Reading inversely (3.1.126) and (3.1.127), one finds that
lin
P

0(0ijTT , gijTT) = –∇2gT , (3.1.136)

lin
P

i(0ijTT , gijTT) = –2∇2(0iT + 0L,i) (3.1.137)

are the linearized theory’s Hamiltonian and momentum densities and so their coeffi-
cients in the generating function (3.1.129) must be $t and $xi, see (3.1.130) and (3.1.131).
Finally, following (3.1.116), one constructs the canonical action for the linearized
theory:

S = ∫ dt∫
G
d3x [0ijTTġijTT – lin

P
0(0ijTT , gijTT)] . (3.1.138)

The full theory
Now, the full theory can be easily put into the canonical form. Turning to the ini-
tial constraints (3.1.67) and (3.1.68), one can rewrite them in the form of (3.1.124) and
(3.1.125), although now they are fully exact and nonlinear. One finds

– ∇2gT = P
0(gij

TT ,0ijTT ; gT,0i; gi,0T) , (3.1.139)

–2∇2(0iT + 0L,i) = P
i(gij

TT ,0ijTT; gT ,0i; gi,0T) . (3.1.140)

Here, P
, are non-linear functions of gij and 0ij. In any case, one can solve these

coupled equations for gT and 0i in principle by a perturbation-iteration expansion.
Thus, one can again choose –∇2gT and –2∇2(0iT + 0L,i) as the four extra momenta to
be eliminated.We denote symbolically the solutions to equations (3.1.139) and (3.1.140)
by

– ∇2gT = T0
0(gij

TT ,0ijTT; gi,0T) , (3.1.141)

–2∇2(0iT + 0L,i) = T0
i(gij

TT,0ijTT; gi,0T) . (3.1.142)

These equations are the counterpart of the equation (3.1.106) in the particle case.
We now impose the same coordinate conditions (3.1.130) and (3.1.131) which

determine gi and 0T . Then, the ġi and 0̇T equations become the determining equa-
tions of N and Ni. In the full theory they are not equal to 1 and 0, respectively, but now
become specific functions of gijTT and 0ijTT , which could be calculated explicitly, in
principle. In the last four equations, then, N and Ni may be eliminated in principle,
leaving a system of four equations involving only gijTT and 0ijTT , and linear in their
time derivatives.

The generating function, which generalizes (3.1.129) for the full theory, acquires
the form
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G = ∫
G
d3x (0ijTT$gijTT – T0

0$t + T0
i$xi) , (3.1.143)

whereas the corresponding canonical action has the form:

S = ∫ dt∫
G
d3x [0ijTT ġijTT – T0

0(0ijTT , gijTT)] . (3.1.144)

Energy and momentum expressions for an isolated system
The above formalism has properties close to the usual Lorentz covariant field theories.
As a consequence, the physical interpretation of the gravitational field maybe carried
out in terms of energy, momentum, etc., as well.

The energy E of the gravitational field yelds the numerical value of Hamiltonian,
as usual, for a particular solution of the field equations. In obtaining this numerical
value, the form of the Hamiltonian T0

0 as a function of the canonical variables is
irrelevant, but one may use the equation (3.1.141) to express E as a surface integral. It
should be emphasized that, while energy and momentum densities are indeed diver-
gences, the integrands in the generating function (3.1.143) T0

, are not divergences
when expressed as functions of the canonical variables. Thus, for the total energy
one has

P0 ≡ E = ∫
G
d3xT0

0 = –∫
G
d3x∇2gT = –∮

∞
dsig

T
,i = ∮
∞
dsi (gij,j – gjj,i) , (3.1.145)

where the notation ∮∞ ≡ limr→∞ ∮𝜕G is used. Similarly, the total momentum Pi with
the use of (3.1.142) may be written as

Pi = –2∮
∞
dsj (0i,j + 0j,i) = –2∮

∞
dsj0ij . (3.1.146)

In (3.1.145) and (3.1.146), we have assumed that the coordinates are asymptotically
Cartesian at G, the spacetime becomes flat at spatial infinity. These requirements
lead to the conclusion that P, = {P0 ,Pi} is a Lorentz invariant vector. Of course,
having P, and using the asymptotic flatness property, one could easily construct the
total angular momentum and the integral of the center of mass by the standard way.
However, one meets serious difficulties with the behaviour (3.1.90) and (3.1.91), when
one tries to construct the total angular momentum and integral of the center of mass
with the use of integrands in (3.1.145) and (3.1.146). They become divergent. It is called
as the super-translation ambiguity at spatial infinity.

3.1.4 The Regge-Teitelboim modification

Let us now look at the classical work of Regge and Teitelboim [385]. Above, we stated
that variation of the Hamiltonian action (3.1.113) leads to the Hamiltonian equations
(3.1.65) and (3.1.66) without taking into account any surface terms. The main result of
Regge and Teitelboim is that, in the case of asymptotically flat spacetime, one must
include into the Hamiltonian function additional surface terms. They were based on
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the Hamilton variation principle that has been applied more carefully than is usually
done. Thus, let us vary (3.1.56):

$H0 = ∫
G
d3x [$H 0

$gij
$gij(x) +

$H 0
$0ij

$0ij(x)]
–∮
∞
dslG

ijkl [N 3∇k($gij) – $gij 3∇kN]
–∮
∞
dsl [2Nk$0kl + (2Nk0jl – Nl0jk) $gjk] . (3.1.147)

The canonical equations (3.1.65) and (3.1.66) have to follow from (3.1.147), thus the
surface terms in (3.1.147) have to be neglected. The Regge-Teitelboim variation principle
is as follows. Variations on hypersurfaces, G0 at initial time, and G1 at final time, are to
be equal to zero identically. On the other hand, the variations $gij and $0ij at the space
boundary, 𝜕G, do not vanish identically. Only, for $gij and $0ij they require the same
fall-off as the fields gij and 0ij themselves. But, in this case, surface terms in (3.1.147)
are not equal to zero!

To save the situation additional compensating surface terms are to be added
in (3.1.147). From the start, Regge and Teitelboim use the initial simplest behaviour
(3.1.90) and (3.1.91). Then, it is necessary to add only

P⊥ = ∮
∞
dsi (gij,j – gjj,i) (3.1.148)

to the integral (3.1.56). One easily recognizes that (3.1.148) is exactly the ADM energy
integral (3.1.145).

However the principle has to be more universal, it has to be invariant with respect
to the asymptotic Poincaré transformations. To include them into the consideration
one has to change the behaviour of the lapse function (3.1.92) and the shift vector
(3.1.93) as

N = !⊥ + "⊥rxr + O–(1) + O(r–1) , (3.1.149)

Ni = !i + "irxr + O–(1) + O(r–1) . (3.1.150)

Here and below, (+) and (–) mean even and odd parity functions with respect to the
sign-change of the 3-vector: -k = xk/r; it is the main assumption in the Regge and
Teitelboim approach. Then, keeping in mind (3.1.149) and (3.1.150), the Hamiltonian
function (3.1.56) has to be augmented by the integrals:

Pr = –2∮
∞
dsl 0rl , (3.1.151)

Mrs = –2∮
∞
dsl (xr0ls – xs0lr) , (3.1.152)

M⊥r = ∮
∞
dsl [xr (gsl,s – gss,l) – grl + 'rlgss] (3.1.153)
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together with (3.1.148). They can be identified with the 3-dimensional momentum,
angular momentum and the center of mass integral, respectively.

To have the integrals (3.1.151–3.1.153) well defined (finite) one has to modify the
behaviour of the phase variables (3.1.90) and (3.1.91) as

gij = $ij + 1gij(-k)r–1 + 2gij(-k)r–2 + O(r–2–!) , (3.1.154)

0ij = 20ij(-k)r–2 + 30ij(-k)r–3 + O(r–3–!), ! > 0 , (3.1.155)

where 1gij(-k) and 20ij(-k), respectively, even and odd functions of the angular argu-
ments -k are of the order O(1), the other terms have undetermined parity.

Finally, Regge and Teitelboim suggested the Hamiltonian function

HRT = H0 – !⊥P⊥ – !rPr + "⊥rM⊥r + 1
2"

rsMrs , (3.1.156)

where P⊥ = –P⊥. Variation of (3.1.156) with respect to phase varibles and with taking
into account the Regge-Teitelboim corrected fall-off does not lead to the surface terms,
unlike (3.1.147).

Together with a permissible fall-off, Regge and Teitelboim discussed permissible
asymptotic deformations of the spacelike hypersurfaces G represented as

N = & (x) , Ni = & i(x) , (3.1.157)

which do not change the asymptotics (3.1.154) and (3.1.155). Substituting (3.1.157)
into the equations (3.1.65) and (3.1.66), and requiring that perturbations $gij ∼ ġij,
$(gij,k) ∼ ġij,k and $0ij ∼ 0̇ij do not disturb the behaviour (3.1.154) and (3.1.155), Regge
and Teitelboim found the conditions

& , & i = O–(r–1–%) + O+(r–1–$) , % ≥ 1 , $ ≥ 2 . (3.1.158)

3.2 An isolated system in the Lagrangian description

Usually, the study of an asymptotically flat spacetime is carried out in the frame-
work of the geometrical formulation of general relativity. Many powerful and elegant
mathematical methods have been developed, see in Section 3.1.2 the cited works
and references therein. On the other hand, it has been noted that it is also natural
to analyze an asymptotically flat spacetime at infinity with the use of an auxiliary
flat spacetime, see, for example, [17, 467]. Therefore, the field-theoretical technique
developed in the previous chapter in Section 2.2 could be a valuable instrument in
this context and hence we apply it here.

Recall some properties of the field-theoretical formulation of general relativity
which will be used in the present section. First, it is exact (not approximate, not
asymptotic) theory of perturbations, which are considered as independent fields –field
configurations– propagating in a fixed spacetime. The field-theoretical formulation is
equivalent to general relativity in the standard geometrical formulation. Second, a
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choice of a background is defined by the problem under consideration. In the case
of an asymptotically flat spacetime it is natural to choose a flat background, as the
whole spacetime, corresponding to the Minkowski space at infinity. Third, the global
integrals of motion for the field configuration are defined exactly, like in an arbitrary
field theory in the Minkowski space, see Section 1.2.4. They are defined on flat space-
like hypersurfaces by using the energy-momentum tensor and the Killing vectors of
the Minkowski space. Fourth, the global integrals of motion are converted to surface
integrals that is easily provided in the Minkowski space.

Advantages of the field-theoretical approach in studying asymptotically flat solu-
tions in general relativity are as follow. One obtains coordinate independent well
defined expressions. In the framework of the traditional geometrical derivation, as
a rule, one has to consider simultaneously the problem of a permissible asymp-
totic behaviour for coordinates, the problem of permissible deformations of spacelike
hypersurfaces at infinity, etc. At the same time, when the field-theoretical approach is
used, all the aforementioned problems are considered as a united problem of a per-
missible asymptotic behaviour for gauge transformations, see Section 2.2.4, in surface
global integrals.

Thus, in the present chapter, using the formalism of the Section 2.2 and following
the presentation in the works [360, 361], we study the asymptotically flat spacetimes.
We use both the Lagrangian (in the present section) and Hamiltonian (in the next
section) formulations. The following assumptions are used:

(i) We assume that a manifold, which supports a physical metric, has to support a
background flat metric as well.

(ii) We assume that an asymptotically flat spacetime corresponds to a real isolated
system, see Section 3.1.2.

(iii) In the present chapter, only a spatial region at infinity is studied, thus we
consider systems without gravitational radiation.

In the field-theoretical formulation it is not necessary to use the assumption (i),
however then in the case of a complicated solution one needs to resort to exotic inter-
pretations. To avoid this we introduce the assumption (i) that means that the same
manifold is supplied by two metrics, g,- and ḡ,-. The assumptions (ii) and (iii) are
natural.

3.2.1 Asymptotically flat spacetime as a field configuration

Nowwe reformulate the definition of asymptotically flat spacetime given in the points
(i–iv) in Section 3.1.2 in the framework of the field-theoretical approach. We choose a
background spacetime as the Minkowski space. Asymptotic field configuration, h

,-,
is defined by the decomposition (2.2.7). For convenience, to have an evident (expli-
cit) fall-off of potentials one has to use the Lorentzian (Cartesian) coordinates in the
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Minkowski space, although, owing to the covariant formulation, arbitrary curvilinear
coordinates can also be used. In the Lorentzian coordinates, √–ḡ = √–' = 1, and,
consequently, one finds from (2.2.7):

h,- = h
,- = g

,- – ḡ
,- . (3.2.1)

Thus, the field-theoretical formulation of the definition (i–iv) in subsection (3.1.2) is as
follows.
(i) Keeping in mind a one-to-one correspondence between world points of phys-

ical spacetime and world points of the Minkowski space, one parameterizes the
latter with the Lorentzian coordinates {x!}.

(ii) There is a gauge fixing issue which we deal with by demanding the components
of the field configuration to have the behaviour:

h,- = O(r–1) , h,-,! = O(r–2) , (3.2.2)

where r2 = 'ijxixj with Cartesian coordinates {xk} in Euclidean space on sections
G defined as x0 = t = const.

(iii) There is no a gauge fixing, when the fall-off of gravitational potentials could be
stronger than in (3.2.2).

(iv) To obtain the condition of effective localization of matter sources one has to
use the restrictions (3.1.88) and (3.1.89), and the definition of the matter energy-
momentum in the field-theoretical formulation, tm,-, in (2.2.32) adopted to a
background Minkowski space, then it acquires the form:

tm,- = O(r–3–!) , ! > 0 . (3.2.3)

Below, a naive definition of the field configuration for an asymptotically flat spacetime
given above in items (i–iv), will be elaborated to be more precise.

A model of a real isolated system has to be invariant under asymptotic Poincaré
transformations. Sometimes, a spacetime with such a property is called an asymptot-
ically Minkowskian spacetime [19]. Then, a field-theoretical model of a real isolated
system has to be invariant under Poincaré transformations in the Minkowski space.
Therefore, this is related to the behaviour (3.2.2). It is an important statement and we
analyze it in more detail. We consider the behaviour of potentials and fields at r → ∞.
The requirement of Poincaré invariance means that the fall-off (3.2.2) is conserved at
r󸀠 → ∞ on the sections G󸀠 defined as x󸀠0 = t󸀠 = const for a frame {x󸀠!} connected with
the initial one {x!} by the Poincaré transformations:

x󸀠! = x! + a! + b"
!x" , (3.2.4)

where a! are constant components of the 4-dimensional translation vector, whereas
b"! are constant components of the Lorentzian matrix.

Let us choose a slice in the form: x0 = const = a on that a radius-vector, r, is
defined by two points, x!1 and x!2 . Its origin has the coordinates x!1 = {a, 0, 0, 0} ,
whereas its peak has the coordinates in the Lorentzian system x!2 = {a, x12, x22, x32} .
The interval between these points is
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(Bs)2 = '!"Bx!Bx" = 'ikxi2x
k
2 = r2 , (3.2.5)

where Bx! = x!2 – x
!
1 .

Now, apply the transformations (3.2.4), then the interval (3.2.5) is transformed as

(Bs󸀠)2 = '!"Bx󸀠!Bx󸀠" = –(Bx󸀠0)2 + 'ikBx󸀠iBx󸀠k, (3.2.6)

where

Bx󸀠0 = bk
0Bxk ≡ b ⋅ r , (3.2.7)

Bx󸀠k = bi
kBxi (3.2.8)

with the constant vector b. The left hand side of (3.2.8) can be written in the form:

Bx󸀠k = x󸀠k2 – x󸀠k1 = x󸀠k2 – (ak + ab0
k) ≡ x󸀠k2 + ck , (3.2.9)

where ck are components of a constant vector c. We define the radius-vector r󸀠 by the
same way as in (3.2.5). It is the radius vector of the point with coordinates x󸀠k2 with
respect to the origin on the transformed flat slice G󸀠. Thus, now r󸀠2 = 'ikx󸀠i2 x󸀠k2 . Substi-
tuting (3.2.7) and (3.2.9) into the interval expression (3.2.6) and equalizing it to (3.2.5),
one obtains

r2 = –(b ⋅ r)2 + r󸀠2 + 2r󸀠 ⋅ c + c2 . (3.2.10)

As is seen, when r → ∞ one has r󸀠 → ∞, and conversely. It is the main statement
necessary for our goal. More concretely, from (3.2.10) one has

r ⋅ [1 + (bk0-k)2]1/2 = r󸀠 ⋅ (1 + 2-󸀠kck
r󸀠 + c2

r󸀠2
)1/2

= r󸀠 + O(1) (3.2.11)

where -k = xk/r and -󸀠k = x󸀠k/r󸀠, and we generalize an observation: xk2 → xk and
x󸀠k2 → x󸀠k. Combining (3.2.4) and (3.2.11) it is not difficult to find

[1 + (bl0-l)2]–1/2 bjk-j = -󸀠k + O(r󸀠–1) . (3.2.12)

The conclusion that follows from (3.2.11) and (3.2.12) is that, up to constant coeffi-
cients, the behaviour at infinity both r and r󸀠, and, -k and -󸀠k, are the same.

Now let us apply the Poincaré transformations (3.2.4) to the gravitational poten-
tials h,-:

h󸀠,- = ($,! + b!
,)($-" + b"

-)h!"
󵄨󵄨󵄨󵄨󵄨󵄨 r=r(r󸀠)
-=-(-󸀠)

. (3.2.13)
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Then, keeping in mind the relations (3.2.11) and (3.2.12) and that b"! have constant
components, one finds from (3.2.13) after taking into account (3.2.2):

h󸀠!" = O(r󸀠–1) , h󸀠!",𝛾 = O(r󸀠–2) . (3.2.14)

Thus the behaviour (3.2.2) is Poincaré invariant.
Let us make some remarks.
First, if the requirement of the Poincaré invariance is satisfied, then, instead of the

behaviour (3.2.2) one can use only

hik = O(r–1) , hik ,l = O(r–2) . (3.2.15)

Second, the behaviour of the gravitational potentials in (3.2.2) determines the beha-
viour of the gravitational Lagrangian

L g = O(r–4) . (3.2.16)

To derive this the general definition (2.2.20) was used for the field-theoretical formula-
tion of general relativity on the Ricci flat (including flat) background (2.2.104–2.2.106).

Third, the requirement of the effective localization in (3.2.3) determines the
behaviour of the matter Lagrangian in (2.2.104):

L m = O(r–3–!) , ! > 0 . (3.2.17)

Thus, the total dynamical Lagrangian (2.2.104) defines a finite action functional for an
asymptotically flat spacetime and for finite time intervals.

3.2.2 Global conserved quantities

Global conserved quantities play a crucial role in describing the model of an isolated
system. It was already noted that the technique of defining such quantities in the
framework of the field-theoretical approach with the Minkowski background is the
same as in an arbitrary field theory in the Minkowski space. Then we can turn to the
formulae (1.2.83–1.2.88).

To define the main quantity in these formulae, the current J ,
S , we use the total

energy-momentum, ttot,- , on the right hand side in (2.2.105), with the differential con-
servation law (2.2.106). Because ttot,- is a symmetric energy-momentum tensor, we
define the current with the use of the formula (1.2.132):

J ,
S = t,-tot.

K
- , (3.2.18)

where the Killing vectors of theMinkowski space, .-K , in the Lorentzian coordinates are
defined in (1.1.72). Then, due to the conservation law of the type (2.2.106) one obtains
the conservation law (1.2.133) for the current (3.2.18):
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J
,
S ;, = 𝜕,J ,

S = 0 . (3.2.19)

It is a realization of the conservation law (1.2.83) in the general form. Then, one can
construct the quantity of the type (1.2.87):

PS(.K) = ∫
G
d3xJ 0

S (.K) = ∫
G
d3xt0-tot.K- . (3.2.20)

The integration is carried out over the whole space G. The quantities (3.2.20) are
conserved if boundary conditions (fall-off behaviour) satisfy

lim
r→∞

∮
𝜕G
dsk tk,tot .

K
, = ∮

∞
dsk tk,tot .

K
, = 0 , (3.2.21)

see (1.2.88).
In fact, it is difficultly to use the energy-momentum tensor ttot,- since the gravit-

ational part is quite cumbersome, whereas we did not define the matter part at all.
However, we keep in mind that the Einstein equations hold, and we can use them in
the form (2.2.105). We rewrite them in the form:

t,-tot =
1
80 G,-

L (h) = 1
80 G,-"

L ," , (3.2.22)

where we define

G,-"L ≡ 1
2
(h,-," + ',-h"!,! – h,",- – ',"h-!,!) , (3.2.23)

for which G,-"
L = –G,"-

L . Thus, in constructing conserved integrals with the use of
(3.2.22) and (3.2.23) we need not know how matter falls-off at all. Such a behaviour
is taken into account by the gravitational field equations automatically.

Substituting (3.2.22) into (3.2.20) and applying the Gauss’ theorem, one obtains for
each of the Killing vectors (1.1.72) rewritten in the Lorentzian coordinates:

P (!)
S = 1

80 ∫
G
dx3 [G!0i

L ,i]
= 1
160 ∮

∞
dsi [h!0,i + '!0hi"," – h!i,0 – '!ih0","] (3.2.24)

for the total 4-momentum that has been obtained with the time translation .!K = –$!0
and space translations .!K = $!k;

P ([mn])
S = 1

160 ∫
G
d3x [(Gn0i

L xm – Gm0i
L xn),i + G

m0n
L – Gn0mL ]

= 1
320 ∮

∞
dsi [(hn0,i – hni,0 – $nih0!,!)xm + $nihm0

– (hm0,i – hmi,0 – $mih0!,!)xn – $mihn0] (3.2.25)
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for the total angular momentum with the space rotations .!K = .![mn]; and

P ([m0])
S = 1

160 ∫
G
dx3 [(G00i

L xm – Gm0i
L x0),i – G

00m
L ]

= 1
320 ∮

∞
dsi [h00,i – hik ,k)xm

– (hm0,i – hmi,0 – $mih0!,!)x0 – $mih00 + hmi] (3.2.26)

for the total Lorentz momentum with the Lorentzian rotations .!K = .![m0].
The integrals (3.2.24–3.2.26) have been derived in the Lorentzian coordinates. It is

necessary to analyze explicitly a permissible fall-off for fields at spatial infinity. How-
ever, it could be better to use the advantage of the field-theoretical approach, namely,
the covariant formulation. Conserving the flat sections G in the initial definitions of
(3.2.24–3.2.26), one can use arbitrary curved space coordinates on G. After this, par-
tial space derivatives transform to covariant ones: 𝜕iQ → Q;i. Using the relations for
the Killing vectors in curved coordinates (1.2.6) and (1.2.7) one finds that all the ten
integrals (3.2.24–3.2.26) are united into the form:

PS(.-K ) =
1

160 ∮
∞
dsi [(𝛾ijh0- + $0-hij – $j-h0i);j .-K–

– (𝛾ijh0- + $0-hij – $i-h0j) .-K;j] . (3.2.27)

Here, among curved coordinates, usually spherical coordinates are used.

3.2.3 The parity conditions

Substituting potentials with the behaviour (3.2.2) into integrals (3.2.24–3.2.26) one
finds that the integrals (3.2.24) have finite values, whereas the integrals (3.2.25) and
(3.2.26) diverge. But a real isolated systemhas to have a finite total angular and Lorentz
momenta as well. The first researchers who clarified this problem were Regge and
Teitelboim [385], they have resolved the problem suggesting the conditions (3.1.154)
and (3.1.155). Here, we follow their strategy in the framework of the field-theoretical
approach. Considering in detail the integrands in (3.2.25) and (3.2.26) one finds that it
is necessary to restrict the behaviour of h,-, h,-,k, hik ,0 and h00,0. The requirement of
the Poincaré invariance leads to a necessity of analogous restriction for the rest of the
components h0k ,0, which are absent in (3.2.25) and (3.2.26).

To obtain well defined (finite) total angular momentum (3.2.25) and Lorentzian
momentum (3.2.26) integrals we introduce the behaviour

h,- = O+(r–1) + O–(r–") ,

h,-,0 = O–(r–2) + O+(r–1–") " ≥ 2 (3.2.28)
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instead of (3.2.2). The index notations (+) and (–) mean even and odd parity functions
with respect to changing the sign of the 3-vector: -k = xk/r. The definitions (3.2.28)
assume that, in both lines, between the first and the second terms; other terms with
the parity of the first terms could appear. Besides, conditions (3.2.28) introduced by
us do not coincide with the Regge-Teitelboim conditions (3.1.154) and (3.1.155). Indeed,
transforming (3.2.28) into the Hamiltonian formulation, one obtains

gij = 'ij + O+(r–1) + O(r–") ,

gij,k = O–(r–2) + O(r–1–") ,

0ij = O–(r–2) + O(r–1–"), " ≥ 2 (3.2.29)

that are weaker than (3.1.154) and (3.1.155). Also, the conditions (3.2.28) mean that
there is a special gauge fixing, however they can be made weaker. Here, relying on
the gauge invariance properties of the field-theoretical formulation, we study this
problem.

Let us analyze an arbitrary asymptotic behaviour from the point of view of the
Poincaré invariance requirement. Now, we consider the Poincaré transformations
(3.2.4) in the perturbed form:

x󸀠! = $a! + ($!" + $b"
!)x" ∼ x! + $x! (3.2.30)

with infinitesimal $a! and $b"!. Besides, keeping in mind (3.2.7) and (3.2.8), one has

$x! = O–(r1) . (3.2.31)

As a generic example, we consider a quantity (or a set of quantities), Q, with the
asymptotic behaviour as r → ∞,

Q = O± (r–𝛾) . (3.2.32)

After that we require the asymptotic behaviour of the perturbation, $Q, induced by
(3.2.30) to be the same as (3.2.32):

$Q ∼ Q,!$x! = O± (r–𝛾) . (3.2.33)

Such a requirement is a Lagrangian analog of the requirement of the asymptotic
Poincaré invariance in the Hamiltonian description [385].

Combining (3.2.31–3.2.33), one finds

Q,! = O∓ (r–1–𝛾) . (3.2.34)

Lowering the order in r under differentiationwith respect to space (Cartesian) coordin-
ates looks evident, whereas lowering the order in r under differentiation with respect
to time coordinate, x0, looks quite unusual. However, there is no contradiction. As an
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example, one can consider a Lorentz-transformed Schwarzschild metric [225], where
the coordinate x0 is included only with the combination x0/r. Then a differentiation
with respect to x0 is in correspondence with (3.2.34). Next one requires the Poincaré
invariance of the behaviour (3.2.34). With the use of the same reasoning one obtains

Q,!" = O± (r–2–𝛾) , (3.2.35)

and so on. Now, applying the above described logic of the Poincaré invariance to
(3.2.28), one gets step by step,

h,-,01 = O+(r–3) + O–(r–2–") ,

h,-,013 = O–(r–4) + O+(r–3–") ,
......... = ................................. . (3.2.36)

Substituting (3.2.30) and (3.2.36) into (2.2.30) and combining it with (3.2.3) one gets
the behaviour for the total energy-momentum:

ttot,- = O(r–3–!) , ! > 0 (3.2.37)

that satisfies (3.2.21), leading to the claim that global motion integrals (3.2.24–3.2.26)
are conserved in time.

3.2.4 Gauge invariance of the motion integrals

To define the fall-off conditions weaker than in (3.2.28), conserving the values of
(3.2.24–3.2.26), we use gauge invariance properties of the field-theoretical formu-
lation of general relativity. Let us turn to the gauge transformations of the total
energy-momentum (2.2.75). Then for the flat background in Lorentzian coordinates
one has

t󸀠tot,- = ttot,- +
1
80G

L
,- [∞∑

k=1

1
k!

£k. (',- + h
,-)] , (3.2.38)

where as before ',- = √–'',- and h
,- = √–'h,- with √–' = 1. By the defini-

tion (2.2.27) for GL,-(h), the last term here is a divergence, therefore under the gauge
transformations the integrals of motion (3.2.24–3.2.26) acquire surface terms.

A natural requirement is that values of the globally conserved quantities (3.2.24–
3.2.26) must be unchanged. In other words, the gauge induced terms in (3.2.38) must
not contribute to surface integrals (3.2.24–3.2.26). Below to satisfy this requirement we
search for the weakest asymptotic behaviour for functions .! and their derivatives as
possible.

At first, one has to recall that GL
,-(h) is invariant under the transformation

h
󸀠,- = h

,- + £.',- = h
,- – .!',-,! – .!,!',- + 2'!(,.-),! (3.2.39)
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that means:

GL,-(£.',-) ≡ 0 , (3.2.40)

which disappears from (3.2.38). It is equivalent to the invariance of (1.5.5) with respect
to (1.5.15). Recalling the use of Lorentzian coordinates, one can rewrite (3.2.39) as

h󸀠,- = h,- – .!,!',- + 2. (,,-) . (3.2.41)

For arbitrary curved backgrounds such a kind of invariance is presented by the formu-
lae (2.2.78–2.2.81). Thus, anyway, one need not consider the part (3.2.39) (or (3.2.41))
in (3.2.38).

Concerning other terms in (3.2.38), we use the following assumptions and
properties:
(i) Dynamical fields h

,- and 6A satisfy the Einstein equations, besides they have
the initial asymptotic behaviour (3.2.28), (3.2.36) and (3.2.37).

(ii) Each of the initial components of the gauge field and their derivatives
.!, .!,", .!,"𝛾, . . . are arbitrary quantities at every point of the Minkowski
space. We use also a symmetry in partial derivatives in order 2 and more, like
.!,"𝛾 = .!,𝛾".

(iii) The quantities .!, .!,", .!,"𝛾, . . . transform as tensors under the Poincaré
transformations.

(iv) Functions .! are of the class C∞. Also, we require the Poincaré invariance for
the behaviour of the gauge transformed h

󸀠,-. Then, the behaviour of derivatives
of h󸀠,- has to follow the behaviour (3.2.36).

Now we adopt the transformation (2.2.68) for the case of a flat background in Lorent-
zian coordinates, exclude the terms (3.2.39), owing to the invariance (3.2.40), and
present the rest terms in the form:

h󸀠,- = h,- + ..,!" + .,!.," + . . . + .h,! + .,!h
+..h,!" + ..,!h," + ..,!"h + .,!.,"h + . . .≡ h,- + $.h,- . (3.2.42)

Here, and frequently below, we do not use all the indices, it is permissible owing to
the behaviour (3.2.28) and (3.2.36) and to the above requirements (iii) and (iv). After
differentiating (3.2.42) one has

h󸀠,-,! = h,-,! + ..,!"𝛾 + .,!.,"𝛾 + . . .
+.h,!" + .,!h," + .,!"h + ..h,!"𝛾 + ..,!h,"𝛾
+..,!"h,𝛾 + .,!.,"h,𝛾 + .,!.,"𝛾h + ..,!"𝛾h + . . .≡ h,-,! + ($.h,-),! . (3.2.43)
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Next, let us assume a general form for the fall-off of the components of .!:

.! = O–(r1–%) + O+(r1–$) , (3.2.44)

where at the moment % and $ are not determined. To satisfy the requirement (iv), the
behaviour (3.2.44) has to be added by

.!," = O+(r–%) + O–(r–$) ,

.!,"𝛾 = O–(r–1–%) + O–(r–1–$) ,
......... = ................................. . (3.2.45)

From the start, we require that the fall-off (3.2.28) and (3.2.36) are unchanged after the
transformations (3.2.42) and (3.2.43) with (3.2.44) and (3.2.45). Thus,

h,- + $.h,- ≤ O+(r–1) + O–(r–") , " ≥ 2 , (3.2.46)

from where, keeping in mind the above point (ii), using the inequality (3.2.46), and
(3.2.44) with (3.2.45), one obtains

% ≥ 1 , $ ≥ " ≥ 2 . (3.2.47)

Thus, one concludes that with (3.2.47) the components of h󸀠,- satisfy (3.2.28) and
(3.2.36).

Now, we try to find a maximally weak asymptotic condition for gauge transform-
ations , under which the value of 4-momentum (3.2.24), P(.!K = .!" ), does not change.
It is necessary to assume that the odd part of the gauge variation in integrands decays
stronger than r–2, that is

O– (𝜕!$.h,-) < O– (r–2) . (3.2.48)

Keeping inmind the requirement (ii), consider all the terms of the type ..,!"𝛾 in (3.2.48)
as independent ones. Then, with (3.2.44) and (3.2.45) owing to the requirement (iv),
one has the asymptotic behaviour,

..,!"𝛾 = O–(r–1–2%) + O–(r–1–2$) + O–(r–1–%–$) , (3.2.49)

using (3.2.48) gives the restriction:

% > 1
2 , $ > 1

2 . (3.2.50)

Using (3.2.50), one concludes that all the gauge terms in (3.2.43) do not contribute to
P(.!K = .!" ) either.

Lastly, we will find a maximally weak asymptotic behaviour for gauge trans-
formations, under which the value of 4-angular momentum (3.2.25) and (3.2.26),
P(.!K = .![!"]), does not change. We require once again that the odd part of gauge
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variation in integrands of (3.2.25) and (3.2.26) falls stronger than r–2. Firstly, we ana-
lyze the contribution from the terms without h,- and their derivatives in the items
($.h,-),!xk and $.h,-. Consider, as independent quantities, the terms of the types
xk..,!"𝛾, xk..,!"𝛾$, . . . and ..,!", ..,!"𝛾, . . .. Finally, one obtains the restrictions

% + $ > 2 , % ≥ 0 , $ > 2
3 . (3.2.51)

With these restrictions all the other terms without h,- and their derivatives in the
expressions of the type ($.h,-),!xk and $.h,- do not contribute to P(.!K = .![!"]) either.
Next, requirements (i) and (ii) applied to the terms of the type xk.h,! and xk.h,!" lead
to the restrictions $ > 1, % > 2 – ", " ≥ 2, combination of which with (3.2.51) gives

% + $ > 2 , $ > 1 , % ≥ 0 , " > 2 (or % > 0 , " = 2) . (3.2.52)

Under these restrictions all the other terms in gauge transformationswith h,- and their
derivatives do not contribute toP(.!K = .![!"]) either. Concluding, we note that for ana-
lyzing the gauge invariance of the integrals of motion, it was enough to consider the
gauge transformations up to the second order in .! only.

Combining (3.2.50) and (3.2.52), one obtains the unified restriction on the
behaviour (3.2.44):

% + $ > 2 , 1 ≥ % > 1
2 , $ > 1 . (3.2.53)

Finally, one has the transformed behaviour

h󸀠,- = O+(r–%) + O–(r–$) (3.2.54)

instead of (3.2.28), with a corresponding behaviour for derivatives satisfying the
Poincaré invariance.

Let us make some remarks.
First, the condition % ≤ 1 expresses the fact that in a real isolated system the fall-off

of the gravitational potentials in (3.2.54) cannot be stronger than the Newtonian one.
Second, the gauge transformations (3.2.42) with the restrictions (3.2.53), h󸀠󸀠,- =

h󸀠,- + $.h󸀠,-, do not change the behaviour (3.2.54).
Third, the results (3.2.54) with (3.2.53) obtained in the framework of the field-

theoretical approach makes the previous results [18, 31, 51, 52, 102, 103, 160, 186, 254,
347, 387, 413, 418, 428, 454] more precise. Only the result in the Soloviev work [418]
almost coincides with the result (3.2.54) plus (3.2.53), although it has been obtained,
in principle, in another way. The difference is that in [418] the result (3.2.54) plus
(3.2.53) is augmented by the condition |% – $| ≤ 1. It is not correct. Indeed, for the
usual Schwarzschild solution one has % = 1, $ = ∞ that contradicts to the additional
condition.
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3.2.5 Concluding remarks

First, it is not difficult to show that the definitions of the integrals of motion (3.2.24)
and (3.2.25) coincide with the corresponding definitions (3.1.148), (3.1.151) and (3.1.152)
introduced by Regge and Teitelboim. At the same time, the integral (3.2.26) differs from
the Regge-Teitelboim integral (3.1.153). The reason is that (3.2.26) is the Lorentzian
integral, whereas (3.1.153) is the center of mass integral only. How could one reconcile
the difference between them? For this, let us define the shift vector in a more general
(more complete) form:

Ni
∗ = !i + "irxr + "i⊥x0 + O–(1) + O(r–1) (3.2.55)

instead of (3.1.150). Then, following to the Regge and Teitelboim technique one obtains

M∗⊥r = ∮
∞
dsl [xr (gsl,s – gss,l) – grl + 'rlgss + 2x00rl] (3.2.56)

instead of (3.1.153), and that coincides with (3.2.26). The difference between (3.1.153)
and (3.2.56) is essential because one can show that Ṁ∗⊥r = 0 on the field equations,
whereas Ṁ⊥r ̸= 0. A special attention has been paid to this problem in [429], where a
necessity to include a time dependent term, like in (3.2.55), is discussed.

Second, deformations (3.1.157) with (3.1.158) are defined by coordinate transform-
ations and transferring from slices x0 = const in an initial frame to slices x󸀠0 = const
in a final frame. Then, the use of the interpretation of coordinate transformations as
gauge transformations in the field-theoretical formulation permits one to conclude
that deformations and gauge transformations are in one-to-one correspondence.

Third, in the framework of the field-theoretical approach we need not work in
the Regge-Teitelboim variational principle. Indeed, varying the dynamical action with
Lagrangians, the asymptotic behaviour defined by (3.2.16) and (3.2.17), one obtains the
Einstein equations without additional requirements.

Fourth, in the Regge and Teitelboim derivation it is not so simple to show that
(3.1.148) and (3.1.151) is a 4-vector, and (3.1.152) and (3.1.153) is a 4-tensor under asymp-
totic Poincaré transformations. The field-theoretical approach significantly simplifies
the situation: the integrals (3.2.24–3.2.26) are tensors under the Poincaré transforma-
tions by the construction.

3.3 An isolated system in the Hamiltonian description

In the present section, based on the results of the previous section, we develop the
Hamiltonian formulation of an asymptotically flat spacetime in the framework of the
field-theoretical formulation of general relativity. We demonstrate the advantages of
the field-theoretical approach; besides, we present some original results related to
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important outstanding problems such as the super-translation invariance. We follow
the works [205, 361], although, in the book [193] one can find similar elements.

3.3.1 The difference between the canonical and symmetric currents

Because we study real isolated systems their conserved characteristics have to be
the same in various formulations. Usually, for real physical systems, canonical and
Hamiltonian conserved quantities are identical, see also below (3.3.28) and (3.3.29).
Therefore, to compare the Hamiltonian conserved quantities with the symmetric ones,
one has to compare symmetric and canonical currents, which differ in divergences. As
a result, global conserved quantities differ one from another by surface integrals. To
obtain the same values for global conserved quantities in both the cases one has to
restrict an asymptotic behaviour of field potentials guaranteeing the disappearance of
the additional surface integrals.

To provide the comparison we rely on the formulae of a field theory with a Lag-
rangian L = L (8) in the Minkowski space derived in Section 1.2. The difference
between the two types of the currents is presented in (1.2.135) where the canonical and
symmetrical currents are defined in (1.2.101) and (1.2.132), respectively. The difference
between corresponding conserved global quantities is given in (1.2.136):

BP(.K) = PC(.K) – PS(.K) = –∮
∞
dsib0i3.3K , (3.3.1)

where b!"3 is defined in (1.2.113) with (1.2.103):

b!"𝛾 = 3𝛾[!"] + 3![𝛾"] – 3"[𝛾!] , (3.3.2)

3,"3 ≡ – 𝜕L𝜕 (8A
,,) 8A󵄨󵄨󵄨󵄨󵄨"3 , (3.3.3)

and the Killing vectors, .!K , are given in (1.1.72). Thus, global conserved symmetrical
and canonical integrals are equal, if integral (3.3.1) vanishes.

Let the role of the field theory with the Lagrangian L = L (8) be played by
the field-theoretical formulation of general relativity in the Minkowski space. For
the convenience of presentation, let us reconsider the dynamical Lagrangian in the
generalized variables 8A:

L dyn = – 1
160L g + L m ≡ L (8) , (3.3.4)

where now 8A = {𝛾,-,6B, h,-}. We consider a pure gravitational Lagrangian, L g, in a
more preferable form (2.2.20):

L g = –(B1,- – B3,3$1-)h
,-
;1 + (γ

,- + h
,-) (B1,-B313 – B1,3B31-) (3.3.5)
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with only the first derivatives of γ,- and h
,-. We consider Lagrangian of the mat-

ter sources (2.2.21) in the simplest form (without derivatives of (γ,- + h
,-),!) in the

Minkowski background:

L m = L m(γ,- + h
,-;6A,6A

,!) . (3.3.6)

In the other case, additional problems with defining generalized momenta appear,
and we do not discuss them here.

Then, the spin density (3.3.3) is separated into the gravitational and the matter
parts,

g33!" =
1

160 ( 𝜕L g𝜕h,-,! h
,-󵄨󵄨󵄨󵄨"3 + 𝜕L g𝜕𝛾,-,! 𝛾,-󵄨󵄨󵄨󵄨"3)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾,-→',- , (3.3.7)

m33!" = (– 𝜕L m𝜕6A
,!
6A󵄨󵄨󵄨󵄨󵄨"3 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾,-→',- , (3.3.8)

in the Lorentzian coordinates. After a direct calculation for the gravitational Lag-
rangian (3.3.5) one has

g33!" =
√–'
80 (B[!1,'"]1h,3 – B[!3,h"],
+ B01,h,[!'"]1'03 – B,1,h1[!$"]3 – B,1,h[!3 '

"]1) . (3.3.9)

When the Lorentzian coordinates are used one has B1,- = A1,- ∼ h,! asymptotic-
ally. Then, taking into account the weakest fall-off for the field potentials (3.2.54) with
(3.2.53), one finds for the asymptotic behaviour of the gravitational part of (3.3.2):

gb!"3 = O– (r–1–2%) + O+ (r–1–%–$) . (3.3.10)

It is easy to check that for all the 10 Killing vectors (1.1.72) of the Minkowski space the
quantity (3.3.10) does not contribute to integral (3.3.1).

Unlike the gravitational part, the situation with the matter part of (3.3.2) requires
additional restrictions. Already, analogous problems were analyzed in [51, 413, 429].
Let us turn to the matter spin density (3.3.8) and construct the corresponding part,
mb!"3, of the quantity (3.3.2). Requiring the Poincaré invariance and applying general
results (3.2.30–3.2.34), one recalls that every differentiation makes stronger the fall-
off by the factor r–1 with an opposite parity. Then, for the matter Lagrangian with the
fall-off (3.2.3) one has

mb!"3 = O (r–2–!) , ! > 0 . (3.3.11)

As is seen, for the rotational Killing vectors in (1.1.72) the behaviour (3.3.11) does
not lead to vanishing the difference (3.3.1). Analyzing the integral (3.3.1), one finds
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a necessary (stronger) fall-off for its vanishing:

mb!"3 = O– (r–2–!) + O+ (r–3–!) , ! > 0 . (3.3.12)

By inverse exercises, one finds that a corresponding fall-off for the matter Lagrangian
has to be

L m = O+ (r–3–!) + O– (r–4–!) , ! > 0 . (3.3.13)

We stress that a specification (3.3.13) with respect to the behaviour (3.2.17) of the mat-
ter Lagrangian is induced by the requirement to have a vanishing difference between
canonical and symmetrical integrals of motion. Of course, if the matter is absent at
infinity, one needs no restriction in (3.3.13) at all.

3.3.2 Phase variables and their asymptotic behaviour

To transfer from the Lagrangian formulation to the Hamiltonian formulation one has
to start from the (3 + 1)-splitting of a flat background spacetime. First, we define G in
the Lorentzian coordinates; second, we project fields h

,- and 6A onto G by the usual
way, see (3.1.14–3.1.46). Thus,

h
,- → h

ab = {h⊥⊥, h
⊥i, h

ij} ; 6A → 6A , (3.3.14)

where h
ab are the 3-dimensional densities of weight +1 on G: hab = √–'hab After trans-

formations (3.3.14), the Lagrangian (3.3.4) is transformed into the (3 + 1)-splitting form
also: L g → L g(qij, qa) and L m → L m(qij, qa,6A). After that, for the convenience,
we redefine variables:

qij ≡ h
⊥i

h
⊥j – ('⊥⊥ + h

⊥⊥) ('ij + h
ij) , (3.3.15)

qa ≡ h
⊥a

'⊥⊥ + h⊥⊥
, (3.3.16)

where qij = (–')qij is the 3-dimensional tensor density of weight +2. Below, we will
frequently use the notations hab and qij instead of h

ab and qij because the Lorentzian
coordinates are used.

To transfer to the Hamiltonian formulation let us consider the variables qij, qa,
and 6A as generalized coordinates. Then, non-zero generalized momenta are defined
as usual

Kij ≡ – 1
160

$L g(qij, qa)
$q̇ij , 0A ≡ $L m(6A)

$6̇A
(3.3.17)

where Kij is a 3-dimensional tensor density of weight –1. One can easily check that
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qij ≡ (–g)
3
gij , (3.3.18)

Kij ≡ – 1
160

1√–gKij , (3.3.19)

where
3
gij and Kij are the intrinsic metric and extrinsic curvature in the framework of

the standard ADM (3 + 1)-decomposition, respectively, see Section 3.1.
Now, exchange generalized velocities q̇ij and 6̇A by the generalized momenta in

the (3 + 1)-redefined Lagrangian

L dyn(q,6A) = – 1
160L g(qij, qa) + L m(qij, qa,6A) . (3.3.20)

Then, by the standard way, one achieves the Hamiltonian action:

S = ∫ dt∫ d3x {Kijq̇ij + 0A6̇A

– {1} ⋅ [(q⊥ – 1)(H g + H m) + qi(H g
i + H m

i )] – D i
,i} , (3.3.21)

where

H g ≡ 160√–' [qijqkl (KikKjl – KijKkl) – 1
160q

ij 3Rij] , (3.3.22)

H g
i ≡ –qkl,iKkl – 2 (qklKik),l + 2 (qklKkl),i , (3.3.23)

3
Rij is the 3-dimensional Ricci tensor constructed with the use of the 3-dimensional
metric density qij. Keeping in mind (3.3.18) and (3.3.19), one finds easily that (3.3.22)
and (3.3.23) coincide exactly with (3.1.79) together with (3.1.59), and (3.1.80) together
with (3.1.60), respectively.

As is seen, the quantities qa in the action (3.3.21) have the sense of Lagrangian
multipliers, variations with respect to which give the constraints:

H g+m = H g + H m = 0 , (3.3.24)

H g+m
i = H g

i + H m
i = 0 . (3.3.25)

Taking into account (3.3.18) and (3.3.19), one finds that (3.3.24) and (3.3.25) coincide
with (3.1.85) and (3.1.86). However, observe that q⊥ and qi are not the lapse function
and the shift vector. In the present discussion, when G is defined by x0 = t = const
in the Lorentzian coordinates, the lapse function N̄ = 1 and the shift vector N̄i = 0
are constant quantities only. There is no variation with respect to N̄ and N̄i that is
expressed by a special unit in front of the square brackets in (3.3.21). Quantities q⊥

and qi are analogous to the component A0 that is the Lagrangian multiplier in the
Hamiltonian description of electrodynamics [315]. Thus, the Lagrangian in (3.3.21) is a
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singular Lagrangian in the sense of the Dirac constraint algebra [140] in an arbitrary
field theory. Thus, all of Dirac’s relevant techniques can be applied to the system
(3.3.21) directly.

The transformations (3.3.14–3.3.17), of course, can be interpreted as a simple
redefinition of variables [379]. Then, the fall-off of the phase variables is fully determ-
ined by (3.2.54) with (3.2.53). As a result one has

qij = 'ij + O+ (r–%) + O– (r–$) ,
qij,! = O– (r–1–%) + O+ (r–1–$) ,
qa = O+ (r–%) + O– (r–$) ,

qa,! = O– (r–1–%) + O+ (r–1–$) . (3.3.26)

Kij = O– (r–1–%) + O+ (r–1–$) ,
Kij,! = O+ (r–2–%) + O– (r–2–$) . (3.3.27)

Recall that every differentiation makes the fall-off stronger by the factor r–1 with an
opposite parity.

3.3.3 Global conserved integrals

Now we construct conserved integrals in the Hamiltonian formulation. Here, it is con-
venient to rewrite the canonical current (1.2.101) with the Lagrangian (3.3.4) in the
convenient form:

J ,
C (.K) = C(!,.!K + 3,"3𝜕".3K = –$L (8, ')

$8A
,,

£.K8
A – L (8, ').,K . (3.3.28)

After a one-to-one redefinition (3.3.14–3.3.16) we derive the zero component (the only
necessary in the integration, see (1.2.87)) of (3.3.28):

J 0
C (q, 6

A; .K) =
1

160
$L g(q)
$q̇ij £.Kq

ij – $L m(6A)
$6̇A

£.K6
A – L dyn(q, 6A).0K . (3.3.29)

At last, changing generalized velocities by the generalized momenta (3.3.16), one
rewrites (3.3.29) through the phase variables of the Hamiltonian action (3.3.21):

J 0
C (q,K ; 6A,0A; .K) = –Kij£.Kq

ij – 0A£.K6
A – L dyn(q,K ; 6A,0A).0K . (3.3.30)

The same as in (1.2.87), one constructs the conserved integrals based on (3.3.30)

P(.K) = ∫
G
d3xJ 0

C (q,K ; 6A,0A; .K) . (3.3.31)
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Due to the behaviour (3.3.13) for the matter Lagrangian fall-off one concludes that
for a real isolated system integrals (3.3.31) coincide with the integrals (3.2.20) in the
Lagrangian formulation.

Substituting concrete Killing vectors from (1.1.72) into (3.3.30) one obtains a dens-
ity for calculating the corresponding conserved integral. Thus, for the timelike Killing
vector .!K = –$!0 one gets

J 0(.!0 ) = – [Kijq̇ij + 0A6̇A – L dyn]
= – [(q⊥ – 1) (H g + H m) + qi (H g

i + H m
i ) + 𝜕iD i] , (3.3.32)

which is exactly the Hamiltonian in the action (3.3.21). By the constraints (3.3.24) and
(3.3.25), only the divergence in (3.3.32) can contribute to (3.3.30). It is decomposed into
a pure gravitational and matter parts, thus, D i ≡ gD i + mD i. Using the asymptotic
behaviour (3.3.13) one finds for the matter part,

mD i = O– (r–2–!) + O+ (r–3–!) , ! > 0 , (3.3.33)

from where it follows that 𝜕i(mD i) does not contribute to (3.3.31). The gravitational
part,

gD i = – 1
160 [ (√–')–1 (q⊥ – 1)qij,j +√–'( qiqj,j – qjqi,j
+ qiq̇⊥

–1+ q⊥
)] + 2Kjk (qjqik – qiqjk) , (3.3.34)

requires more scrutiny. Taking into account (3.3.26) and (3.3.27), one finds that (3.3.31)
gives the total energy:

E = P (0)
H = ∫

G
d3xJ 0(.!0 ) = – 1

160 ∮
∞
dsi (√–')–1qij,j . (3.3.35)

Restoring “1/160” ahead of the ADM energy integral (3.1.145), recalling the definitions
(3.3.15) and (3.3.18) for qij and providing a careful comparison with the use of relations
like gmn,k = –gmigmj

3
gij,k, one finds that the ADM energy integral E in (3.1.145) and the

field-theoretical energy integral E in (3.3.35) coincide.
Now, we describe Hamiltonian 3-dimensional momentum and angular

momentum. After excluding .0K = .00 and .!K = .![0m] from (1.1.72) the rest of the
Killing vectors are denoted as

.∗!K = .!k , .
!
[mn] . (3.3.36)

We do not consider the integral of the center of mass here because nuances appear
(they are discussed at the end of the previous section), and the analysis becomes very
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cumbersome. The reader can refer to the paper [32] for a more detail. Substituting
(3.3.36) into (3.3.30) one obtains the density corresponding to its own Killing vector:

J 0
C (q,K ; 6A,0A; .∗K ) = –Kij£.∗K q

ij – 0A£.∗K6
A

= [ Kijq
ij
,k – 2 (Kijq

ij),k + 2 (Kikq
ij),j + 0A6A

,k + (0A 6A󵄨󵄨󵄨󵄨󵄨ik),i] .∗kK

+ [2Kijq
ij.∗kK – 2Kijq

ik.∗jK – 0A 6A󵄨󵄨󵄨󵄨󵄨ki .∗iK ]
,k
. (3.3.37)

Now let us turn to the asymptotic behaviour of the matter Lagrangian (3.3.13) and find

0A 6A󵄨󵄨󵄨󵄨󵄨ij = O– (r–2–!) + O+ (r–3–!) , ! > 0

0A6A
,k = O+ (r–3–!) + O– (r–4–!) . (3.3.38)

Keeping this in mind and taking into account the constraint (3.3.25), one finds that
second line in (3.3.37) does not contribute to integral (3.3.31). Now, one can assign
a role to the behaviour (3.3.13). It is also quite important for deriving well-defined
conserved integrals themselves in the Hamiltonian formulations.

Finally, substituting (3.3.37) into (3.3.31), one obtains for the total Hamiltonian
3-dimensional momentum and angular momentum:

P (k)
H = ∮

∞
dsiP

ik , (3.3.39)

P([mn])
H = 1

2 ∮∞ dsi (xmPin – xnPim) , (3.3.40)

where

Plk ≡ 2 ($lkKijqij – Kikqil) . (3.3.41)

Restoring “1/160” ahead of 0ij in (3.1.50), recalling the definition (3.3.19) for K ij, one
can easily recognize that integrals (3.3.39) and (3.3.40) coincide with the correspond-
ing ADM integrals (3.1.151) and (3.1.152)2 derived in Section 3.1.

Here, we use the Faddeev [160] “geometrical” phase derivatives qij and Kij. Nev-
ertheless, there is a principal difference between the status of qij and Kij in various
derivations, like geometrical and field-theoretical ones. In the first case, they are the
metric on spacelike sections and the corresponding external curvature tensor. In the

2 Notice that, in fact, there exists a difference in the coefficient “1/2” (3.3.40) and (3.1.152). It is a
question of a convention, namely, the coefficient “1/2” is an external one in (3.1.156), whereas it is
included in (3.3.40) with the rotational Killing vector. Therefore, in our opinion, the choice (3.3.40) is
more acceptable.
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second case, qij and Kij, are fields propagating in space of flat hypersurfaces G as in
an arbitrary field theory.

Now, let us compare explicitly the global conserved quantities obtained in the
Hamiltonian formulation (3.3.35), (3.3.39) and (3.3.40) with the corresponding Lag-
rangian global integrals (3.2.24) and (3.2.25). For the sake of convenience, at the
moment we rewrite the latter in the form:

P (0)
S = 1

160 ∮
∞
dsiP

(0)i , (3.3.42)

P(k)
S = 1

160 ∮
∞
dsiP

(k)i , (3.3.43)

P ([mn])
S = 1

320 ∮
∞
dsiP

[mn]i . (3.3.44)

Comparing the integrand in (3.3.35), (3.3.39) and (3.3.40) with those in (3.3.42), (3.3.43)
and (3.3.44) one finds, respectively,

– qij,j = P(0)i + O– (r–1–2%) + O+ (r–1–%–$) , (3.3.45)

160'klPil = P(k)i + 2 ('k[ihj]0),j
+O– (r–1–2%) + O+ (r–1–%–$) , (3.3.46)

320x[m'n]lPil = P([mn])i + 2 (xm'n[ihj]0 – xn'm[ihj]0),j
+O– (r–%–$) + O+ (r–2%) . (3.3.47)

By the asymptotic behaviour in (3.3.45–3.3.47), and, using the Stokes theorem, one
is convinced that, indeed, the Hamiltonian integrals (3.3.35), (3.3.39) and (3.3.40) are
equal to the Lagrangian integrals (3.3.42), (3.3.43) and (3.3.44), respectively.

3.3.4 Gauge invariance of global integrals

To obtain gauge transformations for the phase space variables we use the gauge
transformations of the field variables in the Lagrangian description. At first, using
projections, like (3.3.14) and redefinitions (3.3.15) and (3.3.16), we transform the 4-
dimensional components linear in .! and quadratic in .! and h

,- in (3.2.42) and
(3.2.43) into 3-dimensional components on G:

q󸀠ij = qij + $.qij = qij + £.kq
ij + .⊥$⊥qij + 2.⊥,k (qkqij – qk(iqj)) . (3.3.48)

Here, .a = {.⊥, .k} are gauge functions; $⊥ is the Lie derivative along the unique nor-
mal to flat sections G [315], see (3.1.32). After the standard variation of the Hamiltonian
action (3.3.21) with respect to Kij one obtains the Hamiltonian equations,
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$⊥qij = – $
$Kij

[((q⊥ – 1)H g+m + qkH g+m
k ] . (3.3.49)

After substituting (3.3.49) into (3.3.48) one obtains a more compact expression:

$Hqij = 320 (√–')–1 Kkl (qikqjl – qijqkl)H⊥ + £Hkqij , (3.3.50)

where redefined gauge functions Ha are expressed as

H⊥ ≡ (1 – q⊥).⊥ , Hi ≡ –qi.⊥ + . i (3.3.51)

with the asymptotic behaviour

Ha = O–(r1–%) + O+(r1–$) , (3.3.52)

which follows from (3.2.44) and (3.3.26) with (3.2.53).
It is easy to show that (3.2.49) interpreted as gauge transformations can be

obtained in the standard way, see [140], with the use of the Poisson brackets:

$Hqij = {qij, H (H)} (3.3.53)

with the Hamiltonian generator of gauge transformations,

H (H) ≡ H⊥H g+m + HiH g+m
i . (3.3.54)

Analogous to (3.3.53), one obtains gauge transformations for the conjugatedmomenta:

$HKij = {Kij, H (H)}
= [320(√–')–1qkl (KijKkl – KikKjl) + (√–')–1

160
3
Rij –

𝜕H m𝜕qij ]H⊥
–
(√–')–1
160 (detqkl)–1/4 {𝜕ij [H⊥ (detqkl)1/4]

–𝜕m [H⊥ (detqkl)1/4] 3
Amij} + £HkKij , (3.3.55)

where
3
Amij are the 3-dimensional Christoffel symbols constructed with the use of the

3-dimensional metric
3
gij = qij/(–g).

Taking into account the asymptotic (3.3.26) and (3.3.27) for phase space variables,
and (3.3.52) for gauge functions, one finds the asymptotic behaviour for various terms
in (3.3.50) and (3.3.55) in a symbolic form:
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K qqH⊥ = O– (r–%–$) + O+ (r–2%) ,
£Hkq = 2 (H(i,j) – 'ijHk,k) + O– (r–%–$) + O+ (r–2%) ,

qK K H⊥ = O– (r–1–3%) + O+ (r–1–2%–$) ,
3
RH⊥ = O– (r–1–2%) + O+ (r–1–%–$) ,𝜕H m𝜕q H⊥ = O– (r–2–%–!) + O+ (r–2–$–!) ,

(det q)–1/4 [...] = – 1
2*H
⊥
,ij + O

– (r–1–2%) + O+ (r–1–%–$) ,
£HkK = O– (r–1–2%) + O+ (r–1–%–$) . (3.3.56)

Summing (3.3.56) in (3.3.50) and (3.3.55), one has

$Hqij = 2 [H(i,j) – 'ijHk,k] + O– (r–%–$) + O+ (r–2%) , (3.3.57)

$HKij = – 1
160H
⊥
,ij + O

– (r–1–2%) + O+ (r–1–%–$) . (3.3.58)

Now, substituting (3.3.57) and (3.3.58) into the expressions (3.3.35), (3.3.39) and
(3.3.40), one obtains the gauge variations of energy, momentum and angular
momentum defined in the Hamiltonian description:

$H P (0) = 1
80 ∮
∞
dsi [H[j,i],j + O– (r–1–2%)] , (3.3.59)

$H P (k) = 1
40 ∮
∞
dsi [(H⊥,[i'j]k),j + O– (r–1–2%)] , (3.3.60)

$H P ([mn]) = 1
80 ∮
∞
dsi [(xmH⊥,[i'j]n – xnH⊥,[i'j]m + 'm[i'j]nH⊥),j

+O– (r–1–%–$)] . (3.3.61)

Due to the Stokes theorem and the restrictions (3.2.53) for % and $ one finds that all the
integrals (3.3.59–3.3.61) are equal to zero, thus the Hamiltonian energy, momentum
and angular momentum in the field theoretical description are gauge invariant with
respect to the variations (3.3.57) and (3.3.58).

In conclusion, let us discuss the problem of a super-translation invariance.
Repeating the York arguments [467], we consider the Regge-Teitelboim variables
(geometrical formulation) redefined in the form, gij,0kl → qij,Kij,

qij = 'ij + O+ (r–1) + O– (r–2) , (3.3.62)

Kij = O– (r–2) + O+ (r–3) . (3.3.63)
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Terms of the order O+ (r–1) in (3.3.62) contribute to the Hamiltonian integral (3.3.35),
P (0). Terms of the order O– (r–2) and O+ (r–3) in (3.3.63) contribute to (3.3.39) and
(3.3.41), P (k) and P ([mn]), respectively. Namely, the part O+(r–3) contributes to an
angular momentum.

Generators of the gauge transformations in [467] have the same form (3.3.54), but
with the asymptotic behaviour

Ha = O(1) ,Ha,i = O(r–1) , (3.3.64)

instead of (3.3.52). Then, for (3.3.62–3.3.64) one has

$Hqij = {qij, H (H)} = 2 (H(i,j) – 'ijHk ,k) + O (r–2) , (3.3.65)

$HKij = {Kij, H (H)} = – 1
2*H
⊥
,ij + O (r–3) . (3.3.66)

The first terms in (3.3.65) and (3.3.66) do not contribute to the global integrals by the
Stokes theorem, the terms of the order O (r–2) in (3.3.65) do not contribute either.
However, the terms of the order O(r–3) change the integrals P ([mn]). For a real isol-
ated system this is not permissible. Sometimes this problem is called the problem of
super-translations at spatial infinity [467]. What is suggested by the field-theoretical
approach? After deriving the weakest fall-off we have stated the fall-off for the gauge
functions as in (3.3.52) instead of (3.3.64). Thus, all the integrals (3.3.59–3.3.61), includ-
ing angular momentum, are gauge invariant. Thus, the problem of super-translations
invariance does not appear at all in the field-theoretical formulation. More formally, it
is because in (3.2.53) and (3.3.52) $ > 0.

The problem of super-translations invariance of angular momentum at null infin-
ity for a radiating isolated system described by Bondi, Metzner and Sachs (BMS)
[59, 61] is significantly more complicated. Many attempts have been provided to
resolve it. An interesting one has been suggested by Helfer [229, 230]. It is certainly
true that any physically reasonable definition of angular momentum in this case must
be BMS covariant – that is, be natural as far as the asymptotic structure is concerned.
But this is not the same as saying the physically preferred angular momenta must be
conjugate to BMS generators (as they would be in the case of Noether’s construction).
For our well knowledge, the Helfer approach to angular momentum is the one of more
fruitfulmethodswhich seems to be satisfactory and to resolve these difficulties. It does
require twistor theory.



4 Exact solutions of general relativity
in the field-theoretical formalism

It is important to describe exact solutions in general relativity in terms of the field-
theoretical formalism. First, this has advantages in constructing conserved quantities.
Second, this gives a physical understanding of the features of this approach, such as
the non-observability of a background spacetime or the non-invariance of trajector-
ies of test particles with respect to the background. Third, this presents a physically
reasonable interpretation of properties (sometimes exotic) of exact solutions. Fourth,
describing concretemodels, one illustrates the power of the field-theoretical approach
in mathematical treatment of various problems of theoretical physics.

One of themost famous and physically relevant solutions in gravity is the Schwar-
zschild solution. In Section 4.1, it is considered in great detail, including various
interesting and unexpected properties of the corresponding field-theoretical config-
uration and possibilities for constructing conserved quantities. In Section 4.2, in
the framework of the field-theoretical formalism, we examine the closed Friedmann
model and calculate the energy characteristics for the Schwarzschild-AdS black hole.

In the present chapter, it is more useful and pedagogical to retain the constants c
and G explicitly in all equations which we shall do.

4.1 The Schwarzschild solution

Here, we concentrate on the spherically symmetric, exact solution of general relativity,
which is the Schwarzschild black hole. We emphasize, first of all, that it is the simplest
yet most relevant solution in general relativity, and its properties (in the framework of
the geometrical description) are well known. Second, it represents asymptotically flat
spacetimes, a feature which is especially important. Third, it is surprising, but even a
non-trivial intrinsic structure of the Schwarzschild black hole can be described in the
framework of the field-theoretical approach.

4.1.1 The total energy

Classical black hole solutions in general relativity (without a cosmological constant)
represent asymptotically flat spacetimes. Therefore, it is instructive to illustrate the
results of the previous chapter with regard to the computation of global conserved
quantities on example of these solutions. In the present subsection, we calculate the
total energy of the Schwarzschild black hole.

Being asymptotically flat spacetimes, the black hole solutions asymptotically (at
infinity) admit a flat metric. Therefore, we choose the flat metric as a background met-
ric which matches the full metric in the asymptotic regime. In spherical coordinates,
the metric is

DOI 10.1515/9783110351781-004
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ds2 = –c2dt2 + dr2 + r2 (d(2 + sin2 (d62) , (4.1.1)

where notations for the coordinates are: x0 = ct, x1 = r, x2 = ( and x3 = 6. Besides,
we recall that the background metric of the Minkowski space in curved coordinates is
denoted as ḡ,- = 𝛾,-. Non-zero components of the Christoffel symbols corresponding
to the metric (4.1.1) are

C122 = –r, C133 = –r sin2 (, C212 = C313 =
1
r
,

C233 = – sin ( cos (, C323 = cot (. (4.1.2)

We consider the Schwarzschild solution in two different forms. First, we use the line
element (1.5.34):

ds2 = –(1 – rg
r
) c2dt2 + 1

1 – (rg/r)
dr2 + r2 (d(2 + sin2 (d62) , (4.1.3)

where rg ≡ 2mG/c2. This is the form of the metric in the usual Schwarzschild coordin-
ates. Second, we represent the Schwarzschild solution in the so-called isotropic
coordinates [285]:

ds2 = –
(1 – rg/4r)2(1 + rg/4r)2 c2dt2 + (1 + rg

4r
)4 [dr2 + r2(d(2 + sin2 (d62)] . (4.1.4)

Of course, the coordinate “r” here is not the same as the coordinate “r” in (4.1.3). This
is because one and the same background metric in the form (4.1.1) is used to derive
the field configuration in both the field cases. Now, let us derive the field configura-
tions corresponding to geometrical solutions (4.1.3) and (4.1.4), respectively. We use
the decomposition (2.2.7) adapted to these solutions:

g
,- ≡ ḡ

,- + h
,- = √–𝛾 (𝛾,- + h,-) (4.1.5)

where √–𝛾 = r2 sin (. Then, the field configuration for the solution (4.1.3) takes on the
form:

h00 = –
rg
r

1
1 – (rg/r)

, h11 = –
rg
r
, (4.1.6)

whereas for the solution (4.1.4), the field configuration is

h󸀠00 = 1 –
(1 + rg/4r)7(1 – rg/4r) , h󸀠11 = h󸀠22 = h󸀠33 = –( rg

4r
)2 . (4.1.7)

Recall that the metric elements (4.1.3) and (4.1.4) represent the same physical solu-
tion which is written down in two different coordinates. Thus, the field configurations
(4.1.6) and (4.1.7) have to be connected by the gauge transformations (2.2.68). Symbol-
ically this situation is illustrated in Figure 2.1.
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To show explicitly that the field configurations represent the asymptotically flat
spacetime, one has to use the Cartesian coordinates instead of the spherical ones. In
the Cartesian coordinates the decomposition of the metric (4.1.5) reads

g
,- ≡ √–' (',- + h,-) . (4.1.8)

Equations (4.1.6) and (4.1.7) are replaced in the Cartesian coordinates with

h00 = –
rg
r

1
1 – (rg/r)

, hik = –
rg
r
xixk

r2
, (4.1.9)

and

h󸀠00 = 1 –
(1 + rg/4r)7(1 – rg/4r) , h󸀠ik = –$ik ( rg

4r
)2 , (4.1.10)

where x1 = x, x2 = y and x3 = z. Both of the field configurations, indeed, satisfy the
condition (3.2.2) defining the asymptotically flat spacetime.

One can see that the asymptotic behavior of the field variables (4.1.10) and (4.1.9)
satisfies the restrictions (3.2.53) and (3.2.54). Thus, both configurations have to give the
same unique values for global conserved quantities. By a symmetry of the solution, it
is evident that only the total energy can be non-zero among all of the ten global con-
served quantities. To calculate the energy it is more convenient to use the general for-
mula (3.2.27) derived for curved coordinates in a flat spacetime. Adapted to the spher-
ical coordinates with the corresponding Killing vector, .0K = –$00, the total energy is

P (0)
S = 1

2* ∮
∞
d(d6√–𝛾 (h00𝛾j1 + $00hj1);j .0K (4.1.11)

Simple calculations for both cases (4.1.6) and (4.1.7) give

E = P (0)
S = mc2 (4.1.12)

that is quite a natural result for the total energy of the black hole.

4.1.2 The energy distribution for the Schwarzschild black hole

Problems in the interpretation of the Schwarzschild solution
The Schwarzschild solution, being a far non-trivial solution, has the well known prob-
lemswith regard to its interpretation in the geometric language. These difficulties have
been outlined by Narlikar [331]. Here, we follow his presentation and show how such
problems can be resolved in framework of the field-theoretical formalism.
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Let us derive the spherically symmetric line element for a static system consisting
of matter and gravitational field in the most general form:

ds2 = –e-c2dt2 + e+dr2 + r2(d(2 + sin2(d62), (4.1.13)

where - = -(r) and + = +(r). The Einstein equations (1.3.23) for metric (4.1.13) read

*T 0
0 = e–+ ( 1

r2
– +󸀠

r
) – 1

r2
, (4.1.14)

*T 1
1 = e–+ ( 1

r2
+ -󸀠

r
) – 1

r2
, (4.1.15)

*T 2
2 = *T 3

3 = 1
2
e–+(-󸀠󸀠 + -󸀠2

2
+ -󸀠 – +󸀠

r
– -󸀠+󸀠

2
) . (4.1.16)

Assuming that matter is confined in a finite volume of space, one finds

- + + = 0, e–+ = 1 – C/r. (4.1.17)

In order to be consistent with the Newtonian gravity in the field-weak limit at spatial
infinity one chooses the constant of integration C as

C = 2mG
c2

≡ rg, (4.1.18)

wherem is interpreted as the Newtonianmassmeasured at infinity. On the other hand,
the same mass appears as the total mass of the Schwarzschild solution (4.1.12). In the
latter case, it has to be interpreted as the mass defined by matter together with grav-
itational field, see the transformation from (3.2.20) to (3.2.27). Thus, in the framework
of the field-theoretical formalism, one illustrates explicitly the contribution of the
self-interaction of gravitational field to the total energy of the spherically-symmetric
system in general relativity.

Let us desribe the first problem discussed in [331] related to interpretation of
the defect mass on an example of spherically-symmetric system in general relativity.
Following the book [285], rewrite equation (4.1.14) in the form1:

– d
dr

[r (1 – e–+)] = *r2c2T 0
0 = –80Gr21, (4.1.19)

where 1 = 1(r) is the mass density of a spherically symmetrical body with the radius,
r = rS, of its surface boundary. Let us integrate (4.1.19)

m ≡ m(rS) = 40∫rS

0
r21(r)dr. (4.1.20)

This apparently innocent definition of the gravitational mass is not so natural as it
looks. In fact, it is the result of a formal integration only. Note that for the line element

1 Signs in (4.1.19) correspond to signature in (4.1.13) for which T 0
0 ≤ 0.
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(4.1.13) the physical volume element on a spacelike hypersurface x0 = const is not
40r2dr but 40r2e+/2dr. Work [285] explains this fact as a gravitational defect of mass
but without providingmore detailed discussion. The other work [315] is trying to make
the definition (4.1.20) look more natural by splitting it in a linear combination of three
pieces

m = 40∫rS

0
r2e+/21Ndr + 40∫rS

0
r2e+/2(1 – 1N)dr

+ 40∫rS

0
r2e+/21(e–+/2 – 1)dr ≡ mN + U

c2
+ K
c2
. (4.1.21)

Here, mN is the nucleonic mass of the body made of the rest mass density 1N of all
of the N particles. The quantity U is the intrinsic energy accounting for the dens-
ity difference 1 – 1N , while K is the gravitational potential energy. In the weak field
approximation one has

K = –40∫rS

0
r21Gm(r)

r
dr (4.1.22)

which is in agreement with the definition of the Newtonian potential energy. However,
the modified formula (4.1.21) has also a problem: Bondi [60] noted that the termmN is
not relativistically invariant. Also, both in (4.1.20) and in (4.1.21), the integration is nat-
urally performed only over the matter distribution up to r = rS. It makes an impression
that the total mass m is defined only by the contribution of matter and gravitational
field inside the volume of the body limited by its radius. However, the totalm in (4.1.18)
has been defined by an observer at a very large (asymptotically-infinite) distance from
the system, so that one can wonder what happens with the contribution of the gravit-
ational field to the total mass from the exterior domain located outside of the body’s
volume.

The second problem considered by Narlikar [331] is related to the concept of the
point mass in general relativity. This problem also exists in the Newtonian gravity but
it is resolved in a simple way by assuming that the mass distribution has the form
1(r) = m$(r) where $-function satisfies the ordinary Poisson equation

∇2 ( 1
r
) = ( d2

dr2
+ 2
r
d
dr
) 1
r
= –40$(r). (4.1.23)

Then, both for a regular distribution 1(r) and for a point mass 1(r) = m$(r), the total
mass of the gravitating system is calculated with the use of the same integral:

m = ∫
G
dx31(r). (4.1.24)

Thus, the massive point particle located at the origin, r = 0, is included into con-
sideration in the Newtonian gravity by making use of the mathematical apparatus of
distributions (generalized functions).

If one tries to use the Schwarzschild solution in order to describe a point mass
in general relativity a conceptual difficulty arises. If we try to employ the Newtonian
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concept of the point mass and assume that the gravitational potential defined by
(4.1.17) and (4.1.18) holds formally in the whole empty spacetime, including the world-
line r = 0, the matter distribution (due to the Einstein equations (4.1.14–4.1.16)) must
have the energy-momentum tensor in the following form:

T 0
0 = T 1

1 = 0, T 2
2 = T 3

3 = –mc
2

2
$(r). (4.1.25)

It is quite easy to check by a direct inspection that it is impossible to obtain the cor-
rect total mass for this distribution by performing the ordinary volume integration, as
in (4.1.24) because the time-time component of the energy-momentum tensor, which
characterizes the mass density distribution, is equal to zero. The situation cannot
be saved even if one remembers that the time coordinate and the radial coordinate
exchange roles inside the event horizon.

In spite of the above difficulties, modeling of a true singularity in general relativ-
ity by a $-function looks plausible, see, for example, [86, 198, 298]. Below we show
how to circumvent the above problems using the field-theoretical formalism. To this
end, we again resort to the measurements made by the infinitely distant observer,
where the spacetime is asymptotically flat. It is surprising, but in this case a black
hole geometry can be interpreted as the usual field configuration defined at the event
horizon or behind it down to the true physical singularity at r = 0. Then, both of the
above-mentioned problematic issues are resolved by defining the total mass of the
field configuration as the integral (3.2.20):

P (0) = ∫
G
d3x√–𝛾t00tot.K0 = ∫

G
d3x√–𝛾t00tot (4.1.26)

performed over the whole Minkowski space including r = 0 with the energy dens-
ity (energy distribution) t00tot, defined in Chapter 3. Notice that the volume element
of integration in (4.1.26) is d3x√–𝛾 that is a real geometric volume element in the
Minkowski space. Themassive point particle case is included to the integral (4.1.26), if
the $-function representing the singularity is included into t00tot in a mathematically
self-consistent way which we shall explain below in more detail. Thus, (4.1.26), in
fact, generalizes the Newtonian formula (4.1.24). In what follows, we elaborate on this
prescription in detail.

Regular spherically symmetrical static body
The Schwarzschild solution can be obtained in two ways: either as an external field
of a spherically symmetrical static body or as a gravitational field in empty spacetime
representing a black hole. In the present discussion, we rely upon the first interpret-
ation. Proceeding in this way, we do not consider the interior solution for + and - in
(4.1.13) explicitly, but we assume that the body has a physically-admissible equation of
state. Then, the functions + and - can be thought as smooth and physically-admissible.
As a result, we conclude that the volume integration,

ES = ∫rS

0
d3x√–𝛾t00tot, (4.1.27)
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is well-defined. This is enough to achieve our goal, so that, we do not provide the
integration (4.1.27) explicitly. Instead of that, to obtain the energy ES in the domain
enclosed by the surface, r = rS, we will use the surface integral (4.1.11) at r = rS. In
order such an integration to be well-defined one has to make a natural assumption
that the values of the components h,-– inside the surface are matched smoothly with
the values of h,-+ outside the surface of the body. As a result, one has

ES = mc2 [[ 1
2
rg (2rS – rg)(rS – rg)2 + 1]] . (4.1.28)

To calculate the distribution of the total energy outside the body, we use the explicit
expression for the component t00tot. We assume that the field equations (2.2.105) hold,
andwe use the left hand side of themgiven by (2.2.27), or in the Lorentzian coordinates
by (3.2.22),

ttot,- = tg,- + t
m
,- =

1
*G

L
,- =

1
2* (h,-;!;! + 𝛾,-h!";!" – h!,;-! – h!-;,!) . (4.1.29)

Substituting here, for example, the configuration (4.1.6) that is defined outside rS, one
has

t00tot = tg00 = –
r2g
*r4

1(1 – rg
r )3 . (4.1.30)

Then, using (4.1.26), one obtains

Eout = ∫∞
rS

d3x√–𝛾t00tot = – mc2

2
rg (2rS – rg)(rS – rg)2 . (4.1.31)

Summing up (4.1.28) and (4.1.31), one gets ES + Eout = mc2 which is in a perfect
agreement with the previous result (4.1.12).

Interpretation of the above results is as follows.
First, the energy of the gravitational field outside the body (4.1.31) is negative.

This coincides with the classical results on the value of the binding energy of gravita-
tional field which is always negative. Indeed, in order to break apart a binary system
comprised of two massive stars, one has to inject into the system an additional pos-
itive energy. Therefore, the gravitational binding energy has to be negative. Another
argument in support of the negative value of the energy of gravitational field [285] is
that the total energy of the closed Friedmann universe is equal to zero. This means
that the positive energy of the matter sources is compensated exactly by the negative
energy of the gravitational field. These considerations are in a total agreementwith the
observation that the potential energy of the gravitational field in (4.1.22) is negative.

Second, we note that the total energy within the body (4.1.28) exceeds the value
of mc2. This result seems to be in conflict with the negative value of the potential
energy of gravitational field which is expected to be subtracted from the positive
value of the total mass inside the body, thus, making the total mass of matter and
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gravitational field less than mc2. The “paradox” is solved by noticing that in (4.1.28)
we consider the energy of the body without the energy of the external gravitational
field. Looking more carefully at this situation one can understand better how the
gravitational defect of mass emerges in our calculations in the following way. Let
the body of the total mass m consist of two pieces which are bound together by
gravitational forces. In order to completely separate the two pieces from each other
and to put them to infinity we have to inject some positive energy. Then, the total
mass of the separated pieces of the body measured at spatial infinity by an observer
must exceed the mass of the initial configuration. We conclude that a sum of the total
energies of these pieces (together with the energies of their own gravitational fields) is
more than mc2. So, the total mass of a self-gravitating system measured by a distant
observer is less than the sum of the masses of its constituent particles which proves
the existence of the gravitational defect of mass.

The Schwarzschild black hole
Let us consider the Schwarzschild black hole represented by the solution (4.1.3) with
the field configuration (4.1.6) in thewhole theMinkowski space. One assumes also that
the Einstein equations (2.2.105) hold in all the points in Minkowski space including
r = 0. Then it is necessary to use the techniques of the generalized functions [185, 273].
Calculations by taking into account the special point r = 0 require an specific
approach if one follows to the idea of [185]. The main principle requires a correspond-
ence between the volume integration and the surface integration. For this purpose, it
is important to define ∇2(1/rk+1) with integer k ≥ 0. Already for k = 0 we have derived
the well known formula (4.1.23). Using the differentiation rules for the generalized
functions [185], one obtains [363]:

∇2 1
rk+1

= (k + 1) [ k
rk+3

– 40
rk
$(r)] . (4.1.32)

Many results here are obtained with the use of the formula (4.1.32), although we will
not refer to it below.

Now, with the use of (4.1.29) we calculate the 00-component of the total energy
momentum for the field configuration (4.1.6):

ttot00 = mc2

2
$(r)[[1 – 1(1 – (rg/r))2]] –

rg2

*r4
1(1 – (rg/r))3 (4.1.33)

which represents the energy distribution and is depicted in Figure 4.1.
It is natural to see that the total energy obtained after substituting (4.1.33) into

(4.1.26) and integrating over the whole space is exactly E = mc2. If one calculates the
energy outside the horizon only, one obtains –∞; the energy inside the horizon is
equal to +∞. However the infinite contributions near horizon are compensated. One
can find also that the contribution into E from the $-function is equal to mc2/2, while
the contribution from the free gravitational field outside r = 0 is also equal tomc2/2.
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Figure 4.1: The plot of the energy density of the
gravitational field of the Schwarzschild solution
in the frame of a distant observer in the
Minkowski space.

In fact, we extend the concept of the Minkowski space from spatial infinity up to
the horizon r = rg, and even below the horizon including the worldline r = 0, see
Figure 4.1. However, in reality the distant observer cannot see the space within
the horizon. Therefore, it is more pedagogical to consider the situation outside the
horizon only. Naively this picture can be explained as follows. When the test particle
moves closer to horizon then it is more difficult to escape the black hole. From the
point of view of the distant observer this can be interpreted by the way that the
negative density of the gravitational energy (and, consequently, the attraction) is
stronger near the horizon. The infinite negative density for the gravitational energy
exactly at the horizon, ttot00 = tg00 = –∞, signals to the observer on impossibility to
escape the black hole at all.

It is interesting to examine the contribution into (4.1.33) from the matter source
(that is “localized” now at r = 0 only) and from the free gravitational field, separately.
The most economical way is as follows. We use the formula (2.2.32) connecting the
matter energy-momentum tensor in the field-theoretical and geometrical formulations
of general relativity. Let us rewrite it for the Minkowski background:

tm,- = ($!,$"- – 1
2𝛾,-𝛾!") (T!" – 1

2g!"T01g
01) , (4.1.34)

where g!" is defined in (4.1.3). Then, using (4.1.25) in (4.1.34), one obtains

tm00 = –mc
2

4
$(r)[1 – rg

r
– 1
1 – (rg/r)

] , (4.1.35)

that is localized at the point r = 0. Then, subtracting (4.1.35) from the total quantity
(4.1.33), one obtains for the gravitational part:

tg00 = –mc
2

4
$(r)

rg
r
[[1 + 3

1 – (rg/r)
+ 2(1 – (rg/r))2]] –

rg2

*r4
1(1 – (rg/r))3 . (4.1.36)

One can see that separately the $-functions in (4.1.35) and (4.1.36) make (–∞)-
contribution and (+∞)-contribution, respectively, to the total energy. The infinite
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contributions cancel each other. However, anyway, it is in the spirit of general
relativity that tm,- cannot be considered separately from tg,-.

Let us also derive the other components tm,- and t
tot
,- ; their differences give t

g
,-. Thus

the other non-zero components for the matter energy-momentum are

tm11 = –𝛾11mc24 $(r)(1 – rg
r
– 1
1 – (rg/r)

) ,

tmAB = –𝛾ABmc24 $(r)(1 – rg
r
+ 1
1 – (rg/r)

) , (4.1.37)

where A,B = 2, 3, and non-zero components for the total energy-momentum are

ttotAB = 𝛾AB (mc22 $(r) –
2rg
*r3) . (4.1.38)

The main assumption made above is that the field-theoretical equations are valid at
all points of the Minkowski space, including r = 0. As is seen, see (4.1.35) and (4.1.36),
the situation is more comprehensive than for the point mass in the Newtonian gravity,
where the $-function enters the matter energy density only. Nevertheless, we can use
the volume integration over the whole Minkowski space (4.1.26). Thus, the problem
of the point mass is indeed resolved with the use of the field-theoretical formulation,
unlike the case in the geometrical formulation.

4.1.3 The Schwarzschild black hole as a point particle

In spite of its advantages, the interpretation of the point mass in the previous sub-
section has some questions. At r = rg both the gravitational potentials and the energy
density have discontinuities. This highlights the fact that in the standard formulation
of general relativity, one has a coordinate singularity at r = rg in the Schwarzschild
coordinates. It is not a real singularity in the field-theoretical formulation either,
where this break-down is interpreted as a “bad” fixing of gauge freedom which needs
to be improved. In other words, the break-down at r = rg has to be countered with
the use of an appropriate choice of a flat background, which is determined by related
coordinates for the Schwarzschild solution. The present subsection is devoted to this
problem.

The use of the coordinates without singularities at the horizon, like Novikov’s,
Kruskal-Szekeres’s, etc., coordinates [285, 315], could resolve the problem locally in
the neighborhood of r = rg. Together with this, we restrict ourself by the following.
First, we represent a point particle at rest in the whole Minkowski space. Therefore it
has to be natural to describe the true singularity by the world line r = 0. Second, the
Schwarzschild solution in appropriate coordinates has to be asymptotically flat. Third,
we require a fulfillment of a so-called “'-causality” — property, when the physical
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light cone is inside the flat light cone at all the points of the Minkowski space. It
is necessary to avoid interpretation difficulties under the field-theoretical presenta-
tion of general relativity. By this requirement, all the causally connected events in
the physical (dynamical) spacetime are described by the right causal structure of the
Minkowski space. The related position of the light cones is not gauge invariant. Prop-
erties of the '-causality and gauge transformations conserving it were studied in detail
by Pitts and Schieve [376].

We consider the third requirement only for convenience in applications and inter-
pretation for the field configuration. To avoid ambiguities we stress again that, unlike
Pitts and Schieve who give a real physical sense to the background, we use it as an
auxiliary construction. Thus, we agree with the assertion by Grishchuk [202, 203] that,
changing the mutual disposition of the light cones, one cannot change the physical
properties of the solution. The requirement of the '-causality can be strengthened
by the requirement of the so-called “stable '-causality” [374–376]. The latter means
that the physical light cone has to be strictly inside the flat light cone. This could be
important, when quantization problems are under consideration. Indeed, in the case
of tangency, a field is on the verge of '-causality violation [376]. Returning to the rep-
resentation in the Schwarzschild coordinates in the previous subsection, we note that
it does not satisfy the third requirement.

More appropriate coordinates, satisfying the above requirements, are, first, the
stationary (not static) coordinates presented in [358], and recently improved in [374–
376]; second, contracting Eddington-Finkelstein coordinates in a stationary form [315].
These coordinate systems can be generalized to a parameterized family, where all the
systems satisfy all the above requirements as well.

Except for a pure theoretical interest, the models of black holes in the form of
point particles could be also interesting and useful for experimental gravity problems.
Recently, gravitational wave detectors of the LIGO type have discovered gravitational
waves from coalescing binary systems comprising of compact relativistic objects.
Therefore it is necessary to derive equations of motion of such components, e. g.,
two black holes. As a rule, at an initial step the black holes are modeled by point-like
particles represented by Dirac $-functions. Then consequent post-Newtonian approx-
imations are used, see the works with excellent mathematical rigor [116, 404] and
references therein. However this approach meets difficulties related to the non-linear
nature of the Einstein equations. Different regularization methods have been sugges-
ted to bypass them. However, in spite of a significant progress, so far the problem of
motion of the black holes in general relativity hasmany open questions [116, 404]. The
way of definition of a point-like source in general relativity in the present subsection is
different. Not making initial assumptions on its structure, one uses the Schwarzschild
solution itself from the start. The resulting field configuration, including a descrip-
tion of the true singularity in the form of a point-like particle, is easy for applications.
This allows to reproduce the Schwarzschild solution without approximations, with a
correctly-defined position of the horizon, etc.
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A point particle with an external distribution of energy
Thus, let us turn to the standard Schwarzschild line element (4.1.3). Following [358]
and [374] - [376], we only change the time coordinate

ct → ct – rg ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 – rg

r
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (4.1.39)

whereas the other coordinates {r, (, 6} are not changed. As a result one has
ds2 = – (1 – rg

r
) c2dt2 + 2 r2g

r2
c dt dr + (1 + rg

r
)(1 + r2g

r2
) dr2

+ r2 (d(2 + sin2 (d62) . (4.1.40)

The important properties of this solution are that a falling test particle approaches the
horizon r = rg in finite coordinate time t, below the horizon, it is always falling towards
the singularity, it gets arbitrarily close to it, but only hits it at t = ∞.

Using the decomposition (4.1.5) for the solution (4.1.40) one obtains the corres-
ponding field configuration:

h00 = –( rg
r
+
r2g
r2

+
r3g
r3
) , h01 =

r2g
r2
, h11 = –

rg
r
. (4.1.41)

Calculating ttot,- for the configuration (4.1.41), we use again the expression (4.1.29). The
non-zero components are

ttot00 = mc2$(r) +mc2
rg
r
(1 + 3

2
rg
r
) $(r) – mc2

40
rg
r4

(1 + 3 rg
r
) ,

ttot11 = –mc2$(r),

ttotAB = –1
2
𝛾AB mc2$(r). (4.1.42)

One can calculate the components tm,- of the matter energy-momentum using the for-
mula (4.1.34) once again. One has to use T!" defined in (4.1.25) this time as well,
because the transformation (4.1.39) has been applied. Besides, in (4.1.34), one has to
use g,- defined in (4.1.40). As a result, one obtains that tm,- is concentrated at r = 0
by the delta-function. However, the spirit of general relativity that tm,- cannot be con-
sidered separately from tg,- therefore we do not derive components of tm,- here. It is
important to note that outside r = 0 the gravitational energy-momentum tg,- coincides
with the total energy-momentum.

Let us discuss the properties of the field-theoretical representation of the solu-
tion (4.1.40). First, as usual, in the Minkowski space, the energy density distribution is
described by the 00-component of the energy-momentum tensor, see Figure 4.2. Then,
the total energy of the system is calculated by a substitution of ttot00 from (4.1.42) into
(4.1.26). Again, one obtains E = mc2! This is defined only by the first term mc2 $(r) in
ttot00. The other contributions into E from the $-functions in ttot00 are infinite, but they
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Figure 4.2: The plot of the energy density of the
gravitational field of the Schwarzschild solution
generated by a point source with an external
distribution of energy in the Minkowski space.

are compensated by the energy distribution without the $-functions. The other com-
ponents ttot11 and ttotAB in (4.1.42) formally could be interpreted as related to the “inner”
properties of the point. Indeed, they are proportional to $(r) only and, thus, describe
the “intrinsic radial” and “intrinsic tangent” stresses.

Second, after the transformation from the spherical coordinates to the Cartesian
coordinates, one can see that the configuration (4.1.41) is asymptotically flat with the
1/r-like fall-off at spatial infinity. Therefore the result E = mc2 is not surprising.

Third, the metric (4.1.40) with the background metric (4.1.1) satisfies the require-
ment of the stable '-causality at all points of the Minkowski space down to the true
singularity at r = 0. Thus, all the requirements are satisfied.

At least, the picture derived above resolves the problem of the break-down at the
horizon. The field configuration (4.1.41) is continuous at all points of the Minkowski
space except at the true singularity r = 0, which is natural. A falling test particle
approaches and intersects the horizon r = rg in a finite Minkowski time t. The
components ttot00 and t

g
00 have no breakdowns outside r = 0, and all the other energy-

momentum components in (4.1.42) are defined only by the $-function. Besides, as
in Newtonian gravity, the problem of point mass is resolved simply. The energy-
momentum tensor (4.1.42) contain $-functions at r = 0, and, like in the Newtonian
case, the volume integration over the whole space gives a satisfactory total energy.

However, the energy distribution in the Newtonian case (4.1.22) is represented by
the $-function only, whereas in (4.1.42) there is an external energy distribution, see
Figure 4.2. The question arises; is there a possibility to represent the energy distribu-
tion for the Schwarzschild solution with the use of the $-function only?We answer this
question in the next subsection.

A point particle without an external distribution of energy
Let us examine the contracting Eddington-Finkelstein metric for the Schwarzschild
geometry [315]. But, we make a transformation from the null coordinate Ṽ to the time
coordinate t: ct = cṼ – r, after that one has

ds2 = –(1 – rg
r
) c2dt2 + 2 rg

r
c dt dr + (1 + rg

r
) dr2 – r2 (d(2 + sin2 (d62) . (4.1.43)
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Then the corresponding gravitational field configuration is

h00 = –
rg
r
, h01 =

rg
r
, h11 = –

rg
r
. (4.1.44)

The properties of the solutions (4.1.40) and (4.1.43) are very close. Both metrics are
stationary and asymptotically flat. In the whole Minkowski space they induce asymp-
totically flat and continuous (except at r = 0) configurations (4.1.41) and (4.1.44).
Falling test particles intersect the horizon r = rg in finite times t, but in the case (4.1.43)
test particles reach the true singularity in a finite time t. This is the result of the time
transformation for the Schwarzschild time:

ct → ct – rg ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 rrg – 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (4.1.45)

After making use of the expression (4.1.29) the components of the total energy-
momentum tensor for the configuration (4.1.44) are calculated as

ttot00 = mc2$(r),
ttot11 = –mc2$(r),

ttotAB = –12
𝛾AB mc2$(r). (4.1.46)

All these energy-momentum components, unlike (4.1.42), are concentrated only at
r = 0, see for the energy distribution Figure 4.3. The volume integration (4.1.26) of
ttot00 from (4.1.46) again gives E = mc2. Of course, the surface integration (4.1.11) with
the configuration (4.1.44) gives E = mc2 as well. However, this result follows with
an arbitrary radius, r0, of 2-sphere in a surface integration, it is not necessary to set
r0 → ∞. This is an exact analog for calculating the electric charge in electrodynamics,
or calculating the point mass in Newtonian gravity.

A family of point-like representations
The transformation

ct → ct – rg ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r/rg – 1(rg/r)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (4.1.47)

r
0

t00
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rg

Figure 4.3: The plot of the energy density of the
gravitational field of the Schwarzschild solution
generated by a point source without an external
distribution of energy in the Minkowski space.



4.1 The Schwarzschild solution 203

gives a family ofmetrics parameterized by ! ∈ [0, 2], all of which satisfy all our require-
ments set in the beginning of the subsection. The cases ! = 0 and ! = 1 correspond to
(4.1.43) and (4.1.40), respectively. However, the requirement of the stable '-causality
is not satisfied with ! = 0 at 0 ≤ r ≤ ∞. Properties of the field configurations
corresponding to ! ∈ (0, 2] qualitatively are the same as for ! = 1. In terms of the field-
theoretical approach all the field configurations for ! ∈ [0, 2] are connected by gauge
transformations and are physically equivalent. Thus, inside this family, the '-causal
description with (4.1.44) can be converted into a stable '-causal description expli-
citly. Note also that the technique of infinitesimal gauge transformations developed in
[374–376] permits to do this conversion approximately without relating to this family.

4.1.4 The Schwarzschild solution and the harmonic gauge fixing

On harmonic coordinates in general relativity
To simplify the Einstein equations, one frequently makes an appropriate choice of
coordinates. Probably, the harmonic coordinates are the most popular ones. The
related bibliography is very wide, therefore it is hard to list the papers here. Fock
[178] developed the applications of these coordinates. For example, he suggested the
harmonic coordinates for the Schwarzschild solution. The other applications of the
harmonic coordinates are as follows. They are used in elaborating theoretical prob-
lems [36, 142, 329, 394], for studying the detailed structure of the gravitational filed
outside of isolated systems [42], for constructing relativistic theory of frames in Solar
system [78, 268].

In the present subsection, new harmonic coordinates for the Schwarzschild
solution are constructed. What is their advantage compared to the Fock harmonic
coordinates [178]? The latter, like the Schwarzschild coordinates, are singular at the
horizon. Many coordinate systems without this defect are known, but they are not
harmonic. The new coordinates that we shall present are both harmonic and regular
at the horizon.

Here, developing applications of the field-theoretical methods, we interpret the
transition from the Fock coordinates to the new harmonic coordinates in terms of
gauge transformations. In both of the gauge fixings, we consider trajectories of test
particles falling into the Schwarzschild black hole. We find that trajectories in the
Minkowski space are gauge dependent, see Section 2.2.7. Because gauge transform-
ations do not change the physical picture, we confirm that the backgroundMinkowski
space is an auxiliary structure. Thus, a break-down in the trajectories at the horizon for
the field configuration in the Fock picture is interpreted as non-physical. Indeed, such
a break-down is canceled for the field configuration corresponding to the new har-
monic coordinates. These problems, of course, are resolved clearly in the framework
of the usual geometrical formalism of general relativity. However, here, we provide the
below exercises to illustrate useful properties of the field-theoretical technique.
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New harmonic coordinates for the Schwarzschild solution
Let us derive the Schwarzschild metric in the Fock coordinates:

ds2 = – r – !
r + !c

2dt2 + r + !
r – !dr

2 + (r + !)2(d(2 + sin2 ( d62), (4.1.48)

where in the Fock notations, ! = rg/2. Transferring to the asymptotically Cartesian
coordinates in the standard way, one finds that for the solution (4.1.48) the harmonic
(de Donder) conditions

𝜕- (√–gg,-) = 0 (4.1.49)

hold.
To simplify the presentation we consider a test particle, falling radially into a

black hole. Besides, we restrict ourselves to the “parabolic orbit” case, when a particle
begins its motion from the rest at the infinity r = ∞. Then, the equation of motion of a
test particle has the form:

ct = –2![ 2
3
( r + !

2! )3/2 + 2( r + !
2! )1/2 + ln 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r! – 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
– 2 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨( r + !2! )1/2 + 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ] + const. (4.1.50)

The existence of the term –2! ln |r/! – 1| leads to the situation, when a particle falls to
the event horizon r = ! infinitely long in the coordinate time t. Radially falling photons
have the same qualitative behaviour.

Let us construct the new harmonic coordinates. The general system of equations
conserving the conditions (4.1.49) is given by Fock [178]. We derive these equations for
the new time, 4, and radial, 1, coordinates, saving the spherical symmetry:

(r2 – !2) 4󸀠󸀠 + 2r4󸀠 – (r + !)3
r – !

𝜕
c𝜕t 4 = 0,

(r2 – !2) 1󸀠󸀠 + 2r1󸀠 – 21 – (r + !)3
r – !

𝜕
c𝜕t1 = 0, (4.1.51)

here again (󸀠) = 𝜕/𝜕r. Requiring that the new metric will not depend on the new time
coordinate 4, one finds that it is only possible if 4 = A1t +A2 +R(r), 1 = 1(r). Then the
system (4.1.51) admits the solution:

4 = A1t + A2 + B1 (ln 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r – !r + !
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + B2) , (4.1.52)

1 = C1r + C2 ( 1
2! ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r – !r + !
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 1) , (4.1.53)

where A1, A2, B1, B2, C1, C2 are constants. Without losing the generality, one sets
A2 = B2 = 0. The requirement to have theMinkowskimetric at r → ∞ after transferring
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to the Cartesian coordinates leads toA1 = C1 = 1. Because for C2 ̸= 0, there is no one-to-
one correspondence between the world points and the points of harmonic coordinates
even outside the horizon, we choose C2 = 0. Requiring to have a finite coordinate time,
when a test particle approaches horizon, one sets B1 = 2!/c. By this, the aforemen-
tioned logarithmic term in (4.1.50) disappears. Finally the transformations (4.1.52) and
(4.1.53) acquire the form:

c4 = ct + 2! ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r – !r + !

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , r = r, ( = (, 6 = 6. (4.1.54)

Thus, applying the transformations (4.1.54), one obtains the Schwarzschild solution
in the form:

ds2 = – r – !
r + !c

2d42 + 2( 2!
r + !)2 cd4dr

+ [1 + 2!
r + ! + ( 2!

r + !)2 + ( 2!
r + !)3] dr2

+ (r + !)2(d(2 + sin2 ( d62), (4.1.55)

instead of (4.1.48), in the new harmonic coordinates. Notice that with the use of the
shift r → r – ! in the transformation (4.1.54) and the metric (4.1.55), they go to
(4.1.39) and (4.1.40), respectively. One can check that after transferring to asymptot-
ically Cartesian coordinates, the metric (4.1.55) satisfies (4.1.49) as well. At last, the
metric coefficients in (4.1.55) are finite everywhere except of the true singularity r = –!.

The equation of the “parabolic orbit” acquires the form:

c4 = –2![ 2
3
( r + !

2! )3/2 + 2( r + !
2! )1/2 + ln 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 r! + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
– 2 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨( r + !2! )1/2 + 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ] + const, (4.1.56)

where, unlike (4.1.50), there is no divergent logarithmic term. Hence, in the coordin-
ate system (4, r), a falling particle trajectory without break-downs goes through the
Schwarzschild sphere.

Both the form of the metric (4.1.55) and the structure of the light cones

cd4
dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 = (r + !)2 + (2!)2
r2 – !2 , cd4

dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 = – r + 3!
r + ! (4.1.57)

clearly show the following. In the domain r < ! both r and 4 become spacelike, like
in the Finkelstein coordinates [176]. It is permissible, because the metric signature in
the domain r < ! remains correct, as we have seen above. However, when r < ! the
description of the particle motion is somewhat unusual: evolution of the spacelike
coordinate r is considered in terms of another spacelike coordinate 4 .
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It follows also from the above that the sections 4 = const are spacelike both out-
side and inside the horizon. If some events belong to the surface 4 = const, then
in this sense, one can speak about their simultaneity outside the event horizon, on
it and inside it. It may be useful for investigations using (3 + 1)-decomposition, see
Section 3.1.2.

Particle trajectories and gauge transformations
Because gauge transformations act on the gravitational variables (2.2.68) together
with the matter variables (2.2.69), they have to act also on the particle trajectories,
see Section 2.2.7. Thus, trajectories in a fixed background spacetime are not gauge
invariant, see (2.2.143), which in theweak field approximation has been studied first by
Mashhoon and Grishchuk [310]. This part is devoted to this problem related to “para-
bolic orbits” for the Schwarzschild solution in harmonic coordinates: both in (4.1.48)
and in (4.1.55). We consider the exact transformations, without using the .,-vector,
that is after the infinite sum in (2.2.68) and (2.2.69) leading to the closed expressions.
The gauge transformation from a one field configuration to another is described in
Section 2.2.4, illustrated at Figure 2.1 and interpreted by a different choice of the same
background.

From the beginning, we construct the field configurations related to the solutions
(4.1.48) and (4.1.55). For the latter we make a mapping 4 → t . After that for each of
the solutions we choose the unique background metric in the form (4.1.1). By this, we
exclude from the consideration the domain –! ≤ r < 0. It is permissible here because
we consider the trajectories in the neighborhood of the event horizon only. Thus, using
the decomposition (4.1.5), one finds the field configuration for the solution (4.1.48):

h00 = 1 –
(1 + !/r)3
1 – !/r , h11 = –!

2

r2
, (4.1.58)

and the field configuration for the solution (4.1.55):

h󸀠00 = 1 – (1 + !
r
)2 [1 + 2!

r + ! + ( 2!
r + !)2 + ( 2!

r + !)3] ,
h󸀠01 = 4!2

r2
, h󸀠11 = –!

2

r2
. (4.1.59)

Returning to the Section 2.2.4, we conclude that the above configurations are con-
nected by gauge transformations induced by the coordinate transformations (4.1.54).
Thus, they describe the same physical reality.

Both the configurations (4.1.58) and (4.1.59) have many similar properties. First,
they do not depend on time t. Second, both of them represent asymptotically flat
spacetime. Then, third, it is not surprising that the total energy calculated for both
of the cases is E = mc2. At last, the condition (4.1.49) transforms into

h,-;- = 0, and h󸀠,-;- = 0 (4.1.60)

for both of the configurations.
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Now let us discuss the trajectories of test particles. To obtain them one has to
vary the action (2.2.140) with respect to the coordinates. At the end, one obtains
the equations for 4-velocities u! and u󸀠!, formally they are the equations for the
geodesics. Recall also that we consider only the “parabolic trajectories”. Thus for the
configuration (4.1.58) one has:

u0 = r + !
r – ! , u1 = –( 2!

r + !)1/2 , u2 = u3 = 0. (4.1.61)

After integration of cdt = (u0/u1)dr one obtains the equation (4.1.50). Thus, now the
particle approaches the event horizon, r = !, for infinitely long time t. On the other
hand, for the field configuration (4.1.59) we have

u󸀠0 = 1

1 + ( 2!
r+!)1/2 [1 + ( 2!

r + !)1/2 + 2!
r + ! + ( 2!

r + !)3/2 + ( 2!
r + !)2] ,

u󸀠1 = –( 2!
r + !)1/2 , u󸀠2 = u󸀠3 = 0. (4.1.62)

Now, integrating cdt = (u󸀠0/u󸀠1)dr, one obtains the equation (4.1.56) by replacing
4 with t. Unlike (4.1.61), now the particle approaches the event horizon and pene-
trates it at a time t. Thus, by a gauge transformation, trajectories are saved from a
“catastrophic” discontinuity at the event horizon. Or, on the contrary, an initially
continuous trajectory can be “broken” also by a gauge transformation.

4.2 Other exact solutions of general relativity

4.2.1 The Friedmann solution for a closed universe

It looks natural that asymptotically flat solutions, including the Schwarzschild solu-
tion, can be described in terms of field-theoretical formalism. However the formalism
is more powerful. It turns out that even closed Friedmann model can be represented
in a consistent way as a field-theoretical configuration. This is illustrated below.

Let us derive the metric of the closed universe in the isotropic coordinates:

ds2 = –c2dt2 + a2(t)
1 + r2/4

'ijdxidxj. (4.2.1)

Recall that this solution has been obtained with the use of the so-called stereographic
projection visualized in Figure 4.4. The bottom (“South”) pole of the sphere corres-
ponds to the origin of the coordinate frame chosen arbitrary, whereas the top (“North”)
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S

N

flat space

Figure 4.4: A symbolic projection of a
3-sphere onto an Euclidean flat 3-space.

pole is knocked out and identified with the point at spatial infinity in the Minkowski
space covered by the isotropic coordinates.

In order to represent (4.2.1) in the field-theoretical formalism we choose a back-
ground metric as the Minkowski metric in the Lorentzian coordinates, which are
identified with the isotropic coordinates used in (4.2.1). Next, after the decomposition
(4.1.8) one obtains for the solution (4.2.1) the field potentials in the form:

h00 = 1 – ( a2

1 + r2/4
)3

, h11 = h22 = h33 = –1+ a2

1 + r2/4
, (4.2.2)

which are to be interpreted as a tensor field residing in the Minkowski space. Form-
ally, the field (4.2.2) is defined in the infinite volume of the Minkowski space with the
spatial infinity excluded. The fact that the spatial infinity is to be excluded is seen
from the stereographic projection and can be also realized if physically-reasonable
measurements are done as described below.

Let us conduct the following gedanken experiment. Let an observer be placed in
the Minkowski space occupied with the field (4.2.2). The observer will perceive espe-
cially strange metric relationships when approaching to infinity r → ∞ because the
full metric (4.2.1) degenerates in this limit. Let us introduce the spherical coordinates
(r, (,6) and consider a ray traveling in a fixed plane with the angle ( = (0 = const,
along a circle with a fixed radial distance from the observer, r = r0 = const. The reader
should understand that although we consider propagation of light in the Minkowski
space, the trajectory of the light ray is subject to the influence of the field (4.2.2) and,
hence, the motion of the ray is governed by the equation ds = 0 with the interval
ds given in (4.2.1). This is interpretation of the light propagation corresponds to the
field-theoretical approach to gravity theory.
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S

Figure 4.5: Light rays traveling around a circle in the
Minkowski space occupied by the gravitational field
configuration corresponding to the closed
Friedmann universe.

The light cone condition, ds = 0, derived with (4.2.1) yields a differential equation for
the trajectory of the ray:

d6
dt

= ± c
a

1 + r20/4
r0 sin (0

, (4.2.3)

which corresponds to a uniform motion along the circle. Of course, light rays can-
not propagate around circles in the empty Minkowski space if they are not guided by
an infinite chain of mirrors forming the circle, see Figure 4.5. It is the gravitational
field which plays the role of such mirrors in the field-theoretical interpretation of the
motion of light rays around circles in the closed Friedmann universe. As is seen, after
integrating dt from (4.2.3) for a full circle with6 changing from 0 to 20, a time interval
Bt → 0 when r0 → ∞. This happens in the neighborhood of a point that corres-
ponds to the North pole, see Figure 4.4. Such behavior of light rays in the Minkowski
space filled up with the gravitational field illustrates an auxiliary character of the
background spacetime in the field-theoretical formulation of general relativity dis-
cussed in Section 2.2.7 in detail. Considering the metric relations established through
physical measurements and employing (4.2.1) the observer will also infer that space is
homogeneous which means that the result of measurements performed by observers
located at different points of theMinkowski space are equivalent despite of the explicit
dependence on the radial coordinate r of the gravitational field potentials (4.2.2).

It is also interesting to construct conserved quantities for the configuration (4.2.2).
To achieve this goal it is more convenient to use formula (4.1.29). It is simple to obtain:

ttot00 =
3a3

4*
3 – 5r2/4
(1 + r2/4)5

+ a
4*

3 – r2/4
(1 + r2/4)3

. (4.2.4)

When r is not too large, this quantity will be positive; otherwise, however, it will
become negative, tending to zero as r → ∞. At times t when a(t) = 0 the value of
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ttot00 will vanish everywhere. Substituting (4.2.4) into (4.1.26), one obtains for the total
energy:

E = 0. (4.2.5)

It is not surprising because the fall-off (4.2.2), ∼ 1/r2, significantly stronger than the
permissible fall-off for an isolated gravitating system ∼ 1/r. All the other 9 integrals
of motion are equal to zero by the symmetry of the solution. Such zero results, like
(4.2.5), coincide with the accepted formulation of the closed universe [285], only, here
they are represented in the field-theoretical terms.

The configuration that we have describedmay be treated as amicrouniversewith a
Planck-size physical volume. Such a configuration with zero energy, momentum and
angular momentum, is exactly the same as it would be for the Minkowski vacuum
characterized by the total absence of classical fields and particles, bringing us back to
the conjecture of a quantum birth of the universe [201].

The replacement of the topological properties of the manifold (in our case, it is
a 3-sphere) by exterior potentials (fields) is encountered in resolving many problems.
Thus, Rubakov and Shaposhnikov [392] showed that scalar particles, being not too
energetic, could become effectively trapped in a potential wall even in a topologically
trivial universe, although non-trivial classical solutions would have to be present to
play the role of the external field.

4.2.2 The Abbott-Deser superpotential and its generalizations

In the previous applications we considered various physical models in the frame-
work of the field-theoretical approach with using a flat background only. However,
possibilities of themethod are clearly wider because arbitrary curved solutions to gen-
eral relativity can be used as background solutions for describing perturbations. The
most popular curved backgrounds in applications are probably the FLRW cosmolo-
gical solution, see the next chapter, and (anti)-de Sitter ((A)dS) spaces. Both of them
are frequently used for describing various kinds of perturbations, see, e. g., [295, 326]
and many references there in. Besides that, the AdS space is probably the most inter-
esting geometry in modern fundamental researches, see, e. g., [412] and references
there in. The last two subsections of this section are devoted to applications of the
field-theoretical methods for describing perturbations in the AdS background.

The AdS and dS solutions have received a lot of attention in the last decades. They
are used in describing both the stage of early universe (so-called inflation scenario,
see [294] and references therein) and the stage of accelerated expansion. Also, the
(A)dS solution is an irreplaceable part of modern theoretical theories and conjectures.
For example (A)dS spaces are known to be dual to conformal field theories in one less
dimension, dubbed as the AdS/CFT conjecture or Maldacena conjecture, see, e. g.,
[26, 257, 307, 464, 465].
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Here, we consider conserved quantities constructed for perturbations on AdS
backgrounds. However, we restrict ourselves to the global conserved quantities con-
structed with the use of surface integrals only. In the present subsection, the main
properties of the AdS solution is outlined, also we construct a family of superpo-
tentials, among of which the famous Abbott-Deser superpotential [1] is presented.
Namely, with the use of these superpotentials, conserved surface integrals are derived.
In Section 4.2.3, we use the constructed superpotentials in order to calculate the total
mass of the Schwarzschild-AdS (S-AdS) black hole. More details on these ideas and
their generalization can be found in the later chapters of this book.

