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Preface

The year 2016 witnessed a tremendous scientific discovery which is surely to become
perhaps one of the greatest discoveries of all time: a direct detection by Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) of the gravitational waves produced
in the event of coalescence of binary black holes. One more time, general relativity
triumphed after one hundred years of its profound foundations. Using general relativ-
ity the tiny fluctuations of test masses in the arms of the earth-based detectors were
unambiguously identified as caused by the propagating curvature (and metric) fluc-
tuations generated at the last few moments of in-spiraling black holes located more
than a billion of light years away from us. As we are putting the final touches on
this book, we feel lucky to have written it in this extremely exciting times in gravity
research. Even though, this is not a book about gravity waves per se, the mathematical
technique introduced over here is essentially similar to the one used for calculating
gravitational waves in the weak-field region of their source. Besides that, we discuss
the conservation laws, symmetries of spacetime, etc., which allow us to give a unique
physical meaning to the integration parameters that appear in the exact or linearized
solutions of Einstein’s equations. Moreover, as we lay out the details below, we shall
also consider these issues in generic gravity theories that modify Einstein’s gravity at
large and small distances.

Conservation of mechanical energy and linear momentum in various experiments
had been discovered already by the great Galileo. Later on, it was realized that heat is
also a form of energy which is always conserved. Those discoveries turned out to be
the major achievements in physics of the nineteenth century that led to the substantial
developments such as the formulation of the laws of thermodynamics, electrodynam-
ics, etc. Solid theoretical foundation for these empirical observations was given in the
series of remarkable papers by Emmy Noether published about the same time when
general relativity was formulated by Albert Einstein. It is very hard to overestimate
the importance of Noether’s contribution as Feza Gursey noted “before Noether’s the-
orem the principle of conservation of energy was shrouded in mystery, leading to the
obscure physical systems of Mach and Ostwald. Noether’s simple and profound mathem-
atical formulation did much to demystify physics.” Notably, the Noether’s fascinating
observation was that time translation of a physical system in the Minkowski space is
associated with conservation of energy. In fact, the Noether’s reasoning applies not
only to a time translation but to all other spacetime’s symmetries of the Minkowski
space as well as to the intrinsic symmetries of a given theory.

In contrast to the spacetime of special relativity, a generic spacetime in general
relativity or in any other metric theory of gravity is curved and, thus, lacks space-
time symmetries. For example, one of the simplest solutions of general relativity — the
Schwarzschild black hole — does not have a global timelike symmetry due to the exist-
ence of the horizon and, therefore, it is not amenable to a straightforward definition
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of energy. It triggers the question: what does it mean to have the conservation of
energy in time when there is no notion of a global time symmetry? Besides the prob-
lem of the global symmetries, there are others closely related to the local symmetries.
More specifically, in a curved spacetime, freely-falling observers feel themselves as if
they were in a flat spacetime due to the equivalence principle. It makes definitions of
energy, momentum and angular momentum observer-dependent and, hence, ambigu-
ous. Therefore, lively discussions on how to formulate the conservation laws in curved
spacetime never stopped and have been sometimes highly heated. Particular problems
have been resolved differently within diverse approaches. Apart from a significant the-
oretical interest in finding a universal definition of conserved quantities, this problem
has ramifications on practical issues associated with the observations and measure-
ments. For these reasons, various definitions of conserved quantities have shown up
in the literature up to now.

Needless to say, over the past century, much has been published on the subject
under discussion, and the accumulated material clearly requires a systematization
and perhaps a collective treatment for further progress. So far, to the best of our
knowledge, no monograph has been devoted to the discussion of the problem of con-
struction of conservation laws in general relativity and in other metric theories even
though one can find various valuable reviews and chapters in books expounding on
this topic. With this monograph, we hope to fill this gap in this particular part of the
history and the developments of the most popular approaches to the construction
of conserved quantities. The book unifies various theoretical approaches, definitions
and computations of conserved quantities in Einstein’s theory of general relativity and
its modifications. Therefore, we expect the book to be useful, first of all, for advanced
researches working on these topics and in the adjacent fields of science. We have
undertaken serious efforts to make the presentation of the material logically consist-
ent and complete so that any diligent student of science engaged in gravity research
might use the book for a detailed self-study. Some parts of the book have a valu-
able methodological value and can be definitely implemented by college instructors
teaching an advanced level course on gravity.

Due to the non-linearity of the Einstein field equations, it is very difficult or even
impossible to find exact solutions in the most cases of physical interest. Therefore,
many theoretical studies and observational programs in general relativity are based
on various perturbative approaches to a background spacetime often taken as an
idealized highly-symmetric solution. Adequate formulation, derivation and analysis
of the spacetime perturbations as well as the corresponding conservation laws for
those perturbations, is a long-standing problem both in general relativity and other
metric theories such as the multi-dimensional modifications of Einstein’s theory of
gravity. This book addresses these topics in detail. Among the multitude of perturba-
tion methods used for solving the field equations, we single out the field-theoretical
approach based on the application of the variational calculus on spacetime mani-
folds. For definition and discussion of the conserved quantities, we intensively use the
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canonical Noether’s formalism along with the Belinfante procedure of symmetrization
of the energy-momentum tensor also known as the Belinfante correcting method. The
book presents the theoretical foundations of these ideas, discusses domain of their
applicability and notes on the prospects for their further development and general-
ization both in general relativity and in other metric theories, such as the ones with
arbitrary powers of curvature.

The field-theoretical treatment of perturbations in a metric theory of gravity is
the most universal one among the other existing formalisms in that it allows one to
reduce the geometric theory to the form of a standard field theory in a fixed spacetime
manifold. In this formulation the full metric tensor is decomposed to a background
value, whose geometric structure and time evolution are completely known, and a
perturbation part which is considered as the dynamical field variable. Instead of the
original intricate geometry, one then studies the properties of the field configuration
propagating in the given background spacetime. This helps one to benefit from all the
advantages of a field theory on the known (flat or curved) background: Lagrangian
and Hamiltonian methods, covariance, gauge invariance, etc. The background space-
time is also used as a reference manifold whereon physical laws are introduced and
conserved quantities are defined.

The Noether and Belinfante methods do not describe perturbations explicitly.
Rather, they present a bi-metric description of a dynamical system with respect to
a background solution which makes these methods very powerful and physically-
meaningful tools in constructing conserved quantities. The canonical Noether method
starts from the derivation of non-covariant Einstein pseudotensor and Freud super-
potential of dynamical perturbations in flat spacetime. Subsequent developments
include covariantization and generalization of the Noether formalism to curved back-
grounds with the construction of various superpotentials and conserved currents in
general relativity and in modified gravity theories. Belinfante pioneered a method
of symmetrization of the canonical quantities in field theories in the Minkowski
space. Later, the method was generalized to curved backgrounds where it furnishes
conserved quantities in general relativity and in modified theories.

The notion “perturbation” is frequently associated with an approximation or a
small quantity. This association remains also valid in the present book but we go
further and extend it formally to the case of finite perturbations. Indeed, the very
construction of the Noether and Belinfante methods allows us to treat perturbations
exactly with no approximation involved. Being a reformulation of a metric theory, the
field-theoretical formalism is exact as well. If necessary, the field-theoretical equations
for the perturbations can be easily expanded into series and, thus, can be adjusted to
describe approximate solutions and weak field disturbances.

The book presents the formalism of the field-theoretical approach to the met-
ric perturbations and provides its developments both theoretically and in the light
of applications by making use of the Noether and Belinfante approaches. A signific-
ant part of the book is devoted to explaining these methods in application to general
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relativity. In fact, the reader interested merely in general relativity can limit oneself
to the first half of the book. In its second half, perturbation treatment of multi-
dimensional modified theories is presented. Here, the book also contains numerous
physical examples which elucidate the methods and practical settings used in the
theory.

Let us lay out the contents of the chapters. The first chapter is a fairly elementary
introduction written for students who want to understand the concept of conserved
quantities in classical and relativistic mechanics as well as in field theories in the
Minkowski space and for those researchers who want to be more informed on the clas-
sical development of this topic in general relativity. A particular attention is paid to
the mathematical formulation, proof and applications of the Noether theorems. Con-
served energy, linear and angular momenta are constructed in a wide class of field
theories with the Lagrangian depending on the field variables and their first deriv-
atives. Examples include a fundamental scalar field, ideal fluid and electrodynamics
in the Minkowski space. The chapter, then, continues with a more specialized sec-
tion focused on the history of constructing the conservation laws in general relativity.
Herein, Einstein’s arguments in support of the existence of the conserved quantities
in general relativity are discussed. The chapter provides a short outline of classical
pseudotensors and superpotentials in general relativity along with their systematiz-
ation which appears after the exemplary of applications of the Noether theorems.
The linearized approximation of general relativity is presented in the spirit of the
field-theoretical approach in the Minkowski space. As a result, construction of the
conserved quantities is provided and their connection with pseudotensors and super-
potentials is established. Physical aspects of the linearized general relativity are
illustrated with the examples of weak gravitational waves and isolated astronomical
systems.

The second chapter is devoted to the discussion of the field-theoretical formu-
lation of general relativity. We offer a historical description of earlier developments
commenced from Deser’s model of 1970. Then, we provide the Lagrangian-based
treatment of the Einstein’s theory considered as a theory of a tensor perturbation
propagating in an arbitrary fixed (either curved or flat) spacetime. The field-theoretical
equations are derived by making use of the least action principle. Differential conser-
vation laws for the symmetric (metric) energy-momentum tensor of the perturbations
are presented in the case of rather simple backgrounds taken either as the Minkowski
space or the Einstein spaces. Though such a field theory is equivalent to general
relativity in geometrical terms it allows us to apply the standard Noether formalism
to find out many useful special properties of general relativity which are not easily
seen in the standard geometrical formulation. One of these properties is the gauge
invariance which reveals that the metric perturbations can be treated as the gauge
(compensating) field. Based on this property and with the use of the localization tech-
nique, we provide a formulation of general relativity analogous to that of the standard
gauge field theories of the Yang—Mills type. As an example of further developments
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of the field-theoretical formalism, a self-consistent formulation of gravity theory with
massive gravitons is outlined.

In the third chapter, we develop the field-theoretical technique in general relativ-
ity to construct conserved quantities for isolated astronomical systems. We study these
quantities for such systems at spatial infinity by making use of the weak-field approx-
imation in the asymptotic regime. At the beginning of the chapter we introduce the
standard Arnowitt-Deser-Misner (ADM) formalism and its modification by Regge and
Teitelboim (RT) which have been developed mostly for the study of isolated gravitat-
ing systems. Then, we develop both the Lagrangian and Hamiltonian formulation of
the isolated systems in the framework of the field-theoretical approach. We choose
the Minkowski space as a background spacetime for the metric perturbations because
it coincides with the flat spacetime at infinity After that we construct the conserved
global integrals of motion and compare them with the standard ADM and RT integ-
rals. Discussion of the permissible fall-off behavior for the radial dependence of the
gravitational potentials that is weaker than the Newtonian one (~ 1/r) for an isolated
gravitating system, is given.

In the fourth chapter, we use the field-theoretical formulation to demonstrate how
it can be applied to the description of exact solutions in general relativity with a field
configuration defined on a flat spacetime and on a curved background. In case of the
flat spacetime background, we pay particular attention to the treatment of the Schwar-
zschild solution and the closed Friedmann universe. Surprisingly, it turns out that it is
possible to reformulate the Schwarzschild solution in terms of the field configurations
defined on the flat background not only asymptotically at spatial infinity but also near
(both outside and inside) the event horizon as well as in the singularity limit. Traject-
ories of test particles, distribution of the energy density and that of the total energy of
the Schwarzschild black hole are discussed. The same technique applied to the closed
Friedmann universe reveals that it can be also considered in terms of a field configur-
ation residing in the Minkowski space. We describe the properties of its stereographic
projection onto the flat spacetime and find out that all global conserved quantities
vanish as expected by a topological argument. In the case of a curved background, we
examine different field configurations propagating on the anti-de Sitter (AdS) space-
time, derive a generalized Abbott-Deser superpotential, and calculate the total mass
of the Schwarzschild-AdS solution.

In the fifth chapter, we use the field-theoretical method to develop a theory
of cosmological perturbations on a Friedmann-Lemaitre—Robertson-Walker (FLRW)
background with three admissible spatial constant curvatures, k = (-1,0, +1). As a
result we present the Lagrangian-based field theory of the cosmological perturba-
tions of the metric tensor coupled to the perturbations of the ideal fluid considered
as dark matter, and those of a massless scalar field considered as dark energy. All cos-
mological perturbations can be considered as generated by a primordial mechanism
existed at the epoch of the very early universe or as induced by bare perturbations
taken in the form of localized astronomical system formed after the recombination
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epoch. Gauge-invariant quantities for the perturbations and the equations governing
their evolution in the universe are derived. We examine a special case of the perturbed
field equations in a spatially-flat universe (k = 0) and demonstrate that the scalar
modes of the perturbations can be completely decoupled from their vector and tensor
modes. Mathematical technique developed in this chapter is useful to study grav-
itational waves created by distant astrophysical sources. Namely such gravitational
waves have been detected recently by the LIGO interferometers.

The sixth chapter is devoted to constructing the conserved currents and related
superpotentials in general relativity. Following Katz, Bichak and Lynden-Bell (KBL)
we use the canonical Noether method applied to the KBL bi-metric Lagrangian to
construct the covariant conserved quantities on arbitrary curved backgrounds with
making use of arbitrary displacement vectors instead of the Killing ones. Then, gen-
eralization of the Belinfante symmetrization procedure from the Minkowski space
to curved backgrounds is worked out and applied to find out the Belinfante cor-
rections to the KBL conserved quantities. The currents and superpotentials in the
field-theoretical formulation are obtained after applying the Noether theorem. The
KBL, KBL-Belinfante and field-theoretical definitions of the conserved quantities are
compared. In particular, we show that the field-theoretical and Belinfante corrected
quantities become equivalent if the dynamical variables obey the field equations. Cri-
teria for choosing physically preferable currents and superpotentials are derived and
discussed. Then, we demonstrate how the KBL, KBL-Belinfante and field-theoretical
techniques work. We show that the FLRW solution can be viewed as a perturbation
with respect to the de Sitter space in the framework of the KBL formalism. It helps us
to define the energy of metric and matter perturbations in the Friedmann universe by
making use of the Killing vectors of the de Sitter space. We also study the, so-called,
integral constraints for the cosmological perturbations in a localized domain of space
in the framework of the KBL-Belinfante formalism. These constraints tightly connect
the magnitude of the matter perturbations inside the domain with the surface val-
ues of the metric perturbations at the boundary of the domain. These constraints are
important to study the subtle features in the pattern of the Sachs-Wolfe effect in cosmic
microwave background radiation.

The second half of the book is devoted to multi-dimensional modified metric
theories of gravity. Chapter 7 is a theoretical foundation for constructing the conser-
vation laws for perturbations in such theories. We consider arbitrary (not necessarily
metric-based) multi-dimensional field theory by incorporating to spacetime as an aux-
iliary external metric so that the original fields of the theory are considered as (finite)
perturbations with respect to the external metric. Such a presentation of the theory
allows a straightforward application of the Noether and Noether-Belinfante proced-
ures resulting in the related Noether identities which are covariant with respect to
the external metric. These generic identities are used to construct various conserved
currents and related superpotentials of the KBL, KBL-Belinfante and field-theoretical
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types for physical perturbations residing on the curved background in multi-
dimensional theories.

In chapter eight, the theoretical results of the previous chapter are used to dis-
cuss the conservation laws in the Einstein-Gauss-Bonnet (EGB) gravity which is one of
the most attractive modifications of general relativity as it appears in the low-energy
limit of string-generated theories and so admits a supergravity extension. The new
expressions for the EGB currents and superpotentials are derived in the most generic
form. We use them to calculate the mass of the well known solution for the multi-
dimensional Schwarzschild-AdS black hole and prove that it exactly coincides with
the mass obtained by other independent methods. We also use our expressions of the
EGB currents and superpotentials for giving physically meaningful interpretation to
non-trivial Kaluza-Klein black hole solutions in the EGB gravity.

Chapter 9 is devoted to the significant extension of the work by Abbott and Deser
(1982) where the Killing charges were introduced to study the perturbations on the
de Sitter and AdS backgrounds in general relativity. We generalize this approach to
higher-curvature theories with the generic Lagrangians depending on the Riemann
tensor. Both de Sitter and AdS spacetimes play a significant role in modern phys-
ics and, therefore, proper formulations of perturbations and construction of the
conserved charges on these backgrounds are vitally important. Gravity theories in
three-dimensional (2+1) spacetime are used as theoretical labs to test some ideas of
quantum gravity hence we provide detailed discussions of the charge construction
for the topologically massive gravity (the dynamical theory of gravity in this dimen-
sions) and apply the construction for studying the Banados-Teitelboim-Zanelli (BTZ)
black hole solution. To look at different aspects of the problem under discussion
we provide a second derivation of the Killing charges using the so called covariant
phase-space formulation of the theory and apply our results to the recently discovered
multi-dimensional rotating Kerr-AdS metric. A brief section at the end of the chapter
is included for discussing conformal properties of the conserved charges in a gravity
theory coupled non-minimally to scalar fields.

In the final chapter we focus on the problem of constructing the canonical
conserved quantities in covariant field theories possessing the intrinsic (gauge) sym-
metries of the field Lagrangian. The Noether procedure implemented in such theories
reveals that the conserved currents and superpotentials following from the gauge
invariance are both covariant and gauge-invariant while those associated with the
diffeomorphism invariance of the theory, do not possess such property. At present,
there is no generally accepted method for constructing currents and superpoten-
tials following from the diffeomorphism invariance which are simultaneously both
covariant and gauge invariant. This chapter illustrates the essence of this problem
with two particular examples: (1) a generally-covariant theory of the Yang—Mills field
minimally-coupled to scalar fields evolving on a given geometrical manifold and pos-
sessing the intrinsic (gauge) symmetry with the group SU(N); (2) a tetrad formulation
of general relativity possessing the intrinsic freedom of the tetrad rotations in tangent
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space at each point of spacetime manifold. We show that the origin of the aforemen-
tioned difficulties is rather subtle and has a profound geometric nature related to
the fact that in the field theories with intrinsic symmetries any local diffeomorph-
ism induces a family of transformations for the field variables with arbitrary gauge
parameters that brings about the ambiguity to the definition of the conserved cur-
rents. This differs drastically from the theories without the intrinsic symmetries where
any diffeomorphism induces a unique transformation of the field variables. We prove
that the modified Lie derivatives which are frequently used in attempt to remedy the
problem of the current’s ambiguity, do not resolve the problem. At last, we provide a
brief review of the main results obtained by the leading groups of researchers actively
working on the solution of this problem.

Appendix A is a brief, but hopefully a useful discussion of the main tensor opera-
tions. It also contains the introduction to shorthand (economic) index notations used
throughout the book to conduct calculations in the most rational and concise way.
The reader is encouraged to refer to this appendix when in doubt of some definitions,
such as the derivatives of tensors, operation of permutation of indices, variations of
geometric objects, etc. Appendix B deals with the retarded potentials relevant to the
discussion in Chapter 5 and contains the proof of their Lorentz invariance. Appendix
C summarizes the technical equations of the auxiliary fields used for derivation of the
conserved currents and superpotentials in the Einstein-Gauss-Bonnet theory.
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Primary notations

Constants

¢ =299792458 m - s — the speed of light in vacuum;

G = 6.67408 x 10 'm? . 572 . kg™! - the Newtonian gravitational constant in 4-
dimensional (4D) spacetime;

x = 8nG/ c* - 4D Einstein’s gravitational constant;

K = K, = 2Q,,_,G, — Einstein’s gravitational constant in n-dimensional spacetime
with Q,,_, being the solid angle of the (n — 2)-dimensional sphere, and in this
expression ¢ = 1.

Coordinates

{x,y, z} — the Cartesian spatial coordinates in 3-dimensional (3D) space;

t — time coordinate in geometric units where ¢ = 1;

{t, x,y, z} — the Lorentzian spacetime coordinates;

{xl,xz,x3} = x' - 3D curvilinear spatial or Cartesian coordinates; the Roman
indices i, j, k, ... take values 1, 2, 3;

x° = ct — time coordinate in the system of units with the dimensional speed light
€ =299792458 m -s7%;

{xo, xt %, 3 } = x* — 4D curvilinear or Lorentzian coordinates; the Greek indices
a, B, y, ... run through values 0, 1, 2, 3;

O, = x' - curvilinear spatial or Cartesian coordinates in (n — 1)-
dimensional space; the Roman indices i, j, k, ... take values 1, 2,...,n - 1;

{xo, xl, xz, .. ,x""l} = x® — curvilinear or Lorentzian coordinates in n-
dimensional spacetime; the Greek indices a,f,y,... run through values
0,1,2,...,n-1;

repeated (dummy) indices obey the Einstein summation rule, for example,
P*Q, = P°Qq + P'Q; + P’Q, + P’Q; in 4D spacetime, and P*Q, = P°Q, + P'Q; +
...+ P"'Q,_, in n-dimensional spacetime, and so on.

Geometrical objects on a spacetime manifold

Similar notations are applied correspondingly to either 4-dimensional or to
n-dimensional spacetime.

2 — the “bar” above 2 means a background value of the geometric quantity 2;
N = diag{-1, +1, +1, +1} or n,,, = diag{-1, +1, +1,..., +1} — the Minkowski metric
in the Lorentzian coordinates in 4-dimensional or n-dimensional spacetime;

Y — the Minkowski metric in curvilinear coordinates;

8, and g, — the dynamical and background metric, respectively, in an arbitrary
curved spacetime;

g“ﬁ = \/—_gg“ﬁ — the “Gothic” metric that is the metric density of weight +1;
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n = detn,, = -1- the determinant of the Minkowski metric in the Lorentzian
coordinates;

y = dety,, — the determinant of the Minkowski metric in curvilinear coordinates;
g = detg,, and g = det g, - the determinants of dynamical and background
metrics, respectively;

cr op — the Christoffel symbols in the Minkowski space in curvilinear coordinates
constructed from the metric y,,;

I? 5 and I* 5 — the Christoffel symbols constructed from the dynamical, g,, and
background, §,,, metrics, respectively;

N5 = TP 45 — TP 45 — the tensor that is a difference between the dynamical and
background Christoffel symbols;

R o5 and RP aop — the Riemann curvature tensors in physical and background
spacetimes, respectively;

R,pand Raﬁ — the Ricci tensors in physical and background spacetimes, respect-
ively;

R and R - the Ricci scalars (or scalar curvature) in physical and background
spacetimes, respectively.

Fields on a spacetime manifold

P, M, ... - the capital boldface letters denote 3-dimensional vectors;

@4, Pg, ... — sets of tensor densities of arbitrary ranks and weights with the
collective indices A, B, ...in a piggyback notation, see Appendix A.3;

24 Z — a permutation linear operator depending on the transformation prop-

erties of the geometric object 2% — a tensor density or set of tensor densities.
Algebra of the operators .24 ; along with their other useful properties is given
in Appendix A.3;

A%, t4, b, ... — notations in calligraphic boldface (sometimes in Gothic) for
small letters, if they represent quantities of mathematic weight +1 (sometimes
+2 or more). For example, A% could be a density itself; t,* could be a density
expressed with the use of the tensor t,/: t;* = (-g)t,*, or b = \/-gb """ where
b, is also a tensor, etc;

LR, U, ... — the capital calligraphic letters denote geometric quantities
of weight +1 (sometimes of other weights), analogous to previous item. For
example, ¥ = \/=yL, # =+-gR, %" =-gU,", etc.;

&% — arbitrary displacement vector in dynamical or fixed spacetimes;

&% - Killing vectors in the Minkowski space;

&% — Killing vectors in an arbitrary curved background spacetimes;

/(\)“ — conformal Killing vectors in the FLRW background spacetime.

Derivatives. For more detail see Appendix A.2

097

T aa,@f‘ = QA’,X — the partial derivative;
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- QA;a — the covariant derivative of 24 compatible with Vv’
- V,2% - the covariant derivative of 24 compatible with 8
- V,2% — the covariant derivative of 24 compatible with 8w’

- E{,@A — the Lie derivative of the quantity 2 along the vector field &%
A

- % — the Lagrangian derivative of the quantity 24 = 24(g; .05 9,0p)-

Metric perturbations
— My T 8w gyv;
- =g gl
- b =g" - ", where ¢ = \/~gg"";
- WY =p/N-gs
— the indices of tensor fields on the background manifold are lowered and raised
with the background metric g, and its inverse.

Remarks

— In Chapter 5 we use a number of additional specific notations which are given at
the end of Section 5.1;

- In Chapter 9 the notations are mostly consistent with the rest of the book. One
notable difference is that of the definition of a metric perturbation where we use
€huv =8uw ~ gyv;

— Other notations will be introduced and explained as they appear in text.






1 Conservation laws in theoretical physics: A brief
introduction

1.1 Conserved quantities in classical mechanics

A field theory is a mathematical formalism designed to describe fundamental forces
and elementary particles in terms of a self-consistent theoretical framework. Forces
can be described by fields that mediate interactions between separate objects. His-
torically, the basic definitions, conventions and concepts of field theories originated
from the Lagrangian formalism of classical mechanics. Therefore, before discussing
the field theory and its applications, it is reasonable to recall the Lagrangian formal-
ism of the classical mechanics for the reader’s convenience. This is the main goal of
the present section.

1.1.1 Some basic notions of non-relativistic classical mechanics

One of the primary concepts of classical mechanics is that of a reference frame. A ref-
erence frame is introduced to describe the relative motion in a system of N bodies.
The simplest reference frame consists of a spatial coordinate system attached to the
bodies of reference (observers) which are endowed with the ideal clocks to measure
the lapses of time. In classical mechanics, space and time are absolute entities being
independent of the motion of observers. Moreover, the space is Euclidean and discon-
nected from time. The Euclidean space is homogeneous and isotropic. Time is uniform
and has the same rate in all possible reference frames. Cartesian coordinates are
considered as the most convenient coordinate system covering the entire Euclidean
space although curvilinear coordinates, for example, spherical or polar coordinates,
are equally mathematically admissible and sometimes more apt, depending on the
symmetry of the problem.

Another important concept of classical mechanics is the notion of a point-like test
particle defined as an idealized material object whose size and internal structure are
inessential in the problem under consideration, and can be neglected. The test particle
is characterized by its mass, m (usually considered to be constant, but it can depend
on time m = m(t) in some particular situations), and the position vector r = {x, y, z}
where {x, y, z} are the Cartesian coordinates of the particle which are assumed to be
differentiable functions of time ¢:

r=r(t). (1.1.1)

Here and everywhere else, vectors are denoted with boldface Roman letters. The
coordinates x = x(t), y = y(t), z = z(t) define three degrees of freedom of the test particle
and are mutually-independent scalar functions in the absence of constraints imposed

DOI 10.1515/9783110351781-001
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on the motion of the particle. Velocity and acceleration of the test particle are defined
as time derivatives of its position vector:

vs_—=F, a=—=-——==V=F. (1.1.2)

In more general situations a mechanical system can consist of more than one particle
and have n degrees of freedom defined by n functions:

g ={a®), ... g0}, G=1,...,n), (11.3)

which are called generalized coordinates. Masses of the particles may also depend on
time. The set of the generalized coordinates along with time forms the so-called con-
figuration space. We emphasize that the generalized coordinates are not necessarily
position vectors. Particularly, in the case of N non-interacting point-like particles, a
system without constraints possesses n = 3N degrees of freedom. The corresponding
generalized velocities of such a system are defined as

I da;(t) .

.= 1.1.
ai=—4 (1.1.4)

Generalized accelerations are defined as the first time derivative of the generalized
velocities: g;(t) = dg;/dt.

The state of a mechanical system is fully defined if the generalized coordinates
and velocities are given at any moment of time.! How can one determine the state or
possible states of a given system? To answer this question one has to solve the equa-
tions of motion of the particles that compose the mechanical system. The equations
of motion connect the particles’ accelerations with their coordinates and velocities
through the second Newton’s law which allow us to propagate the initial values of
the particle’s coordinates and velocities as time progresses. This is achieved by integ-
rating the system of equations of motion with respect to time under the given initial
conditions. Thus, the principal problem of mechanics which has to be solved is two-
fold: (1) to derive the appropriate equations of motion for the generalized coordinates
of the particles; (2) to integrate these equations to find the generalized coordinates as
explicit functions of time. Solution of this problem determines the real (actual) motion
of the system.

1.1.2 The least action principle

Soon after Newton had formulated his famous laws of mechanical motion it was dis-
covered that the most economical and elegant way to derive the equations of motion

1 In the present section we consider the Lagrangian description in mechanics only. Necessary ele-
ments of the Hamiltonian formulation for a non-relativistic particle is given in Section 3.1.3 where the
state of a system is defined by the generalized coordinates and momenta at any instant of time.
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is based on making use of a certain function, called the Lagrange function or simply
the Lagrangian, depending on generalized coordinates, velocities and time

L = L(g;, g;, 1) (1.1.5)

The time dependence of the Lagrangian can be both implicit — through the coordinates
and velocities, and explicit, for example, through variability of masses forming the
mechanical system. If there is no explicit time-dependence of the Lagrangian, then,
one simply writes

L = L(qi’ qi)‘ (1.1.6)

If the system is not subject to the influence of external forces it is called a closed system
[283]. The system defined by the Lagrangian (1.1.5) is called an open system. It was
established that the behavior of each mechanical system in the time interval from ¢,
to t; is determined by a functional

t
Slass to, t,] = L dt L(g; 4i» ) (117)
0

which is called the action functional, or simply — the action.

It is postulated that the mechanical system moves in accordance with the prin-
ciple of a stationary action that tells us that in the case of an actual physical motion
of the system between two fixed moments of time, ¢, and ¢;, the action acquires an
extremal value. Traditionally, “the extremal value” is understood as the least value
(or the minimum) of the action, and, thus, the stationary action principle is more com-
monly known as the least action principle. Frequently, this principle is also called the
variational principle because in order to calculate the lowest value of the action with
given initial and final points, one has to resort to the calculus of variations.

Let the dynamical variables g;(t) describe an actual motion yet to be determined.
Then, an infinitesimally disturbed motion, g;(t), can be expressed with the help of an
instantaneous variation, 6g;(t), as follows: q{ (t) = q;(t) + 8g;(¢). The first order variation
of the Lagrangian induced by the variation of the generalized coordinates, is

oL oL
22 6g; + — 64 1.1.8
34, q; + =64 (1.1.8)

6L = L(q},q;,t) - L(g;, 4, ) = %,

Employing the standard techniques of the variational calculus with respect to dynam-
ical variables [283] one obtains for the first order variation of the action:

4 oL d oL
dt| — - —— ) bq; 1.1.9
* Jto <af1i dt 9g; > @ 119)

51

oL
6S = S[Q;; to, t1] - S[Qﬁ to, tl] = <a_q_6Qi>
1

to

where here and everywhere else we use the Einstein summation rule with respect to
the repeated indices, A'B; = ' | A'B;.
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Let us assume that the initial and final end points of the system’s trajectory are
fixed and are not subject to the variation. It means that the end-point values of the
infinitesimal variation 8g;(t) vanish: 6g;(t,) = 8g;(t;) = 0. Generically, if there are no
constraints, these are the only limitations on the variations 6g;(t) which are otherwise
arbitrary functions of time. These boundary conditions along with the principle of
least action, 6S = 0, demand the integrand of the integral in (1.1.9) to vanish, yielding

oL _dol _ (1.1.10)

These are the equations of motion which are often called the Euler-Lagrange equa-
tions; they present a system of n ordinary differential equations of the second order.
Thus, solutions of these equations must contain 2n constants that are fixed by the
initial conditions, ¢;(t,) and §;(t,), which fully determine the time evolution of the
system.

It is worth mentioning that the equations of motion are invariant under a non-
degenerate transformation of the generalized coordinates and time:

a; = fila;, t), t=ft), (1.1.11)

which brings about the Lagrangian function to a new form
L'(q}, q;t') = L(fi(g;, ). (gl ). F(£)), (1.1.12)
where ¢'; = dg;/dt' is the generalized velocity in the new variables. Now, applying

the least action principle in the transformed coordinates, it is straightforward to show
that the Euler-Lagrange equations derived from the Lagrangian (1.1.12), are

o 4% _o. (1.1.13)

These equations have exactly the same form as (1.1.10) and are equivalent to (1.1.10)
that can be easily shown with the use of (1.1.11).

One more important fact is that the Euler-Lagrange equations (1.1.10) are the same
for two Lagrangians that differ by a function which is a total derivative of time,

dK(qi’ t)

at (1.1.14)

L(g;, 4;, 0) = L(g;, @3, O) +
Transformation (1.1.14) is called a gauge transformation of the Lagrangian. It is
straightforward to check by substituting L to equations (1.1.10) that all terms depend-
ing on K(g;, t) cancel out leaving the equations (1.1.10) invariant. This result is also
easy to understand from the integral formulation of the action (1.1.7). Indeed, integ-
ration of the total time derivative under the sign of the action integral (1.1.7) yields a
constant term depending merely on the boundary values of the generalized coordin-
ates but such a term does not, of course, affect the derivation of the equations of
motion.
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1.1.3 Noether’s theorem in classical mechanics

Equalities of the type I(g;, 4;, t) = const which follow from integrating the system of
the Euler-Lagrange equations (1.1.10), are called the first integrals of motion. Among
them, there exist integrals connected to the property of the action functional to remain
invariant with respect to the group of transformations of the variables appearing as
arguments of the Lagrangian, namely the generalized coordinates g; and time ¢. This
property forms the basis of the important Noether’s theorem which associates the para-
meters of the group of the invariance of the Lagrangian to conservation laws and
conserved quantities. Perhaps, the simplest formulation of the Noether theorem is as
follows:
— Ifthe action functional is invariant with respect to a continuous group of transform-
ations depending on k parameters, then, there exist k identities which, after using
the Euler-Lagrange equations, yield k integrals of motion.

Let us discuss in more detail the Noether theorem in the case of a mechanical system
described by the action (1.1.7). It has been shown that the Euler-Lagrange equations
(1.1.13) are form-invariant under the most general case of transformations (1.1.11)
though they change the form of the Lagrangian (L — L') in accordance with (1.1.12)
which means that the form of the action (1.1.7) changes correspondingly. It is not the
case of the Noether theorem which is applicable only to a special case of the transform-
ations that do not change the action functional. We prove the Noether theorem below.

For the sake of simplicity, let us consider a continuous group of transforma-
tions T(¢) whose action on the generalized coordinates and time depends on a single
argument &:

{gi(0); 6} — TE{g;(O: 6 = (g () t'} = {fi(g; (O, t; &) (& )} (1.1.15)

The group product is defined by the rule T(Sz)T(Sl) =T (£5(&,, £1)) which may be non-
commutative in the most general case (the case of a non-abelian group). The existence
of the unit element of the group, T(0) = 1, suggests that functions fi(g;(®), t; €) and
f(t; &) are such that

q;(t) = fi(g;, £;0).  t=f(t;0). (1.1.16)

Then, the linearized (with respect to a sufficiently small value of € <« 1) independent
transformations for the generalized coordinates and time take the form:

of.
q;(t) — q;(t') = q;(t) + 8 qi(t,€), &'q; = 8_]; (1.1.17)

t >t =t+eé(te), &= g—j;, (1.1.18)
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where

o _ o o _ of®
0 0t leo’ Ot O€ |eo (1119)

The quantities §'q; and ¢ are called the infinitesimal generators of the group.
In what follows the instantaneous variation 8g; of the generalized coordinate,

6q; = q;(t) - g;(0), (1.1.20)

plays an important role. The instantaneous variation can be singled out from the
group generator §'g; after expanding ¢.(t') in the Taylor series around time ¢ and
making use of (1.1.18):

oAy
6qi=6q-¢ at (1.1.21)

Before proving the Noether theorem we need to discuss some mathematical tech-

niques of variational calculus in case of an arbitrary function F[g;(t), g;(t), t]. The
action of the group (1.1.15) transforms the function F to F':

Flg;(8), 4i(0), t] = F'lg;(¢"), 4;(t"), '] = T(e)Flgi(), g;(0), ], (1.1.22)

where the dot above function of time indicates a time derivative, for example, §;(t) =
dg;/dt and g.(t") = dg./dt'. By definition

T(e)F = F[T(e)g;(0), T()g;(0), T(e)t] = Flg;(t"), g;(¢"), '], (1.1.23)

so that
Flgi(t), g;(t), '] = Flgi(t), g;(t), ¢']. (1.1.24)
In other words, the group operator T(g) changes merely the arguments of the function

F while its functional form does not change. Total variation of this function induced
by the continuous group of transformation, is defined as

e8'F = Flgj(¢'), 4/(t"), '] - Flg;(®), g;(0), t]. (1.1.25)
The instantaneous variation of F is the difference between the transformed value

of the function F[g}(t'), gi(t'), t'] taken at the instant of time ¢, and the value of the
function F[g;(t), g;(t), t] taken at the same instant of time,

&8F = Flg; (1), 4;(0), ] - Flg;(®), 4;(0), t]. (1.1.26)
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Expanding Flq.(t"), ;(t'), t'] on the right side of (1.1.25) in Taylor series with respect to
the variation of time and making use of definition (1.1.26) we get

P
6F=6'F-§ . (1.1.27)

where the last term is defined by the total derivative of F with respect to time:

dF _ oF dg;  OF dd; , oF (1.1.28)
dt oq; dt og; dt ot
It is worthwhile to make a few remarks with regard to the meaning of the variations of
the function F:
(i) therelation (1.1.27) generalizes (1.1.21),
(ii) by definition (1.1.20) the variation (1.1.26) can be expanded in a Taylor series
with respect to the variations of its arguments as
oF oF
O0F = —ébq; + —6q;, (1.1.29)
og; ' 0q;
where the higher order terms have been truncated,
(iii) variation 6F commutes with the total time derivative of F,
dF

6<E> _ dit(aF), (1.1.30)

which makes it more advantageous compared with §'F in calculations where
both operations of taking the time derivative and variation are present. Formally
it follows from the definition (1.1.26) where the unique time argument is con-
sidered. At the same time, the variation §'F defined in (1.1.25) does not commute
with total time derivative of F.

The technique presented above is used for proving the Noether theorem which
demands that the action functional (1.1.7) is invariant with respect to the continuous
group of transformations (1.1.15), (1.1.16) and the mechanical system obeys the equa-
tions of motion (1.1.10). We consider the total variation of the action (1.1.7) induced by
the continuous group of transformation (1.1.15):

5/~ | df'Ligi(e).qi(¢).¢1- | de Lia@. a0, 4, (1131)

where the integration is performed over a fixed time interval T = [t,,¢;] and a
corresponding interval of time T' = [t;,¢]] that is connected with T by the time
transformation.

We apply the variational technique (1.1.20-1.1.30) to the Lagrangian L along with
the transformations (1.1.17) and (1.1.18). We restrict ourselves with the linearized, in
regard to the group argument &, approximation. Then, the variation of the action
(1.1.31) is reduced to
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‘o _ at -
£6S—Ldt[E(L+85L)] | a2

= JTdt[<1+g%><L+£6L+s%§> —L(t)]

e -L dt [5L . dit(gL)] , (11.32)

where §'L and 6L are defined in (1.1.25) and (1.1.26), respectively. Using (1.1.29) and
applying the Leibniz rule to reshuffle terms, we can rewrite (1.1.32) as follows,

' oL d oL ) d ( oL >]
- = 2= + — [ &L + =—=6qg: 1.1.
§s JT at [(aqi dt 0g; o4 + dt L+ 9g; %) - (1133

where the terms enclosed in the first brackets in the integrand constitute the left-hand
side of the Euler-Lagrange equations (1.1.10). These terms appeared naturally in
(1.1.33) but we don’t demand at this point of the proof of the Noether theorem that the
Euler-Lagrange equations are satisfied. The Noether theorem requires the invariance
of the action functional under the group of transformation (1.1.15), that is the variation
6'S must vanish: §'S = 0. Then, the integrand in (1.1.33) must vanish as well, bringing
the identity,

oL d oL d oL
= 22 \b6g.=—— &L+ =—=6g: ). 1.1.
(aq,. dt aql-> AT <§ " 34, 5%) (134

The last step is to use in the right side of (1.1.34) equation (1.1.21) expressing the
variation 8¢, in terms of §'g;, and to make substitutions §'q; = of;/0s and ¢ = 9f /o< in
accordance with definitions (1.1.17) and (1.1.18) for §’'q; and ¢, respectively. It yields,
(Zodhyg d[(2, NI LU
og; dtog; dt |\ 9q; os  0g; o
The identity (1.1.35) is called the Noether identity. It is valid for arbitrary variation of
the independent variables irrespectively whether the generalized coordinates g; obey
the equations of motion (1.1.10) or not. In case of an actual motion of the mechanical
system, the equations of motion are satisfied making the left side of the Noether’s
identity (1.1.35) zero. It allows us to define the integrals of motion:

= const, (1.1.36)

I(qi,(li,t)=(aL L) o oL of;

a_qiql 3¢ a—qlg

which are conserved quantities in the sense that dI(g;, g;, t)/dt = 0 where g; = g;(t)
satisfy the Euler-Lagrange equations of motion.
This concludes the proof of the Noether theorem.
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Integrals of motion and the intrinsic symmetries of the Lagrangian

The existence of the conserved quantities are intimately related to the transformation
symmetries of the Lagrangian describing the mechanical system. In order to reveal
the connection between the Lagrangian symmetries and the integrals of motion let us
rewrite the variation of the action (1.1.33) in the form:

6'S=Jdt{<§—i—%§—i)( G- 4+~ [g’is'q, <—§_;qi>5”’ (1137)

where we have used (1.1.21) in order to replace &q; with §'g;. By a direct calculation
without making use of the equations of motion, we can reduce the variation (1.1.37) to
a more simple form

5’5=J dt[ia_L+a_ﬁa_L+i<L_a_L..> o BL]

1.1.38
deot deaq oe\" og )" o og, (1138)

where we have made the substitutions & = df /oe, 6'qi = df;/0e, and again the overdot
denotes a total derivative with respect to time. Expression (1.1.38) allows us to connect
the conservation laws with the functional structure of the Lagrangian and its internal
symmetries with respect to the continuous group of transformations. Let us consider
several important cases.

First, let us assume of /de = const # 0 and df;/0¢ = 0. Then, of /0¢ = of;/0e = 0, and
the variation of the action (1.1.38) becomes

of oL
os-2 j . (1139)
This expression points out that in the most general case of the Lagrangian depending
explicitly on time, L = L(g;, g;, t), its partial derivative dL/ot + 0, and the variation
§'S of the action functional (1.1.7) does not vanish. It means that the Noether theorem
cannot be applied and the integrals of motion associated with the time translations
do not exist.?

On the other hand, if the Lagrangian does not depend on time explicitly, L
L(g;, g;), it stays invariant with respect to the (constant) time shifts. In this case we
can use (1.1.36) for deriving one of the most important integrals of motion — energy,
usually denoted as E. Taking transformations (1.1.17) and (1.1.18) in the form f;(t; €) = 0
and f(t; €) = eyield of;/0e = 0, of /0e = 1, and the corresponding conserved quantity
(1.1.36) acquires the form:

oL
E=—g-L. (1.1.40)
og; !
It is called the total energy of the system. The systems with the conserved energy
are called conservative [283]. In the case of an open system the Lagrangian depends

2 The same conclusion is extended, of course, for the more general case of function f(e, t) depending
on time so that df /o¢ # 0.
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explicitly on time and the energy (1.1.40) is not conserved. Such a system is also called
non-conservative. It can be easily checked by taking the total time derivative of E that
in case of the Lagrangian depending explicitly on time, we have

dE oL

—_— = 1.1.41

dt ot ( )
Second, let us consider (1.1.38) for the case of transformations, of/oe = 0 and the
constant of;/oe + 0. Then, aﬁ-/ag = 0, and the variation (1.1.38) becomes

§'S = % J dta—L. (1.1.42)
oe Jr 0g;

Expression (1.1.42) points out that in the case of the Lagrangian depending explicitly
on g; the action functional (1.1.7) cannot be invariant with respect to the constant
translations of the generalized coordinates g; and the Noether theorem cannot be
applied. Hence, in this case there are no integrals of motion associated with the
constant translations of g;. In the opposite case when the Lagrangian does not
depend explicitly on the generalized coordinates (but may depend explicitly on time),
the Noether theorem yields the integral of motion® corresponding to the constant
translation of the coordinate g;:

L(g;,t) = g—; = const. (1.1.43)
The coordinate g; which drops out of the Lagrangian is called an ignorable coordinate.

We should draw attention of the reader to a subtlety associated to the integrals
corresponding to the case of the constant translations of the generalized coordinates.
Let us consider an example of a Lagrangian describing time evolution of a mechanical
system consisting of two particles with generalized coordinates g;; and g,;. Let the Lag-
rangian depend explicitly on the difference of the coordinates: L = L(gy; — q4;5 ¢1j> @2i)-
We consider the case of a constant translation such that both coordinates are shifted
by the same amount: df,;/0¢ = df;;/0e = €; = const. Variation of the action (1.1.38)

oL, oL ] =0, (1.1.44)

os-¢ dt[—+—
Ylr 7 logy  ogy
and the Noether theorem can be applied in spite of the explicit dependence of the
Lagrangian on the generalized coordinates.

Third, let us consider now the conservation laws for the case of time-dependent
translation of time and/or generalized coordinates. In this case we operate with

3 Notice that we have chosen the sign of the integral (1.1.43) opposite to the sign of the corresponding
quantity in (1.1.36). This convention is more suitable in the discussion of the integrals of motion of
mechanical system of N particles given in the Section 1.1.4.
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the group of transformations having the non-vanishing time-dependent generators:
of |0 # 0, of;/0e # 0. For this reason, the variation of the action (1.1.38) does not van-
ish even if the Lagrangian, L = L(g;), that is it does not depend explicitly on time and
the coordinate g; is ignorable,

of oL . of: oL
5 =J —<L—— ) = . 1.1.
5= ],dt [ae 00:%) " e g, | 7 ° (1145)

The Noether’s theorem is not applied to such a situation in the most general case.
Nonetheless, it may turn out that for the variation (1.1.45) of the action its integrand
equals to a total time derivative

af( oL . ) of, oL  dK
2L . =
9g; &

ool _ dkK 1146
de T deoq  dt (1.1:46)

where K = K(of [0e, of;/0¢, g;, t) is some function of time, generalized coordinates and
the generators of the group of transformations.* In this particular case, the Noether
theorem can be extended and the integrals of motion (1.1.36) are modified to

. oL of oL of,
I(g;, q;t) =| =—¢; - L) =— - ——+K = . 1.1.
(qp d;, t) (aql q; > e aql 9e + const ( 47)

Let us consider an example of the time-dependent transformation: of/oe = 0 and
of;/ 0 = €;t with €; = const. The function K entering (1.1.47) can be found from solving
the equation (1.1.46) which takes, in the case under consideration, the following form

oL dK
i/ = —, 1.1.48
€i dg; dt ( )
if and only if, there exists a function K; such that K = ¢;K;, and
dK; oL
— = . 114
dt  0g; (1.149)
The new integral associated with the above-mentioned symmetry is’
N; = -K; + oL (1.1.50)
aq;

We discuss this integral in more detail in Section 1.1.4 — see equation (1.1.62).

4 It is crucial to emphasize that K is a function but not a functional (integral) of time.
5 Notice that for the sake of convenience we have chosen the sign of the integral (1.1.50) opposite to
the sign of the corresponding quantity in (1.1.47).
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1.1.4 Conserved quantities for a system of non-relativistic particles

In the framework of non-relativistic mechanics, the arena for describing physical phe-
nomena is a 3-dimensional Euclidean space usually associated with the Cartesian
coordinates x' = {Xl,Xz,XB}, or X' = {x,y,z}. Time is considered separately and does
not depend on space. The Newtonian spacetime is homogeneous and isotropic so that
the infinitesimal group of transformations that leaves the Lagrangian of the Newto-
nian mechanical systems invariant, consists of a time shift, three independent spatial
translations along the Cartesian coordinate axes and three rotations about them.
According to the Noether theorem, these symmetries point out to the existence of 7
integrals of motion.

Besides these, the Euler-Lagrange equations of the Newtonian systems are invari-
ant with respect to the, so-called, Galilean transformation which introduces the class
of the inertial reference frames. The inertial frame is defined by the property of a free
test particle to remain at rest or to move uniformly along a straight line with a constant
velocity with respect to it. The Galilean transformations are defined by the following
equations

t=t; x"=xX+Vt (1.1.51)
where V! = {V!, V2, V?} is a constant velocity. The Galilean transformation connects
two arbitrary chosen, inertial frames with the Cartesian coordinates x' and x".. Three
components of the velocity V' are additional three parameters entering the invariance
group of the Newtonian mechanics. Thus, this group depends on 10 parameters and is
called the Galilean group [11]. Euclidean space and time with the Galilean transform-
ation (1.1.51) is called the Galilean spacetime which is the physical basis for applying
the Noether theorem to obtain 10 of the first integrals for any conservative system.

We consider a system of N point-like particles with constant masses m, (a =
1,...,N) embedded to 3-dimensional Euclidean space covered by Cartesian coordin-
ates x' which play the role of generalized coordinates g; of the particles. The Lag-
rangian of the conservative system of N particles with constant masses does not
depend on time explicitly and is of the type (1.1.6),

1 o
L=5 ;maxizxzz - Urap), (1.1.52)

where xfl = xil(t) are coordinates of the particle a, xﬁ, = xﬁ,(t) are coordinates of the
particle b, the overdot denotes a time derivative, x; = dxil/dt. The potential U(r,,)
describing the interactions between the particles, is a scalar function depending only
on the relative distance r,, = |r\,| between the particles ') = x!, — x,, which makes it
invariant with respect to translations and rotations of the coordinate system in space.
It is more conventional to use the vector notation by denoting three-dimensional vec-
tors with bold letters, r, = {x3, X2, X2}, v, = F'4 = {X5, X2, X}. In the vector notation, the
Lagrangian (1.1.52) reads
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L= % ;mavfl ~ Ulrg,). (1.1.53)

The Lagrangian (1.1.53) does not depend on time explicitly and, hence, is invariant
with respect to constant time translation. It gives the integral of energy that we have
already defined in expression (1.1.40). Thus, substituting L from (1.1.53) into (1.1.40)
one obtains

1
E-= > ;mavfl +Ul(rg), (1.1.54)

which is a sum of two terms — the kinetic and potential energy of the system. It is
worth mentioning that had we assumed the masses m, of the particles as variable
m, = m,(t), it would make the Lagrangian explicitly dependent on time. In that case
the total energy E would not be conserved but changing in accordance with (1.1.41) as
follows °

dE 1 dma )
ar 2Z

= Ve (1.1.55)

a
The homogeneity of the Euclidean space is reflected in the invariance of the system
with respect to three spatial translations. They are defined as r, — r}, = f,(r,, &) =
r, + € where £ is a constant vector of the spatial translation, £ = {¢', €%, €%}. Then,
of 4/0€ = 8 = {65} — the unit matrix, and (because the time is unchanged) of/de = 0.
Hence, the corresponding conserved quantity (1.1.43) acquires the form:

P-) aaTL =Y Pa=) MgVy,- (1.1.56)
a a a a

It is called the total linear momentum of the system which is the sum of the momenta
p,=myv, of the individual particles. The integral of the linear momentum exists
irrespectively of whether masses m, depend on time or not.

Now, let us construct a conserved quantity and a conservation law, which follow
from the isotropy of the Euclidean space which means that all directions in space are
equivalent and the Lagrangian is invariant with respect to rotations. Under a rotation,
the radius vector of a particle is transformed as r, — ), = f,(r,, @) = r, + [@ x1,],
where w is a constant vector of an infinitesimal rotation. Then, of ,/0w = A(r,) is
the antisymmetric matrix with the components depending on the radius-vector of
the particle, A(r,) = {A;} = el-]-kr’; where € is a fully-antisymmetric Levi-Civita sym-
bol. The corresponding conserved quantity (1.1.36) applied to the Lagrangian (1.1.52)
acquires the form:

M=) ;TLa “Arg) = ;[ra AR ;ma[ra XVl (1.1.57)

a

6 The potential U(r,;) could also depend on masses and so it could also change, consider gravitational
interaction as an example. In this case, formula (1.1.55) should include one more term.
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where the signs “dot” and “cross” between two vectors denote the Euclidean dot and
cross product of the vectors respectively [283]. The vector integral of motion M is called
the total angular momentum of the system. The angular momentum is conserved even
if masses m,, of the particles depend on time. Note that the appearance of the cross
product in equation (1.1.57) shows that this formalism is restricted to 3 dimensions
and the angular momentum is not a true vector but a pseudo vector. In more than
3 dimensions, one observes that the proper generalization of angular momentum is
an anti-symmetric rank 2 tensor that is not reduced, in general, to a cross product
between vectors.

At last, one has to analyze the invariance with respect to the infinitesimal Galilean
transformations (1.1.51) with the constant velocity V = &£ considered as a small para-
meter of the group. Thus, the infinitesimal group of the Galilean transformation is
given by equations

1 =fo(ry, &) =r,+te, V) =f(re,€) =v, +e, (1.1.58)

from where one has for the group parameters,
of 4

of

— =0, — = 1. 1.1.59

o€ o€ ( )
This is a special case of time-dependent transformations which we have considered
above at the end of Section 1.1.3. Equation (1.1.49) for the Lagrangian (1.1.53) reads

dK d
T Y mgv, = T Y mgr,. (1.1.60)
a a

Notice that the last term in (1.1.60) can be written in the form of the total derivative if
and only if, masses m, of the particles do not depend on time. Integration of (1.1.60)
yields

K=Y mgr,. (1.1.61)
a

Then, equation (1.1.50) defines the conserved quantity which is called the integral of
the center of mass of the system,

N-=- Z mgry, + tz mgV,. (1.1.62)
a a

It is worth emphasizing that similar to the case of the integral of energy, the integral
of the center of mass does not exist if masses m, of the particles depend on time. This
is because in such a case, equation (1.1.60) takes the form dK/dt = Y, m,(t)v, whose
right-hand side does not admit transformation to the total time derivative and makes
it non-integrable.

The center of mass of the system is defined by a vector R = R(t) which is introduced
by the following identity

MR =) mgr, (1.1.63)
a
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where

M=>"m,, (1.1.64)
a
is a constant total mass of the system of particles. Then, the integral of the center of
mass takes the traditional form

N=-MR+Pt, (1.1.65)

where P is the conserved linear momentum of the system (1.1.56) which is directly
related to the velocity of the center of mass

V=—. (1.1.66)
It allows us to reformulate (1.1.65) in the following form
R=R,+Vt, (1.1.67)

where Ry = -N/M is the constant radius-vector defining position of the center of mass
at time ¢ = 0. This equation tells us that the center of mass of the entire system of
particles moves uniformly along a straight line with a constant velocity V.

In many applications it is convenient to use an inertial frame whose total linear
momentum vanishes, P = 0, and its origin is placed at the center of mass, R, = 0.
Then, R = 0 at any instant of time and the origin of the frame remains at rest at the
center of mass of the system of particles.

1.1.5 The Minkowski space and the Poincaré group

Now, we turn to special relativity which corrects certain shortcomings of the clas-
sical mechanics by unifying the time and Euclidean 3-space into a fabric of spacetime
continuum where space and time are no longer absolute but depend on the vantage
point of the observer. Such a 4-dimensional spacetime is called the Minkowski space
or spacetime. The Minkowski space admits the existence of the inertial frames of ref-
erence whose properties are similar to the ones in classical mechanics. Description of
physical phenomena is invariant irrespective of the choice of the inertial frame. There-
fore, transformations between the inertial frames are described by a 10-parameter
group of transformations which is called the Poincaré group. It includes 4 translations
along each spatial dimensions and time, 3 rotations in the Euclidean space, and 3
Lorentz boosts which generalize the Galilean transformations of classical mechanics
and are called the Lorentz transformations. The Poincaré group forms a geometrical
basis for applying the Noether theorem which yield 10 integrals of motion for a
closed system as in classical mechanics. One can also think of the Poincaré group
as the symmetry group of the Minkowski space which is a maximally symmetric flat
spacetime.
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The most convenient coordinates in the Minkowski space are the Lorentzian
coordinates which add time to the set of the three-dimensional Cartesian coordin-
ates. The time coordinate is defined as the product of time with the speed of light, c,
and is denoted x° = ct. The Lorentzian coordinates are labeled with Greek indices,
x* = {ct,x,y,z} = {x° x',x%,x°}; and the Greek indices take values from the set
0,1,2, 3. Each set of the Lorentzian coordinates is associated with an inertial refer-
ence frame. Because two different inertial frames are connected by the elements of
the Poincaré group, in the Minkowski space any two Lorentzian coordinate systems
are connected by these transformations. A point in the Minkowski space is called a
world point or an event. The distance between two world points in the Minkowski
space is called an interval and is invariant with respect to coordinate transforma-
tions. The interval between two infinitesimally close events is denoted, ds, and ds?
is expressed in terms of the infinitesimal increments of the Lorentzian coordinates as
a pseudo-Euclidean quadratic form:

ds? = -2dt* + dx® + dy? + dz* = naﬁdx“dxﬂ. (1.1.68)

The geometric object 1,4 = diag{-1, +1, +1, +1} is known as the Minkowski metric. Here,
we have taken the plus sign convention for the spatial part of the metric; the other
choice, the minus sign convention is valid as well. Because the interval is invariant
with respect to arbitrary coordinate transformations, the Minkowski metric is a tensor.
Besides describing the metric properties of the Minkowski space, it is also used to raise
and lower the tensor indices of other geometric objects, vectors, tensors etc. residing
in the Minkowski space. Below, we use the units with the speed of light, ¢ = 1.

The interval (1.1.68) in the Minkowski space can have either positive, or negative or
anull values. Depending on its value the interval is termed either spacelike, ds* > 0, or
lightlike or null, ds® = 0, or timelike, ds® < 0, interval. All events separated by a lightlike
interval lie on a hypersurface in the Minkowski space, called the light cone. Vectors
attached to a particular event and lying inside the light cone are called timelike, those
lying outside of the light cone are called spacelike, and vectors lying on the light cone
are called null vectors. A curve in the Minkowski space is called spacelike, lightlike
or timelike if tangent vector taken at each point of such a curve is spacelike, lightlike
or timelike, respectively. Trajectory of a point-like particle in the Minkowski space is
called a world line. Because particles of matter cannot propagate faster than light, their
world lines can be either timelike or lightlike but not spacelike. Each world line can
be parametrized with a continuous parameter to identify the position of the particle
in spacetime. The most convenient parameter for timelike world lines is called the
proper time, T, which is related to the infinitesimal interval ds between two events on
the world line as follows:

(dr)? = -ds’ = (1-v*)dt?, (1.1.69)
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where v = {dxi/dt} is the three-dimensional, coordinate velocity of the particle. The
proper time is a real quantity that can be measured by an ideal clock moving along the
world line, attached to the particle, under consideration. Notice that for an observer
at rest, dt = dt, that is the proper time 1 and the coordinate time ¢ coincide.

As we mentioned above, the Poincaré group is a 10-parameter group of trans-
formations in the Minkowski space consisting of 4 translations and 6 rotations of the
Lorentzian coordinates. The generators of this group can be found by studying the
coordinate transformations that leave the metric intact. This boils down to studying
the isometries of the spacetime. The group is generated by the Lie transformations
along the curves whose tangent vectors are known as the Killing vectors, &; x =
1,2,...,10 . The Poincaré group leaves the Minkowski metric invariant which means
that the Lie derivative, £, (see Section 1.2.3 and Appendix A.2.3) of the Minkowski
metric vanishes:

Eg Mo = O. (1.1.70)
It leads to the first order Killing differential equation [154]

Sk@p =0 (1.1.71)

where the brackets denote symmetrization. The Killing equation has 10 linearly inde-
pendent solutions consisting of four translations, & = 45, and three rotations along
with three boosts, & = ‘f[%y] where the square brackets denote anti-symmetrization. In
the Lorentzian coordinates the set of 10 Killing vectors, ffé, of the Minkowski space is
given by the following expresssions,

1
& =65 & =67, 5[‘ny] ) (rlpﬁ%x - rlpys[?)xp' (1.1.72)

The “minus” sign for the timelike Killing vector agrees with the choice of the metric
signature in this book (-, +, +, +). Partial derivatives of the Killing vectors with respect
to a particular coordinate (denoted by a comma with an index after it indicating the
corresponding coordinate) follow immediately from (1.1.72):

&5=0  &ppo=0 1.173)

and they can be used to check the consistency of the Killing equation (1.1.71).

1.1.6 A point-like particle in special relativity

Let us extend the definitions and concepts related to the motion of a point-like particle
from classical mechanics to the realm of special relativity. These notions will be used
later on for the derivations of conservation laws and conserved quantities in the N-
body system. It is convenient to parametrize the world line of the particle with its
proper time T which is invariant with respect to coordinate transformations.
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An infinitesimal displacement along the world line of the particle is dx* = u®dr
where the 4-vector

a1
dr  dt Vi—v2

is called the 4-velocity, whereas v is a 3-dimensional velocity defined in (1.1.2). Because
the parameter of the particle’s world line was chosen as the proper time, the 4-
velocity gets normalized, u,u* = —1. The 4-acceleration of the particle is defined as
the derivative of 4-velocity with respect to the proper time, a* = du®/dr.

The motion of a free point-like particle follows from the principle of the least
action with the action functional taken in the form:

u (1.1.74)

Py
dr, (1.1.75)
Py

P, P, aQ
S= mJ u dx” = mJ' Dol _ —mJ
Py p, dr

where m is the rest mass of the particle (a constant), and the action is calculated
between two fixed events P, and P,.”

The action (1.1.75) can be easily reduced to its canonical form (1.1.7) if we choose
the coordinate time t as the new parameter along the world line of the particle. This
procedure turns the action (1.1.75) to

51
S= J dt L(r,v) (1.1.76)
to
with the Lagrangian function
L= —m% =-mV1-v?, (1.1.77)

and the instants ¢, and ¢; correspond to the points P and P; on the particle’s world line
respectively. The action (1.1.76) is convenient for the 3-dimensional Lagrangian form-
alism but we are looking for its 4-dimensional version. To this end we notice that the
action (1.1.76) is invariant under a re-parametrization of the world line of the particle:
T - A=A1),

A
S- j " AAL(E, 59, (11.78)
Ao

The Lagrangian L = L(x*, x*) with the new parameter, A, takes the form

L = —m\[-1,%°5P, (11.79)

where xX* = dx®/dA is a 4-dimensional dynamical variable generalizing the 3-
dimensional velocity v of the particle.

7 In the case, when mass depends on time, m = m(t), one cannot derive a conserved energy for the
same reason as in non-relativistic mechanics.
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The action, such as (1.1.78), is called a parameterized action, whereas the Lag-
rangian function (1.1.79) is called a singular Lagrangian, see [140, 193, 378] for more
details. The idea behind the new parameter is that it makes all variables in the action
dynamical variables, whereas the parameter A serves merely as an argument of integ-
ration (external ‘time’) and plays an auxiliary role having no direct physical meaning.
It can be replaced with another parameter,

A= 2A). (1.1.80)

The action (1.1.76) is invariant with respect to such replacements. The goal of introdu-
cing the new parameter into the action will become more transparent when we shall
discuss the Hamiltonian formulation of the parameterized action for a point particle
(see text from equations (3.1.105-3.1.112)).

Variation of (1.1.78) with respect to the coordinates x*(A), all of which are now
considered as dynamical variables, is completely analogous to the variation of (1.1.7)
in (1.1.9). This results in 4-dimensional equations of motion generalizing (1.1.10):

— - ——=0. 1.1.81
ox%  dAox% ( )

The Lagrangian (1.1.79) does not depend on the coordinates x* explicitly. There-
fore, equations (1.1.81) tell us that there is a conserved quantity, oL/0x*, called the
4-momentum of the particle:

A

ox* w—naﬁ)’(“xﬁ '

It is straightforward to verify that after raising the index (1.1.82) can be written as:

(1.1.82)

Pa

p* = mu’. (1.1.83)

Making use of the definition (1.1.74) of the 4-velocity we can write the components of
4-momentum (1.1.83) in terms of 3-dimensional coordinate velocity v of the particle:

0 mc

N Tk (1.1.84)
p- " __ (1.1.85)

where we restored the speed of light c to find out the non-relativistic limit of the above
expressions in case when ¢ — co. In this limit the time component p° of 4-momentum
generalizes the classical expression for the kinetic energy of the particle: mv?/2. How-
ever, special relativity tells us that the particle has a non-vanishing energy even if its
velocity vanishes. This is the rest energy of the particle E, = mc?. The quantity (1.1.85)
represents the relativistic 3-momentum generalizing the classical linear momentum
of the particle: p = mv.
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1.1.7 Conserved quantities for a system of relativistic particles

In order to describe a system of N non-interacting point-like particles in special relativ-
ity it is natural to follow the prescriptions of Section 1.1.6 and parameterize the world
line of each particle with a single parameter, x; = x4(A). The Lagrangian, L,, for each

particle is
Ly =~ \-1api@5h, (1.1.86)

where m,, is a constant mass of the particle, and the overdot denotes differentiation
with respect to the parameter A. The Lagrangian of the entire system of the particles is
the sum of the individual components: L = ), L, and the action is

S= J dAy L. (1.1.87)

Variation of (1.1.87) with respect to 4N generalized coordinates x5(A) leads to the equa-
tions of motion of the a-th particle. Because the Lagrangian (1.1.86) does not depend
on x5(A) explicitly, the equations of motion have the form of the conservation law:

dpy
ar

a_ 9L

« = oxa’

0: (1.1.88)
where p} is the linear momentum of a-th particle.

The Lagrangian (1.1.86) is a particular case of (1.1.6). Thus, the Noether conserved
quantities (1.1.36) and (1.1.47) are easily derived by applying the infinitesimal 10-
parameter Poincaré group of motions generated by the Killing vectors (1.1.72). To apply
the formalism of the Noether theorem of Section 1.1.3, we use the replacements: t — A,
g; — x5, and g; — x5. We, first, consider transformation of coordinates x induced by
the Killing vectors 51? = 'fl‘,", see (1.1.72), contracted with a constant parameters & s

Xg = Xy = Xg + &geb. (1.1.89)

This transformation does not change the Lagrangian, and leads to the conservation
law of the linear momentum following directly from (1.1.36) where (in accordance with
the transformation equation) we also use the replacements f — 0, f; — f;?

d oL d
7 ; a_xggg - ; Paég = 0. (1.1.90)

This law means the total 4-momentum of the system of particles,

PA= % py =) mauy, (1.1.91)
a a
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is conserved

P

i 0. (1.1.92)

The infinitesimal rotations in the Minkowski space about various axes of the Lorent-

zian coordinates are presented by 6 small parameters, w* = -, multiplied with the
Killing vectors &g = 5[01(11/]’ see (1.1.72),

1
Xo - X = X0+ .f["/‘;y]wﬁ” = x5+ 3 (rlﬂpf)‘f - nyp{g)x’;wﬁ”. (1.1.93)

Then, substituting transformation (1.1.93) to (1.1.47) and replacing t — A, g; — x5, and
qi i Xg’f - O;fl - fﬁ;y]wﬁ”, Ylelds

d < oL d
@ ; a—xf;’{[%y] ol ;p?,ﬁ‘};y} = 0. (1.1.94)

This law means the existence of the total 4-angular momentum of the system of
particles,

M¥ =y (xaph - ps), (1.1.95)
a
which is conserved
dM,g
=0. 1.1
dA (1.1.96)

The total 4-angular momentum consists of three purely spatial components,

M =Y (xipk - xkpl), (1.1.97)
a
that represent a matrix of a 3-angular momentum of the system. Note that, even though
we have worked in four dimensions, this result is valid for any number of dimensions,
for the angular momentum appears as an antisymmetric tensor (not just a pseudo-
vector specific to 3 spatial dimensions as noted earlier). The other 3 components of
(1.1.95) are a 3-vector,

N'=M" - z (xgpi, - x;pg) (1.1.98)
a
representing the, so-called, Lorentzian momentum.

If we take now the parameter A = t and set xg = t, the components of the linear
momentum of a particle takes the form of equations (1.1.84), (1.1.85). In this case the
components of the conserved quantity (1.1.91) take a familiar form of the total energy,
E = P°, and the linear momentum, P = {Pi} of the system, respectively,
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E

(1.1.99)

T ie ﬁ
; \J1- v2/c2

These relativistic expressions generalize the total energy (1.1.54) and the linear
momentum (1.1.56) of classical mechanics in the case of non-interacting massive
particles.

In the same parametrization the 3-angular momentum (1.1.97) is equivalent to a
3-vector

P (1.1.100)

mglr, xv,]

that generalizes the angular momentum of classical mechanics (1.1.57).
The conserved 3-vector (1.1.98) can be written more explicitly in the following form

M= (1.1.101)

N=—ZM+tZ _MaVa (1.1.102)

One can see that (1.1.102) generalizes the integral of the center of mass (1.1.65) of clas-
sical mechanics. Dividing both sides of (1.1.102) by the total energy of the system, E,
one obtains relativistic equation of motion of the center of mass of the system of N
particles

R=R,+Vt, (1.1.103)

where a constant vector R, = —N/E, a constant velocity of the center of mass, V = P/E,
and the radius-vector R of the center of masses is defined by the identity

ER=Y —dla_ (1.1.104)

= vie
which should be compared with its classical counterpart (1.1.63). Relativistic equation
of motion of the center of mass (1.1.103) generalizes the analogous equation (1.1.67) of
classical mechanics. Thus, for a conservative system of point-like particles, the con-
served Lorentzian momentum states that there exists a center of mass defined by a
radius-vector R which moves with a constant velocity V.

1.2 Field theory in the Minkowski space
1.2.1 The action

Theory of physical fields in the Minkowski space is an important ingredient of modern
particle physics. The starting point of the theory is the Lagrangian which governs the
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behavior of the fields and their interaction with the other fields and/or matter. Devel-
opment of the Lagrangian formalism of physical fields (also called matter fields) in the
Minkowski space is very similar to the general scheme of the Lagrangian formalism in
mechanics which has been introduced in the previous section.

Each field is a tensor or tensor density whose components are smooth functions
of the spacetime coordinates,

¢* = (Y. (1.2.1)

The multi-index A stands for the tensor indices of the field (or a set of fields) which can
be either covariant, or contravariant or a mixed type in a single piggyback notation.
x* = {XO, xi} = {xo, x4, X2, x3} are arbitrary coordinates in the Minkowski space with x°
and x' being the time and 3-dimensional spatial coordinates respectively. In what fol-
lows, we sometimes drop the coordinate index and use a simpler notation, q’)A = ¢A x)
if it does not bring a confusion. A short description of tensors and tensor densities is
given in Appendixes A.1 and A.3.

In the Lagrangian formalism of the field theory all four coordinates x* are equi-
valent and play the role of independent arguments generalizing the independent
argument of time ¢ in the Lagrangian formalism of mechanics. The field components
<;bA are treated as generalized coordinates and are genuine dynamical variables. The
Lagrangian L of a physical field is, in most cases, a function of the dynamical variables
and their first partial derivatives with respect to coordinates, L = L((;bA, (;bA,a) where
the comma with an index after it denotes a partial derivative with respect to the cor-
responding coordinate. In principle, the Lagrangian can also depend on coordinates
x* explicitly but we shall not consider this case because it complicates the mathemat-
ical formalism and it is not relevant to most of the physical cases. Dependence of the
Lagrangian on higher derivatives of the field ¢A is allowed but in this section we don’t
consider this case.

The action functional of the field theory in the Minkowski space is originally
defined in the Lorentzian coordinates

S-= J AL, ¢ ) (122)
Q

where d*x = dx°dxtdx®dx’ is the element of a coordinate volume, and Q denotes a
4-dimensional domain of integration. Being a scalar, the action (1.2.2) has to be
invariant under arbitrary coordinate transformations. Hence, any type of curvilinear
coordinates in (1.2.2) are allowed and must be included to the Lagrangian formalism in
a self-consistent way. This requires generalization of the concept of a partial derivative
of tensor fields entering the action (1.2.2) since partial derivatives do not transform as
tensors under arbitrary coordinate transformations. The derivative of a tensor field
which transforms properly under arbitrary coordinate transformation is called the
covariant derivative. The covariant derivative is an essential attribute of calculus on
spacetime manifolds with curvature.
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Let us introduce curvilinear coordinates x'* = x'“(X‘B) which are functions of the
Lorentzian coordinates x*. The Minkowski interval (1.1.68) is invariant with respect to
coordinate transformations

ds® = naﬁdx“dx'g = yaﬁdx'“dx'ﬁ , (1.2.3)

where, here and everywhere else, y,5 = yaﬁ(x') denotes the Minkowski metric in the
curvilinear coordinates. Equation (1.2.3) defines the tensor law of transformation of
the Minkowski metric tensor

oxP ox°
Yap = Npo X' oxB (1.2.4)
Coordinate transformations of other tensor quantities are explained in Appendix A.1.
For example, the Killing vectors (1.1.72) of the Minkowski space are transformed
in accordance with the law of transformation of vectors:

aXIlX
1a _ p
=S (1.2.5)

The Killing vectors in curvilinear coordinates satisfy a covariant Killing vector equa-
tion which generalizes (1.1.70):

£5Vap =0 = Sxap =0 (1.2.6)

where the indices are lowered or raised with the use of y,z and y“ﬁ . The covariant
version of equation (1.1.73) is, respectively,

8.0 =0, &pyip0 = O- 1.27)

We note again that indices x = {f, [ Sy]} numerate the Killing vectors, therefore the
coordinate transformation does not act on them. In (1.2.7) and below, the semicolon
with an index after it, denotes the covariant derivative in the Minkowski space with
respect to the corresponding coordinate in accordance with notations and conventions
adopted in Appendix A.3.

Briefly speaking, a covariant derivative of tensor density ¢ is defined as follows:

1)
¢t =9t T ) (1.2.8)

where C",, denotes the Christoffel symbols constructed from the metric y,z and its
partial derivatives:

1
Cyp = EVW (Vau,p * Yopu ~ Vup,v) . (1.2.9)

A permutation operator q,')A |I:T is a complicated algebraic combination of the field ¢A

contracted with the Kronecker symbols 6’73‘ and originating from the transformation
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properties of the covariant derivative of the tensor field. For example, for a tensor
density of the weight +1, ¢* = .#,*, one has:

M =P M+ M+ S (1.2.10)

which should be used in (1.2.8) yielding

My = My~ C ™~ C gl C PP Pt (120D)
The permutation operator ¢A ": defined in (A.3.5) in the most general form, is quite uni-
versal and appears in all types of derivatives of tensor fields on geometric manifolds
like the covariant derivative (A.3.7), Lie derivative (A.3.8), and an antisymmetric cov-
ariant derivative of tensor densities (A.3.9). The algebra of the permutation operator
qu'): is explained in Appendixes A.3.1 and A.3.2.

The action (1.2.2) depends on the infinitesimal volume of integration d*x in the
Lorentzian coordinates. We should establish its connection with the invariant meas-
ure of integration in curvilinear coordinates. To this end, let us consider two arbitrary
coordinate charts in the Minkowski space, x* and x'*, connected by an invertible
coordinate transformation, x* = x*(x'). The coordinate four-volumes, d*x and d*x’,
are related to each other by the determinant of the matrix of the transformation,
J = det [ax'“/axﬂ ] also known as the Jacobian of the transformation,

d*x' = jd*x. (1.2.12)

Now let us consider the coordinate transformation of the metric tensor

ox™ ox"v

_— . 1.2.1
ox* oxB (1.213)

yaB(X) = V;,xv(xl)
Applying the rule of calculation of determinants from the product of matrices, yields
y=7%4, (1.2.14)

where y = det y,4(x) and y' = det y;ﬂ(x’). Equation (1.2.14) tells us that the sign of the
determinant of the metric tensor is invariant under coordinate transformations. If we
choose the Lorentzian coordinates the sign of the determinant of the metric tenor is
det nqg = n = —1. We conclude that the sign of the determinant of the metric tensor in
arbitrary coordinates is always negative, y < 0. Accounting for this fact, when extract-
ing the root square from equation (1.2.14), and substituting the result into equation
(1.2.12), brings about the equivalence

\/_—y, dix' = \/—_yd4x. (1.2.15)

It tells us that the invariant measure of integration on spacetime manifold is /~yd"*x.
Now, we return to the formulation of action (1.2.2) in arbitrary coordinates. First
of all, we notice that the measure of integration in the Lorentzian coordinates can be
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rewritten as d*x = \/—_rld“x. Second, the Lagrangian function is a scalar that depends
on the tensor fields ¢*. To make it a scalar the tensor indices of the fields must be con-
tracted with the help of the Minkowski metric. It means that the Lagrangian function
includes the Minkowski metric explicitly: L(¢*, (;bA’a) = L(¢*, (;bA,a, Nap)- As a result
the action (1.2.2) is to be rewritten in the Lorentzian coordinates to the following form:

S-= JQ dxn L (%, 87 oo ag) - (1.2.16)

Next, one transforms (1.2.16) to arbitrary curvilinear coordinates. In doing this trans-
formation, the Minkowski metric, Nap> has to be replaced with its counterpart YVap in the
curvilinear coordinates, and the partial derivatives of the dynamical variables, qu,,x,
have to be replaced with the covariant ones, ¢A;a. It brings the action (1.2.16) to the
covariant form:

S-= jﬂ A5y TL (0%, ¢ o vap) = JQ dxZ (¢, 6" 00 Vog) (12.17)

where £ = ./=yLis a scalar density of weight +1 which is more convenient to use in the
applications of variational calculus on curved spacetime manifolds. In what follows,
itis . which we call the Lagrangian instead of L. In the Lorentzian coordinates .Z = L.

1.2.2 Variational field equations

The principle of the least action used in mechanics to obtain the equations of motion
for particles can be also applied to a theory of continuous distribution of matter —
physical fields, ¢A. The main idea of the principle is that among all virtually possible
configurations of the fields under consideration only those are physically admissible
(and stable) which correspond to a minimal value of the action S. Application of this
principle gives us the field equations which are the analogs of the equations of motion
of particles in mechanics.

We don’t include in this section the metric tensor to the number of dynamical
variables. Therefore, when applying the least action principle to S given in equation
(1.2.17) one has to vary the fields d)A but not the metric or coordinates. A corresponding
variation of the fields is

8™ = ¢" (0 - (), (1.2.18)

where the primed fields, ¢'A, are functions which are different from (;bA in the most
general way.

Mathematically the variations of the type (1.2.18) are very convenient because, by
definition, they commute with the operations of taking partial (but not covariant!)
derivatives of the fields,

8(0,0") = 9, (69"), (1.219)

contraction of indices, etc.
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The variation of the field variables in (1.2.18) leads to a variation of the action
§5=5 5= JQ &2 (8", 0™ o og) - L dxZ (¢ 0" wyeg) . (12.20)

The principle of the least action demands that physical system evolves along those
trajectories of the variables, which conform to equation 6S = 0. Recalling (1.2.19),
expanding the Lagrangian in the first term of (1.2.20) into the Taylor series and keeping
only the linear terms, the variation of the action takes the form

0L 4 0L 4
55=j d'x| %Zs s | 1221
R s (220

Using partial derivatives permits us to make use of (1.2.19) to integrate the second
term on the right side of (1.2.21) by parts. Then, we assume that variations of the
field variables giving rise to variation S vanish on the boundary 0Q of the domain
of integration Q in (1.2.20):

8¢, = 0. (1.2.22)

This assumption allows us to discard the surface terms as they vanish on the
boundary 0Q.
Finally, one arrives at

5z

6S=J "
Q X6¢A

s, (1.2.23)

where the expression

oz oz 5 (22
o9

is called the Lagrangian derivative [266]. In the case, when the Lagrangian depends
on the second derivatives of the field variable, the Lagrangian derivative is defined by
equation (A.2.38) in Appendix A.2.4. The principle of the least action demands 6S = 0
for an arbitrary variation 8¢. The only possible way to satisfy this principle, is to
demand the vanishing of the Lagrangian derivative of .Z,

(1.2.24)

—F =0. (1.2.25)

Equation (1.2.25) is the Euler-Lagrange equation generalizing the mechanical analog
of this equation (1.1.10) to the field theory.

The Lagrangian derivative (1.2.24) is given in terms of the partial derivative of the
Lagrangian with respect to the partial derivatives of the field. It can be re-formulated



28 — 1 Conservation laws in theoretical physics: A brief introduction

in terms of the covariant derivatives making it apparently covariant. Indeed, let us
represent the Lagrangian . in the form where the partial derivative of ¢A appears
explicitly:

<z (¢A’ ¢A;a’ Va,B) =Y (¢A’ ¢A,a + Cvay ¢A|I: ’ Va,B) ’ (1'2'26)

where we have used the general definition (1.2.8) for covariant derivatives. Then, the
first term in (1.2.24) has the following form:

u

CV

v

(1.2.27)

U
0y oy oz 0Cqd) oz ( 0. )
ay s

ot " oph T ogP,  oph  opt  \ogh,

where the symbol * means a partial derivative with respect to the filed ¢A with the
covariant derivative of the filed qu;a being fixed; and the second term in (1.2.27) has
been calculated with the use of the algebra of the permutation operators |/ given
in Appendix A.3.2 (we have used (A.3.16) and (A.3.23)). Equation (1.2.26) also points
out that

3L _ 3L
oph . 0P,

Then, after substituting (1.2.27) and (1.2.28) in the Lagrangian derivative (1.2.24) and
taking into account the definition of the covariant derivative (1.2.8), one can recast
(1.2.24) in terms of the covariant derivatives

0 o°Y% _( 0.7 > , (1.2.29)
;a

(1.2.28)

8t ot \ogh,

quod erat demonstrandum. It is worth emphasizing that, in fact, all equations of
variational analysis in curvilinear coordinates of the Minkowski space and, more gen-
erally, on curved manifolds, can be written down in terms of covariant derivatives of
the Lagrangian instead of its partial derivatives. The proof can be accomplished by

direct calculations given, for example, in [316, 430].
Even though the derivation of the field equations for ¢A does not involve variation

of the Lagrangian (1.2.26) with respect to the metric tensor Yap» it will be useful in the
calculations that follow. Therefore, we give it here. The Lagrangian derivative with
respect to the metric tensor is defined similarly to (1.2.24):

5 30 0 oF

(1.2.30)

We calculate the partial derivative of . with respect to the metric tensor with the
technique being similar to that shown in equation (1.2.27). It brings (1.2.30) to the form

I H
8¢ ¢ 32 W ¢"|) _< 2.z oC’, ¢B'v)>

= (1.2.31)
6Vpo aypo ogP s a)’po Lo B anU,a
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Then, after using the definition (1.2.9) to calculate the partial derivatives from the
Christoffel symbols, we transform (1.2.30) to an explicitly covariant form:

62 9L 1| o0&
a(;bB;ﬁ

o Mo 2
This expression is a particular case of the Lagrangian derivative with respect to the
metric given in Appendix A.3.3 (see (A.3.44)) where we use the notation g, for the
general case of the metric tensor on manifold instead of y, which is the Minkowski
metric in curvilinear coordinates.

At last, it is important to remark that any covariant derivative in the Lagrangian
which can be represented as a divergence, does not contribute to the Lagrangian
derivative (1.2.24) and, consequently, does not change the field equations (1.2.25). One
can see this, following a simple logic. Add to the Lagrangian . a divergence: .¥ —
&£ +div, where div = 2% , from a vector density 2 = 2%, V) When 2" vanishes
on the boundary of integration, it preserves the numerical value of the action. The
divergence of the vector field does not contain the second derivatives and is written as

H (v Vv v
AR R 6,8”6;;))] a2

N4

a 02% A 07"
9 a= w(ﬁ a + %yyv’a. (12.33)

Applying the operator of the Lagrangian derivative (1.2.24) to this expression, one
easily obtains

80,2%
=0, 1.2.34
57 ( )
a
8@ 77) _ (1.2.35)
6y

The identities, like (1.2.34) and (1.2.35), are also valid in more general cases as
explained in Appendix A.2.4 (see, for instance, formulae (A.2.40) and (A.2.41)).

1.2.3 The Noether theorems

We discuss in this section two important theorems on conserved laws in the field
theory formulated and proved by Emmy Noether. These theorems find numerous
applications and, for the sake of generality, we consider them in the case of the Lag-
rangian that depends not only on the first but also on the second derivatives of the
field variables, thus, extending the Lagrangian (1.2.17):

S-= j dx 2 [ 00, Y (00, P 1500)] (1.2.36)
Q

where the set of the dynamical variables * = {¢?, m,p} represents both the matter
and metric fields. Here, the tensor m,z can be either the Minkowski metric 7,4, or the
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Minkowski metric in curved coordinates y,g, or a metric g,z of a background curved
spacetime, or a dynamical metric g, on a curved spacetime manifold. We have shown
the arguments of the Lagrangian as being chosen in the form of partial derivatives
because they are more convenient for doing variational calculations due to the prop-
erty (1.2.19). Of course, the Lagrangian is a covariant scalar density and depends in
reality on the covariant derivatives of the fields.

Let us consider an arbitrary group of infinitesimal transformations of the coordin-
ates and the field variables, generalizing the group (1.1.15) in mechanics. Restricting
our consideration to a linear approximation, we represent the variations of the
coordinates and the fields under such transformations as

X% = X' = X%, (1.2.37)

Y0 = ") - P, (1.2.38)

which generalize (1.1.18) and (1.1.17), respectively. In the framework of the primed
system, one can shift to the previous values of the coordinates, x' — x,

YA+ 6x) = P ix) + %6}(“. (1.2.39)

Now we introduce the other variation of the field variables:

A
8000 = ) 90 = ') - 2 W e (1.2.40)

that is infinitesimal as well. The advantage of (1.2.40) with respect to the variation
defined in (1.2.38) is that it commutes with the partial derivatives

8 (0ay") = 9, (69"), (1.2.41)

as in (1.2.19) for arbitrary variations defined in (1.2.18). We emphasize, at the same
time, the variation (1.2.38) does not commute with covariant derivatives.

Transformations (1.2.37), (1.2.38) induce a perturbation of the action (1.2.36), §'S =
S’ — S which in linear approximation reads

'S = JQ, dx [lpIA(XI),lpIA’a(XI)’lI)IA’aﬁ(XI)]
- [ a2 [# 00,9 0, 450 (1.242)

As the coordinates x' are dummy arguments of integration, and since the change in
the boundary Q' is infinitesimal by assumption, the two integrals in (1.2.42) can be
transformed to
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5'S = jQ d'xL" [W00, 9™ 100, Y™ (0]
- L d*x2 [P 00, 9" 00, Y 5 (0]

. q&aﬂ ds, 852 [ (0, 1" (0, 1" o500)], (1.243)

where 0Q is the boundary of the four-dimensional domain of integration, and dsy is
a 3-dimensional element of the integration on the boundary. Equation (1.2.43) can be
recast to the following form by making use of four-dimensional divergence theorem

(1.2.44)

o= [ dx[or+ AL 6x“)]
Q

ox“

The variation of the Lagrangian
8.2 = 2" [0, 9" 100, 9" )] - 2 [P0, Y (00,9 500 (1.2.45)

generalizes both (1.2.44) and (1.1.26), and we have introduced a shorthand notation
for =% [!,DA(X), l/)A’a(X), V,UA’aﬂ(X)] which we shall also use in the text that follows.

Now, we demand the invariance of the action (1.2.36) with respect to transform-
ations of the group which means setting §'S = 0. It makes the integral on the right
side of (1.2.44) vanish which means that its integrand must be zero. However, the right
hand side can be amended with a divergence of a vector density %% that is chosen in
the form of a solenoidal (divergenceless) field,

L AL _ 07

5 = S
<z ox“ ox“

(1.2.46)
where, * = 93“(1/)‘4, lpA,a) is a vector density of weight +1. Although the divergence in
the right side of (1.2.46) vanishes identically it does not mean that the field % is nil
itself. Indeed, it can be always chosen in the form of a divergence #* = p* B8 from a
skew-symmetric tensor density b* = b'®! £ 0. Such divergenceless vector fields play
an essential role in constructing conserved quantities. For this reason, and for the
sake of generality, we continue to consider the vector density %* explicitly. We have
to note that 2" can be either a part of or have no relation to the Lagrangian under
consideration. Nonetheless, by using it, one can modify and correct the conserved
quantities derived from the Lagrangian by the direct Noether’s procedure.

It is necessary to remark the following. Some authors permit on the right hand
side of the identity (1.2.46) a divergence that does not vanish identically,

ALEx") _ 9

0.7 = s
i ox“ ox“

(1.2.47)

see, for example, [240]. Indeed, sometimes symmetries under consideration lead just
to an identity of the type (1.2.47), not to (1.2.46). However, because in this book we
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do not consider models which lead to the identities of the type (1.2.47) we do not use
(1.2.47) in what follows.

