
Lecture Notes in Artificial Intelligence 5785
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Lluís Godo Andrea Pugliese (Eds.)

Scalable Uncertainty
Management

Third International Conference, SUM 2009
Washington, DC, USA, September 28-30, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Lluís Godo
Articial Intelligence Reseach Institute (IIIA)
Spanish National Research Council (CSIC)
Campus de la Universitat, 08193, Bellaterra, Spain
E-mail: godo@iiia.csic.es

Andrea Pugliese
University of Calabria, Department of Electronics
Computer Science and Systems
Via P. Bucci, 41C, 87036-Rende (CS), Italy
E-mail: apugliese@deis.unical.it

Library of Congress Control Number: 2009934039

CR Subject Classification (1998): I.2, I.2.3, F.3, F.4, H.2.1, I.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-04387-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04387-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12755936 06/3180 5 4 3 2 1 0

Preface

A large amount of available data nowadays includes uncertain, imprecise and
inconsistent information. The possibility of integrating and exploiting these data
calls for sound and efficient techniques for managing uncertainty and handling
inconsistency. These issues, which have been traditionally addressed within the
artificial intelligence community, already play a key role in fields like databases
or the semantic Web.

The annual International Conference on Scalable Uncertainty Management
(SUM), grown out of this large interest in uncertainty and inconsistency, aims
at bringing together all those interested in the management of uncertainty and
inconsistency at large, fostering the collaboration and cross-fertilization between
the reasoning under uncertainty community and the database and semantic Web
communities.

This volume contains the papers presented at the Third International Con-
ference on Scalable Uncertainty Management (SUM 2009), which was held in
Washington DC, USA, September 28-30, 2009, following the successful previ-
ous editions of SUM 2007 in Washington DC, USA, and SUM 2008 in Naples,
Italy. It contains 21 technical papers, which were selected out of 30 submitted
papers in a rigorous reviewing process, where each paper was reviewed by three
Program Committee members. The volume also contains abstracts of the two
invited talks. We wish to thank all authors who submitted papers and all con-
ference participants for fruitful discussions. We are grateful to Amol Deshpande
and Thomas Lukasiewicz for their invited talks at the conference. We would like
to thank all the Program Committee members and external referees for their
timely expertise in carefully reviewing the submissions. Special thanks are due
to Henri Prade and V.S. Subrahmanian, General Chairs of SUM 2009, for their
invaluable help and support in organizing the conference. Many thanks also to
the developers of the EasyChair conference system, which we used for the re-
viewing process and the preparation of this volume.

September 2009 Lluis Godo
Andrea Pugliese

Organization

General Chairs

Henri Prade IRIT, France
V.S. Subrahmanian University of Maryland, USA

Program Chairs

Lluis Godo IIIA - CSIC, Spain
Andrea Pugliese University of Calabria, Italy

Program Committee

Chitta Baral Arizona State University, USA
Leopoldo Bertossi Carleton University, Canada
Salem Benferhat University of Artois, France
Bir Bhanu University of California-Riverside, USA
Fabio Gagliardi Cozman University of Sao Paulo, Brazil
Michael I. Dekhtyar Tver State University, Russia
Juergen Dix TU Clausthal, Germany
Francesco Donini University of Tuscia, Italy
Didier Dubois IRIT, France
Thomas Eiter TU Vienna, Austria
Nicola Fanizzi University of Bari, Italy
Filippo Furfaro University of Calabria, Italy
John Grant Towson University, USA
Sergio Greco University of Calabria, Italy
Pascal Hitzler University of Karlsruhe, Germany
Eyke Hüllermeier University of Marburg, Germany
Edward Hung The Hong Kong Polytechnic University,

Hong Kong, SAR China
Anthony Hunter University College London, UK
T.S. Jayram IBM Almaden Research Center, USA
Churn-Jung Liau Academia Sinica, Taiwan
Weiru Liu Queen’s University Belfast, UK
Thomas Lukasiewicz Oxford University, UK; TU Vienna, Austria
Seraf́ın Moral University of Granada, Spain
Dan Olteanu Oxford University, UK
Gabriella Pasi University of Milan-Bicocca, Italy
Olivier Pivert INRIA-ENSSAT, France
Michael Pittarelli State University of New York, USA
David Poole University of British Columbia, Canada

VIII Organization

Henri Prade IRIT, France
Emad Saad Gulf University for Science and Technology,

Kuwait
Domenico Saccà University of Calabria, Italy
Maria Luisa Sapino University of Turin, Italy
Prakash Shenoy University of Kansas, USA
Umberto Straccia ISTI-CNR, Italy
Heiner Stuckenschmidt University of Mannheim, Germany
V.S. Subrahmanian University of Maryland, USA
Maurice van Keulen University of Twente, The Netherlands
Peter Vojtáš Charles University, Czech Republic
Nic Wilson University College Cork, Ireland

External Referees

Stefano Aguzzoli
Silvia Calegari
Martine De Cock
Christian Meilicke
Marco Mernberger
Stefan Woltran

Sponsoring Institutions

This conference was partially supported by the Department of Electronics, In-
formatics, and Systems (DEIS) of the University of Calabria, by the Institute of
High-Performance Computing and Networking (ICAR) of the Italian National
Research Council (CNR), by the University of Maryland Institute for Advanced
Computer Studies (UMIACS), and by the Spanish Consolider project Agreement
Technologies (CSD2007-022).

Table of Contents

PrDB: Managing Large-Scale Correlated Probabilistic Databases
(invited talk) . 1

Amol Deshpande

Uncertainty in the Semantic Web (invited talk) . 2
Thomas Lukasiewicz

Bridging the Gap between Abstract Argumentation Systems and
Logic . 12

Leila Amgoud and Philippe Besnard

Modeling Unreliable Observations in Bayesian Networks by Credal
Networks . 28

Alessandro Antonucci and Alberto Piatti

Interventions in Possibilistic Logic . 40
Salem Benferhat, Didier Dubois, and Henri Prade

An Analysis of Sum-Based Incommensurable Belief Base Merging 55
Salem Benferhat, Sylvain Lagrue, and Julien Rossit

An Argument-Based Approach to Using Multiple Ontologies 68
Elizabeth Black, Anthony Hunter, and Jeff Z. Pan

A Model Based on Possibilistic Certainty Levels for Incomplete
Databases . 80

Patrick Bosc, Olivier Pivert, and Henri Prade

A Proposal for Making Argumentation Computationally Capable of
Handling Large Repositories of Uncertain Data . 95

Marcela Capobianco and Guillermo R. Simari

Making Sense of a Sequence of Events: A Psychologically Supported AI
Implementation . 111

Philippe Chassy and Henri Prade

Explaining Inconsistencies in OWL Ontologies . 124
Matthew Horridge, Bijan Parsia, and Ulrike Sattler

On Improving the Scalability of Checking Satisfiability in Probabilistic
Description Logics . 138

Pavel Klinov and Bijan Parsia

Towards Relational Schema Uncertainty . 150
Matteo Magnani and Danilo Montesi

X Table of Contents

Aggregation of Trust for Iterated Belief Revision in Probabilistic
Logics . 165

Pere Pardo

Fast and Accurate Prediction of the Destination of Moving Objects 180
Austin Parker, V.S. Subrahmanian, and John Grant

Weighted Description Logics Preference Formulas for Multiattribute
Negotiation . 193

Azzurra Ragone, Tommaso Di Noia, Francesco M. Donini,
Eugenio Di Sciascio, and Michael P. Wellman

Probabilistic Planning with Imperfect Sensing Actions Using Hybrid
Probabilistic Logic Programs . 206

Emad Saad

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 223
Emad Saad

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 240
Steven Schockaert, Jeroen Janssen, Dirk Vermeir, and
Martine De Cock

Compression of Probabilistic XML Documents . 255
Irma Veldman, Ander de Keijzer, and Maurice van Keulen

Query Answering in Belief Logic Programming . 268
Hui Wan and Michael Kifer

Towards Effective Elicitation of NIN-AND Tree Causal Models 282
Yang Xiang, Yu Li, and Zoe Jingyu Zhu

An Evidence-Theoretic k-Nearest Neighbor Rule for Multi-label
Classification . 297

Zoulficar Younes, Fahed Abdallah, and Thierry Denœux

Author Index . 309

PrDB: Managing Large-Scale Correlated

Probabilistic Databases (Abstract)

Amol Deshpande

University of Maryland, College Park, MD, USA
amol@cs.umd.edu

Increasing numbers of real-world application domains are generating data that is
inherently noisy, incomplete, and probabilistic in nature. Statistical inference and
probabilistic modeling often introduce another layer of uncertainty on top of that.
Examples of such data include measurement data collected by sensor networks,
observation data in the context of social networks, scientific and biomedical data,
and data collected by various online cyber-sources. Over the last few years, nu-
merous approaches have been proposed, and several systems built, to integrate
uncertainty into databases. However, these approaches typically make simplistic
and restrictive assumptions concerning the types of uncertainties that can be rep-
resented. Most importantly, they often make highly restrictive independence as-
sumptions, and cannot easily model rich correlations among the tuples or attribute
values. Furthermore, they typically lack support for specifying uncertainties at dif-
ferent levels of abstractions, needed to handle large-scale uncertain datasets.

In this talk, I will begin by presenting our work on building a probabilistic
data management system, called PrDB, aimed at supporting rich correlation
structures often present in real-world uncertain datasets. I will present the PrDB
representation model, which is based on probabilistic graphical models, and its key
abstractions, and show how these enable PrDB to support uncertainties specified
at various abstraction levels, from schema-level uncertainties that apply to entire
relations to tuple-specific uncertainties that apply only to a specific tuple or a
specific set of tuples. Query evaluation in PrDB can be seen as equivalent to
inference in graphical models, and I will present some of the key novel techniques
that we have developed to efficiently evaluate various types of queries over large-
scale probabilistic databases. I will then briefly discuss our ongoing work and
some of the open research challenges in this area.

More details about the PrDB system and its key technologies can be found
in [1,2,3].