The AdS space is the covering space of the 4-dimensional surface, in a flat 5-
dimensional space with the signature {–, +, +, +, –}, described by the equality (here
we are considering the negative cosmological constant case, not the de Sitter case):

– z20 + z
2
1 + z

2
2 + z

2
3 – z

2
4 = 1/D ≡ –l2. (4.2.6)

The symmetries of this space are the ten rotations and boosts of the initial
5-dimensional embedding space. Thus, the 4-dimensional AdS space, like the
Minkowski space, has a maximal set of Killing vectors. We are only interested in
the timelike Killing vector as it is necessary to construct the total mass of the sys-
tem. Such a global timelike Killing vector mixes z0 and z4, its components are ̄. 5 ={–z4, 0, 0, 0, z0} for which ̄. 25 = –z24–z

2
0 < 0. By (4.2.6), ̄. 5 is timelike everywhere exclud-

ing the point z4 = z0 = 0. Various coordinates can be used on the surface (4.2.6), one
of more popular metrics for the AdS space is

ds2 = –(1 + r2

l2
) c2dt2 + 1

1 + (r2/l2)
dr2 + r2 (d(2 + sin2 (d62) . (4.2.7)

For such a representation, the timelike Killing vector has a form:̄., = {–1,0}. (4.2.8)

All the Killing vectors for the solution (4.2.7) satisfy the standard Killing equation, see
(1.1.70) and (1.2.6):

∇̄(, ̄.-) = 0. (4.2.9)

To make our presentation more universal we consider a field-theoretical formalism
for various types of metric perturbations, see (2.2.120) and (2.2.121). Then, the gen-
eral relativity equations in the field-theoretical form are presented in (2.2.130) where
dynamical variables are represented by the generalized form (2.2.129) for perturba-
tions. Let us adopt this derivation for the AdS background with the metric (4.2.7) and
satisfying the background Einstein equations (2.2.107). Let us represent them again,

R̄,- = Dḡ,-. (4.2.10)
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We rewrite the equations (2.2.130) for the background (4.2.10). For an arbitrary choice
of perturbations the form (2.2.110) is generalized to

GL
,-(h

a) + Dh
a
,- = *ttot,- . (4.2.11)

Here, ha,- is defined in (2.2.129):

h
,-
a ≡ ha 𝜕ḡ,-𝜕ḡa , (4.2.12)

and the linear operator in (4.2.11) generalizes (2.2.27):

GL,-(h
a) ≡ 1

2 (∇̄11ha,- + ḡ,-∇̄13h(a)13 – ∇̄1-h(a),
1 – ∇̄1,h(a)-

1) . (4.2.13)

For the left hand side of (4.2.11) one has the identity that is based on (4.2.10),
analogous to (2.2.111),

∇̄- (GL
,-(h

a) + Dh
a
,-) ≡ 0, (4.2.14)

and, consequently, one has the conservation law analogous to (2.2.112):

∇̄-ttot,- = 0. (4.2.15)

Above, we have shown that in the case of a flat background a desire to construct global
(integral) conserved quantities leads to the possibility to construct surface integrals,
see (3.2.24–3.2.26), or, more generally in covariant form (3.2.27). To derive such integ-
rals it was necessary to assume that the gravitational equations to general relativity in
the field-theoretical form (2.2.105) hold and to contract themwith the Killing vectors of
the Minkowski space. It turns out that an analogous procedure takes place in the case
of the AdS background (4.2.7) satisfying (4.2.10). Below, developing the Abbott-Deser
approach [1], we reproduce this program.

Let us contract the equations (4.2.11) with one of Killing vectors, ̄.-, of AdS
background. Then, using (4.2.9) and (4.2.10), one obtains

(G,-
L (ha) + Dh

,-
a ) ̄.- = ∇̄- ( ̄. [,∇̄1h-]1a – ̄.1∇̄[,

h
-]
(a)1 + h

1[,
a ∇̄1 ̄.-]) = *t,-tot ̄.-. (4.2.16)

Combining the conservation law (4.2.15), the equality (4.2.9) and fact that t,-tot is
symmetrical, one easily obtains

∇̄- (t,-tot ̄.,) = 𝜕- (t,-tot ̄.,) = 0. (4.2.17)

Then, following the way of constructing (1.2.87), one obtains a conserved quantity as

P( ̄. ) = ∫
G
d3xt0-tot ̄.-. (4.2.18)
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Here, G is derived as a spacelike hypersurface defined as x0 = ct = const for the
solution (4.2.7).

Now, let us turn to the equation (4.2.16). The expression under a covariant
divergence is an antisymmetric tensor density of the weight +1:

J ,-(ha) = 1
* ( ̄. [,∇̄1h-]1a – ̄.1∇̄[,

h
-]
(a)1 + h

1[,
a ∇̄1 ̄.-]) , (4.2.19)

which is called a superpotential. Then, the covariant divergence in (4.2.16) can be
exchanged with a partial divergence, and the conserved quantity (4.2.18) can be
expressed through a surface integral:

P( ̄. ) = ∮
𝜕G
dsiJ

0i(ha) (4.2.20)

where dsi is a coordinate element of integration at the boundary 𝜕G, as usual.
In fact, the equation (4.2.19) represents a family of superpotentials for each of

possible definitions of perturbations, h,-a , in (2.2.120), or (2.2.121) for various a. Let us
rewrite the difference for metric perturbations (2.2.131):

12h
,- = h

,-
a2 – h

,-
a1 . (4.2.21)

Because superpotentials in (4.2.19) are linear in perturbations, the difference between
them is linear in 12h

,- also:

BJ ,- = J ,-(ha2) – J ,-(ha1) = J ,-(12h). (4.2.22)

Consequently, the difference of the integrals (4.2.20) is calculated as

BP( ̄. ) = ∮
𝜕G
dsiJ

0i(12h). (4.2.23)

We derive two more interesting superpotentials from the set (4.2.19). One of them
corresponds to the main definition for perturbations in the book,

h
,- = g

,- – ḡ
,-, (4.2.24)

Then, with the use of (4.2.12) one obtains

h
,-
a1 = h

,-, (4.2.25)

and the superpotential (4.2.19) acquires the form:

J ,-(h, ̄. ) = √–ḡ
* ( ̄. [,∇̄1h-]1 – ̄.1∇̄[,h-]1 + h

1[,∇̄1 ̄.-]) , (4.2.26)

where h
,- = √–ḡh,-. For the other popular definition,

𝜘,- = g,- – ḡ,-, (4.2.27)
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one has from (4.2.12),

h
,-
a2 = –√–ḡ (𝜘,- – 1

2 ḡ
,-𝜘11) , (4.2.28)

and the superpotential (4.2.19) acquires the form:

J ,-
AD (𝜘, ̄. ) = √–ḡ

* ( ̄.1∇̄[,𝜘-]1 – ̄. [,∇̄1𝜘-]1 – 𝜘1[,∇̄1 ̄.-]
+ ̄. [,∇̄-]𝜘11 + 1

2𝜘11∇̄[, ̄.-]) . (4.2.29)

The last superpotential is merely the famous Abbott-Deser superpotential [1]. Such
superpotentials can be useful in various researches, for example, Abbott and Deser
with the use of (4.2.29) and supergravity techniques have proved that the AdS space is
stable.

Let us make some remarks.
First, the existence of the family (4.2.19) of superpotentials means that there is an

ambiguity (4.2.22) in their definition and, possibly, an ambiguity (4.2.23) in the defin-
ition of integral conserved quantities for any systems. By construction, we find easily
that all of these follow from an ambiguity in definition of energy-momentum (2.2.133)
that, in the case of the flat background, has been considered by Boulware and Deser
[71]. What can be the criteria for the choice of more preferable ones? The criteria can
be purely fundamental, when a theoretical foundation can help for a choice. In Sec-
tions 6.3.2, 6.3.3 and 6.4.1, the choice (4.2.24) is recognized as more preferable. Criteria
could be found in applications, when known classical solutions are studied, but not
all themembers of the family (4.2.19) give acceptable results, and, those have to be dis-
carded. In theworks [252, 369, 370], calculating the Bondimass flux at null infinity, the
superpotential (4.2.26) with perturbations (4.2.24) has been chosen as a preference.

Second, in spite of the background equations (4.2.10) contain the cosmological
constant D, an expression (4.2.19) does not contain it at all. Besides, for obtaining
(4.2.19) the equations (4.2.10) have been used only, solutions of which are Einstein
spaces, not only AdS ones. Also, one easily finds that (4.2.19) holds even if D = 0 in
(4.2.10). Thus, finally, the expression for a family of superpotentials (4.2.19) holds for
more general background spacetimes: Ricci-flat ones and Einstein spaces.

4.2.3 The total mass of the Schwarzschild-AdS black hole

One of the most known solutions of the vacuum Einstein equations with the cosmolo-
gical constant is the Schwarzschild-AdS (S-AdS) solution:

ds2 = –(1 + r2

l2
–
rg
r
) c2dt2 + 1

1 + r2/l2 – rg/r
dr2 + r2 (d(2 + sin2 (d62) . (4.2.30)

First, this solution is asymptotically AdS; second, one finds easily that in limit l2 → ∞
the solution (4.2.23) reduces to the usual Schwarzschild solution (4.1.3).
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Thus, to describe the solution (4.2.23) in the field-theoretical terms it is natural to
choose the AdS space with the metric (4.2.7) as the background. The non-vanishing
Christoffel symbols for the metric (4.2.7) are

Ā122 = –r(1 + r2

l2
) , Ā133 = –r sin2 ((1 + r2

l2
) , Ā212 = Ā313 =

1
r
,

Ā001 = –Ā111 =
1
r

1(1 + l2
r2 ) , Ā100 =

r
l2
(1 + r2

l2
) ,

Ā233 = – sin ( cos (, Ā323 = cot (. (4.2.31)

The next step is to define field configurations. Here, the definitions (4.2.24) and (4.2.27)
are more relevant. For the first case one obtains

h00 = –
rg
r

1(1 + r2/l2) (1 + r2/l2 – rg/r) ,
h11 = –

rg
r
, (4.2.32)

whereas for the definition (4.2.27) one has

𝜘00 = rg
r
,

𝜘11 = rg
r

1(1 + r2/l2) (1 + r2/l2 – rg/r) . (4.2.33)

To calculate the mass of the S-AdS solution one could substitute (4.2.32) into (4.2.26),
or substitute (4.2.33) into (4.2.29), using the Killing vector (4.2.8) and covariant deriv-
atives constructed with the Christoffel symbols (4.2.31). However, here, we suggest
a more general calculation. Using (4.2.32) and (4.2.33), we can introduce more gen-
eral perturbations defined in (2.2.121). Because for (4.2.7) and (4.2.30), √–g = √–ḡ =
r2 sin (, one has h

,- = g
,- – ḡ

,- = √–ḡh,- with h,- = g,- – ḡ,-. Then the generalized
perturbations (2.2.121) can be rewritten as

h
,-
(m) = (√–ḡ)m (g,- – ḡ,-) = (√–ḡ)mh,-, (4.2.34)

h(n),- = (√–ḡ)n (g,- – ḡ,-) = (√–ḡ)n𝜘,-, (4.2.35)

where h,- and 𝜘,- are defined in (2.2.120). Concretely, for the S-AdS solution the per-
turbations (4.2.34) and (4.2.35) are defined through (4.2.32) and (4.2.33). Then we
transform (4.2.34) and (4.2.35) to the form (4.2.26):

h
,-
(am) = √–ḡ (h,-(m) – 1 –m

2
ḡ,-h1(m)1)

= √–ḡ (h,- – 1 –m
2

ḡ,-h11) , (4.2.36)
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h
,-
(an) = √–ḡ (–h,-(n) + 1 – n

2
ḡ,-h1(n)1)

= √–ḡ (–𝜘,- + 1 – n
2

ḡ,-𝜘11) , (4.2.37)

where h,-(m) = h
,-
(m)/(√–ḡ)m and h,-(n) = h

,-
(n)/(√–ḡ)n.

Now, calculate the total mass with the use of (4.2.20) and (4.2.19) at r → ∞ and
with the Killing vector (4.2.8). As a field configuration we use the general definitions
(4.2.36) or (4.2.37) with (4.2.32) or (4.2.33). All the cases for arbitrarym and n give

P( ̄. ) = mc2 (4.2.38)

which is quite natural and acceptable. A confusion betweenm (number) andm (mass)
has no to be appeared.

Of course, among all the superpotentials of the family (4.2.19), the superpoten-
tials (4.2.26) and (4.2.29) have been used for obtaining (4.2.38). Thus, first, the result
(4.2.38) demonstrates the power of the field-theoretical methods. Second, a calcula-
tion of the total mass (4.2.38) for the S-AdS solution cannot resolve the ambiguity in
the definition of superpotentials in (4.2.19). Third, returning to the Schwarzschild solu-
tion (setting here l2 → ∞), one easily finds that all the different definitions of variables
(4.2.34–4.2.37) give the same result (4.1.12) for the total energy.



5 Field-theoretical derivation of cosmological
perturbations

5.1 Introduction: Post-Newtonian, post-Minkowskian
and post-Friedmanninan approximations
in cosmology

Post-Newtonian celestial mechanics is a branch of fundamental gravitational physics
[77, 79, 267, 417] that deals with the theoretical concepts and experimental methods
of measuring gravitational fields and testing general relativity both in the solar sys-
tem and beyond [80, 462]. In particular, the relativistic celestial mechanics of binary
pulsars (see [297], and references therein) was instrumental in providing conclusive
evidences for the existence of gravitational radiation as predicted by Einstein’s theory
of relativity [421, 458].

Over the last few decades, various groups within the International Astronomical
Union (IAU) have been active in exploring the application of general relativity to the
modelling and interpretation of high-accuracy astrometric observations in the solar
system. A Working Group on Relativity in Celestial Mechanics and Astrometry was
formed in 1994 to define and implement a relativistic theory of reference frames and
time scales. This task was successfully completed with the adoption of a series of res-
olutions on astronomical reference systems, time scales, and Earth rotationmodels by
24-th General Assembly of the IAU, held in Manchester, UK, in 2000. The IAU resolu-
tions are based on the first post-Newtonian approximation of general relativity which
is a conceptual basis of the fundamental astronomy in the solar system [416].

The mathematical formalism of the Post-Newtonian approximations is getting
progressively complicated as one goes from the Newtonian to higher orders [115, 405].
For this reason the theory has been primarily developed for an isolated astronomical
systems with a matter distribution having a compact support and under simplify-
ing assumptions that gravitational field perturbation is weak everywhere, decays
rapidly enough at infinity, and the background spacetime is asymptotically flat. Math-
ematically, it means that the full spacetime metric, g!", is decomposed around the
background Minkowskian metric, '!", into a linear combination

g!" = '!" + *!", (5.1.1)

where the perturbation *!" is represented as the post-Minkowski1 series decomposi-
tion with respect to the powers of the universal gravitational constant,

1 The term “post-Minkowskian” was introduced by Damour and Blanchet [55] to emphasize that the
metric tensor g!" is built as a perturbative series around the Minkowski metric '!", and it does not
assume any limitation on the velocity of matter generating gravitational field.
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*!" = G*!"
(1)

+ G2*!"
(2)

+ G3*!"
(3)

+ . . . , (5.1.2)

where each term, *!"
(k)
, (k = 1, 2, 3, . . .) of the post-Minkowskian series is decomposed

into the post-Newtonian series

*!"
(k)

= c–2*[2]!"
(k)

+ c–3*[3]!"
(k)

+ c–4*[4]!"
(k)

+ . . . , (5.1.3)

with respect to the powers of 1/c, where c is the speed of gravity in general relativity.2

Post-Minkowskian series (5.1.2) is analytic with respect to the parameter G while the
post-Newtonian series (5.1.3) loses analyticity at higher-order approximations where
the backreaction of gravitational radiation becomes important [56].

Post-Newtonian approximations suggest that there exists a method to determ-
ine *!" by doing successive iterations of Einstein’s field equations with the tensor of
energy-momentum of matter field ( of the localized astronomical system, Tp!"(C, g!"),
taken as a source of the gravitational field perturbation *!". The iterations start from
*!" = 0 which is inserted to the expression for Tp!" which becomes a well-defined
function of the matter variables (. Einstein’s equations are solved at the first itera-
tion yielding k!"

(1)
. This solution is substituted back to the tensor Tp!" which is used to

find *!"
(2)
, and so on. The post-Minkowskian solution for the metric perturbations *!"

(k)
naturally depend on the retarded time s = t – r/c which accounts for the finite speed
of propagation of gravity passing the distance r from the mass emitting gravitational
radiation. The post-Newtonian decomposition (5.1.3) of the metric tensor perturba-
tion represents an additional expansion of the retarded functions around the time
event t. Thus, the post-Newtonian expansion assumes r≪ +, where + is a character-
istic wavelength of gravitational radiation. It means that the post-Newtonian series
(5.1.3) is valid only in the near zone of the isolated astronomical system.

The solution of the field equations and the equations of motion of the astronom-
ical bodies are derived in some coordinates r! = {ct, r} where t is the coordinate time,
and r = {x, y, z} are spatial coordinates. The post-Newtonian theory in asymptotically
flat spacetime has a well-defined Newtonian limit determined by:
(1) solution of Poisson’s equation for the Newtonian potential, U ≡ *[2]00

(1)
/2,

U(t, r) = ∫
V

1(t, r󸀠)d3r󸀠
|r – r󸀠| , (5.1.4)

where Tp00(C, '!"), is the mass density of matter producing the gravitational field,

2 A common convention is to call c the speed of light irrespectively of the nature of the funda-
mental interaction under consideration [462] but it may lead to confusion and misinterpretation of
gravitational experiments and astronomical observations [158, 270].
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(2) equation of motion for massive particles

̈r = ∇U, (5.1.5)

where ∇ = {𝜕x, 𝜕y, 𝜕z} is the operator of gradient, r = r(t) is time-dependent posi-
tion of a particle (worldline of the particle), and the dot denotes a total derivative
with respect to time t,

(3) equation of motion for light (massless particles)

̈r = 0. (5.1.6)

These equations are foundational for creation of astronomical ephemerides of celes-
tial bodies in the solar system [79, 267] and in any other localized system of self-
gravitating bodies like a binary pulsar [297]. In all practical cases they have to be
extended to take into account the post-Newtonian corrections sometimes up to the
3-d post-Newtonian order of magnitude [461]. It is important to notice that in the
Newtonian limit the coordinate time t of the gravitational equations of motion (5.1.5),
(5.1.6) coincides with the proper time of observer 4 that is practically measured with
an atomic clock.

So far, the post-Newtonian theory was mathematically successful and passed
through numerous experimental tests with a flying colour. Nevertheless, it hides
several pitfalls. The first one is the problem of convergence of the post-Newtonian
series and regularization of divergent integrals that appear in the post-Newtonian
calculations at higher post-Newtonian orders [405]. The second problem is that the
backgroundmanifold is not asymptotically flat Minkowskian spacetime but the FLRW
metric, ḡ!". We live in the expanding universe which rate of expansion is determined
by the present value H0 of the Hubble parameter H = H(t) depending on time. There-
fore, the right thingwould be to replace the post-Newtonian decomposition (5.1.1) with
a more adequate post-Friedmannian series [435]

g!" = ḡ!" + 𝜘!", (5.1.7)

where

𝜘!" = 𝜘{0}!" + H𝜘{1}!" + H2𝜘{2}!" + . . . , (5.1.8)

is themetric perturbation around the cosmological background represented as a series
with respect to the Hubble parameter, H. Each term of the series has its own expan-
sion into the post Minkowskian/Newtonian series like (5.1.2) and (5.1.3). For example,𝜘{0}!" = *!", and there is no asymptotically flat spacetime analogue to 𝜘{1}!" ,𝜘{2}!" , etc.
Generalization of the theory of Post-Newtonian approximations from the Minkowski
space to that of the expanding universe is important for extending the applicability of
the post-Newtonian celestial dynamics to testing cosmological effects, for more deep
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understanding of the process of formation of large and small scale structure in the
universe and gravitational interaction between pairs of galaxies and their clusters.

Whether cosmological expansion affects gravitational dynamics of bodies inside
a localized astronomical systemwas amatter of considerable efforts ofmany research-
ers [62, 93, 148, 149, 280, 311, 313, 410]. Most of the previous works on celestial
dynamics in cosmology assumed spherical symmetry of matter distribution and grav-
itational fieldwhich allowed to use exact spherically-symmetric solutions of Einstein’s
equations approximating the Schwarzschild solution near the body and a cosmolo-
gical solution far outside of it. Matching of the two solutions in the intermediate
zone was achieved in several different ways but all of them suggest some kind of
a fine tuning of the size of the matching zone to the cosmological parameters and
the mass of the central body. This fine-tuning is physically unrealistic. Furthermore,
real astronomical systems in cosmology (galaxies, clusters, filaments, etc.) have no
spherical symmetry. McVittie’s solution [313] is perhaps the most successful mathem-
atically among the spherically-symmetric approaches but yet lacks a clear physical
interpretation [93].

Cosmological observations are now performed so accurately that we need a pre-
cise mathematical formulation of the post-Newtonian theory for interpretation of
these observations. This theory is not to be limited by the assumption of the spher-
ical symmetry of the isolated astronomical system which must be coupled to the
time-dependent background geometry through the gravitational interaction. Theoret-
ical description of the post-Newtonian dynamics of a localized astronomical system
in expanding universe should correspond in the limit of vanishing H to the post-
Newtonian dynamics in the asymptotically flat spacetime. Such a description will
allow us to directly compare the equations of the standard post-Newtonian celestial
dynamics with its cosmological counterpart. Therefore, the task is to derive a set of
the post-Newtonian equations in cosmology in some coordinates introduced on the
background manifold, and to map them onto the set of the Newtonian equations
(5.1.4–5.1.6) in asymptotically flat spacetime. The post-Newtonian celestial dynamics
would be of a paramount importance for extending the tools of experimental grav-
itational physics to the field of cosmology, for example, to properly formulate the
cosmological extension of the PPN formalism [460]. The present chapter discusses
the main ideas and principal results of such a theoretical approach in the linear-
ized approximationwith respect to the gravitational perturbations of the cosmological
background caused by the presence of a localized astronomical system. The formalism
of the present chapter has been employed in [271] to check the theoretical consistency
of equations (5.1.4–5.1.6) on expanding cosmological background and to analyse the
outcome of some experiments like the excessive Doppler effect discovered by Ander-
son et al. [9, 10] in the hyperbolic motion of Pioneer 10 and 11 space probes in the solar
system.

The original goal in developing the theory of cosmological perturbations was to
relate the physics of the early universe to CMB anisotropy and to explain the formation
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and growth of large-scale structure from a primordial spectrum. The ultimate goal
of this theory is to establish a mathematical link between the fundamental physical
laws at the Planck epoch and the output of the gravitational wave detectors which
are the only experimental devices being capable to measure the parameters and the
state of the universe at that time [263]. Originally, two basic approximation schemes
for calculating cosmological perturbations have been invented by Lifshitz with his
collaborators [292, 293] and, later on, by Bardeen [27]. Lifshitz [292] worked out a
coordinate-dependent theory of cosmological perturbations in a synchronous gauge
while Bardeen [27] concentrated on finding the gauge-invariant combinations for per-
turbed quantities and derivation of a perturbation technique based on gauge-invariant
field equations. At the same time, Lukash [301] had suggested an original approach for
deriving the gauge-invariant scalar equations based on the thermodynamic theory of
the Clebsch potential [411] also known in cosmology as the scalar velocity potential
[282, 411] or the Taub potential [433]. It turns out that the variational principle with
a Lagrangian of cosmological matter formulated in terms of the Clebsch potential,
is the most useful mathematical device for developing the theory of relativistic celes-
tial dynamics of localized astronomical systems embedded in expanding cosmological
manifold [272].

In the years that followed, the gauge-invariant formalism was refined and
improved by Durrer and Straumann [144, 145], Ellis et al. [155–157] and, especially,
by Mukhanov et al. [326, 327]. Irrespectively of the approach a specific gauge must
be fixed in order to solve equations for cosmological perturbations. Any gauge is
allowed and its particular choice is simply a matter of mathematical convenience.
Imposing a gauge condition eliminates four degrees of freedom in the cosmological
metric pertrubations and brings the differential equations for them to a solvable form.
Nonetheless, the residual gauge freedom associated with the tensor nature of the grav-
itational field remains. This residual gauge freedom leads to appearance of spurious
perturbations which must be disentangled from the physical modes. Lifshitz’s theory
of cosmological perturbations [292, 293] is worked out in a synchronous gauge and
contains the spurious modes but they are easily isolated from the physical perturba-
tions and suppressed [200]. The other gauges are described in Bardeen’s article [27]
and used in cosmological perturbation theory as well. Among them, the longitudinal
(conformal or Newtonian) gauge is one of the most common. This gauge is advoc-
ated by Mukhanov [327] because it removes spurious coordinate degrees of freedom
in scalar perturbations. Detailed comparison of the cosmological perturbation theory
in the synchronous and conformal gauges was given by Ma and Bertschinger [302].

Unfortunately, none of the previously known cosmological gauges can be applied
for analysis of the cosmological perturbations caused by localized matter distribu-
tions like an isolated astronomical system which can be a single star, a planetary
system, a galaxy, or even a cluster of galaxies. The reason is that the synchronous
gauge has no Newtonian limit and is applicable only for freely falling test particles
while the longitudinal gauge separates the scalar, vector and tensor modes in the
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metric tensor perturbation in the way that is incompatible with the technique of
the post-Newtonian approximation schemes having been worked out in asymptot-
ically flat spacetime [267]. We also notice that standard cosmological perturbation
technique often operates with harmonic (Fourier) decomposition of both the metric
tensor andmatter perturbations when one is interested in statistical statements based
on the cosmological principle. This technique is unsuitable and must be avoided in
sub-horizon approximation for working out the post-Newtonian celestial dynamics of
self-gravitating isolated systems.

Current paradigm is that the cosmological generalization of the Newtonian field
equations of an isolated gravitating system like the solar system or a galaxy or a cluster
of galaxies can be easily obtained by simply making use of the linear principle of
superposition with a simple algebraic addition of the local system to the tensor of
energy momentum of the background matter. It is assumed that the superposition
procedure is equivalent to operating with the Newtonian equations of motion derived
in asymptotically flat spacetime and adding to them (“by hands”) the tidal force
due to the presence of the external universe (see, for example, [311]). Though such
a procedure may look pretty obvious it lacks a rigorous mathematical analysis of the
perturbations induced on the background cosmological manifold by the local system.
This analysis should be done in the way that embeds cosmological variables to the
field equations of standard Post-Newtonian approximations not by ‘hands’ but by pre-
cise mathematical technique which is the goal of the present chapter. The variational
calculus onmanifolds is themost convenient for joining the standard theory of cosmo-
logical perturbations with the Post-Newtonian approximations in asymptotically flat
spacetime. It allows us to track down the rich interplay between the perturbations
of the background manifold with the dynamic variables of the local system which
cause these perturbations. The output is the system of the post-Newtonian field equa-
tions with the cosmological effects incorporated to them in a physically-transparent
and mathematically-rigorous way. This system can be used to solve a variety of phys-
ical problems starting from celestial dynamics of localised systems in cosmology to
gravitational wave astronomy in expanding universe that can be useful for deeper
exploration on scientific capability of such missions as LISA and Big Bang Observer
(BBO) [110].

In fact, the problem of whether the cosmological expansion affects the long-
term evolution of an isolated N-body system (galaxy, solar system, binary system,
etc.) had a long controversial history. The reason is that there was no an adequate
mathematical formalism for describing the cosmological perturbations caused by an
isolated system so that different authors have arrived to opposite opinions. It seems
that McVittie [313] was first who had considered the influence of the expansion of the
universe on the dynamics of test particles orbiting around a massive point-like body
immersed to the cosmological background. He found an exact solution of the Einstein
equations in his model which assumed that the mass of the central body is not con-
stant but decreases as the universe expands. Einstein and Straus [148, 149] suggested
a different approach to discuss motion of particles in gravitationally self-interacting
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systems residing on the expanding background. They showed that a Schwarzschild
solution could be smoothly matched to the Friedman universe on a spherical surface
separating the two solutions. Inside the surace (“vacuole”) the motion of the test
particles is totally unaffected by the expansion. Thus, Einstein and Straus [148, 149]
concluded that the cosmic expansion is irrelevant for the Solar system. Bonnor [62]
generalized the Einstein-Straus vacuole and matched the Schwarzschild region to
the inhomogeneous Lemaître-Tolman-Bondi model thus, making the average energy
density inside the vacuole be independent of the exterior energy density while in
the Einstein-Straus model they must be equal. Bonnor [62] concluded that the local
systems expand but at a rate which is negligible compared with the general cosmic
expansion. Similar conclusion was reached by Mashhoon et al. [311] who analysed
the tidal dynamics of test particles in the Fermi coordinates.

The vacuole solutions are not appropriate for adequate physical solution of the
N-body problem in the expanding universe. There are several reasons for it. First, the
vacuole is spherically-symmetric while majority of real astronomical systems are not.
Second, the vacuole solution imposes physically unrealistic boundary conditions on
the matching surface that relates the central mass to the size of the surface and to
the cosmic energy density. Third, the vacuole is unstable against small perturbations.
In order to overcome these difficulties a realistic approach based on the approxim-
ate analytic solution of the Einstein equations for the N-body problem immersed
to the cosmological background, is required. In the case of a flat spacetime there
are two the most advanced techniques for finding approximate solution of the Ein-
stein equations describing gravitational field of an isolated astronomical system – the
post-Newtonian and Post-Minkowskian approximations [115] that have been briefly
discussed in introduction. The post-Newtonian approximation technique is applicable
to the systems with weak gravitational field and slow motion of matter. The Post-
Minkowskian approximations also assume that the field is weak but does not imply
any limitation on the speed ofmatter. The post-Newtonian iterations are based on solv-
ing the elliptic-type Poisson equationswhile the post-Minkowskain approach operates
with the hyperbolic-type (wave) D’Alembert equations. The Post-Minkowskian approx-
imations naturally include description of the gravitational radiation emitted by the
isolated system while the post-Newtonian scheme has to use additional mathemat-
ical methods to describe generation of the gravitational waves [97]. In the present
chapter we concentrate on the development of a generic scheme for calculation of
cosmological perturbations caused by a localized distribution of matter (small-scale
structure) which preserves many advantages of the post-Minkowskian approximation
scheme. The cosmological Post-Newtonian approximations are derived from the post-
Minkowskian perturbation scheme by making use of the slow-motion expansion with
respect to a small parameter v/c where v is the characteristic velocity of matter in the
N-body system and c is the fundamental speed.

There were several attempts to work out a physically-adequate and mathema-
tically-rigorous approximation schemes in general relativity in order to construct and
to adequately describe dynamics of small-scale structures in the universe. The most
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notable work in this direction has been done by Kurskov and Ozernoy [281], Futamase
et al. [43, 182, 183, 431], Buchert and Ehlers [82, 147], Mukhanov et al. [2, 325–327],
Zalaletdinov [469]. These approximation schemes have been designed to track the
temporal evolution of the cosmological perturbations from a very large down to a
small scale up to the epoch when the perturbation becomes isolated from the expand-
ing cosmological background. These approaches looked hardly connected between
each other until recent works by Clarkson et al. [106, 107], Li and Schwarz [288, 289],
Räsänen [383], Buchert and Räsänen [83], Wiegand and Schwarz [459]. In particular,
Wiegand and Schwarz [459] have shown that the idea of cosmic variance (that is a
standard way of thinking) is closely related to the cosmic averages defined by Buch-
ert and Ehlers [82, 147]. All researchers agree that the Post-Newtonian approximations
are important to understand the backreaction of the cosmological perturbations on
the expansion rate of the universe [2, 182, 241, 242, 326, 469]).

Development of observational cosmology and gravitational wave astronomy
demands to extend the linearized theory of cosmological perturbations to second and
higher orders of approximation. A fair number of works have been devoted to solving
this problem. Non-linear perturbations of the metric tensor and matter affect evolu-
tion of the universe and this backreaction of the perturbations should be taken into
account. This requires derivation of the effective stress-energy tensor for cosmolo-
gical perturbations formed by freely-propagating gravitational waves and scalar field
[2, 325–327]. The conservation laws for the effective stress-energy tensor are important
for derivation of the post-Newtonian equations of motion of the isolated astronomical
system.

In the present chapter we construct a non-linear theory of successive cosmo-
logical perturbations for isolated systems which generalizes the post-Minkowskian
approximation scheme in asymptotically flat spacetime. As a mathematical founda-
tion we use the Lagrangian-based theory of dynamical perturbations of gravitational
field on a curved background, see the field-theoretical formulation of general relativ-
ity developed in Section 2.2. Let us list its specific advantages more important for the
study in the present chapter:
(i) Lagrangian-based approach is covariant and can be implemented for any

curved background spacetime that is a solution of the Einstein gravity field
equations;

(ii) the system of the partial differential equations describing dynamics of the
perturbations is determined by a dynamic Lagrangian L dyn which is derived
from the total Lagrangian of general relativity, LHE, defined in (1.3.16). The
presentation is exact, but one can use Taylor expansions with respect to the
perturbations and accounting for the background field equations.

(iii) The dynamic Lagrangian L dyn defines the conserved currents for the perturba-
tions. Energy, angular momentum, etc. can be constructed, if the symmetries of
the background manifold exist;

(iv) the dynamic Lagrangian L dyn and the corresponding field equations for the
perturbations are gauge-invariant in any order of the perturbation theory.
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Gauge transformations map the background manifold onto itself and are asso-
ciated with arbitrary (analytic) coordinate transformations on the background
spacetime;

(v) the entire perturbation theory is self-reproductive and is extended to the next
perturbative order out of a previous iteration by making use of the same
equations with a corresponding substitution of quantities from the previous
iteration. The linearized approximation is the basic starting point of the theory.

Perhaps, it would be more appropriate to call the perturbative technique explained
in this chapter as the post-Friedmannian approximations – the term proposed by
Tegmark [435]. However, we shall continue to use the conventional name of post-
Newtonian approximations to emphasize that it is applicable not only to large-scale
perturbations but also to the discussion of formation and dynamics of small-scale
structures in cosmology – the topic being intimately related to relativistic celestial
mechanics.

Because the chapter is quite complicated we present now its organization. Section
5.2 introduces the Lagrangian of gravitational field and matter of the background cos-
mological model as well as the Lagrangian of an isolated astronomical system which
perturbs the background cosmological manifold. Section 5.3 describes the geometric
structure of the background spacetime manifold of the cosmological model and the
corresponding equations of motion of the matter and field variables. Section 5.4 intro-
duces the reader to the theory of the Lagrangian perturbations of the cosmological
manifold and the dynamic variables. Section 5.5 makes use of the preceding sections
in order to derive the field equations in the gauge-invariant form. Beginning from Sec-
tion 5.6 we focus on the spatially-flat universe in order to derive the post-Newtonian
field equations that generalize the post-Newtonian equations in the asymptotically flat
spacetime. These equations are coupled in the scalar sector of the proposed theory.
Therefore, we consider in Section 5.7 a few particular cases when the equations can be
fully decoupled one from another, and solved in terms of the retarded potentials.

The present chapter is very rich in notations, but one can be convinced that there
is no confusion with the other notations in the book. Also, every time, when there is
no confusion about the system of units, we shall choose, as usual here, a geometrized
system of units such that G = c = 1.

Notations
– ḡ!" is the FLRWmetric on the background spacetime manifold;
– f!" is the metric on the conformal spacetime manifold: ḡ!" = a(')f!";
– T and Xi ≡ {X,Y, Z} are the coordinate time and isotropic spatial coordinates on

the background FLRWmanifold;
– X! ≡ {X0,Xi} = {c',Xi} are the conformal coordinates with ' being a conformal

time;
– a prime Q󸀠 ≡ dQ/d' denotes a total derivative with respect to the conformal

time ';
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– a dot Q̇ ≡ dQ/dT denotes a total derivative with respect to the cosmic time T;
– a vertical bar, Q|! denotes a covariant derivative of a tensor quantity Q with

respect to the background metric ḡ!";
– a semicolon,Q;! denotes a covariant derivative of a tensor quantityQwith respect

to the conformalmetricf!"; it will be no confusionwith a covariant derivativewith
respect to a flat spacetime metric '!";

– the tensor indices of geometric objects on the conformal spacetime are raised and
lowered with the conformal metric f!";

– the scale factor of the FLRWmetric is denoted as R ≡ R(T), or as a ≡ a(') = R[T(')];
it will be no confusion with a scalar curvature in a dynamic spacetime in general
relativity;

– the Hubble parameter, H ≡ Ṙ/R, and the conformal Hubble parameter,H = a󸀠/a.

5.2 Lagrangian and field variables

Basing on general relativity, we consider a universe filled up with matter consisting
of three components. The first two components are: (1) an ideal fluid composed of
particles of one type with transmutations excluded; (2) a scalar field; and (3) a mat-
ter of the localized astronomical system. The ideal fluid consists of baryons and cold
dark matter, while the scalar field describes dark energy [7]. We assume that these
two components do not interact with each other directly, and are the source of the
Friedmann-Lemître-Robertson-Walker (FLRW) geometry. There is no dissipation in the
ideal fluid and in the scalar field so that they can only interact through the gravita-
tional field. It means that the equations of motion for the fluid and the scalar field
are decoupled in the main approximation, and we can calculate their evolution sep-
arately. Mathematically, it means that the Lagrangian of the ideal fluid and that of the
scalar field depend only on their own field variables and the metric tensor.

The tensor of energy-momentum of matter of the localized astronomical system is
not specified in agreement with the approach adopted in the post-Newtonian approx-
imation scheme developed in the asymptotically flat spacetime [115, 269]. This allows
us to generate all possible types of cosmological perturbations: scalar, vector and
tensor modes. We are the most interested in developing our formalism for application
to the astronomical system ofmassive bodies bound together by intrinsic gravitational
forces like the solar system, galaxy, or a cluster of galaxies. It means that our approach
admits a large density contrast between the background matter and the matter of the
localized system. The localized system perturbs the background matter and gravita-
tional field of FLRW metric locally but it is not included to the matter source of the
background geometry, at least, in the approximation being linearized with respect
to the metric tensor perturbation. Our goal is to study how the perturbations of the
background matter and gravitational field are incorporated to the gravitational field
perturbations of the standard post-Newtonian theory of relativistic celestial dynamics.

Let us now consider the action functional and the Lagrangian of each component.
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5.2.1 Action functional

We consider a theory with the Hilbert-Einstein action (2.2.1), let us rewrite it:

S = ∫
K
d4xL HE = – 1

160 ∫
K
d4xL H + ∫

K
d4xL M . (5.2.1)

The Lagrangian, here, is specified in a more concrete form. Thus, for matter sources:

L M = L m + L q + L p, (5.2.2)

where L m, L q are Lagrangians of the dark matter, and the scalar field that governs
the accelerated expansion of the universe [197], and L p is the Lagrangian describing
the source of the cosmological perturbations. Gravitational field Lagrangian is defined
by the Hilbert Lagrangian (1.3.1):

L H = √–gR = R. (5.2.3)

Correct choice of the matter variables is a key element in the development of the
Lagrangian theory of the post-Newtonian perturbations of the cosmological mani-
fold caused by a localized astronomical system. Already the Lagrangian treatment of
ideal fluid and scalar field in the Minkowski space has been given in Section 1.2.5,
where the accent is related to constructing conserved quantities. Below we provide
this treatment in a curved spacetime of general relativity with the action (5.2.1).

5.2.2 Lagrangian of the ideal fluid

The ideal fluid is characterized by the following thermodynamic parameters: the
rest-mass density 1m, the specific internal energy Fm (per unit of mass), pressure
pm, and entropy sm where the sub-index “m” stands for “matter”. We shall assume
that the entropy of the ideal fluid remains constant, that excludes it from further
consideration. The standard approach to the theory of cosmological perturbations
preassumes that the constant entropy excludes rotational (vector) perturbations of
the fluid component from the start, and only scalar (adiabatic) perturbations are gen-
erated [7, 327, 456, 457]. However, the present chapter deals with the cosmological
perturbations that are generated by a localized astronomical system described by its
own Lagrangian (see Section 5.2.4) which is left as general as possible. This leads to
the tensor of energy-momentum of thematter of the localized system that incorporates
the rotational motion of matter which is the source of the rotational perturbations of
the background ideal fluid. This extrapolates the concept of the gravitomagnetic field
of the post-Newtonian dynamics of localized systems in the asymptotically flat space-
time [79, 105, 267] to cosmology. Further details regarding the vector perturbations are
given in Section 5.5.5 of the present chapter.
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The total energy density of the fluid

:m = 1m(1 + Fm). (5.2.4)

One more thermodynamic parameter is the specific enthalpy of the fluid defined as

,m = :m + pm
1m

= 1+ Fm + pm
1m

. (5.2.5)

In the most general case, the thermodynamic equation of state of the fluid is given by
equation pm = pm(1m,Fm), where the specific internal energyFm is related to pressure
by the first law of thermodynamics.

Since the entropy has been assumed to be constant, the first law of thermodynam-
ics reads

dFm + pmd( 1
1m

) = 0. (5.2.6)

It can be used to derive the following thermodynamic relationships

dpm = 1md,m, (5.2.7)

d:m = ,md1m, (5.2.8)

which means that all thermodynamic quantities are solely functions of the specific
enthalpy ,m, for example, 1m = 1m(,m), Fm = Fm(,m), etc. The equation of state is
also a function of the variable ,m, that is

pm = pm(,m). (5.2.9)

Derivatives of the thermodynamic quantities with respect to ,m can be calculated by
making use of equations (5.2.7) and (5.2.8), and the definition of the (adiabatic) speed
of sound vs of the fluid

𝜕pm𝜕:m =
v2s
c2
, (5.2.10)

where the partial derivative is taken under a condition that the entropy, sm, of the fluid
does not change. Then, the derivatives of the thermodynamic quantities take on the
following form

𝜕pm𝜕,m = 1m,
𝜕:m𝜕,m = c2

v2s
1m,

𝜕1m𝜕,m = c2

v2s
1m
,m

, (5.2.11)

where all partial derivatives are performed under the same condition of constant
entropy.
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The Lagrangian of the ideal fluid is usually taken in the form of the total energy
density, L̃ m = √–g:m [315]. However, this form is less convenient for applying
the variational calculus on manifolds. The above thermodynamic relationships and
the integration by parts of the action (5.2.1) allows us to recast the Lagrangian, L̃ m, to
the form of pressure, L m = –√–gpm, so that the Lagrangian density becomes

L m = –√–gpm = √–g (:m – 1m,m) . (5.2.12)

Theoretical description of the ideal fluid as a dynamic system on spacetime manifold
is given themost conveniently in terms of the Clebsch potential,Iwhich is also called
the velocity potential [411]. In the case of a single-component ideal fluid the Clebsch
potential is introduced by the following relationship

,mw! = –I,!. (5.2.13)

In fact, equation (5.2.13) is a solution of relativistic equations of motion of the ideal
fluid [282].

The Clebsch potential is a primary field variable in the Lagrangian description of
the isentropic ideal fluid. The four-velocity is normalized to w!w! = g!"w!w" = –1, so
that the specific enthalpy can be expressed in the following form

,m = √–g!"I,!I,". (5.2.14)

One may also notice that

,m = w!I,!. (5.2.15)

It is important to notice that the Clebsch potential I has no direct physical meaning
as it can be changed to another value I → I󸀠 = I + Ĩ such that the gauge function,
Ĩ, is constant along the worldlines of the fluid: w!Ĩ,! = 0.

In terms of the Clebsch potential the Lagrangian (5.2.12) of the ideal fluid is

L m = √–g (:m – 1m√–g!"I,!I," ) . (5.2.16)

Metrical tensor of energy-momentum of the ideal fluid is obtained by taking a
variational derivative of the Lagrangian (5.2.16) with respect to the metric tensor,

Tm!" =
2√–g $L m

$g!"
. (5.2.17)

Calculation yields

Tm!" = (:m + pm)w!w" + pmg!", (5.2.18)
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where w! = dx!/d4 is the four-velocity of the fluid, and 4 is the proper time of the fluid
element taken along its worldline. This is a standard form of the tensor of energy-
momentum of the ideal fluid [315]. Because the Lagrangian (5.2.16) is expressed in
terms of the dynamical variable I, the Noether approach based on taking the vari-
ational derivative of the Lagrangian with respect to the field variable, can be applied
to derive the canonical tensor of the energy-momentum of the ideal fluid. This calcu-
lation has been done in [267, pp. 334–335 ] and it leads to the expression (5.2.18). It
could be expected because we assumed that the ideal fluid consists of bosons. The
metrical and canonical tensors of energy-momentum for the liquid differ, if and only
if, the liquid’s particles are fermions (see [267, pp. 331–332] for more detail). We do not
consider the fermionic liquids in the present chapter.

5.2.3 Lagrangian of scalar field

The Lagrangian of the scalar fieldJ is given by

L q = √–g ( 1
2
g!"𝜕!J𝜕"J +W) , (5.2.19)

where W ≡ W (J) is a potential of the scalar field. We assume that there is no direct
coupling between the scalar field and the matter of the ideal fluid. They can interact
only through the gravitational field. Many different potentials of the scalar field are
used in cosmology [7]. At this step, we do not chose a specific form of the potential
which will be selected later.

Metrical tensor of energy-momentum of the scalar field is obtained by taking a
variational derivative

Tq!" =
2√–g $L q

$g!"
, (5.2.20)

that yields

Tq!" = 𝜕!J𝜕"J – g!"[ 12g,-𝜕,J𝜕-J +W(J)]. (5.2.21)

The canonical tensor of energy-momentum of the scalar field is obtained by applying
the Noether theorem and leads to the same expression (5.2.21).

One can formally reduce the tensor (5.2.21) to the form similar to that of the ideal
fluid by making use of the following procedure. First, we define the analogue of the
specific enthalpy of the scalar field “fluid”

,q = √–g3-𝜕3J𝜕-J, (5.2.22)

and the effective four-velocity, v!, of the “fluid”

,qv! = –𝜕!J. (5.2.23)
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The four-velocity v! is normalized to v!v! = –1. Therefore, the scalar field enthalpy ,q
can be expressed in terms of the partial derivative from the scalar field

,q = v!𝜕!J. (5.2.24)

Then, we introduce the analogue of the rest mass density 1q of the scalar field “fluid”
by defining,

1q ≡ ,q = v!𝜕!J = √–g3-𝜕3J𝜕-J. (5.2.25)

As a consequence of the above definitions, the energy density, :q and pressure pq of
the scalar field “fluid” can be introduced as follows

:q ≡ –1
2
g3-𝜕3J𝜕-J +W(J) = 1

2
1q,q +W(J), (5.2.26)

pq ≡ –1
2
g3-𝜕3J𝜕-J –W(J) = 1

2
1q,q –W(J). (5.2.27)

One notices that a relationship

,q =
:q + pq
1q

, (5.2.28)

between the specific enthalpy ,q, the density 1q, the pressure pq and the energy dens-
ity :q, of the scalar field “fluid” formally holds on the same form (5.2.5) as in the case
of the barotropic ideal fluid.

After applying the above-given definitions in equation (5.2.21), it is formally
reduced to the tensor of energy-momentum of an ideal fluid

Tq!" = (:q + pq) v!v" + pqg!". (5.2.29)

It is worth emphasizing that the analogy between the tensor of energy-momentum
(5.2.29) of the scalar field “fluid” with that of the barotropic ideal fluid (5.2.18) is rather
formal since the scalar field, in the most general case, does not satisfy all required
thermodynamic equations because of the presence of the potential W = W(J) in the
energy density :q, and pressure pq of the scalar field. For example, equation of con-
tinuity (5.3.66) for scalar field differs from that for the ideal fluid (5.3.58) if the potential
W(J) ̸= 0.

5.2.4 Lagrangian of a localized astronomical system

The Lagrangian L p of matter of a localized astronomical system (a small-scale struc-
ture inhomogeneity) which perturbs the geometry of the background manifold of
the FLRW metric, can be chosen arbitrary. We shall call the perturbation of the
background manifold that is induced by L p, the bare perturbation. We assume that
the matter of the bare perturbation is described by a (multi-component) field variable,
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C, which physical meaning depends on a specific problem we want to solve. The Lag-
rangian density of the bare perturbation is given by L p = √–gLp (C, g!"). Tensor of
energy-momentum of the matter of the bare perturbation, Tp!", is obtained by taking a
variational derivative

Tp!" =
2√–g $L p

$g!"
. (5.2.30)

Tensor Tp!" is a source of the small-scale gravitational perturbation of the back-
groundmanifold that is associated with a particular solution of the linearised Einstein
equations which will be derived in next sections.

5.3 Background manifold

5.3.1 Hubble flow

We shall consider the background universe as described by the Friedmann-Lemître-
Robertson-Walker (FLRW) metric. The functional form of the metric depends on the
coordinates introduced on the manifold. Because the FLRW metric describes homo-
geneous and isotropic spacetime there is a preferred class of coordinates which clearly
reveal these properties of the background manifold. These coordinates materialize a
special set of freely falling observers, called comoving observers. These observers are
following with the flow of the expanding universe and have constant values of spatial
coordinates. The proper distance between the comoving observers increases in pro-
portion to the scale factor R(T). In the preferred cosmological coordinates, the time
coordinate of the FLRW metric is just the proper time as measured by the comoving
observers. A particle moving relative to the local comoving observers has a peculiar
velocity with respect to the Hubble flow. An observer with a non-zero peculiar velocity
does not see the universe as isotropic.

For example, the peculiar velocity of the solar system implies the dipole aniso-
tropy of cosmic microwave background (CMBR) radiation corresponding to |v⊙| =
369.0 ± 0.9 km⋅s–1, towards a point with the galactic coordinates (l, b) = (264∘, 48∘)
[234, 246]. Such a solar system’s velocity implies a velocity |vLG| = 627 ± 22 km⋅s–1
toward (l, b) = (276∘, 30∘) for our Galaxy and the Local Group of galaxies relative
to the CMBR [177, 262]. The existence of the preferred frame in cosmology should
not be understood as a violation of the Einstein principle of relativity. Indeed, any
coordinate chart can be used in order to describe the FLRW metric. A preferred frame
exists merely because the FLRW metric admits only six-parametric group (3 spatial
translations and 3 spatial rotations) as contrasted with the ten-parametric group of
Minkowski (or De Sitter) spacetime which includes the time translation and three
Lorentz boosts as well. The metric of FLRW does not remain invariant with respect
to the time translation and the Lorentz transformations because its expansion makes
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different spacelike hypersurfaces non-equivalent. It may lead to some interesting
observational predictions of cosmological effects within the solar system [271].

5.3.2 Friedmann-Lemître-Robertson-Walker metric

In what follows, we shall consider the problem of calculation of the post-Newtonian
perturbations in the expanding universe described by the FLRW class of models. The
FLRW metric is an exact solution of Einstein’s field equations of general relativity
that describes a homogeneous, isotropically expanding or contracting universe. The
general form of the metric follows from the geometric properties of homogeneity and
isotropy of the manifold [456, 457]. Einstein’s equations are only needed to derive the
scale factor of the universe as a function of time.

The most general form of the FLRWmetric is given by

ds2 = –dT2 + R2 [ d12
1 – k12 + 1

2 (d2; + sin2 ;d25)] , (5.3.1)

where T is the coordinate time, {1, ;, 5} are spherical coordinates, R = R(T) is the
scale factor depending on time and characterizing the size of the universe compared
to the present value of R = 1. The time T has a physical meaning of the proper time
of a comoving observer that is being at rest with respect to the cosmological frame of
reference. The present epoch corresponds to the value of the time T = T0. The constant
k can take on three different values k = {–1, 0, +1}, where k = –1 corresponds to the
spatial hyperbolic geometry, k = 0 does the spatially flat FLRW model, and k = +1
does the spatially closed world [315].

The Hubble parameter H characterizes the rate of the temporal evolution of the
universe. It is defined by

H ≡ Ṙ
R
= 1
R
dR
dT

. (5.3.2)

For mathematical reasons, it is convenient to introduce a conformal time, ', via
differential equation

d' = dT
R(T)

. (5.3.3)

If the time dependence of the scale factor is known, the equation (5.3.3) can be solved,
thus, yielding T = T('). It allows us to re-express the scale factor R(T) in terms of the
conformal time, R (T(')) ≡ a('). The conformal Hubble parameter is, then, defined as

H ≡ a󸀠

a
= 1
a
da
d' . (5.3.4)
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The two expressions for the Hubble parameters are related by means of equation

H = H

a
, (5.3.5)

that allows us to link their time derivatives

a2Ḣ = H 󸀠 – H 2, (5.3.6)

a3Ḧ = H 󸀠󸀠 – 4H H 󸀠 + 2H 3, (5.3.7)

and so on.
It is also convenient to introduce the isotropic Cartesian coordinates Xi = {X,Y, Z},

by transforming the radial coordinate

1 = r

1 + k
4
r2
, (5.3.8)

and defining r2 = X2 + Y2 + Z2 = $ijXiXj. In the isotropic coordinates the interval (5.3.1)
takes on the following form

ds2 = ḡ!"dX
!dX", (5.3.9)

where the coordinates X! = {X0,X1,X2,X3} = {',X,Y, Z}, and the metric has a
conformal form

ḡ!" = a2(')g!" (5.3.10)

g00 = –1, g0i = 0, gij =
$ij(1 + k
4
r2)2 . (5.3.11)

The spacetime interval (5.3.9) in the isotropic Cartesian coordinates reads

ds2 = a2(')
[[[[[
–d'2 +

$ijdXidXj(1 + k
4
r2)2

]]]]]
. (5.3.12)

The distinctive property of the isotropic coordinates in the FLRW metric is that the
radial coordinate r is defined in such a way that the three-dimensional space looks
exactly Euclidean and null cones appear in it as round spheres irrespectively of the
value of the space curvature k. The isotropic coordinates do not represent proper
distances on the sphere, nor does the radial coordinate r represents a proper radial
distance measured with the help of radar astronomy technique. The proper spatial
distance in the isotropic coordinates is (1 + kr2/4)–1ar [456].
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The FLRWmetric presented in the conformal form by equation (5.3.12) singles out
a preferred cosmological reference frame defined by the congruence of worldlines
of the fiducial test particles being at rest with respect to the spatial coordinates Xi.
Four-velocity of a fiducial particle is denoted as Ū! = dX!/d4, where d4 = –ds is
the proper time on the worldline of the particle. In the isotropic conformal coordin-
ates, Ū! = (1/a, 0, 0, 0). The four-velocity is a unit vector, Ū!Ū! = ḡ!"Ū!Ū" = –1. It
implies that the covariant components of the four-velocity are Ū! = (–a, 0, 0, 0). In
the preferred frame the universe looks homogeneous and isotropic. The choice of the
isotropic Cartesian coordinates reflects these fundamental properties explicitly in the
symmetric form of the metric (5.3.10). However, the set of the fiducial particles is a
mathematical idealization. In reality, any isolated astronomical systems (galaxy, bin-
ary star, the solar system, etc.) have a peculiar velocity with respect to the preferred
cosmological frame formed by the Hubble flow. We have to introduce a locally-inertial
coordinate chart which is associated with the isolated system andmoves along with it.
Transformation from the preferred cosmological frame to the local chart must include
the Lorentz boost and a geometric part due to the expansion and curvature of cosmolo-
gical spacetime. It can take on multiple forms which originate from certain geometric
and/or experimental requirements [93, 101, 237, 259].

We do not impose specific limitations on the choice of coordinates on the back-
ground manifold and keep the overall formalism of the Post-Newtonian approxima-
tions, covariant. The arbitrary coordinates are denoted as x! = (x0, xi) and they are
related to the preferred isotropic coordinates X! = (',Xi) by the coordinate transform-
ation x! = x! (X"). This transformation has inverse X! = X! (x"), at least in some local
domain of the background manifold. In this domain, the matrices of the coordinate
transformations

D!
" =

𝜕x!𝜕X" , M!
" =

𝜕X!𝜕x" , (5.3.13)

and they satisfy to the apparent equalities D!𝛾M𝛾" = $!" and M
!
𝛾D𝛾" = $!".

Four-velocity of the Hubble observers written in the arbitrary coordinates has the
following form

ū! = D!
"Ū

" = a–1D!
0, ū! = M"

!U" = –aM0
!. (5.3.14)

The background FLRW metric (5.3.10) written down in the arbitrary coordinates, x!,
takes on the following form

ḡ!"(x
!) = a2f̄!"(x

!). (5.3.15)

Here the scalar function a(x!) ≡ a ['(x!)], and the conformal metric

f̄!"(x
!) = M,

!M
-
"g,-(X

i). (5.3.16)
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Anymetric admits 1+3 decomposition with respect to a congruence of a timelike vector
field [315]. FLRWmetric admits a privileged congruence formed by the four-velocity ū!

of the Hubble observers which is a physically privileged vector field. The 1+3 decom-
position of the FLRW metric is applied in arbitrary coordinates and has the following
form

ḡ!" = –ū!ū" + P̄!", (5.3.17)

where the tensor

P̄!" = a2Mi
!M

j
"gij, (5.3.18)

describes the metric on the spacelike hypersurface being everywhere orthogonal to
the four-velocity ū! of the Hubble flow. Tensor P̄!" is the operator of projection on this
hypersuface. It can be also interpreted as a metric on the hypersurace of orthogonal-
ity to the Hubble vector flow. Equation (5.3.17) can be used in order to prove that P̄!"
satisfies the following relationship

P̄",P̄"
- = P̄,-, (5.3.19)

which can be confirmed by inspection. The trace P̄!! = ḡ!"P̄!" = P̄!"P̄!" = 3.
Now, we consider how to express the partial derivatives of any scalar function

F = F('), which depends only on the conformal time ' = '(x!), in terms of the four-
velocity ū! of the Hubble flow. Taking into account that ' = x0 and applying equation
(5.3.14), we obtain

F,! =
𝜕F𝜕x! = dF

d'
𝜕'𝜕x! = F󸀠M0

! = –F
󸀠

a
ū! = –Ḟū!. (5.3.20)

In particular, the partial derivative from the scale factor, a,! = –ȧū! = –H ū!, and the
partial derivative from the Hubble parameter H,! = –Ḣ ū!.

5.3.3 Christoffel symbols and covariant derivatives

In the following sections of the chapter we will need to calculate the covariant derivat-
ives from various geometric objects on the background cosmologicalmanifold covered
by an arbitrary coordinate chart x! = (x0, xi). The calculation engages the affine
connection Ā!"𝛾 (the Christoffel symbols) of the backgroundmanifold which is decom-
posed into an algebraic sum of two parts because of the conformal structure of the
FLRWmetric [453]. By definition (see, for example, (A.2.2) for a dynamic metric),

Ā!"𝛾 =
1
2
ḡ!- (ḡ-",𝛾 + ḡ-𝛾," – ḡ"𝛾,-) , (5.3.21)
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where, in our specific consideration,

ḡ!",𝛾 = –2Hḡ!"ū𝛾 + a
2
f̄!",𝛾. (5.3.22)

Separating terms at the right side side of (5.3.21) yields

Ā!"𝛾 = Ā!"𝛾 + B̄
!
"𝛾, (5.3.23)

where

Ā!"𝛾 = –H ($!"ū𝛾 + $!𝛾ū" – ū!ḡ"𝛾) (5.3.24)

is a tensor with transformation properties (A.1.16), whereas

B̄!"𝛾 =
1
2
f̄
!, (f̄,",𝛾 + f̄,𝛾," – f̄"𝛾,,) (5.3.25)

is left a connection with transformation properties (A.2.3). The non-vanishing com-
ponents of (5.3.24) and (5.3.25) are given in the isotropic Cartesian coordinates X! by

Ā!0" = H $!", Ā0ij = H gij, B̄ipq = –k
2
$ipXq + $iqXp – $pqXi

1 + k
4
r2

, (5.3.26)

where Xq ≡ $qjXj, and all the other components vanish.
A covariant derivative of a tensor density in a dynamic spacetime is given in

(A.2.5). In this chapter, a covariant derivative on a curved background, ∇̄", is only a
covariant derivative on the FLRW backgroundmanifold. It is defined, of course, by the
same way, however here, for the sake of simplification in the writing it is denoted with
a vertical bar. For example, the covariant derivative of a vector field F! is

F!|" = F!," + Ā!"𝛾F𝛾. (5.3.27)

Equation (5.3.27) can be brought to yet another form if we denote the covariant deriv-
ative of the affine connection B̄!"𝛾 with a semicolon; in this chapter there is no a
confusion with the cases in other chapters of the book where a semicolon means a
covariant derivatives in the Minkowski space in curved coordinates. Making use of
(5.3.23) in equation (5.3.27) transforms it to the following form

F!|" = F!;" + Ā
!
"𝛾F
𝛾. (5.3.28)

The covariant derivative of a covector F! is defined in a similar way,

F!|" = F!," – Ā𝛾!"F𝛾 (5.3.29)
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which is equivalent to

F!|" = F!;" – Ā
𝛾
!"F𝛾, (5.3.30a)

F!;" = F!," – B̄
𝛾
!"F𝛾. (5.3.30b)

Equations for tensors of higher rank can be presented in a similar way. Of course, the
covariant derivative of a scalar field F always coincides with its covariant derivative by
definition,

F|! = F;! = F,!. (5.3.31)

We also provide an equation for the covariant derivative of the four-velocity of
the Hubble flow. Doing calculations in the isotropic coordinates X! for the four-
velocity Ū!, and applying the tensor law of transformation to arbitrary coordinates
x!, results in

ū!|" = HP̄!", ū!|" = H ($a" + ū!ū") , ū!|" = HP̄!", (5.3.32)

where the tensor indices are raised and lowered with the metric ḡ!".

5.3.4 Riemann tensor

The Riemann tensor for the FLRW background is defined, as usual (A.2.15), by

R̄!",- = Ā!"-,, – Ā!",,- + Ā!,𝛾Ā𝛾"- – Ā!-𝛾Ā𝛾", (5.3.33)

and can be calculated directly from this equation. We prefer a slightly different way by
making use of the algebraic decomposition of the Riemann tensor into the irreducible
parts

R̄!",- = C̄!",- +
1
2
(S̄!,ḡ"- + S̄"-ḡ!, – S̄!-ḡ", – S̄",ḡ!-)

+ R̄
12

(ḡ!,ḡ"- – ḡ!-ḡ",) , (5.3.34)

where C̄!",- is the Weyl tensor,

S̄,- = R̄,- –
1
4
R̄ḡ,-, (5.3.35)

R̄,- = ḡ!"R̄!,"- is the Ricci tensor, and R̄ = ḡ!"R̄!" is the Ricci scalar. TheWeyl tensor of
a conformally-flat spacetime vanishes identically,

C̄!",- ≡ 0. (5.3.36)
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Therefore, FLRW cosmological metric (5.3.1) has a remarkable property – it can be
always brought up to the conformally-flat form by applying an appropriate coordinate
transformation [239].

Direct evaluation of other tensors entering (5.3.34) by making use of the FLRW
metric (5.3.10), (5.3.11) yields

R̄,- =
1
a2

[H 󸀠 (ḡ,- – 2ū,ū-) + 2 (H 2 + k) (ḡ,- + ū,ū-)] , (5.3.37)

S̄,- =
2
a2

(–H 󸀠 + H 2 + k) (ū,ū- + 1
4
ḡ,-) , (5.3.38)

R̄ = 6
a2

(H 󸀠 + H 2 + k) . (5.3.39)

Making use of equations (5.3.36–5.3.39) in the decomposition (5.3.34) of the Riemann
tensor, yields the following result

R̄!",- =
1
a2

[H 󸀠 (ḡ!,ḡ"- – ḡ!-ḡ",) – (H 󸀠 – H 2 – k) (P̄!,P̄"- – P̄!-P̄",)] , (5.3.40)

where

P̄!" = ḡ!" + ū!ū", (5.3.41)

is the operator of projection that was introduced earlier in (5.3.18).

5.3.5 The Friedmann equations

The Einstein tensor Ḡ!" ≡ R̄!"– ḡ!"R̄/2 of the FLRW cosmological model is derived from
equations (5.3.37) and (5.3.39). It reads

Ḡ!" = – 1
a2

[2 (H 󸀠 – H 2 – k) P̄!" + 3 (H 2 + k) ḡ!"] . (5.3.42)

Einstein’s field equations on the background spacetime takes on the following form

Ḡ!" = 80T̄!", (5.3.43)

where the tensor of energy-momentum of the background spacetime manifold
includes the background matter and the scalar field

T̄!" = T̄m!" + T̄
q
!". (5.3.44)

Here, tensors of energy-momentum in the right side of Einstein’s equations are derived
from the Lagrangians (5.2.16) and (5.2.19), and represent an algebraic sum of tensors
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(5.2.18) and (5.2.22). Each tensor of energy-momentum, T̄m!" and T̄q!", is Lie-invariant
with respect to the group of symmetry of the background FLRWmetric independently,
and each of them has the form of the tensor of energy-momentum of the perfect (ideal)
fluid. Hence, the tensor of energy-momentum T̄!" in the right side of (5.3.43) has the
form of a perfect fluid as well,

T̄!" = (:̄ + p̄) ū!ū" + p̄ ḡ!". (5.3.45)

It imposes a certain restriction on the effective energy density :̄ and pressure p̄ which
must obey Dalton’s law for a partial energy density and pressure of the background
matter and the scalar field components

:̄ = :̄m + :̄q, (5.3.46)

p̄ = p̄m + p̄q. (5.3.47)

Here, :̄m and p̄m are the energy density and pressure of the ideal fluid, and :̄q and
p̄q are the energy density and pressure of the scalar field which are related to the
time derivative ̇J̄ of the scalar field and its potential W̄ = W̄(J̄) by equations (5.2.26),
(5.2.27). On the background spacetime these equations takes on the following form

:̄q =
1
2
1̄q,̄q + W̄, (5.3.48)

p̄q =
1
2
1̄q,̄q – W̄, (5.3.49)

where ,̄q is the background specific enthalpy of the scalar field defined by (5.2.22),
and 1̄q = ,̄q is the background density of the scalar field “fluid”. It is worthwhile to
remind to the reader that due to the homogeneity and isotropy of the FLRW metric,
all matter variables on the background manifold are functions of the conformal time
' only when being expressed in the isotropic Cartesian coordinates.

Einstein’s equation (5.3.43) can be projected on the direction of the background
four-velocity of matter and on the spatial hypersurface being orthogonal to it. It yields
two Friedmann equations for the evolution of the scale factor a,

H2 = 80
3
:̄ – k

a2
, (5.3.50)

2Ḣ + 3H2 = –80p̄ – k
a2
, (5.3.51)

where :̄ and p̄ are the effective energy density and pressure of the mixture of matter
and scalar field as defined above.

A consequence of the Friedmann equations (5.3.50), (5.3.51) is an equation

Ḣ = –40 (:̄ + p̄) + k
a2
, (5.3.52)
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relating the time derivative of the Hubble parameter with the sum of the overall energy
density and pressure, which can be expressed in terms of the density and specific
enthalpy of the background components of matter,

:̄ + p̄ = 1̄m,̄m + 1̄q,̄q. (5.3.53)

In order to solve the Friedmann equations (5.3.50), (5.3.51) we have to employ the equa-
tion of state of matter. Customarily, it is assumed that each matter component obeys
its own cosmological equation of state,

p̄m = wm:̄m, p̄q = wq:̄q, (5.3.54)

where wm and wq are parameters lying in the range from –1 to +1. In the most simple
cosmological models, parameters wm and wq are fixed. More realistic models admit
that the parameters of the equation of state may change in the course of the cosmo-
logical expansion, that is they may depend on time. The equation of state does not
close the system of the Friedmann equations, which have to be complemented with
the equations of motion of the scalar field and of the ideal fluid in order to make
the system of differential equations for the gravitational and matter field variables
complete.

5.3.6 Hydrodynamic equations of the ideal fluid

The background value of the Clebsch potential of the ideal fluid, Ī, depends only on
the conformal time ' of the FLRWmetric. The partial derivative of the potential, taken
in arbitrary coordinate chart on the backgroundmanifold, can be expressed following
equation (5.2.14) in terms of the background four-velocity ū! as follows

Ī|! = –,̄mū!, (5.3.55)

where the background value of the specific enthalpy is

,̄m = √–ḡ!"Ī,!Ī," (5.3.56)

in accordance with definition (5.2.14). It allows us to write down the specific enthalpy
of the ideal fluid in terms of a derivative from the Clebsch potential Ī. Multiplying
both sides of (5.3.55) with ū!, and accounting for ū!ū! = –1, we obtain

,̄m ≡ ū!Ī|! =
̇Ī. (5.3.57)

The background equation of continuity for the rest mass density 1̄m of the ideal fluid is

(1̄mū!)|! = 0, (5.3.58)
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that is equivalent to

1̄m|! – 3H1̄mū! = 0, (5.3.59)

where we have used (5.3.32). The background equation of conservation of energy is

:̄m|! – 3H (:̄m + p̄m) ū! = 0, (5.3.60)

where we have employed definition of the energy (5.2.4), and equation (5.3.59) along
with (5.2.6).

5.3.7 Scalar field equations

Background equation for the scalar field J̄ is derived from the action (5.2.1) by taking
variational derivatives with respect to J̄. It yields

ḡ!"J̄|!" –
𝜕W̄𝜕J̄ = 0. (5.3.61)

In terms of the time derivatives with respect to the Hubble time T, equation (5.3.61)
reads

̈J̄ + 3H ̇J̄ + 𝜕W̄𝜕J̄ = 0. (5.3.62)

Here, we have taken into account that the background value of the scalar field, J̄,
depends only on time T = T('), and its derivative with respect to T (denoted with a
dot) is proportional to the background four-velocity

J̄|! = – ̇J̄ū!, (5.3.63)

which follows directly (5.3.20). If we use the definition of the background enthalpy of
the scalar field

,̄q ≡ ū!J̄|! =
̇J̄, (5.3.64)

and account for definition (5.2.26) of the specific energy :q of the scalar field, equation
(5.3.62) will become

:̄q|! – 3H (:̄q + p̄q) ū! = 0 (5.3.65)

that looks similar to the hydrodynamic equation (5.3.59) of conservation of energy of
the ideal fluid. Because of this similarity, the second Friedmann equation (5.3.51) can
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be derived from the first Friedmann equation (5.3.50) by taking a time derivative and
applying the energy conservation equations (5.3.60) and (5.3.65).

The background density 1̄q of the scalar filed “fluid” is 1̄q = ,̄q in accordance with
(5.2.25). The equation of continuity for the density 1̄q of the ideal fluid is obtained by
differentiating definition of 1̄q, and making use of (5.3.62). It yields

(1̄qū!)|! = –𝜕W̄𝜕J̄ , (5.3.66)

or, equivalently,

1̄q|! – 3H1̄qū! =
𝜕W̄𝜕J̄ ū!, (5.3.67)

which shows that the ‘density’ 1̄q of the scalar field ‘fluid’ is not conserved in the most
general case of an arbitrary potential function W̄(J̄). We emphasize that there is no
any violation of physical laws, since (5.3.67) is simply another way of writing equation
(5.3.61), and the scalar field is not thermodynamically equivalent to the ideal fluid.
Equation (5.3.67) is convenient in the calculations that follow in next sections.

5.3.8 Equations of motion of matter of the localized astronomical system

Matter of the localized astronomical system is described by the tensor of energy-
momentum Tp!" defined in (5.2.30) in terms of the Lagrangian derivative. It can be
given explicitly as a function of field variables after we chose a specific form of matter,
for example, gas, liquid, solid, or something else. We do not restrict ourselves with
a particular form of this tensor, and shall develop a more generic approach that is
applicable to any kind of matter comprising the localized astronomical system.

Background equation of motion of matter of the astronomical system is given by
the conservation law

T!"p |" = 0. (5.3.68)

It can be also written down in terms of a covariant derivative of the conformal metric

(√–ḡT!"p )
;"
+√–ḡĀ!"𝛾T"𝛾p = 0, (5.3.69)

where the connection Ā!"𝛾 is defined in (5.3.24). Equation (5.3.68) tells us that the mat-
ter of the small-scale perturbation follows geodesics of the backgroundmanifold. This
is the starting point for doing the Post-Newtonian approximations in cosmology. In the
geodesic approximation the matter of the isolated astronomical system has no self-
interaction through its own gravitational field. The self-interaction appears at the next
step of the post-Newtonian iteration procedure.
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It is natural to write down equation (5.3.68) in 1+3 form by projecting it on the dir-
ection of 4-velocity of the Hubble flow, ū!, and on the hypersurface being orthogonal
to it. This is achieved by introducing the following projections

3 ≡ ū,ū-Tp,-, (5.3.70a)

4 ≡ P̄,-Tp,-, (5.3.70b)

4! ≡ – P̄!
,ū-Tp,-, (5.3.70c)

4!" ≡ P̄!
,P̄"

-Tp,-, (5.3.70d)

which corresponds to the kinemetric-invariant decomposition3 of Tp,- introduced by
Zelmanov [473, 474]. Quantity 3 is the energy density of matter of the localized system,
4! is a density of a linear momentum of the matter, and 4!" is the stress tensor of the
matter (the reader should not confuse 4 in (5.3.70b) with the proper time).

Equations of motion (5.3.68) of the localized matter can be rewritten in terms of
the chronometric quantities as follows,

(3ū! + 4!)|! = –H4, (5.3.71a)

(4!" + ū"4!)|" = –H (4! – ū!4) , (5.3.71b)

where 4! ≡ ḡ!"4" and 4!" ≡ ḡ!,ḡ"-4,-. Equation (5.3.71a) is equivalent to the law of con-
servation of energy of matter of the localized system. Equation (5.3.71b) is analogues
to the Euler equation of motion of fluid or the equation of the force balance in case of
solids.

5.4 Lagrangian perturbations of FLRW manifold

5.4.1 The concept of perturbations

Recall that FLRW backgroundmanifold is defined by themetric ḡ!" which dynamics is
governed by background matter fields - the Clebsch potential Ī of the ideal fluid and
the scalar field J̄. We assume that the background metric and the background values
of the fields are perturbed by a localized astronomical system which is considered as
a bare perturbation associated with a field variable C.

3 This decomposition is also known as a threading approach or 1 + 3 orthonormal frame approach
[450]. It is different from 3 + 1 decomposition ADM technique considered in Section 3.1, see discussion
later.
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Various possibilities for definition of metric perturbations are discussed in
Section 2.2.6. Here, we consider perturbations of the metric, 𝜘!", defined by the
splitting,

g!" = ḡ!" + 𝜘!", (5.4.1)

as a more popular ones, and the perturbations, h
!", defined in (5.4.6), as more con-

venient ones, for doing variational calculus see below. The matter fields caused by the
bare perturbations can be split in their backgrounds values and the corresponding
perturbations,

I = Ī + 6, J = J̄ + 8. (5.4.2)

These equations are exact. We emphasize that all functions entering equation (5.4.1)
and (5.4.2) are taken at one and the same point of the background manifold. The bare
perturbation does not remain the same in the presence of the perturbations of the
metric and the matter fields. Therefore, the field variable C corresponding to the bare
perturbation, is also can be presented in the perturbed form:

C = C̄ + (. (5.4.3)

Thus, for the goals of the present chapter, (5.4.2) and (5.4.3) are considered as a par-
ticular example of the decomposition (2.2.8) in Section 2.2. Although (5.4.1–5.4.3) are
exact, we consider the perturbations of the metric - 𝜘!", the Clebsch potential - 6,
and the scalar field - 8 as being small with respect to their corresponding background
values ḡ!", Ī, and J̄, which dynamics is governed by the background equations
that have been explained in Section 5.3. Because the field variable C is the source
of the bare perturbation, we postulate that its background value is equal to zero:
C̄ = 0. The perturbations 𝜘!", 6, and 8 and their derivatives have the same order
of magnitude as (.

Perturbation of the contravariant component of the metric is determined from the
condition g!𝛾g𝛾" = ḡ!𝛾ḡ𝛾" = $"!, and is given by

g!" = ḡ!" – 𝜘!" + 𝜘!𝛾𝜘𝛾" + . . . , (5.4.4)

where the ellipses denote terms of the higher order.
Here, we refer to the perturbations 𝜘!" in (5.4.1) because in literature they are very

popular, see e.g., the textbook [283]. However, as it was discovered in Section 2.2, in
the framework of the field-theoretical derivation a more convenient field variable of
the gravitational field in the theory of Lagrangian perturbations of curved manifolds,
is a contravariant metric density,

g
!" = √–gg!", (5.4.5)

that we call the Gothic metric. The convenience of the Gothic metric stems from the
fact that it enters the de Donder (harmonic) gauge conditions which significantly
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simplifies the Einstein equations [285, 453]. Making use of the Gothic metric allows
us to significantly reduce the amount of algebra in taking the first and second vari-
ational derivatives from the Hilbert Lagrangian and the Lagrangian of the background
matter in FLRWmetric as explains in the rest of this section.

Thus, following (2.2.7), we accept that g
!" is expanded around its background

value, ḡ!" = √–ḡḡ!", as follows
g
!" = ḡ

!" + h
!", (5.4.6)

which is an exact equation and where h
!" is also a tensor density of the weight +1.

Further calculations prompt that it is more suitable to operate with a variable quantity

h!" ≡ h
!"√–ḡ (5.4.7)

that is a tensor. This variable splits the dynamic degrees of freedomof the gravitational
perturbations from those of the backgroundmanifold which evolves in according with
the unperturbed Friedmann equations. Tensor indices of h!" are raised and lowered
with the help of the background metric, for example, h!" ≡ ḡ!,ḡ"-h,-. The field
variable h!" relates to the perturbation 𝜘!" of the metric tensor. To establish this rela-
tionship, we start from (5.4.5), substitute equation (5.4.6) to its left side, and expand
its right side in the Taylor series with respect to 𝜘!". It results in

h
!" = 𝜕ḡ!"𝜕ḡ,- 𝜘,- + 1

2
𝜕2ḡ!"𝜕ḡ,-𝜕ḡ13 𝜘,-𝜘13 + . . . (5.4.8)

that is a particular case of (2.2.122). The partial derivatives in (5.4.8) are calculated by
successive application of the following rules

𝜕ḡ!"𝜕ḡ,- = –1
2
√–ḡ (ḡ!,ḡ"- + ḡ!-ḡ", – ḡ!"ḡ,-) , (5.4.9a)

𝜕ḡ!"𝜕ḡ,- = –1
2
(ḡ!,ḡ"- + ḡ!-ḡ",) , (5.4.9b)

𝜕√–ḡ𝜕ḡ,- = +1
2
√–ḡḡ,-, (5.4.9c)

which can be easily confirmed by inspection and which are particular cases of the
coefficients in (2.2.115). Replacing the partial derivatives in (5.4.8) and making use of
the definition (5.4.7), yields the relationship between h!" and 𝜘!" as follows

h!" = –𝜘!" + 1
2
ḡ!"𝜘 + 𝜘,(!𝜘"), – 1

2
𝜘!"𝜘 – 1

4
ḡ!" (𝜘,-𝜘,- – 1

2
𝜘2) + . . . , (5.4.10)

where 𝜘 ≡ 𝜘33 = ḡ13𝜘13, and ellipses denote terms of the cubic and higher order in 𝜘!".
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Perturbations of four-velocities, w! and v!, entering definitions of the energy-
momentum tensors (5.2.18), (5.2.29), are fully determined by the perturbations of the
metric and the potentials of the matter fields. Indeed, according to definitions (5.2.13)
and (5.2.25) the four-velocities are defined by the following equations

w! = –
I,!
,m

, v! = –
J,!
,q

, (5.4.11)

where ,m = √–g!"I,!I," and ,q = √–g!"J,!J," in accordance with (5.2.14) and
(5.2.22) respectively. We define perturbation of the covariant components of the
four-velocities as follows

w! = ū! + $w!, v! = ū! + $v!, (5.4.12)

where the unperturbed values of the four-velocities coincide and are equal to the four-
velocity of the Hubble flow due to the requirement of the homogeneity and isotropy of
the background FLRW metric. Substituting these expansions to the left side of defini-
tions (5.4.11), and expanding its right side by making use of the expansions (5.4.2) and
(5.4.4) of the scalar fields and the metric, yields

$w! = – 1
,̄m

P̄"!6|" –
1
2
qū!, $v! = – 1

,̄q
P̄"!8|" –

1
2
qū!, (5.4.13)

where we have introduced a new notation

q ≡ –ū!ū"𝜘!", (5.4.14)

for the gravitational perturbation of the metric tensor projected on the background
four-velocity of the Hubble flow. Making use of h!", the previous equation can be
recast to

q ≡ ū!ū"h!" +
h
2
, (5.4.15)

where h ≡ h!! = ḡ!"h!". Remembering that ḡ!" = P̄!" – ū!ū", we can put equation
(5.4.15) yet to another form

q ≡ 1
2
(ū!ū" + P̄!") h!", (5.4.16)

which is useful in the calculations that follow.
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5.4.2 The background field equations

The action of the unperturbed FLRWmetric is a functional

S̄ = ∫
K
d4xL̄ HE, (5.4.17)

depending on the unperturbed Lagrangian

L̄ HE = – 1
160 L̄ H + L̄ m + L̄ q, (5.4.18)

where the action (5.2.1) and the Lagrangian (5.2.2) are taken on the background val-
ues of the field variables ḡ!", Ī, and J̄. Thus, L̄ H = R̄, L̄ m = L m (Ī, ḡ!"),
L̄ q = L q (J̄, ḡ!").

Dynamics of the background universe is governed exclusively by the background
matter. The background equations corresponding to (5.4.17) with (5.4.18) are

– 1
160

$L̄ H

$ḡ!"
+ $L̄ m

$ḡ!"
+ $L̄ q

$ḡ!"
= 0, (5.4.19a)

$L̄ m

$Ī
= 0, (5.4.19b)

$L̄ q

$J̄
= 0. (5.4.19c)

These equations, for the goals of the present chapter, make concrete the background
system (2.2.10) and (2.2.11) in the Section 2.2.

These equations have been thoroughly discussed also in Section 5.3. Solution
of these equations depends on the equation of state of the background matter. We
assume that the solution exists and that the time dependence of the FLRW metric
ḡ!" = ḡ!"('), the Clebsch potential Ī = Ī('), and the scalar field J̄ = J̄(') is explicitly
known.

5.4.3 The dynamic Lagrangian for perturbations

The presence of a localized astronomical system perturbs the spacetime manifold and
the background values of the field variables described in previous subsection. The
perturbed Lagrangian becomes an algebraic sum of four terms, as it was defined in
Section 5.2,

L HE = – 1
160L H + L m + L q + L p, (5.4.20)
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where the Lagrangian L p = L p(C, g!") describes the bare perturbation, the Hilbert
Lagrangian of the gravitational field is L H = √–gR = R, where R is the Ricci scalar,
the Lagrangian density of matter is L m = L m(I, g!"), and the Lagrangian density of
the scalar field L q = L q(J, g!").

The field equations are obtained by taking the variational derivatives from the
perturbed action with the Lagrangian (5.4.20) with respect to various variables subject
to the least action principle. In accordance with this principle, we obtain the Einstein
equations, and equations for the matter fields in the form:

– 1
160

$L H

$g!"
+ $L m

$g!"
+ $L q

$g!"
= –$L

p

$g!"
, (5.4.21a)

$L m

$I = 0, (5.4.21b)

$L q

$J = 0 (5.4.21c)

$L p

$C = 0. (5.4.21d)

The Post-Newtonian approximations of these equations can be rendered directly by a
separation of the background values from their perturbed values and the use of Taylor
decompositions. One has to assume also that gravitational dynamics of the unper-
turbed FLRW metric obeys the background field equations shown in Section 5.4.2.
Then, the perturbed part of the equations represent a series of the post-Newtonian
equations of the first, second, third, etc. order, which can be solved by successive
iterations.

However, here we use more elegant and economical field-theoretical approach to
general relativity developed in Section 2.2. From the one hand it is exact; from the
other hand, it permits also to represent equations in series of the post-Newtonian
equations of the first, second, third, etc. order. In this chapter we restrict ourselves
with the linearized approximation of the first order with respect to the perturbations.
It generalizes the first post-Newtonian field equations in asymptotically flat spacetime
to the case of the expanding universe.

Thus, for the Lagrangian (5.4.20) we derive the dynamical Lagrangian (2.2.15) for
the perturbations h

,-, 6, 8 and ( as dynamic variables on the FLRW background:

L dyn = L HE – h
,- $L̄ HE

$ḡ,- – 6$L̄
m

$Ī
– 8$L̄

q

$J̄
– L̄ HE + div . (5.4.22)

One has to notice that this Lagrangian is defined up to a divergence, which can
be important in the discussion of the boundary conditions but it does not enter
equations of motion of fields which represent a system of the differential equations
in partial derivatives for the perturbations. The variation of (5.4.22) with respect to
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the metric perturbations h
,-, and to matter perturbations 6, 8 and ( gives the

field-theoretical equations, which are equivalent to the full set of the equations
(5.4.21a),(5.4.21b), (5.4.21c) and (5.4.21d), respectively. These field-theoretical equa-
tions represent a particular case of the equations (2.2.26) and (2.2.38) in the field-
theoretical derivation of general relativity, and we discuss them below in detail.

The dynamical Lagrangian (5.4.22) can be represented in the expansion form.
Following (2.2.47), one has for the perturbations on the FLRW background:

L dyn = L EH – L1 – L0 =
∞∑
n=2

Ln + L p, (5.4.23)

where L0 ≡ L̄ HE is the Lagrangian describing the dynamic properties of the
background manifold, and L p is the Lagrangian of the bare perturbation. For any
n ≤ 1,

Ln =
1
n
(h

,- $Ln–1
$ḡ,- + 6$Ln–1

$Ī
+ 8$Ln–1

$J̄
) , (5.4.24)

is the Lagrangian perturbation defined iteratively by taking variational derivatives
from the Lagrangian perturbations of the previous iteration. In particular,

L1 = h
,- $L̄
$ḡ,- + 6

$L̄
$Ī

+ 8 $L̄
$J̄

, (5.4.25a)

L2 =
1
2
(h

,- $L1
$ḡ,- + 6

$L1
$Ī

+ 8$L1
$J̄

) , (5.4.25b)

and so on.

5.4.4 The Lagrangian equations for gravitational field perturbations

Varying the Lagrangian (5.4.23) with respect to h
!" one obtains differential equations

for the metric (gravitational) perturbations. Contracting them with

𝜕g!"𝜕g,- = √–g ($!,$"- – 1
2g

!"g,-) , (5.4.26)

see (A.2.46) in Appendix A.2.4, one obtains

GL
,- +I

L
,- = 80tgen,- . (5.4.27)

This concretizes the field-theoretical equations (2.2.26) for the goals of the present
chapter. One can notice that (5.4.27) generalizes the Einstein field equations in
asymptotically flat spacetime to the case of the expanding FLRWmetric.
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The left hand side of (5.4.27) is linear in perturbations. Recall that GL
,- is defined

in (2.2.27),

GL
,- ≡ 1√–ḡ $

$ḡ,- (h
!" $L̄ H

$ḡ!"
) . (5.4.28)

TensorIL
,- is an algebraic superposition

IL
,- ≡ Fm,- + F

q
,-, (5.4.29)

where the linear operators are defined through the Lagrangian derivatives as follows,

Fm,- ≡ – 160√–ḡ $
$ḡ,- (h

!" $L̄ m

$ḡ!"
+ 6 $L̄ m

$Ī
) , (5.4.30a)

Fq,- ≡ – 160√–ḡ $
$ḡ,- (h

!" $L̄ q

$ḡ!"
+ 8 $L̄ q

$J̄
) . (5.4.30b)

These concretize (2.2.28) for the model of the present chapter.
The right hand side of equation (5.4.27) is the generic metric energy-momentum

tensor for the system (5.4.22) (the same (5.4.23)) defined by the general rule in (2.2.29):

tgen,- = 2√–ḡ $L dyn

$ḡ,- = ttot,- + T
p
,-. (5.4.31)

The last term here is the energy-momentum tensor of the bare gravitational perturb-
ation which is generated by the matter of the localized astronomical system and is
associated with the last term in (5.4.23). Because Tp,- has a special meaning of a bare
perturbation we separate it from ttot,- defined in field-theoretical equations (2.2.26).
The first term at the right hand side of (5.4.31) is the energy-momentum tensor of the
non-linear corrections of the second and higher order of magnitude. Corresponding to
(2.2.29) and (5.4.23), they are given by

ttot,- = 2√–ḡ ( $L2
$ḡ,- +

$L3
$ḡ,- + . . .) . (5.4.32)

Tensor ttot,- can be split in three algebraically-independent parts

ttot,- = tg,- + t
m
,- + t

q
,-, (5.4.33)

where tg,- is the stress-energy tensor of pure gravitational perturbations h
,- while and

tm,- and tq,- are the stress-energy tensors characterizing gravitational coupling of the
matter fields 6 and 8 with the gravitational perturbations h

,-. The exact expression
for the tensor tg,- is given by (2.2.30) with (2.2.31) in Section 2.2.
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If we restrict ourselves only with the second order non-linear corrections, the
corresponding stress-energy tensors are given by variational derivatives

tg,- = – 1
160√–ḡ $

$ḡ,- (h
13GL13 –

1
2
hḡ13GL

13) , (5.4.34)

tm,- = – 1
160√–ḡ $

$ḡ,- (h
13Fm13 –

1
2
hg13Fm13 +√–ḡ6FmI) , (5.4.35)

tq,- = – 1
160√–ḡ $

$ḡ,- (h
13Fq13 –

1
2
hg13Fq13 +√–ḡ8FqJ) , (5.4.36)

where FmI and FqJ are defined below in (5.4.47), (5.4.53).
Notice that contribution of ttot,- to the linearized field equations should be neg-

lected as it is of the higher order as compared with other terms in (5.4.27). The
differential operator, GL,-, represents a linearized perturbation of the Ricci tensor and
is given in (2.2.27),

GL,- =
1
2
(h,- |!|! + ḡ,-h!"|!" – h!,|- |! – h!-|,|!) , (5.4.37)

where each vertical bar denotes a covariant derivative with respect to the background
metric ḡ,- of the FLRW background.

Operators Fm,- and F
q
,- depend essentially on a particular choice of the Lagrangian

of matter and scalar field, and take on different forms depending on the specific ana-
lytic dependence of L m and L q on the field variables. In the particular case of the
ideal fluid, the term embraced in the round parentheses in the right side of equation
(5.4.30a) is

h
!" $L̄ m

$ḡ!"
+ 6 $L̄ m

$Ī
= 1
2
h
!" (T̄m!" – 1

2
ḡ!"T̄

m) + 6 𝜕! (1̄m√–ḡū!) , (5.4.38)

where ū! ≡ –ḡ!"Ī,"/,̄m, and T̄m!" is given in (5.2.18). We emphasize that though the
ideal fluid satisfies the equation of continuity (5.3.58), it should not be immediately
implemented in (5.4.38) because this expression is to be further differentiated with
respect to the metric tensor according to (5.4.30a).

For the scalar field, the term enclosed to the round parentheses in the right side
of (5.4.30b) is

h
!" $L̄ q

$ḡ!"
+ 8 $L̄ q

$J̄
= 1
2
h
!" (T̄q!" – 1

2
ḡ!"T̄

q) + 8[√–ḡ 𝜕W̄𝜕J̄ + 𝜕! (1̄q√–ḡū!)] , (5.4.39)

where ū! ≡ –ḡ!"J̄,"/,̄q, 1̄q = ,̄q, T̄q!" is given in (5.2.29), and the equation of continu-
ity for the scalar field (5.3.66) should not be implemented until differentiation with
respect to the metric tensor (5.4.30b) is completed.
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Taking the variational derivatives with respect to ḡ,- from the expressions (5.4.38)
and (5.4.39), and applying thermodynamic equations (5.2.11), allows us to write down
the right sides of equations (5.4.30a), (5.4.30b) in a more explicit form as follows,

Fm,- = – 40 [(p̄m – :̄m)l,- + (1 – c2

v2s
) (:̄m + p̄m)qū,ū-] (5.4.40)

+ 801̄m {ū,6,- + ū-6,, + [(1 – c2

v2s
) ū,ū- – ḡ,-] ū!6,!} ,

Fq,- = – 40 [(pq – :q) l,- – 2ḡ,- 𝜕W̄𝜕J̄ 8] (5.4.41)

+ 801̄q (ū,8,- + ū-8,, – ḡ,-ū
!8,!) ,

where 1̄q ≡ ̇J̄ = ,̄q in accordance with definition (5.2.25). The potential energy of the
scalar field, W̄ = W̄(J̄), is kept arbitrary.

It is important to emphasize that in the most general case the ratio v2s/c
2 of the

speed of sound in fluid to the fundamental speed c, may be not equal to the parameter
wm of the equation of state (5.3.54), that is there are physical equations of state such
that wm ̸= (vs/c)2. Indeed, the speed of sound is defined as a partial derivative of pres-
sure pm with respect to the energy density :m taken under the condition of a constant
entropy sm,

v2s
c2

= (𝜕pm𝜕:m )
sm=const.

. (5.4.42)

This equation is equivalent to the following relation

v2s
c2

=
(𝜕pm/𝜕,m)sm=const.(𝜕:m/𝜕,m)sm=const. , (5.4.43)

which is a consequence of thermodynamic relations and a definition of the partial
derivative. The ratio of the partial derivatives in (5.4.43) is not reduced to wm in
case when wm depends on some other thermodynamic parameters which are func-
tions of the specific enthalpy. For example, in case of an ideal gas the equation of
state pm = wm:m, where wm = kT/mc2, k is the Boltzmann constant, m - mass
of a particle of the ideal fluid, and T is the fluid temperature. The speed of sound
v2s = c2 (𝜕pm/𝜕:m)sm=const. = Awm > wm = pm/:m, where A > 1 is the ratio of the
heat capacities of the gas taken for the constant pressure and the constant volume
respectively [284].

The scalar field with the potential functionW(J) ̸= 0 does not bear all thermody-
namic properties of an ideal fluid. Nevertheless, we can formally define the speed of
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“sound” cs propagating in the scalar field “fluid”, by equation being similar to (5.4.43).
More specifically,

c2s
c2

=
(𝜕pq/𝜕,q)J=const.(𝜕:q/𝜕,q)J=const. . (5.4.44)

Simple calculation reveals that the speed of “sound” for scalar field is always equal to
the fundamental speed

cs = c, (5.4.45)

irrespectively of the value of the potential function W(J). It explains why the terms
being proportional to the factor 1 – c2/c2s, do not appear in the expression (5.4.41) as
contrasted with (5.4.40).

5.4.5 The Lagrangian equations for dark matter perturbations

The perturbed field equations for the dark matter which is modelled by the ideal fluid,
are obtained by taking the variational derivatives with respect to the field I from
the Lagrangian (5.4.20) – it corresponds to the middle equation in (5.4.21a). Taking
into account the background equation (5.4.19b) yields the equation of sound waves
propagating in the fluid as small perturbations of the potential 6,

FmI = 80Gm, (5.4.46)

where the linear differential operator

FmI ≡ – 1√–ḡ $
$Ī

(h
,- $L̄ m

$ḡ,- + 6$L̄
m

$Ī
) , (5.4.47)

and the source term

Gm ≡ 1
80√–ḡ ($L m

2
$Ī

+
$L m

3
$Ī

+ ...) . (5.4.48)

Thus, the equation (5.4.46) concretizes the general equation (2.2.37) for the case of the
dynamic field 6 that is a perturbation of the background Clebsch potential Ī.

According to equation (5.2.12), the Lagrangian of the ideal fluid can be rewritten
as L m = – √–gpm which is further transformed to (5.2.16). In the case of a single-
component ideal fluid, the Lagrangian (5.2.16) depends merely on the derivative of the
Clebsch potentialI and on the metric tensor. Therefore, the explicit form of the linear
operator FmI is reduced to a covariant divergence

FmI = Y!
|!, (5.4.49)
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where a vector field

Y! ≡ 𝜕𝜕Ī,!
[(h,- – 1

2
hḡ,-)( 𝜕L̄m𝜕ḡ,- – 1

2
ḡ,-L̄

m) + 6,"
𝜕L̄m𝜕Ī,"

] , (5.4.50)

h ≡ ḡ!"h!" and the partial derivatives are taken from the Lagrangian Lm = –pm. More
specifically, calculations yield

Y! ≡ 1̄m
,̄m

6|! – 1̄mh!"ū" + (1 – c2

v2s
)( 1̄m,̄m ū!ū"6|" –

1
2
1̄mū!q) . (5.4.51)

Similar expression was derived by Lukash [301] who used the variational method to
analyze the production and quantization of sound waves in the early universe.

5.4.6 The Lagrangian equations for dark energy perturbations

Equations for the perturbations 8 of dark energy, which is modelled by a scalar field
J, are derived by taking the variational derivative from the Lagrangian (5.4.20) with
respect to the field variable J – see equation (5.4.21c). Subtracting the background
equation (5.4.19c) from (5.4.21c) and making use of the Lagrangian decomposition in
the Taylor (post-Newtonian) series leads to

FqJ = 80Gq, (5.4.52)

where the linear differential operator

FqJ ≡ – 1√–ḡ $
$J̄

(h
,- $L̄ q

$ḡ,- + 8$L̄
q

$J̄
) , (5.4.53)

and the source term

Gq ≡ 1
80√–ḡ ($L q

2
$J̄

+
$L q

3
$J̄

+ ...) . (5.4.54)

Equation (5.4.52) concretizes the general equation (2.2.37) for the case of the dynamic
field 8 that is a perturbation of the background scalar field J̄.

According to equation (5.2.19), the Lagrangian of the scalar field can be rewrit-
ten as L q = √–gLq and depends on both the field J and its first derivative, J,!. For
this reason, the differential operator Fq is not reduced to the covariant derivative from
a vector field as the partial derivative of the Lagrangian with respect to J does not
vanish. We have

FqJ ≡ Z!|! –
h
2
𝜕W̄𝜕J̄ – 8𝜕2W̄𝜕J̄2 , (5.4.55)
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where vector field

Z! ≡ 𝜕𝜕J̄,!
[(h,- – 1

2
hḡ,-)( 𝜕L̄q𝜕ḡ,- – 1

2
ḡ,-L̄

q) + 8,"
𝜕L̄q𝜕J̄,"

] . (5.4.56)

Performing the partial derivatives in equation (5.4.56), yields a rather simple
expression

Z! ≡ 8|! – 1̄qh!"ū", (5.4.57)

where we have used equation J̄|! = –ū"J̄|"ū! = –1̄qū!. The reader is invited to com-
pare equation (5.4.57) with (5.4.51) to observe the differences between the Lagrangian
perturbations of the ideal fluid and the scalar field. One may observe that (5.4.51)
becomes identical with (5.4.57) in the limit vs → c, and 1̄m → ,̄m. This corresponds to
the case of an extremely stiff equation of state wm = 1 in equation (5.3.54). According
to the discussion following equations (5.4.44), (5.4.45) the speed of “sound” cs in the
scalar field “fluid” is always equal to c. However, it does not assume that the para-
meter wq of the equation of state of the scalar field, p̄q = wq:̄q, in (5.3.54) is equal to
unity. This is because the scalar field is not completely equivalent to the ideal fluid in
the sense of thermodynamic [7].

5.4.7 Linearized post-Newtonian equations for field variables

Equations for the metric tensor perturbations
Linearized field equations for gravitational field variables, h,-, are obtained from
(5.4.27) after neglecting in its right side the non-linear source ttot,- , and making a series
of transformations to sort out similar terms. First, let us make use of equations (5.4.40)
and (5.4.41) to find out

Fm,- + F
q
,- = 40 (:̄ – p̄) h,- (5.4.58)

+ 801̄m [ū,6,- + ū-6,, – ḡ,-u
!6,! + (1 – c2

v2s
)

× (ū!6,! –
1
2
,̄mq) ū,ū-]

+ 801̄q [ū,8,- + ū-8,, – ḡ,-u
!8,! + ḡ,-

𝜕W̄(J̄)𝜕J̄ 8
,̄q

] ,
where we used the superposition :̄ = :̄m + :̄q, p̄ = p̄m + p̄q. Second step is to transform
the linear differential operator Fg,- in (5.4.37) to a more convenient form that will allow
us to single out the gauge-dependent vector denoted by

A, ≡ h,- |-. (5.4.59)
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Changing the order of the covariant derivatives in (5.4.37) and taking into account that
the commutator of the second covariant derivatives is proportional to the Riemann
tensor, we recast (5.4.37) to the following form,

GL,- ≡ 1
2
(h,- |!|! + ḡ,-A!|! – A,|- – A-|,) – R̄!(,h-)! – R̄,!"-h!", (5.4.60)

where the round brackets around indices denote symmetrization. The terms with the
Ricci and Riemann tensors can be expressed in terms of the total background energy
and pressure of the ideal fluid and scalar field by making use of equations (5.3.34),
(5.3.36) and Einstein’s equations (5.3.43). It yields

R!(,h-)! + R̄,!"-h
!" = 40[(5:̄

3
– p̄) h,- + h

2
(p̄ – :̄

3
) ḡ,- (5.4.61)

+ (:̄ + p̄) (2ū!ū,h-! + 2ū!ū-h,! – ū,ū-h – ḡ,-q)].
Finally, substituting equations (5.4.58), (5.4.60) and (5.4.61) to (5.4.27) results in

h,-
|!
|! + ḡ,-A

!
|! – A,|- – A-|, (5.4.62)

– 160 [ :̄
3
h,- +

h
4
(p̄ – :̄

3
) ḡ,-

+ (:̄ + p̄) ( 12 ū!ū(,h-)! – 1
2
ū,ū-h –

1
2
ḡ,-q)]

+ 1601̄m [ū,6,- + ū-6,, – ḡ,-u
!6,! + (1 – c2

v2s
)(ū!6,! –

1
2
,̄mq) ū,ū-]

+ 1601̄q [ū,8,- + ū-8,, – ḡ,-u
!8,! + ḡ,-

𝜕W̄(J̄)𝜕J̄ 8
,̄q

]
= 160Tp,-,

where the non-linear term, ttot,- , was neglected in the right side of (5.4.62).
The very first term in (5.4.62) is a tensorial Laplace-Beltrami operator, h,- |!|! ≡

ḡ!"h,-|!", that is a rather complicated geometric object. Its explicit expression can
be developed by making use of the Christoffel symbols given in (5.3.23). Tedious but
straightforward calculation yields [272]

h,-
|!
|! = ḡ!"h,-;!" + 2Hū

!h,-;! – 2 (Hū!h!,)|- – 2 (Hū!h!-)|, (5.4.63)

+ 2H (ū,A- + ū-A,) + 2Ḣ (h,- – ū!ū,h-! – ū!ū-h,!)
+ 2H2 (2h,- + 3ū,ū!h!- + 3ū-ū!h!, – ḡ,-ū!ū"h!" – ū,ū-h) ,

where the semicolon denotes a covariant derivative that is calculated with the Chris-
toffel symbols B!,- like in (5.3.30b).
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Further derivation of the differential post-Newtonian field equation for the linear-
ized metric tensor perturbations can be significantly simplified if we choose the gauge
function, A!, in the following form

A! = –2Hh!"ū" + 160 (1̄m6 + 1̄q8) ū! + B!, (5.4.64)

where B! is an arbitrary gauge vector field. This choice of the gauge function A! allows
us to eliminate two terms in equation (5.4.63) which depend on the first covariant
derivatives with respect to the background metric ḡ!". Moreover, it allows to eliminate
a number of terms depending on the first derivatives of the fields 6 and 8 in equation
(5.4.62). Since we keep the gauge function B! arbitrary, the equation (5.4.64) does not
fix any gauge. The choice of the gauge is controlled by the gauge function B!.

One substitutes the gauge function (5.4.64) to equations (5.4.63) and (5.4.62) and
make use of the background Friedmann equations (5.3.50), (5.3.51) to replace the back-
ground values of the energy density, :̄, and pressure, p̄, with the Hubble parameter H
and its time derivative Ḣ. It brings about equation (5.4.62) to the following form

ḡ!"h,-;!" + 2Hū
!h,-;! (5.4.65)

+ 2 (Ḣ + H2) (h,- + ū,ū!h!- + ū-ū!h!, – hū,ū-)
– 2k
a2

[h,- + 2ū,ū!h!- + 2ū-ū!h!, – hū,ū- – (q + h
2
) ḡ,-]

+ 160ū,ū- [1̄m (1 – c2

v2s
)(ū!6,! –

1
2
,̄mq) – 2𝜕W̄𝜕J̄ 8 – 4H (1̄m6 + 1̄q8)]

+ ḡ,-B
!
|! – B,|- – B-|, + 2H (ū,B- + ū-B, – ḡ,-ū!B!)

= 160Tp,-.

This equation is fully covariant and is valid in any gauge and/or coordinate chart.
Now, let us fix the gauge by selecting a specific gauge function B! in (5.4.64). The

task is to decouple the linearised field equations for h00, h0i and hij components of
the metric tensor perturbations. For this purpose, let us work in the isotropic coordin-
ates associated with the Hubble flow, where ū! = (1/a, 0, 0, 0) and choose the gauge
condition, B! = 0. It brings equation (5.4.65) for different components of the metric
perturbations to the form

◻q + 2H q;0 + 4kq – 40(1 – c2

v2s
) 1̄m,̄mq = 80a2 (Tp00 + Tpkk) – (5.4.66a)

80a3 [(1 – c2
v2s
) 1̄m6,0–

2a 𝜕W̄𝜕J̄8 – H (1̄m6 + 1̄q8)] ,(5.4.66b)
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◻h0i + 2H h0i;0 + 2kh0i = 160a2Tp0i, (5.4.66c)◻h<ij> + 2H h<ij>;0 + 2 (H 󸀠 – k) h<ij> = 160a2Tp<ij>, (5.4.66d)

◻hkk + 2H hkk;0 + 2 (H 󸀠 + 2k) hkk = 160a2Tpkk. (5.4.66e)

Here, H is a conformal Hubble parameter (5.3.4), a prime means a derivative with
respect to ', and we denoted ◻h,- ≡ f̄

!"h,-;!", q ≡ (h00 + hkk) /2, hkk ≡ h11 + h22 + h33,
h<ij> ≡ hij–(1/3)$ijhkk, and the same index notations are applied to the tensor of energy-
momentum Tpij of the localized astronomical system, Tp<ij> = Tpij – (1/3)$ijTpkk. These
equations are clearly decoupled from one another, thus, demonstrating the advantage
of the gauge condition B! =0.

Equations (5.4.66c–5.4.66e) can be solved independently if the initial and bound-
ary conditions are known, and the tensor of energy-momentum of the localized
astronomical system is well-defined. Equation (5.4.66a) for a scalar q demands besides
knowledge of Tp!", knowing the scalar field perturbations, 6 and 8, that contribute to
the source of the field equation for q in the right side of (5.4.66a). Equations for these
perturbations are obtained below.

Equations for the dark matter perturbations
The dark matter perturbations, 6, evolve in accordance with the Lagrangian equation
(5.4.46). In the linear approximation we can neglect the non-linear source term Gm in
its right side. The covariant derivative in the definition of the linear operator Fm given
in the right side of (5.4.49), can be explicitly performed, thus, yielding equation for the
Clebsch potential

6|!
|! – 2,̄mHq + 160,̄m (1̄m6 + 1̄q8)
+ (1 – c2

v2s
)(ū!ū"6|!" –

1
2
,̄mū!q,!) = ,̄mū!B!, (5.4.67)

where equation (5.4.64) has been used. The gauge B! remains yet unspecified so that
equation (5.4.67) is covariant and is valid in any coordinate chart. To make it compat-
ible with equations (5.4.66a)–(5.4.66e) for the metric tensor perturbations, we have to
choose B! = 0.

Equations for the dark energy perturbations
Linearized equation for the dark energy perturbations, 8, is obtained from the
Lagrangian equation (5.4.52) after neglecting the (non-linear) source term Gq. After
performing the covariant differentiation in equation (5.4.55), we conclude that the
dark energy perturbation obeys the following equation

8|!
|! – (2,̄qH + 𝜕W̄𝜕J̄ ) q + 160,̄q (1̄m6 + 1̄q8) – 𝜕2W̄𝜕J̄2 8 = ,̄qū!B!, (5.4.68)
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where equation (5.4.64) has been used along with the equality 1̄q = ,̄q. The gauge
function B! is kept unspecified so that equation (5.4.68) is covariant and is valid in
any coordinates. To make it compatible with equations (5.4.66a–5.4.66e) for the metric
tensor perturbations, we have to choose B! = 0.

5.5 Gauge-invariant scalars and field equations
in 1+3 threading formalism

5.5.1 Threading decomposition of the metric perturbations

We have derived the system of coupled differential equations (5.4.65), (5.4.67), (5.4.68)
for the field variables h!", 6 and 8, describing perturbations of the gravitational field,
dark matter and dark energy respectively. These equations are gauge-invariant and
written down in arbitrary coordinates on the backgroundmanifold. Nonethelees, they
operate with the field variables which are not gauge-invariant in themselves. There-
fore, solutions of equations (5.4.65), (5.4.67), (5.4.68) that are found in a particular
gauge has no direct physical interpretation andmust be connected to physical observ-
ables to match theory with observations. Another way around is to find out some
gauge-invariant geometric objects built out of h!", 6 and 8 which will not depend on
a particular choice of gauge and coordinates. This program was initiated by Bardeen
[27] who proposed to split the perturbations of the metric tensor in scalar, vector, and
tensor components by making use of 3+1 spacetime slicing ADM technique [12], and to
build gauge-invariant cosmological variables out of these elements. Gauge-invariant
scalars are the most important quantities in cosmology as they describe the structure
formation in the universe. Ellis and Bruni [155] pointed out that Bardin’s variables are
not directly related to the density fluctuations but to it second derivatives whichmakes
them less useful in relativistic calculations of structure formation. They proposed
their own gauge-invariant variables that are build out of gradients of the geometric
objects which vanish on the background manifold so that only their perturbations
make physical sense.

In this section we propose even more direct approach to the definition of the
gauge-invariant scalars by making use of the scalar potentialsI andJ for description
of the dark matter and dark energy. In this way we shall find out the gauge-invariant
scalars that are equivalent to the matter density fluctuation itself but not to its gradi-
ent or a second order derivative. We shall employ 1+3 threading (it is not 3+1 splitting)
approach to split four-dimensional tensors into scalar, vector, and three-dimensional
tensors. The original idea was proposed by Zelmanov [475] who called the elements of
the tensorial decomposition the chronometric invariants. Later on, the theory of chro-
nometric invariants was reinvented by a number of researchers. The central ingredient
of the theory is a congruence of worldlines threading spacetime. In FLRW cosmo-
logy, this congruence is naturally associated with the Hubble flow and the Hubble
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velocity ū!. Threading (chronometric) decomposition is achieved with the invariant
operator of projection P̄!" onto a hypersurface being orthogonal to the congruence of
world lines of the Hubble flow,

P̄!" = ḡ!" + ū!ū", (5.5.1)

where ḡ!" is FLRW background metric. The operator P̄!" can be considered as a metric
on the spatial hypersurface of the background FLRWmanifold.

The post-Newtonian theory under development admits four, algebraically-
independent scalar perturbations. Two of them are the Clebsch potential of the ideal
fluid 6 and the scalar field 8. The two other scalars characterize the scalar perturb-
ations of the gravitational field. They can be chosen, for example, as a projection of
the metric tensor perturbation on the direction of the background four-velocity field,
ū!ū"h!", and the trace of the metric tensor perturbation, h = ḡ!"h!". However, it is
more convenient to work with two other scalars, defined as their linear combinations,

q ≡ 1
2
(ū!ū" + P̄!") h!", (5.5.2a)

p ≡ P̄!"h!" . (5.5.2b)

Notice that the scalar q has been introduced earlier in (5.4.16). The scalar p is, in fact, a
projection of h!" onto the space-like hypersurface being orthogonal everywhere to the
worldlines of Hubble observers.

Vectorial chronometric perturbations are defined by a spacial-temporal projection

p! ≡ –P̄!
"ū𝛾h"𝛾, (5.5.3)

where minus sign was taken for the sake of mathematical convenience. Due to its
definition, vector p

! = ḡ!"p" is orthogonal to the four-velocity ū!, that is ū!p! = 0.
Hence, it describes a space-like vector-like gravitational perturbations with three
algebraically-independent components.

Tensorial chronometric perturbations are associated with the projection

p
⊺
!" ≡ p!" –

1
3
P̄!"p, (5.5.4)

where

p!" ≡ P̄!
,P̄"

-h,-. (5.5.5)

Here, the tensor p!" is a double projection of h!" onto space-like hypersurface being
orthogonal to the worldlines of Hubble observers. The trace of this tensor coincides
with the scalar p. Indeed,

ḡ!"p!" = ḡ!"P̄!
,P̄"

-h,- = P̄",P̄"
-h,- = P̄,-h,- = p, (5.5.6)
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where the property of the projection tensor P̄",P̄"- = P̄,- has been used. Equation
(5.5.6) makes it clear that tensor p

⊺
!" is traceless, that is ḡ

!"
p
⊺
!" = 0. Because of this

property, and four orthogonality conditions, ū!p⊺!" = 0, the symmetric tensor p
⊺
!" has

only five, algebraically-independent components.
Gravitational perturbation h!" can be decomposed into the algebraically-

irreducible scalar, vector and tensor parts as follows

h!" = p
⊺
!" + ū!p" + ū"p! + (ū!ū" + 1

3
P̄!") p + 2ū!ū" (q – p) . (5.5.7)

One should not confuse the pure algebraic (threading) decomposition of the met-
ric tensor perturbation with its functional (slicing) decomposition. The slicing (or
kinemetric, according to Zelmanov [472]) decomposition was pioneered by Arnowitt
et al. [12] Misner et al. [315], see Section 3.1. It is commonly used in the research on
the relativistic theory of formation of the large-scale structure in the universe. The
ADM decomposition of the metric tensor perturbations is done by foliating spacetime
[27, 260] with a set of spacelike hypersurfaces and making use of three dimensional
Helmholtz theorem [24] which singles out the longitudinal (L), transversal (T) and
transverse-traceless (TT) parts of the perturbations. In other words, the slicing decom-
position make vector p! and tensor parts of the gravitational perturbation, p

⊺
!", are

further decomposed in the functionally-irreducible components which include two
more scalars, and two transverse spatial vectors each having only two (out of three)
independent components. The remaining part of the tensor perturbations, p

⊺
!", is

transverse-trackless and has only two functionally-independent components denoted
as p

TT
!". The ADM decomposition of the metric tensor is a powerful technique in the

theory of gauge-invariant cosmological perturbations [28, 327]. However, it is not con-
venient in the development of the systematic post-Newtonian approximations and
celestial dynamics of inhomogeneities in cosmology. Thus, we do not use it in the
present chapter.

Our next step is a to find the gauge-invariant scalars directly reproducing the dens-
ity fluctuation and to derive the post-Newtonian field equations for the algebraically-
irreducible components of matter and gravitational field. We, first, discuss the gauge
transformations of the corresponding field variables.

5.5.2 Gauge transformation of the field variables

We discuss physical perturbations, tensor h!", and scalars I, J in the framework of
general relativity. Their gauge transformation is generated by a flow of an arbitrary
vector (gauge) field .! that maps the manifold into itself, Section 2.2.4 in detail. Gen-
eric gauge transformation of the fields on a curved manifold is associated with their
Lie transport along the vector flow .! [285, 456] while an infinitesimal gauge trans-
formation is a Lie derivative of the field taken at the value of the parameter on the
curves of the vector flow .!.
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Let us repeat results of Section 2.2.4 in brief. Consider a mapping of spacetime
manifold onto itself induced by a vector flow, .! = .!(x"). This means that each point
of the manifold with coordinates x! is mapped to another point with coordinates x󸀠! =. . . in transformations (2.2.54). In linear approximation it is

x󸀠! = x! + .!(x). (5.5.8)

This mapping of the manifold onto itself can be interpreted as a local diffeomorph-
ism which transforms the field variables in accordance to their tensor properties. The
transformed value of the field variable is pulled back to the point of the manifold hav-
ing the original coordinates x!, and is compared with the original value of the field at
this point. The difference between the transformed and the original value of the field,
generated by the diffeomorphism (5.5.8) is the gauge transformation of the field that is
given by the Lie derivative taken along the vector flow .! at the point of the manifold
with coordinates x!, for details see Section 2.2.4.