The variation of the Lagrangian in (1.2.45), §.Z, can be represented in terms of the
variations of its arguments:

6% = —51/)

oy l/fA a0 "

Because the operations of taking the §-variation and the partial derivatives com-

mute, the variation (1.2.48) of the Lagrangian can be reshuffled and presented in the
following form:

5(¢ 5@ ). (1.2.48)

8L . .a A 0.Z A
0% = —6Y~ + +0, 61,0 oy~ ] (1.2.49)
sYpA [&P“‘ oA
where the notation
6% 0% 0.7 0.Z
—=—-90 0 1.2.50
T “(az//*,y)* "”(aw,,w) (1250

stands for the Lagrangian derivative generalizing the Lagrangian derivative (1.2.24) to
the case of the Lagrangians depending on the second derivatives of the field variables
(for more detail, see (A.2.38) and (A.2.42) in Appendix A.2.4), and we have used short-
hand notations for the operators of partial derivatives 9, = 9/0x", 9,, = 9,0,. We have
also defined a Lagrangian derivative with respect to the partial derivatives of the field
variables,

62 _ 22 . 3%
spr,  opt,  Topt,,’

Finally, substituting (1.2.49) into the identity (1.2.46), one brings it to the following
form,

(1.2.51)

6L a4 0L a4 v g

&pA 6¢A % |3 o 8y . syt - 26x" + B |. (1.2.52)
This equation is customarily called the main Noether’s identity.

Notice that deriving the identity (1.2.52) one does not impose any limitations on
the field variables besides their differentiability. Furthermore, derivation of (1.2.52)
does not set any constraints on the variations of the variables at the boundary of the
integration domain Q in (1.2.43). The vector density %“ is divergenceless, 0,%* = 0,
but otherwise remains arbitrary inside the domain of integration of the action. Its par-
ticular choice depends on the physical problem under consideration. For example, the
procedure of symmetrization of the canonical energy-momentum tensor which will be
discussed in Section 1.2.4 will lead to a specific choice of this vector field.
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For particular applications of the Noether identity (1.2.52) we have to specify
the transformation group (1.2.37), (1.2.38) of the dynamical variables and use it for
calculating the variations entering (1.2.52). We consider this procedure in the next
Sections.

The first Noether’s theorem

The first Noether’s theorem is formulated as follows.

— If the action functional, S, is invariant with respect to transformations of a finite
n-parameter (with n constant parameters £°) Lie group G, then, there exist n lin-
early independent identities relating the Lagrangian derivative to a divergence of a
vector density field.

To prove it we use the general identity (1.2.52). Transformations of coordinates
and field variables (1.2.37) and (1.2.38) making up the finite group G,, are linearly
proportional to coordinates and field variables,

X" = £°X X", (1.2.53)
Yt = 2y, (1.2.54)
where &7 are arbitrary constant parameters with the group index a = 1, ..., n, while

Xa and ‘i’a are operators generating the transformations of the group G, but not
depending on the fields l/)A and/or their derivatives.

Let us now pick up the generators f(a in the form of partial derivatives, Xa = .{gjay,
contracted with n vector fields, && = &/(x), of displacements. Then, the perturbations
(1.2.53) and (1.2.40) which enter (1.2.52), take the form:

o =%, (1.2.55)
syt = e (P 9" - o) . (1.2.56)

Substituting (1.2.55) and (1.2.56) into (1.2.52), where we set for a divergenceless vector
density #* = &2, and dropping off the constant parameters 7, one obtains the
identity

% =3, (7F+ A). (1.2.57)

The set of n quantities /,f presents the Noether currents:

(\PalpA - {gayl/)A)

5L .
/a == 6II)A’H (\Pal/)A _ga alpA)
+ az;l% (\ilalpA,v - ggl/)A,va) + fsi’f . (1.2.58)
AV

Equations (1.2.57) and (1.2.58) prove the first Noether’s theorem. There also exists the
inverse theorem [266] but we do not consider it here.
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A direct consequence of the first Noether’s theorem is that if the action functional
is invariant with respect to the group transformation and the Lagrangian derivative
on the left side of (1.2.57) vanishes, then, the corresponding Noether currents /a“ are
conserved,

9y =0. (1.2.59)
The corrected currents are also conserved:
9, (7 ;‘ + ,@5) =0. (1.2.60)

Now, we recall that 1/)A = {(;bB , maﬂ}. Then, if the metric Mg is a fixed (background)
field, then the Lagrangian derivative 6./ &p“ does not vanish because 6./ dmgg # 0.
However, even in this case the conservation laws analogous to (1.2.59) or (1.2.60)
can be established. Such a possibility will be shown, for example, in deriving the
conservation law (1.2.99).

The second Noether’s theorem

A local gauge group, an infinite Lie group, can be obtained from a finite group G, by
replacing the constant group’s parameters £* by n continuous fields £*(x), then G,, —
Geoon- Such a procedure is called the group’s localization. For example, the group of
coordinate transformations in spacetime is a Lie group G, := X'* = f%(x), where f*(x)
are smooth differentiable functions.

The infinite Lie groups are used to study the continuous symmetries of the action
functional S. It turns out that these symmetries are directly associated with a set of cer-
tain differential equations. This is the essence of the second Noether’s theorem which
is formulated as follows:

— Ifthe action functional, S, is invariant with respect to transformations of a Lie group

Go.n barametrized by n differentiable fields and their derivatives up to the order

k, then there exist n identical relations between the Lagrangian derivatives and

derivatives from them up to the order k.

Let us prove this theorem. Assume that the action (1.2.40) is invariant under the action
of transformations of the group G,,,. Let 6x* and &' 1pA are linearly proportional to
functions €*(x) (a = 1,2, ..., n) and their derivatives. This extends the case of a finite
group G, to the generators which are continuously differentiable functions. For the
sake of simplicity we consider here only the first derivatives of %(x) (k = 1) as the
case of the higher derivatives (k > 1) is technically similar but more tedious. Thus,
generalization of (1.2.55) and (1.2.56) to the case of the Lie group is:

Y = (&S, (1.2.61)

0e(X)  aa

8" = £ 0)wg (W, Yoo ap) + 5 Wa ", .00 P ap): (12.62)
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where again, &' = &/(x), and we have included all terms depending on the derivatives
of the field variables to functions a);1 and w‘;‘“ defining the group structure.

Substituting (1.2.61) and (1.2.62) into the main Noether’s identity (1.2.52), where we
set for a divergenceless vector density #* = &° (x)%g, and making use of the Leibniz
rule for differentiation by parts, result in:

-0

2102
(i

(UHW

Here the current .#" is defined as

(22 )|e = (o7 vy, (1.2:63)

_ 6.7 A 0&” A 0.7 A 0&"” A
I == {&l’A,v [sawa + ﬁwa“] + asz,,wa" [sawa + ﬁwa“]
+&t <$§,‘; + wﬁvg%” . (1.2.64)

Now, we integrate this identity, apply the Gauss’s theorem, and assume that £%(x) and
their derivatives vanish at the boundary of the integration domain Q. This yields the
integral identity,

2102

waw—a

u

6%

d*x (a)A”—>] gx=o. 1.2.65

|, )< (1.2.65)

Because £%(x) are arbitrary functions inside the domain of integration, one obtains a

set of n differential equations for the Lagrangian derivatives (of the first order in the
case under consideration)

0

4y 6L £8ZL
u\ Wa sph )~

w, W =0. (1.2.66)

This proves the second Noether’s theorem. There is also an inverse theorem [266] but
we do not consider it here.

Let us define in the space of the Lie group the inverse object ’lwgy such that
’lwgya)‘zy = &3, where &3 is the tensor product of the Kronecker symbols with the
indices belonging to the space of the field variables. Then, the differential equation

(1.2.66) can be presented in a covariant form:

WL\ _
DH (a)a W) =0; (1267)
D,=0,- Gy Gp=""wjw)

where D, means a covariant derivative constructed with the help of a generalized
connection G au introduced in the space of the Lie group.
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The important point to notice is that equation (1.2.63) not only associates the Lag-
rangian derivatives with the set of identities (1.2.66), the same (1.2.67), but also states
that the current (1.2.64) is conserved identically,

9,7 = 0. (1.2.68)

The vector field %" entering (1.2.63) is divergenceless, 3,%" = 0, on its own. Therefore
the corrected current is conserved identically as well,

9, [#" +€" ) #)] = 0. (1.2.69)

Concluding the point, it is necessary to make some remarks.

First, setting in (1.2.61) and (1.2.62) £(x) = € = const, one finds that the identity
(1.2.63) is simplified to the identity (1.2.57), current (1.2.64) is simplified to the currents
(1.2.58).

Second, the identities of the general type (1.2.66) and (1.2.68) are the basis for
constructing the Klein and the Klein-Noether systems of identities and constructing
superpotentials, see Sections 1.4.1, 6.1.2 and 7.1.1.

Third, the currents in (1.2.68) and (1.2.69) are conserved identically, independently
on whether the equations of motion are satisfied or not. If the equations of motion hold
and the Lagrangian derivative 6.2/8y” disappears from the expression (1.2.64) then
the current, .#¥, transforms to the form #* given in (1.2.58), and the identities (1.2.68)
and (1.2.69) become physically sensible conservation laws:

9,7 =0, (1.2.70)
a,[ 7"+ A = 0. (1.2.71)

Fourth, a possibility to include divergenceless vector density % = £%(x)%} into the
current (1.2.64) allows us to develop the procedure of the Belinfante symmetrization
of the canonical energy-momentum tensor of perturbations in general relativity and
arbitrary metric theories, see Sections 6.2 and 7.2.3, respectively.

Diffeomorphisms and the Lie derivatives

Until now, we have not yet specified the group of transformations that leaves the

action functional invariant. The corresponding variations of the field variables gen-

erated by the action of the group can be split in two categories:

— Intrinsic variations. They are generated by the gauge transformations of the
dynamical field variables which change their functional form in the corres-
ponding functional space. The intrinsic variations are not related to coordinate
transformations at all, and do not change the values of the background fields.

— Extrinsic variations. They are generated by coordinate transformations. They
change both the functional form of the dynamic variables and that of the back-
ground fields.
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The intrinsic and extrinsic variations are associated with different symmetries of the
physical system and should be clearly distinguished one from another. In this book
we focus primarily to the metric theories of gravity and pay more attention to the sym-
metries and corresponding conserved quantities generated by the extrinsic variations.
Our classification of the field variations coincide with the anatomy of variations in the
Section 3.9.4.1 in the book [267].

Let us make an infinitesimally small deformation of coordinates in the spacetime
manifold .#:

XM =X+ (%), (1.2.72)

where a smooth vector field £* defines a congruence of integral curves along which the
coordinate grid is dragged. We demand that the transformation (1.2.72) preserves the
local differentiable structure of the manifold .#. Such a differentiable mapping from
the manifold .# to a new manifold .#’ is called a diffeomorphism. In what follows, we
assume that £* vanishes on the boundary of integration of the action. Recall also that
infinitesimal deformation (1.2.72) generalizes the time shift (1.1.18) in mechanics.

Under the action of the diffeomorphism (1.2.72) all geometrical objects, say l,bA(x),
residing on the manifold .# are mapped to the objects, lp’A (x"), residing on manifold
/" in accordance with their transformation properties. In the linear approximation
the change is given by

YA = 900 + Y00 9,8", (1.2.73)

where the permutation operator l/)A(X)'I‘: is identical to that in (1.2.8) and defined by
the transformation properties of !,DA(X) (see Appendices A.1 and A.3.1 for more detail).
Diffeomorphism (1.2.72) and transformation (1.2.73) correspond to the infinitesimal
perturbations (1.2.53) and (1.2.54) of coordinates and the field variables respectively:

ot = &(x), (1.2.74)
8y () = Y )| 0,8". (1.2.75)

The transformed fields 14 (x') reside on the deformed manifold .#’ and cannot be dir-
ectly compared with the objects on the manifold .#. To compare the geometric objects
in .#' with those in .#, one has to pull them back from .#' to .# by making use of
the, so-called, Lie dragging or Lie displacement along the integral curves of the vector
field &*. This procedure consists of two parts: first, we transform the geometric object
l/JA in accordance with equation (1.2.73), and, second, we shift the argument of ll)’A (x"
from the point x' to the point x by making use of the Taylor expansion, so that

PA0) = P00 + £t () + 0(£). (1.2.76)

After that we drop off all terms which are non-linear in £* and compare lp'A (x) with
™ (x) at the same point of .. The difference
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S 00 = P00 - Y ), (1.2.77)

between l/)’A (x) and l/)A (x) is the standard definition of the Lie derivative of ¢A(x), see
e. g. [409],

sy = £, (1.2.78)

We would like to draw the attention of the reader to the fact that for historical reasons
definition of the Lie derivative (1.2.78) which we use in this book, has an opposite sign
with respect to the definition used in standard mathematical textbooks on differen-
tial geometry like [409]. It is also useful to point out that variation (1.2.77) has been
already used in our calculations, see (1.1.26—1.1.27) and (1.2.40). In case of (1.2.78), this
variation is fully extrinsic as it is induced by the diffeomorphism (1.2.72).

Explicit expression for the Lie derivative (1.2.78) can be obtained after combining
(1.2.73) and (1.2.76-1.2.78) which yields:

£t = -0 + [ 9,8". (1.2.79)

This expression is given in terms of the partial derivatives but can be reformulated in
an explicitly covariant form. To this end we use definition of the covariant derivative
(1.2.8) to rewrite the partial derivatives in (1.2.79) as follows,

g
Wt =yt - v (1.2.80)
9,8 =&, - g (1.2.81)

Substituting (1.2.80), (1.2.81) into (1.2.79) and elaborating on terms depending on the
Christoffel symbols, show that all such terms cancel out, yielding

E;l/)A _ —fyl/JA;y " l/)A |’: {V;H. (1.2.82)

We have provided derivation of (1.2.82) in terms of the covariant derivatives of flat
spacetime but, in fact, any curved spacetime manifold with a pseudo-Riemannian
metric yields the same result (see, e. g., (A.3.27) in Appendix A.3.3). We discuss other
important properties of the Lie derivatives in Appendix A.2.3.

1.2.4 Conserved quantities in field theories

The differential, integral and global conservation laws

It is very important for physical applications to find out the consequences which fol-
low from the Noether theorems. The key quantities are currents, # K. which satisfy a
differential conservation law,

0, 7" =0, (1.2.83)
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time

Figure 1.1: Avolume V as a truncated cylinderin a
n-dimensional spacetime manifold.

that can be interpreted as an equation of continuity,

%0 7°=-97" (1.2.84)

Usually, 7 ¥ are vector densities of weight +1. If this is the case, the expression ay J a
is a scalar density and the conservation law (1.2.83) can be rewritten in an equivalent
covariant form:

D, 7" =0, (1.2.85)

where D, is a generalized notation for a covariant derivative that is interpreted
depending on the problem under consideration either as a covariant derivative
defined with the use of a flat metric in curvilinear coordinates, or as that of a pseudo-
Riemannian metric of a fixed background manifold, or as one of a physical metric on a
dynamical spacetime manifold, etc. For example, the transition from the partial to the
covariant divergence of the vector density in case of the dynamical metric, see (A.2.12)
in Appendix A.2.1. Also, the currents _#* and the conservation laws for them (1.2.83-
1.2.85) are valid in case of an arbitrary n-dimensional pseudo-Riemannian spacetime
manifolds with the metric signature (-, +, +, ..., +).

What are the global consequences of the covariant conservation law (1.2.85)? To
answer this question it is more convenient to operate with the differential conservation
law of the vector density written down in the form of the partial derivative (1.2.83).
Let us consider an n-dimensional volume V in a spacetime whose boundary consists
of an (n - 1)-dimensional timelike cylinder S and two (n — 1)-dimensional spacelike
cross-sections, X, and Z,. For the sake of simplicity we assume that S is defined by
the condition x! = r = const in an appropriate coordinate frame; each of the cross-
sections, X, and Z; are defined by their own constant time: ¢, and ¢, respectively, see
Figure 1.1. Each of the cross-sections X are restricted by the boundary oX that is an
intersection of £ with S. Because equation (1.2.83) represents a scalar density of weight
+1, it can be easily integrated over the volume V. Applying the Gauss (Stokes) theorem
to (1.2.83), one gets,
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J &3, g - j d'x 70 - j d'x_g° +<ﬁ dtd" > 7' =0, (1.2.86)
v 5 ‘ % ‘ s

where we have employed our choice of the coordinate system for making simplifica-
tion in the last term of (1.2.86), d"x = dtd" 'x = dtdx'd"?x, and d"'x = dx'd"?x is the
element of integration on the cross-sections £, while d" 2x is the element of integration
on the boundary o%. Notice that the relation (1.2.86) contains the integral quantity

_ n-1 0
P = Ld X7 (1.2.87)

where the integrand is the time component of the current, # 0, that is interpreted as a
density of 2. If one imposes a boundary condition on the last term in (1.2.86) such as

5]
95 dtd"x g = J dnji 4 sl =0, (1.2.88)
s to  Joz

then, (1.2.86) states that £ is independent of the choice of the cross-section Z, which
means that it is conserved and does not depend on time. If the condition (1.2.88) does
not hold, then &2 is not conserved.

Let us clarify the physical meaning of the boundary condition (1.2.88). Let us
assume that the difference 6t = t; - ¢, is infinitesimal. Then the equality (1.2.86) can
be rewritten in the form:

a7 _ —cﬁ d"*x 7. (1.2.89)
dt oz c

The relation (1.2.89) tells us that if the flux of the vector field # ! through 0% is absent,
then the quantity & does not depend on time; if the flux is not zero, then & is not
conserved.

Generally, if the boundary condition (1.2.88) is satisfied, the quantity (1.2.87) is
called an integral conserved quantity; in the case when the boundary oX goes to
infinity, the quantity (1.2.87) is called a global conserved quantity.

The canonical conserved quantities

The conserved quantities obtained on the basis of the Noether theorem outlined in
the previous sections are called the canonical conserved quantities. In this section we
demonstrate the principles of construction and properties of the canonical quantities
by studying a simple example of a field theory in the Minkowski space in arbitrary cur-
vilinear coordinates with an action taken in the covariant form (1.2.17). To shorten the
formulae we use again a unified notation for the matter fields, ¢A, and the Minkowski
metric, y,g, by denoting YA = (¢4, Yap!- Then, the action (1.2.17) is rewritten as

S-= j AL D", B 0 Vog) = j d'x LW Y ). (1.2.90)
Q Q
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This is a simplified case of the action (1.2.36) without second derivatives of the fields
that directly permits us to use the results of the Noether theorems.

We assume that the group transformations used in the first Noether’s theorem
are diffeomorphisms (1.2.72) transforming the fields as shown in (1.2.73) and inducing
variations (1.2.74) and (1.2.75) of coordinates and fields. Comparing (1.2.75) with (1.2.54)
we see that the operator ¥, entering (1.2.54) is

W' = 90, (1.2.91)

Replacing this expression for ¥, to both sides of equation (1.2.57) and recalling the
definition (1.2.79) of the Lie derivative, we can recast the Noether identity (1.2.57) in
the following form:

5¢A fsa‘P =0, (I + #h), (1.2.92)
where the Noether current
07
a = T £ Y - 28, (1.2.93)
M

and the vector field density % is solenoidal
=0. (1.2.94)

Let us now return to the original variables, ¢B and Yaps and write (1.2.92) and (1.2.93)
in a more explicit form:

07 6L

Wﬁgad)A + 6 ﬁﬁfayaﬁ a (/tl + ‘@Z) (1.2.95)
0z 07

FH === g g - T E, yp - LEN (1.2.96)

fa 84)‘4 fa a[} fa O(ﬁ a

We notice that the Lagrangian derivatives are covariant as shown in (1.2.29) and
(1.2.31), the Lie derivative is covariant according to (1.2.82), and expressions 0.%/ aqu u
and 0. /ayaﬁ,y are covariant as well, see (1.2.28) and (1.2.31). This remark elucidates
the covariant nature of expressions (1.2.95) and (1.2.96). In particular, current (1.2.96)
is a covariant vector density of weight +1.

Now, we specify that the finite group of transformations (1.2.55) and (1.2.56) is
the Poncaré group of motions of the Minkowski space with the displacement vectors
&Y being ten Killing vectors, & = {é’g,{[‘;}y]}. Components of the Killing vectors are
given in (1.1.72) and (1.2.5) in the Lorentzian and curvilinear coordinates, respectively.
Because the Poincaré group does not change the Minkowski metric, the Lie derivative
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£.Yap = O, see (1.2.6), and all terms being proportional to the Lie derivative of the
metric tensor vanish. It reduces equation (1.2.95) to a simpler form

5 ¢A££K¢ =0, (7t +AY), (1.2.97)

while the Noether canonical current (1.2.96) reads

o _ 0L
a¢A (fxd’ = § }ﬁ HBa)-28. (1.2.98)

Assuming that the field equations (1.2.25) hold, equations (1.2.97), (1.2.94) lead to a
differential conservation law for the canonical current (1.2.98):

0,7t =o0. (1.2.99)

Ten canonical integral quantities (1.2.87) corresponding to the ten Killing vectors are:

(&) = L dx_72(ED). (1.2.100)

They are analogous to the ten conserved quantities in mechanics of massive point
particles, see (1.1.91) and (1.1.95).

To study physical properties of the canonical current (1.2.98) associated with
its conservation, we notice that by employing the Killing equations (1.2.6) it can be
written down in the following form:

I = 0,80 + 6", (1.2.101)

where we have introduced the following notations,

0 =

o= Z8, (1.2.102)
o

TR

o(6")

B

o

(1.2.103)

Here, the quantity .6,* is called the canonical energy-momentum tensor density® and
o o 1s a spin (or helicity) tensor density both being of weight +1.

8 In some applications the canonical energy-momentum tensor .6,* = .0,"//~y is more useful
instead of the tensor density .0,*
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In many important cases the energy and momentum of a closed physical system
are conserved. Therefore, we are interested in formulating the conservation law of
the canonical energy-momentum tensor density .0,”. They can be derived from the
conservation law of the canonical current 7} associated with different Killing vec-
tors. First, let us pick up the Killing vectors of translations in the Minkowski space,
& = {g , and substitute them to (1.2.101). Equation (1.2.7) tells us that the Killing vec-
tors of translations are covariantly constant, {l’i‘; 5 = 0, so that the second term in the
right side of (1.2.101) drops out, and the canonical current (1.2.101) corresponding to
the translational symmetry, is reduced to

JLE) = 0,85 (1.2.104)
The conservation law (1.2.99) applied to (1.2.104) along with (1.2.7) yields
05" & = 0. (1.2.105)
which tells us that the energy-momentum tensor density is conserved

0.5, =0. (1.2.106)

M=
The conservation law (1.2.106) is necessary but not sufficient for a number of applic-
ations. The fact of the matter is that the canonical energy-momentum tensor density
¢0,p is not symmetric, (0,5 # (0p,, excluding the simplest cases, and can not be used
alone to describe the conservation law for angular momentum of the system.

To find out the skew-symmetric part 6,5 of the energy-momentum let us again
turn to the canonical current (1.2.101) and use the conservation law (1.2.99) for it. But
now we consider the Lorentzian rotations that are the infinitesimal spatial rotations
and boosts in the Minkowski space generated by the corresponding Killing vectors,
{I‘? . For these vectors the canonical current (1.2.101) takes the following form

JEED = 0,8 + 0" &g, (1.2.107)
& = &apy (1.2.108)

where the term, CGU"E&M, is associated with the orbital momentum of the system
and 6"7¢(4p))(0,p) describes the spin or intrinsic angular momentum of the system.
Applying the conservation law (1.2.99) to the canonical current (1.2.107) along with
equations (1.2.7), (1.2.106) yields

O10p) = 0" ap1y- (1.2.109)

It tells us that in the most general case the canonical energy-momentum tensor density
of a physical system is not symmetric, and its skew-symmetric part is associated with
the divergence of the system’s spin.



44 — 1 Conservation laws in theoretical physics: A brief introduction

Fortunately, it is possible to build a symmetric tensor density of energy-
momentum. A procedure was proposed by Belinfante [35] and is called the Belinfante
symmetrization which we now discuss.

The Belinfante symmetrization

Belinfante [35] noticed that the conserved current in the right side of (1.2.97) is defined
up to a solenoidal vector density %5 added to the canonical current (1.2.101). The
solenoidal vector field can always be chosen in the form of a divergence from a
skew-symmetric tensor density b = plaBlY of weight +1 such that

#i= (b8 );p. (1.2.110)
Indeed, taking the divergence of both sides of (1.2.110) we get
By = 0. (1.2.112)
Belinfante introduced a new conserved symmetrized current

s = I+ By, (1.2.112)
with ¢ defined in (1.2.101) and #; defined by (1.2.110) where
b = g P 4 g Wl _ ghlrel, (1.2.113)

The tensor density b is called the Belinfante correction.
The Belinfante energy-momentum tensor density is defined as a linear
combination
Boaﬂ - Cgaﬂ " bﬁya;y’ (1.2.114)
which is supposed to be symmetric, BGaﬁ = Boﬁa. In order to prove that the Belinfante
energy-momentum is indeed symmetric, let us consider the skew-symmetric part of
(1.2.114). Because of (1.2.109), we have

500ap) = 0" 1ap1sy + B (aplyy- (1.2.115)

Now we substitute the Belinfante correction b*? to (1.2.115) which immediately tells
us that ;0,4 = 0, g.e.d. Thus, indeed, ;0,4 is symmetrical in a and B. For this reason,
it is called the symmetrized energy-momentum. Because the conservation law (1.2.99)
was used in proving (1.2.115), and it assumes that the field equations are satisfied, one
concludes that Belinfante’s symmetrization procedure is also valid under the same
condition.
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Due to the antisymmetry of the Belinfante correction b**” in a and Bin (1.2.113) and
by the conservation law (1.2.106), the energy-momentum (1.2.114) is also conserved
differentially,

305 =0, (1.2.116)

of course, if the equations of motion hold as well.

Making use of the vector density (1.2.110) in the definition of the Belinfante cur-
rent (1.2.112) and combining it with (1.2.101), we construct the current ¢, f . We can see
that it is expressed solely in terms of the Belinfante energy-momentum tensor density

I8 = 50,088, (1.2.117)

where all of the ten Killing vectors have been used. The symmetry of ;0,, and its
conservation law (1.2.116) lead to the conservation of the Belinfante current,

9 7L = 10 up = 0. (1.2.118)

This follows also after using (1.2.112), and taking into account the conservation of the
canonical current (1.2.99) and the identity (1.2.111). Then, by the general recipe (1.2.87),
one constructs ten integral quantities

DoY) = L Px 7). (1.2.119)

The metrical energy-momentum and conserved current

Now, let us turn to the second Noether’s theorem to study the physical system
(1.2.90) where we shall again separate the dynamical variables in the matter fields
and the metric tensor, P* = {¢?, Y} We assume that the variations of coordinates
and variables (1.2.61) and (1.2.62) in the second Noether’s theorem are induced by a
diffeomorphism defined by (1.2.74) and (1.2.78) with (1.2.79) that are

6x% = £ (x), (1.2.120)
69" = £.¢" = 59"+ ¢ %

=&t + ¢A|§ £, (1.2.121)
§YY = £y = £t P8 = B g (1.2.122)

By comparing (1.2.120) and (1.2.121) with (1.2.61) and (1.2.62) we notice that the role
of the continuous parameter £*(x)¢Z (x) is played simply by é%(x) and the following
identifications are implied:

B
a b

wh - ", WP ¢! (1.2.123)
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along with
R AR G R (121249

Then for the system (1.2.90) the current (1.2.64), that is conserved identically (1.2.68),
together with divergenceless vector density (1.2.69), acquires the form:

fg=ﬂ+@“

0L B

¢’ a aﬁ E{V

aqu‘r

u
< ¢| 6‘1/3 an

Using the same arguments, which have been applied for proving the covariance of
expressions (1.2.95) and (1.2.96), one can prove that the current #¥ is a covariant
vector density of weight +1.

Now, we calculate the current, .#*, by making use of the translation Killing vec-
tors of the Minkowski space, §* — & = &5, see (1.1.72). In doing this we shall pick up
%" in (1.2.125) to be the Belinfante vector density #* — %4 where % is defined in
(1.2.110). We also use definitions (1.2.102), (1.2.103) along with the Belinfante energy-
momentum BB’; introduced in (1.2.114). Taking into account the Killing equations for
the metric tensor, £, y,5 = 0, and assuming that the field equations, 6./ 8¢* = 0, are
satisfied, one obtains

) & — L&+ B, (1.2.125)

I = (50 - 8)) & (1.2.126)
Here, a new quantity
67
s0up = zwy (1.2.127)

is called the metrical energy-momentum tensor density which is just symmetric in
a and B by the above-given definition, ;8,5 = s6p,. The metrical energy-momentum
tensor ;6,5 = 50,4/ /=y is also used in physical applications.
Because both tensor densities in the right side of (1.2.126) are symmetric, and the
current f; is conserved by (1.2.69), we conclude that
50‘/}1

=,0} (1.2.128)

U e

However, BBW is conserved by (1.2.116). Thus, due to (1.2.128) the symmetrical energy-
momentum density is conserved as well,

05", = 0. (1.2.129)



1.2 Field theory in the Minkowski space = 47

The equality (1.2.128) also assumes that the two tensor densities entering it are equal
up to a divergence of a skew-symmetric tensor density of a third rank o®*". How-
ever, because of (1.2.128) and the symmetry of both tensor densities, ;6" and 6",
we conclude that 0™ must be fully skew-symmetric with respect to all three indices:
0™ = 0l which contradicts to the symmetry of the energy-momentum tensor dens-

ities. The only way to resolve this issue is to set 0" = 0, which reveals that the two
energy-momentum tensor densities are equal,
0" = ;0. (1.2.130)

Effectively, it means that the current of the second Noether’s theorem is zero under the
conditions of the present consideration,

gL =o0. (1.2.131)

Making use of the metrical energy-momentum, same as the Belinfante corrected
energy-momentum, we can introduce the symmetrical current,

LG = 818, (1.2.132)
where all of the ten Killing vectors are used and which is differentially conserved:
3, /&) =0, (1.2.133)

similar to the Noether’s canonical current (1.2.99) and the Belinfante symmetrized cur-
rent (1.2.118). It allows us to construct the corresponding integral quantity of the type
(1.2.87):

P - L Px_gO(ED). (1.2134)

Discussion
Let us summarize the findings of this subsection. We have discovered the con-
sequences of the first and second Noether’s theorems in application to the conser-
vation laws of the physical system described by the action functional (1.2.90) in the
Minkowski space. The first Noether’s theorem associates the global symmetries of the
action of the physical system with the canonical current ¢ being composed of the
canonical energy-momentum tensor density 8”5 and spin 0°?". The canonical tensor
density Ce“ﬁ is conserved but not symmetrical. The Belinfante symmetrization pro-
cedure introduces a new energy-momentum tensor density ,6* p which is symmetrical
and conserved. A corresponding symmetrized current #; can be build out of the
Belinfante energy-momentum tensor density alone.

The second Noether’s theorem associates the local symmetries of the action of
the physical system with a conserved current .#“ and introduces the metrical energy-
momentum tensor density 50“,3 which is symmetrical and conserved. A symmetrical
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current ¢ is build out of the metrical energy-momentum tensor density alone. The
conservation law of the corrected current .7 establishes the equality of the Belinfante
and metrical energy-momentum tensor densities which makes the current .#3 = 0 on
the equations of motion of the physical fields and for translation Killing vectors.

It turns out that on the equations of motion, Noether’s canonical, Belinfante’s and
metrical currents are tightly interrelated,

Ip =I5 =Ic+ (baﬁoflg);ﬁ’ (1.2.135)

where b o+ is made of the spin tensor densities 0“'30, and all the currents are defined
for the ten Killing vectors of the Minkowski space, é7. Respectively, corresponding
integral quantities, (1.2.100), (1.2.119) and (1.2.134), are connected as follows:

Py=Po= P, + 4)62 ds;p” ¢, (1.2.136)

where 0% is a two-dimensional boundary of the 3-dimensional volume %, and ds; is a
surface element of integration on oZ.

One concludes that the values of #; and & can coincide with that of &2, in
case when the closed surface integral from bOiUé}‘(’ disappears. It can happen for vari-
ous reasons: (1) the system can be closed so that the physical fields q.')A vanish on the
boundary 0Z; (2) a fall-off behavior of the fields is rapid enough to make the surface
integral nil in case when 0Z — oo; (3) the parity of the fields annihilates the surface
integral.

It is important to notice the role of divergence, div = 9,4, in the overall Noether’s
formalism of the conserved quantities. The divergence, being vanishing, does not con-
tribute to the Noether identity but it linearly couples with the conserved currents
which are, thus, defined with a certain degree of freedom of the solenodial vector field
2. The condition of the symmetry imposed on the energy-momentum tensor dens-
ity singles out the divergence in the form of the Belinfante correction (1.2.110) which
connects the canonical Noether’s current with the symmetrized Belinfante current in
a unique way. The second Noether’s theorem and the symmetry condition imposed
on the energy-momentum tensor density equate the Belinfante and metrical energy-
momentum tensor densities. It shows that the symmetric energy-momentum tensor
density in the Minkowski space is unique.

1.2.5 Examples of field theories in the Minkowski space

It is useful to illustrate the applications of the Noether theorems with some examples
of simple, but physically important field theories. We consider the Lagrangian of
Maxwell’s electromagnetic field, the ideal fluid and a free relativistic scalar field. We
apply the Noether variational formalism to derive the field equations and to construct
the corresponding conserved energy-momentum tensor densities for the fields under
consideration.
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Electromagnetic field

The independent dynamical variable of electromagnetic field is a vector-potential 4, =
(Ag, A;) = (¢, A), which unites the components of electric and magnetic fields in the
form of the electromagnetic tensor [285, 315]

Fop = Apg — Agsp- (1.2137)

Covariant derivatives in F,z can be replaced with the partial derivatives because,
due to the antisymmetry of the electromagnetic tensor, all terms with the Christoffel
symbols entering the covariant derivatives, are canceled out completely. Hence, the
covariant derivatives in the expression for the electromagnetic tensor are irrelevant
but they will be formally kept in the definition (1.2.137).

The Lagrangian for free electromagnetic field is

\/—_Y Y \/—_)/ [T\
Lo = HF F, = Hy" Y FouFoy- (1.2.138)
The second form of the Lagrangian in (1.2.138) disentangles the metric tensor from the
dynamical field variables which are A, with the lower index, but not A* = y“ﬁA 5- Now,
we substitute .%,, and ¢* = A, into (1.2.29), take the variational derivative and obtain
the equations of motion of free electromagnetic field in curvilinear coordinates:

50%111 afem 1 Faﬁ 1 o
= =——4/- p=—-——F =0, 1.2.139
6A, < 0Aup /. 5 4m VIV 4m B ( )
where 7% = \/~yF%.
Now, let us consider the intrinsic (gauge) transformation of the field variables:

Al = Ay + 0,e(X). (1.2.140)

One can easily check that the electromagnetic tensor (1.2.137) is invariant under trans-
formation (1.2.140). Hence, the Lagrangian (1.2.138) and the field equations (1.2.139)
are invariant under (1.2.140) as well. Transformations (1.2.140) are the simplest
example of the transformations (1.2.61) and (1.2.62) where 6x* = 0, wf} =0, and w‘;“" =1
with £%(x) = &(x). The identity (1.2.66) of the second Noether’s theorem in application
to electrodynamics is,

1
e aﬁgaﬁ =0, (1.2.141)

which is apparently valid due to the antisymmetry of .Z%.
Now, let us construct the canonical energy-momentum tensor density (1.2.104)
with using the Lagrangian (1.2.138):

05" = afemAy;ﬁ ~ 8 Lem = VY (F“”Ap;ﬁ - 6§%F”VFW>. (1.2.142)
wa

41T
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This expression is neither symmetric nor gauge invariant with respect to transforma-
tion (1.2.140) but we can use the Belinfante symmetrization to fix it. The spin density
(1.2.103) for the Lagrangian (1.2.138) is

o ﬂ PP (1.2.143)

bringing about the corresponding Belinfane correction (1.2.113) in the form of

b = N Ypwygp, (1.2.144)
4m
Eventually, the Belinfante energy-momentum tensor density (1.2.114) acquires the
form:
VT 1
Boaﬂ = 4—7_[ (Fpanﬁ - Zya,BFFVFPV> . (12145)
which is apparently symmetric and gauge invariant because it depends solely on the
electromagnetic tensor in contrast to the canonical energy-momentum (1.2.143).
We can also obtain the metrical energy-momentum tensor density (1.2.127) by
varying the Lagrangian (1.2.138) with respect to the metric tensor and to check by
inspection that it coincides with the energy-momentum (1.2.145).

The ideal fluid

The ideal fluid is characterized by the following thermodynamical quantities: the
particle rest-mass density p, the specific intrinsic energy of the fluid per particle II,
and the pressure p which obeys the equation of state, p = p(p). The total energy dens-
ity is € = p (1+ IT). The dynamical description of the ideal fluid is based on the specific
enthalpy of the fluid,

u=P 1 42 (1.2.146)
p p

The primary dynamical variable is an auxiliary scalar field, so-called Clebsch potential
@, which is also called the velocity potential. In the case of a single-component ideal
fluid it is introduced by the following relationship [411]

Hu, = —d)’a = —q);a (12147)

where the four-velocity u® of the fluid is normalized: u*u, = —1. Thus, the specific
enthalpy can be expressed in the following form:

U= \-y%D,D.p. (1.2.148)

The entropy of the ideal fluid remains constant which excludes it from consideration.
The intrinsic energy of the ideal fluid, II, is related to pressure, p, by the first law of
thermodynamics,
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dIl + pd <%) =0. (1.2.149)

It can be used to derive the following thermodynamic relationships,

dp = pdy, (1.2.150)
de = udp, (1.2.151)

which mean that all thermodynamic quantities are solely functions of the specific
enthalpy u, for example, p = p(u), II = TI(y), etc.

Lagrangian description of the ideal fluid as a dynamical system on spacetime
manifold is provided with the Lagrangian defined as .25 = -+/~yp. Taking into
account (1.2.146), it is more instructive to re-write the Lagrangian in the form:

Ly =—~yp =~~y(e-pp), (1.2.152)

with the specific enthalpy defined in terms of the Clebsch potential (1.2.148). It corres-
ponds to the kinetic energy of the fluid. Now, substituting .5 and (],’)A = @ into (1.2.29),
one obtains the equations of motion of the ideal fluid:

4 [ = (%a_l)_ % _ )CD_“] _
5®_[\/_y pou Hou W, 7%

Combining (1.2.151) and (1.2.147), one can reduce the fields equations (1.2.153) to a
simpler form

(1.2.153)

5.2
Tbﬂ = (V=ppu’)., = (v=ypu”) , = 0, (1.2.154)

which is the continuity equation as expected.
Now, we derive the canonical energy-momentum (1.2.104) for the Lagrangian
(1.2.152):

9%
9D,y

3

Caaﬁ = (D;IX - 6§$ﬂ = \/__V <§q);ﬁq);tx + 5§p>

=y [(e +p) uﬁua + 5§p] (1.2.155)

where the first equality in (1.2.155) was obtained with the help of (1.2.151) and defini-
tion (1.2.148), whereas the second equality in (1.2.155) was obtained with making use
of (1.2.146) and definition (1.2.147). The canonical energy-momentum (1.2.155) turns
out to coincide with a well-known energy-momentum tensor density of an ideal fluid
[178, 315].

Lowering the index 8 in (1.2.155), we can easily see that Cﬂaﬁ is symmetrical. Thus,
there is no need in applying the Belinfante symmetrization. Indeed, the spin density
(1.2.103) corresponding to the Lagrangian (1.2.152) is
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af 0% fl

M TC)

o =0, (1.2.156)

because <1)|§r = O for any scalar.
Finally, we notice that the expression .0, coincides with the metrical energy-
momentum (1.2.127) obtained by variation of the Lagrangian .%; with respect to y“ﬁ :

5%,

s0ap = 26)/—,4; = (Oup-

(1.2.157)
In conclusion, we summarize that in the case of the ideal fluid all three types of the
energy-momentum tensor densities coincide.

A scalar field
Lagrangian of a relativistic scalar field ¢ is

Ly = T %yaﬁ¢;a¢;ﬁ_v(¢) , (1.2.158)

where V(¢) is the potential energy of the field. Again, a covariant derivative of a scalar
field is simply a partial derivative, ¢,, = ¢ ,. Now, substituting .#;, and = ¢
into (1.2.29), one obtains the equations of motion for the scalar field in curvilinear
coordinates:

62 _

5D __\/_—y<¢;“;a+m M:

E) El)

The canonical energy-momentum tensor density is obtained after substituting the
Lagrangian (1.2.158) to the general definition (1.2.104). It yields:

> (V) - VT 0. (1.2.159)

0%,
o Ba s =T (79 90,4 V). (12160)

Cgﬂﬂ = a¢

Lowering the index f in (1.2.160), one finds that Ceaﬁ is symmetrical. Therefore, like in
the case of the ideal fluid, there is no need for symmetrization, and all three types of
the energy-momentum tensor densities coincide: Ceaﬂ = Beaﬁ = sﬂaﬂ .

1.3 General relativity: fundamental mathematical relations
1.3.1 Lagrangians for the gravitational sector of general relativity

The main idea suggested by Einstein for constructing relativistic gravity theory which
he called general relativity, was to identify the components of the pseudo-Riemannian
metric, g,3, with the potentials of the gravitational field which also serve as ten inde-
pendent dynamical variables. Hilbert got interested in this geometric approach and
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joined Einstein in the quest for the fundamental equations governing the gravitational
field. While working on this problem, the two great minds were not competing but
complementing each other. Hilbert was tackling the problem as a mathematician,
using methods of variational calculus. Einstein was more physically intuitive, paying
more attention to the conservation laws in the new theory, see discussion in the
review [364].

Historical facts and ideas lying in the foundation of general relativity are pretty
much well-known and can be found in a number of standard textbooks [285, 315].
Here, we discuss only the least action principle in general relativity and its applica-
tions to the derivation of the Einstein equations and the conservation laws. We start
from the postulating the Lagrangian of a free gravitational field.

The Hilbert Lagrangian

Hilbert assumed that the equations of gravitational field are to be derived from the
principle of the least action with the Lagrangian, .%};, of the gravitational field which
has to be a covariant geometric object made in the simplest way from the metric tensor
and its derivatives — a Ricci scalar density,

%y = -8R = Z. (1.3.1)

The Ricci scalar is built out of the metric and its first and second derivatives. It may
look like the application of the principle of the least action to the Lagrangian with the
second derivatives of the dynamical variables gives rise to the field equations of a third
or even a forth order. However, the Ricci scalar depends on the second derivatives of
the metric linearly without coupling them with the first derivatives. Therefore, taking
a variational derivative of such a Lagrangian can not bring about the higher-order
derivatives of the metric tensor in the field equations, which remain the differential
equations of the second order.

To find the Lagrangian (1.3.1) in explicit form we introduce the curvature tensor
also known as the Riemann tensor:

R oup = 0,T" 45 = OpT" gy + rpaﬂr”pv - r”aprpﬁv. (1.3.2)

Contracting this expression with respect to the indices y and v, one finds the Ricci
tensor,

RU(,B = avrvaﬁ - aﬁrvm, + Fpaﬁrvpv - Fvapfpﬁv. (1.3.3)

The Ricci or curvature scalar that is used in the Lagrangian (1.3.1), is built out of the
Ricci tensor by contracting it with the metric:

R=g%Ry. (1.3.4)
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The important geometric object entering formulae (1.3.2)-(1.3.4) is called the Christof-
fel symbols

1
ryﬂﬂ = Egyp (aﬁgpa +0,8pp — apgap) , (1.3.5)

which has 40 independent components in four dimensions. The Christoffel symbols
are not forming a tensorial quantity as it compensates the non-covariant transforma-
tion law of partial derivatives. The covariant derivative, V,, of a tensor density 4 is
defined as follows:

=0,0" + ' 17, (1.3.6)
where the permutation operator ®* |Z is defined in Appendix A.3.1 (see formula (A.3.7)
for more detail). Necessary properties of the operation (1.3.6) with participation of
quantities (1.3.5) are given in Appendix A.2.1.

The Einstein Lagrangian

Even though the Lagrangian (1.3.1) gives the field equations of the required second
order, the presence of the second derivatives in .Z}; creates a problem in definition
of the energy of weak gravitational waves [152]. Einstein had tried to fix it and pro-
posed his own Lagrangian for the gravitational field that does not depend on the
second derivatives of the metric tensor [150]. He noticed that the Hilbert Lagrangian is
effectively split in two parts, one of which is a divergence,

Loy = Ly + 0, (13.7)
where
W = (gﬂyrﬁy “BI‘V )
= \/:gga gyv (gﬂy,v - gyv,ﬁ) . (1.3.8)

The divergence does not affect the field equations and can be dropped from the action.
Note that currently we are not analyzing the conservation laws. The remaining part,
%, is the Einstein Lagrangian, [285]:

L = 88" (TP 1y ~ T ), (1.3.9)

which does not contain the second derivatives of the metric. It is important to emphas-
ize that the Einstein Lagrangian is not covariant because its coordinate transformation
is not tensorial. Hence, it can be nullified at any given point of spacetime mani-
fold by choosing at that point the normal Riemannian coordinates. For this reason,
the Einstein Lagrangian makes sense only in the integral expression for the action
functional.
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The gravitational Lagrangians have dimension [cm 2] while the action S has a
dimension of [erg - sec]. The principle of correspondence with the Newtonian theory
introduces the constant of proportionality —c*/167G which appears explicitly in front
of the gravitational part of the action. For the sake of simplicity, frequently we prefer
to use the geometric system of units in which ¢ = G = 1. Then, the Hilbert action has
the form:

1 4
=—-—— | d'x%, 1.3.10
H on JQ X2y (1.3.10)
whereas the Einstein action is
1 4
Sp=—| d'x%, 1.3.11
E 16m J-Q X<E 1319

where Q is the 4-dimensional domain of integration.

Because % differs from .#; merely by a divergence, the Einstein action (1.3.11)
differs from the Hilbert action (1.3.10) by a surface integral taken on the boundary 0Q
of Q from the quantity #* due to the Gauss’s theorem,

Sp =Sy + 95 ds, 7" (13.12)
0Q

If we impose on the variations of the metric tensor and its first derivatives the
boundary conditions

6gaﬁ'60 =0, Sgﬂﬁ,}’ 0 0, (1.3.13)

the surface integral in (1.3.12) vanishes and does not contribute to the variation of the
action. Hence, from the point of view of variational calculus, both types of the action
are equivalent for the purpose of derivation of the Einstein field equations. Notice that
if we derive the Einstein equations from the action (1.3.11) the first condition in (1.3.13)
is sufficient.

1.3.2 The Einstein equations

The source of the gravitational field of a physical system in general relativity is the
energy-momentum tensor of matter composing the system. In order to describe the
interaction of matter with gravitational field in general relativity the principle of
minimal coupling of gravity with matter is employed. This principle establishes the
simplest form of the coupling of gravity and matter and it is governed by the prin-
ciple of equivalence, according to which any physical equation of special relativity can
be turned into its general-relativistic counterpart by replacing the Minkowski metric,
Nap (01 y,p in curved coordinates), with the relevant metric of the curved dynamical
spacetime, g,3, and by replacing any partial derivative, 9, (or (; ) in curved coordin-
ates), with a corresponding covariant derivative, V,. The minimal coupling of matter



56 = 1 Conservation laws in theoretical physics: A brief introduction

to gravity leads to a natural appearance of the gravity field variable (the metric) and
its first derivatives (the affine connection in the form of the Christoffel symbols) in
the structure of the matter Lagrangian, %), the original definition of which usually
comes from special relativity, for simple cases see (1.2.17). Thus, the action functional
of matter fields, @, is presented in general relativity as

Sy = L d'x Ly (0, V, 0%, 8,) - (1.3.14)

Because the interaction of gravity with matter is incorporated to the matter Lag-
rangian, .%y, the overall action S for gravitational field (we choose Hilbert’s definition
(1.3.10)) and matter interacting with gravitational field, (1.3.14), is a linear combination
of two terms

S= J d'x Ly, (1.3.15)
Q
where the total Lagrangian

Ly = -miﬂgH . Ly - -16%1% Ly (13.16)
is sometimes called the Einstein-Hilbert Lagrangian.

To obtain the Einstein equations one has to vary the action (1.3.15) with respect to
the metric g%, in a fashion similar to that used to calculate the variation of the Lag-
rangian with respect to the matter fields ¢* in the Minkowski space. One reminds that
the variation of the metric and its first derivatives are chosen to be nil on the boundary
of the integration domain in correspondence with (1.3.13). Calculating variation of the
action, 6S, by parts in (1.3.15) with respect to the metric variation, one obtains

8S = j d*x <—L 8Ly + %) 55, (1.3.17)
Q 16m 6g®F g%

where the Lagrangian derivatives taken with respect to the metric are

6{12 = ai:ﬁ B au( aﬁH ) * aw( aiH > (1:318)
6g ag ag U ag SHV

8Ly 0%y 0%y
(_> (1319)

I} gaﬁ 0, gaﬁ 0, gﬂﬂ ”

Substituting into (1.3.18) the Hilbert Lagrangian .%; defined in (1.3.1), one gets the
Einstein tensor density:

(‘Jﬂaﬁ = —> === '%aﬁ - Egaﬁ%, (1320)
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where the covariant expression in the right side of (1.3.20) has been obtained with
the help of (A.3.44) and (A.2.45) in Appendix A. The Lagrangian derivative (1.3.19) of
the matter Lagrangian ., defined in (1.3.14) yields by definition the metrical energy-
momentum tensor density of matter:

6%y

%ﬁ = 25g—aﬁ.

(1.3.21)
The fact that this definition indeed leads to a covariant expression can be verified
again by making use of (A.3.44) and (A.2.45) in Appendix A. The reader may notice that
(1.3.21) is a generalization of the energy-momentum tensor density of matter (1.2.127)
in a field theory in the Minkowski space.

The Einstein equations for the gravitational field are derived, as usual, from the
principle of the least action that demands 6S = 0 in (1.3.17). Then, a combination of
(1.3.18-1.3.21) yields the variational equations for the gravitational field generated by
matter:

gaﬁ = 87T:%ﬁ. (1322)

The Einstein tensor density in the left side of this equation depends only on the metric
tensor and its first and second partial derivatives while the energy-momentum tensor
density of matter in the right side of (1.3.22) depends on the matter fields which are the
source of gravity, as well as on the metric tensor and its first derivatives. After dividing
both sides of (1.3.22) by /=g we get the Einstein field equations in the usual form:

Gop = 81T, (1.3.23)
where the Einstein tensor
0= %;g% = Rep~ 38R, (13.24)
and
e \/i__g Zi;ﬂg, (1.3.25)

is the metrical energy-momentum tensor.

Because the total set of dynamical variables of the system (1.3.15) consists of mat-
ter variables, (DA, along with the metric variables, one has to add the field equations
for @ to the system of gravitational field equations (1.3.23), and the total system of the
equations has to be solved simultaneously. The matter field equations are derived by
varying the total action (1.3.15) with respect to the matter variables ®* which yields,

6Ly _ 0Ly o 3Ly

5ot = ooh Yooy, o =0 (1.3.26)
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This covariant equation is a particular case of a more general equation (A.3.37) derived
in Appendix A.3.3. It is worth emphasizing some important points which we will
explore below.

First, the Einstein equations in the form of equation (1.3.23) have been obtained
by varying the action with respect to the contravariant metric components g which
are taken as independent dynamical variables of gravitational field. However, this is
not the only possible choice of the dynamical variables in general relativity. In fact,
an arbitrary metric density can be used as a dynamical variable, for more details see
(2.2.114-2.2.117) in Section 2.2.6. One of the most commonly used choice of the dynam-
ical variable is a tensor density with weight +1 which is denoted by the Gothic letter,
¢ = /~gg". In this case, the field equations follow from the variational principle

8S = JQ d“x%ag“v =0, (1.3.27)

where the Lagrangian derivative can be easily connected to 6.%/6g% used in
derivation of (1.3.22) by the matrix of transformation

og” 1 1
aiyv = \/_—g [51(1]16;?) - igyvgaﬁ} . (1.3.28)

The Einstein equations following from the variational principle (1.3.27), takes on the
form

1
R, =871 (Tw - igWT> , (13.29)

where we denoted the trace T = g“ﬁ T,g- One of the advantages of the variational prin-
ciple (1.3.27) is that the Ricci tensor (1.3.3) is obtained directly by taking the variational
derivative from .#}; with respect to the Gothic metric as

7Y
w = 6gyv = 6gyv'

(1.3.30)

Of course, the mathematical content of the Einstein equations in the form of (1.3.29)
and (1.3.23) is the same.

Second important point to which we would like to bring attention of the reader
is the application of the second Noether’s theorem and the integral quantities fol-
lowing from the Hilbert action (1.3.10). In other words, we wish to elaborate on the
identities (1.2.66) and (1.2.67) for the case corresponding to the Hilbert Lagrangian
(1.3.1). Because the Lagrangian .%; is a covariant quantity, a scalar density of weight
+1, the variation of Sy is invariant under one-parametric group of diffeomorphisms
which is described by the variations (1.2.61) and (1.2.62). In our case the variations are
represented as follows:
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o = & (x), (1.3.31)
8gh = E{g’lv _ —{aaagw + g}ivlz aaé'ﬁ- (1.3.32)

Thus, comparing (1.2.61) and (1.2.62) with (1.3.31) and (1.3.32), respectively, one derives
the group’s structure coefficients

wh =t - g™ 4, (1.3.33)
a
wp® = | , - "5 (1.3.34)

With the help of these coefficients we write the identity (1.2.66) for the Hilbert
Lagrangian (1.3.1):

%,
gt - pvja 0Ly
g B 5gw = 0y <g ls 5g ) . (1.3.35)
Reshuffling terms in (1.3.5) with the use of simple relations, like g,,038"" = "’ 9584,
etc., one can express a partial derivative of the metric tensor in terms of the Christoffel
symbols,

g =T ,8" + 17,8 (1.3.36)

Substituting this equality into identity (1.3.35), one has

via 62 via 0.2 via 0.2
<g" |§ ) }5) aﬁ gll |z 5 yI;/I = Va (g}l l; 5g}g> =0. (1.3.37)

Thus, following definition (1.2.67) with the quantities (1.3.33) and (1.3.34), the Christof-
fel symbols can be interpreted as a gauge field

= (") (-¢",)- (1338)

The identity (1.3.37) is just the identity (1.2.67) formulated for the case of the Hilbert
Lagrangian (1.3.1). Substituting to (1.3.37) the Lagrangian (1.3.1), one finally arrive to
an interesting differential identity for the Einstein tensor defined above in (1.3.20) and
(1.3.24),

2V, 95" = 24/-8V,G" = 0 (1.3.39)

which is known as the Bianchi identity. Thus, differentiating the Einstein equations
(1.3.23) and keeping in mind (1.3.39), one obtains the differential conservation law for
the matter metrical energy-momentum:

VoT5" = 0, (1.3.40)

which is fully consistent with the matter equations of motion (1.3.21).
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It is worth noticing that the Einstein way of derivation of the field equations was
based on the requirement that the differential laws of motion of matter must be con-
sistent with the field equations. Knowing the conservation law (1.3.40), Einstein was
searching for an appropriate tensor in the left side of the field equations such that its
divergence had to satisfy the identity of the type (1.3.39). Now, we know that for the
Hilbert Lagrangian the only tensor of such type is the Einstein tensor Gg.

1.4 Classical conserved quantities in general relativity
1.4.1 The third Noether’s theorem

Elaborating on the results of the first and second theorems, Noether has formulated

the statement often referred as the third Noether’s theorem [73, 74, 85, 266, 398] which

is explicitly present in her paper’s Section 6 “An Assertion of Hilbert” [278, 335], and

formulates like this:

— If the action S is invariant under an infinite continuous group of transformations
Goons then a quantity constructed from the Lagrangian derivatives is expressed
through a double divergence of a special quantity, the so-called superpotential.

However, Noether had neither proved this statement nor provided a mathematical
recipe for the superpotential construction. This is perhaps because an analogous
statement had been proven by Klein (Klein’s boundary theorem) in his work [258] that
appeared prior to the Noether’s paper. Furthermore, it was Klein who supplied the
recipe for the superpotential construction.

In this subsection, we follow the book by Mitzkevich [316] to prove the third
Noether’s theorem. The procedure is applied directly to an arbitrary covariant field
theory with the Lagrangian being a scalar density of the weight +1 to explore the
invariance of the Lagrangian with respect to diffeomorphisms. Assuming further
application of this study to the metric theories of gravity, we work with the Lagrangian
which depends on the field variables, w,bA, as well as on their first- and second-order
derivatives. Such dependence is common to all metric theories which Lagrangians
depend algebraically on the Riemann tensor’.

Let us consider an arbitrary field theory with the action (1.2.36). Considering its
invariance with respect to diffeomorfisms, we use the variations

6x* = £(x), (1.4.0)
s = £y = £, 9" + ¢A|;aa5ﬁ (1.4.2)

as a particular case of variations (1.2.61) and (1.2.62). Then, the main Noether’s identity
(1.2.52), now without the permissible term %", is rewritten in the form:

9 This includes general relativity.



1.4 Classical conserved quantities in general relativity = 61

6% 8%
—f Oy
st ¢

Here, we prefer to use the partial derivatives of the dynamical variables because in the
metric theories the field variables are components of the metric tensor which covariant
derivatives vanish identically, and the formalism may stall.

Substituting (1.4.2) into (1.4.3), reshuffling the terms by making use of the Leibniz
rule, and converting the divergences, one can arrange terms in the series with respect
to the vector field £%, defining the diffeomorphism, and its first and second partial
derivatives:

E{lp + —— (E{l/} )ﬁ +€ Z1=0 (1.4.3)

[5¢B¢ at <5¢B v, )]
+ Oy | %, 87 + M, 0,7 + N PO 8] = 0 (1.4.4)

where the (tensor) coefficients of the expansion are fully determined by the Lag-
rangian and its derivatives

0L

a _ a _ B B
UL = L85+ 5¢B ¢ | 64)3 R alpB’ﬂaaﬁalp , (1.4.5)
M = 54,3 N _alpB 3P + ¢B aﬁ(¢B|;), (14.6)
atp _ 1 0L g7
Ao - a‘/)B,ﬁa 4 ‘0 alpB 4 ‘ (14.7)

Notice that in order to derive the coefficient (1.4.7) the symmetry property has been
used, %“Tﬂ = Jt{,“ﬁr, that follows directly from (1.4.4) due to the commutation
property of the second partial derivatives.

Executing the operation of the partial derivative in the identity (1.4.4) and taking
into account that the vector field £, and all its partial derivatives are independent
and arbitrary at each point of spacetime manifold, we come to the conclusion that all
coefficients coupled with &7, and its partial derivatives must be separately equal to
zero. It yields the system of identities:

5,2, = Wlp - (61/;3 i ) (14.8)
U, + aA///GM =0, (1.4.9)
//[U(ﬂﬁ) " aA%A(‘Xﬁ) =0, (1.4.10)
%(aﬂ}’) 0. (1.4.11)

The system (1.4.8-1.4.11) was engineered by Klein [258]. Therefore, we shall refer to
this system as the Klein identities. After differentiating (1.4.9) and using (1.4.10) and
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(1.4.11) one obtains that 9,%," = 0. This means that the right hand side of (1.4.8) must
be equal to zero identically as well,

lsz/) at ( 58 ¥ "l ) (14.12)

It repeats the claim (1.2.66) of the second Noether’s theorem. Taking into account the
historic development of the theory, we call the system (1.4.8) — (1.4.12) as the Klein-
Noether identities.

The identity (1.4.12) suggests that instead of (1.4.4) one can use independently
(1.4.12) and

O | %87 + M, 0,87 + N P07 = 0 (1.4.13)
The vector density entering under the divergence is the current
INE) = — U &% + M, 0, + N P & (1.4.14)
The minus sign is chosen for making a correspondence with the minus sign in front of
the gravitational (metric) action, like in (1.3.10) or in (1.3.11). Thus, the identity (1.4.13)
is rewritten as

9,.7%(¢) = 0. (1.4.15)

Because it is the identity, the current has to be expressed through a tensorial quantity
(superpotential), #%(&) = pI ap (&), a double divergence of which has to be equal to
zero identically: 9.7 %(£) = 0. Let us show this is indeed true. Due to the symmetry
with respect to the last two indices in (1.4.7) and the identity (1.4.11), one has

N TP BT = 0 (1.4.16)

Substituting (1.4.9) into (1.4.14), using (1.4.10) and (1.4.16), one obtains
IE) = 9 ("€ + 24P . (1.4.17)
Due to (1.4.15), we should expect that a divergence of the right hand side of (1.4.17)
would vanish. However, this is not obvious at the first glance. Nevertheless, there is a

possibility to show this explicitly. Let us add the identical zero term, 595 (A, Mlag) =
0, to the right side of (1.4.17). Then, after using (1.4.10) and (1.4.16), one gets

7@ = 3 (1, + %aA%[aBM{O - g%l"‘ﬁ]"aﬁ’). (14.18)
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Now, the expression in brackets in the right side of (1.4.18) is explicitly antisymmet-
rical in a and B, and its divergence vanishes. Therefore, both expressions for the
current, (1.4.17) and (1.4.18), can be rewritten in the form of the divergence,

I =055 () (1.4.19)
where
TP = P+ 2 P80, (1.4.20)
corresponds to (1.4.17) and
TP =~ (P = 20y P 1 2y g ) (1421

corresponds to (1.4.18) respectively. The quantities like .# % are called the superpoten-
tials. In both cases 0,3.7 ap (&) = 0. Thus, the identity (1.4.19) can be considered as one
being equivalent to the conservation law (1.4.15) for the current.

Summing up the results, one rewrites the identity (1.4.4) in terms of the superpo-
tential,

Lot (5 V)] 20w (1422

This identity represents the statement of the third Noether’s theorem while the iden-
tity (1.4.19) corresponds to the Klein boundary theorem mentioned above. Finally,
repeating calculations from (1.2.83) to (1.2.87), one defines a conserved quantity, #(£),

P(¢) = J dx.7°&). (1.4.23)
b
which is effectively reduced to a surface (boundary) integral
7 = CJS ds; 7% (&), (1.4.24)
oz

due to the identity (1.4.19) and definition (1.4.21). This integral relation supports Klein’s
assertion given in his boundary theorem related to the formulation of conserved
quantities.
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1.4.2 Pseudotensors and superpotentials

The metric tensor in general relativity (and other metric-based theories of gravity)
plays a double role. From one side it describes the geometric properties of space-
time manifold but on the other side is a dynamical field. This double role of the
metric tensor is a source of theoretical difficulties in the problem of construction of
conserved quantities associated with gravitational field. For example, the total sym-
metric energy-momentum tensor for gravity and matter vanishes identically due to
fact that the field equations hold. Indeed, in general relativity variation of the action
(1.3.15) with the Lagrangian (1.3.16) with respect to g“ﬁ gives the total symmetric
energy-momentum tensor density'°:

ot _ 25$EH _ 1
aﬁ - 6gaﬂ X

(Gap — XTp) (1.4.25)

that disappears due to the Einstein equations (1.3.22). Therefore, the application of
the Noether theorems to the case of the metric-based theories requires development
of a more sophisticated procedure to constructing the canonical quantities corres-
ponding the Noether currents. Einstein himself was the first who had suggested such
a quantity - the Einstein energy-momentum pseudotensor for gravitational field. Ein-
stein’s idea was modified and used by other researchers who had suggested their own
formulations of the pseudotensor of gravitational field and the corresponding super-
potentials leading to the conserved quantities formulated in the form of a surface
integral like that shown in (1.4.24).

It should be noticed that the pseudotensors and corresponding superpoten-
tials, are only Lorentz covariant that is covariant under a linear transformation of
coordinates but they are not transformed as tensors under general coordinate trans-
formations. Besides, there is no unique recommendation for their construction. In
this subsection, we outline the most interesting examples of the pseudotensors and
superpotentials, which will be remarked later on in other chapters of the present
book. Historically, various pseudotensors have been constructed by applying different
(in some cases non-standard) approaches. However, we do not follow the historical
development of the topic because it may be too confusing for the reader. To facilitate
understanding of this subject, we unify the methods of construction of pseudotensors
and superpotentials by making use of the Noether and Klein results as a powerful
mathematical instrument.

Einstein’s pseudotensor and Tolman’s and Freud’s superpotentials
The results of the third Noether’s theorem are valid, if the action (1.2.36) of the theory
is invariant with respect to diffeomorphisms. A question arises: can one apply these

10 Here we restore the dimensional Einstein constant, k, useful for applications.
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results to the action (1.3.11) with the non-covariant Einstein Lagrangian (1.3.9)? Gener-
ally speaking, the answer to this question is negative. However, let us assume that the
transformation (1.4.1) is a simple coordinate shift:

6x* = &* = const, (1.4.26)

with £% being a constant vector of translation along x“. It is evident that under such a
transformation the Lagrangian (1.3.9) is invariant and the Noether theorem is applied.
Therefore, it makes sense to substitute (1.4.26) into the formulae of previous subsec-
tion to obtain physically sensible results. Because the vector field £° is constant all
partial derivatives of £ vanish, and the current (1.4.14) takes the form:

0Z%
agp/l’a

1 8.4
I I = U Y = ( 0,8 - 88 L - =L gf“| ) (1.4.27)

5gPh

We substitute the Einstein Lagrangian (1.3.9) to the right side of (1.4.27) and perform
calculations. By simple inspection we can easily single out in the right side of (1.4.27)
two terms:

1[04
oo =5 <agPﬂE 3,8™ - 633,;), (1.4.28)
,a
16.%
g = > ngj g"" (1.4.29)

where ,t,% is the Einstein pseudotensor complex constructed merely of the metric
tensor and its first partial derivatives, while ¢, is the Einstein tensor density which
we have already met in (1.3.20).

Explicit expression for the Einstein pseudotensor complex is

1 A
Etaa = 5( ng (FAPAraro + l—“XPTFA/\U - zral’/lr TU)

- (rnmﬂn/\ - rnp/\rAnr) 55

g (T4~ Tl o) |- (1.4.30)

It was constructed by Einstein in 1918 [150-152] as the canonical energy-momentum
for describing the energy carried out by the linearized gravitational waves.

Since the Einstein pseudotensor complex is a tensor analogue of the Noether’s
current, we can build a corresponding superpotential (1.4.20):

N A WA 1 0%

) E o o, g"”| (1.4.31)
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Substituting the Einstein Lagrangian (1.3.9) into (1.4.31), one obtains the superpoten-
tial, {//Zgﬁ“} 5= %“ﬁ , in the explicit form:

7,% = \/2:5 (2gf’“r”po +2618gPmre g - 5°TF, “V) (1.4.32)

Historically, it was the first superpotential in general relativity that has been con-
structed (by making use of a different approach) by Tolman [439] and carries his
name.

Of course, the current (1.4.27) and the superpotential (1.4.31) satisfy the identities
(1.4.13) and (1.4.19):

a,xf(f‘,) =0 - { } =0, (1.4.33)
— 5,5 _ B
T =0T — U p= {4, (1.4.34)

Identities (1.4.33) and (1.4.34) are valid for arbitrary functional value of the metric
tensor irrespectively whether they obey the field equations or not. To introduce a phys-
ical content one has to use the field equations governing the physical system. In the
case of general relativity one has to use the Einstein equations (1.3.22), which allow us
to rewrite the identity (1.4.33) in the form of a differential conservation law,

0, (gt," + 7,") = 0, (1.4.35)

for the sum of the Einstein pseudotensor, .t,%, and the energy-momentum tensor
density of matter, .7;%. Note that in vacuum, .7,% = 0, equation (1.4.35) is transformed
into the differential conservation law for the Einstein pseudotensor only:

Oy (Etaa) =0. (1.4.36)
In the same way the identity (1.4.34) transforms into the conservation law:
R/ (1.4.37)

Of course, by the general consideration given in the previous subsection, one has
Baﬁﬁg“ﬁ = 0 although this identity is not apparent in (1.4.32). This might be seen eas-
ily if one could represent (1.4.32) explicitly as a skew-symmetric tensor density. This
is usually achieved by making use of a trick used in derivation of (1.4.21) but it does
not work in the case under consideration because {,/I{,ﬂ“V}E = 0 for the Einstein Lag-
rangian. Fortunately, there is another way around found by Freud [179] who suggested
to change the Tolman superpotential (1.4.32) as follows:

ﬁgaﬁ - %“ﬁ : %a/l (\/:gg”‘[ﬁ()‘ﬁ]) . (1.4.38)
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This change does not violate the right side of (1.4.37) because taking divergence
from the second term in (1.4.38) yields an identical zero, I (\/—_ggawéﬁ]) = 0.
Straightforward calculation of the sum of two terms in (1.4.38) gives

F,% = —\/;_g (TP, + 6lgPT? - BT, 8) (1.4.39)

that is the famous Freud superpotential [179]. This superpotential is apparently skew-
symmetric and allows one to write the conservation law (1.4.37) in the following form,

pto’ + T = 97,7, (1.4.40)
where it is evident that aa,}y,,“ﬁ = 0 due to the antisymmetry of the Freud superpoten-

tial with respect to indices a and S.

The Mitzkevich and Mgller conserved quantities

Now let us consider a pseudotensor and a superpotential corresponding to the action
(1.3.10) with the Hilbert Lagrangian (1.3.1) and the diffeomorphism with the constant
coordinate translation (1.4.26). The current (1.4.14) takes on the form:

I = I =12 "y

_ 1 agH Y 6"2”1‘! v o 6$H va

T T <agllv_,ﬁaaﬁag + 6g"",aa"g = 8,Ly - B g, |, a41)
that again can be naturally split in two parts:
1 ([ 0% 5%
t," = o | =5 0pe8"" H g ol _ 5% ), 1442
H%o 2K <agyv’ﬁa ﬁO’g + 6gyv,a Og o< H ( )
169

%' =3 5g:5 *lo- (1.4.43)

Here, ,t,” is the pseudotensor constructed with the use of the Hilbert Lagrangian
(13.1)

1
Htaa - E (gp(arﬁ)prrTﬁo _ P(arﬁ)par‘l’rﬁ _ gprr[aﬁ‘rrﬁ]pa
- g?erp P17 L 1
pop T8 (p,0) T 5007 (L4.44)
and the Einstein tensor density, ¥,%, appears in (1.4.43), like in (1.4.29), because

the Hilbert and Einstein Lagrangians differ by a total divergence whose variational
derivative vanishes.
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Now we consider the antisymmetric superpotential (1.4.21) that (for constant &%)
acquires the form:

2
Y R AL 5aAz/V(,[“ﬁV‘}H. (1.4.45)

Using the formulae (1.4.6) and (1.4.7) for )2 = {g"} with the Hilbert Lagrangian (1.3.1)
one obtains

{ %Uaﬁ}H _ % (2% 5 - 917y — 85T ") (1.4.46)
{1, = o (2857 - g5 - ™) (1447

Then, the superpotential (1.4.45) is reduced to a simple expression

IS = 2, - ?gp[“rﬁ]pa. (1.4.48)
The quantities (1.4.44) and (1.4.48) have been suggested independently and almost at
the same time by Mitzkevich [319] who followed the Noether procedure, and by Mgller
[321] who relied upon phenomenological arguments without applying the Noether
theorems.

Of course, the quantities (1.4.41) and (1.4.45) satisfy the identities (1.4.13) and
(1.4.19):

0, =0 = 0 {~% "}y =0, (1.4.49)
- ap - [aB] | 2 [aBIA
T =058 = Uy = 0 |- P+ 2oy }H . (1.4.50)
Notice that the pseudotensor (1.4.44) has been obtained by direct calculation of deriv-
atives in (1.4.42). A more economical way to get it is to use a combination of (1.4.41),
(1.4.48) and the identity (1.4.50).
The relations, (1.4.49) and (1.4.50), are identities being valid for arbitrary metric

tensor. To introduce a physical content to them one has to use the Einstein equations
(1.3.22). Then the identity (1.4.49) becomes a differential conservation law,

Oy (yts" + 75%) = 0, (1.4.51)

for the sum of the pseudotensor, ,t,%, and the matter energy-momentum tensor dens-
ity, 7,%. Again, in vacuum, .7, = 0, and (1.4.51) is transformed into the differential
conservation law for the pseudotensor only:

O (4t,%) = 0. (1.4.52)
In a similar way the identity (1.4.34) transforms into a conservation law:

ute + T, = 0.2, (1.4.53)
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Neither Einstein’s nor the Mitzkevich-Mgller pseudotensors and superpotentials are
covariant. This restricts the range of applications of these quantities which are
well defined only in the coordinates that are Lorentzian at infinity. The Einstein
pseudotensor, like the Einstein Lagrangian itself, has some advantages in that it
depends on the first derivatives only which permits to formulate the integration prob-
lem in a more economical way due to the Dirichlet boundary conditions imposed
merely on the components of the metric tensor but not on its derivatives. On the other
hand, the Mitzkevich-Mgller pseudotensor (1.4.44) has its own advantage being “par-
tially” covariant. Namely, the components ,t,° of the pseudotensor are transformed
as a 4-dimensional vector density under coordinate transformations of a particular
type x'* = X6, X'© = x° + F°(x)) while the corresponding components of the Ein-
stein pseudotensor do not. This property was one of the main requirements imposed
by Mgller on the conserved quantities in general relativity.

The above derivation of the Einstein and Mitzkevich-Mgller conserved quantit-
ies can be generalized and applied to an arbitrary Lagrangian consisting of a linear
superposition of the Einstein Lagrangian, %%, and a divergence,

& = L +div, (1.4.54)

where the divergence (div) depends on the metric, Suvs and its derivatives of an arbit-
rary order. The results of the third Noether’s theorem are fully applicable to such
a Lagrangian after a corresponding generalization of its derivation by including the
terms containing the higher derivatives of the metric tensor. Making use of the group
diffeomorphism (1.4.26) one can associate with the Lagrangian (1.4.54) its own canon-
ical pseudotensor, t,%, and superpotential. By choosing different expressions for the
divergence we can get unlimited number of the pseudotensors and superpotentials.
Analogously to (1.4.27) and (1.4.41) one can construct out of the Lagrangian (1.4.54), a
current

I Ty ={-U 5"} = ;" + %%“ (1.4.55)
depending on the canonical pseudotensor .t,*; and analogously to (1.4.31) and (1.4.45)
one can construct a superpotential corresponding to (1.4.54):

N AR AL (1.4.56)

Papapetrou’s symmetrization

Most of the pseudotensors discussed above have a serious problem with the definition
of an angular momentum of an isolated gravitating system. For example, both the Ein-
stein and Mgller pseudotensors are non-symmetrical and cannot be directly used to
describe the conservation law for the angular momentum. One needs to modify these
expressions to make them symmetrical or to construct new symmetric pseudotensors
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as described in review [443]. This problem is similar to that we have with the canonical
energy-momentum tensor of the field theories in the Minkowski space which are not
symmetric due to the possible presence of spin, like in (1.2.109).

One way to resolve the problem is to construct a symmetric energy-momentum
complex by the Belinfante procedure presented in (1.2.113-1.2.118). Such a procedure
has been applied to symmetrization of the Einstein pseudotensor by Papapetrou [351].
However, his approach has a deficiency as it relies upon making use of the Minkowski
metric for raising and lowering indices of tensors residing on a curved manifold.
In other words, Papapetrou’s procedure assumes that the dynamical metric, g, is
placed to the background Minkowski space with the Lorentzian coordinates which
contradicts to the spirit of general relativity.

Nonetheless, Papapetrou calculated the spin density for the Einstein Lagrangian
(1.4.6) by working with the Lorentzian coordinates and operating with the partial
derivatives of the metric tensor in the equation (1.2.103) defining the spin density.
Following Papapetrou, one obtains:

a _

0 ¢

(1.4.57)
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Then by the rule (1.2.113) one constructs the corresponding Belinfante correction,

b = ( gu[anﬁ]vryw + g”ynv[“l"ﬁ]w _ nwg\/[arﬁ]w> ) (1.4.58)

which allows us to symmetrize the Einstein pseudotensor (1.4.30) by the Belinfante
rule (1.2.114):

oo = st + 3 (60,5 ). (1.4.59)

After straightforward but tedious calculations and raising the subscript index o with
the Minkowski metric, n”ﬁ , one obtains the Papapetrou energy-momentum complex

ot aﬁ _ [ (gaﬁnpa ap pU)FA pt ( pa A rlpo A(a)rﬁ)Ap

+ ( Arzr(a rﬁ) .+ F" 1“(“ ﬁ)n 1"(“ ﬁ)n)
1
+ 5 (npogaﬂr/lmrnan + gMnaﬁrapArpan)
+ g/ln (rapar(aM _ rcr/mr(apg _ ra/\pr(ang) nﬁ)ﬂ] . (1.4.60)

The symmetry of this expression is the advantage with respect to the canonical
energy-momentum complexes (1.4.30) or (1.4.44). On the other hand, it contains the
second derivatives of the metric tensor that can be viewed as a disadvantage.
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Application of the Belinfante correction modifies the Freud superpotential, y‘g“p ,
as well. By adding aﬁ(Eb“B o) to both sides of the conservation law (1.4.40) and using
(1.4.59), one gets

B (1.4.61)

where the quantity at the right side of this equation is known as the Papapetrou
superpotential:

DB g Wby % 3 (g”[“nﬁ“ B gA[anﬁ]P) Mpo (1.4.62)

Let us make some remarks. First, the Papapetrou symmetrization applied to an arbit-
rary canonical pseudotensor in (1.4.55) and superpotential (1.4.56) related to the
Lagrangian (1.4.54), yields the same results (1.4.60) and (1.4.62). This means that the
divergence in the Lagrangian (1.4.54) is irrelevant to the result of the Belinfante-
Papapetrou symmetrization. Later on, in Section 7.1.4, we will show it explicitly at a
more general level.

Second, construction of the Belinfante correction in (1.4.57) and (1.4.58) was based
on the application of the (external) Minkowski metric, N> for raising and lowering
indices. However, the Minkowski metric is a supplementary structure on the dynam-
ical curved manifold. One may be tempted to use the dynamical metric g,,, to rise and
lower indices in the Papapetrou symmetrization procedure. However, this will make
the Papapetrou pseudotensor exactly equal to the Einstein tensor with an opposite
sign, thus, yielding

1 1 1
t,"+ -9 > -9+ -4 =0. 1.4.63
plo T2 7o - Ko T T ( )

In other words, the making use of the full metric in the Papapetrou symmetrization
procedure leads to a degeneracy, that has been noticed and demonstrated for the first
time by Szabados [426, 427], see also [25].

Generic approach to pseudotensors and superpotentials

Constructing canonical pseudotensors and superpotentials in (1.4.54) — (1.4.56) by
making use of the Noether theorem offers a solid systematic approach to discus-
sion of the conservation laws in general relativity. However, the way of constructing
pseudotensors and superpotentials is broader than the standard canonical approach
suggests. Indeed, in the canonical formalism the basic identity (1.4.19) with the current
(1.4.55) and superpotential (1.4.56) has the form:

5+ %g,,“ = 03.7,%, (1.4.64)

where YU“'B = Yg["‘ﬂ] is skew-symmetric with respect to the indices a and . How-
ever, the identity like (1.4.64) can be always written down and used for defining a new
pseudotensor by picking up a corresponding new superpotential even if it does not
originate in the Noether formalism [364]. Let us demonstrate it.
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To this end let us pick up a curved pseudo-Riemanian manifold with a metric and
its partial derivatives defining its geometric structure. We construct an arbitrary anti-
symmetric quantity .7 WP Ly @] out of the metric which automatically satisfies
the differential identity, aaﬁy; % = 0 due to the commutation of the second partial
derivatives. Next, we introduce a new quantity

£ = 0.7, - %%“, (1.4.65)

which is usually called an energy-momentum pseudotensor of gravitational field.
Using the Einstein equations (1.3.22) to replace the Einstein tensor in (1.4.65), one
obtains

%+ 7% = 0577 (1.4.66)

The reader can easily recognize that (1.4.66) is nothing else but another form of the
Einstein equations. The quantity .7 oap plays the role of the superpotential with a van-
ishing double divergence. Thus, taking divergence from both sides of (1.4.66) yields a
differential conservation law

9 (64 + %) =0. (1.4.67)

The above equations describe a generic formalism of construction of gravitational
pseudotensors of weight +1. Landau and Lifshitz [285] had derived the gravitational
pseudotensor of weight +2 which we discuss below in more detail. Goldberg [196] was
able to further generalize the Landau-Lifshitz approach and suggested a whole family
of symmetric pseudotensors and superpotentials with an arbitrary (integer) weight +n.

It is clear that formulae (1.4.65-1.4.67) offer unrestricted possibilities in construct-
ing various pseudotensors and superpotentials. At the same time, they disclose a wide
ambiguity in construction of conserved quantities in general relativity and show that
there is no unique definition. The ambiguity can be restrained by making reasonable
assumptions about physical and/or mathematical properties of pseudotensors like the
absence of the metric tensor derivatives of higher order, symmetry, simplicity, physical
meaningfulness, etc.

The Landau-Lifshitz pseudotensor
As an example of application of the generic formalism of pseudotensors we present the
derivation of the famous Landau-Lifshitz pseudotensor and the corresponding super-
potential [285]. The Landau-Lifshitz superpotential .#5% is defined in terms of the
metric tensor density g“ﬂ = ﬁg’xﬁ having weight +1 as a quadratic combination:

1

P = 50, (a7 - a"a"), (1.4.68)

which apparently has weight +2.
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The general equation (1.4.65) extended to the tensor density of weight +2, defines
the Landau-Lifshitz pseudotensor:

1
0 =9, 79 - - Vg4, (1.4.69)

Direct calculation of (1.4.69) yields:
af _ 1 o TP g TP o P au _Pv aB _uv
tLL‘Z([(zruvrop—ruprva_ruorvp)(g g —6°¢g )

+g%g"” (rﬁuprpvo + rﬁvarpup - rﬁoprpuv - rﬁuvrpap)

+gg” (rauprpva +T6T = T TP rauvrpop)

+ g% (1T, - r;‘jvrﬁp)] ) (1.4.70)
The advantage of the Landau-Lifshitz pseudotensor is that it contains only the first
derivatives of the metric tensor and, at the same time, is symmetric. Thus, it sim-
ultaneously bears the advantages of Einstein’s (1.4.30) and Papapetrou’s (1.4.60)
pseudotensors. The difference of the Landau-Lifshitz pseudotensor (1.4.70) from other
pseudotensors is that it has weight +2 while the other pseudotensors have weight +1.
It is interesting to notice that Babak and Grishchuk [21] showed how to apply the Lag-
rangian formalism to derive a covariant analog of (1.4.70) with a more commonly used
weight +1, see Sections 2.4.1 and 2.4.1.

Using the Einstein equations in equation (1.4.69), one obtains a conservation law:

ey + =g 7" = op. 7", (1.4.71)
which differential form is
3, (8 +~=g7™)=0. (1.4.72)

The covariance problem of pseudotensors

All pseudotensors are non-covariant - they are not transformed as tensors under
arbitrary coordinate transformations which makes the physical interpretation of the
conserved quantities in general relativity more difficult. The problem has been already
known to Einstein who was trying to circumvent it by applying some reasonable
arguments preventing the appearance of unphysical results. In particular, he noticed
that in spite of the fact that the pseudotensors are not covariant the local con-
servation laws, like (1.4.67), are similar to the continuity equation which describe
a local balance between the densities of energy and linear momentum of matter
and gravitational field as well as between the density of the linear momentum and
stresses of matter and gravitational field. To justify the physical meaningfulness
of the pseudotensor, Einstein [151] appealed to an example of a physical system
consisting of two point-like gravitating masses kept in an equilibrium by a rigid
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rod placed between them. The linear momentum of the whole system including
the gravitational field is nil while the rod has a mechanical stress described by
9,j in (1.4.67) which compensates the stress of the gravitational field described by
t J, Einstein had also suggested a simple method for “localization” of gravitational
field and calculation of its energy in case of an isolated astronomical system [150]
which is based on introduction of the global coordinates smoothly matching the
“Galilean space” and “Galilean coordinates” at infinity. Finally, he had used his
energy-momentum complex to describe physical properties of weak gravitational
waves which he considered as the small perturbations with respect to the Minkowski
metric [152].

Einstein’s ideas have received further development in the mathematical approach
based on introducing to the dynamical spacetime manifold with the metric tensor g,,,
a fixed Minkowskian background with the Minkowski metric N = diag(-1, +1, +1, +1)
in the Lorentzian coordinates. The full metric g, is linearly decomposed into the
Minkowski metric and a perturbation #” which is considered as a tensor in the
Minkowski space. In this approach one can operate with arbitrary curvilinear coordin-
ates, x*, introduced on the background Minkowskian manifold. So that the mentioned
decomposition for description of the gravitational waves takes on the form

g =y + 1, (1.4.73)

where y,, is the Minkowski metric in the curvilinear coordinates. All geometric objects
residing on the background manifold can be made covariant by replacing the par-
tial derivatives in the Lorentzian coordinates to the covariant derivatives with the
Christoffel symbols C*,, constructed from the Minkowski metric y,, in the curvilinear
coordinates (see (1.2.9)).

The covariantization procedure described above allows us to construct the con-
served quantities by making use of the Killing vectors &g of the background Minkowski
space which are defined in the Lorentzian coordinates by (1.1.70). The left hand side in
(1.4.66) is reformulated as the conserved vector density (current) defined as

FE) = ()T 7N &L, (1.4.74)

where we have generalized the pure gravitational energy-momentum complex in
(1.4.66) to a pseudotensor ¢, of a generic weight +n and a matter energy-momentum
tensor density .7,"* of a generic weight +n also'l. We emphasize that if t;" is non-
symmetrical we can use only four translational Killing vectors to build four conserved
currents while for the symmetric ¢ all ten Killing vectors can be used.

11 See, for example, the Landau-Lifshitz equation (1.4.71) with the related quantities t;v = ti,f, and
9}; = =8 T} of weight +2.



1.4 Classical conserved quantities in general relativity =—— 75

The generalized conservation law (1.4.67) takes on the following form:

9 7" &) =0, (1.4.75)

which can be integrated in a close analogy with (1.2.83). The corresponding integral
conserved quantity is:

7' - [ dx 760, (1.4.76)
The superpotential in the right side of (1.4.66) can be also covariantized:

IBE) = (v e, (1.4.77)

where we have again generalized it to the weight +n. Finally, one can rewrite (1.4.66)
in a fully covariant form:

I &) = 95 7 (&), (14.78)

which allows us to represent the conserved quantity (1.4.76) in the form of a surface
integral:

P& = g@az ds, 7%, = cjiaz ds(v=p) " 7100 (14.79)

The Komar superpotential

The covariantization of the classical pseudotensors and superpotentials by making
use of the background Minkowski manifold is a useful mathematical device to bet-
ter understanding the nature of the conservation laws in general relativity and the
other field theories on curved manifolds. Nonetheless, this approach suffers from
criticism that the background Minkowski space is not directly observable in general
relativity. Furthermore, the conserved quantities crucially depend on the choice of the
background manifold which brings about an uncertainty in their definition.

Komar [265] have found a genuine covariant definition of the conserved quantit-
ies in general relativity which does not depend on the splitting of the metric tensor in
the background metric and a perturbation like in (1.4.73). Komar [265] worked with the
Hilbert Lagrangian (1.3.1) which is generally covariant. In this case, constructing the
conservation laws can done with the help of arbitrary displacement vectors & (x), like
in (1.4.1), instead of the constant coordinate shifts (1.4.26). Komar used the general
expression for the current (1.4.14) and for the superpotential (1.4.21). After substitut-
ing the quantities (1.4.46), (1.4.47), and (1.4.50) into these expressions he obtained a
covariant current and a famous Komar superpotential:

b \/;_gv[a IZ8 (1.4.80)
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Notice that if we chose & = const in (1.4.80) it becomes equivalent to the Mgller
superpotential (1.4.48), and the Komar current goes to the Mgller current (1.4.44).
Unfortunately, in spite of the great advantage to be covariant the Komar superpotential
has a major problem - it does not reproduce the correct angular momentum-to-mass
ratio in the Kerr solution, see, e. g., [250, 316]. We discuss this problem in next section
in more detail.

The problem of constructing various both not covariant and covariant approaches
to pseudotensors and superpotentials has been tackled by a number of notable relat-
ivists including Bergman [38], Goldberg [196], Mitzkevich [316], Mgller [323], and the
others. A comprehensive review of early work on pseudotensors and superpotentials
was given by Trautman [443].