References

1. Deshpande, A., Getoor, L., Sen, P.: Graphical Models for Uncertain Data. In: Ag-
garwal, C. (ed.) Managing and Mining Uncertain Data. Springer, Heidelberg (2008)

2. Kanagal, B., Deshpande, A.: Indexing Correlated Probabilistic Databases. In:
SIGMOD (2009)

3. Sen, P., Deshpande, A., Getoor, L.: PrDB: Managing and Exploiting Rich Corre-
lations in Probabilistic Databases. The International Journal on Very Large Data
Bases (2009)

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Uncertainty in the Semantic Web

Thomas Lukasiewicz�

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
thomas.lukasiewicz@comlab.ox.ac.uk

Abstract. During the recent decade, significant research activities have been di-
rected towards the Semantic Web as future substitute of the Web. Many experts
predict that the next huge step forward in Web information technology will be
achieved by adding semantics to Web data. An important role in research towards
the Semantic Web is played by formalisms and technologies for handling uncer-
tainty and/or vagueness. In this paper, I give an overview of some own recent
formalisms for handling uncertainty and/or vagueness in the Semantic Web.

1 Introduction

The Semantic Web [1,2,3,4] has recently attracted much attention, both from academia
and industry, and is widely regarded as the next step in the evolution of the World Wide
Web. It aims at an extension of the current Web by standards and technologies that
help machines to understand the information on the Web so that they can support richer
discovery, data integration, navigation, and automation of tasks. The main ideas behind
it are to add a machine-understandable “meaning” to Web pages, to use ontologies
for a precise definition of shared terms in Web resources, to use KR technology for
automated reasoning from Web resources, and to apply cooperative agent technology
for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [5], is currently the highest layer of suf-
ficient maturity. OWL consists of three increasingly expressive sublanguages, namely,
OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially very ex-
pressive description logics with an RDF syntax. As shown in [6], ontology entailment
in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the de-
scription logic SHIF(D) (resp., SHOIN (D)). On top of the Ontology layer, sophis-
ticated representation and reasoning capabilities for the Rules, Logic, and Proof layers
of the Semantic Web are currently being developed next.

In particular, a key requirement of the layered architecture of the Semantic Web is
to integrate the Rules and the Ontology layer. Here, it is crucial to allow for building
rules on top of ontologies, that is, for rule-based systems that use vocabulary from
ontology knowledge bases. Another type of combination is to build ontologies on top of
rules, where ontological definitions are supplemented by rules or imported from rules.

� Alternative address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, 1040 Wien, Austria, lukasiewicz@kr.tuwien.ac.at

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 2–11, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Uncertainty in the Semantic Web 3

Both types of integration have been realized in recent hybrid integrations of rules and
ontologies, called description logic programs (or dl-programs), which are of the form
KB =(L, P), where L is a description logic knowledge base, and P is a finite set of
rules involving either queries to L in a loose integration (see, e.g., [7,8]) or concepts
and roles from L as unary resp. binary predicates in a tight integration (see, e.g., [9]).

However, classical ontology languages and description logics as well as formalisms
integrating rules and ontologies are less suitable in all those domains where the infor-
mation to be represented comes along with (quantitative) uncertainty and/or vague-
ness (or imprecision). For this reason, during the recent years, handling uncertainty
and vagueness has started to play an important role in research towards the Seman-
tic Web. A recent forum for approaches to uncertainty reasoning in the Semantic Web
is the annual International Workshop on Uncertainty Reasoning for the Semantic Web
(URSW) at the International Semantic Web Conference (ISWC). There has also been
a W3C Incubator Group on Uncertainty Reasoning for the World Wide Web. The re-
search focuses especially on probabilistic and fuzzy extensions of description logics,
ontology languages, and formalisms integrating rules and ontologies. Note that proba-
bilistic formalisms allow to encode ambiguous information, such as “John is a student
with the probability 0.7 and a teacher with the probability 0.3” (roughly, John is either
a teacher or a student, but more likely a student), while fuzzy approaches allow to en-
code vague or imprecise information, such as “John is tall with the degree of truth 0.7”
(roughly, John is quite tall). Formalisms for dealing with uncertainty and vagueness
are especially applied in ontology mapping, data integration, information retrieval, and
database querying. For example, some of the most prominent technologies for dealing
with uncertainty are probably the ranking algorithms standing behind Web search en-
gines. Vagueness and imprecision also abound in multimedia information processing
and retrieval, and are an important aspect of natural language interfaces to the Web.

In this paper, I give an overview of some own recent extensions of description logics
and description logic programs by probabilistic uncertainty and fuzzy vagueness. The
rest of this paper is organized as follows. In Section 2, I describe an approach to proba-
bilistic description logics for the Semantic Web. Sections 3 and 4 focus on approaches
to probabilistic and fuzzy description logic programs for the Semantic Web, respec-
tively, while Section 5 describes an approach to description logic programs for handling
both uncertainty and vagueness in a uniform framework for the Semantic Web. For a
more detailed overview of extensions of description logics for handling uncertainty and
vagueness in the Semantic Web, I also refer the reader to the recent survey [10].

2 Probabilistic Description Logics

In this section, we briefly describe the probabilistic description logic P-SHOIN (D),
which is a probabilistic generalization of the description logic SHOIN (D) behind
OWL DL towards sophisticated formalisms for reasoning under probabilistic uncer-
tainty in the Semantic Web [11]. Closely related probabilistic generalizations of the
DL-Lite family of tractable description logics (which lies between the Semantic Web
languages RDFS and OWL Lite) and the description logics SHIF(D) and SHOQ(D)
(which stand behind OWL Lite and DAML+OIL, respectively) have been introduced
in [11,12]. A companion paper [13] combines DL-Lite with Bayesian networks.

4 T. Lukasiewicz

The syntax of P-SHOIN (D) uses the notion of a conditional constraint from [14] to
express probabilistic knowledge in addition to the axioms of SHOIN (D). Its seman-
tics is based on the notion of lexicographic entailment in probabilistic default
reasoning [15,16], which is a probabilistic generalization of the sophisticated notion of
lexicographic entailment by Lehmann [17] in default reasoning from conditional knowl-
edge bases. Due to this semantics, P-SHOIN (D) allows for expressing both
terminological probabilistic knowledge about concepts and roles, and also assertional
probabilistic knowledge about instances of concepts and roles. It naturally interprets
terminological and assertional probabilistic knowledge as statistical knowledge about
concepts and roles, and as degrees of belief about instances of concepts and roles, re-
spectively, and allows for deriving both statistical knowledge and degrees of belief. As
an important additional feature, it also allows for expressing default knowledge about
concepts (as a special case of terminological probabilistic knowledge), which is seman-
tically interpreted as in Lehmann’s lexicographic default entailment [17].

Example 2.1. Suppose a classical description logic knowledge base T is used to en-
code knowledge about cars and their properties (e.g., that sports cars and roadsters are
cars). A probabilistic knowledge base KB =(T, P, (Po)o∈IP) in P-SHOIN (D) then
extends T by terminological default and terminological probabilistic knowledge in P
as well as by assertional probabilistic knowledge in Po for certain objects o ∈ IP . For
example, the terminological default knowledge (1) “generally, cars do not have a red
color” and (2) “generally, sports cars have a red color”, and the terminological proba-
bilistic knowledge (3) “cars have four wheels with a probability of at least 0.9”, can be
expressed by the following conditional constraints in P :

(1) (¬∃HasColor.{red} |Car)[1, 1],
(2) (∃HasColor.{red} | SportsCar)[1, 1],
(3) (HasFourWheels |Car)[0.9, 1] .

Suppose we want to encode some probabilistic information about John’s car (which
we have not seen so far). Then, the set of probabilistic individuals IP contains the
individual John’s car, and the assertional probabilistic knowledge (4) “John’s car is a
sports car with a probability of at least 0.8” (we know that John likes sports cars) can
be expressed by the following conditional constraint in PJohn’s car:

(4) (SportsCar | �)[0.8, 1] .

Then, the following are some (terminological default and terminological probabilistic)
tight lexicographic consequences of PT =(T, P):

(¬∃HasColor.{red} |Car)[1, 1],
(∃HasColor.{red} | SportsCar)[1, 1],
(HasFourWheels |Car)[0.9, 1],
(¬∃HasColor.{red} |Roadster)[1, 1],
(HasFourWheels | SportsCar)[0.9, 1],
(HasFourWheels |Roadster)[0.9, 1] .

Hence, in addition to the sentences (1) to (3) directly encoded in P , we also conclude
“generally, roadsters do not have a red color”, “sports cars have four wheels with a

Uncertainty in the Semantic Web 5

probability of at least 0.9”, and “roadsters have four wheels with a probability of at
least 0.9”. Observe here that the default property of not having a red color and the
probabilistic property of having four wheels with a probability of at least 0.9 are in-
herited from cars down to roadsters. Roughly, the tight lexicographic consequences
of PT = (T, P) are given by all those conditional constraints that (a) are either in P ,
or (b) can be constructed by inheritance along subconcept relationships from the ones
in P and are not overridden by more specific pieces of knowledge in P .

The following conditional constraints for the probabilistic individual John’s car are
some (assertional probabilistic) tight lexicographic consequences of KB , which infor-
mally say that John’s car is a sports car, has a red color, and has four wheels with
probabilities of at least 0.8, 0.8, and 0.72, respectively:

(SportsCar | �)[0.8, 1],
(∃HasColor.{red} |�)[0.8, 1],
(HasFourWheels | �)[0.72, 1] .

3 Probabilistic Description Logic Programs

We now summarize the main ideas behind loosely and tightly coupled probabilistic dl-
programs, introduced in [18,19,20,21] and [22,23,24,25,26], respectively. For further
details on the syntax and semantics of these programs, their background, and their se-
mantic and computational properties, we refer to the above works.

Loosely coupled probabilistic dl-programs [18,19,20] are a combination of loosely
coupled dl-programs under the answer set and the well-founded semantics with proba-
bilistic uncertainty as in Bayesian networks. Roughly, they consist of a loosely coupled
dl-program (L, P) under different “total choices” B (they are the full joint instantia-
tions of a set of random variables, and they serve as pairwise exclusive and exhaustive
possible worlds), and a probability distribution µ over the set of total choices B. One
then obtains a probability distribution over Herbrand models, since every total choice B
along with the loosely coupled dl-program produces a set of Herbrand models of which
the probabilities sum up to µ(B). As in the classical case, the answer set semantics of
loosely coupled probabilistic dl-programs is a refinement of the well-founded semantics
of loosely coupled probabilistic dl-programs. Consistency checking and tight query pro-
cessing (i.e., computing the entailed tight interval for the probability of a conditional or
unconditional event) in such probabilistic dl-programs under the answer set semantics
can be reduced to consistency checking and query processing in loosely coupled dl-
programs under the answer set semantics, while tight query processing under the well-
founded semantics can be done in an anytime fashion by reduction to loosely coupled
dl-programs under the well-founded semantics. For suitably restricted description logic
components, the latter can be done in polynomial time in the data complexity. Query
processing for stratified loosely coupled probabilistic dl-programs can be reduced to
computing the canonical model of stratified loosely coupled dl-programs. Loosely cou-
pled probabilistic dl-programs can especially be used for (database-oriented) proba-
bilistic data integration in the Semantic Web, where probabilistic uncertainty is used
to handle inconsistencies between different data sources [21].