We denote the transformed values of the field variableswith a prime, like in (5.5.8).
In the linearized perturbation theory the gauge transformations of the field variables
are given in (2.2.79) and (2.2.80). For the present case of the cosmological manifold the
metric tensor perturbations 𝜘!" (or h!"), the scalar field6 and8 are given by equations

𝜘󸀠!" = 𝜘!" + £. ḡ!" = 𝜘!" – .!|" – ."|!, (5.5.9a)

h
󸀠!" = h

!" + £. ḡ
!" = h

!" +√–ḡ (.!|" + ."|! – ḡ!".𝛾|𝛾) , (5.5.9b)

or the same

h󸀠!" = h!" + .!|" + ."|! – ḡ!".𝛾|𝛾, (5.5.9c)

6󸀠 = 6 + £. Ī = 6 – Ī|!.!, (5.5.9d)

8󸀠 = 8 + £. J̄ = 8 – J̄|!.!, (5.5.9e)

where the prime above each symbol denotes a new value of the field variable after
applying the gauge transformation (5.5.8), and all functions are calculated at the same
value of coordinates x!. The gauge transformations of the field variables are expressed
in terms of the covariant derivatives on the manifold. With the use of the relation
(5.4.10) connecting 𝜘!" and h!", one can show that equation (5.5.9b) can derived from
the Lie transformation (5.5.9a).

Gauge invariance of the Lagrangian perturbation theory of geometric manifolds
means that the gauge transformations of the field variables can not change the content
of the theory. In other words, the equations for the field variables must be invariant
with respect to the gauge transformations (5.5.9a–5.5.9e), see Section 2.2.4. However,
direct inspection of equations (5.4.65), (5.4.67), (5.4.68) shows that they do depend
on the choice of the gauge in the form of the gauge function B! introduced in equa-
tion (5.4.64). To find out the gauge-invariant content of the theory one should search
for the gauge-invariant field variables and to derive the gauge-invariant equations for
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them. This program has been completed by Bardeen [28] who used the functional
3+1 slicing decomposition of the metric tensor perturbations and the vector field .!
to build the gauge-invariant variables out of the various projections of the metric
tensor components on space an time. Modifications of Bardeen’s approach can be
found in [81, 147, 155, 157, 301, 326] and in the book by Mukhanov [327]. We use
algebraic 1+3 threading decomposition of the metric tensor perturbations (5.5.7) that
allows us to build gauge-invariant scalars. Vector and tensor perturbations remain
gauge-dependent in the threading approach. In order to suppress the gauge degrees of
freedom in these variables we impose a particular gauge condition B! = 0 in equation
(5.4.64). This limits the freedom of the gauge field .! by a particular set of differential
equations which are discussed in Section (5.5.7).

5.5.3 Gauge-invariant scalars

The existence of the preferred four-velocity, ū!, of the Hubble flow in the expanding
universe provides a natural way of separating the perturbations of the field variables
in scalar, vector, and tensor components. This section discusses how to build the
gauge-invariant scalars. Vector and tensor perturbations are discussed afterwards.

The gauge-invariant scalar perturbations can be build from the perturbation of the
Clebsch potential, 6, the perturbation of the scalar field 8, and a scalar q defined in
(5.5.2a). To build the first gauge-invariant scalar, we introduce the scalar perturbations

7m ≡ 6
,̄m

, 7q ≡ 8
,̄q

, (5.5.10)

that normalize perturbations of the Clebsch potential6 and that of the scalar field8 to
the corresponding background values of the specific enthalpy, ,̄m and ,̄q. The gauge
transformations for the three scalars q, 7m, and 7q are obtained from (5.5.9b–5.5.9e),
and read

q
󸀠 = q + 2ū!ū".!|", (5.5.11a)

7󸀠m = 7m + ū!.!, (5.5.11b)
7󸀠q = 7q + ū!.!, (5.5.11c)

where we have used the definition of the background four-velocity,

ū! = –
Ī|!
,̄m

= –
J̄|!
,̄q

, (5.5.12)

in terms of the partial derivatives of the background values of the scalar fields I and
J. Equations (5.5.11b), (5.5.11c) immediately reveal that the linear combination

7 ≡ 7m – 7q, (5.5.13)
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is gauge-invariant, 7̂ = 7, that is the diffeomorphism (5.5.8) does not change the value
of the scalar variable 7.

Two other gauge-invariant scalars are defined by the following equations,

Vm ≡ ū!7m|! –
q

2
, (5.5.14a)

Vq ≡ ū!7q|! –
q

2
, (5.5.14b)

or, more explicitly,

Vm = 1
,̄m

ū!6|! –
q

2
+ 3

v2s
c2
H7m, (5.5.15a)

Vq =
1
,̄q

ū!8|! –
q

2
+ 3H7q +

7q
,q

𝜕W̄𝜕J̄ , (5.5.15b)

where the last terms in the right side of these equations were obtained by making use
of thermodynamic relationships (5.2.11), the equality 1̄q = ,̄q, and the equations of
continuity (5.3.59) and (5.3.67) for the density of the ideal fluid, 1̄m, and that of the
scalar field, 1̄q, respectively.

One can easily check that both scalars,Vm andVq remain unchanged aftermaking
the infinitesimal coordinate transformation (5.5.8). Indeed, the gauge transformation
of the derivatives

7󸀠m|! = 7m|! + HP̄!"." + ū"."|!, (5.5.16a)

7󸀠q|! = 7q|! + HP̄!"." + ū"."|!, (5.5.16b)

where P̄!" = ḡ!" + ū!ū" is the operator of projection on the hypersurface being
orthogonal to the Hubble flow of four-velocity ū!. After performing the gauge trans-
formation (5.5.8), and substituting the gauge transformations of functions q, 7m and
7q to the definitions of Vm and Vq, we find out

V 󸀠m = Vm, V󸀠q = Vq, (5.5.17)

that proves the gauge-invariant property of the scalars Vm and Vq.
Physical meaning of the gauge-invariant quantity Vm can be understood as fol-

lows. We consider the perturbation of the specific enthalpy ,m defined in equation
(5.2.14). Substituting the decomposition (5.4.2) of the field variables to equation (5.2.14)
and expanding, we obtain

,m = ,̄m + $,m, (5.5.18)

where the perturbation $,m of the specific enthalpy is defined (in the linearized
order) by



266 5 Field-theoretical derivation of cosmological perturbations

$,m = ū!6|! –
1
2
,̄mq. (5.5.19)

It helps us to recognize that

Vm = $,m
,̄m

+ 3
v2s
c2
H7m. (5.5.20)

Fractional perturbation of the specific enthalpy can be re-written with the help of ther-
modynamic equations (5.2.11) in terms of the perturbation $:m of the energy density
of the ideal fluid,

$,m
,̄m

=
v2s
c2

$:m
:̄m + p̄m

, (5.5.21)

or, by making use of equation (5.2.8), in terms of the perturbation $1m of the density
of the ideal fluid

$,m
,̄m

=
v2s
c2
$1m
1̄m

. (5.5.22)

This allows us to write down equation (5.5.20) as follows

Vm =
v2s
c2

($1m1̄m + 3H7m) , (5.5.23)

which elucidates the relationship between the gauge-invariant variable Vm and the
perturbation $1m of the restmass density of the darkmatter. More specifically,Vm is an
algebraic sum of two scalar functions, $1m and 7m neither of each is gauge-invariant.
The gauge transformation of the dark matter density perturbation is

$1󸀠m = $1m + 1̄m|!.! = $1m – 3H1̄mū!.!, (5.5.24)

and the gauge transformation of the variable 7m is given by (5.5.11b). Their algebraic
sum in equation (5.5.23) does not change under the diffeomorphism (5.5.8) showing
thatVm is the gauge-invariant density fluctuation that does not depend on a particular
choice of coordinates on spacetime manifold.

Similar considerations, applied to function Vq reveals that it can be represented
as an algebraic sum of the perturbation, $1q, of the density of the dark energy, and
function 7q,

Vq =
$1q
1̄q

+ 3H7q. (5.5.25)

It is easy to check out that each term in the right side of this equation taken separ-
ately, is not gauge-invariant but their linear combination does. It is worth emphasizing
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that standard textbooks on cosmological theory (see, for example, [296, 353, 456, 457])
derive equations for the density perturbations $1/1̄ but those equations are not gauge-
invariant and, hence, their solutions have no direct physical meaning and should be
interpreted with care.

5.5.4 Field equations for the gauge-invariant scalar perturbations

Equation for a scalar q

Function q was defined in (5.5.2a). In order to derive a differential equation for q, we
apply the covariant Laplace-Beltrami operator to q, and make use of the covariant
equations (5.4.62) and (5.4.64). Straightforward but fairly long calculation yields

q
|!
|! – 2(Ḣ + H2 – 2k

a2
) q + 801̄m,̄m [(1 – c2

v2s
)Vm – (1 + 3v2s

c2
)H7m]

– 1601̄q (𝜕W̄𝜕J̄ + 2H,̄q) 7q – 2ū!ū"B!|" – 4Hū!B!

= 80 (3 + 4) , (5.5.26)

where the source density 3 + 4 for the field q is

3 + 4 = (ū!ū" + P̄!")Tp!" (5.5.27)

in accordance with the definitions introduced in (5.3.70a), (5.3.70b). The reader should
notice that equation (5.5.26) depends on the gauge function B! which remains arbit-
rary so far.

Equation for a scalar p

Function p was defined in (5.5.2b). In order to derive equation for p, we apply the cov-
ariant Laplace-Beltrami operator to the definition of p, and make use of the covariant
equations (5.4.62) and (5.4.64). It results in a wave equation

p
|!
|! +

4k
a2

p + B!|! – 2ū
!ū"B!|" – 6Hū

!B! = 1604, (5.5.28)

where the source density 4 has been defined in (5.3.70b). Equation (5.5.28) depends on
the arbitrary gauge function B!.

Equation for a scalar 7
Equation for the gauge-invariant scalar, 7 = 7m – 7q, is derived from the definitions
(5.5.10) and the field equations (5.4.67), (5.4.68). Replacing 6 and 8 in those equa-
tionswith 7m and 7q, andmaking use of equations (5.3.52), (5.3.53) for reshuffling some
terms, yields
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7|!m|! + 2Hū
!7m|! – (Ḣ – 4k

a2
) 7m (5.5.29a)

+ 4HVm + (1 – c2

v2s
) ū!Vm|! – 1601̄q,̄q7 = ū!B!,

7|!q |! + 2Hū
!7q|! – (Ḣ – 4k

a2
) 7q (5.5.29b)

+4HVq +
2
,̄q

𝜕W̄𝜕J̄ Vq + 1601̄m,̄m7 = ū!B!.

Subtracting (5.5.29b) from (5.5.29a) cancels the gauge-dependent term, ū!B!, and
brings about the field equation for 7,

7|!|! + 6Hū!7|! + 3Ḣ7 =
2
,̄q

𝜕W̄𝜕J̄ Vq – (1 – c2

v2s
) ū!Vm|!. (5.5.30)

This equation is apparently gauge-invariant since any dependence on the arbitrary
gauge function B! disappeared. It is also covariant that is valid in any coordinates.

Equation (5.5.30) can be recast to the form of an inhomogeneous wave equation:

(1̄m7)|! |! = 2 1̄m1̄q
𝜕W̄𝜕J̄ Vq – (1 – c2

v2s
) 1̄mū!Vm|!. (5.5.31)

Yet another form of equation (5.5.30) is obtained in terms of the variable8 = 1̄q7 = ,̄q7.
By simple inspection we can check that equation (5.5.30) is transformed to

8|!
|! –m

2
88 = 2𝜕W̄𝜕J̄ Vm – (1 – c2

v2s
) 1̄qū!Vm|!, (5.5.32)

where we introduced notation m8 ≡ √𝜕2W̄/𝜕J̄2. This is an inhomogeneous Klein-
Gordon equation for the field 8 governed by Vm. The “mass” m8 of the scalar field
excitation, 8, depends on the second derivative of the potential function W̄ which
defines the “coefficient of elasticity” of the background scalar field J̄.

Inhomogeneous equations (5.5.30), (5.5.31), (5.5.32) have the source terms that is
determined by variables Vm and Vq. We derive differential equations for these field
variables in the next sections.

Equation for a scalar Vm
Equation for the field variable Vm is derived from the equations for functions 7m
and q that enter its definition (5.5.14a). By applying the Laplace-Beltrami operator to
function Vm we get
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V |!
m|! = ū" (7|!m|!)|" + 2H7|!m|! –

1
2
q
|!
|! + ū

"R̄!"7m|! (5.5.33)

+ 2Hū! (Vm + 1
2
q)

|!
+ 3H2 (Vm + 1

2
q) .

The Laplace-Beltrami operator for function 7m is given in equation (5.5.29a) which is
not gauge-invariant. Taking the covariant derivative from this equation and contract-
ing it with ū! brings about the first term in the right side of equation (5.5.33),

ū" (7|!m|!)|" = –(1 – c2

v2s
) ū!ū"Vm|!" – 6Hū

!Vm|! (5.5.34)

– (5Ḣ + 4k
a2

)Vm – Hū!q|! – ( 1
2
Ḣ + 2k

a2
) q

– 3H [(1 + v2s
c2
) Ḣ – (3 + v2s

c2
) k
a2
] 7m

+ 801̄q
𝜕W̄𝜕J̄ (47q – 37m)

+ 1601̄q,̄q [ū!7|! – 6H7 + 3
4
H (1 – v2s

c2
) 7m] + ū!ū"B!|".

The Laplace-Beltrami operator for function q has been derived in (5.5.26). Now, we
make use of equations (5.5.26), (5.5.29a), (5.5.34) in calculating the right side of (5.5.33).
After a significant amount of algebra, we find out that all terms explicitly depending
on q and the gauge functions B! cancel out, so that equation for Vm becomes

V |!
m|! + (1 – c2

v2s
) ū!ū"Vm|!" + 2(3 – c2

v2s
)Hū!Vm|! (5.5.35)

+ [2(Ḣ + 3H2 + 2k
a2

) – 401̄m,̄m (1 – c2

v2s
)]Vm

– 1601̄q,̄q [ū!7|! – 3(H + 1
2,̄q

𝜕W̄𝜕J̄ ) 7] = –40 (3 + 4) .
Second-order covariant derivatives in this equation read

[ḡ!" + (1 – c2

v2s
) ū!ū"]Vm|!" ≡ (–c2

v2s
ū!ū" + P̄!")Vm|!", (5.5.36)

and they form a hyperbolic-type operator describing propagation of sound waves in
the expanding universe from the source of the sound waves towards the field point
with the constant velocity v2s. Additional terms in the left side of equation (5.5.35)
depend on the Hubble parameter H, and take into account the expansion of the
universe.
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Equation (5.5.35) contains only gauge-invariant scalars, Vm and 7. Moreover, it
does not depend on the choice of coordinates on the background manifold. It also
becomes clear that the field variables Vm and 7 are coupled through the differen-
tial equations (5.5.32) and (5.5.35) which should be solved simultaneously in order to
determine these variables. Solution of the coupled system of differential equations is a
very complicated task which cannot be rendered analytically in themost general case.
Only in some simple cases, the equations can be decoupled. We discuss such cases in
Section 5.7.

Equation for a scalar Vq
The field variable Vq is not independent since it relates to Vm and 7 by a simple
relationship

Vq = Vm – ū!7|!, (5.5.37)

which is obtained after subtraction of equation (5.5.14a) from (5.5.14b). Equation for
Vq is derived directly from (5.5.37) and equations (5.5.35) and (5.5.30) for Vm and 7
respectively. We obtain,

V |!
q |! + 4(H + 1

2,̄q
𝜕W̄𝜕J̄ ) ū!Vq|! (5.5.38)

+ [2(Ḣ + 3H2 + 2k
a2

) – 401̄m,̄m (1 – c2

v2s
)

+ 2
,̄q

(5H + 1
,̄q

𝜕W̄𝜕J̄ ) 𝜕W̄𝜕J̄ + 2𝜕2W̄𝜕J̄2 ]Vq
+ 401̄m,̄m (3 + c2

v2s
)(ū!7|! – 3v2sc2H7) = – 40 (3 + 4) .

This equation can be also derived by the procedure being similar to that used in the
previous subsection in deriving equation for Vm. We followed this procedure and con-
firm that it leads to (5.5.38) as expected. Equation (5.5.38) is clearly gauge-invariant.
Besides Vq it depends on variable 7 and should be solved along with equation (5.5.30).

5.5.5 Field equations for vector perturbations

Vector perturbations of the ideal fluid and scalar field are gradients, 6|! and8|!. How-
ever, they are insufficient to build a gauge-invariant vector perturbation out of the
vector perturbation of themetric tensor p!. Field equations for vector p! can be derived
by applying the covariant Laplace-Beltrami operator to both sides of definition (5.5.3)
andmaking use of equation (5.4.65). After performing the covariant differentiation and
a significant amount of algebra, we derive the field equation
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p!
|"
|" – 2Hū!p"

|" – (2Ḣ + 3H2 – 2k
a2

) p! (5.5.39)

+ P̄!
"ū𝛾 (B"|𝛾 + B𝛾|" + 2Hū𝛾B") = 1604!,

where the matter current 4! is defined in (5.3.70c). This equation is apparently gauge-
dependent as shown by the appearance of the gauge function B!. This equation
reduces to a much simpler form

p!
|"
|" – 2Hū!p"

|" – (2Ḣ + 3H2 – 2k
a2

) p! = 1604!, (5.5.40)

in a special gauge B!=0 which imposes a restriction on the divergence of the metric
tensor perturbation in equation (5.4.64).

Equation (5.5.39) points out that the vector perturbations are generated by the
current of matter 4! existing in the localized astronomical system which physical ori-
gin may be a relict of the primordial perturbations. We do not discuss this interesting
scenario in the present chapter as it would require a non-conservation of entropy
and non-isentropic background fluid – the case which we have intentionally excluded
in order to focus on derivation of cosmological generalization of the post-Newtonian
equations of relativistic celestial dynamics [267].

5.5.6 Field equations for tensor perturbations

Field equations for traceless tensor p
⊺
!" can be derived by applying the covariant

Laplace-Beltrami operator to the definition (5.5.4) and making use of equation (5.4.65)
along with a tedious algebraic transformations. This yields the following equation

p
⊺
!"

|𝛾
|𝛾 – 2H (ū!p⊺"𝛾|𝛾 + ū"p⊺!𝛾|𝛾) – 2(H2 + k

a2
) p
⊺
!" (5.5.41)

– P̄!
,P̄"

- (B,|- + B-|,) + 2
3
P̄!"P̄

,-B,|- = 1604⊺!".

Here the transverse and traceless tensor source of the tensor perturbations is

4⊺!" ≡ 4!" –
1
3
P̄!" 4, (5.5.42)

where 4!" has been introduced in (5.3.70d), and 4 = P̄!"4!" in accordance with
equation (5.3.70b). Tensor 4⊺!" is traceless, that is ḡ

!"4⊺!" = P̄!"4⊺!" = 0.
Equation (5.5.41) is gauge-dependent. The gauge freedom is significantly reduced

by imposing the gauge condition B! = 0which brings equation (5.5.41) to the following
form,

p
⊺
!"

|𝛾
|𝛾 – 2H (ū!p⊺"𝛾|𝛾 + ū"p⊺!𝛾|𝛾) – 2(H2 + k

a2
) p
⊺
!" = 1604⊺!". (5.5.43)
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5.5.7 Residual gauge freedom

The gauge freedom of the theory under discussion is associated with the gauge func-
tion B! appearing in equation (5.4.64). The most favourable choice of the gauge
condition is

B! = 0, (5.5.44)

which drastically simplifies the above equations for vector and tensor gravitational
perturbations. The gauge (5.5.44) is a generalization of the harmonic (de Donder)
gauge condition used in the gravitational wave astronomy and in the post-Newtonian
dynamics of extended bodies. This choice of the gauge establishes differential rela-
tionships between the algebraically-independent metric tensor components intro-
duced in Section 5.5.1. Indeed, substituting the algebraic decomposition (5.5.7) of the
metric tensor perturbations to equation (5.4.64) and imposing the condition (5.5.44)
yields

p
⊺
!"

|" + ū!p"
|" + ū"p!

|" – (ū!ū" – 1
3
P̄!") p

|" + 2Hp!

+2ū!ū"q
|" + 2Hqū! = 160 (1̄m,̄m7m + 1̄q,̄q7q) ū!. (5.5.45)

Projecting this relationship on the direction of the background 4-velocity, ū!, and
on the hypersurface being orthogonal to it, we derive two algebraically-independent
equations between the perturbations of metric tensor components and of the matter
variables. They are

p"
|" + ū" (2q – p)|" + 2Hq = 160 (1̄m,̄m7m + 1̄q,̄q7q) , (5.5.46a)

p
⊺
!"

|" + ū"p!
|" + 1

3
P̄!"p

|" + 2Hp! = 0. (5.5.46b)

The gauge (5.5.44) does not fix the gauge function .! uniquely. The residual gauge
freedom is described by the gauge transformations that preserve equations (5.5.46a),
(5.5.46b). Substituting the gauge transformation (5.5.9b) of the gravitational field per-
turbation h!" to equation (5.4.64) and holding on the gauge condition (5.5.44), yields
the differential equation for the vector function .!

.!|"|" + ḡ!𝛾 (."|𝛾" – ."|"𝛾) + 2H (.!|"ū" + ."|!ū" – ."|"ū!) (5.5.47)

–160 (1̄m,̄m + 1̄q,̄q) ."ū"ū! = 0,

which can be further recast to

.!|"|" + 2H (.!|"ū" + ."|!ū" – ."|"ū!) (5.5.48)

+ 2(Ḣ – k
a2
) ."ū"ū! + (Ḣ + 3H2 + 2k

a2
) .! = 0.
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The gauge function .! can be decomposed in time-like, . ≡ –."ū", and space-like,
& ! ≡ P̄!".", components,

.! = & ! + ū!. . (5.5.49)

Calculating covariant derivatives from . and & ! and making use of equation (5.5.48),
yield equations

. |"|" + 2Hū".|" – (Ḣ – 4k
a2

) . = 0, (5.5.50a)

& !|"|" + 2H (ū"& !|" – ū!& "|") + (Ḣ + H2 + 2k
a2

) & ! = 0. (5.5.50b)

These equations have non-trivial solutions which describe the residual gauge free-
dom in choosing the coordinates on the background manifold subject to the gauge
condition (5.5.44). It is remarkable that equations (5.5.50a), (5.5.50b) are decoupled
and can be solved separately. It means that the residual gauge transformations along
the worldlines of the Hubble flow are functionally independent of those performed
on the hypersurface being orthogonal to the Hubble flow. Equations (5.5.50a–5.5.50b)
of the residual gauge freedom in the cosmological setting given in this subsec-
tion generalise equations of the residual gauge freedom in harmonic coordinates of
asymptotically flat spacetime [56, 115].

5.6 Post-Newtonian field equations in a spatially-flat universe

5.6.1 Cosmological parameters and scalar field potential

Linearized equations of the field perturbations given in the previous section are valid
for a wide class of matter models of the FLRW metric. They neither specify the equa-
tion of state of dark matter, nor that of dark energy. We also keep the parameter of
the space curvature k free. By choosing a specific model of matter and picking up a
value of k = –1, 0, +1, we can solve, at least, in principle the field equations govern-
ing the time evolution of the background cosmological manifold. Realistic models of
the cosmological dark matter and dark energy are rather sophisticated and, as a rule,
include several components. It leads to the system of coupled field equations which
can be solved only numerically [7]. However, the large scale structure of the universe
is formed at rather late stages of the cosmological evolution being fairly close to the
present epoch. Therefore, the study of the impact of cosmological expansion on the
post-Newtonian dynamics of isolated astronomical systems is based on recent and
present equation of state of matter in the universe.

Precise radiometric observations of the relic CMB radiation and photometry of
type Ia supernova explosions reveal that at the present epoch the space curvature of
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the universe, k = 0, and the evolution of the universe is primarily governed by the
dark energy and dark matter, which make up to 73 % and 23 % of the total energy
density of the universe respectively, while 4 % of the energy density of the universe
belongs to visible matter (baryons), and a tiny fraction of the energy density occupies
by the CMBR radiation [177, 234, 246, 262]. It means that we can neglect the effects of
the baryonic matter and CMB radiation field in consideration of the post-Newtonian
dynamics of astronomical systems in the expanding universe.

We model dark matter by an ideal fluid and dark energy is represented by a scalar
field with a potential function W̄ which structure has not yet been specified. We also
follow the discussion given in by assuming that the spatial curvature k = 0, and the
potential, W̄, of the scalar field relates to its derivative by a simple equation

𝜕W̄𝜕J̄ = –√80+W̄, (5.6.1)

where the time-dependent parameter, + = +(J̄), characterizes the slope of the field
potential W̄. The time evolution of the background universe can be described in terms
of the parameter + and two other parameters, x1 = x1(J̄) and x2 = x2(J̄), which are
functions of the density, 1̄q = ,̄q = J̄, of the background scalar field, and the potential,
W̄, scaled to the Hubble parameter, H. These parameters are defined as follows,

1̄2q =
3H2

40 x1, (5.6.2)

W̄ = 3H2

80 x2. (5.6.3)

The energy density of the scalar field, :̄q, is expressed in terms of the parameters x1
and x2 and the parameter Kq ≡ 80:̄q/3H2, by a simple relationship

Kq = x1 + x2. (5.6.4)

Time evolution of the parameters x1 and x2 is given by a system of two ordinary dif-
ferential equations which are obtained by differentiating definitions (5.6.2), (5.6.3) and
making use of equations (5.3.67) taken alongwith the Friedmann equation (5.3.52) with
k = 0. It yields

dx1
d9 = –6x1 + +√6x1x2 + 3x1 [(1 – wm) x1 + (1 + wm) (1 – x2)] , (5.6.5a)

dx2
d9 = –+√6x1x2 + 3x2 [(1 – wm) x1 + (1 + wm) (1 – x2)] , (5.6.5b)

where 9 ≡ ln a is the logarithmic scale factor characterizing the number of e-folding
of the universe, wm is the parameter entering the hydrodynamic equation of state
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(5.3.54), and the parameters x1 and x2 are restricted by the condition imposed by the
Friedmann equation (5.3.50), that is Kq + Km = 1, or

x1 + x2 = 1 – Km, (5.6.6)

where Km ≡ 80:̄m/3H2.
The parameter + obeys the following equation

d+
d9 = –√6x1+2 (Aq – 1) , (5.6.7)

where

Aq =
𝜕2W̄/𝜕J̄2(𝜕W̄/𝜕J̄)2 W̄, (5.6.8)

If Aq = 1, the parameter + is constant, and equation (5.6.1) can be integrated yielding
an exponential potential

W̄(J̄) = W̄0 exp(–√80+J̄). (5.6.9)

In this case, and under assumption that, wm = const., the system of two differential
equations (5.6.5a), (5.6.5b) is closed. If Aq ̸= 1, three equations (5.6.5a), (5.6.5b), (5.6.7)
must be solved together in order to describe temporal evolution of the background
cosmological manifold.

In the general case, derivatives of the potential W̄ are expressed in terms of the
parameters under discussion. Namely,𝜕W̄𝜕J̄ = – 3+√80H2x2,

𝜕2W̄𝜕J̄2 = 3Aq+2H2x2. (5.6.10)

It is also useful to express the products 1̄q,̄q and 1̄m,̄m in terms of the parameters x1
and x2. For ,̄q = 1̄q, one can use definition (5.6.2) to obtain

1̄q,̄q =
3H2

40 x1. (5.6.11)

The product 1̄m,̄m = :̄m + p̄m, so that making use of the matter equation of state,
p̄m = wm:̄m, and equation (5.6.6), we derive

1̄m,̄m = 3H2

80 (1 + wm)Km, (5.6.12)

whereKm = 1–x1 –x2. These equations allow us to recast equation (5.3.52) for the time
derivative of the Hubble parameter to the following form

Ḣ = –3
2
(1 + weff)H2, (5.6.13)
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where

weff ≡ wm + (1 – wm)x1 – (1 + wm)x2, (5.6.14)

is the (time-dependent) parameter of the effective equation of state of the mixture of
the ideal fluid and the scalar field.

5.6.2 Conformal cosmological perturbations

The FLRW metric (5.3.15) is a product of the scale factor a and a conformal metric
f̄!". The conformal spacetime is comoving with the Hubble flow and is not glob-
ally expanding. In case of the flat spatial curvature, k = 0, the conformal spacetime
becomes equivalent to the Minkowski space which is used as a starting point in the
standard theory of the Post-Newtonian approximations [115]. Therefore, it is mathem-
atically instructive to formulate the field equations for cosmological perturbations in
the conformal spacetime. It also allows us to simplify the differential operators in the
left side of the equations for perturbations (see Section 5.6.3 below). Nonetheless, the
reader must keep in mind that the conformal spacetime is unphysical and additional
scale transformations of coordinates are required to convertmathematical results from
the conformal spacetime to a real physical world [271].

Let us associate the cosmological perturbation, *!", of gravitational field in the
conformal spacetime with the background metric f̄!" with physical perturbation 𝜘!"
of the metric as follows

𝜘!" = a2(')*!", (5.6.15)

where perturbation 𝜘!" has been defined in (5.4.2) and a(') is the scale factor of the
FLRW metric. Gravitational perturbation h!" relates to 𝜘!" by equation (5.4.10), and
can be also represented in the conformal form

h!" = a2(')h!", (5.6.16)

where

h!" = –*!" +
1
2
f̄!"*, (5.6.17)

with * ≡ f̄
!"*!". In what follows, tensor indices of geometric objects in the conformal

spacetime are raised and lowered with the help of the conformal metric f̄!".
We assume that the scale factor a of the universe remains unperturbed. This

assumption is justified sincewe can always include the perturbation of the scale factor
to the perturbation *!" of the conformal metric. Thus, the perturbed physical space-
time interval, ds, of the FLRW metric relates to the perturbed conformal spacetime
interval, d ̃s, by the conformal transformation
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ds2 = a2(')d ̃s2. (5.6.18)

Here, the perturbed conformal spacetime interval reads

d ̃s2 = f!"dx
!dx", (5.6.19)

where

f!" = f̄!" + *!", (5.6.20)

is the perturbed conformal metric. Here, f̄!" is the unperturbed conformal metric
defined in (5.3.16), *!" is the perturbation of the conformal metric, and x! = (x0, xi)
are arbitrary coordinates which are the same as in the physical spacetime manifold in
correspondence with the definition of the conformal metric transformation [314].

It is worth emphasizing that in case of the space curvature k = 0, the background
conformal metric, g!"(',Xi), expressed in the isotropic Cartesian coordinates (',Xi),
is the diagonal Minkowski metric, g!"(',Xi) = '!" = diag(–1, 1, 1, 1). Therefore, in this
case the background metric f̄!" remains the Minkowski metric with the components
expressed in arbitrary coordinates by means of tensor transformation

f̄!" = M,
!M

-
"',-, (5.6.21)

where the matrix of transformation has been defined in (5.3.13). If the matrix of
transformation, M,

!, is the Lorentz boost, the conformal metric, f̄!", remains flat,
f̄!" = '!". It is worth noticing that, in general, the unperturbed conformal metric can
be chosen flat even in case of k = –1, +1 [239]. Hence, all equations given above will
remain intact which means that, in fact, our formalism is applicable to FLRW metric
with any space curvature. The only change will be in the conformal factor which, in
the case of k = ±1, is not merely the scale factor a(') of the FLRW metric but a more
complicated function, a(', xa), of time and spatial coordinates [239]. Though it is not
difficult to handle all three cases of k = –1, 0, +1 on the same footing but it burdens
equations for the field perturbations with a number of terms being proportional to k.
Moreover, consideration of the dark energy equations with k = ±1 given in the preced-
ing section gets complicated [7]. For this reason, we restrict ourselves with the case of
the spatially-flat universe with k = 0 which is an excellent approximation in treating
cosmological observations [246].

Similarly to (5.5.7) the conformal metric perturbation, h!", can be split in 1+3
algebraically-irreducible components

h!" = p⊺!" + v̄!p" + v̄"p! + (v̄!v̄" + 1
3
0̄!") p + 2v̄!v̄" (q – p) , (5.6.22)



278 5 Field-theoretical derivation of cosmological perturbations

where the four-velocity v̄! = aū!, v̄! = f̄!"v̄" = a–1ḡ!"ū" = a–1ū!, and

0̄!" = f̄!" + v̄!v̄", (5.6.23)

is the operator of projection on the conformal space which represents a hypersurface
being everywhere orthogonal to the congruence of worldlines of four-velocity v̄!. Four-
velocity v̄! is an analogue of the Hubble flow in the conformal spacetime. We also
notice that P̄!" = a20̄!".

Different pieces of the conformal metric perturbation, h!", are related to those of
the physical metric perturbation, h!", by the powers of the scale factor,

p
⊺
!" = a2p⊺!", p! = ap!, p = p, q = q. (5.6.24)

More specifically,

q = 1
2
(v̄,v̄- + 0̄,-)h,-, (5.6.25a)

p = 0̄,-h,-, (5.6.25b)

p! = –0̄!"v̄𝛾h"𝛾, (5.6.25c)

p⊺!" = p!" –
1
3
0̄!"p, (5.6.25d)

where

p!" = 0̄!,0̄"-h,-. (5.6.26)

The trace of the gravitational perturbation, h ≡ f̄
!"h!" = 2(p – q). The compon-

ents *!" = –h!" + f̄!"h/2 are used in calculating dynamical behavior of particles and
light in the conformal spacetime as well as for matching theory with observables. The
components of *!" are

*!" = –p⊺!" – v̄!p" – v̄"p! +
2
3
0̄!"p – (v̄!v̄" + 0̄!") q, (5.6.27)

and * ≡ f̄!"*!" = 2(p – q) = h.
It turns out that the conformal Hubble parameter, H = a󸀠/a is more conveni-

ent in the conformal spacetime than the “canonical” Hubble parameter, H = Ṙ/R =
R–1dR/dT, where T is the cosmological time (see Section 5.3.2). Relations between H

and H, and their derivatives are shown in equations (5.3.5–5.3.7). These relations are
employed along with equations (5.3.6) and (5.6.13) in order to express the time deriv-
ative, H 󸀠, of the conformal Hubble parameter in terms of H 2 and the parameter weff
of the effective equation of state

H 󸀠 = –1
2
(1 + 3weff)H

2. (5.6.28)

We shall use this expression in the calculations that follow.
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5.6.3 Post-Newtonian field equations in conformal spacetime

The set of the post-Newtonian field equations in cosmology consists of equations for
the perturbations of the background dark matter, dark energy and gravitational field.
Perturbations of dark matter and dark energy are described by four scalars, Vm, Vq,
7m and 7q but only three of them are functionally-independent because of equality
(5.5.37), that is

Vm – Vq = ū! (7m – 7q)|! . (5.6.29)

Depending on a particular situation, any of the three scalars can be taken as inde-
pendent variables in description of scalar perturbations.

The gravitational field perturbations are q, p, p!, p
⊺
!" but among them the scalar

q is not independent and can be expressed in terms of 7m and Vm in accordance with
(5.5.14a),

q = –2(Vm – ū!7m,!), (5.6.30)

where we have also used the equality q = q as follows from (5.6.24). The scalar q can be
also expressed in terms of 7q andVq in accordancewith (5.5.14b). Hence, as soon as the
pairs, Vm and 7m or Vq and 7q are known, the scalar gravitational perturbation q can
be easily calculated from (5.6.30). Functions p, p!, p

⊺
!" are independent and decouple

both from each other and from the other perturbations. Thus, the most difficult part of
the perturbation theory is to find out solutions of the scalar perturbations which are
coupled one to another.

The post-Newtonian field equations in the conformal spacetime for variables 7m,
7q, Vm and for p, p!, p⊺!" are derived from the equations of the previous section by
transforming all functions and operators from physical to conformal spacetime. The
important part of the transformation technique is based on formulas converting the
covariant Laplace-Beltrami wave operators, defined on the background spacetime
manifold, to their conformal spacetime counterparts.

Laplace-Beltrami operator in conformal spacetime
Let F be an arbitrary scalar, F! – an arbitrary covector, and F!" – an arbitrary covari-
ant tensor of the second rank. We have three different types of the Laplace-Beltrami
operators on the curved background manifold: a scalar – F|,|,, a vector – F!|,|,, and
a tensor – F!"|,|, where the covariant derivatives are taken with the help of the affine
connection Ā!"𝛾 being compatible with the metric ḡ!" as shown in (5.3.21). Covariant
derivatives gives the invariant description of differential equations of mathematical
physics on curved manifolds. However, for handling a more pragmatic purpose of
finding solution of a differential equation, the covariant operators must be expressed
in terms of partial derivatives with respect to the coordinates chosen for solving the
equation.
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Transformation of the covariant Laplace-Beltrami operators to the partial deriv-
atives is achieved after writing down the covariant derivatives for a scalar F, a vector
f!, and a tensor F!" in explicit form by making use of the Christoffel symbols given in
(5.3.23–5.3.25). Tedious but straightforward calculations of the covariant derivatives
yield the scalar, vector and tensor Laplace-Beltrami operators in the following form
[272]

F|,|, =
1
a2
[◻F – 2H v̄

,F;,], (5.6.31a)

F!
|,
|, =

1
a2
[◻F! – 2H v̄

,F,;! + 2H v̄!f̄
,-F,;- (5.6.31b)

+ (H 󸀠 + 2H 2) F! – 2H 2
v̄!v̄

,F,],
F!"

|,
|, =

1
a2
[◻F!" + 2H v̄

,F!";, – 2H v̄
,F,!;" – 2H v̄

,F,";! (5.6.31c)

+ 2H f̄
,- (v̄!F",;- + v̄"F!,;-) + 2 (H 󸀠 + H 2) F!"

– 4H 2(v̄,v̄!F", + v̄,v̄"F!, – 1
2
v̄!v̄"f̄

,-F,- –
1
2
f̄!"v̄

,
v̄
-F,-)],

where we have introduced notations

◻F ≡ f̄,-F;,-, ◻F! ≡ f̄,-F!;,-, ◻F!" ≡ f̄,-F!";,-, (5.6.32)

of the wave operators for the scalar, vector and tensor fields in the conformal space-
time and in arbitrary coordinates. Notice that although the conformal spacetime
coincides, in case of k = 0, with the Minkowski space, the metric f̄!" is not the
diagonal Minkowski metric '!" unless the coordinates are Cartesian. Of course, the
covariant derivative from a scalar must be understood as a partial derivative, that is
F;! = F,!.

We will need several other equations to complete the transformation of the
Laplace-Beltrami operators to the conformal spacetime since the wave operator ◻ acts
on functions like those shown in (5.6.24), which are made of a product of the scale
factor, a = a(') in some power n (may be not an integer), with a geometric object,ϝ = ϝ(x!), which can be a scalar, a vector or a tensor of the second rank (we have sup-
pressed the tensor indices of ϝ since they do not interfere with the derivation of the
equations which follow). These equations are

(anϝ);, = an (ϝ;, – nH v̄,ϝ) , (5.6.33a)

(anϝ);,- = an [ϝ;,- – nH (v̄,ϝ;- + v̄-ϝ;,) (5.6.33b)

+ n (H 󸀠 + nH 2) v̄,v̄-] ,
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and they allow us to write down the wave operator from the product of an and ϝ in the
following form

◻ (anϝ) = an[◻ϝ – 2nH v̄
,ϝ;, – n (H 󸀠 + nH 2) ϝ], (5.6.34)

It is easy to confirm that contraction of (5.6.33b) with the conformal four-velocity, v̄!,
brings about another differential operator

v̄
,
v̄
- (anϝ);,- = an[v̄,v̄-ϝ;,- + 2nH v̄

,ϝ;, + n (H 󸀠 + nH 2) ϝ]. (5.6.35)

We remind that if the object ϝ is a scalar, the covariant derivative ϝ;! = ϝ,! is reduced to
a partial derivative. In case, when ϝ is either a vector or a tensor, the covariant deriv-
ative must be calculated with taking into account the affine connection B̄!"𝛾 defined
in (5.3.25).

It is also interesting to notice that in the expanding universe the conformal
Laplace operator, Bϝ ≡ 0̄,-ϝ;,- is the scale invariant in the sense that

B (anϝ) = anBϝ, (5.6.36)

where ϝ is a tensor of an arbitrary rank. Equation (5.6.36) can be proven by adding up
(5.6.34) and (5.6.35), and accounting for definition (5.6.23) of the projection operator
on the hypersurface being orthogonal to v̄!.

Now, we are ready to formulate the field equations for cosmological perturbations
in the conformal spacetime.

Equations for perturbations of dark matter and dark energy
Dark matter and dark energy are described by scalar fields I and J. The fields them-
selves are not gauge-invariant. Therefore, physical meaning have only the equations
for the gauge-invariant perturbations of these fields which are Vm, Vq, and 7. We
consider, first, equation (5.5.35) for the gauge-invariant scalar Vm. We convert the
covariant derivatives taken with respect to the background metric, ḡ!", to the par-
tial derivatives of the conformally-flat metric, f̄!" and use equation (5.6.31a) for the
Laplace-Beltrami operator along with the expressions for various cosmological para-
meters given in Section 5.6.2. After arranging terms with respect to the powers of the
Hubble parameter H , we obtain the scalar equation for function Vm describing the
perturbations of dark matter,

◻Vm + (1 – c2

v2s
) v̄!v̄"Vm;!" + (3 – c2

v2s
)H v̄

!Vm,! (5.6.37)

+ 3[1 – weff –
1
2
(1 + wm)(1 – c2

v2s
)Km]H 2Vm

+ 12H 2 [v̄!7,! – 3(1 –√ 3
8x1

+x2)H 7] x1
a

= –40a2 (3 + 4) .
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This is a wave equation with the speed of sound vs which determines the speed of
propagation of the scalar perturbations in the dark matter considered as an ideal
fluid. These perturbations can be interpreted as acoustic or sound waves of differ-
ent wavelengths propagating in spacetime. Solution of homogeneous equation (5.6.37)
describes the propagation of primordial scalar perturbations of dark matter. A partic-
ular solution of the inhomogeneous equation (5.6.37) tells us how the perturbation of
dark matter caused by the isolated astronomical system propagate.

Similar procedure is applied to equation (5.5.38) and leads to a wave equation for
function Vq describing propagation of perturbations of dark energy considered as a
scalar field,

◻Vq + 2(1 –√ 3
2x1

+x2)H v̄
,Vq,, (5.6.38)

+ 3[1 – weff –
1
2
(1 + wm)(1 – c2

v2s
)Km]H 2Vq

+ +x2 [3+(2Aq + x2
x1
) – 5√ 6

x1
]H 2Vq

+ 3
2
H 2 (1 + wm) (3 + c2

v2s
)[v̄,7,, – 3v2sc2 H 7] Km

a
= –40a2 (3 + 4) .

The speed of propagation of dark energy is naturally equal to the fundamental speed c
as contrasted with dark matter. Dark matter has an intrinsic elasticity associated with
the bulk modulus K = :(dp/d:) that is proportional to pressure p, and where : is the
energy density of the fluid. The speed of sound vs = √K/: < c for a fluid because in
this case K < :. However, in case of the scalar field K = |:|, and vs = c.

Equations (5.6.37) and (5.6.38) depend on the scalar function 7 which obeys equa-
tion (5.5.30). Making use of the same transformations as applied to derivation of
(5.6.37) and (5.6.38), we can recast (5.5.30) to a wave equation for 7,

◻7 + 4H (1 –√ 3
8x1

+x2) v̄
!7,! –

9
2
(1 + weff)H 27 (5.6.39)

= – a[√ 6
x1
+x2H Vm + (1 – c2

v2s
) v̄!Vm,!] .

We can observe that the speed of propagation of the field 7 is equal to the fundamental
speed c. Moreover, (5.6.39) depends on Vm and should be solved simultaneously with
equation (5.6.37) for Vm after imposing certain boundary conditions. As soon as the
gauge-invariant scalar 7 is known, the potential, Vq, can be determined either as
a particular solution of the inhomogeneous equation (5.6.38) or, more simple, from
algebraic relation (5.5.37).
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We also need equations for the normalized Clebsch and scalar potentials, 7m and
7q. These potentials are required to determine the gravitational perturbation, q, with
the help of (5.6.30) and/or to check on self-consistency of the solutions of the field
equations in the matter sector of perturbation theory. Conformal-spacetime equations
for 7m and 7q are derived from their definition (5.5.10) and the field equations (5.4.67)
and (5.4.68). They are

◻7m + 3
2
(1 + weff)H 27m (5.6.40)

= 12H 2x17 – a[4H Vm + (1 – c2

v2s
) v̄!Vm,!] ,

◻7q + 3
2
(1 + weff)H 27q (5.6.41)

= – 6H 2(1 + wm)Km7 – a(4 –√ 6
x1
+x2)H Vq.

By subtracting one of these equations from another, we get back to equation (5.6.39).
Notice that 7m and 7q are not gauge-invariant perturbations and, hence, the solutions
of (5.6.40), (5.6.41) should be interpreted with care.

Equations for the metric perturbations
Post-Newtonian equations for gravitational perturbations in physical spacetime are
(5.5.26), (5.5.28), (5.5.39) and (5.5.41). These equations are gauge-dependent. In order
to fix the gauge we imposed the gauge conditions (5.4.64), (5.5.44). In this gauge,
equations for the conformal metric tensor perturbations become

◻q – 2H v̄
!q,! + (1 + 3weff)H 2q = 80a2 (3 + 4)

– 24H 2 [√3x1
8

+x2 – H x1] 7q
a
– 3 (1 + weff)H 2Km

×[(1 – c2

v2s
)Vm – H (1 + 3v2s

c2
) 7m

a
] , (5.6.42a)

◻p – 2H v̄
!p,! = 160a24, (5.6.42b)◻p! – 2H v̄

"p!;" + (1 + 3weff)H 2p! = 160a4!, (5.6.42c)◻p⊺!" – 2H v̄
𝛾p!";𝛾 = 1604⊺!". (5.6.42d)

The reader can observe that equations (5.6.42a–5.6.42d) for linearized metric per-
turbations are decoupled from each other. Moreover, equations (5.6.42b–5.6.42d) are
decoupled from the matter perturbations Vm, 7m, etc. Only equation (5.6.42a) for q is
coupled with the matter perturbations governed by equations (5.6.37), (5.6.40), (5.6.41)
so that these equations should be solved together. As we have mentioned above, func-
tion q is a linear combination of Vm and 7m according to (5.6.30). Hence, in order to
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determine q it is, in fact, sufficient to solve (5.6.37), (5.6.38) and (5.6.40). Nevertheless,
it is convenient to present the differential equation (5.6.42a) for q explicitly for the sake
of mathematical completeness and rigour. It can be used for independent validation
of the solution of the system of equations (5.6.37), (5.6.40) and (5.6.38). Unfortunately,
these equations are strongly coupled and cannot be solved analytically in the most
general situation of amulti-component background universe governed by dark energy
and dark matter. Solution of (5.6.37–5.6.41) would require a numerical integration.

It would be instrumental to get better insight to the post-Newtonian theory of
cosmological perturbations by making some simplifying assumptions about the back-
ground model of the expanding universe in order to decouple the system of the
post-Newtonian equations and to find their analytic solution explicitly. We discuss
these assumptions and the corresponding system of the decoupled post-Newtonian
equations in Section 5.7 below.

5.6.4 Residual gauge freedom in the conformal spacetime

The gauge conditions (5.4.64), (5.5.44) in physical space are given by equations
(5.5.46a), (5.5.46b). After transforming to the conformal spacetime the equations for
the gauge condition reads

p";" + v̄
" (2q – p)," + 2H q = 160a (1̄m,̄m7m + 1̄q,̄q7q) , (5.6.43a)

p⊺!";" + v̄
"p!;" +

1
3
0̄!"p," + 2H p! = 0. (5.6.43b)

The residual gauge freedom in the conformal spacetime is described by two gauge
functions, & ≡ ./a and & !, where . and & ! have been defined in Section 5.5.7. Dif-
ferential equations for & and & ! are obtained by making transformation of equations
(5.5.50a), (5.5.50b) to the conformal spacetime. The calculation is straightforward and
results in

◻& – 2H v̄
"&," + (1 + 3weff)H 2& = 0, (5.6.44a)

◻& ! – 2H v̄
"& !;" = 0. (5.6.44b)

Solutions of equations (5.6.42a–5.6.42d) are determined up to the gauge
transformations

q󸀠 = q + 2v̄!&,! + 2H & , (5.6.45a)

p󸀠 = p + & !;! + 3v̄!&,! + 6H & , (5.6.45b)

p󸀠! = p! + 0̄!" (v̄𝛾& ";𝛾 – & ," + 2H & ") , (5.6.45c)

p󸀠!" = p!" – (0̄,!0̄"- + 0̄,"0̄!-) & ,;- (5.6.45d)

+ 0̄!" (& !;! + v̄!&,! + 2H & ) ,
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where the gauge functions & , & ! are solutions of the differential equations
(5.6.44a), (5.6.44b).

5.7 Decoupled system of the post-Newtonian field equations

5.7.1 The universe governed by dark matter and cosmological constant

Case 1: Arbitrary equation of state of dark matter
Let us consider a special case of the background value of dark energy represented by
cosmological constant D = 80W̄. In this case, the equation of state of the scalar field
is wq = –1, and we have 1̄q,̄q = :̄q + p̄q = 0. The parameter x1 = 0, and x2 = D/(3H2). It
yields the parameterKq = x2, andKm = 1–x2. Since the cosmological constant corres-
ponds to a constant potential W̄ of the scalar field, we get for its derivative 𝜕W̄/𝜕J̄ = 0,
and equation (5.6.1) points out that the parameter + = 0.

In the universe governed by darkmatter and cosmological constant the parameter
of the effective equation of state of the dark matter is

weff = wm – (1 + wm)
D
3H2 . (5.7.1)

Hence, the time derivative of the Hubble parameter defined in (5.6.13), is reduced to a
more simple expression,

Ḣ = 1
2
(1 + wm) (D – 3H2) . (5.7.2)

On the other hand, equation (5.3.52) tells us that in this model of the universe the time
derivative of the Hubble parameter is

Ḣ = –401̄m,̄m. (5.7.3)

The field equation (5.6.37) for scalarVm is reduced to that describing the time evolution
of the perturbation of the ideal fluid density, $1m. Indeed, the scalar Vm defined by
equation (5.5.14a), can be recast to the form given by equation (5.5.23), that is

Vm =
v2s
c2

$m, (5.7.4)

where the gauge-invariant scalar perturbation

$m ≡ $1m
1̄m

+ 3H7m, (5.7.5)

is a linear combination of the perturbation of the mass density of the dark matter and
the normalized Clebsch potential 7m. Replacing expression (5.7.4) in equation (5.6.37),
yields an exact equation for $m that is
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(1 – v2s
c2
) v̄!v̄"$m;!" –

v2s
c2
◻$m + (1 – 3v2s

c2
)H v̄

!$m,! (5.7.6)

– 3
2
[(1 – 3wm) v2sc2 + (1 + wm)]H 2$m

+ 1
2
(1 + wm) (1 – 3v2sc2) a2D$m = 40a2 (3 + 4) .

This equation describes propagation of the density perturbation of dark matter, $m, in
the form of sound waves with velocity vs. Equation (5.7.6) is decoupled from any other
perturbation and can be solved separately after the boundary conditions are specified.
For this reason we call (5.7.6)master equation.

Equation (5.6.39) for potential 7 makes no sense since the normalized perturba-
tion 7q = 8/,̄q of dark energy in the form of cosmological constant diverges due to
the condition ,q = 1q = 0. Equation for the perturbation of dark energy, 8, itself is
obtained from (5.4.68) and is reduced to a homogeneous wave equation

◻8 – 2H v̄
,8,, = 0. (5.7.7)

Equation for the normalized Clebsch potential, 7m, is derived from equation (5.6.40)
and, in the case of the universe under consideration, reads

◻7m + 1
2
(1 + wm) (3H 2 – a2D) 7m = (1 – v2s

c2
) av̄,$m,, – 4aH

v2s
c2
$m. (5.7.8)

This is an inhomogeneous equation that can be solved as soon as one knows $m from
themaster equation (5.7.6). The potential 7m is necessary to determine the perturbation
of the four velocity of darkmatter.We also need it to find out themetric perturbation q.

Gravitational potential, q, can be determined directly from equation (5.6.30) after
solving equations (5.7.6) and (5.7.8) or by solving equation (5.6.42a) which (in the dark
matter+cosmological constant universe) takes on the following form,

◻q – 2H v̄
,q,, + [(1 + 3wm)H 2 – (1 + wm) a2D] q (5.7.9a)

= 80a2 {3 + 4 + 1̄m,̄m [(1 – v2s
c2
) $m + H (1 + 3v2s

c2
) 7m]} .

Equations for other components of the metric tensor perturbations are found from
(5.6.42b–5.6.42d). In dark matter+cosmological constant universe they read

◻p – 2H v̄
,p,, = 160a24, (5.7.9b)◻p! – 2H v̄
,p!;, + [(1 + 3wm)H 2 – (1 + wm) a2D] p! (5.7.9c)

= 160a4!,◻p⊺!" – 2H v̄
,p⊺!";, = 1604⊺!". (5.7.9d)
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Equations given in this section are valid for arbitrary cosmological equation of state
of dark matter, p̄m = wm:̄m, that is physically reasonable and makes sense. The para-
meter wm of the equation of state should not be replaced with the ratio of v2s/c

2 which
characterizes the derivative of pressure, p̄m, with respect to the energy density, :̄, of
dark matter. This is because the parameter wm can depend in the most general case
on the other thermodynamic quantities (like enthropy, temperature, etc.) which may
implicitly depend on :̄. Equations (5.7.6–5.7.9d) are decoupled in the sense that all of
them can be solved one after another starting from solving the master equation (5.7.6)
for $m.

Case 2: Cold dark matter
Equations of the previous section can be further simplified for some particular equa-
tions of state of darkmatter. For example, in the case of cold darkmatter (CDM)we can
think about it as being made out of collisionless dust. Background pressure of dust
drops down to zero making the parameter of the cold dark matter equation of state
wm = 0. Sound waves do not propagate in dust. Hence, the speed of sound vs = 0.
For this reason all terms being proportional to v2s and wm vanish in equation (5.7.6).
Moreover, dust has the specific enthalpy, ,m = 1 making the energy density of dust
equal to its rest mass density :̄m = 1̄m, and the normalized perturbation 7m of the
Clebsch potential of dust equal to the perturbation 6 of the Clebsch potential itself,
7m = 6. The Friedmann equation (5.3.50) (for k = 0) tells us that

H 2 = a2

3
(801̄m + D) . (5.7.10)

Accounting for this result in themaster equation (5.7.6), and neglecting all terms being
proportional to the speed of sound, vs and wm, we obtain

v̄
!
v̄
"$m;!" + H v̄

!$m,! – 40a21̄m$m = 40a2 (3 + 4) , (5.7.11)

where the terms depending on the cosmological constant, D, have cancelled out. This
equation is more familiar when is written down in the preferred FLRW frame, where
v̄
! = (1, 0, 0, 0). Equation (5.7.11) assumes the following form

$󸀠󸀠m + H $󸀠m – 40a21̄m$m = 40a2 (3 + 4) , (5.7.12)

where the time derivatives (denoted with a prime) are taken with respect to the con-
formal time '. Converting the time derivatives in (5.7.12) from the conformal time ' to
the cosmic time T reduces it to a canonical form

$̈m + 2H$̇m – 40$m = 40 (3 + 4) (5.7.13)

which can be found in many textbooks on cosmology [296, 327, 353, 456, 457]. All
textbooks always dropped off the source of the bare perturbation in the right side of
(5.7.13) as they are concerned with the description of the formation of the large scale
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structure in the universe out of the primordial perturbations. However, omitting the
bare perturbation in the right side of (5.7.13) is equivalent to neglecting the contribu-
tion of the small-scale density fluctuations in the early universe to the formation of
the large scale structures – the process which can be physically significant in the cold
dark matter scenario of galaxy formation [57, 58].

Equation (5.7.13) has been derived by previous researchers without resorting to
the concept of the Clebsch potential of the ideal fluid. For this reason, the density
contrast, $m, was interpreted as the ratio of the perturbation of the dust density to
its background value, $ = $1m/1̄m, without taking into account the perturbation,
6, of the Clebsch potential. However, the quantity $ is not gauge-invariant which
was considered as a drawback. The scrutiny analysis of the underlying principles
of hydrodynamics in the expanding universe given in the present chapter, reveals
that equation (5.7.12) is, in fact, valid for the gauge-invariant density perturbation $m
defined above in (5.7.5). Another distinctive feature of equation (5.7.12) is the presence
of the source of a bare perturbation in its right side. The bare perturbation is caused by
the effective density 3+4 of the matter which comprises the isolated astronomical sys-
tem and initiates the growth of instability in the cosmological matter that, in its own
turn, induces formation of the large scale structure of the universe [353, 457]. Standard
approach to cosmological perturbation theory always set 3 + 4 = 0 and operates with
the spectrum of the primordial perturbation of the density $1m/1m (but not with the
spectrum for $m).

Equation (5.7.8) in case of dust reads,

◻7m + 1
2
(3H 2 – a2D) 7m = av̄!$m,!, (5.7.14)

where 7m = 6 is reduced to the perturbation6 of the Clebsch potentialI for the reason
that in case of dust ,m = 1. If equations (5.7.12) and (5.7.14) are solved, the gravitational
perturbations can be found from equations (5.7.9a–5.7.9d), which take on the following
form

◻q – 2H v̄
!q,! + (H 2 – a2D) q = (5.7.15a)

80a2 [3 + 4 + 1̄m ($m + H7m)] ,◻p – 2H v̄
!p,! = 160a24, (5.7.15b)◻p! – 2H v̄

"p!;" + (H 2 – a2D) p! = 160a4!, (5.7.15c)◻p⊺!" – 2H v̄
𝛾p⊺!";𝛾 = 1604⊺!". (5.7.15d)

It is interesting to notice that besides the bare density perturbation, 3 + 4, caused by
an isolated astronomical system, the source for the scalar gravitational perturbation,
q, contains in the right side of equation (5.7.15a) also the induced density perturbation
1̄m ($m + H7m) = $1m + H1̄m6 of the background dark matter. This induced density
perturbation depends on time and leads to a temporal change of the initial (bare)
mass of the isolated astronomical system in the course of the Hubble expansion of
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the universe. Thus, our post-Newtonian approach to cosmology explains the origin
of the time-dependence of the central, point-like mass in the cosmological solution
found by McVittie [313] (see also discussion in [93]).

Case 3: Hot dark matter
Hot dark matter (HDM) is a hypothetical form of dark matter which consists of
ultrarelativistic particles that travel with velocities being very close to the funda-
mental speed c. A plausible candidate for the hot dark matter is neutrino. Hot dark
matter taken alone, cannot explain how individual galaxies were formed from the
primordial perturbations. Therefore, hot dark matter is discussed only as part of a
mixed dark matter theory [40]. Nonetheless, the case of the hot dark matter is inter-
esting from mathematical point of view. Equation of state of the hot dark matter is
approximated by the radiative equation of state, pm = (1/3):m which yields the para-
meter wm = 1/3. We assume that this parameter is constant and, hence, the speed of
sound vs = √1/3c. This value of vs is comparable with the fundamental speed c which
means that we have to keep the terms with the speed of sound in the master equation
(5.7.6). The values of wm and vs for the hot dark matter equation of state reduce the
master equation for the gauge-invariant HDM density perturbation $m to the following
form

◻s$m + 6H 2$m = –120a2 (3 + 4) , (5.7.16)

where

◻s ≡ (–c2
v2s
v̄
!
v̄
" + 0̄!")𝜕!", (5.7.17)

is the D’Alembert wave operator with the speed of propagation of sound waves vs =
c/√3. Equation for the perturbation of the Clebsch potential of the hot dark matter is
derived from (5.7.8) and reads

◻7m + 2(H 2 – 1
3
a2D) 7m = 2a

3
(v̄,$m,, – 2H $m) . (5.7.18)

Equations for the gravitational perturbations are

◻q – 2H v̄
,q,, + 2(H 2 – 2

3
a2D) q = 80a2 [3 + 4 + 2

3
1̄m,̄m ($m + 3H7m)] . (5.7.19a)

Equations for other components of the metric tensor perturbations are found from
(5.6.42b–5.6.42d). In dark matter+cosmological constant universe they read

◻p – 2H v̄
,p,, = 160a24, (5.7.19b)

◻p! – 2H v̄
,p!;, + 2(H 2 – 2

3
a2D) p! = 160a4!, (5.7.19c)◻p⊺!" – 2H v̄

,p⊺!";, = 1604⊺!". (5.7.19d)
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5.7.2 The universe governed by dark energy

In this section we explore the case of the universe governed primarily by a dark energy
(scalar fieldJ) with dark matter constituent being unimportant. In this case, the time
evolution of the background universe is defined exceptionally by equations (5.6.5a),
(5.6.5b). The most general solution of (5.6.5a), (5.6.5b) is complicated and can not be
achieved analytically. Numerical analysis shows that the solution evolves in the phase
space of the two variables {x1, x2} from an unstable to a stable fixed point by passing
through a saddle point [7]. The cosmic acceleration is realized by the stable point with
the values of x1 = +2/6 and x2 = 1 – +2/6, which is equivalent to the equations of state
(5.3.54) with the values of the parameters, wm = 0, and, wq = –1+ +2/3. It also requires
the energy density of the backgroundmatter :̄m = 0, that isKm = 0. In such a universe
the derivatives of the potential of the scalar field are

1
,̄q

𝜕W̄𝜕J̄ = –3
2
H (1 – wq) , 𝜕2W̄𝜕J̄2 = 9

2
H2 (1 – w2

q) . (5.7.20)

Moreover, because 1̄m,̄m = :̄m + p̄m = 0, the time derivative of the Hubble parameter is

Ḣ = –401̄q,̄q = –3
2
H2 (1 + wq) . (5.7.21)

In the point of the attractor of the scalar field, perturbations of the dark matter are
fully suppressed that is the normalized value of the perturbed Clebsch potential of the
dark matter, 7m = 0. It makes the function Vm = q/2, that is reduced to the perturba-
tion of the scalar component of the gravitational field only. Perturbations of the scalar
field are described by the scalar field variable, 7q. In particular, after substituting the
derivatives (5.7.20) of the scalar field potential along with the derivative (5.7.21) of the
Hubble parameter, to (5.5.38), we obtain the post-Newtonian equation for function Vq,

◻Vq – (1 – 3wq)H v̄
,Vq,, +

3
2
H 2 (1 – wq) (1 + 3wq)Vq = –40a2 (3 + 4) . (5.7.22)

Field equation for the perturbation of the scalar field, 7q, is reduced to

◻7q + 1
2
(1 + 3wq)H 27q = – (1 + 3wq) aH Vq. (5.7.23)

Post-Newtonian equations for gravitational perturbations are (5.6.42a–5.6.42d). After
substituting the values of the parameters x1, x2,weff, etc., corresponding to the model
of the universe governed by the dark energy alone, the post-Newtonian equations for
the metric perturbations become
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◻q – 2H v̄
,q,, + (1 + 3wq)H 2q = 80a2 (3 + 4) (5.7.24a)

+ 3
a
(1 + wq) (1 + 3wq)H 37q,◻p – 2H v̄

,p,, = 160a24, (5.7.24b)◻p! – 2H v̄
,p!;, + (1 + 3wq)H 2p! = 160a4!, (5.7.24c)◻p⊺!" – 2H v̄

,p⊺!";, = 1604⊺!". (5.7.24d)

One can see that the field equations for the perturbations of dark energy and grav-
itational field are decoupled, and can be solved separately starting from the master
equation (5.7.22).

5.7.3 Post-Newtonian potentials in the linearized Hubble approximation

The metric tensor perturbations
The post-Newtonian equations for cosmological perturbations of gravitational and
matter field variables crucially depend on the equation of state of the matter fields in
the background universe. It determines the time evolution of the scale factor a = a(')
and the Hubble parameter H = H (') which are described by the wide range of
elementary and special functions of mathematical physics (see, for example, text-
books [7, 303, 425] and references therein). It is not the goal of the present chapter
to provide the reader with an exhaustive list of the mathematical solutions of the
perturbed equations which requires theoretical development of cosmological Green’s
function (see, for example, [224, 292, 293, 382]). We notice that solving the field equa-
tions of the post-Newtonian approximations in cosmology is more complicated than
in case of the post-Newtonian theory in asymptotically flat spacetime. The reason is
twofold: (1) the system of the post-Newtonian equations on cosmological background
involves, besides equations for the metric tensor perturbations, also the equations
for the perturbations of the matter that curves the background manifold and gov-
erns its temporal evolution; and (2) the post-Newtonian field equations in cosmology
depend on the time dependent Hubble parameter that makes finding the Green func-
tions of the field equations pretty difficult task. If we are interested in finding the far
zone (radiative) solution for the gravitational field of an isolated astronomical system,
we have to fulfil this task exactly. This problem has not yet been solved though it is
very important for doing precise cosmology with gravitational wave astronomy. On
the other hand, we can employ the post-Friedmannian approximations by looking for
the solution of the cosmological post-Newtonian equations as a series with respect
to the Hubble parameter. In this section we shall limit ourselves with the linearized
Friedmann approximation. In other words, we shall take into account only the terms
which are proportional to the Hubble parameter H , and shall systematically neglect
all terms which are quadratic, cubic, and higher-orders with respect to H .
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As we shall see, in the linearized Friedmann approximation the post-Newtonian
equations for the field perturbations have identical mathematical structure so that
they are not only decoupled from one another, but their generic solution can be found
irrespectively of the equation of state governing the background universe. Indeed, if
we neglect all quadratic with respect toH terms, the field equations for the conformal
metric perturbations are reduced to the following set,

◻q – 2H v̄
!q,! = 80a2 (3 + 4) , (5.7.25a)◻p – 2H v̄
!p,! = 160a24, (5.7.25b)◻p! – 2H v̄
"p!;" = 160a4!, (5.7.25c)◻p⊺!" – 2H v̄
𝛾p⊺!";𝛾 = 1604⊺!", (5.7.25d)

where the wave operator ◻ has been defined in (5.6.32), and the source of the bare per-
turbation is the tensor of energy-momentumof a localized astronomical systemhaving
a boundedmatter support in space – see Section 5.3.8. The differential structure of the
left side of equations (5.7.25a–5.7.25d) is the same for all functions. The equations differ
from each other only in terms of the order of H 2 which have been omitted.

In order to bring equations (5.7.25a–5.7.25d) to a solvable form,we resort to relation
(5.6.34) which reveals that in the linearized Friedmann approximation, the post-
Newtonian equations for metric perturbations can be reduced to the form of a wave
equation

◻(aq) = 80a3 (3 + 4) , (5.7.26a)◻(ap) = 160a34, (5.7.26b)◻ (ap!) = 160a24!, (5.7.26c)◻ (ap⊺!") = 160a4⊺!". (5.7.26d)

So far, we did not impose any limitations on the curvature of space that can take three
values: k = {–1, 0, +1}. Solution of wave equations (5.7.26a–5.7.26d) can be given in
terms of special functions in case of the Riemann (k = +1) or the Lobachevsky (k =
–1) geometry [292, 293]. The case of the spatial Euclidean geometry (k = 0) is more
manageable, and will be discussed below.

If the FLRW metric is spatially-flat universe, k = 0, and we chose the Cartesian
coordinates x! related to the isotropic coordinates X! of the FLRWmetric by a Lorentz
transformation, X! = L!"x", where L!" is the matrix of the Lorentz boost. In these
coordinates the operator ◻ becomes a wave operator in the Minkowski space,

◻ = ',-𝜕,-. (5.7.27)

and equations (5.7.26a–5.7.26d) are reduced to the inhomogeneous wave equations
which solution depends essentially on the boundary conditions imposed on the
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metric tensor perturbations at conformal past-null infinity J – of the cosmological
manifold [315]. We shall assume a no-incoming radiation condition also known as
Fock-Sommerfeld’s condition [115, 178]

lim
r→+∞

t+r=const.
n𝛾𝜕𝛾 [a(')rh!"(x𝛾)] = 0, (5.7.28)

where x𝛾 = (x0, xi), ' ≡ X0 is the conformal time in isotropic coordinates connected to
the coordinates x! by a Lorentz boost ' = '(x𝛾) = L0"x", the null vector n! = {1, xi/r},
and r = $ijxixj is the radial distance. This condition ensures that there is no infalling
gravitational radiation arriving to the localized astronomical system from the future
null infinity J +. Effectively, it singles out the retarded solution of the wave equa-
tion. Whether the boundary condition (5.7.28) is valid or not, we do not know for sure
because our knowledge of the universe is limited by the existence of the cosmological
(also known as light or particle) horizon [296] that represents the boundary between
the observable and the unobservable regions of the universe. Nonetheless, in case of
spatially flat (k = 0) universe, the condition (5.7.28) seems to be highly plausible.

A particular solution of the wave equations satisfying condition (5.7.28), is the
retarded integral [285]

q(t, x) = – 2
a ['(t, x)] ∫V

a3 [' (s, x󸀠)] [3 (s, x󸀠) + 4 (s, x󸀠)] d3x󸀠
|x – x󸀠| , (5.7.29a)

p(t, x) = – 4
a ['(t, x)] ∫V

a3 ['(s, x󸀠)] 4 (s, x󸀠) d3x󸀠
|x – x󸀠| , (5.7.29b)

p!(t, x) = – 4
a ['(t, x)] ∫V

a2 ['(s, x󸀠)] 4! (s, x󸀠) d3x󸀠
|x – x󸀠| , (5.7.29c)

p⊺!"(t, x) = – 4
a ['(t, x)] ∫V

a ['(s, x󸀠)] 4⊺!" (s, x󸀠) d3x󸀠
|x – x󸀠| , (5.7.29d)

where the scale factor a in front of the integrals depends on the coordinates of the field
point a ≡ a ['(t, x)], and the functions in the integrand depend on the retarded time

s = t – |x – x󸀠|, (5.7.30)

because gravity propagates with finite speed. Equation (5.7.30) describes characteristic
of the null cone in the conformal Minkowski space that determines the causal nature
of the gravitational field in the expanding universe with k = 0. Solutions (5.7.29a–
5.7.29d) are Lorentz-invariant as shown by calculations in Section B.1.

Integration in (5.7.29a–5.7.29d) is performed over the finite volume, V , occupied
by the matter of the localized astronomical system. In case of the system comprised
of N massive bodies which are separated by distances being much larger than their
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characteristic size, the matter occupies the volumes of the bodies. In this case the
integration in equations (5.7.29a–5.7.29d) is practically performed over the volumes
of the bodies. It means that each post-Newtonian potential q, p, p!, p⊺!" is split in the
algebraic sum of N pieces

q =
N∑
A=1

qA, p =
N∑
A=1

pA, p! =
N∑
A=1

pA!, p⊺!" =
N∑
A=1

p⊺A!", (5.7.31)

where each function with sub-index A has the same form as one of the correspond-
ing equations (5.7.29a–5.7.29d) with the integration performed over the volume, VA, of
the body A. This confirms the principle of superposition in the linearised Friedmann
approximation.

The gauge functions
The residual gauge freedom describes arbitrariness in adding a solution of homogen-
eous wave equations (5.7.29a–5.7.29d). It is described by two functions, & ≡ ./a and
& ! as discussed in Section 5.6.4. Since we neglected the terms being quadratic with
respect to the Hubble parameter, equations (5.6.44a), (5.6.44b) gets simpler, and read

◻& – 2H v̄
"&," = 0, (5.7.32a)◻& ! – 2H v̄

"& !;" = 0. (5.7.32b)

They are equivalent to the homogeneous wave equations in the conformal flat space-
time

◻ (a& ) = 0, ◻ (a& !) = 0, (5.7.33)

which point out that (in the approximation under consideration) the products, a& and
a& !, are the harmonic functions.

Potentials q, p, p!, p
⊺
!" must satisfy the gauge conditions (5.6.43a), (5.6.43b). Neg-

lecting terms being quadratic with respect to the Hubble parameter, the gauge
conditions (5.6.43a), (5.6.43b) can be written down as follows

(ap!),! + v̄! (2aq – ap),! + H ap = 0, (5.7.34a)(ap⊺!") ," + v̄" (ap!) ," + 1
3
0̄!"(ap)," + H ap! = 0, (5.7.34b)

where we have taken into account a,! = –aH v̄!, and p!v̄! = 0, p⊺!"v̄" = 0. The poten-
tials p! and p⊺!" are obtained from p! and p

⊺
!" by rising the indices with the Minkowski

metric and taking into account that the indices of 4! and 4⊺!" in the integrands of
(5.7.29c) and (5.7.29d) should be raised with the full background metric ḡ!" = a–2'!"
taken at the point of integration. This is because by convention having been adopted
in Section 5.3.8, the notations 4! ≡ ḡ!"4" and 4!" ≡ ḡ!,ḡ"-4,-. It yields
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p!(t, x) = – 4
a ['(t, x)] ∫V

a4 ['(s, x󸀠)] 4! (s, x󸀠) d3x󸀠
|x – x󸀠| , (5.7.35a)

p⊺!"(t, x) = – 4
a ['(t, x)] ∫V

a5 ['(s, x󸀠)] 4⊺!" (s, x󸀠) d3x󸀠
|x – x󸀠| . (5.7.35b)

It is instrumental to write down solutions for the products of the potentials p and
p! = '!"p" with the Hubble parameter. Multiplying both sides of equations (5.7.26b),
(5.7.26c) with the Hubble parameter H , and neglecting the quadratic with respect to
H terms, we obtain

◻(aH p) = 160a3H 4, ◻(aH p!) = 160a4H 4!, (5.7.36)

which solutions are the retarded potential

aH p(t, x) = –4∫
V

a3 ['(s, x󸀠)]H ['(s, x󸀠)] 4 (s, x󸀠) d3x󸀠
|x – x󸀠| , (5.7.37a)

aH p!(t, x) = –4∫
V

a4 ['(s, x󸀠)]H ['(s, x󸀠)] 4! (s, x󸀠) d3x󸀠
|x – x󸀠| . (5.7.37b)

Substituting functions q, p, p!, p⊺!" and aH p, aH p! to the gauge equations (5.7.34a),
(5.7.34b), bring about the following integral equations

∫
V
[(a44! + v̄!a33),! + a3H 4] d3x󸀠

|x – x󸀠| = 0, (5.7.38a)

∫
V
[(a54⊺!" + a4v̄"4! + 1

3
0̄!"a34)

,"
+ a4H 4!] d3x󸀠

|x – x󸀠| = 0, (5.7.38b)

where all functions in the integrands are taken at the retarded time s and at the point
x󸀠, for example, a ≡ a['(s, x󸀠)], H ≡ H ['(s, x󸀠)], 3 ≡ 3[(s, x󸀠)], and so on. These
equations are satisfied by the equations of motion (5.3.71a), (5.3.71b) of the localized
matter distribution. Indeed, divergences of any vector F! and a symmetric tensor F!"

obey the following equalities

F!|! =
1√–ḡ (√–ḡF!)

,!
, (5.7.39)

F!"|" =
1√–ḡ (√–ḡF!")

,"
+ Ā!"𝛾F

"𝛾. (5.7.40)

Moreover, the root square of the determinant of the background metric tensor is
expressed in terms of the scale factor, √–ḡ = a4, while the four-velocity ū! = v̄

!/a.
Employing these expressions along with equations (5.7.39), (5.7.40) in equations of
motion (5.3.71a), (5.3.71b), transform them to



296 5 Field-theoretical derivation of cosmological perturbations

(a44! + v̄!a33),! + a3H 4 = 0, (5.7.41a)

(a44!" + a3v̄"4!)," + 2a3H 4! = 0. (5.7.41b)

Equation (5.7.41a) proves that the integral equation (5.7.38a) is valid. In order to prove
the second integral equation (5.7.38b), we multiply equation (5.7.41b) with the scale
factor a, and reshuffle its terms. It brings (5.7.41b) to the following form

(a54!" + a4v̄"4!)," + a4H 4! = 0. (5.7.42)

Substituting, 4!" = 4⊺!" + (1/3a2)0̄!"4, to (5.7.42) and comparing with the integrand in
(5.7.38b) makes it clear that (5.7.38b) is valid. We conclude that the retarded integrals
(5.7.29a–5.7.29d) yield the complete solution of the linearized wave equations (5.7.26a–
5.7.26d) in the sense that there is no residual gauge freedom since the gauge functions
& = & ! = 0.

Perturbations of dark matter and dark energy
What remains is to find out solutions for the scalar functionsVm andVq and 7m and 7q.
In the linearised Friedmann approximation equation for Vm is obtained from (5.6.37)
by discarding all terms of the order of H 2. It yields

◻Vm + (1 – c2

v2s
) v̄!v̄"Vm,!" + (3 – c2

v2s
)H v̄

!Vm,! = –40a2 (3 + 4) . (5.7.43)

Applying relations (5.6.34), (5.6.35) in equation (5.7.43) allows us to recast it to

1
an

[◻ (anVm) + (1 – c2

v2s
) v̄!v̄" (anVm),!"] (5.7.44)

+[3 + (2n – 1)c2
v2s
]H v̄

!Vm,! = –40a2 (3 + 4) ,
where n is yet undetermined real number. Now, we postulate that the speed of sound
vs is constant. Then, choosing, n ≡ ns, with

ns =
1
2
(1 – 3v2s

c2
) , (5.7.45)

annihilates the term being proportional to H in the left side of (5.7.44) and reduces
it to

◻ (ansVm) + (1 – c2

v2s
) v̄!v̄" (ansVm),!" = –40a2+ns (3 + 4) . (5.7.46)
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This equation describes propagation of perturbation Vm with the speed of sound
vs. Indeed, let us introduce the sound-wave Laplace-Beltrami operator (5.7.17). Then,
equation (5.7.46) reads

◻s (ansVm) = –40a2+ns (3 + 4) . (5.7.47)

This equation has a well-defined Green function with characteristics propagating with
the speed of sound vs. We discard the advanced Green function because we assume
that at infinity the function Vm and its first derivatives vanish. Solution of (5.7.47) is
explained below in Appendix B.2, and has the following form

Vm(t, x) =
1

ans (t, x) ∫V

a2+ns (=, x󸀠) [3(=, x󸀠) + 4(=, x󸀠)]
√1 + 𝛾2 (1 – c2

v2s
) (" × n)2

d3x󸀠

|x – x󸀠| , (5.7.48)

where the retarded time = is given by equation (B.2.18), " = "i = v̄
i/c, 𝛾 = 1/√1 – "2

is the Lorentz factor, and the unit vector n = (x – x󸀠)/|x – x󸀠|. The retardation in the
solution (5.7.48) is due to the finite speed of propagation of acoustic (sound) waves in
the ideal fluid that represents the dark matter.

Equation for Vq is obtained in the lineazised Friedmann approximation from
(5.6.38) after discarding all terms being proportional to H 2. It yields

◻Vq + 2(1 –√ 3
2x1

+x2)H v̄
,Vq,, = –40a2 (3 + 4) . (5.7.49)

Applying relation (5.6.34) in (5.7.49) allows us to recast it to

1
an

◻ (anVq) + 2(n + 1 –√ 3
2x1

+x2)H v̄
!Vm,! = –40a2 (3 + 4) . (5.7.50)

If, and only if, the ratio +x2/√x1 is constant, we can choose, n ≡ nq = –1+√3/(2x1)+x2,
in order to eradicate the second term in the left side of (5.7.50). In those models of the
universe where this condition is satisfied, the resulting equation for Vq is simplified
and reads

◻ (anqVq) = –40a2+nq (3 + 4) . (5.7.51)

This is the wave equation in flat spacetime. We pick up the retarded solution as the
most physical one,

Vq =
1

anq(t, x) ∫V

a2+nq (s, x󸀠) [3 (s, x󸀠) + 4 (s, x󸀠)] d3x󸀠
|x – x󸀠| , (5.7.52)
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where the retarded time s has been defined in (5.7.30).
Perturbations 7m and 7q can be found by integrating equations (5.5.14a) and

(5.5.14b) that can be written as

v̄
!7m,! = a(Vm + q

2
) , v̄

!7q,! = a(Vq + q
2
) . (5.7.53)

These are the ordinary differential equations of the first order. Their solutions are

7m = ∫t

t0
a[t, x(t)]{Vm[t, x(t)] + 1

2
q[t, x(t)]}dt, (5.7.54a)

7q = ∫t

t0
a[t, x(t)]{Vq[t, x(t)] + 1

2
q[t, x(t)]}dt, . (5.7.54b)

where t0 is an initial epoch of integration, and the integration is performed along the
Hubble flow of the background universe

dxi

dt
= v̄i(t, x). (5.7.55)

Therefore, the most simple way to integrate equations (5.7.53) would be to work in the
preferred coordinate frame X! = (',Xi) where the velocity v̄i = 0, and the spatial
coordinates Xi = const. After the calculation in the rest frame of the Hubble flow is
finished, the transformation to a moving frame of observer can be done with the help
of the coordinate transformation between the two frames.



6 Currents and superpotentials on arbitrary
backgrounds: Three approaches

Recall that classical pseudotensors and superpotentials help us to define the integral
properties of physical systems in terms of the surface integration, see Section 1.4. To
make such an integration meaningful, an auxiliary flat background metric is intro-
duced; besides, calculations are performed with making use of the Killing vectors of
the flat space, see (1.4.75–1.4.79). In the framework of the field-theoretical formulation
of general relativity, Chapter 2, the curved background manifold and its Killing vec-
tors are used for the surface integration in the definitions of the integral quantities.
Such a form of integral conservation law follows directly from the differential form of
conservation law, where the conserved current is expressed through a divergence of a
superpotential. Let us give two examples.

First, for the study of perturbations on FLRW backgrounds the so-called integ-
ral constraint is introduced. It represents a powerful form of an integral conservation
law that connects the volume integration over the matter perturbations only, with
the surface integral of the metric perturbations. It turns out to be very important for
resolving some problems in cosmology [441], e. g., to analyze the measurable effects
of the cosmic microwave background radiation [442]. In the definition of the integral
constraints the integral constraint vectors, not necessarily the Killing vectors, play a
crucial role.

Second, in [451], a new conserved energy-momentum pseudotensor was found
and used in an effort to integrate Einstein’s equations with scalar perturbations and
topological defects on FLRW backgrounds. In [446], it was realized that these conser-
vation laws are associated with the conformal Killing vector of time translation, but
not with the ordinary Killing vectors.

Thus, it is desirable thatmathematical formalism for describing perturbations and
conservation laws was constructed in the most general way including the possibility
to use arbitrary displacement vectors on arbitrary curved backgrounds. Keeping in
mind the above arguments and (1.4.75–1.4.79), the requirements for constructing such
generalized conservation laws are formulated as follows:
(i) Mathematical exprsssions have to be covariant on a chosen curved background

manifold with the metric which is a solution of the field equations of general
relativity.

(ii) Conservation laws have to be based on the Lagrangian of the perturbed system.
(iii) The conserved currents must be vector densities, J ,(. ), which are differen-

tially conserved, 𝜕,J ,(. ) = 0, on the equations of motion for perturbations.
(iv) The currents, J ,(. ), have to be expressed through corresponding superpoten-

tials that are antisymmetric tensor densities, J ,-, in the form of a divergence
J ,(. ) = 𝜕-J ,-(. ), where 𝜕,-J ,-(. ) ≡ 0.

DOI 10.1515/9783110351781-006
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(v) There has to be a possibility to use arbitrary displacement vectors, .,, not just
the Killing vectors of the background.

(vi) Applications of the suggested conserved quantities and conservation laws have
to satisfy the known results obtained for simple physical systems.

Below, in Sections 6.1–6.3, we present three different methods (canonical, Belinfante
correcting and field-theoretical) of constructing such conservation laws and con-
served quantities satisfying the above requirements (i–vi). After constructing the set
of conserved quantities, one can ask: what quantity from the set is more preferable?
Section 6.4 answers this question and proposes a number of criteria for making such
a choice.

In the final two sections, we demonstrate how conserved currents and superpo-
tentials can be used to study perturbations in the FLRW universe. It is well known that
the FLRW geometry has only 6 Killing vectors (but not 10 that the maximally symmet-
ric spaces only have), among which there is no timelike Killing vector. Thus, one has
no possibility to construct directly the energy density and energy integral for perturb-
ations on the FLRW backgrounds. In Section 6.5, by using the KBLmethod, we present
a feasible approach to solving this problem.

In Section 6.6, using the Belinfante corrected quantities we construct the integral
relations for perturbations in the FLRW universe. We describe how matter perturba-
tions inside a restricted domain can be connected with the metric perturbations at its
boundary.

In the present chapter many notations, which are used only in this chapter,
are introduced. We hope that no confusion will arise. Again, we use the units with
G= c= 1.

6.1 The Katz, Bičák and Lynden-Bell conservation laws

6.1.1 A bi-metric KBL Lagrangian

The first of these methods has been elaborated by Katz, Bičák and Lynden-Bell in
the paper [251] (later we call as KBL). They, by using the standard Noether’s canon-
ical procedure, presented conservation laws for arbitrary (not only infinitesimal)
perturbations.

The KBL strategy is bi-metric, it is based on using both dynamical metric and a
background metric. Then, comparing them, one defines and describes perturbations
with respect to the background solution. In Section 1.2.3, we provided main defini-
tions and properties of diffeomorphisms and mapping a spacetime onto itself. The
technique of a bi-metric derivation requires to recall and slightly reformulate some of
the main notions of mapping a dynamical spacetime onto a background spacetime.

Let g,-(x) be the metric of a dynamical spacetimeM 4, and let ḡ,-(x̄) be the metric
of a background spacetime M̄ 4. Both are tensors with respect to arbitrary coordinate
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transformations. Once we have chosen a mapping so that points {p} of M 4 map into
points {p̄} of M̄ 4, then we can use the convention that {p} and {p̄} shall always be rep-
resented by the same coordinates x! = x̄!. This convention implies that a coordinate
transformation on M 4 inevitably induces a coordinate transformation with the same
functions on M̄ 4. With this convention the expressions, like g,-(x) – ḡ,-(x), which are
perturbations, become true tensors. If the particular coordinate presentation of the
mapping is changed it must not violate the tensorial nature of the equations associ-
ated with the mapping. This property of the tensorial equation to preserve their form
is known as the gauge invariance, and the freedom in choosing the mapping is called
the gauge freedom. This freedom has been examined in detail in Section 2.2.4 in the
framework of the field-theoretical approach.

The main KBL idea is to construct a relative bi-metric Lagrangian in a generalized
form:

LKBL = L G – L̄ G – 1
160 𝜕!D! , (6.1.1)

where L G is a pure gravitational Lagrangian of an arbitrary metric theory; a diver-
gence is chosen by various criteria. In the case of general relativity, KBL choose the
Hilbert Lagrangian (1.3.1) as the gravitational one, thus (6.1.1) acquires the form:

LKBL = – 1
160 (R – R̄ + 𝜕!k!) . (6.1.2)

Here, the physical scalar curvature density, R, is constructed with the use of g,-,
which satisfies the dynamical Einstein equations while the background one, R̄, is
constructed with the use of ḡ,-, which satisfies the background Einstein equations
and corresponds to an arbitrary curved spacetime. With the use of (2.2.17) and (2.2.18)
one obtains for the difference between the curvature scalar densities in (6.1.2):

R – R̄ = g
43R43 – ḡ

43R̄43
= g

43 (∇̄1B143 – ∇̄3B141 + B11'B'43 – B13'B'41)
+ (g43 – ḡ

43) R̄43 . (6.1.3)

Here, as usual, B143 = A143 – Ā143, but now the components B143 are not independent
variables. KBL choose the divergence in (6.1.2) with the vector density (2.2.19) that first
has been introduced by Katz [250]. It reads

k! ≡ g
!-B,,- – g

,-B!,- . (6.1.4)

Of course, k̄! = 0. Using 𝜕!k! = ∇̄!k!, one obtains the KBL Lagrangian (6.1.2) in the
final form:

LKBL = – 1
160 g

43 (B11'B'43 – B13'B'41) – 1
160 h

43R̄43 . (6.1.5)



302 6 Currents and superpotentials on arbitrary backgrounds: Three approaches

Here, as before, h43 = g
43–ḡ

43, but now the components h
43 are not considered as inde-

pendent variables. One can see that (6.1.5) does not depend on the second derivatives
of the metric. Therefore, the corresponding energy-momentum will not depend on
the second derivatives either. This simplifies the Cauchy problem, when the action
with the Lagrangian (6.1.5) is varied under the Dirichlet boundary condition which is
imposed only on the components of the metric but not on its first derivatives.

In the case of a flat background in the Lorentzian coordinates, when B13' =
A13' – C13' = A13', the Lagrangian (6.1.5) transfers to the Einstein Lagrangian (1.3.9).
Also for the case g,- = ḡ,-, when a dynamical (perturbed) system coincides with the
background one, the Lagrangian (6.1.5) vanishes.

6.1.2 KBL conserved quantities

Noether’s canonical procedure
Now, let us analyze the Lagrangian (6.1.5). Because it is a scalar density, it has to satisfy
the main Noether’s identity related to diffeomorphisms. To provide a pure canonical
procedure we take the original form (1.2.46) of this identity with the right side omitted

£.LKBL + 𝜕, (.,LKBL) ≡ 0 . (6.1.6)

In the case of a generalized theory of fields 8A for arbitrary displacement vectors .,,
the same identity has been studied from (1.4.3) to (1.4.13) in Section 1.4. Therefore we
rewrite the identity (1.4.13), setting, 8A = {g,-, ḡ,-},

𝜕, j,C ≡ ∇̄, j,C ≡ 0 , (6.1.7)

where the current in (6.1.7) has the form of (1.4.14):

j,C ≡ [–$LKBL

$g13
g13

󵄨󵄨󵄨󵄨󵄨,- – $LKBL

$ḡ13
ḡ13

󵄨󵄨󵄨󵄨󵄨,- + 𝜕LKBL𝜕 (∇̄,g13) ∇̄-g13 – LKBL$,-] .-
– 𝜕LKBL𝜕 (∇̄,g13) g13

󵄨󵄨󵄨󵄨󵄨1+ ḡ+3∇̄1.3 + z, . (6.1.8)

Notice that, here, the covariant derivatives have been introduced by applying the tech-
nique of Appendix A.3.3, the very last term is explained in (6.1.13), and indices are
lowered and raised by ḡ,- and ḡ,-. We explain the meaning of each term entering
(6.1.8) in the text that follows.

To calculate the first two terms in (6.1.8) it is more constructive to use the (6.1.2)
representation for the KBL Lagrangian. One easily obtains that they are expressed
through dynamical, G-

,, and background, Ḡ-
,, densities of the Einstein tensor:

– $LKBL

$g13
g13

󵄨󵄨󵄨󵄨󵄨,- ≡ 1
80G-

, , –$LKBL

$ḡ13
ḡ13

󵄨󵄨󵄨󵄨󵄨,- ≡ – 1
80 Ḡ-

, . (6.1.9)
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The other terms in square brackets in (6.1.8) have the form of a canonical energy-
momentum (1.2.102) presented in a covariant form. Now, for calculational purposes, it
is more effective to use the (6.1.5) representation for the KBL Lagrangian. As a result,
one has 𝜕LKBL𝜕 (∇̄,g13) ∇̄-g13 – LKBL$,- ≡ t-, +

1
160 h

13R̄13$,- , (6.1.10)

where

160t-, ≡ g
13 [B+1+B,3- + B,13B++- – 2B,1+B+3-
– (B'13B+'+ – B'1+B+'3) $,-]
+g

,+ (B313B1+- – B3+3B11-) , (6.1.11)

depends on the first derivatives ∇̄,g13, only, and is interpreted as the canonical energy-
momentum tensor density for gravitational field. The last term in (6.1.10) reflects the
interaction of the perturbed system with the curved background.

The important term in (6.1.8) is the spin tensor density:

1603,13 ≡ –160 𝜕LKBL𝜕 (∇̄,g13) g13
󵄨󵄨󵄨󵄨󵄨1+ ḡ+3 (6.1.12)

= (2g1(,ḡ-)3 – g
,-ḡ13)B+-+ – (2g1(-ḡ+)3 – g

-+ḡ13)B,-+ .
After simplification to the Minkowski background in the Lorentzian coordinates one
obtains from (6.1.12) the quantity presented by Papapetrou [351] to construct the angu-
lar momentum with the use of Einstein’s pseudotensor. The last term in (6.1.8) has the
form:

z,(. ) = 1
160 [h,+𝜕+&11 + h

13 (∇̄,&13 – 2∇̄1&3,)] , (6.1.13)

with the notation:

&13 ≡ – 1
2£.g13 = ∇̄( 1.3) . (6.1.14)

By definition, this quantity vanishes if .3 is a Killing vector of the background
spacetime.

Thus, finally, (6.1.8) can be rewritten in a short form:

j,C(. ) ≡ C4-,.- + 3,13∇̄1.3 + z, , (6.1.15)

where

C4-, ≡ 1
80 (G-

, – Ḡ-
,) + t-, + 1

160 h
13R̄13$,- (6.1.16)

is a coefficient in front of .-, which can be interpreted as a generalized energy-
momentum related to the KBL Lagrangian (6.1.2).
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KBL superpotential
Because the equation (6.1.7) is the identity, the current, j,C(. ), in (6.1.15) can be rep-
resented through a superpotential, j,-C (. ) - an antisymmetric tensor density, in the
form:

j,C(. ) ≡ 𝜕- j,-C (. ) ≡ ∇̄- j,-C (. ) . (6.1.17)

How can one show this? The scheme is analogous to that used previously in
Section 1.4. One has to construct the system of the Klein identities, like (1.4.8–1.4.11),
with the use of which the identity (6.1.17), like (1.4.19), can be constructed. One can
see that (6.1.7) contains derivatives of .- up to the third order. Then, since .-, 𝜕!.-,𝜕"!.- and 𝜕𝛾"!.- are arbitrary at every world point, one has to set the coefficients
independently to zero and obtain the system of the Klein identities related to the KBL
Lagrangian. Because this procedure must not depend on the choice of coordinates we
can get a covariant form of the Klein identities by writing down the identity (6.1.7) in
terms of the covariant derivatives𝜕, j,C ≡ O-.- + O-

,∇̄,.- + O-
13∇̄(13). - + O-

,13∇̄(,13).- ≡ 0 (6.1.18)

and equate the coefficients at .-, ∇̄,.-, ∇̄(13).- and ∇̄(,13).- to zero. The resulting cov-
ariant system is equivalent to the initial non-covariant system because the set of the
covariant identities is a non-degenerate linear combination of the identities of the
initial system.

Thus, from (6.1.18) one has

O- = ∇̄, (C4-,) + 1
23

13,R̄,-13 (6.1.19)

+ 1
160 (R̄,13-∇̄,h13 – h

13∇̄-R̄13 – 1
2 R̄3-∇̄1h13) ≡ 0 ,

O-
, = C4-, + ∇̄131,- – 1

80h
,1R̄-1 ≡ 0 , (6.1.20)

O-
(13) = 3(13)- + ∇̄,O-

,13 ≡ 0 , (6.1.21)

O-
(,13) ≡ 0 , (6.1.22)

where the quantity O-
,13 in (6.1.21) and (6.1.22) is

O-
,13 = 1

320 (h,1$3- + h
,3$1- – 2h

13$,- ) . (6.1.23)

One easily recognizes that for such a quantity the last identity (6.1.22), indeed, holds.
With using definitions (6.1.11–6.1.16) one can be convinced that the other identities
(6.1.19–6.1.21) hold as well.

Using the Klein identities (6.1.19–6.1.22) in the expression for the current (6.1.15),
one obtains the wanted identity (6.1.17), where the superpotential at the right hand
side acquires the form:
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j,-C (. ) = 1
80 (√–g∇[,.-] –√–ḡ∇̄[,.-] + . [,k-]) . (6.1.24)

One finds that it is a relative (to a background system) Komar superpotential (1.4.80)
added by a contribution from the divergence in (6.1.2). Also the expression (6.1.24) can
be rewritten in the other form:

j,-C (. ) = 1
80 (h1[,∇̄1.-] + g

1[,B-]1+.+ + . [,g-]1B+1+ – . [,B-]13g13) . (6.1.25)

This expression easily transforms to the Freud superpotential (1.4.39) if (6.1.25) is
derived for a flat background with the Lorentzian coordinates, and the displacement
vector is represented by the coordinate translations ., = $,3.

KBL conservation laws
The identity (6.1.17) itself is the algebraic equality only. It has no physical sense
because the field equations (Einstein’s equations) have not been used at all. Let us
take them in the form (1.3.22) along with their background version and substitute
both of them into the current (6.1.15). Besides, recall that z-term in (6.1.15) depends on
the quantity, ∇̄(1.3), in the form of (6.1.14) only. Therefore, we reconstruct the second
term in (6.1.15) and add the quantity 3,13∇̄(1.3) to z-term. Finally, the current (6.1.15)
transforms to a physically sensible one:

J
,
C ≡ C(-,.- + 3,13∇̄[1.3] + z,C , (6.1.26)

where the generalized canonical energy-momentum tensor density and z-term are

C(-, = (T-
, – T̄-

,) + t-, + 1
160 h

13R̄13$,- ; (6.1.27)

160z,C(. ) = (&1,g13 + 2g,[1&13])B+3+ + (g13&++ – 2g1+&+3])B,13
+ h

,+𝜕+&11 + h
13 (∇̄,&13 – 2∇̄1&3,) . (6.1.28)

Comparing the KBL current with the canonical current defined for a field theory in the
Minkowski space, one finds that (6.1.26) generalizes (1.2.101). Indeed, for Killing vec-
tors the term (6.1.28) disappears and the current (6.1.26) transforms to (1.2.101). More
details on the structure of the energy-momentum (6.1.27): the first term is a difference
between the dynamical and background matter energy-momentum tensor densities –
its perturbation; the second term is the gravitational energy-momentum (6.1.11); the
third term describes an interaction of a perturbed system with a complicated curved
non-Ricci flat background.

Thus, the identity (6.1.7) transforms into a physically sensible conservation law
for the current (6.1.26): 𝜕,J ,

C ≡ ∇̄,J ,
C = 0 . (6.1.29)
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Analogous to the current (1.2.101) in a field theory that is conserved on field equations,
(1.2.83), the KBL current is conserved on the Einstein’s equations (1.3.22). The other
form of this conservation law is expressed with the use of the identity (6.1.17) with the
superpotential represented in (6.1.24) or in (6.1.25):

J ,
C (. ) = 𝜕-J ,-

C (. ) ≡ ∇̄-J ,-
C (. ) . (6.1.30)

Here, J ,-
C (. ) formally coincides with j,-C (. ) but, unlike j,-C (. ), the metric coefficients

in J ,-
C (. ) are the solutions to the Einstein equations. The form (6.1.30) of conser-

vation laws is generic. Recall that, by the conservation law of the type (6.1.29), one
can construct the integral conserved quantities at hypersurfaces x0 = const follow-
ing the recipe (1.2.83–1.2.87). The conservation law (6.1.30) permits to transform such
integrals into surface ones, see, e. g., (1.4.76–1.4.79).

Let us compare the KBL expressions with the others in general relativity. For
simplification let us reproduce them in a flat background covered with the Lorent-
zian coordinates, and let a displacement vector be represented by the coordinate
translations ., = $,3. Then one has ḡ,- → ',-, and the KBL gravitational energy-
momentum, t-,, defined in (6.1.11) transforms to Einstein’s pseudotensor (1.4.30), Et-,.
More generally, the KBL current,J ,

C (. ), defined in (6.1.26) goes to Et-,+T-
, in (1.4.40).

It is important to note that both the current and the superpotential in (6.1.30) can-
not be obtained by a simple covariantization of the classical quantities in (1.4.40). This
is a result of application of the Noether procedure to the KBL Lagrangian. Then, first,
the KBL conserved quantities hold on arbitrary curved backgrounds, not only on flat
backgrounds in curved coordinates. By this, the current, J ,

C , includes the interac-
tion term that cannot be found by the rule of thumbs. Second, J ,

C includes the spin
term which plays a crucial role because it permits to take into account the Killing vec-
tors corresponding to rotations in a consistent way and, thus, to obtain a reasonable
definition of the angular momentum for rotating black holes, for example.

The KBL quantities were also checked from the point of view of the problem of
uniqueness. Julia and Silva [247, 414], and independently Chen and Nester [99], stated
that the KBL quantities are uniquely defined and unambiguously associated with the
Dirichlet boundary conditions.

6.2 The Belinfante procedure

6.2.1 The Belinfante symmetrization in general relativity

Recall that the Belinfante method [34, 35] has been elaborated in a field theory in the
Minkowski space to present the energy, momentum and angular momentum densities
with the use of an unique complex. Such a construction, see (1.2.113–1.2.118), is not
complicated because the background Minkowski space is used.

The use of the Belinfante method in general relativity is not evident. Szabados
[426, 427] clearly has shown that if the method is based on the dynamical metric only,
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without using a background metric, then the Belinfante symmetrization of classical
pseudotensors leads uniquely to the Einstein tensor. Thus, arbitrary vacuum solu-
tions of general relativity, including wave solutions, have vanishing value of energy
that is not permissible. On the other hand, the success of Papapetrou [351] in apply-
ing the Belinfante symmetrization to the Einstein pseudotensor, see (1.4.57–1.4.62),
had been possible because the background Minkowski space has been used. For the
same reason, the use of a flat background in a perturbed variant of general relativity
has permitted Berezin [37] to construct an effective energy-momentum tensor of all
the physical fields. It is also important to note the work by Borokhov [63], where he
has generalized the Belinfante procedure for an arbitrary field theory on an arbitrary
background geometry with the Killing vectors.

Let us return to the KBL model. If one adds different divergences to the Lag-
rangian, different expressions both for currents and for superpotentials appear by
the canonical Noether’s procedure. The freedom in the choice of different types of the
divergence can be employed for studying a diversity of physical systems whose beha-
vior is determined by different boundary conditions. Besides gravitational physics this
freedom is widely used, for example, in thermodynamics [98]. Nonetheless, most of
practically important physical problems in gravitational physics demand the expres-
sions for conserved quantities being as much independent on the choice of the diver-
gence in the Lagrangian as possible. Examples of such divergence-independent quant-
ities are given by the symmetric energy-momentum tensor in classical electrodynam-
ics and the Belinfante symmetrized energy-momentum (1.2.128) in a field theory.

In the present section, summing up the above, we develop the Belinfante method
in general relativity for the cases, when arbitrary curved background manifolds are
introduced. The KBL model seems like the most appropriate one for the application
of the Belinfante procedure. The KBL current (6.1.26) with the Killing vectors has the
structure similar to (1.2.101) and contains two different complexes: the generalized
energy-momentum C(-, and the spin term 3,13. It is anticipated that the application
of the Belinfante procedure will lead to a unique complex. The presentation follows
the papers [369, 370].

6.2.2 The Belinfante method applied to the KBL model

Identities
Return to the initial standard form of the Noether identity (1.2.46) rewritten for the
diffeomorphisms in the KBL model:

£.LKBL + 𝜕, (.,LKBL) ≡ 𝜕,B, . (6.2.1)

Unlike (6.1.6), we keep the divergence in the right hand side for that 𝜕,B, ≡ 0. To
construct the vector densityB, we turn to the classical definition of the Belinfante cor-
rection (1.2.113) in a field theory. Following such a recipe, we combine the components
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of the spin tensor density (6.1.12) and construct the quantity being antisymmetric in ,
and -:

b,-1 = –b-,1 = 3 1[,-] + 3 ,[1-] – 3 -[1,] (6.2.2)

that is called the Belinfante correction. Using (6.2.2), we define the vector density
as B, ≡ 𝜕-(b,-1.1) for that indeed 𝜕,B, ≡ 0. The canonical Noether current in the
Noether identity in the KBL model (6.1.17) goes to the Belinfante symmetrized current
j,B = j,C + B,. Thus the identity (6.1.17) is rewritten in the equivalent form:

j,C + 𝜕- (b,-1.1) ≡ 𝜕- (j,-C + b,-1.1) . (6.2.3)

Renaming here the quantities with the Belinfante symmetrized current, j,B, and the
Belinfante corrected superpotential, j,-B , one gets the identity

j,B(. ) ≡ 𝜕-j,-B (. ) ≡ ∇̄-j,-B (. ) (6.2.4)

instead of (6.1.17).

The Belinfante corrected current
Let us derive the current in (6.2.4), using (6.2.2) and (6.1.11), along with (6.1.16–6.1.28),

j,B(. ) = j,C(. ) + 𝜕- (b,-1.1) = B4-,.- + z,B(. ) (6.2.5)

with j,C(. ) defined in (6.1.15). The quantity B4-, is a symmetrized (Belinfante corrected)
energy-momentum:

B4-, =
1
80 (G-

, – Ḡ-
, + 1

2h
13R̄13$,-) + t-, + ∇̄1b,1- . (6.2.6)

Here, as before, h43 = g
43– ḡ

43, but the components h
43 are not independent variables,

because it is a bi-metric formulation. The last term in the current (6.2.5), that we call
z-term depends only on the quantity (6.1.14) by our convention.With the use of (6.1.12),
(6.1.13) and (6.2.2) one obtains

160z,B(. ) = 160 [z,C + (b,13 + 3,13) ∇̄1.3]
= 2 (& 13∇̄1h3, – h

13∇̄1&3,) – (&13∇̄,h13 – h
13∇̄,&13)

+ (h,-∇̄-&11 – &11∇̄-h,-) . (6.2.7)

The equality (6.2.4) is an identity. To make it physically meaningful one has to use
the Einstein equations. To this end one has to work out the Einstein tensor densities
in (6.2.6). Picking up a symmetric part and raising the lower index, we transform the
related part as follows,

1
80 (G1

, – Ḡ1
,) ḡ1- = T1

(,ḡ-)1 – T̄ ,- + 1
80G1

[,ḡ-]1. (6.2.8)
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Then, the energy-momentum (6.2.6) acquires the final form:

B(,- = (T1
(,ḡ-)1 – T̄ ,-) + t,-B + 1

160 ḡ
,-

h
13R̄13 +

1
80h

+[,R̄-]+ . (6.2.9)

Here, the first term is a symmetrized perturbation of the matter energy-momentum,
and the second term is the symmetric energy-momentum for free gravitational field:

80t,-B = 80t,- + 80∇̄1b,1-
= 1

2 (h,-ḡ13 – ḡ,-h13) ∇̄3B+1+
+ (h13ḡ+(, – ḡ13h+(,) ∇̄3B-)+1
+ ḡ13 ( 1

2g
,-B+1+B'3' + g

+'B(,+1B-)'3)
+ ḡ13 (B+3'B(,+1g-)' – 2B+3+B(,'1g-)')
+ 1

2g
+'ḡ,-B31+B13'

+ g
+' (B313B(,+' – B3+'B(,13 – B3+1B(,'3) ḡ-)1. (6.2.10)

The third and fourth terms in (6.2.9) describe interactions with the background
geometry, if it is non-Ricci flat.

Thus, the identically conserved current (6.2.5) is transformed to the Belinfante
corrected current

J ,
B (. ) = B(-,.- + z,B(. ) (6.2.11)

that is consistent with the equations of motion of the physical system under consider-
ation, and satisfies the differential conservation law:

𝜕,J ,
B (. ) = ∇̄,J ,

B (. ) = 0 . (6.2.12)

Let us set out the properties of the Belinfante corrected current (6.2.11).
(i) One sees that the current (6.2.11) does not contain the spin term. Moreover,

if ., is a Killing vector of the background, ̄.,, the current, J ,-
B ( ̄. ), takes

on the form of the Belinfante corrected current (1.2.117) in a field theory in
the Minkowski space. The fact that the current is determined by the energy-
momentum complex only, is a consequence of applying the classical Belinfante
corrected procedure.

(ii) Let us turn to the fourth term in (6.2.9) that is the unique antisymmetric
term. One can see that the energy-momentum is symmetric, B(,- = B(-,, if and
only if R̄,- = Dḡ,-, that is for the cases, when the backgrounds are the Ein-
stein spaces in Petrov’s classification [372]. As a result, one concludes that the
Belinfante symmetrization in general relativity does not lead to a symmetric
energy-momentum in more general cases of arbitrary curved backgrounds.
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(iii) Let the curved background has a Killing vector ̄.-, then the current (6.2.11) is
defined, like in (1.2.117):

J
,
B ( ̄. ) = B(-, ̄.- , (6.2.13)

and it is conserved, see (6.2.12),

𝜕, (B(-, ̄.-) = 0 , (6.2.14)

compare with (1.2.118). However, unlike (1.2.118), the energy-momentum B(,- is
not symmetric in general, and the differential conservation law for the energy-
momentum does not hold,

∇̄- (B(,-) ̸= 0 . (6.2.15)

As a matter of principle, the conservation ∇̄- (B(,-) = 0 is valid, if and only if
the background is Einstein’s space. Nonetheless, the conservation law (6.2.14) is
useful, e. g., for constructing the angular momenta of relativistic astrophysical
objects on the FLRW background, which is not Einstein’s space, but which has
the Killing vectors corresponding to spatial rotations.

(iv) Unlike to the KBL gravitational energy-momentum (6.1.11), the second derivat-
ives of g,- appear in the Belinfante corrected energy-momentum (6.2.10). This
needs some comments. The canonical KBL energy-momentum (6.1.11) is quad-
ratic in the first order derivatives, and this is a normal behaviour for a conserved
quantity related to the standard initial conditions. Consider the local quantities
J ,

B in (6.2.11). Recall that the integral conserved quantities on hypersurfaces
x0 = const are defined by the integration of the only time component, J 0

B , in
(6.2.19), see formula (1.2.87). The initial conditions are generically defined only
on such hypersurfaces. Then, it is sufficient to examine the initial conditions for
the time component J 0

B = J 0
C + 𝜕k(b0k3.3) where we have taken into account

that b,-3 is anti-symmetric in the first two indices, see (1.2.1). Thus, since J 0
C

and b0k3.3 contain only the first order time derivatives, J 0
B itself contains only

the first order time derivatives of the metric, and therefore, it does not require
knowledge of the higher-order derivatives on the initial hypersurface.

The Belinfante corrected superpotential
To obtain an explicit expression for the new superpotential defined in (6.2.3) and
derived in (6.2.4) we combine (6.1.24), or (6.1.25), with (6.2.2) and (6.1.12),

j,-B = j,-C + b,-1.1 =
1
80 h

1[,∇̄1.-] + P+
,-.+ . (6.2.16)

It is antisymmetric in , and - because the quantity P1-, is defined as

P1,- = 1
160 ∇̄3 (ḡ1,h-3 – ḡ1-h,3 – ḡ3,h-1 + ḡ3-h,1) . (6.2.17)
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If one sets ḡ,- = ',- the quantity P1,- transforms to the Papapetrou [351] superpo-
tential (1.4.62), which means that (6.2.16) generalizes the Papapetrou superpotential
to arbitrary curved backgrounds for arbitrary displacement vectors .!.

It is important to note that the new superpotential (6.2.16) depends linearly on
perturbations of the metric densities, h

,- ≡ g
,- – ḡ

,-. On the other hand, it is
not an approximate formulation, it is exact. There is another useful form of the
superpotential (6.2.16):

j,-B = 1
80 (. [,∇̄3h-]3 – .3∇̄[,h-]3 + h

1[,∇̄1.-]) . (6.2.18)

One can see that it generalizes the superpotential (4.2.26) derived for the Killing
vectors on the AdS background, as well as for arbitrary displacement vectors .! on
arbitrary curved backgrounds. Continuing, one can tell that the superpotential (6.2.18)
generalizes the Abbott-Deser superpotential (4.2.29) to arbitrary displacement vec-
tors .!, arbitrary curved backgrounds and is also valid for an alternative definition
of perturbations, like h

,-.

The Belinfante corrected conservation laws
Finally, as a result of using the Einstein’s equations, the identity (6.2.4) transforms to
the physically meaningful conservation law

J ,
B (. ) = 𝜕-J ,-

B (. ) ≡ ∇̄-J ,-
B (. ) (6.2.19)

instead of the canonical one (6.1.30). As in the canonical derivation, formally J ,-
B (. )

coincides with j,-B (. ) but, unlike j,-B (. ), the coefficients of the metric tensor in J ,-
B (. )

are solutions of the Einstein equations.
Concluding, we repeat that a divergence in the Lagrangian has no contribution

to the Belinfante corrected quantities. This will be proved in detail on a more general
ground, when the Belinfante procedure will be described in the framework of multidi-
mensional metric theories, see Section 7.1.4 from (7.1.85) to (7.1.87). Now, we only note
that this property resolves the problem of the KBL model, where with making a choice
between divergences in the Lagrangian one changes conserved quantities.

6.3 Currents and superpotentials in the field-theoretical
formulation

6.3.1 Noether’s procedure applied to the field-theoretical model

We already know that in the framework of the field-theoretical formulation, the integ-
ral conserved quantities can be expressed through the surface integrals. However such
integrals have been constructed only on backgrounds represented by the Einstein
spaces. Besides, the existence of the Killing vectors on these backgrounds was crucial.
Let us recall those results. In the case of a flat background, the conservation law
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(2.2.106) has been used to construct a conserved current (3.2.18) and the correspond-
ent conserved surface integrals in the asymptotically flat spacetimes (3.2.24–3.2.26),
which have been formulated in a consolidated form (3.2.27). In the case of the Einstein
spaces, the conservation law (2.2.112) has been used to construct the conserved current
of the same form (3.2.18) alongwith a family of corresponding superpotentials (4.2.19).