1.5 Applications

It is instructive to apply the results of the previous sections to physical models
describing isolated astronomical systems like a single or binary star, the solar system,
globular stellar cluster, etc. We shall consider the case of slowly moving sources with
a weak gravitational field when the relativistic effects of curved spacetime are small
and a, so-called, linearized approximation of general relativity is sufficient. It means
that the metric tensor perturbations are considered as functions describing small devi-
ations from the Minkowski space which are found by solving the linearized Einstein
equations with the help of the conventional methods of mathematical physics. We
employ this approach in this section to discuss the problem of energy carried out by
weak gravitational waves emitted by the isolated gravitating systems.

1.5.1 Linearized general relativity

The action and the field equations

Let us consider the Einstein equations in the form (1.3.23). They have been obtained by
the variation of the gravitational Lagrangian with respect to the contravariant metric
tensor g"‘ﬂ . We linearize (1.3.23) with respect to the Minkowski space by making use of
the following decomposition,

g% = yaﬁ + 1% (1.5.1)

and assuming that the absolute value of the metric tensor perturbations, l“ﬂ, are
small compared with the components of the Minkowski metric y“ﬂ in curvilinear
coordinates, |I%f| < Iy“ﬁl.

The linearized approximation of the Chistoffel symbols (1.3.5) reads:

I = C% + A%, (152)
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where C”‘yv are the Christoffel symbols (1.2.9) made out of the Minkowski metric in the
curvilinear coordinates, and

1 .
Ny = =5 Cpr + Eo = 1), (15.3)

is the linearized perturbation of the Christoffel symbols, and the semicolon denotes
the covariant derivatives with respect to the metric y,g.

We shall consider gravitational field in vacuum, thus, neglecting the energy-
momentum tensor density of matter in (1.3.23). Then, keeping in mind (1.5.1) and
(1.5.3), we calculate the linearized part of the Einstein tensor in (1.3.23) in the form,

1 . .
Gﬁﬁ =3 (laﬁ’p;l) + Vﬂﬁlpg;l)ﬂ B lpa;ﬁp B Ipﬁ;ap - yaﬁlﬂﬂ,p;/? + Iﬂﬂ;aﬁ) : (1.54)

Linearized Einstein equations describing gravitational field in vacuum are:
G-, =0
ap = Y (1.5.5)

which also implies that the linearized Ricci tensor Réﬁ vanishes, Riﬂ =0.

The field I*f can be thought as a dynamical field propagating in the Minkowski
space in accordance with the principle of the least action which variation with respect
to I%? leads to equations (1.5.5). The corresponding Lagrangian .#° of the gravitational
action for the field I’ can be taken as the Hilbert Lagrangian %} in (1.3.9). We expand
the Hilbert Lagrangian in the Taylor series with respect to I%?,

Ly =S5+ LE+ L+, (1.5.6)

and take into account that the curvature of the Minkowski space is nil and the linear-
ized Riemann tensor vanishes. It yields fg = 0 and flg = 0 correspondingly. The
remaining quadratic term ffzg can be simplified by discarding all terms which form
the divergence. After long and tedious calculations it results in

1 1 0 10
.,%g - 5\/_—y(l,f)(r;ﬂlpn;o _ Pa;glnn;p + 5lﬂﬂ;plTT,,D -3 PU”TIPG;”> . (1.5.7)

The reader can check by inspection that (1.5.7) coincides with the Einstein Lagrangian
(1.3.9) if one discards all terms of the third and higher order with respect to 18,
Eventually, the action for free gravitational field I? is

6o L

e J d'x25, (1.5.8)
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where k = 87G/c”*. One can easily check that by varying the action (1.5.8) with respect
to I%? yields expression (1.5.4),

845
518

Gz = V¥Glps (1.5.9)

and, consequently, the least action principle leads to equations (1.5.5).

Energy-momentum tensor of a weak gravitational field
Formulae (1.5.4-1.5.9) represent the linearized general relativity in vacuum as a cov-
ariant theory of a weak gravitational field " in the Minkowski space. Therefore, one
can apply the formalism developed in the Section 1.2 to derive the energy-momentum
tensor of the gravitational field.

First, we calculate the canonical energy-momentum given by formula (1.2.104).
Substituting the Lagrangian (1.5.7) to this formula, yields

e a: 1 a"%g UV
cYo 2K

- _g [ZZ(XH;VIW;U SRR TR O Pl P Y P e
1 . 1.,
_ 5§ (IPT;nlpn;-r _ lpT;‘rlﬂn;p + Elnn;plrrlp _ Ezﬂr”[pﬁ,,)] . (1.5.10)

Second, we calculate the Belinfante corrected energy-momentum related to the theory
(1.5.8). Formula (1.2.103) yields the spin density:

g
g _ 1 0L yup_ VTV ) B
O'a o= Z(a(T‘/lX) vala = T (lap.o. + lao-;p - lpO‘ 0() l P
. 1 1
e A O (15.11)

The corresponding Belinfante correction is calculated with the use of the definition
(1.2.113):

By — gVl 4 galvBl _ Blyal (1.5.12)
VY ; 1 L s
- ( Py Py Eyy[alﬁlp Fp+ 5 r alﬁ1y> _

Finally, we use expression (1.5.12) to symmetrize the canonical energy-momentum by
applying the rule (1.2.114). Thus, combining (1.5.10) and (1.5.12), we obtain
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Beaa _ Cecra n baﬁo;ﬁ
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p

+ %yaolﬂplrr;np L (lﬂp;ﬂp _ %IPP;H;IT)] . (1.5.13)

It is important to remark that the symmetrized energy-momentum (1.5.13) coin-
cides with the metrical energy-momentum defined following the rule (1.2.127) if the
equations (1.5.5) are taken into account,

1625
Bp = _;_5))04; = 504p (1.5.14)

that can be checked by a direct calculus.

Gauge invariance

Energy-momentum tensors of weak gravitational field (1.5.10), (1.5.13) and (1.5.14) are
differentially conserved in accordance with equations (1.2.102), (1.2.14) and (1.2.129)
of a field theory in the Minkowski space as a consequence of the invariance of the
action (1.5.8) in the linearized general relativity with respect to the coordinate trans-
formations in the Minkowski space. However, there is another type of invariance of the
action which also leads to important physical results. This is a so-called gauge invari-
ance. In order to understand this concept, let us consider transformation of the field
variables " induced by an arbitrary vector field &%,

oy {}l;v + {V;P (1.5.15)

without changing coordinates and the metric Vv Transformation (1.5.15) can be inter-
preted as an intrinsic gauge transformation similar to the gauge transformations in
electrodynamics (1.2.140) or in the Yang-Mills field theory [266]. Indeed, the linear-
ized field equations (1.5.5) remain invariant under transformation (1.5.15). At the same
time the Lagrangian (1.5.7) under the gauge transformation (1.5.15) is invariant up to a
divergence that does not influence the field equations (1.5.5).

To study the consequences of the gauge invariance let us turn to the second
Noether’s theorem. We rewrite transformation (1.5.15) in the form of (1.2.61) and
(1.2.62). Because the coordinates and the metric tensor are not changed we have,
6x% = 0 and 8y = 0. On the other hand, the field variables change,
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B = £ 20Uy + 8% - 250y (15.16)

where C"‘ﬁy are the Christoffel symbols constructed with the use of the Minkowski
metric y,,, see (1.2.9). Thus, the coefficients in the transformation (1.2.62) of the field
variable are as follows: & — &%, w? — 2c% 1" and wi* — 25%)"". Then, the
identity (1.2.66) is represented as

6848 8.8
CHapYVpgl_yi =0, <6’;YVPTH‘2/). (1.5.17)

Thus, keeping in mind (1.5.9), one finds easily that (1.5.17) transforms into the linear-
ized Bianchi identity

%Lp;f’ =0. (1.5.18)

We remark that the identity (1.5.18) is quite analogous to the identity (1.2.141) in elec-
trodynamics that follows from the gauge invariance of the electromagnetic potential.

1.5.2 Weak gravitational waves in general relativity

The Lorentz gauge

Solutions of equations (1.5.5) describe the metric perturbations with respect to the
background Minkowski space. These perturbations are physically interpreted in gen-
eral relativity as representing a weak gravitational field in vacuum. Any coordinates
can be used to analyze the perturbations. For the sake of simplicity, we use the Lorent-
zian coordinates which allow to eliminate the background Christoffel symbols C“w,.
The invariance of (1.5.5) under the gauge transformation (1.5.15) means that there is a
freedom in definition of the components ' associated with the choice of the vector
field £“. The arbitrariness of the vector field allows us to impose four gauge conditions
on the components of the metric perturbation .

One particular choice of the gauge conditions is the most useful. It is called the
Lorentz gauge as it allows us to reduce equation (1.5.5) to the d’Alembert (wave) equa-
tion. Similar gauge is used in electrodynamics to describe the wave solutions of the
Maxwell equations. Let us redefine the new field variables in the form of a linear
combination of the old variables,

hHV - IMV _ 1)1"”1”

3 - (1.5.19)

The Lorentz gauge is defined by the differential equation

a,h" =0, (1.5.20)
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that can be always fulfilled by making a relevant choice of £% in (1.5.15). The Lorentz
gauge allows us to cancel out a number of the gauge-dependent terms in equations
(1.5.5) which is simplified and reduced to the wave equation

19

Ol = P P = g
P ol c2 ot

h =0, (1.5.21)
where O denotes the d’Alembert operator. Equation (1.5.21) still describes any weak
gravitational field in vacuum but it is the most convenient for studying propagation
of weak gravitational waves. According to general relativity the fundamental speed ¢
entering the d’Alembert operator is equal to the speed of light in vacuum. It means
that weak gravitational waves in general relativity propagate with the speed of light c.

The condition (1.5.20) does not completely fix the gauge freedom in the choice of
the components 'V - a residual gauge freedom remains. Indeed, the reader can easily
check that the gauge transformation (1.5.15) applied to the wave equation (1.5.21) does
not change it if ¥ also satisfies the wave equation

ny =0. (1.5.22)

The residual gauge freedom can be fixed depending on the particular physical situ-
ation under consideration. In case of weak gravitational waves this is done by
choosing a, so-called, transverse-traceless (TT) gauge.

TT gauge
Let us consider a weak gravitational wave propagating along a positive direction of
x! = x coordinate. In this case the wave equation (1.5.21) takes the following form

o’ 19
— - == | =0. 1.5.2
<ax2 c? 6t2> 1523)

Solution of this equation, for the given direction of propagation of the wave, is an
arbitrary function

R (t, x) = B (ct - x). (1.5.24)

The gauge condition (1.5.20) applied to this solution is, 9,h® + 3,k = 9,h® — d,h" =
0, where the partial derivative operator 9, = c’lat. After integrating this equation
and choosing the constant of integration equal to zero which is always possible,
we conclude that the Lorentz gauge condition (1.5.20) is equivalent to the following
restriction:

% = n", (1.5.25)
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Now, we make use of the residual gauge freedom related to & satisfying (1.5.22),
and impose additional four restrictions on the components of the metric tensor per-
turbations. More specifically, we demand that the time-space components of the
perturbation vanish,

n% = o, (1.5.26)
along with the trace of its spatial components
nt+n?+n* =o. (1.5.27)

Combining (1.5.25) with (1.5.26), (1.5.27) one finds that among ten components of H*"
merely two components, h”> and h?2 = —h* are left non-zero. This fixes the gauge
completely and makes it clear that a free gravitational field has only two degrees of
freedom which characterize the state of polarization of a gravitational wave.

Physical meaning of the gauge condition (1.5.26) is associated with the transverse
character of the gravitational wave perturbation. The wave vector, k%, of a monochro-
matic gravitational wave is k* = wn®, where w is a circular frequency of the wave, and
n% is a null vector naﬂn"‘nﬂ = 0. In case of a plane wave propagating along a positive
direction of x axis, the null vector n* = (1,1, 0, 0) in the Lorentzian coordinates. The
condition (1.5.25) is equivalent to

nuh’” =0, (1.5.28)

which means that the metric perturbation is orthogonal (transverse) to the direction
of propagation of the wave. The condition (1.5.26) means that the metric perturbation
is purely spatial that is for an observer moving with a four velocity u* the condition

u, " =0, (1.5.29)

holds. In case of the static observer, u® = (1, 0, 0, 0) in the Lorentzian coordinates, and
the condition (1.5.29) coincides exactly with (1.5.26). Finally, one can easily check that
the remaining condition (1.5.27) is equivalent to

W, =y, h" =o0. (1.5.30)

which means that the physical components of the metric perturbation, in case of a
weak gravitational wave, are traceless. The gauge satisfying the Lorentz condition
(1.5.28) along with the two other conditions, (1.5.29) and (1.5.30), limiting the residual
gauge freedom, is called the transverse-traceless gauge or simply TT-gauge. In con-
clusion, it is worth noting that the TT gauge condition (1.5.30) leads to the equality,
K, = I¥,, which can be useful in practical calculations.
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Energy-momentum tensor of a plane gravitational wave

It is instructive to study how the various energy-momentum complexes introduced in
this section describe the energy and momentum carried out by a plane, weak grav-
itational wave. To derive the corresponding expression for the energy we use the TT
gauge imposed by the conditions (1.5.28-1.5.30). The plane gravitational wave propag-
ates in the direction of a null vector n* which is orthogonal to the wave front. Hence,
the partial derivative of the metric tensor perturbation

P, = e (1.531)

c
where the overdot denotes a partial derivative with respect to time ¢.

At first, we consider the energy-momentum tensors (1.5.10) and (1.5.13), (1.5.14) of
the linearized general relativity in the Lorentzian coordinates where /7] = 1. They
contain a number of terms being quadratic with respect to the products of the metric
tensor perturbation. However, a careful inspection of all terms reveals that most of
the quadratic terms vanish in the TT gauge. For example, the quadartic terms like
l"",gl“y’v vanish due to the gauge condition (1.5.28) and equation (1.5.31), the terms like
Pl , = 0 due to the equation (1.5.31) and the condition that vector n* is null, etc. It
is straightforward to prove that all the energy-momentum tensors are reduced in the
TT gauge to a rather simple and unique expression

1 apb
O = 0% - 6% - ~ ey, b ”4_: W, (15.32)

where we have used definition (1.5.19) and the fact that the trace of 'V is zero in the TT
gauge, which yields IV = h*",

Now, let us calculate various pseudotensors in the quadratic approximation for
a weak gravitational wave in the TT-gauge. We begin from the Einstein pseudotensor,
£t;", defined in (1.4.30). Recall that the Lagrangian (1.5.7) is a quadratic approxim-
ation of the Einstein Lagrangian (1.2.18). Therefore, one can expect that the energy-
momentum tensor (1.5.10) coincides with the Einstein pseudotensor (1.2.53) in the
quadratic approximation with respect to the metric tensor perturbation (1.5.1) if one
uses the Lorentzian coordinates. Straightforward calculation shows that this expecta-
tion is true. Thus, the Einstein pseudotensor t,* calculated for the plane gravitational
wave gives (1.5.32) in the TT gauge.

One might suppose that the Papapetrou pseudotensor, pt,*, given in (1.4.60) and
the Belinfante corrected energy-momentum tensor (1.5.13) coincide with the Einstein
pseudotensor in the quadratic approximation. This turns out to be not true. The reason
is that the operations of taking the quadratic approximation and the Belinfante sym-
metrization procedure do not commute resulting in different approximate forms of
the Belinfante correction, ;b*°, in (1.4.58) and that, b7, in (5.1.12). Therefore, strictly
speaking, the Papapetrou pseudotensor (1.4.60) differs in the quadratic approxima-
tion from that of the Einstein pseudotensor, .t,%, by a divergence of quantity, Ebaﬁo,
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given in (1.4.58). Nonetheless, one can easily prove by inspection that after imposing
the TT-gauge condition the divergence aﬁ(Eb”‘ﬂ") = 0. Thus, the quadratic approxima-
tion of pt," is different from .£,* merely by gauge terms which vanish in the TT gauge.
We conclude that »t,* also gives (1.5.32) for the plane gravitational waves in the TT
gauge.

Considering the Mpller pseudotensor, 4t,%, in (1.4.44) one finds that only its part
—K‘l%“ is not zero under the TT-gauge conditions. The linear part of —K‘l%"‘ is equal
to zero by the wave equation (1.5.21). The quadratic part of —k'%,% is just equal to
(1.5.32) again.

Noticing that the Komar pseudotensor coincides with the Mgller’s one for the con-
stant vector field ¥ = const entering its definition, we conclude that it gives the same
result (1.5.32) for the energy-momentum tensor of gravitational waves in the quadratic
approximation in the Minkowski space.

The Landau-Lifshitz pseudotensor, tff , is given in (1.4.70). Using decomposition
(1.5.1) with (1.5.3) in the Lorentzian coordinates, calculating the quadratic approx-
imation, and applying again the TT-gauge condition, one finds that in case of the
plane gravitational waves the Landau-Lifshitz pseudotensor yields formally the same
expression (1.5.32).

The expression (1.5.32) can be interpreted as a tensor density of weight +1 in
the Minkowski space which may be important in calculations in curvilinear (e.g.,
spherical) coordinates.

Now let us use expression (1.5.32) for describing the energy density & of a plane
gravitational wave, It is given by projection of .8% on four-velocity of observer u®:
& = Ce“ﬁ UaUp. Plane gravitational wave has two physical degrees of freedom (polar-
izations). In case of the wave propagating along x axis they are h”> = h**> = h,
(cross polarization), and h*> = -h*® = h, (plus polarization). Then, u* = (1,0, 0, 0),
n® = (1,1, 0,0), and one has for the energy density of the way:

& = Tch (B +1). (1.5.33)
The energy flux is given by a vector quantity .% = CO"‘ﬁ ug which is reduced for the
wave propagating along x axis to % = &n“.

The result (1.5.33) is unique and identical for all known pseudotensors. It
describes the energy density carried out by a plane gravitational wave with two modes
propagating in the Minkowski space. Because there is a large ambiguity in the defini-
tions of conserved quantities in general relativity, expression (1.5.33) can be used as a
testbed for checking applicability and self-consistency of new possible definitions of
the conserved quantities which are suggested time to time in gravitational physics.

1.5.3 The energy of an isolated gravitating system in general relativity

Another model that is practically important in astrophysical applications especially
those which are concerned with the emission of gravitational waves, is an isolated



1.5 Applications = 85

astronomical system. The simplest solution of Einstein’s field equations correspond-
ing to such a system is the Schwarzschild solution which describes gravitational field
outside of a spherically-symmetric distribution of mass. The mass distribution can be
static or commit a radial motion - it does not affect the external gravitational field
due to the Birkhoff theorem. The metric tensor of the Schwarzschild solution can be
written down in several forms depending on the choice of time and spherical coordin-
ates. The most commonly used choice of the coordinates follows the original work of
Schwarzschild that yields the metric tensor in the following form:

ds® = - (1 - %) c2de® + 1rg ar’ +1° (dG2 +sin? 9d(;b2) , (1.5.34)
=

where a constant parameter r, is called gravitational radius of the body that generates
the gravitational field. The metric (1.5.34) is singular at the radial distance r = r,.
Therefore, it can describe gravitational field of a physical body (star, planet, etc.) if,
and only if, the body has a radius R exceeding r,. In case of R < r, the gravitational
field becomes so strong that the body inevitably collapses to a black hole with the
(spherical) event horizon located at the radial distance rg.
The gravitational radius r, is a constant of integration of the Einstein equations

for the spherically-symmetric Schwarzschild solution which is directly associated with
a total (Tolman or relativistic) mass m of the body by matching the Schwarzschild
solution to the Newtonian gravitational field at spatial infinity in the limit of r — co.

It yields a unique relation,

_2Gm

rg 7 . (1.5.35)

Because the mass m has a clear, unambiguous physical meaning, the Schwarzs-
child solution can be used as a testbed for checking the applicability of different
pseudotensors and corresponding superpotentials for correct evaluation of the con-
served quantities in various cases of astronomical isolated systems through the
surface integration at spatial infinity like that shown in (1.4.79) with (1.4.77).

Let us discuss the conserved quantities given in the form of a surface integral
(1.4.79) with the superpotential (1.4.77) which is the most convenient way for calcu-
lations because one needs to know only the asymptotic values of the metric tensor
and other geometric quantities defining the superpotential on the surface of integ-
ration that can be taken in case of the Schwarzschild solution at spatial infinity.
Because the Schwarzschild solution is spherically-symmetric the spherical coordin-
ates are the most convenient coordinates for calculations. Therefore the integration
requires a covariantization in a way of the integral (1.4.79) that has been constructed
in any curvilinear coordinates.

We, first, pick up an arbitrary classical superpotential Yg“ﬁ and rewrite the
condition (1.4.77) in the form:

I = (V) I, = s, e, (1.5.36)
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where S,,“B is a tensor in the Minkowski space. The covariantization demands to
replace the partial derivatives with the covariant ones in the Minkowski space,
and to use the covariantized Christoffel symbols A"aﬁ instead of their non-covariant
counterpart (1.3.5). It means that we have to make a replacement:

1
Mg — Mg = Egyp (8pasp + 8ppia — Sapp) - (1.5.37)

The fact that the covariantized Christoffel symbols A* ;4 are a tensor of rank 3 in the
Minskowski space can be also derived from the relation,

Nog =T g~ gy (15.38)

between the dynamical Christoffel symbols (1.3.5) and the background Christoffel
symbols constructed with the use of y,,, see (1.2.9).

Covariantization of the Freud superpotential (1.4.39) by making use of the proced-
ure explained above, yields:

1 —
T - F, Y - ;—g (&0 g + 8 - 80,0 ). (1.539)

The covariant version of the Mgller superpotential (1.4.48) is:
2,8 x @ - 1V78 plapp oo (1.5.40)
KV

In order to represent the Papapetrou (1.4.62) and Landau-Lifshitz (1.4.68) superpoten-
tials into the covariant form we use the known formulae for the partial derivatives of
the metric tensor:

008 = 8y ov + 8l ows V=8 = V=8I s (1.5.41)
Then, the covariantized Papapetrou superpotential (1.4.62) is:
1/-8
20 P = Y [ (1 - ) 4l g

_ A[QAHYB]AgP}l + Ap/lyYA[agﬁ]y _ AAA,,)/’[agﬂ]“] Yoos (15.42)
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whereas the covariantized Landau-Lifshitz superpotential (1.4.68) is given by:
2
) 1(vV-8
LLyaaﬁ - LLS(Tal; = ; (\/_)2 [ZAM;M (gp[agﬁ]/\ _g/l[agﬂ]p>
(v=7)

+ A[“Aygﬂ]”g/‘” _ A[“Aygﬁ]"gp“
+ APAHgA[agﬁ]u _ A/\A“gp[agﬂlll] oo (1.5.43)

The asymptotic form of the Schwarzschild solution (1.5.34) in spherical coordinates
x* = {(x°,x, x%, %%} = {ct, 1, 6, ¢}, is the Minkowski metric

ds’ = -2de? +dr* + 1 (dt92 + sin’ qu.’)z) , (1.5.44)

which determinant /=y = r* sin .
We apply the integration formula (1.4.79) for calculating the total energy E =
2(&5) corresponding to the Killing vector & = (-1, 0, 0, 0). It yields

n 2
E = lim j d@J deprsin 6,12 (15.45)
r—00 0 0
where 5001 is one of the above given expressions (1.5.39), (1.5.40), (1.5.42), (1.5.43) for
the covariantized superpotentials — Freud, Mgller, Papapetrou, etc.
We use the metric tensor coefficients for the Schwarzschild solution (1.5.34):

00 1 11 e »n 1 33 1
L g 2 s 1 1546
§ 1w § 8 T2 8 T Gdinte ( )

_ B »n 1 33 1
= -1, Yy =1, Y —r—z, )4 —m. (1.5.47)

The ordinary Christoffel symbols of the Schwarzschild solution (1.5.34):

T, T

1 r
o . _'s o - g(l__g>’
10 11 2r21_r_g 00 22 r
r

T r
r, = —r(l - —g>, 1"133 = —rsin26<1 - —g>,
r r
1
%, =1’ = = I’ = cotf, I3 = —sinB@cosb, (1.5.48)

whereas the Christoffel symbols of the Minkowski metric in the spherical coordinates
(1.5.44) are:
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2 3 _ 1 3
C21=C31=;, C32=C0t9

C'y =-r, C'y=-rsin’6, C(’;;=-sinfcosh. (1.5.49)

Using (1.5.48) and (1.5.49) one can easily obtain the covariant A“W by making use of
equation (1.5.38).

To calculate the total energy (1.5.45) it is enough to find out the asymptotic
behaviour of the component of the superpotentials FOOI, Xom, etc. at spatial infin-
ity for r - oo. Thus for the covariantized superpotentials by Freud, Papapetrou and
Landau-Lifshitz we find:

s 1
F ~ Pt v L, ~ -2 1.5.50
0 0 0 < 72 ( )
but the Mgller superpotential behaves differently,
17 1
XM~ 22 1.5.51
0 2k r? ( )

Recalling the definition of the gravitational radius r, in (1.5.35) and that of the Ein-
stein constant, k = 87G/c*, one gets from the integration formula (1.5.45) for the cases
(1.5.50):

E = mc, (1.5.52)

whereas for the case of the Mgller superpotential (1.5.51):
1 5
E= EmC . (1.5.53)

We conclude that the Freud, Papapetrou and Landau-Lifshitz superpotentials are
physically meaningful as they yield the correct value for the total energy of the body
while the Mgller superpotential has a problem.

It was discussed above that the Komar superpotential (1.4.80) is reduced to the
Mgller one if &¥ = const. This means that the Komar superpotential also gives the
problematic result (1.5.53) that is known as Komar’s anomaly.

Similar calculations can be performed for the Kerr solution describing axially-
symmetric gravitational field of a rotating star. The Kerr solution has another con-
served quantity — the total angular momentum. The Papapetrou and Landau-Lifshitz
superpotentials, being related to symmetrical pseudotensors, can be used for calcu-
lations of the total angular momentum and give physically meaningful result with a
normal ratio of the mass to angular momentum. However, the Komar superpotential,
being universal to using all possible Killing vectors, again reveals an anomaly in case
of the Kerr solution. The anomaly can be cured, see, for example, the Katz work, [250]
and the construction (6.1.24) in Section 6.1.2.



2 Field-theoretical formulation of general
relativity: The theory

2.1 Development of the field-theoretical formulation
2.1.1 Geometrical formalism and field theories

In the framework of special relativity all physical systems (massive bodies, particles,
radiation, fields of interaction, etc) exist in a fixed geometry — the Minkowski space
that has no curvature. The flat spacetime (geometrical structure), being an arena for
physical interactions, is a passive background for the physical systems, whereas the
matter fields are active (dynamical) objects. We shall call such theories as field the-
ories. In the modern field theories, the background geometry can be also chosen
as a predetermined curved spacetime, such as an anti-de Sitter (AdS) space, FLRW
cosmological geometries, black hole geometries, etc. (see, e. g., [50]).

General relativity was the first theory, where the spacetime acquired the status of
a dynamical entity. This means that the metric, which describes the geometry of the
spacetime, is a dynamical field like the other fields that reside in the spacetime. Gen-
eral relativity is not the only example of the theory with dynamical gravitational field,
various theories of gravity, which generalize general relativity, have been suggested.
Besides the metric, some other geometrical fields, like torsion, non-metricity, etc., can
be also considered as dynamical fields. Collectively, we shall classify these theories as
geometrical theories.

It is intuitively clear that the conceptual basis for constructing conservation laws
in the framework of field theories is significantly simpler than that in geometrical
theories where together with matter fields, one has to find and describe the dynamical
evolution of geometry. A natural question arises. Can one transform a geometrical
theory to the form of a field theory with a fixed background spacetime? The idea of
reformulating a metric theory in the form of field theory (field-theoretical formula-
tion) has a natural foundation. For example, in studying geometric perturbations
in a metric theory, one chooses a background spacetime (be it curved or flat) and
examines evolution of the perturbations with respect to the chosen background. The
present chapter is devoted to the development of the principles of constructing the
field-theoretical formulation of general relativity.

2.1.2 Earlier perturbative formulations of general relativity

Let us return to the general relativity action (1.3.15) with the Einstein-Hilbert Lag-
rangian (1.3.16), which represent a system of the metric field 8,y and the matter fields
@4, a set of tensor densities, see Appendixes A.1 and A.3.1. Variation of (1.3.15) with

DOI 10.1515/9783110351781-002
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respect to g"‘ﬁ gives the Einstein’s equations in the form (1.3.22), which can be rewritten
in the more conventional form (1.3.23).

The study of perturbations in general relativity was started by Einstein himself. In
1918, in the framework of general relativity he [152] considered gravitational waves in
the Minkowski space background. In the ensuing decades, perturbations in general
relativity were considered regularly, mostly, in the Minkowski space. The history of
developing the field-theoretical formulation of general relativity as a separate theor-
etical method began in 1940s-1950s see, for example, papers [84, 219, 220, 223, 279,
342, 390, 438, 455). The work by Deser [120] stands out as the final benchmark in this
series.!

Combining the results of the aforementioned works, we will show how the
Einstein equations can be rewritten in the perturbative form by making use of a
simple logic. In order to proceed in this way we turn to the results of Section 1.5.1
related to the linearized general relativity. Let us define the metric perturbations "
on a flat background in the Lorentzian coordinates as

g =n"+1. (2.1.1)

It is the type of the decomposition done in (1.5.1). Next, let us substitute (2.1.1) into the
Einstein equations (1.3.23). Then, the terms linear in the metric perturbations at the
left hand side are

Gy =3 (Lo + Ml g = P = o =Ml g+ P (2.1.2)

in which the indices are raised and lowered by n* and Nag- Observe that the expres-
sion (1.5.4) transforms to the expression (2.1.2) if the Lorentzian coordinates are used,
thus (2.1.2) is the left hand side of the linearized general relativity equations (1.5.5).
Next, let us transfer all the nonlinear terms to the right hand side of (1.3.23). Then,
they, together with the matter energy-momentum tensor, are treated as an effective
energy-momentum tensor, t;fvf Thus, the Einstein equations (1.3.23) are rewritten in
the equivalent form as

G, = 87 [~(87) (G + D) = Gl (D) + Ty (@, + D] = 8ty . (2.1.3)

The divergence of the left hand side of (2.1.3) is equal to zero identically, avafv =0,
see (1.5.18), then

1Y
9t =0 (2.1.4)

which is a differential conservation law for the effective energy-momentum.

1 We must say that, the present book does not claim to be an authoritative and exhaustive work on the
history of the developments in this context, but, rather, we take the pragmatic and pedagogical path
and mention only the most pertinent works.
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The above development can be interpreted as a Lagrangian based theory of the
gravitational field ' with self-interaction and the matter fields ®* in the Minkowski
space. In this interpretation, the metric perturbations ¥ play the role of a dynamical
field, and tﬁfvf is to be obtained by varying the action with respect to the background
metric, as in the case of a symmetric energy-momentum (1.2.127). Now, following the
introduction in work of Deser [120], we outline the main steps of constructing such a
field theory that is fully equivalent to general relativity.

The first step. The principle of equivalence and theoretical considerations (see,
e. g., textbook [315]) point out that the most preferable type of gravitational field is the
tensor field, 'V describing spin 2. The linear equations of this field in the Minkowski
space are

G, (D=0, (2.1.5)

where the differential operator is defined in (2.1.2). They are the linearized equations
of general relativity (1.5.5). Thus, they can be obtained by varying the corresponding
quadratic Lagrangian .,iﬂzg (I,n) defined in (1.5.7). The equations (2.1.5) are invariant
with respect to the well known gauge transformation of the field:

oy f’l’v + {V,Il , (2.1.6)

see (1.5.15). By this invariance, first, the identity aveﬁv = 0 follows, see (1.5.18); second,
the tensor field 'V has only two physical degrees of freedom, see Section 1.5.2.

The second step. Assuming that the gravitational field is induced by matter fields,
one has to choose the symmetric energy-momentum tensor THV(GD, n) of matter fields
@* as the source of Gﬁv(l). Then, one obtains

G, () = 87T, (®, 7). .1.7)

Due to the identity (1.5.18) one has 9, T*" = 0. However, this contradicts the equations
of motion of the fields ®* interacting with the gravitational field . How can one fix
this disagreement? Recall that the equation (2.1.7) is assumed to be obtained by vari-
ation of the total Lagrangian with respect to ', whereas the right hand side of (2.1.7)
is assumed to be obtained by variation of the matter Lagrangian with respect to the
background metric, like in (1.2.127), where the Minkowski metric is represented in cur-
vilinear coordinates. In order to reconcile the two different variations, it is necessary
to make the replacement Mo, y) — Mo, y + I) in the matter Lagrangian where
the variation with respect to y** and " are equivalent. Then, automatically, the same
exchange is provided in the matter energy-momentum tensor T, W(CD, n — Tyv((D’ n+0.
This reflects the universality of the gravitational interaction, which is postulated from
the beginning.

The third step. Now, one has to include the gravitational self-interaction. To this
end, one adds the symmetric energy-momentum tensor of gravitational field 2t;‘j'v(l),
corresponding to Zf , to the right hand side of (2.1.7) together with Tyv(d),n +D.



92 — 2 Field-theoretical formulation of general relativity: The theory

It turns out that the tensor 2tﬁv(l) can be obtained from the variational principle only
if a cubic term is added to the Lagrangian, fzg + .,S,”Bg . Then, one needs to consider the
next iteration, and so on. As a result, one obtains the final variant of the gravitational
equations:

Gy, (1) = 87 Zzntgv(z) + Ty(pom+ )| =8 (65, + 1) . (2.1.8)

It turns out that the equations (2.1.8) are equivalent to the Einstein’s equations
(1.3.23). One can prove that this is, indeed, the case, if one identifies the sum of
the Minkowski metric and the gravitational field perturbation with the full (effective)
metric, see [342]:

v+ P =gt (2.1.9)

As a result, the background metric 7" and the field #” disappear from the considera-
tion completely, and the dynamical metric g” is left alone, restoring general relativity
in its original formulation.

2.1.3 Deser’s field-theoretical model

Generalizing the earlier works, Deser [120] suggested the field-theoretical formula-

tion of general relativity on the Minkowski background in a closed form without

expansions in difference from (2.1.8). The basic principle is the same:

— A consistent field theory of gravity in the Minkowski space is constructed as a theory
of the spin-2 tensor field with self-interaction.

The matter fields are coupled to gravity a universal way analogous to the case
discussed above, therefore for the sake of simplicity we do not consider the matter
fields in this subsection at all.

Unlike the previous case, Deser used the first order formalism where the independ-
ent dynamical variables are the components of two fields h*” and A”‘W, where h* is a
symmetric tensor density of weight +1, A“W is a tensor of the rank 3. At the beginning,
Deser considers the linear theory with the action

1 (4. o
=—— A 2.1.1
s l6njdx.zz(h, ), (2..10)
where the Lagrangian is
LE50,8) = 0 (A g = A% ) + 7 (8% g5 — %50 ) (2.1.11)

and " = /=yy"", y = det y,,. Since, later on, we will need variations with respect to
the background metric we use curved coordinates in the Minkowski space. Thus we
consider the Minkowski metric in the form of y,, instead of n,,,. As a result we use the
covariant derivatives {,,} constructed with the help of the metric y,, and defined in
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(1.2.8) with the corresponding Christoffel symbols C"‘W, see (1.2.9). Of course, in the
case of the Lorentzian coordinates, one has y,, = 1, and C"‘W =0.

Varying (2.1.10) with respect to the dynamical variables one obtains the gravita-
tional field equations of the first order:

2gﬂva _ _h}lv;a + 6l(xﬂhv)ﬁ;ﬁ + ,viAﬁﬂ + ,.)/JﬁAl()l;;5;) _ 2,7,B(HAZ)B =0, (2.1.12)
A
ZGyv = Aatyv;ot - AD(oz(y;v) =0. (2.1.13)

Combining these equations, one easily obtains
Gy (B) = 3(h ™ o + yh™ g = M = B0) = 0, (2.1.14)

where the notations 1" = §*/\/=y are used. Substituting 1" = IV — 1y"I*, into
(2.1.14), one finds that it coincides with (2.1.5), see also (1.5.5). Thus, the action (2.1.10),
indeed, describes a spin 2 tensor field.

The metrical energy-momentum tensor of the linear gravitational field p*" is

1 80,0

(2.1.15)

o _ 2
N AN T Y

_SLTI [(65463 - %YHVVDG) (AapoAﬁaﬁ - AaPﬂAﬁW) - QTVV;T]

with

2Q5, =~y hP AT g + My AT gy™ - HTA%, - LAY,
BT (A Yy + A gy
+ hﬁu (ATVﬁ - Aaﬁp)’m)/av)
1, (AT = AV Vi) - (2.1.16)

To account for the self-interaction of the gravitational field one has to require that the
energy-momentum tensor (2.1.15) is the source of the gravitational field and appears
in the right hand side of equations (2.1.14). Thus, one gets

G, (h) = 87,15 (h, D). (2.1.17)

But, here, there is a contradiction: this equation has to follow from a cubic in h* and
A“W Lagrangian, whereas (2.1.11) is only quadratic.

To include the self-interaction in a consistent way, Deser suggested a novel trick.
Following the analogy with the theory of the Yang-Mills fields, he added the cubic term
to the gravitational Lagrangian (2.1.11) as follows,

L85, 8) = Z5(5,8) + 5 (A% o5 — A% 600 ) (2.1.18)
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The important property of the additional term is that it does not contain the metric at
all. Thus, it does not contribute to the energy-momentum tensor, that is formally

tﬁv(h, A) = 2tﬁv(h, A). (2.1.19)

On the other hand, instead of the first order equations (2.1.12) and (2.1.13) one has
G = G+ N g+ 0P 87 - 20PN = 0, (2.1.20)
Gy = 26, + AN g — A, = 0. (2.1.21)

It turns out, rather remarkably, that the combination of the new first order equations,
(2.1.20) and (2.1.21), gives exactly:

Gy, (h) = 8nt3 (h, A), (2.1.22)

where the right hand side is the metric energy-momentum tensor (2.1.19) correspond-
ing to (2.1.18)!

Recall that the goal of the above consideration is to construct a theory being equi-
valent to general relativity. Let us show how to reach this goal. After making use of the
following identifications

¥+ = g,
Cly +0%, =T, (2.1.23)

one finds that the equations (2.1.20) and (2.1.21) take on the following form:

Gy = —g" o+ 6L 5+ VTP g+ gPPTY 567 — 2gPHTY 1 = 0, (21.24)
Gy = T = T + Tl g - T = 0. (2.1.25)

These are the Einstein equations in the Palatini formulation, where the fields g*V and
F“yv are considered as independent variables. Let us show that the equations (2.1.24)
and (2.1.25) represent the Einstein equations in the usual formulation. Keeping in
mind g" = /=gg"” and using (A.2.9-A.2.11), one finds that (2.1.24) is equivalent to
(1.3.5). This means that Gﬁv =Ry, see (1.3.5). Thus, the equations (2.1.25) become the
vacuum Einstein equations in the standard form.

Let us compare also the Lagrangians. Adding the Lagrangian (2.1.18) by the terms
%VRFV(y) and [jPVRPV(y), which are equal to zero for the flat background, and substitut-
ing the identification (2.1.23), one finds easily that (2.1.18) is equivalent to the Hilbert
Lagrangian in the Palatini form:

Ly = 0" (Twa ~ Ty + TP s ~ T ) (2.1.26)
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with g* and I‘"‘yv as independent variables. Varying (2.1.26) with respect to I‘”‘W and
g""¥, one obtains exactly (2.1.24) and (2.1.25). Thus, the system represented by (2.1.18—
2.1.22) is equivalent to general relativity in vacuum.

The equations (2.1.22) were constructed in absence of matter sources. The matter is
introduced to the theory appropriately by adding the matter energy-momentum tensor
to (2.1.22), which takes on the form:

Gy () = 87 (£, + £) = 8ty . (.1.27)

The divergence of the left hand side of (2.1.27) is equal to zero identically, then for the
same reason as in (2.1.4) one has

=0 (2.1.28)

totsv —

that is the differential conservation law for the total energy-momentum.

We stress again that the use of the components of b*" in the role of dynamical vari-
ables (not A", "V or others) has permitted us to construct the theory of perturbations
of gravitational field in the closed form being equivalent to general relativity without
expansions in the Taylor series.

2.1.4 Various methods of the construction

Here, we discuss different approaches to represent general relativity in the field-
theoretical form. The above recipes were based on the relativistic formulation of
the theory from the very onset. They recommend to begin the construction in the
Minkowski space. On the other hand, general relativity generalizes the Newtonian
gravity which is a non-relativistic theory. It is important to overview the steps of this
drastic conceptual transformation, from gravistatic (Newtonian law) to gravidynamics
(Einstein’s equations). Following Grishchuk [203], the main points of this are as follow.

Let us begin from the Newtonian law Agp = -47Gp and reformulate it to make
it compatible with special relativity. To satisfy the relativistic requirement: first, the
mass density p has to be generalized to 10 components of the matter stress-energy
tensor THV(QD, n); second, the single component of the Newtonian potential ¢ should
be replaced with 10 gravitational potentials; third, the Laplace operator should be
replaced with the d ’Alembert operator 0O; thus the Newtonian equation is rewritten
in the form:

ohy, = 1677, (®,n), (2.1.29)

where Ohy,, = rlaﬁhyv,aﬁ = hyv’“,a. Fourth, recalling the equations (1.5.21) with (1.5.20),
one assumes that in (2.1.29) the gauge condition d,h*" = 0 is implied. Therefore to
relax this assumption and to reestablish the full gauge invariance of (2.1.29) one has
to add to its left hand side some additional terms. It turns out that the gauge invariant
extension of (2.1.29) is



96 —— 2 Field-theoretical formulation of general relativity: The theory

Ghy =3 (R o+ Mh™ op = W va = %, ) = 87T, (@, 1) (2.1.30)

which exactly coincides with (2.1.7), recall that ¥ = P - %n""laa. After taking into
account both, fifth, the universality of the matter coupling and, sixth, gravitational
self-interaction, one obtains the field-theoretical formulation of general relativity in
the form (2.1.8).

Of course, from the theoretical point of view, it is very important to construct
general relativity (or any other geometrical theory) in the field-theoretical form, by
relying upon the principles of a field theory in the Minkowski space, as above. This
approach has not only its own theoretical merit but can be highly efficient in prac-
tical calculations of approximate solutions of the Einstein equations by making use of
their perturbative expansion with respect to a small parameter and doing successive
iterations. It works as follows. The first (main) step is the decomposition of dynamical
variables of general relativity into the background quantities and perturbations. The
next step is the derivation of the field equations for the perturbations which are con-
sidered as independent dynamical variables. Usually the background spacetime (flat
or curved) is determined by the problem under consideration and is taken as a known
solution to the Einstein equations.

Let us demonstrate the decomposition method in the case of Deser’s field
approach to general relativity. We take the Hilbert Lagrangian in the Palatini form
(21.26) with independent variables g* and I}, make decomposition of the dynam-
ical variables

gyv _ "7]” + hyv,
ra}lv = Cayv + Aa}lv ’ (21.31)

take into account that for the flat background Ry, (y) = 0 and treat the perturbations
b*" and A", as independent dynamical field variables. Then, the Palatini Lagrangian
(2.1.26) transforms to the Deser’s Lagrangian (2.1.26).

The advantages of the decomposition method are, first, it is rather straightforward
and explicitly connected to the ordinary geometrical formulation of general relativity,
and second, it is well adapted for constructing the field-theoretical formulation of an
arbitrary metric theory. In Section 2.2, the decomposition method will be applied to
reformulate general relativity as a field theory on an arbitrary curved background.

It is natural to assume that the field-theoretical formulation of general relativity
can be constructed based on the gauge invariant properties of the field equations.
Recall that the initial linear equations (2.1.5) are invariant under the transformations
(2.1.6). One can check that this invariance is not preserved at the next steps of the
iteration procedure, and must be extended in such a way that the final form of the
field equations become invariant with respect to total diffeomorphisms in the exact
sense. Keeping in mind all of these, one can try to construct the field-theoretical for-
mulation of general relativity as a gauge theory. Such a construction is presented
in Section 2.3. Using analogies with the gauge theories of the Yang-Mills type, we
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suggest a non-standard way of a localization that is postulated as a “localization” of
Killing vectors of the background spacetime instead of the usual localization of group
parameters.

In the modern theoretical models, instead of the Minkowski space, frequently one
considers a fixed curved spacetime as a background, such as the anti-de Sitter space,
cosmological models, black hole geometries, etc. Therefore, the field-theoretical for-
mulation of general relativity is necessary for studying perturbations on arbitrary
backgrounds. Such a generalization is presented in [206, 379] and is developed in Sec-
tion 2.2 using the decomposition method. Although the construction in these works
has been developed both in the first and in the second order formalisms, the only
latter is used here, since it is more convenient and suitable. To the best of our know-
ledge, Barnebey [29] was the first one to suggest the use of the second order formalism
for an exact (without expansions and approximations) description of perturbations in
general relativity.

Elements of the field-theoretical approach in general relativity presented in
[120, 206] appear independently in many studies. Recently, they have been actively
developed by Babak and Grishchuk [21]. They require only the first derivatives of
the metric perturbations in the total metric energy-momentum tensor. This has led
to a new field-theoretical formulation of general relativity in the Minkowski space,
where such a total energy-momentum tensor is the source in the field equations with
a non-linear left hand side, unlike the formulation in [120, 206]. On the basis of the
formulation of general relativity in [21], a promising variant of the gravitational theory
with non-zero masses of gravitons has been developed in [22]. The interested reader
can find the details of the Babak-Grishchuk theory in Section 2.4.

In presenting the developments of the field-theoretical method, it is worth men-
tioning the works by Pitts and Schive. In [374], a class of so-called “slightly bi-metric”
gravitation theories has been constructed. In [375, 376], the behaviour of light cones in
the Minkowski space and curved (physical) spacetimes has been examined. A special
criterion (based on the causality principle) for constructing a field-theoretical model
has been proposed as well. In [375], this criterion is used to show that if a spatially
flat FLRW big bang model is considered as a field configuration on a flat background,
then the cosmological singularity vanishes to past infinity in the Minkowski space.
The references to earlier works on the theoretical foundation of the field-theoretical
approach in general relativity can be found in papers [202, 203, 471]; the exhaustive
bibliography has been provided in [374-376], see also [364].

2.2 The field-theoretical formulation of general relativity

In this section, the field-theoretical formulation of general relativity on arbitrary
curved backgrounds is developed. The decomposition method derived above is
applied in the second order formalism, the properties are examined and discussed.
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2.2.1 Adynamical Lagrangian
Let us rewrite the Einstein-Hilbert action as

S-= J XLy = ‘FJ X2 (@) +J dx MDA, g). (2.21)
Following Deser’s recipe of the previous section for constructing the field-theoretical
formulation in general relativity, we note that for the role of the dynamical gravita-
tional variables we choose the components of the Gothic metric g":

g = v-gg". (2.2.2)

The matter variables are components of a set of tensor densities dDA, see Appendix A.3;
M depends on ®* and ¢"", and their derivatives up to the second order, although the
consideration can be generalized easily to an arbitrary finite order.

Now, after varying the action (2.2.1) with respect to the dynamical variables, one
obtains the gravitational and matter equations in the form:

8Ley 1 67 64M

o oo " o o
8Ly _ 0LM _

The equations (2.2.3) are the Einstein equations, the explicit form of which are
Ry, =81 (T, - 380 Ta") » (2.2.5)

see (1.3.29). Einstein’s equations of the usual form (1.3.22) have been obtained by the
variation with respect to g"‘ﬁ . These equivalent forms are connected by the multiplier

og™#
agyv - \/__g( a6€ - _g gyv) s (2.2.6)

see (1.3.28).
Now, let us define the metric h*” and matter q,')A perturbations with respect to the
background quantities §*¥ and ®* with the use of the decompositions

g =g+ p", 2.2.7)
o =t gt (2.2.8)

We stress that these are exact relations, there is no necessity for h*V and ¢A to be
infinitesimal.
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After that it is necessary to define a background (fixed) system. It is postulated
that the background quantities are described by the action:
S= Jd“xiﬂEH L Jd"x@ + qux_i”M, (2.29)
16m
where #Z = %) and ZM = £M(G", ®*). The corresponding background grav-
itational and matter equations have the form of the barred equations (2.2.3) and
(2.2.4):

8%y 1 6% 6™

- . 221
55~ lemdgy T agy O (2:210)
6%y 62M
= = - = 0. 2.2.11
DA DA ( )
The explicit form of (2.2.10) is
Ry, —81(Tp, - 38,,T) = 0. (2.2.12)

A Ricci-flat (including flat) background is used in many applications, in this case the
background equations (2.2.10) and (2.2.11) are transformed into the unique equation
R, =0. 2.213)

Background quantities §** and ®* are considered as known (although arbitrary) solu-
tions to (2.2.10) and (2.2.11), therefore they are classified as given (fixed) quantities.

To transfer to the field-theoretical formulation, we interpret the perturbations H**
and ¢A as independent dynamical variables, representing the field configuration on
the background of the system (2.2.9-2.2.11). To describe such a configuration in the
framework of a field theory, one has to define the corresponding Lagrangian. From
the start we turn to Deser’s Lagrangian (2.1.18) rewriting it as

Z8(0,0) = Z(@+b,C+ 1) - 5"R,,(y) - Z(). (2.2.14)

Here, %Z(g + b, C + A) is obtained from %(g,T) = g’“’Rw(F) with R,,,(T), see (1.3.5), after
incorporating the decompositions (2.2.7), (2.2.8). Recall that the Lagrangian (2.2.14) is
derived in the Minkowski space and for the vacuum case. Generalizing it for curved
backgrounds with the presence of matter, we define the Lagrangian for the fields p*¥
and ¢ as

byv&?js}l a6 _p L
SgH 5DA EH " 16n

= —ﬁfg +. M, (2.2.15)

LY = L@+, D+ ) - 0, 2"
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Because it describes independent dynamical variables hH** and d)A, it is called the
dynamical Lagrangian [379].

Properties of the dynamical Lagrangian

The construction of (2.2.15) is as follows. The decompositions (2.2.7) and (2.2.8) are
incorporated into the Lagrangian of the action (2.2.1); zeroth order and linear in h*”
and ¢” terms in Taylor series are subtracted; a divergence may be added. Zeroth order
term is the background Lagrangian, whereas the linear term is proportional to the
left hand sides of the background equations (2.2.10) and (2.2.11). Before variation,
however, one cannot take into account the fact that (2.2.10) and (2.2.11) hold. The
explanation of this will be given in Section 2.2.3, see the explanation of the formula
(2.2.46). The pure gravitational part is denoted as .#%, whereas the Lagrangian for the
matter sector interacting with the gravitational field is denoted .#™. Now let us discuss
the properties of the dynamical Lagrangian (2.2.15).

First, at least, the choice (2.2.15) satisfies the main requirement, namely: the vari-
ation with respect to b*¥ and ¢A gives the equations equivalent to the equations of
the Einstein theory in the form (2.2.3) and (2.2.4). It is true because (a) by (2.2.7) and
(2.2.8), the variation of the first term in (2.2.15) can be changed with the variation with
respect to g* and @%; (b) it is assumed that the background equations (2.2.10) and
(2.2.11) hold; (c) the divergence does not contribute into the equations.

Second, it seems that, unlike (2.2.15), a simple substitution of the decompositions
(2.2.7) and (2.2.8) into the initial Lagrangian %z (3 + b, @ + ¢) is the best variant for a
dynamical Lagrangian. However, then the variation with respect to h** can be changed
by the variation with respect to g'V. But this means that the metric energy-momentum
tensor obtained by variation with respect to g** disappears on the field equations. It
is not a desirable situation because then the physical meaning of the metric energy-
momentum tensor is not clear. This does not make the situation better than in the
standard geometrical formulation in general relativity. Indeed, the total metric energy-
momentum in general relativity is connected directly with the variation of (2.2.1) with
respect to g*’, but it disappears on the Einstein equations. The situation is improved
by including the linear terms into (2.2.15): namely, the variation of them with respect
to the background metric guaranties that metric energy-momentum is non-zero and
has a physical meaning.

Third, up to a divergence the Lagrangian (2.2.15) disappears for a vanishing
dynamical field configuration, it is natural and this property is guarantied by the
subtraction of the background Lagrangian.

Fourth, in general, in (2.2.15) a vector density 2“ is not concreted. Its presence, on
the one hand, does not have influence for deriving the field equations, on the other
hand, it can modify boundary conditions under variations. In the simplest case, when
2% = 0 the pure gravitational Lagrangian is
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28 = #@G+b)-bv"R, - "Ry,
= (VPAZV - v(uA\(j)o)
+ (@ + 0 (O WA o = 60 ,) (2.2.16)

where V,, is the covariant derivative constructed with the use of g,,,.
The formula (2.2.16) has been obtained as follows. The components of the tensor
A?,, are the perturbations of the Christoffel symbols

0 — _ _
Ay =T T = 38% (Vg + V8o — Vo8 » (2.2.17)

and depend on h*” through the decomposition (2.2.7): g,,, = 8,(8) = 8,(3 + b).
The definition (2.2.17) generalizes (1.5.38) for the case of a flat background. Also,
substituting F“w from (2.2.17) into the Riemann tensor (1.3.2), one obtains

A A = A A A A
Rpe = Vol g = Volk p + N AT = Ny A, + R (2.2.18)

The gravitational Lagrangian (2.2.16) coincides with Deser’s Lagrangian (2.1.18) if the
background metric g, is changed with the metric y,, of the Minkowski space. To be
convinced, one can check that the definition (2.2.17) and the equations of the first order
(2.1.20) (plus (2.1.12)) coincide.

One of more popular choices [251] for 2% is

2% = g"N'y, - g"A", . (2.2.19)
Then the pure gravitational Lagrangian is represented as

5= R@G+h) - h”vRyv - @”VRW + ay.,@“
== (Apyv - Agyoae)vpbw
+(@" + ") (ApuvAUpo - APWAU/JV) : (2.2.20)

It depends only on the first derivatives of the gravitational variables h*". In the case
of a flat background the Lagrangian (2.2.20) transfers to the covariant Lagrangian
suggested by Rosen [390], which has been rediscovered in [250] and [204].

Fifth, the matter part of (2.2.15) is rewritten as

oM oM
$m=$M(g+h,q_)+¢)—hw6i— Asi

s 2.2.21
53 55 ( )

Its a concrete form depends on the choice of #M.
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2.2.2 The Einstein equations in the field-theoretical formulation

To obtain the equations for the gravitational field h”‘ﬁ , one has to vary the action (2.2.15)
with respect to h®:

5 _am 6 N
Wﬂ = 6haB$EH(g + h, D+ ¢) 6@_[1[3 =

(2.2.22)

In the first term, the variation with respect to h* can be changed with the variation
with respect to g*. Then, keeping in mind the background equations (2.2.10), one
concludes that (2.2.22) are equivalent to the Einstein equations in the form (2.2.3).

Let us rewrite the equations (2.2.22) in a more appropriate form where the total
energy-momentum is the source for the linear part of the field equations, see (2.1.27).
Varying the action (2.2.15) with respect to g* one gets

¢A 5$EH

6 gdyn _ 6 - 5 < hyv 5"§/ﬂEH

55 = 55 Zen@+h, @+ @) - 55 G + fEH> . (22.23)

Because in the first term in (2.2.22) the variation with respect to h"‘ﬁ can be changed
with the variation with respect to g“ﬁ the first term in (2.2.23) vanishes on the
background equations (2.2.10). As a result, (2.2.23) goes to

6 w6 Ly a6 Ly 6 _a
- 55 <by s P san )@t (229

which is the other form of the field equations (2.2.22). Recall that the total energy-
momentum is related to the variation with respect to g", therefore let us contract the
equation (2.2.24) with

\/_ (85680 - 38,,8") (2.2.25)

Dividing by v/~ and multiplying by 167, one gets the gravitational field equations in
the form:

L L
Gy + Dy, = 87(£5, + 8, ) = 87ty . (2.2.26)
The left hand side of (2.2.26) is linear in h** and ¢A, the right hand side represents

the total energy-momentum related to (2.2.15). The left hand side consists of the pure
gravitational part and matter part:
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74
PO
G,y () = \/_ 5gwb 55
= 3 (% P + 8 Vool = Vbl = VL), (2.2.27)
I :_167T 6 pod,? A5$M
@,,(h, ) = 3 557 <b s " o (2.2.28)

where V), = V,V,. The right hand side of (2.2.26) is simply the metric energy-
momentum tensor related to the Lagrangian (2.2.15):

ot 2 8 2 6 1 e om)_ m
W= T =y et L) e (2:229)
The explicit form of the gravitational part is
1
= g (0007 1008°) (0t~ Mtl) 1900 2230

207, = G hPAT 4 + hy AT 8™ - KT A%, — A,
T (A% g8y + A gy
+hﬁy( w8~ 08 8

+hﬁv (Aryﬁ - Aaﬁpgprgay) . (2.2.31)

One can see that £, is not less than quadratic in the gravitational variables. The mat-
ter part is expressed through the usual matter energy-momentum tensor T, of the
Einstein’s equations (2.2.5) as

v = (018 3808”) (Tap ~ 3809 Trp8™)

2 6 [ pebM 48ZM\ -
B \/___g 6gﬂv <h 6gp(r + 6(_DA T].lv . (2232)

Now, let us compare the gravitational equations (2.2.26) defined on an arbitrary curved
background with Deser’s equations (2.1.27) defined on a flat background in curved
coordinates.

First, the linear gravitational part of the equations (2.2.27) generalizes (2.1.14) on
arbitrary curved backgrounds.

Second, the quantities (2.2.30), (2.2.31) generalize the energy-momentum tensor
(2.1.15), (2.1.16) to arbitrary curved backgrounds. One can recall that A“W in (2.2.30),
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(2.2.31) depends on the gravitational variables through (2.2.17), whereas A“W in Deser’s
approach is the independent dynamic variable. However, the latter can be recalcu-
lated with the use of the equation of the first order (2.1.12) which is equivalent to
(2.2.17).

Third, unlike (2.1.27), the equations (2.2.26) contain an additional linear expres-
sion (2.2.28); it is because the background system includes the “background matter”.
In the case of Ricci-flat backgrounds (2.2.13) the expression (2.2.28) disappears from
(2.2.26) and it acquires the form of the equations (2.1.27).

Fourth, the matter energy-momentum, ™" v in (2.1.27) is not concreted; the expres-
sion (2.2.32) represents it in a maximally general form on arbitrary curved back-
grounds including the “background matter”. Assuming expansions for (2.2.32) one
finds that it is not less than the second order in dynamical variables, like the
gravitational energy-momentum, tg

Let us make other remarks. One can find that the expression, CDuv’ in (2.2.28) is
included as a part into the matter energy-momentum in (2.2.32). This permits one to
rewrite the equations (2.2.26) in the form:

GL, () = 8 (£5, + 8ty,) = 8ty ; 2.233)
5% = tﬁ\lf — by
((‘3"‘(‘3{‘,g 2gwg ) (Taﬁ - %gaBT,,pg"p) Ty (2.2.34)

One can easily find that the equations (2.2.33) have the form of the equations (2.1.3)
and, in fact, generalize them to arbitrary curved backgrounds. However, the effect-
ive source t;ff does not follow from the total Lagrangian (2.2.15) by the variational

procedure. The matter part could be classified as a perturbation of

2 6 _
t Nt M (5+0,0+¢) (2.235)

only.

At last, let us turn to the perturbed matter equations. They can be represented by
the same way as the gravitational equations. Thus, indeed, they can be rewritten in
the form:

dyn
% =L+l =0, (2.2.36)

or

o = 7, (2.2.37)
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where the linear left hand side is defined as

5 5 6.9M 5.4M
@L(p, ¢) = oA (h” % + P 5?3 > , (2.2.38)

whereas the source is represented by

(2.2.39)

2.2.3 Functional expansions

The exact field-theoretical reformulation of the geometrical theory gives a possibility
to construct an approximate scheme easily and in explicit expressions up to an arbit-
rary order in perturbations. In this subsection, it is demonstrated. Assuming smooth
enough functions, let us expand the Lagrangian .Zyz(g + b, ® + ¢) as

: 6Len . pO0Lpn
fEH=fEH+prW+¢ g
Lias 8 (po0Lmm oo 8 a8Zpm 1 yp & a8Zmm
"2 e " e s 2% sar? s
+ ... +div. (2.2.40)

The expansions, like (2.2.40), are used in quantum field theories [138] and called
as functional expansions. The relation can be proved, for example, by the method
of mathematical induction after a prolonged calculation. One of main properties of
such a calculation is that the Lagrangian derivatives (see (A.2.38) and (A.2.42) in
Appendix A.2.4) commute up to a divergence, for example, as

6
po_9 LA
0 o ®

53}5]‘1 _
A

%hp" =g div. (2.2.41)

¢A
Also, one has to remember that the Lagrangian derivative of a divergence is identically
equal to zero, see (A.2.40) in Appendix A.2.4.

The perturbative Lagrangian (2.2.40) can be represented in a compact form with
the use of iterations,

L=y L, (2.242)
k=0

where L = 7. Here, for any k > 1,

EH M
He _ 1 ( 8.4 4042,
% X (h 53 +¢ 5 , (2.243)
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is the Lagrangian perturbation defined iteratively by taking Lagrangian derivatives
from the Lagrangian perturbations of the previous iteration. In particular,

ng 201

SEH _ g 2244

A A T (2:244)
5. s.¢M

R7 S |t AL, 2.24

r <b T (2:245)

and so on.

Now, substitute the series (2.2.40) into the dynamical Lagrangian (2.2.15). One
can see that the zeroth order and linear terms have the opposite signs and, thus, are
self-compensated. It is exactly the reason why in the linear terms of the Lagrangian
(2.2.15), the background equations are not taken into account before variation. It is
because they are absent, and, in fact, the dynamical Lagrangian is quadratic in the
dynamical variables and has the form:

dn _ 1 ap 6 p06$EH po 26% 1.8 8 46%y
Z 21" 6gﬂﬁb 8g°° *h gP°¢ oA 2!¢ 5®B¢ log
hyv 6 haﬂibpo 5=?EH byv 6 aﬁ 6 ¢A 6$EH
S 5@&/3 5gp0 5guv 5gaﬁ
1 6 6 8% 6 8%
T BT A _EH BT A _HE +
" 5@W¢ 5(DB¢ 54 ¢ 5c1>C 5q>B¢ 5DA
+...+div. (2.2.46)
Following (2.2.42), the same can be rewritten in the compact form:
[ee)
=y g (2.2.47)

k=2

One has to stress that the remarkable structure of (2.2.46) permits one to represent
the variation with respect to dynamical variables, h*" and ¢*, as the equations of

the type

8L 8 [ 6L Aa,,stH , oM

Shyv - 5@}1\/ (h 5gpg ¢ 6@}” = 0, (2.248)
8L 8 (6L stfEH , 8z

5¢A - 5(i)A <h 5gp0- ¢ 6q_)A = O- (2.2.49)

As is seen, they are exactly the equations (2.2.26) and (2.2.37), respectively, see (2.2.24)
and (2.2.38), which are the main equations of the field-theoretical formulation.
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Under necessary assumptions, the series (2.2.46) can be interrupted at the cor-
responding order. Then the approximate Lagrangian for the perturbed system can be
obtained. Its variation gives both the approximate field equations and the energy-
momentum tensor. For example, the quadratic approximation of (2.2.46) gives the
possibility
(@) to construct the linear equations

V=803 /.1 I
- 7 a_yv (Gpo(b) + (ng(b, ¢))
6 pro 0L 6Ley + 0L 8.%Ley
bgh i sDA

) v6.% 6%
SACOE Y <bf’ ng + ¢BsTeE§> =0, (2.2.51)

0, (2.2.50)

(b) to construct the quadratic energy-momentum tensor:

ttot _ 2 i l hzxﬁ 6 bpa 5$EH
2 \/:g 5§I‘V 21 Séaﬁ 5990
0 .4 &ZEH

po
o s

(2.2.52)

¢

Aac-?EH>
6CDB 5DA )

The cubic approximation of (2.2.46) gives the possibility (a) to construct the field
equations including quadratic terms, which are related to the energy-momentum
tensor (2.2.52), and (b) to construct the energy-momentum tensor, including quadratic
(2.2.52) and cubic parts, etc. Thus, the representation of the dynamical Lagrangian in
the form (2.2.46) gives, in fact, the algorithm for constructing an approximate system.
Besides, such a structure of (2.2.46) explains simply the infinite series, for example, in
the equations of the type (2.1.8).

2.2.4 Gauge transformations and their properties

Diffeomorphism invariance of a geometrical theory is connected with mapping a
spacetime onto itself and is classified as an extrinsic symmetry. Gauge transformations
and gauge invariance in general relativity (and other metric theories) are connected
with the diffeomorphism invariance, see [154, 316] and (1.2.72-1.2.82) in Section 1.2.3.
The gauge invariance properties of the field-theoretical formulation of general relativ-
ity follows from the properties of general relativity itself, and this kind of invariance is
classified as intrinsic symmetry, as in electrodynamics. In this subsection, the defini-
tion of gauge transformations and their properties in the field-theoretical formulation
of general relativity are described. The presentation is based on the exact theory of
gauge transformations developed in the works [204, 206, 360, 361, 379].
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At first, one has to consider differentiable coordinate transformations
o ey, (2.2.53)

which can be connected with the smooth vector field £*:
X' = exp ({ﬂ(x)—>x =x"+ &%) 5 {ﬂ.f £¥ 3 .f (P Bt (2.2.54)

Here, the exponent is understood as an operator; the transformations (2.2.54) are
understood as the exact, not infinitesimal, ones. Then the dynamical variables of
the geometrical formulation of general relativity, metric density and matter fields, are
transformed in the usual way, see Appendixes A.1and A.3.1,

g0 — g™ (), (2.2.55)
A (x) » "W). (2.2.56)

Now, let us provide the operation connected with the Lie displacement along the vec-
tor £*(x) in (2.2.54). Already the definition for Lie derivatives is given in (1.2.77-1.2.82),
and their properties are given in Appendix A.2.3. However, only the linear approxima-
tion in £* was used. Here, the transformations (2.2.53-2.2.56) are not approximate. As
aresult, (2.2.55) and (2.2.56) lead to

g0 = exp £ (0 = 90 + Y, 1 E5” (0, (2257)
k=1""
1A A A o 1l k.4
O"(x) = exp £; D" (x) = D (x) + kzl o £e® ). (2.2.58)

The exponent is also an operator,
1,
expEy =1+ £, + i£f+"' , (2.2.59)

and we will use the operator:
S 1
z k— — (exp£;-1). (2.2.60)

to make formulae more compact.

Assume that components of the geometrical objects W2 are differentiable func-
tions of other geometrical objects l/JA and their derivatives, but are not explicit
functions of coordinates. Assume also that 1/)A are transformed analogously to (2.2.57)
and (2.2.58),

P00 = exp £, (x). 2.2.61)
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Then a simple substitution gives W2(1)"4) = ¥'5 which means
¥ (exp £, ) = exp £, YY) (2.2.62)

Taking into account this property, let us examine the invariance of the Einstein-Hilbert
Lagrangian in (2.2.1) and the Einstein equations (2.2.3) and (2.2.4) with respect to the
substitution of (2.2.57) and (2.2.58). One easily finds that the Lagrangian is invariant
up to a divergence:

ZLen(g', @) = exp £; Lpp(g, D) = Ly (g, D) + (exp £ — 1) Ly (g, ©)

XEH(Q’ (D) + div. (2.2.63)

The divergence has appeared because the Lagrangian is a scalar density of weight +1;
and, as usual, the divergence does not influence the equations of motion. The vari-
ation of the Lagrangian (2.2.63) with respect to g’ and @®* gives again (2.2.3) and
(2.2.4), respectively.

Substituting (2.2.57) and (2.2.58) into the operators of the equations (2.2.3) and
(2.2.4) and keeping in mind the rule (2.2.62), one gets

s (g!, @) 6.7 (g, @)
T agw | XP £ T (2.2.64)
8.7 (g!, @) 8.7 (g, @)
W = exp E{ 6—1 . (2.2.65)

Thus, if g, ® satisfy (2.2.3) and (2.2.4) then g',®’ satisfy them as well. To this
end, transformations from (2.2.63) to (2.2.65) can be classified as a diffeomorphism
invariance.

Let us outline how the above invariance is transformed to the gauge invariance
in the framework of the field-theoretical formulation. From the beginning, one has to
define the gauge transformations for the dynamical variables h and ¢. First, define the
decompositions

g () = g () + 5" (x), (2.2.66)
0" (x) = D) + p"A(x) (2.2.67)
for the primed quantities at the left hand sides of (2.2.57) and (2.2.58). Notice that
the background fields in (2.2.66) and (2.2.67), §*(x) and ®*(x) are the same as in the

decompositions (2.2.7) and (2.2.8). We stress this point! Second, substitute both (2.2.7),
(2.2.8) and (2.2.66), (2.2.67) into (2.2.57) and (2.2.58). One easily obtains

™ (x) = V() + (exp £¢ - 1) (@ () + " (), (2.2.68)
P (x) = ¢" (%) + (exp £, - 1) (@' () + p* (), (2.2.69)
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Figure 2.1: Perturbations in the cases (a)
and (b) are shown by arrows. They look

(b) different but are tightly connected by the
gauge transformations.

where §"(x) and ®*(x) are canceled in both of the sides. The transformations (2.2.68)
and (2.2.69) themselves can be interpreted outside of coordinate and diffeomorphism
transformations. They influence the dynamical variables only, they do not influence
both the coordinates and the background quantities. Formally they do not provide a
mapping of the spacetime onto itself. Therefore such transformations are classified as
intrinsic (gauge) ones, unlike diffeomorphisms (extrinsic transformations).

The transformations (2.2.68) and (2.2.69) can be symbolically illustrated by the
Figure 2.1. In a geometrical theory both non-primed and primed quantities in (2.2.55)
and (2.2.56) represent the same solution: it is symbolized by identical curves in both
of the cases (a) and (b) at Figure 2.1. The choice of the same background fields, g*
and @4, both in the initial decomposition (2.2.7), (2.2.8) and in the diffeomorphism
transformed decomposition (2.2.66), (2.2.67) is symbolized by different straight lines.
For example, the Minkowski metric M defined in different, initial and mapped, man-
ifolds are shifted one from the other. Then, of course, perturbations in the cases (a)
and (b) are different, but they are connected by the gauge transformations of the type
(2.2.68) and (2.2.69).

Now, substitute the transformations (2.2.68) and (2.2.69) into the dynamical
Lagrangian (2.2.15). One finds for the first term in (2.2.15),

EE,H(Q + f),Cb + ¢) = .i”EH(Q + h’,(i) + (]_')I)
= Zen(exp £4(§ + ), exp £:(D + ¢))
= exp£yLpu(§+h, P+ ). (2.2.70)
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Keeping this in mind and substituting the transformations (2.2.68) and (2.2.69) into
the dynamical Lagrangian (2.2.15) one obtains finally:

gty _ L@ +h, D+ ) + (exp£y - VL@ + b, D +¢h)

(37 6L 1
_pluv EH _ !A EH _ _ la
b 5 ¢ b Lot~ 07" (2.2.71)

Using the structure of the dynamical Lagrangian (2.2.15), it can be rewritten as

1 ds uv v 6-=_%E 1A 53
$W=$Vn_(hﬂ_hﬂ)5gw (¢ ¢) “EH
- —a (_@'“ - @“) + (exp £e - 1)Ley(@+b, D+ ). (2.2.72)

16m *

This means that the dynamical Lagrangian is gauge invariant on the background
equations (2.2.10) and (2.2.11), and up to a divergence in the second line.

Now, let us examine the field equations (2.2.26) under the gauge transformations.
Combining (2.2.23-2.2.26), the field equations operator of (2.2.26) can be rewritten as

L fot _ 161 ag"‘ﬁ b
Gy + @, — 87t = "5 9 55 (Zen(@+h, ©+d) - L) 2.2.73)
Then, substituting (2.2.58) and (2.2.59), one finds after simple but long transforma-
tions,

G, (1) + L, (', ) - 8t (', ¢)) 2.2.74)
= GL, () + L, (b, ) - 87t (0, )
1 ag™ 25" . 5.57HE
\/—a ] —(exp£y - 1) [\/—a = (G5n +<1)5,T 8ntf3nt) 16— 5570

That means: if the background equation (2.2.10) hold and the fields b, ¢ are solu-
tions to the field equations (2.2.26), then b', ¢' are solutions to the same equations.
Analogous conclusions are valid for the matter equations in the field-theoretical form
(2.2.39).

The energy-momentum tensor is not gauge invariant even on the dynamical and
background equations. Indeed, from (2.2.74) under the transformations (2.2.68) and
(2.2.69), it follows

8t = 8t/ (b, d') = 8ty + G, (b’ — ) + DL (6"~ b; ¢ - ). (2.2.75)

The mathematical reason is that the background equations in the gauge transformed
Lagrangian (2.2.72) cannot be taken into account before the variation. In the case of a
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Ricci-flat background (2.2.13) one has (Dﬁv = 0, therefore the energy-momentum t;ff} is

not gauge invariant up to GILN that is the covariant divergence (see (2.2.27)).
Let us turn also to the equivalent form (2.2.33) of the field equations with the
effective source tflf,f. For the operator of the field equations G, - 8nt§ff the form of

the transformations (2.2.74) can be applied without changing. Then

,eff

8nt ), =

8ty + Gr (b’ — ) (2.2.76)
on the dynamical and background equations. Thus, the energy-momentum t;jf,f is not
gauge invariant up to a covariant divergence in the case of arbitrary curved back-
grounds, whereas t;fvt is not gauge invariant up to a covariant divergence on a Ricci-flat
background only.

Such a gauge non-invariance of the energy-momentum reflects the fact that energy
and other conserved quantities in general relativity are not localized. Unlike the other
derivations, see the discussion in textbook [315], the formulae (2.2.75) and (2.2.76) of
the field-theoretical formulation give a quantitative and constructive description of the
non-localization.

In many applications, it is important to consider equations and gauge transforma-
tions in linear, quadratic and the leading approximations. Assume that perturbations
and their derivatives are small: h* <« g, ¢p* « &4, h =~ 9,h* ... and ¢* ~ 9,¢" ~
... . Assuming that the background equations (2.2.12) give a connection gV = f )"
with a coefficient f(x) depending on the Einstein’s constant, one can set h* ~ f(x)¢?,
etc. To present the main properties of the approximation scheme, let us rewrite the
equations (2.2.26), say, up to the second order in perturbations:

Gl (b) + ©F (b, §) - 871 otser (b, bep, Pep) = 0. 2.277)

Assuming iterations, the perturbations can be expanded as h*” = b} + p}” + ..., and
qu = qb{‘ + ¢§1 +.... Then one can obtain a solution to the equations (2.2.26) step by step.
Thus, to obtain the solution of (2.2.77) one has to find, firstly, b, and ¢, and, secondly,
h, and ¢,. Besides, assume ¢* = & + & + .. with & =~ 9,&" ~ ... = B = f()p and

&= 9,8 ~ .. = b = fOPs.

Now, let us present the linear version of the equations (2.2.77):

Gglhy) + (s, dy) = 0. (2.2.78)

In a linear approximation the transformations (2.2.68) and (2.2.69) have the simple
form:

W B @Y = 0 g (T ), 279)
=gt £, @ (2.2.80)
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Substituting (2.2.79) and (2.2.80) into (2.2.74) and saving the linear approximation,
one has

L L ! L L
[G}lv(hl) + q)uv(hl) ¢1)] = [G‘uv(bl) + (Dyv(bl’ d)l)]
o 1- -po D T 1- 7
(8085 1808) £, [Ryg 7 (T 28507 @281
Thus, the linear equations are gauge invariant on the background equations only,
the fields h; and ¢; could not satisfy to (2.2.78). In the simple case of the Ricci-flat
background (2.2.13), the linear transformations have the form (2.2.79) only, without
(2.2.80). Then the formula (2.2.81) transfers to the formula G}’fv = GILN, which expresses
the gauge invariance of the linear spin-2 field, see (2.1.5) and (2.1.6). All of these are
the generalizations of the well known gauge invariance in the linear gravity under the

transformations (1.5.15).
The quadratic version of the equations (2.2.77) has the form:

Grghy) + Dig(h, by) — 87 (2t55(0100) + otap(bib, buy, i) =0, (22.82)
The quadratic order of the gauge transformations (2.2.68) and (2.2.69) has the form:
' . 12
=0y Bl @+ Z—E‘ﬁ g + £g b)Y (2.2.83)
A A, 12a A
= ¢y + £, + L D+ £ 9 (2.2.84)

Substituting (2.2.83) and (2.2.84) into (2.2.74) and saving the quadratic approximation,
one gets

[G;le(bz) +CDIIIV([32’ ®2) —Sﬂztmt(blfh’ 0191, P101) ]
= [G,Lw(hz) + q),Lw([Jz’ $,) - 81 zftOt(hﬁh, 0161, $11) ]

1 o 1 _ _ o
\/— agyv (Efz + 7£§1> [RPU -8n (TPU - %gPUT)] +

1 agp 7
\/— ag"‘/ 'Sl
Thus, equations (2.2.82) are gauge invariant on the background equations (2.2.12) and

on the linear equations (2.2.78). Of course, the procedure can be continued in the next
orders.

[\/—a =p0 [G&T(bl)) + (Dén(hl’ ¢1)] (2.2.85)

2.2.5 Differential conservation laws

The energy-momentum tensor is the one of the important entities in a field the-
ory in the Minkowski space. Its differential conservation together with symmetries
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of the Minkowski space permit one to construct integral conserved quantities. The
field-theoretical formulation of general relativity in the Minkowski space has also the
conserved energy-momentum with the same properties, see (2.1.4) and (2.1.28). Here,
these results related to energy-momentum are generalized to curved backgrounds.
More general conserved quantities, currents and superpotentials, on arbitrary curved
backgrounds are constructed and studied in detail later in Chapter 6.

To construct conservation laws and conserved quantities we use both the invari-
ance of the action

S- j dx* 2 m (2.2.86)
Q

with respect to a mapping of the spacetime onto itself and gauge transformations. In
both the cases, the vector field £* plays a crucial role. The main assumption below is
that £* and its derivatives are arbitrary and they vanish on the boundary 0Q of the
volume of integration Q.

The diffeomorphism invariance of S in (2.2.86) is evident, indeed

5, = j £ Y™ = - J dx"0, (£*2%) = - j ds, 8" 0. (2.2.87)
Q Q 0Q

On the other hand, let us consider the property (2.2.62) rewritten for %YM in the linear
approximation and use (A.2.25) in Appendix A.2.3,

dyn dyn dyn
dyn _ 07 w 0L uv 0.7
Ef"g ETY th + on th at oY o5
a gdyn A a zdyn _ a jdyn
Ee" +- -+ £,80 4+ + =
agh L? &l oA

£¢0 4 (2.2.88)

+

= A
agyv Eé'(D +.o...

Using here the formula (A.2.24) of Appendix A.2.3, one rewrites the identity (2.2.87) in
another form:

5 gdyn 5 fdyn 5 fdyn _ 5 gdyn _
8¢S = JQ dx* [W%bw o £:¢ + nggw A £ =o0.
(2.2.89)
Here, surface terms have been suppressed because £€ and its derivatives, like £* and
its derivatives, disappear at 0Q. Now, assuming that the field equations (2.2.22) and
(2.2.37) hold, using the explicit expressions for the Lie derivatives,

£.8" =208, (2.2.90)
£, = -9,0" + & V.87, (2.291)
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and removing surface terms in (2.2.89) one obtains the equality:
Vg9 + 9, (6 ) + 59,0 = 0 2.2.92)
g uv v\*A u AVp - e

where the definitions (2.2.29) and (2.2.39) are used. One can see that on arbit-
rary curved backgrounds the total energy-momentum is not conserved differentially.
Rather, the relation (2.2.92) plays the role of the integrability conditions for the field
equations (2.2.22) and (2.2.37).

The gauge invariance of S in (2.2.86) is evident due to the gauge transformation for
the dynamical Lagrangian (2.2.72). Indeed, after taking into account the background
equations and suppressing the surface terms, one has

5:S = j dx* (L'~ W) =0, (22.93)
Q

The same identity must be obtained after a direct substitution of the gauge trans-
formations (2.2.57) and (2.2.58) into .#%™. In the linear approximation in ¢ and its
derivatives, one has

~ 4 6$dyn B 5$dyn
6{8: J-dX [WE{(QHV+ hlf“’)_'_ 6¢A

£ (D" +¢")| =0, (2.2.94)

where again the surface terms have been suppressed. Substituting the explicit expres-
sions for the Lie derivatives,

G (@ + ) = -0, @ + ) + @ oo, 2299
£ (O + ) = ~£%0, (0" + ¢*) + (B + ). 8%, (2.2.96)

into (2.2.94) and suppressing the surface terms, one obtains the identity that connects
the Lagrangian derivatives (field equations operators) with their derivatives. It is just
a conclusion of the second Noether’s theorem, see Section 1.2.3.

Let us turn to the relation (2.2.92) that shows that the total energy-momentum
tensor is not conserved Vvt;ﬁf # 0 on an arbitrary curved background, unlike (2.1.28)
on a flat background. This means that the divergence of the left hand side of (2.2.26)
is not equal to zero identically, unlike (2.1.28). To analyze this situation, the gauge
invariance can also be used. To examine the linear expressions at the left hand side,
it is enough to consider the quadratic approximation of the dynamical Lagrangian
(2.2.46) and use the corresponding approximation of the gauge transformation for the
Lagrangian 29" in the identity (2.2.72).
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It is constructive to consider the gravitational and matter Lagrangians separately.
The way of deriving (2.2.72) permits this. Thus,

1haﬁihpg 174

L
4= 59" 5w (2.2.97)
om lhaﬁ 6 bpa gM hpu 6 A5«>?M
] 5-aﬁ 87 870" 6A
206.7M
<L 2.2.98
¢ 6(133 54 ( )

Substituting the gauge transformation (2.2.57) for h* into (2.2.97), keeping quadratic
in h and in ¢ terms, integrating over Q and suppressing the surface terms at 0Q, one
has

_ 4 _ 4 8%
5:S = JQ A" 8,25 = JQ dx ( 5" g ) et (2.299)

On the other hand, we integrate the identity (2.2.72), adopting it to .#2, again keeping
quadratic in h and in ¢ terms and suppressing the surface terms at 0Q, and taking into
account the background equations,

5%
6SE—J 4
3 0 Sk

Now, equating (2.2.99) and (2.2.100), using the definition (2.2.27) and suppressing the
surface terms, one obtains

(2.2.100)

294Gy, (h) = WV, Ry — 29, (HRy, ). (2.2.101)

This can be rechecked by a direct calculation applied to (2.2.27). Analogous steps
provided with %" lead to the identity:

E
8

= -39, (T — 38, T) 0" + ¥, [(T - 380 T) 0] . (2.2.102)

V'L, + 0 T,0" + Vg (0 )
Combining the identities (2.2.101) and (2.2.102), and taking into account the back-
ground equations (2.2.12) one has

V-8 U (L L A LsA B _

57V (G + Py )+ @59,0% + Vg (@fd F) = 0. (2.2.103)

Substituting here the field equations (2.2.26) and (2.2.37) one obtains again the relation
(2.2.92).
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As was remarked, it is very important to consider the case of the Ricci-flat back-
ground (2.2.13), when ®* = 0 and #™ = 0. The corresponding dynamical Lagrangian
is simplified to

dyn _ _L g m _ _L g M (-
& 16713 + 16713 + 2% (F+0h,9). (2.2.104)
The field equations (2.2.26) transform to the form

Gy, =87 (&5, +tn,) = 8mt,o) . (2.2.105)

Then, taking into account the identity V* G‘Lw = O for the Ricci-flat backgrounds, that
follows also from (2.2.101), one has the differential conservation law:

= tot

Vit =0. (2.2.106)

The other important cases of backgrounds are presented by the Einstein spaces in
Petrov’s definition [372] that defines the background equations as

Ryv =Ag,, (2.2.107)

where A is a constant. Ricci-flat, de Sitter and AdS backgrounds are particular cases
of the Einstein spaces. The Lagrangian of the background system has the form:

PHE - —%@ + M- —% (5? - 2A\/—_§> ) (2.2.108)

Here, the constant A is interpreted as “degenerated” matter that is not varied. Then,
the dynamical Lagrangian gets the form

g Loge o gm_ L oge [omaon gw8Z"  om] oo10
“enl * =~ enl * (@+h,A)-b S . (2.2.109)

Then dbﬁv = Ahy,, and, thus, the field equations (2.2.26) acquire the simple form:
G, + Ay, = 87 (€5, + ) = 8mt,) (2.2.110)

Then, because CDf1 = O for the Einstein space backgrounds (2.2.107), the identity
(2.2.103) gives

7 (Gl + ARy, ) = 0 (2.2.111)
that leads to the conservation law:

Vit =0. (2.2.112)
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In heuristic form the differential conservation law on AdS and de Sitter backgrounds
was used in [1]; in the Lagrangian description it was shortly noted in [206]; and, in the
paper [135], it was studied in more detail.

At last, it is interesting to consider the representation (2.2.33) that is valid on an
arbitrary curved background. Due to (2.2.101), one concludes that the divergence of
the left hand side of (2.2.33) is not equal to zero identically, thus in general V‘”tﬁff +
0. However, for the Ricci-flat background (2.2.13), t;fvf = tltf’vt. Then the conservation
(2.2.106) can be rewritten for (2.2.33):

Vel = 0. (2.2.113)

2.2.6 Different variants of the field-theoretical formulation in general relativity

In general relativity, components of each of different metrical variables,

2 ( V _g)m gyv s
M
ga { ( ,—_g)n gyv , (2.2.114)

can be used as independent dynamical variables; m,n € R and the index “a” corres-
ponds to a concrete choice from the right hand side. Each choice of a in (2.2.114) gives
a dynamical variable which is a one-to-one function of the others with a # b in the
sense that taking the Lagrangian derivative is a linear operation

g™
0 v = —gﬂv —6aﬂ , (2.2.115)
6g’t; aga 6g b
which is not singular.
Thus the action of general relativity can be rewritten as
S-= j A x Ly = _ﬁ J d'x%(g,) + j d'x Mg, D). (2.2.116)

After variation with respect to the dynamical variables gh’, Einstein’s equations
acquire the generalized form:

1 62 64M
— ET 6gllv + ? =0. (2.2.117)
a a

Of course, by (2.2.115), all the variants are equivalent between themselves and are
equivalent to (2.2.3). We do not show the formulation on matter variables here. The
background action

1

5= J d'x Loy = 1 J d'x%(g,) + j d'xMg,, @) (2.2.118)
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and the background Einstein equations

1 6% 2oM
L7 62 (2.2.119)
16m 68" 68"
have the corresponding to (2.2.116) and (2.2.117) barred form, respectively.
The decomposition of (2.2.114) defines the corresponding perturbations as

8w = 8w + s
& =

g =g +p",

R T (2.2.120)

All of this can be presented in the unified form that induces the definition of
perturbations for arbitrary real m and n in (2.2.114):

(m) = (\/_)mgl'w (\/__g)mgyv ’

2.2121
h(n)yv = (\/__) S~ (\/?é)ngyv . ( )

ga:ga_'_ha::{

To simplify the formulae below, we also simplify the notations with respect to (2.2.114)
as g%, being ensured that this will not lead to confusions. Of course, each of variables
(2.2.114) can be presented as an algebraic function of another variable gl =g (g ).
Then after the decomposition (2.2.121) applied to each of variables g and g2 and using
the Taylor series one finds

bagl

W= WeSL L, gtk
oz, 2!

(2.2122)

b aZ —a
2 ag”ag2
Thus, all of the perturbations defined in (2.2.120), or (2.2.121), are different.

Following the rules used in constructing (2.2.15), one defines the generalized
dynamical Lagrangian:

- Loy - 1a 7',  (2.2.123)

LI = Loy (8" +h, D+ ) - h o

¢A
where h? are independent dynamical gravitational variables. It is the basis for various
variants of the field-theoretical formulations of general relativity. Thus, analogous to

(2.2.22), the gravitational equations are obtained by varying the action (2.2.123) with
respect to h?:

B )
ng sra-Zen @ + 1, D+ ) -

&fEH

=0. (2.2.124)
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Defining the total metric energy-momentum tensor as usual

b Sgadyn ~ 2 aga Sgadyn

tot . a _
tw (R, @) = T3 g - Taog0 6 (2.2.125)
one finds
Gy, (W) + @, (1%, §) = 8rt,s (K, ). (2.2.126)
Here,
Loan . 1 8 6% 1 08" 6 6%
Gyv(h )= \/?g@ 6_§a = \/T_g@@h 6—ga, (2.2.127)
oL, (1, ) = —16—”1< 02T A_5°5”M>
e V-g 65" 63° 5PA
_16m 35" 8 [, 8™  a8M (22.128)
T AR T o

Compare with (2.2.27) and (2.2.28).