6 T. Lukasiewicz

Example 3.1. A university database may use a loosely coupled dl-program (L, P) to
encode ontological and rule-based knowledge about students and exams. A probabilis-
tic dl-program KB =(L, P ′, C, µ) then additionally allows for encoding probabilis-
tic knowledge. For example, the following two probabilistic rules in P ′ along with a
probability distribution on a set of random variables may express that if two master
(resp., bachelor) students have given the same exam, then there is a probability of 0.9
(resp., 0.7) that they are friends:

friends(X, Y) ← given same exam(X, Y),DL[master student(X)],
DL[master student(Y)], choicem ;

friends(X, Y) ← given same exam(X, Y),DL[bachelor student(X)],
DL[bachelor student(Y)], choiceb .

Here, we assume the set C = {Vm, Vb} of value sets Vm = {choicem,not choicem}
and Vb = {choiceb,not choiceb} of two random variables Xm resp. Xb and the proba-
bility distribution µ on all their joint instantiations, given by µ : choicem, not choicem,
choiceb, not choiceb �→ 0.9, 0.1, 0.7, 0.3 under probabilistic independence. For exam-
ple, the joint instantiation choicem, choiceb is associated with the probability 0.9 ×
0.7 = 0.63. Asking about the entailed tight interval for the probability that john and bill
are friends can then be expressed by a probabilistic query ∃(friends(john , bill))[R, S],
whose answer depends on the available concrete knowledge about john and bill (name-
ly, whether they have given the same exams, and are both master or bachelor students).

Tightly coupled probabilistic dl-programs [22,23] are a tight combination of disjunctive
logic programs under the answer set semantics with description logics and Bayesian
probabilities. They are a logic-based representation formalism that naturally fits into
the landscape of Semantic Web languages. Tightly coupled probabilistic dl-programs
can especially be used for representing mappings between ontologies [24,25], which
are a common way of approaching the semantic heterogeneity problem on the Seman-
tic Web. Here, they allow in particular for resolving inconsistencies and for merging
mappings from different matchers based on the level of confidence assigned to different
rules (see below). Furthermore, tightly coupled probabilistic description logic programs
also provide a natural integration of ontologies, action languages, and Bayesian prob-
abilities towards Web Services. Consistency checking and query processing in tightly
coupled probabilistic dl-programs can be reduced to consistency checking and cau-
tious/brave reasoning, respectively, in tightly coupled disjunctive dl-programs. Under
certain restrictions, these problems have a polynomial data complexity.

Example 3.2. The two correspondences between two ontologies O1 and O2 that (i) an
element of Collection in O1 is an element of Book in O2 with the probability 0.62,
and (ii) an element of Proceedings in O1 is an element of Proceedings in O2 with
the probability 0.73 (found by the matching system hmatch) can be expressed by the
following two probabilistic rules:

O2 : Book (X)← O1 : Collection(X) ∧ hmatch1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2.

Uncertainty in the Semantic Web 7

Here, we assume the set C= {{hmatchi, not hmatch i} | i ∈ {1, 2}} of values of two
random variables and the probability distribution µ on all joint instantiations of these
variables, given by µ : hmatch1,not hmatch1, hmatch2, not hmatch2 �→ 0.62, 0.38,
0.73, 0.27 under probabilistic independence.

Similarly, two other correspondences between O1 and O2 (found by the matching
system falcon) are expressed by the following two probabilistic rules:

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2,

where we assume the set C′ = {{falcon i,not falcon i} | i∈{1, 2}} of values of two
random variables and the probability distribution µ′ on all joint instantiations of these
variables, given by µ′ : falcon1,not falcon1, falcon2, not falcon2 �→ 0.94, 0.06, 0.96,
0.04 under probabilistic independence.

Using the trust probabilities 0.55 and 0.45 for hmatch and falcon, respectively, for
resolving inconsistencies between rules, we can now define a merged mapping set that
consists of the following probabilistic rules:

O2 : Book (X)← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;
O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2.

Here, we assume the set C′′ of values of random variables and the probability distri-
bution µ′′ on all joint instantiations of these variables, which are obtained from C ∪C′
and µ · µ′ (defined as (µ · µ′)(B B′)= µ(B) · µ′(B′), for all joint instantiations B of C
and B′ of C′), respectively, by adding the values {sel hmatch1, sel falcon1} of a new
random variable, with the probabilities sel hmatch1, sel falcon1 �→ 0.55, 0.45 under
probabilistic independence, for resolving the inconsistency between the first two rules.

A companion approach to probabilistic description logic programs [26] combines prob-
abilistic logic programs, probabilistic default theories, and the description logics be-
hind OWL Lite and OWL DL. It is based on new notions of entailment for reasoning
with conditional constraints, which realize the principle of inheritance with overriding
for both classical and purely probabilistic knowledge. They are obtained by generaliz-
ing previous formalisms for probabilistic default reasoning with conditional constraints
(similarly as for P-SHOIN (D) in Section 2). In addition to dealing with probabilistic
knowledge, these notions of entailment thus also allow for handling default knowledge.

4 Fuzzy Description Logic Programs

We next briefly describe loosely and tightly coupled fuzzy dl-programs, which have
been introduced in [27,28] and [29,30], respectively, and extended by a top-k retrieval
technique in [33]. All these fuzzy dl-programs have natural special cases where query
processing can be done in polynomial time in the data complexity. For further details
on their syntax and semantics, background, and properties, we refer to the above works.

8 T. Lukasiewicz

Towards dealing with vagueness and imprecision in the reasoning layers of the Se-
mantic Web, loosely coupled (normal) fuzzy dl-programs under the answer set seman-
tics [27,28] generalize normal dl-programs under the answer set semantics by fuzzy
vagueness and imprecision in both the description logic and the logic program compo-
nent. This is the first approach to fuzzy dl-programs that may contain default negations
in rule bodies. Query processing in such fuzzy dl-programs can be done by reduction to
normal dl-programs under the answer set semantics. In the special cases of positive and
stratified loosely coupled fuzzy dl-programs, the answer set semantics coincides with
a canonical least model and an iterative least model semantics, respectively, and has a
characterization in terms of a fixpoint and an iterative fixpoint semantics, respectively.

Example 4.1. Consider the fuzzy description logic knowledge base L of a car shopping
Web site, which defines especially (i) the fuzzy concepts of sports cars (SportsCar), “at
most 22 000 C” (LeqAbout22000), and “around 150 horse power” (Around150HP),
(ii) the attributes of the price and of the horse power of a car (hasInvoice resp. hasHP),
and (iii) the properties of some concrete cars (such as a MazdaMX5Miata and a
MitsubishiES). Then, a loosely coupled fuzzy dl-program KB =(L, P) is given by the
set of fuzzy dl-rules P , which contains only the following fuzzy dl-rule encoding the re-
quest of a buyer (asking for a sports car costing at most 22 000 C and having around 150
horse power), where ⊗ may be the conjunction strategy of, e.g., Gödel Logic (that is,
x⊗ y = min(x, y), for all x, y ∈ [0, 1], is used to evaluate ∧ and← on truth values):

query(x)←⊗ DL[SportsCar](x) ∧⊗ DL[∃hasInvoice .LeqAbout22000](x)∧⊗
DL[∃hasHP .Around150HP](x) � 1 .

The above fuzzy dl-program KB =(L, P) is positive, and has a minimal model MKB ,
which defines the degree to which some concrete cars in the description logic knowl-
edge base L match the buyer’s request, for example,

MKB(query(MazdaMX5Miata)) = 0.36 , MKB(query(MitsubishiES)) = 0.32 .

That is, the car MazdaMX5Miata is ranked top with the degree 0.36, while the car
MitsubishiES is ranked second with the degree 0.32.

Tightly coupled fuzzy dl-programs under the answer set semantics [29,30] are a tight
integration of fuzzy disjunctive logic programs under the answer set semantics with
fuzzy description logics. They are also a generalization of tightly coupled disjunctive
dl-programs by fuzzy vagueness in both the description logic and the logic program
component. This is the first approach to fuzzy dl-programs that may contain disjunc-
tions in rule heads. Query processing in such programs can essentially be done by a
reduction to tightly coupled disjunctive dl-programs. A closely related work [33] ex-
plores the evaluation of ranked top-k queries. It shows in particular how to compute the
top-k answers in data-complexity tractable tightly coupled fuzzy dl-programs.

Example 4.2. A tightly coupled fuzzy dl-program KB =(L, P) is given by a suitable
fuzzy description logic knowledge base L and the set of fuzzy rules P , which contains
only the following fuzzy rule (where x⊗ y = min(x, y)):

query(x)←⊗ SportyCar (x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower (x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) � 1 .

Uncertainty in the Semantic Web 9

Informally, query collects all sports cars, and ranks them according to whether they cost
at most around 22 000 C and have around 150 HP. Another fuzzy rule involving also a
negation in its body and a disjunction in its head is given as follows (where� x= 1−x
and x⊕ y = max(x, y)):

Small (x)∨⊕Old(x)←⊗ Car(x) ∧⊗ hasInvoice(x, y)∧⊗
not�GeqAbout15000 (y) � 0.7 .

This rule says that a car costing at most around 15 000 C is either small or old. Notice
here that Small and Old may be two concepts in the fuzzy description logic knowledge
base L. That is, the tightly coupled approach to fuzzy dl-programs under the answer
set semantics also allows for using the rules in P to express relationships between the
concepts and roles in L. This is not possible in the loosely coupled approach to fuzzy
dl-programs under the answer set semantics in [27,28], since the dl-queries there can
only occur in rule bodies, but not in rule heads.

5 Probabilistic Fuzzy Description Logic Programs

We finally describe (loosely coupled) probabilistic fuzzy dl-programs [31,32], which
combine fuzzy description logics, fuzzy logic programs (with stratified default-nega-
tion), and probabilistic uncertainty in a uniform framework for the Semantic Web. Intu-
itively, they allow for defining several rankings on ground atoms using fuzzy vagueness,
and then for merging these rankings using probabilistic uncertainty (by associating with
each ranking a probabilistic weight and building the weighted sum of all rankings).
Such programs also give rise to important concepts dealing with both probabilistic un-
certainty and fuzzy vagueness, such as the expected truth value of a crisp sentence
and the probability of a vague sentence.