In the case of the field-theoretical formulation, the question arises: can one
construct the conservation laws, like (6.1.30) and (6.2.19), on arbitrary curved back-
grounds and with arbitrary displacement vectors? The question has far going con-
sequences for the development of the theory because in the generic case of a curved
background one cannot construct a conservation law of the form (2.2.106) or (2.2.112).
A formal reason is that, in general, there is no conservation law for the energy-
momentum standing in the right hand side of the field equations. This follows from
the relations (2.2.101) and (2.2.103) which reveal that:

∇̄- (GL,- +IL
,-) ̸= 0 , (6.3.1)∇̄-GL,- ̸= 0 . (6.3.2)

A physical reason of the conclusions (6.3.1) and (6.3.2) is that the perturbed system
interacts with a complicated non-Ricci flat background that contains a background
matter represented by fields ĪA. In the framework both of the KBL approach, Sec-
tion 6.1, and of the Belinfante corrected procedure, Section 6.2, such a kind of
interaction has been taken into account in a construction of conserved quantities
by applying the Noether procedure that automatically includes the background Ricci
tensor into consideration. Therefore it is expected that the standard Noether methods
will be valid for applying in the field-theoretical approach.

To make the Noether technique applicable in such a model it is necessary to con-
vert the field-theoretical Lagrangian defined for perturbations, say the Lagrangian,
L g in (2.2.20), into a bi-metric form and make a replacement h

,- → g
,- – ḡ

,-, which
does not influence the result of the Noether procedure.

It is expedient to use directly the technique worked out in Section 6.1 and applied
it to the KBL Lagrangian, LKBL in (6.1.5). Then, one has to relate the field-theoretical
gravitational Lagrangian, L g, in (2.2.20) to LKBL. In both cases we use the same
divergence defined by (2.2.19) and (6.1.4), respectively. After making the replacement
h
,- → g

,- – ḡ
,- we denote the Lagrangian obtained as

LG2 ≡ – 1
160L g . (6.3.3)

It can be easily shown that

LG2 = LKBL – LG1 = – 1
160 g

,- (B1,-B313 – B1,3B31-) , (6.3.4)

where

LG1 ≡ – 1
160 (g,- – ḡ

,-) R̄,- . (6.3.5)
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Comparing the Lagrangians LG2 and LKBL with the Rosen Lagrangian LR [390, 391],
we note that LG2 is a direct generalization of LR to arbitrary backgrounds, whereas
LKBL is reduced to LR for the Ricci-flat backgrounds only. Notice also that, unlike the
KBL Lagrangian (6.1.5), the LagrangianLG2 depends only on the first derivatives of the
background metric. This simplifies the Noether procedure significantly.

To efficiently apply the technique of the Section 6.1 it is fruitful to consider the
Lagrangian (6.3.4) in the form:

LG2 = – 1
160 (R – g

,-R̄,- + 𝜕!k!) , (6.3.6)

compare with (6.1.2). The Lagrangian (6.3.6) is used to derive the main Noether’s
identity of the type (6.1.6),

£.LG2 + 𝜕,(.,LG2) ≡ 0 . (6.3.7)

It is directly transformed to the identity

𝜕, j,2 ≡ ∇̄, j,2 ≡ 0 (6.3.8)

that is analogous to the KBL identity (6.1.7). The identically conserved current in
(6.3.8) is

j,2 ≡ [–$LG2

$g13
g13

󵄨󵄨󵄨󵄨󵄨,- – $LG2

$ḡ13
ḡ13

󵄨󵄨󵄨󵄨󵄨,- + 𝜕LG2𝜕 (∇̄,g13) ∇̄-g13 – LG2$,-] .-
–2S+

,1∇̄1.+ , (6.3.9)

and below we examine its structure. Using the form of the Lagrangian (6.3.6), one
easily obtains for the first term in the current (6.3.9):

– $LG2

$g13
g13

󵄨󵄨󵄨󵄨󵄨,- ≡ 1
80 (G-

, – Ḡ-
,) – 1

80 (h,1$3- – 1
2h

13$,-) R̄13 . (6.3.10)

One recognizes that the other part of the current (6.3.9) is expressed through a linear
operator, GL

,-, in (2.2.27). It is because ∇̄1g,- = ∇̄1h,-, thus
– $LG2

$ḡ13
ḡ13

󵄨󵄨󵄨󵄨󵄨,- ≡ – 1
80G

L
1-(h)ḡ

1, . (6.3.11)

The last part in the square brackets is exactly represented by the canonical gravita-
tional energy-momentum (6.1.11):𝜕LG2𝜕 (∇̄,g13) ∇̄-g13 – LG2$,- ≡ t-, . (6.3.12)

The last term in (6.3.9) is defined by

2S ,-
+ ≡ 𝜕LG2𝜕 (∇̄,g13) g13

󵄨󵄨󵄨󵄨󵄨-+ + 𝜕LG2𝜕 (𝜕,ḡ13) ḡ13
󵄨󵄨󵄨󵄨󵄨-+ . (6.3.13)
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It should be noticed that the quantity (6.3.13) is antisymmetric in , and - and can be
rewritten with the use of the spin tensor components (6.1.12) in the form:

2S+
,-ḡ+1 = 31[,-] + 3,[1-] – 3-[1,] . (6.3.14)

This quantity is exactly the Belinfante correction introduced in (6.2.2), 2S+
,- = b,-+.

Summarizing (6.3.9–6.3.14), one can rewrite the current (6.3.9) in the form:

j,2 (. ) ≡ 24-,. - – b,13∇̄1.3 , (6.3.15)

where the energy-momentum is

24-, ≡ C4-, –
1
80 (h,1R̄1- + ḡ,1GL1-(h)) (6.3.16)

with C4-, defined in (6.1.16).
Recall the standard conceptual points. Because (6.3.8) is the identity one can

rewrite the current (6.3.9) in terms of a superpotential in the form (6.1.17):

j,2 (. ) ≡ 𝜕-j,-2 (. ) ≡ ∇̄-j,-2 (. ) . (6.3.17)

To calculate the superpotential one carries out the calculations analogous to the ones
from (6.1.18) to (6.1.24). Based on the identity (6.3.8), one derives a system of the Klein
identities analogous to the system (6.1.19–6.1.22), which are used for transformations
of (6.3.15). At the end of this procedure, one finds the superpotential,

j,-2 (. ) = –2S+
,-.+ = –b,-1.1 , (6.3.18)

that is expressed solely through the quantity (6.3.11).
Looking more carefully to the identity (6.3.17), the reader can notice that it is a

bi-metric identity, not a field-theoretical one. To return to the field-theoretical formu-
lation we go back to the KBL identity (6.1.17). We see that the current (6.1.15) replicates
the current (6.3.15) in many terms. Therefore, let us subtract the identity (6.3.17) from
the identity (6.1.17). As a result one obtains a modified new identity:

j,S ≡ 𝜕-j,-S ≡ ∇̄-j,-S . (6.3.19)

Finalizing the application of the Noether procedure, we return to the variables g
,- –

ḡ
,- → h

,- of the field-theoretical formulation.

Currents and superpotentials
The current in (6.3.19) is

j,S = S4-,.- + z,S (. ) , (6.3.20)
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where the energy-momentum is

S4-, =
1
80 (ḡ,1GL1-(h) + h

,1R̄1-) . (6.3.21)

The last term in the current (6.3.20), z-term, is

160z,S (. ) = 160 [z,C + (b,13 + 3,13) ∇̄1.3]
= 2 (& 13∇̄1h3, – h

13∇̄1&3,) – (&13∇̄,h13 – h
13∇̄,&13)

+ (h,-∇̄-&11 – &11∇̄-h,-) . (6.3.22)

The new superpotential in the identity (6.3.19) is

j,-S = j,-C + b,-1.1
= 1
80 (. [,∇̄3h-]3 – .3∇̄[,h-]3 + h

1[,∇̄1. -]) . (6.3.23)

To convert the identity (6.3.19) into a physically meaningful conservation law, one
has to use the gravitational equations in the field-theoretical form. Thus, after sub-
stituting GL

,-(h) from the equations (2.2.26) into the identity (6.3.19) one obtains the
conservation law in the form:

J ,
S = 𝜕-J ,-

S ≡ ∇̄-J ,-
S , (6.3.24)

where

J ,
S = S(-,.- + z,S (. ) (6.3.25)

with the energy-momentum

S(,- = ttot,- +
1
80 (h,1R̄-1 –IL

,-) . (6.3.26)

The role of the interaction with a curved background is played by the expression in
the brackets. One can use also the field-theoretical equations in the form (2.2.33) with
(2.2.34), then (6.3.26) is rewritten as

S(,- = teff,- +
1
80 h,

1R̄-1 . (6.3.27)

The explicit form of (6.3.26) or (6.3.27) is

S(,- = ($!,$"- – 1
2 ḡ,-ḡ

!") (T!" – 1
2g!"T01g

01) – T̄,- + tg,- +
1
80h,

1R̄-1 . (6.3.28)

Superpotential J ,-
S in (6.3.24) exactly coincides with j,-S in (6.3.23) if h

,- satisfy the
field equations. Being equivalent to (6.2.18), it generalizes also the superpotential
(4.2.26) for arbitrary displacement vectors .! and arbitrary curved backgrounds.
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Equivalence of the Belinfante corrected and the field-theoretical quantities
One sees that the superpotential (6.3.23) coincides exactly with the Belinfante correc-
ted superpotential (6.2.18):

j,-S = j,-B . (6.3.29)

Then, one concludes that the current (6.3.20) in (6.3.19) has to coincide exactly with
the Belinfante corrected current (6.2.5). After that, because z-term (6.3.22) coincides
exactly with the Belinfante corrected z-term (6.2.7),

z,S = z,B , (6.3.30)

the energy-momentum (6.3.21) has to be equal to the Belinfante corrected energy-
momentum (6.2.6),

S4-, = B4-, , (6.3.31)

or more explicitly,

1
80 (GL1-(h)ḡ1, + h

,1R̄1-) = 1
80 (G-

, – Ḡ-
, + 1

2h
13R̄13$,-) + t-, + ∇̄1b,1- . (6.3.32)

Indeed, after bulky calculations one can stand up for this claim. Consequently the
energy-momentum complexes (6.3.28) and (6.2.9) are equal as well,

S(,- = B(,- . (6.3.33)

Comparing the Einstein equations written down in the geometrical and field-
theoretical forms, one can confirm this equality.

6.3.2 A family of conserved quantities and the Boulware-Deser ambiguity

The above construction of conservations laws (6.3.4–6.3.33) and conserved quantit-
ies rather straightforward but fairly tedious. To obtain the identity (6.3.19) we have
subtracted the identity (6.3.7) from that (6.1.6), and relied upon the main Noether’s
identity

£.LG1 + 𝜕,(.,LG1) ≡ 0 (6.3.34)

for the scalar density

LG1 = LKBL – LG2 = – 1
160h

,-R̄,- , (6.3.35)

see (6.3.5). Then, it is clear that doing certain transformations of the identity (6.3.34)
from the start we, of course, will arrive the identity (6.3.19) in the field-theoretical
formulation as well.

Now, let us return to Section 2.2.6, where a field-theoretical formulation related to
different definitions of the metric perturbations was studied. This brought about the
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ambiguity (2.2.132) in the definition of a total energy-momentum. The questions arise.
First, how the conservation laws, like (6.3.19), can be constructed for different defini-
tions of variables? Second, how the Boulware-Deser ambiguity appears in definitions
of superpotentials in the field-theoretical formulation?

To answer the first question one has to use the recipe suggested by the identity
(6.3.34). Considering the gravitational part of the generalized dynamical Lagrangian
(2.2.123) derived for arbitrary metric perturbations ha (2.2.121), we examine the Lag-
rangian

La1 = ha $L̄H
$ḡa = – 1

160h
,-
a R̄,- . (6.3.36)

This generalizes (6.3.35), in the sense that it uses the generic form of the independent
dynamical variables h

,-
a defined in (2.2.129). Applying the Noether procedure, one has

to study now

£.La1 + 𝜕,(.,La1) ≡ 0 (6.3.37)

instead of (6.3.34). It is a family of identities corresponding to different definitions
of metric perturbations in (2.2.121). This leads to a family of conserved quantities:
currents and superpotentials. Step by step, one obtains

j,a ≡ 𝜕- j,-a ≡ ∇̄- j,-a (6.3.38)

with the current

j,a(. ) = a4-,.- + z,a(. ) , (6.3.39)

where the energy-momentum is

a4,- =
1
80 (G,-

L (ha) + h
1,
a R̄-1) . (6.3.40)

The last term in the current, z-term, is

160z,a(. ) = 2 (& 13∇̄1h,(a)3 – h
13
a ∇̄1& ,3) – (&13∇̄,h13a – h

13
a ∇̄,&13)

+ (h,-a ∇̄-& 11 – & 11∇̄-h,-a ) . (6.3.41)

A family of superpotentials, j,-a formally coincides with the one in (6.3.38), and
explicitly is expressed as

j,-a = 1
80h

1[,
a ∇̄1.-] + 1

160 ∇̄3 (ḡ1,h-3a – ḡ1-h,3a – ḡ3,h-1a + ḡ3-h,1a ) .1
= 1
80 (. [,∇̄3h-]3a – .3∇̄[,

h
-]
a 3 + h

1[,
a ∇̄1. -]) . (6.3.42)

One easily recognizes that it is the generalization to arbitrary displacement vectors
and to arbitrary curved backgrounds of the family (4.2.19).
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Now let us answer the question on the origin of the Boulware-Deser ambiguity.
After using the field equations the current (6.3.38) transforms to

J ,
a (. ) = a(-,.- + z,a(. ) , (6.3.43)

where the energy-momentum is

a(,- = ttot,- (ha) +
1
80 (h(a),

1R̄-1 –IL
,-(ha)) . (6.3.44)

Also for h
,-
a which are solutions of the field equations, we have j,-a = J

,-
a with the

same form (6.3.42). Finally, with the use of the field equations the identity (6.3.38)
transforms to the conservation laws:

J ,
a = 𝜕-J ,-

a ≡ ∇̄-J ,-
a . (6.3.45)

At last, taking into account the difference in perturbations (4.2.21) and linearity in vari-
ables h

,-
a , one finds the difference between the terms of the family of superpotentials

(6.3.42):

BJ ,-
a = 1

* (. [,∇̄3(12h-]3a ) – .3∇̄[,(12h-]a 3) + 12h
1[,
a ∇̄1.-]) . (6.3.46)

It represents the Boulware-Deser ambiguity in the definition of the superpotentials.

6.3.3 Comments on conserved quantities of three types

Boulware-Deser ambiguity
Note that the KBL approach does not depend on the choice of the variables, like
g,-, g,-, g

,- , . . ., etc. As a result the Belinfante symmetrization does not depend
on such a choice either and uniquely leads to the conservation law (6.2.4) with the
superpotential (6.2.18). On the other hand, in the field-theoretical formulationwe have
constructed the family of the superpotentials (6.3.42). What form is more preferable?
It turns out that only the superpotential (6.3.23) from the family (6.3.42) corresponds to
the Belinfante corrected superpotential (6.2.18). This is a theoretical argument in favor
of the choice of the variable h

,-
(a) = h

,- = g
,- – ḡ

,- in the field-theoretical formulation,
resolving the Boulware-Deser ambiguity [71].

The KBL approach is not connected with the field-theoretical one directly. Indeed,
the variation of the KBL Lagrangian (6.1.2) with respect to the backgroundmetric leads
to the background quantities only. However, the Belinfante quantities, being equival-
ent to the field-theoretical ones and being obtained from the KBL quantities, can be
classified as a “bridge” between the two approaches.

At last, because the field-theoretical quantities do not depend on divergences in
the Lagrangian (by definition) the same property is valid for the Belinfante corrected
conserved quantities owing the equivalence between these methods. This supports
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the claim of the Section 6.2 that the Belinfante corrected conserved quantities in
general relativity do not depend on divergences in the Lagrangian. We repeat that
on a more general level, in the framework of multidimensional metric theories, this
property of the Belinfante procedure is proved below, see Section 7.1.4 from (7.1.85) to
(7.1.87).

Integral constraints
Perhaps the most important property of conservation laws in general relativity is that
the conserved quantities in a finite or infinite volume can always be expressed in terms
of the surface integrals taken over the boundary of the volume or at spatial infinity.
Such a representation is possible because the local value of a conserved current can
be always expressed in terms of a divergence from a corresponding superpotential

J ,(. ) = 𝜕-J ,-(. ) ≡ ∇̄-J ,-(. ), (6.3.47)

as shown in (6.1.30), (6.2.19) and (6.3.24). Currents, J ,(. ), depend both on the
perturbed metric and its derivatives and on the perturbation of the matter energy-
momentum, $T-

,. At the same time, superpotentials, J ,-(. ), in all cases (6.1.25),
(6.2.18) and (6.3.42), contain the perturbed metric and its first (not higher) order deriv-
atives only, and, what is the most important, they do not depend on the matter
perturbations.

Let us consider a 3-dimensional spacelike hypersurface, G := x0 = const,
which has a 2-dimansional boundary, 𝜕G. Then, by integrating (6.3.47) one obtains
a conserved quantities related to a displacement vector .! in the form:

P(. ) = ∫
G
dx3J 0(. ) = ∮

𝜕G
dsiJ

0i(. ) . (6.3.48)

In the literature, as a rule, superpotentials and formule, like (6.3.48), are more often
used as comparedwith currentJ ,(. ). The usefulness of superpotentials was strongly
advocated by Penrose [354] who introduced the notion of “quasi-local” quantities
which, in the weak field limit, reduce to the ordinary conserved linear momentum
and angular momentum of gravitational field in a finite volume. Many papers over the
past decades have been published on the subject of the quasi-local energy, see the
comprehensive review by Szabados [430]. The role and importance of superpotentials
in a field theory has been emphasized by Julia and Silva [247, 414] who provided their
elegant treatment and put their generic theory on a rigorous mathematical basis.

Let us come back to (6.3.48), and suppose that the boundary values of the met-
ric, thus J ,-(. ), on 𝜕G are given. Then, (6.3.48) can be interpreted as a set of integral
constraints on the perturbations of the energy-momentum $T-

, for the given initial
perturbations of the metric on G. Reciprocally, if $T-

, is given, the relation (6.3.48)
represents the integral constraints for the initial metric data on G. Among all of the
integral constraints a special role is played by the integral constraints connecting
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the boundary values of the metric to the matter sources on G, see the last section
of the present chapter.

The simplest connections between currents and superpotentials
We have already demonstrated in previous sections how the conserved quantities
defined on a curved background are related to the classical pseudotensors and
superpotentials related to a flat Minkowski space. For clarity of this comparison we
consistently used the Lorentzian coordinates on the flat background. Now, we extend
this analysis to the case of curvilinear coordinates on the background Minkowski
space. Rosen [390, 391] was the first who found that the quadratic Lagrangian, see
(1.3.9), used by Einstein to derive a conserved pseudotensor (1.4.30) can be written
in a covariant form by introducing a second (background) metric. The mathematical
basis of Rosen’s approach was strengthen by Lichnerowicz [291]. Below we explain
how the Rosen procedure works in more detail.

Let us consider a flat background, R̄,-13 = 0, in arbitrary coordinates. At the
moment, let us go back to the “divergence dependent” energy-momentum (6.1.27) that
takes on the flat background the following form

C(-, = T-
, + Rt-, , (6.3.49)

where Rt-, defined in (6.1.11) is the energy-momentum tensor density given by Rosen
in arbitrary coordinates as a covariantized generalization of Einstein’s pseudotensor
(1.4.30), Et-,. Now, in the case of a flat background, let us turn to the Klein identities
(6.1.19–6.1.22), which takes on the form

C(-,;, = 0 , (6.3.50)

C(-, = –31,-;1 . (6.3.51)

Thus, on a flat background C(-, is a divergence of a tensor density which is not anti-
symmetric with respect to the upper indices but still acting like a “superpotential” for
volume integrals in the Minkowski space. We find that 3+,- = –T -,+ that is Tolman’s
covariantized superpotential, see (1.4.32), which seems to be the first one known in the
literature. This superpotential is also closely related to Freud’s superpotential (1.4.39),
F+

,-. The relationship is defined in arbitrary coordinates by (1.4.38):

3+,- = –F -,+ + 1
80 (h,[1ḡ+]-)

;1
. (6.3.52)

Since the covariant derivatives in a flat spacetime are commutative, by taking the
divergence of 3+,- and using its relation with C(-, we obtain

C(,- = F ,-+
;+ (6.3.53)

that is a covariantized relation (1.4.40) where the covariantized Freud superpotential,
F-

,+, is given in (1.5.39).
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Considering the Belinfante corrected quantities in the case of the flat background,
one finds for the energy-momentum (6.2.9):

B(,- = T (,
1 𝛾-)1 + t,-B . (6.3.54)

Conservation law (6.2.19) for the current (6.2.11) leads to

B(-,;, = 0 , (6.3.55)

B(-, = P-
,1

;1 , (6.3.56)

where P-
,1 is the covariantized Papapetrou superpotential given in (6.2.17) or in

another form in (1.5.42).

6.4 Criteria for the choice of conserved quantities

6.4.1 Tests of consistency

When applying various methods for constructing conservation laws one has to check
the consistency of corresponding conserved quantities. There is a number of selection
rules for choosing the most preferable formulation of conservation laws in various
physical situations but they are not universally accepted and must be applied with
care in each particular case. Nonetheless, there are certain physical principles which
must be satisfied to make the conserved quantities physically meaningful and consist-
ent. Only after satisfying such tests formulae under consideration can be thought as
useful for applications. What are these principles and the consistency check points?
Usually, they are based on testing the properties of exact solutions andmodels in gen-
eral relativity which have a well-known dependence on the physical parameters, like
mass, energy, angular momentum, etc. In most cases the physical consistency of the
conserved quantities is tested in the weak-field approximation of general relativity by
assuming the existence of the flat Minkowskian background. Such approach is rather
straightforward and fairly simple.

We are interested in checking the formulae of the three approaches to build-
ing the conserved quantities presented in this chapter. Because in general relativity
the currents and superpotentials in the field-theoretical approach and the Belinfante
corrected method are equivalent, it is enough to check one of these two only.

A number of the consistency tests is listed below. Of course, more tests can be
added in the course of development of the theory. Thus,
(i) One of the most important exact solutions in general relativity is the Schwarz-

schild solution. Because the constant of integrationm (mass parameter) is chosen
to be equal to the total mass of the system it is evident that the total energy of
a system described by the Schwarzschild solution has to be equal to the mass:
E = m (in the present chapter we set G = c = 1).
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Calculation of the total energy is performed the most conveniently by making use of
the above mentioned approach based on the surface integration. The result of the
integration provides the test for consistency of the KBL superpotential (6.1.25) and
the Belinfante corrected superpotential (6.2.18). Differential laws to performing the
surface integration tests are given in (6.3.53) for covariantized Freud’s superpotential
and in (6.3.56) for covariantized Papapetou’s superpotential. Their asymptotic beha-
vior for the Schwarzschild solution is given in (1.5.50), that leads to the acceptable
result (1.5.52): E = m.
(ii) The consistency test of the conserved quantities based on the Schwarzschild

solution is incomplete and can be extended by taking into consideration the
exact solutions which admit the asymptotically flat Minkowski space. It includes
all rotating and charged black hole solutions in general relativity with the mass
parameterm, the rotational parameter a and the charge parameter Q. As a result
of calculation of the corresponding conserved quantities with the help of surface
integration of a superpotential, one has to obtain the total energy E and total
angular momentum M of the central black hole expressed in terms of a phys-
ically reasonable combination of the black holes parameters, like E = m and
M = ma for the Kerr black hole, etc.

Below in Section 6.4.2 we consider the Reissner-Nordström solution [315, 336, 386],
calculate its total energy and discuss the result. Another important solution in gen-
eral relativity is the Kerr solution [255, 315] that is examined in Section 6.4.3 and its
total energy and total angular momentum are studied. The Kerr-Newman solution
[315, 334] generalizes all of these, but we do not consider it here. As a matter of exer-
cise, the reader is invited to test the KBL superpotential and the Belinfante corrected
superpotential applying them to the Kerr-Newman black hole.
(iii) The quadrupole formula in the gravitational radiation formalism [285] states

that the energy emitted in the form of gravitational waves is positive. Thus,
the density of the flux of weak gravitational waves propagating on a flat back-
ground has to be positive as well. This offers another possibility for checking
the self-consistency of various types of energy-momentum tensors that appear
in different versions of conservation laws.

To avoid long calculations it is enough to consider simple expressions for the energy-
momentum presented in (6.3.49) and in (6.3.54). Their self-consistency have been
checked in Chapter 1 in the quadratic approximation by making use of equation
(1.5.32). All tensors yield positively-defined energy as shown in equation (1.5.33).
(iv) For radiating isolated systems described by Bondi and others [59–61, 395] there

is another important formula for the rate of energy loss corresponding to a
so-called BMS radiation. This rate of the total energy loss is another test for
checking the different variants of superpotentials.
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We do not consider the BMS radiation test in the book, however, recommend to read
the original works [252, 369, 370].

The above four possible tests of consistency of the superpotentials are available
in the asymptotically flat spacetimes and in the weak-field approximation with
respect to a flat background. Of course, analogous tests could be extended to curved
backgrounds, however the authenticity of such tests generally may cause doubts. Nev-
ertheless, there are solutions on curved backgrounds, which have been thoroughly
studied mathematically and have well-established physical properties. These are
asymptotically anti-de Sitter (AdS) solutions for black holes: generally they belong
to the Reissner-Nordström-AdS family of solutions, and to the Kerr-Newman-AdS
family. These general solutions are too complicated for calculations, therefore here in
Section 6.4.4
(v) we will calculate, as an example, the total energy of the Schwarzschild-AdS

solution only.

We would suggest to the reader to test the KBL superpotential and the Belinfante cor-
rected superpotential by applying them for calculating the global conserved quantities
for the other black holes possessing the AdS asymptotics.

6.4.2 The Reissner-Nordström solution

Because below we shall consider the asymptotically flat solutions with spherical sym-
metry, the spherical coordinates introduced on the flat background are the most
appropriate for handling the calculations that follows. In spherical coordinates the
background metric, 𝛾,-, has the form (4.1.1), for which the non-zero components of
the Christoffel symbols, C!,-, are given in (4.1.2).

The linear element of the Reissner-Nordström solution [315] reads:

ds2 = –(1 – rg
r
+ Q2

r2
) dt2 + 1

1 – (rg/r – Q2/r2)dr2 + r2 (d(2 + sin2 (d62) . (6.4.1)

At first, we check the KBL superpotential (6.1.25) for calculating the total energy of
the charged black hole represented by this solution. For the case of a flat background
with translation Killing vectors for which .!K;" = 0, see (1.2.7), the KBL superpotential
transforms to the covariantized Freud superpotential (1.5.39),

J
!"
C (.K) = F3

!".3K = √–𝛾F3!".3K
= 1
80 (g1[!B"]13 + $[!3 g

"]0B110 – $[!3 B
"]
,-g

,-) .3K . (6.4.2)

The surface integration (1.5.45):

P(.K) = ∮
∞
ds1J

01
C (.K) = lim

r→∞
∫0

0
d(∫20

0
d6 r2 sin (F301.3K (6.4.3)
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allows us to calculate the total energy with timelike Killing vector of the Minkowski
space

.!K = (–1,0) . (6.4.4)

Let us write the Christoffel symbols for the metric (6.4.1):

A010 = –A111 =
1
2

rg/r2 – 2Q2/r3

1 – rg/r + Q2/r2
,

A100 = 1
2
( rg
r2

– 2Q2

r3
)(1 – rg

r
+ Q2

r2
) ,

A122 = –r(1 – rg
r
+ Q2

r2
) , A133 = –r sin2 ((1 – rg

r
+ Q2

r2
) ,

A221 = A331 =
1
r
, A332 = cot (, A233 = – sin ( cos ( (6.4.5)

and calculate the tensor B,!" = A,!" – C,!" in (6.4.2) with the use of (4.1.2) and
(6.4.5). As a result, one arrives to the conclusion that the asymptotic behavior of
the corresponding component of the superpotential entering the surface integral in
(6.4.3), is

F0
01 ∼ –

rg
80

1
r2
. (6.4.6)

Then, immediately the integration (6.4.3) gives:

E = m . (6.4.7)

After examining the KBL approach let us check the Belinfante corrected superpoten-
tial (6.2.18) for calculating the total energy of the charged black hole. For the case of a
flat background with the translation Killing vectors it transforms to

J ,-
B = 1

80 ($[,3 h
-]1

;1 + h
[,
3
;-]) .3K . (6.4.8)

With the use of (4.1.5) we derive the field configuration corresponding to the solution
(6.4.1):

h00 = –
rg/r – Q2/r2

1 – rg/r + Q2/r2
, h11 = –( rgr – Q2

r2
) . (6.4.9)

We use these components in (6.4.8) for calculating the total energy with the timelike
Killing vector (6.4.4) employed for calculation of the surface integral:

P(.K) = ∮
∞
ds1J

01
B (.K) = lim

r→∞
1

160 ∫0

0
d(∫20

0
d6 r2 sin ( (h00𝛾 j1 + 𝛾00h j1);j (6.4.10)

that yields the physically-meaningful result (6.4.7). The same result is obtained with
the use of the superpotential (6.3.23) in the field-theoretical derivation that also agrees
with formula (4.1.11) for calculating the total mass of an isolated system.
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At last, one has to check all the superpotentials in the family (6.3.42). We have
checked out that for each of them the integration analogous to (6.4.10) gives again
the same result (6.4.7) for the total energy. Thus, considering the total energy of the
Reissner-Nordstróm solution, all superpotentials constructed in the present chapter
are equivalent from the computational point of view.

One can see that the electric charge does not explicitly contribute to the total
energy. It is not surprising because the parameterm has been chosen as a unique char-
acteristic for the total energy of the system to correspond to the Newtonian mass in
the weak-field approximation. Formally, the charge does not contribute to the energy
because the part of the superpotential corresponding to the charge of the black hole
falls off as ∼ 1/r2, that decays significantly faster than ∼ 1/r.

6.4.3 The Kerr solution

The Kerr solution, describing the rotating black holes, is more complicated but, at the
same time, more interesting for constructing conserved quantities. The line element
of the Kerr solution has the form [315]:

ds2 = –(1 – rgr
12 ) dt2 + 12

B dr2 + 12d(2 (6.4.11)

+ (r2 + a2 + rgra2

12 sin2 () sin2 (d62 –
2rgra
12 sin2 (d6 cdt ;

B ≡ r2 – rgr + a
2,

12 ≡ r2 + a2 cos2 ( ,

where the parameter a = const characterizes the speed of rotation; when a → 0
the Kerr solution (6.4.11) transforms to the Schwarzschild solution (4.1.3). Thus, it
is interesting to construct for the solution (6.4.11) both the total energy and the
total angular momentum. To carry out the calculations we choose a flat background
with the flat metric (4.1.1) in spherical coordinates and the correspondent Christoffel
symbols (4.1.2).

First, we check the KBL superpotential (6.1.25). For calculating the total energy
with timelike Killing vector (6.4.4) we use the covariantized Freud superpotential
(1.5.39), see also (6.4.2), and integration (6.4.3). We do not derive here cumbersome
expressions for quantities B,!" = A,!" – C,!" and merely notice that a necessary com-
ponent of the Freud superpotential has again the asymptotic behavior (6.4.6). Then,
integration (6.4.3) gives physically-adequate result (6.4.7): E = m.

To construct the total angular momentum one chooses the spacelike Killing vector

.!K = (0, 0, 0, 1) , .K! = (0, 0, 0, r2 sin2 () . (6.4.12)

In this case, it is more convenient to use the form (6.1.24) for the KBL superpotential.
We notice that for calculations it is sufficient to use the component J 01

C where, with
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the Killing vector (6.4.12), only one term survives,

J 01
C (.K) =

1
80√–g∇[0. 1]K , (6.4.13)

which is purely a Komar part. Then, the standard integration gives the angular
momentum of the Kerr black hole

M = P(.K) = ∮
∞
ds1J

01
C (.K) = lim

r→∞
1
80 ∫0

0
d(∫20

0
d6√–g∇[0. 1]K = ma , (6.4.14)

which is the expected result.
Now, let us turn to the Belinfante corrected quantities (6.2.18), or the same (6.3.23)

in the field-theoretical formulation. Again, to calculate the total energy we use the
timelike Killing vector that leads to integration (6.4.10). Necessary components of the
field configuration corresponding to (6.4.11) have a complicated form, but for us the
knowing the asymptotic behavior

h00 ∼ –
rg
r
, h11 ∼ –

rg
r

(6.4.15)

is sufficient. Then, the integral formula (6.4.10) yields for the Kerr solution (6.4.11) the
expected result (6.4.7).

To calculate the total angular momentum in the Belinfante corrected derivation
we use the Killing vector (6.4.12) and substitute it into (6.2.18), or the same (6.3.23) in
the field-theoretical formulation. Next, integration leads to formula (3.2.27), which for
the space components .kK acquires the form:

P(.K) = ∮
∞
ds1J

01
S (.K)

= lim
r→∞

1
160 ∫0

0
d(∫20

0
d6 r2 sin ( [(h0k𝛾j1 – h11𝛾jk);j .Kk

– (h0k𝛾1j – h0j𝛾1k) .Kk;j] . (6.4.16)

For the solution (6.4.11) only the component h03, from all of the components h0j, is not
zero with the asymptotic behavior

h03 ∼ –
rga
r3

. (6.4.17)

Then, for the field-theoretical configuration (6.4.15) and (6.4.17), the calculation in
(6.4.16) finally gives the acceptable result (6.4.14).

At last, one has to note that each superpotential from the family (6.3.42) in the
field-theoretical derivation leads to the same results (6.4.7) and (6.4.14) for the Kerr
solution (6.4.11). Thus, considering the total energy and the total angular momentum
of the Kerr solution, all of the formulae for conserved quantities suggested in Sec-
tions 6.1–6.3 pass through the consistency tests.
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6.4.4 The total KBL energy for the S-AdS solution

We have already calculated in Section 4.2.3 a total mass for the Schwarzschild-AdS
black hole defined by the solution (4.2.30) with the use of the field-theoretical form-
alism. Moreover, we have checked all of the members of the family (4.2.19). Notice
that the Belinfante corrected superpotential is included into this family. Thus, all of
the such quantities lead to acceptable result (4.2.38): E = m. In what follows, we are
checking the KBL superpotential (6.1.25) by calculating the total mass for the S-AdS
black hole with all the assumptions of Section 4.2.3.

The KBL formulae (6.4.2–6.4.4) are also valid for the AdS background, and we use
them. For the S-AdS solution the metric components are defined in (4.2.30); to find
B1,- = A1,- – Ā1,- we use the components Ā1,- derived in (4.2.30) and the non-zero
Christoffel symbols corresponding to the metric (4.2.30):

A122 = –r(1 + r2

l2
–
rg
r
) , A133 = –r sin2 ((1 + r2

l2
–
rg
r
) ,

A001 = –A111 =
1
2

2r/l2 + rg/r2

1 + r2/l2 – rg/r
,

A100 =
1
2
(2r
l2
+
rg
r2
)(1 + r2

l2
–
rg
r
) ,

A212 = A313 =
1
r
, A233 = – sin ( cos ( , A323 = cot ( . (6.4.18)

Formula (6.4.3), rewritten for the Killing vector (4.2.8) is

P( ̄. ) = ∮
∞
ds1J

01
C ( ̄. ) = lim

r→∞
∫0

0
d(∫20

0
d6 r2 sin (F301 ̄.3 (6.4.19)

and gives

E = lim
r→∞

1
160 ∫0

0
d(∫20

0
d6 r2 sin ( (g10B110 – B1,-g,-) = m (6.4.20)

that is the acceptable result (4.2.38).
We conclude that all three methods of calculation of the S-AdS mass are equally

acceptable as they yield one and the same result for the total energy.

6.5 The FLRW solution as a perturbation on the de Sitter
background

Strongly or weakly perturbed FLRW spacetimes are naturally related to FLRW back-
ground universe which is an exact, time-dependent solution of Einstein’s equations.
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However, the FLRW spacetimes admit only six Killing vectors, each of them gener-
ates a corresponding conservation law with an associated conserved quantity. Among
them, unfortunately, one cannot find energy and the Lorentz momentum. We may,
however, map the FLRW spacetime (perturbed or not) on a de Sitter space, which
has ten Killing vectors making up the full group of motions. One can construct
ten conserved quantities corresponding to the Killing vectors. The KBL approach,
which is applicable both to finite and infinitesimally small perturbations, can be
used to construct such quantities. As a result, the four currents and superpoten-
tials corresponding to the Killing vectors of the de Sitter space that are absent
in FLRW spacetime describe the energy and Lorentz momentum. In the present
section, we do not consider a perturbed FLRW model. We map hypersurfaces of con-
stant cosmic time of an exact FLRW spacetime on the corresponding hypersurfaces
of the de Sitter space having the same topology. The difference between FLRW and
de Sitter metrics will be considered as a relative perturbation defined on the de Sit-
ter background, and for them the conserved KBL currents and superpotentials will
be constructed. At the end, we discuss how such a construction may help to describe
perturbations in the FLRW universe along with all of the ten conserved quantities.

6.5.1 Spatially conformal mappings of FLRW spacetime onto de Sitter space

FLRW and de Sitter metrics
Let FLRW spacetime be described by equation (5.3.1) in the Cartesian coordinates xk.
We choose the “cosmic time” T defined by dT = 9(t)dt in the FLRW spacetime. Then
the FLRWmetric reads

ds2 = g,-dx
,dx- = –92dt2 + gkldx

kdxl = –92dt2 + a2ekldx
kdxl , (6.5.1)

where 9 = 9(t) and a = R (T(t)) = a(t). The conformal metric ekl(xm) has a particular
form for closed, flat or open x0 = t = const hypersurfaces given by

ekl = $kl + k
xkxl
1 – kr2

, ekl = $kl – kxkxl, e = det ekl =
1

1 – kr2
, (6.5.2)

where xk = $kmxm and r2 = $klxkxl. The Hubble parameter (5.3.2) for the metric (6.5.1)
has the form

H = 1
9
ȧ
a
, (6.5.3)

where a “dot” denotes differentiation with respect to t.
The metric of the de Sitter background in the same coordinates as in (6.5.1) has a

similar form:

ds2 = ḡ,-dx
,dx- = –9̄2dt2 + ḡkldx

kdxl = –9̄2dt2 + ā2ekldx
kdxl , (6.5.4)
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where, 9̄ and ā are functions of the “cosmic time” T in de Sitter space given by dT =
9̄(t)dt. The Hubble parameter of de Sitter space has the form

H̄ = 1
9̄

̇ā
a
. (6.5.5)

Hypersurfaces for (6.5.1) and (6.5.4) with the same twill bemapped on one another. By
picking up a specific form of functions9 and 9̄, one fixes the correspondence between
the cosmic times up to a constant. For the moment we shall fix none of them.

De Sitter Killing vectors
The ten Killing vectors of the de Sitter background, ̄.,, satisfy the Killing equations∇̄(1 ̄.3) = 0 , (6.5.6)

where, as usual, the covariant derivative, ∇̄1, is constructed with the use of ḡ,-. The
00- and 0k-components of the Killing equations implȳ.0 = 1

9̄ . (xk) , (6.5.7)̇̄.k = –9̄2ḡkl
3∇l

̄.0 , (6.5.8)

where the component ̄.0 is a function whose equation is given below, see (6.5.11), 3∇l is
a ekl (or ḡkl, or gkl) 3-dimensional covariant derivative. It may be useful to remind the
reader that indices are raised and lowered by ḡ,-, as usual. Finally, the spatial part of
the Killing equation (6.5.6) gives

emk
3∇l ̄.m + eml

3∇k ̄.m + 29̄H̄ekl ̄.0 = 0 . (6.5.9)

The Hubble “constant” (6.5.5) of de Sitter space satisfies the relatioṅH̄
9̄ = k

ā2
, (6.5.10)

which follows from Einstein’s equations or, as the integrability condition of the equa-
tion (6.5.6). Then, if we take a partial t-derivative of (6.5.9) and make use of (6.5.8), we
obtain

3∇kl
̄.0 + kekl ̄.0 = 0 . (6.5.11)

This equation has a solution. Then, having ̄.0, we can obtain ̄.k from (6.5.8) and (6.5.9).
Explicit expressions for ̄., and the corresponding finite group of transformations

are given inWeinberg’s book [456]. Any ̄., could be a linear combinationwith constant
coefficients of the following ten vectors:
(i) Quasi-translations in t = const:̄.0(l) = 0, ̄.k(l) = $kl√1 – kr2 . (6.5.12)
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(ii) Quasi-rotations in t = const: ̄.0[ls] = 0, ̄.k[ls] = $klxs – $ksxl . (6.5.13)

(iii) Time quasi-translations:̄.0(0) = – 1
9̄
√1 – kr2, ̄.k(0) = H̄xk√1 – kr2 . (6.5.14)

(iv) Lorentz quasi-rotations:̄.0[0l] = – 1
9̄xl, (6.5.15)

k = 0 → ̄. k[0l] = H̄ [xkxl – 1
2
$kl ((r2 – 9̄2̇ā2 )] , (6.5.16)

k = ±1 → ̄.k[0l] = H̄ [xkxl – k$kl] . (6.5.17)

It is important to notice that the Killing vectors (6.5.12) and (6.5.13) are also the Killing
vectors of the FLRW spacetimes. The vectors (6.5.14) and (6.5.15–6.5.17) are conformal
Killing vectors of the FLRW spacetimes. The conformal Killing vectors are discussed in
the next section.

6.5.2 Superpotentials and conserved currents

To obtain the KBL superpotentials for the above model, we use the formulae presen-
ted in Section 6.1, see (6.1.25). With the metric components in (6.5.1) and (6.5.4), we
calculate the difference between the two metrics h,- = (g,- – ḡ

,-)/√–ḡ which we inter-
pret as a perturbation of the de Sitter space. The non-vanishing components of the
perturbation are:

h00 = 1
9̄2 (1 – 9̄

9
a3

ā3
) , hik = ḡik (99̄ a

ā
– 1) . (6.5.18)

The Christoffel symbols corresponding to the metrics (6.5.1) and (6.5.4), A+,- and Ā+,-,
and their difference B+,- are given in (6.5.19–6.5.21) below. More specifically, we have:

A000 =
9̇
9 , Ā000 =

̇9̄
9̄ → B000 =

9̇
9 –

̇9̄
9̄ ≡ d

dt
ln 9

9̄ ≡ 9T , (6.5.19)

where the function T describes the relative shift between the two cosmic times
measured in FLRW cosmic time units. Next,

Ak0l = 9H$kl , Āk0l = 9̄H̄$kl → Bk0l = 9(H – 9̄
9 H̄) $kl = 9 H$kl , (6.5.20)

where H is the relative Hubble parameter measured in units of FLRW cosmic time.
Finally,
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A0kl = –H9gkl, Ā0kl = – H̄9̄ ḡkl → B0kl = – 1
9 (H – ā29

a29̄ H̄) gkl . (6.5.21)

With ̄., given by (6.5.12–6.5.17), h,- by (6.5.18), B+,- by (6.5.19–6.5.21), the components
of superpotential, defined in (6.1.25) are:

160J 0k
C = √–ḡ (A ḡkl∇̄l ̄.0 + B ̄. k) , (6.5.22)

160J kl
C = √–ḡ (C ḡm[k∇̄m ̄. l]) , (6.5.23)

√–ḡ = 9̄ā3 1√1 – kr2 , (6.5.24)

where A , B and C are functions of t:

A (t) = 2 – 9a
9̄ā – 9̄a3

9ā3

B(t) = (–2 + 39a9̄ā – 9̄a3
9ā3) H̄

9̄ – 4
9̄
a3

ā3
H ,

C (t) = 2(9a9̄ā – 1) . (6.5.25)

The components of the conserved current J ,
C can be calculated from (6.1.26) and

(6.1.27) :

J ,
C ≡ C(,- ̄.- + 3,13∇̄[1 ̄.3] . (6.5.26)

The components for the matter energy-momentum T-, of an ideal fluid in the FLRW
model are

T0
0 = –1, Tk

l = p$lk (6.5.27)

and the background “matter energy-momentum” T̄-, in de Sitter space incorporated
to C(,- is

T̄,
- = – D

80$
-
, . (6.5.28)

The time component of the current (6.5.26) then, reads

J 0
C = –√–ḡ [(9a39̄ā3 1 –

D
80) – D

160h1
1 + 3

80
9a3
9̄ā3 H

2] ̄.0 ≡ –J (t) ̄.0 . (6.5.29)

Here,

h1
1 = –4 + 39a9̄ā + 9̄a3

9ā3 = C – A . (6.5.30)
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The spatial components of the current (6.5.26) are given by

J k
C = √–ḡ [(9a39̄ā3 p +

D
80) + D

160h1
1 + 3

80
9a3
9̄ā3H

2

– 3
160 (92a

9̄2ā
– a3

ā3
) ( T + H)H̄] ̄.k

+
√–ḡ
160 (92a

9̄2ā
– a3

ā3
) ( T + H)ḡkl

3∇l(9̄ ̄.0). (6.5.31)

The terms in the first round brackets in (6.5.29) and (6.5.31) represent the “relative
energy density” and “relative pressure”, respectively. The second terms which are the
product of D and the trace of the metric perturbation, represent the coupling to the
background. The other terms are associated with the field energy and the helicity and
they depend on the choice of a particular mapping of the time axes.

As a consequence of (6.5.29) and ̄.0’s as given in (6.5.12–6.5.20), the conserved
quantities in a volume V enclosed by a sphere of radius r = r0 are all equal to zero
except of the “energy”, E(r0), associated with the time quasi-translations ̄.0(0) given by
(6.5.14). Lorentzian quasi-rotations does not bring us about any conserved quantity
because the time component of (6.5.15) has odd parity. Thus, the “energy” reads

E(r0) =
40
3
ā3r30J (t) , (6.5.32)

where J (t) is given by (6.5.29).
We would like to emphasize that up to now the mapping has not yet been fixed.

To do this one has to specify the choice of 9 and 9̄. The most appealing mapping is
one that gives J (t) = 0 so that E(r0) = 0. The advantage of this mapping is that it
allows us to extend the number of conserved quantities in the FLRW universe from 6
to 10, thus, including the integrals of energy and Lorentzian momentum for physical
perturbations of the FLRW universe. The ten conserved quantities are referred to the
AdS background and vanish in case of the absence of the physical perturbations of
gravitational field of the FLRW universe.

6.6 Integral constraints for linear perturbations on FLRW
backgrounds

In the present section, we consider perturbations of the FLRW universe directly with
respect to the FLRW background itself without appealing to the AdS model as a back-
ground. It allows us to demonstrate the advantages of the Belinfante method, see
Section 6.3. We consider the conserved currents and superpotentials associated with
the 15 conformal Killing vectors, +

K
,, of FLRW spacetimes; their detailed classification

is given in next subsection. The reason for the appearance of the 15 conformal Killing
vectors is that FLRW spacetimes are conformal to the Minkowski space and, hence,
there are similarities between their symmetries. They correspond to 4 translations, 3
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spatial rotations, 3 Lorentz boosts, 1 dilatation and 4 “accelerations”. Such similarities
are helpful in geometrical interpretations. Excellent mathematical description of the
conformal Killing vectors of the Minkowski space along with their physical interpreta-
tion and applications are given by Fulton, Rohrlich and Witten [181], and we refer the
interested readers to their paper for more detail.

In what follows, we shall employ the 15 conformal Killing vectors to impose the
integral constraints on various physical quantities inside a sphere (parameterized by
r) having at a given instant of conformal cosmological time ', volume V and surface S.
In other words, we are looking for integrals from the perturbations of the form (6.3.48)
based on the Belinfante corrected quantities:

∫
V
d3xJ 0

B (+K) = ∮
S
dsiJ

0i
B (+

K
) . (6.6.1)

Any linear combination of such integrals with the coefficients which are solely
functions of time, can be reduced to the same form.

We next turn our attention to those linear combinations in which the volume
integral depends only on the matter energy-momentum perturbations $T,

0 that is of
the form ∫

V
d3x$T,

0V, = ∮
S
dsiT

i(V,) (6.6.2)

with yet unspecified vectors V,. Before the application of the Belinfante corrected
technique, there were known 10 integral constraints of this form: 6 of them are asso-
ciated with the 6 ordinary Killing vectors of the FLRW spacetimes and the remaining 4
constraints have been introduced by Traschen [441] who found 4 additional “integral
constraint vectors” V,. We show that they are, in fact, not independent but consist of
linear combinations of the conformal Killing vectors with time dependent coefficients.

The main result of the present section is that if we apply the uniform Hubble
expansion gauge studied by Bardeen [27], then all, except of one, of the 15 con-
formal Killing vectors (their linear combinations) are associated with the integral
conservation laws of the form (6.6.2). The exception includes either the conformal
time translations if k = ±1 or the conformal time “acceleration” if k = 0. Thus,
here, we show that the Belinfante correcting method allows us to construct 4 Tras-
chen’s integral constraint vectors and the corresponding integral constraints. A look
at (6.6.2) shows that these integrals might be constructed directly from Einstein’s
constraint equations. However, it is not so simple to see this, as contrasted to the Belin-
fante method. The integral constraints often have simple geometrical interpretations
stemmed from classical mechanics. Thus, volume integrands in constraints of the
type (6.6.2) can be interpreted as multipole momenta of order 0, 1 or 2. Besides, with
making use of the uniform Hubble expansion gauge and a special gauge for gravita-
tional waves, we show that the integral constraints of the type (6.6.2) are independent
on the gravitational radiation.
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6.6.1 A FLRW background and its conformal Killing vectors

We write the FLRW background metric in dimensionless conformal coordinates x, ={', xk}, for which the metric is conformally-flat:

ds2 = ḡ,-dx
,dx- = a2(–d'2 + ekldxkdxl) = a2 ̄f,-dx,dx- , (6.6.3)

where a(') is the scale factor. The difference with the representations of the conformal
metric here and in (5.3.15) is that herēf,- ≡ diag (–1, ekl) , (6.6.4)

with ekl specified by the choice of the conformal coordinates in (6.5.2), whereas f̄,-(x!)
is specified by the choice of the conformal coordinates in (5.3.15) and is defined in
arbitrary coordinates. The non-zero Christoffel symbols of the metric (6.6.3) are

Ā000 = H , Ā0kl = H ekl, Ām0l = H $ml , Āmkl = kxmekl , (6.6.5)

where H is the dimensionless conformal Hubble parameter

H =
a,'
a
, (6.6.6)

yielding a,' = aH , see also (5.3.4). In these notations the non-vanishing components
of the Einstein tensor are

Ḡ0
0 = 3

a2
(k + H 2) = 80T̄00 , (6.6.7)

Ḡm
l = 1

a2
(k + H 2 + 2H,')$lm = 80T̄ml . (6.6.8)

Now, we give a short introduction to the theory of the conformal Killing vectors on
FLRW background. Let us recall that solutions (if they exist) to the standard Killing
equation:

£. ḡ,- = 0 (6.6.9)

are the ordinary Killing vectors: ., = ̄.,. This means that displacements along vec-
tors ̄., do not change the metric ḡ,-(x) → ḡ,-(x). Conformal Killing vectors satisfy a
different equation

£. ḡ,- =
1
4
ḡ,-ḡ

13£. ḡ13, (6.6.10)

which solutions (if they exist) are denoted ., = +
K
,, and are called the conformal

Killing vectors, +
K
,. Displacements along the conformal Killing vectors induce con-

formal transformations of the metric:

ḡ,-(x) → K(x)ḡ,-(x). (6.6.11)
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And, inversely, transformations (6.6.11) do not change the equation (6.6.10) and their
solutions.

Solutions of equations (6.6.10) are particularly interesting in case of the FLRW
background metric (6.6.3). Among all of the conformal Killing vectors, +

K
,, there are

15 linearly independent ones. Equation (6.6.10) is independent of the conformal factor
and can be written in 3-dimensional notations as follows:

+
K
0
,' =

1
3

3∇k +K
k, +

K
k
,' =

3∇k+
K
0,

3∇(k+
K
l) = ekl+

K
0
,' , (6.6.12)

where
3∇k is a 3-covariant derivative for the ekl metric,

3∇k = ekl
3∇l, and the first equation

is equal to the trace of the third one.
In spite of the seeming simplicity of the system (6.6.12) it is not simple to solve it.

Fortunately, one can use the conformal properties. Fulton with coauthors [181] con-
structed and studied the conformal Killing vectors of the Minkowski space in the
Lorentzian coordinates X,. As is well known, the metric ̄f,- is conformal to ',-, that
is after making an appropriate coordinate transformation one gets: ̄f,- → K',- glob-
ally. Notice that such a transformation depends on the sign of the spatial curvature k,
see, for example [285]. The original background metric (6.6.3) is also conformal to ̄f,-.
Hence, the metric (6.6.3) is conformal to the Minkowski metric,

ds2 = ḡ,-dx
,dx- = a2 ̄f,-dx,dx- → a2K',-dx,dx- . (6.6.13)

By definition, the components of the conformal Killing vectors are chosen to be the
same for all conformal metrics (spacetimes) - they neither depend on K nor on a2K.
Thus, to solve the conformal Killing equation for the FLRW metric, one needs the
components of the conformal Killing vectors in the Lorentzian coordinates X, of the
Minkowski space, which then have to be transformed into coordinates x, of the metric
(6.6.3). The coordinate transformations from X, to x, has been already found in [355].

The form of the conformal Killing vectors in the Minkowski space and that in the
Lorentzian coordinates have been found in [181] and we follow this work.

The Minkowski metric in the Lorentzian coordinates is

d ̄s2 = ',-dX,dX- = –dT2 + $kldXkdXl. (6.6.14)

There is a 15-parameter group of conformal transformations X! → X̃! such that (6.6.14)
transforms to

ds2 = I(X̃)',-dX̃,dX̃- . (6.6.15)

These transformations have the form:

X̃, = a, + A1
,X1 + bX, + X, – B,X2

1 – 2B,X, + B2X2
, (6.6.16)
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where ',-A1,A3- = '13, B2 = ',-B,B-, X2 = ',-X,X-. Variation of the equation (6.6.16)
leads to the expression, coefficients of which are the components of the conformal
Killing vectors:

$X̃, = K ,
(!)$a

! + K ,
([!"])$A

[!"] + K ,
[(0)]$b + K ,

[!]$B
! . (6.6.17)

The first two terms represent a conventional 10-parametric group of motion of the
Minkowski space, which is defined by the ordinary Killing vectors, namely, by 4
vectors of translations and 6 vectors of spatial rotations and boosts 1:

K ,
(!) = $,! , (6.6.18)

K ,
([!"]) =

1
2 ($,!'"𝛾 – $,"'!𝛾)X𝛾. (6.6.19)

The third term in (6.6.17) corresponds to the so-called dilatation, or scale, transforma-
tions:

K ,
[(0)] = X, . (6.6.20)

The last term in (6.6.17) corresponds to a, so-called, “4-acceleration”

K ,
[!] = ($,𝛾'!" + $,"'!𝛾 – $,!'"𝛾)X"X𝛾. (6.6.21)

Let us denote the set of vectors (6.6.18–6.6.21) as K ,. By definition, all of these 15
vectors are conformal Killing vectors both for the metric (6.6.14) and for the metric
(6.6.13) in the coordinates x!. To derive their components for themetric (6.6.3), one has
to transform to the coordinates used in equation (6.6.3), X, → x,. It transforms the
components of 15 vectors (6.6.18–6.6.21), K ,, to the components, +

K
,, which satisfy

(6.6.12), and we outline them below. These transformations involve tedious algebra
and we don’t provide them over here referring the reader to the original works [285]
and [355].

There are 7 conformal Killing vectors, which can be written in compact form for
every sign of the spatial curvature k; these are the conformal Killing vectors of time
translation, t, space translations, sa, and space rotations, ra; a = 1, 2, 3:

t, = $,0, s,a = $,a√1 – kr2, r,a = $,k:kalxl. (6.6.22)

Other conformal Killing vectors are different for k = 0 and for k = ±1.
The case k = 0. The 8 other conformal Killing vectors are the Lorentz boosts: la,

dilatation: d, time acceleration: a0 and space accelerations: aa. They are respectively
given by

1 Here, the signs of the Killing vectors follow the original works [181, 370].
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la = {l0a = xa, lka = '$ka} ,
d = {d0 = ', dk = xk} ,
a0 = {a00 = '2 + r2, ak0 = 2'xk} ,
aa = {a0a = 2'xa, aka = 2xkxa + ['2 – r2]$ka} . (6.6.23)

The cases k = ±1. The 8 other conformal Killing vectors can bewritten in amatrix form.
For this we introduce a definition of a column matrix

" = ("⋆"⋆) = ( !
!,'

) , (6.6.24)

where, ! = sin ', if k = 1, and ! = sinh ', if k = –1. We introduce a similar
column-matrix notation for dilatation d → $⋆ and time acceleration a0 → $⋆ which
combination will be denoted as $; the same rule will be applied to combine the 3
Lorentz boosts la → +⋆ and 3 space accelerations sa → +⋆, to a single column
matrix +a,

$ = ($⋆$⋆) = {$0 = "√1 – kr2, $k = ",'√1 – kr2xk} ,

+a = (+⋆+⋆) = {+0a = ",'xa, +ka = "eka} . (6.6.25)

Notice that for k = 0 we can take ! = ' and apply (6.6.25) to that case as well with

" = ("⋆"⋆) = ('
1
), (6.6.26)

and, consequently,

$ = (dt ) ,
+a = ( lasa) . (6.6.27)

These 4 vectors are defined in equations (6.6.22) and (6.6.23). Notice also that any lin-
ear combination of the conformal Killing vectors (6.6.22–6.6.25), respectively to k = 0
and k = ±1, with constant coefficients is again equivalent to a conformal Killing vector.

6.6.2 Integral relations for linear perturbations

Following (5.6.20), we define perturbations in the FLRW model in the form of con-
formal perturbations:

ds2 = a2( ̄f,- + *,-)dx, dx-. (6.6.28)

Below, we use intensively the 3-dimensional components: *00, *0l, *kl, indices of
which are raised and lowered with the use of ekl:

*lm = emk*lk, *mn = emkenl*kl, *0m = eml*0l . (6.6.29)
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To apply the results of Sections 6.2 and 6.3 we need to express these perturbations in
terms of h,- = g

,- – ḡ
,-. Restricting ourself to the linear approximation, we find easily

h
,- = a2√–ḡ(–ḡ,1ḡ-3 + 1

2 ḡ
,-ḡ13)*13 = a2√e(– ̄f ,1 ̄f -3 + 1

2
̄f ,- ̄f 13)*13 . (6.6.30)

Now, let us define 3-tensors:

qml ≡ *lm – $ml *n
n , (6.6.31)

Ql
m ≡ (2H *00 –

3∇n*0n)$ml +
3∇m*0l – qml ,' . (6.6.32)

We also define by a special symbol Q the perturbed trace of the external curvature of
the hypersurface ' = const, which appears in the time components of the conserved
currents. Thus, if n, is the unit normal vector to that hypersurface,

Q ≡ – (∇,n, – ∇̄,n̄,) = 3
2H *00 + 1

2*n
n
,' –

3∇n*0n. (6.6.33)

The condition,

Q = 0 , (6.6.34)

is the uniform Hubble expansion gauge, which was introduced by Bardeen [27].
We have now all of the elements needed to calculate the conserved currents

(6.2.11) and superpotentials (6.2.18) in (6.6.1) for small perturbations by making use
of the 15 conformal Killing vectors, and to write them down in a compact form.
Let us recall that we are interested in the integral constraints formulated for the
perturbations confined in a spatial volume considered at a constant time with spher-
ical boundaries. Let us write, first, the current component J 0

B for the perturbations
(6.6.28) with the notations (6.6.29–6.6.33) in the linear approximation:

80J 0
B (+K) = 80a4√e$T,0+K,

+ a2√e [ 12 f1(+K)Q – 1
3 f2(+K)*n

n + 1
4

3∇n (f1(+K)*0n)] , (6.6.35)

where

f1(+K) ≡ 4H +
K
0 + 4

3
3∇k+Kk ,

f2(+K) ≡ 3∇2+K0 + 3k+K0 , (6.6.36)

and
3∇2 ≡ ekl

3∇k 3∇l. The superpotential component J 0l
B for the perturbations (6.6.28)

with the notations (6.6.29–6.6.33) in the linear approximation is

80J 0l
B (+

K
) = 1

2a
2√e [(2H *0l –

3∇kqlk)+K0 + qlk 3∇k+K0 + Qk
l+
K
k + *0k

3∇[k+Kl]] . (6.6.37)

Now, we are in a position to elaborate on the integral constraints of the type (6.6.1),
where we integrate over the volume V in space G defined at a fixed instant of the
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conformal time ' and restricted by a spherical boundary 𝜕G that we denote here as
S. We rewrite (6.6.1) in the form:

C(+
K
) ≡ ∫

V
d3xJ 0

B (+K) = ∮
S
dslJ

0l
B (+

K
) = ∮

S
1
2:lmndx

mdxnJ 0l
B (+

K
) . (6.6.38)

If this quantity does not depend on ', then C(+
K
) can be interpreted as themotion integ-

rals. In fact, (6.6.38) represent 15 quantities for each of the conformal Killing vectors
+
K
,
A; here, A = 1, . . . , 15 . By (6.6.23–6.6.25), one can see that at least 8 quantities from
C(+

KA
) depend on ', however, one can find the linear combinations of C(+

KA
) with time

dependent coefficients, which are time independent, cA(')C(+
KA
). Because (6.6.35) and

(6.6.37) depend only linearly on +
K
,
A and their spatial derivatives, one is allowed to use

the relation cA(')C(+
KA
) = C(cA(')+

KA
). Notice that cA(')+

K
,
A are not any longer the con-

formal Killing vectors, but we will show now that they have simple expressions and
admit clear physical interpretations in an appropriate gauge.

To study the above-mentioned combinations, it is more convenient to associate
the coordinates xk in (6.6.3) with polar coordinates, where the radial coordinate r =
sin 7, 7 or sinh 7 respectively to k = 1, k = 0 or k = –1, and use notation r󸀠 as a derivative
with respect to 7. Because the 7 conformal Killing vectors (6.6.22) are time independent
we keep on them without changing

t = {1, 0} , sa = {0, $kar󸀠} , ra = {0, :kalxl} . (6.6.39)

The next 8 linear combinations are composed with time dependent coefficients.
Recalling our notations (6.6.24), we use the notations ! = sin ' or ! = sinh ', respect-
ively, for k = 1 or k = –1. The first 4 out of 8 time independent vectors constructed by
using (6.6.23–6.6.25), have vanishing spatial components:

l†a = (!,'la – !ba)󵄨󵄨󵄨󵄨󵄨k=±1 = (la – 'sa)󵄨󵄨󵄨󵄨k=0 = {xa, 0} ,
a†󵄨󵄨󵄨󵄨󵄨k=±1 = (!,'a + k!d)󵄨󵄨󵄨󵄨󵄨k=±1 = {r󸀠, 0} ,
a†󵄨󵄨󵄨󵄨󵄨k=0 = ( 12a – 'd + 1

2'
2t)󵄨󵄨󵄨󵄨󵄨k=0 = { 12 r2, 0} . (6.6.40)

The other 4 out of 8 time independent combinations (for each k) have vanishing time
components, which are the 3-space conformal Killing vectors on sections ' = const:

d† = (!,'d – !a)󵄨󵄨󵄨󵄨󵄨k=±1 = (d – 't)󵄨󵄨󵄨󵄨k=0 = {0, xkr󸀠} ,
b†a
󵄨󵄨󵄨󵄨󵄨k=±1 = (!,'ba + k!la)󵄨󵄨󵄨󵄨󵄨k=±1 = {0, eak} ,

b†a
󵄨󵄨󵄨󵄨󵄨k=0 = (– 1

2ba + 'la –
1
2'

2sa)󵄨󵄨󵄨󵄨󵄨k=0 = {0, $ak 12 r2 – xaxk} . (6.6.41)

Substituting the components (6.6.39–6.6.41) into (6.6.35) and (6.6.37), one obtains
the relations (6.6.38) corresponding to each of the vectors (6.6.39–6.6.41). We use
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physical (not coordinate) elements of integration in the form: dV ≡ a3√ed3x and
dSl ≡ a2√e 12:lmndxmdxn. We also use below a conventional definition of the Hubble
constant: H = H /a. Thus, for vectors (6.6.39) the relation (6.6.38) unfolds, corres-
pondingly, to three expressions

80C(t) – aH∮
S
*0ldSl = ∫

V
[(80a$T00 + 2HQ) – k

a
*mm]dV

= – 1
2 ∮S

3∇kqkldSl , (6.6.42)

80C (sa) = 80∫
V
a$Ta0r󸀠dV

= ∮
S
( 1
2Qk

lska – k*0kx
[ksl]a) dSl , (6.6.43)

80C (ra) = 80∫
V
a$Tk0:kalxldV

= ∮
S
( 1
2Qk

lrka – k*0kx
[krl]a +

1
2*0k:kal) dSl. (6.6.44)

For vectors (6.6.40) the relation (6.6.38) unfolds to

80C(l†a) – aH∮
S
*0lxadSl = ∫

V
(80a$T00 + 2HQ) xadV

= – 1
2 ∮S

(xa∇kqkl – qal) dSl , (6.6.45)

80C (a†)󵄨󵄨󵄨󵄨󵄨k=±1 – aHr󸀠∮S
*0ldSl = ∫

V
(80a$T00 + 2HQ) r󸀠dV

= – 1
2 ∮S

(∇kqkl + kqlkxk) r󸀠dSl , (6.6.46)

80C (a†)󵄨󵄨󵄨󵄨󵄨k=0 – 1
2aH∮

S
*0lr2dSl = ∫

V
[( 1280a$T00 + HQ) r2 – 1

a
*mm] dV

= – 1
2 ∮S

( 12∇kqklr2 – qlkxk) dSl . (6.6.47)

For vectors (6.6.41) the relation (6.6.38) unfolds to

80C(d†) – r󸀠∮
S
*0ldSl = ∫

V
(80a$Tk0xk + 2

a
Q) r󸀠dV

= ∮
S
( 12Qk

lxk – *0l) r󸀠dSl , (6.6.48)
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80C (b†a)󵄨󵄨󵄨󵄨󵄨k=±1 + k∮S
*0lxadSl = ∫

V
(80a$Tk0eak – 2k

a
Qxa) dV

= ∮
S
( 12Qla + k*0lxa) dSl , (6.6.49)

80C(b†a)
󵄨󵄨󵄨󵄨󵄨k=0 +∮S

*0lxadSl = ∫
V
[80a$Tk0 ($ak 12 r2 – xaxk) – 2

a
Qxa] dV

= ∮
S
[ 12kQk

l ($ak 12 r2 – xaxk)
+ *0lxa + *0kx[k$l]av] dSl . (6.6.50)

6.6.3 Possible applications

Let us recall how localized perturbations are defined in a flat spacetime. Let at the
initial moment t = 0 the density 1 be homogeneous. At the next moment t > 0, in the
domain V, perturbations $1 appear, but we assume that they are absent on the bound-
ary S of the domain. Such perturbations of density are called the localized density
perturbations if they satisfy the integral relations:

∫
V
$1dV = 0, ∫

V
x$1dV = 0 , (6.6.51)

which are called the integral constraints as well.
In general relativity, Traschen [441], considered the linear perturbations of generic

form, and studied special vectors, V,, so-called integral constraint vectors satisfying a
certain system of equations on spacelike sections G. Combining V, and the Einstein’s
equations, she constructed the relations:

∫
V
$T,!V,n!dV = ∮

S
Tl($g!",V,)dSl . (6.6.52)

They are integral constraints in general relativity, where the right hand side depends
on the metric perturbations g!", their derivatives and V, only. The meaning of (6.6.52)
is that, by imposing the boundary conditions on S, one restricts the matter perturba-
tions inside V. It is known that there are 10 such vectors V, for the FLRWmodel. From
them 6 are the aforementioned Killing vectors on the FLRW background. The other 4
vectors V, are exactly Traschen’s integral constraint vectors [441].

Analogous to (6.6.51) the localized perturbations of the matter energy momentum
in general relativity are restrained by the condition

∫
V
$T,!V,n!dV = 0 . (6.6.53)

Recall the Sachs-Wolfe effect [396]. Any perturbation of $1 induces anisotropy of tem-
perature of cosmic microwave background radiation. However, if this perturbation is
restricted by its localization (6.6.53), the Sachs-Wolf effect is weakened with respect to
the standard one [442].
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Now let us turn to the integral relations (6.6.42–6.6.50). Notice that besides $T,0
the volume integrals also depend on Q and *mm. Among them there are 4 linear
combinations, which do not include *mm at all. They correspond to the following
vectors

V0 = (ȧ–1a† – d†)󵄨󵄨󵄨󵄨󵄨k=±1 or V0 = (ȧ–1t – d†)󵄨󵄨󵄨󵄨󵄨k=0 ,
Va = ȧ–1l†a + kb

†
a , (6.6.54)

which are linear combinations of vectors in (6.6.39–6.6.41), and consequently are lin-
ear combinations of the conformal Killing vectors. The vectors V0 and Va are simply
the Traschen’s vectors. In the Bardeen uniform Hubble expansion gauge (6.6.34)
the corresponding integral relations C(V0) and C(Va) become Traschen’s integral
constraints.

In relations (6.6.42–6.6.50) we have not used any gauge restricting condition. The
preferred gauge condition that significantly simplifies the integrands in (6.6.42–6.6.50)
is the Bardeen gauge given by equation (6.6.34). Then, 14 volume integrands are
reduced to combinations of $T,0 only. Thus, the correspondent 14 relations (or their
combinations) are classified as the integral constraints of the type (6.6.52). Among
them, 4 are newly obtained by us by using the Belinfante correction method. The
“defective” relation for k = 0 is (6.6.47) and those for k = ±1 are (6.6.42), where along
with $T,0 one has *mm. The integrands in all of the integral constraints, in analogy
with classical mechanics, are multipole momenta of the perturbed matter energy-
momentumof the order 0, 1, 2 in components xa, irrespectively of the sign of the spatial
curvature k.

Besides the Bardeen gauge condition, the gauge condition,
3∇l*klT

= 0, is also often
used in cosmology where *klT

is the traceless part of *kl, see, for example, [41]. Com-

bination of the condition,
3∇l*klT

= 0, with the condition (6.6.34) (it was used by Bičák
in an unpublished work) permits us to find out that there are 4 relations, which do not
depend on the gravitational radiation irrespectively of its presence in the universe,

∫
V
(80a$T00 –

k
a
*mm)dV = 1

3
∮
S

3∇l*mmdSl ,

∫
V
80a$T00xadV = 1

3
∮
S
(xa

3∇l*mm – eal*mm)dSl . (6.6.55)

Then the energy integral, E, and the center of mass integral, R, for perturbations in
the domain V are presented as

E ∼ ∫ $T00 , R ∼ ∫ $T00xa∫ $T00 (6.6.56)

and is defined by the trace *mm on the boundary of the domain Swithout dependence
on the gravitational radiation. We emphasize that all of the above conclusions are
valid only in the linearized approximation of the perturbation theory.



7 Conservation laws in an arbitrary
multi-dimensional metric theory

Chapters from 1 to 6 are devoted fully to constructing conservation laws for per-
turbations and their applications in general relativity. However, in the last decades,
numerous metric theories in n dimensions, which are various modifications of gen-
eral relativity, have received the great interest for various reasons. They are quadratic
in curvature theories, see, e. g., [126]; or theories of the Lovelock type [299]; or f (R)
theories [420], see also Chapter 9, etc. In these theories, there arises the necessity to
study perturbations and to construct conservation laws as non-trivial differences from
general relativity arise. Many results in this direction have been obtained also (see, for
example, [119, 165, 253, 365, 367, 368], and reviews [364, 430] and references therein).
However, a generalized formalism of constructing conservation laws for perturbations
in arbitrary metric theories has not been presented. Although concrete forms of met-
ric Lagrangians in such theories are various and certainly more complicated than in
general relativity, it is natural, nevertheless, to develop themethods elaborated in gen-
eral relativity. On such a basis, it is very desirable to define unifying rules. The present
chapter is devoted to this problem.

7.1 Covariant Noether’s procedure in an arbitrary field theory

In this section, for the sake of generality, we consider an arbitrary covariant field
theory in n dimensions. A direct application of the Noether procedure leads to non-
covariant identities and conserved quantities, see Section 1.4.1 for 4 dimensions. To
construct covariant identities and conserved quantities an external (background)met-
ric has been included in the formulation; recall the field-theoretical approach in
Sections 2.2 and 6.3, the KBL construction in Section 6.1 and the Belinfante procedure
in Section 6.2. Therefore, following the methods in general relativity in the covariant
procedure, we operate with a background that is a given/known solution of the the-
ory which is chosen in accordance with the problem under consideration. One of the
earlier attempts to suggest covariant Noether’s identities in general relativity is Ray’s
work [384]. In this section, following [371], we develop Ray’s ideas in the framework
of an arbitrary field theory.

Including a chosen background (extrinsic) metric into the Lagrangian, one
upgrades partial derivatives to covariant derivatives related to this metric. As a result,
the original Lagrangian becomes evidently covariant. One has to remark that by intro-
ducing the background (extrinsic) metric (and the covariant derivatives associated
with it) to the Lagrangian, we don’t change the theory because the Lagrangian remains
the same. This trick permits us to present in a covariant form both the identities
and the identically conserved quantities. We present a new family of the covariant
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Noether’s identities and identically conserved quantities. After that we expand the
new family using the Belinfante modification.

7.1.1 Covariant identities and identically conserved quantities

Let us turn to the Section 1.4.1, where non-covariant identities and conserved quant-
ities in an arbitrary field theory were derived in four dimensions. Let us stress that
all of the identities and quantities derived in Section 1.4.1 without changes, hold in
the n-dimensional spacetime. We rewrite the Lagrangian in (1.2.36) examined in the
Section 1.4.1,

L = L (8B, 8B
,!, 8

B
,!"), (7.1.1)

that is not explicitly covariant, although the theory is covariant. Thus, the Lagrangian,
L is to be a scalar density of weight +1. If one assumes 8B = {g,-,IA}, all the metric
theories, including general relativity, Lagrangians of which depend on the Riemann
tensor algebraically, are related to this class. To provide covariant identities and con-
served quantities, we incorporate an external (auxiliary, background) metric, ḡ,-, as
follows. Let us derive covariant derivatives of the fields 8B constructed with the use of
the background metric ḡ,-, see Appendixes A.2.1 and A.3,

∇̄!8B ≡ 𝜕!8B + Ā4!1 8B󵄨󵄨󵄨󵄨󵄨14 , (7.1.2)

∇̄"!8B ≡ 𝜕"!8B + Ā4!1," 8B󵄨󵄨󵄨󵄨󵄨14 + Ā4!1 (8B󵄨󵄨󵄨󵄨󵄨14)," + Ā4"1 (∇̄! 8B)󵄨󵄨󵄨󵄨󵄨14≡ 𝜕"!8B + Ā4!1," 8B󵄨󵄨󵄨󵄨󵄨14 + Ā4!1∇̄" (8B󵄨󵄨󵄨󵄨󵄨14)
+ Ā4"1 (∇̄! 8B)󵄨󵄨󵄨󵄨󵄨14 – Ā4!1Ā,"- 8B |14󵄨󵄨󵄨󵄨󵄨-, . (7.1.3)

Because the Lagrangian (7.1.1) is a scalar density, after similar substitutions

𝜕!8B ≡ ∇̄!8B – Ā4!1 8B󵄨󵄨󵄨󵄨󵄨14 , (7.1.4)

𝜕"!8B ≡ ∇̄"!8B – Ā4!1," 8B󵄨󵄨󵄨󵄨󵄨14 – Ā4!1∇̄" (8B󵄨󵄨󵄨󵄨󵄨14)
– Ā4"1 (∇̄! 8B)󵄨󵄨󵄨󵄨󵄨14 + Ā4!1Ā,"- 8B |14󵄨󵄨󵄨󵄨󵄨-, . (7.1.5)

it is transformed into an explicitly covariant form,

L = L (8B, 8B
,!, 8

B
,!") ≡ Lc(8B, ∇̄!8B, ∇̄"!8B, ḡ,-, R̄

!
,"-). (7.1.6)

Here, as usual, ḡ,-, Ā,!-, ∇̄! and R̄!,"- are the metric, the Christoffel symbols, the cov-
ariant derivatives and the curvature tensor of the auxiliary (background) spacetime.
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Note that the left hand side of (7.1.5) is explicitly symmetric in ! and ". To show
this for the right hand side, one has to present the double covariant derivative as∇̄"!8B = ∇̄("!)8B + ∇̄["!]8B, turn to the formula (A.3.9) and make necessary algebraic
transformations using the formulae from Appendix A.3.2.

To preserve the explicit covariance under variation of Lc the direct way is to vary
the external metric ḡ,- together with the fields 8B. However, this way is very cum-
bersome, and we will choose a more economical one. It is evident that substitution
of (7.1.4) and (7.1.5) does not incorporate the external metric at all, therefore the new
representation Lc in (7.1.6) does not contain ḡ,- and its derivatives. This means that
finally variation ofLc, the same as variation ofL , has to be transformed into the same
identity (1.4.4). We rewrite it keeping in mind that now it belongs to n-dimensional
case:

– [ $L
$8B8

B
,! + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"!)] .!

+ 𝜕! [U3
!.3 + M3

!4𝜕4.3 + N3
!4"𝜕"4.3] ≡ 0, (7.1.7)

whereU ,M andN are defined in (1.4.5), (1.4.6) and (1.4.7), respectively. The identity
(7.1.7) is covariant in whole since it has been obtained from the covariant identity:
£.L +𝜕! (.!L ) ≡ 0 with preserving all the terms. The economical way of representing
(7.1.7) into an explicitly covariant form uses (7.1.2–7.1.6) in (7.1.7) directly.

From the start, let us turn to the identity (1.4.12):

$L
$8B8

B
,! + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"!) ≡ 0 (7.1.8)

where the Lagrangian derivative,

$L
$8A ≡ 𝜕L𝜕8A – 𝜕! ( 𝜕L𝜕8A

,!
) + 𝜕!"( 𝜕L𝜕8A

,!"
) , (7.1.9)

in fact, is a covariant expression and can be represented in an explicitly covariant form
(A.3.37), see Appendix A.3.3. Keeping this in mind and using the properties discussed
in Appendix A.3, it is not difficult to show that (7.1.8) is covariant because it can be
rewritten in an explicitly covariant form:

$L
$8A ∇̄!8A + ∇̄" ( $L$8A 8A󵄨󵄨󵄨󵄨󵄨"!) ≡ 0. (7.1.10)

Then the identity

𝜕! [U3
!.3 + M3

!4𝜕4.3 + N3
!4"𝜕"4.3] ≡ 0, (7.1.11)

following from (7.1.7), has to be covariant also.
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Now, let us turn to the relations (7.1.4) and (7.1.5) and set there .3 instead of8A. We
use the obtained equations to change the partial derivatives of .3 in (7.1.11) with the
covariant ones and rewrite (7.1.11) as

𝜕! [u3!.3 +m3
!4∇̄4.3 + n3!4"∇̄"4.3] ≡ 0 (7.1.12)

where

u3! = U3
! – M+

!4Ā+34 + N+
!41(Ā+40Ā

0
31 – 𝜕1Ā+34), (7.1.13)

m3
!4 = M3

!4 + N3
!+1Ā4+1 – 2N+

!41Ā+31, (7.1.14)

n3!4" = N3
!4". (7.1.15)

By using the new form of the Lagrangian (7.1.6) and the connections between the
partial and covariant derivatives (7.1.4) and (7.1.5) we show that the new coefficients
(7.1.13–7.1.15) are represented in an explicitly covariant form.

Let us begin from the last coefficient (7.1.15). Due to the evident relation (A.3.35) in
Appendix A.3.3 the coefficientN (1.4.7) is automatically covariant, and the coefficient
n is represented in the obviously covariant form

n3!4" ≡ 1
2
[ 𝜕Lc𝜕(∇̄!"8B)

8B󵄨󵄨󵄨󵄨󵄨43 + 𝜕Lc𝜕(∇̄!48B)
8B󵄨󵄨󵄨󵄨󵄨"3] . (7.1.16)

To representm in (7.1.14) we need to use the expression M in (1.4.6). The first term in
M is represented by the derivative defined in (1.2.51), let us reproduce it. For this we
use (A.3.33), (A.3.35), and the rules in Appendix A.3. One gets

$L
$8B

,!
= 𝜕L𝜕8B

,!
– 𝜕" ( 𝜕L𝜕8B

,!"
) = 𝜕Lc𝜕(∇̄!8B)

+ 𝜕Lc𝜕(∇̄-,8B)
𝜕𝜕(∇̄!8B)

[Ā4,1(∇̄- (8B󵄨󵄨󵄨󵄨󵄨14) + Ā4-1 (∇̄, 8B)󵄨󵄨󵄨󵄨󵄨14]
– ∇̄" ( 𝜕Lc𝜕(∇̄"!8B)

) + Ā-", ( 𝜕Lc𝜕(∇̄"!8B)
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

-
. (7.1.17)

The other part of the expression M in (1.4.6) is transformed as

– 𝜕L𝜕8B
,4!

𝜕38B + 𝜕L𝜕8B
,"!

𝜕" (8B󵄨󵄨󵄨󵄨󵄨43) =
– 𝜕Lc𝜕(∇̄!48B)

[∇̄38B – Ā-3, 8B󵄨󵄨󵄨󵄨󵄨,-]
+ 𝜕Lc𝜕(∇̄!"8B)

[∇̄"(8B󵄨󵄨󵄨󵄨󵄨43) – Ā-", 8B |43󵄨󵄨󵄨󵄨󵄨,-] . (7.1.18)
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Now, combining (7.1.17) and (7.1.18), we restore M in (1.4.6). Then, substituting M in
such a form, (7.1.15) and (7.1.16) into (7.1.14) and using the rules in Appendix A.3, one
gets the explicitly covariant form form:

m3
!4 ≡ [ 𝜕Lc𝜕(∇̄!8B)

– ∇̄"( 𝜕Lc𝜕(∇̄"!8B)
)] 8B󵄨󵄨󵄨󵄨󵄨43

– 𝜕Lc𝜕(∇̄!48B)
∇̄38B + 𝜕Lc𝜕(∇̄!"8B)

∇̄"(8B󵄨󵄨󵄨󵄨󵄨43). (7.1.19)

To derive u in (7.1.13), we use the same strategy and obtain finally the explicitly
covariant form:

u3! ≡ Lc$!3 +
$Lc
$8B 8B󵄨󵄨󵄨󵄨󵄨!3 – [ 𝜕Lc𝜕(∇̄!8B)

– ∇̄" ( 𝜕Lc𝜕(∇̄"!8B)
)] ∇̄38B

– 𝜕Lc𝜕(∇̄!48B)
∇̄438B + 1

2
𝜕Lc𝜕(∇̄!48B)

8B󵄨󵄨󵄨󵄨󵄨"+ R̄+34". (7.1.20)

Showing that the coefficients (7.1.13–7.1.15) are covariant, we demonstrate that the
expression under divergence in (7.1.12) in whole is a vector density. Thus, keeping in
mind (A.2.12), we can rewrite the identity (7.1.12) as

∇̄! [u3!.3 +m3
!4∇̄4.3 + n3!4"∇̄"4.3] ≡ 0. (7.1.21)

Opening it and equating the coefficients independently to zero at .3, ∇̄!.3, ∇̄("!).3 and∇̄(𝛾"!).3, we get a set of identities:
∇̄!u3! + 1

2
m+

!1R̄ +
3 1! +

1
3
n+!1𝛾∇̄𝛾R̄ +

3 1! ≡ 0, (7.1.22)

u3! + ∇̄+m3
+! + n+4!1R̄ +

3 14 +
2
3
n3+41R̄!41+ ≡ 0, (7.1.23)

m3
(!") + ∇̄+n3+(!") ≡ 0, (7.1.24)

n(!"𝛾)3 ≡ 0. (7.1.25)

Let us discuss this system. Substituting here the expression (7.1.13–7.1.15), one can find
out that the system (7.1.22–7.1.25) consists of linear combinations of the Klein identities
(1.4.8–1.4.11). The identity (7.1.22) corresponds to 𝜕!U3

! ≡ 0. The latter is a con-
sequence of (1.4.9–1.4.11). Analogously, (7.1.22) is not independent – it is a consequence
of (7.1.23–7.1.25).

Since the equality (7.1.21) is identically satisfied, the current

i! = – [u3!.3 +m3
!4∇̄4.3 + n3!4"∇̄"4.3] , (7.1.26)
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must to be expressed through a divergence of a superpotential, i!", — antisymmetric
tensor density, by the way:

i! ≡ 𝜕"i!" ≡ ∇̄"i!". (7.1.27)

A double divergence of i!" is equal to zero identically, 𝜕"!i!" ≡ ∇̄"!i!" ≡ 0. Indeed,
substituting u3! from (7.1.23) into the current (7.1.26) , using (7.1.24) and algebraic prop-
erties of n3!"𝛾 and R̄!"13, and preserving the covariance, we reconstruct (7.1.26) into the
form (7.1.27), where the superpotential is given by

i!" = ( 23 ∇̄+n3 [!"]+ –m3
[!"]) .3 – 4

3
n3 [!"]+∇̄+.3 (7.1.28)

that is explicitly antisymmetric in ! and ".
At last, the current in (7.1.26) can be rewritten as

i! = – [(u3! + n+!"𝛾R̄+"𝛾3).3 +m1!"𝜕[".1] + z!] (7.1.29)

where z-term is defined as

z!(. ) = m3!"&3" + n1!"𝛾 (2∇̄𝛾&"1 – ∇̄1&"𝛾) , (7.1.30)

where we used the notation,

&13 = –1
2
£. ḡ13 = ∇̄(1.3), (7.1.31)

already introduced in (6.1.14) in four dimensions. The representation in the form
(7.1.29) is quite useful because the z-term disappears, if ., is a Killing vector of the
background spacetime. Then only the current (7.1.26) is determined by the energy-
momentum (u + nR̄)-term and the spinm-term.

Now, let us summarize the results. Instead of the non-covariant coefficients (1.4.5),
(1.4.6) and (1.4.7), the corresponding covariant coefficients (7.1.20), (7.1.19) and (7.1.16)
have been constructed. Instead of the non-covariant Klein–Noether identities (1.4.9–
1.4.12), the corresponding covariant identities (7.1.23–7.1.25), (7.1.10) are introduced. By
construction, the explicitly covariant current (7.1.26) is equal to the current (1.4.14) in
the original form exactly: i! ≡ I !. One can show that for the covariant superpotentials
(7.1.28) and the non-covariant superpotential (1.4.20)

i!" = I !" + 4
3
𝜕+ (N3

[+"]!.3) . (7.1.32)

This means that for the antisymmetric superpotential (1.4.21), I !" = i!", and, thus, it
can be transformed into an explicitly covariant form.
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7.1.2 Another variant of covariantization

In Section 1.4.1, all the identities and conserved quantities are derived through the
partial derivatives. The order of the partial derivatives is not important because they
are symmetric with respect to exchange of the indices. For example, expressions, like𝜕L /𝜕8B

,!", are symmetric in ! and ". In the previous subsection, we did not use the
symmetry of partial derivatives, preserving the original order of derivatives in the iden-
tities after variations. This permitted us to make a direct transition to the covariant
versions of identities and conserved quantities. However, the covariant derivatives
do not commute as contrasted to the partial derivatives, and this gives additional
possibilities for constructing conserved quantities for perturbations.

To explain the situation better, let us consider an auxiliary Lagrangian as an
example: L test = PB

!"8B
,!" + . . .. After direct covariantization, as in the previous

subsection, it acquires the form Lc
test = PB

!"∇̄"!8B + . . . . The variation with respect
to 8B

,!" in the fist case gives PB
(!"). However, originally PB

!" is not necessarily sym-
metric in ! and ", therefore in the second case, the variation with respect to ∇̄"!8B

gives simply PB
!". Thus, unlike the first case, changing the order of the second cov-

ariant derivatives can lead to a different result. If we symmetrize ! and " in the second
case: Lc

test = PB
!"∇̄("!)8B + . . . then we need to make sure that it is consistent with

other terms in the Lagrangian.
To study the problem of a different order of the second covariant derivatives, let

us change the order of indices in (7.1.6) as follows,

L (8B, 8B
,!, 8

B
,!") ≡ Lc(8B, ∇̄!8B, ∇̄"!8B, ḡ,-, R̄

!
,"-)

≡ Lc (8B, ∇̄!8B, ∇̄!"8B + 8B󵄨󵄨󵄨󵄨󵄨13 R̄13!", ḡ,-, R̄!,"-)≡ L ∗(8B, ∇̄!8B, ∇̄"!8B, ḡ,-, R̄
!
,"-). (7.1.33)

Expression (7.1.33) reveals that if one changes the order of the second covariant deriv-
atives of8B one gets an additional derivative with respect to8B, being proportional to
the Riemann tensor.

At first, one has to check that the order of indices at second covariant derivatives
does not affect the equations of motion defined by the Lagrangian derivative (7.1.9).
For its explicitly covariant expression see (A.3.37) in Appendix A.3.3. Thus, for the first
line in (7.1.33) one has

$Lc
$8B = 𝜕Lc𝜕8B – ∇̄! ( 𝜕Lc𝜕(∇̄!8B)

) + ∇̄!"( 𝜕Lc𝜕(∇̄"!8B)
) . (7.1.34)

Of course, for the starred Lagrangian, the form of the Lagrangian derivative has the
same standard form (7.1.34). Then, substituting the second line of (7.1.33), instead of
L ∗, into the standard expression of the type (7.1.34), one obtains
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$L ∗

$8B = 𝜕Lc𝜕8B – ∇̄! ( 𝜕Lc𝜕(∇̄!8B)
) + ∇̄!"( 𝜕Lc𝜕(∇̄!"8B)

)
+ 𝜕Lc𝜕(∇̄"!8C)

𝜕𝜕8B (8C󵄨󵄨󵄨󵄨󵄨1+ R̄1+!") . (7.1.35)

After changing the order of derivatives in the third term at the right hand side, using
(A.3.9) and other formulae in Appendix A.3, one can see that, indeed the Lagrangian
derivative (7.1.35) goes over to (7.1.34). However, different definitions of the covariant
Lagrangian in (7.1.33) lead to different definitions of conserved quantities as we show
below.

To derive the coefficients of the Klein identities related to L ∗ one has to use the
same form (7.1.16), (7.1.19) and (7.1.20), of course. Then one can see that the use of the
second line of (7.1.33) changes the order of the second derivatives in all the terms, like𝜕L /𝜕(∇̄"!8B) → 𝜕L /𝜕(∇̄!"8B), simultaneously. This gives

n∗3!4" ≡ 1
2
[ 𝜕Lc𝜕(∇̄"!8B)

8B󵄨󵄨󵄨󵄨󵄨43 + 𝜕Lc𝜕(∇̄4!8B)
8B󵄨󵄨󵄨󵄨󵄨"3] , (7.1.36)

m∗3!4 ≡ [ 𝜕Lc𝜕(∇̄!8B)
– ∇̄" ( 𝜕Lc𝜕(∇̄!"8B)

)] 8B󵄨󵄨󵄨󵄨󵄨43
– 𝜕Lc𝜕(∇̄4!8B)

∇̄38B + 𝜕Lc𝜕(∇̄"!8B)
∇̄" (8B󵄨󵄨󵄨󵄨󵄨43) , (7.1.37)

u∗3! ≡ Lc$!3 +
$Lc
$8B 8B󵄨󵄨󵄨󵄨󵄨!3 – [ 𝜕Lc𝜕(∇̄!8B)

– ∇̄"( 𝜕Lc𝜕(∇̄!"8B)
)] ∇̄38B

– 𝜕Lc𝜕(∇̄"!8B)
∇̄"38B + 1

2
𝜕Lc𝜕(∇̄4!8B)

8B󵄨󵄨󵄨󵄨󵄨"+ R̄+34". (7.1.38)

Because all of the expressions (7.1.36–7.1.38) have been obtained from the same Lag-
rangian (7.1.33), they all have to satisfy the same identities (7.1.22–7.1.25) as well. Let us
show this. It is not difficult to find a connection of the expressions (7.1.36–7.1.38) with
the coefficients (7.1.16), (7.1.19) and (7.1.20):

n∗3!4" ≡ n3!4" +
𝜕Lc𝜕(∇̄["!]8B)

8B󵄨󵄨󵄨󵄨󵄨43 + 𝜕Lc𝜕(∇̄[4!]8B)
8B󵄨󵄨󵄨󵄨󵄨"3 , (7.1.39)

m∗3!4 ≡ m3
!4 – 2 𝜕Lc𝜕(∇̄[4!]8B)

∇̄38B + 2∇̄" ( 𝜕Lc𝜕(∇̄["!]8B)
8B󵄨󵄨󵄨󵄨󵄨43) , (7.1.40)

u∗3! ≡ u3! – 2∇̄"( 𝜕Lc𝜕(∇̄["!]8B)
∇̄38B) + 𝜕Lc𝜕(∇̄[4!]8B)

8B󵄨󵄨󵄨󵄨󵄨"+ R̄+34", (7.1.41)
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where we defined

𝜕Lc𝜕(∇̄["!]8B)
≡ 1
2
( 𝜕Lc𝜕(∇̄"!8B)

– 𝜕Lc𝜕(∇̄!"8B)
) . (7.1.42)

Then, a direct use of (7.1.39–7.1.41) in the identities (7.1.22–7.1.25) shows that n∗, m∗
and u∗ satisfy them as well, like the coefficients n, m and u. This means that if we
construct a starred-current with using the rule (7.1.26):

i∗! = – [u∗3!.3 +m∗3!4∇̄4.3 + n∗3!4"∇̄"4.3] , (7.1.43)

then it is identically conserved. Indeed, it is easy to find that

i∗! = i! – 2∇̄"( 𝜕Lc𝜕(∇̄["!]8B)
£.8B) . (7.1.44)

Then 𝜕!i∗! ≡ 𝜕!i!, and consequently 𝜕!i∗! ≡ 0. Analogous to (7.1.27), the identity

i∗! ≡ 𝜕"i∗!" ≡ ∇̄"i∗!" (7.1.45)

exists where

i∗!" = ( 2
3
∇̄+n∗3 [!"]+ –m∗3 [!"]) .3 – 4

3
n∗3 [!"]+∇̄+.3. (7.1.46)

The direct substitution of (7.1.39) and (7.1.40) into (7.1.46) gives

i∗!" = i!" – 2 𝜕Lc𝜕(∇̄["!]8B)
£.8B + 2

3
∇̄1 [.3 ( 𝜕Lc𝜕(∇̄["!]8B)

8B󵄨󵄨󵄨󵄨󵄨13
+ 𝜕Lc𝜕(∇̄[!1]8B)

8B󵄨󵄨󵄨󵄨󵄨"3 + 𝜕Lc𝜕(∇̄[1"]8B)
8B󵄨󵄨󵄨󵄨󵄨!3)] . (7.1.47)

This looks very cumbersome, however let us discuss it. The expression in the square
brackets is antisymmetric in !, " and 1. Thus ∇̄1 can be changed by 𝜕1 and one can
see that the term in the square brackets does not contribute into the current in (7.1.45).
Also, due to the Stokes’s theorem this term does not contribute to the surface integ-
rals calculated with the use of the superpotentials. Therefore, without the loss of
information, we can use

i∗!" = i!" – 2 𝜕Lc𝜕(∇̄["!]8B)
£.8B, (7.1.48)

which is in accordance with (7.1.44) and (7.1.45).
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7.1.3 A new family of the identically conserved covariant Nother quantities

Let us rewrite the identities, which follow from the Lagragians L , Lc and L ∗,
respectively,

𝜕!I ! ≡ 𝜕!i! ≡ 𝜕!i∗! ≡ 0. (7.1.49)

Besides, recall that each of the LagrangainsL ,Lc andL ∗ lead to the same equations
ofmotion for8B. Then adding (7.1.8) in a related form to each of the identities in (7.1.49)
one obtains

– [ $L
$8B8

B
,! + 𝜕" ( $L$8B 8B󵄨󵄨󵄨󵄨󵄨"!)] .! – 𝜕!I ! ≡ 0, (7.1.50)

– [$Lc
$8B ∇̄!8B + ∇̄" ($Lc

$8B 8B󵄨󵄨󵄨󵄨󵄨"!)] .! – 𝜕!i! ≡ 0, (7.1.51)

– [$L ∗
$8B ∇̄!8B + ∇̄" ($L ∗$8B 8B󵄨󵄨󵄨󵄨󵄨"!)] .! – 𝜕!i∗! ≡ 0. (7.1.52)

Each of these identities is its own form of the unique identity (7.1.7). Therefore, each of
the currents, i! and i∗!, has equal rights. Nevertheless, which could be the preferable
one from them? At a first glance it seems that it is i! because by construction, i! ≡ I !.
On the other hand, a conservation of the symmetry of partial derivatives looks like a
good idea. Then one can choose

L (8B,8B
,!,8B

,!") ≡ Lc (8B, ∇̄!8B, ∇̄("!)8B + 1
2
8B󵄨󵄨󵄨󵄨󵄨13 R̄13!", ḡ,-, R̄!,"-) (7.1.53)

instead of (7.1.33). However, in reality, we do not see any theoretical foundation for
such a choice. Possibly, in future, applications of the constructed expressions to com-
plicated solutions of the numerous modern modifications of general relativity will
permit to do the choice. To unite the aforementioned possibilities for constructing
covariant conserved quantities we suggest a covariant Lagrangian of the form:

L (8B,8B
,!,8B

,!") ≡ L † (8B, ∇̄!8B, ∇̄"!8B, ḡ,-, R̄
!
,"-)≡ pLc (8B, ∇̄!8B, ∇̄"!8B, ḡ,-, R̄
!
,"-)

+ qL ∗ (8B, ∇̄!8B, ∇̄"!8B, ḡ,-, R̄
!
,"-) , (7.1.54)

where p + q = 1 with real p and q. The Lagrangian (7.1.54) leads to the same field
equations, whereas the conservation law for (7.1.54) are defined now as

i†! ≡ 𝜕"i†!" (7.1.55)
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with the conserved quantities i†! ≡ p i! + q i∗! and i†!" ≡ p i!" + q i∗!", representing in
reality a new family of identically conserved quantities.

Turning to (7.1.44) and (7.1.48) one can rewrite the current and superpotential in
(7.1.55), as

i†! = i! + q∇̄"r!", (7.1.56)

i†!" = i!" + qr!" ; (7.1.57)

r!" ≡ –2 𝜕Lc𝜕(∇̄["!]8B)
£.8B (7.1.58)

with 0 ≤ q ≤ 1, or

i†! = i∗! + p∇̄"r∗!", (7.1.59)

i†!" = i∗!" + pr∗!" ; (7.1.60)

r∗!" ≡ –2 𝜕Lc
∗𝜕(∇̄["!]8B)

£.8B (7.1.61)

with 0 ≤ p ≤ 1.

A contribution from the divergence in the Lagrangian
To finalize this subsection, one has to note the following. Recall that a divergence
in the Lagrangian, being irrelevant for deriving the field equations, is important (fre-
quently even crucial) in the definition of Nœther’s canonical conserved quantities. We
give some necessary formulae. Let the Lagrangian L be added by the scalar density,

L 󸀠 = D-
,-, (7.1.62)

where D- is a vector density. Then the Noether identity (7.1.7) can be rewritten for
(7.1.62) in the form:

𝜕! (£.D! + .!D-
,-) ≡ ∇̄! (£.D! + .!∇̄-D-) ≡ 0. (7.1.63)

The corresponding, additional, coefficients are

u󸀠3! = 2∇̄"($[!3 D"]), (7.1.64)

m󸀠3!" = 2$[!3 D"], (7.1.65)

n󸀠3!"𝛾 = 0. (7.1.66)

The corresponding additional current and superpotential are

i󸀠! = –u󸀠3!.3 –m󸀠3!4∇̄4.3, (7.1.67)

i󸀠!" = –m󸀠3 [!"].3. (7.1.68)
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Note that a construction of these quantities does not depend on the intrinsic structure
ofD-. Thus, a contribution from the divergence (7.1.62) to each of Lagrangians, starred
and others, is the same.

7.1.4 A Belinfante corrected family of identically conserved quantities

Here, wemodify the results of previous subsections with the use of the Belinfante pro-
cedure [34]. By the general Belinfante rule, see (6.2.2) for general relativity, we define
a tensor density

s!"3 ≡ –s"!3 ≡ –m+
3[!ḡ"]+ –m+

![3ḡ"]+ +m+
"[3ḡ!]+, (7.1.69)

which is called a Belinfante correction. Now, let us add ∇̄"(s!"3.3) to both sides of
(7.1.27) and obtain a new identity:

i!B ≡ 𝜕"i!"B ≡ ∇̄"i!"B . (7.1.70)

This modification cancels the spin term from the current (7.1.29):

i!B ≡ (–u3! – n+!"𝛾R̄+"𝛾3 + ∇̄"s!"3) .3 + z!B(. ) ≡ Bu3!.3 + z!B(. ), (7.1.71)

where the new z-term disappears also on Killing vectors of the background:

z!B(. ) = (m+
"!ḡ4+ +m+

!4ḡ"+ –m+
4"ḡ!+) &4"

+ n+!4" (2∇̄("& +4) – ∇̄3&"4ḡ+3) , (7.1.72)

see the definition (7.1.31) for &!". Thus, the current i!B is defined, in fact, by themodified
energy-momentum tensor density Bu3! only. The new superpotential depends on the
n-coefficients only:

i!"B ≡ 2( 1
3
∇̄1n3 [!"]1 + ∇̄4n+41[!ḡ"]+ḡ13) .3 – 4

3
n3 [!"]+D+.3. (7.1.73)

Then, due to the definition (7.1.16), the superpotential (7.1.73) vanishes for Lagrangians
with only the first order derivatives. On the other hand, the superpotential (7.1.73) is
well adapted to the theories with second derivatives in Lagrangians, say, algebraically
depending on Riemann tensor, like in many modern gravitational theories.

All the above can be applied exactly to the starred quantities in Section 7.1.3. As a
result, one obtains

i∗!B ≡ 𝜕"i∗!"B ≡ ∇̄"i∗!"B , (7.1.74)
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where

i∗!B ≡ (–u∗3! – n∗+ !"𝛾R̄+"𝛾3 + ∇̄"s∗!"3) .3 + z∗!B (. ), (7.1.75)

i∗!"B ≡ 2( 1
3
∇̄1n∗3 [!"]1 + ∇̄4n∗+ 41[!ḡ"]+ḡ13) .3 – 4

3
n∗3 [!"]+∇̄+.3. (7.1.76)

The connection of the starred Belinfante corrected quantities with the current (7.1.71)
and the superpotential (7.1.73) is stated with the use of (7.1.39–7.1.41),

i∗!B ≡ i!B + ∇̄"r!"B , (7.1.77)

i∗!"B ≡ i!"B + r!"B , (7.1.78)

where

r!"B ≡ – 2[ 𝜕Lc𝜕(∇̄["!]8B)
8B󵄨󵄨󵄨󵄨󵄨13 ∇̄1.3 + ∇̄1 ( 𝜕Lc𝜕(∇̄138B)

8B󵄨󵄨󵄨󵄨󵄨[!+ ḡ"]+

+ 𝜕Lc𝜕(∇̄1!8B)
8B󵄨󵄨󵄨󵄨󵄨[3+ ḡ"]+ + 𝜕L𝜕(∇̄"18B)

8B󵄨󵄨󵄨󵄨󵄨[3+ ḡ!]+) .3] . (7.1.79)

Analogously, one defines r∗!"B based on the Lagrangian Lc
∗.

The Belinfante corrected covariant conservation laws and conserved quantities
for the family of the Lagrangians (7.1.54) are defined as

i†!B ≡ 𝜕"i†!"B ≡ ∇̄"i†!"B (7.1.80)

with i†!B = p i!B +q i∗!B and i†!"B = p i!"B +q i∗!"B , representing a Belinfante corrected family
of identically conserved quantities.

Analogously to (7.1.56) and (7.1.61), one can rewrite the current and the superpo-
tential in (7.1.80) as

i†!B = i!B + q∇̄"r!"B , (7.1.81)

i†!"B = i!"B + qr!"B ; 0 ≤ q ≤ 1, or (7.1.82)

i†!B = i∗!B + p∇̄"r∗!"B , (7.1.83)

i†!"B = i∗!"B + pr∗!"B ; 0 ≤ p ≤ 1. (7.1.84)

It was remarked earlier that the conserved quantities constructed with the use of the
coefficients (1.4.5–1.4.7) and the coefficients (7.1.13–7.1.15) are unique for the corres-
ponding Lagrangian and in the framework of the Nœther or of the Nœther-Belinfante
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procedure. There is no contradiction with the results of previous and the present
subsections where we suggest a new family of conserved quantities. It is because we
have found here various possibilities to construct covariant Lagrangians, in fact we
have suggested a family of such Lagrangians (7.1.54). Thus, for each of the Lagrangians
of the family, the conserved quantities are defined by a unique way.

Zero contribution from a divergence in the Lagrangian
It is important to note that the Belinfante procedure cancels the contributions of the
divergence (7.1.62) into currents and superpotentials, see (7.1.67) and (7.1.68). Let us
show this. The Belinfante correction (7.1.69) constructed form󸀠 in (7.1.65) is

s󸀠!"3.3 = 2. [!D"]. (7.1.85)

Then, adding ∇̄"(s󸀠!"3.3) and s󸀠!"3.3 to (7.1.67) and (7.1.68), respectively, one obtains
easily

i󸀠!B = i󸀠! + ∇̄"(s󸀠!"3.3) = 0 ; (7.1.86)

i󸀠!"B = i󸀠!" + s󸀠!"3.3 = 0. (7.1.87)

We emphasize that this result does not depend on the nature of D- and is related to
all the kinds of Lagrangians.

7.2 Conservation laws for perturbations: Three approaches

7.2.1 An arbitrary metric theory in n dimensions

To present the n-dimensional metric theory we consider the Lagrangian:

Ln = – 1
2*L G(g,-) + L M(g,-,IA), (7.2.1)

which depends on the metric, g,-, and the matter, IA, variables and their deriv-
atives up to the second order. Thus the Lagrangian of the free gravitational field
(metric Lagrangian), L G, can be thought as an algebraic function of the metric and
the Riemann tensor, L G(g,-) = L G(g,-,R!1"3), that can be arbitrary with the neces-
sary requirements for a differentiation. Here, the Einstein n-dimensional gravitational
constant is

* = 2Kn–2Gn, (7.2.2)
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where Kn–2 is the area of the unit (n – 2)-dimensional sphere, Gn is the n-dimensional
Newton’s gravitational constant and c = 1.

Variation of (7.2.1) with respect to g,- leads to the gravitational equations:

E,- = *T,-, (7.2.3)

which generalize the Einstein’s equations in the form (1.3.22). Thus the generalized
Einstein’s tensor density, see (1.3.15), is

E,- =
$L G

$g,- , (7.2.4)

whereas the matter energy-momentum, T,-, is defined exactly as in (1.3.21). Variation
of (7.2.1) with respect toIA gives corresponding matter equations.

Below we will use also the background Lagrangian defined as

L̄n = – 1
2* L̄ G + L̄ M, (7.2.5)

where L̄ G = L G(ḡ,-) and L̄ M = L M(ḡ,-, ĪA). The corresponding background
gravitational equations are

̄E,- = *T̄,-, (7.2.6)

analogously, one obtains the background matter equations. We set that the back-
ground fields ḡ,- and ĪA satisfy the background equations and, thus, are known
(fixed).

In the present section, the subject of our attention is to be the gravitational part
of the Lagrangian (7.2.1). Basing on the results of previous section, we set 8A = {g,-}
and incorporate an external metric ḡ,- into L G in (7.2.1). A representation of the Lag-
rangian in an “explicitly” covariant form with the use of ḡ,- is carried out following
the recipe of the previous section, like in (7.1.6). We change partial derivatives with the
covariant derivatives defined with the use of ḡ,-. Thus,

L G = Lc
G = Lc

G(g,-, ∇̄!g,-, ∇̄"!g,-, ḡ,-, R̄+413). (7.2.7)

Now we derive the coefficients (7.1.16) and (7.1.19) for the Lagrangian

Lc = – 1
2*Lc

G. (7.2.8)
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Thus, the coefficients are as follow.

n3!4" = – 1
4* [ 𝜕Lc

G𝜕(∇̄!"g,-) g,-󵄨󵄨󵄨󵄨󵄨43 + 𝜕Lc
G𝜕(∇̄!4g,-) g,-󵄨󵄨󵄨󵄨󵄨"3] , (7.2.9)

m3
!4 = – 1

2* [ $Lc
G

$(∇̄!g,-) g,-󵄨󵄨󵄨󵄨󵄨43 – 𝜕Lc
G𝜕(∇̄!4g,-) ∇̄3g,-

+ 𝜕Lc
G𝜕(∇̄!"g,-) ∇̄" (g,-󵄨󵄨󵄨󵄨󵄨43)] , (7.2.10)

where g,-
󵄨󵄨󵄨󵄨󵄨!" = –g",$!- – g"-$!, and

$Lc
G

$(∇̄!g,-) ≡ 𝜕Lc
G𝜕(∇̄!g,-) – ∇̄" ( 𝜕Lc

G𝜕(∇̄"!g,-)) . (7.2.11)

It is constructive to represent the coefficient (7.1.20) in a structured form:

u3! = – [ 1*E3
! + C3

! + n+!4"R̄+4"3] (7.2.12)

with the notations

E3
! ≡ 1

2
$Lc

G

$g,-
g,-

󵄨󵄨󵄨󵄨󵄨!3 ≡ –$Lc
G

$g,!
g,3 ≡ $Lc

G

$g,3 g
,!, (7.2.13)

see (7.2.4) for the generalized Einstein’s tensor density, and

C3
! ≡ – 1

2* ( 𝜕Lc
G𝜕(∇̄!"g,-) ∇̄"3g,- + $Lc

G

$(∇̄!g,-) ∇̄3g,- – $!3Lc
G) (7.2.14)

for the generalized canonical energy-momentum related to the gravitational Lag-
rangian Lc

G.

7.2.2 Canonical conserved quantities for perturbations

Incorporation of the background metric is a key point, basing on that one has the
possibility to describe perturbations. As usual, perturbations are determined when a
solution (dynamical) of the theory is considered as a perturbed system with respect
to another solution (background) of the same theory. Then the background spacetime
acquires a physical sense instead of being an auxiliary notion. Perturbations in such a
formulation are exact (not infinitesimal or approximate), and then linear or of higher
order approximations follow easily.
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In this subsection, we generalize the KBL method in general relativity described
in the Section 6.1. In the framework of an arbitrary metric theory, following to the KBL
ideology (6.1.1), we construct the Lagrangian for pure metric perturbations:

LKBL = – 1
2* (Lc

G – L̄ G
c + 𝜕!D!) . (7.2.15)

By definition, the Lagrangian (7.2.15) has to vanish for vanishing perturbations, there-
fore one has to set D! as disappearing for vanishing perturbations. The same as in
the KBL method in general relativity, there is no a necessity to concretize dynamical
metric variables from the set (2.2.114).

Now, let us apply the Noether procedure developed in the Section 7.2.1 to the
Lagrangian (7.2.15). As a result we obtain the analog of the identity (7.1.27):

j!C ≡ 𝜕"j!"C ≡ ∇̄"j!"C (7.2.16)

where

j!C(. ) ≡ i!(. ) – ̄i!(. ) + i󸀠!(. ), (7.2.17)

j!"C (. ) ≡ i!"(. ) – ̄i!"(. ) + i󸀠!"(. ). (7.2.18)

Here, i! and i!" are defined in (7.1.29) and (7.1.28), respectively, with n,m and u defined
in (7.2.9), (7.2.10) and (7.2.12), respectively; i󸀠! and i󸀠!" are defined in (7.1.67) and (7.1.68).
Thus, for the identically conserved current in (7.2.16) one has

j!C = $u3!.3 + $m1!"𝜕[".1] + $z!C, (7.2.19)

where

$n3!"𝛾 ≡ – [n3!"𝛾 – n̄3!"𝛾] , (7.2.20)

$m3
!" ≡ – [m3

!" – m̄3
!" – 1

*D
$[!3 D"]] , (7.2.21)

$u3! ≡ – [u3! – ū3! + $n+!"𝛾R̄+"𝛾3 – 1
*D

∇̄"($[!3 D"])] , (7.2.22)

$z!C(. ) ≡ – [$m3!"&3" + $n1!"𝛾 (2∇̄𝛾&"1 – ∇̄1&"𝛾)] . (7.2.23)

It is constructive to represent (7.2.22) in an explicit form with the use of (7.2.12)

$u3! ≡ 1
* [$E3! + ∇̄"($[!3 D"])] + $C3

!, (7.2.24)
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where $E3! ≡ E3
! – ̄E3

! and $C3
! ≡ C3

! – C̄3
!. Analogously, we obtain the expression

for the superpotential in (7.2.16):

j!"C = ( 2
3
∇̄+$n3 [!"]+ – $m3

[!"]) .3 – 4
3
$n3 [!"]+∇̄+.3. (7.2.25)

In the case when the gravitational Lagrangian is chosen as the Hilbert Lagrangian,
L G = L H = R, and the divergence is chosen as in (6.1.4),D! = k!, the identity (7.2.16)
reduces to the KBL identity in general relativity (6.1.17). Thus, the current (7.2.19) gen-
eralizes the KBL current (6.1.15), and the superpotential (7.2.25) generalizes the KBL
superpotential (6.1.25).

Now, use the dynamical gravitational equations (7.2.3) and the background grav-
itational equations (7.2.6) in the identity (7.2.16). It turns to a physiacally sensible
conservation law,

J !
C = 𝜕"J !"

C ≡ ∇̄"J !"
C , (7.2.26)

where the current is

J !
C = C(3!.3 + $m1!"𝜕[".1] + $z!C (7.2.27)

with the generalized energy-momentum

C(3! ≡ $T3
! + $C3

! + 1
* ∇̄"($[!3 D"]). (7.2.28)

It is a generalization of the KBL energy-momentum (6.1.27). Formally the general-
ized superpotential J !"

C coincides with j!"C in (7.2.25). The difference is that in J !"
C

one uses the metric coefficients satisfying the field equations, whereas in j!"C they are
arbitrary.