Similar to the above discussion, one can conclude that the theory (2.2.123-2.2.128)
is equivalent to the Einstein’s theory (2.2.116) and (2.2.117). The properties of the theory
in the generalized representation (2.2.123-2.2.128) are the same as of the theory (2.2.15)
studied in the previous sections. The question appears: is there a difference between
the apparently different variants of the theory (2.2.123-2.2.128)?

To provide such a comparison one has to define the unified variables for (2.2.121):

A UL

g™ (am) — g™ \Vm) (m)

wo_ pa98 N )

b =h 087 Py = V-2 (_buv 4 Lngivgo ) (2.2.129)
(an) @" (n) 5 p) *

Then, taking into account the background equations (2.2.119) and the field equations
(2.2.124), the equations (2.2.126) are rewritten in the equivalent form:

Gpay () + Dy, (b, @) = 87ty (g, D). (2.2.130)

One finds that if h* = §** (m = 1), then the equations (2.2.130) acquire the form of
(2.2.26). Of course, due to (2.2.122), a choice of two different arbitrary decompositions
as g = g{ + h{ and g§ = g5 + hj give the difference

bt — bkt = b", (2.2.131)

which is not less than second order in perturbations. Because, by the comparison,
the difference (2.2.131) enters the linear expressions of equation (2.2.130) the same
difference exists between the energy-momentum tensors. Thus, in the case of the
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Ricci-flat background,

t;ﬁ/t(hah ¢) - t;:\)/t(haZs ®) (2.2132)
= 119Gl * B0 2l) = T ) = ()]

where 12hyv = 125;41// \/Té‘

For the case of flat backgrounds, this ambiguity has been considered by Boul-
ware and Deser [71]. Later it has been examined in [379] in the case of arbitrary curved
backgrounds and in arbitrary metric theories. In Sections 6.3.2, 6.3.3 and 6.4.1, this
ambiguity is resolved theoretically comparing with the Belinfante corrected quantit-
ies; as a result, the advantage of the third decomposition from (2.2.120) is founded.
In the works [252, 369, 370] the same result is supported by comparing the BMS mass
flux [61] for a radiating isolated system with the mass flux obtained with applying the
Belinfante corrected and field-theoretical formulae.

2.2.7 The background as an auxiliary structure

The main property of the developed field-theoretical formulation of general relativity
is its equivalence to general relativity in the standard geometric formulation. Let us
demonstrate it explicitly. Firstly, let us turn to the gravitational equations. Combining
the equations (2.2.22-2.2.26) by taking into account the background equations (2.2.10),
one obtains for the field equation operators

G + Dy — 871110,
= (8465 — 38058 ) [Ruy = 87 (T, - 580T3)] - (2.2133)
Secondly, let us turn to the matter equations. Keeping in mind (2.2.1) and (2.2.15),

(2.2.4) and (2.2.37) by taking into account the background equation (2.2.11), it is easy
to find

(deyn 6$HE

How can one explain (2.2.133) and (2.2.134)? This means that if one substitutes

B = g - g, (2.2.135)
P =0’ -, (2.2.136)

see (2.2.7) and (2.2.8), into the left hand sides of (2.2.133) and (2.2.134), then one
finds that the background quantities g’ and @* vanish. Therefore the background
structures are not observed. Thus, the background spacetime and the background
matter fields are auxiliary in character.
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This means that the electromagnetic signal, for example, has no possibility
to detect the background spacetime. Then, one might wonder if the gravitational
waves have such a possibility? For the sake of simplicity consider the case of a flat
background without matter at all, then the field equations (2.2.26) acquire the form:

L
Gp = 8r1t5, . (2.2.137)

Here, the left hand side, defined in (2.2.27), has the term with the wave operator
Ohg = *'hgp,,. Namely this could define the null geodesics in the Minkowski
space. However the right hand side of (2.2.137) defined in (2.2.29) has the terms, like
h”"haﬁw. This means that the Minkowski wave operator in (2.2.137) really is “curved”,
Ellhaﬁ = (Y + ph*")hyg.,, where p is any constant, therefore it is impossible to define
the null geodesics in the Minkowski space and, consequently, the Minkowski space
itself.

It is very useful to illustrate an auxiliary character of the background space-
time considering how the gauge transformations influence the formulation of a test
particle’s motion. It is enough to consider the flat background. Then the action
functional can be defined by the Lagrangian of the type (2.2.104):

1

=S5 m_ _
S§=§5+S§ on

J d'xs8 + J d*xs™, (2.2.138)
where .#™ = #M (~+ 1, ¢). On the action for a free matter point in the Minkowski
space see Section 1.1.7. The field §*"”, the background metric density +** and the world
coordinates x* are involved in

S"=-m J dr, (2.2.139)
in the form dr’ = -ds* = —gyvdx"dx", where with the use of (2.2.7) one can express
8w = gw(')/"ﬁ, §°?). The variation of S™ with respect to the coordinates gives the
equations of motion for a test particle. It is assumed that their solutions exist and are

the vector components of the particle “4-velocity”: u* = dx“/dr.
Let us present S™ in a more suitable form:

mé(F - 1) dt
3 dt’
—5800

(2.2.140)

s" = Jd"x —gpg U’ p

where (7 — 1) is the Dirac delta-function, g, is a spatial part of the tensor g, and

é = det g,;,. Thus, matter fields in (2.2.140) are ¢ = {p, u“}.

Of course, the theory with the action (2.2.138) with (2.2.140) has to be gauge invari-
ant with respect the gauge transformations (2.2.68) and (2.2.69). In the case of the flat
background the transformations (2.2.68) and (2.2.69) for all the variables in (2.2.138)
with (2.2.140) are
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h™ (%) = B (x) + (exp £ -1) ") + 5" ), (2.2.141)
p'(x) = p(x) + (exp £ - Dpkx), (2.2.142)
u'*(x) = u*(x) + (exp £¢ — Du'(x). (2.2.143)

Of course, both the set h*"(x), p(x), u*(x) and the set h"(x), p'(x), u'“(x) satisfy the
equations of the field-theoretical formulation of general relativity. However, in gen-
eral, u®(x) and u'*(x) defines different trajectories in the same background spacetime.
This conclusion again stresses the fact that a background spacetime has an auxiliary
character.

2.3 Metric perturbations as compensating fields
2.3.1 “Localization” of background Killing vectors

Gravity theory as a gauge theory

In Section 2.2.4, it was shown that the gauge properties of the field-theoretical for-
mulation of general relativity are close to gauge properties of standard gauge theories
with intrinsic symmetries. Then, one expects that the field-theoretical formulation of
general relativity can be constructed as a classical gauge theory of the Yang-Mills type.
This section is devoted to such a way of construction.

The gauge approach in constructing general relativity starts from the pioneering
works by Utiyama and Kibble [256, 445]. Discussion on the following developments
in constructing gravity theories in the framework the gauge approach can be found in
the reviews [227, 243, 377, 444] and the references therein. To reduce a gauge theory of
gravity to general relativity one has to assume some additional assumptions [243]. For
example, in Utiyama’s work [445] torsion is suppressed “by hand”. Therefore, general
relativity is frequently classified as a pseudo-gauge gravitational theory [378].

Here, following [359], we suggest a way of constructing general relativity as a
gauge theory, which is close to the standard gauge methods, although it differs from
the standard localization. We assume an existence of a fixed spacetime, which has a
group of motions with the corresponding Killing vectors, and where the bare physical
fields propagate. Then one notices that the action of the bare fields is invariant (up to
surface terms) with respect to adding the Lie derivative of these fields along the Killing
vectors to the bare fields, whereas both coordinates and background fields do not
change. A new method of “localization” consists of the exchange of the Killing vectors
with arbitrary vectors. After that, the initial invariance of the action integral is destruc-
ted. Then, one requires to restore the initial invariance. As is seen, such a technique of
“localization” is close to the standard way of localization, when constants of a group
of transformations are exchanged with arbitrary functions. However, conceptually it
is not the same because finally one can repeat the new construction even without the
Killing vectors. Therefore we use quotation marks in the word “localization”.
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As a result of the “localization”, a compensating (gauge) field appears. Then one
requires it to have a universal character, which means that the compensating field has
the features of the gravitational field.

The simplest case
Let us consider the action integral for a covariant theory of matter fields q,')A propagat-
ing in a fixed spacetime with the fixed metric, gw, of the simplest form:

S-= J XL V0" 1 8. 231)
For our goal it is more convenient to use partial derivatives
S-= j XL 188" ). (232)

For the sake of simplicity, we assume that the background spacetime is Ricci-flat
(2.2.13). The generalization to more complicated backgrounds is possible and dis-
cussed below. Besides, it is more economical to choose a background metric with
upper indices, ", although it can be chosen arbitrarily from the set of barred vari-
ables (2.2.114); this problem is discussed below as well. At last, we assume that the
background spacetime has Killing vectors (or, although one Killing vector), which we
denote as &%,

After all the above, we define the transformation for the dynamical variables in
the form:

¢ ="+ 8;0" = ¢ + £,0", (23.3)

where the definition of Lie derivative is given above in (1.2.79) and (1.2.82), see also
(A.2.23) and (A.3.8) in Appendix A. After substituting (2.3.3) into the Lagrangian of
the action (2.3.2), taking into account the Killing equations, EEg“V = 0, and using the
property (A.2.25), one has

2= 2%+ 8,07 - 2+ 5,00 - 20 -3, 7). (2.3.4)

Thus the action (2.3.2) is invariant with respect to the transformation (2.3.3) up to a
surface term.

Now, we “localize” the transformation (2.3.3), changing the Killing vector &* with
an arbitrary vector £%. Then the property (2.3.4) is destructed. To save it, we include a
new (compensating) field ¥ and define a new Lagrangian .#%' as

L= VGG T 182" ). 235)
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Both the set {7} of indices and the dependence of .¥ ! on arguments are not determined
at the moment. Of course, for the Lagrangian £ we require also

2 =2 (2.3.6)
To represent the transformation of the Lagrangian (2.3.5) in the form of (2.3.4) one has
to determine the field ¥ and to find transformations for it analogous to (2.3.3). We will
find such a transformation in the form:

V=V 46l =V + W +V )+ 8,8 F+T1D), (2.3.7)

where, in the general case, the coefficients A/, and B/ ,? depend on ¢#, ¥ and " and
their first derivatives. Thus, the functions v s %4 s A qand B aﬁ are unknown, and our
goal is to determine them.

From the start, substituting (2.3.3), with &* — ¢%, and (2.3.7) into (2.3.5), and
requiring the analogy with (2.3.4), one has

2 = ¥ s 5, 7

=Py %fl&fzf + aj ” (67 o + ¢A 6£¢ i af;i 6™ 4
= 2 g ¥ = ¥ -’aa(g“g‘ﬁ’) . ’ (2.3.8)
Thus we require
8.2 = £, 27 (2.3.9)

We substitute here 5511 from (2.3.7) and open £ ¢l by using (A.2.25),

0.2 oz a.,sf¢’ 2.2%
£, - =g, 0+ £:) A £.0"
2.9 a
* g B8 g " 6@ (2310)

Because all the components ¢* and their derivatives are arbitrary at each world point,
coefficients at &%, {“,B and {“’ﬁy have to be equal to zero. As a result, the equation
(2.3.9) gives the system:

o.7% ;g o2, oz,

ov Hat v ap = " ogm & T Hauw ﬁg B 231)
0L g, a«iﬂ ] sf. B B

=7 B (A s+8.F )
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0L g, 9L _vip

- Sl o [—g (g |a)’y], 23.12)

0.2 5 oz
B =

(B
« — g, . (2.3.13)
ov v g, a

Consider the two cases, first, when %! depends on the derivatives g

0.7%
—— #0, (2.3.14)
ag'”’y

and, second, when .#%! does not depend on 8"

o.7%

— = (2.3.15)
agi“’,y

Because we would like to represent a universal compensating field then for each of the
two above cases we have to obtain the same field ¥ with the transformation (2.3.7).

Let us turn to the equation (2.3.13), which, in fact, represents a system of four
(y = 0, 1, 2, 3) independent tensor equations. For the first case, the right hand side
of (2.3.13) is not equal to zero. Keeping in mind the universality of the interaction, the
matrix B’ aﬂ has to have an inverse matrix *1B,“B satisfying the relations

B]aﬁ . _1BKaﬁ = 5]

', BF.BE, =848 (2.3.16)

For the second case (2.3.15), the equation (2.3.13) is simplified to the equation

= _Pf-o. (2.3.17)
y

Because the relation (2.3.16) is universal for the second case, one gets

¢l
a(_‘f _0. (2.3.18)
,a

After that the equations (2.3.11) and (2.3.12) are simplified to the equations:

0.7 . 0.7%

ol e g

2" (2.3.19)

0.2 5 0 P
-

o B = ogw g (2.3.20)
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The latter, with the use of the equation (2.3.16), is transformed to

0. 9 ¥
ol ogW

g"l-"'B",. (2.3.21)

Here, notice the proportionality of derivatives with respect to U to derivatives with
respect to g". Because one requires the universality of the interaction, one concludes
that a concrete form for the search Lagrangian (2.3.5) has to be derived as

2P = 2Pt " 18+ m") (2.3.22)

for the second case (2.3.15), where an addition m"” to the background metric satisfies
the equation:

om*

v -1
=&l B (2:3.23)

Besides, the field m"” has the same transformation properties as the background met-
ric g, besides it does not depend on g*, ¢ and their derivatives; due to (2.3.18), m""
does not depend on derivatives of ¥ « @s well. To satisfy the requirement (2.3.6) one
has to restrict m*” by the relation, m*"|,_, = 0. Thus, one has to find a smooth function

m" = m* (). (2.3.24)

Because the operator on the right hand side of (2.3.23) has an inverse one there is a
one-to-one correspondence between ! and m*, and the relation (2.3.24) can be con-
verted into ! = I (m""). Thus, without losing the generality, one can set ¥ = ¥ =
mt”. Then, one easily finds from (2.3.19) and (2.3.20) the expressions

Ayoa® - gv  pEpvh_ g (2.3.25)

symmetric in p and v. Substituting these expressions into the formula (2.3.7), one
obtains the transformations for I'” in the form:

l’”p — lﬂp + 5‘{1”‘) = lﬂp + Eglnp + Efg'np . (2-3-26)

Now, the above results have to be generalized to the more complicated first case
(2.3.14). Once again, relying on the requirement of universality of couplings of the field
P, one has to conclude that the transformation (2.3.26) could be safe or restricted, but
it cannot be expanded. Thus, using (2.3.26), or the coefficients (2.3.25), in the system
(2.3.11-2.3.13) one finds easily step by step,

L= 2P 18V 1@+ 1)) = L8Nt 18, @32
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where we have defined
g ="+, (2.3.28)

It is the generalization of the identification (2.1.9), also this can be interpreted as a
decomposition in the second line in (2.2.120); V, is a covariant derivative construc-
ted with the use of the effective metric g*. Thus, for the first case (2.3.14), the same
compensating field ' and the transformations for them (2.3.26) are safe as well.

Higher derivative Lagrangians
Let us generalize the above results for the more general case, when instead of the
action (2.3.2) we start from the action

A LA A v - _
S= jdx4$¢ (¢ 5" w5 apy Igyv;gyv’a;...;g”v’aﬁmy)

- j D L2 (B3 9,559, _gat® 12%) (2.3.29)

where V, g, =V, ... VgV,. Thus, instead of (2.3.5) we search for the Lagrangian in the
form

! 1 _ _
= p? ((;bA; s ¢A’a’ﬁ___y 175 lj’mml/, 1g";... ;g”v,np__.(p) . (2.3.30)
We further transform (2.3.30) by making use of the assumptions and technique used

from (2.3.16) to (2.3.27), employing transformation (2.3.26) and applying the principles
of mathematical induction. One obtains,

L = 2P st g 18T @Y ) )
= 28 (" Vs 5V, 187) (2.3.31)
whereV, g, =V, ... %V,

Thus the gauge field " is coupled to matter fields in a universal way, therefore, by
the equivalence principle, 'V can be called the gravitational field.

2.3.2 The total action

Now, let us construct the total action for the fields, * and ¢, propagating on the
fixed background with the metric g". Then Lagrangian

l | _ _
L= l’w,a; ... Ig”V;g”V’a; ) (2.3.32)
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for free gravitational field IV has to be constructed. Following the recipe (2.3.8), after
substituting the transformations (2.3.26) into (2.3.32), we require

=Ly 8 L = g, = P00 (2.333)
Then, step by step, one easily finds that
L=+ g+ 8 ) (2.3.34)

analogously to the construction of (2.3.27).
The simplest way to represent a covariant Lagrangian with the use of the “effect-
ive” metric g*¥ defined in (2.3.28) is to construct the related curvature scalar, see [285],

L= J=gRE™ + ") = %(g"). (2.3.35)

Here, we consider such a choice only, although there are unrestricted possibilities to
construct a covariant Lagrangian, see Chapter 7, for the free gravitational field with
the use of the effective metric, but all of them is more complicated than (2.3.35).

Thus, the total Lagrangian acquires the form of the Einstein-Hilbert one with the
effective metric and sources fields:

Loy = —ﬁf’(g D+ 2@l ). (2:3.36)

The variation with respect to ¢ and IV gives the equations, which coincide with the
general relativity equations. Returning to the Section 2.2.6, one constructs a dynamical
action for dynamical variables ¢ and I*¥ on a Ricci flat background:

1

S=|d'xz™ =~
I X 16m

J d'x 28 + J dx (2.3.37)
in the field-theoretical formulation of general relativity. Notice that, here, .#* is con-
structed by the universal rule in (2.2.16) or (2.2.20) for the second decomposition
in (2.2.120).

2.3.3 Discussion of the results

Different definitions of gravitational variables
The choice of the background metric in the form of the contravariant components g*"
in the bare Lagrangian (2.3.2) is not unique. Any other choice from the barred set 8
g, ..., leads to a sum (2.2.121) represented by the set (2.2.120). Each of the choice
leads to the corresponding variant of the field-theoretical formulations, which have
been presented and analyzed in Section 2.2.6.
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Exact (non-infinitesimal) gauge transformations
Let us replace the linear in £* gauge transformations with the full transformations
(2.2.68) and (2.2.69) that can be represented in the compact form:

¢ = p* + (exp £r - D, "™ = 1" + (exp £g - DE* + ). (2.3.38)

Then each of the Lagrangians in (2.3.36) is invariant under transformations (2.3.38) up
to a divergence:

R expﬁff‘ﬁl -y (expEi - 1)$¢1 =gy div,
Z" = exp Esr.,i”l = Z' + (exp £ - .2 = 7+ div. (2.3.39)

The Lagrangian Y in the action (2.3.37) is invariant with respect to (2.3.26) up to a
divergence on the background equations, the same as in Section 2.2.4.

Arbitrary curved backgrounds

Up to now, we have worked on the Ricci-flat background (2.2.13). This means that the
background system defined by (2.2.10) and (2.2.11) is vacuum without matter fields
@*. How can one generalize the above construction to a non-Ricci-flat background
satisfying (2.2.12) with the presence of @47 Instead of the action (2.3.2) one has to use

S- J ax ? - J A L@ + (@D + ) o 188" ) (2.3.40)

as a bare action. Instead of the initial transformation (2.3.3) one has to use the transfor-
mations:

P =gt + E;,(ci)’* +¢™) (2.341)
that is “localized” to

¢ = ¢ + £, + ). (2.342)
The next steps are analogous to the above ones.

No group of motion
Notice that the background spacetime can have no Killing vectors. In this case, one
considers the search Lagrangian in the form:

2= 2@+ ¢t (@ + 9N 15 (187587 ). (2.343)

To repeat the presentation in this section, it is enough to require the transformation of
the type (2.3.8) for the Lagrangian (2.3.43) with respect to the transformations (2.3.7)
and (2.3.42).
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What is the gauge field?

The field P is not a connection and does not transform derivatives to gauge invariant
derivatives, like in the standard Yang-Mills type theories [266]. In this sense the field
" can be called as the compensating field only. One can see, for example, that in
(2.3.31) the tensor field,

Aa}lv = rayv(g + I) - fayv(g) ’ (2344)

transforms the background derivatives V, in (2.3.29) to the dynamical derivatives
Vs F"‘W are the Christoffel symbols constructed with the use of the effective metric

(2.3.28), whereas ™ v are the Christoffel symbols constructed with the use of the back-
ground metric. Thus, the role of the gauge field is played by the quantity A"‘W. The
question is: how A"‘W can be obtained by the standard gauge methods?

Let us rewrite the transformations (2.3.26) in the form

I = B (A - B ) E 4 ( B P+ )P ) £y, (2.3.45)

where A", and B“Vaﬁ are defined in (2.3.25). Now, rewrite the coefficients (1.3.33) and
(1.3.34) relatively to (2.3.45):

Wy = @+ =" (2.346)
wz;ltx - @™+ IIJV)lf( - gﬂvll/i . (2.3.47)

One easily finds that the coefficients (2.3.46) and (2.3.47) coincide with the coeffi-
cients (1.3.33) and (1.3.34). However, let us rewrite the transformations (2.3.45) in the
covariantized form:

=Y - 9,g" e+ g e (2.3.48)
This permits to derive covariantized coefficients analogous to (2.3.46) and (2.3.47),

W @ 4 Y = T8 (23.49)
wp - @+ = g (2.3.50)

To construct the connection related to (2.3.48) one has to follow the recipe of (1.2.67)
and (1.3.38). However, now, instead of (1.3.36) one has

V" = N 8" + N 8! (2.3.51)
where A# ap 15 defined in (2.3.44). Then, instead of (1.3.38) one has
o~ g"”lﬁ) (-9,8") =%, . (2.3.52)

Thus, indeed, Aaﬁy could be called the gauge field.
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2.4 The Babak-Grishchuk gravity with a non-zero graviton mass

One of desirable properties of a physical theory is that the energy-momentum
tensor could be free of the second (highest) derivatives of the field variables. The
energy-momentum tensor of the gravitational field (2.2.29) and (2.2.30) in the field-
theoretical formulation of general relativity does not satisfy this requirement. Babak
and Grishchuk have analyzed this situation [21], and have improved it, reformulating
the original field-theoretical approach suggested in [206].

There are many fundamental results, which show that general relativity could be
(has to be) modified by adding “mass terms” into the Lagrangian. Babak-Grishchuk
modification [21] turns out to be useful in constructing such a gravitational theory,
and they suggested it in [22]. All the local weak-field predictions of their massive the-
ory are in an agreement with the experimental data. Otherwise, the exact non-linear
equations of the new theory eliminate the black hole event horizons and replace a
permanent power-law expansion of the homogeneous isotropic universe with an oscil-
lator behaviour. One variant of the massive theory allows “an accelerated expansion”
of the universe. The Babak-Grishchuk theories are described, analyzed and discussed
in the present section.

Concerning the gravitational theories with massive gravitons in general, they con-
stitute a separate branch of the modern research in gravitational physics, see, for
example, chronologically [96, 136, 137, 238, 388, 393, 452] and references therein.
There are many applications of the theoretical models, see, for example, [23, 218, 476].
One of the problems in this way is, for example, the presence of ghosts. Such prob-
lems step by step are solved. Here, we do not consider such theories, and do not
analyze them. Only, the Babak-Grishchuk variant of the massive gravity is given as an
illustration of that how the field-theoretical approach could be fruitful in constructing
non-standard gravitational theories.

2.4.1 Second derivatives in the energy-momentum tensor

We present the results by Babak and Grishchuk [21, 22], which are based on the calcu-
lations (2.2.15-2.2.32) in Section 2.2. Consider the Minkowski space as a background
spacetime, when

Reppo = O. (2.4.0)

Then, in fact, one can use the formulae (2.2.104-2.2.106) presented for the case
of the Ricci-flat background satisfying (2.2.13). Because a generalization to curved
backgrounds is possible we use here for a background metric and for a background
covariant derivatives the notations g, and Vv, (not Y and “;” as this corresponds to
a flat background).



2.4 The Babak-Grishchuk gravity with a non-zero graviton mass = 133

Here, it is more convenient to use h** defined in (2.2.7) as independent gravita-
tional variables, or corresponding quantities B*V = §*'/+/-g in formulae. Then, we
rewrite the formula (2.2.17) in these terms:

[gypvvh}lp + gvpvyh/lp - gyagvﬁg/‘pvphaﬁ

1
2
+ 3 (8apBVh” + gV, hY - gup2,, 8PV, H )] (2.4.2)
where g, and g", being functions of g"*, with the use of (2.2.7) are thought as func-
tions of "V and h"”. Substituting (2.4.2) into (2.2.30) and (2.2.31) one finds that the
energy-momentum tensor of the gravitational field, t}gw, depends on the second deriv-
atives of h*. Attempts to exclude terms with second derivatives with the use of the
field-theoretical equations (2.2.105) lead to the energy-momentum, t'$, at the right

v
hand side of (2.2.105)

! d 1- = 1 -
tygv = t;?/ + Qaﬁyv (tZ;? - §gaﬁgypt;,';;) + Evaﬁ(ha(yhﬁv) - hyvhaﬂ), (2.4.3)
where the reduced part of the energy-momentum tensor of the gravitational field, t;‘f,d,
indeed, has the first derivatives only:
red _ 1 S S 1,00 S ag 1, B
b = Sz (2o M Vol = 2V, “Vgh,

+ 84 (287°V, 1, VohF + g,V h PV, 07

- 4gﬂpgaygy(yvahv)ﬁvahpu

+ %(26;651 - gyvgwr)(ngagaﬁ - gaﬁgpa)vrhpavwhaﬁ] . (2-4-4)

Concerning the matter part in (2.4.3), it is defined by the matter energy-momentum in
(2.2.105) and by the expression:

Q¥ = h8) + 1 gy + i hy - gk - Ik, (8% + h) (2.4.5)

As a result, the second derivatives of the gravitational variables h*" participate any-
way in (2.4.3), and there are no possibilities to remove them “by hand”. Nevertheless,
can one reformulate the field-theoretical approach to exclude the second derivatives
in (2.4.3), preserving the equivalence to general relativity? The answer is given in
Section 2.4.2.

2.4.2 Modified Lagrangian and equations
Let us consider the gravitational Lagrangian

28 = 8 APOR g, (2.4.6)
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instead of the Lagrangian (2.2.20). This is a typical way of incorporating constraints
(here, they are (2.4.1)) with the use of undetermined Lagrange multipliers (here, they
are the components of A%??). It is assumed that the tensor density A%*° depends on
g,y and h*” only, without their derivatives,

A\Bpo _ papo (Clal gyv) , (2.4.7)

and satisfies the symmetries of the Riemann tensor: A = —\PPao — _pa9PB _ pPaop
Then, the dynamical Lagrangian (2.2.104) transforms into

t

B N -ﬁ,}zﬂf + M (541, ¢) . (24.8)

161 6

The field equations, which are obtained by the variation of (2.4.8) with respect to
h* are equivalent to (2.2.105). Indeed, the variation of the Lagrangian multipliers
in (2.4.8), see (2.4.6), do not contribute to the equations by the condition (2.4.1).
Thus, repeating the steps (2.2.22-2.2.29) the equations following from (2.4.8) acquire
the form:

T +
G, - 8ntyy =G, - 8mt = 0. 4.9)

Then, where is the difference between T(2.4.9) and (2.2.105)?

The energy-momentum tensor, t;j;t , in (2.4.9) is defined by the standard variation
of (2.4.8):
s
tot 2 62 dyn f m
t, = — = +t,., 2.4.10
w =g e e (2:410)
where the modified gravitational energy-momentum tensor is
T ~
8nts, = 871tS, — (1-8) Vg (A0 + 1, %) 2411)

instead of (2.2.30).

In general, Lagrange multipliers are determined after the solution to the total
system of equations corresponding to the Lagrangian, like (2.4.6). However, the restric-
tion (2.4.7) does not allow us to define components A***# which are left undetermined.
Their choice is free. We choose them in such a way that the second derivatives in (2.4.3)
are suppressed by the modification (2.4.11). The unique possibility is

AV _ 4\;__g (bm’bﬁﬂ _ h”‘ﬁhl“/) X (24.12)
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Combining the definition (2.2.27), the equivalence of the expressions in (2.4.9) and the
relation (2.4.11), one concludes for the left hand sides in (2.4.9):

T 2 -
Gﬁv(h) = G;I;v(h) - _VtxﬁAyvaﬁ (2.4.13)

v
Vep [@ + H)E™ + k)~ @ + W)@ + 1P)]
1

NI =

Vo @ +0™)@EY + %) - @+ 5@ + ') .

2(-3)
Itis non-linear in K", and this is a price for the requirement to have t;fvd without second

derivatives. Combining (2.4.3) and (2.4.11), one finds for the right hand side of (2.4.9):

tot d 1
b =t + Q% (6 - 3245t0") + £, (2.4.14)

where the pure gravitational part does not depend on second derivatives. Finally,
keeping in mind (2.2.101) and (2.4.12), one finds for the flat background (2.4.1),

_ T

VG, = 0. (2.4.15)
Then, from (2.4.9) the conservation law,

_ +

Vit =0, (2.4.16)

follows.

Let us show explicitly that the dragged equations (2.4.9) are equivalent to the Ein-
stein equations in the usual form. Substituting the expressions (2.4.13) and (2.4.14)
into (2.4.9), multiplying it by (-g), using the definitions (2.4.4), (2.4.5) and (2.2.32),
taking into account the decomposition (2.2.7), and, at last, applying the Lorentzian
coordinates in the background spacetime, one gets

10,3 [(-2)("'g™ - 8"°¢")| = 8n(-g) (ty + ) . (2.4.17)

Here, (-g)t}] = ¢! is the Landau-Lifshitz’s pseudotensor presented in (1.4.70), whereas
the equality (2.4.17) itself is the same as (1.4.71) with (1.4.68). Thus, indeed, (2.4.17) are
the Einstein’s equations rewritten in the other form only. Besides, such a representa-
tion (1.4.12) evidently shows that the tensor density (—g)tfev 4 defined by (2.4.4) can be
interpreted as the covariantized pseudotensor ¢} .

2.4.3 Non-zero masses of gravitons

A new variant of massive gravity
The technique of including the Lagrange multipliers in (2.4.6) and (2.4.8) turns out
very useful in constructing the massive variant of the gravitational theory. From this
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point of view, an additional term similar to the term (2.4.12) could be included into
the Lagrangian (2.4.6). Let us describe a way of construction. Initially one considers
the curvature tensor kapﬁo of an abstract spacetime of a constant non-zero curvature:
Ryppo = K(84p8p0 — Bao8pp)> Where K is with the dimensionality of [length] . Next,
one adds

R = K% Ryppo = —— (6°5% - %6 R (2.4.18)

RN

to the Lagrangian (2.4.6). Then, one changes " — g", and a new additional term in
the Lagrangian (2.4.6) acquires the form

appo

A= %\/_—EK (haﬁhaﬂ B haahﬂp) (24.19)

in that one easily recognizes the Fierz-Pauli mass-term [175]. Developing this con-
struction, Babak and Gishchuk suggested to consider two independent quadratic
combinations of B in (2.4.19) separately. As a result, a two-parameter family of
theories with the additional mass terms in the gravitational Lagrangian (2.4.6):

25 = 28+ (-8 [l (6% bap) + kalha%0,)] (2.4.20)

can be studied, where k; and k, have a dimensionality of [length] 2, like K.
Finally, instead of the total dynamical Lagrangian (2.4.8), one has

(3 1 + 1 * _
fdyn =—E$g +$m=—16—ﬂ$‘g +$M(g+b,¢)). (2.4.21)

To obtain the related field equations one has to vary it with respect to h**. Then one
has to apply the technique used in (2.2.22-2.2.26). In the result, instead of (2.4.9), one
easily gets:

il +
Gy + 2ki by, — (ky + 2K)8, M, = 8tys, (24.22)

To give a physical interpretation of k; and k,, following to the technique by Ogievetsky
and Polubarinov [342], and by van Dam and Veltman [449], one considers the linear
approximation of (2.4.22):

L L 3 3
3 (':'huv + 8 Voo = VL =V,

hP) + 2k hy, - (k + 2)8,,h," = 0. (2.4.23)
where 0 = g“ﬁ?aﬁ. The divergence of this expression

Vv, [2k W = (K + 2k,)g" b, "] = 0, (2.4.24)
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can be considered as a constraint that has to be satisfied, when solutions to (2.4.23)
are searched.

Thecasek, + k, # 0
For this case, the system (2.4.23) and (2.4.24) is equivalent to

aH" + o®H" =0, (2.4.25)
ah,* + B*h,2 = 0. (2.4.26)
Here, the quantity
ki +k ki+k, - ki +k
HW =ptv - L_2ghvp @ TL_2gvp @y Tl 25ap A 2.4.27
T e R T (24.27)

satisfies the conditions g,,H*" = 0 and V,H" = 0. The parameters in the wave-like
equations (2.4.25) and (2.4.26) are

2k (ky + 4k)

2 2
- 4k, -
o« =4k B K + K,

(2.4.28)
They can be thought as inverse Compton wavelengths of the spin-2 graviton with the
mass m, = ah/c associated with the field H*” and of spin-0 graviton with mass m, =
Bh/c associated with the scalar field h,%.

Studying the weak gravitational waves in the massive gravity, one finds certain
modifications of general relativity. Thus the spin-0 gravitational waves represented
by the trace h,” and the polarization state of the spin-2 graviton represented by the
spatial trace H “‘n,-k, both, unlike in general relativity, become essential. They provide
additional contributions to the energy-momentum flux carried by the gravitational
wave, and the extra components of motion of the test particles. However, gravitational
wave solutions, their energy-momentum characteristics and observational predictions
of general relativity are fully recovered in the massless limita — 0, 8 — 0.

Thecasek, +k, =0

This variant of the theory represents the Fierz-Pauli type massive gravity, which
corresponds to 8 — oo, see (2.4.28). The system (2.4.23) and (2.4.24) becomes
equivalent to

h,* =0, V,h" =0, ar” + 4k, W = 0. (2.4.29)

However, even in the limit @ — 0, there remains a non-vanishing “comoving mode”
motion of test particles in the plane of the wave front. The extra component of the
motion is accounted for the corresponding additional flux of energy from the source,
typically, of the same order of magnitude as the general relativity flux. This, at least,
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is in conflict with the indirect gravitational-wave observations of binary pulsars [434].
Such theories probably have to be rejected.

2.4.4 Black holes and cosmology in massive gravity

To obtain solutions in the massive gravity and to provide a direct comparison with
general relativity effects, it is more convenient to represent the equations (2.4.22) of
the field-theoretical theory in a quasi-geometrical form with an effective metric g,
close to general relativity. Using the invariance (2.4.9), let us rewrite (2.4.22) as

U t
G/Lm - 871t§f,t + 2k hy — (kg + 2k3)8 550,
= Gy, — 8ty + 2kihyg — (ky + 2k)8pehy” = 0. (2.4.30)

Now, adopting (2.2.133) for the flat background case (2.4.1), one easily obtains from
(2.4.30):

T il
(8265 - 18,58”) (wa — 8t + 2l — (g + ZkZ)gpghTT)
= Ry — 87 (Top — 580pT:" ) + 2(kyhyp + KyBoph, ") = 0. (2.4.31)

At last, multiplying (2.4.31) by (6}‘f6€ - % gw,g“ﬁ ) one obtains that the equations (2.4.22)
are equivalent to

Gy + My, = 81Ty, (2.4.32)
where the Einstein’s equations are added by the massive term
My, = (26560 - 8%g,,,) (kg + KBaph,”)- (2.4.33)

Of course, the Bianchi identity V'G,, = 0 is valid an effective spacetime. Besides,
the matter equations determine the conservation V" Tyv = 0, as usual. Thus, after the
differentiation of (2.4.33) one obtains

v'M,, =0, (2.4.34)

which must be considered as constraints for (2.4.32). Recall that 8w in (2.4.33) and
(2.4.34) are functions of g“ﬂ and b,g, then one recognizes that (2.4.24) is a linear
approximation of (2.4.34).

Thus, to find a solution to the new theory one has to search for the components
KW, which satisfy the system (2.4.32) and (2.4.34). This consists of several steps: first,
one has to select appropriate coordinates in the flat background spacetime; second,
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one has to use the connection (2.2.7) between the gravitational variables and the
effective metric in order to substitute it in (2.4.32) and (2.4.34) and solve them; third,
after determining #*¥, one again has to use the connection (2.2.7) for comparison with
solutions in general relativity.

Thus, let us illustrate how a search for static spherically symmetric solutions in
vacuum can be provided. Then, it is naturally to use the spherical coordinates, and
the metric of the background spacetime in the form:

ds’ = g, dxtdx’ = —dt* + dr’ + r*(d6” + sin” d¢p’). (2.4.35)

In these coordinates, non-zero components of the gravitational field "V are written as

KO- —Aw,  W=Be), KP-co), 1= (2:4.36)
sin“ 6

where the functions A(r), B(r) and C(r) have to be found from the equations (2.4.32) in
vacuum, T,, = 0, by taking into account the constraints (2.4.34). Then three independ-
ent equations among (2.4.32) and (2.4.34) survive only. For a comparison, in general
relativity two independent equations survive only, when spherically symmetric static
solutions in vacuum are searched. The consideration is simplified if one assumes
a = f3, however all the qualitative conclusions remain valid for a # f8.

Combining analytical and numerical techniques, Babak and Grishchuk demon-
strated that the solution of the massive theory is practically indistinguishable from
that of general relativity for all r, < r < 1/a, where r and r, are the radial coordinate
and the gravitational radius of the Schwarzschild solution, see (1.5.34) (1.5.35). For r
larger than 1/a the solution takes the form of the Yukawa-type potentials; therefore
they call this massive theory as the finite-range gravity.

The solution of the new theory also deviates strongly from that of general relativity
in the vicinity of r = ry, which is the location of the globally defined event horizon of
the Schwarzschild black hole in general relativity. In the massive gravity the event
horizon does not form at all, and the solution smoothly continues to the region r < r,
and terminates at r = O where the curvature singularity develops. Since the ar, can be
extremely small, the redshift of the photon emitted at r = r, can be extremely large,
but it remains finite in contrast with general relativity solutions. Infinite redshift is
reached only at the singularity r = 0.

In the astrophysical sense, all conclusions that rely specifically on the existence
of the black hole event horizon, are likely to be abandoned. It is very remarkable and
surprising that the phenomena of black hole should be so unstable with respect to
the inclusion of the tiny mass-terms, whose Compton wavelength can exceed, say, the
present-day Hubble radius.

Homogeneous isotropic solutions were also considered in the framework of the
massive gravity. Now one has to solve the system (2.4.32) and (2.4.34) with a non-zero
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matter energy-momentum tensor. The metric of the flat background spacetime is
considered to be in the form:

ds® = g, dx"dx" = -dt’ + dx’ + dy’ + dZ’, (2.4.37)

then the gravitational field components have to depend on time only and to have a
diagonal form:

R =-A@®,  h'=h?=hn"=B®. (2.4.38)
The matter sources are described by a perfect fluid model
™ = (e + pp*u’ - pg. (2.4.39)

The conservation law V'T,, = 0 is reduced to the equation

!

e+ 3%(s +p)=o0. (2.4.40)

At last, the final simplification is the use of the equation of state in the form: p(t) =
qe(t) with the constant -1< g < 1.

As a result of the above assumptions there are two independent field equations
from the set (2.4.32) and (2.4.34), unlike the case of general relativity where there is
only one. First, if the mass of the spin-0 graviton is zero, 82 = 0, the cosmological
solutions are exactly the same as those of general relativity, independently of the mass
of the spin-2 graviton, i.e., independently of the value of a?. This result is expected
due to the highest spatial symmetry: the spin-2 degrees of freedom have no chance to
reveal themselves.

Then, for ﬁ2 # 0 the technically simpler case, 4[32 = &, was studied in full detail.
Qualitative results are valid for 4B2 #+ a®. Thus, by combining analytical approximations
and numerical calculations it has been demonstrated that the massive solution has a
long interval of evolution where it is practically indistinguishable from the Friedmann
solution of general relativity. The deviation from general relativity is dramatic at the
very early times and very late times. The unlimited expansion is being replaced by
a regular maximum of the scale factor, whereas the singularity is being replaced by
a regular minimum. Smaller f values induce the higher maximum and the deeper
minimum, that is an arbitrary small mass term in the Lagrangian gives rise to the
oscillatory behaviour of the cosmological scale factor.

Following the logic of interpretation that a® and [32 define the masses, they are
thought as positive. However, the general structure of the Lagrangian (2.4.21), see
(2.4.20), does not imply this. Then, if one allows a* and f° to be negative, the late
time evolution of the scale factor gives an “accelerated expansion” that is similar to
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the one governed by a cosmological A-term. The development of this point could be
useful in the light of the modern cosmological observational data [100].

2.4.5 Gauge invariance in the Babak-Grishchuk modifications

Here, we study the gauge invariance properties of the Babak-Grishchuk formulation
of general relativity given in Section 2.4.2 and of their variant of massive gravity
described in 2.4.3. From the start, we adopt the gauge transformations (2.2.68) and
(2.2.69) for the flat background (2.4.1). They acquire the form:

H(x) = b () + (exp £ — 1) (3 () + b () , (2.4.41)
¢ (x) = ¢" () + (exp £; — 1) p” (0). (2.4.42)

It is easy to state that the gauge invariance properties of the modification in Sec-
tion 2.4.2 are similar to those described in Section 2.2.4 in the framework of the
field-theoretical formulation of general relativity. Indeed, the Lagrangian (2.4.8) with
(2.4.6) differs from the Lagrangian (2.2.15), or (2.2.104) for the case of a Ricci flat
background, by the presence of the additional term proportional to the background
curvature tensor, see (2.4.1). Then, adopting (2.2.72) to the case of the Babak-Grishchuk
formulation of general relativity, one finds that the Lagrangian (2.4.8) is transformed
under the transformations (2.4.41) and (2.4.42) as

1 1

16_7[ (blyv _ hyv) Ryv + E (Alaﬂpa _ Aaﬁpo)R

+ (exp £y —1) L@ + b, $). (2.4.43)

IdynJr _ clynJf
£ =< + apfo

The second and third terms disappear by the condition (2.4.1), whereas the last term is
a divergence and does not contribute into the equations of motion. Thus Lagrangian
(2.4.8) is gauge invariant in the sense, like the Lagrangian .¥ W in (2.2.72).

Adopting the formula (2.2.74) to the Babak-Grishchuk formulation of general
relativity and substituting (2.4.41) and (2.4.42) into (2.4.9), one finds

(65, 8 (,)] = 61 0) - 80 6, )
1 og™”

T

If the background equations (2.4.1) hold, and if b, ¢ is the solution to the field equa-
tions (2.4.9) then b’, ¢' is the solution to the same equations. Analogous conclusions
are valid for the matter equations in the Babak-Grishchuk formulation of general
relativity field-theoretical form, as in (2.2.39).

ag LT -
(exp£y 1) [ S5 (b - 8ty )+Rpa] R Y7
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The energy-momentum tensor (2.4.10), see also (2.4.11), is not gauge invariant even
if the field-theoretical equations hold, the same as in (2.2.75). Indeed, keeping in mind
the transformation (2.4.44) and the expression (2.4.13), one has

tot

;
8t (0, ®) = 87ty (0, 9) + (-8)(exp £ ~ 1) [ (-8)GL, 1)) (2445)
Following the arguments in Section 2.2.7, based on the gauge invariance properties,
one concludes that the background spacetime has an auxiliary character. Indeed, the
gauge invariance properties follow from the fact that the background metric disap-
pears from the consideration. To show this it is easy to adopt (2.2.133) for the equations
(2.4.9):

(6368 - 18,08 Gl ~ 8755 | = Ry — 87 (Tyo = 380 T5) = 0. (2.4.46)
This means that if one substitutes (2.2.135) and (2.2.136) into the left hand side of
(2.4.46) one can determine only the effective metric g,,,. As a consequence, conserved
quantities are not localized, see (2.4.45), and the trajectories of test particles are gauge
dependent.

Now, let us turn to the massive gravitational theory in Section 2.4.3. This the-
ory is not gauge invariant. The reason is in the additional term in the Lagrangian
(2.4.21), see (2.4.20); as a consequence, the additional term appears in the equations
(2.4.22). Unlike (2.4.9), where the background metric is absent really, see (2.4.46), the
equations (2.4.22) it contain really the background metric that one can see from the
equivalent equations (2.4.32) with (2.4.33). However, because the gravitational field
h* is included into the matter Lagrangian in (2.4.46) in a universal way one cannot
to determine the Minkowski space with the use of matter fields, like electromagnetic
signals. However, characteristics of the background Minkowski space must be observ-
able by the gravitational waves due to the presence of the term (2.4.33) in (2.4.32). As
a result, in the case of observations conducted in the Minkowski space the energy-
momentum tensor in equations (2.4.22) has to be localized, similarly to an arbitrary
field theory in the Minkowski space, see Section 1.2.



3 Asymptotically flat spacetime
in the field-theoretical formulation

In the present chapter, considering an asymptotically flat spacetime at spatial infinity,
we develop the field-theoretical methods in general relativity laid out in the previous
chapter. Historically, asymptotically flat spacetime was studied more intensively
in the framework of the Hamiltonian formulation of general relativity. Therefore,
in Section 3.1, we review the Arnowitt-Deser-Misner (ADM) formulation of general
relativity in a reader-friendly form, we present its essential details and its modification
introduced by Regge and Teitelboim. In Sections 3.2 and 3.3, we elaborate on both
the Lagrangian and Hamiltonian forms of the field-theoretical description of the
asymptotically flat spacetime.

3.1 The Arnowitt-Deser-Misner formulation
of general relativity

3.1.1 The ADM action principle

The (3 + 1)-decomposition of a spacetime

This topic is pretty much standard by now and we follow the textbook [315]. Let a
spatial hypersurface £, be marked by the time coordinate ¢t = const. Then, a “later”
spatial section X, is defined by t + df = const with an infinitesimal dt. We require
that such hypersurfaces do not intersect, technically, the spacetime is globally hyper-
bolic and admits a spacelike foliation. Each spacelike hypersurface has its own space
coordinates (corresponding to space coordinates in spacetime) and a 3-dimensional
positive definite metric. For example, %, has the metric gij(t, x,¥,z) and Z; has the
metric gij(t +dt, x,y, z). However, separate, independent definition of %, and X, is not
enough to get the structure of a 4-dimensional spacetime. To resolve this problem one
has to connect %, with Z,. First, let us define a proper distance between X, and X;
related to every point (x, y, z) on £, in the orthogonal direction:

dr = N(t, x,y, z)dt, (3.1.1)

where N(t, x, y, z) is called the lapse function. Second, points on £, can be shifted with
respect to the points on Z:

xi = xg — Ni(¢, x, y, z)dt, (3.1.2)

where Ni(t, x, y, z) is called the shift (3-dimensional) vector. Now, we are in a position
to derive the interval between the world points x* = (¢, x') and x* +dx® = (t+dt, x' +dx"),
the line element reads

ds® = —(Ndt)* + 8ij (dxi + Nidt) (dxj +N dt) . (3.1.3)

DOI 10.1515/9783110351781-003
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Rewriting this in a 4-dimensional form, one finally has
ds? = gaﬁdx“dxﬁ , (3.1.4)

where, in the matrix form, we have

Notice that the spatial components of the full 4-dimensional metric g;;, are equal to

(vv )

N,

800 8oj ;
i 8jj

8io 8

(3.1.5)

3
those of 3-dimensional metric g;, thus in (3.1.4) the components of the shift vector are

ij
3 . .

defined as N; = g;;N’ = g;;N'. The components of the inverse matrix g* are obtained

without difficulty as

g% g%

g0 gl

-(yN*)  N/IN?
N,/N? <§"f —Nfo/N2>

. (3.1.6)

Now, it is easy to calculate the determinant of Sap in terms of the 3-dimensional
quantities:

3
g =detg,s = -N’g, (3.17)

3 3
where § = detg;; = det§;;. In addition, it is necessary to define the components of the
unique vector n* being normal to £ . Turning to the definition of the proper distance
(3.1.1), one has

n, = (-N, 0,0, 0) . (3.1.8)
Making use of (3.1.6), one finds the contravariant form of the normal vector as
n® = (1/N,-N'/N) . (3.1.9)

Then, indeed, one has n’ = n,n* = -1.

It is important to express the 4-dimensional curvature in terms of the above (3+1)-
decomposition. Concerning the 3-dimensional (intrinsic) curvature of a hypersurface
%, one uses simply all the notions given in Section 1.3.1 for the case of four dimensions,

by replacing the 4-metric g,z with the 3-metric 53,’17 = g;;- The Christoffel symbols of the
hypersurface 13"i]~k are constructed with éij by the formula (1.3.5). Thus, the Riemann
tensor (1.3.2) is replaced with the 3-dimensional one, 132ikj,; the Ricci tensor (1.3.3) is
replaced with the 3-dimensional one, 132k1; and the scalar curvature (1.3.4) is replaced

with the 3-dimensional one, 13€

However, one must note that the 3-dimensional curvature of X is its intrinsic
curvature. Therefore, to have a full description, it is necessary to add an extrinsic
curvature, which describes the embedding of X into the 4-dimensional spacetime. For
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this purpose, let us consider the vector n*(x') on T taken at the point with the local
coordinates (x!). Now we displace it along ¥ by making use of the parallel transport
in 4-dimensional spacetime to the point with the local coordinates (x' + dx') and com-
pare it with n®(x' + dx’). It is evident that the difference exists: it is proportional to dx!
and depends on the parallel transport of the normal vector,

(dn); = Vinyx', (3.1.10)

where V, is the 4-dimensional covariant derivative with a space index only. A
3-dimensional rank-two tensor defined as

I<U = —Vin]- = —Nroij (31.11)

is called the extrinsic curvature of the hypersurfaces ¥ embedded in the spacetime. To
derive (3.1.11) we have used the components (3.1.8), and the components Foij of the
4-dimensional Christoffel symbols (1.3.5). Recalculating (3.1.11) with the help of (3.1.5)
and (3.1.6), one can rewrite the extrinsic curvature in the form:

1 (3 3 agij

I<l] = W V]Nl + VIN] - E B (3.1.12)
3

where V, is the 3-dimensional covariant derivative compatible with the 3-dimensional

metric. Another useful form of the extrinsic curvature (3.1.12) is

K; = % £,8i» (3.1.13)

where £, represents the Lie derivative along the normal vector n®. This equivalence
can be shown by a direct calculation using the definition of the Lie derivative, see
above (1.2.82).!

In the next part, we connect the 3-dimensional intrinsic curvature, construc-

3
ted with the use of 8ij» and the extrinsic curvature, K, with the full 4-dimensional
curvature.

The projection technique in the (3 + 1)-decomposition
In the previous part, we have used the technique of foliation of spacetime into separ-
ate spatial hypersurfaces X. However, the technique of projecting geometrical objects
(physical fields) onto the spacelike hypersurfaces is also needed to have a complete
(3 + 1)-decomposition. We present this now, following the book [378].

Let us take a set of the spacelike non-intersecting hypersurfaces X in the para-
meterized form. This means that each of the hypersurfaces X is numerated by its own
parameter t. We suppose also that each local domain in spacetime is covered with its

1 Notice that formula (3.1.13) has another sign with respect to the analogous formula in [315]. The
reason is that in the present book we use the definition of the Lie derivative with the opposite sign for
£, see (1.2.82).
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own local coordinates x = (x*). Then the parameter t can be represented as a scalar
function f of the spacetime coordinates:

t=f(x). (3.1.14)

Next, let the hypersurfaces = be covered with their own local coordinates x = (x').
Then, a connection between the 4-dimensional coordinates, from one side, and the
3-dimensional coordinates with the parameter ¢, from the other side, can be provided
by the following relation,

x* =e'(x, 1), (3.1.15)

with four functions e®. By the construction, the use of (3.1.15) in the equality (3.1.14)
satisfies the latter identically.

After that we define a normalized basis of four vectors associated with the hyper-
surface Z, which consists of the unit normal vector n, and a triad of tangential vectors
e”; defined as

o a, a A, a _
ej=0e; ne;=0; nn =-1. (3.1.16)

One easily finds that vector n® is identified with the one given in (3.1.9). A 3-

dimensional metric on X is induced from the 4 dimensional metric as

§i,- = giple(x, )e’ e’ . (B.1.17)

3
If, in (3.1.15), x* = (t, x) with x° = ¢ one finds 8;; = g;; that is consistent, of course, with

. 3..
(3.1.5). Defining e,/ = gaﬁg”eﬁ,-, we find the identities

eaie"‘j = 5]’:; eﬁie‘xi = 52 + nﬁn"‘. (3.1.18)

Now we are in a position to represent an arbitrary 4-vector ¢® in terms of the basis
vectors (3.1.16) as

0" =n", +e%d, (3.1.19)
where

0, =-n"; o= eajga . (3.1.20)

3.
To define the 3-dimensional connection, I* ji» on £ we use the same technique of pro-
jections in (3.1.19) and (3.1.20). Thus, the 3-dimensional covariant derivative can be
derived as

3 . .
Vid = Vg (Qleal) el (3.1.21)
Then, from here one easily finds

3 ay i
I =Vee, s (3.1.22)
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from which the 3-dimensional Riemann tensor (intrinsic curvature of ¥) can be con-
structed. We define the following notations for the projections of the 4-covariant
derivatives:

a _ a
Vie" = 90",

eaieﬂjvﬁga B

Vioi

Vio, = _nﬁeajVaQﬁ >

VJ_Q] —n’xeﬂ]-Vagﬁ ,

V.0, =n"nV,g. (3.1.23)

For a constructive use of these definitions they have to be represented through
3-dimensional quantities at the spatial hypersurface X.

The extrinsic curvature is defined exactly as in (3.1.11). Then, by one of the
equalities in (3.1.16), it can be recast to the form:

K = n,Vie’;. (3.1.24)

3.
One can see, then, that K and r’ﬂ are projections of Vie"‘i onto the normal basis
(3.1.16), thus

3
Vie®; = —Kyn" + T'ye”). (3.1.25)
Now introduce the vector
de”
N= — 3.1.26
pm ( )

and its projections onto the normal basis (3.1.16), N = —-n,N* and N = eaiN“. Then
(3.1.26) can be rewritten as

N* = n°N + e“l-Ni. (3.1.27)

It is clear that, here, N and N can be identified with the lapse function in (3.1.1) and
the shift vector in (3.1.2), respectively. It is also evident that the covariant derivative
along N has to be identified with the time derivative:

a_
dt ~

To re-express definitions (3.1.23) in terms of the 3-dimensional quantities, one has to
find the deformations of the normal basis in spacetime, when the basis vectors are dis-
placed along the vector N%. Keeping in mind the identity Nﬁaﬁe"‘j = a]-N“ that follows
from the definitions of e”; in (3.1.16) and N in (3.1.26), using the rules of projections
(3.1.18-3.1.20) and the formulae (3.1.24) and (3.1.25), one obtains

NPV =y (31.28)

Ve = (VN - KN )+ (VN - MK ) ;. (3.1.29)
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With the use of (3.1.16) this equality leads to the following:
Vera = (é]N - I<11N1> eaj . (3.1.30)
At last, combining (3.1.17) and (3.1.29), one gets

3
ds;; 3 3
d—t” = Vy8; = —2NK;; + 2VNj) , (31.31)

which is nothing else but formula (3.1.12); the reason why in (3.1.31) we have a total

3
time derivative, unlike (3.1.12) with a partial time derivative, is that in (3.1.31) g is
3 .
defined by the general formula (3.1.17), whereas in (3.1.12) it is simply g ii = 8 o, 0).
Next, it is necessary to introduce the variation along the normal component of the
vector (3.1.27):
8, = Nn"v, (3.1.32)
and the variation along the tangential component of the vector (3.1.27):

6” = —ENi . (3133)

Now, consider an arbitrary vector field o* and its projections o' and ¢, . From the begin-
ning, let us apply (3.1.32) to o, = -n®g,. After simple manipulations using the above
technique one arrives at

-3
8,0, =Nn"Vy, =—0'V;N-NV,p, . (3.1.34)
From here one obtains
.3
NV, o, =- <5lgl + QlViN> . (3.1.35)
Analogously, after application of (3.1.32) to ¢' = eaig’x one obtains
3 .
NVLQII = - (SLQi + QLViN + NI(I]Q]> . (3.1.36)
Now, let us apply the operator (3.1.33) to g;:
io > N
5”91 = _ENjQi =N VIQ] + Q]VIN . (3.1.37)

On the other hand, since g; is a set of 3 scalars in 4 dimensions this can be rewritten in
the form:

. 3 . .
6”91 = VNQi |Na:eaij = QJ—N]KU + Q]VIN] + N]vai , (3.1.38)
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where (3.1.29) has been used. Comparing (3.1.37) and (3.1.38) one has

3
Viei = Vi — 0. Ky - (3.1.39)
Analogously one obtains
3 .
View = Vje, — ¢'Kj. (3.1.40)

The technique of projections (3.1.18-3.1.40) can easily be extended for a tensor of
arbitrary rank and for derivatives of arbitrary order.
Applying the above rules for projecting the identity

(VV - Vuv) Oa = QARAayv s (3141)
one obtains the well known [153] Gauss-Codazzi equations:
3 3
R 45 = ViKys — ViKy, (3.1.42)
3
Ryij = Ruij + KiiKyy — KK - (3.1.43)
Also, one obtains the equality
3
Ryjyj =8, K;j + NKgK" + VN . (3.1.44)

We have made a rather long tour of projections but it is clear that the equalities
(3.1.42-3.1.44) are necessary to recast the Hilbert Lagrangian in the terms of the
(3 + 1)-decomposition. In addition to these, one has to use the following relations,

5, 53,1/2 _N 53,1/2 Kii ’
3102, 1 31021 39,1
6, (87K ) = v (7K ) - 6 (K} ),
ERY ERY 3 (31paiji
O(87K; ) =-£4i (87K |=V;| 8 NK; ). (3.1.45)

Now, combining (3.1.7) and (3.1.42-3.1.45) one obtains the Hilbert Lagrangian in terms
of (3 + 1)-decomposition as

3 3 3 .e .
J=8R = Ng"R = Ng" [ R+ KK + (Ki’)z]
3101 313 ing  3j
vy (87K;1) + 287, (KN - VN ) . (3.1.46)

Canonical action and the equations in general relativity

To obtain the canonical action of general relativity, let us integrate (3.1.46) over a 4-
dimensional volume V restricted by a timelike cylinder S and the spacelike sections
¥, and X,, see Figure 2.1. Thus, (3 + 1)-version of the Hilbert action acquires the form:
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51
S = J d4X\/¥R = J dt <L0 _HS - in) . (3.1.47)
14 to dt
Here, we follow the standard notations adopted in [315, 378] and drop off, for simpli-
city, the coefficient “1/1671” that is used in these books in the definition of the Hilbert
action. Thus, in (3.1.47),

3 3 ” .
L = L PxLy, Zy=Ng" [ R+ KK - (K] 5
_ a2 [ Bj ini
HS:2 dS]g VN‘I(IN ;
S
3 .
Hy =2 L PxgK . (3.1.48)

Asusual, v = x'/r and ds; = d*Qr’v; is the infinitesimal element of integration on the
2-dimensional surface o surrounding the isolated system. To derive the last quantity
the relation (3.1.28) has been used.
3
Now, picking up the metric tensor components g; = 8; at £ as generalized

coordinates, we define their time derivatives

. dgij

gy=— (3.1.49)
as generalized velocities. Then, varying (3.1.47) with respect to g;;, ignoring the surface
integrals and using (3.1.12), we define the canonical momenta as usual

9. .
¥ = =9 - 6K, . (3.1.50)
0g;j
Here the four-index object
y 3 3::3 343 3437;
Gz]kl = %gl/z (Zgugkl _ gzkg)I _ gzlgk]> (3‘1.51)

is the De Witt supermetric (which is sometimes called as the Wheeler-DeWitt super-
space metric) [139] whose inverse reads

3
Gy = 38" (58 — 8y - 8ugik) » (31.52)

which is obtained via the condition Gijleklm” = 5;6})-
Finally, we are in a position to define the Hamiltonian of the gravitational field by

the standard way:

H-= L d*xnlg; Ly + H + %HZ ) (3.1.53)
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Here, one has to exchange the generalized velocities with the generalized momenta.
First, we use the relation (3.1.31) and combine (3.1.50-3.1.52)

Kij = Gi]‘klﬂkl . (3.1.54)

Second, substituting all of these into (3.1.53), we obtain the Hamiltonian function
related to the Lagrangian function in (3.1.47):

y . d
Hlgy,n"] = Hy + Hs + 7 (3.1.55)

where Kj; is expressed through 7 with the use of (3.1.54). The space integral in
(3.1.55) is

H, = J Exty, Hy=NPix,. (3.1.56)
>
We denote the set of N* = N and N' in (3.1.27) as
NW = {N*, N} . (3.1.57)

Of course, the quantities N®, being projections of N* onto the normalized basis
defined on %, have to be distinguished from the components of N* themselves in the
spacetime. We introduce the following short-hand notations:

S, =1, A} (3.1.58)
- 3.3
A, = Gyn'n" - §"R, (3.1.59)
3 .
% = —gijvkﬂ}k . (3160)

The last two expressions can be rewritten as

A, = -28"6G, |, (3.161)
3
A = 286Gy, (3.1.62)

where G, | and G;, are projections of the components of the Einstein tensor onto X.
The surface integral in (3.1.55) is

Hy =2 35 ds; [V (V) - mN] (31.63)

At last, ignoring the term Hzlg to represent fixed initial and final states, one derives
the canonical action with the Hamiltonian (3.1.55):

i ] _ [0 3. ( s N R
S [g,-]-,rr ,N ] =| dt| d x(n 8 %’6) dtHs ; (3.1.64)
0 Z

t to
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Varying the action (3.1.64) with respect to the generalized momenta and the general-
ized coordinates by the standard way, one obtains the field equations

. 67 N 3
gij = —10 = 23— (7‘[,) - %gl]ﬂkk) + ZV(I.IV]) ’ (3.1.65)
onY 1/2
g
.. : 3 3 3 3 3
L [N (R” - %g‘]R"k) - (V”N -g"Vi'N )]
bg;
N (k1 k \2 ik_ j ik
o[58 (M- 3(50°) -2 (" md - 3]
gl/Z
3 . .3 .
+Vi (N*7) - 220, NP (3.166)

Here, the symbol §/6 is the 3-dimensional Lagrangian derivative, see Appendix A.2.4;
of course, the surface terms in (3.1.64) do not contribute to the result. Variation of
(3.1.64) with respect to the Lagrange multipliers N and N leads to the equations, which
are interpreted as constraints:

M, =0, (3.1.67)
Hi=0. (3.1.68)

The canonical equations (3.1.65) and (3.1.66) together with the constraints (3.1.67)
and (3.1.68) are equivalent to the vacuum Einstein equations in the standard 4-
dimensional covariant formulation.

Including the matter sector

The natural question is how to incorporate the matter sector into the canonical action
(3.1.64)? Without giving details, only to show the construction, we consider a simple
example of fields denoted as ¢* with the action:

S-= Jd‘*xz’" (¢, v,6") - jd“x\/——gL’" (6, 9,4) . (3.169)

As we did before, let us project both the fields (;bA - ¢A and the metric, and their deriv-
atives onto the hypersurface X, see conventions (3.1.23) and definitions (3.1.35), (3.1.36),
(3.1.39) and (3.1.40). Now, we interpret (;bA as generalized coordinates and define the
corresponding generalized momenta as

oy = 22"
A= a¢A *

Then, the canonical action corresponding to (3.1.69) can be derived as

(3.1.70)

t ) i 4 .
5= LO dt | &x (pa00# 00 - 45") - LO dey, (3.171)
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where
" = NV M [ B8, s g5 9,851 - (3.1.72)

We notice that %’" does not depend on the lapse function and the shift vector, and Hg'
is a surface integral over S, see Figure 2.1, corresponding to the Lagrangian in (3.1.69).

To combine the matter action (3.1.71) with the gravitational action (3.1.64) one has
to redefine the notion (3.1.50) of the gravitational generalized momenta

=4 P, (3.1.73)
. m

Pl = a,? ) (3.1.74)
0g;;

Next, it is more convenient to rewrite a matter super-Hamiltonian as
A =A™ + 2K P (3.1.75)
Then, the total canonical action for a gravitating system acquires the form:

" t " .
S[gij’pu;(l)AspA;N(u)] = J dt L d’x (Pugij + pad” —N(y)yy)

to

- J“ dt (Hs + HY) , (3.1.76)

to

where HY' is the surface integral revised after substituting (3.1.75). Keeping in
mind that

K; = Gy (P - PY) , (3.1.77)
one derives
Ty =7, T} (3.1.78)
Ty = A"+ A i i pi 5 (3.1.79)
T = A" - 28,90 (3.1.80)

Analogous to (3.1.61) and (3.1.62), one can represent the last two expressions as

3

T, = g™ (GJ_J_ — %TJ_J_) , (3.1.81)
3

7 = 28" (G~ 3T, ) - (182

Here, one easily finds that the expressions at the right hand sides are the projections of
the field operator in the Einstein equations (1.3.22) onto X if one restores the coefficient
“1/167r” in front of the Einstein tensor.
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Varying the action (3.1.76) with respect to the generalized momenta and the
generalized coordinates by the standard way one gets

6N(.u) T
g = 5 K (3.1.83)
. 5N(}l) T
= - 55 £, (3.1.84)
ij

Varying the action (3.1.76) with respect to the Lagrange multipliers N and N', one
obtains the equations

F,=0, (3.1.85)

7 =0, (3.1.86)

which are interpreted as constraints. The canonical equations (3.1.83) and (3.1.84)
together with the constraints (3.1.85) and (3.1.86) are equivalent to the Einstein equa-
tions with matter sources in the standard 4-dimensional covariant formulation. Let
us remark once again that the surface terms in (3.1.76) do not participate in the
construction of (3.1.83-3.1.86).

3.1.2 Asymptotically flat spacetime at spatial infinity in general relativity

A concept of the asymptotically flat spacetime in general is usually used to model the
gravitational field of a real isolated gravitating system. Such a model has played an
important role in gravitational physics: see, for example, [16, 19, 33, 180, 226, 356, 357,
406, 419] and the numerous references therein. The asymptotically flat spacetime is
studied in two regimes: at spatial infinity and at null infinity, see the textbook [315]. In
the present chapter, we pay attention to the case of the spatial infinity only.

What makes the asymptotically flat spacetime so interesting? First, in spite of
its apparent simplicity, the model opens the possibility of studying the fundamental
properties of gravitational field. As an example, the proof of the positive energy the-
orem for an isolated system has been provided in the works by Yau and Schoen, Witten
and Nester [333, 407, 408, 463] specifically in asymptotically flat spacetimes. In its own
turn, this remarkable result stimulated a farther growth of keen interest to the model,
see, for example, [18, 31, 51, 52, 102, 103, 160, 186, 254, 347, 387, 413, 418, 428, 454].

Second, the model of the asymptotically flat spacetime is useful from the astro-
nomical point of view. Indeed, most of the astrophysical objects are isolated systems
up to a good approximation. In this regard, for example, in the work [328], based on
the concept of the asymptotically flat spacetime, a special variational principle has
been developed. With the use of such a principle one can construct mathematical
models both for the stationary rotating stars and for non-stationary collapsing stars.
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Third, the study of asymptotically flat spacetimes can be useful from the meth-
odological point of view because a large class of exact solutions in general relativity
represents such models. Then, some fundamental problems or properties of the
gravity theory can be analyzed or illustrated on the examples of the exact solutions.

When considering a real isolated system, one assumes that all of the physical
fields, including gravitational waves, are effectively occupying a restricted domain of
space. This means that the leading term in the Taylor series of the metric tensor expan-
sion with respect to a small parameter has to coincide with the Newtonian potential.
Therefore, solution of the Einstein equations for an isolated system has to acquire the
form of the metric coefficients of the Schwarzschild solution very far away from the
system because the constant of integration in the latter is matched to the Newtonian
potential [385]. Besides, there are no coordinates where the fall-off could be stronger
than the one in the Schwarzschild metric.

To define the asymptotically flat spacetime one has to postulate the asymptotic
behavior of the fields at infinity. As the, perhaps, simplest definition, we use the one
given by Faddeev [160]:

(i) At the spatial infinity, world points are parameterized in a one-to-one corres-
pondence by the coordinates {x*} such that —co < x* < co.

(i) Among all such possible coordinate systems one can find a chart where the
metric has the asymptotic behavior:

8w =M+ 0™, 8uq=00") (3.1.87)

forr — ooy’ = nikxixk. Such coordinate systems are called asymptotically
Lorentzian systems. The notation Q = O(r*) corresponds to lim,_, [Q/r”] =
const.

(iii) There are no coordinate charts where the fall-off of the metric coefficients can
be stronger than in (3.1.87). Also, one excludes a possible asymptotic behavior
of the metric tensor as ~ Inr, see, for example, [418].

(iv) A condition of effective localization of matter is defined by the requirement for
the asymptotic behaviour of the matter energy-momentum tensor in the Einstein
equations as

T,=00"", a>0. (3.1.88)

This requirement corresponds to the asymptotic behaviour of the Lagrangian for the
matter sources:

Moo 3%, a>o0. (3.1.89)

The above conditions (i-iv) in the Lagrangian formulation can be re-expressed in
the framework of the Hamiltonian formulation given in Section 3.1.1. The behaviour
of the metric coefficients (3.1.87) are reformulated as the behaviour of generalized
coordinates g; and generalized momenta 7' on the spacelike hypersurfaces, Z. So,

Sa=Ma+ 00, gus=007). (3.1.90)
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Spatial coordinates {xk} on X, for which the behaviour (3.1.90) takes place, are called
the asymptotically Cartesian coordinates. The requirement to preserve the behaviour
(3.1.90) under asymptotic Poincaré transformations and using the Hamiltonian equa-
tions of general relativity (3.1.65) and (3.1.66) lead to a conclusion that generalized
momenta, ik , have the asymptotic behaviour:

7% = 0@G7?). (3.1.91)

In order to preserve (3.1.90) and (3.1.91) under asymptotic deformations of X one
applies simple restrictions on the asymptotic behaviour of the lapse function, N, and
the shift vector, N':

N=1+00"), N;=007), (3.1.92)
N =00, N ,=007. (3.1.93)

The definitions (3.1.90-3.1.93) in the Hamiltonian formulation are equivalent to
(3.1.87) in the Lagrangian formulation.

3.1.3 The ADM definition of conserved quantities

Since the surface integrals in (3.1.76) do not contribute to the Hamiltonian equations
of motion they usually are not considered. In this case, a Hamiltonian function of the
system is defined by the terms .7, only. Therefore, in fact, the Hamiltonian function is
equal to zero due to the constraints (3.1.85) and (3.1.86):

H- | @7, 0. (3:1.94)
P

Of course, such a Hamiltonian function cannot describe the energy of the system in the
common sense. Lagrangians, which lead to such type of the Hamiltonians are called
as singular [140, 193, 378], or parameterized Lagrangians. Below, we present a case
with a singular Lagrangian using the simplest example of a point particle which was
also given in the ADM paper.

Parameterized action for a point particle
Let us recall the usual way of constructing the Hamiltonian formulation of the system
(1.1.7) with the Lagrangian function (1.1.5):

S-= JdtL(qi, @) i=1,...,n. (3.1.95)

Define the generalized momenta as

i oL

—. (3.1.96)
9q;

p

Now derive the total differential of the Lagrangian function in (3.1.95):
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dL = a—qu,- + a—_qu

is (3-1.97)
aq; og;

where summation over the repeated indices from 1 to n is implied. Due to the definition
(3.1.96) and the Lagrangian equation (1.1.10), this can be rewritten as

dL = p'dg; + p'dg; — d (p'g; — L) = -p'dg; + g;dp' . (3.1.98)
One can see that the quantity

Hp,q) =p'g;- L (3.1.99)

depends on g; and pl only, and is called the Hamiltonian function. Comparing with the
definition of energy (1.1.40) one recognizes that H has to define the energy as well.
Thus, the action (3.1.95) is rewritten in the Hamiltonian form:

S= J dt(p'q;—H) . (3.1.100)

Varying (3.1.100) and taking into account (3.1.98), one obtains the (first order) Hamilto-
nian equations:

., OH ; OoH
gi=x, pl=-22. (3.1.101)

opt
The total derivative of H with respect to time is

dH O0H, OH _;
— =—@;+ —P . 3.1.102
dt  og; ar ap’p ( )

Keeping in mind (3.1.101), one can see that H is conserved

dH

— =0 3.1.103
it ( )
In fact, it is another form of the conservation law given previously in (1.1.40). At last,

the Hamiltonian action (3.1.100) provides the so-called [13] generating function:
G(t) = p'6q; - Hét, (3.1.104)

which generates time translations.

Now, let us assume that the time coordinate is another dynamical variable,
t = q,.1, Whereas a new parameter 7 plays the role of time. Then the action (3.1.100) is
rewritten in the form:

S=Jdrp"q;, j=1,...,n,n+1, (3.1.105)
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where g' = dg/dt and the constraint
H.=p"™ +H(p,q) =0 (3.1.106)

should be imposed. The constraint can be incorporated into (3.1.105) with the use of a
Lagrange multiplier A:

S= J dr(pq) - AH,) . (3.1.107)
The Hamiltonian function in (3.1.107) is zero,
H,=AH,=0, (3.1.108)

like the general relativistic Hamiltonian in (3.1.94). The generic problem for both of
the cases (3.1.94) and (3.1.108) is how can one transfer from the parameterized action
to the action in the usual form with a non-zero Hamiltonian? We show this using the
simplest example of the action (3.1.107).

If one substitutes solution of the constraint equation (3.1.106) into the action
(3.1.107) one finds

. da:

S= jdq,l+1 (p’i - H(p, q)) . (3.1.109)
dQn+1

Expressions for the actions (3.1.107) and (3.1.109) show that g, plays the role of “an

intrinsic coordinate”. On the other hand, equation for g, exists and is given as

! dH

Qi1 = —dpnfl . (3.1.110)

Then, keeping in mind the constraint (3.1.106), one concludes that A, being dynamic-
ally arbitrary, guaranties that g,,; is dynamically arbitrary as well. This means that
we can choose g, in an arbitrary way g,,; = gn.1(7). The transfer from (3.1.107) to
(3.1.109) as q,,; = T means that g, is the intrinsic coordinate under this coordin-
ate condition. Then (3.1.110) defines A. The formulation (3.1.107) is T-invariant that is
invariant with respect to replacements, 7 = 7(t). This is evident because (3.1.109) does
not depend on 7 at all. Thus 7 can be classified as an extrinsic coordinate. At last,
one notes that (3.1.107) and (3.1.109) provide the following two generating functions,
respectively,

G(1) = P'8q;, (3.1.111)
G(qn+1) = pi6Qi - H6qn+1 . (3-1-112)
In (3.1.111) the constraint has been used. Besides, not only g,,; can be used as an

intrinsic coordinate, in fact, it can be another variable g; or combination of the
variables.
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To conclude this part, we note that, in order to transfer from a parameterized
action to the usual Hamiltonian action one has to solve the constraint equation and
to impose a coordinate condition.

The ADM way of reconstructing a parameterized action in general relativity
In the rest of this subsection we follow the presentation in the key paper by Arnowitt,
Deser and Misner [13]. For the sake of simplicity we consider the vacuum case of
general relativity with the action (3.1.64), (3.1.56), without the surface terms,

. t ..
S [g,-j, Y, N(")] = J dtj &x (n”gl-]- - jfo) (3.1.113)
to >

with the Hamiltonian equations (3.1.65) and (3.1.66). One can see that (3.1.113) with
the constraints (3.1.67) and (3.1.68) is in the same form of (3.1.107) with the constraint
(3.1.106). The generating function corresponding to (3.1.113), analogously to (3.1.111),
after taking into account the constraints, is

G= J d’xn’6g;; (3.1.114)
)

with 12 phase space variables. To transfer to the standard action with a nonzero
Hamiltonian one has, first, to solve 4 constraints (3.1.67) and (3.1.68), and, second,
to set 4 coordinate conditions. As a result, one has to obtain a generating function,
analogous to (3.1.112), in the form:

G- L Px [m68, - A0 )0t + AL g,)6x ] (3..115)

Here, A = 1,2, n* and g4 are rest of the phase space variables, and the last items
in (3.1.115) represent the generating functions for the translations 6t and éx'. The
Hamiltonian action, corresponding to (3.1.115) is

S- J dt J Px [ g, - 700, )] (3.1.116)
z
with the Hamiltonian %0. Below we provide this program.

The linearized theory

Following ADM [13], to present the above declared transformations we apply the
program to an asymptotically flat system described in Section 3.1.2. In the present dis-
cussion, using this assumption, the linearized theory is developed. Let us rewrite the
constraints (3.1.67) and (3.1.68) in an approximate form,

8ijij — 8iijj = ‘11320(&1" ), (.1.117)

-1 = P, (gy, V). (3.1.118)
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On the left hand sides, one finds purely linear in g; and 1V expressions; the place of
the indices (upper or lower) is not important because we use the behaviour (3.1.90)
and (3.1.91), and the 3-dimensional metric n; = 6; is used as the background one. On
the right hand sides, 98,° and B, are quadratic in gjand .

To solve equations (3.1.117) and (3.1.118) one has to make the usual linear ortho-
gonal decomposition of g;; and 7. We illustrate it on the example of any symmetric
tensor g;; = g;;. Thus,

T T
Ql] = Ql] + QU + Ql:l + Q],l N (3.1.119)

where each of the quantities on the right hand side can be expressed uniquely as
a linear function of g. First, the quantities gijTT represent the transverse traceless
components of g;;: gijTT,]- = 0 and g;/T = 0. Second, the quantities gijT represent the
transverse components of g;;: Q,-]-TJ- = 0, and are defined uniquely by the trace ¢! = ¢;:

o' =3[0 - WV ], (3.1.120)

where the operator 1/V? is the inverse of the flat Laplacian with the appropriate bound-
ary conditions. Third, the longitudinal parts of g; reside in the remaining part of
(3.1.119): g;; + ¢ ;- Decomposing g; into its transverse and longitudinal (curl-less) parts,
one has g; = ¢, + 3¢ ;. Thus, inversely, each of six quantities on the right hand side
of (3.1.119) may be expressed through g;;:

0 = (1/v%) [Qij,j - %(UVZ)ij,kji] ) (3.1.121)
o' =i-/ VZ)Qij,ij ) (3.1.122)
05" = 05~ @' Lomnl = (01l2mn] + gilomnl) - (3..123)

Here, g,-]-T[gmn] and g; j[o], are obtained with the use of (3.1.121) and (3.1.122).
Now, let us turn to the constraints (3.1.117) and (3.1.118) and substitute there the
decomposition (3.1.119). Keeping in mind (3.1.120-3.1.123), one finds

-vigh = 9,°, (3.1.124)
VT At ) =, (3.1.125)
According to the Section 3.1.2, we use the boundary conditions in such a way that g7

and 7' vanish asymptotically. Then, because the structures of (3.1.124) and (3.1.125)
begin at the second order these equiations can be written as

g’ = —(1/V2)‘l§°, (3.1.126)

2T+ 7ty = (1/v2)<lqi§i , (3.1.127)
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lin lin, .
where B and ' are obtained from B,° and B,° by setting g’ and 7' equal to zero
there. In fact, we have shown that constraint equations are solved for g’ and 7' in
terms of other variables as for the four extra momenta, just analogously to p"*! as the

extra momentum in (3.1.106).

lin lin,
To see explicitly that P° and 3’ generate the appropriate time and space transla-
tions, one must return to the generating function (3.1.114). Inserting the decomposition
(3.1.119) for both g;; and 717, one obtains

G= L Ix [T g™ + ' 6gy" + 2 + 10 )6g] - (3.1.128)

The cross terms in (3.1.128) have vanished due to properties of the orthogonal decom-
position. Integrating by parts and adding total variations, one transforms (3.1.128) into

G = L &x [nijTTSgiiTT -viglsavint - W (T + ﬂL’l—)ﬁgi]
= L &x [nijTTSgiiTT - B,%6[-(1/2v*)n] + ‘,Bzié'gi] . (3.1.129)

The form of (3.1.129) represents the form (3.1.115), only the final step in reduction to
the standard (non-singular) canonical form is to be imposed by coordinate conditions

t = -1/2vH)a’, (3.1.130)
X =g. (3.1.131)

Keeping in mind the relations of the orthogonal decomposition (3.1.121) and (3.1.122),
the conditions (3.1.130) and (3.1.131) can be rewritten in an alternative form:

ny-nl =0, (3.1.132)
g = 0. (3.1.133)

Next, the linear part of the Hamiltonian equation (3.1.65) gives after the orthogonal
decomposition

d

78+ 80 =Ny + Ny (3.1.134)
Recall that Lagrange multipliers N; = g; are functions determined only when coordin-
ate conditions are imposed and must vanish at spatial infinity where the space is flat,
see (3.1.93). Inserting (3.1.131) into (3.1.134), one obtains that N; = 0 everywhere. This
is consistent with the boundary conditions. Similarly, from (3.1.66) after the linear
approximation and the decomposition one obtains

d

- [-(/2v)a"] = N. (3.1.135)
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Then the condition (3.1.130) implies N = (—goo)"l/2 = 1. This is consistent with the
required asymptotic limit , see (3.1.92).
Reading inversely (3.1.126) and (3.1.127), one finds that

lin

BT, gijTT) - _v%T, (3.1.136)
lin. .. i
BT, gijTT) - (AT + ﬂL’i) (3.1.137)

are the linearized theory’s Hamiltonian and momentum densities and so their coeffi-
cients in the generating function (3.1.129) must be 8t and 6x', see (3.1.130) and (3.1.131).
Finally, following (3.1.116), one constructs the canonical action for the linearized
theory:

lin

5= J dt L Px [nif”gij” ~ BT, g, | (3.1138)

The full theory

Now, the full theory can be easily put into the canonical form. Turning to the ini-
tial constraints (3.1.67) and (3.1.68), one can rewrite them in the form of (3.1.124) and
(3.1.125), although now they are fully exact and nonlinear. One finds

-vg" =90 ;8" iy g "), (3.1.139)
V(" it ) = pig"T gt g ). (3.1.140)

Here, B* are non-linear functions of 8 and 7. In any case, one can solve these
coupled equations for g7 and 7' in principle by a perturbation-iteration expansion.
Thus, one can again choose —-v?g’ and —2v2(n'T + T[L,i) as the four extra momenta to
be eliminated. We denote symbolically the solutions to equations (3.1.139) and (3.1.140)
by

-vg =%, 1" s g, (3.1.141)
2V it ) = %' A g ). (3.1.142)

These equations are the counterpart of the equation (3.1.106) in the particle case.

We now impose the same coordinate conditions (3.1.130) and (3.1.131) which
determine g; and 7', Then, the &; and 7T equations become the determining equa-
tions of N and N'. In the full theory they are not equal to 1and 0, respectively, but now
become specific functions of g,-]-TT and %7, which could be calculated explicitly, in
principle. In the last four equations, then, N and N' may be eliminated in principle,
leaving a system of four equations involving only gijTT and 797, and linear in their
time derivatives.

The generating function, which generalizes (3.1.129) for the full theory, acquires
the form
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= j dx (nijTTSgil-TT ~ %08t + Soidxi) , (3.1.143)
z
whereas the corresponding canonical action has the form:
= J dt L Ex [ g™ - 5,0, g™ )] (3.1.144)

Energy and momentum expressions for an isolated system

The above formalism has properties close to the usual Lorentz covariant field theories.
As a consequence, the physical interpretation of the gravitational field maybe carried
out in terms of energy, momentum, etc., as well.

The energy E of the gravitational field yelds the numerical value of Hamiltonian,
as usual, for a particular solution of the field equations. In obtaining this numerical
value, the form of the Hamiltonian TOO as a function of the canonical variables is
irrelevant, but one may use the equation (3.1.141) to express E as a surface integral. It
should be emphasized that, while energy and momentum densities are indeed diver-
gences, the integrands in the generating function (3.1.143) T ¥ are not divergences
when expressed as functions of the canonical variables. Thus, for the total energy
one has

PO =E= JZ dBXTOO = _J XV g é dslg i= 4) dSi (g]]’] _gji,i) s (3.1.145)
o0
is used. Similarly, the total momentum P; with

where the notation ¢ _ = lim,_, ¢,
the use of (3.1.142) may be written as

P= —2({) ds; (ni,]- + nj,,-) = —ZCJS dsjnij. (3.1.146)

In (3.1.145) and (3.1.146), we have assumed that the coordinates are asymptotically
Cartesian at X, the spacetime becomes flat at spatial infinity. These requirements
lead to the conclusion that P* = {P0 ,Pi} is a Lorentz invariant vector. Of course,
having P* and using the asymptotic flatness property, one could easily construct the
total angular momentum and the integral of the center of mass by the standard way.
However, one meets serious difficulties with the behaviour (3.1.90) and (3.1.91), when
one tries to construct the total angular momentum and integral of the center of mass
with the use of integrands in (3.1.145) and (3.1.146). They become divergent. It is called
as the super-translation ambiguity at spatial infinity.

3.1.4 The Regge-Teitelboim modification

Let us now look at the classical work of Regge and Teitelboim [385]. Above, we stated
that variation of the Hamiltonian action (3.1.113) leads to the Hamiltonian equations
(3.1.65) and (3.1.66) without taking into account any surface terms. The main result of
Regge and Teitelboim is that, in the case of asymptotically flat spacetime, one must
include into the Hamiltonian function additional surface terms. They were based on
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the Hamilton variation principle that has been applied more carefully than is usually
done. Thus, let us vary (3.1.56):

, (6 5Hy
6H0 = sz X|: (Sgl.jo 5gu(X) + 67_[1.].0 67'[1]()()

—Cﬁ ds;G™ [N %k(agij) - 5gij§kN ]
o
- 35 ds; [ZNkénkl + (ZNknﬂ - Nlnjk) ngk] . (3.1.147)

The canonical equations (3.1.65) and (3.1.66) have to follow from (3.1.147), thus the
surface terms in (3.1.147) have to be neglected. The Regge-Teitelboim variation principle
is as follows. Variations on hypersurfaces, %, at initial time, and %, at final time, are to
be equal to zero identically. On the other hand, the variations 6g;; and 617 at the space
boundary, 9%, do not vanish identically. Only, for 6g;; and 6nY they require the same
fall-off as the fields g;; and 7 themselves. But, in this case, surface terms in (3.1.147)
are not equal to zero!

To save the situation additional compensating surface terms are to be added
in (3.1.147). From the start, Regge and Teitelboim use the initial simplest behaviour
(3.1.90) and (3.1.91). Then, it is necessary to add only

Pt (J’D ds; (g3:; - g5.1) (3.1.148)

to the integral (3.1.56). One easily recognizes that (3.1.148) is exactly the ADM energy
integral (3.1.145).

However the principle has to be more universal, it has to be invariant with respect
to the asymptotic Poincaré transformations. To include them into the consideration
one has to change the behaviour of the lapse function (3.1.92) and the shift vector
(3.1.93) as

N=a"+g"xX+0 1)+00™, (3.1.149)

N =d +px +0(1)+007). (3.1.150)
Here and below, (+) and (-) mean even and odd parity functions with respect to the
sign-change of the 3-vector: vE = x*/r; it is the main assumption in the Regge and
Teitelboim approach. Then, keeping in mind (3.1.149) and (3.1.150), the Hamiltonian
function (3.1.56) has to be augmented by the integrals:

P - —24) ds;n", (3.1.151)
o0
M? = —qu ds, (xrﬂls —xsﬂlr) , (3.1.152)

My, = é ds, [Xr (gsl,s _gss,l) —8nt rlrlgsS] (3.1.153)
)
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together with (3.1.148). They can be identified with the 3-dimensional momentum,
angular momentum and the center of mass integral, respectively.

To have the integrals (3.1.151-3.1.153) well defined (finite) one has to modify the
behaviour of the phase variables (3.1.90) and (3.1.91) as

8y = 6+ g (VI + g0+ 0679, (3.1.154)
=250 2 13400 3 1 0073, a0, (3.1.155)

where 1gij(vk) and 277 (V0), respectively, even and odd functions of the angular argu-
ments V¥ are of the order O(1), the other terms have undetermined parity.
Finally, Regge and Teitelboim suggested the Hamiltonian function

Hpp = Hy - P, —a'P, + M, + 3B°M,q, (3.1.156)

where P, = —P*. Variation of (3.1.156) with respect to phase varibles and with taking
into account the Regge-Teitelboim corrected fall-off does not lead to the surface terms,
unlike (3.1.147).