Example 5.1. A (loosely coupled) probabilistic fuzzy dl-program is given by a suitable
fuzzy description logic knowledge base L and the following set of fuzzy dl-rules P ,
modeling some query reformulation / retrieval steps using ontology mapping rules:

query(x)←⊗ SportyCar (x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower (x, y2) ∧⊗
DL[LeqAbout22000](y1) ∧⊗ DL[Around150HP](y2) � 1 , (1)

SportyCar (x)←⊗ DL[SportsCar](x) ∧⊗ scpos � 0.9 , (2)

hasPrice(x, y)←⊗ DL[hasInvoice](x, y) ∧⊗ hipos � 0.8 , (3)

hasPower (x, y)←⊗ DL[hasHP](x, y) ∧⊗ hhppos � 0.8 , (4)

where we assume the set C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}
of values of random variables and the probability distribution µ on all joint instan-
tiations of these variables, given by µ : scpos, scneg , hipos, hineg, hhppos, hhpneg �→
0.91, 0.09, 0.78, 0.22, 0.83, 0.17 under probabilistic independence. Here, rule (1) is the
buyer’s request, but in a “different” terminology than the one of the car selling site.
Rules (2)–(4) are so-called ontology alignment mapping rules. For example, rule (2)
states that the predicate “SportyCar” of the buyer’s terminology refers to the concept
“SportsCar” of the selected site with probability 0.91.

10 T. Lukasiewicz

The following may be some tight consequences of the above probabilistic fuzzy dl-
program (where for ground atoms q, we use (E[q])[L, U] to denote that the expected
truth value of q lies in the interval [L, U]):

(E[query(MazdaMX5Miata)])[0.21, 0.21], (E[query(MitsubishiES)])[0.19, 0.19] .

That is, the car MazdaMX5Miata is ranked first with the degree 0.21, while the car
MitsubishiES is ranked second with the degree 0.19.

Acknowledgments. This work has been supported by the German Research Founda-
tion (DFG) under the Heisenberg Programme.

References

1. Berners-Lee, T.: Weaving the Web. Harper, San Francisco (1999)
2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Amer. 284(5), 34–43 (2001)
3. Fensel, D., Wahlster, W., Lieberman, H., Hendler, J. (eds.): Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge (2002)
4. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The

making of a web ontology language. J. Web Sem. 1(1), 7–26 (2003)
5. W3C: OWL web ontology language overview (2004) W3C Recommendation (February 10,

2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/
6. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfi-

ability. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 17–29. Springer, Heidelberg (2003)

7. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer
set programming with description logics for the Semantic Web. Artif. Intell. 172(12/13),
1495–1539 (2008)

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for descrip-
tion logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004.
LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

9. Lukasiewicz, T.: A novel combination of answer set programming with description logics for
the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 384–398. Springer, Heidelberg (2007)

10. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for
the Semantic Web. J. Web Sem. 6(4), 291–308 (2008)

11. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883
(2008)

12. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for
probabilistic ontologies in the Semantic web. In: Flesca, S., Greco, S., Leone, N., Ianni, G.
(eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)

13. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian descrip-
tion logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291,
pp. 146–159. Springer, Heidelberg (2008)

14. Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. J.
Artif. Intell. Res. 10, 199–241 (1999)

15. Lukasiewicz, T.: Probabilistic logic programming under inheritance with overriding. In: Pro-
ceedings UAI-2001, pp. 329–336. Morgan Kaufmann, San Francisco (2001)

Uncertainty in the Semantic Web 11

16. Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math.
Artif. Intell. 34(1–3), 35–88 (2002)

17. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1),
61–82 (1995)

18. Lukasiewicz, T.: Probabilistic description logic programs. In: Godo, L. (ed.) ECSQARU
2005. LNCS (LNAI), vol. 3571, pp. 737–749. Springer, Heidelberg (2005)

19. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2),
288–307 (2007)

20. Lukasiewicz, T.: Tractable probabilistic description logic programs. In: Prade, H., Subrah-
manian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 143–156. Springer, Heidelberg
(2007)

21. Calı̀, A., Lukasiewicz, T.: An approach to probabilistic data integration for the Semantic
web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J.,
Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327,
pp. 52–65. Springer, Heidelberg (2008)

22. Calı̀, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the
Semantic web. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429.
Springer, Heidelberg (2007)

23. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic
description logic programs for the Semantic Web. J. Data Sem. 12, 95–130 (2009)

24. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Rule-based approaches for rep-
resenting probabilistic ontology mappings. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N.,
Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW
2005 - 2007. LNCS (LNAI), vol. 5327, pp. 66–87. Springer, Heidelberg (2008)

25. Calı̀, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilis-
tic description logic programs for representing ontology mappings. In: Hartmann, S.,
Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 178–198. Springer, Heidelberg
(2008)

26. Lukasiewicz, T.: Probabilistic description logic programs under inheritance with overriding
for the Semantic Web. Int. J. Approx. Reasoning 49(1), 18–34 (2008)

27. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for
the Semantic Web. In: Proceedings RuleML-2006, pp. 89–96. IEEE Computer Society,
Los Alamitos (2006)

28. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the
Semantic Web. Fundam. Inform. 82(3), 289–310 (2008)

29. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the
answer set semantics for the Semantic web. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.)
RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)

30. Lukasiewicz, T., Straccia, U.: Tightly coupled fuzzy description logic programs under the
answer set semantics for the Semantic Web. Int. J. Semantic Web Inf. Syst. 4(3), 68–89
(2008)

31. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty
and fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724,
pp. 187–198. Springer, Heidelberg (2007)

32. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and
fuzzy vagueness. Int. J. Approx. Reasoning 50(6), 837–853 (2009)

33. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness
for the Semantic Web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI),
vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

Bridging the Gap between Abstract Argumentation
Systems and Logic

Leila Amgoud and Philippe Besnard

IRIT-CNRS, 118, route de Narbonne,
31062 Toulouse Cedex 4 France

{amgoud,besnard}@irit.fr

Abstract. Dung’s argumentation system takes as input a set of arguments and a
binary relation encoding attacks among these arguments, and returns different ex-
tensions of arguments. However, no indication is given on how to instantiate this
setting, i.e. how to build arguments from a knowledge base and how to choose
an appropriate attack relation. This leads in some cases to undesirable results like
inconsistent extensions (i.e. the set of formulas forming an extension is inconsis-
tent). This is due to the gap between the abstract setting and the knowledge base
from which it is defined.

The purpose of this paper is twofold: First it proposes to fill in this gap by
extending Dung’s system. The idea is to consider all the ingredients involved in an
argumentation problem. We start with an abstract monotonic logic which consists
of a set of formulas and a consequence operator. We show how to build arguments
from a knowledge base using the consequence operator of the logic. Second, we
show that the choice of an attack relation is crucial for ensuring consistent results,
and should not be arbitrary. In particular, we argue that an attack relation should
be at least grounded on the minimal conflicts contained in the knowledge base.
Moreover, due to the binary character of this relation, some attack relations may
lead to unintended results. Namely, symmetric relations are not suitable when
ternary (or more) minimal conflicts are in the knowledge base. We propose then
the characteristics of attack relations that ensure sound results.

1 Introduction

Argumentation is a reasoning model based on the construction and evaluation of argu-
ments in order to increase or decrease the acceptability of a given standpoint. It is used,
for instance, for handling inconsistency in knowledge bases (e.g. [2,9]) and for decision
making (e.g. [1,3]).

One of the most abstract argumentation systems in existing literature is Dung’s one.
It consists of a set of arguments and a binary relation encoding attacks among these
arguments. Since its original formulation, this system has become very popular and dif-
ferent instantiations of it have been defined. Unfortunately, some of them such as the
one presented in [8] can lead to very unintuitive results. In [4], it has been shown that
this instantiation violates key postulates like the consistency of extensions. An exten-
sion satisfies consistency if the set of formulas used in arguments of that extension is
consistent. What is worth noticing is that this postulate refers to the internal structure

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 12–27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bridging the Gap between Abstract Argumentation Systems and Logic 13

of an argument (i.e. its formulas) while the link between these formulas and the ac-
ceptability semantics is not clear. The link between the inconsistency of a base and the
attack relation is also not clear. In summary, there is a gap between the abstract setting
and the knowledge base from which it is built. Thus, basic choices like the definition of
an argument and of an attack relation are made in an ad hoc way.

The purpose of this paper is twofold: First it proposes to fill in this gap by extending
Dung’s system. The idea is to consider all the ingredients involved in an argumentation
problem ranging from the logical language to the output of the system. We start with an
abstract monotonic logic as defined in [10]. Tarski defines an abstract monotonic logic
as a set of formulas and a consequence operator that satisfies some axiom. We show
how to build arguments from any subset of formulas using the consequence operator.
Second, we show that the choice of an attack relation is crucial for ensuring consistent
results and should not be arbitrary. In particular, an attack relation should be at least
grounded on the minimal conflicts contained in the knowledge base. Moreover, due to
the binary character of the attack relation in Dung’s system, some attack relations may
lead to undesirable results. Namely, symmetric relations are not suitable when ternary
(or more) minimal conflicts are included in the base. We propose then the characteristics
of an attack relation that should be used for ensuring sound results.

Section 2 recalls Tarski’s axiomatization of a monotonic logic. Section 3 details our
extension of Dung’s system. Section 4 presents examples that show the importance of
choosing correctly an attack relation. Section 5 studies the properties of such a relation
while Section 6 gives recommendations on how to choose one.

2 Tarski’s Abstract Consequence Operations

Alfred Tarski [10] defines an abstract logic as a pair (L , CN) where members of L
are called well-formed formulas, and CN is a consequence operator. CN is any function
from 2L to 2L that satisfies the following axioms:

1. X ⊆ CN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) =

⋃
Y ⊆f X CN(Y) (Finiteness)

4. CN({x}) = L for some x ∈ L (Absurdity)
5. CN(∅) �= L (Coherence)

Notation: Y ⊆f X means that Y is a finite subset of X .

Intuitively, CN(X) returns the set of formulas that are logical consequences of X ac-
cording to the logic in question. It can easily be shown from the above axioms that CN
is a closure operator, that is, CN enjoys properties such as:

Property 1. Let X, X ′, X ′′ ⊆ L .