Analogously, the starred conservation law can be constructed,

J ∗!C = 𝜕"J ∗!"C ≡ ∇̄"J ∗!"C , (7.2.29)

where the current is

J ∗!C = C(∗3!.3 + $m∗1!"𝜕[".1] + $z∗!C (7.2.30)

with the generalized energy-momentum

C(∗3! ≡ $T3
! + $C ∗3

! + 1
* ∇̄"($[!3 D"]). (7.2.31)

The superpotential J ∗!"C is directly defined by (7.1.46) and (7.1.68) analogous to J !"
C .
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More generally, the family of the Noether canonical conservation laws for perturb-
ations corresponding to the representation (7.1.55) has the form:

J †!C (. ) = 𝜕!J †!"C (. ) (7.2.32)

with the conserved quantities

J †!C ≡ pJ !
C + qJ ∗!C , (7.2.33)

J
†!"
C ≡ pJ

!"
C + qJ

∗!"
C , (7.2.34)

representing a family of conserved quantities if the field equations hold.
Turning to the general expressions (7.1.56–7.1.61) one can rewrite the current

(7.2.33) and superpotential (7.2.34) as

J †!C = J !
C + q∇̄"$r!", (7.2.35)

J †!"C = J !"
C + q$r!" ; (7.2.36)

r!" ≡ 1
*

𝜕Lc
G𝜕(∇̄["!]g,-)£.g,- (7.2.37)

with $r!" = r!" – ̄r!" and 0 ≤ q ≤ 1, or

J †!C = J ∗!C + p∇̄"$r∗!", (7.2.38)

J †!"C = J ∗!"C + p$r∗!" ; (7.2.39)

r∗!" ≡ 1
*

𝜕Lc
∗G𝜕(∇̄["!]g,-)£.g,- (7.2.40)

with $r∗!" = r∗!" – ̄r∗!" and 0 ≤ p ≤ 1. It is important for calculations to note that
following (7.1.33),

r∗!" ≡ – 1*
𝜕Lc

G𝜕(∇̄["!]g,-)£.g,-, (7.2.41)

thus, r∗!" = –r!".
Note, that even in n-dimensional general relativity there is no a difference

between the starred and un-starred quantities. It is because the differences (7.2.37)
and (7.2.40) vanish for covariant perturbed Hilbert Lagrangian Lc

G = Lc
H in (6.1.3)

adapted to n dimensions. Indeed, the quantity𝜕Lc
H𝜕(∇̄"!g,-) = 2 (g!(,g"-) – g!"g,-) (7.2.42)
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after antisymmetrization in ! and ", disappears. Therefore for general relativity, even
in n dimensions, the conservation law (7.2.32) is a single one, not a family. Thus, for
general relativity in n dimensions it is enough to consider the KBL conservation laws
only.

7.2.3 The Belinfante corrected conserved quantities

Now, let us apply the Noether-Belinfante procedure developed in the Section 7.1.4 to
the Lagrangian (7.2.15). As a result we obtain the analog of the identity (7.1.70):

j!B ≡ 𝜕"j!"B ≡ ∇̄"j!"B (7.2.43)

where

j!B(. ) ≡ i!B(. ) – ̄i!B(. ), (7.2.44)

j!"B (. ) ≡ i!"B (. ) – ̄i!"B (. ). (7.2.45)

Let us stress that here the contribution from a divergence in Lagrangian is absent,
unlike (7.2.17) and (7.2.18). Here, i!B and i!"B are defined in (7.1.71) and (7.1.73), respect-
ively, with n,m and u defined in (7.2.9), (7.2.10) and (7.2.12), respectively. Thus, for the
identically conserved current in (7.2.43) one has

j!B = $(Bu3!).3 + $z!B(. ), (7.2.46)

where

$(Bu3!) ≡ – [$u3! + $n+!"𝛾R̄+"𝛾3 – ∇̄"$s!"3] , (7.2.47)

$z!B(. ) = ($m+
"!ḡ4+ + $m+

!4ḡ"+ – $m+
4"ḡ!+) &4"

+ $n+!4" (2∇̄("& +4) – ∇̄+&"4) , (7.2.48)

with the perturbed coefficients here,

$n3!"𝛾 ≡ n3!"𝛾 – n̄3!"𝛾, (7.2.49)
$m3

!" ≡ m3
!" – m̄3

!", (7.2.50)
$s!"3 ≡ s!"3 – s̄!"3, (7.2.51)
$u3! ≡ u3! – ū3!. (7.2.52)

It is constructive to represent (7.2.47) in an explicit form with the use of (7.2.12 – 7.2.14)
and (7.2.52):

$(Bu3!) ≡ 1
*D
$E3! + $C3

! + ∇̄"$s!"3, (7.2.53)

where again $E3! ≡ E3
! – ̄E3

! and $C3
! ≡ C3

! – C̄3
!.
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Analogously, keeping in mind (7.1.73), we obtain the expression for the superpo-
tential in (7.2.43):

j!"B ≡ 2( 1
3
∇̄1$n3 [!"]1 + ∇̄4$n+41[!ḡ"]+ḡ13) .3 – 4

3
$n3 [!"]+D+.3. (7.2.54)

In the case, when the gravitational Lagrangian is chosen as the Hilbert Lagrangian,
L G =L H =R, the identity (7.2.43) reduces to the identity (6.2.4) in general relativity.

Now, let us use the dynamical gravitational equation (7.2.3) and the background
gravitational equations (7.2.6) in the identity (7.2.43). It turns to a physiacally sensible
conservation law,

J !
B = 𝜕"J !"

B ≡ ∇̄"J !"
B , (7.2.55)

where the current is

J !
B = B(3!.3 + $z!B (7.2.56)

with the generalized energy-momentum

B(3! ≡ $T3
! + $C3

! + ∇̄"$s!"3. (7.2.57)

Formally the generalized superpotential J !"
B coincides with j!"B in (7.2.43). The differ-

ence is that in J !"
B one uses the metric coefficients satisfying the field equations,

whereas in j!"B they are arbitrary. In the case of general relativity, the generalized
energy-momentum (7.2.57) coincides with (6.2.9).

The starred conservation law can be constructed,

J ∗!B = 𝜕"J ∗!"B ≡ ∇̄"J ∗!"B . (7.2.58)

The family of the Belinfante corrected conservation laws for perturbations has the
form

J †!B = 𝜕"J †!"B ≡ ∇̄"J †!"B . (7.2.59)

The structure of (7.2.58) and (7.2.59) can be easily reproduced with the use of (7.1.74 –
7.1.84).

7.2.4 The field-theoretical formulation for perturbations

Here, the field equations in the framework of the field-theoretical approach (see Sec-
tion 2.2 for general relativity in four dimensions) are derived for n-dimensional metric
theory. For this we derive the Lagrangian (7.2.1) in a more general form:

Ln(Q
A) = – 1

2*L G(ga) + L M(ga,IB), (7.2.60)
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where QA = {ga,IA} with a generalized metric variable ga from the set (2.2.114). The
field equations for the system (7.2.60) are derived in a compact form as

$Ln/$QA = 0. (7.2.61)

Let us decompose QA onto the background part Q̄A and the dynamical part qA,
perturbations,

QA = Q̄A + qA. (7.2.62)

Here qA = {ha,6A} with a generalized metric perturbation variable ha from the set
(2.2.121). The background fields are fixed in the sense that they satisfy the background
equations

$L̄n/$Q̄A = 0, (7.2.63)

where L̄n = Ln(Q̄).
Following the recipe (2.2.15), we construct the dynamical Lagrangian for perturb-

ations,

L dyn
n (Q̄, q) = Ln(Q̄ + q) – qA $L̄n

$Q̄A
– L̄n

= – 1
2*L g + L m (7.2.64)

with the Lagrangian L g for free gravitational field and with the Lagrangian L m for
the matter interacting with the gravitational field. As in (2.2.15), the background equa-
tions should not be taken into account before the variation of L dyn

n with respect to
Q̄A. To obtain the field equations for the dynamical variables (perturbations) qA one
has to vary (7.2.64) with respect to qA,

$L dyn
n

$qA
= 0. (7.2.65)

Using the evident property

$Ln(Q̄ + q)/$Q̄A = $Ln(Q̄ + q)/$qA, (7.2.66)

the field equation (7.2.65) can be represented in the form:

$L dyn
n

$qA
= $
$Q̄A

[Ln(Q̄ + q) – L̄n] = 0. (7.2.67)

This form shows that the equations for perturbations are equivalent to the equations
of the theory (7.2.61) if the background equations (7.2.63) hold. Next, defining the
“background current”,
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tqA ≡ $L dyn
n

$Q̄A
≡ $L dyn

n
$qA

– $
$Q̄A

qB $L̄n
$Q̄B

, (7.2.68)

using the definition (7.2.64) and the property (7.2.66), one obtains another form for the
equations (7.2.65):

– $
$Q̄A

qB $L̄n
$Q̄B

= tqA. (7.2.69)

The left hand side here is linear in perturbations, whereas the right hand side is at
least quadratic.

Now, let us separate the equations (7.2.69) into the gravitational and the matter
parts as follows,

E L
a +IL

a = 2*t tota , (7.2.70)

IL
A = tmA , (7.2.71)

where

E L
a ≡ $

$ḡa g
b $L̄ G

$ḡb
, (7.2.72)

IL
a ≡ – 2* $

$ḡa q
B $L̄n
$Q̄B

, (7.2.73)

IL
A ≡ – $

$ĪA q
B $L̄ M

$Q̄B
. (7.2.74)

The matter equations (7.2.71) have the same form as the ones defined in general
relativity (2.2.37).

To obtain the gravitational equations in the usual form, one has to contract (7.2.70)
with 𝜕ḡa/𝜕ḡ,-,

E L
,- +I

L
,- = *t tot,- . (7.2.75)

Then dividing it by√–ḡ, one obtains
EL,- +I

L
,- = *t tot,- . (7.2.76)

It is the generalization of the field-theoretical gravitational equations in general
relativity (2.2.26). The linear operators are defined as
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EL,- ≡ E L
,-√–ḡ ≡ 1√–ḡ $

$ḡ,- h
!"
a
$L̄ G

$ḡ!"
, (7.2.77)

IL
,- ≡ IL

,-√–ḡ ≡ –2* 1√–ḡ $
$ḡ,- (h

!"
a
$L̄ M

$ḡ!"
+ 6B $L̄ M

$ĪB ) (7.2.78)

with the independent gravitational variables h
!"
a defined as in (2.2.129).

The right hand side in (7.2.76) is defined as

t tot,- ≡ t tot,-√–ḡ ≡ 2√–ḡ $L dyn
n

$ḡ,- . (7.2.79)

It is the total symmetric energy-momentum tensor for perturbations. Following the
structure of (7.2.64), it can be rewritten as a sum

t tot,- ≡ tg,- + tm,- ≡ – 1*
$L g

$ḡ,- + 2$L
m

$ḡ,- . (7.2.80)

Thus, following the formulae (7.2.64) - (7.2.68),

tg,- = – 1* ($L G(ḡa + ha)
$ḡ,- – $

$ḡ,- h
a $L̄ G

$ḡa – $L̄ G

$ḡ,- ) . (7.2.81)

An explicit expression for, tg,- in (7.2.81) can be presented, if the expression L G is
known. Thus with the use of (7.2.4), barred (7.2.4) and (7.2.72) tg,- in (7.2.81) can be
rewritten as

tg,- = – 1* ( 𝜕ḡa𝜕ḡ,- 𝜕g13𝜕ga E13(ḡ
a + ha) – E L

,-(ḡ
a, ha) – ̄E,-) . (7.2.82)

Analogously, one derives the matter energy momentum,

tm,- =
𝜕ḡa𝜕ḡ,- 𝜕g13𝜕ga T13(ḡ

a + ha) + 1
*I

L
,-(ḡ

a, ha) – T̄,- ≡ BT,- +
1
*I

L
,-. (7.2.83)

Formulae (7.2.82) and (7.2.83) show how to obtain explicit expressions for tg,- and tm,-.
However, summing them, as in (7.2.80), and assuming that the field equations hold,
one finds that t tot,- can be simply changed by the left hand side of (7.2.75).

At last, let us consider the case of vacuum background, L̄ M = 0. Then the
gravitational equations (7.2.76) acquire the form:

EL,- = *t tot,- . (7.2.84)

The equations (7.2.76) and (7.2.84) generalize the equations of general relativity (2.2.26)
and (2.2.105), respectively; they generalize also the Deser–Tekin equations [126]
constructed for the quadratic theories by direct calculations.
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7.2.5 Currents and superpotentials in the field-theoretical formulation

In a series of works [122, 124–126] Deser and Tekin develop a construction of conserved
charges for perturbations about vacua in metric quadratic (in curvature) gravity
theories in n dimensions. They apply the Abbott and Deser procedure [1] and exten-
ded the procedure. The aim of the present subsection is to suggest an approach,
which generalizes the Deser-Tekin constructions. We construct conserved currents
and superpotentials corresponding to the equation (7.2.76) derived for an arbitrary
metric gravitational theory, and not only in a vacuum background.

Taking into account the definition of the gravitational part of a linear operator
(7.2.77), we demonstrate that conserved quantities of the system and their properties
can be obtained and described analyzing only the scalar density

L1 ≡ – 1
2*h

!"
a
$L̄ G

$ḡ!"
. (7.2.85)

It is the gravitational part of the second term in the Lagrangian (7.2.64) and gener-
alizes the linear Lagrangian (6.3.36) in general relativity. Thus, here, we generalize
and develop the field-theoretical method of constructing conserved quantities in gen-
eral relativity, see Section 6.3.2. As an important case, we consider only such theories
where the Lagrangian derivative $L̄ G/$ḡ!" (representing the background field equa-
tions) has derivatives not higher than of second order, like the theories of the Lovelock
type [299]. Although, our results can be easily generalized for theories, where the field
equations have derivatives of higher orders than two, like in metric quadratic gravity
theories [126].

Keeping in mind that L1 is the scalar density, we follow the standard technique
of the Noether identities, which are universal. Dynamical variables are in (7.2.85) and
we symbolically unify them into a general one 8A = {h!"a , ḡ,-}. We rewrite the initial
identity (1.2.46) for the diffeomorphisms in the form:

£.L1 + 𝜕!(.!L1) ≡ 0. (7.2.86)

Already, we know that this identity has to lead to an identically conserved current:

𝜕,i,1 ≡ ∇̄,i,1 ≡ 0. (7.2.87)

However, we do not derive this current in the final form (1.4.14), or (7.1.26). Because
L1 depends only on the h

!"
a without derivatives and on ḡ,- and their derivatives one

recognizes that the current in (7.2.87) essentially depends on the z-term determined
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by &13 = – 1
2£. ḡ13 defined in (7.1.31). Therefore, we present the intermediate identity

(7.2.86) in the form (1.4.3), from where we obtain:

i,1 ≡ –(L1., + .- 8A󵄨󵄨󵄨󵄨󵄨,- $L1
$8A) + z,S (&13)

≡ –(L1., –
.3
* h

1,
a
$L̄ G

$ḡ13 + 2.3ḡ1, $L1
$ḡ13) + z,S , (7.2.88)

where

z,S ≡ 2&13∇̄- 𝜕L1𝜕ḡ13,,- – 2 𝜕L1𝜕ḡ13,,- ∇̄-&13 (7.2.89)

generalizes the z-term (6.3.41) in general relativity. For theories, where the field equa-
tions have derivatives of higher orders than two, the structure of the current will be
the same as in (7.2.88), only z-term will be more complicated than in (7.2.89).

The case of a vacuum background is quite important. In this case, the background
equations (7.2.6), or (7.2.63), acquire the form:

$L̄ G

$ḡ13 = 0. (7.2.90)

Then, in (7.2.88) one has to set L1 = 0. After that, assuming the existence of an
arbitrary Killing vector ̄.!, for which ∇̄(" ̄.!) = 0, one transforms the identity (7.2.88)
into

– 2*∇̄, (ḡ1, $L1
$ḡ13 ) ≡ ∇̄1 ( $

$ḡ13 h
!"
a
$L̄ G

$ḡ!"
) ≡ ∇̄1 (E L

13) ≡ 0, (7.2.91)

or ∇̄1 (EL13) ≡ 0, see the definition (7.2.77). Then, for the field equations on the vacuum
background (7.2.84) one has the conservation law for the total energy-momentum:

∇̄,t tot,- = 0 (7.2.92)

that generalizes the conservation of energy-momentum (2.2.106) in general relativity
on vacuum backgrounds.

Because equation (7.2.87) is the identity, the current i,1 can be represented in the
form of a divergence from a superpotential. To construct the latter, we use the results
of Section 7.1.1 adopted for the Lagrangian L1. From the beginning we reset ḡ,- → g,-
in L1 and construct the coefficients (7.1.16) and (7.1.19) with

L1 = L1(8A,8A
,!,8A

,!") ≡ L1c(8A, ∇̄!8A, ∇̄"!8A) , (7.2.93)
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where8A = {h,-a , g,-}. Thenwe go back, g,- → ḡ,-, and obtain the simple expressions,

n13+,- = –2 𝜕L1𝜕ḡ1(,,-)+ ḡ13, m13
,- = 2∇̄+ ( 𝜕L1𝜕ḡ1-,,+) ḡ13. (7.2.94)

Then, substituting these into the expression (7.1.28) for the superpotential, we can
define it as the superpotential i,-1 , which is evidently linear in h

,-
a . Thus, we have the

identity

i,1 ≡ 𝜕-i,-1 ≡ ∇̄-i,-1 , (7.2.95)

which generalizes the identity (6.3.38) in general relativity. The superpotential has the
form:

i!"1 ≡ ( 2
3
∇̄+n13 [!"]+ –m13

[!"]) .3 – 4
3
n13 [!"]+∇̄+.3. (7.2.96)

In the case of the Einstein’s gravity, it reduces to the superpotential (6.3.42).
The simple form of the coefficients (7.2.94) permits us to use the convenient

quantity

w1+|,- = 𝜕L1𝜕ḡ1+,,- . (7.2.97)

Evidently that it is symmetric in 1 and +, and in , and -. Because n1 satisfies the iden-
tity of the type (7.1.25) the other not-so evident symmetry exists w1+|,- = w,-|1+. In the
terms of (7.2.97) the coefficients (7.2.94) are rewritten as

n13+,- = –2w3
(,|-)+, m13

,- = 2∇̄+w3
,|-+. (7.2.98)

It is evident that these coefficients satisfy the identity (7.1.24) as well. At last, the
superpotential (7.2.96) acquires the form:

i!"1 ≡ 4
3
(2.3∇̄+w3

[!|"]+ –w3
[!|"]+∇̄+.3)

≡ 8
3
∇̄+ (w3

[!|"]+.3) – 4w3
[!|"]+∇̄+.3 . (7.2.99)

The identity (7.2.95) transforms into the physically sensible conservation law after
using the gravitational equations (7.2.75)

J
,
S = 𝜕-J ,-

S ≡ ∇̄-J ,-
S . (7.2.100)

The superpotential in (7.2.100), J
,-
S , formally coincides with the superpotential in

(7.2.96), i,-1 . However, in i,-1 field variables are arbitrary, whereas inJ ,-
S the functions

h
13
a are thought as solutions to the equations (7.2.76), or (7.2.75).
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The current,J ,
S , in (7.2.100) is obtained from the current, i,1 , given in (7.2.88) after

using the field-theoretical equations (7.2.76), or (7.2.75),

J ,
S = S(-,.- + z,S , (7.2.101)

where the energy-momentum tensor density is

S(,- ≡ t tot,- – 1
*I

L
,- – ḡ,-L1 +

1
* ḡ,1h

13
a
$L̄ G

$ḡ3- . (7.2.102)

It is the generalization of the energy-momentum (6.3.26) in general relativity. Now let
us turn to the total energy-momentum in the form of the sum (7.2.80) and its parts
(7.2.82) and (7.2.83). Thus the energy-momentum (7.2.102) acquires the form:

S(,- ≡ tg,- + BT,- +
1
2* ḡ,-h

13
a
$L̄ G

$ḡ13 + 1
* ḡ,1h

13
a
$L̄ G

$ḡ3- . (7.2.103)

Here, tg,- is defined in (7.2.82), and BT,- is defined in (7.2.83). It is the generalization of
the energy-momentum (6.3.27) in general relativity. In the case of vacuum background̄E,- = T̄,- = 0 the energy-momentum (7.2.103) is simplified and acquires the form:

S(,- ≡ tg,- + BT,-. (7.2.104)

It is important to stress the following. In the framework of general relativity, the
field-theoretical superpotential (6.3.23) coincides with the Belinfante corrected super-
potential (6.2.16). In the case of an arbitrary metric theory this is not so. Indeed, the
field-theoretical superpotential (7.2.96) is linear in metric perturbations by definition
(7.2.94). At the same time, the Belinfante corrected superpotential (7.2.54) (with the
others in the family (7.2.59)) is not linear in general. In the framework of general
relativity, the Abbott–Deser ambiguity has been resolved by applying the correspond-
ence between the field-theoretical and Belinfante approaches, see Sections 6.3 and
6.4. As we see now, it is impossible to use analogous arguments in the case of an
arbitrarymetric theory. However, using the correspondence principle between general
relativity and other metric theories, one could choose again, h

13
a = h

13. On the other
case, of course, one needs more serious arguments, like tests for various acceptable
solutions.



8 Conserved quantities
in the Einstein-Gauss-Bonnet gravity

8.1 Superpotentials and currents in the EGB gravity

8.1.1 Action and field equations in the EGB gravity

In the present chapter we develop and apply the results of the previous chapter to
Einstein-Gauss-Bonnet (EGB) gravity. This modification of general relativity is the one
of the most well-known of all modified gravitational theories. From the one side, it is
the second order of the Lovelock type theories, Lagrangians of which are polynomials
of the curvature tensors leaving the field equations second order [299]. From the other
side, the EGB theory is the low energy limit of some string theories.

The action of the n-dimensional EGB theory with a bare cosmological term D0 is

S = – 1
2* ∫ dnxLEGB + ∫ dnxL M

= – 1
2* ∫ dnx√–g [R – 2D0 + !LGB] + ∫ dnxL M , (8.1.1)

where ! > 0, we restrict ourselves to D0 ≤ 0, and the Gauss-Bonnet combination is

LGB = R2,-13 – 4R
2
,- + R

2 , (8.1.2)

see, for example, [126]. Thus LEGB plays the role of L G in (7.2.1), or in (7.2.60). Below,
the subscripts “E” is related to the pure Einstein part of the action (8.1.1), and the
subscript “GB” is related to the Gauss-Bonnet part connected with the !-correction.

The equations of motion that follow from (8.1.1) are

E,- = *T,- , (8.1.3)

where

E,- ≡ $
$g,- LEGB = √–g [(R,- – 1

2g,-R + g,-D0) + !H,-] ; (8.1.4)

H,- ≡ 2 [RR,- – 2R,3-1R31 – R,314R-314 – 2R,3R-3
– 1

4g,- (R24+13 – 4R213 + R2)] , (8.1.5)

and T,- is the standard matter energy-momentum defined as in (1.3.21). The expres-
sion H,- is a result of varying LGB, and H,- ≡ 0 if n ≤ 4.

DOI 10.1515/9783110351781-008
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The equations (8.1.3) are the variant of the equations (7.2.3) for the case of the EGB
gravity. The equations (8.1.3) are also

E,- = 0 (8.1.6)
in the vacuum case.

8.1.2 Three types of superpotentials

In deriving concrete expressions for conserved quantities in the EGB gravity, we
change the order of the presentation used in Sections 7.1 and 7.2, where currents have
been described firstly. Indeed, considering an abstract theory, it is more natural to
begin the construction from currents, then to continue the construction of superpo-
tentials. Here, inversely, we begin from superpotentials, and finish with the currents.
The reasons are as follow. First, anyway we keep in mind the principal scheme of
construction in Chapter 7 and already have at hand the basic general formulae for
such a construction. Second, historically superpotentials have beenmore popular and
more desirable in applications because they give a direct way for constructing con-
served charges. Third, superpotential expressions are significantly simpler than the
expressions for currents.

The canonical prescription
At first, one has to define the KBL type Lagrangian for the EGB gravity. Following to
(7.2.15), we derive it as

LKBL = – 1
2* (L c

EGB – L̄ c
EGB + 𝜕!D!) . (8.1.7)

Following the recommendation (7.2.18), we construct the canonical superpotential in
the EGB gravity,

j∗!"C (. ) = i∗!"(. ) – ̄i∗!"(. ) + i󸀠!"(. ) . (8.1.8)

From the beginning we construct the starred expressions, coefficients for which are
derived in Appendix C. Possibilities of the developed approaches in Section 7.2 permit
us to construct families of superpotentials easily. Here we use these possibilities by
applying concrete expressions in the EGB case. Thus, the pure Noether’s canonical
starred superpotential of the general form (7.1.46) in EGB gravity acquires the concrete
form:

i∗!" = 1
* (g1[!∇̄1."] + g

1[!B"]13.
3)

– 2! 1* {B1+3R1
+!" + 4B1+3g

+[!R"]
1 + B[!13g

"]1R} .3
– 2! 1* {R3

+!" + 4g+[!R"]
3 + $[!3 g

"]+R} ∇̄+.3 , (8.1.9)
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where as usual g!" = √–gg!" andR3
+!" = √–gR3+!". The barred expression is simpler

because B̄𝛾!" ≡ 0:

̄i∗!" = 1
* [√–ḡ∇̄[!."] – 2! (R̄3

+!" + 4ḡ+[!R̄"]
3 + $[!3 ḡ

"]+R̄) ∇̄+.3] . (8.1.10)

To finalize constructing the superpotential (8.1.8) one needs to fix a divergence in
the Lagrangian (8.1.7). We consider two more acceptable possibilities. At first, we fol-
low the recommendation in the Deruelle-Katz-Ogushi paper [119], where the main
requirement is that the variation of the Lagrangian has to be more economical:

D+
DKO = –2*n∗3+!"B3!". (8.1.11)

Thus,

D+
DKO = ED

+ + GBD
+

= 2B[!!"g+]"

+ 4! (R3
!"+ – 4R[!

3 g
+]" + $[!3 g

+]"R)B3!" . (8.1.12)

Katz and Livshits [253] develop the KBL approach in n dimensions in the first order
formalism that leads to

D+
KL = ED

+ + GBD
+

= 2B[!!"g+]"

+4! (R3
!"+ – 2R[!

3 g
+]" – 2$[!3 R+]" + $[!3 g

+]"R)B3!". (8.1.13)

As is seen, the Einstein part of both these divergences is the KBL divergence (6.1.4)
in four dimensional general relativity; the Gauss-Bonnet parts are different and more
complicated.

However, the Katz and Livshits approach for constructing superpotentials [253]
has its own advantages. In multi-dimensional general relativity their method uniquely
leads to the KBL superpotential (6.1.24), or (6.1.25). In EGB gravity, their superpoten-
tial, essentially connected with (8.1.13) and the GB term (8.1.2), naturally transforms
to the KBL superpotential for n = 4. Thus, although the GB term does not affect the
derivation of the field equations for n = 4, it plays an important role (as a criterion) in
the definition of superpotentials of canonical type.

The use of the term (8.1.2) in the Lagrangian even in 4 dimensions turns out to be
important when the other ideas are elaborated. For example, in [345] Olea includes the
GB term to regularize conserved quantities, in [317] Mišković and Olea show that the
standard holographic regularization procedure of AdS gravity with counter-terms is
topological and, thus, can be presented by the addition of the GB term. Thus, summing
these, we conclude that the choice (8.1.13) is more preferable, although considering
canonical superpotentials and related charges, we use both of the possibilities (8.1.12)
and (8.1.13).
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At last, combining (8.1.9–8.1.13) with (7.1.65) and (7.1.68), we derive a superpoten-
tial in the canonical prescription (8.1.8) for the EGB gravity:

j∗!"C = E j∗!"C + GB j∗!"C

= 1
* (g1[!∇̄1."] + g

1[!B"]13.3 – ḡ
1[!∇̄1."] + . [!ED"])

+ GBi∗!" – GB
̄i∗!" + *–1. [!GBD"] , (8.1.14)

where ED
" and GBD

" are derived from (8.1.12), or (8.1.13). The full Einstein part
E j !"C is exactly the KBL superpotential both in four dimensional [251] and in multi-
dimensional general relativity [119, 253].

To construct a family of superpotentials for perturbations in the EGB theory, we
turn to the general formulae (7.1.60) and (7.2.39). To derive this family, based on
(8.1.14), one has to define the difference (7.2.40) in the EGB gravity. Thus, with the
use of (C.12) one calculates

– 1
2*

𝜕L c
EGB𝜕(∇̄["!]g,-) = 2! 1* (R!(,g-)" – R"(,g-)!) . (8.1.15)

As a result, one has for (7.2.40):

r∗!" = – 1*
𝜕L c

EGB𝜕(∇̄["!]g,-)£.g,-
= –8! 1* (R [!

1 g
"], + R,[!$"]1 ) (∇̄,.1 + .4B14,) . (8.1.16)

Finally, following (7.2.39), one obtains for the family

j†!"C = j∗!"C + p$r∗!" , (8.1.17)

where $r∗!" = r∗!" – ̄r∗!", and 0 ≤ p ≤ 1.

The Belinfante correcting prescription
Now, following the recommendation (7.2.45), we construct the Belinfante corrected
superpotential in the EGB gravity,

j∗!"B (. ) = i∗!"B (. ) – ̄i∗!"B (. ) , (8.1.18)

where we again have used the starred expressions, coefficients of which (C.17) and
(C.18) are derived in Appendix C. As it has to be for the Belinfante corrected quantities,
there is no dependence on a divergence in the Lagrangian. Thus, the expression (7.1.76)
in EGB gravity acquires the form:



8.1 Superpotentials and currents in the EGB gravity 375

i∗!"B = Ei∗!"B + GBi∗!"B

= 1
* [($[!3 ∇̄+g"]+ – ∇̄[!

g
"]1ḡ13) .3 + g

+[!∇̄+."]]
+ ! 1* ∇̄+ {R3

+!" + 4g+[!R"]
3 + $[!3 g

"]+R + [2R4
1+[! – 2R1+

4
[!

– 8R+
4g

1[! + 4R1
4g

+[! + 4g1+R[!
4 + R (2$+4g1[! – $14g+[!)] ḡ"]4ḡ13} .3

– 2! 1* {R3
+!" + 4g+[!R"]

3 + $[!3 g
"]+R} ∇̄+.3 . (8.1.19)

The barred expression is significantly simpler

̄i!"B = E
̄i!"B + GB

̄i!"B
= 1
* ḡ

+[!∇̄+."] – 2! 1* {R̄3
+!" + 4ḡ+[!R̄"]

3 + $[!3 ḡ
"]+R̄} ∇̄+.3. (8.1.20)

Thus, combining (8.1.19) and (8.1.20), we derive the superpotential in the Belinfante
corrected prescription (8.1.18) for the EGB gravity:

j!"B = Ej!"B + GBj!"B

= 1
* (. [!∇̄+h"]+ – ∇̄[!

h
"]
3 .

3 + h
+[!∇̄+."])

+GBi!"B – GB
̄i!"B (8.1.21)

In order to construct a family of the superpotentials for perturbations in EGB theory,
one has to use (7.1.84) and (7.2.39). To derive this family based on (8.1.21), one has to
define the difference r∗!"B in (7.1.84) in the EGB gravity, see (7.1.79) for r!"B . Thus, with
the use of (8.1.15) one has

r∗!"B = 2[ 𝜕L c
EGB𝜕(∇̄["!]g,-) g,-󵄨󵄨󵄨󵄨󵄨13 ∇̄1.3 + ∇̄1( 𝜕L c

EGB𝜕(∇̄[13]g,-) g,-󵄨󵄨󵄨󵄨󵄨[!+ ḡ"]+

+
𝜕L c

EGB𝜕(∇̄[1!]g,-) g,-󵄨󵄨󵄨󵄨󵄨[3+ ḡ"]+ –
𝜕L c

EGB𝜕(∇̄[1"]g,-) g,-󵄨󵄨󵄨󵄨󵄨[3+ ḡ!]+) .3]
= 4! 1* {–2 (R [!

3 g
"]1 + R1[!$"]3 ) ∇̄1.3

+ .3∇̄1 [R3
+ g

1[!ḡ"]+ + g31R [!
+ ḡ

"]+ – R[!
+ g

"]1ḡ3+

+ 2 (R3[!ḡ"]1 – R1[!ḡ"]3 – R1
+g

3[!ḡ"]+)]} . (8.1.22)
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Finally, following (7.1.84), one has for the family

j†!"B = j∗!"B + p$r∗!"B , (8.1.23)

where $r∗!"B = r∗!"B – ̄r∗!"B , and 0 ≤ p ≤ 1.

The field-theoretical prescription
At last, let us construct the symmetric superpotential in the framework of the EGB
theory. Let us turn to the general formula (7.2.96), or in amore convenient form (7.2.99).
To concretize the calculation and to have the possibility to compare, for example, with
[126], we define the perturbations in the form:

ha = 𝜘!" = g!" – g!" . (8.1.24)

The Lagrangian (7.2.85) in this case is defined as

L1 = – 1
2*𝜘!" $L̄EGB

$ḡ!"
= 1
2*𝜘!" ̄E !" , (8.1.25)

where ̄E!" is the barred expression (8.1.6). Substituting the expressions (C.21) and
(C.22) into (7.2.99), one obtains

i!"1 = Ei!"1 + GBi!"1

=
√–ḡ
* (.-∇̄[!𝜘"]- – . [!∇̄-𝜘"]- + . [!∇̄"]𝜘33

– 𝜘-[!∇̄-."] + 1
2𝜘33∇̄[!."])

+4
3
(2.3∇̄+w3[!|"]+

GB –w3[!|"]+
GB ∇̄+.3) . (8.1.26)

This expression transforms to the Deser-Tekin superpotential [126] if one chooses the
AdS background and its Killing vectors .! = ̄.!.

Returning to the form of the Lagrangian (7.2.85),

L1 = – 1
2*h

!"
a
$L̄EGB

$ḡ!"
, (8.1.27)

one easily obtains the generalized form of the superpotential (8.1.26), if one uses the
exchange:

𝜘,- → 𝜕ḡ,-𝜕ḡ13 h
13
a . (8.1.28)
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Thus,

i!"1 = Ei!"1 + GBi!"1

= 1
* (h3[,a ∇̄3.1] + . [,∇̄3h1]3a – ∇̄[,h1]a3.3)
+4
3
(2.3∇̄+w3[!|"]+

GB (ha) –w3[!|"]+
GB (ha)∇̄+.3) . (8.1.29)

Of course, this expression transforms into (8.1.26), if

h
13
a = 𝜕ḡ13𝜕ḡ,- 𝜘,- . (8.1.30)

8.1.3 Three types of currents

To the best of our knowledge, unlike superpotentials, no authors have paid attention
to constructing currents in modified theories. In this subsection, at least in part, we
fill this gap. We construct currents in EGB gravity, based on the general expressions
in an arbitrary metric theory constructed in Section 7.2. Thus, in fact, we supplement
superpotentials presented in the previous subsection by the related currents.

For the sake of simplicity, we restrict ourself to only the starred currents, J ∗!C
and J ∗!B , in the conservation laws (7.2.29) and (7.2.58), respectively, using the starred
expressions in Appendix C. Concerning the field-theoretical method, we consider the
current, J !

S (𝜘!"), in (7.2.101) only for the perturbations 𝜘!" = g!" – ḡ!" defined in
(8.1.24). The reasons for such a simple representation are twofold. First, using the
results of the Section 7.2, one can easily restore the families of the currents, J †!C
and J †!B , in (7.2.32) and (7.2.59), respectively, and for arbitrary types of perturbations
ha = ga – ḡa in the currentJ !

S (h
a) in (7.2.101). Second, in next section, the application

of all the three families of superpotentials to calculate the mass of the Schwarzschild-
AdS black holes (that is represented by the standard solution) does not clarify the
preferable superpotential.

The canonical prescription
Let us turn to the current (7.2.30). Its structure, as one can see from (7.2.31), essen-
tially depends on the divergence in the Lagrangian. Let us consider two types of the
divergence defined by equations (8.1.12) and (8.1.13). We suppress also the z∗-term in
(7.2.30) as vanishing for Killing vectors ̄.! in the future calculations. Thus, we rewrite
the current (7.2.30) as

J ∗!C = C(∗3! ̄.3 + $m∗1!"𝜕[" ̄.1] . (8.1.31)

First, we calculate C(∗3! following (7.2.31). The matter part in (7.2.31) is defined by the
matter part of the Lagrangian (8.1.1). It is more interesting to focus on the gravitational
part in (7.2.31). Thus, we calculate (7.2.31) with the use of (C.9) and (8.1.13):
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C(∗3! = $T3
! + $C ∗3

! + 1
* ∇̄"($[!3 D"])

= $T3
! + 1

2*$
!
3 [R̄14h14 – 2D0$√–g]

+√–g* [(B!1[4B00]3 + B!1[3B00]4 + $!3B0"[4B"0]1 – $!1B""[3B00]4) g41]
+ 1* ∇̄"($[!3 GBD

"]) + !
2*$

!
3 $(√–gLGB)

+2!√–g* [(R!"14 – 4g1[!R"]4 + Rg1[!$"]4 ) ∇̄3B4"1
+ 2g", (∇̄"R!- + 2B(!"1R-]1)B43(,g-)4 – g1(!B-)31𝜕-R] . (8.1.32)

The symbol $without subscripts, once again, means a perturbation of a quantity with
respect to a background quantity: $Q = Q – Q̄.

To calculate the spin term $m∗3!" in (8.1.31) we return to the definition (7.2.21),
use the expression (C.15), then subtract the barred (C.15), and take into account
(8.1.13). Thus,

$m∗3!" = – [m∗3!" – m̄∗3!" – 1
*$

[!
3 D"]]

= √–g
2* [B414 (2ḡ3[!g"]1 + ḡ31g!") – B!14 (2ḡ3[4g"]1 + ḡ31g4")]

+ 1
* ḡ

3[!
GBD

"] – 2!√–g
* [R!41+B"41 – 2R!(4")1B14+] ḡ+3

–4!√–g* [4g1[!R"]4 B41+ + 2R[!+ g4]1B"41 + 2g!["R4]1 B14+
+ g4" (R!1B14+ – R1(4B!+)1)
– (g1"B41(4 + g14B"1(4 – g4"B11(4)R!+)] ḡ+3
– 2!√–g

* R [B[!1+g1]" + B(!1+g")1)] ḡ+3
+ 2!

* [2ḡ+3∇̄(4$ (g4"R!+)) – ḡ3(!∇̄1 $ (g1)"R)] . (8.1.33)

As expected, these expressions disappear for vanishing perturbations. The Einstein
parts in (8.1.32) and (8.1.33) exactly coincide with the energy-momentum (6.1.27) and
the spin tensor (6.1.12) presented in the related KBL expressions in the four dimen-
sional general relativity. We do not present explicitly the terms with GBD

! from (8.1.12)
and (8.1.13) because this does not simplify the expression as a whole.
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The Belinfante correcting prescription
Here, we turn to the current in (7.2.58). Its structure, unlike the canonical case, does
not depend on the spin term and the divergence in the Lagrangian. As before, we do
not consider the z∗-term, assuming the use of the Killing vectors. Thus, the starred
expression for the current (7.2.56) acquires the form:

J ∗!B = B(∗!3 ̄.3 , (8.1.34)

where

B(∗!3 ≡ $T3
! + $C ∗3

! + ∇̄"$s∗!"3 . (8.1.35)

With the use of the equations (8.1.3) one has

B(∗3! = $T1
(!ḡ3)1 + *–1$E1[!ḡ3]1 + $C ∗3! + ∇̄"$s∗!"3 , (8.1.36)

where E,- is defined in (8.1.4). Finally, substituting the explicit expressions (C.9) and
(C.20) into (8.1.36) one obtains

B(∗3! = $T1
(!ḡ3)1 + 1

2* [h14R̄14ḡ!3 + 2h+[!R̄3]+ – 2ḡ!3D0$√–g]
+ 1
2* [(h!3ḡ14 – ḡ!3h14) ∇̄4B+1+ + 2 (h14ḡ+(! – ḡ14h+(!) ∇̄4B3)+1]

+ 1
2* [ḡ14 (g!3B+1+B'4' + 2g+'B(!+1B3)'4) + g

+'ḡ!3B41+B
1
4']

+ 1
* [ḡ14 (B+4'B(!+1g3)' – 2B+4+B(!'1g3)')

+ g
+' (B414B(!+' – B4+'B(!14 – B4+1B(!'4) ḡ3)1]

– !√–g
* ḡ+[! [R3]014R+014 – 2R3]0+1R01 – 2R3]1 R1+ + R3]+ R]

+ 2!√–g
* ḡ+3 [(R!"14 – 4g1[!R"]4 + Rg1[!$"]4 ) ∇̄+B4"1

– g1(!B")+1∇̄"R + 2g", (∇̄"R!- + 2R1(!B-)"1)B4+(,g-)4]
+ !
2* ḡ

!3$ (√–gLGB) + ∇̄"$GB ̂s∗!"3 . (8.1.37)

The Einstein part exactly coincides with the related expression (6.2.9) in Chapter 6.
Recall that, even the Einstein part in (8.1.37) (symmetrized) is not symmetric in gen-
eral. Here, we do not open the divergence of the GB-part $GB ̂s∗!"3 of the Belinfante
correction, see (C.20), because this does not simplify the expression. At last, note that
the energy-momentum (8.1.37) disappears for vanishing perturbations.



380 8 Conserved quantities in the Einstein-Gauss-Bonnet gravity

The field-theoretical prescription
At last, we turn to the current in (7.2.100) in the framework of the field-theoretical
approach. Its structure, again, does not depend on the spin term and the divergence in
the Lagrangian. As before, we do not consider z-term, assuming the use of the Killing
vectors. Thus, the expression (7.2.101) acquires the form:

J !
S = S(3! ̄.3 , (8.1.38)

where the energy-momentum is defined in (7.2.103),

S(,- ≡ t tot,- – 1
*I

L
,- +

1
2* ḡ,-h

13
a

̄E13 +
1
* ḡ,1h

13
a

̄E3-

= tg,- + BT,- +
1
2* ḡ,-h

13
a

̄E13 +
1
* ḡ,1h

13
a

̄E3- . (8.1.39)

Here, in general, tg,- and BT,- are defined in (7.2.82) and (7.2.83), respectively. However,
we specificity (8.1.39) to EGB gravity (8.1.1–8.1.6) and to the decomposition (8.1.24).
Then h

13
a is defined in (8.1.30), and (7.2.82) and (7.2.83) are simplified to

tg,- = – 1* [E,-(ḡ13 + 𝜘13) – E L
,-(𝜘13) – ̄E,-] , (8.1.40)

BT,- = T,-(ḡ13 + 𝜘13) – T̄,- . (8.1.41)

The expressions E,- and ̄E,- are defined in (8.1.4) and barred (8.1.4). For the vacuum
background, ̄E,- = T̄,- = 0, the current (8.1.39) is

S(,- ≡ tg,- + BT,- = t tot,- (8.1.42)

with

tg,- = – 1* [E,-(ḡ13 + 𝜘13) – E L
,-(𝜘13)] , (8.1.43)

BT,- = T,-(ḡ13 + 𝜘13) . (8.1.44)

Thus, the same as in the four dimensional general relativity, on arbitrary backgrounds,
the current (8.1.38) is conserved with the terms supplementing t tot,- in (8.1.39). Thus,
the current

J !
S = t!3tot ̄.3 (8.1.45)

is not conserved in general. However, on vacuum backgrounds, currents (8.1.38) and
(8.1.45) coincide, and, thus, (8.1.45) is conserved also. See the discussion on the
conservation of t tot,- on arbitrary backgrounds in general relativity.
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8.2 Conserved charges in the EGB gravity

8.2.1 Charges for isolated systems

The families of superpotentials (8.1.17), (8.1.23) and (8.1.29) in Section 8.1.2 are form-
ally constructed for arbitrary metric functions. In the case, when we consider a con-
crete solution of the EGB theory, these quantities acquire a physical sense, preserving
the same form:

j†!"C → J †!"C = EJ
!"
C + GBJ

†!"
C ; (8.2.1)

j†!"B → J
†!"
B = EJ

!"
B + GBJ

†!"
B ; (8.2.2)

i!"1 (ha) → J !"
S (ha) = EJ

!"
S (ha) + GBJ

!"
S (ha) . (8.2.3)

Each of these lines represent a family of superpotentials. Now, we unite them into a
more general one:

J !"
D = {J †!"C ;J †!"B ;J !"

S (ha)} . (8.2.4)

Each of these superpotentials are connected with its own current,

J !
D ( ̄. ) = 𝜕"J !"

D ( ̄. ) = ∇̄"J !"
D ( ̄. ) (8.2.5)

defined in Section 8.1.3 in (8.1.31), (8.1.34) and (8.1.38), if Killing vectors, ̄.!, are used.
Following the recommendation for constructing the conserved quantities in gen-

eral relativity (1.4.24) and based on the differential conservation law (8.2.5), we
construct the conserved charges in generalized form in n dimensions:

P( ̄. ) = ∫
G
dn–1xJ 0

D ( ̄. ) = ∮
𝜕G
dsi J

0i
D ( ̄. ) . (8.2.6)

The notations for a spacelike section is as usual G := t = const, and 𝜕G is a boundary
of G. Each of the charges (8.2.6) is related to its own Killing vector in a background
spacetime.

Frequently, the definition (8.2.6) is used for calculating the integral charges of
isolated systems in the spherically symmetric form :

P( ̄. ) = ∮
𝜕G
dn–2xJ 01

D ( ̄. ) (8.2.7)

with the numeration of the coordinates x0 = t and x1 = r, which are more convenient
at far away surfaces 𝜕G. The charges (8.2.7) become global charges, if 𝜕G are considered
at infinity r → ∞.

Each of the families of superpotentials (8.2.1–8.2.3) have the Einstein part and
the Gauss-Bonnet correction. In the case of four dimensional general relativity, the
GB correction is absent; besides, EJ

!"
C , EJ

!"
B are not families in this case. Recall

that, testing stationary isolated systems in four dimensional general relativity with
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the use of EJ
!"
C , EJ

!"
B and EJ

!"
S (ha), one does not find a preferable one because

each of them gives an acceptable result. It was, for example, for asymptotically flat
and asymptotically AdS spacetimes at spatial infinity.

A more complicated case is an isolated system at null infinity. In four dimensional
general relativity, both the canonical and Belinfante corrected approaches give the
same result coinciding with the standard Bondi-Sachs momentum [61]. Another situ-
ation is with the symmetric conserved quantities. A different choice of decompositions
(2.2.120) lead to different ha. Then the variables h

,-
a in (8.1.29) differ one from other

at the second order in perturbations, see the connection (2.2.122). Of course, this dif-
ference is explicitly incorporated in the superpotential EJ

!"
S (ha). This difference is

important in a real calculation for a radiating isolated system [252, 370]. It turns out
that only the choice of the metric perturbations

ha = h
,- = g

,- – ḡ
,- (8.2.8)

gives the standard Bondi-Sachs momentum [61] (not another choice gives this, includ-
ing (8.1.24)). Considering different variables h

,-
a in (8.2.3), we note also that only for

(8.2.8) the Einstein parts of the Belinfante corrected and symmetric superpotentials
coincide

EJ
,-
B = EI

,-
S (h) , (8.2.9)

see (6.2.18)) and (6.3.23)). This fact can be interpreted as a theoretical advantage of the
choice (8.2.8).

However, in an arbitrary gravitation theory, including the EGB gravity,

J ,-
B ̸= J

,-
S (8.2.10)

even for (8.2.8). The formal reason is that the first one, J ,-
B , is not linear in perturb-

ations in general, whereas the second one, J ,-
S , is linear by definition (8.1.29) in

any case. In the next subsections, we consider static solutions of the EGB gravity, to
which we use the families of superpotentials constructed in this subsection. Next, we
show that all the three approaches give the standard mass of the S-AdS black hole,
no pointing to a preferable one. The S-AdS solution is the most well-known solution
in the EGB gravity with all the known properties. Only, such a solution can be used
as a test. The task for the future is to find any standard solution in the EGB gravity, at
least, on the basis of which one could determine a preferable superpotential among
the suggested ones.

8.2.2 Superpotentials for static spherically symmetric solutions

Many interesting and important solutions to vacuum equations (8.1.6) in the EGB
gravity are of the Schwarzschild form:
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ds2 = –fdt2 + f –1dr2 + r2
n–2∑
a,b

qabdx
adxb (8.2.11)

where, as usual, x0 = t and x1 = r; f = f (r), the last term describes (n – 2)-dimensional
sphere of the radius r, and qab depends on the coordinates of the sphere only. The
metric-related Christoffel symbols are

A100 =
ff 󸀠

2
, A010 =

f 󸀠

2f
, A111 = – f

󸀠

2f
, Aa1b =

$ab
r
, A1ab = –rfqab , (8.2.12)

where 𝜕f /𝜕r = f 󸀠. For (8.2.11) the Riemann, Ricci tensors and curvature scalar are

R0101 =
1
2
f 󸀠󸀠 ,

R0a0b =
1
2
rff 󸀠qab ,

R1a1b = – rf
󸀠

2f
qab ,

Rabcd = –r2(f – 1)(qacqbd – qadqbc) ;

R00 =
f
2
(f 󸀠󸀠 + f 󸀠 n – 2

r
) ,

R11 = – 1
2f

(f 󸀠󸀠 + f 󸀠 n – 2
r

) ,

Rab = – [(f – 1)(n – 3) + rf 󸀠] qab ;
R = –(f 󸀠󸀠 + 2f 󸀠 n – 2

r
+ (f – 1) (n – 2)(n – 3)

r2
) . (8.2.13)

As a background we consider again the solution to the equation (8.1.6) of the
same form:

d ̄s2 = – ̄fdt2 + ( ̄f )–1dr2 + r2 n–2∑
a,b

qabdx
adxb . (8.2.14)

We consider the solution (8.2.11) as a perturbed one with respect to (8.2.14). Then
evidently all the perturbed quantities can be expressed only with the use of the
deflection

Bf = f – ̄f . (8.2.15)

For the metrics (8.2.11) and (8.2.14) the relation

– g = –ḡ = r2(n–2) det qab (8.2.16)

is valid , and it is important for future calculations.
Here, we present the general formulae, which can be used for calculating the

mass of an arbitrary perturbed system (8.2.11) with respect to an arbitrary background
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(8.2.14). Due to the symmetry, for calculating conserved quantities one needs only the
01-component of the superpotentials in the general formula (8.2.7). We also note that
an arbitrary background of the type (8.2.14) has the Killing vector

̄.! = {–1, 0} (8.2.17)

that is exactly the displacement vector which is necessary for calculating the total
energy (mass) of the system. Because we will keep in mind (8.2.17) below only, we
concretize it to the 0-component of the Killing vector, ̄.0, that is essential only.

At first, we calculate the component J 01
C of the canonical superpotential (8.2.1)

with (8.1.17) related to (8.1.8). To calculate it one has to use the expressions (8.2.11–
8.2.13) and the corresponding barred expressions. With the definitions (8.1.9) and
(8.1.12) one has

i∗01( ̄.0) + *–1 ̄. [0D 1]
DKO =

√–ḡ
2*r [ r ̄f 󸀠

2
( f ̄f + ̄f

f
) – (f – ̄f )(n – 2)]

+ !√–ḡ
*r2 (n – 2) (f – ̄f) (f 󸀠 – rf 󸀠󸀠)

– !√–ḡ
*r3 (n – 2)(n – 3)(f – 1) ×

× [ r ̄f 󸀠
2

( f ̄f + ̄f
f
) – (f – ̄f )(n – 2)] . (8.2.18)

We have also used √–g = √–g, see (8.2.16). The 01-component with the divergence
(8.1.13) is calculated in the same way:

i∗01( ̄.0) + *–1 ̄. [0D 1]
KL =

√–ḡ
2*r [ r ̄f 󸀠

2
( f ̄f + ̄f

f
) – (f – ̄f )(n – 2)]

+ !√–ḡ
*r2 (n – 2)(n – 3)(f – ̄f )f 󸀠

– !√–ḡ
*r3 (n – 2)(n – 3)(f – 1) ×

× [ r ̄f 󸀠
2

( f ̄f + ̄f
f
) – (f – f )(n – 4)] . (8.2.19)

The background expression for both of the cases (8.2.18) and (8.2.19) is the unique one

̄i∗01( ̄.0) = √–ḡ
2*

̄f 󸀠 – !√–g
*r2 (n – 2)(n – 3)f

󸀠
( ̄f – 1) . (8.2.20)
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At last, using (8.2.11–8.2.16) in (8.1.16) one finds

r∗01( ̄.0) = 0 . (8.2.21)

This means that there is no difference in the family (8.1.17) in the 01-component.
Thus, combining (8.2.18–8.2.21), one obtains the 01-component of the canonical
superpotential (8.2.1), of the DKO type,

J †01C ( ̄.0) = J ∗01C ( ̄.0) = J 01
C ( ̄.0) = i∗01( ̄.0) – ̄i∗01( ̄.0) + *–1 ̄. [0D 1]

DKO , (8.2.22)

and of the KL type,

J †01C ( ̄.0) = J ∗01C ( ̄.0) = J 01
C ( ̄.0) = i∗01( ̄.0) – ̄i∗01( ̄.0) + *–1 ̄. [0D 1]

KL . (8.2.23)

Now we turn to the Belinfante corrected derivation. Our goal is to calculate the com-
ponent J †01B of the Belinfante corrected family of superpotentials (8.2.2) for the
perturbed system (8.2.11) with respect to the background one (8.2.14) and with the
displacement vector (8.2.17). Thus, exactly for (8.1.19) one has

i∗01B ( ̄.0) = √–ḡ
2*r [ r ̄f 󸀠

2
(3 f ̄f – ̄f

f
) – rf 󸀠 (1 – ̄f 2

f 2
) – (f – ̄f )(n – 2)]

– !√–ḡ
*r2 (D – 2)[ ̄f (f 󸀠 – rf 󸀠󸀠)(1 – ̄f

f
) – ff 󸀠 (1 – ̄f 2

f 2
) (n – 3)]

+ !√–ḡ
*r3 (f – 1)(n – 2)(n – 3)[ r ̄f 󸀠

2
( ̄f
f
– 3 f ̄f )

+ (rf 󸀠 – 2f )(1 – ̄f 2
f 2
) + (f – ̄f )(n – 2)] . (8.2.24)

The barred expression (8.2.24) is

̄i∗01B ( ̄.0) = √–ḡ
2*

̄f 󸀠 – !√–ḡ
*r2 (n – 2)(n – 3) ̄f 󸀠( ̄f – 1) . (8.2.25)

Of course, it is also derived directly from (8.1.20). Using (8.2.11–8.2.16) in (8.1.22)
one finds

r∗01B ( ̄.0) = –4!√–ḡ*r (n – 2)(f – ̄f ) [ 1
2
f 󸀠󸀠 + 1

2r
f 󸀠(n – 4) – 1

r2
(f – 1)(n – 3)] . (8.2.26)

It is evident that ̄r∗01B ( ̄.0) = 0 . (8.2.27)

Now, combining (8.2.24–8.2.27), one obtains the 01-component of the family of the
Belinfante corrected superpotentials (8.2.2),

J †01B ( ̄.0) = i∗01( ̄.0) – ̄i∗01B ( ̄.0) + pr∗01B ( ̄.0) . (8.2.28)
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At last, we calculate the 01-component of the symmetric superpotential (8.2.3) in the
concrete form (8.1.26). Then, for perturbations (8.1.24) of the solution (8.2.11) with
respect to the background (8.2.14) has only the non-zero components:

𝜘00 = –(f – ̄f ), 𝜘11 = –(f –
̄f )

f ̄f . (8.2.29)

With the Killing vector (8.2.17) the 01-component of the superpotential (8.1.26)
acquires the form:

J 01
S ( ̄.0) = 8

3
[𝜕1 (w0[0|1]1 ̄.0) + ̄.0 (Ā001w0[0|1]1 + Ā111w0[0|1]1

+ Ā1cdw0[0|c]d)] – 4w0[0|1]1∇̄1 ̄.0 – 4w1[0|1]0∇̄0 ̄.1 . (8.2.30)

It is easy to find that with (8.2.29) for both (Einstein and Gauss-Bonnet) parts in (C.22)
one has w0[0|1]1

E = w0[0|1]1
GB = 0. Due to the symmetry w1[0|1]0 = –w0[0|1]1 one has w1[0|1]0

E =
w1[0|1]0

GB = 0 as well. Therefore, in (8.2.30) the only non-zero components are

w0[0|c]d = –3
√–ḡ
16* ḡcd𝜘11 (1 – 2!(n – 3)(n – 4) ̄f – 1

r2
) . (8.2.31)

Finally, with the use of (8.2.11–8.2.17) the component (8.2.30) acquires the form:

J 01
S =

√–ḡ
2*r (n – 2)(f –

̄f ) ̄f
f
[–1+ 2!( ̄f – 1) (n – 3)(n – 4)

r2
] . (8.2.32)

Recall that the field-theoretical approach assumes a family of superpotentials (8.1.29)
with a different definition of perturbations, as in (2.2.120), or (2.2.121). In reality, for the
solutions (8.2.11) and (8.2.14), and the relation (8.2.16), one rewrites the perturbations
(2.2.121) as

ga = ḡa + ha := (8.2.33)

h
,-
(m) = (√–ḡ )m (g,- – ḡ,-) ,

h(n),- = (√–ḡ )n (g,- – ḡ,-) .
Non-zero components of these are

h
00
(m) = (√–ḡ )m f – ̄f

f ̄f , h
11
(m) = (√–ḡ )m (f – ̄f ) , (8.2.34)

h(n)00 = –(√–ḡ )n (f – ̄f ) , h(n)11 = –(√–ḡ )n f – ̄f
f ̄f , (8.2.35)
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Here,m and n are arbitrary real numbers, n is not dimensions. To show the difference
between various definitions (8.2.33) we use, of course, (2.2.122),

𝜘,- = ha
𝜕ḡ,-𝜕ḡa + 1

2!
hahb

𝜕2ḡ,-𝜕ḡa𝜕ḡb + . . . . (8.2.36)

Thus, defining

h(a),- ≡ ha
𝜕ḡ,-𝜕ḡa ≡ 𝜘,- – 1

2!
hahb

𝜕2ḡ,-𝜕ḡa𝜕ḡb – . . . ≡ 𝜘,- + B𝜘,- , (8.2.37)

one can exchange the 01-component in (8.2.32) of the superpotentialJ !"
S (𝜘) with the

01-component of the family of the superpotentials J !"
S (𝜘 + B𝜘).

8.2.3 Mass of the Schwarzschild-AdS black hole

The S-AdS solution related to the AdS solution
The Schwarzschild-AdS (S-AdS) solution of the vacuum equation (8.1.6) in the EGB
gravity (8.1.2) and (8.1.1) has the form (8.2.11) with the metric coefficients

g00 = –f (r) ; g11 = f–1(r) , (8.2.38)

where

f (r) = 1 – r2D󸀠
(n – 2)(n – 1)

{{{1 ± √1 – 4D0
D󸀠 – 2(n – 2)(n – 1)

D󸀠
,
rn–1

}}} , (8.2.39)

, is a constant of integration, and

D󸀠 = – (n – 2)(n – 1)
2!(n – 4)(n – 3) (8.2.40)

is defined only by the Gauss-Bonnet term. For the sake of simplicity (to exclude
numerous nuances) we restrict ourselves to n ≥ 5.

One of the important backgrounds is the AdS one, which is defined by (8.2.39) at
, = 0: ̄f (r) = 1 – r2 2D eff

(n – 1)(n – 2)
. (8.2.41)

The effective cosmological constant:

D eff =
D󸀠
2
(1 ± √1 – 4D0

D󸀠 ) (8.2.42)

due to (8.2.40) is not positive. The background Riemann, Ricci tensors and the scalar
curvature are obtained with the use of (8.2.13) after substituting the barred quantity
(8.2.41):
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R̄,!-" = 2D eff
(ḡ,-ḡ!" – ḡ,"g-!)
(n – 2)(n – 1)

,

R̄,- = 2D eff
ḡ,-
n – 2

,

R̄ = 2D eff
n

n – 2
. (8.2.43)

The perturbation (8.2.15) acquires the concrete expression:

Bf (r) = ∓ r2D󸀠
(n – 2)(n – 1)

{{{√1 – 4D0
D󸀠 – 2(n – 2)(n – 1)

D󸀠
,
rn–1

–√1 – 4D0
D󸀠

}}} . (8.2.44)

In the linear approximation, asymptotically at r → ∞ it is

Bf = ±(√1 – 4D0
D󸀠 )

–1
,
rn–3

. (8.2.45)

We assume 1 – 4D0/D󸀠 ̸= 0, the situation 1 – 4D0/D󸀠 = 0 is discussed below.
With a desire to consider the solution (8.2.39) as a black hole solution one has to

choose the “–” sign (lower sign) because only then one can define a horizon radius
r+ of the black hole setting f = 0. Besides, there are other arguments for this choice.
Boulware and Deser [71] have shown that the AdS background with the “+” sign is
unstable for the graviton propagation, and, thus, is of less physical interest [87].

There is also a qualitative difference between the cases n ≥ 6 and n = 5. In the
first case, n ≥ 6, vanishing of the constant of integration , → 0 corresponds to the
vanishing of the horizon r+ → 0. Thus, in this case , really can be interpreted as a
mass parameter M = ,, and the AdS solution (8.2.41–8.2.43) can be interpreted as a
natural background for such black holes. Then the asymptotic perturbations (8.2.44)
look quite natural.

In the n = 5 case, the situation is different, the horizon r+ → 0 vanishes if , →
,0 where

,0 = !(n – 3)(n – 4) = 2! = –6/D󸀠 . (8.2.46)

Then one can define a mass parameter as M = , – ,0, for which again r+ → 0 at
M → 0 follows. Thus for such a black hole in 5 dimensions it is natural to choose a
vacuum background atM = 0 in (8.2.39):

̄f (r) = 1 – r2D󸀠
12

{{{1 –√1 – 4D0
D󸀠 + ( 12

r2D󸀠 )2}}} . (8.2.47)
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Only for negativeM = –,0, one approaches the AdS background with ̄f in (8.2.41), ,0
is called a gap between the AdS spacetime and a real black hole vacuum [87]. Then,
for n = 5, the perturbation with respect to (8.2.47) is

Bf (r) = r2D󸀠
12

{{{√1 – 4D0
D󸀠 + ( 12

r2D󸀠 )2 – 24M
r4D󸀠 –

√1 – 4D0
D󸀠 + ( 12

r2D󸀠 )2}}} . (8.2.48)

Asymptotically, it is

Bf (r) = –M
r2

(√1 – 4D0
D󸀠 )

–1 [1 + 6
r4D󸀠 (M – 12

D󸀠 )] . (8.2.49)

Here, the main order coincides with the order of the difference between the differ-
ent background quantities (8.2.47) and (8.2.41), therefore, here, we preserve the next
order.

The mass of the S-AdS black hole calculated by three methods
Now we turn to calculating the mass (total energy) of the S-AdS black hole represen-
ted by the solution (8.2.39). At first we consider the canonical prescription and use the
component J †01C in the general formula (8.2.7) under the requirement r → ∞. Then
it is enough to calculate linear approximation of J †01C (for both of the cases (8.2.22)
and (8.2.23)) in the perturbation Bf in (8.2.45) with respect to (8.2.41), that is the AdS
background, or in the perturbation Bf in (8.2.49) with respect to (8.2.47), that is on
the “mass gap” background. A unique expression can be derived because in both of
the cases, only, the main orders in (8.2.41) and (8.2.45), or in (8.2.47) and (8.2.49), con-
tribute into the integral (8.2.7). Due to this, in the calculations the simple asymptotic
relations

(Bf )󸀠 = –(n – 3)Bfr ,
̄f 󸀠 = 2

̄f
r

(8.2.50)

are used. Besides, by (8.2.21), one can useJ 01
C instead of the general oneJ †01C . Then

one has the linear expression

J 01
C = –

√–ḡ
2*r Bf (n – 2) +

!√–ḡ
*r3 Bf ̄f (n – 2)(n – 3)(n – 4) , (8.2.51)

which is the same for both the cases (8.2.22) and (8.2.23). Substituting the main order
from (8.2.41) or (8.2.47) we obtain

J 01
C = –

√–ḡ
2*r Bf (n – 2)

√1 – 4D0
DEGB

. (8.2.52)
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Thus, both for (8.2.45), AdS background for n ≥ 6, and for (8.2.49), “mass gap”
background for n = 5, we have finally:

J 01
C =

√–ḡ
2*r

M
rn–3

(n – 2). (8.2.53)

Substituting it into (8.2.7), taking into account (7.2.2) and

√–ḡ = rn–2√det qij = rn–2Kn–2 , (8.2.54)

one obtains for the total energy:

PC( ̄.0) = EC = ∮
∞
dn–2xJ 01

C = (n – 2) M
4Gn

(8.2.55)

that is the standard accepted result obtained by using various approaches (see, for
example, [344, 348] and references therein). Again recall that both the cases (8.2.22)
and (8.2.23) lead to (8.2.55).

Let us turn to the case n = 5, but with the AdS background (8.2.41). Really the
expression (8.2.52) holds for n ≥ 5. Thus, for n = 5 on AdS background it could be
rewritten as

J 01
C = 3√–ḡ

2*
M + ,0
r3

(8.2.56)

instead of (8.2.53). After integration it could be interpreted as the total energy of the
system represented by the black hole “summed” with the “mass gap” ,0 on the AdS
background:

E󸀠C = 3M + ,0
4G5

. (8.2.57)

Therefore, one faces a necessity to calculate the energy of the 5D BH in the “mass gap”
vacuum, as in (8.2.55).

To calculate the mass of the S-AdS black hole (8.2.39) with the use of the Belin-
fante corrected expressions (8.2.28). We again consider the linear approximation
(8.2.45) and (8.2.49) and follow all the same steps of the previous canonical prescrip-
tion from (8.2.50) to (8.2.57). Turning to the Belinfante corrected expressions we note
that, unlike the canonical case (8.2.21), there exists a difference (8.2.26) in determ-
ining a family itself. However, for the solution (8.2.39) with the background (8.2.41),
including variations for n = 5, one finds, with the use of (8.2.50), that for (8.2.26)
r∗01B ∼ 1/rn–1. Thus r∗01B does not contribute to integral of the type (8.2.55). Finally it
turns out that all the formulae and conclusions of the canonical method are repeated
exactly. Thus, one has
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EB = (n – 2) M
4Gn

, (8.2.58)

E󸀠B = 3M + ,0
4G5

, (8.2.59)

repeating (8.2.55) and (8.2.57).
The field-theoretical method requires more attention. Here, it is useful to con-

sider the AdS background with (8.2.41) and arbitrary perturbations ha in (8.2.33). To
construct the symmetric superpotential (8.2.3) one has to use the background expres-
sions (8.2.43) with (8.2.40–8.2.42) and with the coefficients (C.21). Then, after the
exchanging (8.1.28), one obtains

w1+|,-
GB (h13a ) = –(1 ± √1 – 4D0

D󸀠 )w1+|,-
E (h13a ) (8.2.60)

where w1+|,-
E is the Einstein part presented in (C.21). Of course, the analogous relation

holds for the antisymmetric coefficients in (C.22) by a direct anti-symmetrization of
(8.2.60). The substitution of anti-symmetrized (8.2.60) into the expression (8.2.3) with
(8.1.29) gives the superpotential related to an arbitrary type of EGB perturbations on
the AdS background:

J ,1
S ≡ 1

*
[[1E –(1 ± √1 – 4D0

D󸀠 )
GB

]] ×
×(h3[,a ∇̄3.1] + . [,∇̄3h1]3a – ∇̄[,

h
1]3
a .3)

≡ ∓ 1*√1 – 4D0
D󸀠 (h3[,a ∇̄3.1] + . [,∇̄3h1]3a – ∇̄[,h1]3a .3) (8.2.61)

It is the most general expression for the family of the symmetric superpotentials on
AdS backgrounds.

A more concrete expression is obtained with a specification of ha. We choose, of
course, (8.1.24), substitute (8.1.30) into (8.2.61):

J ,1
S ≡ ∓√–ḡ* √1 – 4D0

D󸀠 × (8.2.62)

× (. [,∇̄-𝜘1]- – .-∇̄[,𝜘1]- – . [,∇̄1]𝜘-- – 𝜘-[,∇̄1].- – 1
2𝜘--∇̄[,.1]) .

It is expressed through the Abbott-Deser superpotential in the Einstein theory [1],
J ,1

AD ,

J ,1
S = ∓√1 – 4D0/D󸀠J

,1
AD , (8.2.63)

see [122, 126, 348, 362].
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Now, return to a more simple case, perturbed solution (8.2.39) with respect to
(8.2.41), or with respect to (8.2.47) in 5 dimensions. Then the perturbations (8.2.29)
in the linear approximation are

𝜘00 = 𝜘11 = –Bf (8.2.64)

where Bf can be defined both in (8.2.45) and in (8.2.49). To calculate the total energy
(mass) of the S-AdS black hole we again follow all the same steps of the canonical and
Belinfante corrected approaches with the use of (8.2.32). Again, it turns out that all the
related formulae are

ES = (n – 2) M
4Gn

, (8.2.65)

E󸀠S = 3M + ,0
4G5

, (8.2.66)

repeating (8.2.55) and (8.2.57), (8.2.58) and (8.2.59). The ambiguity presented in
(8.2.33–8.2.37) does not influence (8.2.65) and (8.2.66) because it arises in the second
order in perturbations with respect to (8.2.64) that does not contribute into the surface
integrals.

Concluding remarks and discussions
The results of the present subsection have been obtained under the assumption that

√1 – 4D0
D󸀠 ̸= 0 . (8.2.67)

From the beginning we turn to the canonical and the Belinfante correcting formal-
isms. This factor appears in front of the 01-component of the canonical superpotential
(8.2.52), the same is true for the Belinfante corrected superpotential. Thus, for

D󸀠 = 4D0 (8.2.68)

the total mass, probably, has to be treated as vanishing!? In the case of S-AdS solution
this problem is resolved automatically because perturbations (8.2.45) on AdS back-
ground (8.2.41), or perturbations (8.2.49) even on non-AdS background (8.2.47) in n = 5
dimensions, have this factor in the degree “–1” that compensates (8.2.67). However,
what is it in general?

This fact is remarked in the works [87, 118, 122, 348], however without detailed
discussions. Deruelle and Morisava [118] (canonical prescription), and Deser, Kanik
and Tekin [122] (field-theoretical formulation) have found that not only mass, but
angular momentum expressions for the Kerr-AdS solution in EGB gravity have also
the same problem if the condition (8.2.68) is valid. Considering this problem, some
authors, refer the readers to the papers [94, 95], where the situation is explained that
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gravitons do not propagate on AdS backgrounds for (8.2.68). But it is not so appro-
priate. Indeed, in the framework of both the canonical and the Belinfante corrected
derivations, this fact does not arise in general: the superpotential expressions in EGB
gravity for arbitrary (not only static spherically symmetric or rotating symmetric) per-
turbations linearized around the AdS background is not proportional to the factor
(8.2.67).

However, the idea of the papers [94, 95] by Chamseddine has amore suitable basis
in the framework of the field-theoretical formulation. Of course, the field-theoretical
expressions in the cases of static spherically symmetric or rotating symmetric per-
turbations have the same problems, like in the canonical and the Belinfante corrected
derivations. But, in the case of the field-theoretical formulation, this problem is wider:
indeed, in the expressions (8.2.62) and (8.2.63) the factor (8.2.67) appears for all the
components, not only for the 01-component of the superpotentials, and for arbitrary
perturbations.

Keeping the above in mind, let us derive the linear expression (7.2.77) that is the
left hand side of the gravitational equations (7.2.84) on the vacuum background, like
the AdS background. In the case of the EGB gravity (8.1.2) and (8.1.1), and on AdS
background (7.2.76), it acquires the form:

EL,- ≡ [[1E –(1 ± √1 – 4D0
D󸀠 )

GB

]]GL
,- ≡ ∓√1 – 4D0

D󸀠 G
L
,- , (8.2.69)

where the expression GL,- is related to the Einstein part and has the form:

GL,- ≡ 1
2
[–ḡ13∇̄13𝜘,- – ∇̄,-𝜘33 + ∇̄3-𝜘,3 + ∇̄3,𝜘-3 – 4D eff

n – 2
𝜘,-

+ ḡ,- (ḡ13∇̄13𝜘00 – ∇̄13𝜘13 + 2D eff
n – 2

𝜘33)] . (8.2.70)

Comparing (8.2.69) with (8.2.61) and (8.2.62), we find the same coefficient in front.
This means that the condition (8.2.68) leads to zero coefficient at the linear

approximation of the EGB gravity equations around the AdS background. How can
this situation be interpreted? The vanishing of the linear left hand side in (7.2.84)
leads to the vanishing of the total energy-momentum. Then, if the matter is present
the situation can be explained that the matter energy-momentum is compensated by
the energy-momentum of the metric perturbations. If the matter is absent then the
whole energy-momentum of the pure metric perturbations is to be equal to zero which
means the absence of gravitons as has been explained in [94, 95].

Of course, questions connected with the condition (8.2.68) exist. It seems import-
ant to connect it to the presented approaches here with that of Regge and Teitel-
boim [385] in the multi-dimensional application (see, for example, [108]), and with
Paddila’s prescription [348] for a particular case, where the mass of the degenerate
case (8.2.68) is acceptably defined.
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Next, all the superpotentials, families of which are presented in (8.2.1–8.2.3), give
the unique standard accepted mass (total energy) for the S-AdS black hole in EGB
gravity. Thus, in this case we cannot choose a preferable conserved quantity from the
families. However, numerous popular gravitational theories have various solutions. It
could be useful to find among them the standard solution, like the S-AdS in EGB grav-
ity, on the basis of which one could test the families of superpotentials constructed
here.

Besides, numerous solutions in popular gravitational theories frequently have
very exotic properties. In the next section, we demonstrate that the suggested famil-
ies of superpotentials present an appropriate instrument for the interpretation of such
solutions. We do not exclude the situation, when an unusual solution to any modified
theory of gravity could be a crucial test for a choice among superpotentials.

Already we have remarked that there are infinitely many possibilities to construct
conserved quantities in metric theories. In the work [373] Pitts suggested the interest-
ing idea that instead of using many complexes, offers to use an infinite-component
object that is conserved which makes sense in every coordinate system/gauge.

8.3 Interpretation of the Maeda–Dadhich exotic solutions

To understand how interesting, and consistent, etc. one or other solution from numer-
ous solutions (frequently exotic) in multidimensional theories of gravity, one needs
to examine them in detail. Some of the important characteristics of objects presented
by such solutions are energy (mass), its flux, etc. In the present section, we examine
exact exotic solutions in the EGB gravity in n dimensions presented in the series of
works [114, 304, 305, 320]. They are the d-dimensional Kaluza–Klein type black holes
(or isolated objects without horizons) with (n – d)-dimensional sub-manifolds. Extra
dimensions have the warp-factor proportional to the GB parameter !, which is sup-
posed to be very small. The gravitational equations, which in d dimensions describe
these solutions, have a matter source in the right hand side in spite of that the starting
equations in n dimensions are vacuum (without sources). This situation is described
by the authors of [114, 304, 305] as purely classical example of creating matter by
curvature: “matter without matter.”

The idea to creatematter/energy by using the curvature effects is not new, it is sup-
ported by different approaches and it solves different problems. For example, to make
inflation to be possible a pioneering proposal was advanced by Starobinsky [422], in
which the high-energy density state was achieved by curved space corrections. Many
other problems of modern cosmology may be solved in the framework of the multi-
dimensional gravity by using high-order curvature invariants of Kaluza–Klein type
spacetimes, see, e. g., [75] and references there in.

The claim: “matter without matter” requires a more solid foundation than it is
given in the original papers [114, 304, 305]. To develop this claim we are sure that it is
necessary to calculate the mass and the mass flux by classical methods. It is the main
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goal of the present section. For the sake of simplicity of presentation we are concen-
trating on examining the 3 dimensional black hole like objects in six dimensional EGB
gravity described in the Molina and Dadhich paper [320]. In spite of an apparent sim-
plicity, these toy objects are sufficiently rich in physical properties, for example, they
can have a radiative regime. For calculations we use three types of superpotentials
and currents constructed in Section 8.1.

8.3.1 Kaluza–Klein type 3D black holes

Maeda–Dadhich scalar equation
Maeda and Dadhich consider n-dimensional Kaluza–Klein vacuum spacetime as a
solution to the equation (8.1.6) in the EGB gravity. Their main assumption is that a
spacetime is to be locally homeomorphic to M d × K n–d with the metric

g,- = gAB × r20qab ; (8.3.1)
A,B, . . . = 0, ⋅ ⋅ ⋅ , d – 1,
a, b, . . . = d, ⋅ ⋅ ⋅ , n – 1 .

Thus, gAB is an arbitrary Lorentzian metric on M d, qab is the unit metric on the (n –
d)-dimensional space of constant curvature K n–d with k = 0, ±1; r0 plays the role
of a small scale of extra dimensions. Thus, unlike the more common Kaluza–Klein
approaches, where the extra dimensional sub-manifold is flat with k = 0, Maeda and
Dadhich explore the caseswith k = ±1. After all the above assumptions the generalized
Einstein tensor density E,

- derived in (8.1.4) is decomposed as follows

EA
B = {[1 + 2k!

r20
(n – d)(n – d – 1)] d

GA
B + !

d
HA

B (8.3.2)

+ $BA [D0 –
k
2r20

(n – d)(n – d – 1)

× (1 + k!
r20
(n – d – 2)(n – d – 3))]}√–ḡn ;

Ea
b = $ba {–12 [d

R – 2D0 +
k
r20
(n – d – 1)(n – d – 2)] (8.3.3)

– !k
r20
(n – d – 1)(n – d – 2)

× (d
R + k

2r20
(n – d – 3)(n – d – 4)) + !

d
LGB/2}√–ḡn .

Here, ḡn = det ḡ,-; H,- is the Gauss-Bonnet part (8.1.5) of the expression (8.1.4); index
“d” means that a quantity is constructed with the use of gAB only. Thus, keeping
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in mind (8.3.2) and (8.3.3), the equations (8.1.6) are decomposed into the tensorial
equation

EA
B = 0 (8.3.4)

on M d and a scalar equation

Ea
b = 0 (8.3.5)

on M d, which is a constraint for (8.3.4). To obtain more interesting solutions one has
to consider a special case studied in [114, 304, 305], when the expression (8.3.2) disap-
pears identically, and the equations (8.3.4) are satisfied automatically. This situation is

achieved for d ≤ 4 only, when
d
H,- ≡ 0. Then constants are chosen by the way to sup-

press the coefficients in (8.3.4). This is possible only when n ≥ d + 2 with ! > 0, k = –1
and D0 < 0. Then one finds that the governing equation is a single scalar equation
(8.3.5) on M d only.

To significantly simplify the presentation, we consider the solutions for n = 6 and
d = 3 presented in [320]. The suitable set of constraints for the constants which lead
to vanishing (8.3.2) is

1
r20

= 1
12! = –D0

3
. (8.3.6)

Then the unique scalar equation (8.1.9) acquires the form:
3
R = 2D0 . (8.3.7)

The BTZ solution
Before studying the Maeda–Dadhich solutions it is instructive to reconsider the BTZ
[20] solution by Bañados, Teitelboim and Zanelli. Their static metric is

ds2 = –fdt2 + f–1dr2 + r2d6 ; (8.3.8)
f ≡ –r2D0 – , ,

which is a solution to the vacuum Einstein equations in 3 dimensions. The metric
(8.3.8) represents a black hole, horizon of which is defined as usual by the condition
f = 0 is

r2+ = –,/D0 . (8.3.9)

The horizon for such a black hole vanishes when , vanishes. Therefore the constant
of integration , can be called a mass parameter. Then one can see that the choice of
the “black hole vacuum,” ̄f = –r2D0, (8.3.10)

Bf = –, , (8.3.11)
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as a background is natural. However, such a background is not maximally symmetric,
like AdS. The AdS background for the solution (8.3.8) is

̄f = 1 – r2D0 , (8.3.12)
Bf = –, – 1 , (8.3.13)

when , = –1. It is the analog of the massive gap M = –,0 for the AdS black hole in 5
dimensions between the AdS spacetime (8.2.41) and a “black hole vacuum” (8.2.49).

Maeda–Dadhich static solution
One of interesting solutions to the equation (8.3.7) is the static solution, the metric of
which is

ds2 = –fdt2 + f –1dr2 + r2d6 ; (8.3.14)

f ≡ r2

l2
+ q
r
– , ,

where , and q are the constants of integration, and l2 ≡ –3/D0 plays the role of the
AdS radius. One easily recognizes that (8.3.14) is the simplest variant of (8.2.11). The
nonzero components of the Einstein tensor for the solution (8.3.14) are

3
G0

0 =
3
G1

1 = 1
l2
– q
2r3

,
3
G2

2 = 1
l2
+ q
r3

(8.3.15)

and are calculated with the use of general expressions (8.2.13) for the curvature tensor
components.

The solution (8.3.14) is more complicated than (8.3.8). Now, the equation for the
event horizon, f = 0, leads to

r2+
l2
+ q
r+

– , = 0 (8.3.16)

instead of (8.3.9). For different q, the horizon positions are defined as follows.
First, for q > 0,

(a) q > 2l (,/3)3/2 – no horizons,
(b) q = 2l (,/3)3/2 – one horizon r+ = l (,/3)1/2,
(c) 0 < q < 2l (,/3)3/2 – two horizons, for the external horizon one has l (,/3)1/2 < r+ <

l (,)1/2;
Second, for q = 0, – one horizon r+ = l (,)1/2;
Third, q < 0, – one horizon r+ > l (,)1/2.
Objects without horizons are, in fact, naked singularities.
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Considering the black hole solutions, it is again natural to choose a mass parameter
,󸀠 by the way when the horizon of a black hole disappears under vanishing ,󸀠. Then
one finds that ,󸀠 = , – q/r+ only. The corresponding “black hole vacuum”,

̄f ≡ r2

l2
+ q
r
– q
r+

; (8.3.17)

Bf ≡ q
r+

– , = –,󸀠

can be chosen as a background, and that is notmaximally symmetric either. Moreover,
one can see that, unlike the BTZ case, such a background depends on the horizon
radius r+. This means that for a concrete value of r+ its own separate background
exists. Although it is a more complicate situation, but it is permissible. Besides, for
the solution (8.3.14), like in the BTZ case, one can choose the maximally symmetric
AdS background with

̄f ≡ 1 + r2

l2
; (8.3.18)

Bf ≡ q
r
– , – 1 ,

for which parameter q is also considered as perturbation together with ,+1. The other
advantage (together with maximal symmetries) of the background (8.3.18) is that, it
is not related to the horizon. Therefore, it can be successfully used to study naked
singularities, including the Maeda–Dadhich’s naked singularities.

The radiative Vaidya-type solution
It turns out that the scalar equation (8.3.7) is satisfied not only by the static solutions,
but by the radiative Vaidya-type metric with the retarded/advanced time v as well,

ds2 = –fdv2 + 2dvdr + r2d6 ; (8.3.19)

f ≡ r2

l2
+ q(v)

r
– ,(v) ,

where ,(v) and q(v) are not constants now, they depend on v. The non-zero Christoffel
symbols corresponding (8.3.19) are

3
A100 =

ff 󸀠 – ̇f
2

,
3
A000 =

f 󸀠

2
,

3
A101 = – f

󸀠

2
,

3
A212 =

1
r
,

3
A122 = –rf ,

3
A022 = –r , (8.3.20)

where the “dot” means d/dv. Then, components of Riemann and the Ricci tensors and
curvature scalar can be calculated and the non-zero components are
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3
R
0101

= 1
2 f
󸀠󸀠 ,

3
R
0212

= – f 󸀠

2r3
,

3
R
1212

= – 1
2r3

(ff 󸀠 + ̇f ) ,
3
R
11
= – 1

2r
[f (rf 󸀠󸀠 + f 󸀠) + ̇f ] ,

3
R
01
= – 1

2r
(rf 󸀠󸀠 + f 󸀠) ,

3
R
22
= – f
󸀠

r3
,

3
R = –1

r
(rf 󸀠󸀠 + 2f 󸀠) . (8.3.21)

The form with upper indices is more simple. The above permits us to calculate the
components of Einstein tensor,

3
G0

0 =
3
G1

1 = 1
l2
– q
2r3

,
3
G0

1 = ,̇r – q̇
2r2

,
3
G2

2 = 1
l2
+ q
r3
. (8.3.22)

Note that the usual 3D Einstein gravity does not have a radiating regime, therefore
(8.3.22) looks as very interesting. The solution (8.3.19) is connected with the solution
of the form (8.3.14),

ds2 = –f (v, r)dt2 + f–1(v, r)dr2 + r2d6 ; (8.3.23)

f (v, r) ≡ r2

l2
+ q(v)

r
– ,(v) ,

e. g., by the transformation

dt = dv – dr
f (v, r)

. (8.3.24)

Concentrating on the possibility to form Kaluza–Klein black holes discussed in [114,
304, 305], we consider only the advanced time v in (8.3.23), keeping inmind (8.3.24). If
a horizon exists, one can define it for each of constant value v0 with the corresponding
quantities ,(v0) and q(v0) in (8.3.23) analogously to the static case.

“Matter without matter”
Assuming that (8.3.14) and (8.3.19) are solutions to the Einstein’s equations on M 3,
one concludes that the latter are not vacuum equations. Indeed, both (8.3.15) and
(8.3.21) show that a mass/matter source

3
TAB with zero trace

3
TAA = 0 has to exist,

and the Einstein’s equations corresponding to (8.3.7) could be rewritten as
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3
RAB – 1

2gAB
3
R + gABD = *3

3
TAB (8.3.25)

with redefined cosmological constant D = D0/3 and the 3-dimensional Einstein’s con-
stant *3. It supports the Maeda and Dadhich interpretation [114, 304, 305] that the
source in (8.3.25) is created by the compactification of (n– d) extra dimensions. Below
we put this claim on a more constructive and physically sensible basis by using the
conservation law formalism.

8.3.2 Mass for the static Maeda–Dadhich objects

In the present section, to calculate the mass (total energy) for solutions under consid-
eration we use the general formula (8.2.7) with each of the superpotentials (8.2.4), see
(8.2.1–8.2.3), where the Killing vector is defined in (8.2.17). Thus, for calculating the
total energy we use

M = lim
r→∞

∮
𝜕G
dn–2xJ 01

D ( ̄.0) , (8.3.26)

that is the asymptotic value at spatial infinity (8.2.7).

The BTZ solution
As a reference example, we calculate the mass of the BTZ solution with the metric
(8.3.8). Because the BTZ solution is the solution to 3D general relativity we use the
Einstein parts of each of the superpotentials (8.2.1–8.2.3) and rewrite (8.3.26) as

M = ∮
∞
d6 (EJ 01

D ( ̄.0)) . (8.3.27)

Considering the Schwarzschild-like dynamical metric (8.3.8) with respect to the back-
ground metric of the same form (8.3.8), we can use the general formulae (8.2.22),
(8.2.28) and (8.2.32). The linear approximation of the superpotentials in Bf = f – ̄f ,
that gives a contribution into (8.3.26), is

EJ
01
C = EJ

01
B = EJ

01
S = –

√–ḡ3
2*3r

Bf . (8.3.28)

We choose a background metric both in the form (8.3.10) and in the form (8.3.12). For
each of the cases the formula (8.3.27) gives, respectively,

M = 0,
*3

, (8.3.29)

M = 0(, + 1)
*3

. (8.3.30)
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The result (8.3.29) is quite acceptable (see, e. g., [119, 159]). Thus, (8.3.29) could be
considered as a nice test for all the superpotentials under consideration. The res-
ult (8.3.30) represents the total energy including the mass gap related to the AdS
background (8.3.12).

The Maeda–Dadhich solution
Now let us turn to the static solution (8.3.14). Because initially it is the solution of
the EGB theory with the equation (8.1.6) one has to try to calculate the mass by using
the full formula (8.2.7) with (8.2.1–8.2.4) for 6D EGB theory. Then the total background
metric is to be chosen as

ḡ,- = ḡAB × r20qab ; (8.3.31)
A,B, . . . = 0, 1, 2,
a, b, . . . = 3, 4, 5 .

The background metric ḡAB in (8.3.31) can be chosen both in the form (8.3.17) and in
the form (8.3.18).

Keeping in mind the 6D background in a non-trivial form (8.3.31), one has to out-
line the (n – 2)-dimensional surface integral (8.3.26) in more detail. First, it is the far
away surface considered in the (d = 3)-dimensional physical spacetime; second, it is
integration over the (n – d = 3)-dimensional extra space. Then, for all the superpoten-
tials (8.2.1–8.2.4) calculated for the solution (8.3.14) with the backgrounds (8.3.17) or
(8.3.18) the mass in 6 dimensions acquires the form:

M = ∮
∞
dn–2xJ 01

D = Vr0 ∮∞ d6√–ḡdJ01D . (8.3.32)

As usual,

J01D =
J 01

D√–ḡD , (8.3.33)

and for the factor in front in (8.3.32) one has

Vr0 = ∮
r0
dxn–d√gn–d , (8.3.34)

where

ḡn = det ḡ,- = ḡd ⋅ gn–d ,
ḡd = det ḡAB = –r2 ,

gn–d = det (r20qab). (8.3.35)

Factorization in (8.3.32) has been achieved from the formula (8.3.26) applied to the
Maeda–Dadhich model (8.3.1–8.3.3) with the solution (8.3.14) and with a background
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(8.3.31) with (8.3.17) or (8.3.18). With the use of (8.3.35) one finds that J01D depends
on variables of the d-sector only. The factor Vr0 represents the “volume” of the extra
space.

Although J01D depends on d-sector variables only, it can be rewritten as a sum of
the Einstein and Gauss-Bonnet parts. Therefore, we represent (8.3.32) as

M = ME +MGB = Vr0 ∮∞ d6 r (EJ01D ) + Vr0 ∮∞ d6 r (GBJ01D ) (8.3.36)

and analyze it. Considering the Einsteinian part of the 01-component of the super-
potentials (8.2.1–8.2.4) defined in EGB theory for the solution (8.3.1) with (8.3.14) one
finds that they are described only by the d-sector. Therefore for calculating the Ein-
stein parts, the formulae of Section (8.2.2) is enough. Then, asymptotically, for both of
the cases, (8.3.17) and (8.3.18), one has

EJ
01
C = EJ

01
B = EJ

01
S = – Bf

2*6r
(8.3.37)

that can be compared with (8.3.28) for the BTZ case. Thus, for all the superpoten-
tials under consideration, the Einstein part in (8.3.36) gives for (8.3.17) and (8.3.18),
respectively,

ME = Vr0
0,󸀠
*6

, (8.3.38)

ME = Vr0
0(, + 1)

*6
(8.3.39)

that can be compared with (8.3.29) and (8.3.30) for the BTZ case; *6 is n = 6
dimensional Einstein constant.

To derive quantities analogous to (8.3.38) and (8.3.39) for the Gauss-Bonnet part
in (8.3.36) one has to find the behaviour for superpotentials, like in (8.3.37). We
use the general expressions (8.2.1–8.2.4) in the Gauss-Bonnet part to construct the
01-component for the solution (8.3.14) with the background (8.3.31) with (8.3.17) or
(8.3.18). Such a component consists of the two parts, from which the one is pure (d =
3)-dimensional, the other one is defined by the intersecting terms of the (d = 3)-sector
and the scalar curvature of the (n – d = 3)-sector:

n–d
R = – 6

r20
= – 1

2! . (8.3.40)

Thus, variables of the (n – d = 3)-sector are included in a constant form in (8.3.40)
only. For all the three types of the GB superpotentials the pure (d = 3)-dimensional
part gives a zero contribution to the integral in (8.3.36), whereas the intersecting terms
have the main asymptotic approximation

GBJ
01
C = GBJ

01
B = GBJ

01
S = Bf

2*6r
. (8.3.41)
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Then, the Gauss-Bonnet part in (8.3.36) gives for (8.3.17) and (8.3.18), respectively,

MGB = –Vr0
0,󸀠
*6

, (8.3.42)

MGB = –Vr0
0(, + 1)

*6
. (8.3.43)

Now, summarizing (8.3.38) and (8.3.42), summarizing also (8.3.39) and (8.3.43), one
finds that the total mass of the Maeda–Dadhich static solution in 6 dimensions is
equal to zero. This result quite coincides with the conclusion in [88] where analogous
solutions in the Lovelock gravity are studied.

However, this zero result cannot be considered as physically interesting one. Then
it is more suitable to consider the solution (8.3.14) in the framework of 3 dimensional
Einstein theory with the equation (8.3.25) where the sources are created by the extra
dimensions. One can find out that this system from the point view of the Newtonian
limit in 3 dimensions (see, e. g., [159]) has to have a total mass.

Keeping this proposal inmind, recall that the construction of superpotentials does
not depend onmatter sources. Thus, we do not need a concrete structure of the source
in (8.3.25). All of this means that, like in the BTZ case, we have to consider the Einstein
parts of each of the superpotentials (8.2.22), (8.2.23), (8.2.28) and (8.2.32). Although,
the equations (8.3.25) are not vacuum equations, the result is analogous to the BTZ
case for “black hole vacuum” background and for the AdS background, respectively,

M = 0,󸀠
*3

, (8.3.44)

M = 0(, + 1)
*3

. (8.3.45)

The question arises: what is the role of the 6D EGB derivation in the interpretation of
(8.3.44) and (8.3.45)? Suppressing the extra sector in EGB case, one has to consider
(8.3.38) and (8.3.39) only. Then, the role of the factor Vr0 in (8.3.34) becomes essential.
First, if the extra dimensions are not compact, then Vr0 diverges and the expressions
(8.3.44) and (8.3.45) become meaningless. Second, if the extra dimensions are com-
pact, then Vr0 is finite and a comparison (8.3.44) and (8.3.45) with (8.3.38) and (8.3.39)
states

*3 =
*6
Vr0

. (8.3.46)

One easily recognizes in the relation (8.3.46) the main properties of the Kaluza–
Klein paradigm in the creation of matter by compact extra dimensions. It is our main
argument supporting Maeda and Dadhich developing the Kaluza–Klein description in
EGB gravity because *3 in (8.3.25) is connected with the EGB spacetime by (8.3.46).

It is important to compare (8.3.44) and (8.3.45) with (8.3.29) and (8.3.30) in the
BTZ case, respectively. First, for the natural black hole vacuum background case,M in
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(8.3.29) for the BTZ solution is defined by themass parameter , only. At the same time,
M in (8.3.44) for the Maeda–Dadhich solution is defined by ,󸀠 = , – q/r+. It is because
the definition of the horizon (8.3.16) includes the parameter q. Second, for the AdS
background, both (8.3.30) and (8.3.45) are identical. It seems that in the case (8.3.45),
due to (8.3.18),M has to contain q. However, the fall-off of the term q/r in (8.3.18) does
not contribute to (8.3.45), like in the Reisner-Nordström solution the total mass does
not depend on the electric or magnetic charge, see (6.4.7).

8.3.3 Mass and mass flux for the radiative Maeda–Dadhich objects

Mass
To calculate the total mass for the radiative solution (8.3.19) we carry out calcula-
tions analogous to the ones in the previous subsection. Formally, we use the same
formula (8.3.26):

M = lim
r→∞

∮
𝜕G
dn–2xJ 01

D ( ̄.0) . (8.3.47)

Only, here, 𝜕G is a boundary of the lightlike section G defined as x0 = v = const. Thus,
unlike the formula (8.3.26) for static solutions, calculations with the use of (8.3.47)
are related to the null infinity. Calculations both with (8.3.26) and with (8.3.47) are
illustrated in the Figure 8.1.

The background for the solution (8.3.19) can be chosen in the two important cases.
For the first one, the horizon radius r+ can be calculated for each fixed v0 as a solu-
tion to f (v0, r+) = 0 in metric (8.3.23). Then, analogously to the static case, we define
background and perturbations as

̄f ≡ r2

l2
+ q(v)

r
– q(v)

r+
; (8.3.48)

Bf ≡ q(v)
r+

– ,(v) = –,󸀠(v) .

r     ∞
∂Σ

ν = x0 = const r = x1 = const

Figure 8.1: A scheme for calculating mass of the
Maeda–Dadhich objects with the advanced
time v.
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It is a non-symmetric and non-static background, compare with (8.3.17). Our calcula-
tions for the mass are carried out on the G-hypersurfaces, which are just defined for
each of fixed v0. Thus, the corresponding background (8.3.48) is related to this fixed
v0. The second choice is the AdS background, like in (8.3.18):

̄f ≡ 1 + r2

l2
; (8.3.49)

Bf ≡ q(v)
r

– ,(v) – 1 .

To calculate the mass for both the cases one has the possibility to use the unique
timelike Killing vector ̄.! = {–1, 0} (8.3.50)

once again. However, unlike (8.2.17), here, the 0-component is related to the v-
coordinate.

Again we use the general expressions for the three types of superpotentials
(8.2.1–8.2.4), the necessary expressions for the radiative solution (8.3.19–8.3.22), and
the Killing vector (8.3.50) with the backgrounds in (8.3.48) and (8.3.49). From the
beginning, we derive the Einstein parts of all the superpotentials:

EJ
01
C = EJ

01
B = EJ

01
S = –

√–ḡ
2*6r

(f (v, r) – ̄f (v, r)) . (8.3.51)

It is surprising, but the simple expressions in (8.3.51) are exact. We do not derive the
explicit Gauss-Bonnet parts, but after simple, although lengthy calculations, we derive
their asymptotic (now not exact) behaviour

GBJ
01
C = GBJ

01
B = GBJ

01
S =

√–ḡ
2*6r

Bf (v, r) . (8.3.52)

Again, this result is valid due to intersecting (with the scalar curvature (8.3.40) in the
extra dimensions) terms in the superpotentials.

Summing (8.3.51) and (8.3.52) one finds a vanishing result for (8.3.47) in 6 dimen-
sions in the framework of the EGB gravity. Thus, one needs to repeat the interpretation
of the static case and to reject the pure 6D geometrical derivation as unacceptable.
Then, again we consider the equation (8.3.25) as a governing one. Repeating the steps
of the previous subsection, for the non-symmetric background (8.3.48) and for the AdS
background (8.3.49) one gets

M = 0,󸀠(v)
*3

; (8.3.53)

M =
0 (,(v) + 1)

*3
. (8.3.54)
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Both of them are in a correspondence with the static case, (8.3.44) and (8.3.45). Only
now M is not a constant: it changes from one Gv1 to another Gv2 . Also, because ,

󸀠(v)
in (8.3.48) is connected directly with the definition of r+ for a concrete v = const,
r+ changes with changing ,󸀠(v). Concluding the part related to calculating mass of
the Maeda–Dadhich 3D objects in 6D EGB gravity, we remark, first, that all the three
types of superpoterntials, and, second, different divergences, (8.1.12) and (8.1.13), in
the canonical formulation, lead to the same results. Thus, at this level we cannot to
select a preferable approach.

Mass flux
The mass flux for the radiative Maeda–Dadhich 3D objects defined by the metric
(8.3.19) can be obtained simply by differentiating with respect to v:

Ṁ = 0,̇󸀠(v)
*3

; (8.3.55)

Ṁ = 0,̇(v)
*3

. (8.3.56)

In the first case (8.3.55), because the mass is related to the horizon, its flux describes
the mass change together with changing the horizon from one slice to another,

,̇󸀠(v) = ,̇(v) – d
dv

(q(v)
r+

) . (8.3.57)

In the second case (8.3.56), the mass change is related to a stable AdS space and can
be calculated both for black holes and for naked singularities.

To calculate the mass flux for the radiative solution (8.3.19) in the sense of the
equation (8.3.25) one can use the direct formula,

Ṁ = ∮
∞
dn–2x (EJ 1

D) , (8.3.58)

where, instead of the superpotentials, currents are used. Therefore, we turn to the
current expressions (8.1.31), (8.1.34) and (8.1.38) in all the three approaches. One of
the necessary items is energy-momentum tensor. In the terms of the “matter without
matter” Kaluza–Klein approach, it is the right hand side of (8.3.25). The concrete
expressions for the energy-momentum, in fact, are represented by the Einstein tensor
in (8.3.22). To derive the component EJ 1

D ( ̄.0) in (8.3.58) one needs the component

3
T0

1 = ,̇r – q̇
2*3r2

(8.3.59)

only. Again returning to the expressions (8.1.31), (8.1.34) and (8.1.38), one finds
asymptotically for each of the backgrounds (8.3.48) and (8.3.49), respectively,
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EJ
1
C ( ̄.0) = EJ

1
B ( ̄.0) = EJ

1
S ( ̄.0)

= √–ḡ3 ( 3
T0

1 –
3

T̄0
1) ̄.0 = – ,̇󸀠

2*3
, (8.3.60)

EJ
1
C ( ̄.0) = EJ

1
B ( ̄.0) = EJ

1
S ( ̄.0)

= √–ḡ3 ( 3
T0

1 –
3

T̄0
1) ̄.0 = – ,̇

2*3
. (8.3.61)

Substituting these into (8.3.58), one finds

Ṁ = –0,̇
󸀠

*3
; (8.3.62)

Ṁ = –0,̇*3
. (8.3.63)

One can see that the difference with (8.3.55) and (8.3.56) is in another sign. There is no
contradiction. First, a simple differentiation ofM with respect to v gives in (8.3.55) and
(8.3.56) an absolute value of the flux only, not more. Second, with using the standard
expression connecting currents with superpotentials,

J 1
D = 𝜕0J 10

D (8.3.64)

and taking into account the antisymmetry for the superpotentials, J 10
D = –J 01

D used
in (8.3.47), one recognizes also the correspondence in signs.

The direct calculation of the mass flux with using the three types of the current
expressions is an important independent result. Maeda and Dadhich treat the matter
represented by the energy-momentum at the right hand side of (8.3.25) as created by
all the extra dimensions together. Of course, such a derivation differs from the stand-
ard Kaluza–Klein picture, where each of compact extra dimensions determines its
own charge. Nevertheless, as we showed in the present section, in the case of com-
pact dimensions the Maeda–Dadhich model is reduced to the standard Kaluza–Klein
prescription. Also, we demonstrated that the created matter in (8.3.25) determines the
classically defined mass and mass flux of the objects. Thus, in fact, we support the
claim of the authors of [114, 304, 305] that their solutions represent the objects of
the Kaluza–Klein type.



9 Generic gravity: Particle content, weak field
limits, conserved charges

9.1 Introduction: Raisons d’être of modified gravity theory

In this chapter, we give a detailed account of conserved quantities, such as the total
mass and angular momenta of asymptotically constant curvature spacetimes; and
work out the particle spectrum etc. of the cosmological Einstein’s theory, quadratic
gravity and the more general f (R,-31) theories in their constant curvature back-
grounds, namely about their (Anti)-de Sitter, (A)dS, as well flat vacua. The term
vacuum will be used here to denote any viable maximally symmetric solution of
the theory in the absence of sources. We study the Lovelock gravity as an example
to our general construction. We give also the weak field limits of massive (with a
Fierz-Pauli mass) and higher derivative gravity theories and compute the spin-spin,
spin-orbit couplings and discuss various discontinuities arising in the massless lim-
its that constitute a relativistic partner of the well-known van Dam-Veltman-Zakharov
(vDVZ) discontinuity inflicting the interaction between static sources.

In the construction of the conserved charges, the procedure that we will adopt
is that of Abbott-Deser (AD) [1] who introduced Killing charges in their work on the
stability of de Sitter space (dS) in general relativity. Their method, which works for
asymptotically constant curvature and flat spacetimes in arbitrary coordinates, is
essentially an extension of the ADM method [12] that we discussed previously, which
was valid for asymptotically flat spacetimes. In what follows we shall generalize the
AD construction to generic gravity theories based on the metric following closely the
construction of [124, 126]. For constant curvature backgrounds, higher order terms in
the curvature contribute non-trivially to the conserved charges. Therefore, the same
metric solving two different theories can have different conserved charges. Hence,
unlike the ADM mass case for asymptotically flat spacetimes, the mass for asymp-
totically constant non-zero curvature spacetimes is not a geometric invariant of the
manifold, but a conserved quantity depending on the parameters of the underlying
theory.

As the bulk of this chapter will be devoted to the theories beyond general relativ-
ity, we have to explain why such modifications are needed at all. Clearly we are living
in the era of “effective field theories” where we have learned that all theories we
have are valid up to some energy scales where new physics, new degrees of free-
dom and new symmetries enter into the picture. So from this vantage point, there
is a lot of motivation to study the generalizations of Einstein’s gravity with an action
symbolically written of the form

S = ∫ dnx√–g( 1
* (R – 2D0) + ∞∑

p=2
ap(Riem, Ric, R, ∇Riem, . . . )p), (9.1.1)
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where higher order terms can arise as a result of integrating out massive degrees of
freedom in a microscopic theory, such as string theory or one might simply take gen-
eral terms and build a phenomenology of the resulting theory. This type of higher
derivative theories, with propagators that decay faster than 1/p2 at large momenta,
have much better behavior in the ultraviolet and reduce to general relativity at large
distances (in the infrared) bringing in only weak constraints on the couplings ap from
the solar system experiments.

Two of the problems of general relativity arise at large distances: these are the
problems of accelerated expansion of the universe (what derives the current acceler-
ated expansion of the universe?) and the rotation curves of stars in spiral galaxies
(why stars far away from the bulge of the galaxy rotate around the center with con-
stant speeds?). These large-scale problems require the introduction of dark energy and
dark matter to general relativity in amounts which are far more than the visible matter
and photons. This might really turn out to be the solution to these problems: namely
the theory is not modified but augmented with dark energy and dark matter yet to be
detected by other means than gravity. Of course it is somewhat a mystery why most of
the energy/matter budget of universe is stuff that do not seem to exist in the standard
model.

There is another possibility of solving these large scale problems within pure
gravity (albeit modifying general relativity) without introducing dark matter and dark
energy: one such route is the recent, in fact resurrected, trend of giving a tiny mass to
the graviton. Logically the third possibility could be a combination of both: it is quite
possible that there is some amount of dark matter and dark energy (whose nature and
amount we still have to find) and also, the graviton has a tiny mass. Even though,
we shall not be interested in the phenomenological aspects of large scale gravity per
se, we shall give a discussion of massive gravity which also will play a role in the
discussion of the higher derivative theories to follow in this chapter. This is because
generically, once higher curvature terms are added to the Einstein-Hilbert action,
besides the massless spin-2 particle of general relativity, new degrees of freedom,
which are generically massive, arise. Among these theories, quadratic gravity plays
a particularly important role and hence we shall spend a lot of time on figuring out its
particle content exactly and construct its conserved quantities. Once quadratic grav-
ity is understood, a large class of generic theories constitutes a rather straightforward
generalization of it.

In the other extreme, at high energies or extremely small (microscopic) scales,
there is no pressing experimental result that forces us to strictly modify general
relativity. Of course, this does not deter us from such attempts because there are
some compelling theoretical problems about general relativity in the UV scales: pure
general relativity (without matter) is non-renormalizable at the two loop level in
perturbation theory, while with matter, the state of affairs is even worse: it is non-
renormalizable even at the one-loop level. So as a “quantum theory”, general relativity
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is only reliable at the tree-level, namely at the level of a graviton exchange between
sources. The statement that general relativity is non-renormalizable is sometimes
misunderstood: it does not mean that the theory cannot be made finite, in fact, it can
be made finite, but the theory loses its predictive power at high energies, since one
requires infinitely many couplings to bemade finite or renormalized. Hence it requires
an infinite number of different measurements, or data so general relativity is at best
a valid effective theory at low energies. Therefore, one must certainly find another,
predictive theory of gravity at high energies.

Admittedly, there is currently no viable higher derivative theory based on the met-
ric and additional fields (supersymmetric or not), even though there is always a hope
about maximal supergravity theory being perhaps divergence-free at the several loop
level, which in any case is not good enough, the theory should be divergence-free at all
loops. Needless to say, when one deviates from the idea that the metric is the micro-
scopic field and accepts that the spacetime, the metric etc. are emergent low energy
quantities, one can build a renormalizable gravity theory. String theory is the unique
example with a perturbatively valid theory of quantum gravity where the metric is not
the fundamental field but appears a posteriori. Namely, gravity, aswe know it becomes
a low energy phenomenon. We will not have much to say on this fine endeavor, as it
is out of the scope of the current work. What we are interested here in this chapter
is possible deformations of Einstein’s gravity in the form (9.1.1) and sometimes in the
form f (R,-31) that are better effective theories at high energies compared to general
relativity. So, we assume that at high energies gravity is still defined within the con-
text of Riemannian geometry, with perhaps additional scalar fields. As mentioned,
among these theories, the quadratic gravity plays a special role as it is actually a renor-
malizable theory in four dimensions [423], but unfortunately, there is a massive ghost
in the spectrum which says that, neither the flat nor the constant curvature vacuum
are stable. The theory does not seem to posses a vacuum, which is of course unac-
ceptable. Bartering unitarity with renormalizability is not a good deal for a physical
theory, because the theory is a predictive one which is good but it predicts nonsense
in the form of negative probabilities or higher than unity probabilities which is bad.
Thus, in this sense generic quadratic gravity is not acceptable. One exception could
be the 3 dimensional toy model with a special tuning of the quadratic terms which we
shall briefly discuss. Less generic gravity theories such as the one with the Lagrangian
densityL = R + !R2 can be unitary but not renormalizable, but of course they are not
completely useless. For example this particular theory leads to a successful inflation-
ary phase in the early universe that is consistent with the cosmological observations
at this stage. The theory is called Starobinsky model and is equivalent to Einstein’s
gravity coupled to a self-interacting scalar field with a specific interaction potential.

First, we start the tour with the particle content of quadratic gravity in constant
curvature backgrounds. The discussion is given in [437] in its full generality, here we
shall expound upon some of the details skipped in the paper.
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9.1.1 Conventions

In concluding these introductory remarks, let us note that the notation in the current
chapter is mostly consistent with the rest of the book. The slight notational differences
are introduced as the discussion is developed. One notable difference is that of the
definition of a metric perturbation: here we use h,- defined in (9.2.3) and used in the
series of related papers, whereas in the other parts of the book we use 𝜘,- = g,- – ḡ,-.

In Chapters 1–8 and 10, we use the Landau-Lifshitz prescription [285] for the
choice of the signs in the action functional

S = – 1
2* ∫ dnxL G + ∫ dnxL M . (9.1.2)

For the goals of Chapters 9 (recall, of Section 3.1 also) this choice is not convenient and
so we use the prescription of the textbook [315]:

S = + 1
2* ∫ dnxL G + ∫ dnxL M . (9.1.3)

Since, below we are more interested in the particle content, non-ghost; non-tachyon
nature of the spectrum and, the choice (9.1.3) is better suited. Namely at the non-
relativistic limit, it corresponds to the choice

S = + 1
2* ∫ dt(K – U) (9.1.4)

with K being the kinetic and U being the potential energy.

9.2 Particle spectrum and stability of vacuum in quadratic gravity

As the quadratic gravity theory will serve us as a “template” for more general theories
to be discussed, we start with it:

I = ∫ dnx√–g( 1
* (R – 2D0) + !R2 + "R2

,- + 𝛾7GB), (9.2.1)

where the curvature scalar

7GB ≡ R2,-31 – 4R
2
,- + R

2 (9.2.2)

is the Gauss–Bonnet combination which vanishes identically in three dimensions and
whose variation vanishes identically in four dimensions as it can be written as a total
divergence, albeit in a non-covariant way. Therefore, it is really a topological invari-
ant of the four dimensional manifold with a boundary as long as it is a non-diverging
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quantity. Together with the cosmological constant and the Einstein-Hilbert piece, the
Gauss-Bonnet term constitute the first three Lovelock Lagrangians which form topo-
logical invariants in their respective dimensions: 0, 2 and 4. Of course, beyond these
dimensions, they give non-trivial contributions to the field equations. In four dimen-
sions * = 160GN with GN being the bare Newton’s constant, but we shall keep the
discussion in generic n ≥ 3 dimensions and sometimes single out the four dimensional
case.

In the theory (9.2.1), without the quadratic terms, the story is clear: the theory has
a unique vacuum, that is a unique maximally symmetric solution with the cosmolo-
gical constant D0 which is de Sitter1 for positive and AdS space for negative values
and the flat Minkowski space when it vanishes. Given D0, it is easy to show that there
is a massless spin-2 excitation about this vacuum, this is simply the graviton in gen-
eral relativity. The inclusion of the quadratic terms changes the vacuum structure, the
particle content and the conserved charges dramatically as we shall explain below.
The computations are straightforward but sometimes rather lengthy, in what follows
we will give some details of the computations but the reader is advised to fill out the
gaps on his/her own.