Together with a permissible fall-off, Regge and Teitelboim discussed permissible
asymptotic deformations of the spacelike hypersurfaces Z represented as

N={Xx), N={0®, (3.1.157)

which do not change the asymptotics (3.1.154) and (3.1.155). Substituting (3.1.157)
into the equations (3.1.65) and (3.1.66), and requiring that perturbations 8g;; ~ &,
8(gi0 ~ &ijx and 6m7 ~ 7’ do not disturb the behaviour (3.1.154) and (3.1.155), Regge
and Teitelboim found the conditions

O=00T+0 (), ex1, 622. (3.L158)

3.2 Anisolated system in the Lagrangian description

Usually, the study of an asymptotically flat spacetime is carried out in the frame-
work of the geometrical formulation of general relativity. Many powerful and elegant
mathematical methods have been developed, see in Section 3.1.2 the cited works
and references therein. On the other hand, it has been noted that it is also natural
to analyze an asymptotically flat spacetime at infinity with the use of an auxiliary
flat spacetime, see, for example, [17, 467]. Therefore, the field-theoretical technique
developed in the previous chapter in Section 2.2 could be a valuable instrument in
this context and hence we apply it here.

Recall some properties of the field-theoretical formulation of general relativity
which will be used in the present section. First, it is exact (not approximate, not
asymptotic) theory of perturbations, which are considered as independent fields —field
configurations— propagating in a fixed spacetime. The field-theoretical formulation is
equivalent to general relativity in the standard geometrical formulation. Second, a
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choice of a background is defined by the problem under consideration. In the case
of an asymptotically flat spacetime it is natural to choose a flat background, as the
whole spacetime, corresponding to the Minkowski space at infinity. Third, the global
integrals of motion for the field configuration are defined exactly, like in an arbitrary
field theory in the Minkowski space, see Section 1.2.4. They are defined on flat space-
like hypersurfaces by using the energy-momentum tensor and the Killing vectors of
the Minkowski space. Fourth, the global integrals of motion are converted to surface
integrals that is easily provided in the Minkowski space.

Advantages of the field-theoretical approach in studying asymptotically flat solu-
tions in general relativity are as follow. One obtains coordinate independent well
defined expressions. In the framework of the traditional geometrical derivation, as
a rule, one has to consider simultaneously the problem of a permissible asymp-
totic behaviour for coordinates, the problem of permissible deformations of spacelike
hypersurfaces at infinity, etc. At the same time, when the field-theoretical approach is
used, all the aforementioned problems are considered as a united problem of a per-
missible asymptotic behaviour for gauge transformations, see Section 2.2.4, in surface
global integrals.

Thus, in the present chapter, using the formalism of the Section 2.2 and following
the presentation in the works [360, 361], we study the asymptotically flat spacetimes.
We use both the Lagrangian (in the present section) and Hamiltonian (in the next
section) formulations. The following assumptions are used:

1) We assume that a manifold, which supports a physical metric, has to support a
background flat metric as well.

(i)  We assume that an asymptotically flat spacetime corresponds to a real isolated
system, see Section 3.1.2.

(iii) In the present chapter, only a spatial region at infinity is studied, thus we
consider systems without gravitational radiation.

In the field-theoretical formulation it is not necessary to use the assumption (i),
however then in the case of a complicated solution one needs to resort to exotic inter-
pretations. To avoid this we introduce the assumption (i) that means that the same
manifold is supplied by two metrics, g,, and g,,. The assumptions (ii) and (iii) are
natural.

3.2.1 Asymptotically flat spacetime as a field configuration

Now we reformulate the definition of asymptotically flat spacetime given in the points
(i-iv) in Section 3.1.2 in the framework of the field-theoretical approach. We choose a
background spacetime as the Minkowski space. Asymptotic field configuration, ",
is defined by the decomposition (2.2.7). For convenience, to have an evident (expli-
cit) fall-off of potentials one has to use the Lorentzian (Cartesian) coordinates in the
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Minkowski space, although, owing to the covariant formulation, arbitrary curvilinear
coordinates can also be used. In the Lorentzian coordinates, - = /=7 = 1, and,
consequently, one finds from (2.2.7):

R = g = g - g (3.2.1)

Thus, the field-theoretical formulation of the definition (i-iv) in subsection (3.1.2) is as
follows.
(i) Keeping in mind a one-to-one correspondence between world points of phys-
ical spacetime and world points of the Minkowski space, one parameterizes the
latter with the Lorentzian coordinates {x*}.
(ii) There is a gauge fixing issue which we deal with by demanding the components
of the field configuration to have the behaviour:

R =00, WY,=007), (3.2.2)

where 1% = nijxixj with Cartesian coordinates {x*} in Euclidean space on sections
% defined as x° = t = const.

(iif) There is no a gauge fixing, when the fall-off of gravitational potentials could be
stronger than in (3.2.2).

(iv) To obtain the condition of effective localization of matter sources one has to
use the restrictions (3.1.88) and (3.1.89), and the definition of the matter energy-
momentum in the field-theoretical formulation, 7, in (2.2.32) adopted to a

M
background Minkowski space, then it acquires the form:

tey = or>%, a>o0. (3.2.3)

Below, a naive definition of the field configuration for an asymptotically flat spacetime
given above in items (i-iv), will be elaborated to be more precise.

A model of a real isolated system has to be invariant under asymptotic Poincaré
transformations. Sometimes, a spacetime with such a property is called an asymptot-
ically Minkowskian spacetime [19]. Then, a field-theoretical model of a real isolated
system has to be invariant under Poincaré transformations in the Minkowski space.
Therefore, this is related to the behaviour (3.2.2). It is an important statement and we
analyze it in more detail. We consider the behaviour of potentials and fields at r — co.
The requirement of Poincaré invariance means that the fall-off (3.2.2) is conserved at
' — oo on the sections ¥’ defined as x'° = t' = const for a frame {x'*} connected with
the initial one {x*} by the Poincaré transformations:

X =x*+a%+ bﬁ“xﬂ , (3.2.4)

where a® are constant components of the 4-dimensional translation vector, whereas
bﬁ“ are constant components of the Lorentzian matrix.

Let us choose a slice in the form: xX° = const = a on that a radius-vector, r, is
defined by two points, x{ and xj. Its origin has the coordinates x{ = {a, 0, 0, 0},
whereas its peak has the coordinates in the Lorentzian system x5 = {a, x3, X3, X3} -
The interval between these points is
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(As)? = napr“Axﬂ = nikxéxlz( =7, (3.2.5)

where Ax* = x§ - x{.
Now, apply the transformations (3.2.4), then the interval (3.2.5) is transformed as

(As')? = rlaﬂAXIaAX'ﬁ = (&%) + nydx Ak, (3.26)

where
A = b A = b, (3.27)
AXY = brax (3.2.8)

with the constant vector b. The left hand side of (3.2.8) can be written in the form:

AX® = xf = XK = XK — (@ + aby) = X + &K, (3.2.9)
where ¢* are components of a constant vector ¢. We define the radius-vector r' by the

same way as in (3.2.5). It is the radius vector of the point with coordinates x;" with
respect to the origin on the transformed flat slice £'. Thus, now r'? = n;x,xX. Substi-
tuting (3.2.7) and (3.2.9) into the interval expression (3.2.6) and equalizing it to (3.2.5),

one obtains

P=-b-r+r?+22' . c+. (3.2.10)
As is seen, when r — oo one has r' — oo, and conversely. It is the main statement
necessary for our goal. More concretely, from (3.2.10) one has

1/2

1k
r[1+ (bkovk)z]l/2 = (1+ 2ict, > =1 +00) (3.2.11)

rI rl2

where V¢ = xk/r and v'¥ = x’*/r', and we generalize an observation: XX — x* and

x¥ — x'¥, Combining (3.2.4) and (3.2.11) it is not difficult to find

[1 + (blovl)z]fl/2 bjkvi =vky o' ™. (3.2.12)

The conclusion that follows from (3.2.11) and (3.2.12) is that, up to constant coeffi-
cients, the behaviour at infinity both r and ', and, VK and v’k , are the same.

Now let us apply the Poincaré transformations (3.2.4) to the gravitational poten-
tials W":

B = (8 + b8+ b |, - G213)

v=v(v')
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Then, keeping in mind the relations (3.2.11) and (3.2.12) and that bﬁ"‘ have constant
components, one finds from (3.2.13) after taking into account (3.2.2):

W% =o', W%, -o00"). (3.2.14)

Thus the behaviour (3.2.2) is Poincaré invariant.

Let us make some remarks.

First, if the requirement of the Poincaré invariance is satisfied, then, instead of the
behaviour (3.2.2) one can use only

K =00, H*, =007). (3.2.15)

Second, the behaviour of the gravitational potentials in (3.2.2) determines the beha-
viour of the gravitational Lagrangian

L8 =00). (3.2.16)

To derive this the general definition (2.2.20) was used for the field-theoretical formula-
tion of general relativity on the Ricci flat (including flat) background (2.2.104-2.2.106).

Third, the requirement of the effective localization in (3.2.3) determines the
behaviour of the matter Lagrangian in (2.2.104):

L"=007%, a>o0. (3.2.17)

Thus, the total dynamical Lagrangian (2.2.104) defines a finite action functional for an
asymptotically flat spacetime and for finite time intervals.

3.2.2 Global conserved quantities

Global conserved quantities play a crucial role in describing the model of an isolated
system. It was already noted that the technique of defining such quantities in the
framework of the field-theoretical approach with the Minkowski background is the
same as in an arbitrary field theory in the Minkowski space. Then we can turn to the
formulae (1.2.83-1.2.88).

To define the main quantity in these formulae, the current /Sf‘ , we use the total
energy-momentum, ¢, on the right hand side in (2.2.105), with the differential con-
servation law (2.2.106). Because t;fvt is a symmetric energy-momentum tensor, we
define the current with the use of the formula (1.2.132):

Jh=trer, (3.2.18)

where the Killing vectors of the Minkowski space, ¢, ,‘<’, in the Lorentzian coordinates are
defined in (1.1.72). Then, due to the conservation law of the type (2.2.106) one obtains
the conservation law (1.2.133) for the current (3.2.18):
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S =0, 78 =0. (3.2.19)

It is a realization of the conservation law (1.2.83) in the general form. Then, one can
construct the quantity of the type (1.2.87):

P& = L Px 72&) = L Pt (3.2.20)

The integration is carried out over the whole space . The quantities (3.2.20) are
conserved if boundary conditions (fall-off behaviour) satisfy

. k]
lim 4582 dsy tih, & = 4& dsita & =0, (3.2.21)

see (1.2.88).

In fact, it is difficultly to use the energy-momentum tensor ¢, since the gravit-
ational part is quite cumbersome, whereas we did not define the matter part at all.
However, we keep in mind that the Einstein equations hold, and we can use them in
the form (2.2.105). We rewrite them in the form:

- — G”V(h) - Gﬁvﬂ 8 (32.22)

where we define
G = % WP+ WP — WY — PR ), (3.2.23)
for which GZVB = —Gﬁﬁ V. Thus, in constructing conserved integrals with the use of

(3.2.22) and (3.2.23) we need not know how matter falls-off at all. Such a behaviour
is taken into account by the gravitational field equations automatically.

Substituting (3.2.22) into (3.2.20) and applying the Gauss’ theorem, one obtains for
each of the Killing vectors (1.1.72) rewritten in the Lorentzian coordinates:

@ _ 1 3 [ a0
A - o | a2 (6]
1

= E.[ 4)00 dSi [hao,i + naohiﬁ’ﬂ _ h(xi,O _ rlm'hoﬁ’ﬁ] (3'2.24)

for the total 4-momentum that has been obtained with the time translation & = -6
and space translations & = &;;
1
e@S([mn]) 16 J- d3X [(GZOI m GmOl n) GTOH _ GE:Om]
1

_ 37¥ d l [(hno,i _ hni,O _ 6nih0a,a)xm + 5nihm0

_ (hmO,i _ hmi,O _ 6mih0a’a)xn _ 6mihn0] (3.2.25)
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for the total angular momentum with the space rotations & = ¢, ;; and

(mop _ 1 3 [ ~00i 0i.0 00
P - = de (G2 - GOx®) ; - 62O

1 . :
- (JSOO ds; [R%% - K% )x
_ (hmo,i _ hmi,O _ 6mih0a’a)xo _ 6mih00 + hmi] (3.2.26)

for the total Lorentz momentum with the Lorentzian rotations & = ‘f[amo]-

The integrals (3.2.24-3.2.26) have been derived in the Lorentzian coordinates. It is
necessary to analyze explicitly a permissible fall-off for fields at spatial infinity. How-
ever, it could be better to use the advantage of the field-theoretical approach, namely,
the covariant formulation. Conserving the flat sections Z in the initial definitions of
(3.2.24-3.2.26), one can use arbitrary curved space coordinates on Z. After this, par-
tial space derivatives transform to covariant ones: ;Q — Q. Using the relations for
the Killing vectors in curved coordinates (1.2.6) and (1.2.7) one finds that all the ten
integrals (3.2.24-3.2.26) are united into the form:

1 0, s04i _ g p0i
P = 16n §_asi [, + 8007 8ln”) -
B (yijhov + 58hii _ 5:‘/ hoi) gz;i] ) (3.2.27)

Here, among curved coordinates, usually spherical coordinates are used.

3.2.3 The parity conditions

Substituting potentials with the behaviour (3.2.2) into integrals (3.2.24-3.2.26) one
finds that the integrals (3.2.24) have finite values, whereas the integrals (3.2.25) and
(3.2.26) diverge. But a real isolated system has to have a finite total angular and Lorentz
momenta as well. The first researchers who clarified this problem were Regge and
Teitelboim [385], they have resolved the problem suggesting the conditions (3.1.154)
and (3.1.155). Here, we follow their strategy in the framework of the field-theoretical
approach. Considering in detail the integrands in (3.2.25) and (3.2.26) one finds that it
is necessary to restrict the behaviour of h*", R* ;, h”"o and h% ;. The requirement of
the Poincaré invariance leads to a necessity of analogous restriction for the rest of the
components h% , which are absent in (3.2.25) and (3.2.26).

To obtain well defined (finite) total angular momentum (3.2.25) and Lorentzian
momentum (3.2.26) integrals we introduce the behaviour

R = 0"+ 0 (P,
WY =0 ()+0' P B2 (3.2.28)



172 — 3 Asymptotically flat spacetime in the field-theoretical formulation

instead of (3.2.2). The index notations (+) and (-) mean even and odd parity functions
with respect to changing the sign of the 3-vector: v = x*/r. The definitions (3.2.28)
assume that, in both lines, between the first and the second terms; other terms with
the parity of the first terms could appear. Besides, conditions (3.2.28) introduced by
us do not coincide with the Regge-Teitelboim conditions (3.1.154) and (3.1.155). Indeed,
transforming (3.2.28) into the Hamiltonian formulation, one obtains

gii = rll] + O+(r71) + O(riﬁ) ’
gij,k = Oi(riz) + O(riliﬂ) )
=0 H+00" ), B2 (32.29)

that are weaker than (3.1.154) and (3.1.155). Also, the conditions (3.2.28) mean that
there is a special gauge fixing, however they can be made weaker. Here, relying on
the gauge invariance properties of the field-theoretical formulation, we study this
problem.

Let us analyze an arbitrary asymptotic behaviour from the point of view of the
Poincaré invariance requirement. Now, we consider the Poincaré transformations
(3.2.4) in the perturbed form:

x'% = 8a" + (52 + Sbﬁ"’)xﬁ ~ X"+ 6x" (3.2.30)
with infinitesimal 6a* and 5bﬁ"‘. Besides, keeping in mind (3.2.7) and (3.2.8), one has
&Y =0 (r). (3.2.31)

As a generic example, we consider a quantity (or a set of quantities), 2, with the
asymptotic behaviour as r — oo,

2=0"(r"). (3.2.32)

After that we require the asymptotic behaviour of the perturbation, 6.2, induced by
(3.2.30) to be the same as (3.2.32):

82~ 2,6x"=0"(r"). (3.2.33)

Such a requirement is a Lagrangian analog of the requirement of the asymptotic
Poincaré invariance in the Hamiltonian description [385].
Combining (3.2.31-3.2.33), one finds

2,=0" (7). (3.2.34)

Lowering the order in r under differentiation with respect to space (Cartesian) coordin-
ates looks evident, whereas lowering the order in r under differentiation with respect
to time coordinate, x°, looks quite unusual. However, there is no contradiction. As an
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example, one can consider a Lorentz-transformed Schwarzschild metric [225], where
the coordinate x° is included only with the combination x°/r. Then a differentiation
with respect to x° is in correspondence with (3.2.34). Next one requires the Poincaré
invariance of the behaviour (3.2.34). With the use of the same reasoning one obtains

2,5=0"(r?7), (3.2.35)

and so on. Now, applying the above described logic of the Poincaré invariance to
(3.2.28), one gets step by step,

+.—3 — (2"
R, =0"(r)+0(r By,

h"v’ﬂpo —0 (M +0' P,
.........  rrveeeeeereeesresnaaanaaaaaans (3.2.36)

Substituting (3.2.30) and (3.2.36) into (2.2.30) and combining it with (3.2.3) one gets
the behaviour for the total energy-momentum:

te =00, a>0 (3.2.37)
that satisfies (3.2.21), leading to the claim that global motion integrals (3.2.24-3.2.26)
are conserved in time.

3.2.4 Gauge invariance of the motion integrals

To define the fall-off conditions weaker than in (3.2.28), conserving the values of
(3.2.24-3.2.26), we use gauge invariance properties of the field-theoretical formu-
lation of general relativity. Let us turn to the gauge transformations of the total
energy-momentum (2.2.75). Then for the flat background in Lorentzian coordinates
one has

ot oot Ll i L gk o 4+ g (3.2.38)

weow g W & k! J ’

where as before g = ~=n* and H*¥ = —gh*" with /=1 = 1. By the defini-
tion (2.2.27) for Gﬁv(b), the last term here is a divergence, therefore under the gauge
transformations the integrals of motion (3.2.24-3.2.26) acquire surface terms.

A natural requirement is that values of the globally conserved quantities (3.2.24—
3.2.26) must be unchanged. In other words, the gauge induced terms in (3.2.38) must
not contribute to surface integrals (3.2.24-3.2.26). Below to satisfy this requirement we
search for the weakest asymptotic behaviour for functions ¢* and their derivatives as
possible.

At first, one has to recall that G}Lw(h) is invariant under the transformation

0™ = 0 £ = £ - o+ 2 (3.239)
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that means:
G (En") =0, (3.2.40)

which disappears from (3.2.38). It is equivalent to the invariance of (1.5.5) with respect
to (1.5.15). Recalling the use of Lorentzian coordinates, one can rewrite (3.2.39) as

P £ayanyv " 26(‘“"/) . (3.2.41)

For arbitrary curved backgrounds such a kind of invariance is presented by the formu-
lae (2.2.78-2.2.81). Thus, anyway, one need not consider the part (3.2.39) (or (3.2.41))
in (3.2.38).

Concerning other terms in (3.2.38), we use the following assumptions and
properties:

(i) Dynamical fields H** and ¢A satisfy the Einstein equations, besides they have
the initial asymptotic behaviour (3.2.28), (3.2.36) and (3.2.37).

(ii) Each of the initial components of the gauge field and their derivatives
PR 3 “’ﬂ, {“’ﬁy, ... are arbitrary quantities at every point of the Minkowski
space. We use also a symmetry in partial derivatives in order 2 and more, like
Sy =8 e

(iii) The quantities &“, {“’ﬁ, {“’By,... transform as tensors under the Poincaré
transformations.

(iv) Functions &* are of the class C*°. Also, we require the Poincaré invariance for
the behaviour of the gauge transformed §'#". Then, the behaviour of derivatives
of h"™ has to follow the behaviour (3.2.36).

Now we adopt the transformation (2.2.68) for the case of a flat background in Lorent-
zian coordinates, exclude the terms (3.2.39), owing to the invariance (3.2.40), and
present the rest terms in the form:

- h’“’+f{aﬁ+{a{p+-~+§h,ﬂ+{,Xh
+€€h,aﬁ + {{ah,ﬁ + {{aﬁh + {a{ﬁh +...
= K+ 6H (3.2.42)

Here, and frequently below, we do not use all the indices, it is permissible owing to
the behaviour (3.2.28) and (3.2.36) and to the above requirements (iii) and (iv). After
differentiating (3.2.42) one has

WY = WY+ & + Egbp, + .
+§h gp + & oh g+ & ogh + §8h 45, + 88 sh g,
+8aphy T Sabphy + S al gt + S ag it
=B+ (8:HY) . (3.2.43)

A
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Next, let us assume a general form for the fall-off of the components of £*:
£ =00 +0' (), (3.2.44)

where at the moment € and 6 are not determined. To satisfy the requirement (iv), the
behaviour (3.2.44) has to be added by
Ep=0"0+0 (",
{a,ﬁy 0 (r—l—S) " O—(r—l—ﬁ) ,
......... et ens - (3.2.45)

From the start, we require that the fall-off (3.2.28) and (3.2.36) are unchanged after the
transformations (3.2.42) and (3.2.43) with (3.2.44) and (3.2.45). Thus,

WY+ 80" <0 )+ 0 (), B=2, (3.2.46)

from where, keeping in mind the above point (ii), using the inequality (3.2.46), and
(3.2.44) with (3.2.45), one obtains

ex1, 6=B=>2. (3.2.47)

Thus, one concludes that with (3.2.47) the components of h'* satisfy (3.2.28) and
(3.2.36).

Now, we try to find a maximally weak asymptotic condition for gauge transform-
ations , under which the value of 4-momentum (3.2.24), Z(¢g = fg), does not change.
It is necessary to assume that the odd part of the gauge variation in integrands decays
stronger than r2, that is

0 (9,8:H") < 0™ (r?) . (3.2.48)

Keeping in mind the requirement (ii), consider all the terms of the type &£ 45, in (3.2.48)
as independent ones. Then, with (3.2.44) and (3.2.45) owing to the requirement (iv),
one has the asymptotic behaviour,

B op, =0 () +0 () + 0 (T, (3.2.49)
using (3.2.48) gives the restriction:
1 1
E> 35 6> 5. (3250)

Using (3.2.50), one concludes that all the gauge terms in (3.2.43) do not contribute to
P& = &) either.

Lastly, we will find a maximally weak asymptotic behaviour for gauge trans-
formations, under which the value of 4-angular momentum (3.2.25) and (3.2.26),
P& = 5[‘;,3]), does not change. We require once again that the odd part of gauge
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variation in integrands of (3.2.25) and (3.2.26) falls stronger than r2. Firstly, we ana-
lyze the contribution from the terms without A"V and their derivatives in the items
(65h“V),axk and 6{h"v. Consider, as independent quantities, the terms of the types
x"{{ By x"{.{ apyds - and &£ ap & apys o Finally, one obtains the restrictions

£+6>2, €20, 6>%. (3.2.51)

With these restrictions all the other terms without h* and their derivatives in the
expressions of the type (8 ";h’”),axk and §;h"" do not contribute to P& = .{[‘;ﬁ]) either.
Next, requirements (i) and (ii) applied to the terms of the type xké,’ h , and x".{ h,aﬂ lead
to the restrictions 6§ > 1, € > 2 - 8, B > 2, combination of which with (3.2.51) gives

e+6>2, 6>1, €20, B>2 (ore>0, B=2). (3.2.52)

Under these restrictions all the other terms in gauge transformations with #** and their
derivatives do not contribute to 2 (&5 = é,’ffxﬁ]) either. Concluding, we note that for ana-
lyzing the gauge invariance of the integrals of motion, it was enough to consider the
gauge transformations up to the second order in £* only.

Combining (3.2.50) and (3.2.52), one obtains the unified restriction on the
behaviour (3.2.44):

e+6>2, 1z2e>1, 6>1. (3.2.53)
Finally, one has the transformed behaviour
WY =0'¢8)+ 0 (r%) (3.2.54)

instead of (3.2.28), with a corresponding behaviour for derivatives satisfying the
Poincaré invariance.

Let us make some remarks.

First, the condition € < 1expresses the fact that in a real isolated system the fall-off
of the gravitational potentials in (3.2.54) cannot be stronger than the Newtonian one.

Second, the gauge transformations (3.2.42) with the restrictions (3.2.53), h"'* =
W' + 8h'™, do not change the behaviour (3.2.54).

Third, the results (3.2.54) with (3.2.53) obtained in the framework of the field-
theoretical approach makes the previous results [18, 31, 51, 52, 102, 103, 160, 186, 254,
347, 387, 413, 418, 428, 454] more precise. Only the result in the Soloviev work [418]
almost coincides with the result (3.2.54) plus (3.2.53), although it has been obtained,
in principle, in another way. The difference is that in [418] the result (3.2.54) plus
(3.2.53) is augmented by the condition |¢ — §] < 1. It is not correct. Indeed, for the
usual Schwarzschild solution one has € = 1, § = oo that contradicts to the additional
condition.
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3.2.5 Concluding remarks

First, it is not difficult to show that the definitions of the integrals of motion (3.2.24)
and (3.2.25) coincide with the corresponding definitions (3.1.148), (3.1.151) and (3.1.152)
introduced by Regge and Teitelboim. At the same time, the integral (3.2.26) differs from
the Regge-Teitelboim integral (3.1.153). The reason is that (3.2.26) is the Lorentzian
integral, whereas (3.1.153) is the center of mass integral only. How could one reconcile
the difference between them? For this, let us define the shift vector in a more general
(more complete) form:

No=ad 4+ X+ x°+0 ()+00™ (3.2.55)
instead of (3.1.150). Then, following to the Regge and Teitelboim technique one obtains

ML' = 4‘)00 ds; [Xr (gsl,s - gss,l) —8ntMn8ss + 2Xoﬂrl] (3.2.56)
instead of (3.1.153), and that coincides with (3.2.26). The difference between (3.1.153)
and (3.2.56) is essential because one can show that M%, = 0 on the field equations,
whereas M, # 0. A special attention has been paid to this problem in [429], where a
necessity to include a time dependent term, like in (3.2.55), is discussed.

Second, deformations (3.1.157) with (3.1.158) are defined by coordinate transform-
ations and transferring from slices x° = const in an initial frame to slices x'° = const
in a final frame. Then, the use of the interpretation of coordinate transformations as
gauge transformations in the field-theoretical formulation permits one to conclude
that deformations and gauge transformations are in one-to-one correspondence.

Third, in the framework of the field-theoretical approach we need not work in
the Regge-Teitelboim variational principle. Indeed, varying the dynamical action with
Lagrangians, the asymptotic behaviour defined by (3.2.16) and (3.2.17), one obtains the
Einstein equations without additional requirements.

Fourth, in the Regge and Teitelboim derivation it is not so simple to show that
(3.1.148) and (3.1.151) is a 4-vector, and (3.1.152) and (3.1.153) is a 4-tensor under asymp-
totic Poincaré transformations. The field-theoretical approach significantly simplifies
the situation: the integrals (3.2.24-3.2.26) are tensors under the Poincaré transforma-
tions by the construction.

3.3 Anisolated system in the Hamiltonian description

In the present section, based on the results of the previous section, we develop the
Hamiltonian formulation of an asymptotically flat spacetime in the framework of the
field-theoretical formulation of general relativity. We demonstrate the advantages of
the field-theoretical approach; besides, we present some original results related to
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important outstanding problems such as the super-translation invariance. We follow
the works [205, 361], although, in the book [193] one can find similar elements.

3.3.1 The difference between the canonical and symmetric currents

Because we study real isolated systems their conserved characteristics have to be
the same in various formulations. Usually, for real physical systems, canonical and
Hamiltonian conserved quantities are identical, see also below (3.3.28) and (3.3.29).
Therefore, to compare the Hamiltonian conserved quantities with the symmetric ones,
one has to compare symmetric and canonical currents, which differ in divergences. As
a result, global conserved quantities differ one from another by surface integrals. To
obtain the same values for global conserved quantities in both the cases one has to
restrict an asymptotic behaviour of field potentials guaranteeing the disappearance of
the additional surface integrals.

To provide the comparison we rely on the formulae of a field theory with a Lag-
rangian . = Z() in the Minkowski space derived in Section 1.2. The difference
between the two types of the currents is presented in (1.2.135) where the canonical and
symmetrical currents are defined in (1.2.101) and (1.2.132), respectively. The difference
between corresponding conserved global quantities is given in (1.2.136):

AP (&) = Pc(&) - Ps() = —45 ds;b% &7, (3.3.)

where b o is defined in (1.2.113) with (1.2.103):

by = glBl . galBl _ gPlyal (3.3.2)
0.L B

o = o (333)
=5ty Ve

and the Killing vectors, {I‘?, are given in (1.1.72). Thus, global conserved symmetrical
and canonical integrals are equal, if integral (3.3.1) vanishes.

Let the role of the field theory with the Lagrangian . = Z(y) be played by
the field-theoretical formulation of general relativity in the Minkowski space. For
the convenience of presentation, let us reconsider the dynamical Lagrangian in the
generalized variables *:

hm —ﬁgg + M= L), (3.3.4)

where now 1/)A =y, ¢B , B*1. We consider a pure gravitational Lagrangian, #%, in a
more preferable form (2.2.20):

L8 = (0 = NN+ (P + 0) (O = O 61 ) (3.3.5)
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with only the first derivatives of +*" and K"'. We consider Lagrangian of the mat-
ter sources (2.2.21) in the simplest form (without derivatives of (v* + §*) ;) in the
Minkowski background:

L= LM 0500 9% ). (33.6)

In the other case, additional problems with defining generalized momenta appeatr,
and we do not discuss them here.

Then, the spin density (3.3.3) is separated into the gravitational and the matter
parts,

8, aﬁzi 028 uv (B 0.8 viB
o 161 (af)VV’a b lU + ayyvya yﬂ |a - , (3.3.7)
m
g 2 = <_a.,$f ¢A'/; > ’ (.38
a¢A,a y}lv_”I’uv

in the Lorentzian coordinates. After a direct calculation for the gravitational Lag-
rangian (3.3.5) one has

gx af _ VT [ \la Blopu la pBlu
O, " = y (A pyr] h g A Uyh
+ Aﬂpy hu[arlﬁ]p’lmf _ Aypy pPla 6@ _ Aupu h([;lrlﬁ]l?) . (3.3.9)

When the Lorentzian coordinates are used one has #”,, = I*,, ~ h, asymptotic-
ally. Then, taking into account the weakest fall-off for the field potentials (3.2.54) with
(3.2.53), one finds for the asymptotic behaviour of the gravitational part of (3.3.2):

gbaﬁo -0 (r—1—2£) + O+ (r—l—s—ﬁ) . (3.3.10)

It is easy to check that for all the 10 Killing vectors (1.1.72) of the Minkowski space the
quantity (3.3.10) does not contribute to integral (3.3.1).

Unlike the gravitational part, the situation with the matter part of (3.3.2) requires
additional restrictions. Already, analogous problems were analyzed in [51, 413, 429].
Let us turn to the matter spin density (3.3.8) and construct the corresponding part,
mpb »» Of the quantity (3.3.2). Requiring the Poincaré invariance and applying general
results (3.2.30-3.2.34), one recalls that every differentiation makes stronger the fall-
off by the factor r~! with an opposite parity. Then, for the matter Lagrangian with the
fall-off (3.2.3) one has

"%, =0(r*"), a>o. (3.3.11)

As is seen, for the rotational Killing vectors in (1.1.72) the behaviour (3.3.11) does
not lead to vanishing the difference (3.3.1). Analyzing the integral (3.3.1), one finds
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a necessary (stronger) fall-off for its vanishing:
”’b"‘ﬁg =0 (r"z_“) +0" (r_3_“) , a>0. (3.3.12)

By inverse exercises, one finds that a corresponding fall-off for the matter Lagrangian
has to be

" =0" (r’B’“) +0 (r’["“) , a>0. (3.3.13)

We stress that a specification (3.3.13) with respect to the behaviour (3.2.17) of the mat-
ter Lagrangian is induced by the requirement to have a vanishing difference between
canonical and symmetrical integrals of motion. Of course, if the matter is absent at
infinity, one needs no restriction in (3.3.13) at all.

3.3.2 Phase variables and their asymptotic behaviour

To transfer from the Lagrangian formulation to the Hamiltonian formulation one has
to start from the (3 + 1)-splitting of a flat background spacetime. First, we define X in
the Lorentzian coordinates; second, we project fields h* and ¢* onto T by the usual
way, see (3.1.14-3.1.46). Thus,

B -5 = (p, pt bl ¢t - ot (3.3.14)

where h?° are the 3-dimensional densities of weight +1 on 2: h? = \/=7h®" After trans-
formations (3.3.14), the Lagrangian (3.3.4) is transformed into the (3 + 1)-splitting form
also: % — 28(q",q%) and ™ — £™(q", ¢%, ¢"). After that, for the convenience,
we redefine variables:

¢ =7 = (" +u) (0" +v7), (33.15)
a bJ_a

= — 3.3.16

q nJ_L + hLJ_ ( )

where ¢ = (—n)qij is the 3-dimensional tensor density of weight +2. Below, we will
frequently use the notations h?® and q” instead of bab and ¢’ because the Lorentzian
coordinates are used.

To transfer to the Hamiltonian formulation let us consider the variables qii , 44,
and ¢A as generalized coordinates. Then, non-zero generalized momenta are defined
as usual

1625 q") 82"

i = = - s —_— 3.1
TR 5 (3.3.17)

where .%j; is a 3-dimensional tensor density of weight —1. One can easily check that
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. 3..

q’ = (-g)8", (3.318)
1 1

AT K, (3.3.19)

where §ij and Kj; are the intrinsic metric and extrinsic curvature in the framework of
the standard ADM (3 + 1)-decomposition, respectively, see Section 3.1.

Now, exchange generalized velocities ¢’ and d)A by the generalized momenta in
the (3 + 1)-redefined Lagrangian

2 (g, ¢ = —%o%g @, + 2", ¢ ). (33.20)
Then, by the standard way, one achieves the Hamiltonian action:

S= J dt J d’x {%qif + nAd)A

-} [(g" - DS+ A+ G E M) -2} (3.3.21)
where
8 = 167 [q"fq"’ (St - Ky - iq”fe--] (33.22)
H ik"¢jl ij<"Ckl 1671 ijl >

HE =g oy -2 (qm%k)’l +2(q" ) (33.23)

T
i

lsei]- is the 3-dimensional Ricci tensor constructed with the use of the 3-dimensional
metric density g”. Keeping in mind (3.3.18) and (3.3.19), one finds easily that (3.3.22)
and (3.3.23) coincide exactly with (3.1.79) together with (3.1.59), and (3.1.80) together
with (3.1.60), respectively.

As is seen, the quantities ¢ in the action (3.3.21) have the sense of Lagrangian
multipliers, variations with respect to which give the constraints:

A5 = 8+ ™ =0, (3.3.24)
AET = AE+ A" = 0. (3.3.25)

Taking into account (3.3.18) and (3.3.19), one finds that (3.3.24) and (3.3.25) coincide
with (3.1.85) and (3.1.86). However, observe that g*- and qi are not the lapse function
and the shift vector. In the present discussion, when ¥ is defined by x° = ¢t = const
in the Lorentzian coordinates, the lapse function N = 1 and the shift vector N =0
are constant quantities only. There is no variation with respect to N and N that is
expressed by a special unit in front of the square brackets in (3.3.21). Quantities g*
and ¢' are analogous to the component A° that is the Lagrangian multiplier in the
Hamiltonian description of electrodynamics [315]. Thus, the Lagrangian in (3.3.21) is a
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singular Lagrangian in the sense of the Dirac constraint algebra [140] in an arbitrary
field theory. Thus, all of Dirac’s relevant techniques can be applied to the system
(3.3.21) directly.

The transformations (3.3.14-3.3.17), of course, can be interpreted as a simple
redefinition of variables [379]. Then, the fall-off of the phase variables is fully determ-
ined by (3.2.54) with (3.2.53). As a result one has

g’ = r[ij +0"(r)+0° (r_é) ,
qij’a -0 (r—l—s) " O+ (r—l—b“) ,

=0 (r+0 (r_‘s),

a=0 (r')+0" (r). (3.3.26)
Hy =0 (r—l—s) L0 (r—l—ﬁ) ,
Hja=0" (%) +0 (r>0). (3.3.27)

Recall that every differentiation makes the fall-off stronger by the factor r* with an
opposite parity.

3.3.3 Global conserved integrals

Now we construct conserved integrals in the Hamiltonian formulation. Here, it is con-
venient to rewrite the canonical current (1.2.101) with the Lagrangian (3.3.4) in the
convenient form:

SUE) = B8+ 0 gt = -OL N g p gt (329

M

After a one-to-one redefinition (3.3.14-3.3.16) we derive the zero component (the only
necessary in the integration, see (1.2.87)) of (3.3.28):

1 625, 82"

0 A
Hc @, ¢75 &) = Ton 540 £e.q 5

Ef[((;bA - gdyn(% ¢A)$1? . (33.29)

At last, changing generalized velocities by the generalized momenta (3.3.16), one
rewrites (3.3.29) through the phase variables of the Hamiltonian action (3.3.21):

I2q, 5 M mas &) = ES(Kq ”A£§K¢ - Mg, 5 P a)EY.  (33.30)
The same as in (1.2.87), one constructs the conserved integrals based on (3.3.30)

2(&) - L Px 70, H'5 o mas £ (3.3.31)
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Due to the behaviour (3.3.13) for the matter Lagrangian fall-off one concludes that
for a real isolated system integrals (3.3.31) coincide with the integrals (3.2.20) in the
Lagrangian formulation.

Substituting concrete Killing vectors from (1.1.72) into (3.3.30) one obtains a dens-
ity for calculating the corresponding conserved integral. Thus, for the timelike Killing
vector & = —83 one gets

PRGERETREV Y
[l DA A (0 G

which is exactly the Hamiltonian in the action (3.3.21). By the constraints (3.3.24) and
(3.3.25), only the divergence in (3.3.32) can contribute to (3.3.30). It is decomposed into
a pure gravitational and matter parts, thus, Z' = $2' + "%, Using the asymptotic
behaviour (3.3.13) one finds for the matter part,

mgl -0 (r’zfa) +0" (r’37“) , a>0, (3.3.33)

from where it follows that ai('"gi) does not contribute to (3.3.31). The gravitational
part,

=LA (g - 1)+ (4 -

161
aq ik ik
e )] +2%; (44" -dq") , (3.3.34)

requires more scrutiny. Taking into account (3.3.26) and (3.3.27), one finds that (3.3.31)
gives the total energy:

E= 20 - L Px 7O = _%1 Cﬁm ds; (=) g7 ;. (3.3.35)

Restoring “1/1671” ahead of the ADM energy integral (3.1.145), recalling the definitions
(3.3.15) and (3.3.18) for ¢” and providing a careful comparison with the use of relations

like g i = —gmigmjgij k> one finds that the ADM energy integral E in (3.1.145) and the
field-theoretical energy integral E in (3.3.35) coincide.

Now, we describe Hamiltonian 3-dimensional momentum and angular
momentum. After excluding & = & and & = §jom) from (1.1.72) the rest of the
Killing vectors are denoted as

& =80 & - (3.3.36)

We do not consider the integral of the center of mass here because nuances appear
(they are discussed at the end of the previous section), and the analysis becomes very
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cumbersome. The reader can refer to the paper [32] for a more detail. Substituting
(3.3.36) into (3.3.30) one obtains the density corresponding to its own Killing vector:

I2q, 75 ¢ mp; &) = —%Eg;qij - ”Aff;gsbA
= [ %qij,k -2 (%qij)’k +2 (L%?kqij)’j + ”A¢A,k + (”A ¢A|;)’i] "
" [Z%qii k2 g — ¢A|ik¢";i] - (3337)
Now let us turn to the asymptotic behaviour of the matter Lagrangian (3.3.13) and find
Tp qu{; =0 (r_z_“) +0" (r_3_"‘) , a>0
md? =0 (r’3’“) +0° (r’l"“) . (3.3.38)

Keeping this in mind and taking into account the constraint (3.3.25), one finds that
second line in (3.3.37) does not contribute to integral (3.3.31). Now, one can assign
a role to the behaviour (3.3.13). It is also quite important for deriving well-defined
conserved integrals themselves in the Hamiltonian formulations.

Finally, substituting (3.3.37) into (3.3.31), one obtains for the total Hamiltonian
3-dimensional momentum and angular momentum:

s <JS ds;P'*, (33.39)
o
im _ 1 Cﬁm ds; (X"P" - xX"P"™), (3.3.40)
where
Pl =2(8.44" - ") . (3.3.41)

Restoring “1/167” ahead of 7Y in (3.1.50), recalling the definition (3.3.19) for .# 7, one
can easily recognize that integrals (3.3.39) and (3.3.40) coincide with the correspond-
ing ADM integrals (3.1.151) and (3.1.152)? derived in Section 3.1.

Here, we use the Faddeev [160] “geometrical” phase derivatives ¢7 and ;. Nev-
ertheless, there is a principal difference between the status of g and ; in various
derivations, like geometrical and field-theoretical ones. In the first case, they are the
metric on spacelike sections and the corresponding external curvature tensor. In the

2 Notice that, in fact, there exists a difference in the coefficient “1/2” (3.3.40) and (3.1.152). It is a
question of a convention, namely, the coefficient “1/2” is an external one in (3.1.156), whereas it is
included in (3.3.40) with the rotational Killing vector. Therefore, in our opinion, the choice (3.3.40) is
more acceptable.
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second case, ¢/ and J;, are fields propagating in space of flat hypersurfaces X as in
an arbitrary field theory.

Now, let us compare explicitly the global conserved quantities obtained in the
Hamiltonian formulation (3.3.35), (3.3.39) and (3.3.40) with the corresponding Lag-
rangian global integrals (3.2.24) and (3.2.25). For the sake of convenience, at the
moment we rewrite the latter in the form:

1 .
70 - E(]g ds;P", (3.3.42)
1 k)i
2% _ (J; ds:P" , 34
S 7 T6m b G343
1 .
i 321 CJSOO ds;pm™mi, (3.3.44)

Comparing the integrand in (3.3.35), (3.3.39) and (3.3.40) with those in (3.3.42), (3.3.43)
and (3.3.44) one finds, respectively,

—q" =PV 0 (rF) 40" (r0), (3.345)
16mPy = P9+ 2 (5 hp)
£ () 4 07 (), (3346)

32axmyritpt, = plmnli, 5 (xmn"[ihg - x"nm[ihg)’j
+0 (re?)+ 0t (r¥). (3.3.47)

By the asymptotic behaviour in (3.3.45-3.3.47), and, using the Stokes theorem, one
is convinced that, indeed, the Hamiltonian integrals (3.3.35), (3.3.39) and (3.3.40) are
equal to the Lagrangian integrals (3.3.42), (3.3.43) and (3.3.44), respectively.

3.3.4 Gauge invariance of global integrals

To obtain gauge transformations for the phase space variables we use the gauge
transformations of the field variables in the Lagrangian description. At first, using
projections, like (3.3.14) and redefinitions (3.3.15) and (3.3.16), we transform the 4-
dimensional components linear in ¢&* and quadratic in £* and b* in (3.2.42) and
(3.2.43) into 3-dimensional components on X:

q7=q"+ 6$q’7 =g+ Eikqi" +&6,q47 + 28, (qkqii - qk(iqj)) . (3.3.48)

Here, &2 = {&, .{k} are gauge functions; §, is the Lie derivative along the unique nor-
mal to flat sections X [315], see (3.1.32). After the standard variation of the Hamiltonian
action (3.3.21) with respect to ; one obtains the Hamiltonian equations,
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.47 =52 (@ - DS g ). 6349)

5,

After substituting (3.3.49) into (3.3.48) one obtains a more compact expression:
8vq” =321 (V=) g (659" - g Y + Epd” (3:3.50)
where redefined gauge functions Y? are expressed as
Yr=(1-gY)t, Y=-g&t+d (3.3.51)
with the asymptotic behaviour
Y =0 ("9 + 00", (3:3.52)
which follows from (3.2.44) and (3.3.26) with (3.2.53).

It is easy to show that (3.2.49) interpreted as gauge transformations can be
obtained in the standard way, see [140], with the use of the Poisson brackets:

sy’ = {q’, 2 (V)} (33.53)

with the Hamiltonian generator of gauge transformations,
FAVIE GF AN 7t (33.54)
Analogous to (3.3.53), one obtains gauge transformations for the conjugated momenta:

8y Ay = { A, AN}

—13 m
S ]YL

-1 K , ,
= [BZH(\/—_U) q (%%I‘Jifik%)+ tonr T Togi

(v ~1/a n 14
—g—ﬂ(detqkl) {ai,.[Y (detqkl) ]

-0, [V* (det )" | "} + £, (3.3.55)

where 13“”'1-]- are the 3-dimensional Christoffel symbols constructed with the use of the
3.. .
3-dimensional metric 87 = q¢”/(-g).
Taking into account the asymptotic (3.3.26) and (3.3.27) for phase space variables,
and (3.3.52) for gauge functions, one finds the asymptotic behaviour for various terms
in (3.3.50) and (3.3.55) in a symbolic form:



3.3 Anisolated system in the Hamiltonian description = 187

HaqYt =0 (ref)+ 0" (r¥),
pq =2(Y 'Y )+ 07 (%) 07 (r)
gAY =0 (rF)+ 0" (),
RY = 07 (%) 4 07 (),
AR (fzﬂ) L0 (o)
(detg) ™[] = - ¥+ 07 () 0" (1),
£xK =0 (r*“f) +0" (r 0. (3.3.56)
Summing (3.3.56) in (3.3.50) and (3.3.55), one has
8yq’ = 2[Y -, | + 07 () + 07 (), (3.3.57)

Sy Ay = —TY 40 ()0 (). (3.3.58)

Now, substituting (3.3.57) and (3.3.58) into the expressions (3.3.35), (3.3.39) and
(3.3.40), one obtains the gauge variations of energy, momentum and angular
momentum defined in the Hamiltonian description:

8y 7 = igg s (Y0 0 ()], (33.59)
sy 2® = — 38 ds; [ N [’n’]" o (r' 28)] : (3.3.60)
6Y 9([”1"]) _# s; Yy L ln}]n nYL,[inj]m + rlm[irli]nYL)’j
(o)
6

+0” (r' ). (33.61)

Due to the Stokes theorem and the restrictions (3.2.53) for € and 6 one finds that all the
integrals (3.3.59-3.3.61) are equal to zero, thus the Hamiltonian energy, momentum
and angular momentum in the field theoretical description are gauge invariant with
respect to the variations (3.3.57) and (3.3.58).

In conclusion, let us discuss the problem of a super-translation invariance.
Repeating the York arguments [467], we consider the Regge-Teitelboim variables
(geometrical formulation) redefined in the form, g,],n —qY, Hijs

4 =-n"+0" (r’l) +0° (r’z) , (3.3.62)
Hy=0 (r?)+0" (). (33.63)
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Terms of the order O* (r"l) in (3.3.62) contribute to the Hamiltonian integral (3.3.35),
29 Terms of the order O~ (r?) and 0" (r) in (3.3.63) contribute to (3.3.39) and

(3.341), 2® ang 2UmD respectively. Namely, the part O*(r~>) contributes to an
angular momentum.

Generators of the gauge transformations in [467] have the same form (3.3.54), but
with the asymptotic behaviour

Y =00),Y*; =007, (3.3.64)

instead of (3.3.52). Then, for (3.3.62-3.3.64) one has

6Yqij _ {qij’ ff(Y)} _ 2(Y(i,j) _ ’Tink,k) +0 (r—Z) ) (3.3.65)
byt = {4y AW} ==Y +0(7) (3.3.66)

The first terms in (3.3.65) and (3.3.66) do not contribute to the global integrals by the
Stokes theorem, the terms of the order O(r™?) in (3.3.65) do not contribute either.
However, the terms of the order O(r) change the integrals 2 Eor a real isol-
ated system this is not permissible. Sometimes this problem is called the problem of
super-translations at spatial infinity [467]. What is suggested by the field-theoretical
approach? After deriving the weakest fall-off we have stated the fall-off for the gauge
functions as in (3.3.52) instead of (3.3.64). Thus, all the integrals (3.3.59-3.3.61), includ-
ing angular momentum, are gauge invariant. Thus, the problem of super-translations
invariance does not appear at all in the field-theoretical formulation. More formally, it
is because in (3.2.53) and (3.3.52) 6 > O.

The problem of super-translations invariance of angular momentum at null infin-
ity for a radiating isolated system described by Bondi, Metzner and Sachs (BMS)
[59, 61] is significantly more complicated. Many attempts have been provided to
resolve it. An interesting one has been suggested by Helfer [229, 230]. It is certainly
true that any physically reasonable definition of angular momentum in this case must
be BMS covariant — that is, be natural as far as the asymptotic structure is concerned.
But this is not the same as saying the physically preferred angular momenta must be
conjugate to BMS generators (as they would be in the case of Noether’s construction).
For our well knowledge, the Helfer approach to angular momentum is the one of more
fruitful methods which seems to be satisfactory and to resolve these difficulties. It does
require twistor theory.



4 Exact solutions of general relativity
in the field-theoretical formalism

It is important to describe exact solutions in general relativity in terms of the field-
theoretical formalism. First, this has advantages in constructing conserved quantities.
Second, this gives a physical understanding of the features of this approach, such as
the non-observability of a background spacetime or the non-invariance of trajector-
ies of test particles with respect to the background. Third, this presents a physically
reasonable interpretation of properties (sometimes exotic) of exact solutions. Fourth,
describing concrete models, one illustrates the power of the field-theoretical approach
in mathematical treatment of various problems of theoretical physics.

One of the most famous and physically relevant solutions in gravity is the Schwar-
zschild solution. In Section 4.1, it is considered in great detail, including various
interesting and unexpected properties of the corresponding field-theoretical config-
uration and possibilities for constructing conserved quantities. In Section 4.2, in
the framework of the field-theoretical formalism, we examine the closed Friedmann
model and calculate the energy characteristics for the Schwarzschild-AdS black hole.

In the present chapter, it is more useful and pedagogical to retain the constants ¢
and G explicitly in all equations which we shall do.

4.1 The Schwarzschild solution

Here, we concentrate on the spherically symmetric, exact solution of general relativity,
which is the Schwarzschild black hole. We emphasize, first of all, that it is the simplest
yet most relevant solution in general relativity, and its properties (in the framework of
the geometrical description) are well known. Second, it represents asymptotically flat
spacetimes, a feature which is especially important. Third, it is surprising, but even a
non-trivial intrinsic structure of the Schwarzschild black hole can be described in the
framework of the field-theoretical approach.

4.1.1 The total energy

Classical black hole solutions in general relativity (without a cosmological constant)
represent asymptotically flat spacetimes. Therefore, it is instructive to illustrate the
results of the previous chapter with regard to the computation of global conserved
quantities on example of these solutions. In the present subsection, we calculate the
total energy of the Schwarzschild black hole.

Being asymptotically flat spacetimes, the black hole solutions asymptotically (at
infinity) admit a flat metric. Therefore, we choose the flat metric as a background met-
ric which matches the full metric in the asymptotic regime. In spherical coordinates,
the metric is

DOI 10.1515/9783110351781-004
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ds® = ~c*dt’ + dr* + 1* (d6” + sin” d¢? ), (4.11)

where notations for the coordinates are: x° = ct, x! =r, x> = @ and x° = ¢. Besides,
we recall that the background metric of the Minkowski space in curved coordinates is
denoted as g, = y,,- Non-zero components of the Christoffel symbols corresponding
to the metric (4.1.1) are

: 1
Clzz = -, C133 = —rsin® 6, C212 = C313 =
C233 = —sinfcos 6, C323 = cot 0. (4.1.2)

We consider the Schwarzschild solution in two different forms. First, we use the line
element (1.5.34):

T

ds® = - (1 - —g) cAde + ;drz e (d62 +sin’ 0d¢2) , (4.1.3)
r 1- (rg/r)

where rg = 2mG/c?. This is the form of the metric in the usual Schwarzschild coordin-

ates. Second, we represent the Schwarzschild solution in the so-called isotropic

coordinates [285]:

2
ds* = —%czdtz o (1+ %)4 [dr + (6 + sin? 6d¢?)] (4.1.4)
1+ rg/4r

€69

Of course, the coordinate “r” here is not the same as the coordinate “r” in (4.1.3). This
is because one and the same background metric in the form (4.1.1) is used to derive
the field configuration in both the field cases. Now, let us derive the field configura-
tions corresponding to geometrical solutions (4.1.3) and (4.1.4), respectively. We use
the decomposition (2.2.7) adapted to these solutions:

g’wzgyv+hyv=\/—_y(yw+hw) (4.1.5)

where /=y = 1% sin 0. Then, the field configuration for the solution (4.1.3) takes on the
form:
r

oo_ Tg 1 u__"s
h" = ey h o (4.1.6)

whereas for the solution (4.1.4), the field configuration is

T,

e 2
5) . 4.1.7)

(1 - rg/4r) ’

Recall that the metric elements (4.1.3) and (4.1.4) represent the same physical solu-
tion which is written down in two different coordinates. Thus, the field configurations
(4.1.6) and (4.1.7) have to be connected by the gauge transformations (2.2.68). Symbol-
ically this situation is illustrated in Figure 2.1.

7
W _ 1 (1+ rg/4r) W 2B _(
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To show explicitly that the field configurations represent the asymptotically flat
spacetime, one has to use the Cartesian coordinates instead of the spherical ones. In
the Cartesian coordinates the decomposition of the metric (4.1.5) reads

g = -1 (r[“v + hyv) . (4.1.8)

Equations (4.1.6) and (4.1.7) are replaced in the Cartesian coordinates with

oo_ T 1 ik _ _r_g)ka
R = r 1-(rg/r)’ = r rr’ (4.09)
and
7 2
o0 _ 1 (1+1/4r) Bk _ _gik (’_g> (4.1.10)
(1-rgfar)’ 4r) -

where x' = x, x* = y and x> = z. Both of the field configurations, indeed, satisfy the
condition (3.2.2) defining the asymptotically flat spacetime.

One can see that the asymptotic behavior of the field variables (4.1.10) and (4.1.9)
satisfies the restrictions (3.2.53) and (3.2.54). Thus, both configurations have to give the
same unique values for global conserved quantities. By a symmetry of the solution, it
is evident that only the total energy can be non-zero among all of the ten global con-
served quantities. To calculate the energy it is more convenient to use the general for-
mula (3.2.27) derived for curved coordinates in a flat spacetime. Adapted to the spher-
ical coordinates with the corresponding Killing vector, {,? = —68, the total energy is

1 . N
70 - o 35 d6dgy = (o' + 831") &2 (4.111)
o ;
Simple calculations for both cases (4.1.6) and (4.1.7) give
E=29 =mc? (4.1.12)

that is quite a natural result for the total energy of the black hole.

4.1.2 The energy distribution for the Schwarzschild black hole

Problems in the interpretation of the Schwarzschild solution

The Schwarzschild solution, being a far non-trivial solution, has the well known prob-
lems with regard to its interpretation in the geometric language. These difficulties have
been outlined by Narlikar [331]. Here, we follow his presentation and show how such
problems can be resolved in framework of the field-theoretical formalism.



192 — 4 Exact solutions of general relativity in the field-theoretical formalism

Let us derive the spherically symmetric line element for a static system consisting
of matter and gravitational field in the most general form:

ds? = —e'c?dt? + e'dr® + r}(d6” + sin’6dg?), (4.1.13)

where v = v(r) and A = A(r). The Einstein equations (1.3.23) for metric (4.1.13) read

KT? = e (:_2 - "7’) _ rlz (4.1.14)
KT =e? (rlz + V7,> - riZ (4.1.15)
KT = kT = % e <v” + V?Iz + 4 ;A, - %) (4.1.16)
Assuming that matter is confined in a finite volume of space, one finds
vid=0, et=1-¢/rn. (4.1.17)

In order to be consistent with the Newtonian gravity in the field-weak limit at spatial
infinity one chooses the constant of integration C as

(4.1.18)

where m s interpreted as the Newtonian mass measured at infinity. On the other hand,
the same mass appears as the total mass of the Schwarzschild solution (4.1.12). In the
latter case, it has to be interpreted as the mass defined by matter together with grav-
itational field, see the transformation from (3.2.20) to (3.2.27). Thus, in the framework
of the field-theoretical formalism, one illustrates explicitly the contribution of the
self-interaction of gravitational field to the total energy of the spherically-symmetric
system in general relativity.

Let us desribe the first problem discussed in [331] related to interpretation of
the defect mass on an example of spherically-symmetric system in general relativity.
Following the book [285], rewrite equation (4.1.14) in the form':

- % [r(1-e™)] = w1y = ~8nGrp, (4.119)

where p = p(r) is the mass density of a spherically symmetrical body with the radius,
r = 15, of its surface boundary. Let us integrate (4.1.19)

rs
m = m(rg) = 4n Jo rzp(r)dr. (4.1.20)

This apparently innocent definition of the gravitational mass is not so natural as it
looks. In fact, it is the result of a formal integration only. Note that for the line element

1 Signs in (4.1.19) correspond to signature in (4.1.13) for which TO0 <0.
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(4.1.13) the physical volume element on a spacelike hypersurface X’ = const is not
4r*dr but 4rr’e?dr. Work [285] explains this fact as a gravitational defect of mass
but without providing more detailed discussion. The other work [315] is trying to make
the definition (4.1.20) look more natural by splitting it in a linear combination of three
pieces

rs Ts
m= 4m J rzeA/szdr + 41 J rze"/z(p — py)dr
0 0

+ 45 Jrs rze}l/zp(e"’v2 -1dr=my + 22 + % (4.1.21)
0 C C
Here, my is the nucleonic mass of the body made of the rest mass density py of all
of the N particles. The quantity U is the intrinsic energy accounting for the dens-
ity difference p — py, while Q is the gravitational potential energy. In the weak field
approximation one has

Q=-4m1 L:S rzp Grr;(r) dr (4.1.22)

which is in agreement with the definition of the Newtonian potential energy. However,
the modified formula (4.1.21) has also a problem: Bondi [60] noted that the term my is
not relativistically invariant. Also, both in (4.1.20) and in (4.1.21), the integration is nat-
urally performed only over the matter distribution up to r = r,. It makes an impression
that the total mass m is defined only by the contribution of matter and gravitational
field inside the volume of the body limited by its radius. However, the total m in (4.1.18)
has been defined by an observer at a very large (asymptotically-infinite) distance from
the system, so that one can wonder what happens with the contribution of the gravit-
ational field to the total mass from the exterior domain located outside of the body’s
volume.

The second problem considered by Narlikar [331] is related to the concept of the
point mass in general relativity. This problem also exists in the Newtonian gravity but
it is resolved in a simple way by assuming that the mass distribution has the form
p(r) = mé(r) where §-function satisfies the ordinary Poisson equation

2y (& 241
v (r)_< s dr) = ~4mo(0) (41.23)

Then, both for a regular distribution p(r) and for a point mass p(r) = mé(r), the total
mass of the gravitating system is calculated with the use of the same integral:

m= J dx3p(r). (4.1.24)
b

Thus, the massive point particle located at the origin, r = 0, is included into con-
sideration in the Newtonian gravity by making use of the mathematical apparatus of
distributions (generalized functions).

If one tries to use the Schwarzschild solution in order to describe a point mass
in general relativity a conceptual difficulty arises. If we try to employ the Newtonian
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concept of the point mass and assume that the gravitational potential defined by
(4.1.17) and (4.1.18) holds formally in the whole empty spacetime, including the world-
line r = 0, the matter distribution (due to the Einstein equations (4.1.14-4.1.16)) must
have the energy-momentum tensor in the following form:

2
TO=T!=0, T)=T]- —% 8(r). (4.1.25)

It is quite easy to check by a direct inspection that it is impossible to obtain the cor-
rect total mass for this distribution by performing the ordinary volume integration, as
in (4.1.24) because the time-time component of the energy-momentum tensor, which
characterizes the mass density distribution, is equal to zero. The situation cannot
be saved even if one remembers that the time coordinate and the radial coordinate
exchange roles inside the event horizon.

In spite of the above difficulties, modeling of a true singularity in general relativ-
ity by a é6-function looks plausible, see, for example, [86, 198, 298]. Below we show
how to circumvent the above problems using the field-theoretical formalism. To this
end, we again resort to the measurements made by the infinitely distant observer,
where the spacetime is asymptotically flat. It is surprising, but in this case a black
hole geometry can be interpreted as the usual field configuration defined at the event
horizon or behind it down to the true physical singularity at r = 0. Then, both of the
above-mentioned problematic issues are resolved by defining the total mass of the
field configuration as the integral (3.2.20):

20 _ L Pyt = L Pyt (4.1.26)

performed over the whole Minkowski space including r = 0 with the energy dens-
ity (energy distribution) ), defined in Chapter 3. Notice that the volume element
of integration in (4.1.26) is d3xﬁ that is a real geometric volume element in the
Minkowski space. The massive point particle case is included to the integral (4.1.26), if
the §-function representing the singularity is included into tgg in a mathematically
self-consistent way which we shall explain below in more detail. Thus, (4.1.26), in
fact, generalizes the Newtonian formula (4.1.24). In what follows, we elaborate on this

prescription in detail.

Regular spherically symmetrical static body

The Schwarzschild solution can be obtained in two ways: either as an external field
of a spherically symmetrical static body or as a gravitational field in empty spacetime
representing a black hole. In the present discussion, we rely upon the first interpret-
ation. Proceeding in this way, we do not consider the interior solution for A and v in
(4.1.13) explicitly, but we assume that the body has a physically-admissible equation of
state. Then, the functions A and v can be thought as smooth and physically-admissible.
As a result, we conclude that the volume integration,

Ts
E° = L xS, (41.27)
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is well-defined. This is enough to achieve our goal, so that, we do not provide the
integration (4.1.27) explicitly. Instead of that, to obtain the energy ES in the domain
enclosed by the surface, r = r;, we will use the surface integral (4.1.11) at r = ;. In
order such an integration to be well-defined one has to make a natural assumption
that the values of the components h* inside the surface are matched smoothly with
the values of H*" outside the surface of the body. As a result, one has

r, (2rg—r
E° = mc [1 g(;g’) + 1] . (4.1.28)
(rs—15)
To calculate the distribution of the total energy outside the body, we use the explicit

expression for the component tgg. We assume that the field equations (2.2.105) hold,

and we use the left hand side of them given by (2.2.27), or in the Lorentzian coordinates
by (3.2.22),

a

(4.1.29)

(oL g8 pm _ %GL L R oy S

w = v Ty w = %

Substituting here, for example, the configuration (4.1.6) that is defined outside 5, one
has

(P - S — 4.1.30
tot 00 xr* (1 ,Tg)3 ( )
Then, using (4.1.26), one obtains
) 2 r, (2re—r,
E - J Pyt = - T g(;i) (4.131)
s 2 (151

Summing up (4.1.28) and (4.1.31), one gets E° + E°% = mc? which is in a perfect
agreement with the previous result (4.1.12).

Interpretation of the above results is as follows.

First, the energy of the gravitational field outside the body (4.1.31) is negative.
This coincides with the classical results on the value of the binding energy of gravita-
tional field which is always negative. Indeed, in order to break apart a binary system
comprised of two massive stars, one has to inject into the system an additional pos-
itive energy. Therefore, the gravitational binding energy has to be negative. Another
argument in support of the negative value of the energy of gravitational field [285] is
that the total energy of the closed Friedmann universe is equal to zero. This means
that the positive energy of the matter sources is compensated exactly by the negative
energy of the gravitational field. These considerations are in a total agreement with the
observation that the potential energy of the gravitational field in (4.1.22) is negative.

Second, we note that the total energy within the body (4.1.28) exceeds the value
of mc?. This result seems to be in conflict with the negative value of the potential
energy of gravitational field which is expected to be subtracted from the positive
value of the total mass inside the body, thus, making the total mass of matter and
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gravitational field less than mc?. The “paradox” is solved by noticing that in (4.1.28)
we consider the energy of the body without the energy of the external gravitational
field. Looking more carefully at this situation one can understand better how the
gravitational defect of mass emerges in our calculations in the following way. Let
the body of the total mass m consist of two pieces which are bound together by
gravitational forces. In order to completely separate the two pieces from each other
and to put them to infinity we have to inject some positive energy. Then, the total
mass of the separated pieces of the body measured at spatial infinity by an observer
must exceed the mass of the initial configuration. We conclude that a sum of the total
energies of these pieces (together with the energies of their own gravitational fields) is
more than mc?. So, the total mass of a self-gravitating system measured by a distant
observer is less than the sum of the masses of its constituent particles which proves
the existence of the gravitational defect of mass.

The Schwarzschild black hole

Let us consider the Schwarzschild black hole represented by the solution (4.1.3) with
the field configuration (4.1.6) in the whole the Minkowski space. One assumes also that
the Einstein equations (2.2.105) hold in all the points in Minkowski space including
r = 0. Then it is necessary to use the techniques of the generalized functions [185, 273].
Calculations by taking into account the special point r = 0 require an specific
approach if one follows to the idea of [185]. The main principle requires a correspond-
ence between the volume integration and the surface integration. For this purpose, it
is important to define V2(1/r**") with integer k > 0. Already for k = 0 we have derived
the well known formula (4.1.23). Using the differentiation rules for the generalized
functions [185], one obtains [363]:

k

1 4m
P = (k+1) [rm - 80

rk+1

\% . (4.1.32)

Many results here are obtained with the use of the formula (4.1.32), although we will
not refer to it below.

Now, with the use of (4.1.29) we calculate the 00-component of the total energy
momentum for the field configuration (4.1.6):

C2 1 T 2 1
glot _ m—&(l’) [1 _ —l - (4.1.33)
072 (1-Cm) | ¥ (1=

which represents the energy distribution and is depicted in Figure 4.1.

It is natural to see that the total energy obtained after substituting (4.1.33) into
(4.1.26) and integrating over the whole space is exactly E = mc?. If one calculates the
energy outside the horizon only, one obtains —co; the energy inside the horizon is
equal to +co. However the infinite contributions near horizon are compensated. One
can find also that the contribution into E from the -function is equal to mc?/2, while
the contribution from the free gravitational field outside r = 0 is also equal to mc?/2.
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Figure 4.1: The plot of the energy density of the
gravitational field of the Schwarzschild solution
in the frame of a distant observer in the
i Minkowski space.

In fact, we extend the concept of the Minkowski space from spatial infinity up to
the horizon r = r,, and even below the horizon including the worldline r = 0, see
Figure 4.1. However, in reality the distant observer cannot see the space within
the horizon. Therefore, it is more pedagogical to consider the situation outside the
horizon only. Naively this picture can be explained as follows. When the test particle
moves closer to horizon then it is more difficult to escape the black hole. From the
point of view of the distant observer this can be interpreted by the way that the
negative density of the gravitational energy (and, consequently, the attraction) is
stronger near the horizon. The infinite negative density for the gravitational energy
exactly at the horizon, t(t)%t = tgo = —00, signals to the observer on impossibility to
escape the black hole at all.

It is interesting to examine the contribution into (4.1.33) from the matter source
(that is “localized” now at r = 0 only) and from the free gravitational field, separately.
The most economical way is as follows. We use the formula (2.2.32) connecting the
matter energy-momentum tensor in the field-theoretical and geometrical formulations
of general relativity. Let us rewrite it for the Minkowski background:

= (8505 — 39uv™) (Tag - 38 TpE™) (4.1.34)
where g,z is defined in (4.1.3). Then, using (4.1.25) in (4.1.34), one obtains

mC2

tm———6()[1—r—g—;] (4.1.35)
00 = 77OV ro1-(g/n ]’ i

that is localized at the point r = 0. Then, subtracting (4.1.35) from the total quantity
(4.1.33), one obtains for the gravitational part:

2 2
L 6(r)r—g 1+ 3 + 2 - ri; (4.1.36)
00 4 r 1- (rg/r) (1 _ (rg/r))z xr (1 _ (rg/r))3

One can see that separately the §-functions in (4.1.35) and (4.1.36) make (—co)-
contribution and (+oo)-contribution, respectively, to the total energy. The infinite
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contributions cancel each other. However, anyway, it is in the spirit of general
relativity that ¢, cannot be considered separately from ¢,.
Let us also derive the other components t}’ﬁ/ and t’ﬂ‘:f; their differences give £, Thus

the other non-zero components for the matter energy-momentum are

m oo
ty = _Y11mT5(") (1— r?g - ﬁ) ,

2 r 1
mo_, MC s 1- 84— 1
AB = TYAB—, (T)<  T1o o )’ (4.1.37)

where A, B = 2, 3, and non-zero components for the total energy-momentum are
mc? 2,
tas = Yap <— 8(r) - K—g> . (4.1.38)

The main assumption made above is that the field-theoretical equations are valid at
all points of the Minkowski space, including r = 0. As is seen, see (4.1.35) and (4.1.36),
the situation is more comprehensive than for the point mass in the Newtonian gravity,
where the §-function enters the matter energy density only. Nevertheless, we can use
the volume integration over the whole Minkowski space (4.1.26). Thus, the problem
of the point mass is indeed resolved with the use of the field-theoretical formulation,
unlike the case in the geometrical formulation.

4.1.3 The Schwarzschild black hole as a point particle

In spite of its advantages, the interpretation of the point mass in the previous sub-
section has some questions. At r = r, both the gravitational potentials and the energy
density have discontinuities. This highlights the fact that in the standard formulation
of general relativity, one has a coordinate singularity at r = r, in the Schwarzschild
coordinates. It is not a real singularity in the field-theoretical formulation either,
where this break-down is interpreted as a “bad” fixing of gauge freedom which needs
to be improved. In other words, the break-down at r = I has to be countered with
the use of an appropriate choice of a flat background, which is determined by related
coordinates for the Schwarzschild solution. The present subsection is devoted to this
problem.

The use of the coordinates without singularities at the horizon, like Novikov’s,
Kruskal-Szekeres’s, etc., coordinates [285, 315], could resolve the problem locally in
the neighborhood of r = r,. Together with this, we restrict ourself by the following.
First, we represent a point particle at rest in the whole Minkowski space. Therefore it
has to be natural to describe the true singularity by the world line r = 0. Second, the
Schwarzschild solution in appropriate coordinates has to be asymptotically flat. Third,
we require a fulfillment of a so-called “n-causality” — property, when the physical
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light cone is inside the flat light cone at all the points of the Minkowski space. It
is necessary to avoid interpretation difficulties under the field-theoretical presenta-
tion of general relativity. By this requirement, all the causally connected events in
the physical (dynamical) spacetime are described by the right causal structure of the
Minkowski space. The related position of the light cones is not gauge invariant. Prop-
erties of the n-causality and gauge transformations conserving it were studied in detail
by Pitts and Schieve [376].

We consider the third requirement only for convenience in applications and inter-
pretation for the field configuration. To avoid ambiguities we stress again that, unlike
Pitts and Schieve who give a real physical sense to the background, we use it as an
auxiliary construction. Thus, we agree with the assertion by Grishchuk [202, 203] that,
changing the mutual disposition of the light cones, one cannot change the physical
properties of the solution. The requirement of the n-causality can be strengthened
by the requirement of the so-called “stable n-causality” [374—376]. The latter means
that the physical light cone has to be strictly inside the flat light cone. This could be
important, when quantization problems are under consideration. Indeed, in the case
of tangency, a field is on the verge of n-causality violation [376]. Returning to the rep-
resentation in the Schwarzschild coordinates in the previous subsection, we note that
it does not satisfy the third requirement.

More appropriate coordinates, satisfying the above requirements, are, first, the
stationary (not static) coordinates presented in [358], and recently improved in [374—
376]; second, contracting Eddington-Finkelstein coordinates in a stationary form [315].
These coordinate systems can be generalized to a parameterized family, where all the
systems satisfy all the above requirements as well.

Except for a pure theoretical interest, the models of black holes in the form of
point particles could be also interesting and useful for experimental gravity problems.
Recently, gravitational wave detectors of the LIGO type have discovered gravitational
waves from coalescing binary systems comprising of compact relativistic objects.
Therefore it is necessary to derive equations of motion of such components, e. g.,
two black holes. As a rule, at an initial step the black holes are modeled by point-like
particles represented by Dirac §-functions. Then consequent post-Newtonian approx-
imations are used, see the works with excellent mathematical rigor [116, 404] and
references therein. However this approach meets difficulties related to the non-linear
nature of the Einstein equations. Different regularization methods have been sugges-
ted to bypass them. However, in spite of a significant progress, so far the problem of
motion of the black holes in general relativity has many open questions [116, 404]. The
way of definition of a point-like source in general relativity in the present subsection is
different. Not making initial assumptions on its structure, one uses the Schwarzschild
solution itself from the start. The resulting field configuration, including a descrip-
tion of the true singularity in the form of a point-like particle, is easy for applications.
This allows to reproduce the Schwarzschild solution without approximations, with a
correctly-defined position of the horizon, etc.
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A point particle with an external distribution of energy
Thus, let us turn to the standard Schwarzschild line element (4.1.3). Following [358]
and [374] - [376], we only change the time coordinate

r
ct—ct-rg In ‘1 - 7gl s (4.1.39)

whereas the other coordinates {r, 8, ¢} are not changed. As a result one has

2 2
r r r r
ds* = - (1- 2 )2dl +2 L cdtar+(1+ 2 )1+ 2 |ar
r r2 r r2

+ 1 (d6? + sin’ 6d¢p?). (4.1.40)

The important properties of this solution are that a falling test particle approaches the
horizonr = re in finite coordinate time ¢, below the horizon, it is always falling towards
the singularity, it gets arbitrarily close to it, but only hits it at t = co.

Using the decomposition (4.1.5) for the solution (4.1.40) one obtains the corres-
ponding field configuration:

2 3 )’2
T, T T r
h°°=—<7g+r—§+r—§>, h = r—i n =—7g. (4.1.41)

Calculating t‘ﬂovt for the configuration (4.1.41), we use again the expression (4.1.29). The
non-zero components are

T 2 r T
_g)5(r _ﬂ_g<1+3_g>,
r r

9
£ = mc?6(r) + me? £ <1+
00 @ r 41 14

N W

£ = —mc?6(x),

tot
Y;

—%yAB mc8(x). (4.1.42)

One can calculate the components t;'}, of the matter energy-momentum using the for-

mula (4.1.34) once again. One has to use Taﬁ defined in (4.1.25) this time as well,
because the transformation (4.1.39) has been applied. Besides, in (4.1.34), one has to
use g, defined in (4.1.40). As a result, one obtains that tl'ﬁ/ is concentrated atr = 0
by the delta-function. However, the spirit of general relativity that tL’f/ cannot be con-
sidered separately from tﬁv therefore we do not derive components of t}'ﬁ, here. It is
important to note that outside r = 0 the gravitational energy-momentum t)gw coincides
with the total energy-momentum.

Let us discuss the properties of the field-theoretical representation of the solu-
tion (4.1.40). First, as usual, in the Minkowski space, the energy density distribution is
described by the 00-component of the energy-momentum tensor, see Figure 4.2. Then,
the total energy of the system is calculated by a substitution of t3 from (4.1.42) into
(4.1.26). Again, one obtains E = mc?! This is defined only by the first term mc? §(r) in

t. The other contributions into E from the §-functions in ¢ are infinite, but they



4.1 The Schwarzschild solution =—— 201

tot
00 A

\ A

Figure 4.2: The plot of the energy density of the
gravitational field of the Schwarzschild solution
generated by a point source with an external
distribution of energy in the Minkowski space.

are compensated by the energy distribution without the §-functions. The other com-
ponents 5" and ¢4} in (4.1.42) formally could be interpreted as related to the “inner”
properties of the point. Indeed, they are proportional to 6(r) only and, thus, describe
the “intrinsic radial” and “intrinsic tangent” stresses.

Second, after the transformation from the spherical coordinates to the Cartesian
coordinates, one can see that the configuration (4.1.41) is asymptotically flat with the
1/r-like fall-off at spatial infinity. Therefore the result E = mc? is not surprising.

Third, the metric (4.1.40) with the background metric (4.1.1) satisfies the require-
ment of the stable n-causality at all points of the Minkowski space down to the true
singularity at r = 0. Thus, all the requirements are satisfied.

At least, the picture derived above resolves the problem of the break-down at the
horizon. The field configuration (4.1.41) is continuous at all points of the Minkowski
space except at the true singularity r = 0, which is natural. A falling test particle
approaches and intersects the horizon r = r, in a finite Minkowski time ¢. The
components {5 and £, have no breakdowns outside r = 0, and all the other energy-
momentum components in (4.1.42) are defined only by the §-function. Besides, as
in Newtonian gravity, the problem of point mass is resolved simply. The energy-
momentum tensor (4.1.42) contain §-functions at r = 0, and, like in the Newtonian
case, the volume integration over the whole space gives a satisfactory total energy.

However, the energy distribution in the Newtonian case (4.1.22) is represented by
the 6-function only, whereas in (4.1.42) there is an external energy distribution, see
Figure 4.2. The question arises; is there a possibility to represent the energy distribu-
tion for the Schwarzschild solution with the use of the §-function only? We answer this
question in the next subsection.

A point particle without an external distribution of energy

Let us examine the contracting Eddington-Finkelstein metric for the Schwarzschild
geometry [315]. But, we make a transformation from the null coordinate V to the time
coordinate t: ct = cV — r, after that one has

ds® = - (1 - r?g> cAdt? +2 r7g cdtdr+ <1+ r?g> ar’ -r (d62 +sin® 9d¢2) . (4.1.43)
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Then the corresponding gravitational field configuration is

T, r, T,
RO -8 por_8 s (4.1.44)
r r r

The properties of the solutions (4.1.40) and (4.1.43) are very close. Both metrics are
stationary and asymptotically flat. In the whole Minkowski space they induce asymp-
totically flat and continuous (except at r = 0) configurations (4.1.41) and (4.1.44).
Falling test particles intersect the horizon r = r, in finite times ¢, but in the case (4.1.43)
test particles reach the true singularity in a finite time ¢. This is the result of the time
transformation for the Schwarzschild time:

ct—»ct—rgln

L 1‘ . (4.1.45)
Te

After making use of the expression (4.1.29) the components of the total energy-
momentum tensor for the configuration (4.1.44) are calculated as

tgg = mc®8(x),
£ = -mc?5(x),

1
£l = ~> VB mc’58(x). (4.1.46)

All these energy-momentum components, unlike (4.1.42), are concentrated only at
r = 0, see for the energy distribution Figure 4.3. The volume integration (4.1.26) of
t%! from (4.1.46) again gives E = mc”. Of course, the surface integration (4.1.11) with
the configuration (4.1.44) gives E = mc? as well. However, this result follows with
an arbitrary radius, ry, of 2-sphere in a surface integration, it is not necessary to set
ro — oo. This is an exact analog for calculating the electric charge in electrodynamics,
or calculating the point mass in Newtonian gravity.

A family of point-like representations
The transformation

rlrg =1

W (4.1.47)

ct—>ct—rgln
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Figure 4.3: The plot of the energy density of the
gravitational field of the Schwarzschild solution
generated by a point source without an external
distribution of energy in the Minkowski space.
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gives a family of metrics parameterized by a € [0, 2], all of which satisfy all our require-
ments set in the beginning of the subsection. The cases @ = 0 and a = 1 correspond to
(4.1.43) and (4.1.40), respectively. However, the requirement of the stable n-causality
is not satisfied with « = 0 at 0 < r < oo. Properties of the field configurations
corresponding to a € (0, 2] qualitatively are the same as for a = 1. In terms of the field-
theoretical approach all the field configurations for a € [0, 2] are connected by gauge
transformations and are physically equivalent. Thus, inside this family, the n-causal
description with (4.1.44) can be converted into a stable n-causal description expli-
citly. Note also that the technique of infinitesimal gauge transformations developed in
[374-376] permits to do this conversion approximately without relating to this family.

4.1.4 The Schwarzschild solution and the harmonic gauge fixing

On harmonic coordinates in general relativity

To simplify the Einstein equations, one frequently makes an appropriate choice of
coordinates. Probably, the harmonic coordinates are the most popular ones. The
related bibliography is very wide, therefore it is hard to list the papers here. Fock
[178] developed the applications of these coordinates. For example, he suggested the
harmonic coordinates for the Schwarzschild solution. The other applications of the
harmonic coordinates are as follows. They are used in elaborating theoretical prob-
lems [36, 142, 329, 394], for studying the detailed structure of the gravitational filed
outside of isolated systems [42], for constructing relativistic theory of frames in Solar
system [78, 268].

In the present subsection, new harmonic coordinates for the Schwarzschild
solution are constructed. What is their advantage compared to the Fock harmonic
coordinates [178]? The latter, like the Schwarzschild coordinates, are singular at the
horizon. Many coordinate systems without this defect are known, but they are not
harmonic. The new coordinates that we shall present are both harmonic and regular
at the horizon.

Here, developing applications of the field-theoretical methods, we interpret the
transition from the Fock coordinates to the new harmonic coordinates in terms of
gauge transformations. In both of the gauge fixings, we consider trajectories of test
particles falling into the Schwarzschild black hole. We find that trajectories in the
Minkowski space are gauge dependent, see Section 2.2.7. Because gauge transform-
ations do not change the physical picture, we confirm that the background Minkowski
space is an auxiliary structure. Thus, a break-down in the trajectories at the horizon for
the field configuration in the Fock picture is interpreted as non-physical. Indeed, such
a break-down is canceled for the field configuration corresponding to the new har-
monic coordinates. These problems, of course, are resolved clearly in the framework
of the usual geometrical formalism of general relativity. However, here, we provide the
below exercises to illustrate useful properties of the field-theoretical technique.
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New harmonic coordinates for the Schwarzschild solution
Let us derive the Schwarzschild metric in the Fock coordinates:
-a +a .
ds® = —r—czdt2 + r—drz +(r + )*(d®” + sin® Gd(;bz), (4.1.48)
r+a r-a
where in the Fock notations, a = r,/2. Transferring to the asymptotically Cartesian

coordinates in the standard way, one finds that for the solution (4.1.48) the harmonic
(de Donder) conditions

a9, (v-gg")=0 (4.1.49)

hold.

To simplify the presentation we consider a test particle, falling radially into a
black hole. Besides, we restrict ourselves to the “parabolic orbit” case, when a particle
begins its motion from the rest at the infinity r = co. Then, the equation of motion of a
test particle has the form:

3/2 1/2
ct=-2a z(rHX) +2(r+_a) +ln|£—1‘
3\ 2a 2a o

12
-2In (ﬂ) +1

2

] + const. (4.1.50)

The existence of the term —2aIn [r/a — 1| leads to the situation, when a particle falls to
the event horizon r = a infinitely long in the coordinate time ¢. Radially falling photons
have the same qualitative behaviour.

Let us construct the new harmonic coordinates. The general system of equations
conserving the conditions (4.1.49) is given by Fock [178]. We derive these equations for
the new time, 7, and radial, p, coordinates, saving the spherical symmetry:

, (r+a)P 0

2 9\ 1
- 7' - Zr=0,
(r a)T rUT - - T
2 N n ' (r+a)® 9
- 2rp - 2p - —p =0, 1,51
(r a)p YUP ~2p - P (4.1.51)

here again (') = 9/0r. Requiring that the new metric will not depend on the new time
coordinate 7, one finds that it is only possible if T = A;t+ A, + R(r), p = p(r). Then the
system (4.1.51) admits the solution:

T=At+A,+B, <ln ‘ﬂ’ +Bz>, (4.1.52)
r+a
1 r-a
—Cr+cC (—1 ‘ 1), 4153
P 1 2a n r+a " ( )

where A,, A,, By, B,, C;, C, are constants. Without losing the generality, one sets
A, = B, = 0. The requirement to have the Minkowski metric at r — co after transferring
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to the Cartesian coordinates leads to A; = C; = 1. Because for C, # 0, there is no one-to-
one correspondence between the world points and the points of harmonic coordinates
even outside the horizon, we choose C, = 0. Requiring to have a finite coordinate time,
when a test particle approaches horizon, one sets B; = 2a/c. By this, the aforemen-
tioned logarithmic term in (4.1.50) disappears. Finally the transformations (4.1.52) and
(4.1.53) acquire the form:

r-a
C‘r=ct+2aln|— , r=r, 0=20, =¢. 4.1.54
o ¢-¢ (41.54)

Thus, applying the transformations (4.1.54), one obtains the Schwarzschild solution
in the form:

_ 2
ds’ = ——O(czdr2 +2 (2_a> cdrdr
r+a r+a

2 3
+[1+ 2 +<2a)+<2a)]drz
r+a r+a r+a

+ (r + @)*(d6* + sin 0 d¢p?), (4.1.55)

instead of (4.1.48), in the new harmonic coordinates. Notice that with the use of the

shift r — r — a in the transformation (4.1.54) and the metric (4.1.55), they go to

(4.1.39) and (4.1.40), respectively. One can check that after transferring to asymptot-

ically Cartesian coordinates, the metric (4.1.55) satisfies (4.1.49) as well. At last, the

metric coefficients in (4.1.55) are finite everywhere except of the true singularity r = —a.
The equation of the “parabolic orbit” acquires the form:

2 3/2 12
T = -2 —(ﬂ> +2<r+_a> +ln|1+1|
3\ 2a 2 o

12
-2In (ﬂ) +1
2

] + const, (4.1.56)

where, unlike (4.1.50), there is no divergent logarithmic term. Hence, in the coordin-
ate system (7, r), a falling particle trajectory without break-downs goes through the
Schwarzschild sphere.

Both the form of the metric (4.1.55) and the structure of the light cones

dr|  (r+a)+Qa) dr| _ r+3a

— —_— | = 4.1.57
drl rr—-a? dr |, r+a ( )

C

clearly show the following. In the domain r < a both r and T become spacelike, like
in the Finkelstein coordinates [176]. It is permissible, because the metric signature in
the domain r < a remains correct, as we have seen above. However, when r < a the
description of the particle motion is somewhat unusual: evolution of the spacelike
coordinate r is considered in terms of another spacelike coordinate 7 .
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It follows also from the above that the sections 7 = const are spacelike both out-
side and inside the horizon. If some events belong to the surface T = const, then
in this sense, one can speak about their simultaneity outside the event horizon, on
it and inside it. It may be useful for investigations using (3 + 1)-decomposition, see
Section 3.1.2.

Particle trajectories and gauge transformations

Because gauge transformations act on the gravitational variables (2.2.68) together
with the matter variables (2.2.69), they have to act also on the particle trajectories,
see Section 2.2.7. Thus, trajectories in a fixed background spacetime are not gauge
invariant, see (2.2.143), which in the weak field approximation has been studied first by
Mashhoon and Grishchuk [310]. This part is devoted to this problem related to “para-
bolic orbits” for the Schwarzschild solution in harmonic coordinates: both in (4.1.48)
and in (4.1.55). We consider the exact transformations, without using the &*-vector,
that is after the infinite sum in (2.2.68) and (2.2.69) leading to the closed expressions.
The gauge transformation from a one field configuration to another is described in
Section 2.2.4, illustrated at Figure 2.1 and interpreted by a different choice of the same
background.

From the beginning, we construct the field configurations related to the solutions
(4.1.48) and (4.1.55). For the latter we make a mapping T — t. After that for each of
the solutions we choose the unique background metric in the form (4.1.1). By this, we
exclude from the consideration the domain —a < r < 0. It is permissible here because
we consider the trajectories in the neighborhood of the event horizon only. Thus, using
the decomposition (4.1.5), one finds the field configuration for the solution (4.1.48):

3 2
1
R0 —1- M, W = _0(_, (4.1.58)
1-afr r2

and the field configuration for the solution (4.1.55):

2 2 3
h’00=1—<1+g> [1+ 2a +< 20‘>+< 2“)],
r r+a r+a r+a

2 2
ROl _ 40‘2 . R _a_z ) (4.1.59)
r r

Returning to the Section 2.2.4, we conclude that the above configurations are con-
nected by gauge transformations induced by the coordinate transformations (4.1.54).
Thus, they describe the same physical reality.