1. X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′). (Monotonicity)
2. CN(X) ∪ CN(X ′) ⊆ CN(X ∪ X ′).
3. CN(X) = CN(X ′) ⇒ CN(X ∪ X ′′) = CN(X ′ ∪ X ′′).

14 L. Amgoud and P. Besnard

Almost all well-known monotonic logics (classical logic, intuitionistic logic, modal
logic, etc.) can be viewed as special cases of Tarski’s notion of an abstract logic.

Once (L , CN) is fixed, we can define a notion of consistency as follows:

Definition 1 (Consistency). Let X ⊆ L . X is consistent wrt (L , CN) iff CN(X) �=
L . It is inconsistent otherwise.

This says that X is consistent iff its set of consequences is not the set of all formulas.
The coherence requirement forces ∅ to always be consistent - this makes sense for any
reasonable logic as saying emptiness should intuitively be consistent.

Property 2. Let X ⊆ L .

1. If X is consistent, then CN(X) is consistent as well.
2. ∀X ′ ⊆ X , if X is consistent, then X ′ is consistent.
3. ∀X ′ ⊆ X , if X ′ is inconsistent, then X is inconsistent.

In what follows we introduce a concept that is useful for the rest of the paper.

Definition 2 (Adjunctive). (L , CN) is adjunctive iff for all x and y in L , if
CN({x, y}) �= CN({x}) and CN({x, y}) �= CN({y}) then there exists z ∈ L such
that CN({z}) = CN({x, y}).
Intuitively, an adjunctive logic infers, from the union of two formulas {x, y}, some
formula(s) that can be inferred neither from x alone nor from y alone (except, of course,
when y ensues from x or vice-versa). In fact, all well-known logics are adjunctive.1 A
logic which is not adjunctive could for instance fail to deny x ∨ y from the premises
{¬x,¬y}.
Throughout the paper, the following assumption is made:

Assumption 1. The logic (L , CN) is adjunctive.

From now on, we will consider a knowledge base Σ which is a subset of the logical
language L (Σ ⊆ L). With no loss of generality and for the sake of simplicity, the
knowledge base Σ is assumed to be free of tautologies:

Assumption 2. For all x ∈ Σ, x /∈ CN(∅).
If Σ is inconsistent, then it contains minimal conflicts.

Definition 3 (Minimal conflict). Let Σ be a knowledge base, and C ⊆ Σ. The set C
is a minimal conflict iff:

– C is inconsistent
– ∀x ∈ C, C\{x} is consistent

Let CΣ denote the set of all minimal conflicts of Σ.

1 A few very restricted fragments of well-known logics fail to be adjunctive, e.g., the pure im-
plicational fragment of classical logic as it is negationless, disjunctionless, and, of course,
conjunctionless.

Bridging the Gap between Abstract Argumentation Systems and Logic 15

3 An Extension of Dung’s Abstract System

Argumentation is a reasoning paradigm that follows three main steps: i) constructing
arguments and counterarguments ii) defining the status of each argument, and iii) con-
cluding or specifying the justified conclusions. In what follows, we refine Dung’s sys-
tem by defining all the above items involved in argumentation without losing generality.
We start with an abstract logic (L , CN) from which the notions of argument and attacks
between arguments are defined. More precisely, arguments are built from a knowledge
base, say Σ, containing formulas of the language L . An argument gives a reason for
believing a statement or choosing an action, etc. Formally:

Definition 4 (Argument). Let Σ be a knowledge base. An argument is a pair (X, x)
such that:

1. X ⊆ Σ
2. X is consistent
3. x ∈ CN(X)
4. �X ′ ⊂ X such that x ∈ CN(X ′)

Notations: Supp and Conc denote respectively the support X and the conclusion x of
an argument (X, x). For S ⊆ Σ, let Arg(S) denote the set of all arguments that can be
built from S by means of Definition 4.

Due to Assumption 2 (x �∈ CN(∅) for all x ∈ Σ), it can also be shown that each
consistent formula in Σ gives birth to an argument:

Property 3. For all x ∈ Σ s.t. the set {x} is consistent, there exists a ∈ Arg(Σ) where
Supp(a) = {x}.

Since CN is monotonic, constructing arguments is a monotonic process: Additional
knowledge never makes the set of arguments to shrink but only gives rise to extra argu-
ments that may interact with the existing arguments.

Property 4. Arg(Σ) ⊆ Arg(Σ′) whenever Σ ⊆ Σ′ ⊆ L .

We show next that any proper subset of a minimal conflict is the support of at least one
argument. It is a result of utmost importance as regards encoding the attack relation
between arguments.

Proposition 1. Let (L , CN) be adjunctive. For all non-empty proper subset X of some
minimal conflict C ∈ CΣ , there exists a ∈ Arg(Σ) s.t. Supp(a) = X .

Proposition 1 is indeed fundamental because it says that if statements from Σ contradict
others then it is always possible to define an argument exhibiting the conflict.

We refine Dung’s abstract framework as follows.

Definition 5 (Argumentation system). Given a knowledge base Σ, an argumentation
system (AS) over Σ is a pair (Arg(Σ),R) such that Arg(Σ) is a set of arguments
defined from Σ and R ⊆ Arg(Σ) × Arg(Σ) is an attack relation.

16 L. Amgoud and P. Besnard

The attack relation captures the different disagreements that may exist between argu-
ments. [6] is silent on how to proceed in order to obtain a reasonable R in practice. It
happens, as pointed out by [4], that it is in fact an error-prone step. We will see in the
next section how can things go wrong in this respect, and, in the subsequent section, to
what extent our definitions help to circumvent the problem. For the time being, let us
focus on what role R plays in Dung’s approach.

Among all the arguments, it is important to know which arguments to rely on for
inferring conclusions from a base Σ. In [6], different acceptability semantics have been
proposed. The basic idea behind these semantics is the following: for a rational agent,
an argument is acceptable if he can defend this argument against all attacks on it. All
the arguments acceptable for a rational agent will be gathered in a so-called extension.
An extension must satisfy a consistency requirement and must defend all its elements.

Definition 6 (Conflict-free, Defence). Let (Arg(Σ),R) be an AS, and B ⊆ Arg(Σ).

– B is conflict-free iff �a, b ∈ B such that (a, b) ∈ R.
– B defends an argument a iff ∀b ∈ Arg(Σ), if (b, a) ∈ R, then ∃c ∈ B such that

(c, b) ∈ R.

The fundamental semantics in [6] is the one that features admissible extensions. The
other semantics (i.e., preferred, stable, complete and grounded) are based on it. We
only include the definition for the admissible semantics.

Definition 7 (Admissible semantics). Let B be a conflict-free set of arguments. B is
an admissible extension iff B defends all its elements.

Since the notion of the acceptability is defined, we can now characterize the possible
conclusions that can be drawn from Σ according to an argumentation system over Σ.
The idea is to conclude x if x is the conclusion of at least an argument which belongs
to every extension of the system.

Definition 8 (Output of the system). Let (Arg(Σ),R) be an AS over a knowledge
base Σ. Let E1, . . . , En be the extensions of (Arg(Σ),R) under a given semantics.2

For x ∈ L , x is a conclusion of Σ iff ∃a ∈ Arg(Σ) such that Conc(a) = x and
a ∈ E1 ∩ · · · ∩ En. We write Output(Σ) to denote the set of all conclusions of Σ.

In [4], it has been argued that the extensions of an argumentation system should ensure
consistent results. This means that the base built from the supports of arguments of each
extension should be consistent.

Definition 9 (Consistency of extensions). Let (Arg(Σ), R) be an AS. An extension E
(under a given semantics) satisfies consistency iff

⋃
a∈E Supp(a) is consistent.

It can be shown that if all the extensions of an argumentation system enjoy consistency,
then the output of the system is consistent as well.

Proposition 2. Let (Arg(Σ),R) be an AS over a knowledge base Σ. Let E1, . . . , En

be the extensions of (Arg(Σ),R) under a given semantics. If ∀Ei=1,...,n, Ei satisfies
consistency, then Output(Σ) is consistent.

2 One can use any semantics: complete, stable, preferred, or grounded. However, admissible
semantics is not recommended since the empty set is admissible. Thus, no argument can belong
to all the extensions.

Bridging the Gap between Abstract Argumentation Systems and Logic 17

4 Some Problematic Cases

In the previous section we have provided a clear definition of an argument and how
it is built from a knowledge base Σ. However, there still is no indication on how R is
defined and how it is related to Σ. Moreover, in [4] it has been shown that there are some
instantiations of Dung’s system that violate extension consistency. Does this mean that
the notion of being conflict-free is not sufficient to ensure consistency? It is sufficient
provided that the attack relation is defined in an appropriate way. In this section, we
present some problematic examples that shed light on the minimal requirements for
defining an attack relation. Throughout the section, we consider propositional logic.

Let us start with an attack relation that is not related to inconsistency in Σ.

Example 1 (Independence from minimal conflict). Let Σ = {x,¬x}. So,
CΣ = {Σ}. Take Arg(Σ) = {a1, a2} where a1 = ({x}, x) and a2 = ({¬x},¬x).
Assume that R = ∅. This means that R does not depend at all on minimal conflicts in
Σ. In this case, (Arg(Σ),R) has an admissible extension that violates consistency, it is
{a1, a2}.

Requirement 1. An attack relation should “capture” at least the minimal conflicts of
the knowledge base at hand.

Let us now consider an attack relation that captures all the minimal conflicts of Σ.
We start with a symmetric relation, due to [7], called rebut. An argument a rebuts an
argument b iff Conc(a) ≡ ¬Conc(b) (or vice-versa).

Example 2 (Binary minimal conflict). The two arguments a1 = ({x}, x) and a2 =
({¬x},¬x) rebut each other. So, the system (Arg(Σ), Rebut) has two admissible ex-
tensions {a1} and {a2}. They each satisfy consistency.

Unfortunately, the fact that an attack relation captures the minimal conflicts of a knowl-
edge base does not always ensure consistency of the extensions. Let us consider a
knowledge base displaying a ternary minimal conflict.

Example 3 (Ternary conflict). Let Σ = {x, y, x → ¬y}. Let Arg(Σ) consist of the
following arguments:

– a1 = ({x}, x)
– a2 = ({y}, y)
– a3 = ({x → ¬y}, x → ¬y)
– a4 = ({x, x → ¬y},¬y)
– a5 = ({y, x → ¬y},¬x)
– a6 = ({x, y}, x ∧ y)

a2

a4

a5 a6

a1 a3

Let R be such as depicted in figure above. The set {a1, a2, a3} is an admissible exten-
sion of (Arg(Σ),R). However, Supp(a1) ∪ Supp(a2) ∪ Supp(a3) is inconsistent.