9.2.1 Curvature tensors at second order in perturbation theory

As we will need to expand various expressions up to a first order and sometimes up
to a second order in perturbation theory, we collect the relevant formulas here. Let us
introduce a small parameter : that counts the order, then as an exact expression let us
define the metric perturbation h,- as

g,- ≡ ḡ,- + :h,-. (9.2.3)

Here ḡ,- is a generic background which need not be maximally symmetric for this
section. From this expression, the inverse metric g,- can be found as

g,- = ḡ,- – :h,- + :2h,1h-1 + O (:3) . (9.2.4)

The trace of the metric perturbation is defined as h ≡ ḡ,-h,-. Up to second order, the
Christoffel connection can be found as

A1,- = Ā1,- + : (A1,-)L – :2h1" (A",-)L + O (:3) , (9.2.5)

where Ā1,- is the background metric compatible connection ∇̄1ḡ,- = 0 and the
linearized connection (A1,-)L is defined to be the first order term as

1 This identification is for the mostly positive signature and dS and AdS are replaced for the mostly
negative signature for our sign choice of the Riemann tensor.
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(A1,-)L ≡ 1
2
ḡ1+(∇̄,h-+ + ∇̄-h,+ – ∇̄+h,-). (9.2.6)

Here the letter L, be it subscript or superscript, refers to the linearized forms of the
corresponding tensors. Now we have to find the Riemann tensor at the second order,
for this purpose let us employ the substitution

A1,- = Ā1,- + $A
1
,-, (9.2.7)

in the definition of the Riemann tensor

R,-13 ≡ 𝜕1A,3- + A,1+A+3- – 1 ↔ 3 (9.2.8)

which yields

R,-13 = R̄,-13 + ∇̄1 ($A,3-) – ∇̄3 ($A,1-) + $A,1+$A+3- – $A,3+$A+1-, (9.2.9)

where the second order terms are

$A1,- = : (A1,-)L – :2h1" (A",-)L . (9.2.10)

Therefore, the Riemann tensor up to second order becomes

R,-13 = R̄,-13 + : (R,-13)L – :2h," (R"-13)L
– :2ḡ,!ḡ"𝛾 [(A𝛾1!)L (A"3-)L – (A𝛾3!)L (A"1-)L] + O (:3) . (9.2.11)

We have at linear order the linearized Riemann tensor:

(R,-13)L ≡ 1
2
(∇̄1∇̄3h,- + ∇̄1∇̄-h,3 – ∇̄1∇̄,h3- – ∇̄3∇̄1h,-

– ∇̄3∇̄-h,1 + ∇̄3∇̄,h1-). (9.2.12)

Then the Ricci tensor at second order is

R-3 =R̄-3 + : (R-3)L – :2h," (R"-,3)L
– :2ḡ,!ḡ"𝛾((A𝛾,!)L (A"3-)L – (A𝛾3!)L (A",-)L) + O (:3) , (9.2.13)
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and the scalar curvature at second order is

R = R̄ + :RL + :2 {R̄1+h!1h!+ – h-3 (R-3)L – ḡ-3h," (R"-,3)L
– ḡ-3ḡ,!ḡ"𝛾 [(A𝛾,!)L (A"3-)L – (A𝛾3!)L (A",-)L]} , (9.2.14)

where the linearized Ricci tensor and the linearized scalar curvature are defined,
respectively, as

RL-3 ≡ 1
2
(∇̄,∇̄3h,- + ∇̄,∇̄-h,3 – ◻̄h3- – ∇̄3∇̄-h) , (9.2.15)

RL = ḡ!"RL!" – R̄
!"h!". (9.2.16)

The above formulas [211] are valid in a generic background, such as a black hole
spacetime, but for the rest of the discussion in this chapter, we shall consider the back-
ground to be a maximally symmetric one for which the above expressions are greatly
simplified.

9.2.2 Field equations and the vacuum structure

Our first task is to find the field equations coming from the quadratic curvature action,
but this is a long exercise which will take us astray from our path. In any case, at the
end, one obtains the full source-free equations of quadratic gravity as [126]

1
* (R,- – 1

2
g,-R + D0g,-) + 2!R(R,- – 1

4
g,-R)

+ (2! + ") (g,-◻ – ∇,∇-)R
+ 2𝛾 [RR,- – 2R,3-1R31 + R,314R 314

- – 2R,3R
3
- – 1

4
g,-7GB]

+ "◻(R,- – 1
2
g,-R) + 2"(R,3-1 – 1

4
g,-R31)R31 = 0. (9.2.17)

It is not directly apparent from this expression, but one can check that in dimensions
less than or equal to four, the line coming from the variation of the Gauss-Bonnet
term, identically vanishes. For example, this can be shown once the Riemann tensor
is decomposed in terms of the Weyl tensor, Ricci tensor and the scalar curvature (in
four dimensions)

C,!-" = R,!-" – g,[-R"]! + g![-R"], +
R
3
g,[-g"]!, (9.2.18)

and the four dimensional identity for the Weyl tensor

C,!"3C-
!"3 = 1

4
g,-C1!"3C

1!"3 (9.2.19)
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is employed. Note that beyond four dimensions this identity is not valid for generic
spacetimes.

Let us now, first, carry out the easiest task and find themaximally symmetric solu-
tions: let ḡ,- denote such a solution with the Riemann, Ricci tensors and the scalar
curvature defined, respectively, as

R̄,1-3 =
2D

(n – 1)(n – 2)
(ḡ,-ḡ13 – ḡ,3ḡ1-), R̄,- =

2D
n – 2

ḡ,-, R̄ = 2nD
n – 2

. (9.2.20)

The computations are going to be valid for all n ≥ 3 dimensions. Plugging these
definitions to the field equations (9.2.17), one arrives at a quadratic equation

D – D0
2* + kD2 = 0, k ≡ (n! + ") (n – 4)(n – 2)2 + 𝛾(n – 3) (n – 4)(n – 1) (n – 2) . (9.2.21)

Clearly n = 4 is special: in four dimensions k = 0 and there is a unique solution.
But generically in n dimensions there are two solutions with effective cosmological
constants given as

D± =
–1 ± √1 + 8k*D0

2k* . (9.2.22)

Several remarks are apt: first, of all this non-uniqueness of vacuum is common to
almost all modified gravity theories with higher powers of the curvature tensors, yet
it is somewhat troubling in gravity. This is because, there is no natural choice as to
which one is the true vacuum. One cannot compare them energetically, as both (for
quadratic gravity) of them will be assigned a zero total energy by definition and by
construction. Also, unlike the case of quantum mechanics, one cannot talk about a
transition/tunneling between these vacua as the transition must change the structure
at infinity (the asymptotic structure) which seems unlikely in a finite amount of time.
Hence as a general remark: if these multiple vacua theories in the context of gravity
are to make sense, one must find a way of selecting the true vacuum of the theory. At
this stage there is no such procedure.

Leaving this complicated problem aside, let us note several observations: even for
D0 = 0, there is a non-flat vacuumwithD– = –1/k* in addition to the flat one. Secondly,
one must have 8k*D0 ≥ –1 to have a maximally symmetric solution. When the bound
is saturated, the two roots coalesce and for k = 0, one has a unique vacuum. An inter-
esting question is what would happen if the condition 8k*D0 ≥ –1 is not satisfied? This
is not clear, it is quite possible that a less symmetric solution (that does not carry as
many Killing vectors as themaximal number n(n+1)/2), becomes the vacuum (a type of
symmetry breaking takes place) or the theory may not have a vacuum and so it would
be physically irrelevant. At this stage, we do not know what would be the less sym-
metric vacuum: it is plausible that some kind of spontaneous comptactification takes
place and a vacuum of a product type in the AdSp × Sn–p appears as suggested in [249].
For our current purposes, we shall not worry about this andwe shall assume that there
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is always at least a single viable vacuum, namely a maximally symmetric solution. In
what follows this maximally symmetric solution of interest will be denoted simply as
D and we shall carry out “perturbation” theory about this vacuum which is our next
task.

9.2.3 Linearization of quadratic gravity

Let us consider a generic perturbation about one of the maximally symmetric vacua,
after setting : = 1, as

h,- ≡ g,- – ḡ,-. (9.2.23)

We assume that the full metric g,- asymptotically approaches to the background met-
ric ḡ,-, which of course puts a constraint on the perturbation. At this stage, all we
need to assume is that the perturbation satisfies the required fall off conditions. For
example, these fall off conditions can be dictated by the finiteness of the conserved
charges for black hole type spacetimes. There is also the interesting issue of how to
guarantee the smallness of the components of a tensor quantity as it changes under
coordinate transformations. Of course the tacit assumption here is that there is a set
of coordinates where |h,-| is small in the asymptotic region. Note that in the compu-
tations of the charges to follow, the perturbation need not be small in the bulk of the
spacetime, as in the case for black holes.

We can nowmove to the linearized form of the field equations (9.2.17), which, after
dropping all the terms but the O(h) ones, reads [126]

cG L
,- + (2! + ") (ḡ,-◻̄ – ∇̄,∇̄- + 2D

n – 2
ḡ,-)RL

+ "(◻̄G L
,- –

2D
n – 1

ḡ,-R
L) = 0, (9.2.24)

where the constant c in-front of the linearized Einstein tensor is found to be

c ≡ 1
* + 4Dn

n – 2
! + 4D

n – 1
" + 4D (n – 3) (n – 4)(n – 1) (n – 2) 𝛾. (9.2.25)

All the raising, lowering and covariant derivatives are defined with respect to the
background metric and the connection defined by it. For example the full non-linear
cosmological Einstein tensor is

G,- ≡ R,- –
1
2
g,-R + Dg,-, (9.2.26)

whose linearized form is the linearized Einstein tensor :

G L
,- = RL,- –

1
2
ḡ,-R

L – 2D
n – 2

h,-, (9.2.27)
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which is made up of the linearized Ricci tensor RL,- and the linearized scalar curvature

RL = (g,-R,-)L given respectively as
RL,- =

1
2
(∇̄3∇̄,h-3 + ∇̄3∇̄-h,3 – ◻̄h,- – ∇̄,∇̄-h), (9.2.28)

RL = –◻̄h + ∇̄3∇̄,h3, – 2D
n – 2

h. (9.2.29)

The full Bianchi identity∇,G ,- = 0 gives rise to the linearized (or background) Bianchi
identity ∇̄,G ,-

L = 0, which also reflects the fact that the left-over symmetry from the
full-diffeomorphism group of the theory is merely the background differomorphisms
of the form

$.h,- = ∇̄,.- + ∇̄-.,, (9.2.30)

with .,, an arbitrary function of spacetime, but it must keep the perturbation small at
infinity. This restricts the allowed background diffeomorphisms.

There is an important remark about the constant c that appears in-front of the
linearized Einstein term in the linearized form of the field equations (9.2.24): by the
looks of it, it appears as it is the effective Newton’s constant of the theory which can
be defined in the weak field limit. But, this is a red-herring: there will be a further
term that will contribute to c and the combination will become the effective Newton’s
constant, a fact which might appear to be purely a nomenclature issue at this stage of
the discussion. But it is not, correct identification of the degrees of freedom and the
unitarity regions as well as finding specific theories, require a proper identification of
the effective Newton’s constant: namely, the one measured in the experiments

Finally, we should note that there is some computation that one must carry out
to arrive at (9.2.24) from the full non-linear equations. For this purpose the following
linearizations given in appendix of [126] are needed

(R,1-3R13)L = 2D
n – 1

(RL,- + 1
n – 2

ḡ,-RL +
2D

(n – 2)2
h,-), (9.2.31)

(R,13!R- 13!)L = 8D
(n – 1)(n – 2)

(RL,- – D
n – 2

h,-), (9.2.32)

(R,13!R,13!)L = 8D
(n – 1)(n – 2)

RL, (9.2.33)

(R3,R-3)L = 4D
n – 2

(RL,- – D
n – 2

h,-), (9.2.34)

(R,-R,-)L = 4D
n – 2

RL, (9.2.35)

(R24+13 – 4R231 + R2)L = 4D(n – 3)
n – 1

RL, (9.2.36)

RL,3-1ḡ
31 = RL,- –

2D
(n – 1)(n – 2)

(h,- – ḡ,-h), (9.2.37)
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which follow easily for the (A)dS backgrounds. Let us also note that the GB density for
the background spacetime reads

R̄24+13 – 4R̄
2
31 + R̄

2 = 4nD2(n – 3)
(n – 2)(n – 1)

. (9.2.38)

Before we move on, let us make a small digression and as a useful exercise, directly
prove the background covariant conservation of the linearized Einstein tensor.

9.2.4 Explicit check of linearized Bianchi identity

Let us show that the background Bianchi identity is satisfied for the linearized Einstein
tensor : ∇̄,G L

,- = 0. So we need to compute the following explicitly

∇̄,G L
,- = ∇̄, (RL,- – 1

2
ḡ,-R

L – 2
n – 2

Dh,-) (9.2.39)

= 1
2
∇̄, (–◻̄h,- – ∇̄,∇̄-h + ∇̄3∇̄-h3, + ∇̄3∇̄,h3-)
– 1
2
∇̄- (–◻̄h + ∇̄1∇̄3h13 – 2D

n – 2
h) – 2D

n – 2
∇̄,h,-. (9.2.40)

One of the terms we have to handle reads

∇̄,∇̄3∇̄,h3- = [∇̄,, ∇̄3] ∇̄,h3- + ∇̄3∇̄,∇̄,h3-, (9.2.41)

which after making use of the definition of the Riemann tensor and its background
form becomes

∇̄,∇̄3∇̄,h3- = R̄,3 +
, ∇̄+h3- + R̄,3 +

3 ∇̄,h+- + R̄,3 +
- ∇̄,h3+

+ ∇̄3◻̄h3-
=R̄3+∇̄+h3- – R̄,+∇̄,h+-
+ 2D(n – 1) (n – 2) ($,- ḡ3+ – ḡ,+$3-) ∇̄,h3+ + ∇̄3◻̄h3-

= 2D(n – 1) (n – 2) (∇̄-h – ∇̄+h-+) + ∇̄3◻̄h3-. (9.2.42)

Making use of these one can write ∇̄,RL,- as

∇̄,RL,- =12 [–∇̄,∇̄-∇̄,h + ∇̄,∇̄3∇̄-h3, + 2D(n – 1) (n – 2) (∇̄-h – ∇̄+h-+)] , (9.2.43)
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where ∇̄3∇̄-h,3 =∇̄-∇̄3h,3 + [∇̄3, ∇̄-] h3,
=∇̄-∇̄3h,3 + R̄ 3

3- +h
+
, + R̄

+
3-, h3+ (9.2.44)

=∇̄-∇̄3h,3 + 2D(n – 1) (n – 2) (nh,- – ḡ,-h) , (9.2.45)

and similarly we also have

∇̄,∇̄3∇̄-h,3 =∇̄,∇̄-∇̄3h,3 + 2D(n – 1) (n – 2) ∇̄, (nh,- – ḡ,-h)
=∇̄-∇̄,∇̄3h,3 + 2D(n – 1) (n – 2) [(2n – 1) ∇̄,h,- – ∇̄-h] , (9.2.46)

and finally

∇̄,∇̄-∇̄,h = [∇̄,, ∇̄-] ∇̄,h + ∇̄-∇̄,∇̄,h
=R̄, +

-, ∇̄+h + ∇̄-◻̄h = 2D
n – 2

∇̄-h + ∇̄-◻̄h. (9.2.47)

Employing these results in ∇̄,RL,-, one arrives at

∇̄,RL,- = 1
2
∇̄- (–◻̄h + ∇̄,∇̄3h,3 – 2D

n – 2
h) + 2D

n – 2
∇̄,h,-, (9.2.48)

and putting this result in (9.2.40), leads to the linearized Bianchi identity ∇̄,G L
,- = 0.

Of course, as the alert reader might have realized, this has been a long detour but
it was a useful exercise that also verified our formulas. The easiest way of getting the
linearized Bianchi identity (of any divergence-free rank two tensor, not necessarily the
Einstein tensor) would simply be to linearize the full Bianchi identity as

∇,G,- = ∇̄,Ḡ,- + ∇̄,G L
,- + (∇,)LḠ,- + O(h2) = 0. (9.2.49)

The first and the third terms are zero and hence one has the linearized Bianchi identity
at this order.

9.2.5 Degrees of freedom of quadratic gravity in AdS

After this intermission, let us get back to the linearized equations: it is clear that gener-
ically (9.2.24) is a fourth-order linear equation which can be factored into a product of
two wave equations and all the information regarding the particle-content of the the-
ory is contained in that equation. But to properly identify the modes (the relativistic
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oscillators or the normal modes, in some sense) we need to decouple the equation by
choosing a better phase-space “coordinate” than h,-. Clearly there are also spurious
(gauge) modes which should be eliminated. For this purpose the above mentioned
background diffeomorphisms can be used to fix the gauge, but we shall work without
a choice of gauge and employ the so called auxiliary field method to identify the true
degrees of freedom and theirmasses. Aswe noted above, this computationwas carried
out in [437] which we closely follow.

Before we indulge into the detailed discussion, a brief note on the previous literat-
ure about the particle-content of quadratic gravity is apt here. The theory itself is only
a few years younger than general relativity. But the “older” literature wasmostly in the
context of classical physics. We take the liberty of loosely starting the modern work on
this with [423] in which for flat spacetime, in four dimensions, 8 degrees of freedom
were identified [424]. When one deviates from the flat background, the cosmological
constant of AdS or dS also plays a role in the masses of the particles and shifts their
numerical values. Namely, the scattering of the graviton (or any other particle) with
the background appears as part of the mass of the graviton (or the particle at hand).
In cosmological Einstein’s theory, themassless graviton survives this fate and remains
massless, but for quadratic gravity this is not the case. So strictly speaking, it is not
only the cosmological constant that shifts the mass here, the cosmological constant
conspires with the quadratic curvature terms and they together shift the mass of
gravitons from their bare values in the Lagrangian.

More recently, in (A)dS, [216], the scattering amplitude between two covariantly-
conserved sources was computed at the tree-level (one graviton exchange) in a slightly
more general theory of quadratic gravity, that is quadratic gravity deformed with the
gauge-non invariant Fierz-Pauli mass term. We shall give this computation in the dis-
cussion below. From the poles of the scattering amplitude, in principle one can read
the masses, but not all poles correspond to physical particles. In [39], for n = 3, a
specific combination of the quadratic terms (8!+3" = 0) was considered in the auxili-
ary formalism which has a massive spin-2 excitation and the resulting theory is called
the “New Massive Gravity” (NMG). This is an interesting theory that describes a non-
linear massive gravity with 2 degrees of freedom in the perhaps simplest way possible
albeit only in 3 dimensions. In [121], a truncated version of NMG which does not have
the Einstein-Hilbert part was considered and the resulting theory has a massless spin-
2 excitation. This theory, called K-gravity, has rather remarkable properties such as
asymptotically flat black holes (black flowers with non-spherical horizons), a hitherto
unnoticed sector in 3 dimensions [4, 30], since all the previously found black holes
were asymptotically AdS. In 3 dimensions, for generic values of the parameters, the
masses of the excitations were found in [210]. In n dimensional AdS backgrounds,
when the parameters of the quadratic theory are tuned in such a way that all massive
modes decouple, one ends upwith the “Critical Gravity” [123, 300] with only an appar-
ent massless spin-2 particle. All these sub-cases follow from the generic expressions
reproduced below.
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We can write the linearized Einstein tensor as

G L
,- ≡ D (ḡ),-31 h31, (9.2.50)

where the Hermitian operator D (ḡ),-31 reads
D (ḡ),-!" =12 (◻̄ + 2D

n – 2
)(ḡ,-ḡ!" – ḡ,!ḡ-") – 1

2
(ḡ,-∇̄!∇̄" + ḡ!"∇̄,∇̄-)

+ 1
2
(ḡ,!∇̄"∇̄- + ḡ-"∇̄!∇̄,). (9.2.51)

Directly extending the quadratic gravity action up to O(h2) is a very cumbersome task
and moreover it is a rather long exercise to put the final result in an explicitly gauge
invariant form (up to a boundary term). Therefore, the best way to proceed is to use
the “inverse”calculus of variations and construct the action that yields the linearized
field equations (9.2.24). Let that action be I(h2) = ∫ dnx√–ḡL2. Then the second order
Lagrangian is obtained by multiplying the linearized field equations by – 1

2h
,- and

integrating the result over the background spacetime to arrive at the second order
Lagrangian density after dropping the boundary terms

L2 = – 12
(c + 4D"

(n – 1)(n – 2)
)h,-G L

,- + "G
L
,-G

,-
L + (! + "(4 – n)

4
)R2L. (9.2.52)

This is what one would call the free (non-interacting) version of the quadratic grav-
ity around a maximally symmetric background. Namely, this free theory has all the
perturbative degrees of freedom albeit in a coupled form plus the gauge modes. The
minus sign in front of the Einsteinian piece is important as it is chosen to give the
correct (positive) kinetic energy for the massless spin-2 graviton. Or equivalently, if we
couple the theory to matter, that is the correct sign, from which we can also identify
the effective Newton’s constant as

1
*eff

≡ 1
* + 4D(n! + ")

n – 2
+ 4D (n – 3) (n – 4)(n – 1) (n – 2) 𝛾, (9.2.53)

which incorporates the earlier-noted shift from the constant c. The numerical factor
1/2 is clear: a factor of 2 will arise in the Euler-Lagrange equation due to the Hermitian
property of the operator (9.2.51). In what follows we shall make frequent use of integ-
ration by parts and the “Hermitian” property of the operator: so, not to clutter the
notation, we work with Lagrangian (density) but drop the boundary terms knowing
that we are really working with the actions. To be able to identify the physical modes,
let us introduce two auxiliary fields f,- and > to recast the Lagrangian as

L2 = – 1
*eff

( 1
2
h,- + f ,-)G L

,-(h) –
1

4"*2eff
(f,-f ,- – f 2) + >RL – b

2
>2, (9.2.54)
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where f ≡ ḡ,-f,-. To reproduce the original Lagrangian the constant b is found to be

b = 2(n – 1)
4!(n – 1) + "n . (9.2.55)

Namely, integrating out the auxiliary fields in (9.2.54) gives us back our original action
(9.2.52). Let us briefly show how this works. Variation with respect to > yields

RL – b> = 0, (9.2.56)

while variation with respect to f ,- yields

– 1
*eff

G L
,-(h) –

1
2"*2eff

(f,- – ḡ,-f) = 0. (9.2.57)

Noting that the trace of the linearized Einstein tensor is

ḡ,-G L
,-(h) =

2 – n
n

RL, (9.2.58)

from the trace of (9.2.57), we find

f = –(n – 2)
n – 1

"*effRL. (9.2.59)

Plugging this back to the same equation we arrive at

f,- = –2"*eff(G L
,-(h) + ḡ,-

n – 2
2(n – 1)

RL). (9.2.60)

It is easy to show that plugging back >, f , and f,- to the mother Lagrangian (9.2.54),
one reproduces the original theory (9.2.52). Now let us take the other route: to get rid
of the troublesome >RL term, define a new field ̃f ,- as

f ,- = ̃f ,- – 2*eff
n – 2

ḡ,->, f = ̃f – 2n*eff
n – 2

>, (9.2.61)

which then reduces (9.2.54) to

L2 = – 1
*eff

( 1
2
h,- + ̃f ,-)G L

,-(h) –
1

4"*2eff
( ̃f,- ̃f ,- – ̃f 2)

– n – 1
(n – 2)"*eff

> ̃f + ( n(n – 1)
"(n – 2)2 –

b
2
)>2. (9.2.62)



9.2 Particle spectrum and stability of vacuum in quadratic gravity 423

As > appears without derivatives, we can integrate it out to arrive at

L2 = –
1
*eff

( 1
2
h,- + ̃f ,-)G L

,-(h) –
1

4"*2eff
( ̃f,- ̃f ,- – ̃f 2)

– 1
4"*2eff

. ̃f 2, (9.2.63)

where the constant . is found to be

. = 4!(n – 1) + "n
4(!n + ") . (9.2.64)

A further field redefinition is needed to decouple h,- and ̃f,-. By inspection one
observes that the following shift does the job

h,- ≡ h̃,- – ̃f,-. (9.2.65)

With this, our second order Lagrangian reduces to the (almost) decoupled form

L2 = – 1
2*eff

h,-G L
,-(h) +

1
2*eff

f ,-G L
,-(f ) –

1
4"*2eff

(f,-f ,- – (1 – . )f 2), (9.2.66)

where we removed all the tildes for notational simplicity. The first term is merely the
Lagrangian of the linearized Einstein theory with an effective Newton’s constant, and
therefore as long as *eff > 0, it describes a massless unitary spin-2 excitation, which is
the Einsteinian mode, the massless graviton that we all love to deal with. We can also
observe that the second term (the kinetic part) has a wrong (positive) sign, so there
will be a massive ghost. More properly, either the massless or the massive spin-2 mode
is ghostlike and the conventional choice is to make the massless spin-2 mode unitary
as it is the correct low energy theory. We are done with the massless part but not yet
with the massive mode, for when . = 0, the f ,- part yelds the Fierz-Pauli massive
gravity (with the noted wrong-sign for the kinetic energy). For . ̸= 0 as in our generic
case, there is an additional massive spin-0 mode (or scalar graviton) which we still
have to decouple. In order to do so and to find the masses, let us vary the action with
respect to f ,- to get

G L
,-(f ) –

1
2"*eff

(f,- – ḡ,-f) – .
2"*eff

ḡ,-f = 0, (9.2.67)

whose trace yields

RL(f ) +
1

(n – 2)"*eff
(1 – n + n.)f = 0. (9.2.68)

G L
,-(f ) satisfies the background Bianchi identity, hence double-divergence of (9.2.67)

yields

(. – 1)◻̄f + ∇̄,∇̄-f,- = 0. (9.2.69)
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Making use of this in the trace equation and using the definition of RL, one arrives at
a massive scalar wave equation satisfied by the f -field:

(. ◻̄ + 2D
n – 2

– 1 – n + n.
(n – 2)"*eff

)f = 0, (9.2.70)

from which we can identify the mass of the scalar mode as

m2
s = – 1.( 2D

n – 2
– 1 – n + n.
(n – 2)"*eff

), (9.2.71)

as long as . ̸= 0. Clearly, this mode decouples from the spectrum for the Fierz-Pauli
tuning of . = 0. Finally, we should look at the trace-free part of (9.2.67) which yields
the usual Fierz-Pauli massive graviton with the mass-square

m2
g = – 1

"*eff
. (9.2.72)

This concludes the decoupling of the physical modes and identification of the
masses for the n-dimensional quadratic gravity in (A)dS. Let us summarize our res-
ults and study some particular sub-cases. Altogether in its perturbative spectrum,
quadratic gravity has a unitary massless spin-2 mode, which is the usual graviton,
a massive spin-zero mode whose mass-square is given as (9.2.71) which should satisfy
the Breitenlohner-Freedman bound in AdS , namelym2

s ≥ n–1
2(n–2)D to be a non-tachyonic

mode, and a massive spin-2 ghost with the mass-square given as (9.2.72). The total
number of propagating degrees of freedom in quadratic gravity is

#DOF = n(n – 3)
2

+ (n + 1)(n – 2)
2

+ 1 = n(n – 2). (9.2.73)

In terms of the parameters in the Lagrangian, more explicitly, the masses of the
massive modes read

m2
g = – 1

"* – 4D (n – 1)(" + !n) + 𝛾(n – 4)(n – 3)"(n – 2)(n – 1) , (9.2.74)

for the spin-2 mode, while the massive spin-0 has

m2
s =

n – 2
*(4!(n – 1) + "n) +

4D(n – 4)((n – 1)(" + !n) + 𝛾(n – 3)(n – 2))
(n – 1)(n – 2)(4!(n – 1) + "n) , (9.2.75)

whose flat space limits are clear. Of course, here D is not the bare cosmological con-
stant in general, it is a solution to the quadratic equation we discussed before. Clearly,
for a non-linear theory, as the onewe have studied, by simply looking at the non-linear
Lagrangian one cannot see the DOF and read their masses as the above formulas are
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a testament. All the terms, parameters, contribute, in a highly non-trivial way, to the
masses which are only defined at a given constant curvature background. Let us con-
sider the three and the four dimensional cases as two explicit examples as they offer
interesting limits and some other special theories.

The case of n = 3 dimensions
The masses of the spin-2 and spin-0 modes respectively read

m2
g = – 1

*" – 4(1 + 3!")D, m2
s =

1
(8! + 3")* – 4(3! + ")

(8! + 3")D, (9.2.76)

which were also found with the usual canonical analysis in [210] for the de Sitter case.
It is also important to note that, since there is no massless graviton these are the 3
degrees of freedom in 3 dimensions. This fact has remarkable consequences, for the
choice 8! + 3" = 0, the scalar mode decouples and one can make the massive spin-
2 mode unitary. This theory is called the “New Massive Gravity” (NMG) theory noted
above [39] which is a theory of massive spin-2 graviton at the non-linear level. 2

The case of n = 4 dimensions
The masses of the spin-2 and spin-0 modes respectively read

m2
g = – 1

*" – 2(1 + 4!")D, m2
s =

1
2(3! + ")* . (9.2.77)

It is interesting to note that only in four dimensions, for (A)dS backgrounds, the mass-
less mode does not receive a correction from the background. In addition to these two
modes, there is the Einsteinianmassless spin-2 graviton which altogether make up the
8 degrees of freedom whose flat space versions were given by Stelle [423]. An often
studied sub-case of quadratic gravity is the Weyl-square corrected Einstein’s gravity
for which 3! + " = 0 in four dimensions. In this case the scalar mode decouples but
the theory has a massive spin-2 ghost. In addition, if one drops out the Einstein term
and keeps only the quadratic part, one has the so called conformal gravity [309, 389]
since the combination R2,- –

1
3R

2 is equal to the Weyl-square up to a boundary term.

Einstein-Gauss-Bonnet theory
For the Einstein-Gauss-Bonnet (Einstein-GB) theory in n dimensions, since ! = " =
0, both massive modes decouple and only the massless mode survives as expected

2 As a side remark, let us note that NMG suffers from bulk-boundary unitarity clash, namely the theory
does not have a unitary boundary conformal field theory in its 2 dimensional boundary of AdS3 as one
of its central charges of the double copy of the Virasoro algebra turns out to be negative. This unitarity
clash seems to persist in all extensions of NMG with massive spin-2 gravitons [212].
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since the field equations are second order. But there is a constraint on the theory for
unitarity since the effective Newton’s constant now reads

1
*eff

≡ 1
* + 4D (n – 3) (n – 4)(n – 1) (n – 2) 𝛾 = 1

* + 4Dk, (9.2.78)

which must be positive to get a positive kinetic energy for the massless graviton or
equivalently, to get attractive gravity and this condition must be compatible with the
existence of a maximally symmetric solution that is 1 + 8k*D0 ≥ 0. This theory arises
in low energy string theory [71, 477].

Critical gravity
Critical gravity corresponds to the decoupling of the massive spin-0 mode with the
choice 4!(n–1)+"n = 0 while tuning the cosmological constant in such a way that the
massive spin-2 mode also decouples. The resulting theory is a higher derivative theory
with an action of the form [123, 300]

S = ∫ dnx√–g( 1
* (R – 2D0) + !R2 – 4 (n – 1)

n
!R,-R,- + 𝛾7GB)), (9.2.79)

where the bare cosmological constant must be tuned as

D0 = –
n2 (n – 1) (n – 2) [(n – 1) (n – 2) ! + (n – 3) (n – 4) 𝛾]

8* [(n – 1) (n – 2)2 ! + n (n – 3) (n – 4) 𝛾]2 . (9.2.80)

Even though this theory seems promising as a possible ghost-free, perhaps renormal-
izable gravity theory, it turns out this is not the case. The theory has asymptotically
non-AdS logarithmic modes [3, 215] which are of the wave-type and arise as both exact
and as perturbative solutions. It was shown in [381] that they are ghosts and truncation
of these modes renders the Hilbert space trivial, devoid of anything but the vacuum.
Hence the above discussion teaches us something important: for n ≥ 4 one must have
" = 0 to avoid the massive spin-2 ghost, n = 3 is the exceptional case.

9.3 Particle spectrum of f (R,-31) gravity in (A)dS
Now we turn our attention to the following more general theory with f an arbitrary
analytic function of the Riemann tensor

S = ∫ dnx√–gf (R,-!") . (9.3.1)

In this formulation, with two up and two down indices on the Riemann tensor,
the (inverse) metric is not needed for contractions and this simplifies the ensuing
discussion a little bit. For example, in this notation, the Einstein-Hilbert action (up
to a multiplicative constant) simply reads
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SEH = ∫ dnx√–g$!,$"-R,-!". (9.3.2)

Since the variations of the Kronecker delta vanish, the field equations are a little easier
to get for the generic theory. At this stage one might wonder why we are not taking the
more general actions of the form

S = ∫ dnx√–g f (g!", R,-13, ∇1R,-13, . . . , ∇11∇12 . . . ∇1mR,-13) , (9.3.3)

where the covariant derivatives of the Riemann tensor and their contractions are also
included ? While this is a legitimate question, one cannot find the particle content of
such a theory in full generality: namely, the number of derivatives, and the actionmust
be given to deal with such a theory with derivatives of the curvature tensors. But the
particle content of the given in (9.3.1) can be computed with full generality in explicit
form. There are two ways to do this: the first one is the conventional way of linearizing
the field equations which is a rather long method which was given in detail in [213]
and we shall not repeat it here. The other method, a beautiful short-cut, boils down
to finding an equivalent quadratic theory that has the same particle content as the
general theory at hand [112, 211, 233].

9.3.1 Linearization of the field equations

Let us, first, find the full non-linear field equations. The variation of the action with
respect to the metric is

$gS = ∫ dnx ($√–g f (R,-!") +√–g 𝜕f𝜕R,-13 $R,-13) . (9.3.4)

Here, we have already picked up the first fruit of employing the up-up and down-down
Riemann tensor as promised before. We need the variation of the Riemann tensor
which in the usual form reads

$R,-13 = ∇1$A,-3 – ∇3$A,-1, (9.3.5)

from which one can get the two-index up two index-down form as

$R,-13 =
1
2
(g!1∇3∇- – g!3∇1∇-) $g,! – 1

2
(g!1∇3∇, – g!3∇1∇,) $g!-

– 1
2
R -
13 !$g

,! + 1
2
R ,
13 !$g

!-. (9.3.6)

There is a slightly subtle point here: the derivative 𝜕f
𝜕R,-!"

is a four-indexed tensor but

it does not in general have the symmetries of the Riemann tensor and one might con-
sider writing it in such a way that it splits into two parts one that has those symmetries
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and one that does not. This would be a bit complicated but it really is redundant
since at the end it is multiplied with $R,-13 and no piece of the wrong symmetry sur-
vives. Hence one should not worry at all about the symmetry issue. Then, skipping the
argument of f for notational simplicity, we have

$gS = –
1
2
∫ dnx√–gfg,-$g,-

+ 1
2
∫ dnx√–g 𝜕f𝜕R,-13 (g!1∇3∇- – g!3∇1∇-)$g,!

– 1
2
∫ dnx√–g 𝜕f𝜕R,-13 (g!1∇3∇, – g!3∇1∇,)$g!-

– 1
2
∫ dnx√–g 𝜕f𝜕R,-13 (R -

13 !$g
,! – R ,

13 !$g
!-), (9.3.7)

which upon integration by parts and dropping the irrelevant boundary terms, for our
current purpose, yields the source-free nonlinear field equations

1
2
(g-1∇+∇3 – g-3∇+∇1) 𝜕f𝜕R,+13 – 1

2
(g,1∇+∇3 – g,3∇+∇1) 𝜕f𝜕R+-13

–1
2
( 𝜕f𝜕R,+13 R +

13 - –
𝜕f𝜕R+-13 R +

13 ,) – 1
2
g,-f = 0, (9.3.8)

which can be simplified but this form is sufficiently simple and compact to handle.
The first task is to find the equation that yields the effective cosmological constants
of the maximally symmetric solutions. There could be of course many vacua: if the
highest order term in the action is of the formRiemannN , onewill have a polynomial of
degree N with generically N solutions. [For Born-Infeld type gravity theories or when
f is not in the form of a power series in the curvature, the vacuum equation need not
be a polynomial of course: as an example consider f (R) = sin(,R).] There could of
course be constraints on the parameters of the theory to get real solutions. Clearly,
there is no guarantee that the solution can be explicitly found: for example, for the
polynomial case beyond N > 4, one cannot write the explicit solution in radicals. In
what follows, this does not concern us, all we need is that there exists at least one
maximally symmetric solution about which we can perform perturbation theory and
calculate the particle spectrum etc.

Clearly for the maximally symmetric spacetimes, the first line of the field equa-
tions vanishes. Therefore, we have, from the remaining part, the following equation
that gives us the potential multiple vacua of the theory

[[ 𝜕f𝜕R,+13]]R̄,+13

R̄ +
13 - – [ 𝜕f𝜕R+-13 ]R̄,+13 R̄ +

13 , + ḡ,-f (R̄!"13) = 0, (9.3.9)
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where the Riemann tensor of the vacuum in this notation reads

R̄,+13 =
2D(n – 1) (n – 2) ($,1$+3 – $,3$+1) (9.3.10)

and the bracketed terms are to be evaluated in this background. There are two terms
that one needs to calculate to find the vacua:

f (R̄!"13) , [[ 𝜕f𝜕R,+13]]R̄,+13

. (9.3.11)

Let us contemplate on the meaning of this simple observation which will help us
construct a newmethod of studying these theories : (9.3.9) says that if these two quant-
ities are the same for any given two gravity theories with different actions, then those
two gravity theories have the same maximally symmetric vacua. Or more explicitly,
their effective cosmological constants are equal. Then, for a theory defined by a given
f (R,-!"), if we are interested only in the vacua of the theory then we can determine the
vacua by simply performing a first order Taylor series expansion around a yet to be
determined maximally symmetric background as

SELA = ∫ dnx√–g(f (R̄,-!") + [ 𝜕f𝜕R+-13 ]R̄,+13 (R+-13 – R̄+-13)). (9.3.12)

The index ELA stands for the “equivalent linearized action”, meaning SELA and (9.3.1)
have the same vacua. So clearly to find the vacua of the generic theory all one needs to
do is an expansion in the power series to construct this action at a first order. We can
actually do better than that and continue to reduce the ELA action to the cosmological
Einstein-Hilbert form as follows: let us define a parameter, & , via

[ 𝜕f𝜕R,-13 ]R̄,+13 R,-13 ≡ &R. (9.3.13)

This needs an explanation: since [𝜕f /𝜕R,-13]R̄,-13 is made up of the Kronecker deltas

such as $1,$3- , and its surviving part satisfies the symmetries of the Riemann tensor,
so antisymmetrizing $1,$3- yields $[1, $3]- . Note that one does not need explicit antisym-
metrization in the down indices since one has $[1, $

3]
+ = $[1[,$

3]
+] . Then we have

[[ 𝜕f𝜕R,+13]]R̄,+13

= &$[1, $
3]
- , (9.3.14)

which reduces ELA (9.3.12) to the Einstein-Hilbert form

SELA = 1
*ELA

∫ dnx√–g (R – 2D0,ELA) , (9.3.15)
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with the effective parameters defined as

1
*ELA

= & ,
D0,ELA
*ELA

= – 1
2
̄f + nD

n – 2
& , (9.3.16)

where we utilized the shorthand notation ̄f ≡ f (R̄!"13) and used the background value
of the scalar curvature R̄ = 2nD

n–2 . It is then clear that the effective cosmological constant
is simply D = D0,ELA which gives

D = n – 2
4&

̄f , (9.3.17)

as the one we get from the trace of (9.3.9). The usefulness of the short-cut method is
clear: one does not have to find the full nonlinear field equations to find the constant
curvature vacua of the theory. Moreover this short-cut approach can be extended to
the second order to study the particle content, energy and the stability of the vacua.
For this latter case, the procedure is much more handy as it spares one from a rather
long computation. Let us move on to this discussion.

To identify the particle content, we need to find the linearized field equations of
the full theory (9.3.8) about any one of its maximally symmetric solution. For this
purpose, we have to compute the following linearized quantities for the second line
of (9.3.8)

[g,-f (R,-!")]L =h,-f (R̄,-!") + ḡ,- [[ 𝜕f𝜕R!"13]]R̄!"13

(R!"13)L , (9.3.18)

( 𝜕f𝜕R,+13 R +
13 -)

L

=[[ 𝜕2f𝜕R'(!4𝜕R,+13]]R̄,+13

(R'(!4)L R̄ +
13 -

+ [[ 𝜕f𝜕R,+13]]R̄,+13

(R +
13 -)L , (9.3.19)

and the following quantity and its antisymmetric version for the first line of (9.3.8)

(g-1∇+∇3 𝜕f𝜕R,+13)L

= ḡ-1 [[ 𝜕2f𝜕R'(!4𝜕R,+13]]R̄,+13

∇̄+∇̄3 (R'(!4)L
+ ḡ-1 [[ 𝜕f𝜕R,+1!]]R̄,+13

∇̄+ (A33!)L
– ḡ-1 [ 𝜕f𝜕R!+13 ]R̄,+13 ∇̄+ (A!3,)L
– ḡ-1 [ 𝜕f𝜕R,!13 ]R̄,+13 ∇̄+ (A!3+)L . (9.3.20)
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This is a rather long and tedious computation but the crux of the matter is that we
need the following three background-evaluated tensors

[[ 𝜕2f𝜕R'(!4𝜕R,+13]]R̄,+13

, [[ 𝜕f𝜕R,+13]]R̄,+13

, f (R̄!"13) . (9.3.21)

Once again, if these three tensors are equal for any two different theories, their particle
content and vacua will be the same. They could of course differ in general at the inter-
acting, third order, level. For this we have nothing to say here except to note that
equivalent cubic curvature theory can be constructed along similar lines. So as in the
case to the ELA action,we define an equivalent quadratic action (EQA) using the Taylor
series expansion in the Riemann tensor up to second order as

SEQA = ∫ dnx√–g{{{{{f (R̄,-!") + [
𝜕f𝜕R+-13 ]R̄,-13 (R+-13 – R̄+-13)

+1
2
[[ 𝜕2f𝜕R'(!4𝜕R,+13]]R̄,-13

(R'(!4 – R̄'(!4) (R,+13 – R̄,+13)}}}}} , (9.3.22)

Next, we can show that (9.3.22) reduces to the quadratic gravity whose properties we
have already studied. Define the parameters !, ", and 𝛾 via

1
2
[[ 𝜕2f𝜕R'(!4𝜕R,+13]]R̄,-13

R'(!4R
,+
13 ≡ !R2 + "R+3R

3
+ + 𝛾 (R'+13R13'+ – 4R+3R3+ + R2) . (9.3.23)

Once again, the left-hand side involves merely the Kronecker deltas and obeys the
symmetries of the Riemann tensors R'(!4 and R

,+
13, therefore

[[ 𝜕2f𝜕R'(!4𝜕R,+13]]R̄,-13

=2!$[!' $
4]
( $

[1
, $

3]
+ + " ($!['$[1(]$|4|[, $3]+] – $4['$[1(]$|!|[, $3]+])

+ 12𝛾$[!' $4($1,$3]+ , (9.3.24)

where the last term, clearly, should have the totally antisymmetric form since the
Gauss-Bonnet combination is the quadratic Lovelock term written in terms of the
generalized Kronecker deltas (to be more throughly discussed in the next section)

$,1,2,3,4-1-2-3-4 R
-1-2
,1,2R

-3-4
,3,4 = 4 (R,-13R,-13 – 4R,-R,- + R2) , (9.3.25)
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where

$,1,2,3,4-1-2-3-4 = :!1!2!3!4$
,1
-!1
$,2-!2 $

,3
-!3

$,4-!4 = 4!$,1-[!1 $
,2
-!2

$,3-!3 $
,4
-!4]

. (9.3.26)

Using these together with (9.3.13), one can put (9.3.22) in a more explicit form as a
quadratic gravity theory

SEQA = ∫ dnx√–g [ 1*̃ (R – 2D̃0) + !R2 + "R+3R3+ + 𝛾7GB] , (9.3.27)

where the effective Newton’s constant is given as

1
*̃ = & – 4D

n – 2
[n! + " + 𝛾(n – 2) (n – 3)

n – 1
] , (9.3.28)

and the effective “bare” cosmological constant reads

D̃0
*̃ = –1

2
f (R̄!"13) + nD

n – 2
& – 2D2n(n – 2)2 [n! + " + 𝛾(n – 2) (n – 3)n – 1

] . (9.3.29)

The maximally symmetric solution of (9.3.27) satisfies the quadratic equation that we
have seen before:

D – D̃0
2*̃ + [(n! + ") (n – 4)(n – 2)2 + 𝛾(n – 3) (n – 4)(n – 1) (n – 2) ]D2 = 0. (9.3.30)

Clearly, the quadratic appearance of this equation is a red-herring as D̃0 involves the
background evaluated f and this equation yields the same background as the f (R,-!")
theory and (9.3.15).

So we have managed to recast the generic f (R,-!") as a quadratic theory up to
and including O(h2) about (A)dS backgrounds. This completes the discussion of the
particle content of the generic theory since we have already given a detailed analysis
for the quadratic gravity. So, given an f , one simply follows the recipe above to find
the effective parameters and get the masses. So, generically f (R,-!") theory has n(n–2)
degrees of freedom. In the most general form, there will always be a massive ghost
which simply renders the theory unphysical and the vacuum unstable. The natural
question would be to ask if there are theories free of the massive ghost and even with
the massive scalar but only have the massless graviton. Lovelock theories to be dis-
cussed are of this form. Moreover, if one requires the uniqueness of a single viable
vacuum, together with a unitary massless graviton about this vacuum, one can find
rather restricted examples. One such example is the Born-Infeld gravity [214] in n
dimensions given in the form

S = 2
*𝛾 ∫ dnx(√–det (g,- + 𝛾A,-) – (𝛾D0 + 1)√–g), (9.3.31)
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where 𝛾 is a dimensionful parameter and the two-tensor is found to be

A,- =R,- + "S,- + 𝛾(a1W,- + a2C,1-3R
13 + " + 1

4
R,1R

1
- + a4S,1S

1
-)

+ 𝛾
n
g,-(( (n – 1)2

4 (n – 2) (n – 3) – a1)W

– "
4
R213 + (" (" + 2)2

+ n (4 – 3n)
4 (n – 2)2 – a4) S213), (9.3.32)

where ai are dimensionless real numbers and we defined a rank-two tensor, W,-, and
its trace from the contraction of Weyl tensors as

W,- ≡ C,1!"C
1!"
- , W ≡ g,-W,-. (9.3.33)

In the spectrum of this theory, there is a single massless graviton about its unique
maximally symmetric viable vacuum which solves the equation

(+0 + 1) ( 14x2 + x + 1) 2–n
2 + 1

4
x2 – 1 = 0, (9.3.34)

where x ≡ 2+
n–2 and +0 ̸= –1 with the definitions + = 𝛾D and so on. A proper discus-

sion of this theory would take too long, instead we give a somewhat easier theory as
an example to our general construction. As an example [see [248] for more details]
consider the following quartic gravity in four dimensions

S = 1
2*0

∫ d4x√–g f (R, 7GB), (9.3.35)

where the Lagrangian density reads

2𝛾F ≡ (1 + 𝛾R – 1
2
𝛾2 (R2 – 9 7GB))2 – 4+0 – 1. (9.3.36)

This theory has a unique viable vacuum about which there is only a massless graviton
and no other degrees of freedom. Hence it is a close cousin of Einstein’s theory.

9.3.2 Lovelock gravity

As an explicit example to the previous discussion let us study the Lovelock gravity
[299] in n spacetime dimensions defined the Lagrangian density

LLovelock (R,-13) = [ n2 ]∑
q=0

aqLq. (9.3.37)
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Here aq’s are dimensionful constants with different dimensions and [ n2 ] corresponds
to the integer part of its argument. The indices on tensors take values from the set(0, . . . , n – 1). At each order we have the Euler densities as the Lagrangian densities.

Lq = $,1...,2q-1 ...-2q

q∏
p=1

R-2p–1-2p,2p–1,2p . (9.3.38)

Here, the front factor is the generalized Kronecker delta which is defined as a
determinant of the following matrix formed by Kronecker deltas as

$,1...,2q-1...-2q ≡ det

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
$,1-1 . . . $,2q-1
...

. . .
...

$,1-2q . . . $,2q-2q

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (9.3.39)

Lovelock introduced this theory as the most natural generalization of Einstein’s
gravity in n dimensions with the well-known property that the field equations are
second order in the derivatives of the metric tensor, just like in Einstein’s theory.
Specifically L0 is the cosmological constant, L1 is the curvature scalar yielding the
Einstein-Hilbert action,L2 is the Gauss-Bonnet combination. On the other handL3 is
somewhat complicated in its explicit form:

L3
8

= – 8R,-13R 4 𝛾
, 1 R-43𝛾 + 4R

,-13R 4𝛾
,- R134𝛾 – 24R

,-R134,R134-

+ 3RR,-13R,-13 + 24R
,-R13R,1-3 + 16R

,-R1,R-1 – 12RR
,-R,- + R

3. (9.3.40)

9.3.3 Propagator structure of the Lovelock theory

To study the particle content and the vacuum structure of the Lovelock gravity,
we know from the previous section that we have to calculate the following three
quantities [113].

LLovelock (R̄,-13) , [𝜕LLovelock𝜕R,-13 ]
R̄
(R,-13 – R̄,-13) ,

[[𝜕2LLovelock𝜕R,-13𝜕R+𝛾!" ]]R̄

(R,-13 – R̄,-13) (R+𝛾!" – R̄+𝛾!") . (9.3.41)

To be able to calculate these we need to study some properties of the generalized
Kronecker delta which we list here.

Properties of generalized Kronecker delta
Let L be a q × qmatrix, then by definition its determinant is

det L = :!1...!qL!11L!22 . . . L!qq, (9.3.42)



9.3 Particle spectrum of f (R,-31) gravity in (A)dS 435

with the convention :12...2q = +1. Then for the particular matrix

L = ( $,1-1 . . . $,2q-1
...

. . .
...

$,1-2q . . . $,2q-2n

) , (9.3.43)

where the index - counts the rows, and the index , counts the columns; i. e. one has
Lij = $,j-i , and for example, L!11 = $,1-!1 , one can write $

,1 ...,2q
-1...-2q = det L as

$,1...,2q-1 ...-2q = :!1 ...!2q$
,1
-!1
$,2-!2 . . . $,2q-!2q

. (9.3.44)

Here, note that 2q should be smaller than the dimension of the spacetime n, but need
not to be equal to n.

Now, let us discuss how the term $,1...,2k-2k+1...-2q-1...-2k-2k+1 ...-2n is related to $,1 ...,2k-1...-2k . Using (9.3.44)
we can relate the n → n – 1

2 case to the n → n case as

$,1 ...,2k-2k+1...-2q-1 ...-2k-2k+1...-2q = [n – (2q – 1)] :!1!2...!2n–1$,1-!1 $,2-!2 . . . $,2k-!2k
$-2k+1-!2k+1

. . . $-2q–1-!2q–1
. (9.3.45)

This recursive relation reproduces a result which will be utilized in the computation
of the equivalent quadratic action

$,1...,2k-2k+1 ...-2q-1...-2k-2k+1 ...-2q = (n – 2k)!(n – 2q)!$,1...,2k-1...-2k . (9.3.46)

With the help of this we now can compute the needed terms order by order.

Zeroth order
Let us calculate LLovelock (R̄,-13)which has the form

LLovelock (R̄,-13) = [ n2 ]∑
q=0

aq$
,1...,2q
-1...-2q

n∏
p=1

R̄-2p–1-2p,2p–1,2p , (9.3.47)

then for the background

R̄,-13 =
2D(n – 1) (n – 2) ($,1$-3 – $,3$-1) , (9.3.48)

one has

$,1 ...,2q-1...-2q

q∏
p=1

R̄-2p–1-2p,2p–1,2p = [ 4D(n – 1) (n – 2)]q $-1...-2q-1...-2n

= [ 4D(n – 1) (n – 2)]q n!(n – 2q)! , (9.3.49)
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where the second equality follows from (9.3.46). Note that the value of this form for
qmax = [ n2 ] is same for both even and odd dimensions. Then, LLovelock (R̄,-13) becomes

LLovelock (R̄,-13) = n!
[ n2 ]∑
q=0

aq [ 4D(n – 1) (n – 2)]q 1(n – 2q)! . (9.3.50)

First order
The first order term in the equivalent quadratic action has the form

[𝜕LLovelock𝜕R,-13 ]
R̄
(R,-13 – R̄,-13) = [ n2 ]∑

q=0
aq$

,1...,2q
-1 ...-2q

q∑
r=1

( q∏
p=1
(p ̸=r)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2r

–
[ n2 ]∑
q=0

aq$
,1...,2q
-1...-2n q( n∏

p=1
R̄-2p–1-2p,2p–1,2p) , (9.3.51)

where the term in the second line was calculated in (9.3.49); and after use of (9.3.48),
the term in the first line becomes

$,1 ...,2q-1...-2q

q∑
r=1

( q∏
p=1
(p ̸=r)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2r

= [ 4D(n – 1) (n – 2)]q–1 q$,1,2-3 ...-2q-1-2-3 ...-2q R
-1-2
,1,2 . (9.3.52)

Using (9.3.46), one can further reduce this form to

$,1...,2q-1...-2q

q∑
r=1

( q∏
p=1
(p ̸=r)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2r = [ 4D(n – 1) (n – 2)]q–1 2q (n – 2)!(n – 2q)!R. (9.3.53)

This result together with (9.3.49) yields the first order term of the equivalent quadratic
action as

[𝜕LLovelock𝜕R,-13 ]
R̄
(R,-13 – R̄,-13)

=
[ n2 ]∑
q=0

aqq [ 4D(n – 1) (n – 2)]q–1 2 (n – 2)!(n – 2q)! (R – 2nD
n – 2

) . (9.3.54)
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Second order
The second order term in the equivalent quadratic action has the form

[[𝜕2LLovelock𝜕R,-13𝜕R+𝛾!" ]]R̄

(R,-13 – R̄,-13) (R+𝛾!" – R̄+𝛾!")
=
[ n2 ]∑
q=0

aq$
,1 ...,2q
-1...-2q

q∑
r=1

q∑
s=1
(r ̸=s)

( q∏
p=1
(p ̸=r,s)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2rR
-2s–1-2s
,2s–1,2s

–
[ n2 ]∑
q=0

aq$
,1...,2q
-1 ...-2q 2 (q – 1) q∑

r=1
( q∏

p=1
(p ̸=r)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2r

× [ n2 ]∑
q=0

aq$
,1...,2q
-1...-2q q (q – 1) ( q∏

p=1
R̄-2p–1-2p,2p–1,2p) , (9.3.55)

where the second and the third terms on the right-hand side were calculated in (9.3.53)
and (9.3.49), respectively. On the other hand, the first term takes the form

$,1 ...,2q-1 ...-2q

q∑
r=1

q∑
s=1
(r ̸=s)

( q∏
p=1
(p ̸=r,s)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2rR
-2s–1-2s
,2s–1,2s

= q (q – 1) $,1...,2q-1...-2q R
-1-2
,1,2R

-3-4
,3,4 ( q∏

p=3
R̄-2p–1-2p,2p–1,2p) , (9.3.56)

after renaming the dummy indices and using the totally antisymmetric nature of
$,1 ...,2q-1 ...-2q . Then, employing the (A)dS background Riemann tensor and using (9.3.46),
one gets

$,1 ...,2q-1 ...-2q

q∑
r=1

q∑
s=1
(r ̸=s)

( q∏
p=1
(p ̸=r,s)

R̄-2p–1-2p,2p–1,2p)R-2r–1-2r,2r–1,2rR
-2s–1-2s
,2s–1,2s

= q (q – 1) [ 4D(n – 1) (n – 2)]q–2 (n – 4)!(n – 2q)! 47GB, (9.3.57)

where we used the short-hand notation for the Gauss-Bonnet combination. With this
result and (9.3.53), (9.3.49), the second order term of the equivalent quadratic action
becomes
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[[𝜕2LLovelock𝜕R,-13𝜕R+𝛾!" ]]R̄

(R,-13 – R̄,-13) (R+𝛾!" – R̄+𝛾!")
= 4
[ n2 ]∑
q=0

aqq (q – 1) [ 4D(n – 1) (n – 2)]q–2 (n – 4)!(n – 2q)!7GB
– 2
[ n2 ]∑
q=0

aqq (q – 1) [ 4D(n – 1) (n – 2)]q–1 2 (n – 2)!(n – 2q)! (R – nD
n – 2

) . (9.3.58)

As a result, the equivalent quadratic action that has the same O (h) and O (h2)
expansions with the Lovelock theory (9.3.37) can be constructed from the equivalent
quadratic Lagrangian density

Lquad-equal (R,-13)
= –2 (n – 2)! [ n2 ]∑

q=0
ãq [R – (q – 1) nD

q (n – 2) – (q – 1)
4D (q – 2) (n – 1)(n – 3)7GB] , (9.3.59)

where ãq is defined as

ãq ≡ aq
q (q – 2)(n – 2q)! [ 4D(n – 1) (n – 2)]q–1 .

The propagator of (9.3.37) matches that of (9.3.59) which itself has exactly the same
propagator as the cosmological Einstein’s theory. But the effective Newton’s constant
is modified. Therefore at the free level one has

LLovelock (h2) = – 1
2*e

h,-D,-!"h
!", (9.3.60)

where D,-!" is the propagator of the cosmological Einstein theory (9.2.51) which
propagates a unitarymassless spin-2 particle as long as *e > 0 to have a positive kinetic
energy.

Let us re-write the equivalent quadratic Lagrangian (9.3.59) of the Lovelock
theory as

Lquad-equal =
1
*̃(R – 2D̃0) + 𝛾̃ 7GB, (9.3.61)

where the parameters are defined as

1
*̃ ≡ –2 (n – 2)! [ n2 ]∑

q=0
aq

q (q – 2)(n – 2q)! [ 4D(n – 1) (n – 2)]q–1 , (9.3.62)
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D̃0
*̃ ≡ –n!

4

[ n2 ]∑
q=0

aq
(q – 1) (q – 2)(n – 2q)! [ 4D(n – 1) (n – 2)]q , (9.3.63)

𝛾̃ ≡ 2 (n – 4)! [ n2 ]∑
q=0

aq
q (q – 1)(n – 2q)! [ 4D(n – 1) (n – 2)]q–2 . (9.3.64)

As the above discussion shows, the vacua and the propagator of the Einstein-GB the-
ory can be represented with cosmological Einstein’s gravity that has the modified
parameters as

Sequal-Lovelock = ∫ dnx√–g 1
*e

(R – 2D) , (9.3.65)

where by using (9.3.62–9.3.64), one can find that D satisfies the polynomial vacuum
equation

0 =
[ n2 ]∑
q=0

aq
(n – 2q)(n – 2q)! [ 4(n – 1) (n – 2)]q Dq, (9.3.66)

and the effective Newton’s constant *e becomes

1
*e

=2 (n – 3)! [ n2 ]∑
q=0

aq
q (n – 2q)(n – 2q)! [ 4D(n – 1) (n – 2)]q–1 . (9.3.67)

See [89, 90] who obtained the same results using different methods. We have shown
that Lovelock theory has a massless spin-2 particle like in Einstein’s theory. But of
course at the non-linear level, Lovelock gravity is a lot more complicated and still
awaits to be explored even though there is already lot of work in the literature. For
example, even in the simplest of case of the Einstein-GB theory, the exact rotating
black hole solution seems to be missing.

9.4 Weak field limits: Potential energy from tree-level gravitons

Let us calculate the tree-level scattering amplitude for one-graviton exchange between
two covariantly conserved sources as shown in the Feynman diagram of Figure 9.1
[216]. This computation has several interesting uses: we can infer the weak field limits
in a flat background and we can discuss various discontinuities that arise in different
limits. For this purpose, we generalize the quadratic gravity model and add the usual
linear Fierz-Pauli mass term. As we shall find the propagator of the quadratic gravity,
the introduction of themass term helps us invert the relevant operator withoutmaking
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a choice of a gauge, as the mass term removes gauge invariance. So, now augmenting
the linearized quadratic gravity which we found in the previous section with the Fierz-
Pauli mass term in (A)dS and coupling it to a covariantly conserved source, we have

T,- (h) = cG L
,- + (2! + ") (ḡ,-◻̄ – ∇̄,∇̄- + 2D

n – 2
ḡ,-)RL

+ "(◻̄G L
,- –

2D
n – 1

ḡ,-R
L) + m2

2* (h,- – ḡ,-h), (9.4.1)

where the last term is the Fierz-Pauli [175] mass whose non-linear extension with a
single field does not exist beyond 3 dimensions, or stated in another way this term
does not come from a diffeomorphism invariant action with a single field. The relative
coefficient (of –1) in the Fierz-Pauli term is the unique one that does not yield a scalar
ghost as we have seen in the previous section. But even this choice fails at the non-
linear level and themassive theory has the so called Boulware-Deser ghost [70]. Recall
also that the coefficient of the linearized Einstein tensor was found to be

c ≡ 1
* + 4Dn

n – 2
! + 4D

n – 1
" + 4D(n – 3)(n – 4)

(n – 1)(n – 2)
𝛾. (9.4.2)

There is a subtle issue here: we assume that (9.4.1) comes from the linearization of
the quadratic gravity plus the Fierz-Pauli mass, this fixes the constant c in front of
the linearized Einstein tensor. Instead if one considers (9.4.1) as the definition of the
theory, not referrring to an action, of course c is arbitrary, but we take the first view.

In order to get a sense of the constraints and the particle content of the theory, let
us, first, consider the trace of (9.4.1) which yields

[(4!(n – 1) + n")◻̄ – (n – 2)( 1* + 4kD)]RL – m2

* (n – 1)h = 2T, (9.4.3)

where we have made use of the definition we introduced in the previous section:

k ≡ (n! + ") (n – 4)(n – 2)2 + 𝛾(n – 3) (n – 4)(n – 1) (n – 2) . (9.4.4)

Tμν
Tμν

hμν
Figure 9.1: A graviton exchange between two covariantly conserved
sources. This diagram gives us the amplitude in the quantum
mechanical sense from which we define the low energy limit
potential energy that includes mass-mass, spin-spin, spin-orbit and
related terms up to desired order.
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To see the rather dramatic effects of a non-vanishing Fierz-Pauli mass on the particle
content of the theory, let us take the divergence and the double divergence of (9.4.1):

m2(∇̄,h,- – ∇̄-h) = 0, m2(∇̄,∇̄-h,- – ◻̄h) = 0. (9.4.5)

Since the linearized scalar curvature is RL = –◻̄h + ∇̄3∇̄,h3, – 2Dh/(n – 2), the second
equation above yields RL = –2Dh/(n – 2). Consider, first, the source-free case and the
flat space (D = 0) limit. Then RL = 0 and from (9.4.3) one has h = 0, a traceless field
and from the first equation of (9.4.5), one has 𝜕,h,- = 0, a transverse field, hence the
field becomes transverse-traceless (hTT,- ) which has (n+1)(n–2)/2 independent physical
components that satisfy a fourth order equation as long as " ̸= 0:

("𝜕4 + 1
*𝜕2 – m2

* ) hTT,- = 0, (9.4.6)

which can be factored as

"(𝜕2 –m2
+)(𝜕2 –m2

+)hTT,- = 0, (9.4.7)

describing two massive excitations with generically non-equal masses

m2
± = – 1

2*" ± 1
2|*"|

√1 + 4"m2*. (9.4.8)

One of these excitations is a ghost, hence the theory is non-unitary, as we shall see.
For " = 0 in (9.4.6), there is a single massive graviton, like in Fierz-Pauli theory, hence
the ! term does not play a role here.

On the other hand let us consider the D ̸= 0 case, then the trace equation
reduces to

[(4!(n – 1) + n")◻̄ – (n – 2)( 1* + 4Dk) + m2

2*D (n – 1)(n – 2)] h = 0. (9.4.9)

So, unless 4!(n– 1) + n" = 0, h is a massive dynamical field. For the case of the special
tuning of ! and "which yields 4!(n– 1) + n" = 0 the discussion bifurcates because the
resulting equation for n ̸= 2 is

[–( 1* + 4Dk) + m2

2*D (n – 1)] h = 0, (9.4.10)

and it has two possible solutions either h = 0 or the coefficient is zero. In the latter
case, eliminating ! in favor of ", one has the tuning of the Fierz-Pauli mass as

m2 = 2D*
n – 1

( 1* – D"(n – 4)
n – 1

+ 4D𝛾 (n – 3)(n – 4)
(n – 1)(n – 2)

) , (9.4.11)
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at which point there arises a new higher derivative scalar gauge invariance of the form

$.h,- = ∇̄,∇̄-. + 2D
(n – 1)(n – 2)

ḡ,-. . (9.4.12)

The resulting theory with one less degree of freedom, compared to the massive one, is
called the “partially massless gravity”, in this case, partially massless quadratic grav-
ity. As it is clear from the above discussion, this partially massless theory exists for
cosmological backgrounds even in the absence of the quadratic terms. For example, in
massive Einstein’s theory in four dimensions, there are 4 degrees of freedom instead of
the expected 5 for a massive spin-2 field, namely, the heliciy-0 mode becomes a gauge
degree of freedom. Generically in n dimensions, for flat backgrounds, in Einstein’s
gravity a massless spin-2 field has n(n – 3)/2 degrees of freedom and in Einstein-
Fierz-Pauli theory, a massive one has (n + 1)(n – 2)/2. Once a cosmological constant
is introduced, generically these values are intact but for the special case of

m2 = 2D
n – 1

, (9.4.13)

the above mentioned higher derivative scalar gauge symmetry arises and the theory
has one less degree of freedom. A detailed study of this theory and its extensions to
other spins were discussed by Deser-Waldron in [133, 134] following the ideas intro-
duced in [130]. In the context of AdS/CFT applications these partially massless spin-2
fields in the bulk of the AdS lead to partially conserved sources3 in the boundary and
to non-unitary conformal field theories [141]. One possibleway out of this is to consider
partially massless fields in higher derivative theories as noted above. This was shown
for partiallymassless fields in Einstein-Gauss-Bonnet-Fierz-Pauli theory in [436] where
a crucial sign change removes the unitarity clash of the bulk and the boundary theory.

In the other extreme when m2 = 0, the theory is invariant under background dif-
feomorphisms $.h,- = ∇̄,.- + ∇̄-.,, since $.G L

,- = 0 and $.RL = 0 which say that
divergence and the double divergence do not give any constraint on h,- and one has
the theory we have studied in the previous section.

9.4.1 Potential energy from the scattering amplitude

To relate the potential energy at the desired order to the scattering amplitude, we
will use the well-known approach and compute the vacuum to vacuum transition
amplitude in the path integral formalism between two sources:

⟨0|e–iĤt |0⟩= e–iUt = W[T] = ∫D h,-e
iS[h,T], (9.4.14)

3 Partially conserved source basicallymeans the following: let Lij correspond to the boundary operator
corresponding to the partially massless bulk field h,-, assuming a flat boundary, partial conservation
is 𝜕i𝜕jLij = 0, which can be generalized to non-flat backgrounds.
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where t is a large time that will play no role and drop out at the end of the computa-
tion. This equation basically defines the potential energy U. In the most general form,
S[h,T] is the linearized action about a background ḡ,- which can be taken as

S[h,T] = –∫ dnx√–ḡ( 1*h,-E,-(h) – h,-T,-), (9.4.15)

whose extremization with respect to h,- yields the linearized field equations

E,-(h) =
*
2
T,-. (9.4.16)

Covariant conservation of T,- leads to ∇̄,E ,-(h) = 0. Assume now that the field h̄,-
satisfies (9.4.16) which we call the background field (not to be confused with the back-
ground spacetime ḡ,-!). Then in the background field formalism, we make a field
redefinition of the form

h,- → h,- + h̄,-, (9.4.17)

which keeps the path integral measure intact but changes the action to a decoupled
form as

S[h,T] = –∫ dnx√–ḡ( 1*h,-E,-(h) – 1
2
h̄,-T,-). (9.4.18)

Since the second term does not have h,- one simply moves it out of the path integral
and the rest yields a normalization factor resulting in

W[T] = N exp( i
2
∫ dnx√–ḡ h̄,-T,-). (9.4.19)

To get rid of the background field and write the result in terms of the sources, let us go
back to the linearized field equation and recast it in the form

O,-!"(x)h̄
!"(x) = *

2
T!"(x), (9.4.20)

where O,-!" is a self-adjoint operator whose explicit form depends on the theory and
the background metric. Its Green’s function is defined as

O,-!"G
!"

31(x, x
󸀠) = 1

2
(ḡ,3ḡ-1 + ḡ,1ḡ-3)$(x – x󸀠). (9.4.21)

Therefore, assuming that one can find the Green’s function (in this case, a four index
tensor), the particular solution of (9.4.16) can be formally written as

h̄,-(x) =
*
2
∫ dnx󸀠√–ḡ G,-!"(x, x

󸀠)T!"(x󸀠). (9.4.22)
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Homogeneous solutions are not relevant here. Plugging this back into the (9.4.19), one
arrives at the usual source-source interaction

W = N exp( i*
4
∫ dnxdnx󸀠√–ḡ(x)√–ḡ(x󸀠)T,- (x)G,-!" (x, x󸀠)T!" (x󸀠)). (9.4.23)

Then we can read from this expression, the potential energy (assuming it to vanish in
the absence of sources) as

U = – *
4t

∫ dnx ∫ dnx󸀠√–ḡ(x)√–ḡ(x󸀠)T,- (x)G,-!" (x, x󸀠)T!" (x󸀠). (9.4.24)

We could have also started with this equation as the definition of the potential
energy, but the above computation is more natural as it is related to the one-graviton
exchange. Note that this potential energy includes all the possible interactions
between the sources, such as, mass-mass, spin-spin, spin-orbit etc. and we shall com-
pute these in the mass-augmented quadratic gravity in what follows. For n = 3+ 1, one
has * = 160G.

The reader might have realized that the non-trivial part of the computation will
be finding the Green’s function G,!-" in a given theory. This is indeed the most
challenging task in this problem: especially for the theories we are dealing since
we have both a non-flat background and quadratic terms as well as non-physical
degrees of freedom even in the presence of the Fierz-Pauli mass term breaking the
background diffeomorphism invariance. Clearly if there are non-physical modes, then
the operator O,-!" is not invertible, it vanishes in certain directions in the field
space. So we must, first, solve this issue. In the next section we adopt a some-
what more direct technique and decompose the field into its various irreducible
modes.

9.4.2 Decomposition of the graviton field and tree-level scattering amplitude

To single out the physical modes, let us employ the usual decomposition of the field
in terms of its possible irreducible parts as

h,- ≡ hTT,- + ∇̄(,V-) + ∇̄,∇̄-6 + ḡ,-8, (9.4.25)

where hTT,- is the transverse and traceless part (namely, ∇̄,hTT,- = 0 and ḡ,-hTT,- = 0). We
also have ∇̄,V, = 0 and the symmetrization (with a 1/2 factor ) is implied in the vector
part. Our task is to "solve" h,- in terms of T,- in the full theory (9.4.1). Taking the trace,
divergence and double divergence of (9.4.25) one obtains

h = ◻̄6 + n8, ◻̄h = ◻̄26 + 2D
n – 2

◻̄6 + ◻̄8, (9.4.26)
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where we used ∇̄-∇̄,h,- = ◻̄h, which is a condition and not a gauge choice in the
massive theory as we have seen. Then, hitting the first equation of (9.4.26) with a ◻̄,
one can eliminate ◻̄6 with the help of the second equation as

◻̄6 = (n – 1) (n – 2)
2D ◻̄8, (9.4.27)

using this one can eliminate ◻̄6.4 Then the trace of the field becomes

h = ((n – 1) (n – 2)
2D ◻̄ + n)8. (9.4.28)

Then using (9.4.3), we arrive at

8 = (D
* + 4Dk – pD◻̄ – m2

2* (n – 1))–1 ((n – 1) (n – 2)
2D ◻̄ + n)–1 T, (9.4.29)

where we have defined

p ≡ 4(n – 1)!
n – 2

+ n"
n – 2

. (9.4.30)

Of course inverse of an operator is the short-hand notation for the corresponding
Green’s function. Equation 9.4.30 expresses 8 in terms of the trace of the source, now
to find the transverse traceless part of the field in terms of the source, it pays to use the
Lichnerowicz operator, 󳵻(2)

L , acting on symmetric rank two tensors as:

󳵻(2)
L h,- ≡ –◻̄h,- – 2R̄,1-3h13 + 2R̄1 (,h-)1. (9.4.31)

Without giving their derivations, which would take us too far, from the above defini-
tion of this operator, one can work out the following relations compiled in [380]:

󳵻(2)
L ∇(,V-) = ∇(,󳵻(1)

L V-), 󳵻(1)
L V, = (–◻ + D)V,, ∇,󳵻(2)

L h,- = 󳵻(1)
L ∇,h,-,󳵻(2)

L g,-6 = g,-󳵻(0)
L 6, 󳵻(0)

L 6 = –◻6, ∇,󳵻(1)
L V, = 󳵻(0)

L ∇,V,, (9.4.32)

where the notation is self-evident. With this arsenal in our hands, we can write the
transverse traceless part of the linearized Einstein tensor as

G LTT
,- = 1

2
(󳵻(2)

L – 4D(n – 2))hTT,- , (9.4.33)

4 Assuming that the fields vanish at infinity, we actually have a stronger relation as 6 =
(n – 1) (n – 2)/2D8, but this is not really needed.
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using this we can find the transverse traceless part of the field in terms of the TT part
of the energy-momentum tensor as

hTT,- = 2("◻̄ + c)(󳵻(2)
L – 4D

n – 2
) + m2

* )–1

TTT,- . (9.4.34)

We are not done yet: the last part of the puzzle is to express the TT part of the energy-
momentum tensor: since it is symmetric and covariantly conserved one can use the
same decomposition as we used for the h,- field to arrive at

TTT,- = T,- –
ḡ,-
n – 1

T + 1
n – 1

(∇̄,∇̄- + 2Dḡ,-(n – 1) (n – 2))
× (◻̄ + 2Dn(n – 1) (n – 2))–1 T. (9.4.35)

One might be somewhat uncomfortable as to why an apparently non-local part shows
up in this equation. This is because we have demanded too much: we are expressing
the irreducible transverse traceless part in terms of the full tensor, this is the reason.
But this will be useful in what follows. We are now ready to compute the scattering
amplitude: using (9.4.34, 9.4.35), we have

A = 1
4
∫ dnx √–ḡT󸀠,- (x) h,- (x) = 1

4
∫ dnx √–ḡ(T󸀠,-hTT,- + T󸀠8). (9.4.36)

For the sake of notational simplicity, lets suppress the integral for now, altogether we
have [216]

4A = 2T󸀠,-(("◻̄ + c)(󳵻(2)
L – 4D

n – 2
) + m2

* )–1

T,- (9.4.37)

+ 2
n – 1

T󸀠(("◻̄ + c)(◻̄ + 4D
n – 2

) – m2

* )–1

T

– 4D
(n – 2)(n – 1)2

T󸀠(("◻̄ + c)(◻̄ + 4D
n – 2

) – m2

* )–1(◻̄ + d)–1

T

+ 2
(n – 2)(n – 1)

T󸀠( 1
* + 4Dk – p◻̄ – m2

2*D (n – 1))
–1(◻̄ + d)–1

T,

where defined d ≡ 2Dn/(n – 2)(n – 1). As this is the most general result, it looks
cumbersome and also still a formal expression whose explicit computation has not
been done yet. But for our purposes this explicit computation is not needed in its
full generality: all we need is various limits from this expression. We can, first,
study the pole structure of this scattering amplitude, keeping in mind that in this
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curved background the apparent poles do not directly correspond to the masses of the
particles (gravitons). These apparent poles are at

◻̄1 = – 2Dn(n – 1) (n – 2) , (9.4.38)

◻̄2,3 = – 1"(c
2
+ 2D"
n – 2

∓ √(c
2
– 2D"
n – 2

)2 + "m2

* ), (9.4.39)

◻̄4 = 1
p
( 1
* + 4Dk – m2

2*D (n – 1)) . (9.4.40)

Let us now turn our attention to various limiting cases. It is well known that for this
spin-2 theory, depending on the order of the limits m2 → 0, and D → 0, the results
differ: namely one has a discontinuity due to the non-decoupling of the scalar mode
which is a pure gauge in massless theory but a dynamical degree of freedom in the
massive one.

9.4.3 van Dam-Veltman-Zakharov discontinuity

In (9.4.37) the m2 → 0 and D → 0 limits do not commute. To see this more explicitly
let D → 0 first, then one arrives at

4A = –2T󸀠,-("𝜕4 + 1
*𝜕2 – m2

* )–1

T,- + 2
n – 1

T󸀠("𝜕4 + 1
*𝜕2 – m2

* )–1

T, (9.4.41)

whose spectrum has two massive excitations with masses given in (9.4.8). There is a
range of parameters for which these masses are non-tachyonic. To see whether these
modes are ghosts or not, let us recast the above expression as

4A = – 2
"(m2

– –m2
+)
(T󸀠,- ( 1𝜕2 –m2

+
– 1𝜕2 –m2

–
)T,- (9.4.42)

– 1
(n – 1)

T󸀠 ( 1𝜕2 –m2
+
– 1𝜕2 –m2

–
)T),

which says that unless " = 0, there is a massive ghost dues to the wrong sign of the
propagator. When " = 0, one has the usual Fierz-Pauli massive gravity, with no contri-
bution from the !R2 term in the action. This is also a source of another discontinuity:
had one started with m2 = 0 from the beginning, there would be the usual massive
spin-0 mode coming from the !R2 term as we have seen in the previous sections. So
the existence of m2 through out the computation renders the ! term redundant in the
flat space.
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As explicit examples, let us calculate the Newtonian potential energy, U, between
two static point like sources given as

T󸀠00 ≡ m1$(x⃗ – x⃗1), T00 ≡ m2$(x⃗ – x⃗2). (9.4.43)

In three and four dimensions, respectively, one finds (whosemore details will be given
below)

U = 1
2"(m2

+ –m2
–)
m1m2
40 (K0(m–r) – K0(m+r)) n = 3,

U = m1m2
3"(m2

+ –m2
–)

1
40r(e–m–r – e–m+r) n = 4, (9.4.44)

where the distance between the sources is r ≡ | ⃗x1 – ⃗x2| and K0(x) is the modified Bessel
function of the second kind which whose asymptotic limits are

K0(x → 0) → – log x + C, K0(x → +∞) → √ 0
2x
e–x. (9.4.45)

In the limit " → 0, the potential energies become

U = – *
80m1m2K0(mr) n = 3, (9.4.46)

U = –4
3
Gm1m2

r
e–mr n = 4, (9.4.47)

where we used * = 160G in four dimensions. The vDVZ discontinuity [449, 468] is
apparent in four dimensions as m → 0, one obtains a discretely different result from
that of Newton’s or Einstein’s gravity in the low energy limit. This cannot be remedied
by redefining the Newton’s constant since then it spoils the light-bending result by
25 %. The overall conclusion from this linearized analysis is that general relativity
with a massless graviton is an isolated theory from all of itsm ̸= 0. The second option,
as was noted by Vainshtein long time ago [448] is that one must consider the non-
linear effects: namely, the point-particle concept is not appropriate, one must use the
Schwarzschild radius of one of the sources. In that case, various scales arise which
can be compared to each other. More specifically, the graviton mass can then be com-
pared to be small with respect to other scales. The crux of the matter is that somehow
the theory is sensitive to the issue of the smallness of the graviton mass, obviously a
dimensionful parameter. One can find the root of the problem as the non-decoupling
of the helicity zeromode in the vanishing gravitonmass limit to the trace of the energy-
momentum tensor. These issues are well treated in the recent reviews [117, 235] as
well as the non-linear bi-metric extensions of Fierz-Pauli mass term. Another possible
solution to the discontinuity problem is to consider the limit m2

D → 0 which yields
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a smooth limit [232, 261, 380]. Of course this solution barters discontinuity with the
non-commutativity of the limits symbolically as [m2 → 0,D → 0] ̸= 0. But it has a
physical basis: graviton mass is expected to be much smaller than the cosmological
constant.

9.4.4 New massive gravity redux

We discussed before that in three dimensions, a specific form of quadratic gravity,
called new massive gravity (NMG), turns out to give a non-linear extension of Fierz-
Pauli theory. This is unique to three dimensions since pure Einstein theory does not
have a dynamical degree of freedom so the existence of the " term does not yield a
conflict between the unitarity of the massless mode and the massive mode as is the
situation in all dimensions greater than three. This theory was found in a different
route in [39] and reproduced from the scattering amplitude computation of this section
in [216] which we now repeat. The theory is valid both in (A)dS and flat backgrounds,
and for the sake of simplicity, let us focus on the flat space version. So, in the (9.4.37),
let us, first, setm2 = 0 then D → 0 to avoid the above mentioned discontinuity, Then,
for generic Einstein-quadratic gravity, still in n dimensions, the scattering amplitude
is

4A = –2T󸀠,-("𝜕4 + 1
*𝜕2)–1T,- + 2

(n – 1)
T󸀠("𝜕4 + 1

*𝜕2)–1T
– 2
(n – 1)(n – 2)

T󸀠(p𝜕4 – 1
*𝜕2)–1T, (9.4.48)

which has 3 poles

𝜕21 = 0, 𝜕22 = – 1
*" ≡ m2

g, 𝜕23 = 1
*p ≡ –m2

s. (9.4.49)

From the second pole, not to have a tachyon, we must have *" < 0. Let us recast
(9.4.48) as

4A = –2*T󸀠,- ( 1𝜕2 – 1𝜕2 –m2
g
)T,- + 2*

n – 1
T󸀠 ( 1𝜕2 – 1𝜕2 –m2

g
)T

– 2*
(n – 1)(n – 2)

T󸀠 ( 1𝜕2 – 1𝜕2 –m2
s
)T. (9.4.50)

For nonzero ", the requirement of unitarity necessarily gives two conditions : n = 3
and 8! + 3" = 0. This is because the residue of the second pole requires * < 0 for
unitarity. On the other hand, this negative *, yields a ghost sign for the residue of the
massless pole unless n = 3. The third pole is non-tachyonic for negative 8! + 3", but
its residue requires positive 8! + 3" for it to be a non-ghost. Hence the compromise is
to set 8! + 3" = 0 to decouple this mode ending with the promised theory of a massive
gravitonwith 2 degrees of freedom in 3 dimensions. The resulting theory has the action
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INMG = 1
* ∫ d3x√–g(R – 1

m2
g
(R,-R,- – 3

8
R2)), (9.4.51)

with * < 0. Clearly, in this expression “Einstein” part provides the mass term and
the quadratic parts provide the kinetic energy in the linearized limit. This result can
also be seen from the Newtonian potential for generic ! and " in 3 dimensions which
reads

U = *
80m1m2(K0(mgr) – K0(m0r)), (9.4.52)

where in 3 dimensionsm2
0 ≡ 1/*(8! + 3"). Som0 is a massive ghost that gives a repuls-

ive component. But, for NMG it decouples and one is left with an attractive force, since
* < 0 and the K0(x) is positive for all x and blows up at x = 0.

The above computation can be supported by linearized static solutions (static
black hole solution in the weak field limit) [210]. Inserting the metric ansatz

ds2 = –g00(r)dt
2 + grr(r)dr

2 + r2d(2, (9.4.53)

to the field equations, one finds up to a first order the following solution

g00 ≈ –1+ c1K0 (mgr) , grr ≈ 1 + c2K1 (mgr) , (9.4.54)

where ci are related to the mass of the source.
Next we carry out the canonical description of generic quadratic gravity in 3

dimensions as was one in [210] which provides useful insights and direct identific-
ation of degrees of freedom. Curved background case is more involved, we shall only
do the flat background computation and refer the reader to [210] where the dS case
was considered, from which the AdS case also follows.

The action

S = ∫ d3x√–g ( 1*R + !R2 + "R2,-) , (9.4.55)

when expanded as g,- = ',- + h,-, reduces at the quadratic level, up to boundary
terms, to

SO(h2) = – 1
2
∫ d3x h,-( 1

*G ,-
L + (2! + ") (',-◻ – 𝜕,𝜕-)RL + "◻G ,-

L ), (9.4.56)

with the linearized curvature tensors given as

G ,-
L = R,-L – 1

2
',-RL, RL = 𝜕!𝜕"h!" – ◻h,

R,-L = 1
2
(𝜕3𝜕,h-3 + 𝜕3𝜕-h,3 – ◻h,- – 𝜕,𝜕-h) , h = ',-h,-, (9.4.57)
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with ◻ = 𝜕,𝜕, = –𝜕20 + ∇2. As we are after the canonical structure, we can decompose
the h,- as:

hij ≡ ($ij + 𝜕̂i𝜕̂j)6 – 𝜕̂i𝜕̂j7 + (:ik𝜕̂k𝜕̂j + :jk𝜕̂k𝜕̂i) . ,
h0i ≡ –:ij𝜕j' + 𝜕iNL, h00 ≡ N, (9.4.58)

where the 6 arbitrary functions of that appear in the above decomposition depend on(t, x⃗). This decomposition is non-local and one has

𝜕̂i ≡ 𝜕i√–∇2
. (9.4.59)

Now we can compute the components of the linearized Einstein tensor as

G L
00 = – 1

2
∇26, G L

0i = –1
2
(:ik𝜕k3 + 𝜕i6̇) , (9.4.60)

G L
ij = –1

2
[($ij + 𝜕̂i𝜕̂j) q – 𝜕̂i𝜕̂j6̈ – (:ik𝜕̂k𝜕̂j + :jk𝜕̂k𝜕̂i) 3̇] , (9.4.61)

where 6̇ = 𝜕6/𝜕t, etc. 3 functions (6, 3, q) appear in these expressions and since the
linearized Einstein tensor is gauge invariant, all these are gauge invariant under the
transformations

$&h,- = 𝜕,&- + 𝜕-&,. (9.4.62)

Here, q, 3, are defined as

q(t, x⃗) ≡ ∇2N – 2∇2 ̇NL + 7̈, 3(t, x⃗) ≡ ̇. – ∇2'. (9.4.63)

With these definitions, it follows that the linearized scalar curvature is simply

RL = q – ◻6. (9.4.64)

So, the initial 6 arbitrary functions are reduced to 3 arbitrary functions at this stage
due to the linearized Bianchi identity, 𝜕,G ,-

L = 0. Since RL is also gauge invariant one
can choose 3 which are either 6, 3, q; or 6, 3, RL combinations. Finally with these
fields we arrive at

SO(h2) =
1
2
∫ d3x [ 1*6q + (2! + ") (q – ◻6)2 + "q◻6]

+ "
2
∫ d3x (3◻3 + 1

*"3
2) , (9.4.65)

where the 3-field is already decoupled and it is a scalar field with mass-square m2
g ≡

–1/*" which is nontachyonic for *" < 0 and a nonghost for " > 0, therefore * < 0.
To be able to discuss the rest of the action, we have to know whether 2!+ " = 0, or

not. We assume that this combination is not zero (see the original paper [210] for the
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other route). Then q is non-dynamical and can be integrated out to get a generically
higher derivative action for the 6 field.

S6 = 1
2
∫ d3x [" (8! + 3")

4 (2! + ") (◻6)2 + (4! + ")
2* (2! + ")6◻6 – 1

4*2 (2! + ")62] . (9.4.66)

For generic ! and ", but 2!+" ̸= 0, (9.4.66) describes a ghost-inflected higher-derivative
Pais-Uhlenbeck oscillator which can be decoupled with the definition of two new
fields as

>1 ≡ 6 – ◻6
m2
g
, >2 ≡ 6 – ◻6

m2
s
, (9.4.67)

which nicely turns (9.4.66) to

S6 = 1
64* (2! + ")2 ∫ d3x [(8! + 3")2 >1 (◻ –m2

s)>1 – "2>2 (◻ –m2
g)>2] , (9.4.68)

withmg being the same as the mass of the 3-field andms as

m2
s =

1
* (8! + 3") .

For 8!+3" < 0, >1 is nontachyonic similar to >2, but unlike >2, it describes a ghostlike
excitation since its kinetic energy is negative. For the NMG case, this mode becomes
infinitely massive and decouples and one ends up with

S6 = – 1
16* ∫ d3x>2 (◻ –m2

g)>2. (9.4.69)

In this formalism we got the masses of the unitary excitations but one thing is still
missing: these two fields 3 and >2 form helicity ±2 modes of the massive spin-2
graviton. To be able to see this, we should, first, scale these fields to their canon-
ical dimensions and work out the transformations under the full Lorentz-group and
find their helicities which we don’t do here. Instead we go back to the generic
massive, quadratic gravity theory and compute the potential energy beyond the static
Newtonian limit as there are unexpected results.

9.4.5 Spin-spin, spin-orbit, orbit-orbit interactions

Let us now move on beyond the Newtonian potential in these theories and compute
various higher order terms coming due to the spin and orbital motion of the sources
[217, 432]. Wewill again work in the point-particle context with two conserved sources,𝜕,T,- = 0. We have to be careful about the explicit form of the energy-momentum
tensor up to the desired order. Let us follow Weinberg on this [456] and define

T00 = T(0)00 + T(2)00 , Ti0 = T(1)i0 , Tij = T(2)ij , (9.4.70)
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where one has T(0)00 = m$ (x⃗ – x⃗a) as in the previous section and the rest reads as
T(2)00 = 1

2
mv⃗2$ (x⃗ – x⃗a) – 1

2
Jk vi:ikj𝜕j$ (x⃗ – x⃗a) ,

T(1)i0 = –mvi$ (x⃗ – x⃗a) + 1
2
Jk :ikj𝜕j$ (x⃗ – x⃗a) ,

T(2)ij = mvivj$ (x⃗ – x⃗a) + Jlv(i:j)kl𝜕k$ (x⃗ – x⃗a) ,
T = –T00 + $ijTij = –ma$ (x⃗ – x⃗a) + 1

2
mav⃗

2
a$ (x⃗ – x⃗a)

– 1
2
Jka v

i
a:

ikj𝜕j$ (x⃗ – x⃗a) , (9.4.71)

with x⃗a = x⃗a(t) being the position of the particle with a = 1, 2. The above forms is
dictated by the conservation requirement of the energy-momentum tensor up toO(v2)
and O(vJ). This fixes the relative coefficients and signs of the various terms. Let us
show one example along these lines and prove 𝜕,T,0 = 0:

𝜕0T00 + 𝜕iTi0 = ma𝜕0$ (x⃗ – x⃗a) +mav
i
a𝜕i$ (x⃗ – x⃗a)

– 1
2
Jka :

ikj𝜕i𝜕j$ (x⃗, –x⃗a) (9.4.72)

with the last term vanishing due to symmetry obviously, and the first two terms can-
cel since 𝜕0$ (x⃗ – x⃗a) = –vla𝜕l$ (x⃗ – x⃗a) and v⃗ = dx⃗

dt
, one has the desired result. Other

components work similarly. Now we are ready to compute expressions of the form

2Ut = –*T󸀠,-
1𝜕2 T,- + *

n – 2
T󸀠 1𝜕2 T, (9.4.73)

which in the more explicit form is actually the following double integral

2Ut = – *∫ dnxdnx󸀠T,- (x󸀠)G (x, x󸀠)T,- (x)
+ *
n – 2

∫ dnxdnx󸀠T (x󸀠)G (x, x󸀠)T (x) . (9.4.74)

Notice that instead of the tensorial Green’s functionwe have used the scalar onewhich
is much easier to handle. To have the consistent conventions we have

𝜕2xG (x, x󸀠) = –$ (x, x󸀠) , (9.4.75)

where 𝜕2x = –𝜕2t +∇⃗2. As we shall use the retarded Green’s functions, their explicit forms
are easy to find for the massless case

1𝜕2 ≡ GR (x, x󸀠) = A ( n–32 )
40

n–1
2

$ [r – (t – t󸀠)]
rn–3

, (9.4.76)
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and for the massive case

1𝜕2 –m2
g
≡ GR (x, x󸀠) = (mg

r ) n–3
2

(20) n–12 Kn–3
2
(r mg) $ [r – (t – t󸀠)] , (9.4.77)

with r being the radial distance and K- the modified Bessel function of the second
kind. Computation in generic n dimensions is quite cumbersome [217] and does not
give us much insight as there are many angular momenta, so from now on we shall
stick to the four dimensions. The following relations will be used throughout the
computation

𝜕kr = (xk – x󸀠k)
r

= ̂rk, 𝜕k 1r = –(x
k – x󸀠k)
r3

= –
̂rk
r2
,

𝜕k󸀠r = –(x
k – x󸀠k)
r

= – ̂rk, 𝜕k󸀠 1r = (xk – x󸀠k)
r3

=
̂rk
r2
,

𝜕k𝜕n󸀠r = 1
r
(–$kn + ̂rk ̂rn) , 𝜕k𝜕n󸀠 1r = 1

r3
($kn – 3 ̂rk ̂rn) , (9.4.78)

which are valid as long as r ̸= 0 which is the case at hand. (At r = 0, one picks up the
Fermi-contact term which is relevant in quantummechanics but not here.)

9.4.6 Gravitomagnetic effects in general relativity

Let us, first, do the computation in general relativity before we move on to massive
and quadratic gravities. In the short-hand notation of suppressing the integrals, we
have to compute the following

4Ut = –2*T󸀠00
1𝜕2 T00 – 4*T󸀠0i 1𝜕2 T0i – 2*T󸀠ij 1𝜕2 Tij + *T󸀠 1𝜕2 T, (9.4.79)

A detailed separate computation of each term [432] finally yields

UGR = –Gm1m2
r

(1 + 3
2
v⃗21 +

3
2
v⃗22 – 4v⃗1 ⋅ v⃗2) – G

r3
( ⃗J1 󳐂 ⃗J2 – 3 ⃗J1 󳐂 ̂r ⃗J2 󳐂 ̂r)

– G
2r3

(3m1
m2

L⃗2 ⋅ ⃗J2 – 3m2
m1

L⃗1 ⋅ ⃗J1 – 4L⃗1 ⋅ ⃗J2 + 4L⃗2 ⋅ ⃗J1), (9.4.80)

where we defined L⃗i = mi ⃗r × p⃗i. This expression includes the Newtonian potential
energy, plus relativistic corrections such as spin-spin and spin-orbit effects. Note that
v⃗1 and v⃗2 are defined with respect to a frame at rest. The second bracketed term in the
first line is the spin-spin interaction. It is not difficult to show that term is minimized
in general relativity when two spins are minimized along the line joining the sources
as shown in Figure 9.2.
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m1

J1 J2

m2

r

Figure 9.2: Minimum energy configuration in
general relativity: In the weak field that we are
working, spins are anti-parallel to each other, so
the total spin of the two-body system is
minimized.

9.4.7 Gravitomagnetic effects in massive gravity

For the case of Fierz-Pauli massive gravity (in short mGR) the computation is some-
what more complicated whose details are all given in [432]. Again one needs to
compute

4Ut = – 2*T󸀠00
1𝜕2 –m2

g
T00 + 2*

3
T󸀠 1𝜕2 –m2

g
T

– 4*T󸀠0i
1𝜕2 –m2

g
T0i – 2*T󸀠ij

1𝜕2 –m2
g
Tij, (9.4.81)

which eventually yields

UmGR = –4Gm1m2
3r

e–mgr(1 + v⃗21 + v⃗22 – 3v⃗1 ⋅ v⃗2)
–
Ge–mgr (1 +mgr +m2

gr
2)

r3
( ⃗J1 󳐂 ⃗J2 – 3 ⃗J1 󳐂 ̂r ⃗J2 󳐂 ̂r 1 +mgr + 1

3m
2
gr

2

1 +mgr +m2
gr2

)
– 4Ge–mgr

3r3
(1 +mgr)(m1

m2
L⃗2 ⋅ ⃗J2 – m2

m1
L⃗1 ⋅ ⃗J1 – 3

2
L⃗1 ⋅ ⃗J2 + 3

2
L⃗2 ⋅ ⃗J1). (9.4.82)

The vDVZ discontinuity in the Newtonian sector was already discussed. But in some
sense “gravitomagnetic partners” of this discontinuity arises since in the mg 󳨀→ 0
limit for not too large distances from (9.4.82), one obtains

UmGR 󳨀→ – 4Gm1m2
3r

(1 + v⃗21 + v⃗22 – 3v⃗1 ⋅ v⃗2)
– G
r3
( ⃗J1 󳐂 ⃗J2 – 3 ⃗J1 󳐂 ̂r ⃗J2 󳐂 ̂r)

– 4G
3r3

(m1
m2

L⃗2 ⋅ ⃗J2 – m2
m1

L⃗1 ⋅ ⃗J1 – 3
2
L⃗1 ⋅ ⃗J2 + 3

2
L⃗2 ⋅ ⃗J1). (9.4.83)

So the spin-spin part, the second line, smoothly reduces to the general relativity
expression in this limit, while a new discontinuity arises (a discrete 8/9 difference
between general relativity andmassive general relativity (mGR) ) in theO(v2) andO(vJ)
terms. But the real surprise is that for large distances as observed in [217], the spin-spin
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J1 J2

m1 m2
r> 1.62mg

Figure 9.3: Minimum energy configuration in
massive gravity, unlike the case of general
relativity, at large distances the total spin is
maximized and their orientation is perpendicular
to the line joining the sources. For small
separations, massive gravity’s prediction
coincide with that of general relativity.

part also gives a distinctly different answer from general relativity. To see this let us
look at the large r limit of the spin-spin interaction in mGR only:

USS = –
Ge–mgrm2

g
r

( ⃗J1 󳐂 ⃗J2 – ⃗J1 󳐂 ̂r ⃗J2 󳐂 ̂r). (9.4.84)

The relative coefficient between the two terms becomes –1 instead of –3 which makes
all the difference: minimization of this energy is achieved when the total spin is max-
imized as shown in Figure 9.3. More precisely, for mg r ≥ 1+√5

2 ≈ 1.62, the total spin is
maximized. Getting this number (which happens to be the Golden number) requires
a rather long computation given in the appendix of [217].5 So, at large separations
massive gravity predicts a rotating two-body system for equal spins while general
relativity has a non-rotating system.

9.4.8 Gravitomagnetic effects in quadratic gravity

Let us consider the case of quadratic gravity without the Fierz-Pauli mass term. Then
we must compute

Uquadt = –*
2
T󸀠,-

1𝜕2 T,- + *
4
T󸀠 1𝜕2 T + *

2
T󸀠,-

1𝜕2 –m2
"
T,-

– *
6
T󸀠 1𝜕2 –m2

"
T – *

12
T󸀠 1𝜕2 –m2

0
T, (9.4.85)

where there are two additional massive modes: a massive spin-2 graviton with m2
" =

– 1
*" and a massive spin-0 mode with m2

0 = 1
4*(3!+") . Massless spin-2 mode of general

relativity is intact and so there will be terms added to (9.4.80). Here we define Uquad ≡
UGR + U2, where

5 This unexpected result of spin flip at large separations in massive gravity was first found in a numer-
ical simulation of Aykutlu Dane who was collaborating with one of the authors of this book for N-body
simulations of weak field massive gravity. Later the analytical computation was published in [217].
What is also quite interesting is that the Golden number also shows up in non-relativistic Yukawa type
force of massive gravity: one does not have stable circular orbits for the pote ntial V(r) = – GM

r e–mgr for
distances that satisfymg r > 1+√5

2 . This amusing fact, which was mentioned to us by Ferit Oktem, first,
is easy to work out and left to the reader.



9.4 Weak field limits: Potential energy from tree-level gravitons 457

U2t =
*
2
T󸀠00 (𝜕2 –m2

")–1 T00 + *T󸀠0i (𝜕2 –m2
")–1 T0i

+ *
2
T󸀠ij (𝜕2 –m2

")–1 Tij – *
6
T󸀠 (𝜕2 –m2

")–1 T
– *
12
T󸀠 (𝜕2 –m2

c)–1 T. (9.4.86)

The required computation long but is similar so we can simply write the final result

U2 =
Gm1m2

r
[(4

3
+ 7
3

⃗v12 + 7
3

⃗v22) e–rm" – ( 1
3
– 1
6

⃗v12 – 1
6

⃗v22) e–rm0]
+
4G (1 + rm") e–rm"

3r3
(m1
m2

L⃗2 ⋅ ⃗J2 – m2
m1

L⃗1 ⋅ ⃗J1 – 3
2
L⃗1 ⋅ ⃗J2 + 3

2
L⃗2 ⋅ ⃗J1)

+
Ge–rm0 (1 + rm0)

6r3
(m1
m2

L⃗2 ⋅ ⃗J2 – m2
m1

L⃗1 ⋅ ⃗J1)
+ Ge–rm"

r3
(1 + rm" + r

2m2
")

× ( ⃗J1 ⋅ ⃗J2 – 3 ⃗J1 ⋅ ̂r ⃗J2 ⋅ ̂r 1 + rm" + 1
3 r

2m2
"

1 + rm" + r2m2
"
). (9.4.87)

Let us forget for amoment that we areworking in theweak field limit valid well outside
the compact sources and consider the r 󳨀→ 0 limit, where we expect higher curvature
terms to play a role, in the potential Uquad which reads

Uquad
r󳨀→0󳨀󳨀󳨀󳨀→ Gm1m2

r
(v21 + v

2
2) + constant. (9.4.88)

Save this repulsiveO(v2) term, in this limit all the other terms drop out as there are can-
cellations between Einstein and quadratic parts. Repulsive nature of quadratic gravity
at small separations is expected and desired since it leads to a less divergent in the UV
regime compared to Einstein’s theory. But as we have shown, non-zero " gives a spin-2
ghost so the theory cannot be viable as a quantum theory.

9.4.9 Photon-photon scattering in massless and massive gravity

Before we close this section, we cannot resist to reproduce the old but very amusing
result [440] about the gravitationally interacting photons (or massless particles) that
move parallel or anti-parallel to each other. Zee [470] also has a nice discussion on this
issue. Instead of considering the energy-momentum tensor of the photons (or more
properly the electromagnetic waves) that come from Maxwell’s theory, let us consider
the spinless point-like particles with the four velocities given as

u,1 = (1, 0, 0, 1), u,2 = (1, 0, 0, 3), (9.4.89)
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where 3 = 1 refers to parallel motion and 3 = –1 anti-parallel motion, say in the
z-direction. For the sake of simplicity, we shall work in a flat background. The energy-
momentum tensor for each photon is

T,- = Eu,u-, (9.4.90)

with a vanishing trace T = 0. This is important since it implies that the result will be
the same in general relativity and massive gravity. Then one has,

4Ut = –2*T󸀠,-
1𝜕2 T,-,

= –2*T󸀠00
1𝜕2 T00 – 4*T󸀠0i 1𝜕2 T0i – 2*T󸀠ij 1𝜕2 Tij. (9.4.91)

Each term, after the Green’s function is inserted and the integrals are carried out yields

T󸀠00
1𝜕2 T00 = E1E2

40r t, T󸀠0i
1𝜕2 T0i = –E1E23

40r t,

T󸀠ij
1𝜕2 Tij = E1E232

40r t. (9.4.92)

Finally summing them up, one arrives at the gravitational potential energy between
two massless point objects (or photons) as

U = –2GE1E2
r (1 – 3)2 . (9.4.93)

So, at this level of approximation, two photons that move parallel in the same direc-
tion (3 = 1) do not interact with each other while anti-parallel moving photons (3 = –1)
interact with four times the expected strength. For the parallel moving photons, could
this result yield something “physical” for two photons that originate from two nearby
sources and travel several billion years together ? This requires more scrutiny.

9.5 Conserved charges in generic gravity

Following the notation of [126] let us review the construction of conserved charges
(mass and angular momenta) for asymptotically constant curvature spacetimes in
generic metric-based gravity theories. Let the full field equations coupled to a
bounded, covariantly conserved matter source read

I,-(g,R,∇R,R2, ...) = *4,-, (9.5.1)

where in this notation R represents any possible curvature tensor. What we are given
is that the “Bianchi identity” ∇,I,- = 0 holds or that the field equations come from
a diffeomorphism invariant action (at least up to a boundary term as). Note that * in
this equation is the bare Newton’s constant. Now let us split the full metric describing
a given solution to the full equations as the sum of a background ḡ,-, which solves
(9.5.1) in the absence of a source term, and a deviation h,-, that vanishes sufficiently
rapidly at infinity,
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g,- = ḡ,- + h,-. (9.5.2)

Under this decomposition, the field equation splits to a linear part that we keep on the
left and all the non-linear terms that we carry to the right eventually arriving at

IL
,- ≡ O(ḡ),-!"h

!" = *T,-, (9.5.3)

where now T,- represents the localized matter source plus all the O(hn) corrections
with n ≥ 2. So we keep the linear terms on the left and the four indexed operator
O(ḡ),-!" can be found once the theory is given. [Of course what is tacitly assumed
here is that the linear order terms do not vanish. As we shall see, sometimes this
actually happens in certain theories for curved backgrounds and this has interest-
ing consequences.] The background metric is assumed to satisfy the full-nonlinear
source-free equations, namely

I,-(ḡ, R̄, ∇̄R̄, R̄2...) = 0. (9.5.4)

The full Bianchi identity of the theory

∇,I,-(g,R,∇R,R2, ...) = *∇,4,- = 0, (9.5.5)

is inherited as a linearized, background Bianchi identity of the form

∇̄,(O(ḡ),-!"h
!") = *∇̄,T,- = 0, (9.5.6)

which will play an important role in what follows. Clearly we have a covariant con-
servation law as ∇̄,T,- = 0, which is locally equal to a partial, ordinary conservation
law but it cannot be integrated to give a total charge. So we must have a true, namely𝜕,j, = 0 type, conservation law. For this purpose, we have to invoke the symmetries of
the background spacetime. Assume that the background metric admits a set of Killing
vectors ̄.a, , ∇̄,

̄.a- + ∇̄- ̄.a, = 0, (9.5.7)

where the latin index refers to different possible Killing vectors.6 Then it is easy to see
that one has an ordinarily conserved vector density current:

∇̄, (√–ḡT,- ̄.a- ) = √–ḡ∇̄,T,- ̄.a- = √–ḡ (𝜕,T,- ̄.a- + A,,+T+- ̄.a- )
= √–ḡ𝜕,T,- ̄.a- + 𝜕,√–ḡT+- ̄.a-
= 𝜕, (√–ḡT,- ̄.a- ) = 0, (9.5.8)

6 Note that if there are no Killing vectors, then we cannot define conserved quantities and the whole
procedure that will follow fails.
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where we used 𝜕,√–ḡ = A11-√–ḡ. So the needed conserved current is j,a = √–ḡT,- ̄.a- .
Therefore, the conserved Killing charges are expressed as

Q( ̄.a) = ∫
G
dn–1x√–ḡT0- ̄.a- = ∮

𝜕G
dSi√–ḡF 0i . (9.5.9)

Here G is a spatial (n–1) hypersurface which is a foliation of the full spacetimeM and𝜕G is its (n – 2) dimensional boundary; F 0i is an antisymmetric tensor obtained from
O(ḡ). Given the theory, one can find this antisymmetric tensor, albeit sometimes in a
lengthy procedure. In passing to the surface integral, we have made use of the usual
Stokes’ theorem which reads

∫
G
dn–1x√–g∇,V, = ∮

𝜕G
dn–2y√–gn,V,. (9.5.10)

The appearance of the antisymmetric tensor (9.5.9) is not amystery: locally one always
has, for a conserved tensor, T,- ̄.a- = ∇̄-F ,-. Owing to the antisymmetry of F ,-,
one has

∇̄,∇̄-F ,- = 1
2
[∇̄,, ∇̄-]F ,-

= 1
2
(R̄ ,

,- +F
+- + R̄ -

,- +F
+-)

= 1
2
(R̄-+F +- – R̄,+F

,+) = 0. (9.5.11)

For cosmological Einstein’s theory, this procedure led in [1] to the following conserved
charge expression in four dimensions:

Q( ̄. ) = 1
80G ∮

𝜕G
dSi√–ḡ( ̄.-∇̄"K0i-" – K0j-i∇̄j ̄.-), (9.5.12)

where the so called superpotential K,!-" is defined as

K,-!" ≡ 1
2
(ḡ,"H-! + ḡ-!H," – ḡ,-H!" – ḡ!"H,-),

H,- ≡ h,- – 1
2
ḡ,-h, (9.5.13)

which has the symmetries of the Riemann tensor as

K,!-" = K-",! = –K!,-" = –K,!"-. (9.5.14)

This is the famous AD charge expression for cosmological Einstein’s theory whose
detailed derivation will be give below. Here one should notice that when the back-
ground Killing vector is time-like, this expression gives the total energy of the
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spacetime, for space-like Killing vectors it gives the total angular momentum as will
be demonstrated with explicit examples later on. For globally maximally symmetric
spacetimes, flat, de Sitter and AdS spaces the charges vanish by definition and by
construction.

To arrive at the AD charge, as seen above the crucial step is to find the antisym-
metric tensor F ,- defined as as T,- ̄.a- = ∇̄-F ,-. For this purpose it is better to write
T,- ∼ ∇̄!∇̄"K!",- + X,- as was done in [1], since it allows us to interchange the order of
the derivatives only one time in term T,- ̄.a- ∼ ̄.a- ∇̄!∇̄"K!",- + ̄.a- X,- as follows,

T,- ̄.a- ∼ ̄.a- ∇̄!∇̄"K!",- + ̄.a- X,-
= ∇̄! ( ̄.a- ∇̄"K!",-) – (∇̄! ̄.a- ) ∇̄"K!",- + ̄.a- X,-. (9.5.15)

Let us find out what from K!",- and X,- have in the cosmological Einstein’s theory
whose T,- is

*T,- = G ,-
L =1

2
(–◻̄h,- – ∇̄,∇̄-h + ∇̄3∇̄-h,3 + ∇̄3∇̄,h-3)

– 1
2
ḡ,- (–◻̄h + ∇̄1∇̄3h13 – 2D

n – 2
h) – 2

n – 2
Dh,-. (9.5.16)

Reshuffling the covariant derivatives we have

G ,-
L =∇̄!∇̄" [ 12 (ḡ-"h,! + ḡ,"h!- – ḡ!"h,-

–ḡ,-h!" + ḡ,-ḡ!"h – ḡ,!ḡ-"h)]
+ D
n – 2

(ḡ,-h – 2h,-) . (9.5.17)

After rearranging the terms one arrives at the superpotential K!",- given in (9.5.13).
With the definition of H,-, the remaining piece of X,- takes the form

X,- = 1
2
ḡ-" [∇̄!, ∇̄"] h,! + D

n – 2
(ḡ,-h – 2h,-)

= 1
2
[∇̄!, ∇̄-]H,! – 2D

n – 2
H,-. (9.5.18)

Here, X,- should be symmetric, and it can be explicitly shown that it reduces to a
simpler form

X,- = 1
2
K,!1"R̄-!1". (9.5.19)

Therefore, for the linearized cosmological Einstein’s theory in n dimensions, we have

*T,- = G ,-
L = ∇̄!∇̄"K,!-" + X,-. (9.5.20)
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Then, moving on to the vector current T,- ̄.-, we have
̄.-G ,-

L = ̄.-∇̄!∇̄"K,!-" + X,- ̄.-
= ∇̄! ( ̄.-∇̄"K,!-") – (∇̄! ̄.-) ∇̄"K,!-" + X,- ̄.-
= ∇̄! ( ̄.-∇̄"K,!-" – K,"-!∇̄" ̄.-) . (9.5.21)

Note that not to clutter the notation, we have dropped the extra index on the Killing
vector which we shall do from now on. With this expression, one gets the AD
conserved charge (9.5.12).

In [126], without using the superpotential, a more straightforward expression for
the conserved charges was given. Since that construction is somewhat better suited to
the higher derivative theories, let us recap the reformulation of the AD charges along
those lines. One has

2 ̄.-G ,-
L = 2 ̄.-R,-L – ̄.-ḡ,-RL – 4D

n – 2
̄.-h,-

= ̄.-( – ◻̄h,- – ∇̄,∇̄-h + ∇̄3∇̄-h3, + ∇̄3∇̄,h3-)
– ̄.,( – ◻̄h + ∇̄3∇̄-h3- – 2D

n – 2
h) – 4D

n – 2
̄.-h,-

= ∇̄1( ̄.-∇̄,h1- – ̄.-∇̄1h,- + ̄.,∇̄1h – ̄.1∇̄,h
+ h,-∇̄1 ̄.- – h1-∇̄, ̄.- + ̄.1∇̄-h,- – ̄.,∇̄-h1- + h∇̄, ̄.1). (9.5.22)

Of course to arrive at the right-hand side, we had to carry out several computations.
But the logic is simple: try to write current in the form of a divergence of an antisym-
metric two tensor. This simple observation is the crux of the matter. Then, the result
can be integrated to yield

Q( ̄. ) = 1
4Kn–2Gn

∮
𝜕G
√–ḡdSi( ̄.-∇̄0hi- – ̄.-∇̄ih0- + ̄.0∇̄ih – ̄. i∇̄0h

+ h0-∇̄i ̄.- – hi-∇̄0 ̄.- + ̄. i∇̄-h0- – ̄.0∇̄-hi- + h∇̄0 ̄. i). (9.5.23)

The equivalence of (9.5.12) and (9.5.23) can be demonstrated as follows. Let us start the
result developed with superpotential K,!-" which is

̄.-G ,-
L = ∇̄! ( ̄.-∇̄"K,!-" – K,"-!∇̄" ̄.-) . (9.5.24)
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Then, the first term has the form̄.-∇̄"K,!-" = 1
2
̄.-∇̄" (ḡ!-H," + ḡ,"H!- – ḡ!"H,- – ḡ,-H!")