Both the configurations (4.1.58) and (4.1.59) have many similar properties. First,
they do not depend on time t. Second, both of them represent asymptotically flat
spacetime. Then, third, it is not surprising that the total energy calculated for both
of the cases is E = mc?. At last, the condition (4.1.49) transforms into

W',=0, and K", =0 (4.1.60)

for both of the configurations.
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Now let us discuss the trajectories of test particles. To obtain them one has to
vary the action (2.2.140) with respect to the coordinates. At the end, one obtains
the equations for 4-velocities u* and u'®, formally they are the equations for the
geodesics. Recall also that we consider only the “parabolic trajectories”. Thus for the
configuration (4.1.58) one has:

r+ 2a \'2
pLoorre u1=—( a) , W =u’=o. (4.1.61)
r—-a r+a

After integration of cdt = (u®/u")dr one obtains the equation (4.1.50). Thus, now the
particle approaches the event horizon, r = a, for infinitely long time ¢t. On the other
hand, for the field configuration (4.1.59) we have

0 1 2a \2 2a 2a \32 2a \?2
T 1 i G B G B Gy I
1+(2_a) r+a r+a \r+a r+a

r+a

2 1/2
u'l = - (—“) . u?=u?-o. (4.1.62)
r+a

Now, integrating cdt = (u'°/u’")dr, one obtains the equation (4.1.56) by replacing
T with t. Unlike (4.1.61), now the particle approaches the event horizon and pene-
trates it at a time t. Thus, by a gauge transformation, trajectories are saved from a
“catastrophic” discontinuity at the event horizon. Or, on the contrary, an initially
continuous trajectory can be “broken” also by a gauge transformation.

4.2 Other exact solutions of general relativity
4.2.1 The Friedmann solution for a closed universe

It looks natural that asymptotically flat solutions, including the Schwarzschild solu-
tion, can be described in terms of field-theoretical formalism. However the formalism
is more powerful. It turns out that even closed Friedmann model can be represented
in a consistent way as a field-theoretical configuration. This is illustrated below.

Let us derive the metric of the closed universe in the isotropic coordinates:

a(t)

ml’lijdxidxj. (4.2.1)

ds® = —c?dt* +

Recall that this solution has been obtained with the use of the so-called stereographic
projection visualized in Figure 4.4. The bottom (“South”) pole of the sphere corres-
ponds to the origin of the coordinate frame chosen arbitrary, whereas the top (“North™)
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flat space

Figure 4.4: A symbolic projection of a
3-sphere onto an Euclidean flat 3-space.

pole is knocked out and identified with the point at spatial infinity in the Minkowski
space covered by the isotropic coordinates.

In order to represent (4.2.1) in the field-theoretical formalism we choose a back-
ground metric as the Minkowski metric in the Lorentzian coordinates, which are
identified with the isotropic coordinates used in (4.2.1). Next, after the decomposition
(4.1.8) one obtains for the solution (4.2.1) the field potentials in the form:

2

3
o1 (@ _ R op2 B e L (4.2.2)
- 1+12/4 ) I 1+1r2/4° -

which are to be interpreted as a tensor field residing in the Minkowski space. Form-
ally, the field (4.2.2) is defined in the infinite volume of the Minkowski space with the
spatial infinity excluded. The fact that the spatial infinity is to be excluded is seen
from the stereographic projection and can be also realized if physically-reasonable
measurements are done as described below.

Let us conduct the following gedanken experiment. Let an observer be placed in
the Minkowski space occupied with the field (4.2.2). The observer will perceive espe-
cially strange metric relationships when approaching to infinity r — oo because the
full metric (4.2.1) degenerates in this limit. Let us introduce the spherical coordinates
(1,0, ¢) and consider a ray traveling in a fixed plane with the angle 6 = 6, = const,
along a circle with a fixed radial distance from the observer, r = ry = const. The reader
should understand that although we consider propagation of light in the Minkowski
space, the trajectory of the light ray is subject to the influence of the field (4.2.2) and,
hence, the motion of the ray is governed by the equation ds = 0 with the interval
ds given in (4.2.1). This is interpretation of the light propagation corresponds to the
field-theoretical approach to gravity theory.
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Figure 4.5: Light rays traveling around a circle in the
Minkowski space occupied by the gravitational field
configuration corresponding to the closed
Friedmann universe.

The light cone condition, ds = 0, derived with (4.2.1) yields a differential equation for
the trajectory of the ray:

dp _ ¢ 1+7p/h

+ , 4.2.3
dt a rysinf, ( )

which corresponds to a uniform motion along the circle. Of course, light rays can-
not propagate around circles in the empty Minkowski space if they are not guided by
an infinite chain of mirrors forming the circle, see Figure 4.5. It is the gravitational
field which plays the role of such mirrors in the field-theoretical interpretation of the
motion of light rays around circles in the closed Friedmann universe. As is seen, after
integrating dt from (4.2.3) for a full circle with ¢ changing from 0 to 27, a time interval
At — 0 when r, — oo. This happens in the neighborhood of a point that corres-
ponds to the North pole, see Figure 4.4. Such behavior of light rays in the Minkowski
space filled up with the gravitational field illustrates an auxiliary character of the
background spacetime in the field-theoretical formulation of general relativity dis-
cussed in Section 2.2.7 in detail. Considering the metric relations established through
physical measurements and employing (4.2.1) the observer will also infer that space is
homogeneous which means that the result of measurements performed by observers
located at different points of the Minkowski space are equivalent despite of the explicit
dependence on the radial coordinate r of the gravitational field potentials (4.2.2).

It is also interesting to construct conserved quantities for the configuration (4.2.2).
To achieve this goal it is more convenient to use formula (4.1.29). It is simple to obtain:

tot _ 36 3-5%4  a 3-r’/4

00 " “sx (1+12/4)5 " i (1+r2/4)" (4.24)

When r is not too large, this quantity will be positive; otherwise, however, it will
become negative, tending to zero as r — oo. At times t when a(t) = 0 the value of
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tgz)t will vanish everywhere. Substituting (4.2.4) into (4.1.26), one obtains for the total
energy:

E=0. (4.2.5)

It is not surprising because the fall-off (4.2.2), ~ 1/r?, significantly stronger than the
permissible fall-off for an isolated gravitating system ~ 1/r. All the other 9 integrals
of motion are equal to zero by the symmetry of the solution. Such zero results, like
(4.2.5), coincide with the accepted formulation of the closed universe [285], only, here
they are represented in the field-theoretical terms.

The configuration that we have described may be treated as a microuniverse with a
Planck-size physical volume. Such a configuration with zero energy, momentum and
angular momentum, is exactly the same as it would be for the Minkowski vacuum
characterized by the total absence of classical fields and particles, bringing us back to
the conjecture of a quantum birth of the universe [201].

The replacement of the topological properties of the manifold (in our case, it is
a 3-sphere) by exterior potentials (fields) is encountered in resolving many problems.
Thus, Rubakov and Shaposhnikov [392] showed that scalar particles, being not too
energetic, could become effectively trapped in a potential wall even in a topologically
trivial universe, although non-trivial classical solutions would have to be present to
play the role of the external field.

4.2.2 The Abbott-Deser superpotential and its generalizations

In the previous applications we considered various physical models in the frame-
work of the field-theoretical approach with using a flat background only. However,
possibilities of the method are clearly wider because arbitrary curved solutions to gen-
eral relativity can be used as background solutions for describing perturbations. The
most popular curved backgrounds in applications are probably the FLRW cosmolo-
gical solution, see the next chapter, and (anti)-de Sitter ((A)dS) spaces. Both of them
are frequently used for describing various kinds of perturbations, see, e. g., [295, 326]
and many references there in. Besides that, the AdS space is probably the most inter-
esting geometry in modern fundamental researches, see, e. g., [412] and references
there in. The last two subsections of this section are devoted to applications of the
field-theoretical methods for describing perturbations in the AdS background.

The AdS and dS solutions have received a lot of attention in the last decades. They
are used in describing both the stage of early universe (so-called inflation scenario,
see [294] and references therein) and the stage of accelerated expansion. Also, the
(A)dS solution is an irreplaceable part of modern theoretical theories and conjectures.
For example (A)dS spaces are known to be dual to conformal field theories in one less
dimension, dubbed as the AdS/CFT conjecture or Maldacena conjecture, see, e. g.,
[26, 257, 307, 464, 465).
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Here, we consider conserved quantities constructed for perturbations on AdS
backgrounds. However, we restrict ourselves to the global conserved quantities con-
structed with the use of surface integrals only. In the present subsection, the main
properties of the AdS solution is outlined, also we construct a family of superpo-
tentials, among of which the famous Abbott-Deser superpotential [1] is presented.
Namely, with the use of these superpotentials, conserved surface integrals are derived.
In Section 4.2.3, we use the constructed superpotentials in order to calculate the total
mass of the Schwarzschild-AdS (S-AdS) black hole. More details on these ideas and
their generalization can be found in the later chapters of this book.

The AdS space is the covering space of the 4-dimensional surface, in a flat 5-
dimensional space with the signature {-, +, +, +, =}, described by the equality (here
we are considering the negative cosmological constant case, not the de Sitter case):

—+4 v o+ -z =1/A=-P (4.2.6)

The symmetries of this space are the ten rotations and boosts of the initial
5-dimensional embedding space. Thus, the 4-dimensional AdS space, like the
Minkowski space, has a maximal set of Killing vectors. We are only interested in
the timelike Killing vector as it is necessary to construct the total mass of the sys-
tem. Such a global timelike Killing vector mixes z, and z,, its components are & 5 =
{~24,0,0,0,z) for which & = —z; 2} < 0. By (4.2.6), & is timelike everywhere exclud-
ing the point z, = z, = 0. Various coordinates can be used on the surface (4.2.6), one
of more popular metrics for the AdS space is

2
ds® = - <1 + ;—2> cAdt? + ﬁdr2 +7 (dGZ +sin? 9d(;b2) . (4.2.7)

For such a representation, the timelike Killing vector has a form:
& ={-1,0 (4.2.8)

All the Killing vectors for the solution (4.2.7) satisfy the standard Killing equation, see
(1.1.70) and (1.2.6):

Vi = O. (4.2.9)

To make our presentation more universal we consider a field-theoretical formalism
for various types of metric perturbations, see (2.2.120) and (2.2.121). Then, the gen-
eral relativity equations in the field-theoretical form are presented in (2.2.130) where
dynamical variables are represented by the generalized form (2.2.129) for perturba-
tions. Let us adopt this derivation for the AdS background with the metric (4.2.7) and
satisfying the background Einstein equations (2.2.107). Let us represent them again,

R,, = Agy,. (4.2.10)
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We rewrite the equations (2.2.130) for the background (4.2.10). For an arbitrary choice
of perturbations the form (2.2.110) is generalized to

Gl (h) + AbS, = ktior. (4.2.11)
Here, hzv is defined in (2.2.129):
Y
by’ = h %ga , (4.2.12)

and the linear operator in (4.2.11) generalizes (2.2.27):

L _1(g 5 U @ S ) S )
Gh (0 = 1 (T,205, + 80 poh P = 9,6 - 7, h7P). (4.2.13)
For the left hand side of (4.2.11) one has the identity that is based on (4.2.10),
analogous to (2.2.111),

V(G (6% + Abf,) = O, (4.2.14)
and, consequently, one has the conservation law analogous to (2.2.112):
=V ot
V', = 0. (4.2.15)

Above, we have shown that in the case of a flat background a desire to construct global
(integral) conserved quantities leads to the possibility to construct surface integrals,
see (3.2.24-3.2.26), or, more generally in covariant form (3.2.27). To derive such integ-
rals it was necessary to assume that the gravitational equations to general relativity in
the field-theoretical form (2.2.105) hold and to contract them with the Killing vectors of
the Minkowski space. It turns out that an analogous procedure takes place in the case
of the AdS background (4.2.7) satisfying (4.2.10). Below, developing the Abbott-Deser
approach [1], we reproduce this program.

Let us contract the equations (4.2.11) with one of Killing vectors, 3,’ V. of AdS
background. Then, using (4.2.9) and (4.2.10), one obtains

totov*

(G + )= 5, (BP0 - PP, 0T, il 0210

Combining the conservation law (4.2.15), the equality (4.2.9) and fact that &}, is
symmetrical, one easily obtains
Y, (thendy) = 0, (thady) = 0. (4.2.17)

Then, following the way of constructing (1.2.87), one obtains a conserved quantity as

P& = L dxtNE,. (4.218)
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Here, ¥ is derived as a spacelike hypersurface defined as x°=ct=const for the
solution (4.2.7).

Now, let us turn to the equation (4.2.16). The expression under a covariant
divergence is an antisymmetric tensor density of the weight +1:

IR = < (B0 - T, i 2, (4.219)

which is called a superpotential. Then, the covariant divergence in (4.2.16) can be
exchanged with a partial divergence, and the conserved quantity (4.2.18) can be
expressed through a surface integral:

@@=£g%wwﬂ (4.2.20)

where ds; is a coordinate element of integration at the boundary 9%, as usual.

In fact, the equation (4.2.19) represents a family of superpotentials for each of
possible definitions of perturbations, h%", in (2.2.120), or (2.2.121) for various a. Let us
rewrite the difference for metric perturbations (2.2.131):

1b"" = bl — bl (4.2.21)

Because superpotentials in (4.2.19) are linear in perturbations, the difference between
them is linear in ;,H*" also:

A/}N = /yv(haz) - /yv(hal) = /HV(IZh)' (4'2'22)

Consequently, the difference of the integrals (4.2.20) is calculated as
AP(E) = 9532 ds; 7 % (1h). (4.2.23)

We derive two more interesting superpotentials from the set (4.2.19). One of them
corresponds to the main definition for perturbations in the book,

b =g - g, (4.2.24)
Then, with the use of (4.2.12) one obtains
by = 0", (4.2.25)

and the superpotential (4.2.19) acquires the form:

I = @ (8M9,nP - 2otn, 4 1, 81), (4.2.26)

where h* = \/~gh"". For the other popular definition,

%yv = gyv - gyvy (4.2.27)
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one has from (4.2.12),

b = —\-g (0 - 18752, (4.2.28)

and the superpotential (4.2.19) acquires the form:

o4 &) = V-8 (gpv[y%v]p B E’["Vva]p _ %p[uvp;;v]

Tk
+ EH9e 4 1ol THET). (4.2.29)

The last superpotential is merely the famous Abbott-Deser superpotential [1]. Such
superpotentials can be useful in various researches, for example, Abbott and Deser
with the use of (4.2.29) and supergravity techniques have proved that the AdS space is
stable.

Let us make some remarks.

First, the existence of the family (4.2.19) of superpotentials means that there is an
ambiguity (4.2.22) in their definition and, possibly, an ambiguity (4.2.23) in the defin-
ition of integral conserved quantities for any systems. By construction, we find easily
that all of these follow from an ambiguity in definition of energy-momentum (2.2.133)
that, in the case of the flat background, has been considered by Boulware and Deser
[71]. What can be the criteria for the choice of more preferable ones? The criteria can
be purely fundamental, when a theoretical foundation can help for a choice. In Sec-
tions 6.3.2, 6.3.3 and 6.4.1, the choice (4.2.24) is recognized as more preferable. Criteria
could be found in applications, when known classical solutions are studied, but not
all the members of the family (4.2.19) give acceptable results, and, those have to be dis-
carded. In the works [252, 369, 370], calculating the Bondi mass flux at null infinity, the
superpotential (4.2.26) with perturbations (4.2.24) has been chosen as a preference.

Second, in spite of the background equations (4.2.10) contain the cosmological
constant A, an expression (4.2.19) does not contain it at all. Besides, for obtaining
(4.2.19) the equations (4.2.10) have been used only, solutions of which are Einstein
spaces, not only AdS ones. Also, one easily finds that (4.2.19) holds even if A = 0 in
(4.2.10). Thus, finally, the expression for a family of superpotentials (4.2.19) holds for
more general background spacetimes: Ricci-flat ones and Einstein spaces.

4.2.3 The total mass of the Schwarzschild-AdS black hole

One of the most known solutions of the vacuum Einstein equations with the cosmolo-
gical constant is the Schwarzschild-AdS (S-AdS) solution:

2 7
dsz=—<1+r——7g>czdt2+

2 20 am2 , w2 2
z rdr +r (d@ + sin” Od¢ ) (4.2.30)

1+ 12/ - rel

First, this solution is asymptotically AdS; second, one finds easily that in limit > — co
the solution (4.2.23) reduces to the usual Schwarzschild solution (4.1.3).
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Thus, to describe the solution (4.2.23) in the field-theoretical terms it is natural to
choose the AdS space with the metric (4.2.7) as the background. The non-vanishing
Christoffel symbols for the metric (4.2.7) are

L, =-r 1+ﬁ [, = -rsin’6 l+ﬁ 2, =01 !
»n= 72 R p) te=ts=

- = 1 1 =1 r r2
o =-Thy=-—%< 1"oo=—<1+—>
12 b 2 2 ’
"1+ %) A
%5 = —sinfcos @, ° = coth. (4.2.31)

The next step is to define field configurations. Here, the definitions (4.2.24) and (4.2.27)
are more relevant. For the first case one obtains

poo _ s 1
r(1+2/R) (1+ 2R - 1fr)
r
=%, (4.2.32)

whereas for the definition (4.2.27) one has

<

g

% = —
00 r
g

>

<

1
T 1+r/B) (1 +r2/12 - g/r).

A = (4.2.33)

To calculate the mass of the S-AdS solution one could substitute (4.2.32) into (4.2.26),
or substitute (4.2.33) into (4.2.29), using the Killing vector (4.2.8) and covariant deriv-
atives constructed with the Christoffel symbols (4.2.31). However, here, we suggest
a more general calculation. Using (4.2.32) and (4.2.33), we can introduce more gen-
eral perturbations defined in (2.2.121). Because for (4.2.7) and (4.2.30), /=8 = -8 =
r’*sin 6, one has p* = g — g = /—gh*” with B = g" — g"". Then the generalized
perturbations (2.2.121) can be rewritten as

o) = (8" (8" -8") = (-g)"R", (4.2.34)
By = (\/——Q)" (8w —8w) = (\/—_g)"nw, (4.2.35)

where WY and ,, are defined in (2.2.120). Concretely, for the S-AdS solution the per-
turbations (4.2.34) and (4.2.35) are defined through (4.2.32) and (4.2.33). Then we
transform (4.2.34) and (4.2.35) to the form (4.2.26):

1-m
wo_ [ ~Jv
Yam = \/_g<h(m) 5 & h?m)p)

_ \/E(h'” _ “Tm-uvhp p> , (4.2.36)
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1-n
wo_ s v SHV P
b(an) B \/_g< h(n)+ 2 g h(ﬂ)p)

_ \/__g <_%11v . “T”guvupp> , (4.2.37)

where h’(*";[) = h’(‘r‘;) /(+\/-8)™ and h’(‘r‘:) = h’(’r‘{)/ (vV-8)".

Now, calculate the total mass with the use of (4.2.20) and (4.2.19) at r — oo and
with the Killing vector (4.2.8). As a field configuration we use the general definitions
(4.2.36) or (4.2.37) with (4.2.32) or (4.2.33). All the cases for arbitrary m and n give

P(&) = m (4.2.38)

which is quite natural and acceptable. A confusion between m (number) and m (mass)
has no to be appeared.

Of course, among all the superpotentials of the family (4.2.19), the superpoten-
tials (4.2.26) and (4.2.29) have been used for obtaining (4.2.38). Thus, first, the result
(4.2.38) demonstrates the power of the field-theoretical methods. Second, a calcula-
tion of the total mass (4.2.38) for the S-AdS solution cannot resolve the ambiguity in
the definition of superpotentials in (4.2.19). Third, returning to the Schwarzschild solu-
tion (setting here > — co), one easily finds that all the different definitions of variables
(4.2.34-4.2.37) give the same result (4.1.12) for the total energy.



5 Field-theoretical derivation of cosmological
perturbations

5.1 Introduction: Post-Newtonian, post-Minkowskian
and post-Friedmanninan approximations
in cosmology

Post-Newtonian celestial mechanics is a branch of fundamental gravitational physics
[77, 79, 267, 417] that deals with the theoretical concepts and experimental methods
of measuring gravitational fields and testing general relativity both in the solar sys-
tem and beyond [80, 462]. In particular, the relativistic celestial mechanics of binary
pulsars (see [297], and references therein) was instrumental in providing conclusive
evidences for the existence of gravitational radiation as predicted by Einstein’s theory
of relativity [421, 458].

Over the last few decades, various groups within the International Astronomical
Union (IAU) have been active in exploring the application of general relativity to the
modelling and interpretation of high-accuracy astrometric observations in the solar
system. A Working Group on Relativity in Celestial Mechanics and Astrometry was
formed in 1994 to define and implement a relativistic theory of reference frames and
time scales. This task was successfully completed with the adoption of a series of res-
olutions on astronomical reference systems, time scales, and Earth rotation models by
24-th General Assembly of the IAU, held in Manchester, UK, in 2000. The IAU resolu-
tions are based on the first post-Newtonian approximation of general relativity which
is a conceptual basis of the fundamental astronomy in the solar system [416].

The mathematical formalism of the Post-Newtonian approximations is getting
progressively complicated as one goes from the Newtonian to higher orders [115, 405].
For this reason the theory has been primarily developed for an isolated astronomical
systems with a matter distribution having a compact support and under simplify-
ing assumptions that gravitational field perturbation is weak everywhere, decays
rapidly enough at infinity, and the background spacetime is asymptotically flat. Math-
ematically, it means that the full spacetime metric, g,g, is decomposed around the
background Minkowskian metric, Nap> into a linear combination

8ap = Nap + Kaps (5.11)

where the perturbation kg is represented as the post-Minkowski! series decomposi-
tion with respect to the powers of the universal gravitational constant,

1 The term “post-Minkowskian” was introduced by Damour and Blanchet [55] to emphasize that the
metric tensor gug is built as a perturbative series around the Minkowski metric 17,5, and it does not
assume any limitation on the velocity of matter generating gravitational field.

DOl 10.1515/9783110351781-005



218 — 5 Field-theoretical derivation of cosmological perturbations

Kap = GKap + szaﬁ + GBK,X/; o, (5.1.2)
(6) @ (€]

where each term, Kaps (k = 1,2,3,...) of the post-Minkowskian series is decomposed
(k)
into the post-Newtonian series

Kop = c’zk‘[ng +c3 KE}; + c’l'xl[;;g] +..., (5.1.3)
(k) (k) (k) (k)

with respect to the powers of 1/c, where c is the speed of gravity in general relativity.
Post-Minkowskian series (5.1.2) is analytic with respect to the parameter G while the
post-Newtonian series (5.1.3) loses analyticity at higher-order approximations where
the backreaction of gravitational radiation becomes important [56].

Post-Newtonian approximations suggest that there exists a method to determ-
ine x,p by doing successive iterations of Einstein’s field equations with the tensor of
energy-momentum of matter field 8 of the localized astronomical system, Tgﬁ(e, gaﬁ),
taken as a source of the gravitational field perturbation x,z. The iterations start from
Ko = O which is inserted to the expression for Tapﬂ which becomes a well-defined
function of the matter variables 6. Einstein’s equations are solved at the first itera-

tion yielding kg. This solution is substituted back to the tensor Tgﬁ which is used to
o)
find k,g, and so on. The post-Minkowskian solution for the metric perturbations kg

@ (k)
naturally depend on the retarded time s = t — r/c which accounts for the finite speed

of propagation of gravity passing the distance r from the mass emitting gravitational
radiation. The post-Newtonian decomposition (5.1.3) of the metric tensor perturba-
tion represents an additional expansion of the retarded functions around the time
event t. Thus, the post-Newtonian expansion assumes r < A, where A is a character-
istic wavelength of gravitational radiation. It means that the post-Newtonian series
(5.1.3) is valid only in the near zone of the isolated astronomical system.

The solution of the field equations and the equations of motion of the astronom-
ical bodies are derived in some coordinates r* = {ct, r} where t is the coordinate time,
and r = {x, y, z} are spatial coordinates. The post-Newtonian theory in asymptotically
flat spacetime has a well-defined Newtonian limit determined by: o

2

(1) solution of Poisson’s equation for the Newtonian potential, U = k;,/2,
()

N 33,
utt,r) = J plLrydr , (5.1.4)

v |r-rl

where Tgo(G), Nap), is the mass density of matter producing the gravitational field,

2 A common convention is to call ¢ the speed of light irrespectively of the nature of the funda-
mental interaction under consideration [462] but it may lead to confusion and misinterpretation of
gravitational experiments and astronomical observations [158, 270].
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(2) equation of motion for massive particles
¥=VuU, (5.1.5)

where V = {0, dy,0,} is the operator of gradient, r = r(t) is time-dependent posi-
tion of a particle (worldline of the particle), and the dot denotes a total derivative
with respect to time ¢,

(3) equation of motion for light (massless particles)

¥=0. (5.1.6)

These equations are foundational for creation of astronomical ephemerides of celes-
tial bodies in the solar system [79, 267] and in any other localized system of self-
gravitating bodies like a binary pulsar [297]. In all practical cases they have to be
extended to take into account the post-Newtonian corrections sometimes up to the
3-d post-Newtonian order of magnitude [461]. It is important to notice that in the
Newtonian limit the coordinate time t of the gravitational equations of motion (5.1.5),
(5.1.6) coincides with the proper time of observer 7 that is practically measured with
an atomic clock.

So far, the post-Newtonian theory was mathematically successful and passed
through numerous experimental tests with a flying colour. Nevertheless, it hides
several pitfalls. The first one is the problem of convergence of the post-Newtonian
series and regularization of divergent integrals that appear in the post-Newtonian
calculations at higher post-Newtonian orders [405]. The second problem is that the
background manifold is not asymptotically flat Minkowskian spacetime but the FLRW
metric, g,3. We live in the expanding universe which rate of expansion is determined
by the present value H,, of the Hubble parameter H = H(t) depending on time. There-
fore, the right thing would be to replace the post-Newtonian decomposition (5.1.1) with
a more adequate post-Friedmannian series [435]

8ap = 8up + Maps (5.1.7)
where
Hop = u{%} + Hn{l + H’x {;} e (5.1.8)

is the metric perturbation around the cosmological background represented as a series
with respect to the Hubble parameter, H. Each term of the series has its own expan-
sion into the post Minkowskian/Newtonian series like (5.1.2) and (5.1.3). For example,
u({g = Kqp, and there is no asymptotically flat spacetime analogue to %‘{xﬁ, %3 etc.
Generalization of the theory of Post-Newtonian approximations from the Mmkowskl
space to that of the expanding universe is important for extending the applicability of

the post-Newtonian celestial dynamics to testing cosmological effects, for more deep
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understanding of the process of formation of large and small scale structure in the
universe and gravitational interaction between pairs of galaxies and their clusters.

Whether cosmological expansion affects gravitational dynamics of bodies inside
alocalized astronomical system was a matter of considerable efforts of many research-
ers [62, 93, 148, 149, 280, 311, 313, 410]. Most of the previous works on celestial
dynamics in cosmology assumed spherical symmetry of matter distribution and grav-
itational field which allowed to use exact spherically-symmetric solutions of Einstein’s
equations approximating the Schwarzschild solution near the body and a cosmolo-
gical solution far outside of it. Matching of the two solutions in the intermediate
zone was achieved in several different ways but all of them suggest some kind of
a fine tuning of the size of the matching zone to the cosmological parameters and
the mass of the central body. This fine-tuning is physically unrealistic. Furthermore,
real astronomical systems in cosmology (galaxies, clusters, filaments, etc.) have no
spherical symmetry. McVittie’s solution [313] is perhaps the most successful mathem-
atically among the spherically-symmetric approaches but yet lacks a clear physical
interpretation [93].

Cosmological observations are now performed so accurately that we need a pre-
cise mathematical formulation of the post-Newtonian theory for interpretation of
these observations. This theory is not to be limited by the assumption of the spher-
ical symmetry of the isolated astronomical system which must be coupled to the
time-dependent background geometry through the gravitational interaction. Theoret-
ical description of the post-Newtonian dynamics of a localized astronomical system
in expanding universe should correspond in the limit of vanishing H to the post-
Newtonian dynamics in the asymptotically flat spacetime. Such a description will
allow us to directly compare the equations of the standard post-Newtonian celestial
dynamics with its cosmological counterpart. Therefore, the task is to derive a set of
the post-Newtonian equations in cosmology in some coordinates introduced on the
background manifold, and to map them onto the set of the Newtonian equations
(5.1.4-5.1.6) in asymptotically flat spacetime. The post-Newtonian celestial dynamics
would be of a paramount importance for extending the tools of experimental grav-
itational physics to the field of cosmology, for example, to properly formulate the
cosmological extension of the PPN formalism [460]. The present chapter discusses
the main ideas and principal results of such a theoretical approach in the linear-
ized approximation with respect to the gravitational perturbations of the cosmological
background caused by the presence of a localized astronomical system. The formalism
of the present chapter has been employed in [271] to check the theoretical consistency
of equations (5.1.4-5.1.6) on expanding cosmological background and to analyse the
outcome of some experiments like the excessive Doppler effect discovered by Ander-
son et al. [9, 10] in the hyperbolic motion of Pioneer 10 and 11 space probes in the solar
system.

The original goal in developing the theory of cosmological perturbations was to
relate the physics of the early universe to CMB anisotropy and to explain the formation
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and growth of large-scale structure from a primordial spectrum. The ultimate goal
of this theory is to establish a mathematical link between the fundamental physical
laws at the Planck epoch and the output of the gravitational wave detectors which
are the only experimental devices being capable to measure the parameters and the
state of the universe at that time [263]. Originally, two basic approximation schemes
for calculating cosmological perturbations have been invented by Lifshitz with his
collaborators [292, 293] and, later on, by Bardeen [27]. Lifshitz [292] worked out a
coordinate-dependent theory of cosmological perturbations in a synchronous gauge
while Bardeen [27] concentrated on finding the gauge-invariant combinations for per-
turbed quantities and derivation of a perturbation technique based on gauge-invariant
field equations. At the same time, Lukash [301] had suggested an original approach for
deriving the gauge-invariant scalar equations based on the thermodynamic theory of
the Clebsch potential [411] also known in cosmology as the scalar velocity potential
[282, 411] or the Taub potential [433]. It turns out that the variational principle with
a Lagrangian of cosmological matter formulated in terms of the Clebsch potential,
is the most useful mathematical device for developing the theory of relativistic celes-
tial dynamics of localized astronomical systems embedded in expanding cosmological
manifold [272].

In the years that followed, the gauge-invariant formalism was refined and
improved by Durrer and Straumann [144, 145], Ellis et al. [155-157] and, especially,
by Mukhanov et al. [326, 327]. Irrespectively of the approach a specific gauge must
be fixed in order to solve equations for cosmological perturbations. Any gauge is
allowed and its particular choice is simply a matter of mathematical convenience.
Imposing a gauge condition eliminates four degrees of freedom in the cosmological
metric pertrubations and brings the differential equations for them to a solvable form.
Nonetheless, the residual gauge freedom associated with the tensor nature of the grav-
itational field remains. This residual gauge freedom leads to appearance of spurious
perturbations which must be disentangled from the physical modes. Lifshitz’s theory
of cosmological perturbations [292, 293] is worked out in a synchronous gauge and
contains the spurious modes but they are easily isolated from the physical perturba-
tions and suppressed [200]. The other gauges are described in Bardeen’s article [27]
and used in cosmological perturbation theory as well. Among them, the longitudinal
(conformal or Newtonian) gauge is one of the most common. This gauge is advoc-
ated by Mukhanov [327] because it removes spurious coordinate degrees of freedom
in scalar perturbations. Detailed comparison of the cosmological perturbation theory
in the synchronous and conformal gauges was given by Ma and Bertschinger [302].

Unfortunately, none of the previously known cosmological gauges can be applied
for analysis of the cosmological perturbations caused by localized matter distribu-
tions like an isolated astronomical system which can be a single star, a planetary
system, a galaxy, or even a cluster of galaxies. The reason is that the synchronous
gauge has no Newtonian limit and is applicable only for freely falling test particles
while the longitudinal gauge separates the scalar, vector and tensor modes in the
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metric tensor perturbation in the way that is incompatible with the technique of
the post-Newtonian approximation schemes having been worked out in asymptot-
ically flat spacetime [267]. We also notice that standard cosmological perturbation
technique often operates with harmonic (Fourier) decomposition of both the metric
tensor and matter perturbations when one is interested in statistical statements based
on the cosmological principle. This technique is unsuitable and must be avoided in
sub-horizon approximation for working out the post-Newtonian celestial dynamics of
self-gravitating isolated systems.

Current paradigm is that the cosmological generalization of the Newtonian field
equations of an isolated gravitating system like the solar system or a galaxy or a cluster
of galaxies can be easily obtained by simply making use of the linear principle of
superposition with a simple algebraic addition of the local system to the tensor of
energy momentum of the background matter. It is assumed that the superposition
procedure is equivalent to operating with the Newtonian equations of motion derived
in asymptotically flat spacetime and adding to them (“by hands”) the tidal force
due to the presence of the external universe (see, for example, [311]). Though such
a procedure may look pretty obvious it lacks a rigorous mathematical analysis of the
perturbations induced on the background cosmological manifold by the local system.
This analysis should be done in the way that embeds cosmological variables to the
field equations of standard Post-Newtonian approximations not by ‘hands’ but by pre-
cise mathematical technique which is the goal of the present chapter. The variational
calculus on manifolds is the most convenient for joining the standard theory of cosmo-
logical perturbations with the Post-Newtonian approximations in asymptotically flat
spacetime. It allows us to track down the rich interplay between the perturbations
of the background manifold with the dynamic variables of the local system which
cause these perturbations. The output is the system of the post-Newtonian field equa-
tions with the cosmological effects incorporated to them in a physically-transparent
and mathematically-rigorous way. This system can be used to solve a variety of phys-
ical problems starting from celestial dynamics of localised systems in cosmology to
gravitational wave astronomy in expanding universe that can be useful for deeper
exploration on scientific capability of such missions as LISA and Big Bang Observer
(BBO) [110].

In fact, the problem of whether the cosmological expansion affects the long-
term evolution of an isolated N-body system (galaxy, solar system, binary system,
etc.) had a long controversial history. The reason is that there was no an adequate
mathematical formalism for describing the cosmological perturbations caused by an
isolated system so that different authors have arrived to opposite opinions. It seems
that McVittie [313] was first who had considered the influence of the expansion of the
universe on the dynamics of test particles orbiting around a massive point-like body
immersed to the cosmological background. He found an exact solution of the Einstein
equations in his model which assumed that the mass of the central body is not con-
stant but decreases as the universe expands. Einstein and Straus [148, 149] suggested
a different approach to discuss motion of particles in gravitationally self-interacting
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systems residing on the expanding background. They showed that a Schwarzschild
solution could be smoothly matched to the Friedman universe on a spherical surface
separating the two solutions. Inside the surace (“vacuole”) the motion of the test
particles is totally unaffected by the expansion. Thus, Einstein and Straus [148, 149]
concluded that the cosmic expansion is irrelevant for the Solar system. Bonnor [62]
generalized the Einstein-Straus vacuole and matched the Schwarzschild region to
the inhomogeneous Lemaitre-Tolman-Bondi model thus, making the average energy
density inside the vacuole be independent of the exterior energy density while in
the Einstein-Straus model they must be equal. Bonnor [62] concluded that the local
systems expand but at a rate which is negligible compared with the general cosmic
expansion. Similar conclusion was reached by Mashhoon et al. [311] who analysed
the tidal dynamics of test particles in the Fermi coordinates.

The vacuole solutions are not appropriate for adequate physical solution of the
N-body problem in the expanding universe. There are several reasons for it. First, the
vacuole is spherically-symmetric while majority of real astronomical systems are not.
Second, the vacuole solution imposes physically unrealistic boundary conditions on
the matching surface that relates the central mass to the size of the surface and to
the cosmic energy density. Third, the vacuole is unstable against small perturbations.
In order to overcome these difficulties a realistic approach based on the approxim-
ate analytic solution of the Einstein equations for the N-body problem immersed
to the cosmological background, is required. In the case of a flat spacetime there
are two the most advanced techniques for finding approximate solution of the Ein-
stein equations describing gravitational field of an isolated astronomical system — the
post-Newtonian and Post-Minkowskian approximations [115] that have been briefly
discussed in introduction. The post-Newtonian approximation technique is applicable
to the systems with weak gravitational field and slow motion of matter. The Post-
Minkowskian approximations also assume that the field is weak but does not imply
any limitation on the speed of matter. The post-Newtonian iterations are based on solv-
ing the elliptic-type Poisson equations while the post-Minkowskain approach operates
with the hyperbolic-type (wave) D’Alembert equations. The Post-Minkowskian approx-
imations naturally include description of the gravitational radiation emitted by the
isolated system while the post-Newtonian scheme has to use additional mathemat-
ical methods to describe generation of the gravitational waves [97]. In the present
chapter we concentrate on the development of a generic scheme for calculation of
cosmological perturbations caused by a localized distribution of matter (small-scale
structure) which preserves many advantages of the post-Minkowskian approximation
scheme. The cosmological Post-Newtonian approximations are derived from the post-
Minkowskian perturbation scheme by making use of the slow-motion expansion with
respect to a small parameter v/c where v is the characteristic velocity of matter in the
N-body system and c is the fundamental speed.

There were several attempts to work out a physically-adequate and mathema-
tically-rigorous approximation schemes in general relativity in order to construct and
to adequately describe dynamics of small-scale structures in the universe. The most
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notable work in this direction has been done by Kurskov and Ozernoy [281], Futamase

et al. [43, 182, 183, 431], Buchert and Ehlers [82, 147], Mukhanov et al. [2, 325-327],

Zalaletdinov [469]. These approximation schemes have been designed to track the

temporal evolution of the cosmological perturbations from a very large down to a

small scale up to the epoch when the perturbation becomes isolated from the expand-

ing cosmological background. These approaches looked hardly connected between

each other until recent works by Clarkson et al. [106, 107], Li and Schwarz [288, 289],

Résédnen [383], Buchert and Résédnen [83], Wiegand and Schwarz [459]. In particular,

Wiegand and Schwarz [459] have shown that the idea of cosmic variance (that is a

standard way of thinking) is closely related to the cosmic averages defined by Buch-

ert and Ehlers [82, 147]. All researchers agree that the Post-Newtonian approximations
are important to understand the backreaction of the cosmological perturbations on

the expansion rate of the universe [2, 182, 241, 242, 326, 469)).

Development of observational cosmology and gravitational wave astronomy
demands to extend the linearized theory of cosmological perturbations to second and
higher orders of approximation. A fair number of works have been devoted to solving
this problem. Non-linear perturbations of the metric tensor and matter affect evolu-
tion of the universe and this backreaction of the perturbations should be taken into
account. This requires derivation of the effective stress-energy tensor for cosmolo-
gical perturbations formed by freely-propagating gravitational waves and scalar field
[2, 325-327]. The conservation laws for the effective stress-energy tensor are important
for derivation of the post-Newtonian equations of motion of the isolated astronomical
system.

In the present chapter we construct a non-linear theory of successive cosmo-
logical perturbations for isolated systems which generalizes the post-Minkowskian
approximation scheme in asymptotically flat spacetime. As a mathematical founda-
tion we use the Lagrangian-based theory of dynamical perturbations of gravitational
field on a curved background, see the field-theoretical formulation of general relativ-
ity developed in Section 2.2. Let us list its specific advantages more important for the
study in the present chapter:

(i) Lagrangian-based approach is covariant and can be implemented for any
curved background spacetime that is a solution of the Einstein gravity field
equations;

(ii) the system of the partial differential equations describing dynamics of the
perturbations is determined by a dynamic Lagrangian .#%™ which is derived
from the total Lagrangian of general relativity, %z, defined in (1.3.16). The
presentation is exact, but one can use Taylor expansions with respect to the
perturbations and accounting for the background field equations.

(iii) The dynamic Lagrangian .#%" defines the conserved currents for the perturba-
tions. Energy, angular momentum, etc. can be constructed, if the symmetries of
the background manifold exist;

(iv) the dynamic Lagrangian Y and the corresponding field equations for the
perturbations are gauge-invariant in any order of the perturbation theory.
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Gauge transformations map the background manifold onto itself and are asso-
ciated with arbitrary (analytic) coordinate transformations on the background
spacetime;

(v) the entire perturbation theory is self-reproductive and is extended to the next
perturbative order out of a previous iteration by making use of the same
equations with a corresponding substitution of quantities from the previous
iteration. The linearized approximation is the basic starting point of the theory.

Perhaps, it would be more appropriate to call the perturbative technique explained
in this chapter as the post-Friedmannian approximations — the term proposed by
Tegmark [435]. However, we shall continue to use the conventional name of post-
Newtonian approximations to emphasize that it is applicable not only to large-scale
perturbations but also to the discussion of formation and dynamics of small-scale
structures in cosmology — the topic being intimately related to relativistic celestial
mechanics.

Because the chapter is quite complicated we present now its organization. Section
5.2 introduces the Lagrangian of gravitational field and matter of the background cos-
mological model as well as the Lagrangian of an isolated astronomical system which
perturbs the background cosmological manifold. Section 5.3 describes the geometric
structure of the background spacetime manifold of the cosmological model and the
corresponding equations of motion of the matter and field variables. Section 5.4 intro-
duces the reader to the theory of the Lagrangian perturbations of the cosmological
manifold and the dynamic variables. Section 5.5 makes use of the preceding sections
in order to derive the field equations in the gauge-invariant form. Beginning from Sec-
tion 5.6 we focus on the spatially-flat universe in order to derive the post-Newtonian
field equations that generalize the post-Newtonian equations in the asymptotically flat
spacetime. These equations are coupled in the scalar sector of the proposed theory.
Therefore, we consider in Section 5.7 a few particular cases when the equations can be
fully decoupled one from another, and solved in terms of the retarded potentials.

The present chapter is very rich in notations, but one can be convinced that there
is no confusion with the other notations in the book. Also, every time, when there is
no confusion about the system of units, we shall choose, as usual here, a geometrized
system of units such that G =c =1.

Notations

—  8,p is the FLRW metric on the background spacetime manifold;

- £,4pis the metric on the conformal spacetime manifold: g5 = a(n)£ 45

- Tand X' = {X, Y, Z} are the coordinate time and isotropic spatial coordinates on
the background FLRW manifold;

- X*= {XO,Xi} = {cn,Xi} are the conformal coordinates with 1 being a conformal
time;

~ aprime 2' = d2/dn denotes a total derivative with respect to the conformal
time n;
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- adot 2 = d2/dT denotes a total derivative with respect to the cosmic time T;

- a vertical bar, 2, denotes a covariant derivative of a tensor quantity 2 with
respect to the background metric g,4;

- asemicolon, 2., denotes a covariant derivative of a tensor quantity 2 with respect
to the conformal metric £ ap’ it will be no confusion with a covariant derivative with
respect to a flat spacetime metric 7,p;

— the tensor indices of geometric objects on the conformal spacetime are raised and
lowered with the conformal metric £ ,5;

— thescale factor of the FLRW metric is denoted as R = R(T), oras a = a(n) = R[T(n)];
it will be no confusion with a scalar curvature in a dynamic spacetime in general
relativity;

— the Hubble parameter, H = R/R, and the conformal Hubble parameter, 57 = a'la.

5.2 Lagrangian and field variables

Basing on general relativity, we consider a universe filled up with matter consisting
of three components. The first two components are: (1) an ideal fluid composed of
particles of one type with transmutations excluded; (2) a scalar field; and (3) a mat-
ter of the localized astronomical system. The ideal fluid consists of baryons and cold
dark matter, while the scalar field describes dark energy [7]. We assume that these
two components do not interact with each other directly, and are the source of the
Friedmann-Lemitre-Robertson-Walker (FLRW) geometry. There is no dissipation in the
ideal fluid and in the scalar field so that they can only interact through the gravita-
tional field. It means that the equations of motion for the fluid and the scalar field
are decoupled in the main approximation, and we can calculate their evolution sep-
arately. Mathematically, it means that the Lagrangian of the ideal fluid and that of the
scalar field depend only on their own field variables and the metric tensor.

The tensor of energy-momentum of matter of the localized astronomical system is
not specified in agreement with the approach adopted in the post-Newtonian approx-
imation scheme developed in the asymptotically flat spacetime [115, 269]. This allows
us to generate all possible types of cosmological perturbations: scalar, vector and
tensor modes. We are the most interested in developing our formalism for application
to the astronomical system of massive bodies bound together by intrinsic gravitational
forces like the solar system, galaxy, or a cluster of galaxies. It means that our approach
admits a large density contrast between the background matter and the matter of the
localized system. The localized system perturbs the background matter and gravita-
tional field of FLRW metric locally but it is not included to the matter source of the
background geometry, at least, in the approximation being linearized with respect
to the metric tensor perturbation. Our goal is to study how the perturbations of the
background matter and gravitational field are incorporated to the gravitational field
perturbations of the standard post-Newtonian theory of relativistic celestial dynamics.

Let us now consider the action functional and the Lagrangian of each component.



5.2 Lagrangian and field variables =—— 227

5.2.1 Action functional

We consider a theory with the Hilbert-Einstein action (2.2.1), let us rewrite it:

1

S- j d'x M
Q 161

j d'x g+ J d'x M. (5.2.1)

Q o

The Lagrangian, here, is specified in a more concrete form. Thus, for matter sources:
M e Py PP (5.2.2)

where ™, .#9 are Lagrangians of the dark matter, and the scalar field that governs
the accelerated expansion of the universe [197], and .#? is the Lagrangian describing
the source of the cosmological perturbations. Gravitational field Lagrangian is defined
by the Hilbert Lagrangian (1.3.1):

M= \J=gR = %. (5.2.3)

Correct choice of the matter variables is a key element in the development of the
Lagrangian theory of the post-Newtonian perturbations of the cosmological mani-
fold caused by a localized astronomical system. Already the Lagrangian treatment of
ideal fluid and scalar field in the Minkowski space has been given in Section 1.2.5,
where the accent is related to constructing conserved quantities. Below we provide
this treatment in a curved spacetime of general relativity with the action (5.2.1).

5.2.2 Lagrangian of the ideal fluid

The ideal fluid is characterized by the following thermodynamic parameters: the
rest-mass density p,,, the specific internal energy II,, (per unit of mass), pressure
DPm»> and entropy s,, where the sub-index “m” stands for “matter”. We shall assume
that the entropy of the ideal fluid remains constant, that excludes it from further
consideration. The standard approach to the theory of cosmological perturbations
preassumes that the constant entropy excludes rotational (vector) perturbations of
the fluid component from the start, and only scalar (adiabatic) perturbations are gen-
erated [7, 327, 456, 457]. However, the present chapter deals with the cosmological
perturbations that are generated by a localized astronomical system described by its
own Lagrangian (see Section 5.2.4) which is left as general as possible. This leads to
the tensor of energy-momentum of the matter of the localized system that incorporates
the rotational motion of matter which is the source of the rotational perturbations of
the background ideal fluid. This extrapolates the concept of the gravitomagnetic field
of the post-Newtonian dynamics of localized systems in the asymptotically flat space-
time [79, 105, 267] to cosmology. Further details regarding the vector perturbations are
given in Section 5.5.5 of the present chapter.
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The total energy density of the fluid
€m = Pm(1+ Iy, (5.2.4)

One more thermodynamic parameter is the specific enthalpy of the fluid defined as

+
ym: M =1+Hm+h_ (525)

m pm

In the most general case, the thermodynamic equation of state of the fluid is given by
equation p;, = pm (P, I1,), where the specific internal energy IT, is related to pressure
by the first law of thermodynamics.

Since the entropy has been assumed to be constant, the first law of thermodynam-
ics reads

dil,, + p,d <pi> =0. (5.2.6)

m

It can be used to derive the following thermodynamic relationships
dpm = Pmdlm» (5.2.7)

dey, = UndPpms (5.2.8)

which means that all thermodynamic quantities are solely functions of the specific
enthalpy p,,, for example, p,, = pp(Um)s Oy = M, (1), etc. The equation of state is
also a function of the variable y,,, that is

Pm = P () (5.2.9)

Derivatives of the thermodynamic quantities with respect to p,, can be calculated by
making use of equations (5.2.7) and (5.2.8), and the definition of the (adiabatic) speed
of sound v; of the fluid

) (5.2.10)

V|,
S
B

ﬁml m<r\.i

€m

where the partial derivative is taken under a condition that the entropy, s, of the fluid
does not change. Then, the derivatives of the thermodynamic quantities take on the
following form

P Oem _ Pm _ € P

- Mm» 2Mm>s
Optm

—m - = , (5.2.11)
OUm V3 OMm V3 Mm

where all partial derivatives are performed under the same condition of constant
entropy.
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The Lagrangian of the ideal fluid is usually taken in the form of the total energy
density, .#™ = ./~ge,, [315]. However, this form is less convenient for applying
the variational calculus on manifolds. The above thermodynamic relationships and
the integration by parts of the action (5.2.1) allows us to recast the Lagrangian, .Z™, to
the form of pressure, £™ = —/=gp,,, so that the Lagrangian density becomes

LM = _\/%pm = \/?g(em _pmym) . (5.212)

Theoretical description of the ideal fluid as a dynamic system on spacetime manifold
is given the most conveniently in terms of the Clebsch potential, @ which is also called
the velocity potential [411]. In the case of a single-component ideal fluid the Clebsch
potential is introduced by the following relationship

UnWq = —D 4. (5.2.13)

In fact, equation (5.2.13) is a solution of relativistic equations of motion of the ideal
fluid [282].

The Clebsch potential is a primary field variable in the Lagrangian description of
the isentropic ideal fluid. The four-velocity is normalized to w®w,, = gaﬁw"‘wﬁ =-1,s0
that the specific enthalpy can be expressed in the following form

Upy = \/—g”‘ﬁd),ad),ﬁ. (5.2.14)

One may also notice that
P = W'D, (5.2.15)

It is important to notice that the Clebsch potential @ has no direct physical meaning
as it can be changed to another value ® — @' = @ + & such that the gauge function,
@, is constant along the worldlines of the fluid: w*® , = 0.

In terms of the Clebsch potential the Lagrangian (5.2.12) of the ideal fluid is

7" = \/:g (em ~Pm \/ _gaﬁq),txq),ﬁ ) . (5'2'16)

Metrical tensor of energy-momentum of the ideal fluid is obtained by taking a
variational derivative of the Lagrangian (5.2.16) with respect to the metric tensor,

2 6™

Calculation yields

T(/IYI/13 = (ém + Pm) WaWg + Pm8ap> (5.2.18)
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where w* = dx%/dr is the four-velocity of the fluid, and 7 is the proper time of the fluid
element taken along its worldline. This is a standard form of the tensor of energy-
momentum of the ideal fluid [315]. Because the Lagrangian (5.2.16) is expressed in
terms of the dynamical variable @, the Noether approach based on taking the vari-
ational derivative of the Lagrangian with respect to the field variable, can be applied
to derive the canonical tensor of the energy-momentum of the ideal fluid. This calcu-
lation has been done in [267, pp. 334-335 ] and it leads to the expression (5.2.18). It
could be expected because we assumed that the ideal fluid consists of bosons. The
metrical and canonical tensors of energy-momentum for the liquid differ, if and only
if, the liquid’s particles are fermions (see [267, pp. 331-332] for more detail). We do not
consider the fermionic liquids in the present chapter.

5.2.3 Lagrangian of scalar field

The Lagrangian of the scalar field ¥ is given by
L= g (%g“"aa\{faﬁ\y + W) , (5.2.19)

where W = W (W) is a potential of the scalar field. We assume that there is no direct
coupling between the scalar field and the matter of the ideal fluid. They can interact
only through the gravitational field. Many different potentials of the scalar field are
used in cosmology [7]. At this step, we do not chose a specific form of the potential
which will be selected later.

Metrical tensor of energy-momentum of the scalar field is obtained by taking a
variational derivative

2 621
q [
Tap V=g 6g%° (5.2.20)
that yields
1
Top = %a¥OpY — gup 5 9, ¥0,¥ + W(¥)|. (5.2.21)

The canonical tensor of energy-momentum of the scalar field is obtained by applying
the Noether theorem and leads to the same expression (5.2.21).

One can formally reduce the tensor (5.2.21) to the form similar to that of the ideal
fluid by making use of the following procedure. First, we define the analogue of the
specific enthalpy of the scalar field “fluid”

Ug = \-870,¥0,¥, (5.2.22)

and the effective four-velocity, v*, of the “fluid”

HqVa = —0gP. (5.2.23)
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The four-velocity v* is normalized to v,v* = —1. Therefore, the scalar field enthalpy Uq
can be expressed in terms of the partial derivative from the scalar field

Uy = VO, Y. (5.2.24)

Then, we introduce the analogue of the rest mass density p, of the scalar field “fluid”

by defining,
Py = Mg = V0,¥ = \-8%0, W0, . (5.2.25)

As a consequence of the above definitions, the energy density, €, and pressure p, of
the scalar field “fluid” can be introduced as follows

€q = 58" 0, WO + WOH) = Spopty + WCY), (5.2.26)
1 1
Pq = ~58 0, W3, - W(¥) = Zpgpty -~ W(P). (5.227)

One notices that a relationship

Mg = LY (5.2.28)
Pq
between the specific enthalpy y, the density p,, the pressure p, and the energy dens-
ity €4, of the scalar field “fluid” formally holds on the same form (5.2.5) as in the case
of the barotropic ideal fluid.
After applying the above-given definitions in equation (5.2.21), it is formally
reduced to the tensor of energy-momentum of an ideal fluid

T = (eq + Pq) VaVp + Py8ap- (5.2.29)

It is worth emphasizing that the analogy between the tensor of energy-momentum
(5.2.29) of the scalar field “fluid” with that of the barotropic ideal fluid (5.2.18) is rather
formal since the scalar field, in the most general case, does not satisfy all required
thermodynamic equations because of the presence of the potential W = W(¥) in the
energy density €, and pressure p, of the scalar field. For example, equation of con-
tinuity (5.3.66) for scalar field differs from that for the ideal fluid (5.3.58) if the potential
W) + 0.

5.2.4 Lagrangian of a localized astronomical system

The Lagrangian .#® of matter of a localized astronomical system (a small-scale struc-
ture inhomogeneity) which perturbs the geometry of the background manifold of
the FLRW metric, can be chosen arbitrary. We shall call the perturbation of the
background manifold that is induced by .#?, the bare perturbation. We assume that
the matter of the bare perturbation is described by a (multi-component) field variable,
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0, which physical meaning depends on a specific problem we want to solve. The Lag-
rangian density of the bare perturbation is given by .#? = /=gL? (@, gaﬁ). Tensor of
energy-momentum of the matter of the bare perturbation, Tgﬁ, is obtained by taking a
variational derivative

TP = i%
B g 6g’
Tensor Tg is a source of the small-scale gravitational perturbation of the back-

ground manifold that is associated with a particular solution of the linearised Einstein
equations which will be derived in next sections.

(5.2.30)

5.3 Background manifold
5.3.1 Hubble flow

We shall consider the background universe as described by the Friedmann-Lemitre-
Robertson-Walker (FLRW) metric. The functional form of the metric depends on the
coordinates introduced on the manifold. Because the FLRW metric describes homo-
geneous and isotropic spacetime there is a preferred class of coordinates which clearly
reveal these properties of the background manifold. These coordinates materialize a
special set of freely falling observers, called comoving observers. These observers are
following with the flow of the expanding universe and have constant values of spatial
coordinates. The proper distance between the comoving observers increases in pro-
portion to the scale factor R(T). In the preferred cosmological coordinates, the time
coordinate of the FLRW metric is just the proper time as measured by the comoving
observers. A particle moving relative to the local comoving observers has a peculiar
velocity with respect to the Hubble flow. An observer with a non-zero peculiar velocity
does not see the universe as isotropic.

For example, the peculiar velocity of the solar system implies the dipole aniso-
tropy of cosmic microwave background (CMBR) radiation corresponding to |v,|
369.0 + 0.9 km-s™}, towards a point with the galactic coordinates (I, b) = (264°, 48°
[234, 246]. Such a solar system’s velocity implies a velocity |v,;| = 627 + 22 km-s™
toward (I, b) = (276°,30°) for our Galaxy and the Local Group of galaxies relative
to the CMBR [177, 262]. The existence of the preferred frame in cosmology should
not be understood as a violation of the Einstein principle of relativity. Indeed, any
coordinate chart can be used in order to describe the FLRW metric. A preferred frame
exists merely because the FLRW metric admits only six-parametric group (3 spatial
translations and 3 spatial rotations) as contrasted with the ten-parametric group of
Minkowski (or De Sitter) spacetime which includes the time translation and three
Lorentz boosts as well. The metric of FLRW does not remain invariant with respect
to the time translation and the Lorentz transformations because its expansion makes

—_—
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different spacelike hypersurfaces non-equivalent. It may lead to some interesting
observational predictions of cosmological effects within the solar system [271].

5.3.2 Friedmann-Lemitre-Robertson-Walker metric

In what follows, we shall consider the problem of calculation of the post-Newtonian
perturbations in the expanding universe described by the FLRW class of models. The
FLRW metric is an exact solution of Einstein’s field equations of general relativity
that describes a homogeneous, isotropically expanding or contracting universe. The
general form of the metric follows from the geometric properties of homogeneity and
isotropy of the manifold [456, 457]. Einstein’s equations are only needed to derive the
scale factor of the universe as a function of time.
The most general form of the FLRW metric is given by

2
ds® = -dT? + R* kaPz +p2 (d28 +sin’ Sdzu) R (5.3.1)

where T is the coordinate time, {p, 9, v} are spherical coordinates, R = R(T) is the
scale factor depending on time and characterizing the size of the universe compared
to the present value of R = 1. The time T has a physical meaning of the proper time
of a comoving observer that is being at rest with respect to the cosmological frame of
reference. The present epoch corresponds to the value of the time T = T,,. The constant
k can take on three different values k = {-1, 0, +1}, where k = -1 corresponds to the
spatial hyperbolic geometry, k = O does the spatially flat FLRW model, and k = +1
does the spatially closed world [315].

The Hubble parameter H characterizes the rate of the temporal evolution of the
universe. It is defined by

H (5.3.2)

55

Il
| =
I
| =

For mathematical reasons, it is convenient to introduce a conformal time, 7, via
differential equation

ar

dl'l = m (5.3.3)

If the time dependence of the scale factor is known, the equation (5.3.3) can be solved,
thus, yielding T = T(n). It allows us to re-express the scale factor R(T) in terms of the
conformal time, R (T(n7)) = a(n). The conformal Hubble parameter is, then, defined as

=2 _29 (5.3.4)
a
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The two expressions for the Hubble parameters are related by means of equation

H=—, (5.3.5)
a

that allows us to link their time derivatives
aH = " - A7, (5.3.6)
@H =" — 460" + 2.7, (5.3.7)
and so on.

It is also convenient to introduce the isotropic Cartesian coordinates X - X,Y,7},
by transforming the radial coordinate

, (5.3.8)

1+ —r
4

and defining r? = X> + Y?+ Z? = 6inin . In the isotropic coordinates the interval (5.3.1)
takes on the following form

ds’ = gopdx“dx’, (53.9)

where the coordinates X* = {XO,XI,XZ,XB} = {n,X,Y,Z}, and the metric has a
conformal form

8op = A* (Mg (5.3.10)

5
LA (5.3.11)

2
(1+ Er2>
4

The spacetime interval (5.3.9) in the isotropic Cartesian coordinates reads

Joo =~ 1L, Joi = 0, g =

i 3y
ds’ = a’(n) | -dn’ + OydXdX’ dXZ
(1 + ’—<r2)

4
The distinctive property of the isotropic coordinates in the FLRW metric is that the
radial coordinate r is defined in such a way that the three-dimensional space looks
exactly Euclidean and null cones appear in it as round spheres irrespectively of the
value of the space curvature k. The isotropic coordinates do not represent proper
distances on the sphere, nor does the radial coordinate r represents a proper radial

distance measured with the help of radar astronomy technique. The proper spatial
distance in the isotropic coordinates is (1+ kr?/4) ‘ar [456].

(5.3.12)
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The FLRW metric presented in the conformal form by equation (5.3.12) singles out
a preferred cosmological reference frame defined by the congruence of worldlines
of the fiducial test particles being at rest with respect to the spatial coordinates X'.
Four-velocity of a fiducial particle is denoted as U* = dX%/dr, where dr = -ds is
the proper time on the worldline of the particle. In the isotropic conformal coordin-
ates, U = (1/a, 0,0, 0). The four-velocity is a unit vector, U*U, = gaﬁU“Uﬁ =11t
implies that the covariant components of the four-velocity are U, = (-a, 0,0, 0). In
the preferred frame the universe looks homogeneous and isotropic. The choice of the
isotropic Cartesian coordinates reflects these fundamental properties explicitly in the
symmetric form of the metric (5.3.10). However, the set of the fiducial particles is a
mathematical idealization. In reality, any isolated astronomical systems (galaxy, bin-
ary star, the solar system, etc.) have a peculiar velocity with respect to the preferred
cosmological frame formed by the Hubble flow. We have to introduce a locally-inertial
coordinate chart which is associated with the isolated system and moves along with it.
Transformation from the preferred cosmological frame to the local chart must include
the Lorentz boost and a geometric part due to the expansion and curvature of cosmolo-
gical spacetime. It can take on multiple forms which originate from certain geometric
and/or experimental requirements [93, 101, 237, 259].

We do not impose specific limitations on the choice of coordinates on the back-
ground manifold and keep the overall formalism of the Post-Newtonian approxima-
tions, covariant. The arbitrary coordinates are denoted as x* = (xo, xi) and they are
related to the preferred isotropic coordinates X* = (1, )'Q) by the coordinate transform-
ation x* = x* (Xﬁ ) This transformation has inverse X* = X* (x/g ), at least in some local
domain of the background manifold. In this domain, the matrices of the coordinate
transformations

a O0x" « 0X®

X me, = & 5.3.13
B~ oxB B oxB (.313)

and they satisfy to the apparent equalities A" MYy = 6;“3 and M* Ay = 6;'3‘ .
Four-velocity of the Hubble observers written in the arbitrary coordinates has the
following form

i = A%0P =a 'A%, i, =M U = —aM’,. (5.3.14)

The background FLRW metric (5.3.10) written down in the arbitrary coordinates, x%,
takes on the following form

Bap(X*) = aF g (X7 (5.3.15)
Here the scalar function a(x*) = a [n(x")], and the conformal metric

Eap(x) = M MY 5, (X). (5.3.16)



236 = 5 Field-theoretical derivation of cosmological perturbations

Any metric admits 1+3 decomposition with respect to a congruence of a timelike vector
field [315]. FLRW metric admits a privileged congruence formed by the four-velocity #*
of the Hubble observers which is a physically privileged vector field. The 1+3 decom-
position of the FLRW metric is applied in arbitrary coordinates and has the following
form

Zup = ~Tgllg + Pyg, (5.3.17)
where the tensor
Paﬂ = azMianﬁgiI-, (5.3.18)

describes the metric on the spacelike hypersurface being everywhere orthogonal to
the four-velocity #* of the Hubble flow. Tensor Paﬂ is the operator of projection on this
hypersuface. It can be also interpreted as a metric on the hypersurace of orthogonal-
ity to the Hubble vector flow. Equation (5.3.17) can be used in order to prove that Paﬁ
satisfies the following relationship

ey = v, (53.19)

which can be confirmed by inspection. The trace P%, = %P3 = PP, = 3.

Now, we consider how to express the partial derivatives of any scalar function
F = F(n), which depends only on the conformal time 1 = n(x%), in terms of the four-
velocity i* of the Hubble flow. Taking into account that n = x° and applying equation
(5.3.14), we obtain

_6F_dF6_11_F,M0 __

0= 3 = g = F M=~ e = il (:3.20

QT

In particular, the partial derivative from the scale factor, a , = -ait, = -1, and the
partial derivative from the Hubble parameter /%, = -1,

5.3.3 Christoffel symbols and covariant derivatives

In the following sections of the chapter we will need to calculate the covariant derivat-
ives from various geometric objects on the background cosmological manifold covered
by an arbitrary coordinate chart x* = °, xi). The calculation engages the affine
connection I By (the Christoffel symbols) of the background manifold which is decom-
posed into an algebraic sum of two parts because of the conformal structure of the
FLRW metric [453]. By definition (see, for example, (A.2.2) for a dynamic metric),

1 _avy/- _ _
Faﬁy = Egm} (gvﬁ,y + gvy,ﬁ - gﬁy,v) ’ (5321)
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where, in our specific consideration,

Bapy = —2HEpih, + @' Epp,. (5.3.22)
Separating terms at the right side side of (5.3.21) yields
™ aa Da
r By =A By + B Bys (5.3.23)
where
A A — A — - =
A%, = —H (81, + &itg - 1" gy, ) (5.3.24)
is a tensor with transformation properties (A.1.16), whereas
na 1 FoU (= = z
By = SE¥ (Fupy + Fp ~ Tpya) (5.3.25)

is left a connection with transformation properties (A.2.3). The non-vanishing com-
ponents of (5.3.24) and (5.3.25) are given in the isotropic Cartesian coordinates X* by
: 8 X, +6 X, ~6,.X
ca a 20 =i kOpdqt04ap — Opg
A Oﬁ = %6 N A ij = %gl]’ qu = _E k N (5.3.26)
1+ ZYZ

where X, = 6quj , and all the other components vanish.

A covariant derivative of a tensor density in a dynamic spacetime is given in
(A.2.5). In this chapter, a covariant derivative on a curved background, Vﬁ, is only a
covariant derivative on the FLRW background manifold. It is defined, of course, by the
same way, however here, for the sake of simplification in the writing it is denoted with
a vertical bar. For example, the covariant derivative of a vector field F* is

Falﬂ = Fa’ﬁ + f‘ﬂﬂyFY. (5.3.27)

Equation (5.3.27) can be brought to yet another form if we denote the covariant deriv-
ative of the affine connection B"‘ﬂy with a semicolon; in this chapter there is no a
confusion with the cases in other chapters of the book where a semicolon means a
covariant derivatives in the Minkowski space in curved coordinates. Making use of
(5.3.23) in equation (5.3.27) transforms it to the following form

X 114 aa
F 1B = F B + A ﬂyFy. (5.3.28)
The covariant derivative of a covector F, is defined in a similar way,

Fojp = Fop = fyaﬁFy (5.3.29)
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which is equivalent to

Fop = Fop =AY F,, (5.3.30a)
Fop = Fop = BY ggF, (5.3.30b)

Equations for tensors of higher rank can be presented in a similar way. Of course, the
covariant derivative of a scalar field F always coincides with its covariant derivative by
definition,

Fo=Fq=F, (5.331)

We also provide an equation for the covariant derivative of the four-velocity of
the Hubble flow. Doing calculations in the isotropic coordinates X* for the four-
velocity U%, and applying the tensor law of transformation to arbitrary coordinates
x%, results in

g = HPyg, 0= H(8f+ung), " = HPY, (53.32)

where the tensor indices are raised and lowered with the metric g,g.

5.3.4 Riemann tensor

The Riemann tensor for the FLRW background is defined, as usual (A.2.15), by

Ry =T = Ty + T I, = T, 7, (5333)

and can be calculated directly from this equation. We prefer a slightly different way by
making use of the algebraic decomposition of the Riemann tensor into the irreducible
parts

- _ 1, _ -
Ropuy = Cappy + 2 (Saugﬂv *+ Spv8ayn ~ S8y — SﬁugaV)

+ 2 (8 ~ ) (53.34)

where Cyg,, is the Weyl tensor,
Sw=Ry - %Réw, (5.3.35)
R, = g“BRWV is the Ricci tensor, and R = g"‘/’Raﬂ is the Ricci scalar. The Weyl tensor of

a conformally-flat spacetime vanishes identically,

Copy = O (5.3.36)
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Therefore, FLRW cosmological metric (5.3.1) has a remarkable property — it can be
always brought up to the conformally-flat form by applying an appropriate coordinate
transformation [239].

Direct evaluation of other tensors entering (5.3.34) by making use of the FLRW
metric (5.3.10), (5.3.11) yields

Ry = % [ (8 - 20,1,) +2(A7 + K) (g + 1,1, )], (53.37)
S = % (" + A7 + k) (a},av + %g}w), (53.38)
R- % (' + A7+ K). (53.39)

Making use of equations (5.3.36—5.3.39) in the decomposition (5.3.34) of the Riemann
tensor, yields the following result

Rap = 5 [ (Baup ~ Enip) = (7' = 7 1) (PuByy ~Puy)]. - (5340)

where
Paﬁ = gaﬂ + ﬂaﬂﬁ’ (5.3.41)

is the operator of projection that was introduced earlier in (5.3.18).

5.3.5 The Friedmann equations

The Einstein tensor Gaﬁ = Raﬁ - gaﬁR/Z of the FLRW cosmological model is derived from
equations (5.3.37) and (5.3.39). It reads

Gup = = [2(" = A2~ K) B +3(2 +K) 2. (5.3.42)

Einstein’s field equations on the background spacetime takes on the following form
Gop = 87T, (5.3.43)

where the tensor of energy-momentum of the background spacetime manifold
includes the background matter and the scalar field

Top = Top + Top. (5.3.44)

Here, tensors of energy-momentum in the right side of Einstein’s equations are derived
from the Lagrangians (5.2.16) and (5.2.19), and represent an algebraic sum of tensors
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(5.2.18) and (5.2.22). Each tensor of energy-momentum, TIT;} and Tgﬁ, is Lie-invariant
with respect to the group of symmetry of the background FLRW metric independently,
and each of them has the form of the tensor of energy-momentum of the perfect (ideal)
fluid. Hence, the tensor of energy-momentum Taﬁ in the right side of (5.3.43) has the
form of a perfect fluid as well,

Top = (€+ D) Uyllp + P 8up- (5.3.45)
It imposes a certain restriction on the effective energy density € and pressure p which

must obey Dalton’s law for a partial energy density and pressure of the background
matter and the scalar field components

€=y +Ey (5.3.46)
D = Dm +Dq- (5.3.47)

Here, &, and p,, are the energy density and pressure of the ideal fluid, and &, and
Dq are the energy density and pressure of the scalar field which are related to the

time derivative ¥ of the scalar field and its potential W = W(¥) by equations (5.2.26),
(5.2.27). On the background spacetime these equations takes on the following form

€q = SPgllq + W, (5.3.48)

Poitq — W, (53.49)

Pq =

NI= NI =

where ji, is the background specific enthalpy of the scalar field defined by (5.2.22),
and py = Hy is the background density of the scalar field “fluid”. It is worthwhile to
remind to the reader that due to the homogeneity and isotropy of the FLRW metric,
all matter variables on the background manifold are functions of the conformal time
n only when being expressed in the isotropic Cartesian coordinates.

Einstein’s equation (5.3.43) can be projected on the direction of the background
four-velocity of matter and on the spatial hypersurface being orthogonal to it. It yields
two Friedmann equations for the evolution of the scale factor a,

8 k
H - ?"é - (5.3.50)

: Kk
2H +3H* = -8mp - L (5.3.51)

where € and p are the effective energy density and pressure of the mixture of matter
and scalar field as defined above.
A consequence of the Friedmann equations (5.3.50), (5.3.51) is an equation

H=—4n(e+p)+ ak (53.52)
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relating the time derivative of the Hubble parameter with the sum of the overall energy
density and pressure, which can be expressed in terms of the density and specific
enthalpy of the background components of matter,

€+ P = Prfiy + Pglly- (5.3.53)

In order to solve the Friedmann equations (5.3.50), (5.3.51) we have to employ the equa-
tion of state of matter. Customarily, it is assumed that each matter component obeys
its own cosmological equation of state,

Pm =Wn€m,  Dq = Wg€qgs (5.3.54)

where wy,, and w,, are parameters lying in the range from -1 to +1. In the most simple
cosmological models, parameters wy, and w, are fixed. More realistic models admit
that the parameters of the equation of state may change in the course of the cosmo-
logical expansion, that is they may depend on time. The equation of state does not
close the system of the Friedmann equations, which have to be complemented with
the equations of motion of the scalar field and of the ideal fluid in order to make
the system of differential equations for the gravitational and matter field variables
complete.

5.3.6 Hydrodynamic equations of the ideal fluid

The background value of the Clebsch potential of the ideal fluid, ®, depends only on
the conformal time 1 of the FLRW metric. The partial derivative of the potential, taken
in arbitrary coordinate chart on the background manifold, can be expressed following
equation (5.2.14) in terms of the background four-velocity a* as follows

Dy = ~Fmilo (5.3.55)

where the background value of the specific enthalpy is

i = 8%, D (5.3.56)

in accordance with definition (5.2.14). It allows us to write down the specific enthalpy
of the ideal fluid in terms of a derivative from the Clebsch potential ®. Multiplying
both sides of (5.3.55) with &, and accounting for &i*i1, = —1, we obtain

'y, = . (5.3.57)

Hm
The background equation of continuity for the rest mass density p,, of the ideal fluid is

(Pmtl")jy = 0 (5.3.58)
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that is equivalent to
Pmla — 3Hppil, = 0, (5.3.59)
where we have used (5.3.32). The background equation of conservation of energy is
Emia — 3H (€ + D) Uy = O, (5.3.60)
where we have employed definition of the energy (5.2.4), and equation (5.3.59) along
with (5.2.6).
5.3.7 Scalar field equations

Background equation for the scalar field ¥ is derived from the action (5.2.1) by taking
variational derivatives with respect to V. It yields

5Py, " -0, 5.3.61
8 g ¥ ( )

In terms of the time derivatives with respect to the Hubble time T, equation (5.3.61)
reads

Vo3 W o, (5.3.62)
0w

Here, we have taken into account that the background value of the scalar field, ¥,
depends only on time T = T(n), and its derivative with respect to T (denoted with a
dot) is proportional to the background four-velocity

¥, = ¥, (5.3.63)

which follows directly (5.3.20). If we use the definition of the background enthalpy of
the scalar field

fig = 09, = 7, (5.3.64)

and account for definition (5.2.26) of the specific energy €q of the scalar field, equation
(5.3.62) will become

Eqa ~3H (8 +Dq) i1y = 0 (5.3.65)

that looks similar to the hydrodynamic equation (5.3.59) of conservation of energy of
the ideal fluid. Because of this similarity, the second Friedmann equation (5.3.51) can
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be derived from the first Friedmann equation (5.3.50) by taking a time derivative and
applying the energy conservation equations (5.3.60) and (5.3.65).

The background density p, of the scalar filed “fluid” is p, = j1, in accordance with
(5.2.25). The equation of continuity for the density p, of the ideal fluid is obtained by
differentiating definition of o, and making use of (5.3.62). It yields

I _ aW
(pqu )|a = —a—qj, (5.3.66)
or, equivalently,
_ _ o owW_
pq|a - 3Hpqua = ﬁua, (5.3.67)

which shows that the ‘density’ p, of the scalar field ‘fluid’ is not conserved in the most
general case of an arbitrary potential function W(¥). We emphasize that there is no
any violation of physical laws, since (5.3.67) is simply another way of writing equation
(5.3.61), and the scalar field is not thermodynamically equivalent to the ideal fluid.
Equation (5.3.67) is convenient in the calculations that follow in next sections.

5.3.8 Equations of motion of matter of the localized astronomical system

Matter of the localized astronomical system is described by the tensor of energy-
momentum TE/; defined in (5.2.30) in terms of the Lagrangian derivative. It can be
given explicitly as a function of field variables after we chose a specific form of matter,
for example, gas, liquid, solid, or something else. We do not restrict ourselves with
a particular form of this tensor, and shall develop a more generic approach that is
applicable to any kind of matter comprising the localized astronomical system.

Background equation of motion of matter of the astronomical system is given by
the conservation law

TS g = 0. (5.3.68)

It can be also written down in terms of a covariant derivative of the conformal metric

(V1) J* \-gA%, T8 = 0, (5.3.69)

5

where the connection A"‘ﬁy is defined in (5.3.24). Equation (5.3.68) tells us that the mat-
ter of the small-scale perturbation follows geodesics of the background manifold. This
is the starting point for doing the Post-Newtonian approximations in cosmology. In the
geodesic approximation the matter of the isolated astronomical system has no self-
interaction through its own gravitational field. The self-interaction appears at the next
step of the post-Newtonian iteration procedure.
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It is natural to write down equation (5.3.68) in 1+3 form by projecting it on the dir-
ection of 4-velocity of the Hubble flow, ii%, and on the hypersurface being orthogonal
to it. This is achieved by introducing the following projections

o= wu'T, (5.3.70a)
T= P'T), (5.3.70Db)
T, = - PJU'Ty, (5.3.70c)
T = Pl'Pg'Ty, (5.3.70d)

which corresponds to the kinemetric-invariant decomposition® of Tﬁv introduced by
Zelmanov [473, 474]. Quantity o is the energy density of matter of the localized system,
7, is a density of a linear momentum of the matter, and Tag is the stress tensor of the
matter (the reader should not confuse 7 in (5.3.70b) with the proper time).

Equations of motion (5.3.68) of the localized matter can be rewritten in terms of
the chronometric quantities as follows,

(ou® + T")| . = —HT, (5.3.71a)

(% + @) = -H (" - a"7), (5.3.71b)

1B
where % = g“ﬂr/; and 7% = g““gﬂ"rw. Equation (5.3.71a) is equivalent to the law of con-
servation of energy of matter of the localized system. Equation (5.3.71b) is analogues
to the Euler equation of motion of fluid or the equation of the force balance in case of
solids.

5.4 Lagrangian perturbations of FLRW manifold
5.4.1 The concept of perturbations

Recall that FLRW background manifold is defined by the metric g, which dynamics is
governed by background matter fields - the Clebsch potential ® of the ideal fluid and
the scalar field ¥. We assume that the background metric and the background values
of the fields are perturbed by a localized astronomical system which is considered as
a bare perturbation associated with a field variable ©.

3 This decomposition is also known as a threading approach or 1 + 3 orthonormal frame approach
[450]. It is different from 3 + 1 decomposition ADM technique considered in Section 3.1, see discussion
later.
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Various possibilities for definition of metric perturbations are discussed in
Section 2.2.6. Here, we consider perturbations of the metric, Haps defined by the
splitting,

gaﬂ = gaﬂ + %aB, (5.4.1)

as a more popular ones, and the perturbations, h“ﬁ , defined in (5.4.6), as more con-
venient ones, for doing variational calculus see below. The matter fields caused by the
bare perturbations can be split in their backgrounds values and the corresponding
perturbations,

O=D+¢p, Y=Y+ (5.4.2)

These equations are exact. We emphasize that all functions entering equation (5.4.1)
and (5.4.2) are taken at one and the same point of the background manifold. The bare
perturbation does not remain the same in the presence of the perturbations of the
metric and the matter fields. Therefore, the field variable © corresponding to the bare
perturbation, is also can be presented in the perturbed form:

0=0+06. (5.4.3)

Thus, for the goals of the present chapter, (5.4.2) and (5.4.3) are considered as a par-
ticular example of the decomposition (2.2.8) in Section 2.2. Although (5.4.1-5.4.3) are
exact, we consider the perturbations of the metric - Hops the Clebsch potential - ¢,
and the scalar field - Y as being small with respect to their corresponding background
values gng, ®, and ¥, which dynamics is governed by the background equations
that have been explained in Section 5.3. Because the field variable © is the source
of the bare perturbation, we postulate that its background value is equal to zero:
© = 0. The perturbations Haps ¢, and 1 and their derivatives have the same order
of magnitude as 6.

Perturbation of the contravariant component of the metric is determined from the
condition gaygyﬁ = gaygyﬁ = 6§, and is given by

g¥ =%, uayu)'ﬁ ..., (5.4.4)

where the ellipses denote terms of the higher order.

Here, we refer to the perturbations s,z in (5.4.1) because in literature they are very
popular, see e.g., the textbook [283]. However, as it was discovered in Section 2.2, in
the framework of the field-theoretical derivation a more convenient field variable of
the gravitational field in the theory of Lagrangian perturbations of curved manifolds,
is a contravariant metric density,

g% = vgg*, (5.4.5)

that we call the Gothic metric. The convenience of the Gothic metric stems from the
fact that it enters the de Donder (harmonic) gauge conditions which significantly
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simplifies the Einstein equations [285, 453]. Making use of the Gothic metric allows
us to significantly reduce the amount of algebra in taking the first and second vari-
ational derivatives from the Hilbert Lagrangian and the Lagrangian of the background
matter in FLRW metric as explains in the rest of this section.

Thus, following (2.2.7), we accept that g"‘ﬁ is expanded around its background
value, §% = \/-2g%, as follows

g% = g% +p%, (5.4.6)

which is an exact equation and where f)“ﬁ is also a tensor density of the weight +1.
Further calculations prompt that it is more suitable to operate with a variable quantity

ap
peb = O (5.4.7)

-8

that is a tensor. This variable splits the dynamic degrees of freedom of the gravitational
perturbations from those of the background manifold which evolves in according with
the unperturbed Friedmann equations. Tensor indices of h* are raised and lowered
with the help of the background metric, for example, h,g = gaygﬁvh“". The field
variable h% relates to the perturbation qp Of the metric tensor. To establish this rela-
tionship, we start from (5.4.5), substitute equation (5.4.6) to its left side, and expand
its right side in the Taylor series with respect to »,g. It results in

a—aﬂ 1 az—aﬂ
ap g g
= — N,y +t ————— U, X, +...
08, M 208,08, M7

b (5.4.8)

that is a particular case of (2.2.122). The partial derivatives in (5.4.8) are calculated by
successive application of the following rules

3@“ﬂ 1 = (=au=pv  -av-Bu  —af_uv

%, = —o\-g (g™ + g™ - g"g"), (5.4.92)
agaﬁ 1 =au-pv , -av-fu

g7 _ 1 , 49b
T 2(g - ) (5.4.9b)
VZ 1 [

T = +2ﬂ 5", (5.4.9¢)

which can be easily confirmed by inspection and which are particular cases of the
coefficients in (2.2.115). Replacing the partial derivatives in (5.4.8) and making use of
the definition (5.4.7), yields the relationship between h* and »*® as follows

1 1 1 1
h = % 4 Eg“ﬁ% + P, - Eu“ﬁ% - Zg’*ﬁ (n'”xw - 5%2> P (5.4.10)

where x = »°; = 877x,,, and ellipses denote terms of the cubic and higher order in .
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Perturbations of four-velocities, w* and v*, entering definitions of the energy-
momentum tensors (5.2.18), (5.2.29), are fully determined by the perturbations of the
metric and the potentials of the matter fields. Indeed, according to definitions (5.2.13)
and (5.2.25) the four-velocities are defined by the following equations

@ ¥
w, = -—2, Vg = ——2%, (5.4.11)
Hm Hq

where p,, = -g%® @5 and p, = -g¥V¥ ¥ in accordance with (5.2.14) and
(5.2.22) respectively. We define perturbation of the covariant components of the
four-velocities as follows

Wy = 1, + 6wy, V, = U, + Ov,, (5.4.12)

where the unperturbed values of the four-velocities coincide and are equal to the four-
velocity of the Hubble flow due to the requirement of the homogeneity and isotropy of
the background FLRW metric. Substituting these expansions to the left side of defini-
tions (5.4.11), and expanding its right side by making use of the expansions (5.4.2) and
(5.4.4) of the scalar fields and the metric, yields

1 - 1 _ 1 - 1 _
W =~ P b~ 390 BV = —p—qPﬂazp,ﬁ - Sk, (54.13)
where we have introduced a new notation
q = 1@y, (5.4.14)

for the gravitational perturbation of the metric tensor projected on the background
four-velocity of the Hubble flow. Making use of h,g, the previous equation can be
recast to

. h
q =0T hey + 3, (5.4.15)

where h = k%, = g“/‘haﬁ. Remembering that 3 = P% — 4@, we can put equation
(5.4.15) yet to another form

(@5 + PP) hyg, (5.4.16)

N =

qE

which is useful in the calculations that follow.
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5.4.2 The background field equations

The action of the unperturbed FLRW metric is a functional
5= J d'x ZHE, (5.4.17)
Q

depending on the unperturbed Lagrangian

PHE _ —%TD'ZH +. P 7 (5.4.18)

where the action (5.2.1) and the Lagrangian (5.2.2) are taken on the background val-
ues of the field variables g,5, @, and ¥. Thus, = g, ™ = g™ ((ib, g“ﬂ),
29 = 29(, ).

Dynamics of the background universe is governed exclusively by the background
matter. The background equations corresponding to (5.4.17) with (5.4.18) are

1 67% o™ s

16m 5% * 5548 + 5598 =0, (5.4.19a)
cpom
o 0, (5.4.19b)
5D
7z}
%2 o, (5.4.19¢)
v

These equations, for the goals of the present chapter, make concrete the background
system (2.2.10) and (2.2.11) in the Section 2.2.

These equations have been thoroughly discussed also in Section 5.3. Solution
of these equations depends on the equation of state of the background matter. We
assume that the solution exists and that the time dependence of the FLRW metric
8ap = 8ap(1), the Clebsch potential ® = ®(n), and the scalar field ¥ = ¥(n) is explicitly
known.

5.4.3 The dynamic Lagrangian for perturbations

The presence of a localized astronomical system perturbs the spacetime manifold and
the background values of the field variables described in previous subsection. The
perturbed Lagrangian becomes an algebraic sum of four terms, as it was defined in
Section 5.2,

PHE _ _ﬁthgm + P PP (5.4.20)
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where the Lagrangian .#* = .2?(6, g,4) describes the bare perturbation, the Hilbert
Lagrangian of the gravitational field is .7 = /-8R = %, where R is the Ricci scalar,
the Lagrangian density of matter is ™ = 2™ (®, g,4), and the Lagrangian density of
the scalar field .9 = Z9(¥, 8ap)-

The field equations are obtained by taking the variational derivatives from the
perturbed action with the Lagrangian (5.4.20) with respect to various variables subject
to the least action principle. In accordance with this principle, we obtain the Einstein
equations, and equations for the matter fields in the form:

1 8% s™ s 6P

e o 5t 58 " 5a (5.4.21a)
% -0, (5.4.21b)
% -0 (5.4.21c)
% 0. (5.4.21d)

The Post-Newtonian approximations of these equations can be rendered directly by a
separation of the background values from their perturbed values and the use of Taylor
decompositions. One has to assume also that gravitational dynamics of the unper-
turbed FLRW metric obeys the background field equations shown in Section 5.4.2.
Then, the perturbed part of the equations represent a series of the post-Newtonian
equations of the first, second, third, etc. order, which can be solved by successive
iterations.

However, here we use more elegant and economical field-theoretical approach to
general relativity developed in Section 2.2. From the one hand it is exact; from the
other hand, it permits also to represent equations in series of the post-Newtonian
equations of the first, second, third, etc. order. In this chapter we restrict ourselves
with the linearized approximation of the first order with respect to the perturbations.
It generalizes the first post-Newtonian field equations in asymptotically flat spacetime
to the case of the expanding universe.

Thus, for the Lagrangian (5.4.20) we derive the dynamical Lagrangian (2.2.15) for
the perturbations h*”, ¢, i and 6 as dynamic variables on the FLRW background:

I

fdyn =$HE_ uv  _
" bgh ¢ 6D

i
P 6£ - 7 4 div. (5.4.22)

One has to notice that this Lagrangian is defined up to a divergence, which can
be important in the discussion of the boundary conditions but it does not enter
equations of motion of fields which represent a system of the differential equations
in partial derivatives for the perturbations. The variation of (5.4.22) with respect to



250 — 5 Field-theoretical derivation of cosmological perturbations

the metric perturbations h**, and to matter perturbations ¢, ¥ and 6 gives the
field-theoretical equations, which are equivalent to the full set of the equations
(5.4.21a),(5.4.21b), (5.4.21c) and (5.4.21d), respectively. These field-theoretical equa-
tions represent a particular case of the equations (2.2.26) and (2.2.38) in the field-
theoretical derivation of general relativity, and we discuss them below in detail.

The dynamical Lagrangian (5.4.22) can be represented in the expansion form.
Following (2.2.47), one has for the perturbations on the FLRW background:

g =M - L=y L+ 2P, (5.4.23)
n=2
where %, = ZHE s the Lagrangian describing the dynamic properties of the

background manifold, and .#? is the Lagrangian of the bare perturbation. For any
n< 1,

1( w6y 8L 6%
L=~ p =l us i”), 4.24
" n(h Sg i 6D HY &Y G424

is the Lagrangian perturbation defined iteratively by taking variational derivatives
from the Lagrangian perturbations of the previous iteration. In particular,

87 87 8%

R L S 5.4.25a
1=9 Sghv ¢ 5D 4 5V ( )

1 8%, 8% 8
@ =_< w2l (04 | _1> 5.4.25b
279 b Sghv ¢ o) 4 5 ( )

and so on.