This example shows that a conflict-free set of arguments may fail consistency. This is
due to the fact that R is binary, in compliance with Dung’s definitions imposing the
attack relation to be binary. Thus, the ternary conflict between a1, a2 and a3 is not
captured.

18 L. Amgoud and P. Besnard

Requirement 2. If a knowledge base has ternary (or more) minimal conflicts, the at-
tack relation should be asymmetric.

Indeed, [5] shows that an argumentation system which uses the asymmetric, assumption
attack defined in [7] yields consistent extensions. An argument a undercuts b iff ∃h′ ∈
Supp(b) such that Conc(a) ≡ ¬h′ (or h′ ≡ ¬Conc(a)).

Example 4 (Ternary conflict cont.). The attack relation R, in the sense of undercut,
between arguments of Arg(Σ) from Example 3 is now such as depicted in the figure
below:

a2

a4

a5 a6

a1 a3

There are three maximal (wrt set inclusion) admissible extensions: {a1, a2, a6},
{a2, a3, a5}, and {a1, a3, a4}. All three extensions satisfy consistency.

5 Properties of Attack Relations

In this section, we discuss primitive properties that may be expected from an attack
relation. The first of these is about the origin of R. As argued in the previous section, an
attack relation should capture at least the minimal conflicts arising from the knowledge
base Σ under consideration.

Definition 10 (Capturing conflicts). Let C ∈ CΣ . A pair (a, b) in R captures C if C
⊆ Supp(a) ∪ Supp(b).

Alas, that an attack relation captures all the minimal conflicts is not sufficient to ensure
consistency of extensions.

Example 5. Let Arg(Σ) = {a, b, c}, CΣ = {C} and R = {(a, b)}. If C ⊆ Supp(a) ∪
Supp(b) and C ⊆ Supp(a) ∪ Supp(c), then R captures (not “faithfully”, though) the
minimal conflict C but the admissible extension {a, c} violates consistency.

Definition 11 (Conflict-sensitive). An attack relation R is conflict-sensitive iff for all
a and b in Arg(Σ) such that there exists a minimal conflict C ⊆ Supp(a) ∪ Supp(b)
then either (a, b) ∈ R or (b, a) ∈ R.

Being conflict-sensitive means this: If Σ provides evidence (according to CN) that the
supports of a and b conflict with each other, then this conflict shows in R (i.e., either
(a, b) ∈ R holds or (b, a) ∈ R holds). In other words, being conflict-sensitive ensures
that, when passing from Σ to (Arg(Σ),R), no conflict is “forgotten” in R.

Bridging the Gap between Abstract Argumentation Systems and Logic 19

Example 6. The attack relation R of Example 5 is not conflict-sensitive since neither
(a, c) nor (c, a) is in R.

In case the knowledge base does not contain an inconsistent formula, if R is conflict-
sensitive then R captures all minimal conflicts.

Proposition 3. Let CΣ s.t. ∀C ∈ CΣ , |C| > 1. If R is sensitive, then R captures all
minimal conflicts of CΣ .

That an attack relation is conflict-sensitive and captures all the minimal conflicts need
not mean that it is strictly based on minimal conflicts. Next is an illustration:

Example 7. Consider Arg(Σ) = {a, b, c}, CΣ = {C} and R = {(a, b), (a, c)}. As-
sume C ⊆ Supp(a) ∪ Supp(b). Then, R is conflict-sensitive and captures the minimal
conflicts in CΣ . But R contains an attack, (a, c), which is unrelated to CΣ .

Definition 12 (Conflict-dependent). An attack relation R is conflict-dependent iff for
all a and b in Arg(Σ), (a, b) ∈ R implies that there exists a minimal conflict C ⊆
Supp(a) ∪ Supp(b).

Being conflict-dependent means this: R shows no attack from a to b unless Σ provides
evidence (according to CN) that the supports of a and b conflict with each other. That
is, being conflict-dependent ensures that, when passing from Σ to (Arg(Σ),R), no
conflict is “invented” in R.

Example 8. R in Example 7 is not conflict-dependent since the attack (a, c) does not
depend on the minimal conflict C.

Clearly, an attack relation that is conflict-sensitive need not be conflict-dependent. Con-
versely, in Example 5, R illustrates the fact that an attack relation that is conflict-
dependent is not necessarily conflict-sensitive. Note that an attack relation which is
conflict-dependent exhibits no self-attack:

Proposition 4. Let (Arg(Σ),R) be s. t. R is conflict-dependent. For all a ∈ Arg(Σ),
(a, a) �∈ R.

When the attack relation is conflict-dependent, if a set of arguments is such that its
corresponding base (set-theoretic union of supports) is consistent then it is a conflict-
free set:

Proposition 5. Let (Arg(Σ),R) be s. t. R is conflict-dependent. ∀B ⊆ Arg(Σ), if⋃
a∈B Supp(a) is consistent, B is conflict-free.

When R is both conflict-sensitive and conflict-dependent, R then essentially makes no
difference between arguments that have equivalent supports:

Proposition 6. Let (Arg(Σ),R) such that R is conflict-sensitive and conflict-
dependent. For all a and b in Arg(Σ), if CN(Supp(a)) = CN(Supp(b)), then for all
c ∈ Arg(Σ) (a, c) ∈ R or (c, a) ∈ R iff (b, c) ∈ R or (c, b) ∈ R.

20 L. Amgoud and P. Besnard

Definitions 10-12 characterize the “origin” of the attack relation R by relating it to the
minimal conflicts of the knowledge base Σ. It is then natural that the attack relation
conforms with the minimal conflicts. In what follows, we present rules about R that
relate to the minimal conflicts.

Definition 13 (Homogeneous relation). Let a and b in Arg(Σ) such that Supp(a) ⊆
Supp(b). For all c ∈ Arg(Σ),

R1: (a, c) ∈ R⇒ (b, c) ∈ R.
R2: (c, a) ∈ R⇒ (c, b) ∈ R.

R is homogeneous if it satisfies both R1 and R2.

The above two rules capture exactly the idea of Property 2 which says that if a set of
formulas is inconsistent, then all its supersets are inconsistent as well. This property
is captured by two rules since an attack relation is not necessarily symmetric whereas
inconsistency is not oriented. We show that, when the attack relation is symmetric, if it
satisfies one of the above two rules, then it also satisfies the other.

Property 5. Let R be symmetric. If R satisfies rule R1 (resp. R2) then it satisfies R2
(resp. R1).

Finally, according to the definition of a minimal conflict C, any partition of C into two
subsets X1 and X2, it holds that X1 and X2 are consistent. Since Proposition 1 ensures
that X1 and X2 are the supports of arguments, then it is natural to consider that those
arguments are conflicting.

Definition 14 (Conflict-exhaustive). Let (Arg(Σ),R) be an AS over a knowledge base
Σ.

– R is strongly conflict-exhaustive iff for all C ∈ CΣ s.t. |C| > 1, for all non-
empty proper subset X of C, there exist a and b in Arg(Σ) s.t. Supp(a) = X ,
Supp(b) = C \ X , (a, b) ∈ R and (b, a) ∈ R.

– R is conflict-exhaustive iff for all C ∈ CΣ s.t. |C| > 1, for all non-empty proper
subset X of C, there exist a and b in Arg(Σ) s.t. Supp(a) = X , Supp(b) = C \ X
and either (a, b) ∈ R or (b, a) ∈ R.

– R is weakly conflict-exhaustive iff ∀C ∈ CΣ s.t. |C| > 1, for all x ∈ C, there exist
a and b in Arg(Σ) s.t. Supp(a) = {x}, Supp(b) = C \ {x} and (b, a) ∈ R.

The following property highlights the links between the different notions presented in
this section.

Property 6. Let R ⊆ Arg(Σ) × Arg(Σ).

1. R is strongly conflict-exhaustive, then R is weakly conflict-exhaustive and R is
conflict-exhaustive.

2. If R is homogeneous and conflict-exhaustive, then R is conflict-sensitive.
3. If R is conflict-sensitive, then it is conflict-exhaustive.

Finally, one can characterize symmetric relations using the above properties.

Proposition 7. If R is conflict-dependent, homogeneous, and strongly conflict-
exhaustive, then R is symmetric.

Bridging the Gap between Abstract Argumentation Systems and Logic 21

6 Choosing an Attack Relation

This section studies the appropriate attack relation of an argumentation system. By
appropriate relation, we mean a relation that ensures at least extension consistency. We
will study two cases: the case where all the minimal conflicts that are contained in a
base are binary, and the case of a base containing ternary or more minimal conflicts.

6.1 Case of Binary Minimal Conflicts

Throughout this section, we will consider a knowledge base Σ whose minimal conflicts
are all binary. This means that any minimal conflict contains exactly two formulas.
Thus, there is no inconsistent formula in the base.

The following result is of great importance since it provides a class of attack relations
that ensure extension consistency.

Proposition 8. Let (Arg(Σ),R) be an AS over Σ s.t. all minimal conflicts of Σ are
binary. If R is conflict-sensitive, then for all B ⊆ Arg(Σ), that B is conflict-free implies
that

⋃
a∈B Supp(a) is consistent.

The above result is not surprising. As shown in the previous section, in order for a
conflict-free set of arguments to ensure consistency, the attack relation should capture
the minimal conflicts. However, it is not necessary to be conflict-dependent. This latter
is however important to show that any set of arguments that satisfies consistency is
conflict-free (see Proposition 5).

Corollary 1. Let (Arg(Σ),R) be an AS over Σ s.t. all minimal conflicts of Σ are
binary. If R is conflict-sensitive, then (Arg(Σ),R) satisfies extension consistency.

From this corollary and Property 6, the following result holds.

Corollary 2. Let (Arg(Σ),R) be an AS over Σ s.t. all minimal conflicts of Σ are
binary. If R is homogeneous and conflict-exhaustive then (Arg(Σ),R) satisfies consis-
tency extension.

Another direct consequence of Proposition 5, and Proposition 8 is the following:

Corollary 3. Let (Arg(Σ),R) be an AS over Σ s.t. all minimal conflicts of Σ are
binary. Let R be conflict-sensitive and conflict-dependent. For all B ⊆ Arg(Σ), B is
conflict-free iff

⋃
a∈B Supp(a) is consistent.