=1
2
( ̄.!∇̄"h," – ̄.,∇̄"h!" + ̄.-∇̄,h!- – ̄.-∇̄!h,- + ̄.,∇̄!h – ̄.!∇̄,h) , (9.5.25)

and the second term becomes

K,"-!∇̄" ̄.- =12 (ḡ"-H,! + ḡ,!H"- – ḡ!"H,- – ḡ,-H!") ∇̄" ̄.-
=1
2
(ḡ"-h,! + ḡ,!h"- – ḡ!"h,- – ḡ,-h!" + ḡ,-ḡ!"h – ḡ"-ḡ,!h) ∇̄" ̄.-

=1
2
(–ḡ!"h,- – ḡ,-h!" + ḡ,-ḡ!"h) ∇̄" ̄.-, (9.5.26)

since ∇̄(" ̄.-) = 0,

K,"-!∇̄" ̄.- =12 (–h,-∇̄! ̄.- – h!"∇̄" ̄., + h∇̄! ̄.,)
=1
2
(–h,-∇̄! ̄.- + h!-∇̄, ̄.- + h∇̄! ̄.,) . (9.5.27)

Thus, one has

2 ̄.-G ,-
L = ∇̄!( ̄.!∇̄"h," – ̄.,∇̄"h!" + ̄.-∇̄,h!- – ̄.-∇̄!h,- + ̄.,∇̄!h

– ̄.!∇̄,h + h,-∇̄! ̄.- – h!-∇̄, ̄.- – h∇̄! ̄.,), (9.5.28)

showing the equivalence of the two expressions.
An important issue is the symmetry of the charges: namely, they should be

invariant under infinitesimal diffeomorphisms of the background which act on the
perturbation as

$&h,- = ∇̄,&- + ∇̄-&,. (9.5.29)

And the linearized Ricci tensor transforms as

$&RL,- =
2

n – 2
D$&h,-, (9.5.30)

yielding

$&RL = ḡ,-$&RL,- –
2

n – 2
Dḡ,-$&h,- = 0, (9.5.31)

and $&G L
,- = 0, hence T,- is gauge invariant so is the total charge: $&Q = 0. This

invariance under small diffeomorphisms does not extend to the so called large gauge
transformations which we shall discuss at the end of this chapter.
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Flat space limit
The expressions we have found are valid for asymptotically constant curvature space-
times, including the asymptotically flat ones. For the latter, in Cartesian coordinates,
it is easy to see that one arrives at

Q ( ̄.) = 1
4Kn–2Gn

∫
Sn–2

dSi( ̄.0(𝜕jhij – 𝜕ihjj) + ̄. i𝜕jh0j – ̄.j𝜕ih0j), (9.5.32)

where the first bracketed terms yield the ADM energy and the remaining ones yield
the total angular momentum. Sn–2 refers to the round sphere of n – 2 dimensions. For
globally AdS or flat spaces one has vanishing charges. de Sitter case is a little tricky
because of the cosmological horizon. In our construction above, we required that the
backgroundmetric has proper asymptotics, and a time-like Killing vector (at least out-
side a compact domain) to be able to define “time” and energy. For the de Sitter space
this is not the case. Let us study the following simple examples

Schwarzschild (A)dS solution
In the static coordinates the Schwarzschild-de Sitter or Schwarzschild anti-de Sitter
metric, as a solution to the cosmological Einstein’s theory, reads

ds2 = –(1 – ( r0
r
)n–3 – r2

l2
) dt2 + (1 – ( r0

r
)n–3 – r2

l2
)–1 dr2 + r2dK2

n–2, (9.5.33)

where l2 ≡ (n – 2)(n – 1)/2D. For D < 0 we have the AdS case and for D > 0 we have
the dS case. The background is obtained when we set r0 = 0. The Killing vector ̄., =
(–1,0), is time-like for AdS everywhere but only so inside the cosmological horizon for
dS since one has ḡ,- ̄., ̄.- = –(1 – r2/l2). For this Killing vector, the energy expression
reduces to

E = 1
4Kn–2GN

∫
Sn–2

rn–2dKn–2

× (g00∇̄0hr0 + g00∇̄rh00 + h0-∇̄r ̄.- – hr-∇̄0 ̄.- + ∇̄-hr-). (9.5.34)

In four dimensions, before we let r → ∞, we get the result

E(r) = r0
2G

1 – r2
l2

1 – r0
r – r2

l2
, (9.5.35)

from which we can see the difference between the dS and AdS cases. For the latter,
we simply go to the infinity and get the expected result E = r0/2G ≡ M. Namely, the
integration constant r0 that appears in the solution turns out to be the total mass of
the Schwarzschild black hole spacetime in AdS. As for the dS case, the computation
is only valid within the horizon, so we cannot go to infinity. All we can say is that for
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small black holes that do not change the location of the horizon 1–r0/r–r2/l2 ≈ 1–r2/l2,
one has the same result as in AdS. This is the best one can do for de Sitter since there
does not exist strictly conserved quantities in the absence of a global time. Generically
in n dimensions, the result is simply

E = n – 2
4GN

rn–30 . (9.5.36)

Clearly, one must consider the n = 3 case separately: For that case the corresponding
solution is

ds2 = –(1 – r0 – r2

l2
)dt2 + (1 – r0 – r2

l2
)–1dr2 + r2d62 (9.5.37)

for which the energy is E = r0/2G3 again but, now, r0 is a dimensionless constant and
[G3] = [M–1] which was also obtained in [127]. Now let us turn into a more complicated
example, where rotation is involved.

9.5.1 Mass and angular momenta of Kerr-AdS black holes in n dimensions

Gibbons et al. [191, 192] found the generalizations of the four dimensional Kerr-AdS
metrics in n dimensions. Following closely the discussion in [122], let us calculate the
conserved charges of these rather complicated metrics using the above construction
for n > 3. (The distinct n = 3 case will be separately studied below in the section
devoted to 3 dimensional gravity.) First, let us describe the solution in the notation of
[191]: the Kerr-(Anti) de Sitter metrics are Einsteinmetrics that satisfy R,- = (n–1) + g,-,
and are given in the Kerr-Schild form7 [222] as

ds2 = d ̄s2 + 2m
U

(k, dx
,)2 , (9.5.38)

where the background metric is the AdS metric in the following form

d ̄s2 = –W (1 – + r2) dt2 + F dr2 +
N+:∑
i=1

r2 + a2i
1 + + a2i

d,2i +
N∑
i=1

r2 + a2i
1 + + a2i

,2i d6
2
i

+ +
W (1 – + r2) ( N+:∑

i=1

(r2 + a2i ) ,i d,i
1 + + a2i

)2

. (9.5.39)

Here n ≡ 2N +1+:, with : = 0 for odd dimensions and : = 1 for even dimensions. There
are N rotation parameters ai and 6i azimuthal angles and N + : direction cosines that

7 Note that in this discussion we are changing our normalizations and notations a little bit to conform
with [191], but it is easy to go back and forth.
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satisfy

N+:∑
i=1

,2i = 1. (9.5.40)

The null 1-form is given as

k ≡ k, dx
, =F dr +W dt –

N∑
i=1

ai ,2i
1 + + a2i

d6i. (9.5.41)

The three functions in the metric are found to be

U = r:
N+:∑
i=1

,2i
r2 + a2i

N∏
j=1
(r2 + a2j ), W ≡ N+:∑

i=1

,2i
1 + + a2i

,

F ≡ 1
1 – + r2

N+:∑
i=1

r2 ,2i
r2 + a2i

. (9.5.42)

For the time-like Killing vector ̄., = (–1, 0, ..., 0), the total energy reduces to the
expression

E = 1
4Kn–2GN

∮
𝜕G
dSr√–ḡ(ḡ00ḡrr𝜕rh00 + 1

2
h00ḡrr𝜕rḡ00 – m

U
ḡ00𝜕rḡ00

+ 2m𝜕rU–1 + 2m
U

ḡrr𝜕rḡrr – m
U
ḡrrkikj𝜕rḡij + m

U
ḡij𝜕rḡij), (9.5.43)

where the perturbation about the background is simply given as

h,- =
2m
U

k, k- (9.5.44)

and the above integral is to be evaluated on a sphere Sn–2 at r → ∞ for AdS. On the
other hand, the same result will be valid for dS only for small black holes as discussed
above. Large distance behavior of the metric components can be found to be

g00 → +Wr2, F → – 1
+r2 , U → rn–3, k6 → a6

r2
. (9.5.45)

There is of course no integration along the r direction, the somewhat tricky part (of
the integral) comes from the determinant term since the integrand simplifies to

S = √–ḡ 2m
rn–2

((n – 1)W – 1). (9.5.46)



9.5 Conserved charges in generic gravity 467

Let us now give some details of the calculation of the determinant part which can be
recast as

det ḡ = –W(1 – +r2) F detM
N∏
i=1

(r2 + a2i ),2i
1 + +a2i

, (9.5.47)

where (Mij) is the matrix representing the coefficients of the form d,id,j in the metric
whose components can be written in the following form:

Mij = Ai$ij + BiBj + CiCj, no summation, (9.5.48)

where the individual parts read

Ai =
r2 + a2i
1 + +a2i

, Bi = √ r2 + a2N+:
1 + +a2N+:

,i
,n

,

Ci = √ +
W(1 – +r2)( r2 + a2i

1 + +a2i
–
r2 + a2N+:
1 + +a2N+:

),i. (9.5.49)

Then the determinant of this part becomes

detM =
N+:–1∏
i=1

Ai
N+:–1∑
i=1

(B2i
Ai

+
C2i
Ai

+
N+:–1∑
j ̸=i

B2i C
2
i

AiAj
–
N+:–1∑
j ̸=i

BiBjCjCi
AiAj

), (9.5.50)

which can be simplified to

detM = 1
W,2N+:

N∏
i=1

1
1 + +a2i

. (9.5.51)

Now we are ready to do the angular integrals: for this purpose we need the following
integrations:

∫
3

N+:–1∏
i=1

,id,i√1 –∑N+:–1
k=1 ,2k

= 1
(2(N + :) – 3)(2(N + :) – 5)....1 ,

∫
3

N+:–1∏
i=1

,id,i√1 –∑N+:–1
k=1 ,2k

,2j

= 2
(2(N + :) – 1)(2(N + :) – 3)(2(N + :) – 5)....1 ,

∫
3

N+:–1∏
i=1

,id,i =
21–N–:

(N + :)! ,

∫
3

N+:–1∏
i=1

,id,i,2j =
21–N–:

(N + : + 1)! . (9.5.52)



468 9 Generic gravity: Particle content, weak field limits, conserved charges

Here 3 is the region where 0 < ∑N+:–1
k=1 ,2k < 1. After all this rather long procedure one

finds the energy of the Kerr-AdS black hole in n dimensions to be

E = m
E

n–1–:
2∑
i=1

( 1
Ei

– ( 1
2
)1–:) , (9.5.53)

where we defined

E ≡ n–1–:
2∏
i=1

(1 + +a2i ), Ei ≡ 1 + +a2i . (9.5.54)

From this expression, one covers the known limits for a → 0 and + → 0.
Let us consider the four dimensional case as an example, then we have : = 1 = N,

hence a single rotation parameter a, then the energy of the Kerr-AdS black hole reads

E = m
(1 + +a2)2 , n = 4. (9.5.55)

Similarly, we can compute the angular momenta of the Kerr-AdS metric by
considering generically a Killing vector of the form̄., = (0, ..., 0, 1, 0, ..), (9.5.56)

which then leads to the corresponding conserved total angular momentum

J = 1
4Kn–2GN

∮
𝜕G
√–ḡdSr(ḡ66∇̄0hr6 – ḡ66∇̄rh06 + h0-∇̄r ̄.- – hr-∇̄0 ̄.-)

= – 1
4Kn–2GN

∮
𝜕G
√–ḡdSrḡ66ḡrrḡ00𝜕rh60 . (9.5.57)

Once again the integrand can be calculated to be

I = √–ḡ (n – 1)2mai,2i
rn–2(1 + +a2i )

. (9.5.58)

Carrying out the integral, one arrives at the angular momentum in the chosen
direction to be

J6 =
ma6
EE6

. (9.5.59)

Since we have chosen an arbitrary direction, generically we can conclude that the
conserved angular momenta are

Ji =
mai
EEi

, i = {1, ...,N}. (9.5.60)

Unlike the case of the energy, clearly : does not appear in the angular momenta
expressions, since even dimensional (say with dimension 2n) spaces have as many
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independent angular momenta (n – 1) as the odd dimensional spaces with one lower
dimension (2n–1). Specifically in four dimensions we have a single conserved angular
momentum given as

J = ma
(1 + +a2)2 . (9.5.61)

Of course the direction of this angularmomentum is also conserved, in the coordinates
we have chosen, J = J6. Observe that we have the relation J = aE for four dimensions
and generically we have the following relation for even dimensions

E = ∑
i

Ji
ai
. (9.5.62)

The above discussion was a successful application of the AD conserved charge formu-
lation to rotating black holes in n > 3 dimensional AdS spaces. We shall work out the
singled out case of n = 3 in the section where we study the conserved charges in topo-
logically massive gravity, a non-trivial extensions of 3 dimensional Einstein’s theory.
For now we turn our attention to the conserved charges in quadratic gravity

9.5.2 Conserved charges in quadratic gravity in AdS

Tomake this section self-contained let us briefly recap the properties of the theory that
we are interested in. Recall that the generic action of the quadratic theory is

I = ∫ dnx√–g [ 1* (R – 2D0) + !R2 + "R2
,- + 𝛾 (R2,-31 – 4R2,- + R2)] . (9.5.63)

Coupling it to a source and linearizing the field equations about a maximally symmet-
ric background ḡ,- with an effective cosmological constant D yields

T,-(h) ≡ T,-(ḡ) + G L
,-( 1

* + 4Dn!
n – 2

+ 4D"
n – 1

+ 4D𝛾(n – 4)(n – 3)
(n – 2)(n – 1)

)
+ (2! + ")(ḡ,-◻̄ – ∇̄,∇̄- + 2D

n – 2
g,-)RL

+ "(◻̄G L
,- –

2D
n – 1

ḡ,-RL)
– 2h,-(D – D0

2* + D2 (n – 4)
(n – 2)2

(n! + ") + D2 𝛾(n – 4)(n – 3)
(n – 2)(n – 1)

). (9.5.64)

The first term vanishes by definition and the last term vanishes due to the vacuum
equation (that determines the effective cosmological constant): namely we have

D – D0
2* + D2( (n – 4)

(n – 2)2
(n! + ") + 𝛾(n – 4)(n – 3)

(n – 2)(n – 1)
) = 0, (9.5.65)
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which generically yields two maximally symmetric vacua as we discussed before.
Assuming that we have at least one viable solution allowed by the parameters of the
theory, the linearized equations become

T,-(h) = G L
,-( 1

* + 4Dn!
n – 2

+ 4D"
n – 1

+ 4D𝛾(n – 4)(n – 3)
(n – 2)(n – 1)

)
+ (2! + ")(ḡ,-◻̄ – ∇̄,∇̄- + 2D

n – 2
g,-)RL

+ "(◻̄G L
,- –

2D
n – 1

ḡ,-RL). (9.5.66)

As before, we know that this is a background conserved tensor (∇̄,T,- = 0) which can
be checked explicitly with help of the expressions

∇̄,(ḡ,-◻̄ – ∇̄,∇̄- + 2D
n – 2

g,-)RL = 0,

∇̄,(◻̄G L
,- –

2D
n – 1

ḡ,-)RL = 0. (9.5.67)

Now, to find the total conserved charges associated with the background Killing vec-
tors (or asymptotic Killing vectors of the full spacetime), we need to write T,-(h) ̄., as
a surface integral. In this process, the only cumbersome term is the followinḡ.-◻̄G L

,- = ∇̄!( ̄.-∇̄!G ,-
L – ̄.-∇̄,G !-

L – G ,-
L ∇̄! ̄.- + G !-

L ∇̄, ̄.-)
+ G ,-

L ◻ ̄.- + ̄.-∇̄!∇̄,G !- – G !-
L ∇̄!∇̄, ̄.-. (9.5.68)

Using the definition of the Killing vector, and its trace property, we have

∇̄!∇̄" ̄.- = R̄,-"!
̄., = 2D

(n – 2)(n – 1)
(ḡ-! ̄." – ḡ!" ̄.-),

◻ ̄., = – 2D
n – 2

̄.,, (9.5.69)

as well as ̄.-∇̄!∇̄,G !-
L = 2Dn

(n – 2)(n – 1)
̄.-G ,-

L + D
n – 1

.,RL. (9.5.70)

One can show that ̄.-◻̄G L
,- can indeed be written as a surface term. More explicitly we

need the following intermediate steps in this computation: let us definē., (ḡ,-◻̄ – ∇̄,∇̄- + 2D
n – 2

ḡ,-)RL ≡ ∇,F ,-
1 , (9.5.71)

and ̄., (◻̄G ,-
L – 2D

n – 1
ḡ,-RL) ≡ ∇,F ,-

2 . (9.5.72)
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Let us start with the first expression and manipulate is to the desired form by pulling
out a covariant derivative ̄., (ḡ,-◻̄ – ∇̄,∇̄- + 2D

n – 2
ḡ,-)RL

= ̄.-∇̄,∇̄,RL – ̄.,∇̄,∇̄-RL + 2D
n – 2

̄.-RL
= ∇̄, ( ̄.-∇̄,RL) – (∇̄, ̄.-) (∇̄,RL) – ∇̄, ( ̄.,∇̄-RL)
+ (∇̄, ̄.,) (∇̄-RL) + 2D

n – 2
̄.-RL

= ∇̄, ( ̄.-∇̄,RL – ̄.,∇̄-RL) – ∇̄, (RL∇̄, ̄.-)
+ RL∇̄,∇̄, ̄.- + 2D

n – 2
̄.-RL. (9.5.73)

Therefore one arrives at the desired result :̄., (ḡ,-◻̄ – ∇̄,∇̄- + 2D
n – 2

ḡ,-)RL = ∇̄, ( ̄.-∇̄,RL – ̄.,∇̄-RL – RL∇̄, ̄.-) . (9.5.74)

Now, considering the second term (9.5.72), we make similar manipulations and
arrive at ̄., (◻̄G ,-

L – 2D
n – 1

ḡ,-RL)
= ̄.,∇̄1∇̄1G ,-

L – 2D
n – 1

̄.-RL
=∇̄1 ( ̄.,∇̄1G ,-

L ) – (∇̄1 ̄.,) ∇̄1G ,-
L – 2D

n – 1
̄.-RL

=∇̄1 ( ̄.,∇̄1G ,-
L – G ,-

L ∇̄1 ̄.,) – 2D
n – 2

̄.,G ,-
L – 2D

n – 1
̄.-RL, (9.5.75)

where (∇̄1 ̄.,) ∇̄-G ,1
L = 0 due to symmetry in G ,1

L and antisymmetry in ∇̄1 ̄.,. So then
we have ̄.,(◻̄G

,-
L – 2D

n – 1
ḡ,-RL)

=∇̄1( ̄.,∇̄1G ,-
L – ̄.,∇̄-G ,1

L – G
,-
L ∇̄1 ̄., + G

,1
L ∇̄- ̄.,)

+ ̄., [∇̄1, ∇̄-]G
,1
L – G

,1
L R̄3 -

1 ,
̄.3

– 2D
n – 2

̄.,G ,-
L – 2D

n – 1
̄.-RL

=∇̄1 ( ̄.,∇̄1G ,-
L – ̄.,∇̄-G ,1

L – G
,-
L ∇̄1 ̄., + G

,1
L ∇̄- ̄.,)

+ ̄., [∇̄1, ∇̄-]G ,1
L – G ,1

L R̄3 -
1 ,

̄.3
– 2D
n – 2

̄.,G ,-
L – 2D

n – 1
̄.-RL. (9.5.76)
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Finally collecting all the pieces together, conserved Killing charges of the quadratic
gravity for asymptotically (A)dS spacetimes becomes

Q( ̄. ) = ( 1
* + 4Dn!

n – 2
+ 4D"
n – 1

+ 4D𝛾(n – 4)(n – 3)
(n – 2)(n – 1)

)∫ dn–1x√–ḡ ̄.-G 0-
L

+ (2! + ")∫ dSi√–ḡ( ̄.0∇̄iRL + RL∇̄0 ̄. i – ̄. i∇̄0RL)
+ "∫ dSi√–ḡ( ̄.-∇̄iG 0-

L – ̄.-∇̄0G i-
L – G 0-

L ∇̄i ̄.- + G i-
L ∇̄0 ̄.-). (9.5.77)

As before, this expression unifies all the Killing charges. The first line is left as a
volume integral which we have already dealt with as the AD expression correspond-
ing to the cosmological Einstein’s theory which receives a non-trivial multiplicative
factor in front coming from the quadratic terms in the curvature. As expected, the
same solution or geometry can have different conserved charges in different theories.
Unlike the ADMmass of the asymptotically flat geometries, themass or energy defined
as above is not a geometric invariant of the underlying manifold. This of course does
not say that asymptotically AdS manifolds do not have an ADM-type geometric invari-
ant, they might indeed have such geometric invariants; but, the crucial point is that
the conserved charges here are defined via the field equations of the theory and hence
dynamics is involved in addition to the asymptotic geometry. The geometry alo ne does
not define the conserved charges is the physical theory. To reiterate: these are con-
served charges (time independent) exactly under the condition that field equations
are satisfied.

By now, the above formalism has been applied to various solutions of quadratic
gravity in generic dimensions in the literature. Let us consider two simple cases: first,
a putative solution which is asymptotically an AdS black hole of the quadratic theory.
The second one will be the Boulware-Deser solution of the Einstein-GB theory. For the
first case, whatever the exact solution is, we require its asymptotic form to be

h00 ≈ +( r0
r
)n–3 , hrr ≈ +( r0

r
)n–3 + O(r20), (9.5.78)

and the rest of the components are identically zero or they vanish faster in these
coordinates. Therefore, asymptotically we have an Einstein space with the linearized
Ricci tensor given as

RL,- =
2D
n – 2

h,-, (9.5.79)

which yields RL = ḡ,-RL,- –
2D
n–2h = 0 and thus G L

,- = 0 in the asymptotic region hence
there is no contribution to the total charges from the second and third lines of (9.5.77).
So then the energy of this solution to general quadratic gravity reads

E = ( 1
* + 4Dn!

n – 2
+ 4D"
n – 1

+ 4D𝛾(n – 4)(n – 3)
(n – 2)(n – 1)

)n – 2
4G

rn–30 n ≥ 4, (9.5.80)
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subject to the condition (9.5.65). Of course generically, this energy could be negative
or positive: one does not have a positive energy theorem here. The front factor can
also vanish yielding vanishing charges for all asymptotically constant curvature or flat
solutions of the theory. This is not yet a well understood issue (or more modestly, we
do not yet understand the vanishing charge issue for non-vacuum solutions), there-
fore, we do not want to discuss it here in detail but note that in the previous literature
“zero-energy” issue in the context of gravity has been tackled in several places. For
example in [72] zero energy of the purely quadratic model in the case of asymptotically
flat spacetimes was considered as “confinement” of gravity or energy. This conclusion
was questioned in [126] as it fails to be true for asymptotically AdS spacetimes for gen-
eric quadratic gravity, but there always arises a particular theory with zero conserved
charges for generic gravity, whose meaning is still somewhat unclear. In an attempt
to remedy this issue, another definition of conserved charges , built on the decay of
curvatures, and not the metric as was done above for quadratic gravity, was given in
[132] for which the only theory that has zero energy is the Gauss-Bonnet theory.

As a second example, let us now consider the much studied Einstein-GB theory,
assuming D0 = 0, the exact non-rotating solution is [71],

ds2 = –g00dt
2 + grrdr

2 + r2dKn–2, (9.5.81)

where

–g00 = g–1rr = 1+ r2

4*𝛾(n – 3)(n – 4) {{{1 ± {1 + 8𝛾(n – 3)(n – 4) rn–30
rn–1

} 1
2}}} , (9.5.82)

whose asymptotic behavior seems to come with the wrong signs (namely, opposite to
those of the putative solution discussed above)

h00 ≈ –( r0
r
)n–3 , hrr ≈ –( r0

r
)n–3 + O(r20), (9.5.83)

which is actually a blessing since the front factor in the energy expression also
becomes negative for the Einstein-GB theory and so one has overall a positive energy
given as E = (n – 2)rn–30 /4G. This theory has a supersymmetric extension, therefore we
expect that it has a positive energy theorem.

9.6 Miscellaneous issues about conserved charges

The above construction has been general, there are some specific issues and fur-
ther generalizations and reformulations which are often useful. Without going into
to much detail, in what follows we will list these cases.
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9.6.1 Conserved charges of f (Riemann) theories

With the tools in our handswe can find the conserved charges for asymptotically (A)dS
spacetimes of the generic gravity whose action is of the form [111]

S = ∫ dnx√–g f (R,-13) . (9.6.1)

Here f is an arbitrary but at least twice differentiable scalar function of the Riemann
tensor. To by-pass the explicit procedure of linearizing the field equations, earlier
in the discussion of the particle content of this theory, we have shown that we can
construct an equivalent quadratic action of the form

SEQA = ∫ dnx√–g fquad-equal (R,-13) (9.6.2)

= ∫ dnx√–g [ 1* (R – 2D0) + !R2 + "R,-R-,
+𝛾 (R,-13R13,- – 4R,-R-, + R2)] , (9.6.3)

where the equivalent quadratic Lagrangian is defined as the Taylor series expansion
of the full Lagrangian about the maximally symmetric background up to second order
in the curvature tensor:

fquad-equal (R,-13) = 2∑
i=0

1
i!
[[ 𝜕if𝜕 (R,-13)i]]R̄,-13

(R,-13 – R̄,-13)i . (9.6.4)

As we have shown earlier S and SEQA have the same vacua and free particle proper-
ties. Or more specifically, up to and including O(h2) expansions about AdS, these two
actions yield the same results. For the construction of the conserved charges, we need
up to O(h2) in the action or up to O(h) in the field equations. So given a theory, one
needs to calculate

[ 𝜕f𝜕R,-13 ]R̄,-13 R,-13 ≡ &R, (9.6.5)

1
2
[[ 𝜕2f𝜕R,-13𝜕R!"+𝛾 ]]R̄,-13

R,-13R
!"
+𝛾 ≡ !R2 + "R+3R

3
+

+ 𝛾 (R,-13R13,- – 4R,-R-, + R2) , (9.6.6)

where & , !, ", 𝛾 are to be determined from these equations. Three parameters, !, " and𝛾 will appear exactly in the equivalent quadratic action (9.6.3). The other remaining
two parameters of (9.6.3) are to be determined from
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1
* = & – ( 4D

n – 2
(n! + ") + 4D (n – 3)

n – 1
𝛾) , (9.6.7)

D0
* = –1

2
f (R̄,-13) + Dn

n – 2
& – 2D2n(n – 2)2 (n! + ") – 2D2n (n – 3)(n – 1) (n – 2)𝛾. (9.6.8)

Then, the gravitational charges of the f (R,-13) theory is given as
Qf ( ̄. ) =( 1* + 4Dn

n – 2
! + 4D

n – 2
" + 4D (n – 3) (n – 4)(n – 1) (n – 2) 𝛾)QEinstein( ̄. ), (9.6.9)

where the QEinstein( ̄. ) is computed with * = 1 and we have discarded the vanishing
terms for asymptotically AdS spacetimes. Here, note that !, ", 𝛾, * are to be found
from (9.6.5–9.6.7), and the effective cosmological constant D satisfies (9.2.21). See [8]
for a similar formulation of conserved charges in generic f (Riemann) theories.

An example: Charges of Born-Infeld gravity (BINMG)
As a non-trivial application of the above formalism, let us calculate the mass and
angular momentum of the BTZ black hole [20] in the Born-Infeld extension of new
massive gravity (BINMG) [208] defined with the action

SBINMG = –4m2 ∫ d3x(√–det(g,- – 1
m2G,-) – (1 – +0

2
)√–g), (9.6.10)

where G,- is the Einstein tensor (without a cosmological constant). Remarkably, the
theory has a unique AdS vacuum about which there is a massive spin-2 excitation and
no other degrees of freedom. Since it is a 3 dimensional theory, there are two helicity
modes ±2, this is an infinite order extension of the NMG theory which was a non-
linear extension of the Fierz-Pauli massive gravity. Hence this theory is a rather unique
extension of the linearmassive gravity in 3 dimensions. All other finite or infinite order
extensions in curvature suffer from the non-uniqueness of the vacuum [352, 415]. The
effective cosmological parameter (+ ≡ D/m2) and the mass of the spin-2 excitation are
found to be

+ = –+0 (1 – +0
4
) , +0 < 2, m2

g = m2 (1 + +0
2
)2 , (9.6.11)

which we shall derive below from the equivalent quadratic action formalism. In 3
dimensions, since the Ricci and Riemann tensors contain the same amount of inform-
ation is suffices to work with the Ricci tensor and compute the following 3 quantities
to describe the vacuum, particle content and the conserved quantities of this theory:

fquad-equal (R,- ) ≡ 2∑
i=0

1
i!
[[ 𝜕if𝜕 (R,-)i]]R̄,-

(R,- – R̄,-)i , (9.6.12)
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where R̄,- ≡ 2+m2$,- . For the BINMG action we get

f (R̄,-) = 4m2 [(1 – +0
2
) – (1 + +)3/2] ,

[ 𝜕f𝜕R!" ]R̄,- R!" = – (1 + +)1/2 R, (9.6.13)

1
2
[[ 𝜕2f𝜕R13𝜕R!"]]R̄,-

R13R
!
" =

1
m2 (1 + +)–1/2 (R,-R-, – 3

8
R2) ,

which require + > –1. Observe that the NMG tuning appears at the quadratic order.
Therefore, one can simply read the effective parameters of the equivalent quadratic
action from (9.6.5) and (9.6.6) as

& = –√1 + +, " = –83
! = 1

m2√1 + + . (9.6.14)

Using this result in (9.6.7) and (9.6.8), one gets8

1
* = –

1+ +
2√1 + + , (9.6.15)

D0
* = m2 [+0 – 2 + 1√1 + + (2 + + – +2

4
)] . (9.6.16)

As we found before, the mass of the spin-2 excitation in quadratic gravity is simply

m2
g = – 1

"*eff
, 1

*eff
= –√1 + +, (9.6.17)

which yields the mass quoted above (9.6.11). To find +, recall the quadratic equation
that determines the potential vacua of quadratic gravity:

D – D0
2* + kD2 = 0, (9.6.18)

where for this case k = –(3! + "). Inserting these one obtains the unique solution in
(9.6.11). Now let us calculate the mass and angular momentum of an explicit metric.

In [209, 330], it was shown that the rotating BTZ black hole

ds2 = –N2dt2 + N–2dr2 + r2 (N6dt + d6)2 , (9.6.19)

8 There could be a potentially confusing point here: D0 is the bare cosmological constant of the
equivalent quadratic action and it is not m2+0 .
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where

N2 (r) = –M + r2ℓ2 + a2

4r2
, N6 (r) = – a

2r2
, (9.6.20)

is a solution to BINMG theory under the condition

+ = –+0 (1 – +0
4
) , +0 < 2. (9.6.21)

This condition is equivalent to the earlier condition for the existence of a maximally
symmetric vacuum (9.6.11) which is quite natural since the BTZ black hole is locally
equivalent to the AdS vacuum and differs only in its global identifications. Then by
using (9.6.9) the mass and the angular momentum of the BTZ black hole in BINMG can
be found as

E = –M√1 + +, J = –a√1 + +. (9.6.22)

Both of these quantities are quite reasonable as they are simply in the form E = M/*eff
and J = a/*eff. Observe that as expected from (9.6.9) the charges are scaled yet their
ratio is intact. This result matches with [330] where the charges were calculated using
thermodynamics arguments for black holes.

9.6.2 Conserved charges of topologically massive gravity

Let us now study a theory which is only diffeomorphism invariant up to a boundary
term. This is the topologically massive gravity (TMG) introduced in [128, 129]

S = 1
* ∫ d3x [√–g(R – 2D) + 1

2,:
!"𝛾A,!- (𝜕"A-𝛾, + 2

3
A-"1A

1
𝛾,)] , (9.6.23)

where :!"𝛾 is the totally antisymmetric Levi-Civita symbol, which, as a tensor density,
has the same weight as √–g. As opposed to pure 3 dimensional Einstein’s gravity,
this is a dynamical theory of gravity, albeit a parity-non-invariant one with a single
massive helicitymodewith helicity +2 or –2 but not both. Themass of this lonelymode
ism2 = ,2 +D, see [210] for a detailed canonical analysis of this theory. The source-free
field equations are given as

R,- –
1
2
g,-R + Dg,- +

1
,C,- = 0, (9.6.24)

where the added part is the Cotton tensor defined as

C,- ≡ 1√–g :,!"∇! (R- " – 1
4
$- "R) . (9.6.25)
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So the full theory is third order in the derivative of the metric tensor and hence the
parity non-invariance. The Cotton tensor which symmetric, covariantly conserved and
traceless, is defined only in 3 dimensions in this form as the :-tensor appears expli-
citly.9 We need the linearized form of the Einstein and Cotton tensors in 3 dimensions
which are simply found to be

G L
,- = RL,- –

1
2
ḡ,- R

L – 2D h,- , (9.6.26)

C,-L = 1√–ḡ :,!" ḡ"3 ∇̄! (R3-L – 2D h3- – 1
4
ḡ3- RL) . (9.6.27)

Actually it is much better to recast the linearized Cotton tensor into an explicitly
symmetric form as

CL
,- = 1

2√–ḡ(:,! "∇̄!GL
-" + :-! "∇̄!GL

,"). (9.6.28)

Using this form, and following the procedure introduced above to get the vector
current, one can show that [125]

2 ̄.-CL ,-√–ḡ = ∇̄!(:,!"G L
-"

̄.- + :-! "GL
," ̄.- + :,-"G L !

"
̄.-)

+ :!- "GL
,"∇̄! ̄.-. (9.6.29)

Then given the background Killing vector we have the conserved quantity

Q( ̄. ) = ∫
G
d2x√–ḡT0- ̄.- = ∫

G
d2x√–ḡ {GL

0- ̄.- + 1
,CL

0- ̄.-} (9.6.30)

≡ QE + QC.

We already know how the Einsteinian part is written as a surface integral. The Cotton
part also can be written as a surface integral when one realizes that

X̄" ≡ :!-"∇̄! ̄.-, (9.6.31)

is also a background Killing vector. Therefore, we have the rather nice charge expres-
sion for TMG as

Q( ̄. ) = QE( ̄. + 1
, X̄) + 1

, ∮
𝜕G
dSi(:0i"G L

-" ̄.- + :-i "GL
0" ̄.- + :0-"G L i

" ̄.-). (9.6.32)

9 There is a rank-3 tensor, also called the Cotton tensor, defined in all dimensions.
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So, to compute the conserved charge in TMG corresponding to the Killing vector ̄.,,
onemust compute the corresponding expression in the Einstein’s theory with the shif-
ted Killing vector ̄., + 1

, :
!-,∇̄! ̄.-. As an example consider the rotating BTZ solution

to TMG with the metric (9.6.19)10 for which the vacuum is defined as M = 0, a = 0
in (9.6.19)

ds2 = – r
2ℓ2 dt2 + ℓ2

r2
dr2 + r2 d62 .

Then energy and angular momentum are found as

E = M – a
,ℓ2 and J = a – M

, .

So clearly the same solution, or the spacetime, has different conserved charges in dif-
ferent theories. As we have noted several times, this is to be expected since these
conserved charges are dynamical, not geometric invariants. In the specific case of
M = ,a the angular momentum vanishes and furthermore setting ,2ℓ2 = 1, the energy
also vanishes [346]. This interesting limit gives rise to the so called Chiral Gravity
[290, 308] which only has a left single copy of the Virasoro algebra in the boundary of
AdS, instead of the usual double copy [76]. Chiral gravity initially raised hope that one
could define a quantum theory of gravity via the AdS/CFT correspondence. Namely,
the boundary chiral CFT can be used to calculate high energy properties of bulk grav-
ity. But this issue is not clear yet as there arise solutions in the theory which are not
asymptotically AdS exactly in the chiral limit. These solutions, in the usual coordin-
ates have logarithmic behavior and induce a logarithmic, non-unitary conformal field
theory on the boundary [207].

9.6.3 Conserved charges from the symplectic structure for generic backgrounds

There is an interesting connection between symplectic structure ( an antisymmetric
two form on the phase space) and the conserved charges of a theory which we shall
show here. It is well-known since the work [109] that canonical quantization, which
apparently requires a choice of time to define canonical momenta, can actually be
done in a covariant way. The combination “covariant canonical” might seem like an
oxymoron but the construction follows by defining a symplectic 2-form9 in the phase
space, let is call the phase space of the theory to be Z. The symplectic 2-form on the
phase space is all that one needs to do a “covariant canonical” quantization granted
that it is closed ( $9 = 0 ) and non-degenerate except for the gauge directions. There-
fore 9, as a matrix, has no zero eigenvalues and its inverse exists. The crux of the
matter is this: in local coordinates, qI, of the phase space, the fundamental Poisson

10 All Einstein spacetimes, such as the BTZ solution solve TMG trivially since their Cotton tensor
vanishes identically. But the charges are modified.
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bracket is simply {qI, qJ} = 9IJ . Here we shall not be interested in the quantization of
the gravity theory, but we shall give another derivation of the conserved charges in the
more general setting of background admitting Killing vectors but they are not neces-
sarily maximally symmetric. We will consider the topologically massive gravity (TMG)
in 3 dimensions but the Einsteinian part will be valid for all generic n dimensions. The
construction was given in [332] which we follow. TMG action is11

S = ∫ d3x [√–gR + 1
2,:

!"𝛾A,!- (𝜕"A-𝛾, + 2
3
A-"1A

1
𝛾,)] , (9.6.33)

We need to carefully vary the action with respect to the metric and collect the
boundary terms that we shall employ, hence we have

$S = $SEH + $SCS, (9.6.34)

with the Einstein-Hilbert term in the explicit form as

$SEH = $∫ d3x√–gR
= ∫ d3x√–g$g,-G,- + ∫ d3x𝜕!(√–gg,-$A!,- –√–gg!,$A-,-). (9.6.35)

Variation of the Chern-Simons term is a rather long exercise which we hope the reader
carries out to find at the end

$SCS = $∫ d3x 1
2,:

!"𝛾A,!- (𝜕"A-𝛾, + 2
3
A-"1A

1
𝛾,)

= 1
2, ∫ d3x:!"𝛾$A,!-R

-
,"𝛾 + ∫ d3x𝜕! (– 1

2,:
!-3A1-"$A

"
31)

= 1
, ∫ d3x√–g$g,-C,-
+ ∫ d3x𝜕! [– 1,:!-3 (R̃13$g-1 + 1

2
A1-"$A

"
31)] , (9.6.36)

where in the last line we have used the Cotton tensor defined as

C,- = :,"𝛾√–g∇"R̃-𝛾, (9.6.37)

given in terms of the so called Schouten tensor which itself reads in 3 dimensions as
R̃,- = R,- – 1

4g,-R. Therefore we have the source-free TMG equations

G,- +
1
,C,- = 0, (9.6.38)

11 The addition of a cosmological constant does not change the ensuing discussion.
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which require the vanishing of the scalar curvature R = 0. The boundary terms in the
variation of the action add up to

D! ≡ D!
EH + D!

CS, (9.6.39)

where the individual parts read

D!
EH = √–gg,-$A!,- –√–gg!,$A-,-, (9.6.40)

D!
CS = – 1,:

!-3 (R̃13$g-1 + 1
2
A1-"$A

"
31) . (9.6.41)

These boundary terms, which are 1-forms on the phase space of the theory, can be
recycled to construct a symplectic 2-form as follows: first, we construct a 2-form
current J!

J! = J!EH + J!CS, (9.6.42)

where the Einstein-Hilbert piece is given as the variation of the corresponding bound-
ary term as

J!EH ≡ – $D!
EH√–g

=$A!,- ∧ ($g,- + 1
2
g,-$ log g) – $A-,- ∧ ($g!, + 1

2
g!,$ log g) , (9.6.43)

and the Chern-Simons part similarly reads as

J!CS ≡ –
$D!

CS√–g = 1
,
:!-3√–g ($R̃13 ∧ $g-1 + 1

2
$A1-" ∧ $A"31) . (9.6.44)

Then, the object of our interest, the symplectic 2-form on the phase space of TMG, is
defined as an integral over a 2 surface as

9 = ∫
G
dG!√–gJ!, (9.6.45)

which more explicitly reads

9 =∫
G
dG!√–g

× ($A!,- ∧ ($g,- + 1
2
g,-$ log g) – $A-,- ∧ ($g!, + 1

2
g!,$ log g)

+ 1
,
:!-3√–g ($R̃13 ∧ $g-1 + 1

2
$A1-" ∧ $A"31)). (9.6.46)
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Of course, up to this point we have not done much except give names to these objects.
We have to show that the desired properties nicely addressed in [109] are indeed sat-
isfied. The easiest part is to show that the two-form is closed, $9 = 0, it is clear from
above that it is indeed closed without the use of field equations as $2 = 0. The hardest
part of the computation is to show that the current is covariantly conserved, ∇!J! = 0
modulo the field equations and their variations,

$G,- +
1
,$C,- = 0. (9.6.47)

This computation takes at least several pages of algebra, here we give some of the
intermediate steps. Let us split the covariant divergence of the current as

∇!J! ≡ I1 + I2 +
1
, I3, (9.6.48)

where the individual parts read

I1 ≡ 1
2
∇!(g,-$A!,- ∧ $ log g – g!,$A-,- ∧ $ log g), (9.6.49)

I2 ≡ ∇!($A!,- ∧ $g,- – $A-,- ∧ $g!,), (9.6.50)

and

I3 ≡ ∇! [ :!-3√–g ($R̃13 ∧ $g-1 + 1
2
$A1-" ∧ $A"31)] . (9.6.51)

With the help of the Palatini identity,

$R,- = ∇!$A!,- – ∇,$A!-!, (9.6.52)

and the explicit form of $A in terms of the metric and the symmetries of the involved
tensors one can reduce I1 and I2 to the following forms:

I1 =
1
2
g,-$R,- ∧ $ log g + g,-$A!,- ∧ $A+!+, (9.6.53)

I2 = $R,- ∧ $g,- – g,-$A!,- ∧ $A+!+. (9.6.54)

Using the variation of the field equations, the sum of these two parts becomes

I1 + I2 ≡ 1
, I4, (9.6.55)

where I4 explicitly reads

I4 = $C,- ∧ ($g,- – 1
2
g,-$ log g) – C,-$g,- ∧ $ log g. (9.6.56)

Now we must find the variation of the Cotton tensor under arbitrary changes of the
metric: the result is
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$C,- = :,"𝛾√–g (–1
2
∇"R̃-𝛾$ log g + ∇"$R̃-𝛾 + R̃3𝛾$A-"3) . (9.6.57)

Making use of this in I4 one arrives at

I4 =
:,"𝛾√–g (R̃3𝛾$A-"3 + ∇"$R̃-𝛾) ∧ $g,-. (9.6.58)

Recasting I3 in the form

I3 = – :
,"𝛾√–g (∇"$R̃-𝛾 ∧ $g,- + g+,$R̃-𝛾 ∧ $A+"- + $A-,3 ∧ ∇"$A3𝛾-) , (9.6.59)

and making use of this result one obtains

∇!J! = :,"𝛾
,√–g $A-"3 ∧ ($ (g,-R̃3𝛾) + ∇,$A3𝛾-). (9.6.60)

One more step is needed to show that this expression vanishes: for this purpose we
need the following 3 dimensional identities that come from the definition of the :-
symbol

:,"𝛾R3,𝛾- = :,"𝛾 ($3𝛾R̃,- + R̃3𝛾g,-) , (9.6.61)

:,"𝛾$R3,𝛾- = :,"𝛾$3𝛾$R̃,- + :
,"𝛾$ (R̃3𝛾g,-) . (9.6.62)

So finally we have shown that our symplectic current is covariantly conserved ∇!J! =
0. But, we are not done yet: we now have to show that that9 is diffeomorphism invari-
ant both in the full solution space and in themore relevant quotient space of solutions
modulo the diffeomorphism group.

Diffeomorphism invariance on the space of solutions
We must show that our symplectic 2-form 9 has vanishing components in the pure
gauge directions. For this purpose let us decompose the variation of the metric into
non-gauge and pure gauge parts as

$g󸀠,- = $g,- + ∇,.- + ∇-.,, (9.6.63)

where . is a 1-form on the cotangent space of the phase space. Under this decomposi-
tion the relevant tensors split as the Lie derivative of the associated tensors,L.T, with
respect to the vector . , hence the connection and the Ricci tensor decompose as

$A󸀠+,- = $A+,- + ∇,∇-.+ + R +
- ,".

", (9.6.64)

$R̃󸀠,- = $R̃,- + .
"∇"R̃,- + R̃,"∇-." – R̃-"∇".,, (9.6.65)
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which then lead to a change in the symplectic current of the Einstein-Hilbert part as
computed in [109]

BJ!EH =∇,X,!EH + R,! (., ∧ $ log g + 2.- ∧ $g,-) + R,-$g,- ∧ .!
+ $R ∧ .! + 2., ∧ $R!,, (9.6.66)

where X,!EH is an antisymmetric tensor which turns out to be

X,!EH =∇,$g-! ∧ .- + $g-! ∧ ∇-., + 1
2
$ log g ∧ ∇!., + ∇-$g,- ∧ .!

+ ∇,$ ln g ∧ .! – (! ↔ ,) . (9.6.67)

For the moment let us consider the pure Einstein-Hilbert theory, then the first term
in (9.6.66) is a boundary term which vanishes for sufficiently fast decaying metric
variations and the last four terms vanish yielding a diffeomorphism invariant two
form 9EH on the quotient space of classical solutions. This result is valid in generic
n dimensions.

Let us turn to the full TMG case: we must also compute the change in the Chern-
Simons part which reads

,BJ!CS =
:!-3√–g((–R̃"3∇".1 + R̃1"∇3." + ∇"R̃13.") ∧ $g-1
+ $R̃13 ∧ (∇1.- + ∇-.1) + (∇-∇".1 + R 1

" -𝛾.
𝛾) ∧ $A"31). (9.6.68)

Now a highly nontrivial computation is needed to bring this into the desired form: the
guiding principle is the following : collect terms in the form ∇,X,!CS with an antisym-
metric tensor X,!CS, plus terms that will cancel the remaining non-boundary terms in
the Einstein-Hilbert part (9.6.66). For this purpose we need the following identities

∇"$R̃"3 = 1
4
∇3$R + $A+"3R̃

"
+ – $A

+
"+R̃

"
3, (9.6.69)

:,!".- = g,-:1!".1 + g!-:,1".1 + g"-:,!1.1, (9.6.70)

which eventually yield the desired expression

,BJ!CS =∇,X,!CS + C,!(., ∧ $ log g + 2.- ∧ $g,-)
+ C,-$g,- ∧ .! + 2., ∧ $C!,, (9.6.71)

where X,!CS is an antisymmetric tensor found to be

X,!CS =
:!,3√–g (–$A"31 ∧ ∇".1 + 2$R̃-3 ∧ .- + R̃1𝛾$g31 ∧ .𝛾 + R̃"3$g"1 ∧ .1) . (9.6.72)
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Wemust sum (9.6.66) and (9.6.71) and use the field equations and their variations. This
leads to the conclusions that 9 has no components in the pure gauge directions for
sufficiently fast decaying metric variations (note that from the current to symplectic
form, we do an integration hence dropping the boundary term for fast decaying fields
makes sense.)

Conserved charge construction from the symplectic structure
We are now ready to pick up our main fruit: the conserved charges for a generic
background admitting a Killing symmetry. For this purpose let us consider the dif-
feomorphisms which are isometries of the background spacetime: Namely we have
the Killing equation12 ∇,.- + ∇-., = 0 which leads to an identical vanishing of the
variation of the current as

BJ! = ∇, (X,!EH + 1
,X

,!
CS) = 0. (9.6.73)

From this point on, what we have done in our earlier discussion of charge construction
follows verbatim leading to

Q = 1
20 ∮
𝜕G
dS!√–g[[(∇0h-!.- + h-!∇-.0 – 1

2
h∇!.0

+ ∇-h0-.! – ∇0h.! – (! ↔ 0))
+ 1
,
:0!3√–g (–$A"31∇".1 + 2$R̃-3.- + R̃1𝛾h31.𝛾 + R̃"3h"1.1)]], (9.6.74)

where 2$A"31 = g"+ (∇3h1+ + ∇1h3+ – ∇+h31) and $R̃-3 = $ (g-+R̃+3). This is the expres-
sion for conserved charges in TMG valid for not only asymptotically flat or AdS
spacetimes, but also for asymptotically non-AdS spacetimes. All that is required from
the background is the existence of a Killing vector. For the BTZ black hole, the for-
mula gives the same result as before. But let us consider somewhat more complicated
examples of non-Einstein type where the Cotton part also contributes to the explicit
solution.

Examples: Conserved charges for non-Einstein solutions of TMG
1: Logarithmic solution of TMG at the chiral point

At the so called “chiral point” that we discussed which corresponds to the chiral
gravity limit of TMG, for which ,ℓ = 1, where ℓ2 = – 1

D , the following metric solves TMG
[184]:

12 Please note that we do not use an over-bar notation for the background values of the vectors and
tensors in this section, but it should not cause a confusion.
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ds2 = –N(r)dt2 + dr2

N(r)
+ r2(N((r)dt – d()2 + Nk(r)(dt – ℓd()2, (9.6.75)

where

N(r) = r2ℓ2 –m + m2ℓ2
4r2

, N((r) =
mℓ
2r2

, Nk(r) = k log (2r2 –mℓ2
2r20

). (9.6.76)

Defining the background as m = k = 0, our formula (9.6.74) yields the energy (using
the Killing vector ., = (–1, 0, 0)) and the angular momentum (using the Killing vector
., = (0, 0, 1)) as

E = 4k, J = 4kℓ. (9.6.77)

Here we took 8G = 1. These are the same charges as the ones found in [184], employing
the counter-term approach, and in [318], using the first order formalism, and in [54].

2: Spacelike stretched black holes

The following metric solves TMG for any value of ,

ds2 = –N(r)dt2 + ℓ2R(r)(d( + N((r)dt)2 + ℓ4dr2
4R(r)N(r)

, (9.6.78)

where the metric functions are given as

R(r) ≡ r
4
(3(-2 – 1)r + (-2 + 3)(r+ + r–) – 4-√r+r–(-2 + 3)) , (9.6.79)

N(r) ≡ ℓ2(-2 + 3)(r – r+)(r – r–)
4R(r)

, (9.6.80)

N((r) ≡ 2-r –√r+r–(-2 + 3)
2R(r)

, (9.6.81)

where13 - = –,ℓ
3 . This complicated solution describes a spacelike stretched black hole

for -2 > 1 with r± as inner and outer horizons. This type of solutions to TMG was
found by Nutku [337] and Gurses [221] and studied in [54, 69, 308, 318]. The conserved
charges of this metric was discussed in the latter works. Using (9.6.74) and defining
the background to be r± = 0 and using the Killing vectors14 ., = (–1/ℓ, 0, 0) and
., = (0, 0, 1) we get the energy as

E =
(3 + -2)

3- (-(r+ + r–) –√(3 + -2) r+r–) , (9.6.82)

13 Note that with this choice of sign and with the convention :tr( = 1, the metric solves the TMG
equations.
14 To keep the energy dimensionless we rescale the Killing charge.
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and the angular momentum as

J = ℓ
24-(2(10-4 – 15-2 + 9)(r2+ + r2–) + 18(-2 – 1)(-2 – 2)r+r– (9.6.83)

+ -(5-2 – 9)(r+ + r–)√(3 + -2) r+r–).
Both E and J turn out to be finite in a highly nontrivial way: Einstein-Hilbert and Chern-
Simons parts give divergent results separately, but they yield a finite result when
added. Energy computed here is exactly the same as the one given in [54, 69, 308].
However, the angular momentum, J, differs from the one, J , given in those papers.
J is a linear combination of E and J given above. The relation is as follows:

J = c1J + c2ℓE, (9.6.84)

where c1 and c2 are complicated constants.

9.6.4 Generic scalar-tensor theory in n dimensions

In the above discussion we have assumedminimal coupling with thematter fields and
also assumed that we have localizedmatter in a compact region of spacetime. Here we
relax the minimal coupling assumption and consider a generic scalar field coupled
non-minimally to the cosmological Einstein’s theory defined by the action [131]

S = 1
2* ∫ dnx√–g U(6)(R(g) + 2D0 –W(6)𝜕,6𝜕,6 – V(6) + H(6)Lm), (9.6.85)

where g,- is sometimes called the Jordan frame metric, the “sigma model” metric or
the “string frame” metric.The term Lm includes all the matter fields except the scal-
ars. Instead of working out the conserved charges in this theory from scratch, we can
go to the Einstein frame with the field redefinition

gE,- ≡ U(6)
2
n g,-, (9.6.86)

which transforms the action to

S = 1
2* ∫ dnx√–gE(R(gE) + 2D0) + SM, (9.6.87)

where the matter sector reads

SM = 1
2* ∫ dnx√–gE(n – 1

n – 2
(𝜕, logU(6))2 –W(6)𝜕,6𝜕,6

– U(6)
2
2–n (V(6) – H(6)Lm)),
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in which we have dropped the boundary terms since they play no role in our charge
definition and we have assumed that the bare cosmological constant does not change,
if it does, we can easily take care of that. What is more alarming is the fact that the
scalar field could decay more slowly than the required fall of conditions to have finite
charges. Here we assume that is not the case. So we already know that we have the AD
expression for asymptotically AdS spacetimes which we write now as

Q(ḡE, ̄.E) = 1
4Kn–2 GN

∮
𝜕G
dSi√–ḡEqi0( ̄.E). (9.6.88)

Now consider the inverse of the transformation (9.6.86) on the full metric g,- =
U(6)–

2
n gE,- which yields

ḡ,- = U(6)–
2
n ḡE,-, h,- = U(6)–

2
n hE,-. (9.6.89)

We have

∇,.- + ∇-., = 0, (9.6.90)

given that

∇E, .E- + ∇E- .E, = 0, (9.6.91)

which is correct as long as ., = U(6)–
2
n .,E and .,E𝜕,U(6) = 0 is satisfied. (Note that

this condition is to be expected since, for example if .,E is a time-like Killing vector
such as (–1,0), U(6) cannot depend on time if ., = (–U(6)–

2
n ,0 ) is to be a Killing

vector. Clearly similar reasoning works for the other Killings that are related to angular
momenta. With all these we can find how the integrand of the conserved charge (9.5.9)
transforms as

√–gqi0(. ) = U– 2
n√ḡE(qi0(.E) – 3

n
.E- h

i-
E 𝜕0 logU + 3

n
.E- h

0-
E 𝜕i logU

– n – 1
n

. iEh
0-
E 𝜕- logU + n – 1

n
.0E h

i-
E 𝜕- logU). (9.6.92)

Therefore if U(∞) = 1 then g,- and gE,- have the “same” charges, otherwise they have
different charges for the same solution. So this construction also sets conditions on
the conformal scaling of the charges. This procedure can also be generalized to higher
derivative models.



10 Conservation laws in covariant field theories
with gauge symmetries

It was shown in previous chapters that the standard Noether’s procedure leads to
well-defined and unique expressions for the conserved canonical currents of the field
perturbations associated with the diffeomorphism invariance. The present chapter
explores the application of the Noether formalism to generally-covariant and, sim-
ultaneously, gauge-invariant field theories. This class of theories is rather broad in
physics and includes even pure gravitational theories like general relativity if grav-
itational field is described by a set of dynamic variables such as vector fields of
tetrads instead of the metric tensor field. We show that in the gauge field theories the
Noether procedure breaks down and there is no unique method of constructing con-
served canonical currents following from the diffeomorphism invariance, which are
simultaneously both generally-covariant and gauge-invariant.

The thorough study of the problem requires application of a pretty complicated
mathematical apparatus of modern differential geometry including fiber bundles, jet
bundles, gauge-natural bundles, a principal (Ehresmann) connection, modified Lie
derivatives, etc. The goal of this book is not to introduce the reader to all subtlties of
this branch of mathematics but to outline the principal difficulties in the construction
of the conserved currents in the gauge theories. A close inspection of the problem
reveals that in reality the problem has a kinematic character: it has no relation to
dynamics that follows from the choice of the Lagrangian. Therefore, we illustrate the
origin of the difficulties by making use of simple but physically important examples.

The chapter is a brief review of the main results obtained by the researchers who
have been studying the problem under discussion with corresponding references to
literature. In Section 10.1 we consider a generally-covariant version of the Yang–Mills
theory with the gauge fields interacting with a multiplet of massless, charged scalar
fields having the intrinsic symmetry described by the group SU(N). Section 10.2 dis-
cusses the tetrad formulation of general relativity from the point of view of a gauge
field theory where the gauge freedom is associated with the rotations of the tetrad in
the tangent space at points of the spacetimemanifold. The basic features of the generic
differential-geometric approach to the problem are outlined in Section 10.3.

10.1 Conserved quantities in generally-covariant Yang–Mills
theories

10.1.1 The Yang–Mills theories

Let I = {Ia(x)} be a multiplet of n charged, massless, complex scalar fields inter-
acting with the Yang–Mills fields of the matrix type A, = {(A,)ab(x)}; the small Roman

DOI 10.1515/9783110351781-010
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indexes a, b, ... take values in {1, . . . , n} and the Greek indexes belong to the spacetime.
As usual, by the sign † we denote a Hermitian conjugation. It is assumed that the
Yang–Mills fields, A,, are anti-Hermitian matrices: A†, = –A,.

In matrix notation, the generally-covariant Lagrangian of such a physical system
has the form [266]:

L = LA + LIA = 1
8
g*,g+-Tr (F†*+F,-) + g

,-(D,I)†(D-I). (10.1.1)

Here, g,- = g,-(x) is a fixed inverse metric tensor of the Riemannian spacetime; Tr
means an operation of calculating the trace of the matrix with respect to the Roman
indices; and D- is a generally-covariant gauge derivative

D-I ≡ ∇-I + A-I , (10.1.2)

such that its Hermitian conjugation is

D-I† ≡ ∇-I† –I†A- (10.1.3)

where ∇- denotes a generally-covariant derivative on spacetime manifold construc-
ted with the use of the Christoffel symbols A+,-, defined in Appendix (A.2.2). Usually,
the second term in the right hand side of (10.1.2) (and, correspondingly, in (10.1.3))
includes a coupling constant that characterizes the strength of physical interaction
between the scalar and Yang–Mills fields. We set this constant equal to 1 to sim-
plify equations. It is achieved by choosing a special system of units, and a non-zero
coupling constant can be easily restored by a redefinition of A-.

The anti-symmetric tensor,

F,- = ∇,A- – ∇-A, + [A,,A-] = 𝜕,A- – 𝜕-A, + [A,,A-] , (10.1.4)

is the anti-Hermitian matrix of the Yang–Mills field strength tensor, F†,- = –F,-, and
the square brackets denote a commutator of fields, [A,,A-] ≡ A,A- –A-A, which is not
vanishing in the most general case of non-commuting matrices A,.

The Lagrangian (10.1.1) is invariant under the intrinsic gauge transformations:

I → Ĩ = uI, (10.1.5)

I† → Ĩ† = I†u†, (10.1.6)

A- → Ã- = uA-u† + u𝜕-u† (10.1.7)

with an arbitrary unitary matrix, u = {uab(x)}, such that
u† = u–1 . (10.1.8)

Indeed, substitution of (10.1.5–10.1.7) leaves the tensor F,- and derivatives of scalar
fields gauge-covariant,

F̃,- = uF,-u† , D-Ĩ = u (D-I) , D-Ĩ
† = (D-I†)u† . (10.1.9)
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The set of all the transformations (10.1.5–10.1.8) forms an infinite-dimensional Lie
group which we denote as Gau. The corresponding infinite-dimensional Lie algebra
is defined by the infinitesimal transformation of the group Gau, and is denoted as
gau. The group of diffeomorphisms of spacetime and its corresponding algebra will be
denoted as Diff and diff, respectively.

The generally-covariant gauge derivative D- is a generalization of a covariant
gauge derivative D- from flat to curved spacetime. The covariant gauge derivative in
a spacetime is defined by the rule:

D-I ≡ 𝜕-I + A-I , D-I† ≡ 𝜕-I† –I†A- , (10.1.10)

which should be compared with (10.1.2), (10.1.3). The reader should pay attention to
the fact that the generally-covariant gauge derivative of scalar fields yields the same
result as the covariant gauge derivative, D-I = D-I, but the two derivatives are con-
ceptually different operators. Indeed, in the general case of tensor fields the action
of the derivative D- is both Gau-covariant and Diff-covariant while the action of the
derivative D- is only Gau-covariant because the operator of the partial derivative 𝜕-
entering definition of D- is not generally-covariant. A necessity to distinguish D- and
D- becomes evident in Section 10.2.

We call the transformations (10.1.5–10.1.8) intrinsic because they do not influence
the coordinates in spacetime. The group of these unitary transformations in each of
points x of the spacetime is denoted as U(N). Below, we will be interested in the,
so called, connected component of this group denoted SU(N) and consisting of all
matrices with determinant det U(N) = +1. Therefore, from now on we assume that
the Gau-transformation matrices, u ∈ SU(N) ⊂ U(N). Any element of SU(N) can be
represented in the exponential form:

u = e–i%
ata , (10.1.11)

where %a = %a(x) are real-valued parameters of the gauge transformations depend-
ing on spacetime coordinates x = {x!}, and ta = {(ta)bc } are called generators of
the gauge transformations. Parameters %a has no spacetime indices and behave as
scalar functions with respect to spacetime transformations. The generators are con-
stant (independent of spacetime coordinates x!) Hermitian matrices, t†a = ta, forming
a basis of the Lie algebra su(N) satisfying the commutation relationship

[ta, tb] = iccabtc . (10.1.12)

Here, ccab = c
c
[ab] are the structure constants of the algebra su(N). For the sake of

simplicity, we assume that the generators ta are selected in the adjoint representation,
that is they are simply identified with the structure constants as

(ta)
c
b = iccab . (10.1.13)

Recall that a, b, . . . = 1, 2, . . . , n, where n = N2 – 1.
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In what follows, it will be more convenient to work with the real-valued compon-
ents of the Yang–Mills fields with respect to the basis of generators, Aa, = Aa,(x), and
those of their strength tensor, Fa,- = Fa,-(x). They are defined by relations,

A- = –iAa-ta , F,- = –iFa,-ta . (10.1.14)

Notice that the real-valued components of the Yang–Mills field Aa
, do not compose

a contravariant vector with respect to the transformations of the group Gau because
A, transforms in accordance with (10.1.7). The real-valued Yang–Mills field strength
tensor is expressed in terms of the real-valued Yang–Mills fields as follows:

Fa,- = ∇,Aa- – ∇-Aa, + cabcAb,Ac-
= 𝜕,Aa- – 𝜕-Aa, + cabcAb,Ac-, . (10.1.15)

As for the derivatives, we have

D-Ia = ∇-Ia + Ac
-c

a
cbIb = 𝜕-Ia + Ac-c

a
cbIb , (10.1.16)

D-I⋆a = ∇-I⋆a – Ac-cbcaI⋆b = 𝜕-I⋆a – Ac-cbcaI⋆b . (10.1.17)

Here,I⋆a = (Ia)∗ where “∗” means the complex conjugation. Then, in the component
notation, the Lagrangian (10.1.1) can be recast in the form:

L = LA + LIA = 1
4
$ab g*,g+-Fa*+Fb,- + g,-(D,I⋆a)(D-Ia), (10.1.18)

where, $ab = – 1
2Tr (tatb) =

1
2c

c
adc

d
bc, is the unit Killing-Cartan metric. In the case

under consideration the Killing-Cartan metric coincides with the Kroneker symbol,
$ab = {+1, +1, . . . , +1} and is used to raise and to lower the group indexes a, b, c, . . ..
10.1.2 Field equations and the Noether current

To obtain the differential equations which govern the evolution and interaction of the
fields Ia, I⋆a and Aa

,, and to construct the Noether current, J , we apply the gen-
eral variational procedure described in Chapter 1 of this book for the Lagrangian of
the Yang–Mills theory (10.1.1). To this end we calculate the total variation, $󸀠S, of the
action functional

S =
G2∫
G1

d4xL , (10.1.19)

where, L = √–gL, is the Lagrangian density, L is given in (10.1.1), g = det g,-,
d4x = dx0dx1dx2dx3, and the domain of integration is restricted by two spacelike
hypersurfaces, G1 and G2. The total variation, can be split in sum of two terms

$󸀠S = $S + $GS, (10.1.20)
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where the variation $S is caused by variations of the fields only without variations of
the boundaries,

$S =
G2∫
G1

d4x $L =
G2∫
G1

d4x√–g [$(ln√–g )L + $L] , (10.1.21)

and the variation $GS is caused by variations of the boundary hupersurfaces of the
domain of integration without changing the values of the fields,

$GS =
G2∫
G1

d4x 𝜕,(L $x,) . (10.1.22)

Calculating variations on the right hand side of (10.1.21) is reduced to taking the Lag-
rangian derivatives with respect to all the fields which are the metric tensor g,-, the
Yang–Mills fields Aa,, and the scalar fields Ia along with their conjugates I⋆a . Vari-
ation with respect to the metric tensor is performed as usual in accordance with the
rules described, for example, in Appendix A.2.4, recall also the relation,

$√–g = –1
2
√–g g,-$g,-. (10.1.23)

Recall that the Yang–Mills field, Aa-, is not gauge-covariant because it is trans-
formed non-homogenously under gauge transformations. On the other hand, its
variation, $Aa-, represents a contravariant vector with respect to the intrinsic index
a. Generally-covariant derivative applied to the intrinsic vector reads,

D,$Aa
- = ∇,$Aa- + Ab,cabc$Ac- . (10.1.24)

Then, from the relation (10.1.15–10.1.17) one finds

$Fa,- = 2D[,$Aa-] , (10.1.25)

$D-Ia = D-$Ia + $Ac-cacbIb , (10.1.26)

$D-I⋆a = D-$I⋆a – $A
c
-c

b
caI⋆b . (10.1.27)

Making use of the above-derived formulae in the Yang–Mills part, LA , of the Lag-
rangian, we get its variation in the following form

$LA = 1
2
$ab g*+Fa*!Fb+"$g!" +

1
2
$ab g*,g+-Fa*+$Fb,-

= 1
2
Fa !,Fa !-$g

,- – D,Fa
,- $Aa

- + ∇,(Fa,-$Aa-). (10.1.28)
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Variation of the scalar field part, LIA , of the Lagrangian reads

$LIA = D,I⋆aD-Ia$g,- + g,- ($D-I⋆a D,Ia + D,I⋆a $D-Ia)
= D,I⋆aD-Ia$g,- – $I⋆a D,D

,Ia – D,D
,I⋆a $I

a

–cbac (I⋆bD-Ic – D-I⋆bI
c) $Aa-

+∇, ($I⋆a D,Ia + D,I⋆a $I
a) . (10.1.29)

Combining all the obtained results, one finds the total variation of the action to be

$󸀠S =
G2∫
G1

d4x√–g {[ 1
2
(Fa !,Fa !- – 1

4
g,-F

a !"Fa !")
+ D,I⋆aD-Ia – 1

2
g,-D!I⋆aD

!Ia] $g,-
– [D,Fa

,- + cbac (I⋆bD-Ic – D-I⋆bI
c)] $Aa-

– $I⋆a(D,D
,Ia) – (D,D

,I⋆a)$Ia

+ ∇,(Fa,-$Aa
- + $I⋆a D,Ia + D,I⋆a $I

a + L$x,)} . (10.1.30)

The Noether theorem demands that if the action is invariant with respect to variations
of its arguments induced by transformations of a group, then, related identities and
conserved quantities exist. Hence, we require that the variation of the action (10.1.30)
must vanish which means that the integrand of (10.1.30) is equal to zero. It brings
about the main Noether’s identity (1.2.52),

$L
$g,- $g

,- + $L
$Aa

-
$Aa

- + $I⋆a
$L
$I⋆a

+ $L
$Ia $I

a ≡ 𝜕,J , , (10.1.31)

where we have used notations of the Lagrangian derivatives to denote separate terms
in (10.1.30) associated with the variations of the fields, and the vector density J ,

standing under the operator of divergence forms the Noether current of the type
(1.2.58).

The first term in (10.1.31) defines the metric energy-momentum tensor, as usual,
see (1.3.21) and (1.3.25),

T,- =
2√–g $L

$g,- = 1√–gT,- , (10.1.32)

which consists of two terms

T,- = T,-A + T,-IA , (10.1.33)
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where

T,-A = Fa !,Fa !
- – 1

4
g,-Fa !"Fa !" , (10.1.34)

is the tensor of energy-momentum of the Yang–Mills field, and

T,-IA = D,I⋆a D-Ia + D-I⋆a D,Ia – g,-D!I⋆a D!Ia , (10.1.35)

is the energy-momentum of the scalar fields. The second term in (10.1.31) is
determined by

$L
$Aa

-
= – (D,Fa

,- + ja-) . (10.1.36)

It is the operator of the Yang–Mills field equations

D,Fa
,- + ja- = 0 (10.1.37)

with Fa
,- ≡ √–gFa,-, and

ja- ≡ √–gja- ≡ √–gcbac (I⋆b D-Ic – D-I⋆b I
c) , (10.1.38)

being a current of the scalar fields which is a source of the Yang–Mills field. The third
and fourth terms in (10.1.31) are determined by

$L
$I⋆a

= –√–gD,D
,Ia, $L

$Ia = –√–gD,D
,I⋆a . (10.1.39)

They are the operators of the scalar field equations

D,D
,Ia = 0, D,D

,I⋆a = 0 . (10.1.40)

The right hand side of (10.1.31) is a generally-covariant divergence of the Noether
current

J , = – [Fa
,-$Aa

- +√–g ($I⋆a D,Ia + D,I⋆a $I
a) + L $x,] . (10.1.41)

This current is determined by the variations induced by both diffeomorphisms on a
spacetimemanifold (extrinsic transformations) and gauge (intrinsic) transformations,
and corresponds to invariance of the physical system under these transformations.

10.1.3 Conserved quantities corresponding to the gauge invariance

First, let us construct the current and the superpotential corresponding to the gauge
invariance of the action defined by the Lagrangian (10.1.1). In this case $x, = 0. Then,
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from the formulae (10.1.5–10.1.7), (10.1.11), (10.1.14) and (10.1.13) one can conclude that
in the case of the gauge transformations induced by the infinitesimal parameters %a =
%a(x), the fields are transformed to the new values

Ia → Ĩa = Ia + $%Ia , (10.1.42)
I⋆a → Ĩ⋆a = I⋆a + $%I

⋆
a , (10.1.43)

Aa-(x) → Ãa
- = Aa- + $%Aa- , (10.1.44)

where the gauge variations of the fields read

$%Ia = %ccacbIb , (10.1.45)
$%I⋆a = –%ccbcaI⋆b , (10.1.46)
$%Aa- = –Ac-c

a
cb%b – 𝜕-%a . (10.1.47)

One can see that the last variation is represented by the generally covariant gauge
derivative of the parameters %a:

D-%a = ∇-%a + Ac-cacb%b . (10.1.48)

After substituting expressions (10.1.45–10.1.47) into formula (10.1.41), one finds the
Noether current,

J ,[%] = Fa
,-D-%a + ja,%a. (10.1.49)

To use this formula for constructing the superpotential, we carry out the chain rule in
the first term. Taking into account the relation (10.1.36), one obtains

J ,[%] = (D+Fa
+, + ja,) %a + D-(Fa

,-%a) = – $L
$Aa,

%a + D-(Fa
,-%a). (10.1.50)

Here, the last term, being a divergence of an antisymmetric tensor density, is
reduced to

D- (Fa
,-%a) = ∇- (Fa

,-%a) = 𝜕- (Fa
,-%a) . (10.1.51)

The current (10.1.50) is conserved 𝜕,J , = 0 if the Yang–Mills field equation (10.1.37)
hold that is “on-shell” according to the field-theoretical glossary. In this case, the
equality (10.1.50) can be formulated in the form of a conservation law:

J ,[%] = 𝜕-J ,-[%] , (10.1.52)

where

J ,-[%] = Fa
,-%a (10.1.53)

is a superpotential J ,- satisfying 𝜕,-J ,- ≡ 0.
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Integrating (10.1.52) and implementing the Gauss integration theorem yield an
integral expression for the charges of the scalar fields which are the sources of the
Yang–Mills field:

Q[%] = ∫
G

ds,J
,[%] = 1

2
∮
𝜕G

ds,-J
,-[%] , (10.1.54)

where ds, and ds,- are coordinate elements of integration on G and 𝜕G, respectively.
Let us make some remarks related to the obtained results (10.1.49–10.1.54).

(i) To the best of our knowledge, Uzes [447] was the first person who has construc-
ted the gauge invariant currents of the type (10.1.49) depending on an arbitrary
gauge parameter %(x) in the Yang–Mills theories.

(ii) Only the Yang–Mills field gives a contribution to the gauge-invariant super-
potential J ,-[%], the scalar fields Ia or I⋆a , do not contribute. Recall that
in the case of currents corresponding to diffeomorphisms, the contribution to
superpotentials is given only by the fields having a non-zero spin. One can see
that this assertion remains valid for the currents corresponding to the gauge
transformations.

(iii) Because the superpotential (10.1.53) does not contain the scalar fieldsIa (orI⋆a )
one is tempted to conclude that the value of the related charge (10.1.54) is inde-
pendent of the behavior of the scalar fields at all. However, this conclusion is
erroneous. Indeed, the consistency of the system of the Yang–Mills field equa-
tion (10.1.37) requires the fulfillment of the conditions D, ja, = 0. However, this
is possible only if the equations of motion for the scalar fields (10.1.40) are taken
into account. We repeat that the integral representation of the charge (10.1.54) is
valid on-shell only which means that the field equations for all fields entering
the problem are satisfied.

(iv) At last, the structure of the (10.1.49), (10.1.53) and (10.1.54) itself shows that the
currentJ ,[%], the superpotentialJ ,-[%] and the charge Q[%], corresponding to
the gauge invariance of the system, are simultaneously both generally-covariant
and gauge invariant. This observation is essential for the discussion which fol-
lows in the next section. Aswewill see, in case of conserved quantities following
from the diffeomorphism invariance, the situation is different. Application of
the standard Noether’s procedure does not bring about the gauge invariant cur-
rents and the formalism must be extended to deal with the new realm of the
Yang–Mills theories!

10.1.4 Conserved quantities corresponding to the diffeomorphism invariance

Let us now turn to constructing currents and superpotentials related to diffeo-
morphisms. Recall that the fields Ia and I⋆a are transformed as scalars under
diffeomorphisms, and spacetime components of the field Aa

, are transformed as
a covariant vector. The variations of the field variables induced by infinitesimal
diffeomorphisms
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x, → x̃, = x, + ., , (10.1.55)

are defined by their Lie derivatives £. along the infinitesimal vector field . = {.,(x)}:
Ia → Ĩa = Ia + $.Ia, (10.1.56)

I⋆a → Ĩ⋆a = I⋆a + $.I
⋆
a , (10.1.57)

Aa- → Ãa
- = Aa- + $.Aa-, (10.1.58)

where

$.Ia = £.Ia = –.!𝜕!Ia , (10.1.59)

$.I⋆a = £.I⋆a = –.!𝜕!I⋆a , (10.1.60)

$.Aa- = £.A
a
- = –.!𝜕!Aa- – Aa!𝜕-.! . (10.1.61)

Variations (10.1.59–10.1.61) contain partial derivatives from the fields which are
not generally-covariant gauge derivatives. Because our goal is to construct con-
served quantities that are simultaneously generally-covariant and gauge-invariant, we
attempt to reach this goal by reformulating the Lie derivatives in (10.1.59–10.1.61) in a
manifestly covariant form. To this end we introduce parameters

3a = 3a[. ] ≡ Aa!.! , (10.1.62)

which generally-covariant gauge derivative is, by definition, equal to

D-3a = ∇-3a + Ac-cacb3b = 𝜕-3a + Ac-cacb3b . (10.1.63)

It should be emphasized that 3a is not an intrinsic vector because it is proportional to
the gauge field Aa

! which has the non-tensorial transformation law (10.1.7).
Keeping in mind the definitions (10.1.15–10.1.17) of the covariant gauge derivatives

for scalar fields along with the definition of the generators (10.1.13), and accounting
for (10.1.62), one finds that equations (10.1.59–10.1.61) can be recast to the generally-
covariant form,

£.Ia = –.!D!Ia + 3ccacbIb , (10.1.64)

£.I⋆a = –.!D!I⋆a – 3
c
c
b
caI⋆b , (10.1.65)

£.A
a
- = –Fa!-.! – D-3a , (10.1.66)

where the tensor Fa!- has been defined in (10.1.15).
Substituting the diffeomorphism-induced variations of the fields (10.1.64–10.1.66)

into general expression for the Noether current (10.1.41) yields for the diffeomorphism-
associated Noether’s current, J ,[. ], the following expression:
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J ,[. ] = √–g [(Fa !,Fa !- – 1
4
$,-F

a !"Fa !") .-
+ (D,I⋆a D-Ia + D-I⋆a D,Ia – $,-D!I⋆a D!Ia) .-
+Fa

,- D-3a + cbac (I⋆b D,Ic – D,I⋆b I
c) 3a] . (10.1.67)

By making use of the definition of the energy-momentum tensor (10.1.33) and the
scalar field current (10.1.38), we rewrite the current in a more concise form,

J ,[. ] = T ,
-.- + Fa

,-D-3a + ja,3a . (10.1.68)

To obtain a superpotential corresponding to the current (10.1.68), we carry out the
chain rule in the second term of the last formula. Taking into account (10.1.32) and
(10.1.36) one finds

J ,[. ] = 2g,1 $L$g1- .
- – $L

$Aa
,
3a[. ] + ∇- (Fa

,-3a[. ]) . (10.1.69)

The second term in the right side of (10.1.69) disappears on-shell that is when the
Yang–Mills field equations are satisfied, see (10.1.37). As for the first term in the right
hand side of (10.1.69), it does not vanish because we consider the theory of the Yang–
Mills and scalar fields interacting on a fixed background spacetime. We conclude that
in case of the Yang–Mills field equations hold, the canonical current (10.1.69) consists
of two terms,

J ,
C = T ,

-.- + ∇- (Fa
,-Aa1.1) , (10.1.70)

where the first term depends on the metrical energy-momentum tensor density
introduced in (10.1.32) and is classified as a symmetrical current:

J
,
S = T ,

-.- . (10.1.71)

We notice that the structure of the current (10.1.70) is identical to that given in (1.2.135),

J ,
C = J ,

S – ∇-(b,-1.1K ) , (10.1.72)

which has been already discussed earlier in this book in the framework of an arbit-
rary field theory in the Minkowski space admitting Killing vectors .!K . Assuming that
the fixed background of the Yang–Mills theory is the Minkowski space and comparing
(10.1.70) with (10.1.72) we conclude that b,-1 = –Fa

,-Aa1, and the expression under
divergence in (10.1.70) can not be included to the superpotential which is used for
constructing conserved charges of the matter fields. This divergence only connects
canonical J ,

C and symmetrical currents J ,
S . The reader is referred to the discussion

following (1.2.135) for the physical meaning of the divergence ∇-(b,-1.1K ).
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Let us now analyze the obtained results.
(i) Notice that the very last terms in each expression for the Lie derivative (10.1.64–

10.1.66) are equivalent to the variations of the fields generated by the infin-
itesimal gauge transformation with the infinitesimal parameter 3a[. ] defined
in (10.1.62). This statement can be easily proven by replacing %a → 3a in
(10.1.45–10.1.47) and comparing the result with the last terms in right sides of
(10.1.64–10.1.66). Thus, the attempt to reformulate Lie derivatives in terms of the
generally-covariant gauge derivatives entangles the diffeomorphism variations of
the fields with their gauge variations .

(ii) Formula (10.1.62) points out that the parameters 3a[. ] of the diffeomorphism-
dependent gauge transformation is not gauge covariant because of the coupling
with the Yang–Mills field Aa!. The Yang–Mills field gauge transformation is not
homogeneous, see (10.1.7). Therefore, by picking up a specific value of the trans-
formation matrix u , one can always find a gauge in which the parameters 3a[. ]
disappear along an arbitrary given curve, but not in full spacetime. This obser-
vation tells us that apparently the Lie derivative is not gauge-covariant due to its
dependence on the gauge-dependent parameter 3a[. ].

(iii) Due to the gauge non-covariance of the parameters 3a[. ], the Noether current
J ,[. ] introduced in (10.1.68) is not a gauge invariant object but it remains
generally-covariant. Of course, such a result is not satisfactory from a physical
point of view and requires more studying. We focus on analysis of the origin of
this problem in the rest of the present section.

10.1.5 Modified Lie derivative

How can one improve this situation? Themain idea is to attempt to construct the gauge
invariant current by modifying the concept of the Lie derivative in order to make it
both generally and gauge covariant. It seems plausible to fulfill this goal by adding
to the variation of the fields, $. , induced by diffeomorphism, . = {.!(x)}, yet another
variation, $%, induced by the gauge transformation of the fields, (10.1.45–10.1.47), and
depending on parameter, % = {%a(x)}which we do not consider as an intrinsic contrav-
ariant vector from now on. The purpose of introducing this supplementary parameter
is to compensate the gauge-noninvariance of the parameter, 3a[x, . (x)] = Aa!(x).!(x),
that appears in expressions (10.1.64–10.1.66) of the Lie derivative after replacing the
partial derivative, 𝜕!, with its gauge-invariant counterpart, D!, as explained in Sec-
tion 10.1.4. It is evident that the parameter %a cannot be merely a function of the
spacetime coordinates, x = {x!}, as it was in case of the pure gauge transformations
(10.1.42–10.1.44) but must depend on the diffeomorphism vector .! as well, because
a modified Lie derivative is supposed to be uniquely associated with the standard Lie
derivative, £. , on spacetimemanifold. If we shall be able to find out such a parameter,
%a = %a[x, . (x)], themodified Lie derivative will be both gauge and generally-covariant.
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The additional parameters, %a of the supplementary gauge transformation com-
bines linearly with the gauge-transformation parameters 3a induced by diffeomorph-
ism on spacetime manifold, so that the overall variations are

& a = 3a + %a , (10.1.73)

where we have used the notations: & a ≡ & a[x, . (x)], 3a ≡ 3a[x, . (x)], and %a ≡
%a[x, . (x)]. The parameters & a are supposed to be both generally- and gauge-covariant.
It is important to stress the following:
(i) from now and up to the end of present section, applying the gauge transforma-

tions (10.1.45–10.1.47), we consider %a ≡ %a[x, . (x)] only, not %a = %a(x);
(ii) because %a ≡ %a[x, . (x)] this means that diffeomorphism variations in a space-

time induced by the displacement vectors .! are “lifted” into space of gauge
transformations.

The total infinitesimal change of the fields induced simultaneously by the diffeo-
morphism and the gauge transformation is directly obtained by adding up two
sets of variations, (10.1.42–10.1.44), –now with parameters %a = %a[x, . (x)]–, and
(10.1.64–10.1.66),resulting in

B.Ia = –.!𝜕!Ia + %ccacbIb, (10.1.74)

B.I⋆a = –.!𝜕!I⋆a – %ccbcaI⋆b , (10.1.75)

B.Aa- = –.!𝜕!Aa- – Aa!𝜕-.! – 𝜕-%a – Ac-cacb%b . (10.1.76)

These variations are written down with the use of partial derivatives. For the sake
of convenience, we call this presentation as the one given in a, so-called, 𝜕-t basis
with the generators (.!𝜕!, %a[x, . (x)]ta). In (10.1.74–10.1.76), we have introduced a new
notion – amodified variation:

B. ≡ £. + $% . (10.1.77)

We stress that the index, “.”, at the symbol B. is induced not only by the displacement
vector .! itself, but .! being included in %a = %a[x, . (x)] also. The variations (10.1.74–
10.1.76) can be written down with the use of generally-covariant gauge derivatives:

B.Ia = –.!D!Ia + & ccacbIb, (10.1.78)

B.I⋆a = –.!D!I⋆a – &
c
c
b
caI⋆b , (10.1.79)

B.Aa- = –Fa!-.! – D-& a, (10.1.80)

where the gauge-covariant, as assumed, parameters & a are defined in (10.1.73).
We call this presentation as the one given in a D -t basis with the generators
(.!D!, & a[x, . (x)]ta).
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We will define a modified Lie derivative by the rule

L. = B. , (10.1.81)

where B. is given in (10.1.77). Because the theory is supposed to be covariant both
with respect to diffeomorphisms and to the gauge transformations, the modified Lie
derivative, L. , must be subject to these symmeties as well. However, the identification
(10.1.81) itself does not satisfy this requirement. Therefore, in addition to (10.1.81) we
must to require the algebra of the modified Lie derivative be consistent with (isomorphic
to) the algebra of the standard Lie derivatives £. .

We recall that the Lie derivative is induced by spacetime diffeomorphisms and is
defined by the rule, £. = $. . Algebra of the Lie derivatives can be understood by cal-
culating their commutator along vector fields . 1 and . 2. It states that the commutator
obeys the rule [£.1 ,£.2 ] = £.3 where .3 = [. 1, . 2] with the standard definition:

[. 1, . 2] ≡ ."1 𝜕".!2 – ."2 𝜕".!1 . (10.1.82)

The “lifting” rule (10.1.77) must be compatible with the algebra of the Lie derivatives
£. , which means that the commutator of two modified Lie derivatives, namely, L.1
defined by parameters .!1 , %a1 ≡ %a[x, .1(x)], and L.2 defined by parameters .!2 , %a2 ≡
%a[x, .2(x)] must be constructed formally by the same rule,

[L.1 ,L.2] = L.3 , (10.1.83)

where the status of the index, “.”, at the symbolL. is the same as of the one in (10.1.77),
thus, L.3 is defined by a set of two parameters .!3 , %a3 ≡ %a[x, .3(x)].

The requirement (10.1.83) is not sufficient for making up the self-consistent
algebra of the operators of the modified Lie derivatives. The parameters .!3 , %a3 defining
themodified Lie derivativeL.3 must be uniquely expressed in terms of the commutator
[.1, .2] that is .!3 = [.1, .2]! and %a3 = %a (x, [.1, .2]). This last requirement is called the
condition of functoriality and it imposes a certain limitation on the functional struc-
ture of the parameter, % = {%a[x, . (x)]}, introduced in (10.1.73). One of the main goals of
the end of the present section is to derive out the functoriality condition and to discuss it.

Keeping the above in mind, before formulating the functoriality condition when
the parameters %a = %a[x, . (x)] are left undetermined, we will operate with the
modified variations, B. , defined in (10.1.77) only. To formulate the functoriality condi-
tion/equationmore explicitly and to find out the functional structure of the parameter
%, we begin from studying the commutator of the modified variations B. . It is more
mathematically convenient to calculate the commutator, first, in the 𝜕-t basis of gen-
erators which is based on the partial derivatives. It eliminates from the calculation
the covariant derivatives which are more difficult to operate with. Besides, it excludes
the gauge parameter 3a = Aa!.! induced by the spacetime diffeomorphism and
allows us to focus on the appearance of the gauge-parameter %a = %a[x, . (x)] only.
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The parameter 3a will be introduced to the algebra at the next step of transformation
from the basis 𝜕-t to D -t basis.

A short review
Let us make a short excursion to history. It looks like the idea of the modified Lie
derivatives (10.1.81) has been invented in the fundamental work on quantum elec-
trodynamics by Heisenberg and Pauli [228] who discovered that transformations of
electromagnetic and spinor fields to a new inertial frame must be accompanied by
additional gauge transformations to retain the initial gauge condition imposed on the
system. The modern view onto the approach see in the book [53, chap. 14.3, pp. 73].

Jackiw [244] studied the gauge non-invariance of the canonical energy-mo-
mentum tensor in the non-Abelian gauge theories in the Minkowski space. He
proposed to restore the gauge-invariance of the tensor by making use of a gauge trans-
formation that makes the parameter & a = 0 in (10.1.73) and suppresses the gauge
non-covariant terms in the expression for the energy-momentum tensor. The correc-
ted energy-momentum tensor turned out to be exactly the Belinfante symmetrized
energy-momentum tensor of the Maxwell type, see (10.1.33) and (1.2.142–1.2.145) for
electrodynamics in the Minkowski space. Unfortunately, the lift with & a = 0 is not
functorial as it was noticed in [244, 245].

A modified Lie derivative was studied in 1950-th by Yano [466] by the meth-
ods of differential geometry. The interested reader can find other useful theoretical
approaches to build the modified Lie derivative in a review by Godina and Matteuccii
[194] and in the monographs [172, 264].

Concerning a construction of diffeomorphic currents, Giachetta and Sard-
anashvily [187, 188] and Sardanashvily [401, 402] developed a general method in
arbitrary gauge theories. A particular attention was paid to special cases of topolo-
gical field theories with the intrinsic gauge symmetries of the Chern-Simons type.
Their gauge invariance is not so manifest due to the fact that the Lagrangians of
such theories belong to the secondary characteristic classes and, hence, are invariant
only up to a total divergence under gauge transformations. As a result, construc-
tion of the gauge-invariant canonical diffeomorphic currents in the Chern-Simons
theories meets additional difficulties as compared to the gauge theories of the
Yang–Mills type.

The related problem was studied comprehensively in the series of the works by
Francaviglia with coauthors [5, 6, 64–68, 169], by Giachetta et al. [189], and Obukhov
et al. [341].

10.1.6 Commutator of the modified variations B. in 𝜕-t basis

In order to calculate the commutator of two variations B. we execute consecutively
two infinitesimal transformations defined in (10.1.77) with undetermined parameters
%a ≡ %a[x, . (x)]. The first one, B1 ≡ B.1 , is with parameters {.!1 , %a1 }, and the second one,
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B2 ≡ B.2 , is with parameters {.!2 , %a2 }. Each of the fields from the set 6 = {Ia,I⋆a ,Aa!}
will change accordingly as

6 󳨀→
.1,%1

61 = 6 + B16 󳨀→.2,%2 621 = 61 + B261 ,

resulting in

621 = 6 + B16 + B2(6 + B16) = 6 + B16 + B26 + B2B16 . (10.1.84)

Analogously, we make two infinitesimal transformations with the same parameters
but in a reversed order,

6 󳨀→
.2,%2

62 = 6 + B26 󳨀→.1,%1 612 = 62 + B162 ,

resulting in

612 = 6 + B26 + B1(6 + B26) = 6 + B26 + B16 + B1B26 . (10.1.85)

Now, we compare the results of the transformations (10.1.84) and (10.1.85) by calculat-
ing their commutator

[B2,B1]6 ≡ 621 – 612 = B2B16 – B1B26 . (10.1.86)

The calculations are straightforward but tedious.
To overview the results of the calculation let us introduce a new notation, V ={Va
b}, for the matrix of the differential operator of the first order entering the total

variation of the scalar fields. For the two variations we have,

V1
b
c ≡ –$ab.

!
1 𝜕! + %c1cacb , V2

a
b ≡ –$ab.

!
2 𝜕! + %c2cacb . (10.1.87)

In terms of this operator the commutator of the two infinitesimal variations of the field
Ia is

[B2,B1]Ia = (V2
a
bV1

b
c – V1

a
bV2

b
c)Ic = [V2,V1]

a
cIc , (10.1.88)

and the task of carrying out the algebra of transformations for the scalar fieldIc goes
over to calculating the commutator of the matrix differential operators V1 and V2.
Calculation reveals that the commutator (10.1.88) is a differential operator of the first
order

[V2,V1] = V3 , (10.1.89)
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where V3 = {V3ab}, and
V3

a
b ≡ –$ab.

!
3 𝜕! + %c3cacb , (10.1.90)

has exactly the same structure as shown in (10.1.87) with a set of parameters

.!3 ≡ ."1 𝜕".!2 – ."2 𝜕".!1 = [.1, .2]! , (10.1.91)

%c3 ≡ .!1 𝜕!%c2 – .!2 𝜕!%c1 – ccab%a1 %b2 , (10.1.92)

describing a new infinitesimal variation, B3. Recalling the dependence %a ≡ %a[x, . (x)]
and taking into account the result (10.1.91) one concludes that %a3 ≡ %a[x, [.1, .2]] that
already signals that the variations B. are to be functorial. However, the functional
structure of %a[x, . (x)] is left unknown and the relation (10.1.92) restricts it. At last,
finally (10.1.91) and (10.1.92) state

[B2,B1]Ia = B3Ia . (10.1.93)

Calculation of the commutator for the fieldI⋆a ends up with the same result.
Total variation of the Yang–Mills field, Aa!, given by (10.1.76), is more involved

than the total variation of the scalar fields. It can be written down in terms of a
differential operator of the first orderW = {Wa"

b!} as
B.Aa! = Wa"

b!A
b
" – 𝜕!%a , (10.1.94)

where the components of the operator read

Wa"
b! ≡ –$ab$

"
!.

1𝜕1 – $ab𝜕!." – %dcabd$"! . (10.1.95)

It is important to recall that the quantity B.Aa! is transformed like an intrinsic
contravariant vector under gauge transformations unlikeAa! itself whose law of trans-
formation (10.1.7) is not homogeneous. Therefore, the total infinitesimal variation of
Aa! given in (10.1.94) contains the term 𝜕!%a. It is not the case for B.Aa! because it
is transformed as a contravariant intrinsic vector under the gauge transformations so
that its transformation depends only on the transformation matrixW . In other words,
we shall have

B2B1Aa! = Wa"
2 b! (B1Aa!) = Wa"

2 b! (Wb𝛾
1 c"A

c
𝛾 – 𝜕"%b1 ) , (10.1.96)

and a similar expression will be valid for B1B2Aa! with the corresponding change of
indexes 1 and 2. The commutator of the two total variations of the Yang–Mills field Aa

!
results in

[B2,B1]Aa! = [W2,W1]a𝛾 c!Ac𝛾 – (Wa"
2 b!𝜕"%b1 –Wa"

1 b!𝜕"%b2 ). (10.1.97)
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After not so lengthy calculations, we obtain

[W2,W1]a𝛾 c! = Wa𝛾
3 c! , (10.1.98)

where

Wa𝛾
3 c! ≡ –$ac$

𝛾
!.

1
3 𝜕1 – $ac𝜕!."3 – %b3cacb$𝛾!, (10.1.99)

where the parameters .!3 and %a3 are given above in (10.1.91), (10.1.92). We also find out
that the last term in the right side of (10.1.97) is reduced to

Wa"
2 b!𝜕"%b1 –Wa"

1 b!𝜕"%b2 = 𝜕!%a3 , (10.1.100)

where again the parameter %3 is the same as in (10.1.92). Substitution of (10.1.98),
(10.1.100) into (10.1.97) yields

[B1,B2]Aa! = B3Aa! , (10.1.101)

where B3Aa! is given by formula (10.1.94) with the parameters .a3 and %a3 given in
(10.1.91), (10.1.92).

Thus, for all the fields under consideration one has

[B1,B2] = B3, (10.1.102)

where the correspondence between the parameters of the total variations is provided
by (10.1.91), (10.1.92) correspondingly. Commutation relations (10.1.102) confirm that
the commutator of modified variations is indeed a differential operator of the first
order and definition (10.1.81) with the requirement of functoriality can be applied to
convert modified variations, B. , into modified Lie derivatives, L. .

10.1.7 Commutator of the modified variations B. in D-t basis

To obtain the commutator of the modified variations B. in a covariant form we use
the D -t basis with generators .!D!, & ata. It means that we now take the same vari-
ation B1 expressed in terms of the parameters {.!1 , & a1 = 3a1 + %1}, and commute it
with the variation B2 expressed in terms of the parameters {.!2 , & a2 = 3a2 + %a2 }. Sub-
sequent transition from the 𝜕-t basis of generators to the D -t basis is performed
in all formulae of the previous section by expressing the partial derivatives, 𝜕,,
through the gauge-covariant derivatives, D,. This replacement does not change the
commutation relation (10.1.102) which remains valid in D -t basis as well. Nonethe-
less, the form of the presentation of parameters {.!3 , & a3 = 3a3 + %a3} of the vari-
ation B3 in the right side of (10.1.102) will be modified. This form is what we are
looking for.
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Parameter .!3 is equal to the commutator of two vector field, [.1, .2]!, as shown in
(10.1.91). To convert this expression to a covariant form we replace the partial derivat-
ives with generally-covariant ones, and use the symmetry of the Christoffel symbols,
A!"𝛾 = A!𝛾". We obtain,

.!3 = ."1 (∇".!2 – A!𝛾".𝛾2 ) – ."2 (∇".!1 – A!𝛾".𝛾1 )
= ."1 ∇".!2 – ."2 ∇".!1 . (10.1.103)

Formula (10.1.103) elucidates that the parameter of diffeomorphism, . 3 = {.!3 }, is both
generally-covariant and gauge-invariant.

Resulting parameter of the variation B3 of the commutator (10.1.102) is a sum of
two parameters, & a3 = 3a3 + %a3 . Parameter 3a3 is defined in (10.1.62), and must have the
following form

3c3 ≡ Ac!.!3 = Ac! (."1 ∇".!2 – ."2 ∇".!1 ) , (10.1.104)

where we have used the result (10.1.103). By making use of the chain rule, definition of
the covariant gauge derivativeD!, given in terms of the generally-covariant derivative∇! and the connection Aa!, we derive

Ac!.
"
1 ∇".!2 = .!1 D!3c2 – .

!
1 .

"
2 (∇!Ac" + ccabAa!Ab") , (10.1.105)

Ac".!2 ∇!."1 = .!2 D!3c1 – .
!
1 .

"
2 (∇"Ac! + ccabAa"Ab!) . (10.1.106)

After making use of these equations in (10.1.104) along with the definition (10.1.15) of
the strength tensor of the Yang–Mills field, Fa!", we obtain

3c3 ≡ .!1 D!3c2 – .
!
2 D!3c1 – c

c
ab3a1 3

b
2 – F

c
!".!1 .

"
2 . (10.1.107)

It allows us to express the gauge parameter 3a3 in manifestly generally-covariant
form in terms of the parameters of the first and second diffeomorphisms,
.a1 = .a1 (x), .a2 = .a2 (x), and associated with them gauge parameters 3a1 = 3a[x, .1(x)] and
3a2 = 3a[x, .2(x)].

Parameter %a3 defined in (10.1.92), is reformulated in terms of the covariant gauge
derivatives with the help of equation (10.1.48). We get,

%a3 = .!1 D!%a2 – .
!
2 D!%a1 – c

a
bc(%b1 %

c
2 + 3

b
1 %

c
2 + %

b
1 3

c
2) . (10.1.108)

Notice that this equation points out that the gauge parameter %a3 is not gauge-covariant
although it is generally-covariant. Adding up (10.1.107) and (10.1.108) we obtain the
covariant form for the parameter & a3 which we were looking for. Summarizing, we con-
clude that the parameters, .a3 and & a3 , defining the infinitesimal variation B3 in the
commutation relation (10.1.102), are given in the D -t basis by the following formulae,
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.!3 = [.1, .2]! , (10.1.109)

& c3 = .!1 D!& c2 – .
!
2 D!& c1 – c

c
ab& a1 &

b
2 – Fc!".!1 .

"
2 , (10.1.110)

where each vector & c is a sum, & c = 3c + %c, in accordance with (10.1.73). Equa-
tions (10.1.109) and (10.1.110) represent a covariant form of the relationships (10.1.91)
and (10.1.92).

10.1.8 The functoriality condition

In order to convert the modified variations, B. , to the modified Lie derivatives, L.3 ,
one must use the functoriality concept as it has been stressed in Section 10.1.5. Let us
repeat this requirement. The parameters .!3 , %a3 defining the modified Lie derivative L.3
in [L.1 ,L.2] = L.3 must be uniquely expressed in terms of the commutator [.1, .2] that is
.!3 = [.1, .2]! and %a3 = %a (x, [.1, .2]), that is & a3 = & a (x, [.1, .2]). Because & a3 = & a (x, .3)
the relation (10.1.109) tells that & a satisfies this requirement anyway, whereas the rela-
tion (10.1.110) must be considered as an equation restricting a functional structure of
& c. Thus, we explore the (10.1.110) as the functoriality equation, and rewrite it in the
form of an inhomogeneous equation:

& c [[.1, .2]] + .!2 D!& c[.1] – .!1 D!& c[.2] + ccab& a[.1]& b[.2] = –Fc!".!1 .
"
2 , (10.1.111)

where the right hand side is defined by the known strength tensor Fc!" = Fc!"(x)
defined in (10.1.17).

It can be easily understood that & c[. ] = 3c[. ] is a particular solution of the inhomo-
geneous equation (10.1.111). Indeed, substituting & a = 3a to this equation makes it
identity,

3c3 + .
!
2 D!3c1 – .

!
1 D!3c2 + c

c
ab3a1 3

b
2 ≡ –Fc!".!1 .

"
2 , (10.1.112)

which is fulfilled after implementing the definition of the parameter 3a = Aa!(x).!(x),
and the commutation relation .!3 = [.1, .2]!.

Because a general solution & a of the inhomogeneous equation (10.1.111) is a sum,
3a + %a, and 3a = Aa!(x).!(x) satisfies the inhomogeneous equation (10.1.112), a gen-
eral solution %a has to satisfy the corresponding homogeneous equation. Thus, the
task of exploration of the functionality equation (10.1.111) is reduced to finding the
general solution of a homogeneous equation for functional %a = %a[. ] which is more
convenient to write down in terms of partial derivatives with the

%c [[.1, .2]] + .!2 𝜕!%c[.1] – .!1 𝜕!%c[.2] + ccab%a[.1]%b[.2] = 0 . (10.1.113)
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We are looking for the solution of this equation in the class of functionals which are
supposed to make the parameter & c both gauge-covariant that makes the modified Lie
derivative both gauge- and generally-covariant. The simplest solution from this class
of functions is

%̄a = –Āa!.! , (10.1.114)

where Āa
! is a pure gauge connection of the group SU(N) for which the tensor of

strength (10.1.17) of the filed Āa! vanishes identically, F̄c!" ≡ 0. For example, we can
pick up

Āa! = –vab 𝜕!'b, (10.1.115)

where vab is determined by the relation uac 𝜕!(u–1)cb = ccabvcd 𝜕!'d, where u is a
matrix of a finite gauge transformation with arbitrary fixed finite parameters, 'a(x), of
gauge transformations. The fact that (10.1.114) is indeed a solution, is checked by a dir-
ect inspection after substituting it to the homogeneous equation (10.1.113). Combining
the particular solution 3c with the solution %̄c of the homogeneous equation we get the
parameter

& a = (Aa! – Āa!) .! , (10.1.116)

which is both gauge- and generally-covariant because it is built as a difference of two
connections that is transformed as a tensor under the gauge transformations. This
proves functoriality of the modified Lie derivative for the class of the solutions of the
functorial equation (10.1.113).

Disadvantage of the proposed solution (10.1.116) is that it can be amended with
an arbitrary gauge-covariant, %acov, solution that can be obtained from the functori-
ality condition equation (10.1.113) as well. For example, the solution to the equation
(10.1.113) can be searched under the assumption that %acov is modeled by linear com-
binations of generally-covariant derivatives of .! of various orders by using 'a(x)
which participate in (10.1.115). From the physical point of view it is not satisfactory.
Theoretical physicists always try to avoid such a situation as it makes the results
poorly defined.Whether or notwell defined generic solutions of the functorial equation
(10.1.111) exist we don’t know yet.

The problem has been thoroughly studied in the series of works by Francaviglia
et al. [5, 6, 64–68, 169], by Giachetta et al. [189], and Obukhov et al. [341]. Active
research in this direction is still in progress.

Generally-covariant and gauge-invariant canonical currents
We remark that the action functional (10.1.1) is invariant under the infinitesimal
variations for the generic variable 6:

6 → 6̃ = 6 + L.6, (10.1.117)
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where & a[. ] included in the modified Lie derivative, L. , satisfies the functoriality
equation (10.1.111). It means that a current corresponding to this “modified diffeo-
morphism” can be constructed.

The simplest way to derive it is as follows. Using the gauge-covariant parameters
& a[. ] in the formula (10.1.68), instead of non-covariant one 3a[. ], we can construct
expressions for the current in the form:

J ,[. ] = T ,
-. - + Fa

,-D-& a[. ] + ja,& a[. ] . (10.1.118)

It is both manifestly generally-covariant and manifestly gauge-invariant. Neverthe-
less, it is not fully satisfactory because this current contains the functional & a[. ] which
is not defined uniquely. It is evident that even for the same physical system at the
same state, a different choice of functionals & a[. ] leads to different values of physically
measurable quantity defined by the current.

10.2 Conservation laws in the tetrad formalism
of general relativity

10.2.1 Tetrads and gravitational field

Interaction of tensor (bosonic) fields of matter with gravity is described in a Lag-
rangian theory of gravity directly through the coupling with the metric tensor which
is a primary dynamical variable associated with the gravitational field. This descrip-
tion fails if one needs to study the interaction of spinor (fermionic) fields of matter
with gravity which is essentially more complicated and requires an extension of the
Lagrangian formalism [343] .

The tetrad is a set of four orthonormal contravariant vector fields ei, = ei
,(x).

Here and below, the Greek indexes take in values 0,1,2,3, and numerate the space-
time tensor components – spacetime indexes. Small Latin indexes i, j, k, ... = 0,1,2,3
numerate the tetrad vectors and tetrad components of geometric objects. By definition
of orthonormality the tetrad vectors satisfy the relation,

g!"ei
!
ej

" = 'ij, (10.2.1)

where 'ij is a constant matrix with components 'ij = diag (–1, 1, 1, 1), and g!" = g!"(x)
is the spacetime metric. The basis of the covariant vectors ei, = e

i
,(x) is dual to the

tetrad basis ei, and is called a cotetrad. The duality assumes that the cotetrad vectors
are subject to the condition,

e
i
!ej

! = $ij. (10.2.2)
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With the use of (10.2.1) and (10.2.2) one can easily obtain some other useful algebraic
relations, for example,

ei
!
e
i
" = $!" , (10.2.3)

g!"ei!e
j
" = 'ij , (10.2.4)

where 'ij is a constant matrix with the components 'ij = diag (–1, 1, 1, 1), matrices
'ij and 'ij are inverses of each other. In what follows, we shall often use formulae
(10.2.1–10.2.4) without explicit referencing. It is worth mentioning that the spacetime
(Greek) indexes are raised and lowered with the use of the metric g!", whereas the tet-
rad indices are moved up and down with the use of the Lorentzian metric 'ij. It should
be also noticed that the tetrad basis vectors ei! are connected by the real-valued
commutation coefficients, cijk, in the commutator of two tetrads

[ej
!,ek

!] = cijkei
! , (10.2.5)

with cijk = ci[jk]. Notice that the commutation coefficients are not constants but depend
on spacetime coordinates, cijk = cijk(x).

All spacetime tensors of the theory can be expressed as a linear combination
of their tetrad components with the vector and covector basis. For example, for a
contravariant spacetime vector, V! = V!(x), we have

V! = Vi
ei

! , (10.2.6)

while for a covariant spacetime vector

V! = Vie
i
! , (10.2.7)

where Vi = Vi(x) and Vi = Vi(x) are the tetrad and cotetrad components of the vector
field. In particular, decomposing a tetrad, ei! as a vector with respect to the tetrad
basis, we have

ei
! = $jiej

! , (10.2.8)

which means that the tetrad components in its own basis are constant numbers,
$ji = diag(1, 1, 1, 1). The same conclusion is valid with regard to the components of
the cotetrad.

Relations (10.2.1–10.2.4) allow us to represent the components of the spacetime
metric in terms of the tetrads, namely,

g,- = 'ijei,ej- , g,- = 'ijei,ej- . (10.2.9)
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From this equation we can immediately derive a relationship between the determin-
ant, g = det g,- of the metric tensor and the determinant, e , of the tetrad

√–g = e , e ≡ det(ei,) . (10.2.10)

Relation (10.2.9) allows us to interpret the metric tensor field as having been con-
structed from the tetrad vectors which can be considered as dynamical field variables
of gravity in the Lagrangian formalism instead of the metric tensor. This convention
admits a specific gauge invariance stemming from the demand that neither measured
values of physical fields nor physical content of the field equations depend on the
orientation of the tetards. It means that the formulation of the theory admits arbit-
rary local rotations (the Lorentzian rotations) of the tetrad fields which is an intrinsic
gauge symmetry. For example, the metric tensor g,- does not change under the local
Lorentzian rotations of the tetrad/cotetrads:

e
i
, → ẽ

i
, = Di

je
j
, , ei

, → ẽi
, = –1Djiej, , (10.2.11)

in the sense that

g,- = 'ijei,ej- = 'ijẽi,ẽj- = g,- . (10.2.12)

Here Dij = Di
j(x) is a matrix of the Lorentz transformations determined by the relation,

'ijDikDj
l = 'kl , 'ij = 'kl –1Di

k
–1Djl , (10.2.13)

and –1Dij = –1Di
j(x) is the inverse matrix, –1DijDjk = $ik. Thus, each point of spacetime

manifold with a fixed value of the coordinates x = {x!}, is equipped with a local
tetrad basis which is defined only up to a set of the local Lorentzian rotations form-
ing the group O(1, 3). We will consider only the transformations related to connected
component of this group denoted as SO(1, 3).

10.2.2 Connections and derivatives

To use a technique of the previous sectionwe need to define a gauge-covariant derivat-
ive in the tetrad formalism to represent a complete analogue of the gauge derivative in
the Yang–Mills theory that has been discussed in Section 10.1. It is based on the local
Lorentzian connection associated with the gauge freedom of the local Lorentzian rota-
tions. This connection is also called SO(1, 3)-connection represented in the form of a
square matrix, A, = {(A,)ij(x)}, of order n = 4 for each of spacetime index “,”, and
that is an antisymmetric real matrix: Aij, = A[ij],. More conventional notation of the
connection components is Aij, ≡ (A,)ij.
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Under the gauge transformations (10.2.11) the connection is transformed by the
rule (cf. (10.1.7)):

Aij, → Ãij, = DikAkl,–1Dlj + Di
k𝜕,–1Dkj . (10.2.14)

Let us denote F,- = {Fij,-(x)} the curvature tensor of the Lorentzian connection A!:
Fij,- ≡ 𝜕,Aij- – 𝜕-Aij, + Aik,Akj- – Aik-Akj, . (10.2.15)

Notice that tensor F,- is analogous to the Faraday tensor of the field strength of the
Yang–Mills field A!. At the moment, it should be distinguished from the Riemann
tensor of curvature of spacetime. In what follows, we shall use the following conveni-
ent notations for the projections of the SO(1, 3) connection curvature on the tetrad
basis:

Fj- = ei
,Fij,-, F = ej

-Fj- . (10.2.16)

The SO(1, 3)-covariant derivative D- is defined in a full correspondence with the rule
introduced in previous section. For example, for a contravariant (intinsic) vector Vi

and for a covector Vi = 'ijVj we introduce gauge-covariant derivatives:

D-V
i = 𝜕-Vi + Aij-V

j , D-Vi = 𝜕-Vi – Aji-Vj . (10.2.17)

Although the derivative D- is SO(1, 3)-covariant, it is not generally-covariant. The
generally-covariant derivative is denoted by ∇-, and is defined, as usual, for a con-
travariant vector V, and for a covector V, = g,-V- as

∇-V, = 𝜕-V, + A,+-V
+ , ∇-V, = 𝜕-V, – A+,-V+ , (10.2.18)

with A,+- – the Christoffel symbols on the spacetime manifold. The result of action of∇, is generally-covariant, but is not SO(1, 3)-covariant.
Combining the formulae (10.2.17) and (10.2.18), we introduce generally-covariant

gauge derivatives:

D-V
i
, = 𝜕-Vi

, – A+,-V
i
+ + A

i
j-V

j
, . (10.2.19)

D-Vi
, = 𝜕-Vi, + A,+-Vi+ – Aji-Vj, , (10.2.20)

which are both generally-covariant and gauge-covariant. Tetrads/cotetrads are exactly
this type of the geometric objects which have the indices belonging to the two spaces.
Therefore, their generalized covariant differentiation obeys the same rules. More
specifically,
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D-e
i
, = ∇-ei, + Ai

j-e
j
, = D-e

i
, – A+,-e

i
+, (10.2.21)

D-ei
, = ∇-ei, – Aji-ej, = D-ei

, + A,+-ei
+. (10.2.22)

In general case of an arbitrary theory of gravity, SO(1, 3)-connection is considered as
an independent physical field which dynamics is governed by the field Lagrangian
but not the kinematic behavior of the tetrads introduced on spacetime manifold. In
the present section, for the sake of simplicity, we consider merely a tetrad formulation
of general relativity where the gravitational field can be uniquely represented by tet-
rads. To construct a related Lagrangian we will use the contraction of the curvature
tensor, Fij,-, defined in (10.2.15), in the same way as in the metric representation
of general relativity one uses the scalar of the Riemannian tensor. Therefore, from
now on, we require that SO(1, 3)-connection Aij- is fully consistent with the defini-
tion of the Christoffel symbols. The consistentcy is achieved by imposing the law of
the differentiation of tetrad/cotetrad:

D-e
i
, ≡ 0 , D-ej

+ ≡ 0 . (10.2.23)

This law employed in (10.2.21) and (10.2.22) immediately allows us to express the
SO(1, 3)-connection in terms of the spacetime covariant derivatives of tetrad/cotetrad

Aij- = ei,∇-ej, = –ej
,∇-ei, . (10.2.24)

Going further on, we make use of equations (10.2.15) and (10.2.24), and establish
a one-to-one link between the curvature, Fij,-, of the SO(1, 3)-connection and the
Riemannian tensor R*+,- (1.3.2), the Ricci tensor R,- (1.3.3) and the Ricci scalar R (1.3.4)
of spacetime manifold.1 After tedious calculations, we arrive to simple equations,

Fij,- = e
i
*e

j
+R

*+
,-, R*+,- = ei

*
ej

+Fij,-; (10.2.25)

Fi- = e
i
,R

,
-, R,- = ei

,Fi-; (10.2.26)

F = R; , (10.2.27)

where Fi- and F have been defined in (10.2.16).

10.2.3 Variation of the Hilbert action

After the short introduction to the tetrads, cotetrads and the connections let us now
discuss the dynamic aspects of this theory and the method of construction of con-
served quantities in the tetrad representation of general relativity. Using formulae
(10.2.25–10.2.27) and relation (10.2.10) the Lagrangian density of general relativity can
be rewritten in the tetrad form:

1 The tetrad representation of R*+,-, R,- and R can be found, for example, in the textbook [285].
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L = √–g R = eL , (10.2.28)

where

L = F = ei
,
ej

-Fij,- . (10.2.29)

Therefore, we consider a theory with the action functional:

S = – 1
2*

G2∫
G1

d4xL , (10.2.30)

where L is fully expressed in terms of the tetrad/cotetrad vectors, and we choose the
cotetrad vectors ei, as independent dynamic variables.