5.4.4 The Lagrangian equations for gravitational field perturbations

Varying the Lagrangian (5.4.23) with respect to b one obtains differential equations
for the metric (gravitational) perturbations. Contracting them with

og*?
oghv

V(O - 1675, (5420
see (A.2.46) in Appendix A.2.4, one obtains
G, + @, = 8mtse". (5.4.27)

This concretizes the field-theoretical equations (2.2.26) for the goals of the present
chapter. One can notice that (5.4.27) generalizes the Einstein field equations in
asymptotically flat spacetime to the case of the expanding FLRW metric.
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The left hand side of (5.4.27) is linear in perturbations. Recall that G’Lw is defined
in (2.2.27),

L1 8 [ 87"
G, = N=F=T (h 57 )" (5.4.28)

I . . eps
Tensor @, is an algebraic superposition

@, =Fp +Fl, (5.4.29)

where the linear operators are defined through the Lagrangian derivatives as follows,

m__ 16m 8 [ 0™ wm
Fy, = _\/E" 52 ( 55 ¢> i (5.4.30a)

16mr 6 6.4 63‘1

q _ _ O af o<
W= ( 55 1,0 > (5.4.30b)

These concretize (2.2.28) for the model of the present chapter.
The right hand side of equation (5.4.27) is the generic metric energy-momentum
tensor for the system (5.4.22) (the same (5.4.23)) defined by the general rule in (2.2.29):

gen _ 2 6& dyn tot

W \/_ 5gyv PV

The last term here is the energy-momentum tensor of the bare gravitational perturb-
ation which is generated by the matter of the localized astronomical system and is
associated with the last term in (5.4.23). Because TEV has a special meaning of a bare

Tp (5.4.31)

perturbation we separate it from tL?f defined in field-theoretical equations (2.2.26).
The first term at the right hand side of (5.4.31) is the energy-momentum tensor of the
non-linear corrections of the second and higher order of magnitude. Corresponding to
(2.2.29) and (5.4.23), they are given by

2 (6% 6%
t“’t:—( 2, 3 ) 4.32
w =g s g 6432
Tensor t;fvt can be split in three algebraically-independent parts
ot €5, + ty + U] (5.4.33)

w = uv?

where tﬁv is the stress-energy tensor of pure gravitational perturbations h*” while and
t;‘,‘, and t;}v are the stress-energy tensors characterizing gravitational coupling of the
matter fields ¢ and ¥ with the gravitational perturbations h*. The exact expression
for the tensor tﬁv is given by (2.2.30) with (2.2.31) in Section 2.2.
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If we restrict ourselves only with the second order non-linear corrections, the
corresponding stress-energy tensors are given by variational derivatives

=— 1 6 po L _1 PO ~L
i = 1677/—g 65" (b Gpo ~ 308" Gpa>’ (5.4.34)
m 1 6 PO pm 1 0 m _ ,m
W = " lenyg 6" (b Foo = 598" Fpe + \/—_g¢Fq>), (5.4.35)
1 ) 1
4 = PORd _ ~poPopd ord
v = 16n\/—_g5gﬂ"<b Fog zhgp Fpa+\/_gl/)Fq/), (5.4.36)

where Fg and Fy are defined below in (5.4.47), (5.4.53).

Notice that contribution of t;fvt to the linearized field equations should be neg-
lected as it is of the higher order as compared with other terms in (5.4.27). The
differential operator, Gyv, represents a linearized perturbation of the Ricci tensor and
is given in (2.2.27),

1 _
GII;V = E (huvlam + gwhaﬁmﬁ - hamvla - havwla) s (5.4.37)

where each vertical bar denotes a covariant derivative with respect to the background
metric g, of the FLRW background.

Operators F " and F |, depend essentially on a particular choice of the Lagrangian
of matter and scalar ﬁeld and take on different forms depending on the specific ana-
lytic dependence of .#™ and .#9 on the field variables. In the particular case of the
ideal fluid, the term embraced in the round parentheses in the right side of equation
(5.4.30a) is

LB (i ) o o). o

where " = —g“ﬁ(D ﬂ/ym, and T is given in (5.2.18). We emphasize that though the
ideal fluid satisfies the equation of continuity (5.3.58), it should not be immediately
implemented in (5.4.38) because this expression is to be further differentiated with
respect to the metric tensor according to (5.4.30a).

For the scalar field, the term enclosed to the round parentheses in the right side
of (5.4.30b) is

aﬁ‘;{ﬁ ¢Lﬂ=%haﬁ(j"2ﬁ_§gaﬁi‘ )+¢[\/?_2V+a (pq\/%ua>:|, (54.39)

where i = -g**¥ BlHqs Pq = yq, /3 is given in (5.2.29), and the equation of continu-
ity for the scalar field (5.3.66) should not be implemented until differentiation with
respect to the metric tensor (5.4.30b) is completed.
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Taking the variational derivatives with respect to g from the expressions (5.4.38)
and (5.4.39), and applying thermodynamic equations (5.2.11), allows us to write down
the right sides of equations (5.4.30a), (5.4.30b) in a more explicit form as follows,

2
_ _ C _ _ _
F;[‘l/ = -4 [(pm - em)lyv + (1 - ﬁ) (€m +pm)quyuv] (5.4.40)

S

+ 87Tpm {uy¢,v + uv¢,y + [(1 - ﬁ)uyuv _gyv] ua(p,a} s

S

_ oW
F}(llv =—4n [(pq - Gq) lyv - 2gyvﬁ lzb:| (5.4.41)

+87p, (l_iyl/’,v +ip, - gyva“ll,’,x) ,

where p, = ¥ = Hq in accordance with definition (5.2.25). The potential energy of the
scalar field, W = W(W), is kept arbitrary.

It is important to emphasize that in the most general case the ratio vﬁ/c2 of the
speed of sound in fluid to the fundamental speed ¢, may be not equal to the parameter
wy, of the equation of state (5.3.54), that is there are physical equations of state such
that wp, # (vg/ ¢)%. Indeed, the speed of sound is defined as a partial derivative of pres-
sure p,, with respect to the energy density €, taken under the condition of a constant
entropy Sy,

v

5)
L (ﬂ> . (54.42)
¢ Sm=const.

o€
This equation is equivalent to the following relation

V_g _ (apm/aym)sm:const. (5.4.43)
c2 (aem/aﬂm)sm=const. ’

which is a consequence of thermodynamic relations and a definition of the partial
derivative. The ratio of the partial derivatives in (5.4.43) is not reduced to w,, in
case when w,, depends on some other thermodynamic parameters which are func-
tions of the specific enthalpy. For example, in case of an ideal gas the equation of
state p,, = W€y, Where w,, = kT/mc?, k is the Boltzmann constant, m - mass
of a particle of the ideal fluid, and T is the fluid temperature. The speed of sound
V= (apm/aem)Sm:wnst. = Twy > Wy = Pp/€m, where T > 1 is the ratio of the
heat capacities of the gas taken for the constant pressure and the constant volume
respectively [284].

The scalar field with the potential function W(¥) # 0 does not bear all thermody-
namic properties of an ideal fluid. Nevertheless, we can formally define the speed of
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“sound” ¢, propagating in the scalar field “fluid”, by equation being similar to (5.4.43).
More specifically,

C_g _ (apq/a'MQ)‘P=const. . (5.4.44)
¢t (9eq/opg)

W=const.

Simple calculation reveals that the speed of “sound” for scalar field is always equal to
the fundamental speed

Cs =G, (5.4.45)

irrespectively of the value of the potential function W(¥). It explains why the terms
being proportional to the factor 1 - cz/cg, do not appear in the expression (5.4.41) as
contrasted with (5.4.40).

5.4.5 The Lagrangian equations for dark matter perturbations

The perturbed field equations for the dark matter which is modelled by the ideal fluid,
are obtained by taking the variational derivatives with respect to the field @ from
the Lagrangian (5.4.20) — it corresponds to the middle equation in (5.4.21a). Taking
into account the background equation (5.4.19b) yields the equation of sound waves
propagating in the fluid as small perturbations of the potential ¢,

Fg = 8ns", (5.4.46)

where the linear differential operator

1 6 5™ 5™
Fp=-———r=—|(0'"—+¢p— |, 5.4.47
*T g éd (h s ¥ 50 ) G441
and the source term
L™ 8.4
sme ! . ( 2 3 +> (5.4.48)
8m\/-g \ 6@ 6D

Thus, the equation (5.4.46) concretizes the general equation (2.2.37) for the case of the
dynamic field ¢ that is a perturbation of the background Clebsch potential ®.

According to equation (5.2.12), the Lagrangian of the ideal fluid can be rewritten
as £™= — \/=gp,, which is further transformed to (5.2.16). In the case of a single-
component ideal fluid, the Lagrangian (5.2.16) depends merely on the derivative of the
Clebsch potential @ and on the metric tensor. Therefore, the explicit form of the linear
operator Fg is reduced to a covariant divergence

Fo =Y, (5.4.49)
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where a vector field

Y* =

1 oL™ 1_ - oL™
- h* - -h"”> — = =g, L" —, 5.4.50
oD, [( 2"® (aguv PRl APy 6450
h= g’*ﬁhaﬁ and the partial derivatives are taken from the Lagrangian L™ = —p,,. More
specifically, calculations yield

ye=Pm gl 5 hag s (1 - —> (pm B“w g - —pmu q> (5.4.51)
Hm (AN
Similar expression was derived by Lukash [301] who used the variational method to
analyze the production and quantization of sound waves in the early universe.

5.4.6 The Lagrangian equations for dark energy perturbations

Equations for the perturbations i of dark energy, which is modelled by a scalar field
Y, are derived by taking the variational derivative from the Lagrangian (5.4.20) with
respect to the field variable ¥ - see equation (5.4.21c). Subtracting the background
equation (5.4.19¢) from (5.4.21c) and making use of the Lagrangian decomposition in
the Taylor (post-Newtonian) series leads to

Fy = 8m3f, (5.4.52)
where the linear differential operator
1 6 RZE NN A7
Fl=-——— (0" +p— |, 5.4.53
¥ \/_g&}'(b g lpaw) (54.53)
and the source term
&Zq 6$q
sa= 1 < 253, > (5.4.54)
8m\-g \ 6% Y

Equation (5.4.52) concretizes the general equation (2.2.37) for the case of the dynamic
field 1 that is a perturbation of the background scalar field ¥.

According to equation (5.2.19), the Lagrangian of the scalar field can be rewrit-
ten as .29 = \/~gL9 and depends on both the field ¥ and its first derivative, ¥ ,. For
this reason, the differential operator F9 is not reduced to the covariant derivative from
a vector field as the partial derivative of the Lagrangian with respect to ¥ does not
vanish. We have

5
F h 8W ow

\(}1 = Zaltx -y

239 Yo (5.4.55)
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where vector field

«_ O w Lo\ (oY 1_ -4 oL1
Z a\i/,a |:<h —Ehg ) ag_yv—zguvl, +¢’ﬁ@ . (5456)

Performing the partial derivatives in equation (5.4.56), yields a rather simple
expression

Z" =" - p,n%ug, (5.4.57)

where we have used equation ¥, = —ﬂﬁ‘i’wﬂa = —pqll,- The reader is invited to com-
pare equation (5.4.57) with (5.4.51) to observe the differences between the Lagrangian
perturbations of the ideal fluid and the scalar field. One may observe that (5.4.51)
becomes identical with (5.4.57) in the limit vy — ¢, and p,;, — fi,. This corresponds to
the case of an extremely stiff equation of state w,, = 1in equation (5.3.54). According
to the discussion following equations (5.4.44), (5.4.45) the speed of “sound” c, in the
scalar field “fluid” is always equal to c. However, it does not assume that the para-
meter wg of the equation of state of the scalar field, Dq = Wq€qs in (5.3.54) is equal to
unity. This is because the scalar field is not completely equivalent to the ideal fluid in
the sense of thermodynamic [7].

5.4.7 Linearized post-Newtonian equations for field variables

Equations for the metric tensor perturbations

Linearized field equations for gravitational field variables, huv’ are obtained from
(5.4.27) after neglecting in its right side the non-linear source t;?f, and making a series
of transformations to sort out similar terms. First, let us make use of equations (5.4.40)
and (5.4.41) to find out

F}IJI; + F}(}v =4n (é —I_?) hyv (5.4.58)

2
_ - _ _ C
+ 8ﬂpm [uy¢,v + uv¢,y - g,uvua(p,a + <1 - ﬁ)

s
_a 1_ _
X <u ¢,a - Equ> uyuv]

_ |- _ a _ OW(®)
+ 8ﬂpq [uylp,v + uvlp,y _gyvualp,a +gvaﬂ_l/:1:| s

where we used the superposition € = &y, + €, P = P, + Pq- Second step is to transform
the linear differential operator F: f;v in (5.4.37) to a more convenient form that will allow
us to single out the gauge-dependent vector denoted by

A= R, (5.4.59)
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Changing the order of the covariant derivatives in (5.4.37) and taking into account that
the commutator of the second covariant derivatives is proportional to the Riemann
tensor, we recast (5.4.37) to the following form,

L _1 - 5 5
G =5 (hﬂvlala + 8uA o — Ay — AVIu) ~ R Ga = Ry ™ (54.60)

where the round brackets around indices denote symmetrization. The terms with the
Ricci and Riemann tensors can be expressed in terms of the total background energy
and pressure of the ideal fluid and scalar field by making use of equations (5.3.34),
(5.3.36) and Einstein’s equations (5.3.43). It yields

= 5¢ _ h(_. &€\._
R%hyye + Rwﬁvh“ﬁ = lm[(? —p) hy, + > (p - §>gyv (5.4.61)

+ (& +p) (20", hyg + 200, by - 1,00, - gwq)].

Finally, substituting equations (5.4.58), (5.4.60) and (5.4.61) to (5.4.27) results in

hyvlaltx + gr;uvAalo( - Aylv -A (5.4.62)

v
€ h(_. &\._
- 16n[§hw+z(p—§>gyv

YA P 1_ _ 1._
+ (E+D) <§u“u(yhv)a - Euyuvh - Eg"‘”qﬂ

- _ _ ) /- 1. \. .
+ 167Tpm [uy¢,v + uv(pb,y - gyvua¢,a + <1 - ﬁ) (ua(p,a - Equ) uyuv]

S

- _ - _ W)
+ 167qu [uyl/),v + uvl/),y _gyvu l/),a +gvaﬂ_q
= 16nTy,,
where the non-linear term, t;f"}, was neglected in the right side of (5.4.62).

The very first term in (5.4.62) is a tensorial Laplace-Beltrami operator, huvlala =
gaﬁhyvmﬁ, that is a rather complicated geometric object. Its explicit expression can
be developed by making use of the Christoffel symbols given in (5.3.23). Tedious but
straightforward calculation yields [272]

R0 = 8 s + 2HE Ry = 2 (Hihyy,),, - 2 (HiChgy),, (5.4.63)

1%

+2H (,A, + i,A, ) + 2H (hy, — 0l hy, — 0%,y )

+ 2H? (2, + 30,11 Mgy + 30,8 Ry, — G @R — 1,0, 1)

where the semicolon denotes a covariant derivative that is calculated with the Chris-
toffel symbols B"‘W like in (5.3.30b).
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Further derivation of the differential post-Newtonian field equation for the linear-
ized metric tensor perturbations can be significantly simplified if we choose the gauge
function, A%, in the following form

A" = —2Hh 115 + 167 (P + pgh) ” + BY, (5.4.64)

where B® is an arbitrary gauge vector field. This choice of the gauge function A* allows
us to eliminate two terms in equation (5.4.63) which depend on the first covariant
derivatives with respect to the background metric g,3. Moreover, it allows to eliminate
a number of terms depending on the first derivatives of the fields ¢ and i in equation
(5.4.62). Since we keep the gauge function B* arbitrary, the equation (5.4.64) does not
fix any gauge. The choice of the gauge is controlled by the gauge function B*.

One substitutes the gauge function (5.4.64) to equations (5.4.63) and (5.4.62) and
make use of the background Friedmann equations (5.3.50), (5.3.51) to replace the back-
ground values of the energy density, €, and pressure, p, with the Hubble parameter H
and its time derivative H. It brings about equation (5.4.62) to the following form

8 Nyysap + 2HE Py (5.4.65)
+2(H + H?) (hy + i, 1" hyy, + 0,1 hgy, — hit, i, )

2k _ _ o h\ _
-5 [hw + 201, 1" hyy, + 20, 1" hyy, — hi i, — (q + §>g’“’]

+ 16ﬂﬂyav |:/_)m <1 - ;) (aa(p,tx - %ﬂmq> - 2%1/) - 4H (pm¢ +pq¢)]

+ 8,uB% ¢~ By — By + 2H (W, B, + il,B, - 8,,ii"B, )

= 16nT},.

This equation is fully covariant and is valid in any gauge and/or coordinate chart.

Now, let us fix the gauge by selecting a specific gauge function B* in (5.4.64). The
task is to decouple the linearised field equations for hyg, hy; and h;; components of
the metric tensor perturbations. For this purpose, let us work in the isotropic coordin-
ates associated with the Hubble flow, where i = (1/a, 0, 0, 0) and choose the gauge
condition, B* = 0. It brings equation (5.4.65) for different components of the metric
perturbations to the form

2
0q +27£q,y + 4kq — 47 (1 - %)pmﬂmq = 8na? (Tgo + T}fk) - (5.4.66a)
S

2
o2 (15 ) o

20283 - A (Puch + Poh) | (5.4.66b)
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DhOi + Z%hol';o + ZkhOi = 167‘[a2Tgl., (5.4.66C)
Ohj, + 28 hgjog + 2( ' = k) hes = l6na2Tfij>, (5.4.66d)
Ry + 27 Mg + 2 (A" + 2k) hyy = 16ma° T, . (5.4.66€)

Here, 27 is a conformal Hubble parameter (5.3.4), a prime means a derivative with
respect to 17, and we denoted ohy, = E”‘ﬁhw;aﬁ, q = (hoo + Mig) 12, hyge = hyy + hyy + hs3,
h.j, = h;;—(1/3)6;5hy, and the same index notations are applied to the tensor of energy-
momentum TI.I]? of the localized astronomical system, Tfl.l.> = TI.I]? - (1/3)8; T, These
equations are clearly decoupled from one another, thus, demonstrating the advantage
of the gauge condition B* = 0.

Equations (5.4.66¢—5.4.66€) can be solved independently if the initial and bound-
ary conditions are known, and the tensor of energy-momentum of the localized
astronomical system is well-defined. Equation (5.4.66a) for a scalar g demands besides
knowledge of TE;;’ knowing the scalar field perturbations, ¢ and i, that contribute to
the source of the field equation for g in the right side of (5.4.66a). Equations for these
perturbations are obtained below.

Equations for the dark matter perturbations

The dark matter perturbations, ¢, evolve in accordance with the Lagrangian equation
(5.4.46). In the linear approximation we can neglect the non-linear source term ™ in
its right side. The covariant derivative in the definition of the linear operator F™ given
in the right side of (5.4.49), can be explicitly performed, thus, yielding equation for the
Clebsch potential

(I)lala - Zﬁqu + 16nﬁm (pm¢ + pqlp)
C2 —a-f 1_ 4 - -
+(1- 7 (u W g — >Hm q,a> = U il"Bg, (5.4.67)
s

where equation (5.4.64) has been used. The gauge B* remains yet unspecified so that
equation (5.4.67) is covariant and is valid in any coordinate chart. To make it compat-
ible with equations (5.4.66a)—(5.4.66e) for the metric tensor perturbations, we have to
choose B* = 0.

Equations for the dark energy perturbations

Linearized equation for the dark energy perturbations, i, is obtained from the
Lagrangian equation (5.4.52) after neglecting the (non-linear) source term 9. After
performing the covariant differentiation in equation (5.4.55), we conclude that the
dark energy perturbation obeys the following equation

5=

_ ow _ o/ _ ow o
l/)'“m - <2qu + 8_‘1’> q + 167, (pm¢ +pq1/)) -5z Y = figit" By, (5.4.68)
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where equation (5.4.64) has been used along with the equality Pq = Hq- The gauge
function B” is kept unspecified so that equation (5.4.68) is covariant and is valid in
any coordinates. To make it compatible with equations (5.4.66a—5.4.66€) for the metric
tensor perturbations, we have to choose B* = 0.

5.5 Gauge-invariant scalars and field equations
in 1+3 threading formalism

5.5.1 Threading decomposition of the metric perturbations

We have derived the system of coupled differential equations (5.4.65), (5.4.67), (5.4.68)
for the field variables haﬁ, ¢ and i, describing perturbations of the gravitational field,
dark matter and dark energy respectively. These equations are gauge-invariant and
written down in arbitrary coordinates on the background manifold. Nonethelees, they
operate with the field variables which are not gauge-invariant in themselves. There-
fore, solutions of equations (5.4.65), (5.4.67), (5.4.68) that are found in a particular
gauge has no direct physical interpretation and must be connected to physical observ-
ables to match theory with observations. Another way around is to find out some
gauge-invariant geometric objects built out of h,s, ¢» and i which will not depend on
a particular choice of gauge and coordinates. This program was initiated by Bardeen
[27] who proposed to split the perturbations of the metric tensor in scalar, vector, and
tensor components by making use of 3+1 spacetime slicing ADM technique [12], and to
build gauge-invariant cosmological variables out of these elements. Gauge-invariant
scalars are the most important quantities in cosmology as they describe the structure
formation in the universe. Ellis and Bruni [155] pointed out that Bardin’s variables are
not directly related to the density fluctuations but to it second derivatives which makes
them less useful in relativistic calculations of structure formation. They proposed
their own gauge-invariant variables that are build out of gradients of the geometric
objects which vanish on the background manifold so that only their perturbations
make physical sense.

In this section we propose even more direct approach to the definition of the
gauge-invariant scalars by making use of the scalar potentials @ and ¥ for description
of the dark matter and dark energy. In this way we shall find out the gauge-invariant
scalars that are equivalent to the matter density fluctuation itself but not to its gradi-
ent or a second order derivative. We shall employ 1+3 threading (it is not 3+1 splitting)
approach to split four-dimensional tensors into scalar, vector, and three-dimensional
tensors. The original idea was proposed by Zelmanov [475] who called the elements of
the tensorial decomposition the chronometric invariants. Later on, the theory of chro-
nometric invariants was reinvented by a number of researchers. The central ingredient
of the theory is a congruence of worldlines threading spacetime. In FLRW cosmo-
logy, this congruence is naturally associated with the Hubble flow and the Hubble
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velocity &%, Threading (chronometric) decomposition is achieved with the invariant
operator of projection P,xﬁ onto a hypersurface being orthogonal to the congruence of
world lines of the Hubble flow,

Paﬂ = gaﬁ + ﬂaﬂﬂ» (5.5.1)

where g5 is FLRW background metric. The operator Paﬁ can be considered as a metric
on the spatial hypersurface of the background FLRW manifold.

The post-Newtonian theory under development admits four, algebraically-
independent scalar perturbations. Two of them are the Clebsch potential of the ideal
fluid ¢ and the scalar field 1. The two other scalars characterize the scalar perturb-
ations of the gravitational field. They can be chosen, for example, as a projection of
the metric tensor perturbation on the direction of the background four-velocity field,
ﬂ“ﬁﬁhaﬁ, and the trace of the metric tensor perturbation, h = g“ﬁhaﬂ. However, it is
more convenient to work with two other scalars, defined as their linear combinations,

1, . a -
q E(u”‘uﬁ +P”‘ﬁ) Raps (5.5.2a)

p=PPhy. (5.5.2b)

Notice that the scalar q has been introduced earlier in (5.4.16). The scalar p is, in fact, a
projection of h,g onto the space-like hypersurface being orthogonal everywhere to the
worldlines of Hubble observers.

Vectorial chronometric perturbations are defined by a spacial-temporal projection

P = —P L'y, (5.5.3)

where minus sign was taken for the sake of mathematical convenience. Due to its
definition, vector p* = g‘*ﬁpﬁ is orthogonal to the four-velocity @“, that is #*p, = O.
Hence, it describes a space-like vector-like gravitational perturbations with three
algebraically-independent components.

Tensorial chronometric perturbations are associated with the projection

1.
Pag = Pag = S Paghs (5.5.4)
where

Pag = P Pg'hy,. (5.5.5)
Here, the tensor p,g is a double projection of h,g onto space-like hypersurface being
orthogonal to the worldlines of Hubble observers. The trace of this tensor coincides

with the scalar p. Indeed,

8%pap =8P Py’ Ry, = P Pg'hy, = PRy, = p, (5.5.6)
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where the property of the projection tensor PB HPﬂ" = P" has been used. Equation
(5.5.6) makes it clear that tensor p;B is traceless, that is g“ﬂp;B = 0. Because of this
property, and four orthogonality conditions, ﬂ”‘p;ﬁ = 0, the symmetric tensor p;ﬁ has
only five, algebraically-independent components.

Gravitational perturbation h,s can be decomposed into the algebraically-
irreducible scalar, vector and tensor parts as follows

1- _
§Paﬁ) p+ 200 (4 - p). (5.5.7)

hap = p;ﬁ +Ugpp + Ughy + (ﬂaﬂﬁ +
One should not confuse the pure algebraic (threading) decomposition of the met-
ric tensor perturbation with its functional (slicing) decomposition. The slicing (or
kinemetric, according to Zelmanov [472]) decomposition was pioneered by Arnowitt
et al. [12] Misner et al. [315], see Section 3.1. It is commonly used in the research on
the relativistic theory of formation of the large-scale structure in the universe. The
ADM decomposition of the metric tensor perturbations is done by foliating spacetime
[27, 260] with a set of spacelike hypersurfaces and making use of three dimensional
Helmholtz theorem [24] which singles out the longitudinal (L), transversal (T) and
transverse-traceless (TT) parts of the perturbations. In other words, the slicing decom-
position make vector p, and tensor parts of the gravitational perturbation, p;ﬁ, are
further decomposed in the functionally-irreducible components which include two
more scalars, and two transverse spatial vectors each having only two (out of three)
independent components. The remaining part of the tensor perturbations, pfxﬁ, is
transverse-trackless and has only two functionally-independent components denoted
as pzz The ADM decomposition of the metric tensor is a powerful technique in the
theory of gauge-invariant cosmological perturbations [28, 327]. However, it is not con-
venient in the development of the systematic post-Newtonian approximations and
celestial dynamics of inhomogeneities in cosmology. Thus, we do not use it in the
present chapter.

Our next step is a to find the gauge-invariant scalars directly reproducing the dens-
ity fluctuation and to derive the post-Newtonian field equations for the algebraically-
irreducible components of matter and gravitational field. We, first, discuss the gauge
transformations of the corresponding field variables.

5.5.2 Gauge transformation of the field variables

We discuss physical perturbations, tensor haﬁ, and scalars @, ¥ in the framework of
general relativity. Their gauge transformation is generated by a flow of an arbitrary
vector (gauge) field £* that maps the manifold into itself, Section 2.2.4 in detail. Gen-
eric gauge transformation of the fields on a curved manifold is associated with their
Lie transport along the vector flow &% [285, 456] while an infinitesimal gauge trans-
formation is a Lie derivative of the field taken at the value of the parameter on the
curves of the vector flow &,
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Let us repeat results of Section 2.2.4 in brief. Consider a mapping of spacetime
manifold onto itself induced by a vector flow, &% = & “(xﬁ). This means that each point
of the manifold with coordinates x* is mapped to another point with coordinates x'* =
... in transformations (2.2.54). In linear approximation it is

X" = X"+ E(x). (5.5.8)

This mapping of the manifold onto itself can be interpreted as a local diffeomorph-
ism which transforms the field variables in accordance to their tensor properties. The
transformed value of the field variable is pulled back to the point of the manifold hav-
ing the original coordinates x*, and is compared with the original value of the field at
this point. The difference between the transformed and the original value of the field,
generated by the diffeomorphism (5.5.8) is the gauge transformation of the field that is
given by the Lie derivative taken along the vector flow &% at the point of the manifold
with coordinates x*, for details see Section 2.2.4.

We denote the transformed values of the field variables with a prime, like in (5.5.8).
In the linearized perturbation theory the gauge transformations of the field variables
are given in (2.2.79) and (2.2.80). For the present case of the cosmological manifold the
metric tensor perturbations s, (or h“ﬁ ), the scalar field ¢p and i are given by equations

Hap = Hap + E£58ap = Hap ~ Salp ~ Spla (5.5.9a)

b = 5% + £,5% = v + \/—_g ( golB . gl _ 5o 5y|y)’ (5.5.9b)
or the same

ht,xﬁ = hag + &1 + Epla — 8apd’ 1y (5.5.9¢)

¢' =P+ ED=d- D", (5.5.9d)

P =P+ £ = - Ppé, (5.5.9€)

where the prime above each symbol denotes a new value of the field variable after
applying the gauge transformation (5.5.8), and all functions are calculated at the same
value of coordinates x*. The gauge transformations of the field variables are expressed
in terms of the covariant derivatives on the manifold. With the use of the relation
(5.4.10) connecting x5 and h,g, one can show that equation (5.5.9b) can derived from
the Lie transformation (5.5.9a).

Gauge invariance of the Lagrangian perturbation theory of geometric manifolds
means that the gauge transformations of the field variables can not change the content
of the theory. In other words, the equations for the field variables must be invariant
with respect to the gauge transformations (5.5.9a-5.5.9¢), see Section 2.2.4. However,
direct inspection of equations (5.4.65), (5.4.67), (5.4.68) shows that they do depend
on the choice of the gauge in the form of the gauge function B* introduced in equa-
tion (5.4.64). To find out the gauge-invariant content of the theory one should search
for the gauge-invariant field variables and to derive the gauge-invariant equations for



264 = 5 Field-theoretical derivation of cosmological perturbations

them. This program has been completed by Bardeen [28] who used the functional
3+1 slicing decomposition of the metric tensor perturbations and the vector field &*
to build the gauge-invariant variables out of the various projections of the metric
tensor components on space an time. Modifications of Bardeen’s approach can be
found in [81, 147, 155, 157, 301, 326] and in the book by Mukhanov [327]. We use
algebraic 1+3 threading decomposition of the metric tensor perturbations (5.5.7) that
allows us to build gauge-invariant scalars. Vector and tensor perturbations remain
gauge-dependent in the threading approach. In order to suppress the gauge degrees of
freedom in these variables we impose a particular gauge condition B* = 0 in equation
(5.4.64). This limits the freedom of the gauge field £* by a particular set of differential
equations which are discussed in Section (5.5.7).

5.5.3 Gauge-invariant scalars

The existence of the preferred four-velocity, i”, of the Hubble flow in the expanding
universe provides a natural way of separating the perturbations of the field variables
in scalar, vector, and tensor components. This section discusses how to build the
gauge-invariant scalars. Vector and tensor perturbations are discussed afterwards.
The gauge-invariant scalar perturbations can be build from the perturbation of the
Clebsch potential, ¢, the perturbation of the scalar field i, and a scalar q defined in
(5.5.2a). To build the first gauge-invariant scalar, we introduce the scalar perturbations

¢ 4
=L Xq = —» (5.5.10)
" i 7 Ry
that normalize perturbations of the Clebsch potential ¢p and that of the scalar field i to
the corresponding background values of the specific enthalpy, i, and ji,. The gauge
transformations for the three scalars q, xp,, and x, are obtained from (5.5.9b-5.5.9¢),

and read

q = q+ 200 (5.5.11a)
X = Xm + Ug€% (5.5.11b)
Xq = Xq + &, (5.5.11c)

where we have used the definition of the background four-velocity,

[0)) Y
i L (5.5.12)
Mm Hq
in terms of the partial derivatives of the background values of the scalar fields ® and
Y. Equations (5.5.11b), (5.5.11c) immediately reveal that the linear combination

X EXm _Xq’ (5.5.13)
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is gauge-invariant, y = x, that is the diffeomorphism (5.5.8) does not change the value
of the scalar variable y.
Two other gauge-invariant scalars are defined by the following equations,

Vin = U Xpjq — % (5.5.14a)
Vo = 8%qe - 5» (5.5.14b)
or, more explicitly,
1 _4 q V2

Vi = }Zu o — 37t 3C—§me, (5.5.15a)

1. q Xq OW
V, = —i"yP, — ~ +3Hy, + — —, (5.5.15b)

q yq l:l)lol ) Xq Vq ¥

where the last terms in the right side of these equations were obtained by making use
of thermodynamic relationships (5.2.11), the equality p, = fi,, and the equations of
continuity (5.3.59) and (5.3.67) for the density of the ideal fluid, p,,, and that of the
scalar field, Pqgs respectively.

One can easily check that both scalars, V;;, and V;, remain unchanged after making
the infinitesimal coordinate transformation (5.5.8). Indeed, the gauge transformation
of the derivatives

X]I‘nla = Xmla T HPaﬁfﬂ + ﬂﬁfﬂm, (5.5.16a)
thlla = Xqla * Hpaﬁ‘fﬁ + aﬁ'fﬁm, (5.5.16b)

where Paﬁ = 8up + Ugllg is the operator of projection on the hypersurface being
orthogonal to the Hubble flow of four-velocity u*. After performing the gauge trans-
formation (5.5.8), and substituting the gauge transformations of functions ¢, y,, and
Xq to the definitions of V;, and V,;, we find out

vV =V, V=V

m q q’ (55.17)

that proves the gauge-invariant property of the scalars V;;, and V.

Physical meaning of the gauge-invariant quantity V, can be understood as fol-
lows. We consider the perturbation of the specific enthalpy u,, defined in equation
(5.2.14). Substituting the decomposition (5.4.2) of the field variables to equation (5.2.14)
and expanding, we obtain

Uy = iy + Ol (5.5.18)

where the perturbation 8y, of the specific enthalpy is defined (in the linearized
order) by
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_ 1_
Sty = Uy — 5 Hmd- (5.5.19)
It helps us to recognize that
Bpm . Vs
v, = Tt 3 5 Htm: (5.5.20)
m

Fractional perturbation of the specific enthalpy can be re-written with the help of ther-
modynamic equations (5.2.11) in terms of the perturbation ¢, of the energy density
of the ideal fluid,

bem

— -
€m * Pm

OMm _

= (5.5.21)
Hm

RVl

or, by making use of equation (5.2.8), in terms of the perturbation 6p, of the density
of the ideal fluid

VZ
Ottm _ Vs O (55.22)
Hm € Pm
This allows us to write down equation (5.5.20) as follows
Vv op
Vo= 5 (p_;n . 3me>, (5.5.23)

which elucidates the relationship between the gauge-invariant variable V,, and the
perturbation 6p,, of the rest mass density of the dark matter. More specifically, V,, isan
algebraic sum of two scalar functions, dp,, and y,, neither of each is gauge-invariant.
The gauge transformation of the dark matter density perturbation is

89m = 8m + Pmiad” = 80m ~ 3HPmile", (5.5.24)

and the gauge transformation of the variable x,, is given by (5.5.11b). Their algebraic
sum in equation (5.5.23) does not change under the diffeomorphism (5.5.8) showing
that V,, is the gauge-invariant density fluctuation that does not depend on a particular
choice of coordinates on spacetime manifold.

Similar considerations, applied to function V, reveals that it can be represented
as an algebraic sum of the perturbation, 6pq, of the density of the dark energy, and
function x,,

op
Vy = —2 +3Hy, (5.5.25)

Pq
It is easy to check out that each term in the right side of this equation taken separ-
ately, is not gauge-invariant but their linear combination does. It is worth emphasizing
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that standard textbooks on cosmological theory (see, for example, [296, 353, 456, 457])
derive equations for the density perturbations 6p/p but those equations are not gauge-
invariant and, hence, their solutions have no direct physical meaning and should be
interpreted with care.

5.5.4 Field equations for the gauge-invariant scalar perturbations

Equation for a scalar g

Function q was defined in (5.5.2a). In order to derive a differential equation for g, we
apply the covariant Laplace-Beltrami operator to g, and make use of the covariant
equations (5.4.62) and (5.4.64). Straightforward but fairly long calculation yields

: 2k o c v
q|“|a—2<H+H2— ;>q+8npmym [(1— v_2)Vm_ <1+3C—;>me]

s
- 16mp,, (Z—g + 2Hpq> Xq - 28°0 By — 4HU"B,
=8m(0+1), (5.5.26)
where the source density o + 7 for the field q is
o+7= (2" +PP) T, (5.5.27)

in accordance with the definitions introduced in (5.3.70a), (5.3.70b). The reader should
notice that equation (5.5.26) depends on the gauge function B* which remains arbit-
rary so far.

Equation for a scalar p

Function p was defined in (5.5.2b). In order to derive equation for p, we apply the cov-
ariant Laplace-Beltrami operator to the definition of p, and make use of the covariant
equations (5.4.62) and (5.4.64). It results in a wave equation

P+ 2—’2(]3 +B%, - 2u"@B,g - 6HU"B, = 167, (5.5.28)

where the source density T has been defined in (5.3.70b). Equation (5.5.28) depends on
the arbitrary gauge function B“.

Equation for a scalar

Equation for the gauge-invariant scalar, x = xy, — Xq is derived from the definitions
(5.5.10) and the field equations (5.4.67), (5.4.68). Replacing ¢ and i in those equa-
tions with y,,, and x,, and making use of equations (5.3.52), (5.3.53) for reshuffling some
terms, yields
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_ - 4k
Xlﬁla + 2Hua)(mloz - <H - ?)Xm (5.5.29a)

A\ o _
+4HV, + <1 - ﬁ) U Vipjo = 16mpofigx = U“By,

S

_ - 4k
X!‘fhx + ZHManm - <H - ? )Xq (55.29b)

2 oW o _
+4HV, + ﬁ—qﬁVq +167P X = U*B,,.

Subtracting (5.5.29b) from (5.5.29a) cancels the gauge-dependent term, u*B,, and
brings about the field equation for y,

7 2
la _a . 2 oW ( C ) _a
+ 6Hil +3Hy=——7V,—-[1- = |u" V,. (5.5.30)
X la Xla X Hq v q Vﬁ m|a
This equation is apparently gauge-invariant since any dependence on the arbitrary
gauge function B disappeared. It is also covariant that is valid in any coordinates.
Equation (5.5.30) can be recast to the form of an inhomogeneous wave equation:

) D, OW A\,
Pk o = Zg—ma—\p ' <1 - ;)Pmuanla- (5.531)
q S

Yet another form of equation (5.5.30) is obtained in terms of the variable ¥ = p,x = jigX-
By simple inspection we can check that equation (5.5.30) is transformed to

ow A\,
lplala - mi!,l) - ZEV’“ - <1 - ﬁ)pquanlw (5.5.32)

S

where we introduced notation my, = \/02W/oW¥2. This is an inhomogeneous Klein-
Gordon equation for the field i governed by V. The “mass” m,, of the scalar field
excitation, i, depends on the second derivative of the potential function W which
defines the “coefficient of elasticity” of the background scalar field ¥.

Inhomogeneous equations (5.5.30), (5.5.31), (5.5.32) have the source terms that is
determined by variables V,,, and V. We derive differential equations for these field
variables in the next sections.

Equation for a scalar V,;,

Equation for the field variable V, is derived from the equations for functions y,,
and g that enter its definition (5.5.14a). By applying the Laplace-Beltrami operator to
function V, we get



5.5 Gauge-invariant scalars and field equations in 1+3 threading formalism =—— 269

1 _p=
v, = i (X'gm) + 2HY!% - quam + @R (5.533)
_a 1 2 1
+2Hu (Vm+—q> +3H (Vm+—q>.
2 la 2

The Laplace-Beltrami operator for function y,, is given in equation (5.5.29a) which is
not gauge-invariant. Taking the covariant derivative from this equation and contract-
ing it with &* brings about the first term in the right side of equation (5.5.33),

2
_ C —a- _
i (Xlgm)lﬁ T (1 B ﬁ) B Vinjo ~ 6HE" Vi (5.5.34)

S

4k ) 1. 2k
<5H )Vm—Hu“q,a—<§H+;>q

2 V2
Vv, . k
_BH[<1+C_;>H_<3+C_3>¥]XI“
ow
+871pq (4Xq 3Xm)
v6mp., |ty — ety + 2H (125 “#B
+16mpyity | U Xje — X+Z 1—? Xm | U U Byp.

The Laplace-Beltrami operator for function q has been derived in (5.5.26). Now, we
make use of equations (5.5.26), (5.5.29a), (5.5.34) in calculating the right side of (5.5.33).
After a significant amount of algebra, we find out that all terms explicitly depending
on q and the gauge functions B* cancel out, so that equation for V,, becomes

2 2
v, + (1 - %) BT Vi + 2 (3 - %)Ha"vmm (5.5.35)

S S

2k c2
— 167pg i, [ﬁ“)qa -3 <H+ %T)X] =4 (0+T).

Second-order covariant derivatives in this equation read

2
[ &% (1 _ V_) . uﬁ] Viniap = (_v_uauﬂ ﬁ) Vi (5.5.36)

S S

and they form a hyperbolic-type operator describing propagation of sound waves in
the expanding universe from the source of the sound waves towards the field point
with the constant velocity vﬁ. Additional terms in the left side of equation (5.5.35)
depend on the Hubble parameter H, and take into account the expansion of the
universe.
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Equation (5.5.35) contains only gauge-invariant scalars, V,, and y. Moreover, it
does not depend on the choice of coordinates on the background manifold. It also
becomes clear that the field variables V, and y are coupled through the differen-
tial equations (5.5.32) and (5.5.35) which should be solved simultaneously in order to
determine these variables. Solution of the coupled system of differential equations is a
very complicated task which cannot be rendered analytically in the most general case.
Only in some simple cases, the equations can be decoupled. We discuss such cases in
Section 5.7.

Equation for a scalar V
The field variable V, is not independent since it relates to V, and x by a simple
relationship

Vo = Vi = 0% (5.5.37)

which is obtained after subtraction of equation (5.5.14a) from (5.5.14b). Equation for
V, is derived directly from (5.5.37) and equations (5.5.35) and (5.5.30) for V;, and y
respectively. We obtain,

Vi + 4 <H + %al\yv) 1"Vga (5.5.38)
q

2
+ [2<H+3H2+ i—ﬁ) —47p o i (l— %)
S

_ _ .
o 2 (s LI oWy,
Hq HBqo¥ ) 0¥ 092

o AN/ a V2
+ A4TTP <3 + v_§> <u Xla — 32Hx> =4 (0+T).
This equation can be also derived by the procedure being similar to that used in the
previous subsection in deriving equation for V. We followed this procedure and con-
firm that it leads to (5.5.38) as expected. Equation (5.5.38) is clearly gauge-invariant.
Besides V, it depends on variable y and should be solved along with equation (5.5.30).

5.5.5 Field equations for vector perturbations

Vector perturbations of the ideal fluid and scalar field are gradients, ¢, and y,. How-
ever, they are insufficient to build a gauge-invariant vector perturbation out of the
vector perturbation of the metric tensor p,. Field equations for vector p, can be derived
by applying the covariant Laplace-Beltrami operator to both sides of definition (5.5.3)
and making use of equation (5.4.65). After performing the covariant differentiation and
a significant amount of algebra, we derive the field equation
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pa’p — 2Hipp" - <2H +3H? - 2k> Pa (5.5.39)

a
+ PfuY (By, + B, + 2Hu,Bg) = 1677,

where the matter current 7, is defined in (5.3.70c). This equation is apparently gauge-
dependent as shown by the appearance of the gauge function B*. This equation
reduces to a much simpler form

palﬂw - ZHﬂapﬁlﬁ - <2H +3H - i—];) p, = 1677, (5.5.40)
in a special gauge B*=0 which imposes a restriction on the divergence of the metric
tensor perturbation in equation (5.4.64).

Equation (5.5.39) points out that the vector perturbations are generated by the
current of matter 7, existing in the localized astronomical system which physical ori-
gin may be a relict of the primordial perturbations. We do not discuss this interesting
scenario in the present chapter as it would require a non-conservation of entropy
and non-isentropic background fluid - the case which we have intentionally excluded
in order to focus on derivation of cosmological generalization of the post-Newtonian

equations of relativistic celestial dynamics [267].

5.5.6 Field equations for tensor perturbations

Field equations for traceless tensor p_, can be derived by applying the covariant
Laplace-Beltrami operator to the definition (5.5.4) and making use of equation (5.4.65)
along with a tedious algebraic transformations. This yields the following equation

ly _ = ly . & lvY _ 2 ﬁ
Pag 1y — 2H (uﬂp;?y +Ughg,, ) 2 (H t ) Pag (5.5.41)
5 UT 2. -
- PallPﬂV (BH|V + BV|H) + §Pa'BPH BH|V = 167'['[';[3.
Here the transverse and traceless tensor source of the tensor perturbations is

1-
T;ﬂ = Taﬁ - §Paﬁ T, (5.5.42)

where Tap has been introduced in (5.3.70d), and 7 = Paﬁraﬂ in accordance with
equation (5.3.70b). Tensor 7}, is traceless, that is g”‘ﬁr;ﬁ = P"‘ﬁr;ﬁ =0.

Equation (5.5.41) is gauge-dependent. The gauge freedom is significantly reduced
by imposing the gauge condition B* = 0 which brings equation (5.5.41) to the following
form,

Tl = o1 | = 1 2 k T o_ T
papyly - 2H(uapﬁy Y4 Ugpy, V) -2 <H + ?> Pap = 16711“/3. (5.5.43)
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5.5.7 Residual gauge freedom

The gauge freedom of the theory under discussion is associated with the gauge func-
tion B* appearing in equation (5.4.64). The most favourable choice of the gauge
condition is

B*=0, (5.5.44)

which drastically simplifies the above equations for vector and tensor gravitational
perturbations. The gauge (5.5.44) is a generalization of the harmonic (de Donder)
gauge condition used in the gravitational wave astronomy and in the post-Newtonian
dynamics of extended bodies. This choice of the gauge establishes differential rela-
tionships between the algebraically-independent metric tensor components intro-
duced in Section 5.5.1. Indeed, substituting the algebraic decomposition (5.5.7) of the
metric tensor perturbations to equation (5.4.64) and imposing the condition (5.5.44)
yields

B

T - - Ry 15
paﬂlﬂ + uapﬂl + uﬁpalﬁ - (uauﬁ - §Paﬁ) plﬁ + 2Hpa

219" + 2Hqit, = 167 (inPXim * PofleXy) - (5.5.45)

Projecting this relationship on the direction of the background 4-velocity, #*, and
on the hypersurface being orthogonal to it, we derive two algebraically-independent
equations between the perturbations of metric tensor components and of the matter
variables. They are

pﬂlﬁ +p (29 - p)'ﬁ +2Hq =161 (pmﬁm)(m +pqpq)(q) , (5.5.46a)

_ 1-
p;ﬁ'ﬁ +igp, P + §Paﬁp|ﬁ +2Hp, = 0. (5.5.46b)
The gauge (5.5.44) does not fix the gauge function £* uniquely. The residual gauge
freedom is described by the gauge transformations that preserve equations (5.5.46a),
(5.5.46b). Substituting the gauge transformation (5.5.9b) of the gravitational field per-

turbation hap to equation (5.4.64) and holding on the gauge condition (5.5.44), yields
the differential equation for the vector function &*

EPp+ 8 (85— Prg,) + 2H (6P ig + &Plug - P i) (5.5.47)
167 (Prnfln + Paflq) § 51" = O,
which can be further recast to
£+ 20 (§%Pag + Py - &P i) (5.5.48)

+2<H—%){ﬁaﬁaM(HﬁHﬂi—’;)gc‘=0.
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The gauge function £* can be decomposed in time-like, £ = —.{'Bﬂﬁ, and space-like,
IGE P"‘Bfﬁ, components,

=it (5.5.49)

Calculating covariant derivatives from ¢ and {* and making use of equation (5.5.48),
yield equations

§ 'ﬁw + 2HI g - (H - 2—12() & =0, (5.5.50a)
(“'ﬁw +2H (@ g - a¢P ) + <H +H? + 2—’5) *=o. (5.5.50b)

These equations have non-trivial solutions which describe the residual gauge free-
dom in choosing the coordinates on the background manifold subject to the gauge
condition (5.5.44). It is remarkable that equations (5.5.50a), (5.5.50b) are decoupled
and can be solved separately. It means that the residual gauge transformations along
the worldlines of the Hubble flow are functionally independent of those performed
on the hypersurface being orthogonal to the Hubble flow. Equations (5.5.50a—5.5.50b)
of the residual gauge freedom in the cosmological setting given in this subsec-
tion generalise equations of the residual gauge freedom in harmonic coordinates of
asymptotically flat spacetime [56, 115].

5.6 Post-Newtonian field equations in a spatially-flat universe
5.6.1 Cosmological parameters and scalar field potential

Linearized equations of the field perturbations given in the previous section are valid
for a wide class of matter models of the FLRW metric. They neither specify the equa-
tion of state of dark matter, nor that of dark energy. We also keep the parameter of
the space curvature k free. By choosing a specific model of matter and picking up a
value of k = -1, 0, +1, we can solve, at least, in principle the field equations govern-
ing the time evolution of the background cosmological manifold. Realistic models of
the cosmological dark matter and dark energy are rather sophisticated and, as a rule,
include several components. It leads to the system of coupled field equations which
can be solved only numerically [7]. However, the large scale structure of the universe
is formed at rather late stages of the cosmological evolution being fairly close to the
present epoch. Therefore, the study of the impact of cosmological expansion on the
post-Newtonian dynamics of isolated astronomical systems is based on recent and
present equation of state of matter in the universe.

Precise radiometric observations of the relic CMB radiation and photometry of
type Ia supernova explosions reveal that at the present epoch the space curvature of
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the universe, k = 0, and the evolution of the universe is primarily governed by the
dark energy and dark matter, which make up to 73 % and 23 % of the total energy
density of the universe respectively, while 4 % of the energy density of the universe
belongs to visible matter (baryons), and a tiny fraction of the energy density occupies
by the CMBR radiation [177, 234, 246, 262]. It means that we can neglect the effects of
the baryonic matter and CMB radiation field in consideration of the post-Newtonian
dynamics of astronomical systems in the expanding universe.

We model dark matter by an ideal fluid and dark energy is represented by a scalar
field with a potential function W which structure has not yet been specified. We also
follow the discussion given in by assuming that the spatial curvature k = 0, and the
potential, W, of the scalar field relates to its derivative by a simple equation

w_ —V8mAW, (5.6.1)
oV

where the time-dependent parameter, A = A(¥), characterizes the slope of the field
potential W. The time evolution of the background universe can be described in terms
of the parameter A and two other parameters, x; = x;(¥) and x, = x,(¥), which are
functions of the density, pq = fig = P, of the background scalar field, and the potential,
W, scaled to the Hubble parameter, H. These parameters are defined as follows,

L 3H
é = 4_7'[ X1, (562)
. 3H
W = g X5. (5.6.3)

The energy density of the scalar field, €gs is expressed in terms of the parameters x;
and x, and the parameter Q, = 8néq/3H2, by a simple relationship

Q, =X, +X,. (5.6.4)

q
Time evolution of the parameters x; and x, is given by a system of two ordinary dif-
ferential equations which are obtained by differentiating definitions (5.6.2), (5.6.3) and
making use of equations (5.3.67) taken along with the Friedmann equation (5.3.52) with
k = 0. It yields

% = 6% + A6X:%, + 3% [(1-wp) X1 + (1+ wp) (1-%5)], (5.6.5a)
dx,
T —A\6X1%, + 3%, [(1 - W) X1 + (T+wy) (1-%,)], (5.6.5b)

where w = Ina is the logarithmic scale factor characterizing the number of e-folding
of the universe, w,, is the parameter entering the hydrodynamic equation of state
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(5.3.54), and the parameters x; and x, are restricted by the condition imposed by the
Friedmann equation (5.3.50), that is Qq+Qp =101

X +X=1-Qp, (5.6.6)

where Q,, = 87¢,,,/3H>.
The parameter A obeys the following equation

dA
o= —\ox (T - 1), (5.6.7)
where
2147 | A2
T, = % w, (5.6.8)
(ow/o¥)

If Ty = 1, the parameter A is constant, and equation (5.6.1) can be integrated yielding
an exponential potential

W(¥) = W, exp(-V8mAYP). (5.6.9)

In this case, and under assumption that, w,, = const., the system of two differential
equations (5.6.5a), (5.6.5b) is closed. If T, # 1, three equations (5.6.5a), (5.6.5b), (5.6.7)
must be solved together in order to describe temporal evolution of the background
cosmological manifold.

In the general case, derivatives of the potential W are expressed in terms of the
parameters under discussion. Namely,

ow 30 IPW _—
ﬁ = —EH Xy, ﬁ = 3Fq/\ H X5. (5610)

It is also useful to express the products pyjt, and pyfiy, in terms of the parameters x;
and x,. For ji; = p,, one can use definition (5.6.2) to obtain
H2

pqﬂq = 4_7'[ X1. (5.6.11)

The product pjl, = €, + Py, SO that making use of the matter equation of state,
Dm = W€, and equation (5.6.6), we derive
2

_ 3H
pm.um = g(l + Wm)Qm’ (5.6.12)

where Q,, = 1-x; - X,. These equations allow us to recast equation (5.3.52) for the time
derivative of the Hubble parameter to the following form

= -g (1+ we) H2, (5.613)
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where
Weff = Wy + (1 - Wm)Xl - (1 + Wm)Xza (5.6.14)

is the (time-dependent) parameter of the effective equation of state of the mixture of
the ideal fluid and the scalar field.

5.6.2 Conformal cosmological perturbations

The FLRW metric (5.3.15) is a product of the scale factor a and a conformal metric
faﬁ. The conformal spacetime is comoving with the Hubble flow and is not glob-
ally expanding. In case of the flat spatial curvature, k = 0, the conformal spacetime
becomes equivalent to the Minkowski space which is used as a starting point in the
standard theory of the Post-Newtonian approximations [115]. Therefore, it is mathem-
atically instructive to formulate the field equations for cosmological perturbations in
the conformal spacetime. It also allows us to simplify the differential operators in the
left side of the equations for perturbations (see Section 5.6.3 below). Nonetheless, the
reader must keep in mind that the conformal spacetime is unphysical and additional
scale transformations of coordinates are required to convert mathematical results from
the conformal spacetime to a real physical world [271].

Let us associate the cosmological perturbation, Kqg, Of gravitational field in the
conformal spacetime with the background metric £ ap With physical perturbation sg
of the metric as follows

Hop = (K5 (5.6.15)

where perturbation .z has been defined in (5.4.2) and a(n) is the scale factor of the
FLRW metric. Gravitational perturbation h,g relates to »,s by equation (5.4.10), and
can be also represented in the conformal form

hap = @ (Dhyg, (5.6.16)
where

1.
haﬁ = —Kgp + EfaﬂK, (5617)

with x = f“ﬂxaﬁ. In what follows, tensor indices of geometric objects in the conformal
spacetime are raised and lowered with the help of the conformal metric £ ag-

We assume that the scale factor a of the universe remains unperturbed. This
assumption is justified since we can always include the perturbation of the scale factor
to the perturbation ks of the conformal metric. Thus, the perturbed physical space-
time interval, ds, of the FLRW metric relates to the perturbed conformal spacetime
interval, d§, by the conformal transformation
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ds® = a’(n)ds>. (5.6.18)
Here, the perturbed conformal spacetime interval reads

ds’ = fopdx“dx’, (5.6.19)
where

fop = Tap + Kaps (5.6.20)

is the perturbed conformal metric. Here, fap is the unperturbed conformal metric
defined in (5.3.16), Kqp is the perturbation of the conformal metric, and x* = (X% x)
are arbitrary coordinates which are the same as in the physical spacetime manifold in
correspondence with the definition of the conformal metric transformation [314].

It is worth emphasizing that in case of the space curvature k = 0, the background
conformal metric, gaﬁ(n,Xi), expressed in 'the isotropic Cartesian coordinates (n,Xi),
is the diagonal Minkowski metric, gaﬁ(n,X’) =T = diag(-1, 1,1, 1). Therefore, in this
case the background metric f,5 remains the Minkowski metric with the components
expressed in arbitrary coordinates by means of tensor transformation

faﬁ = Myanﬂrlyv’ (5.6.21)

where the matrix of transformation has been defined in (5.3.13). If the matrix of
transformation, M¥,, is the Lorentz boost, the conformal metric, Eaﬂ, remains flat,
£ a8 = Map- It is worth noticing that, in general, the unperturbed conformal metric can
be chosen flat even in case of k = -1, +1 [239]. Hence, all equations given above will
remain intact which means that, in fact, our formalism is applicable to FLRW metric
with any space curvature. The only change will be in the conformal factor which, in
the case of k = +1, is not merely the scale factor a(n) of the FLRW metric but a more
complicated function, a(, x%), of time and spatial coordinates [239]. Though it is not
difficult to handle all three cases of k = -1, 0, +1 on the same footing but it burdens
equations for the field perturbations with a number of terms being proportional to k.
Moreover, consideration of the dark energy equations with k = +1 given in the preced-
ing section gets complicated [7]. For this reason, we restrict ourselves with the case of
the spatially-flat universe with k = 0 which is an excellent approximation in treating
cosmological observations [246].

Similarly to (5.5.7) the conformal metric perturbation, hap, can be split in 1+3
algebraically-irreducible components

1_ -
hyg = p;ﬁ +Vabp + Vpbha + (va\_’ﬁ + gnaﬁ)p +2V,75(q - D) s (5.6.22)
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where the four-velocity v* = aii*, v, = fa/?‘_’ﬁ = a‘lga,;aﬂ = a'u1,, and
ﬁzxﬁ = E”‘p + \7a\7ﬁ, (5.6.23)

is the operator of projection on the conformal space which represents a hypersurface
being everywhere orthogonal to the congruence of worldlines of four-velocity v*. Four-
velocity ¥* is an analogue of the Hubble flow in the conformal spacetime. We also
notice that Pg = a*,g.

Different pieces of the conformal metric perturbation, haﬂ, are related to those of
the physical metric perturbation, haﬁ, by the powers of the scale factor,

Pp=0Dhy  Pa=aPe  P=P.  4=4. (5.6.24)

More specifically,

1 _
q =5+ 7"y, (5.6.25a)
p= "h,, (5.6.25h)
Po =7’ 7'hg,, (5.6.25¢)
1.
Pag = Pap = 37apl> (5.6.250)
where

Pap = 1 g Ny (5.6.26)

The trace of the gravitational perturbation, h = f“ﬁhaﬁ = 2(p - q). The compon-
ents Koz = —hyg + f,5h/2 are used in calculating dynamical behavior of particles and
light in the conformal spacetime as well as for matching theory with observables. The
components of K,z are

o ] 2. R
Kap = Do = Tabp ~ TpPa * 37app ~ (%aTp + Tap) @ G627

and x = f“ﬁxaﬁ =2(p-q)=h.

It turns out that the conformal Hubble parameter, ¢ = a'/a is more conveni-
ent in the conformal spacetime than the “canonical” Hubble parameter, H = R/R =
R™'dR/dT, where T is the cosmological time (see Section 5.3.2). Relations between s#
and H, and their derivatives are shown in equations (5.3.5-5.3.7). These relations are
employed along with equations (5.3.6) and (5.6.13) in order to express the time deriv-
ative, .##”’, of the conformal Hubble parameter in terms of .#’? and the parameter w,
of the effective equation of state

A = -%(1 + W) (5.6.28)

We shall use this expression in the calculations that follow.
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5.6.3 Post-Newtonian field equations in conformal spacetime

The set of the post-Newtonian field equations in cosmology consists of equations for
the perturbations of the background dark matter, dark energy and gravitational field.
Perturbations of dark matter and dark energy are described by four scalars, Vi, Vq,
Xm and x, but only three of them are functionally-independent because of equality
(5.5.37), that is

Vin = Vg = 4" (Xm ~Xq), - (5.6.29)

Depending on a particular situation, any of the three scalars can be taken as inde-
pendent variables in description of scalar perturbations.

The gravitational field perturbations are g, p, p,, p;ﬂ but among them the scalar
q is not independent and can be expressed in terms of x,, and V,;, in accordance with
(5.5.14a),

q=-2Vy — 0¥ q)s (5.6.30)

where we have also used the equality q = g as follows from (5.6.24). The scalar q can be
also expressed in terms of Xq and Vqin accordance with (5.5.14b). Hence, as soon as the
pairs, Vi, and x, or V, and y, are known, the scalar gravitational perturbation g can
be easily calculated from (5.6.30). Functions p, p,, p;ﬁ are independent and decouple
both from each other and from the other perturbations. Thus, the most difficult part of
the perturbation theory is to find out solutions of the scalar perturbations which are
coupled one to another.

The post-Newtonian field equations in the conformal spacetime for variables y,,,
Xq» Vi and for p, p,, p;ﬁ are derived from the equations of the previous section by
transforming all functions and operators from physical to conformal spacetime. The
important part of the transformation technique is based on formulas converting the
covariant Laplace-Beltrami wave operators, defined on the background spacetime
manifold, to their conformal spacetime counterparts.

Laplace-Beltrami operator in conformal spacetime

Let F be an arbitrary scalar, F, — an arbitrary covector, and F,g — an arbitrary covari-
ant tensor of the second rank. We have three different types of the Laplace-Beltrami
operators on the curved background manifold: a scalar — F I |u» @ vector — F, a"‘ > and
a tensor - F, aﬁ“‘ | Where the covariant derivatives are taken with the help of the affine
connection faﬁy being compatible with the metric g, as shown in (5.3.21). Covariant
derivatives gives the invariant description of differential equations of mathematical
physics on curved manifolds. However, for handling a more pragmatic purpose of
finding solution of a differential equation, the covariant operators must be expressed
in terms of partial derivatives with respect to the coordinates chosen for solving the
equation.
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Transformation of the covariant Laplace-Beltrami operators to the partial deriv-
atives is achieved after writing down the covariant derivatives for a scalar F, a vector
fa> and a tensor F,z in explicit form by making use of the Christoffel symbols given in
(5.3.23-5.3.25). Tedious but straightforward calculations of the covariant derivatives
yield the scalar, vector and tensor Laplace-Beltrami operators in the following form
[272]

L
¥y = —|aF -29F, |, (5.6.31a)
17 ]
F ¥, = 3| PFa ~ 2 Fyq + 29,8 F, (5.6.31b)
+ (A +2°)F, - 2%2%#‘51},
Fogh = L [0, + 2009%F 5., — 2005 F, g — 25MF (5.6.31¢)
af | P a v apsu v e 2% usat .6.

+ 20 E" (vaFﬁy;v + \_’ﬂFa}l;V) +2 (%I + %pz) F“ﬂ

1 - 1.
- 4%2({;"\7“53” + P pFay = 576 E "y ifaﬁv"vVFw)],

where we have introduced notations

oF = £F,,, OF, = £Fp s OF g = £ F g, (5.6.32)

v

of the wave operators for the scalar, vector and tensor fields in the conformal space-
time and in arbitrary coordinates. Notice that although the conformal spacetime
coincides, in case of k = 0, with the Minkowski space, the metric Eaﬁ is not the
diagonal Minkowski metric Nap unless the coordinates are Cartesian. Of course, the
covariant derivative from a scalar must be understood as a partial derivative, that is
Fo=Fg

We will need several other equations to complete the transformation of the
Laplace-Beltrami operators to the conformal spacetime since the wave operator 0 acts
on functions like those shown in (5.6.24), which are made of a product of the scale
factor, a = a(n) in some power n (may be not an integer), with a geometric object,
F = F(x*), which can be a scalar, a vector or a tensor of the second rank (we have sup-
pressed the tensor indices of f since they do not interfere with the derivation of the
equations which follow). These equations are

(anF);y =qa" (F;H - n%vyp) , (5.6.33a)
(anF);yv - [F;yv —nH# (\7”/:;‘/ + ‘_’vF;y) (5.6.33b)

+n (J“i”' + n%”z) vyvv] ,
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and they allow us to write down the wave operator from the product of a" and f in the
following form

o(a"F) = a"[DF -mAH - (A + nA?) F]’ (5.6.34)

It is easy to confirm that contraction of (5.6.33b) with the conformal four-velocity, %,
brings about another differential operator

Vil (a",c);yv = a"[\'/”x'/v,:;yv + 2 py (" + n%z) F]. (5.6.35)

We remind that if the object f is a scalar, the covariant derivative f., = f , is reduced to
a partial derivative. In case, when f is either a vector or a tensor, the covariant deriv-
ative must be calculated with taking into account the affine connection Baﬁy defined
in (5.3.25).

It is also interesting to notice that in the expanding universe the conformal
Laplace operator, Ar = *r,,, is the scale invariant in the sense that

A(a"F) = d"Af, (5.6.36)

where [ is a tensor of an arbitrary rank. Equation (5.6.36) can be proven by adding up
(5.6.34) and (5.6.35), and accounting for definition (5.6.23) of the projection operator
on the hypersurface being orthogonal to ¥“.

Now, we are ready to formulate the field equations for cosmological perturbations
in the conformal spacetime.

Equations for perturbations of dark matter and dark energy

Dark matter and dark energy are described by scalar fields @ and ¥. The fields them-
selves are not gauge-invariant. Therefore, physical meaning have only the equations
for the gauge-invariant perturbations of these fields which are V;, V,, and y. We
consider, first, equation (5.5.35) for the gauge-invariant scalar V,,. We convert the
covariant derivatives taken with respect to the background metric, g,g, to the par-
tial derivatives of the conformally-flat metric, £ op and use equation (5.6.31a) for the
Laplace-Beltrami operator along with the expressions for various cosmological para-
meters given in Section 5.6.2. After arranging terms with respect to the powers of the
Hubble parameter 57, we obtain the scalar equation for function V,, describing the
perturbations of dark matter,

2 2
av,, + (1 - %) P Vi + (3 - C—2> ATV o (5.6.37)

S S

<

+3[1 Wegt - (1+w)<1—C—2> ]ffz

[, (f) | - cinat o,
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This is a wave equation with the speed of sound v which determines the speed of
propagation of the scalar perturbations in the dark matter considered as an ideal
fluid. These perturbations can be interpreted as acoustic or sound waves of differ-
ent wavelengths propagating in spacetime. Solution of homogeneous equation (5.6.37)
describes the propagation of primordial scalar perturbations of dark matter. A partic-
ular solution of the inhomogeneous equation (5.6.37) tells us how the perturbation of
dark matter caused by the isolated astronomical system propagate.

Similar procedure is applied to equation (5.5.38) and leads to a wave equation for
function V, describing propagation of perturbations of dark energy considered as a
scalar field,

avy +2 <1 -1 zixl/\x2> AV, (5.6.38)

1 2
+ 3[1—Weff— 5(1+Wm)<1—‘%)0m]%2Vq

S

%) 5.0 | 2
+/1X2[3/1<21"q+Xl> 5\/;]%1@

3 2 C2 B V2
+ Ejf (1+wy) (3 + ﬁ) [v")(,” - 3C—§%X

S

Om
a

= —47d® (0+1).

The speed of propagation of dark energy is naturally equal to the fundamental speed ¢
as contrasted with dark matter. Dark matter has an intrinsic elasticity associated with
the bulk modulus K = e(dp/de) that is proportional to pressure p, and where € is the
energy density of the fluid. The speed of sound v = VK]/e < c for a fluid because in
this case K < €. However, in case of the scalar field K = |e|, and v, = c.

Equations (5.6.37) and (5.6.38) depend on the scalar function y which obeys equa-
tion (5.5.30). Making use of the same transformations as applied to derivation of
(5.6.37) and (5.6.38), we can recast (5.5.30) to a wave equation for y,

oY + 47 (1 -1 %AX2> T o~ g (1+ Wegg) % (5.6.39)
1

6 o _a
=—-da X—l/IX2<%0Vm+ l—v—g VVm,a .

We can observe that the speed of propagation of the field y is equal to the fundamental
speed c. Moreover, (5.6.39) depends on V., and should be solved simultaneously with
equation (5.6.37) for V,, after imposing certain boundary conditions. As soon as the
gauge-invariant scalar y is known, the potential, V,, can be determined either as
a particular solution of the inhomogeneous equation (5.6.38) or, more simple, from
algebraic relation (5.5.37).
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We also need equations for the normalized Clebsch and scalar potentials, y,,, and
Xq- These potentials are required to determine the gravitational perturbation, g, with
the help of (5.6.30) and/or to check on self-consistency of the solutions of the field
equations in the matter sector of perturbation theory. Conformal-spacetime equations
for x,,, and x, are derived from their definition (5.5.10) and the field equations (5.4.67)
and (5.4.68). They are

3
Ot + 5 (1+ Werr) 7 A (5.6.40)
C2
=) -a [wfvm + <1 - ﬁ) v“Vm,a] ,

S

3
OXq * 5 (1+ weg) jfz)(cl (5.6.41)

= — 61+ W) QX — a (4 - \/E}lx2> HVg.
%1

By subtracting one of these equations from another, we get back to equation (5.6.39).
Notice that y,, and x, are not gauge-invariant perturbations and, hence, the solutions
of (5.6.40), (5.6.41) should be interpreted with care.

Equations for the metric perturbations

Post-Newtonian equations for gravitational perturbations in physical spacetime are
(5.5.26), (5.5.28), (5.5.39) and (5.5.41). These equations are gauge-dependent. In order
to fix the gauge we imposed the gauge conditions (5.4.64), (5.5.44). In this gauge,
equations for the conformal metric tensor perturbations become

0q - 29 o + (1+ 3weg) °q = 81a” (0 + T)

- 2.7 [ %sz - %xl] )% =3 (1+ Wegp) 70,

x[<1—c—j>vm—%<1+3§>x—m], (5.642a)
V2 c¢?) a

op - 2°p , = 16ma’t, (5.6.42D)

Op — 24°F Pasp + (1+ 3Wegr) Hp, = 16mar,, (5.6.42¢)

OPgp ~ 25 Papyy = 16717y, (5.6.42d)

The reader can observe that equations (5.6.42a-5.6.42d) for linearized metric per-
turbations are decoupled from each other. Moreover, equations (5.6.42b—5.6.42d) are
decoupled from the matter perturbations V,,, xn,, etc. Only equation (5.6.42a) for q is
coupled with the matter perturbations governed by equations (5.6.37), (5.6.40), (5.6.41)
so that these equations should be solved together. As we have mentioned above, func-
tion q is a linear combination of V; and y,, according to (5.6.30). Hence, in order to
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determine q it is, in fact, sufficient to solve (5.6.37), (5.6.38) and (5.6.40). Nevertheless,
it is convenient to present the differential equation (5.6.42a) for g explicitly for the sake
of mathematical completeness and rigour. It can be used for independent validation
of the solution of the system of equations (5.6.37), (5.6.40) and (5.6.38). Unfortunately,
these equations are strongly coupled and cannot be solved analytically in the most
general situation of a multi-component background universe governed by dark energy
and dark matter. Solution of (5.6.37-5.6.41) would require a numerical integration.

It would be instrumental to get better insight to the post-Newtonian theory of
cosmological perturbations by making some simplifying assumptions about the back-
ground model of the expanding universe in order to decouple the system of the
post-Newtonian equations and to find their analytic solution explicitly. We discuss
these assumptions and the corresponding system of the decoupled post-Newtonian
equations in Section 5.7 below.

5.6.4 Residual gauge freedom in the conformal spacetime

The gauge conditions (5.4.64), (5.5.44) in physical space are given by equations
(5.5.46a), (5.5.46b). After transforming to the conformal spacetime the equations for
the gauge condition reads

pﬁ;ﬁ + 9P (29 -p)p +27¢q = 16ma (pmﬂm)(m +pqﬂq)(q) , (5.6.43a)

By Bpt s Laty L 2p® = 0. 5.6.43b

Pl TP gt ST P ( )

The residual gauge freedom in the conformal spacetime is described by two gauge
functions, { = &/a and (%, where ¢ and {* have been defined in Section 5.5.7. Dif-
ferential equations for { and {* are obtained by making transformation of equations

(5.5.50a), (5.5.50b) to the conformal spacetime. The calculation is straightforward and
results in

0¢ = 2205 g + (14 3weg) #7°¢ =0, (5.6.44a)
o¢® - 29P¢% 5 = 0. (5.6.44b)

Solutions of equations (5.6.42a-5.6.42d) are determined up to the gauge
transformations

q = q+23", + 22, (5.6.45a)
P = p+ %+ 397, + 644, (5.6.45b)
Py = Do+ igp (378, - ¢F + 2¢¢F), (5.6.45¢)
Pap = Pap ~ (Mualtp” + 75" ¢, (5.6.45d)

+ Tap (§% 0 + T + 2€),
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where the gauge functions ({, (* are solutions of the differential equations
(5.6.44a), (5.6.44D).

5.7 Decoupled system of the post-Newtonian field equations
5.7.1 The universe governed by dark matter and cosmological constant

Case 1: Arbitrary equation of state of dark matter
Let us consider a special case of the background value of dark energy represented by
cosmological constant A = 8zW. In this case, the equation of state of the scalar field
is wy = -1, and we have p i, = €; + pq = 0. The parameter x, = 0, and x, = A/GH?). It
yields the parameter Q = x,, and Q, = 1-X,. Since the cosmological constant corres-
ponds to a constant potential W of the scalar field, we get for its derivative 6W /0¥ = 0,
and equation (5.6.1) points out that the parameter A = 0.

In the universe governed by dark matter and cosmological constant the parameter
of the effective equation of state of the dark matter is

A
Wegr = Wiy — (1+ Wm)ﬁ- (5.7.1)

Hence, the time derivative of the Hubble parameter defined in (5.6.13), is reduced to a
more simple expression,

H-= % (1+wy) (A-3H?). (5.7.2)

On the other hand, equation (5.3.52) tells us that in this model of the universe the time
derivative of the Hubble parameter is

H = ~471p . (5.7.3)

The field equation (5.6.37) for scalar V,, is reduced to that describing the time evolution
of the perturbation of the ideal fluid density, dp,,. Indeed, the scalar V, defined by
equation (5.5.14a), can be recast to the form given by equation (5.5.23), that is

Vo= = 6, (5.74)
where the gauge-invariant scalar perturbation
)
8= Pm 4 3py (5.75)
m

is a linear combination of the perturbation of the mass density of the dark matter and
the normalized Clebsch potential y,,. Replacing expression (5.7.4) in equation (5.6.37),
yields an exact equation for &, that is
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2 2 VZ
(1 - g) P yiap — %u&m ¥ <1 -33 ) A (5.76)

3 Vg 2
—E (1_3Wm)?+(1+wm) %61-“

v2
+ = (1+wy) <1 —3C—;>a2A6m = 4na® (0 +T).

NI =

This equation describes propagation of the density perturbation of dark matter, §,,, in
the form of sound waves with velocity v. Equation (5.7.6) is decoupled from any other
perturbation and can be solved separately after the boundary conditions are specified.
For this reason we call (5.7.6) master equation.

Equation (5.6.39) for potential y makes no sense since the normalized perturba-
tion y, = /i, of dark energy in the form of cosmological constant diverges due to
the condition g = py = 0. Equation for the perturbation of dark energy, y, itself is
obtained from (5.4.68) and is reduced to a homogeneous wave equation

oy - 225", = 0. (5.7.7)

Equation for the normalized Clebsch potential, y,,, is derived from equation (5.6.40)
and, in the case of the universe under consideration, reads

1 2 2 V2 _ V2
O + 5 (1+wp) (332” -a A))(m = <1 - c_3> aitspy, , - 4a<%”c—§5m. (5.7.8)

This is an inhomogeneous equation that can be solved as soon as one knows 6, from
the master equation (5.7.6). The potential y,, is necessary to determine the perturbation
of the four velocity of dark matter. We also need it to find out the metric perturbation g.
Gravitational potential, g, can be determined directly from equation (5.6.30) after
solving equations (5.7.6) and (5.7.8) or by solving equation (5.6.42a) which (in the dark
matter+cosmological constant universe) takes on the following form,

0g - 22¢7%q , + [(1+ 3wy, A%~ (1+wy) azA] q (5.7.9a)

=8nd’ {o+T+p it 1_v_§ 6, +H 1+3v_§
- PmHm C2 m C2 Xm .

Equations for other components of the metric tensor perturbations are found from
(5.6.42b—5.6.42d). In dark matter+cosmological constant universe they read

op - 243"'p , = 16ma’t, (5.7.9b)
Opy = 275 Py + [(1 +3Wy) % — (14 W) azA] Da (5.7.9¢)
= 16mar,,

0Py~ Z%V"p;ﬁ;y = 1677, (5.7.9d)
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Equations given in this section are valid for arbitrary cosmological equation of state
of dark matter, p,, = w,&y,, that is physically reasonable and makes sense. The para-
meter w,, of the equation of state should not be replaced with the ratio of v2/c* which
characterizes the derivative of pressure, p,,, with respect to the energy density, €, of
dark matter. This is because the parameter w,, can depend in the most general case
on the other thermodynamic quantities (like enthropy, temperature, etc.) which may
implicitly depend on &. Equations (5.7.6—5.7.9d) are decoupled in the sense that all of
them can be solved one after another starting from solving the master equation (5.7.6)
for 6,,.

Case 2: Cold dark matter

Equations of the previous section can be further simplified for some particular equa-
tions of state of dark matter. For example, in the case of cold dark matter (CDM) we can
think about it as being made out of collisionless dust. Background pressure of dust
drops down to zero making the parameter of the cold dark matter equation of state
wy, = 0. Sound waves do not propagate in dust. Hence, the speed of sound v, = 0.
For this reason all terms being proportional to vg and wy, vanish in equation (5.7.6).
Moreover, dust has the specific enthalpy, u,, = 1 making the energy density of dust
equal to its rest mass density €, = pp, and the normalized perturbation y,, of the
Clebsch potential of dust equal to the perturbation ¢ of the Clebsch potential itself,
Xm = ¢. The Friedmann equation (5.3.50) (for k = 0) tells us that

2
A7 = % (87py, + 7). (5.7.10)

Accounting for this result in the master equation (5.7.6), and neglecting all terms being
proportional to the speed of sound, v, and w,,, we obtain

Ve Omiap + AT 6 — 4a’py by = 4ma’ (0 + 1), (5.711)

where the terms depending on the cosmological constant, A, have cancelled out. This
equation is more familiar when is written down in the preferred FLRW frame, where
7% = (1, 0, 0, 0). Equation (5.7.11) assumes the following form

8+ A8 — 4na’py by, = 4na’ (0 + 1), (5.712)

where the time derivatives (denoted with a prime) are taken with respect to the con-
formal time 1. Converting the time derivatives in (5.712) from the conformal time 1 to
the cosmic time T reduces it to a canonical form

8 + 2Hb,, — 4718, = 4m (0 +T) (5.713)

which can be found in many textbooks on cosmology [296, 327, 353, 456, 457]. All
textbooks always dropped off the source of the bare perturbation in the right side of
(5.7.13) as they are concerned with the description of the formation of the large scale
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structure in the universe out of the primordial perturbations. However, omitting the
bare perturbation in the right side of (5.7.13) is equivalent to neglecting the contribu-
tion of the small-scale density fluctuations in the early universe to the formation of
the large scale structures — the process which can be physically significant in the cold
dark matter scenario of galaxy formation [57, 58].

Equation (5.713) has been derived by previous researchers without resorting to
the concept of the Clebsch potential of the ideal fluid. For this reason, the density
contrast, 6,,, was interpreted as the ratio of the perturbation of the dust density to
its background value, § = 8p,,/p,,, without taking into account the perturbation,
¢, of the Clebsch potential. However, the quantity 6 is not gauge-invariant which
was considered as a drawback. The scrutiny analysis of the underlying principles
of hydrodynamics in the expanding universe given in the present chapter, reveals
that equation (5.7.12) is, in fact, valid for the gauge-invariant density perturbation &,
defined above in (5.7.5). Another distinctive feature of equation (5.7.12) is the presence
of the source of a bare perturbation in its right side. The bare perturbation is caused by
the effective density o + T of the matter which comprises the isolated astronomical sys-
tem and initiates the growth of instability in the cosmological matter that, in its own
turn, induces formation of the large scale structure of the universe [353, 457]. Standard
approach to cosmological perturbation theory always set ¢ + T = 0 and operates with
the spectrum of the primordial perturbation of the density §p,,/p,, (but not with the
spectrum for 6,,).

Equation (5.7.8) in case of dust reads,

Oy + % (37 - @A) X = AT 61 (5.7.14)

where y,, = ¢ is reduced to the perturbation ¢ of the Clebsch potential @ for the reason
that in case of dust y,, = 1. If equations (5.712) and (5.7.14) are solved, the gravitational
perturbations can be found from equations (5.7.9a—5.7.9d), which take on the following
form

Og - 25°q o + (%2 - azA) q= (5.7.15a)
81a’ [0+ T + Py (6 + Hxm)] »

Op - 2°p 4 = 16ma’T, (5.7.15h)

ap, - 27 Pasp + (,%ﬂz - aZA) Dy = 16mar,, (5.7.15¢)

Dp;ﬁ - Z%ﬁyp;m = 16711:43. (5.715d)

It is interesting to notice that besides the bare density perturbation, ¢ + 7, caused by
an isolated astronomical system, the source for the scalar gravitational perturbation,
g, contains in the right side of equation (5.7.15a) also the induced density perturbation
Pm (6m + HxXy) = 8pm + Hpp¢ of the background dark matter. This induced density
perturbation depends on time and leads to a temporal change of the initial (bare)
mass of the isolated astronomical system in the course of the Hubble expansion of
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the universe. Thus, our post-Newtonian approach to cosmology explains the origin
of the time-dependence of the central, point-like mass in the cosmological solution
found by McVittie [313] (see also discussion in [93]).

Case 3: Hot dark matter

Hot dark matter (HDM) is a hypothetical form of dark matter which consists of
ultrarelativistic particles that travel with velocities being very close to the funda-
mental speed c. A plausible candidate for the hot dark matter is neutrino. Hot dark
matter taken alone, cannot explain how individual galaxies were formed from the
primordial perturbations. Therefore, hot dark matter is discussed only as part of a
mixed dark matter theory [40]. Nonetheless, the case of the hot dark matter is inter-
esting from mathematical point of view. Equation of state of the hot dark matter is
approximated by the radiative equation of state, p,;, = (1/3)e,, which yields the para-
meter wy, = 1/3. We assume that this parameter is constant and, hence, the speed of
sound v, = 1/1/3c. This value of v, is comparable with the fundamental speed c which
means that we have to keep the terms with the speed of sound in the master equation
(5.7.6). The values of w,, and v, for the hot dark matter equation of state reduce the
master equation for the gauge-invariant HDM density perturbation 6, to the following
form

0,6, + 6%&25,11 = —12nd° (c+1), (5.7.16)

where

2
o, <—%v“vﬁ + ﬁ“ﬂ) Bt (5.717)

S

is the D’Alembert wave operator with the speed of propagation of sound waves v, =
¢/+/3. Equation for the perturbation of the Clebsch potential of the hot dark matter is
derived from (5.7.8) and reads

Oy +2 (,;zﬂz - %aZA) Yo = 2? (96— 2761,). (5.718)

Equations for the gravitational perturbations are
_u 2 2 2 2_
0q - 23"q, +2 (% - ga A) q = 8ma [0 +T+ §pmym (6 + 3H)(m)] . (5.719a)

Equations for other components of the metric tensor perturbations are found from
(5.6.42b—-5.6.42d). In dark matter+cosmological constant universe they read

op -223"p, = 16ma’t, (5.7.19b)
Opg = 277 Py +2 <<%”2 - §a2A>pa = 167art,, (5.7.19¢)

|:|p;[g - Z%G“p;ﬁ;y = 16ﬂT;ﬂ. (5.719d)
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5.7.2 The universe governed by dark energy

In this section we explore the case of the universe governed primarily by a dark energy
(scalar field W) with dark matter constituent being unimportant. In this case, the time
evolution of the background universe is defined exceptionally by equations (5.6.5a),
(5.6.5b). The most general solution of (5.6.5a), (5.6.5b) is complicated and can not be
achieved analytically. Numerical analysis shows that the solution evolves in the phase
space of the two variables {x;, X,} from an unstable to a stable fixed point by passing
through a saddle point [7]. The cosmic acceleration is realized by the stable point with
the values of x; = A/6 and X, =1- /6, which is equivalent to the equations of state
(5.3.54) with the values of the parameters, w,, = 0, and, wq =-1+ A%/3. Tt also requires
the energy density of the background matter €, = O, thatis Q,, = 0. In such a universe
the derivatives of the potential of the scalar field are

1ow _ 3 B oW 9 5 5
. 2H(1 wy), - SH (1-w). (5.7.20)

Moreover, because p,ji,, = €, +Pm = O, the time derivative of the Hubble parameter is
. o 3,
H = ~47pgity = = H* (1+w). (5.7.21)

In the point of the attractor of the scalar field, perturbations of the dark matter are
fully suppressed that is the normalized value of the perturbed Clebsch potential of the
dark matter, y,, = O. It makes the function V,; = g/2, that is reduced to the perturba-
tion of the scalar component of the gravitational field only. Perturbations of the scalar
field are described by the scalar field variable, Xq- In particular, after substituting the
derivatives (5.7.20) of the scalar field potential along with the derivative (5.7.21) of the
Hubble parameter, to (5.5.38), we obtain the post-Newtonian equation for function V,

OV — (1-3w,) #V,, + %%2 (1-wy) (143wy) Vy =~4na’ (0 +7).  (57.22)
Field equation for the perturbation of the scalar field, x,, is reduced to
1
Oa * 3 (1+3wy) 7% = — (14 3wy) @itV (5.7.23)

Post-Newtonian equations for gravitational perturbations are (5.6.42a-5.6.42d). After
substituting the values of the parameters x;, X,, W, etc., corresponding to the model
of the universe governed by the dark energy alone, the post-Newtonian equations for
the metric perturbations become
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og - ijx'z"q,y + (1 + 3wq) HPq = 8nd® (0 +71) (5.7.24a)

3 )
= (1 + Wq) (1 + 3wq) %3)@,

op - 2¢5"p,, = 16na’t, (5.7.24b)
Opg = 275" Py + (1 + 3wq) H°p, = 16mar,, (5.7.24¢)
Opyg = 27 Py, = 16MT . (5.7.24d)

One can see that the field equations for the perturbations of dark energy and grav-
itational field are decoupled, and can be solved separately starting from the master
equation (5.7.22).

5.7.3 Post-Newtonian potentials in the linearized Hubble approximation

The metric tensor perturbations

The post-Newtonian equations for cosmological perturbations of gravitational and
matter field variables crucially depend on the equation of state of the matter fields in
the background universe. It determines the time evolution of the scale factor a = a(n)
and the Hubble parameter # = #(n) which are described by the wide range of
elementary and special functions of mathematical physics (see, for example, text-
books [7, 303, 425] and references therein). It is not the goal of the present chapter
to provide the reader with an exhaustive list of the mathematical solutions of the
perturbed equations which requires theoretical development of cosmological Green’s
function (see, for example, [224, 292, 293, 382]). We notice that solving the field equa-
tions of the post-Newtonian approximations in cosmology is more complicated than
in case of the post-Newtonian theory in asymptotically flat spacetime. The reason is
twofold: (1) the system of the post-Newtonian equations on cosmological background
involves, besides equations for the metric tensor perturbations, also the equations
for the perturbations of the matter that curves the background manifold and gov-
erns its temporal evolution; and (2) the post-Newtonian field equations in cosmology
depend on the time dependent Hubble parameter that makes finding the Green func-
tions of the field equations pretty difficult task. If we are interested in finding the far
zone (radiative) solution for the gravitational field of an isolated astronomical system,
we have to fulfil this task exactly. This problem has not yet been solved though it is
very important for doing precise cosmology with gravitational wave astronomy. On
the other hand, we can employ the post-Friedmannian approximations by looking for
the solution of the cosmological post-Newtonian equations as a series with respect
to the Hubble parameter. In this section we shall limit ourselves with the linearized
Friedmann approximation. In other words, we shall take into account only the terms
which are proportional to the Hubble parameter .5, and shall systematically neglect
all terms which are quadratic, cubic, and higher-orders with respect to /7.
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As we shall see, in the linearized Friedmann approximation the post-Newtonian
equations for the field perturbations have identical mathematical structure so that
they are not only decoupled from one another, but their generic solution can be found
irrespectively of the equation of state governing the background universe. Indeed, if
we neglect all quadratic with respect to .7# terms, the field equations for the conformal
metric perturbations are reduced to the following set,

Oq - 2%°q 4 = 8na’ (0 + 1), (5.7.25a)

Op - 2¢°p , = 16ma’T, (5.7.25b)
Op, — 243" Pap = l6m1at,, (5.7.25¢)
ngﬁ - ijvyp;ﬁ;y = 16711;4?, (5.7.25d)

where the wave operator 0 has been defined in (5.6.32), and the source of the bare per-
turbation is the tensor of energy-momentum of a localized astronomical system having
a bounded matter support in space — see Section 5.3.8. The differential structure of the
left side of equations (5.7.25a—5.7.25d) is the same for all functions. The equations differ
from each other only in terms of the order of .2 which have been omitted.