It is worth noticing that symmetric relations can be used in the binary case. This means
that it is possible to have an attack relation that is both sensitive and symmetric. Indeed,
according to Proposition 7, when R is conflict-dependent, homogeneous, and strongly
conflict-exhaustive, then R is symmetric. From Property 6 it is clear that when R is
strongly exhaustive, then it is also conflict-exhaustive. Thus, R is sensitive.

22 L. Amgoud and P. Besnard

6.2 Case of General Minimal Conflicts

In the previous section, we have shown that when all the minimal conflicts of a knowl-
edge base are binary, then a symmetric relation can be used and ensures extension con-
sistency. Unfortunately, this is not the case when ternary or more minimal conflicts
are present in a base. The following result shows that symmetric relations lead to the
violation of consistency.

Proposition 9. Let Σ = {x1, . . . , xn} where n > 2 and CΣ = {Σ}. Let a1, . . . , an ∈
Arg(Σ) s.t. Supp(ai) = {xi}. If R is conflict-dependent and symmetric, then E =
{a1, . . . , an} is an admissible extension of (Arg(Σ),R).

A direct consequence of the above result is the following:

Corollary 4. Let Σ = {x1, . . . , xn} where n > 2 and CΣ = {Σ}. If R is conflict-
dependent and symmetric, then the AS (Arg(Σ),R) over Σ violates extension consis-
tency.

The previous result can be generalized as follows:

Corollary 5. Let CΣ s.t. ∃C ∈ CΣ and |C| > 2. If R is conflict-dependent and sym-
metric, then the AS (Arg(Σ),R) over Σ violates extension consistency.

Let us now present a class of attack relations that ensure consistency. The following
result states that when the relation R satisfies both R2 and R4 and is weakly exhaustive,
then the corresponding argumentation system satisfies extension consistency.

Proposition 10. If R satisfies R2, R4 and is weakly exhaustive, then (Arg(Σ),R) sat-
isfies extension consistency.

Note that there may exist other classes of asymmetric attack relations that ensure exten-
sions consistency.

7 Conclusion

The paper extended Dung’s argumentation framework by taking into account the logic
from which arguments are built. The new framework is general since it is grounded on
an abstract monotonic logic. Thus, a wide variety of logics can be used even those that
are not yet considered in argumentation like temporal logic, modal logic. The extension
has two main advantages: First, it enforces the framework to make safe conclusions.
Second, it relates the different notions of Dung’s system, like the attack relation and
conflict-free, to the knowledge base that is under study. The paper also presented a
formal methodology for defining arguments from a knowledge base, and for choosing
an appropriate attack relation.

There are a number of ways to extend this work. One future direction is to complete
the study of attack relations that ensure consistency. Another direction that we want
to pursue is to consider the case of non-adjunctive logics. Recall that all the results
presented in this paper hold in the case of an adjunctive logic.

Bridging the Gap between Abstract Argumentation Systems and Logic 23

References

1. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artificial
Intelligence J. 173, 413–436 (2009)

2. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
3. Bonet, B., Geffner, H.: Arguing for decisions: A qualitative model of decision making. In:

Proc. of UAI 1996, pp. 98–105 (1996)
4. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intel-

ligence J. 171(5-6), 286–310 (2007)
5. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based en-

tailment. In: Proc. of IJCAI 1995, pp. 1443–1448 (1995)
6. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence J. 77, 321–357
(1995)

7. Elvang-Gøransson, M., Fox, J., Krause, P.: Acceptability of arguments as logical uncertainty.
In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 85–90.
Springer, Heidelberg (1993)

8. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. J. of Applied Non-Classical Logics 7, 25–75 (1997)

9. Simari, G., Loui, R.: A mathematical treatment of defeasible reasoning and its implementa-
tion. Artificial Intelligence J. 53, 125–157 (1992)

10. Tarski, A.: On Some Fundamental Concepts of Metamathematics. Oxford Uni. Press, Oxford
(1956)

Appendix

Proof. of Property 1 Let X, X ′, X ′′ ⊆ L .

1. Assume that X ⊆ X ′. According to Finiteness axiom, it holds that CN(X) =⋃
Y ⊆f X CN(Y).

⋃
Y ⊆f X CN(Y) ⊆ ⋃

Y ⊆f X′ CN(Y) = CN(X ′) since Y ⊆f X ⊂
X ′.

2. X ⊆ X ∪ X ′, thus by monotonicity, CN(X) ⊆ CN(X ∪ X ′) (a). Similarly, X ′ ⊆
X ∪ X ′ thus CN(X ′) ⊆ CN(X ∪ X ′) (b). From (a) and (b), CN(X) ∪ CN(X ′) ⊆
CN(X ∪ X ′).

3. Assume that CN(X) = CN(X ′). According to Expansion axiom, the following
inclusions hold: X ′ ⊆ CN(X ′) and X ′′ ⊆ CN(X ′′). Thus, X ′ ∪ X ′′ ⊆ CN(X ′) ∪
CN(X ′′) = CN(X)∪CN(X ′′) (a). Moreover, X ⊆ X∪X ′′ thus CN(X) ⊆ CN(X∪
X ′′) (a’). Similarly, X ′′ ⊆ X ∪ X ′′ thus CN(X ′′) ⊆ CN(X ∪ X ′′) (b’). From (a’)
and (b’), CN(X)∪CN(X ′′) ⊆ CN(X ∪X ′′). From (a), it follows that X ′ ∪X ′′ ⊆
CN(X ∪ X ′′). By monotonicity, CN(X ′ ∪ X ′′) ⊆ CN(CN(X ∪ X ′′)). Finally, by
Idempotence axiom, the inclusion CN(X ′ ∪ X ′′) ⊆ CN(X ∪ X ′′) holds. To show
that CN(X ∪X ′′) ⊆ CN(X ′ ∪X ′′), the same reasoning is applied by starting with
X instead of X ′.

Proof. of Property 2 Let X ⊆ L . Assume that X is consistent, then CN(X) �= L (1)

1. Let us now assume that CN(X) is inconsistent. This means that CN(CN(X)) = L .
However, according to Idempotence axiom, CN(CN(X)) = CN(X). Thus, CN(X)
= L , this contradicts (1).

24 L. Amgoud and P. Besnard

2. Assume that ∃X ′ ⊆ X s.t. X ′ is inconsistent. Thus CN(X ′) = L . However, since
X ′ ⊆ X then CN(X ′) ⊆ CN(X) (according to the monotonicity axiom). Thus,
L ⊆ CN(X). Since CN(X) ⊆ L , then CN(X) = L . Thus, X is inconsistent.
Contradiction.

3. Let X ′ ⊆X . Assume that X ′ is inconsistent. Since X ′ ⊆X thus CN(X ′)⊆CN(X)
(by monotonicity axiom). Since X ′ is inconsistent, CN(X ′) = L . Consequently,
CN(X) = L which means that X is inconsistent.

Proof. of Property 4 Let Σ ⊆ Σ′ ⊆ L . Assume that (X, x) ∈ Arg(Σ) and (X, x) /∈
Arg(Σ′). Since (X, x) /∈ Arg(Σ′), then there are four possible cases:

1. X is not a subset of Σ′. This is impossible since (X, x) ∈ Arg(Σ), thus X ⊆ Σ ⊆
Σ′.

2. X is inconsistent, this is impossible since (X, x) ∈ Arg(Σ).
3. x /∈ CN(X). This is impossible since X ⊆ Σ ⊆ Σ′ and by monotonicity, CN(X)

⊆ CN(Σ) ⊆ CN(Σ′).
4. X is not minimal. Thus, ∃X ′ ⊂ X that satisfies conditions 1-3 of Def. 4. This is

impossible since (X, x) ∈ Arg(Σ).

Lemma 1. If X is a non-empty proper subset of a minimal conflict of Σ, then there
exists x ∈ L s.t. CN({x}) = CN(X).

Proof. Assume X is a non-empty proper subset of a minimal conflict C ∈ CΣ . We
prove the lemma by induction, after we first take care to show that X is finite. By
Tarski’s requirements, there exists x0 ∈ L s.t. CN({x0}) = L . Since C is a con-
flict, CN(C) = CN({x0}). As a consequence, x0 ∈ CN(C). However, CN(C) =⋃

C′⊆f C CN(C′) by Tarski’s requirements. Thus, x0 ∈ CN(C) means that there ex-
ists C′ ⊆f C s.t. x0 ∈ CN(C′). This says that C′ is a conflict. Since C is a min-
imal conflict, C = C′ and it follows that C is finite. Of course, so is X : Let us
write X = {x1, . . . , xn}. Base step: n = 1. Taking x to be x1 is enough. Induc-
tion step: Assume the lemma is true up to rank n − 1. As CN is a closure operator,
CN({x1, . . . , xn}) = CN(CN({x1, . . . , xn−1})∪ {xn}). The induction hypothesis en-
tails ∃x ∈ L s.t. CN(CN({x1, . . . , xn−1}) ∪ {xn}) = CN(CN({x}) ∪ {xn}). Then,
CN({x1, . . . , xn}) = CN({x, xn}). As CN({x, xn}) �= CN({xn}) and CN({x, xn}) �=
CN({x}) (otherwise C cannot be minimal), there exists y ∈ L s.t. CN({x, xn}) =
CN({y}) because (L , CN) is adjunctive. Since CN({x1, . . . , xn}) = CN({x, xn})
was just proved, it follows that CN({y}) = CN({x1, . . . , xn}).

Proof. of Proposition 1 Let C ∈ CΣ and X ⊆ C such that X is non-empty. Assume
�a ∈ Arg(Σ) such that Supp(a) = X . I.e., there exists no x such that X is a minimal
consistent set satisfying x ∈ CN(X). So, for all x ∈ L , if x ∈ CN(X) then ∃Y ⊂ X
such that x ∈ CN(Y). In short, for all x ∈ CN(X), there exists Y ⊂ X such that
x ∈ CN(Y). Lemma 1 says that there exists z ∈ L such that CN({z}) = CN(X).
However, z �∈ CN(Y) for all Y ⊂ X otherwise C would fail to be minimal (because
Y ∪ (C \X) ⊂ C while z ∈ CN(Y) implies CN(C) = CN(X ∪ (C \X)) = CN({z}∪
(C \ X)) ⊆ CN(Y ∪ (C \ X))). A contradiction arises.