We calculate the total variation $󸀠S of the action functional (10.2.30) as usual, and
obtain

$󸀠S = $GS + $S , (10.2.31)

where

$GS = – 1
2*

G2∫
G1

d4xe∇, (L$x,) , (10.2.32)

$S = – 1
2*

G2∫
G1

d4x $(eL) . (10.2.33)

Calculation of variation $(eL) in (10.2.33) consists of a few steps. First of all, we use
the Leibnitz rule to write

$(eL) = $eL + e$L , (10.2.34)

and apply the known formula for variation of the determinant,

$e = eei
,$ei, . (10.2.35)

Taking into account the specific form of the Lagrangian L in (10.2.29) and definition
(10.2.16), we also find,

$L = 2Fj-$ej- + ei,ej-$Fij,- . (10.2.36)

Varying relation (10.2.2) we express the variation of the tetrad $ej- through the
variation of the cotetrad $ei,,

$ej- = –ej
,
ei

-$ei, . (10.2.37)
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Varying relation (10.2.15) we express the variation $Fij,- of the SO(1, 3)-curvature
through the variation $Aij- of the SO(1, 3)-connection,

$Fij,- = 'jk$Fik,- = 'jk (D,$Ai
k- – D-$Aik,) . (10.2.38)

Recall that the variation of the connection $Aik- is a tensor of the second rank in the
intrinsic space and a covector in spacetime. Hence, its derivatives which appear in the
right hand side of (10.2.38) can be calculated by applying the rules of differentiation
(10.2.19) and (10.2.20),

D,$Aik- = ∇,$Aik- + Ail,$Alk- – Alk,$Ai
l- . (10.2.39)

Eventually, combining the results of the previous steps and taking into account rela-
tions (10.2.26), (10.2.27), and the rule of the differentiation (10.2.23) of the tetrad
vectors, we obtain,

$(eL) = –2e(R,- – 1
2
$,-R)ei-$ei, + 2eD, ( e[i,ej]-'jk$Aik-) . (10.2.40)

Because the expression in the last parentheses does not have free tetrad indices, the
derivative D, is reduced to taking merely a covariant derivative ∇,.

Substituting (10.2.40) into the total variation of the action (10.2.31) and applying
the requirement of the Noether theorem, $󸀠S ≡ 0, one obtains the main Noether’s
identity in the form:

– 1
2*

$L
$ei,

$ei, ≡ 𝜕,J , , (10.2.41)

where we have introduced shorthand notations

$L
$ei,

= –2eG,-ei
-, G,- ≡ R,- –

1
2
$,-R , (10.2.42)

for the Lagrangian derivative and the Einstein tensor G,
-, as well as

J , = e

2* (2e[i,ej]-'jk$Ai
k- + R$x,) , (10.2.43)

for the Noether current. From formula (10.2.42) it follows that the gravitational field
equations defined in the tetrad formalism of general relativity with the action func-
tional (10.2.30), $L /$ei, = 0, coincide with the usual vacuum Einstein equations,
G,- = 0.
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10.2.4 The Noether current

Let us transform the Noether current (10.2.43) to a new form which is more convenient
for calculations of conserved quantities in the tetrad formalism. Our goal is to express
the variation of the connection, $Aik-, in terms of the variations of the metric tensor
and those of the tetrads. To this end, we notice that a covariant derivative from the
variation of the tetrad is

∇- ($ei,) = 𝜕- ($ei,) – A+,-$ei+ . (10.2.44)

However, the operations of taking the partial derivative, 𝜕!, and the variation, $,
commute,

𝜕! ($ei,) = $ (𝜕!ei,) . (10.2.45)

Hence, we conclude that

$(∇-ei,) = ∇-($ei,) – $A+,-ei+, (10.2.46)

The connection coefficients, Ai
k-, are expressed in terms of the covariant derivative,∇!, as shown in (10.2.24),
Aik- = –ek

!∇-ei! . (10.2.47)

Taking variation from both sides of (10.2.47) and accounting for formulae (10.2.37) and
(10.2.46), we get

$Aik- = –($ek!)∇-ei! – ek!$(∇-ei!)
= ek

"
el

!(∇-ei!)$el" + ek! [ei+$A+!- – ∇-($ei!)] . (10.2.48)

Now, converting (10.2.47),

∇-ei! = –Aij-e
j
!, (10.2.49)

andmaking use of this and the relations (10.2.21–10.2.23), we transform the expression
for $Aik- to the form:

$Ai
k- = –ek

!(∇-$ei! + Aij-$ej!) + ek,ei+$A+,-
= –ek

!D-($ei!) + ek,ei+ $A+,-

= –D-(ek
!$ei!) + ek,ei+ $A+,-. (10.2.50)
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The product (ek!$ei!) in the first term on the right hand side of formula (10.2.50) is
rearranged as follows,

ek
!$ei! = 'klg!"el!$ei" = 'klg!" (e(l!$ei)" + e[l!$ei]") . (10.2.51)

Noticing that

g!"e(l!$ei)" =
1
2
g!"$(el!ei") = – 1

2
$g!"el!ei"

= 1
2
g!,g"-$g,-el!ei" , (10.2.52)

we eventually get,

ek
!$ei! = 'kl ( 12el!ei"g!,g"-$g,- + g!"e[l!$ei]") . (10.2.53)

Expression for the variation $A+,- making up the very last term in formula (10.2.50)
can be expressed in terms of the variations of the metric tensor with the help of the
well-known formula [285, 315]

$A+,- =
1
2
g+!(∇,$g!- + ∇-$g!, – ∇!$g,-) . (10.2.54)

Substitution of (10.2.53), (10.2.54) in (10.2.50) leads to the desired expression for the
variation of the connection coefficients:

$Aik- = ek,ei+∇[,$g+]- – 'klD- (g!"e[l!$ei]") . (10.2.55)

Making use of (10.2.55) in (10.2.43) brings about the Noether current as a function of
the variations of the coordinates, the metric tensor and the tetrad basis:

J , = e

2* {R$x, – 2g,!g-"∇[!$g"]- + 2ei,ej-D- (g!"e[i!$ej]")} . (10.2.56)

This expression can be further simplified by taking into account the consistency con-
dition (10.2.23) of the tetrad vectors. This equation allows us to reduce the derivative
D- to the covarant derivative on spacetimemanifold by taking the tetrad vectors under
the sign of the derivative D- and noticing that the object to which the derivative D- is
now applied is a scalar with regard to the tetrad indices. More specifically, the last
term in the right hand side of (10.2.56) is simplified to

ei
,
ej

-D- (g!"e[i!$ej]") = D- (g!"ei,ej-e[i!$ej]")
= ∇- (g!"ei,ej-e[i!$ej]")
= ∇- (g![,ei-]$ei!) . (10.2.57)
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This reduces (10.2.56) to

J , = e

2* (R$x, – 2g,!g-"∇[!$g"]-) + 1
*𝜕- (eg![,ei-]$ei!) . (10.2.58)

Formula (10.2.58) for the Noether current is presented in the most elegant and
convenient way to offer calculation of the conserved quantities and superpoten-
tials corresponding to both the intrinsic gauge invariance (Lorentzian rotations) and
diffeomorphic invariance of the theory that are discussed in next sections.

10.2.5 Conserved quantities corresponding to the local Lorentz invariance

The intrinsic gauge invariance of general relativity in the tetrad formalism is represen-
ted by the infinitesimal rotations of tetrads generated by the matrix of the Lorentzian
rotations introduced earlier in (10.2.11) with the parameters %ij = %[ij] such that

Dij ≈ $ij + %
i
j ,

–1Dij ≈ $ij – %
i
j . (10.2.59)

For this type of symmetry the variations of the coordinates and the metric tensor
are nil,

$%x, = 0 , $%g,- = 0 , (10.2.60)

while the variations of the tetrads/cotetrads are given by

$%ei, = %ijej, , $%ej, = –%ijei,. (10.2.61)

The conserved current corresponding to the gauge symmetry with respect to the
Lorentz rotations is given by (10.2.58) where the variations of the corresponding quant-
ities are taken from (10.2.60) and (10.2.61). It shows that the first term in the round
brackets in the right hand side of (10.2.58) vanishes while the second term yields a
conserved current,J ,[%], that can be expressed in terms of a superpotential,J ,-[%],
as follows,

J ,[%] = 𝜕-J ,-[%] , J ,-[%] = –e* %
ij
ei

,
ej

- . (10.2.62)

It is interesting to notice that the current J ,[%] transforms to a divergence of the
superpotential J ,-[%] off-shell, that is without making use of the gravitational field
equations, G,

- = 0.

10.2.6 Conserved quantities corresponding to the diffeomorphism invariance

In order to construct the conserved quantities corresponding to the diffeomorphism
invariance of general relativity, it is instructive to split the Noether current (10.2.58) in
two parts,
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J , = J
,
h + J ,

e , (10.2.63)

where

J
,
h = e

2* (R$x, – 2g,!g-"∇[!$g"]-) , (10.2.64)

J ,
e = e

* ∇- (g![,ei-]$ei!) . (10.2.65)

Let us consider, first, the contribution J
,
h in (10.2.64). For infinitesimal diffeomorph-

isms with parameter .,, one has

$.x, = ., , (10.2.66)

$.g,- = £.g,- , (10.2.67)

where £.g,- is the Lie derivative of the metric tensor that is well-known [315],

£.g,- = –∇,.- – ∇-., . (10.2.68)

From here,

∇[!$.g"]- = –∇[!∇"].- – 1
2 (∇!∇-." – ∇"∇-.!) . (10.2.69)

Changing the order of the covariant derivatives in (10.2.69), recalling that a commut-
ator of two covariant derivatives is expressed in terms of the Riemann curvature tensor
and using the Ricci identity for the Riemann tensor, we get

∇[!$.g"]- = R𝛾-!".𝛾 – ∇-∇[!."] . (10.2.70)

Replacing (10.2.66) and (10.2.70) in (10.2.64), one finds

J ,
h [. ] = – 1*√–g (R,- – 1

2
$,-R) .- + ∇- ( 1*√–g ∇[,.-]) (10.2.71)

or

J ,
h [. ] = – 1*√–g G,-.- + 𝜕-K ,-[. ], (10.2.72)

K ,-[. ] = 1
*√–g ∇[,.-], (10.2.73)

where we have used the relation e = √–g. The first term in the right hand side of
(10.2.72) vanishes on-shell for G,- = 0, whereas the second term is a divergence of a
superpotentialK ,-[. ] which turns out to be exactly the Komar superpotential derived
earlier in (1.4.80). This result is not surprising because the part J ,

h of the Noether
current (10.2.63) exactly coincides with the current employed in the standard metric
formulation of general relativity with the Hilbert action (1.3.1).



10.2 Conservation laws in the tetrad formalism of general relativity 521

Let us examine the contribution induced by the term J ,
e [. ] in (10.2.65). Under

the diffeomorphism with the infinitesimal parameter .!, the variation of the cotetrad{ei!}, reads
$.ei, = £.e

i
, , (10.2.74)

£.e
i
, = –.!∇!ei,–ei!∇,.! = 3ijej, – ei!∇,.! , (10.2.75)

where we have used (10.2.21) and (10.2.23), and the matrix parameter is defined as

3ij ≡ Aij!.!. (10.2.76)

Substituting (10.2.74) to the right side of (10.2.65) and making necessary simplifica-
tions, we arrive to the conclusion that the current J ,

e [. ] is expressed in terms of a
superpotential J ,-

e [. ] such that

J ,
e [. ] = 𝜕-J ,-

e [. ] , J ,-
e [. ] = –K ,-[. ] – e

* 3
ijei

[,ej
-] , (10.2.77)

where the first term in the expression for the superpotencial J ,-
e [. ] coincides exactly

with the Komar superpotential (10.2.73) but taken with the opposite sign.
Adding up the two contributions, J ,

h [. ] and J
,
e [. ], and assuming that the grav-

itational field equations are fulfilled, we derive the total conserved current, J ,[. ],
corresponding to the invariance of the theory with respect to diffeomorphisms. The
Komar superpotential drops out of the final expression for the current J ,[. ], which
takes on the form of a covariant derivative from a total superpotential, J ,-[. ],

J ,[. ] = 𝜕-J ,- , J ,-[. ] = –e* 3
ijei

[,ej
-] . (10.2.78)

Expression (10.2.78) points out to the same kind of conceptual difficulties like those
we have already discussed in the Section 10.1.4 with regard to the Yang–Mills theory.
The parameter of the “comoving” gauge transformation 3 = {3ij} defined in (10.2.76),
is not gauge-covariant as it depends on the SO(1, 3)-connection coefficients Aij! which
is not an intrinsic tensor.

10.2.7 The Kosmann lift and the Komar superpotential

The diffeomorphism-related superpotential (10.2.78) depending on the non-covariant
set of parameters 3ij has exactly the same functional structure as the superpoten-
tial (10.2.62) associated with the gauge transformations (Lorentzian rotations) with
arbitrary parameters %ij. Therefore, they can be naturally added up to get a resulting
superpotential J ,-. The net Noether’s current J , is a divergence from the (on-
shell) superpotential,

J , = 𝜕-J ,- , J ,- = –e* &
ijei

[,ej
-] , (10.2.79)



522 10 Conservation laws in covariant field theories with gauge symmetries

where the parameters

& ij = %ij + 3ij . (10.2.80)

The superpotential J ,- is still not gauge-invariant but the fact that the parameters
entering the superpotential form a linear combination, reveals a possible remedy of
this deficiency. The idea is to replace the arbitrary parameters %ij of the rotations with
their counterparts depending on displacement vectors, .!, of diffeomorphisms which
will compensate the non-covariance of the parameters 3ij making all together the gen-
eric parameter & ij and the superpotentialJ ,-, and respectively the currentJ ,, fully
covariant.

The first method is to pick some a pure-gauge or, let say, background connection
Āij! of the group SO(1, 3) as a reference, and contract it with the vector of diffeomorph-
ism .!. The pure-gauge connection is given by the very last term in (10.2.14) and we are
to pick up the reference connection, Āij!, in the following form

Āi
j! = –D̄ik𝜕,–1D̄k

j , (10.2.81)

where, D̄i
k = D̄i

k(x), is an arbitrary matrix from SO(1, 3) and, –1D̄k
j = –1D̄k

j(x), is its
inverse, cf. (10.2.13). The SO(1, 3)-curvature defined in (10.2.15) is nil (“flat”) for the
pure gauge connection (10.2.81), that is F̄ij,- = 0. In this case, the generic parameter

& ij = (Ai
j! – Ā

i
j!) .! , (10.2.82)

is a difference between the two connections which is a tensor under arbitrary trans-
formations of the group SO(1, 3). Picking up the parameter, & ij = & ik'kj, in the
form (10.2.82) makes the Noether current (10.2.79) both gauge and diffeomorphism
invariant. Nonetheless, this solution suffers from the indeterminacy of the reference
connection Āij! which choice is not directly determined by physics.

Perhaps, a better physical solution resolving the problem of the non-covariance of
the Noether current in the tetrad formulation of general relativity, is based on the idea
of making use of a modified Lie derivative which determines the variation of the tetrad
field entering the term J

,
e in the net Noether’s current (10.2.63). The overall ideology

behind this idea is similar to that we have discussed in Section 10.1.5 of the present
chapter but now it should be applied to the case of SO(1, 3) group which substitutes
SU(N) group in case of the Yang–Mills theory.

We define the modified variation B. of the tetrad as a linear combination of two
variations: $. = £. , induced by diffeomorphism .! and defined in (10.2.74), and $%
induced by the Lorentz boost and defined in (10.2.61) with the parameters %ij which is
yet undetermined but supposed to be a functional of . : %ij = %ij[. ], cf. (10.1.77),

B.ei! = $.ei! + $%ei! = (%ij + 3ij)ej! – ei,∇!., . (10.2.83)
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The functional dependence of %ij[. ] can be found from the physical demand that the
net Noether’s current and its corresponding superpotential in the tetrad formulation
of general relativitymust be equal to those of themetric-based formulation of the same
theory.We already know that the covariant superpotential emerging in general relativ-
ity is the Komar superpotential (10.2.73) which also originates in the tetrad formulation
from the first part of the Noether current J ,

h as shown in (10.2.72). It means that we
have to look for the total variation of the tetrad field, B.ei,, annihilating the second
part of the Noether current, J ,

e = 0, that is

g![,ei
-]B.ei! = 0 . (10.2.84)

Substituting the right hand side of (10.2.83) for B.ei! in (10.2.84), and solving it for %ij,
we get,

%ij = –3ij – ei!ej"∇[!."] . (10.2.85)

Consequently, the generic matrix parameter (10.2.80)

& ij = –ei!e
j
"∇[!."] . (10.2.86)

This relation is called the Kosmann lift. Making use of the Kosmann lift in (10.2.79),
immediately gives us the Komar superpotential

J ,- = K ,-[. ] , (10.2.87)

making a solid justification for the application of the tetrad formalism for finding the
covariant conserved currents and superpotenials in general relativity.

Functoriality of the Kosmann lift
The variation B. defines the modified Lie derivative by the rule L. = B. , generalizing
the standard Lie derivative rule, £. = $. . Similarly to (10.1.81), we have

L. = £. + $% , (10.2.88)

where the variation $% is due to the gauge transformation from the group SO(1, 3).
Since the gauge transformations don’t affect the metric, we have

L.g,- = £.g,- = –2∇(,.-) . (10.2.89)

Now, we substitute the Kosmann lift parameter, %ij, defined in (10.2.85) to calculate
$ei!, in accordance with (10.2.61), and make use of this result in the definition of the
modified Lie derivative (10.2.88) where the standard Lie derivative of the tetrad is given
in (10.2.74). The outcome of the calculation yields the modified Lie derivative of the
tetrad in the explicit form,

L.e
i
, = –1

2
e
i
!g

!"£.g", . (10.2.90)
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Let us make two diffeomorphism transformations, .!1 and .!2 , one after another and
denote the modified Lie derivatives taken along these vector fields as L1 = L.1 and
L2 = L.2 respectively. Then, we calculate the commutator of the two derivatives and
find out that

[L2,L1]e
i
! = L3e

i
! – 2ej

" (L[1e
i
") (L2]e

j
!) , (10.2.91)

where we have denoted L3 = L.3 and .3 = {.!3 }, with .!3 = [.1, .2]! defined in (10.1.82).
Equation (10.2.91) reveals that the commutator of the two modified Lie derivatives is
not reduced in general case to amodified Lie derivative taken along the commutator of
the two diffeomorphisms – there appears a non-linear term being proportional to the
square of the modified Lie derivatives from the diffeomorphisms under consideration.
It is inconsistent with the functoriality of the algebra of the Lie derivatives pointing
out that the Kosmann lift is not functorial in themost general case. On the other hand,
we notice that in case when, at least one of the diffeomorphisms in the commutator
(10.2.91), is a Killing vector .!K the Kosmann lift becomes functorial because in this case
the result of the action of themodified Lie derivative on the tetrad is trivial:L.Ke

i
! = 0.

A short review
The non-invariance of canonical diffeomorphic currents in the tetrad formulation of
general relativity with respect to the local Lorentz rotations of tetrads was pointed
out and clarified by Møller in well-known works [322–324]. In the following years, the
conserved quantities constructed byMøller were rediscoveredmany times by different
researchers and analyzed by various methods (see, for example, [338] and references
therein).

In the works by Aros et al. [14, 15] new conserved quantities for asymptotically
anti-de Sitter space-times have been constructed in general relativity by making use
of the tetrad formalism. The authors have applied manifestly covariant methods but
could not obtain gauge-covariant expressions for the diffeomorphic currents. These
results attracted attention and became a basis for more deeper studies by Obukhov
and Rubilar [339–341] who showed that a modification of the Lie derivative by the
rule (10.2.88) permits to reconstruct the expressions obtained in the above-mentioned
works of Aros with coauthors, to gauge covariant counterparts. In the works [341] and
[340] this technique has been generalized to the case of teleparallel models of gravity
and arbitrary generally-covariant gauge theories, respectively.

The classical Kosmann lift has been discovered and studied in papers [274–277]
which are devoted to constructing Lie derivatives for spinor fields. Penrose and Rindler
[355, chap. 6.6, p. 102] studied a conformal structure of spacetime and introduced their
own definition of Lie derivatives for spinor fields that differs from the Kosmann’s one.
Both the Kosmann and Penrose lifts are physically justified for good reasons but they
are functorial only on Killing and conformal Killing vector fields, respectively. Other
lifts have been suggested for tetrads and spinors by Levitskii and Yappa [286, 287],
Bilyalov [44–49], Francaviglia et al. [166, 168, 171], Sardanashvily [397, 399, 403], and
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in a recent work by Helfer [231]. In interesting work by Godina et al. [195] relationships
between the dual Kosmann lift, the Witten lift [463], the complex Nester-Witten form
[333] and the Penrose quasi-local 4-momentum [354, 355, chap. 9.10, p. 432] has been
found and analyzed to some extent.

In the present section, the derivation of the Kosmann lift from the correspondence
principle of the Noether current in themetric-based and tetrad formulations of general
relativity is a new result.

10.3 Fiber bundles and the Noether theorem

We have demonstrated in previous two sections that the Noether theorem applied in
gauge field theories to construct the canonical currents corresponding to diffeomorph-
isms, suffers a setback – these currents are either not transformed in gauge-invariant
manner or depend on the choice of correcting lift which is not unique. This prob-
lem has deep geometrical reasons which can be better understood by studying fiber
bundles and their sections. In what follows, we introduce the reader to the abstract
mathematical theory of the fiber bundles and explain the break down of the Noether
theorem in the gauge theories from the geometric point of view.

10.3.1 Diffeomorphisms, automorphisms and functorial lift

Modern differential geometry associates the state of a physical field with a section of
a fiber bundle having spacetime as a base. This idea is used for analysis of theories
with the intrinsic gauge symmetries as well as for those without these symmetries.
However, there are essential differences between these theories from the differential-
geometric point of view. To explain this in more detail, let us introduce the necessary
machinery of the fiber bundles.

Let E (E,M,0, F) denote a fiber bundle with the total space E, the baseM, the typ-
ical fiber F, and the canonical projection 0 from the total space E to the base manifold
M. The fiber bundle is locally a product space U × F called a local trivialization, where
U is a small neigborhood of a point x on the base space M. Globally the fiber bundle
may have a non-trivial topological structure. The spaces E, M, and F are required to
be smooth manifolds admitting local diffeomorphisms forming the groups Diff(E),
Diff(M) and Diff(F), respectively. Among all the diffeomorphisms of the manifold E,
a special role is played by the diffeomorphisms which preserve the fiber structure of
E , that is they transform fibers of E to fibers of E . One calls such transformations as
the automorphisms of E . Their collection forms a group that is denoted Aut(E ).

Let {x,, ya} be a local trivialization chart, that is a local system of coordinates on E
satisfying the projection condition,

0 : {x,, ya} → {x,}. (10.3.1)
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Here, x = {x,} are coordinates on the base; y = {ya} are coordinates on the fibers. In
the local trivialization (10.3.1) any automorphism of E is described by the formulae of
the form: {{{x

, → x̃, = f ,(x); (10.3.2)
ya → ỹa = 6a(x, y) (10.3.3)

with some differentiable functions f ,(x) and 6a(x, y). The infinitesimal generators of
automorphisms are projectable vector fields, '(x, y) = . (x) + & (x, y) over E, with some
infinitesimal functions . (x) = {.,(x)} and & (x, y) = {& a(x, y)} such that

'(x, y) = .,(x)𝜕, + & a(x, y)𝜕a . (10.3.4)

Under the canonical projection 0 (10.3.1) any automorphism of E (10.3.2), (10.3.3) is
projected into diffeomorphism of the baseM:

0 : {f ,(x),6a(x, y)} → {f ,(x)}. (10.3.5)

Then, a vector field '(x, y) over E (10.3.4) is projected to vector field . (x) overM:

0∗ : '(x, y) → . (x) = {.,(x)}, (10.3.6)

that is an infinitesimal generator of diffeomorphism of the baseM. Therefore, an arbit-
rary automorphism of the fiber bundle E (E,M,0, F) induces a well defined (finite or
infinitesimal) diffeomorphism of its base M.

Let us now assume that

x, → x̃, = f ,(x) (10.3.7)

is a diffeomorphism of the base M. Can we, using the standard canonical procedure,
associate (10.3.7) with a unique automorphism of E (10.3.2), (10.3.3) satisfying the con-
dition (10.3.5)? In other words, can we associate with an infinitesimal vector field . (x)
overM a unique infinitesimal vector field '(x, y) over E (10.3.4) satisfying the condition
(10.3.6)? In the most general case the answer is negative – the knowledge of functions
f ,(x) (or the base generators .,(x)) do not allow us to fix functions6a(x, y) (or the fiber
generators & a(x, y)) which can be chosen arbitrary. Generally speaking, a whole family
of automorphisms of E corresponds to any of diffeomorphisms of the baseM. To pick
up a specific member of this family we need a procedure called a lift.

The lift ℓ is a rule defined on the fiber bundle E (E,M,0, F) and allowing us to
associate a unique automorphism of E with each diffeomorphisms of the base M,
that is ℓ : f ,(x) → {f ,(x),6a(x, y)}. (10.3.8)

It is evident that the differential ℓ∗ of the lift ℓ can be used to lift the infinitesimal
generators of diffeomorphisms . (x) of the base M to the infinitesimal generators of
automorphisms '(x, y) of the total space E,
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ℓ∗ : . (x) → ' = {.,(x), & a(x, y)}. (10.3.9)

The lift ℓ is called canonical, if its definition does not require any additional geo-
metric structures. In opposite case the lift is called non-canonical. The lift l is called
functorial, if it preserves the composition law

ℓ(f2 ∘ f1) = ℓ(f2) ∘ ℓ(f1) , ∀f1, f2 ∈ Diff(M) . (10.3.10)

Here, the symbol ∘ denotes an operation of composition of two maps: at the left – two
diffeomorphisms {f ,1 (x)} and {f ,2 (x)} of the base M, and at the right – the correspond-
ing to them automorphisms {f ,1 (x),6a

1 (x, y)} and {f ,2 (x),6a
2 (x, y)} of the fiber bundle E .

In terms of the infinitesimal generators, the functoriality condition for the lift ℓ reads,
ℓ∗ ([.1, .2]) = [ℓ∗(.1), ℓ∗(.2)] , ∀. 1, . 2 ∈ diff(M) . (10.3.11)

Here, the square brackets in the left side of the equation denote the commutator (also
called the Lie brackets) of the vector fields in the tangent space TM of the baseM, and
those in the right side do that of the vector fields in the tangent space TE of the total
space E. From the point of view of the group theory, the functorial lift is a homomorph-
ism from the groupDiff(M) into the group Aut(E ) (respectively, from the algebra diff(M)
into the algebra aut(E )). The canonical functorial lift is called the natural lift. Fiber
bundles, possessing a natural lift, are called the natural bundles. The field theories
which configuration bundles are natural bundles are called natural field theories.

10.3.2 Field theories without intrinsic gauge symmetry as natural field theories

In the field theories not possessing an intrinsic gauge symmetry, an initial geomet-
rical structure is a spacetime manifold M. Physical fields are typically geometrical
objects (vectors, tensors, tensor densities, linear affine connections, etc.) onM. Using
the language of the fiber bundles, one says that the states of physical fields are given
by sections of the bundles of the geometrical objects. All such bundles are natural
bundles. For the sake of simplicity, let us illustrate the last claim on the example of
the tangent bundle T M (TM,M,0,V) – a tensor bundle of rank (1, 0). Let {x,, v-} be
a local trivialization of T M . Then, for each diffeomorphism

x, → x̃, = f ,(x) (10.3.12)

of the baseM, one can construct the automorphism

{{{x
, → x̃, = f ,(x); (10.3.13)

v- → ṽ- = 𝜕f -𝜕x! v! (10.3.14)
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of the tangent bundle T M . The lift ℓ,
ℓ : f , → {f ,, (𝜕!f -)v!} (10.3.15)

is a canonical one, because for its definition, one does not require additional struc-
tures. It is also a functorial lift because, by the well known chain rule, if x̃, = f ,1 (x) and
x̂, = f ,2 (x̃), then, the composition law (10.3.10) is equivalent to

x̂, = f ,2 (f1(x)) ≡ f ,3 (x) (10.3.16)

and 𝜕f ,3𝜕x! =
𝜕f ,2𝜕x̃" 𝜕f "1𝜕x! . (10.3.17)

Thus, the lift (10.3.15) is natural. It is evident that these arguments are also valid for
matter fields represented by tensor densities of an arbitrary rank and weight, or the
Christoffel symbols.

In terms of the infinitesimal generators, functoriality of the lift (10.3.15) is equival-
ent to the well known property of the standard Lie derivatives £ . of the geometrical
objects along the generators . (x), namely

[£ .2 ,£ .1 ] = £ .3 , (10.3.18)

where

.,3 = [. 1, . 2], = .!1 𝜕!.,2 – .!2 𝜕!.,1 . (10.3.19)

Summing up the above discussion, we conclude that, in natural theories, the pres-
ence of thewell-defined canonical conserved currents following from the diffeomorphism
invariance is based fully on the existence of the natural lifts in natural bundles.

10.3.3 Field theories with intrinsic gauge symmetry as gauge-natural field theories

The other situation is in generally-covariant field theories possessing an intrinsic
gauge symmetry with a structure group G. Here, the initial geometrical object is not a
spacetime manifoldM, but a principal fiber bundleP(P,M,0,G) with the total space
P, a base M, a canonical projection 0, and a typical fiber G. A state of physical fields
possessing the internal (gauge) freedom is typically given by the sections of the fiber
bundles associated with the principal fiber bundle P.

Among all the diffeomorphisms of the total space P, the principal automorphisms
play a special role. These transformations not only conserve the fiber structure of P,
but they are also consistent with the action of the structure group on fibers. In a local
trivialization {x,, za},

0 : {x,, za} → x,, (10.3.20)
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an arbitrary principal automorphism is described by formulae

{{{x
, → x̃, = f ,(x); (10.3.21)

za → z̃a = (I(x) ∘ z)a. (10.3.22)

where, x = {x,} are coordinates on the base, z = {za} are coordinates on fibers; ∀x ∈ M,
I(x) = {6a(x)} ∈ G, and the symbol ∘ means a group multiplication of two elements
of the group G. Infinitesimal generators of principal automorphisms are projectable
equivariant vector fields 4 over E,

4(x, z) = .,(x)𝜕, + %a(x)ta(z). (10.3.23)

Here, ta(z) represents a basis for the vertical right-invariant vector field over G; . (x) ={.,(x)}, and %(x) = {%a(x)} are some infinitesimal functions. A collection of all principal
automorphisms (10.3.21), (10.3.22) forms the group P-Aut(P) and the infinitesimal
generators of principal automorphisms (10.3.23) form the algebra p-aut(P).

The group P-Aut(P) contains canonically defined subgroup Gau(P) consisting of
vertical transformations,

{{{x
, → x̃, = x,; (10.3.24)

za → z̃a = (I(x) ∘ z)a. (10.3.25)

Infinitesimal generators of such transformations are vertical equivariant vector fields
over E

𝜘(x, z) = %a(x)ta(z). (10.3.26)

They represent the sub-algebra gau(P) ⊂ p-aut(P).
The same as in the general fiber bundle (see Section 10.3.1), each principal auto-

morphism of P(P,M,0,G) induces the well defined diffeomorphism of the baseM:

0 : {f ,(x),6a(x)} → f ,(x) . (10.3.27)

Transformations related to the subgroup Gau(P) induce identical transformations,
id, of the baseM,

0 : {id,I(x)} → id. (10.3.28)

Therefore, from the physical point of view, the transformations (10.3.28) are purely
intrinsic gauge transformations. The inverse procedure is ambiguous. In general, there
is no a natural lift on the principal fiber bundles.

Fiber bundles E (E,M,0, F) connected with P(P,M,0,G) - a principal fiber
bundle such that each principal automorphism of P (10.3.21), (10.3.22) creates a
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principal automorphism of E by the canonical procedure, are called the gauge-natural
bundles. Field theories, whose configuration bundles are the gauge-natural bundles,
are called the gauge-natural field theories. The Yang–Mills theories and the tetrad gen-
eral relativity from Sections 10.1 and 10.2 are typical examples of the gauge-natural
field theories.

In the gauge-natural field theories, the total group of symmetry is the group
P-Aut(P). Because the group P-Aut(P) contains canonically defined subgroup
(10.3.24), (10.3.25) of vertical transformations Gau(P) one can construct well-defined
and physically-meaningful canonical conserved currents in such theories associated
with their gauge invariance.

On the other hand, in the gauge-natural field theories, construction of unambigu-
ous conserved quantities corresponding to the diffeomorphism-invariance (energy,
momentum, angular momentum) faces difficulties because there is no canonical way
to lift the diffeomorphism of the base M to a unique principal automorphism of
the principal fiber bundle P(P,M,0,G). There are infinitely many principal auto-
morphisms of P projecting to a given diffeomorphism of M. We do not know which
concrete principal automorphism from this collection has to be chosen to obtain the
“correct” expressions for energy, momentum and angular momentum of the system.
Because principal automorphisms projecting onto the same diffeomorphism differ
only by an element of Gau(P), the conserved canonical currents corresponding to
diffeomorphism-invariance of the theory are defined only up to an arbitrary gauge
transformation.

In an equivalent way, one can describe the situation as follows. In a principal
fiber bundleP(P,M,0,G), there is a canonical equivariant method to select a vertical
vector space VP ⊂ TP consisting of vectors, which under the action of 0∗ are projected
to nil vectors of TM. Using the canonical method, this permits to define a subgroup
Gau(P) of the group P-Aut(P) that is the group of purely gauge transformations. At the
same time, there is no canonical method to select a horizontal subspace HP ⊂ TP,
such that

TP = HP ⊕ VP. (10.3.29)

Therefore, there is an ambiguity in selecting from the total symmetry group P-Aut(P)
a subgroup describing purely diffeomorphism-invariance of the theory. The failure to
construct a functorial lift on P is related to the ambiguity in building the horizontal
subspace HP ⊂ TP.

If a principal connection, Aa
,, (in physics terms – the Yang–Mills field) is given on

P, then there is a canonical horizontal liftℓ∗ : . (x) = .!(x)𝜕! → 4(x, z) = .!(x)D! , (10.3.30)

defined with the help of the gauge-covariant derivative (cf. (10.1.10) and (10.2.17))

D! = 𝜕! + Aa!(x)ta(z) . (10.3.31)
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Unfortunately, this lift is functorial only if the principal connection, Aa
,, has zero

curvature, Fa,-, but it is not so interesting from the physical point of view. The naive
lift arising in Sections 10.1.4 and 10.2.6,

ℓ∗ : . (x) = .!(x)𝜕! → . (x, z) = .!(x)𝜕! , (10.3.32)

with the replacement

.!𝜕! = .!(x)D! – 3a[. (x)] ta(z) , (3a ≡ Aa,.,) (10.3.33)

does not help to solve the problem because the vector field (10.3.32) is not equivariant
and cannot represent the infinitesimal generator of a principal automorphism of P.

Thus, from the differential-geometric point of view, the absence in gauge-
natural field theories of unambiguous canonical conserved quantities following from
diffeomorphism-invariance of the theory is explained by the absence of natural hori-
zontal lift in the gauge-natural bundles.

A short review
The gauge-natural bundles, as a geometrical basis for studying the gauge field theor-
ies, have been introduced in the work by Eck [146]. The modern understanding that
the differential geometrical principles constitute the basis for constructing generally-
covariant and gauge invariant conserved quantities in the natural and gauge-natural
field theories has been laid down in the works by Dubois-Violette and Madore [143],
by Francaviglia et al. [161–163, 167, 173], by Cianci, Vignolo and Bruno [104], by Palese
and Winterroth [174, 349, 350]. A general presentation of the fiber bundle approach
to the gauge theories can be found in reviews [164, 170, 312]. Differential-geometric
properties of natural and gauge-natural field theories can be found in a few recent
monographs [172, 190, 264, 400].

10.3.4 Fixing the horizontal lift

The above discussion elucidates that in gauge-natural bundles, the construction of a
horizontal lift ℓ,

ℓ∗ : . (x) = .!(x)𝜕! → '(x, z) = .!(x)𝜕! + & a[. (x)] ta(z), (10.3.34)

necessarily requires an introduction of additional geometrical structures to define
the vector field & = {& a[. (x)]}. It is evident that the introduction of such structures
is to be based on some physically-motivated criteria which should be mathematic-
ally consistent as well. Below, we discuss three criteria imposed on the field & a –
gauge-covariance, locality and functoriality.
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The gauge-covariance is equivalent to the requirement that the field & [. ] =
& a[. (x)]ta(z) represents the right-invariant vertical vector field in TP. Concerning the
locality, the quantities & a[. (x)] have to be local linear functionals of .!(x). The functor-
ility condition (10.3.11) demands the integrability of the system of partial differential
equations:

{{{$x
, = .,(x); (10.3.35)

$za = & c[. (x)](tc(z))a. (10.3.36)

In another word, the condition (10.3.11) requires the field ' be an infinitesimal gen-
erator of a finite principal automorphism of P, see (10.3.34). Mathematical analysis
of the equation (10.3.11) provided in Section 10.1.8 for the case of the Yang–Mills the-
ory, shows that, unfortunately, the three criteria mentioned above are insufficient to
determine a unique horizontal functorial lift, so that additional criteria must be found
(if they exist).

At present, no other purely mathematical criteria to build the equivariant hori-
zontal lift in the gauge-natural bundles have yet been formulated. This may be an
indication to existence of a more profound reason to our incapability. Resolving the
problem may require to look more carefully to the physical foundations of the gauge
field theories on fiber bundles like a correspondence principle used in Section 10.2.

It is worth emphasizing that the ambiguity in the choice of the horizontal lift leads
to the ambiguity in the definition of the canonical Noether’s current in the form of a
gauge non-invariant term that appears as a divergence of superpotential as shown in
(10.1.70) and (10.2.77). The appearance of this term changes the algebra of the corres-
ponding conserved charges leading to the appearance of so-called, central charges.
The presence of the central charges in the theory can lead to physically observable
effects . For example, the papers [91, 92, 306] prove that a known algebra of the cent-
ral charges permits us to define the entropy of black holes. The presence of the central
charges can reflect the existence of quantum anomalies and/or the Schwinger terms.
At present, a comprehensive study of these questions is vigorously pursued by the-
oretical physicists around the globe but this research program is still far from being
completed.



Appendix A: Tensor quantities and tensor operations

The goal of this appendix is to define various mathematical objects residing in
spacetime continuum, to describe their geometric properties and the rules of their
differentiation that are used in calculations throughout the book.

A.1 Tensors and tensor densities
From the mathematical point of view a spacetime is a smooth manifold covered by
mutually overlapping coordinate charts and endowed with a metric g having the
Lorentzian (pseudo-Euclidean) signature. We choose the signature of the metric to
be sign(g) = {–, +, +, +} in 4 dimensions, or sign(g) = {–, +, +, . . . , +} with n – 1 pos-
itive signs in the more general case of n-dimensional pseudo-Riemannian manifold.
By definition the manifold can be covered by a set of local coordinate charts x! with
! = 0, 1, 2, 3 in general relativity or ! = 0, 1, 2, . . . , n – 1 in a more general theory, where
n ≥ 4 is a finite whole number defining a dimension of the manifold; sometimes we
consider also n = 3. Coordinates are convenient for mathematical manipulations with
geometric objects. At the same time, tensor algebra allows us to conduct calculations
in arbitrary coordinates.

In the present appendix, the discussion is focused on spacetime manifolds
without torsion with the metric gwith components g!" = g!"(x) that obey the Einstein
equations or some generic gravity equations. The metric uniquely defines the Chris-
toffel symbols (A.2.2) and the curvature tensor (A.2.15) which are primary geometric
objects in general relativity and in any other metric-based gravitational theory. It is
important to point out that in some cases the manifold of the metric-based theory of
gravity can be endowed with a second metric and the additional geometrical objects
corresponding to it. The second metric in these theories is used to consider perturb-
ations of the gravitational field which are described by the primary metric. In such a
case, the second metric describes geometry of an unperturbed (background) space-
time manifold and must obey the Einstein equations. In case when one considers
the perturbations of a strong gravitational field, the background metric is usually
chosen as an exact solution of Einstein’s equation — the Schwarzschild metric, the
Kerr metric, the Friedmann-Lemître-Robertson-Walker metric, etc. In case of weak
gravitational fields (like that in the solar system) the background metric is chosen
as the metric 𝛾!" = 𝛾!"(x) of the Minkowski space. In the most general case the back-
ground metric ḡ!" = ḡ!"(x) is chosen as a metric on a generic curved manifold with a



534 Appendix A: Tensor quantities and tensor operations

known (fixed) geometry. We emphasize that the technique of Appendix A is applicable
to any metric-based theory of gravity irrespectively of the choice of the background
metric.

Mathematical objects in spacetime manifold can be classified according to their
behavior under transformation of the local coordinate charts

x󸀠! = x󸀠!(x") . (A.1.1)

One assumes that the transformation equation (A.1.1) are not degenerated and can be
resolved with respect to x!: x! = x!(x󸀠") that is the inverse coordinate transformation
exists and is well-defined. This means that the Jacobian, J, for these transformations
does not vanish at any point in the domain of overlapping of the two coordinate charts,

J = det
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕x󸀠!𝜕x" 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ̸= 0 . (A.1.2)

Consider a smooth scalar function of n coordinates, f = f (x) where we have omitted
the coordinate index, x! ≡ x for simplicity as it does not cause misunderstanding. The
function f (x) can be interpreted as a scalar field defined in the spacetime. Aftermaking
the coordinate transformation (A.1.1), one has

f (x) = f [x(x󸀠)] = f 󸀠(x󸀠) , (A.1.3)

where f 󸀠 is different from f . Although the form of f 󸀠(x󸀠) differs from that of f (x), the
numerical values of these functions are identically the same at each of point of the
manifold covered by the two coordinate charts, x and x󸀠. Such scalar functions are
called scalar fields or simply scalars. Each of coordinates x! is, for example, a scalar
function on the manifold and should not be considered as components of a vector.

The metric is a tensor field of a second rank,

g!" = g!"(x) , (A.1.4)

defined on the entiremanifold. Themetric is a symmetric tensor, thus, having n(n+1)/2
independent components. The metric defines the metric properties of spacetime that
is it determines how to measure distances and angles on the manifold. For example,
the distance (also called the interval) between two nearby points with coordinates x!

and x! + dx! is calculated with the help of the metric tensor as

ds2 =
n–1∑
!,"=0

g!"dx
!dx" . (A.1.5)
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Using Einstein’s summation convention over repeated indices one can rewrite the
interval (A.1.5) as

ds2 = g!"dx
!dx" . (A.1.6)

The value of this quantity does not depend on the choice of coordinates as the interval
is a scalar function.1

The infinitesimally-small increment dx! is a differential of coordinates which form
a vector. It is easy to find how the components of this vector are transformed under
coordinate transformation (A.1.1),

dx󸀠! = dx" 𝜕x󸀠!𝜕x" . (A.1.7)

Generalization of the infinitesimal vector dx! is a contravariant vector field A rep-
resented by a set of its n components, A!, residing in a tangent space of spacetime
manifold. By definition A! changes under coordinate transformation (A.1.1) exactly as
dx! in (A.1.7):

A󸀠!(x󸀠) = A"(x)𝜕x󸀠!(x)𝜕x" . (A.1.8)

Now, let us define a new object dx! ≡ g!"dx" obtained from dx" by contracting it with
the metric tensor with respect to index ". In terms of dx! the spacetime interval (A.1.6)
takes on the following form, ds2 = dx!dx!. Applying the coordinate transformation
(A.1.1) and taking into account that the interval is a scalar, ds󸀠2 = dx󸀠!dx

󸀠! = dx!dx! =
ds2, one easily finds the law of transformation for dx! which reads

dx󸀠! = dx"
𝜕x"𝜕x󸀠! . (A.1.9)

Similarly to the definition of dx! we can introduce a new object Ã with components

A! = g!"A
" , (A.1.10)

which is called a covariant vector Ã or simply a covector. Covectors reside in a
cotangent space – the space which is dual to the tangent space. The metric tensor
establishes isomorphism between vectors and covectors in the sense of operation
(A.1.10) which is called the operation of lowering indices of vector A".

Many mathematical operations with tensors require introduction of the inverse
matrix of the metric tensor, g!", which is defined by making use of the identity,

1 Contemporary theoretical physics prefers to operate with equations and geometric objects by mak-
ing use of a symbolic language being independent on coordinates. This formulation is elegant but in
practice it is often preferable to work in some coordinates in order to carry out mathematical com-
putations and numerical simulations, hence we prefer to operate with components of tensors having
coordinate indices explicitly.
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g!𝛾g𝛾" ≡ $!". Then, with the use of g!" one can raise the indices of covectors,
A! = g!"A". Keeping in mind (A.1.9), one states that components of covectors are
transformed as

A󸀠!(x
󸀠) = A"(x)

𝜕x"(x󸀠)𝜕x󸀠! . (A.1.11)

Recalling that the line-element (A.1.6) is a scalar, ds󸀠2 = ds2, combining this with
(A.1.7) and (A.1.9), one derives the coordinate transformation for the metric,

g󸀠!"(x
󸀠) = g𝛾$(x)

𝜕x𝛾𝜕x󸀠! 𝜕x$𝜕x󸀠" , (A.1.12)

and that for the inverse metric,

g󸀠!"(x󸀠) = g𝛾$(x)𝜕x󸀠!𝜕x𝛾 𝜕x󸀠"𝜕x$ . (A.1.13)

An important quantity is the determinant of the metric g = g(x) ≡ det g!", which can
be shown to transform under coordinate transformations as

g󸀠(x󸀠) = J –2(x)g(x) . (A.1.14)

So, it is not a scalar because of the presence of the square of the Jacobian, J, of the
coordinate transformation in (A.1.14). The general name for such geometric objects is
tensor density. The object F ≡ √–gf , which is a product of √–g with a scalar func-
tion, f = f (x), is called a scalar density. Combining (A.1.3) and (A.1.14), one finds the
coordinate transformations for the scalar density,

F 󸀠(x󸀠) = J –1(x)F (x) . (A.1.15)

Any object (P) with the transformation law (A.1.15), althoughwithout relation to√–g,
is a scalar density also.

The geometric objects described above are the simplest examples of tensors – a
scalar f is a tensor of rank 0, a vector A! is a contravariant tensor of rank 1, a covector
A! is a covariant tensor of rank 1, a scalar density F is a tensor density of weight
+1 and rank 0. Generalizing this nomenclature, one calls a geometric object Q k-
contravariant, l-covariant tensor density of rank k + l and weight +n, if its components
are transformed under coordinate transformation (A.1.1) as follows:

Q
󸀠!"...𝛾
01...3 (x

󸀠) = J –n(x)Q*+...4
,-...9(x)

k⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜕x󸀠!𝜕x* 𝜕x󸀠"𝜕x+ . . . 𝜕x󸀠𝛾𝜕x4 𝜕x,𝜕x󸀠0 𝜕x-𝜕x󸀠1 . . . 𝜕x9𝜕x󸀠3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
l

. (A.1.16)
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Notice that the transformation (A.1.16) is carried out at a single point of the manifold.
However, the value of Q*+...4

,-...9(x) in the right side of this equation is a function of the
“old” coordinates x of this point while the transformed valueQ

󸀠!"...𝛾
01...3 (x󸀠) in the left side

of (A.1.16) depends on the “new” coordinates x󸀠 of the same point of the manifold.
Let us list some important properties of tensor densities. Tensor densities, P and

Q, of the same type (that is the same rank, weight and the same positions of indices)
can be added forming a new tensor density of the same type, R = P + Q, or in
components

R
!"...𝛾
01...3 = P

!"...𝛾
01...3 + Q

!"...𝛾
01...3 . (A.1.17)

Tensor densities of different types cannot be added.
Indices of tensor densities can be lowered or raised with the help of the metric

tensor or its inverse, for example,

Q
*!"...𝛾
1...3 = g*0Q!"...𝛾

01...3 , Q
"...𝛾

*01...3 = g*!Q
!"...𝛾
01...3 , (A.1.18)

and so on. The contravariant index of tensor density of type k + l can be directly con-
tracted with the covariant one, thus, producing a tensor density of type (k – 1) + (l – 1)
and the same weight, for example

P
"...𝛾
1...3 ≡ Q

!"...𝛾
!1...3 . (A.1.19)

Equation (A.1.18) points out that one can also contract either contravariant or covari-
ant indices of a tensor density of type k + l with the help of the metric tensor

R
+...𝛾

01...3 ≡ g!"Q
!"+...𝛾
01...3 . (A.1.20)

As a result, one obtains a tensor density of the same weight, but of the reduced rank
(k – 2) + l.

Next, one defines an outer tensor product, R = P ⊗ Q, of two different tensor
densities: P of weight n and rank k+l, andQ of weightm and rank p+q, as an algebraic
multiplication of their components,

R
!"...𝛾*+...4
01...3,-...9 = P

!"...𝛾
01...3 Q*+...4

,-...9 . (A.1.21)

The resulting tensor density R is of weight n +m and rank (k = p) + (l + q).
One has also to define the nil tensor: it is the tensor whose components vanish

identically in a certain coordinate chart. Then, by the law of tensor transformation
(A.1.16), one concludes that it has nil components in all coordinates. Also, by (A.1.21),
one concludes that a tensor product of the nil tensor density with an arbitrary tensor
density yields a nil tensor density once again.
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A.2 Derivatives
Mathematical operation of differentiation is one of the most important (and difficult)
subjects of theoretical physics and mathematics of manifolds. It is not the goal of this
book to go into a rigorous theory of the derivatives and the associated connections. We
merely provide the reader with the constructive definition and properties of the deriv-
atives being relevant to the calculations described in the main part of the book. More
detailed description of this important mathematical subject can be found in excel-
lent textbooks on the theory of gravity [178, 285, 315] or in any modern textbook on
differential geometry.

A.2.1 Covariant derivatives and the Christoffel symbols

The covariant differentiation of tensors and tensor densities originated from the fact
that a partial derivative of a tensor density is not a tensorial quantity. For example, the
partial derivative 𝜕"A! of a contravariant vector A! is not transformed as a tensor. To
preserve the tensorial character of 𝜕"A!, one has to modify the partial differentiation
by adding an additional term proportional to an affine connection,

∇"A! ≡ 𝜕"A! + A!"𝛾A𝛾 . (A.2.1)

The tensorial operation (A.2.1) is called the covariant derivative of a vector field A!.
The components of A!"𝛾 are called the Christoffel symbols which are expressed solely
in terms of the metric tensor and its partial derivatives,

A!"𝛾 = 1
2g

!1 (𝜕"g𝛾1 + 𝜕𝛾g"1 – 𝜕1g"𝛾) . (A.2.2)

By making coordinate transformation (A.1.1) one can see that the Christoffel symbols
are transformed as follows,

A󸀠!"𝛾 = A013
𝜕x󸀠!𝜕x0 𝜕x1𝜕x󸀠" 𝜕x3𝜕x󸀠𝛾 + 𝜕2x1𝜕x󸀠"𝜕x󸀠𝛾 𝜕x󸀠!𝜕x1 . (A.2.3)

Clearly, the Christoffel symbols are not components of a tensor quantity because they
do not satisfy the law of transformation of tensors (A.1.16). For example, the Christoffel
symbols may vanish in one coordinate chart but be non-zero in another one. Non-
tensorial character of the Christoffel symbols is exactly the desired property which
compensates the non-tensorial behavior of 𝜕"A!, and makes it tensor. Analogously to
(A.2.1) one can introduce a covariant derivative of a covector

∇"A! ≡ 𝜕"A! – A𝛾!"A𝛾 , (A.2.4)

where the reader should notice the important minus sign in the front of the second
term. Equations (A.2.1) and (A.2.4) are reciprocal. At last, generalizing (A.2.1–A.2.4)
one has for a covariant derivative of an arbitrary tensor density of weight +n the
following, rather long definition,
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∇+Q!"...𝛾
01...3 ≡ 𝜕+Q!"...𝛾

01...3 – nA,+,Q
!"...𝛾
01...3 (A.2.5)

+ A!+,Q
,"...𝛾
01...3 + A"+,Q

!,...𝛾
01...3 + . . . + A𝛾+,Q!"...,

01...3

– A-+0Q
!"...𝛾
-1...3 – A-+1Q

!"...𝛾
0-...3 – . . . – A-+3Q!"...𝛾

01...- .

We emphasize that the operation of the covariant derivative of a tensor density or rank
k + l and weight +n does not change its weight but increases its rank to k + (l + 1). Let
us now recall the important properties of covariant derivatives.

First, using (A.2.2) and (A.2.5) one finds that the covariant derivative of the metric
tensor and its inverse vanish,∇𝛾g!" = 0 , ∇𝛾g!" = 0 . (A.2.6)

The same is true for the determinant g of the metric tensor or any differentiable scalar
function f (g) of it, ∇𝛾f (g) = (𝜕f /𝜕g)∇𝛾g = 0. Thus, in calculations of the covariant
derivatives, the metric or functions depending on the metric, can be pulled out of the
operator of the covariant derivative. Equation (A.2.6) tells us that the affine connection
and the associated covariant derivative are metric compatible. It is this case when the
affine connection is reduced to the Christoffel symbols. In more general cases of the
manifolds with torsion the covariant derivative from the metric tensor may not vanish
but we shall not consider this complication over here.

Second, by making use of definition (A.2.5), we can derive the rules of taking a
covariant derivative from the sum and product of two arbitrary tensor densities, P
and Q,

∇+ (P!"...𝛾
01...3 + Q

!"...𝛾
01...3) = ∇+P!"...𝛾

01...3 + ∇+Q!"...𝛾
01...3 (A.2.7)

∇+ (P!"...𝛾
01...3 Q*+...4

,-...9) = Q*+...4
,-...9∇+P!"...𝛾

01...3 + P
!"...𝛾
01...3 ∇+Q*+...4

,-...9 . (A.2.8)

Third, we list some differential relations, which follow from the definition of the
Christoffel symbols (A.2.2) which are useful in practical calculations:

A"+" = 1
2g

,-𝜕+g,- = 𝜕+√–g , (A.2.9)𝜕+g!" = g!1A1"+ + g"1A1!+ , (A.2.10)

𝜕+g!" = –g!1A"1+ – g"1A!1+ . (A.2.11)

Fourth, the transformation (A.2.5) for a vector density A ! of weight +1 and for an
antisymmetric tensor density, B!" = –B"!, of weight +1 permits one to reduce the
covariant derivatives from the mentioned tensor densities to partial derivatives,∇!A ! = 𝜕!A ! , (A.2.12)∇"B!" = 𝜕"B!" . (A.2.13)

These relations are often employed in variational calculus on manifolds.
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A.2.2 The curvature tensor

Commutator of two covariant derivatives is a linear differential operator which defines
the curvature (Riemann) tensor, R!",-, see [178, 285, 315],

[∇,,∇-]A! ≡ ∇,-A! – ∇-,A! = A"R!",- , (A.2.14)

where we denoted ∇,- ≡ ∇,∇-, and
R,!-" ≡ 𝜕-A,!" – 𝜕"A,!, + A1!"A,1- – A,!1A1"- . (A.2.15)

With the use of (A.2.6) one can derive the value of the commutator of two covari-
ant derivatives applied to a covector A!. Generalizing (A.2.14) for an arbitrary tensor
density results in

[∇,,∇-]Q!"...𝛾
01...3 = Q+"...𝛾

01...3R!+,- + Q
!+...𝛾
01...3R"+,- + . . . + Q!"...+

01...3R𝛾+,-

–Q!"...𝛾
+1...3R

+
0,- – Q

!"...𝛾
0+...3R

+
1,- – . . . – Q!"...𝛾

01...+R
+
3,- . (A.2.16)

Notice that in relations, like (A.2.14–A.2.16) the weight of a tensor density does not
play any role because the terms depending on weight are mutually canceled out.

A.2.3 Lie derivative

The important notion of a Lie derivative was introduced in Section 1.2.3, see (1.2.72–
1.2.82). Here, we derive some formal mathematical properties of this derivative which
are employed in calculations. Thus, considering an infinitesimal coordinate trans-
formation:

x󸀠! = x! + .!(x) , (A.2.17)

one defines the Lie derivative of a tensor density Q = {Q!"...𝛾
01...3} as a variation between

Q and its transformed value Q󸀠 obtained by applying transformation (A.1.16) gener-
ated by (A.2.17) and shifting it on the manifold along .! to the point with the same
coordinates x = {x!},

£.Q
!"...𝛾
01...3(x) ≡ Q󸀠!"...𝛾01...3 (x) – Q

!"...𝛾
01...3(x) . (A.2.18)

The operational formula for the Lie derivative is derived from the variation

$󸀠Q!"...𝛾
01...3 ≡ Q󸀠!"...𝛾01...3 (x

󸀠) – Q!"...𝛾
01...3(x) , (A.2.19)
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where Q󸀠!"...𝛾01...3 (x󸀠) is related to Q!"...𝛾
01...3(x) by the tensor transformation (A.1.16) induced

by (A.2.17). Making Taylor series expansion of the matrix of the partial derivatives of
the coordinate transformation (A.2.17) with respect to the small vector .! and keeping
only the linear terms, result in

$󸀠Q!"...𝛾
01...3 = –n𝜕,.,Q!"...𝛾

01...3

+𝜕,.!Q,"...𝛾
01...3 + 𝜕,.!Q!,...𝛾

01...3 + . . . + 𝜕,.𝛾Q!"...,
01...3

–𝜕0.,Q!"...𝛾
,1...3 – 𝜕1.,Q!"...𝛾

0,...3 – . . . – 𝜕3.,Q!"...𝛾
01..., . (A.2.20)

In addition to this, one has to make a Taylor series expansion of Q󸀠!"...𝛾01...3 (x󸀠) around the
point x which yields

Q󸀠!"...𝛾01...3 (x
󸀠) = Q󸀠!"...𝛾01...3 (x) + .,𝜕,Q!"...𝛾

01...3(x) , (A.2.21)

or

$󸀠Q!"...𝛾
01...3 = £.Q

!"...𝛾
01...3(x) + .,𝜕,Q!"...𝛾

01...3(x) . (A.2.22)

Combining (A.2.18–A.2.22) one finds

£.Q
!"...𝛾
01...3(x) = –.,𝜕,Q!"...𝛾

01...3(x) – n𝜕,.,Q!"...𝛾
01...3 (A.2.23)

+𝜕,.!Q,"...𝛾
01...3 + 𝜕,.!Q!,...𝛾

01...3 + . . . + 𝜕,.𝛾Q!"...,
01...3

–𝜕0.,Q!"...𝛾
,1...3 – 𝜕1.,Q!"...𝛾

0,...3 – . . . – 𝜕3.,Q!"...𝛾
01..., .

We notice that all partial derivatives in the right side of equation (A.2.23) can be sim-
ultaneously replaced with the covariant derivatives because the terms containing the
Christoffel symbols cancel each other, see (1.2.82). Thus, £.Q is a tensor density of the
same type as Q. Now, we list some important properties of the Lie derivative.

The Lie derivative commutes with a partial (but not a covariant) derivative

𝜕! (£.Q!"...𝛾
01...3) = £. (𝜕!Q!"...𝛾

01...3) . (A.2.24)

This property allows us to show that the Lie derivative of a tensor density Q =
Q (q, q!, q!") which depends on some variable q ≡ q(x) and its partial derivatives,
q! ≡ 𝜕!q(x), q!" ≡ 𝜕!"q(x), can be represented as follows,

£.Q
!"...𝛾
01...3 =

𝜕Q!"...𝛾
01...3𝜕q £.q +

𝜕Q!"...𝛾
01...3𝜕q! £.q! +

𝜕Q!"...𝛾
01...3𝜕q!" £.q!" . (A.2.25)



542 Appendix A: Tensor quantities and tensor operations

This relationship can be rewritten as an algebraic sum of a Lagrange derivative (which
is explained in next subsection) and a collection of terms which is a total divergence,

£.Q
!"...𝛾
01...3 =

$Q!"...𝛾
01...3
$q £.q +

𝜕𝜕x! ($Q!"...𝛾
01...3
$q!

£.q +
𝜕Q!"...𝛾

01...3𝜕q!" £.q") . (A.2.26)

This property of the Lie derivative is used for the derivation of Noether’s theorems.
Among a number of other important properties of the Lie derivative we recall the

following:

£. $14 = 0 , (A.2.27)

£. (Q!"...𝛾
01...3 + P

!"...𝛾
01...3) = £.Q

!"...𝛾
01...3 + £.P

!"...𝛾
01...3 , (A.2.28)

£. (P!"...𝛾
01...3 Q*+...4

,-...9) = P
!"...𝛾
01...3£.Q

*+...4
,-...9 + Q*+...4

,-...9£.P
!"...𝛾
01...3 , (A.2.29)

£[&. ]Q
*+...4
,-...9 = £&£.Q

*+...4
,-...9 – £.£&Q

*+...4
,-...9 , (A.2.30)

where in the last equation (A.2.30) the Lie derivative is calculated along the commut-
ator of two vector fields, [&. ] = .1& !,1 – & 1.!,1 = .1∇1& ! – & 1∇1.!.

At last, we would like to draw attention of the reader to the fact that the opera-
tion of taking the Lie derivative can be applied not only to tensor densities but also to
some non-tensorial geometrical objects like the Christoffel symbols (A.2.2). Applying
definition (A.2.18) to the Christoffel symbols

£.A!"𝛾(x) = A󸀠!"𝛾(x) – A!"𝛾(x) , (A.2.31)

and accounting for the transformation law (A.2.3) one recognizes that the Lie derivat-
ive (A.2.31) is a tensor transforming accordingly under coordinate transformations.

A.2.4 Variational and Lagrangian derivatives

Mathematical theory of perturbations of physical fields on manifolds including the
gravitational field itself, relies on the least action principle applied to a functional

S = ∫
K
d4xL , (A.2.32)

called the action. Variational derivative is a mathematical operation that appears
when the least action principle is used to derive the field equations which are the
extremal of the action. The scalar density, L , that appears in the integrand of the
functional (A.2.32) is called the Lagrangian. It has weight +1 and can be rewritten, for
example, in the form L = √–gL, where L is a scalar function depending on the phys-
ical fields under consideration. We assume that the Lagrangian depends on matter
and metric variables as well as on their first and second derivatives,

L = L (QA,QA
,!,Q

A
,!" ; g,-, g,-,!, g,-,!") . (A.2.33)
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Here the terms depending on the first and second derivatives are analogs of the velo-
city and the acceleration in the non-relativistic mechanics of point-like particles. The
variable QA can be a tensor density of an arbitrary type and weight with the covari-
ant and/or contravariant indices which are combined in a single (economic) index A
which is more convenient to handle long and cumbersome tensorial operations. The
mathematical rules of operation with the economic index notations are explained in
the next section of the appendix.

A certain care should be taken in choosing the set of independent dynamical
variables and their derivatives for doing variational calculus. The reason is that in
the most cases the dynamical variables entering the Lagrangian are tensor fields
whose contravariant and covariant components differ. Therefore, it is more prefer-
able to operate with a set of dynamical variables of the same tensor type which
shorten calculations and simplify equations. The reason behind this recommendation
is that covariant and contravariant components of a tensor field are dualmathematical
objects which are interrelated via the metric tensor. Therefore, derivatives of the con-
travariant components differ from the covariant ones by a number of additional terms
involving derivatives of themetric tensor whichmay lead to unnecessary complication
of calculations and/or erroneous interpretation of physics.

Variational derivative from the action S taken with respect to the field variable QA

relates the variation, $S, of the action S to the variation, $QA of the field variable. In
order to get an operational formula for the variational derivative we take the variation
of the action

$S = ∫
K
d4x$L , (A.2.34)

where

$L = 𝜕L𝜕QA $Q
A + 𝜕L𝜕QA

,!
$QA

,! +
𝜕L𝜕QA

,!"
$QA

,!" , (A.2.35)

is a functional increment of L expressed in terms of the variations of its arguments.
The variational derivative is obtained after wemake use of the commutation relations,
$QA

,! = ($QA),! and $QA
,!" = ($QA),!", integrate by parts the terms with the partial

derivatives, and single out a total divergence in the right side of (A.2.35). The total
divergence is reduced to a surface term in the integral (A.2.34) which vanishes on the
boundary 𝜕K of the volume K of integration, if the boundary conditions

$ QA󵄨󵄨󵄨󵄨󵄨𝜕K = 0, ($QA
,!)󵄨󵄨󵄨󵄨󵄨𝜕K = 0 , (A.2.36)

are imposed on the variation of the field variable QA and its first derivative. Thus, the
variation of S is reduced to

$S = ∫
K
d4x $L

$QA $Q
A , (A.2.37)
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where

$L
$QA ≡ 𝜕L𝜕QA – 𝜕𝜕x! 𝜕L𝜕QA

,!
+ 𝜕2𝜕x!𝜕x" 𝜕L𝜕QA

,!"
. (A.2.38)

We call the operator (A.2.38) the Lagrangian derivative following the nomenclature
adopted in the book [266]. More common practice is to call (A.2.38) as a variational
derivative and to denote it as $S/$QA. This notation seems to be somewhat mislead-
ing as the derivative (A.2.38) is directly applied to the Lagrangian L but not to the
action S.

Let us assume that there is another Lagrangian, L̃ , which differs from the original
one, L , in (A.2.33) by a total divergence depending only on the field variables QA and
their first derivatives QA

,!

L̃ = L + 𝜕"D" (QA,QA
,!) . (A.2.39)

It is well known [236, 316] and can be easily checked by inspection that the operator
of the Lagrangian derivative (A.2.38) applied to the total divergence yields a zero:

$
$QA (𝜕D!𝜕x! ) ≡ 0 . (A.2.40)

Thus, the Lagrangian derivative of L̃ and L yields the same result. In fact, it is
straightforward to prove that the Lagrangian derivative (A.2.38) applied to a partial
derivative of an arbitrary tensor density, F = F (QA,QA

,!,Q
A
,!"), vanishes

$
$QA ( 𝜕F𝜕x!) ≡ 0 . (A.2.41)

However, this property does not hold for the covariant derivative of the tensor density
in the most general case [316].

Because the Lagrangian is a scalar density of weight +1, andQA alongwith $QA are
tensor densities as well, the readermay suggest that the Lagrangian derivative (A.2.38)
derived from (A.2.37) is a covariant object which does not depend on the choice
of coordinates. This is indeed true and we prove the covariance of the Lagrangian
derivative (A.2.38) in the next section of this appendix, see (A.3.37).

Lagrangian derivative of the Lagrangian (A.2.33) with respect to the metric tensor
g,- is defined by the same rule like (A.2.38) that reads

$L
$g,-

≡ 𝜕L𝜕g,- – 𝜕𝜕x! 𝜕L𝜕g,-,! + 𝜕2𝜕x!𝜕x" 𝜕L𝜕g,-,!" . (A.2.42)

It does not look like a covariant expression at a first glance. However, after careful
inspection of each terms given in the next section of this appendix we prove that
(A.2.42) does not depend on the choice of coordinates and is covariant, see (A.3.44).
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The proof is not quite straightforward and requires some critical thinking because
the covariant derivative of the metric tensor ∇!g,- = 0, see (A.2.6). Let us note some
important properties of the Lagrangian derivatives.

The Lagrangian derivatives are not linear operators. For example, they do not obey
the Leibniz’s rule [199]. More specifically, for a product of two geometric objects, F =
F (QA,QA

,!,QA
,!") and T = T (QA,QA

,!,QA
,!"), the Lagrangian derivative

$ (FT )
$QA ̸= $ (F )

$QA T + F
$ (T )
$QA , (A.2.43)

in the most general case.
The chain rule with regard to the Lagrangian derivative exists in two forms. First,

let us consider a geometric object F depending on QA and its first and second deriv-
atives F = F (QA,QA

,!,QA
,!") where QA is a function of a variable PB without its

derivatives, that is QA = QA(PB). Then, the Lagrangian derivative reads

$F
$PA

= $F
$QB

𝜕QB𝜕PA , (A.2.44)

which can be confirmed by inspection [379]. The chain rule (A.2.44) simplifies the cal-
culation of the Lagrangian derivative of F with respect to variable PA if we already
know the Lagrangian derivative ofF with respect to QA. For example, the Lagrangian
derivative with respect to the contravariant metric tensor, g,-, can be immediately
found from (A.2.42) by applying the chain rule,

$L
$g,- =

𝜕g!"𝜕g,- $L$g!" = –g!,g"-
$L
$g!"

. (A.2.45)

By the same token we can get the Lagrangian derivative with respect to the contravari-
ant metric tensor expressed in terms of the Lagrangian derivative with respect to the
Gothic metric,

$L
$g,- = 𝜕g!"𝜕g,- $L$g!" = √–g ($!,$"- – 1

2g
!"g,-) $L

$g!"
, (A.2.46)

and so on.
The second chain rule is applied in case when one has a geometric object F =

F (QA), depending merely on a variable QA (without derivatives) which depends on
the variable PA along with its first and second derivatives, QA = QA (PB,PB,!,PB,!"). In
this situation the chain rule reads [379]

$F
$PA

= 𝜕F𝜕QB
$QB

$PA
. (A.2.47)

The chain rules (A.2.46) and (A.2.47) are frequently used in calculations present in the
book.
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A.3 Introduction to economic tensor operations

A.3.1 Economic index notations

The above equations show that the operations with tensor densities of high rank and
weight involving all tensor indices lead in most cases to long and very cumbersome
expressions. In order to simplify the tensor equations with a large number of indices
we introduce condensed, economic notations for them. To this end, an arbitrary tensor
density Q!"...𝛾

01...3 which appears, for example in (A.1.16), will be denoted as

QA ≡ Q!"...𝛾
01...3 , (A.3.1)

where a collective index A combines both contravariant and covariant tensor indices
in a single piggyback notation. This economic notation of tensor densities is used con-
sistently throughout the book to shorten equations. With the use of notation (A.3.1) an
outer product is defined:

RC ≡ PAQB , (A.3.2)

where the set of indices C unites the set A and B; it can be a short writing of the formula
(A.1.21). The lower collective index is useful also. Thus, for example, for a concrete set
of indices in (A.3.1) we can define

PA ≡ P01...3!"...𝛾 . (A.3.3)

Thus, the operation of a contraction of collective indices with the use of the Einstein
rule is useful for calculations also:

R ≡ PAQ
A . (A.3.4)

Another useful device to manipulate with long tensor expressions is a linear operator|,- of permutations of indices of the tensor density of weight +n [371]

QA󵄨󵄨󵄨󵄨󵄨,- ≡ Q!"...𝛾
01...3

󵄨󵄨󵄨󵄨󵄨󵄨,- = –n$,-Q
!"...𝛾
01...3 + $!-Q

,"...𝛾
01...3 + $"-Q

!,...𝛾
01...3 + . . . + $𝛾-Q!"...,

01...3

–$,0Q
!"...𝛾
-1...3 – $,1Q

!"...𝛾
0-...3 – . . . – $,3Q!"...𝛾

01...- . (A.3.5)

A double permutation operator is again a permutation operator being naturally
defined as

QA󵄨󵄨󵄨󵄨󵄨!"󵄨󵄨󵄨󵄨󵄨󵄨,- ≡ (QA󵄨󵄨󵄨󵄨󵄨!")󵄨󵄨󵄨󵄨󵄨󵄨,- ≡ QB󵄨󵄨󵄨󵄨󵄨,- (A.3.6)

where QB ≡ QA󵄨󵄨󵄨󵄨󵄨!".
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The permutation operator seems to appear for the first time in textbook by Mitskevich
[316], however our definition of |,- is simpler and more efficient for conducting tensor
operations. Equation (A.3.5) applied to the metric tensor, QA ≡ g,-, reads g,-

󵄨󵄨󵄨󵄨󵄨!" =
–$!,g"- – $!-g,"; the same equation applied to the Kronecker delta, QA = $-,, yields
$-,
󵄨󵄨󵄨󵄨󵄨!" = 0; for a scalar density QA = L one has L |!" = –$!"L , and so on. The abstract

form of the symbolic permutation operation, QA󵄨󵄨󵄨󵄨󵄨!", is very helpful as it drastically
shortens long tensor calculations including covariant, Lie and Lagrangian derivatives.
The ploy here is that we don’t need to write down all tensor indices at the interme-
diate steps of calculation - they can be easily restored at the end of the calculation
by expanding the collective indices of tensor densities with the help of (A.3.5) and
substituting them to the final result.

To demonstrate the advantages of the economic notations (A.3.1) and (A.3.5) we
rewrite the long formula (A.2.5) for the covariant derivative in the economic form:

∇+QA = 𝜕+QA + QA󵄨󵄨󵄨󵄨󵄨,- A-+, . (A.3.7)

Economic expression of formula (A.2.23) for the Lie derivative takes on the following
form:

£.Q
A = –.,𝜕,QA + QA󵄨󵄨󵄨󵄨󵄨,-𝜕,.- . (A.3.8)

The reader can check by inspection that the economic form of the permutation
operator, QA󵄨󵄨󵄨󵄨󵄨!", also emerges in the (antisymmetric) commutator of two covariant
derivatives (A.2.16):

∇,-QA – ∇-,QA = QA󵄨󵄨󵄨󵄨󵄨!" R"!,- . (A.3.9)

Economic notations (A.3.1) and (A.3.5) can be effectively extended to a set of tensor
densities as well. For example, let us consider a set of k tensor densities,

6A = {QA1 ,QA2 , . . . ,QAk } , (A.3.10)

where each member QAi (i = 1, 2, . . . , k) of the set is a tensor density of a certain rank
and weight like that shown in (A.3.1). Thus, the components of the set, 6A, consist of
all admissible components of the members of the set. We can easily define the partial
derivative of the set 6A by the rule

𝜕,6A ≡ {𝜕,QA1 , 𝜕,QA2 , . . . , 𝜕,QAk } . (A.3.11)

A similar definition is applied to the covariant derivative of the set 6A,

∇,6A ≡ {∇,QA1 ,∇,QA2 , . . . ,∇,QAk } , (A.3.12)

and for its Lie derivative

£.6A ≡ {£.QA1 ,£.Q
A2 , . . . , £.QAk } . (A.3.13)
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Partial derivative with respect to the set 6A considered as an independent variable, is
defined as follows 𝜕𝜕6A ≡ { 𝜕𝜕QA1

, 𝜕𝜕QA2
, . . . , 𝜕𝜕QAk

} . (A.3.14)

A similar definition is introduced for the Lagrangian derivatives with respect to the
set,

$
$6A ≡ { $

$QA1
, $
$QA2

, . . . , $
$QAk

} . (A.3.15)

The economic index notations introduced in this appendix are very helpful in
variational and differential calculus of tensor and/or gauge fields propagating on
geometric manifolds.

A.3.2 Algebra of economic index notations

Now, we derive some useful rules of algebraic operations involving economic index
notations which are to help the reader to understand the calculations conducted in
the main part of the book.

First of all, we notice that the permutation operator (A.3.5) obeys the chain rule,

(QAPB)󵄨󵄨󵄨󵄨󵄨!" = QA󵄨󵄨󵄨󵄨󵄨!" PB + QAPB󵄨󵄨󵄨󵄨󵄨!" . (A.3.16)

and the commutator of two permutation operators is a difference of two permutation
operators,

QA󵄨󵄨󵄨󵄨󵄨"1󵄨󵄨󵄨󵄨󵄨󵄨󵄨4! – QA󵄨󵄨󵄨󵄨󵄨4!󵄨󵄨󵄨󵄨󵄨󵄨"1 = $"! Q
A󵄨󵄨󵄨󵄨󵄨41 – $41 QA󵄨󵄨󵄨󵄨󵄨"! . (A.3.17)

The property (A.3.16) can be applied to derive equation for the permutation operator
applied to a covariant derivative of tensor density:

(∇!QA)󵄨󵄨󵄨󵄨󵄨41 = ∇! (QA󵄨󵄨󵄨󵄨󵄨41) – $4!∇1QA. (A.3.18)

It can be easily understood if we remember that the covariant derivative ∇! is a rank-1
tensor. Then, the left side of (A.3.18) can be viewed as a tensor product of two tensors
to which the permutation operator is applied. Accounting for equation (A.3.16) and∇!󵄨󵄨󵄨󵄨41 = –$4!∇1 (which is a direct consequence of (A.3.5) applied to ∇!) we get (A.3.18).

Taking a Lagrangian derivative of the Lagrangian depending on tensor fields
QB is facilitated by applying an equation (notice contraction with respect to the
corresponding economic indices B)

𝜕L𝜕(∇!QB)
QB󵄨󵄨󵄨󵄨󵄨14 = ( 𝜕L𝜕(∇!QB)

QB)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨14 – ( 𝜕L𝜕(∇!QB)
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

4
QB , (A.3.19)
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which follows from (A.3.16). It is also instructive to notice that the first term in the right
side of (A.3.19), to which the permutation operator is applied, is a vector density of
weight +1. Hence, it can be written down explicitly by making use of (A.3.5) as follows:

( 𝜕L𝜕(∇!QB)
QB)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨14 = –$14

𝜕L𝜕(∇!QB)
QB + $!4

𝜕L𝜕(∇1QB)
QB . (A.3.20)

The covariant derivative (A.3.7) applied to calculate divergence of a vector density,A !,
in (A.2.12) and that of antisymmetric tensor density, B!", in (A.2.13), evidently yields

A !󵄨󵄨󵄨󵄨14 A4!1 = 0 , (A.3.21)

B!"󵄨󵄨󵄨󵄨󵄨󵄨14 A4"1 = 0 . (A.3.22)

An example of application of equation (A.3.21) is equation (A.3.20) contractedwith the
Christoffel symbols, which gives:

( 𝜕L𝜕(∇!QB)
QB)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨14 A4!1 = 0 . (A.3.23)

Onemore useful relation connecting the double permutation operator with the partial
derivatives of tensor densities is:

𝜕 (QA󵄨󵄨󵄨󵄨󵄨!")𝜕QB QB󵄨󵄨󵄨󵄨󵄨14 = QA󵄨󵄨󵄨󵄨󵄨!"󵄨󵄨󵄨󵄨󵄨󵄨14 . (A.3.24)

We remark that a major part of calculations used to derive basic results present in the
book, are long and tedious, and it is virtually impossible to list all particular relations
involving the economic index notations. Nonetheless, we have explained the main
idea of how to conduct calculations with the economic index notations and hope that
the information provided in Appendices A.3.1 and A.3.2 will be sufficient for the reader
to repeat calculations without obstacles.

A.3.3 Covariant expressions

The techniques of the economic index notations and permutation operator allow us to
represent both the Lie derivatives (A.3.8) and the Lagrangian derivatives (A.2.38) and
(A.2.42) in explicitly covariant form which is important in the field theories on geo-
metric manifolds. The procedure of doing this is rather straightforward and is given
below.

Lie derivatives
We rewrite the partial derivatives from the field QA and a vector field .- entering the
right side of (A.3.8), in terms of the covariant derivatives,
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QA
,, = ∇,QA – A-,1 QA󵄨󵄨󵄨󵄨󵄨1- ; (A.3.25)

.-,, = ∇,.- – A-,1.1 . (A.3.26)

Substituting these expressions into (A.3.8), one obtains an explicitly covariant expres-
sion for the Lie derivative:

£.Q
A = –.,∇,QA + QA󵄨󵄨󵄨󵄨󵄨-, ∇-., . (A.3.27)

Lagrangian derivatives
In order to derive the covariant expression for the Lagrangian derivative we represen-
ted the Lagrangian (A.2.33) in an explicitly covariant form:

L ≡ Lc = Lc (QA,∇!QA,∇!"QA; g,-,R
!
,"-) . (A.3.28)

We notice that this general form includes, as a particular case, a Lagrangian of
arbitrary covariant metric gravitational theory with a minimal coupling:

Lc = – 1
2*L G (g,-,R!,"-) + L M (QA,∇!QA,∇!"QA; g,-) . (A.3.29)

Let us use (A.3.7) and a covariant derivative from both sides of (A.3.7) to express the
covariant derivatives in (A.3.28) in terms of the partial ones:

∇!QA = QA
,! + A4!1 QA󵄨󵄨󵄨󵄨󵄨14 , (A.3.30)∇"!QA = ∇" (∇!QA) = (QA

,! + A4!1 QA󵄨󵄨󵄨󵄨󵄨14)," + (∇!QA)󵄨󵄨󵄨󵄨󵄨-, A-",
= QA

,!" + A4!1," QA󵄨󵄨󵄨󵄨󵄨14 + A4!1∇" (QA󵄨󵄨󵄨󵄨󵄨14) + A4"1 (∇!QA)󵄨󵄨󵄨󵄨󵄨14
–A4!1A,"- QA󵄨󵄨󵄨󵄨󵄨14󵄨󵄨󵄨󵄨󵄨󵄨-, . (A.3.31)

Now, with the use of (A.3.30) and (A.3.31) let us represent separate terms in (A.2.38) in
terms of the partial derivatives with respect to the fieldQA and its covariant derivative.
The first term is rewritten as

𝜕L𝜕QA = 𝜕Lc𝜕QA + 𝜕Lc𝜕(∇!QB)
𝜕(∇!QB)𝜕QA + 𝜕Lc𝜕(∇"!QB)

𝜕(∇"!QB)𝜕QA

= 𝜕Lc𝜕QA + 𝜕Lc𝜕(∇!QB)
𝜕𝜕QA (A1!4 QB󵄨󵄨󵄨󵄨󵄨41)

+ 𝜕Lc𝜕(∇"!QB)
𝜕𝜕QA [A1!4," QB󵄨󵄨󵄨󵄨󵄨41

+ ($3! QB󵄨󵄨󵄨󵄨󵄨41 |,- – $31$4! QB󵄨󵄨󵄨󵄨󵄨,-) A1"4A-,3] . (A.3.32)
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To rewrite the second term in (A.2.38) we need equation,

𝜕L𝜕QA
,!

= 𝜕Lc𝜕(∇!QA)
+ 𝜕Lc𝜕(∇-,QB)

𝜕(∇-,QB)𝜕(∇!QA)
= 𝜕Lc𝜕(∇!QA)

(A.3.33)

+ 𝜕Lc𝜕(∇-,QB)
𝜕𝜕(∇!QA)

[A4,1∇- (QB󵄨󵄨󵄨󵄨󵄨14) + A4-1 (∇,QB)󵄨󵄨󵄨󵄨󵄨14] ,
which follows from (A.3.31). Making use of this equation the second term in (A.2.38)
takes on the following form:

– 𝜕𝜕x! ( 𝜕L𝜕QA
,!
) = –∇! ( 𝜕Lc𝜕(∇!QA)

) + A4!1 ( 𝜕Lc𝜕(∇!QA)
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨14

–𝜕!( 𝜕Lc𝜕(∇-,QB)
𝜕𝜕(∇!QA)× [A4,1∇- (QB󵄨󵄨󵄨󵄨󵄨14) + A4-1 (∇,QB)󵄨󵄨󵄨󵄨󵄨14]) . (A.3.34)

To rewrite the third term in (A.2.38) we note that𝜕L𝜕QA
,!"

= 𝜕Lc𝜕(∇"!QA)
, (A.3.35)

and one has 𝜕2𝜕x!𝜕x" ( 𝜕L𝜕QA
,!"

) = ∇!" [ 𝜕Lc𝜕(∇"!QA)
] – A4!1 [∇" 𝜕Lc𝜕(∇"!QA)

]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

4

–𝜕! [A4"1 ( 𝜕Lc𝜕(∇"!QA)
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

4
] . (A.3.36)

Summing up equalities (A.3.32), (A.3.34) and (A.3.36) one finds that the first terms in
the right hand sides survive while all other terms are mutually canceled out. Thus, the
Lagrangian derivative (A.2.38) is represented in an explicitly covariant form:

$L
$QA = $Lc

$QA = 𝜕Lc𝜕QA – ∇! 𝜕Lc𝜕(∇!QA)
+ ∇!" 𝜕Lc𝜕(∇"!QA)

. (A.3.37)

We emphasize that the order of indices in the covariant derivatives entering the last
term in right side of (A.3.37) is important because the covariant derivatives do not
commute.

Now, let us rewrite the Lagrangian derivative (A.2.42) with respect to the metric
in an explicitly covariant form. In this case, we vary the set of the metric tensor, g,-,
the Christoffel symbols A!,-, and the Riemann tensor R!",- as a set of independent
variables with the correspondening variations:

$Lc =
𝜕Lc𝜕g,- $g,- + 𝜕Lc𝜕A!,- $A!,- + 𝜕Lc𝜕A!,-," $A!,-," + 𝜕Lc𝜕R!",- $R!",- , (A.3.38)
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where the variations of the Christoffel symbols and the Riemann tensor are tensors
that can be expressed in terms of the variation $g,- of the metric tensor [456]

$A!,- = 1
2g

!3 [∇-($g3,) + ∇,($g3-) – ∇3($g,-)] , (A.3.39)
$R!",- = ∇,($A!"-) – ∇-($A!",) . (A.3.40)

It is evident that the first and fourth terms in (A.3.38) are covariant. Thus, one has to be
convinced in the covariance of the second and the third terms. Let us substitute there
an explicit expression for the Lagrangian (A.3.28), then up to a divergence one has

$Lc
$A!,-

$A!,- ≡ [ 𝜕Lc𝜕A!,- – 𝜕" ( 𝜕Lc𝜕A!,-,")] $A!,-
= [ 𝜕Lc𝜕(∇3QA)

𝜕(∇3QA)𝜕A!,- + 𝜕Lc𝜕(∇03QA)
𝜕(∇03QA)𝜕A!,-

– 𝜕" ( 𝜕Lc𝜕(∇03QA)
𝜕(∇03QA)𝜕A!,-," )] $A!,-

= [ 𝜕Lc𝜕(∇3QA)
QA󵄨󵄨󵄨󵄨󵄨14 + 𝜕Lc𝜕(∇30QA)

(∇0QA)󵄨󵄨󵄨󵄨󵄨14
– ∇0 ( 𝜕Lc𝜕(∇03QA)

) QA󵄨󵄨󵄨󵄨󵄨14] $A431 . (A.3.41)

This evidently is covariant.
Thus, (A.3.38) can be rewritten up to a divergence in the form

$Lc =
𝜕Lc𝜕g,- $g,- + $Lc

$A!,-
$A!,- +

𝜕Lc𝜕R!",- $R!",- . (A.3.42)

Now, we replace (A.3.39), (A.3.40) in (A.3.42) and single out a total divergence again.
It yields

$Lc =
$Lc
$g,-

$g,- , (A.3.43)

and the covariant Lagrangian derivative of the Lagrangian with respect to the metric
tensor reads

$Lc
$g,-

= 𝜕Lc𝜕g,- – 1
2
∇! (g3, $Lc

$A3-!
+ g3- $Lc

$A3,!
– g3! $Lc

$A3,-
) (A.3.44)

+ ∇!" (g3, 𝜕Lc𝜕R3!"- + g3- 𝜕Lc𝜕R3,"! – g3! 𝜕Lc𝜕R3,"-) .
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B.1 Lorentz invariance of retarded potentials
We use a prime in the appendices exclusively as a label for time and spatial coordin-
ates which are used as variables of integration in volume integrals (see, for example,
equations (B.1.2), (B.1.3), and so on). It should not be confused with the time derivative
with respect to the conformal time used in the main text of the Chapter 5.

Let us consider an inhomogeneous wave equation for a scalar field, V = V(',X),
written down in a coordinate chart X! = (X0,Xi) = (',X),

◻V = –403X , (B.1.1)

where ◻ ≡ '!"𝜕!", 𝜕! = 𝜕/𝜕X!, and 3X = 3X(',X) is the source (a scalar function) of
the field V with a compact support (bounded by a finite volume in space). Equation
(B.1.1) has a solution given as a linear combination of advanced and retarded poten-
tials. Let us focus only on the retarded potential which is more common in physical
applications. Advanced potential can be treated similarly.

We assume the field, V, and its first derivatives vanish at past null infinity. Then,
the retarded solution (retarded potential) of (B.1.1) is given by an integral,

V(',X) = ∫
V

3X(& ,X󸀠) d3X󸀠
|X – X󸀠|

, (B.1.2)

where

& = ' – |X – X󸀠| , (B.1.3)

is the retarded time, and we assume the fundamental speed c = 1. Physical meaning
of the retardation is that the field V propagates in spacetime with the fundamental
speed c from the source 3X, to the point with coordinates X! = (',X) where the field
V is measured in correspondence with equation (B.1.2). Left side of equation (B.1.1)
is Lorentz-invariant. Hence, we expect that solution (B.1.3) must be Lorentz-invariant
as well. As a rule, textbooks prove this statement for a particular case of the retarded
(Liénard–Wiechert) potential of a moving point-like source but not for the retarded
potential given in the form of the integral (B.1.2). This appendix fulfils this gap.

Lorentz transformation to coordinates, x! = (t, x) linearly transforms the isotropic
coordinates X! = (',X) of the FLRWmetric as follows

x! = D!"X" , (B.1.4)
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where the matrix of the Lorentz boost [315]

D0
0 = 𝛾 , Di0 = D0i = –𝛾"i , Di

j = $ij + 𝛾 – 1
"2 "i"j , (B.1.5)

the boost four-velocity u! = {u0, ui} = u0{1, "i} is constant, and
𝛾 = u0 = 1√1 – "2 , (B.1.6)

is the constant Lorentz-factor.
The inverse Lorentz transformation is given explicitly as follows

' = 𝛾(t + " ⋅ x) , (B.1.7)

X = r + 𝛾2
1 + 𝛾 (" ⋅ r)b , (B.1.8)

where

r = x + "t , (B.1.9)

and the boost three-velocity, " = {"i} = {ui/u0}.
Let us reiterate (B.1.2) by introducing a one-dimensional Dirac’s delta function

and integration with respect to time ',

V(',X) = ∫∞
–∞

∫
V

3X('󸀠,X󸀠)$('󸀠 – & ) d'󸀠d3X󸀠
|X – X󸀠|

, (B.1.10)

where & is the retarded time given by (B.1.3). Then, we transform coordinates X󸀠! =
('󸀠,X󸀠) to x󸀠! = (t󸀠, x󸀠) with the Lorentz boost (B.1.4). The Lorentz transformation
changes functions entering the integrand of (B.1.10) as follows,

3('󸀠,X󸀠) = 3x(t󸀠, x󸀠) , (B.1.11)

|X – X󸀠| = √|r – r󸀠|2 + 𝛾2[" ⋅ (r – r󸀠)]2 , (B.1.12)

where the coordinate difference

r – r󸀠 = x – x󸀠 + "(t – t󸀠) . (B.1.13)

The coordinate volume of integration remains Lorentz-invariant

d'󸀠d3X󸀠 = dt󸀠d3x󸀠 . (B.1.14)
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Let us denote F'('󸀠) ≡ '󸀠 – & where & is given by (B.1.3). After making the Lorentz
transformation this function changes to

F'('󸀠) = Ft(t
󸀠) = 𝛾 [t󸀠 – t – " ⋅ (x – x󸀠)] (B.1.15)

+√|x – x󸀠|2 – (t󸀠 – t)2 + 𝛾2[" ⋅ (x – x󸀠) – (t󸀠 – t)]2 ,
where we have used equations (B.1.7), (B.1.8) and (B.1.12) and relationship 𝛾2"2 = 𝛾2–1,
to perform the transformation. Integral (B.1.10) in coordinates x! becomes

V(t, x) = ∫∞
–∞

∫
V

3x(t󸀠, x󸀠)$(Ft(t󸀠)) dt󸀠d3x󸀠√|r – r󸀠|2 + 𝛾2[" ⋅ (r – r󸀠)]2 , (B.1.16)

The delta function has a complicated argument Ft(t󸀠) in coordinates x!. It can be
simplified with a well-known formula

$ [Ft(t󸀠)] = $(t󸀠 – s)
Ḟt(s)

, (B.1.17)

where Ḟt(s) ≡ [dFt(t󸀠)/dt󸀠]t󸀠=s, and s is one of the roots of equation Ft(t󸀠) = 0 that is
associated with the retarded interaction. It is straightforward to confirm by inspection
that the root is given by formula,

s = t – |x – x󸀠| . (B.1.18)

The time derivative of function Ft(t󸀠) is

Ḟt(t
󸀠) = 𝛾 + 𝛾2 "2(t󸀠 – t) – " ⋅ (x – x󸀠)√|x – x󸀠|2 – (t󸀠 – t)2 + 𝛾2[" ⋅ (x – x󸀠) – (t󸀠 – t)]2 . (B.1.19)

After substituting t󸀠 = s, with s taken from equation (B.1.18), we obtain,

Ḟt(s) =
1𝛾 |x – x󸀠|
|x – x󸀠| + " ⋅ (x – x󸀠) . (B.1.20)

Performing now integration with respect to t󸀠 in equation (B.1.16) with the help of the
delta-function, we arrive to

V(t, x) = ∫
V

3x(s, x󸀠) d3x󸀠

Ḟt(s)|X – X󸀠|t󸀠=s
, (B.1.21)
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where |X – X󸀠|t󸀠=s must be calculated from (B.1.12) with t󸀠 = s where s is taken from
(B.1.18). It yields

Ḟt(s)|X – X󸀠|t󸀠=s = |x – x󸀠| , (B.1.22)

and proves that the retarded potential (B.1.2) is Lorentz-invariant

∫
V

3X(& ,X󸀠) d3X󸀠
|X – X󸀠|

= ∫
V

3x(s, x󸀠) d3x󸀠
|x – x󸀠| . (B.1.23)

We have verified the Lorentz invariance for the scalar retarded potential. However,
it is not difficult to check that it is valid in case of a source 3!1!2...!l that is a
tensor field of rank l. Indeed, the Lorentz transformation of the source leads to
D"1!1D

"2!2 ...D
"l!l3"1"2..."l but the matrix D!" is constant, and can be taken out of the

sign of the retarded integral. Because of this property, all mathematical operations
given in this appendix for a scalar retarded potential, remain the same for the tensor of
any rank. Hence, the Lorentz invariance of the retarded integral is a general property
of the wave operator in the Minkowski space.

B.2 Retarded solution of the sound-wave equation
Let us consider an inhomogeneous sound-wave equation for a scalar function U =
U (',X) describing a perturbation propagation in a medium. This equation written
down in the isotropic coordinates X! = (',X), reads

◻sU = –404X , (B.2.1)

where 4X = 4X(',X) is the source ofU having a compact support, and the sound-wave
differential operator ◻s was defined in (5.7.17). It is Lorentz-invariant and reads

◻s = ◻ + (1 – c2

c2s
) v̄!v̄"𝜕!" , (B.2.2)

where v̄! is four-velocity of motion of themediumwith respect to the coordinate chart,
cs is the constant speed of sound in the medium, and we keep the fundamental speed
c in the definition of the operator for dimensional purposes. We assume that cs < c.
The case of cs = c is treated in Section B.1, and the case of cs ≥ c makes a formal
mathematical sense in discussion of the speed of propagation of gravity in alternative
theories of gravity since the equation describing propagation of gravitational potential
U has the same structure as (B.2.1) after formal replacement of cs with the speed of
gravity cg [270, 462]. In particular, in the Newtonian theory the speed of gravity cg =∞, and the operator (B.2.2) is reduced to the Laplace operator

B = ◻ + v!v"𝜕!𝜕" = 0̄!"𝜕!" , (B.2.3)

where the constant projection operator, 0̄!", has been defined in (5.6.23).
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We are looking for the solution of (B.2.1) in the Cartesian coordinates x! = (t, x)
moving with respect to the isotropic coordinates X! with constant velocity "i. Trans-
formation from X! to x! is given by the Lorentz transformation (B.1.4). In coordinates
X! the four-velocity v̄! = (1, 0, 0, 0). Therefore, in these coordinates, equation (B.2.1)
is just a wave equation for the field U propagating with speed cs. It has a well-known
retarded solution,

U (',X) = ∫
V

4X('s,X󸀠) d3X󸀠
|X – X󸀠|

, (B.2.4)

where

's = ' – c
cs
|X – X󸀠| , (B.2.5)

is the retarded time.
Equation (B.2.1) is Lorentz-invariant. Hence, its solutionmust be Lorentz-invariant

as well. Our goal is to prove this statement. To this end, we take solution (B.2.4) and
perform the Lorentz transformation (B.1.7), (B.1.8). We recast the retarded integral
(B.2.4) to another form with the help of one-dimensional delta-function

U (',X) = ∫∞
∞

∫
V

4X('󸀠,X󸀠)$('󸀠 – 's) d'󸀠d3X󸀠
|X – X󸀠|

. (B.2.6)

It looks similar to (B.1.2) but one has to remember that the retarded time 's differs
from & that was defined in (B.1.3) on the characteristics of the null cone defined by
the fundamental speed c. Transformation of functions entering integrand in (B.2.6) is
similar to what we did in Section B.1 but, because cs ̸= c, calculations become more
involved. It turns out more preferable to handle the calculations in tensor notations,
making transition to the coordinate language only at the end of the transformation
procedure.

Let us consider two events with the isotropic coordinates X! = (',X) and X󸀠! =
('󸀠,X󸀠). We postulate that in the coordinate chart, x!, these two events have coordin-
ates, x! = (t, x), and, x󸀠! = (t󸀠, x󸀠), respectively. We define the components of a
four-vector, r! = (t󸀠 – t, x – x󸀠) which is convenient for doing mathematical manip-
ulations with the Lorentz transformations. For instance, the Lorentz transformation
of the Euclidean distance between the spatial coordinates of the two events, is given
by a

|X – X󸀠| = √0̄!"r!r" , (B.2.7)

where 0̄!" is the operator of projection on the hyperplane being orthogonal to v̄
!

(the same operator as in (B.2.3)). Equation (B.2.7) is a Lorentz-invariant analogue of
expression (B.1.12) and matches it exactly. Transformation of the source, 4X(X!) =
4x(x!) is fully equivalent to that of 3X as given by equation (B.1.11). Coordinate
volume of integration transforms in accordance with (B.1.14). We need to transform
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the argument, '󸀠 – 's, of delta-function which we shall denote in coordinates X! as
f'('󸀠) ≡ '󸀠–'s. The argument is a scalar function which is transformed as f'('󸀠) = ft(t󸀠)
where,

ft(t
󸀠) = –v̄!r

! + c
cs
√0̄!"r!r" . (B.2.8)

Transformation of the delta-function in the integrand of integral (B.2.6) is

$ [ft(t󸀠)] = $(t󸀠 – =)̇ft(=) , (B.2.9)

where ̇ft(=) ≡ [dft(t󸀠)/dt󸀠]t󸀠==, and = is one of the roots of equation ft(t󸀠) = 0 that is
associated with the retarded interaction. Eventually, after accounting for transforma-
tion of all functions and performing integration with respect to time, integral (B.2.6)
assumes the following form

U (t, x) = ∫
V

4x(=, x󸀠)d3x󸀠̇ft(=)|X – X󸀠|t󸀠==
, (B.2.10)

where |X – X󸀠|t󸀠== denotes the expression (B.2.7) taken at the value of t󸀠 = =. What
remains is to calculate the instant of time, =, and the value of functions entering
denominator of the integrand in (B.2.10).

Calculation of = is performed by solving equation ft(=) = 0, that defines the
characteristic cone of the sound waves, and has the following explicit form,

['!" + (1 – c2s
c2
) v̄!v̄"] r!r" = 0 , (B.2.11)

which is derived from (B.2.8). This is a quadratic algebraic equation with respect to
the time variable r0 = = – t. It reads

A(= – t)2 + 2B(= – t) + C = 0 , (B.2.12)

where the coefficients A,B,C of the quadratic form are,

A = –1+ (1 – c2s
c2
)𝛾2 , (B.2.13)

B = –(1 – c2s
c2
)𝛾2" ⋅ (x – x󸀠) , (B.2.14)

C = |x – x󸀠|2 + (1 – c2s
c2
)𝛾2 [" ⋅ (x – x󸀠)]2 , (B.2.15)

and 𝛾 = 1/√1 – "2 is the Lorentz factor. Equation (B.2.12) has two roots correspond-
ing to the advanced and retarded times. The root corresponding to the retarded-time
solution of (B.2.12) is
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= = t – 1
A
(B –√B2 – AC) , (B.2.16)

or, more explicitly,

= = t – |x – x󸀠|
(1 – c2s

c2
)𝛾2 (" ⋅ n) +√1 – (1 – c2s

c2
)𝛾2 [1 – (" ⋅ n)2]

1 – (1 – c2s
c2
)𝛾2 , (B.2.17)

where the unit vector n = (x – x󸀠)/|x – x󸀠|. After some algebra equation (B.2.17) can be
simplified to

= = t – !s
cs
|x – x󸀠| , (B.2.18)

where

!s =
1 – "2

1 – "2
c2s

[√1 + (1 – c2
c2s
)𝛾2(" × n)2 – (1 – c2

c2s
)𝛾2(" ⋅ n)] . (B.2.19)

Coefficient !s defines the speed of propagation of the sound waves, vs ≡ cs/!s, as
measured by observer moving with speed "i with respect to the Hubble flow. Thus, the
value of the speed of sound, vs, depends crucially on the motion of observer.

Derivative of the function, ̇ft(=), is given by
̇ft(=) = 𝜕ft𝜕r! 𝜕r!𝜕= , (B.2.20)

where the partial derivative 𝜕r!/𝜕= = $!0 = (1, 0, 0, 0). Making use of (B.2.8), the partial
derivative

𝜕fx𝜕r! = –v̄! +
c
cs

0̄!"r"√0̄!"r!r" , (B.2.21)

which has to be calculated at the instant of time, t󸀠 = =, where = is given by (B.2.18).
In order to calculate the denominator in the integrand in (B.2.10), we account for

(B.2.7), (B.2.11) and combine (B.2.20), (B.2.21) together. We get

|X – X󸀠| ̇fx(=) = c
cs

[r! + (1 – c2s
c2
) v̄!v̄"r"] $!0 . (B.2.22)
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It is straightforward to check that after using (B.2.16) the above equation is reduced to
|X – X󸀠| ̇fx(=) = (c/cs)√B2 – AC, or more explicitly,

|X – X󸀠| ̇fx(=) = |x – x󸀠|√1 + (1 – c2
v2s
)𝛾2(" × n)2 , (B.2.23)

Finally, the retarded Lorentz-invariant solution of (B.2.1) is

U (t, x) = ∫
V

4x(=, x󸀠)

√1 + 𝛾2 (1 – c2

c2s
) (" × n)2

d3x󸀠

|x – x󸀠| , (B.2.24)

with the retarded time = calculated in accordance with (B.2.18). This solution reduces
to the retarded potential (B.1.23) in the limit of cs → c.
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Here, we derive necessary coefficients to construct currents and superpotentials in
the framework of the EGB gravity in Chapter 8. Let us derive the Lagrangian defined
in (8.1.2) and (8.1.1):

L G = LEGB = √–g [R – 2D0 + ! (R2,-13 – 4R2,- + R2)] . (C.1)

To construct the necessary coefficients n, m and u in (7.2.9), (7.2.10) and (7.2.12),
respectively, or related starred coefficients, one has to covariantize LEGB, like in
(7.2.7), (7.2.8),

Lc = – 1
2*L c

EGB . (C.2)

We repeat necessary for covariantization expressions, which are hold in all dimen-
sions, not only in 4 dimensions:

B!,- = A!,- – Ā
!
,- =

1
2g

!1 (∇̄,g1- + ∇̄-g1, – ∇̄1g,-) , (C.3)∇̄1g,- = g4,B41- + g4-B
4
1, , (C.4)

R+413 = ∇̄1B+43 – ∇̄3B+41 + B+1'B'43 – B+'3B'41 + R̄+413 . (C.5)

To demonstrate possibilities of the approach we suggest to calculate the starred
coefficients n∗ andm∗ instead of (7.2.9) and (7.2.10),

n∗3!4" = – 1
4* [ 𝜕L c

EGB𝜕(∇̄"!g,-) g,-󵄨󵄨󵄨󵄨󵄨43 + 𝜕L c
EGB𝜕(∇̄4!g,-) g,-󵄨󵄨󵄨󵄨󵄨"3] , (C.6)

m∗3!4 = – 1
2* [( 𝜕L c

EGB𝜕(∇̄!g,-) – ∇̄" 𝜕L c
EGB𝜕(∇̄!"g,-)) g,-

󵄨󵄨󵄨󵄨󵄨43
–

𝜕L c
EGB𝜕(∇̄4!g,-) ∇̄3g,- + 𝜕L c

EGB𝜕(∇̄"!g,-) ∇̄"(g,-󵄨󵄨󵄨󵄨󵄨43)] , (C.7)

see (7.1.36) and (7.1.37). The starred coefficient u∗ instead of (7.2.12) is

u∗3! = – [ 1*E3
! + C ∗3

! + n∗+ !4"R̄+4"3] , (C.8)
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see (7.1.38), where

C ∗3
! ≡ – 1

2* [ 𝜕L c
EGB𝜕(∇̄"!g,-) ∇̄"3g,-

+ ( 𝜕L c
EGB𝜕(∇̄!g,-) – ∇̄" 𝜕L c

EGB𝜕(∇̄!"g,-)) ∇̄3g,- – $!3L c
EGB] . (C.9)

To derive the above coefficients it is useful to present the next derivatives:

𝜕L c
EGB𝜕g,- =

𝜕L c
E𝜕g,- +

𝜕L c
GB𝜕g,- (C.10)

= –√–g [R,- – 1
2g

,-(R – 2D0)]
+2√–g [g1(,B-)![3B!1]4 + g!1B(,4[3B-)1]! + g1(,∇̄[3B-)1]4] g43
–2!√–g [R,413R-413 – 4R,1R-1 + RR,-
– 1
4
g,- (R+413R+413 – 4R13R13 + R2)]

+4!√–g [g+(,B-)!3B!14 + g!+B(,43B-)1! + g+(,∇̄3B-)14]R+413
–16!√–g [g1(,B-)![3B!1]4 + g!1B(,4[3B-)1]! + g1(,∇̄[3B-)1]4]R43
+4!√–g [g1(,B-)![3B!1]4 + g!1B(,4[3B-)1]! + g1(,∇̄[3B-)1]4]Rg43 ;𝜕L c

EGB𝜕(∇̄!g,-) = 𝜕L c
E𝜕(∇̄!g,-) + 𝜕L c

GB𝜕(∇̄!g,-) (C.11)

= 2√–g [B!31g3[1g,]- + g!3B(,31g-)1 – g!(,B-)31g31]
+4!√–g [2R!31(,B-)31 – B!31R3,-1]
–4!√–g [2R!3B(,31g-)1 – 2g!(,B-)31R31 + 2g!3B(,31R-)1
– 2R!(,B-)31g

31 + B!31R
31g,- + B!31g

31R,- – 2B!31R
3(,g-)1]

+4!√–gR [B!31g3[1g,]- + g!3B(,31g-)1 – g!(,B-)31g31] ;𝜕L c
EGB𝜕(∇̄"!g,-) = 𝜕L c

E𝜕(∇̄"!g,-) + 𝜕L c
GB𝜕(∇̄"!g,-) (C.12)

= √–g [g!(,g-)" – g!"g,-]
+2!√–g [2R!(,-)" – 4R!(,g-)" + 2g,-R!" + 2g!"R,-
+ R (g!(,g-)" – g!"g,-)] .
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Substituting (C.11) and (C.12) into (C.6) and (C.7) one obtains

n∗3+!" = En∗3+!" + GBn∗3+!" (C.13)

= √–g
2* [g!"$+3 – g+(!$")3 ]

+!√–g* [–2R3(!")+ – 4R+3g!" + 4R(!3 g")+ + R (g!"$+3 – g+(!$")3 )] ;
m∗3!" = Em∗3!" + GBm∗3!" (C.14)

= –√–g
2* [$!3B"14g14 – 2B!31g"1 + B113g!"]

+2!√–g* [ R!413B"41 – 2R!(4")1B143]
+4!√–g* [4g1[!R"]4 B413 + 2R[!3 g4]1B"41 + 2g!["R4]1 B143
– g4" (∇̄(4R!3) + R1(4B!3)1 – R!1B143)]
–!√–g* [($!3B"14g14 – 2B!31g"1 + B113g!")R – 2$(!3 g

4)"𝜕4R] .
To calculate (C.9) we use (C.10–C.12),

C ∗3
! = EC

∗
3
! + GBC

∗
3
! (C.15)

= –√–g
2* [2g1[4∇̄3B!]14 – $!3(R – 2D0)]

+2!√–g* [(R!"14 – 4g1[!R"]4 + Rg1[!$"]4 ) ∇̄3B4"1
+ 2g", (∇̄"R!- + 2R1(!B-)"1)B43(,g-)4 – g1(!B")31∇̄"R]
+!√–g

2* $!3 (R2,-13 – 4R2,- + R2) .
With the use of (8.1.6), (C.15) and (C.13) we construct the coefficient (C.8), u∗, in EGB
gravity.

On the basis of (C.13) and (C.14) we construct the following combination, which
are necessary for constructing canonical superpotential of the form (7.1.46) and
Belinfante corrected superpotential (7.1.76). Thus

m∗3 [!"] = Em∗3 [!"] + GBm∗3 [!"] (C.16)

= √–g
2* [2B[!31g"]1 – $[!3 B"]14g14]
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+ !√–g
* [2R314[!B"]14 – 2 (2R!"14 + R1[!"]4)B413

+ 2R13B
[!
14g

"]4 – 10R[!1 g
"]4B134 + 4R

[!
3 B

"]
41g

41 + 2g1[!∇̄1R"]3
+ R (2B[!31g"]1 + B[!14$"]3 g14) + $[!3 g"]1∇̄1R] ;

n∗3 [!"]+ = En∗3 [!"]+ + GBn∗3 [!"]+ (C.17)

= 3√–g
4* $[!3 g

"]+ + 3!√–g
2* [R3+!" + 4g+[!R"]3 + $[!3 g

"]+R] ;
n∗+ 41[!ḡ"]+ḡ13 = En∗+ 41[!ḡ"]+ḡ13 + G)n∗+ 41[!ḡ"]+ḡ13 (C.18)

= √–g
4* [2g1[!ḡ"]4ḡ13 – g4[!$"]3 ]
+!√–g

2* [2R+14[! – 2R14+[! – 8R4+g1[!
+ 4R1+g

4[! + 4g14R[!+ + R (2$4+g1[! – $1+g4[!)] ḡ"]+ḡ13 .
Now, with the use of (C.14) we derive the starred Belinfante correction (7.1.69),

s∗!"3 ≡ –s∗"!3 ≡ –m∗+ 3[!ḡ"]+ –m∗+ ![3ḡ"]+ +m∗+ "[3ḡ!]+ , (C.19)

in the EGB gravity

s∗!"3 = Es∗!"3 + GBs∗!"3 (C.20)

= √–g
* [B[!41ḡ"]3g41 + B1+1g3[!ḡ"]+ – B3+1g1[!ḡ"]+

– 2B[!+1ḡ
"]+g13 + B[!+1g

"]1ḡ3+]
+2!√–g* [ḡ+[! (R"]341 – 2R"]431)B1+4 + ḡ+[!B"]41R341+
+ ḡ+[!R"]41+B341 + ḡ

3+ (R+41[!B"]41 – 3
2R

!"4
1B

1
+4)]

+4!√–g* [(R4+g1(3B!)41 – g41R(3+ B!)41 – g3!R41B14+
+ ∇̄(4R(3+)g!)4 + R1(4B(3+)1g!)4) ḡ"+
– (R4+g1(3B")41 – g41R(3+ B")41 – g3"R41B14+
+ ∇̄(4R(3+)g")4 + R1(4B(3+)1g")4) ḡ!+
+ (2g4[!R"]1 B14+ – R4+g1[!B"]41 + g41R[!+ B"]41
–∇̄(4R[!+)g"]4 – R1(4B[!+)1g"]4) ḡ3+]
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+2!√–g* [(g3[!ḡ"]+B1+1 – B(3+1g!)1ḡ"+ + B(3+1g")1ḡ!+
–ḡ3[!B"]+1g

+1 – ḡ3+g1[!B"]+1)R + (ḡ+[!g"]3 + ḡ3[!g"]+) 𝜕+R] .
Now we present the quantity (7.2.97) calculated for L1 in (8.1.25) the EGB gravity. For
simplicity we derive a tensor quantity, w, connected with a density as √–ḡw1+|,- =
w1+|,-. Thus,

w1+|,- = w1+|,-
E + w1+|,-

GB = (C.21)

– 1
4* [ḡ1+𝜘,- + ḡ,-𝜘1+ – ḡ1(,𝜘-)+ – ḡ+(,𝜘-)1 + 𝜘33 (ḡ1(,ḡ-)+ – ḡ1+ḡ,-)]

– !
2* {𝜘33 [(ḡ1(,ḡ-)+ – ḡ1+ḡ,-) R̄ – 2 (ḡ1(,R̄-)+ + R̄1(,ḡ-)+)

+ 2 (ḡ1+R̄,- + R̄1+ḡ,-) + 2R̄1(,-)+] – 2 (𝜘1+R̄,- + R̄1+𝜘,-)
+ (ḡ1+𝜘,- + ḡ,-𝜘1+ – ḡ1(,𝜘-)+ – ḡ+(,𝜘-)1) R̄ + 2 (𝜘1(,R̄-)+ + R̄1(,𝜘-)+)
+ 4 (R̄(13 ḡ+)(,𝜘-)3 + R̄(,3 ḡ-)(1𝜘+)3) – 4 (ḡ1+R̄(,3 𝜘-)3 + ḡ,-R̄(13 𝜘+)3)
– 2 (ḡ1(,ḡ-)+ – ḡ1+ḡ,-) R̄43𝜘34 – 4 (R̄3(1+)(,𝜘-)3 + R̄3(,-)(1𝜘+)3)
+ 2𝜘34 (R̄3,4(1ḡ+)- + R̄3-4(1ḡ+),) + 2𝜘34 (ḡ1+R̄3,-4 + ḡ,-R̄31+4)} .

This expression has to be antisymmetrized to construct the field-theoretical superpo-
tential (7.2.99):

w1[+|,]- = w1[+|,]-
E + w1[+|,]-

GB = (C.22)

– 3
8* (ḡ1[+𝜘,]- – ḡ-[+𝜘,]1 + 𝜘33 ḡ-[+ḡ,]1)

– 3!
4* {𝜘33 [ḡ-[+ḡ,]1R̄ + 2ḡ1[+R̄,]- – 2ḡ-[+R̄,]1 – R̄1-+,]

+ (ḡ1[+𝜘,]- – ḡ-[+𝜘,]1) R̄ + 2 (𝜘-[+R̄,]1 – 𝜘1[+R̄,]-)
+ 2 (𝜘3[+ḡ,]1R̄-3 – 𝜘3[+ḡ,]-R̄13) + 2 (𝜘31ḡ-[+R̄,]3 – 𝜘3-ḡ1[+R̄,]3 )
– 2ḡ-[+ḡ,]1𝜘34 R̄43 + 4 (R̄3 [+,][1𝜘-]3 + R̄3 [1-][+𝜘,]3)
+ 2𝜘34 (R̄3-4[+ḡ,]1 – R̄314[+ḡ,]-)} .
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