In order to bring equations (5.7.25a—5.7.25d) to a solvable form, we resort to relation
(5.6.34) which reveals that in the linearized Friedmann approximation, the post-
Newtonian equations for metric perturbations can be reduced to the form of a wave
equation

O(aq) = 8na’ (0 + 1), (5.7.26a)
O(ap) = 16na’t, (5.7.26b)
a(ap,) = 16na’t,, (5.7.26¢)

O (ap;ﬁ) = 16mat (5.7.26d)

.
af’
So far, we did not impose any limitations on the curvature of space that can take three
values: k = {-1,0, +1}. Solution of wave equations (5.7.26a-5.7.26d) can be given in
terms of special functions in case of the Riemann (k = +1) or the Lobachevsky (k =
—1) geometry [292, 293]. The case of the spatial Euclidean geometry (k = 0) is more
manageable, and will be discussed below.

If the FLRW metric is spatially-flat universe, k = 0, and we chose the Cartesian
coordinates x* related to the isotropic coordinates X* of the FLRW metric by a Lorentz
transformation, X* = L"‘ﬁxﬁ, where L"‘ﬁ is the matrix of the Lorentz boost. In these
coordinates the operator 0 becomes a wave operator in the Minkowski space,

0=n"dy,. (5.7.27)

and equations (5.7.26a-5.7.26d) are reduced to the inhomogeneous wave equations
which solution depends essentially on the boundary conditions imposed on the
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metric tensor perturbations at conformal past-null infinity #~ of the cosmological
manifold [315]. We shall assume a no-incoming radiation condition also known as
Fock-Sommerfeld’s condition [115, 178]

rgrggo n”ay [a(q)rhaﬂ(x”)] =0, (5.7.28)

t+r=const.

where x* = (x°, x9), n= X° is the conformal time in isotropic coordinates connected to
the coordinates x* by a Lorentz boost n = n(x*) = Loﬁxﬁ , the null vector n® = {1, x!/r},
andr = 5inin is the radial distance. This condition ensures that there is no infalling
gravitational radiation arriving to the localized astronomical system from the future
null infinity ¢ . Effectively, it singles out the retarded solution of the wave equa-
tion. Whether the boundary condition (5.7.28) is valid or not, we do not know for sure
because our knowledge of the universe is limited by the existence of the cosmological
(also known as light or particle) horizon [296] that represents the boundary between
the observable and the unobservable regions of the universe. Nonetheless, in case of
spatially flat (k = 0) universe, the condition (5.7.28) seems to be highly plausible.

A particular solution of the wave equations satisfying condition (5.7.28), is the
retarded integral [285]

att:x) = (t x)] L/ . [GIE(S’—X;?I+ T(S’X,)] dax” (.7292)
p(t,x) = n(t ] L/ @ [nts X; )E’I ’)dBX’, (5.7.29b)
Palt,x) = (t ] L/ “[nts xli xgls x’)d3X’, (5.7.29¢)
Pyt = —— [né’x)] J alnts.x )ILTEXI; gls’x,)dBX : (5.7.29d)

where the scale factor a in front of the integrals depends on the coordinates of the field
point a = a [n(t, x)], and the functions in the integrand depend on the retarded time

s=t-|x-x|, (5.7.30)

because gravity propagates with finite speed. Equation (5.7.30) describes characteristic
of the null cone in the conformal Minkowski space that determines the causal nature
of the gravitational field in the expanding universe with k = 0. Solutions (5.7.29a—
5.7.29d) are Lorentz-invariant as shown by calculations in Section B.1.

Integration in (5.7.29a—5.7.29d) is performed over the finite volume, ¥/, occupied
by the matter of the localized astronomical system. In case of the system comprised
of N massive bodies which are separated by distances being much larger than their
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characteristic size, the matter occupies the volumes of the bodies. In this case the
integration in equations (5.7.29a-5.7.29d) is practically performed over the volumes
of the bodies. It means that each post-Newtonian potential g, p, p,, P’ , is split in the

ap
algebraic sum of N pieces
N N N N
q= z das p= ZPA’ Do = sza’ p;ﬁ = ijmﬁ’ (5.7.31)
A=1 A=1 A=1 A=1

where each function with sub-index 4 has the same form as one of the correspond-
ing equations (5.7.29a-5.7.29d) with the integration performed over the volume, ¥, of
the body 4. This confirms the principle of superposition in the linearised Friedmann
approximation.

The gauge functions

The residual gauge freedom describes arbitrariness in adding a solution of homogen-
eous wave equations (5.7.29a-5.7.29d). It is described by two functions, { = ¢/a and
(" as discussed in Section 5.6.4. Since we neglected the terms being quadratic with
respect to the Hubble parameter, equations (5.6.44a), (5.6.44b) gets simpler, and read

o - 295 = 0, (5.732a)

o¢® - 298" = 0. (5.7.32b)

They are equivalent to the homogeneous wave equations in the conformal flat space-
time

o(a) =0, o(a¢®) =0, (5.7.33)

which point out that (in the approximation under consideration) the products, a{ and
a(*®, are the harmonic functions.

Potentials g, p, p,, p;ﬁ must satisfy the gauge conditions (5.6.43a), (5.6.43b). Neg-
lecting terms being quadratic with respect to the Hubble parameter, the gauge
conditions (5.6.43a), (5.6.43b) can be written down as follows

(ap®) , + 9" 2aq - ap) , + #'ap = O, (5.7.34a)

(ap™) g+ (ap”) p + %ﬁaﬁ(ap),ﬁ + A ap® =0, (5.7.34b)

where we have taken into account a , = —a.#7,, and p“v, = 0, pT"‘ﬁvﬁ = 0. The poten-
tials p* and p™ are obtained from p, and Py by rising the indices with the Minkowski

metric and taking into account that the indices of 7, and 77, in the integrands of

a
(5.7.29¢) and (5.7.29d) should be raised with the full background metric g‘*ﬁ = a‘zn”‘ﬁ
taken at the point of integration. This is because by convention having been adopted

in Section 5.3.8, the notations * = gaﬁrﬁ and 7% = g"‘“gﬁ"‘rw. It yields
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w 4 a* [n(s,x")] t* (s,x") X'
ptx) = - 16 9] J X X : (5.7.35a)
5 ! Taf 1\ 43,/
af _ 4 a [n(s,x)]r (s,x)dx
LX) =~ 016 0] J XX . (5.7.35b)

It is instrumental to write down solutions for the products of the potentials p and

= q“ﬁpﬁ with the Hubble parameter. Multiplying both sides of equations (5.7.26b),
(5.7.26¢) with the Hubble parameter .77, and neglecting the quadratic with respect to
S terms, we obtain

o(a#p) = 16na> 1, o(a#p®) = 16na* #1°, (5.7.36)

which solutions are the retarded potential

3 , N 7 , / , / d3 !

ax’p(t,x) = -4 L/ @ n(s.x) lE?ESX),(l )z (s.x) , (5.7.37a)
4 , / A , ! a , ! d3 !

ap(t,x) = ~4 Jﬂy " [nts. ) I[:'Z(::I)] s x)d : (5.7.37b)

Substituting functions g, p, p%, p™® and a.#p, a.#p® to the gauge equations (5.7.34a),
(5.7.34b), bring about the following integral equations

3.1
j [(a4r“ + x'z“a3a) +a %T] d'x =0, (5.7.38a)
% x-x'
&x'
J [(a 7 ¢ aPr n”‘ﬁ 3 ) + a“%pr"] —— =0, (5.7.38b)
% 3 B Ix - x|

where all functions in the integrands are taken at the retarded time s and at the point
x', for example, a = a[n(s,x)], # = #n(s,x")), o = o(s,x)], and so on. These
equations are satisfied by the equations of motion (5.3.71a), (5.3.71b) of the localized
matter distribution. Indeed, divergences of any vector F* and a symmetric tensor F B
obey the following equalities

Fly = \/L__g <\/§F“) , (5.7.39)

,a
Fob 28 2 ph
5= \/_g<\/:gF >’ﬁ+1‘ﬁyF v, (5.740)

Moreover, the root square of the determinant of the background metric tensor is
expressed in terms of the scale factor, \/-g = a*, while the four-velocity % = ¥%/a.
Employing these expressions along with equations (5.7.39), (5.740) in equations of
motion (5.3.71a), (5.3.71b), transform them to
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(a4T“ + x‘z“a30) +@ AT =0, (5.741a)

(a"r"‘ﬁ + T "‘) st 2841 = 0. (5.741b)

Equation (5.741a) proves that the integral equation (5.7.38a) is valid. In order to prove
the second integral equation (5.7.38b), we multiply equation (5.741b) with the scale
factor a, and reshuffle its terms. It brings (5.7.41b) to the following form

(asraﬁ +ad*dPr “) st a*#t* =o. (5.742)

Substituting, 7% = 1™ + (1/3¢®)7%1, to (5.742) and comparing with the integrand in
(5.7.38b) makes it clear that (5.7.38b) is valid. We conclude that the retarded integrals
(5.7.29a-5.7.29d) yield the complete solution of the linearized wave equations (5.7.26a—
5.7.26d) in the sense that there is no residual gauge freedom since the gauge functions

(==

Perturbations of dark matter and dark energy

What remains is to find out solutions for the scalar functions Vy, and V, and x, and x,-
In the linearised Friedmann approximation equation for V,; is obtained from (5.6.37)
by discarding all terms of the order of 7. 1t yields

2

oV, + <1 - ;) GaﬁﬁVm’aﬁ + <3 - —) AT Vi g = ~471a® (0 +1). (5.743)
S S

Applying relations (5.6.34), (5.6.35) in equation (5.7.43) allows us to recast it to

% [D(a"Vm)+<1—§> 75 (a"Vy) B] (5.7.44)

S

2
+ [3+ @n- 1)%] AT Vi g = —4na® (0 + 1),

S

where n is yet undetermined real number. Now, we postulate that the speed of sound
v, is constant. Then, choosing, n = ng, with

1 V2
ng = §<1—3C—;>, (5.7.45)

annihilates the term being proportional to 7 in the left side of (5.7.44) and reduces
it to

o(a™Vy)+ <1 - ﬁ) 7% (v, m),ap = = —471a®*™ (0 + 7). (5.7.46)
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This equation describes propagation of perturbation V,, with the speed of sound
v,. Indeed, let us introduce the sound-wave Laplace-Beltrami operator (5.7.17). Then,
equation (5.7.46) reads

O (a5 V) = ~471a®™s (0 + 7). (5.747)

This equation has a well-defined Green function with characteristics propagating with
the speed of sound v,. We discard the advanced Green function because we assume
that at infinity the function V, and its first derivatives vanish. Solution of (5.747) is
explained below in Appendix B.2, and has the following form

V,, (6, X) = (5.748)

1 J a®"s (¢,x") [0, x') + (6, x| @Px’
as(t,x) )y 2 Ix-x'|’
\jl+y2<1— ﬁ)(ﬁxn)2

S

where the retarded time ¢ is given by equation (B.2.18), B = Bi = ‘i/c, y = 1/1- ﬂz
is the Lorentz factor, and the unit vector n = (x - x')/|x — x'|. The retardation in the
solution (5.7.48) is due to the finite speed of propagation of acoustic (sound) waves in
the ideal fluid that represents the dark matter.

Equation for V, is obtained in the lineazised Friedmann approximation from
(5.6.38) after discarding all terms being proportional to .. It yields

3
avy +2 <1 -1 z—Xl}lx2> R s Vau = —4d® (0 + 7). (5.7.49)

Applying relation (5.6.34) in (5.7.49) allows us to recast it to

1
0 (a"Vy) +2 (n +1- 4 zin/\X2> ATV o = —41a (0 +7T). (5.7.50)

If, and only if, the ratio Ax,/ /X is constant, we can choose, n = ng=-1+ 1/3/(2x)A%5,
in order to eradicate the second term in the left side of (5.7.50). In those models of the
universe where this condition is satisfied, the resulting equation for V, is simplified
and reads

o(a™V,) = -4na®" (0 +1). (5.7.51)

This is the wave equation in flat spacetime. We pick up the retarded solution as the
most physical one,

! a*a (5, x') [0 (s, x') T (s,x')] &x'
L/ , (5752)

a7 gha(t, x) Ix - x'|
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where the retarded time s has been defined in (5.7.30).
Perturbations x,, and x, can be found by integrating equations (5.5.14a) and
(5.5.14b) that can be written as

- q - q
VaXm,a =a (Vm + E) , Van,lX =a <Vq + 5) . (5.7-53)

These are the ordinary differential equations of the first order. Their solutions are

t

o = L alt, X(OHVinl£,X(0) + Salt, x(ONl (5.7.54)
t

Xo - | altxlvglexo)+ Salt,x(O))dt,. (5.7.54b)

where t, is an initial epoch of integration, and the integration is performed along the
Hubble flow of the background universe

dXi i

— =7 (¢ x). 5.7.55

ar (t,x) (5.7.55)
Therefore, the most simple way to integrate equations (5.7.53) would be to work in the
preferred coordinate frame X* = (1, X') where the velocity ' = 0, and the spatial
coordinates X' = const. After the calculation in the rest frame of the Hubble flow is
finished, the transformation to a moving frame of observer can be done with the help
of the coordinate transformation between the two frames.



6 Currents and superpotentials on arbitrary
backgrounds: Three approaches

Recall that classical pseudotensors and superpotentials help us to define the integral
properties of physical systems in terms of the surface integration, see Section 1.4. To
make such an integration meaningful, an auxiliary flat background metric is intro-
duced; besides, calculations are performed with making use of the Killing vectors of
the flat space, see (1.4.75-1.4.79). In the framework of the field-theoretical formulation
of general relativity, Chapter 2, the curved background manifold and its Killing vec-
tors are used for the surface integration in the definitions of the integral quantities.
Such a form of integral conservation law follows directly from the differential form of
conservation law, where the conserved current is expressed through a divergence of a
superpotential. Let us give two examples.

First, for the study of perturbations on FLRW backgrounds the so-called integ-
ral constraint is introduced. It represents a powerful form of an integral conservation
law that connects the volume integration over the matter perturbations only, with
the surface integral of the metric perturbations. It turns out to be very important for
resolving some problems in cosmology [441], e. g., to analyze the measurable effects
of the cosmic microwave background radiation [442]. In the definition of the integral
constraints the integral constraint vectors, not necessarily the Killing vectors, play a
crucial role.

Second, in [451], a new conserved energy-momentum pseudotensor was found
and used in an effort to integrate Einstein’s equations with scalar perturbations and
topological defects on FLRW backgrounds. In [446], it was realized that these conser-
vation laws are associated with the conformal Killing vector of time translation, but
not with the ordinary Killing vectors.

Thus, it is desirable that mathematical formalism for describing perturbations and
conservation laws was constructed in the most general way including the possibility
to use arbitrary displacement vectors on arbitrary curved backgrounds. Keeping in
mind the above arguments and (1.4.75-1.4.79), the requirements for constructing such
generalized conservation laws are formulated as follows:

(i) Mathematical exprsssions have to be covariant on a chosen curved background
manifold with the metric which is a solution of the field equations of general
relativity.

(ii) Conservation laws have to be based on the Lagrangian of the perturbed system.

(iii) The conserved currents must be vector densities, #*(¢), which are differen-
tially conserved, 9, ¢ K(&) = 0, on the equations of motion for perturbations.

(iv) The currents, ##(¢), have to be expressed through corresponding superpoten-
tials that are antisymmetric tensor densities, _# ¥ "in the form of a divergence

JHE) =0, 77 (£), where 9, 71 (£) = 0.

DOI 10.1515/9783110351781-006
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(v) There has to be a possibility to use arbitrary displacement vectors, ¥, not just
the Killing vectors of the background.

(vi) Applications of the suggested conserved quantities and conservation laws have
to satisfy the known results obtained for simple physical systems.

Below, in Sections 6.1-6.3, we present three different methods (canonical, Belinfante
correcting and field-theoretical) of constructing such conservation laws and con-
served quantities satisfying the above requirements (i-vi). After constructing the set
of conserved quantities, one can ask: what quantity from the set is more preferable?
Section 6.4 answers this question and proposes a number of criteria for making such
a choice.

In the final two sections, we demonstrate how conserved currents and superpo-
tentials can be used to study perturbations in the FLRW universe. It is well known that
the FLRW geometry has only 6 Killing vectors (but not 10 that the maximally symmet-
ric spaces only have), among which there is no timelike Killing vector. Thus, one has
no possibility to construct directly the energy density and energy integral for perturb-
ations on the FLRW backgrounds. In Section 6.5, by using the KBL method, we present
a feasible approach to solving this problem.

In Section 6.6, using the Belinfante corrected quantities we construct the integral
relations for perturbations in the FLRW universe. We describe how matter perturba-
tions inside a restricted domain can be connected with the metric perturbations at its
boundary.

In the present chapter many notations, which are used only in this chapter,
are introduced. We hope that no confusion will arise. Again, we use the units with
G=c=1.

6.1 The Katz, Bicak and Lynden-Bell conservation laws
6.1.1 A bi-metric KBL Lagrangian

The first of these methods has been elaborated by Katz, Bi¢ak and Lynden-Bell in
the paper [251] (later we call as KBL). They, by using the standard Noether’s canon-
ical procedure, presented conservation laws for arbitrary (not only infinitesimal)
perturbations.

The KBL strategy is bi-metric, it is based on using both dynamical metric and a
background metric. Then, comparing them, one defines and describes perturbations
with respect to the background solution. In Section 1.2.3, we provided main defini-
tions and properties of diffeomorphisms and mapping a spacetime onto itself. The
technique of a bi-metric derivation requires to recall and slightly reformulate some of
the main notions of mapping a dynamical spacetime onto a background spacetime.

Let gyv(x) be the metric of a dynamical spacetime .# “4 and let gw()‘() be the metric
of a background spacetime .7Z*. Both are tensors with respect to arbitrary coordinate



6.1 The Katz, Bi¢dk and Lynden-Bell conservation laws = 301

transformations. Once we have chosen a mapping so that points {p} of .#* map into
points {p} of .#*, then we can use the convention that {p} and {p} shall always be rep-
resented by the same coordinates x* = x“. This convention implies that a coordinate
transformation on .#* inevitably induces a coordinate transformation with the same
functions on .#*. With this convention the expressions, like gyv(x) - gyv(x), which are
perturbations, become true tensors. If the particular coordinate presentation of the
mapping is changed it must not violate the tensorial nature of the equations associ-
ated with the mapping. This property of the tensorial equation to preserve their form
is known as the gauge invariance, and the freedom in choosing the mapping is called
the gauge freedom. This freedom has been examined in detail in Section 2.2.4 in the
framework of the field-theoretical approach.

The main KBL idea is to construct a relative bi-metric Lagrangian in a generalized
form:

~ 1
Lxsr =20-7°- Eaaga, (6.1.1)

where .#¢ is a pure gravitational Lagrangian of an arbitrary metric theory; a diver-
gence is chosen by various criteria. In the case of general relativity, KBL choose the
Hilbert Lagrangian (1.3.1) as the gravitational one, thus (6.1.1) acquires the form:

1 _
Lip = “lon (g) - %+ aaka) . (6.1.2)

Here, the physical scalar curvature density, %, is constructed with the use of g,
which satisfies the dynamical Einstein equations while the background one, %, is
constructed with the use of g,,, which satisfies the background Einstein equations
and corresponds to an arbitrary curved spacetime. With the use of (2.2.17) and (2.2.18)
one obtains for the difference between the curvature scalar densities in (6.1.2):

R =R =§"Reg—08"Reg
= g (V15 = Vol + O A = AP AT )
+ (8" -3") Ry - (6.1.3)
Here, as usual, A, = I, - [, but now the components A’ are not independent

variables. KBL choose the divergence in (6.1.2) with the vector density (2.2.19) that first

has been introduced by Katz [250]. It reads
K* = gm/A‘uyv _ gyvAa

- (6.1.4)

Of course, k* = 0. Using 9,k" = V,k*, one obtains the KBL Lagrangian (6.1.2) in the
final form:

ih“’Rm . (6.1.5)

__ 1w an p Al
Zin = _Eg (A prlA o~ O U,IA rp) T 161
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Here, as before, h™ = g™ -3", but now the components h™ are not considered as inde-
pendent variables. One can see that (6.1.5) does not depend on the second derivatives
of the metric. Therefore, the corresponding energy-momentum will not depend on
the second derivatives either. This simplifies the Cauchy problem, when the action
with the Lagrangian (6.1.5) is varied under the Dirichlet boundary condition which is
imposed only on the components of the metric but not on its first derivatives.

In the case of a flat background in the Lorentzian coordinates, when A?;, =
I? on ~ c? o = I? on» the Lagrangian (6.1.5) transfers to the Einstein Lagrangian (1.3.9).
Also for the case g, = g,,, when a dynamical (perturbed) system coincides with the
background one, the Lagrangian (6.1.5) vanishes.

6.1.2 KBL conserved quantities

Noether’s canonical procedure

Now, let us analyze the Lagrangian (6.1.5). Because it is a scalar density, it has to satisfy
the main Noether’s identity related to diffeomorphisms. To provide a pure canonical
procedure we take the original form (1.2.46) of this identity with the right side omitted

££$KBL + ay (‘fy"iﬂKBL) =0. (6.1.6)

In the case of a generalized theory of fields * for arbitrary displacement vectors &,
the same identity has been studied from (1.4.3) to (1.4.13) in Section 1.4. Therefore we
rewrite the identity (1.4.13), setting, * = {8 &b

G)

b 0, (6.1.7)

v, Jk

where the current in (6.1.7) has the form of (1.4.14):

. 8.2 p 6Ly . m 0Ly -
U KBL KBL KBL V
je=|- Spol, =~ = Bpol, + 7= V8o — Lkar B
c 6gpo po'v 6gpo’ po|v a(V},gpg) vopo KkBLY%y {
2.7 _
- R e 8V, + 2 (6.1.8)
d (Vugpo)

Notice that, here, the covariant derivatives have been introduced by applying the tech-
nique of Appendix A.3.3, the very last term is explained in (6.1.13), and indices are
lowered and raised by g,, and g"". We explain the meaning of each term entering
(6.1.8) in the text that follows.

To calculate the first two terms in (6.1.8) it is more constructive to use the (6.1.2)
representation for the KBL Lagrangian. One easily obtains that they are expressed
through dynamical, 4,*, and background, ¢,*, densities of the Einstein tensor:

_ 6Lxn k_ 1 6Lxs1 g H 1.

- _ —__— @H
5gp0 Polv = 8TV 55’,30 Polv 87_[‘!1, ’ (6.0.9)
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The other terms in square brackets in (6.1.8) have the form of a canonical energy-
momentum (1.2.102) presented in a covariant form. Now, for calculational purposes, it
is more effective to use the (6.1.5) representation for the KBL Lagrangian. As a result,
one has

0Lkp ¢ 1 pog
— KB Vg o~ Ll =t} + —b°R O, (6.1.10)
3 (V,850) e Vo T qem’ POV

where
16nt"y = gpo [A/‘P/\AHUV + Ayp(IA;l/lv - ZAHPAAAO'V
— (Ao - A5 ) 6]
+g (AopoApAv - AU/\UAppv) , (6.1.11)

depends on the first derivatives Vy 8o Only, and is interpreted as the canonical energy-
momentum tensor density for gravitational field. The last term in (6.1.10) reflects the
interaction of the perturbed system with the curved background.

The important term in (6.1.8) is the spin tensor density:

16m6"° = —1671% gpg'i fad (6.1.12)

0 (Vugpﬂ)
= (20°#87 - 98”1 - (207787 - 0787 ) 1.

After simplification to the Minkowski background in the Lorentzian coordinates one
obtains from (6.1.12) the quantity presented by Papapetrou [351] to construct the angu-
lar momentum with the use of Einstein’s pseudotensor. The last term in (6.1.8) has the
form:

24§ = ﬁ [0#20,0,° + 077 (V4,5 - 29,8,1)] (6.1.13)

with the notation:

{0 = —§£{§pg = Vipbo) - (6.1.14)

By definition, this quantity vanishes if £ is a Killing vector of the background
spacetime.
Thus, finally, (6.1.8) can be rewritten in a short form:

]}é(‘f) =108+ Uupgvp‘fa +2", (6.1.15)
where

TN (G} -9)+t) + %hp”fepaa’v‘ (6.1.16)

1
T 8m
is a coefficient in front of &Y, which can be interpreted as a generalized energy-
momentum related to the KBL Lagrangian (6.1.2).
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KBL superpotential

Because the equation (6.1.7) is the identity, the current, j’é(.f), in (6.1.15) can be rep-
resented through a superpotential, j’év(f) - an antisymmetric tensor density, in the
form:

(& =0,7® =9,j©). (6.1.17)

How can one show this? The scheme is analogous to that used previously in
Section 1.4. One has to construct the system of the Klein identities, like (1.4.8-1.4.11),
with the use of which the identity (6.1.17), like (1.4.19), can be constructed. One can
see that (6.1.7) contains derivatives of £ up to the third order. Then, since ¢", 9,¢",
Opo¢” and 0,5,¢" are arbitrary at every world point, one has to set the coefficients
independently to zero and obtain the system of the Klein identities related to the KBL
Lagrangian. Because this procedure must not depend on the choice of coordinates we
can get a covariant form of the Klein identities by writing down the identity (6.1.7) in
terms of the covariant derivatives

0

Mjlé = ﬁv'fv + ﬁv"Vyé’V + ﬁvpav(pa)fv + ﬁvypgv(upg)fv =0 (6118)

and equate the coefficients at &, V,,&", V(,;7¢" and V(,,,»&" to zero. The resulting cov-
ariant system is equivalent to the initial non-covariant system because the set of the
covariant identities is a non-degenerate linear combination of the identities of the
initial system.

Thus, from (6.1.18) one has

O, =V, () + 107 R 6 (6.1.19)

e (R T — BP9, Rpy — SR, ,1%) = 0

1671 pavuh b viipo EUVPh =

_ 1 _
ol =)+ 9,07, - S—Hh"PRVp =0, (6.1.20)
6,09 = gh? 4 v,0° =0, (6.1.21)
0,%9) =0, (6.1.22)
where the quantity ¢,**? in (6.1.21) and (6.1.22) is
1

oM = e (#°8) + hH°80 — 26778 . (6.1.23)

One easily recognizes that for such a quantity the last identity (6.1.22), indeed, holds.
With using definitions (6.1.11-6.1.16) one can be convinced that the other identities
(6.1.19-6.1.21) hold as well.

Using the Klein identities (6.1.19-6.1.22) in the expression for the current (6.1.15),
one obtains the wanted identity (6.1.17), where the superpotential at the right hand
side acquires the form:
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) = Siﬂ ( \/;v[u & \/:g,ﬁlu &y g[ﬂkv]) ) (6.1.24)

One finds that it is a relative (to a background system) Komar superpotential (1.4.80)
added by a contribution from the divergence in (6.1.2). Also the expression (6.1.24) can
be rewritten in the other form:

. 1 =
FE@) = o (P87 YO8t PN ) (61.25)

This expression easily transforms to the Freud superpotential (1.4.39) if (6.1.25) is
derived for a flat background with the Lorentzian coordinates, and the displacement
vector is represented by the coordinate translations & = &.

KBL conservation laws

The identity (6.1.17) itself is the algebraic equality only. It has no physical sense
because the field equations (Einstein’s equations) have not been used at all. Let us
take them in the form (1.3.22) along with their background version and substitute
both of them into the current (6.1.15). Besides, recall that z-term in (6.1.15) depends on
the quantity, V(p{g), in the form of (6.1.14) only. Therefore, we reconstruct the second
term in (6.1.15) and add the quantity a"””?(p{g) to z-term. Finally, the current (6.1.15)
transforms to a physically sensible one:

T = 0 + 0Ny + 2, (6.1.26)
where the generalized canonical energy-momentum tensor density and z-term are

_ 1 =
O} = (%H _ %l‘) +tF+ E[]WRPG(S’; ; (6.1.27)

16m2;(§) = (46" + 26", ) Wlop + (76 - 26707 ) A
000+ 077 (Ve - 20,8,1) (6.1.28)

Comparing the KBL current with the canonical current defined for a field theory in the
Minkowski space, one finds that (6.1.26) generalizes (1.2.101). Indeed, for Killing vec-
tors the term (6.1.28) disappears and the current (6.1.26) transforms to (1.2.101). More
details on the structure of the energy-momentum (6.1.27): the first term is a difference
between the dynamical and background matter energy-momentum tensor densities —
its perturbation; the second term is the gravitational energy-momentum (6.1.11); the
third term describes an interaction of a perturbed system with a complicated curved
non-Ricci flat background.

Thus, the identity (6.1.7) transforms into a physically sensible conservation law
for the current (6.1.26):

0,7t =V, 7t =0. (6.1.29)
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Analogous to the current (1.2.101) in a field theory that is conserved on field equations,
(1.2.83), the KBL current is conserved on the Einstein’s equations (1.3.22). The other
form of this conservation law is expressed with the use of the identity (6.1.17) with the
superpotential represented in (6.1.24) or in (6.1.25):

JE& =0, 7&) =V, 71 (©). (6.1.30)

Here, #!"(£) formally coincides with j£'(¢) but, unlike j%" (&), the metric coefficients
in C" V(&) are the solutions to the Einstein equations. The form (6.1.30) of conser-
vation laws is generic. Recall that, by the conservation law of the type (6.1.29), one
can construct the integral conserved quantities at hypersurfaces x° = const follow-
ing the recipe (1.2.83-1.2.87). The conservation law (6.1.30) permits to transform such
integrals into surface ones, see, e. g., (1.4.76-1.4.79).

Let us compare the KBL expressions with the others in general relativity. For
simplification let us reproduce them in a flat background covered with the Lorent-
zian coordinates, and let a displacement vector be represented by the coordinate
translations ¢* = &}. Then one has 8w — M- and the KBL gravitational energy-
momentum, t,*, defined in (6.1.11) transforms to Einstein’s pseudotensor (1.4.30), ;t,*.
More generally, the KBL current, _#}(£), defined in (6.1.26) goes to ;t,*+ 7} in (1.4.40).

It is important to note that both the current and the superpotential in (6.1.30) can-
not be obtained by a simple covariantization of the classical quantities in (1.4.40). This
is a result of application of the Noether procedure to the KBL Lagrangian. Then, first,
the KBL conserved quantities hold on arbitrary curved backgrounds, not only on flat
backgrounds in curved coordinates. By this, the current, /é‘, includes the interac-
tion term that cannot be found by the rule of thumbs. Second, ¢, C" includes the spin
term which plays a crucial role because it permits to take into account the Killing vec-
tors corresponding to rotations in a consistent way and, thus, to obtain a reasonable
definition of the angular momentum for rotating black holes, for example.

The KBL quantities were also checked from the point of view of the problem of
uniqueness. Julia and Silva [247, 414], and independently Chen and Nester [99], stated
that the KBL quantities are uniquely defined and unambiguously associated with the
Dirichlet boundary conditions.

6.2 The Belinfante procedure
6.2.1 The Belinfante symmetrization in general relativity

Recall that the Belinfante method [34, 35] has been elaborated in a field theory in the
Minkowski space to present the energy, momentum and angular momentum densities
with the use of an unique complex. Such a construction, see (1.2.113-1.2.118), is not
complicated because the background Minkowski space is used.

The use of the Belinfante method in general relativity is not evident. Szabados
[426, 427] clearly has shown that if the method is based on the dynamical metric only,
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without using a background metric, then the Belinfante symmetrization of classical
pseudotensors leads uniquely to the Einstein tensor. Thus, arbitrary vacuum solu-
tions of general relativity, including wave solutions, have vanishing value of energy
that is not permissible. On the other hand, the success of Papapetrou [351] in apply-
ing the Belinfante symmetrization to the Einstein pseudotensor, see (1.4.57-1.4.62),
had been possible because the background Minkowski space has been used. For the
same reason, the use of a flat background in a perturbed variant of general relativity
has permitted Berezin [37] to construct an effective energy-momentum tensor of all
the physical fields. It is also important to note the work by Borokhov [63], where he
has generalized the Belinfante procedure for an arbitrary field theory on an arbitrary
background geometry with the Killing vectors.

Let us return to the KBL model. If one adds different divergences to the Lag-
rangian, different expressions both for currents and for superpotentials appear by
the canonical Noether’s procedure. The freedom in the choice of different types of the
divergence can be employed for studying a diversity of physical systems whose beha-
vior is determined by different boundary conditions. Besides gravitational physics this
freedom is widely used, for example, in thermodynamics [98]. Nonetheless, most of
practically important physical problems in gravitational physics demand the expres-
sions for conserved quantities being as much independent on the choice of the diver-
gence in the Lagrangian as possible. Examples of such divergence-independent quant-
ities are given by the symmetric energy-momentum tensor in classical electrodynam-
ics and the Belinfante symmetrized energy-momentum (1.2.128) in a field theory.

In the present section, summing up the above, we develop the Belinfante method
in general relativity for the cases, when arbitrary curved background manifolds are
introduced. The KBL model seems like the most appropriate one for the application
of the Belinfante procedure. The KBL current (6.1.26) with the Killing vectors has the
structure similar to (1.2.101) and contains two different complexes: the generalized
energy-momentum .0,» and the spin term ¢*”°. It is anticipated that the application
of the Belinfante procedure will lead to a unique complex. The presentation follows
the papers [369, 370].

6.2.2 The Belinfante method applied to the KBL model

Identities
Return to the initial standard form of the Noether identity (1.2.46) rewritten for the
diffeomorphisms in the KBL model:

EngBL + ay (fy«iﬂKBL) = aw@y . (6.2.1)

Unlike (6.1.6), we keep the divergence in the right hand side for that ay,%‘ﬂ = 0. To
construct the vector density %* we turn to the classical definition of the Belinfante cor-
rection (1.2.113) in a field theory. Following such a recipe, we combine the components
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of the spin tensor density (6.1.12) and construct the quantity being antisymmetric in p
and v:

PP = _pHe _ PVl | MV _ g vieH] (6.2.2)
that is called the Belinfante correction. Using (6.2.2), we define the vector density
as # = 0,(b""¢) for that indeed 9,%" = 0. The canonical Noether current in the

Noether identity in the KBL model (6.1.17) goes to the Belinfante symmetrized current
jh = ji- + 2". Thus the identity (6.1.17) is rewritten in the equivalent form:

ji+0, (B"PE) =0, (j + P"E,) . (6.2.3)

Renaming here the quantities with the Belinfante symmetrized current, jg, and the
Belinfante corrected superpotential, jgv, one gets the identity

1) = 0,4, 6) = Vi (&) (6.2.4)

instead of (6.1.17).

The Belinfante corrected current
Let us derive the current in (6.2.4), using (6.2.2) and (6.1.11), along with (6.1.16-6.1.28),

5@ = jh (&) + 0, (B"PE,) = yT. M & + 24(8) (6.2.5)

with j’é (&) defined in (6.1.15). The quantity ,7,* is a symmetrized (Belinfante corrected)
energy-momentum:

1 _ - _
pT = oo (G} =G} + 36P°R,6) + t,1 + U, b7, (6.2.6)

Here, as before, h™° = g"™>—g"?, but the components ™ are not independent variables,
because it is a bi-metric formulation. The last term in the current (6.2.5), that we call
z-term depends only on the quantity (6.1.14) by our convention. With the use of (6.1.12),

(6.1.13) and (6.2.2) one obtains

1672,(&) = 167 [z} + (D7 + 077) V4, |
=2 ((pavpbau - hpavp%ll) - ((pavubpa - bpgvy(po)
+ (6"9,8,° - ¢,PU,0"). (6.2.7)
The equality (6.2.4) is an identity. To make it physically meaningful one has to use
the Einstein equations. To this end one has to work out the Einstein tensor densities

in (6.2.6). Picking up a symmetric part and raising the lower index, we transform the
related part as follows,

8in (%ﬂ _ gpy)gpv _ %(ﬂgv)l) —gW Singp[ugv}p_ (6.2.8)
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Then, the energy-momentum (6.2.6) acquires the final form:
o - (g - Mt Lo s LRl (629)
B =\ 8 B 1671 b po 87‘[b A oL

Here, the first term is a symmetrized perturbation of the matter energy-momentum,
and the second term is the symmetric energy-momentum for free gravitational field:

sntyy’ = 8ut"” + 87V, b""
00 - - A
=5 (87 - g"p"7) V0"
_ _p0 A\ =
+ (hpogﬂ(ﬂ _gPUh (IJ) VUAV)/Ip
_ A A
+g”° (%QWA pAArl(m +49 nA(yApAV)no)
_ A A
+ gPU (A JnA(yApgvm —92A OAA(Pnng)’l>
A=
+ %g ngyvAapAAporl
M(p0 A¥ - A% A A% A® ) g (6.2.10)
+9 paB " A M2 po MR o )87 Lo

The third and fourth terms in (6.2.9) describe interactions with the background
geometry, if it is non-Ricci flat.

Thus, the identically conserved current (6.2.5) is transformed to the Belinfante
corrected current

IH(@) = 50,18 + (&) (6.2.11)

that is consistent with the equations of motion of the physical system under consider-
ation, and satisfies the differential conservation law:

0 7s &) =V, 74 (§)=0. (6.2.12)

Let us set out the properties of the Belinfante corrected current (6.2.11).

(i) One sees that the current (6.2.11) does not contain the spin term. Moreover,
if & is a Killing vector of the background, &, the current, #}"(), takes
on the form of the Belinfante corrected current (1.2.117) in a field theory in
the Minkowski space. The fact that the current is determined by the energy-
momentum complex only, is a consequence of applying the classical Belinfante
corrected procedure.

(ii) Let us turn to the fourth term in (6.2.9) that is the unique antisymmetric
term. One can see that the energy-momentum is symmetric, 0" = ;0" if and
only if Rw = Agw, that is for the cases, when the backgrounds are the Ein-
stein spaces in Petrov’s classification [372]. As a result, one concludes that the
Belinfante symmetrization in general relativity does not lead to a symmetric
energy-momentum in more general cases of arbitrary curved backgrounds.
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(iii)

(iv)

Let the curved background has a Killing vector &, then the current (6.2.11) is
defined, like in (1.2.117):

IHE) =508, (6.2.13)
and it is conserved, see (6.2.12),
9, (,6,/8") =0, (6.2.14)

compare with (1.2.118). However, unlike (1.2.118), the energy-momentum 6" is
not symmetric in general, and the differential conservation law for the energy-
momentum does not hold,

v, (z0")#0. (6.2.15)

As a matter of principle, the conservation V, (,6*) = 0 is valid, if and only if
the background is Einstein’s space. Nonetheless, the conservation law (6.2.14) is
useful, e. g., for constructing the angular momenta of relativistic astrophysical
objects on the FLRW background, which is not Einstein’s space, but which has
the Killing vectors corresponding to spatial rotations.

Unlike to the KBL gravitational energy-momentum (6.1.11), the second derivat-
ives of g, appear in the Belinfante corrected energy-momentum (6.2.10). This
needs some comments. The canonical KBL energy-momentum (6.1.11) is quad-
ratic in the first order derivatives, and this is a normal behaviour for a conserved
quantity related to the standard initial conditions. Consider the local quantities
7} in (6.2.11). Recall that the integral conserved quantities on hypersurfaces
x° = const are defined by the integration of the only time component, 7y, in
(6.2.19), see formula (1.2.87). The initial conditions are generically defined only
on such hypersurfaces. Then, it is sufficient to examine the initial conditions for
the time component #2 = 72 + 3, (b°*°¢,) where we have taken into account
that b*" is anti-symmetric in the first two indices, see (1.2.1). Thus, since _#?
and b°’¢, contain only the first order time derivatives, 7, itself contains only
the first order time derivatives of the metric, and therefore, it does not require
knowledge of the higher-order derivatives on the initial hypersurface.

The Belinfante corrected superpotential
To obtain an explicit expression for the new superpotential defined in (6.2.3) and
derived in (6.2.4) we combine (6.1.24), or (6.1.25), with (6.2.2) and (6.1.12),

B g = e e, (6216

It is antisymmetric in y and v because the quantity £ is defined as

P = T, (B - g - g g (62.17)



6.3 Currents and superpotentials in the field-theoretical formulation =—— 311

If one sets g* = " the quantity £?°* transforms to the Papapetrou [351] superpo-
tential (1.4.62), which means that (6.2.16) generalizes the Papapetrou superpotential
to arbitrary curved backgrounds for arbitrary displacement vectors &%,

It is important to note that the new superpotential (6.2.16) depends linearly on
perturbations of the metric densities, h** = g" — . On the other hand, it is
not an approximate formulation, it is exact. There is another useful form of the
superpotential (6.2.16):

. 1 - - _
75 = o (849077 - 0] 4 g 0) (6.218)

One can see that it generalizes the superpotential (4.2.26) derived for the Killing
vectors on the AdS background, as well as for arbitrary displacement vectors & on
arbitrary curved backgrounds. Continuing, one can tell that the superpotential (6.2.18)
generalizes the Abbott-Deser superpotential (4.2.29) to arbitrary displacement vec-
tors &, arbitrary curved backgrounds and is also valid for an alternative definition
of perturbations, like h**.

The Belinfante corrected conservation laws
Finally, as a result of using the Einstein’s equations, the identity (6.2.4) transforms to
the physically meaningful conservation law

IH&) =0, 71 (&) =V, 717 () (6.2.19)

instead of the canonical one (6.1.30). As in the canonical derivation, formally #}"(£)
coincides with j"(£) but, unlike j4"(£), the coefficients of the metric tensor in _#}"(£)
are solutions of the Einstein equations.

Concluding, we repeat that a divergence in the Lagrangian has no contribution
to the Belinfante corrected quantities. This will be proved in detail on a more general
ground, when the Belinfante procedure will be described in the framework of multidi-
mensional metric theories, see Section 7.1.4 from (7.1.85) to (7.1.87). Now, we only note
that this property resolves the problem of the KBL model, where with making a choice
between divergences in the Lagrangian one changes conserved quantities.

6.3 Currents and superpotentials in the field-theoretical
formulation

6.3.1 Noether’s procedure applied to the field-theoretical model

We already know that in the framework of the field-theoretical formulation, the integ-
ral conserved quantities can be expressed through the surface integrals. However such
integrals have been constructed only on backgrounds represented by the Einstein
spaces. Besides, the existence of the Killing vectors on these backgrounds was crucial.
Let us recall those results. In the case of a flat background, the conservation law
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(2.2.106) has been used to construct a conserved current (3.2.18) and the correspond-
ent conserved surface integrals in the asymptotically flat spacetimes (3.2.24-3.2.26),
which have been formulated in a consolidated form (3.2.27). In the case of the Einstein
spaces, the conservation law (2.2.112) has been used to construct the conserved current
of the same form (3.2.18) along with a family of corresponding superpotentials (4.2.19).

In the case of the field-theoretical formulation, the question arises: can one
construct the conservation laws, like (6.1.30) and (6.2.19), on arbitrary curved back-
grounds and with arbitrary displacement vectors? The question has far going con-
sequences for the development of the theory because in the generic case of a curved
background one cannot construct a conservation law of the form (2.2.106) or (2.2.112).
A formal reason is that, in general, there is no conservation law for the energy-
momentum standing in the right hand side of the field equations. This follows from
the relations (2.2.101) and (2.2.103) which reveal that:

v (G, +®L,) #0, (63.1)
76y, # 0. (63.2)

A physical reason of the conclusions (6.3.1) and (6.3.2) is that the perturbed system
interacts with a complicated non-Ricci flat background that contains a background
matter represented by fields d_DA. In the framework both of the KBL approach, Sec-
tion 6.1, and of the Belinfante corrected procedure, Section 6.2, such a kind of
interaction has been taken into account in a construction of conserved quantities
by applying the Noether procedure that automatically includes the background Ricci
tensor into consideration. Therefore it is expected that the standard Noether methods
will be valid for applying in the field-theoretical approach.

To make the Noether technique applicable in such a model it is necessary to con-
vert the field-theoretical Lagrangian defined for perturbations, say the Lagrangian,
#% in (2.2.20), into a bi-metric form and make a replacement H*¥ — ¢g"* — g**, which
does not influence the result of the Noether procedure.

It is expedient to use directly the technique worked out in Section 6.1 and applied
it to the KBL Lagrangian, %, in (6.1.5). Then, one has to relate the field-theoretical
gravitational Lagrangian, .#%, in (2.2.20) to %g,. In both cases we use the same
divergence defined by (2.2.19) and (6.1.4), respectively. After making the replacement
p — g — g"¥ we denote the Lagrangian obtained as

1 e
L= 633)

It can be easily shown that

1

faz = fKBL - fm = _16_7'[

g (AﬁvAga - AZGAgv) ) (6.3.4)

where

1 -
I % | e 11
gGl - 1671 (g g )Ryv . (635)
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Comparing the Lagrangians ., and .%;, with the Rosen Lagrangian .%; [390, 391],
we note that £, is a direct generalization of .%; to arbitrary backgrounds, whereas
Zxg 1s reduced to 7 for the Ricci-flat backgrounds only. Notice also that, unlike the
KBL Lagrangian (6.1.5), the Lagrangian .%, depends only on the first derivatives of the
background metric. This simplifies the Noether procedure significantly.

To efficiently apply the technique of the Section 6.1 it is fruitful to consider the
Lagrangian (6.3.4) in the form:

_ 1

T (% - g R, +0,Kk") , (6.3.6)

compare with (6.1.2). The Lagrangian (6.3.6) is used to derive the main Noether’s
identity of the type (6.1.6),

£ L +0,(8" %) =0. (63.7)
It is directly transformed to the identity
5 i

b 0 (6.3.8)

-
Vs

that is analogous to the KBL identity (6.1.7). The identically conserved current in
(6.3.8)is

. 0%, n 0%, _ wm 0.%., -
u_ | _9%a _Za + @ g o 34
]2 5gp0 gp(f‘v sgpg pa'v a (V‘ugpa) Vgp(T G2%y {
2,8, (6.3.9)

and below we examine its structure. Using the form of the Lagrangian (6.3.6), one
easily obtains for the first term in the current (6.3.9):

1
8n

6362 Ho_
g

_ 1 _
55, (9) - 9)) - o (6767 - 35°°8)) Ry - (6.3.10)

One recognizes that the other part of the current (6.3.9) is expressed through a linear

operator, G}LN, in (2.2.27). It is because ng"v = Vph"v, thus

6362 N P =pU
. 8pol, = —8—nGpv(h)gp . (6.3.11)
The last part in the square brackets is exactly represented by the canonical gravita-
tional energy-momentum (6.1.11):

15) _
ﬁvvgpg - %8 =t}. (6.3.12)
0 (Vugpv)

The last term in (6.3.9) is defined by

2w 0% 2.2,

v _ v
=— @ g | 4y——2 5 |
Moo (Vugpo) pa‘/\ 0 (aygpa) pa'/l

(6.3.13)
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It should be noticed that the quantity (6.3.13) is antisymmetric in 4 and v and can be
rewritten with the use of the spin tensor components (6.1.12) in the form:

Zﬂy\/gﬁp _ GP[IIV] + O-H[PV] _ UV[PH] . (6.3.14)

This quantity is exactly the Belinfante correction introduced in (6.2.2), 25’,1"‘” = b,
Summarizing (6.3.9-6.3.14), one can rewrite the current (6.3.9) in the form:

&) =18 - PNE, (6.3.15)

where the energy-momentum is
1 = _
i =) - B (B*R,, + 8 Gy, (b)) (6.3.16)

with .7,* defined in (6.1.16).
Recall the standard conceptual points. Because (6.3.8) is the identity one can
rewrite the current (6.3.9) in terms of a superpotential in the form (6.1.17):

5 @) = 0,45 = V15 ©). (6.3.17)

To calculate the superpotential one carries out the calculations analogous to the ones
from (6.1.18) to (6.1.24). Based on the identity (6.3.8), one derives a system of the Klein
identities analogous to the system (6.1.19-6.1.22), which are used for transformations
of (6.3.15). At the end of this procedure, one finds the superpotential,

1@ = 2HPE = -0, (6.3.18)

that is expressed solely through the quantity (6.3.11).

Looking more carefully to the identity (6.3.17), the reader can notice that it is a
bi-metric identity, not a field-theoretical one. To return to the field-theoretical formu-
lation we go back to the KBL identity (6.1.17). We see that the current (6.1.15) replicates
the current (6.3.15) in many terms. Therefore, let us subtract the identity (6.3.17) from
the identity (6.1.17). As a result one obtains a modified new identity:

s = o0k = V. (6.3.19)

Finalizing the application of the Noether procedure, we return to the variables g"’ —
g — h*" of the field-theoretical formulation.

Currents and superpotentials
The current in (6.3.19) is

i =0+ 250, (6.3.20)
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where the energy-momentum is
ST = Sin (8"G,(0) + H*R,,) . (6.3.21)
The last term in the current (6.3.20), z-term, is
167124 (8) = 167 [z} + (P77 + 6*77) V4, |
= 2(8P7Vh" — 077V, ) = (G707~ B9 E,)
+ (B8~ ¢ Up) (6.3.22)
The new superpotential in the identity (6.3.19) is

=3 g,

= o (8450 - gogbn) ) (63.2)

To convert the identity (6.3.19) into a physically meaningful conservation law, one
has to use the gravitational equations in the field-theoretical form. Thus, after sub-
stituting GILN(h) from the equations (2.2.26) into the identity (6.3.19) one obtains the
conservation law in the form:

JL=0, 78 =9, 71, (6.3.24)
where
JY =018 +24(&) (6.3.25)
with the energy-momentum
SB}JV t;t10vt + 8_ (hy vp CDﬁV) . (6.3.26)

The role of the interaction with a curved background is played by the expression in
the brackets. One can use also the field-theoretical equations in the form (2.2.33) with
(2.2.34), then (6.3.26) is rewritten as

1 _
Seyv = t}ej/f + ghprvp . (6.3.27)

The explicit form of (6.3.26) or (6.3.27) is

_ 1 _
6= (8,80 -~ 3808™) (ap ~ 38up Tp8™) = T + U5y + -0, Ry (63.28)

Superpotential 7" in (6.3.24) exactly coincides with j,” in (6.3.23) if h*" satisfy the
field equations. Being equivalent to (6.2.18), it generalizes also the superpotential
(4.2.26) for arbitrary displacement vectors £* and arbitrary curved backgrounds.
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Equivalence of the Belinfante corrected and the field-theoretical quantities
One sees that the superpotential (6.3.23) coincides exactly with the Belinfante correc-
ted superpotential (6.2.18):

=g (6.3.29)

Then, one concludes that the current (6.3.20) in (6.3.19) has to coincide exactly with
the Belinfante corrected current (6.2.5). After that, because z-term (6.3.22) coincides
exactly with the Belinfante corrected z-term (6.2.7),

2=z, (6:330)

the energy-momentum (6.3.21) has to be equal to the Belinfante corrected energy-
momentum (6.2.6),

5T =Tt (6.3.31)
or more explicitly,
1 _ = 1 - - _
> (Gﬁv(f))gp" +H"R,,) = > (G} -9+ %bpaRpUS’v‘) +t VPP, (63.32)

Indeed, after bulky calculations one can stand up for this claim. Consequently the
energy-momentum complexes (6.3.28) and (6.2.9) are equal as well,

0" = ;0" (6.3.33)

Comparing the Einstein equations written down in the geometrical and field-
theoretical forms, one can confirm this equality.

6.3.2 Afamily of conserved quantities and the Boulware-Deser ambiguity

The above construction of conservations laws (6.3.4-6.3.33) and conserved quantit-
ies rather straightforward but fairly tedious. To obtain the identity (6.3.19) we have
subtracted the identity (6.3.7) from that (6.1.6), and relied upon the main Noether’s
identity

£e L5 +0,(8" L) =0 (6.3.34)

for the scalar density
1 s
Lo = Lo —ZLer = “len 6rrh Ry (6.3.35)

see (6.3.5). Then, it is clear that doing certain transformations of the identity (6.3.34)
from the start we, of course, will arrive the identity (6.3.19) in the field-theoretical
formulation as well.

Now, let us return to Section 2.2.6, where a field-theoretical formulation related to
different definitions of the metric perturbations was studied. This brought about the
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ambiguity (2.2.132) in the definition of a total energy-momentum. The questions arise.
First, how the conservation laws, like (6.3.19), can be constructed for different defini-
tions of variables? Second, how the Boulware-Deser ambiguity appears in definitions
of superpotentials in the field-theoretical formulation?

To answer the first question one has to use the recipe suggested by the identity
(6.3.34). Considering the gravitational part of the generalized dynamical Lagrangian
(2.2.123) derived for arbitrary metric perturbations h® (2.2.121), we examine the Lag-
rangian
a ‘SD?H - _L

La=h 887 161

bh Ry - (6.3.36)

This generalizes (6.3.35), in the sense that it uses the generic form of the independent
dynamical variables h%” defined in (2.2.129). Applying the Noether procedure, one has
to study now

£r. Ly +0,(8" L) =0 (6.3.37)

instead of (6.3.34). It is a family of identities corresponding to different definitions
of metric perturbations in (2.2.121). This leads to a family of conserved quantities:
currents and superpotentials. Step by step, one obtains

fa=ody =V (6.3.38)
with the current
758) = o1/ + 258, (6.3.39)
where the energy-momentum is
1 -
o™ = 5 (G (ha) + DRy (6.340)

The last term in the current, z-term, is
16m23(§) = 2($7 Tyl ~ 790" ) = (§o V057 ~ 10794,
+ (BR8P, = &P 0hh) (6.3.41)

A family of superpotentials, j,” formally coincides with the one in (6.3.38), and
explicitly is expressed as

I 1. ) ) ]
ja = gﬁﬁ["vp 1y o Vo (8705 8707 -8 + 87 4
1 /e _ _
= o (9077 - T, + 029, (6:3.42)

One easily recognizes that it is the generalization to arbitrary displacement vectors
and to arbitrary curved backgrounds of the family (4.2.19).
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Now let us answer the question on the origin of the Boulware-Deser ambiguity.
After using the field equations the current (6.3.38) transforms to

JHE) =8/ + 24D, (6.3.43)
where the energy-momentum is
1 _
8" =t (00) + o (0P Ryy ~ D)) - (6.3.44)
Also for by which are solutions of the field equations, we have ji* = #}* with the

same form (6.3.42). Finally, with the use of the field equations the identity (6.3.38)
transforms to the conservation laws:

J¥=0, 71 =9, 7. (6.3.45)

Atlast, taking into account the difference in perturbations (4.2.21) and linearity in vari-
ables h%”, one finds the difference between the terms of the family of superpotentials
(6.3.42):

DA =+ (849,00 - T (') + 0,87 (6.3.46)

It represents the Boulware-Deser ambiguity in the definition of the superpotentials.

6.3.3 Comments on conserved quantities of three types

Boulware-Deser ambiguity

Note that the KBL approach does not depend on the choice of the variables, like
g, S g, ..., etc. As a result the Belinfante symmetrization does not depend
on such a choice either and uniquely leads to the conservation law (6.2.4) with the
superpotential (6.2.18). On the other hand, in the field-theoretical formulation we have
constructed the family of the superpotentials (6.3.42). What form is more preferable?
It turns out that only the superpotential (6.3.23) from the family (6.3.42) corresponds to
the Belinfante corrected superpotential (6.2.18). This is a theoretical argument in favor
of the choice of the variable h’(‘av) = h" = ¢" - g in the field-theoretical formulation,
resolving the Boulware-Deser ambiguity [71].

The KBL approach is not connected with the field-theoretical one directly. Indeed,
the variation of the KBL Lagrangian (6.1.2) with respect to the background metric leads
to the background quantities only. However, the Belinfante quantities, being equival-
ent to the field-theoretical ones and being obtained from the KBL quantities, can be
classified as a “bridge” between the two approaches.

At last, because the field-theoretical quantities do not depend on divergences in
the Lagrangian (by definition) the same property is valid for the Belinfante corrected
conserved quantities owing the equivalence between these methods. This supports
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the claim of the Section 6.2 that the Belinfante corrected conserved quantities in
general relativity do not depend on divergences in the Lagrangian. We repeat that
on a more general level, in the framework of multidimensional metric theories, this
property of the Belinfante procedure is proved below, see Section 7.1.4 from (7.1.85) to
(7.1.87).

Integral constraints

Perhaps the most important property of conservation laws in general relativity is that
the conserved quantities in a finite or infinite volume can always be expressed in terms
of the surface integrals taken over the boundary of the volume or at spatial infinity.
Such a representation is possible because the local value of a conserved current can
be always expressed in terms of a divergence from a corresponding superpotential

JHE) =0, 77 (&) =V, 7M(), (6.3.47)

as shown in (6.1.30), (6.2.19) and (6.3.24). Currents, ##(¢), depend both on the
perturbed metric and its derivatives and on the perturbation of the matter energy-
momentum, §.7,». At the same time, superpotentials, #"'(¢), in all cases (6.1.25),
(6.2.18) and (6.3.42), contain the perturbed metric and its first (not higher) order deriv-
atives only, and, what is the most important, they do not depend on the matter
perturbations.

Let us consider a 3-dimensional spacelike hypersurface, £ := x° = const,
which has a 2-dimansional boundary, 0. Then, by integrating (6.3.47) one obtains
a conserved quantities related to a displacement vector £* in the form:

D) = L 7o) = cjiaz ds; 7°(¢). (6.348)

In the literature, as a rule, superpotentials and formule, like (6.3.48), are more often
used as compared with current _##(&). The usefulness of superpotentials was strongly
advocated by Penrose [354] who introduced the notion of “quasi-local” quantities
which, in the weak field limit, reduce to the ordinary conserved linear momentum
and angular momentum of gravitational field in a finite volume. Many papers over the
past decades have been published on the subject of the quasi-local energy, see the
comprehensive review by Szabados [430]. The role and importance of superpotentials
in a field theory has been emphasized by Julia and Silva [247, 414] who provided their
elegant treatment and put their generic theory on a rigorous mathematical basis.

Let us come back to (6.3.48), and suppose that the boundary values of the met-
ric, thus _##(¢), on 0% are given. Then, (6.3.48) can be interpreted as a set of integral
constraints on the perturbations of the energy-momentum 8.7} for the given initial
perturbations of the metric on Z. Reciprocally, if 8.7/ is given, the relation (6.3.48)
represents the integral constraints for the initial metric data on . Among all of the
integral constraints a special role is played by the integral constraints connecting
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the boundary values of the metric to the matter sources on Z, see the last section
of the present chapter.

The simplest connections between currents and superpotentials
We have already demonstrated in previous sections how the conserved quantities
defined on a curved background are related to the classical pseudotensors and
superpotentials related to a flat Minkowski space. For clarity of this comparison we
consistently used the Lorentzian coordinates on the flat background. Now, we extend
this analysis to the case of curvilinear coordinates on the background Minkowski
space. Rosen [390, 391] was the first who found that the quadratic Lagrangian, see
(1.3.9), used by Einstein to derive a conserved pseudotensor (1.4.30) can be written
in a covariant form by introducing a second (background) metric. The mathematical
basis of Rosen’s approach was strengthen by Lichnerowicz [291]. Below we explain
how the Rosen procedure works in more detail.

Let us consider a flat background, R"vpg = 0, in arbitrary coordinates. At the
moment, let us go back to the “divergence dependent” energy-momentum (6.1.27) that
takes on the flat background the following form

O = TF 4ot )l (6.3.49)

where t * defined in (6.1.11) is the energy-momentum tensor density given by Rosen
in arbitrary coordinates as a covariantized generalization of Einstein’s pseudotensor
(1.4.30), .t *. Now, in the case of a flat background, let us turn to the Klein identities
(6.1.19-6.1.22), which takes on the form

0/, =0, (6.3.50)
8/ =-o™,,. (6.3.51)
Thus, on a flat background .0,* is a divergence of a tensor density which is not anti-
symmetric with respect to the upper indices but still acting like a “superpotential” for
volume integrals in the Minkowski space. We find that 0¥ = — 7" that is Tolman’s
covariantized superpotential, see (1.4.32), which seems to be the first one known in the
literature. This superpotential is also closely related to Freud’s superpotential (1.4.39),
Z*". The relationship is defined in arbitrary coordinates by (1.4.38):

oM = g SLH (5Pg™) (6.3.52)

0
Since the covariant derivatives in a flat spacetime are commutative, by taking the
divergence of e and using its relation with c0,* we obtain

Y = T (6.3.53)

>

that is a covariantized relation (1.4.40) where the covariantized Freud superpotential,
ﬁ",’”‘, is given in (1.5.39).
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Considering the Belinfante corrected quantities in the case of the flat background,
one finds for the energy-momentum (6.2.9):

0 = TP (6.3.54)

Conservation law (6.2.19) for the current (6.2.11) leads to

50/, =0, (6.3.55)

Bevy = ‘@vyp;p ’ (6.3.56)

where &2 is the covariantized Papapetrou superpotential given in (6.2.17) or in
another form in (1.5.42).

6.4 Criteria for the choice of conserved quantities
6.4.1 Tests of consistency

When applying various methods for constructing conservation laws one has to check
the consistency of corresponding conserved quantities. There is a number of selection
rules for choosing the most preferable formulation of conservation laws in various
physical situations but they are not universally accepted and must be applied with
care in each particular case. Nonetheless, there are certain physical principles which
must be satisfied to make the conserved quantities physically meaningful and consist-
ent. Only after satisfying such tests formulae under consideration can be thought as
useful for applications. What are these principles and the consistency check points?
Usually, they are based on testing the properties of exact solutions and models in gen-
eral relativity which have a well-known dependence on the physical parameters, like
mass, energy, angular momentum, etc. In most cases the physical consistency of the
conserved quantities is tested in the weak-field approximation of general relativity by
assuming the existence of the flat Minkowskian background. Such approach is rather
straightforward and fairly simple.

We are interested in checking the formulae of the three approaches to build-
ing the conserved quantities presented in this chapter. Because in general relativity
the currents and superpotentials in the field-theoretical approach and the Belinfante
corrected method are equivalent, it is enough to check one of these two only.

A number of the consistency tests is listed below. Of course, more tests can be
added in the course of development of the theory. Thus,

(i) One of the most important exact solutions in general relativity is the Schwarz-
schild solution. Because the constant of integration m (mass parameter) is chosen
to be equal to the total mass of the system it is evident that the total energy of
a system described by the Schwarzschild solution has to be equal to the mass:
E = m (in the present chapter we set G = ¢ = 1).
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Calculation of the total energy is performed the most conveniently by making use of
the above mentioned approach based on the surface integration. The result of the
integration provides the test for consistency of the KBL superpotential (6.1.25) and
the Belinfante corrected superpotential (6.2.18). Differential laws to performing the
surface integration tests are given in (6.3.53) for covariantized Freud’s superpotential
and in (6.3.56) for covariantized Papapetou’s superpotential. Their asymptotic beha-
vior for the Schwarzschild solution is given in (1.5.50), that leads to the acceptable
result (1.5.52): E = m.

(i) The consistency test of the conserved quantities based on the Schwarzschild
solution is incomplete and can be extended by taking into consideration the
exact solutions which admit the asymptotically flat Minkowski space. It includes
all rotating and charged black hole solutions in general relativity with the mass
parameter m, the rotational parameter a and the charge parameter Q. As a result
of calculation of the corresponding conserved quantities with the help of surface
integration of a superpotential, one has to obtain the total energy E and total
angular momentum M of the central black hole expressed in terms of a phys-
ically reasonable combination of the black holes parameters, like E = m and
M = ma for the Kerr black hole, etc.

Below in Section 6.4.2 we consider the Reissner-Nordstrom solution [315, 336, 386],

calculate its total energy and discuss the result. Another important solution in gen-

eral relativity is the Kerr solution [255, 315] that is examined in Section 6.4.3 and its
total energy and total angular momentum are studied. The Kerr-Newman solution

[315, 334] generalizes all of these, but we do not consider it here. As a matter of exer-

cise, the reader is invited to test the KBL superpotential and the Belinfante corrected

superpotential applying them to the Kerr-Newman black hole.

(iii) The quadrupole formula in the gravitational radiation formalism [285] states
that the energy emitted in the form of gravitational waves is positive. Thus,
the density of the flux of weak gravitational waves propagating on a flat back-
ground has to be positive as well. This offers another possibility for checking
the self-consistency of various types of energy-momentum tensors that appear
in different versions of conservation laws.

To avoid long calculations it is enough to consider simple expressions for the energy-

momentum presented in (6.3.49) and in (6.3.54). Their self-consistency have been

checked in Chapter 1 in the quadratic approximation by making use of equation

(1.5.32). All tensors yield positively-defined energy as shown in equation (1.5.33).

(iv) For radiating isolated systems described by Bondi and others [59-61, 395] there
is another important formula for the rate of energy loss corresponding to a
so-called BMS radiation. This rate of the total energy loss is another test for
checking the different variants of superpotentials.
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We do not consider the BMS radiation test in the book, however, recommend to read
the original works [252, 369, 370].

The above four possible tests of consistency of the superpotentials are available
in the asymptotically flat spacetimes and in the weak-field approximation with
respect to a flat background. Of course, analogous tests could be extended to curved
backgrounds, however the authenticity of such tests generally may cause doubts. Nev-
ertheless, there are solutions on curved backgrounds, which have been thoroughly
studied mathematically and have well-established physical properties. These are
asymptotically anti-de Sitter (AdS) solutions for black holes: generally they belong
to the Reissner-Nordstrom-AdS family of solutions, and to the Kerr-Newman-AdS
family. These general solutions are too complicated for calculations, therefore here in
Section 6.4.4
(v) we will calculate, as an example, the total energy of the Schwarzschild-AdS

solution only.

We would suggest to the reader to test the KBL superpotential and the Belinfante cor-
rected superpotential by applying them for calculating the global conserved quantities
for the other black holes possessing the AdS asymptotics.

6.4.2 The Reissner-Nordstrom solution

Because below we shall consider the asymptotically flat solutions with spherical sym-
metry, the spherical coordinates introduced on the flat background are the most
appropriate for handling the calculations that follows. In spherical coordinates the
background metric, Vivs has the form (4.1.1), for which the non-zero components of
the Christoffel symbols, C"‘W, are given in (4.1.2).

The linear element of the Reissner-Nordstrom solution [315] reads:

2

ds’ - - <1 J, 0—2) A+ —— a4 (A6 +sin’0dg?) . (64)
ror 1- (rg/r - Qz/rz)

At first, we check the KBL superpotential (6.1.25) for calculating the total energy of

the charged black hole represented by this solution. For the case of a flat background

with translation Killing vectors for which 5,?; 5= 0, see (1.2.7), the KBL superpotential

transforms to the covariantized Freud superpotential (1.5.39),

S8 = 7 = L
1
= & (gP[aAﬁ]pU " 6([7agﬁ]ﬂAPpn _ 6[;1Aﬁ]yvgyv) £, (6.4.2)

The surface integration (1.5.45):

P = 9506 ds, #(E) = lim, E d6 Eﬂ d¢r? sin 6F,°'¢° (6.4.3)
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allows us to calculate the total energy with timelike Killing vector of the Minkowski
space

& =(-1,0). (6.4.4)
Let us write the Christoffel symbols for the metric (6.4.1):

1 r /P -2Q P
=5 1-r1g/r+ QY

= r_g_g 1_r_g+Q_2
I r rr)’
r 2

1 .
1"221 = 1"331 = 1"332 = cot 6, F233 = —sinfcosH (6.4.5)

0 1
F10=—r

—
[N
o
S
|

and calculate the tensor &5 = T3 — (¥4 in (6.4.2) with the use of (4.1.2) and
(6.4.5). As a result, one arrives to the conclusion that the asymptotic behavior of
the corresponding component of the superpotential entering the surface integral in
(6.4.3), is

e 1
FOM~ -5 =, 6.4.6
0 8mr? ( )
Then, immediately the integration (6.4.3) gives:
E=m. (6.4.7)

After examining the KBL approach let us check the Belinfante corrected superpoten-
tial (6.2.18) for calculating the total energy of the charged black hole. For the case of a
flat background with the translation Killing vectors it transforms to

1 .
E;:v - o (5([§4hv]p;p + h[ug,\/]) -f,?- (6.4.8)

With the use of (4.1.5) we derive the field configuration corresponding to the solution
(6.4.1):

(6.4.9)

ror?

R0 _ relr - @/ h11=_<rg QZ>.

We use these components in (6.4.8) for calculating the total energy with the timelike
Killing vector (6.4.4) employed for calculation of the surface integral:

n 2n . .
P = i} ds, 7O(&) = lim — J dGJ’ dpr*sin0(h)" +n") | (64.10)
o0 r—o0 167 Jo 0 i
that yields the physically-meaningful result (6.4.7). The same result is obtained with

the use of the superpotential (6.3.23) in the field-theoretical derivation that also agrees
with formula (4.1.11) for calculating the total mass of an isolated system.
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At last, one has to check all the superpotentials in the family (6.3.42). We have
checked out that for each of them the integration analogous to (6.4.10) gives again
the same result (6.4.7) for the total energy. Thus, considering the total energy of the
Reissner-Nordstrom solution, all superpotentials constructed in the present chapter
are equivalent from the computational point of view.

One can see that the electric charge does not explicitly contribute to the total
energy. It is not surprising because the parameter m has been chosen as a unique char-
acteristic for the total energy of the system to correspond to the Newtonian mass in
the weak-field approximation. Formally, the charge does not contribute to the energy
because the part of the superpotential corresponding to the charge of the black hole
falls off as ~ 1/r%, that decays significantly faster than ~ 1/r.

6.4.3 The Kerr solution

The Kerr solution, describing the rotating black holes, is more complicated but, at the
same time, more interesting for constructing conserved quantities. The line element
of the Kerr solution has the form [315]:

2 CAVEN I
ds” = —(1—p—2>dt +Kdr +p’de* (6.4.11)
> o r ra’ 2 2 , 2rgra
+|P+d+ gpz sin’ 6 | sin’ Od¢p —5—2$in 0d¢ cdt ;

Azrz—rgr+a2,

p* =1 +d*cos’0,

where the parameter a = const characterizes the speed of rotation; when a — 0
the Kerr solution (6.4.11) transforms to the Schwarzschild solution (4.1.3). Thus, it
is interesting to construct for the solution (6.4.11) both the total energy and the
total angular momentum. To carry out the calculations we choose a flat background
with the flat metric (4.1.1) in spherical coordinates and the correspondent Christoffel
symbols (4.1.2).

First, we check the KBL superpotential (6.1.25). For calculating the total energy
with timelike Killing vector (6.4.4) we use the covariantized Freud superpotential
(1.5.39), see also (6.4.2), and integration (6.4.3). We do not derive here cumbersome
expressions for quantities A* 3 = ¥, — C* ;5 and merely notice that a necessary com-
ponent of the Freud superpotential has again the asymptotic behavior (6.4.6). Then,
integration (6.4.3) gives physically-adequate result (6.4.7): E = m.

To construct the total angular momentum one chooses the spacelike Killing vector

& =(0,0,0,1), & =(0,0,0,rsin*6). (6.4.12)

In this case, it is more convenient to use the form (6.1.24) for the KBL superpotential.
We notice that for calculations it is sufficient to use the component 7' where, with
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the Killing vector (6.4.12), only one term survives,

JE) = %v—_gv“’ =3 (6.4.13)

which is purely a Komar part. Then, the standard integration gives the angular
momentum of the Kerr black hole

. 1 b4 2n
M=) - 95 ds, 7960 = lim L d6 L dpyvgvel = ma,  (64.14)

which is the expected result.

Now, let us turn to the Belinfante corrected quantities (6.2.18), or the same (6.3.23)
in the field-theoretical formulation. Again, to calculate the total energy we use the
timelike Killing vector that leads to integration (6.4.10). Necessary components of the
field configuration corresponding to (6.4.11) have a complicated form, but for us the
knowing the asymptotic behavior

poo L _ls o8 (6.4.15)

is sufficient. Then, the integral formula (6.4.10) yields for the Kerr solution (6.4.11) the
expected result (6.4.7).

To calculate the total angular momentum in the Belinfante corrected derivation
we use the Killing vector (6.4.12) and substitute it into (6.2.18), or the same (6.3.23) in
the field-theoretical formulation. Next, integration leads to formula (3.2.27), which for
the space components .f,’é acquires the form:

P(&) = 4300 dsl/sm({K)

.1 (7 o 2 . Ok j1 311 jk\ K
=r11>%10ﬁjo dGL dr sm@[(h Y —h Y]);J'{k
B (hokylj _ hijlk) ff;j] . (6.4.16)

For the solution (6.4.11) only the component h®?, from all of the components h?, is not
zero with the asymptotic behavior

WS~ -5, (6.4.17)

Then, for the field-theoretical configuration (6.4.15) and (6.4.17), the calculation in
(6.4.16) finally gives the acceptable result (6.4.14).

At last, one has to note that each superpotential from the family (6.3.42) in the
field-theoretical derivation leads to the same results (6.4.7) and (6.4.14) for the Kerr
solution (6.4.11). Thus, considering the total energy and the total angular momentum
of the Kerr solution, all of the formulae for conserved quantities suggested in Sec-
tions 6.1-6.3 pass through the consistency tests.
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6.4.4 The total KBL energy for the S-AdS solution

We have already calculated in Section 4.2.3 a total mass for the Schwarzschild-AdS
black hole defined by the solution (4.2.30) with the use of the field-theoretical form-
alism. Moreover, we have checked all of the members of the family (4.2.19). Notice
that the Belinfante corrected superpotential is included into this family. Thus, all of
the such quantities lead to acceptable result (4.2.38): E = m. In what follows, we are
checking the KBL superpotential (6.1.25) by calculating the total mass for the S-AdS
black hole with all the assumptions of Section 4.2.3.

The KBL formulae (6.4.2-6.4.4) are also valid for the AdS background, and we use
them. For the S-AdS solution the metric components are defined in (4.2.30); to find
N, = I*,, —I*,, we use the components I”,, derived in (4.2.30) and the non-zero
Christoffel symbols corresponding to the metric (4.2.30):

2

1 o 1 .2 roTg

F22=—r<1+l—2—7),r33=—r51n9<1+l—2—? s
1 2r/P 1y

=5 1+ 2[R —rg/r’

1 1/2r rg r2 rg
r°°=§(1_2+r_2><“z_2_7 !

1 .
r’,=01;= = %3 = -sin@cosf, I’ = coth. (6.4.18)

0 1
r01=—r

Formula (6.4.3), rewritten for the Killing vector (4.2.8) is

_ _ m 2n B
@(§)=35 ds, 7O(F) = nmj dGJ dgp1? sin OF,O'E0 (6.4.19)
© r—oco Jo 0
and gives
E-tim - [Tao " dprsine(gma,, - al,g") - (6:4.20)
_rlgloﬁo . ¢ r°sin (g pn A8 )—m 4.

that is the acceptable result (4.2.38).
We conclude that all three methods of calculation of the S-AdS mass are equally
acceptable as they yield one and the same result for the total energy.

6.5 The FLRW solution as a perturbation on the de Sitter
background

Strongly or weakly perturbed FLRW spacetimes are naturally related to FLRW back-
ground universe which is an exact, time-dependent solution of Einstein’s equations.
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However, the FLRW spacetimes admit only six Killing vectors, each of them gener-
ates a corresponding conservation law with an associated conserved quantity. Among
them, unfortunately, one cannot find energy and the Lorentz momentum. We may,
however, map the FLRW spacetime (perturbed or not) on a de Sitter space, which
has ten Killing vectors making up the full group of motions. One can construct
ten conserved quantities corresponding to the Killing vectors. The KBL approach,
which is applicable both to finite and infinitesimally small perturbations, can be
used to construct such quantities. As a result, the four currents and superpoten-
tials corresponding to the Killing vectors of the de Sitter space that are absent
in FLRW spacetime describe the energy and Lorentz momentum. In the present
section, we do not consider a perturbed FLRW model. We map hypersurfaces of con-
stant cosmic time of an exact FLRW spacetime on the corresponding hypersurfaces
of the de Sitter space having the same topology. The difference between FLRW and
de Sitter metrics will be considered as a relative perturbation defined on the de Sit-
ter background, and for them the conserved KBL currents and superpotentials will
be constructed. At the end, we discuss how such a construction may help to describe
perturbations in the FLRW universe along with all of the ten conserved quantities.

6.5.1 Spatially conformal mappings of FLRW spacetime onto de Sitter space

FLRW and de Sitter metrics

Let FLRW spacetime be described by equation (5.3.1) in the Cartesian coordinates XK.
We choose the “cosmic time” T defined by dT = w(t)dt in the FLRW spacetime. Then
the FLRW metric reads

ds® = gudxdx” = —w’dt? + gydx*dx' = —w’dt? + deydx*ax', (6.5.1)

where w = w(t) and a = R(T(t)) = a(t). The conformal metric e,;(x™) has a particular
form for closed, flat or open x° = t = const hypersurfaces given by
XX

ey =0y+k———= e = 68— dkxl, e =det e =

et (65.2)

1-kr?’

where x; = 8;,,x™ and r* = 8,,x“x|. The Hubble parameter (5.3.2) for the metric (6.5.1)
has the form

H=-2-, (6.5.3)
wa
where a “dot” denotes differentiation with respect to t.
The metric of the de Sitter background in the same coordinates as in (6.5.1) has a
similar form:

ds® = guddax’ = —@’dt? + gydx*ax' = —@’dt? + @eydx*ax', (6.5.4)
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where, @ and a are functions of the “cosmic time” T in de Sitter space given by dT =
@(t)dt. The Hubble parameter of de Sitter space has the form

g-la (6.5.5)
wa

Hypersurfaces for (6.5.1) and (6.5.4) with the same t will be mapped on one another. By

picking up a specific form of functions w and @, one fixes the correspondence between
the cosmic times up to a constant. For the moment we shall fix none of them.

De Sitter Killing vectors
The ten Killing vectors of the de Sitter background, &*, satisfy the Killing equations

Vi) = 0, (6.5.6)

where, as usual, the covariant derivative, Vp, is constructed with the use of 8 The
00- and Ok-components of the Killing equations imply

& = %ﬁxk), (6.5.7)

= 3 _
&= -a’g"v &, (6.5.8)

where the component &° is a function whose equation is given below, see (6.5.11), él is
a ey, (or gy, or gy 3-dimensional covariant derivative. It may be useful to remind the
reader that indices are raised and lowered by g,,, as usual. Finally, the spatial part of
the Killing equation (6.5.6) gives

3 - 3 - _ —
ek ViE™ + eV ™ + 20He & = 0. (6.5.9)

The Hubble “constant” (6.5.5) of de Sitter space satisfies the relation

SRk

. % , (6.5.10)

which follows from Einstein’s equations or, as the integrability condition of the equa-
tion (6.5.6). Then, if we take a partial t-derivative of (6.5.9) and make use of (6.5.8), we
obtain

Vi€ + key€® = 0. (6.5.11)

This equation has a solution. Then, having &' 0 we can obtain & k from (6.5.8) and (6.5.9).
Explicit expressions for & and the corresponding finite group of transformations

are given in Weinberg’s book [456]. Any & could be a linear combination with constant

coefficients of the following ten vectors:

(i) Quasi-translations in t = const:

_0 —
Ep=0, &;=6Vi-kr. (6.5.12)
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(ii) Quasi-rotations in t = const:

g[(l)s] = 0, é[ljs] = 6k1XS - 5kle . (6.5.13)
(iii) Time quasi-translations:
_ 1 _ _
8oy =~ V1-k?, o) = EXV1-kr?. (6.5.14)
(iv) Lorentz quasi-rotations:
0 1
§jon = X (6.5.15)
. _ 1 @’
k=0— {[’6” =H [xkxl - 56“ ((r2 - ?>] s (6.5.16)
k=+1— E’[If)l] =H [xkxl - kékl] . (6.5.17)

It is important to notice that the Killing vectors (6.5.12) and (6.5.13) are also the Killing
vectors of the FLRW spacetimes. The vectors (6.5.14) and (6.5.15-6.5.17) are conformal
Killing vectors of the FLRW spacetimes. The conformal Killing vectors are discussed in
the next section.

6.5.2 Superpotentials and conserved currents

To obtain the KBL superpotentials for the above model, we use the formulae presen-
ted in Section 6.1, see (6.1.25). With the metric components in (6.5.1) and (6.5.4), we
calculate the difference between the two metrics h*" = (g - §*¥)/+/-g which we inter-
pret as a perturbation of the de Sitter space. The non-vanishing components of the
perturbation are:

7} 3 . .
h°°=_i2<1—9‘_1_3), hl"=gl"<¥§—1). (6.5.18)
w w a w a

The Christoffel symbols corresponding to the metrics (6.5.1) and (6.5.4), FAW and I_“"W,
and their difference AAW are given in (6.5.19-6.5.21) below. More specifically, we have:
o -

M0 = 2, [ = g - M= -2 =2 =, (6.5.19)

where the function T describes the relative shift between the two cosmic times
measured in FLRW cosmic time units. Next,

%, = wH6, Ty = @HSN — Ay =w (H - %H) 8 = wHEY, (6.5.20)

where H is the relative Hubble parameter measured in units of FLRW cosmic time.
Finally,
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H - H 1 aw -
0} (0] — 0
I = — 5k M= L Ay = = <H )gkl

- (6.5.21)

With & given by (6.5.12-6.5.17), *"¥ by (6.5.18), A"W by (6.5.19-6.5.21), the components
of superpotential, defined in (6.1.25) are:

167 7O = \-g (/82 + 2E),

(6.5.22)
167 78 = \-g (¢g"*9,2") 6.5.23)
. __3 1
—-§=wa s (6.5.24)
\/_ V1 - kr?
where &7/, % and ¢ are functions of ¢
wa @da
eQ/(t) = 2 - - - —_3
wa
7 3
AB(t) = <—2+3(i)—6_1 - —3> g i% H,
wa widd)w wa
w0 -2(22-1). (6.5.25)
wa

The components of the conserved current /C” can be calculated from (6.1.26) and
(6.1.27):

jg = CGHVEV + UHpUV[p%’G] . (6526)
The components for the matter energy-momentum T,* of an ideal fluid in the FLRW
model are

T, = -p, T =pé. (6.5.27)
and the background “matter energy-momentum” T,* in de Sitter space incorporated
to (0¥, is

4
l‘ = —5_[5’1 (6.5.28)
The time component of the current (6.5.26) then, reads

3
_@[(@p_ﬁ>_ﬁhp 3 wa

S

wal"  8m

67" T enaw =-7(0&8. (6529
Here,

. : (6.5.30)
w wa
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The spatial components of the current (6.5.26) are given by

3 3
k ~ | ( wa A A 3 wa’
7" = \|— —p+— |+—h+——H

e g[(a;zﬁp 871) 16n P 8mawad

_ i(‘f’_z‘}_“3>(T+ H)H]ék

16r\a @
— 2 3
_ wa a 3 .=
+ —E (% - 5) (T+ HEV(@E°). (6.5.31)

The terms in the first round brackets in (6.5.29) and (6.5.31) represent the “relative
energy density” and “relative pressure”, respectively. The second terms which are the
product of A and the trace of the metric perturbation, represent the coupling to the
background. The other terms are associated with the field energy and the helicity and
they depend on the choice of a particular mapping of the time axes.

As a consequence of (6.5.29) and fo’s as given in (6.5.12-6.5.20), the conserved
quantities in a volume V enclosed by a sphere of radius r = r, are all equal to zero
except of the “energy”, E(ry), associated with the time quasi-translations E’(%) given by
(6.5.14). Lorentzian quasi-rotations does not bring us about any conserved quantity
because the time component of (6.5.15) has odd parity. Thus, the “energy” reads

E(ry) = %ﬂc‘ﬂé FAGE (6.5.32)

where _# (t) is given by (6.5.29).

We would like to emphasize that up to now the mapping has not yet been fixed.
To do this one has to specify the choice of w and @. The most appealing mapping is
one that gives #(t) = 0 so that E(r,) = 0. The advantage of this mapping is that it
allows us to extend the number of conserved quantities in the FLRW universe from 6
to 10, thus, including the integrals of energy and Lorentzian momentum for physical
perturbations of the FLRW universe. The ten conserved quantities are referred to the
AdS background and vanish in case of the absence of the physical perturbations of
gravitational field of the FLRW universe.

6.6 Integral constraints for linear perturbations on FLRW
backgrounds

In the present section, we consider perturbations of the FLRW universe directly with
respect to the FLRW background itself without appealing to the AdS model as a back-
ground. It allows us to demonstrate the advantages of the Belinfante method, see
Section 6.3. We consider the conserved currents and superpotentials associated with
the 15 conformal Killing vectors, /}l", of FLRW spacetimes; their detailed classification
is given in next subsection. The reason for the appearance of the 15 conformal Killing
vectors is that FLRW spacetimes are conformal to the Minkowski space and, hence,
there are similarities between their symmetries. They correspond to 4 translations, 3



6.6 Integral constraints for linear perturbations on FLRW backgrounds =—— 333

spatial rotations, 3 Lorentz boosts, 1 dilatation and 4 “accelerations”. Such similarities
are helpful in geometrical interpretations. Excellent mathematical description of the
conformal Killing vectors of the Minkowski space along with their physical interpreta-
tion and applications are given by Fulton, Rohrlich and Witten [181], and we refer the
interested readers to their paper for more detail.

In what follows, we shall employ the 15 conformal Killing vectors to impose the
integral constraints on various physical quantities inside a sphere (parameterized by
r) having at a given instant of conformal cosmological time 1, volume V and surface S.
In other words, we are looking for integrals from the perturbations of the form (6.3.48)
based on the Belinfante corrected quantities:

3. 00y o
JV Px 700 = <J§S ds; #2A). (6.6.1)

Any linear combination of such integrals with the coefficients which are solely
functions of time, can be reduced to the same form.

We next turn our attention to those linear combinations in which the volume
integral depends only on the matter energy-momentum perturbations § Z;O that is of
the form

[ @x67,0v# = ¢ as7ivmy (66.2)
14 S

with yet unspecified vectors V¥. Before the application of the Belinfante corrected
technique, there were known 10 integral constraints of this form: 6 of them are asso-
ciated with the 6 ordinary Killing vectors of the FLRW spacetimes and the remaining 4
constraints have been introduced by Traschen [441] who found 4 additional “integral
constraint vectors” V¥. We show that they are, in fact, not independent but consist of
linear combinations of the conformal Killing vectors with time dependent coefficients.

The main result of the present section is that if we apply the uniform Hubble
expansion gauge studied by Bardeen [27], then all, except of one, of the 15 con-
formal Killing vectors (their linear combinations) are associated with the integral
conservation laws of the form (6.6.2). The exception includes either the conformal
time translations if k = +1 or the conformal time “acceleration” if k = 0. Thus,
here, we show that the Belinfante correcting method allows us to construct 4 Tras-
chen’s integral constraint vectors and the corresponding integral constraints. A look
at (6.6.2) shows that these integrals might be constructed directly from Einstein’s
constraint equations. However, it is not so simple to see this, as contrasted to the Belin-
fante method. The integral constraints often have simple geometrical interpretations
stemmed from classical mechanics. Thus, volume integrands in constraints of the
type (6.6.2) can be interpreted as multipole momenta of order 0, 1 or 2. Besides, with
making use of the uniform Hubble expansion gauge and a special gauge for gravita-
tional waves, we show that the integral constraints of the type (6.6.2) are independent
on the gravitational radiation.
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6.6.1 AFLRW background and its conformal Killing vectors

We write the FLRW background metric in dimensionless conformal coordinates x* =
{n, XX }, for which the metric is conformally-flat:

ds® = gudddx’ = P (~dn? + epdx’ax’) = aszdx"dxv, (6.6.3)

where a(n) is the scale factor. The difference with the representations of the conformal
metric here and in (5.3.15) is that here

fw = diag (-1, ey), (6.6.4)

with ey, specified by the choice of the conformal coordinates in (6.5.2), whereas £ Hv(x“)
is specified by the choice of the conformal coordinates in (5.3.15) and is defined in
arbitrary coordinates. The non-zero Christoffel symbols of the metric (6.6.3) are

1:000 = %, f‘okl = %ekl, fmol = %5?[, fmkl = kaekl , (665)

where 7 is the dimensionless conformal Hubble parameter
a

H = 7’7 (6.6.6)

yielding ay= as?, see also (5.3.4). In these notations the non-vanishing components
of the Einstein tensor are
Go® = S (k+ ) = 87T, (6.6.7)
a
1 _
Gy = kw74 26,)8,, = 8nT,. (6.6.8)

Now, we give a short introduction to the theory of the conformal Killing vectors on
FLRW background. Let us recall that solutions (if they exist) to the standard Killing
equation:

£:8, =0 (6.6.9)

are the ordinary Killing vectors: &* = &, This means that displacements along vec-
tors &* do not change the metric 8,y(x) — ,,(x). Conformal Killing vectors satisfy a
different equation

_ 1. _ _
f"{gyv = Zgyvgpof:{gpga (6.6.10)
which solutions (if they exist) are denoted & = igl)", and are called the conformal

Killing vectors, )(l)”. Displacements along the conformal Killing vectors induce con-
formal transformations of the metric:

80 — Q0)Z,, (0. (6.6.11)
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And, inversely, transformations (6.6.11) do not change the equation (6.6.10) and their
solutions.

Solutions of equations (6.6.10) are particularly interesting in ca