Bridging the Gap between Abstract Argumentation Systems and Logic 25

Proof. of Proposition 2 Let Σ be a knowledge base, (Arg(Σ),R) its associated ar-
gumentation system, and E1, . . . , En the different extensions under a given semantics.
Let us assume that all the extensions satisfy consistency. Assume also that Output(Σ)
is inconsistent. This means that ∃X ⊆ Output(Σ) such that X is a minimal (for
set inclusion) inconsistent set. Let X = {x1, . . . , xm}. Since each element of X is
in Output(Σ), then ∃ai ∈ Arg(Σ) for each xi such that Conc(ai) = xi and ai ∈
E1 ∩ . . . ∩ En. Let a1, . . . , am be those arguments.

Let us now consider a given extension Ek. It is clear that a1, . . . , am ∈ Ek. Thus,
Supp(a1)∪. . .∪Supp(am) ⊆⋃

Supp(a) where a ∈ Ek. According to the Monotonicity
axiom, it holds that CN(Supp(a1)∪ . . .∪Supp(am)) ⊆ CN(

⋃
Supp(a)) where a ∈ Ek.

(a)
Besides, ∀xi ∈ X , xi ∈ CN(Supp(ai)) (according to the definition of an argument).

Thus, {xi} ⊆ CN(Supp(ai)). It follows that {x1, . . . , xm} ⊆ CN(Supp(a1)) ∪ . . .∪
CN(Supp(am)). (b)

From (a) and (b), it follows that X ⊆ CN(
⋃
Supp(a)) where a ∈ Ek. Thus, CN(X)

⊆ CN(CN(
⋃
Supp(a))). According to Idempotence axiom, CN(CN(

⋃
Supp(a))) =

CN(
⋃
Supp(a)). Since X is inconsistent, then CN(X) = L , thus CN(

⋃
Supp(a)) = L .

Thus,
⋃
Supp(a) is inconsistent. This contradicts the fact that Ek satisfies

consistency.

Proof. of Proposition 3 Let CΣ s.t. ∀C ∈ CΣ , |C| > 1. Assume that ∃C ∈ CΣ s.t. C
is not captured. Thus, �a, b ∈ Arg(Σ) s.t. C ⊆ Supp(a) ∪ Supp(b) and (a, b) ∈ R or
(b, a) ∈ R. There are two cases:

case 1: �a, b ∈ Arg(Σ) s.t. C ⊆ Supp(a) ∪ Supp(b). Since |C| > 1, then C can
be partitioned into 2 consistent non-empty subsets X1 and X2. From Proposition
1, since (L , CN) is adjunctive, then ∃a1, a2 ∈ Arg(Σ) s.t. Supp(a1) = X1 and
Supp(a2) = X2.

case 2: (a, b) /∈ R and (b, a) /∈ R. From case 1, it is clear that ∃a, b ∈ Arg(Σ) s.t.
C ⊆ Supp(a) ∪ Supp(b). Since R is sensitive, then R contains either (a, b) or
(b, a).

Proof. of Proposition 4 Assume that R is conflict-dependent and a ∈ Arg(Σ) s.t.
(a, a) ∈ R. Since R is conflict-dependent, then ∃C ∈ CΣ s.t. C ⊆ Supp(a). This
means that Supp(a) is inconsistent. This contradicts the fact that a is an argument.

Proof. of Proposition 5 Let B ⊆ Arg(Σ). Since
⋃

a∈B Supp(a) is consistent, then so
is Supp(a) ∪ Supp(b) for all a and b in B (according to Property 2). Hence, there exist
no minimal conflict C ⊆ Supp(a) ∪ Supp(b). By the definition of R being conflict-
dependent, (a, b) /∈ R ensues.

Proof. of Proposition 6 Due to symmetry, it is enough to show that if aRc then bRc
or cRb. Assume aRc. Since R is conflict-dependent, C ⊆ Supp(a) ∪Supp(c) for
some C ∈ CΣ . By Tarski’s requirements for CN, it follows, due to CN(Supp(a)) =
CN(Supp(b)), that Supp(b)∪ Supp(c) contains a minimal conflict. Since R is conflict-
sensitive, bRc or cRb.

26 L. Amgoud and P. Besnard

Proof. of Property 5 Let R be a symmetric relation that satisfies rule R1. Let a, b, c in
Arg(Σ) such that Supp(a) ⊆ Supp(b). According to R1, if (a, c) ∈ R then (b, c) ∈ R.
However, since R is symmetric, (a, c) ∈ R means that (c, a) ∈ R and (b, c) ∈ R
means that (c, b) ∈ R. Same reasoning holds for R2.

Proof. of Property 6 1) The implications follow from Definition 14.
2) Let a, b ∈ Arg(Σ) and C ∈ CΣ such that C ⊆ Supp(a) ∪ Supp(b). Clearly,
Supp(a) ∩ C is non-empty (otherwise, Supp(b) would be inconsistent). Of course,
Supp(a) ∩ C is a subset of C. Let X be Supp(a) ∩ C. According to Proposition 1,
since (L , CN) is adjunctive then there exist x, y ∈ Arg(Σ) with Supp(x) = X and
Supp(y) = C \X . Since R is conflict-exhaustive, then either (x, y) ∈ R or (y, x) ∈ R.
Both cases are symmetric, so we only consider (x, y) ∈ R. That Supp(a) ∩C is a sub-
set of Supp(a) means Supp(x) ⊆ Supp(a). Therefore, (x, y) ∈ R yields (a, y) ∈ R
because R is homogeneous. On the other hand, C ⊆ Supp(a) ∪ Supp(b) implies that
C \ (Supp(a) ∩ C) is a subset of Supp(b). That is, Supp(y) is a subset of Supp(b).
Therefore, (a, y) ∈ R yields (a, b) ∈ R because R is homogeneous. Overall, we ob-
tain that either (a, b) ∈ R or (b, a) ∈ R holds.
3) Assume that R is conflict-sensitive but not conflict-exhaustive. Since R is not
conflict-exhaustive, this means that ∃C ∈ CΣ such that for X ⊂ C, ∃a, b ∈ Arg(Σ)
such that Supp(a) = X and Supp(b) = C \ X (according to Proposition 1) and
(a, b) /∈ R and (b, a) /∈ R. However, Supp(a) ∪ Supp(b) = C. Thus, since R is
conflict-sensitive, either (a, b) ∈ R or (b, a) ∈ R holds. Contradiction.

Proof. of Proposition 7 Assume that R is conflict-dependent, satisfies rules R1, R2, and
is strongly conflict-exhaustive. Assume also that R is not symmetric. Thus, ∃(a, b) ∈ R
but (b, a) /∈ R. Since R is conflict-dependent, then ∃C ⊆ Supp(a) ∪ Supp(b) with
C ∈ CΣ . Let X1 = C ∩ Supp(a) and X2 = C \ X1. According to Proposition 1,
∃a′, b′ ∈ Arg(Σ) s.t. Supp(a′) = X1 and Supp(b′) = X2. It is clear that a′ is a sub-
argument of a and b′ is a sub-argument of b. Since R is strongly conflict-exhaustive,
then (b′, a′) ∈ R. Since R satisfies R2, it follows that (b′, a) ∈ R. Finally, since R
satisfies R1, (b, a) ∈ R holds.

Proof. of Proposition 8 Let B ⊆ Arg(Σ) s.t. B is conflict-free. Thus, ∀a, b ∈ B, neither
(a, b) ∈ R nor (b, a) ∈ R hold. By the definition of being conflict-sensitive, this
means that there exist no minimal conflict C ⊆ Supp(a) ∪ Supp(b). A consequence is
that

⋃
a∈E Supp(a) is consistent because all minimal conflicts in Σ are binary (cf the

assumption). That is,
⋃

a∈B Supp(a) is consistent.

Proof. of Proposition 9 Let CΣ = {Σ} s.t. Σ = {x1, . . . , xn} and n > 2. Let
a1, . . . , an ∈ Arg(Σ) such that Supp(ai) = {xi}. Assume that the set E={a1, . . . , an}
is not an admissible extension.

Case 1: E is not conflict-free. Thus, ∃ai, aj ∈ E such that (ai, aj) ∈ R. Since R is
conflict-dependent, ∃C′ ⊆ Supp(ai) ∪ Supp(aj) such that C′ is a minimal conflict.
Thus, the set {xi, xj} is inconsistent. However, |C| > 2 then {xi, xj} ⊂ C. Conse-
quently, {xi, xj} is consistent.
Case 2: E does not defend its elements. This means that ∃a ∈ Arg(Σ), ai ∈ E such that
(a, ai) ∈ R and E does not defend ai. Since R is symmetric, it holds that (ai, a) ∈ R,
thus E defends ai.

Bridging the Gap between Abstract Argumentation Systems and Logic 27

Proof. of Corollary 4 Let CΣ = {Σ} with Σ = {x1, . . . , xn} and n > 2. Let
a1, . . . , an ∈ Arg(Σ) such that Supp(ai) = {xi}. Assume that R is conflict-dependent
and symmetric. According to Proposition 9, the set E = {a1, . . . , an} is an admissible
extension. Thus, Supp(a1) ∪ . . . ∪ Supp(an) = C, thus inconsistent.

Proof. Corollary 5 Let C = {x1, . . . , xn} where n > 2. Assume that C ∈ CΣ

and that R is both conflict-dependent and symmetric. From Proposition 9, the set
E = {a1, . . . , an}, with Supp(ai) = {xi}, is an admissible extension of (Arg(Σ),R).
Moreover, E violates extension consistency. Thus, (Arg(Σ),R) violates extension con-
sistency.

Proof. of Proposition 10 Let (Arg(Σ),R) be an argumentation system such that R
satisfies R2, R4 and is weakly exhaustive. Assume that E is an admissible extension.
Let Formulas(E) =

⋃
a∈E Supp(a). Assume that E violates consistency. This means

that ∃C ∈ CΣ such that C ⊆ Formulas(E). Let C = {x1, . . . , xn}.
Consider x1 ∈ C. According to Proposition 1, ∃b ∈ Arg(Σ) such that Supp(b) = {x1}.
Moreover, ∃a ∈ Arg(Σ) such that Supp(a) = C \ {x1}. Since x1 ∈ Formulas(E),
then ∃a′ ∈ E with x1 ∈ Supp(a′). Thus, b is a sub-argument of a′.
Since R is weakly exhaustive, it holds that (a, b) ∈ R. Since R satisfies rule R2 and b
is a sub-argument of a′, then (a, a′) ∈ R.
However, E is an admissible extension, this means that a /∈ E . Since (a, a′) ∈ R and
a′ ∈ E , if follows that E defends a′ against a. This means that ∃a′′ ∈ E such that
(a′′, a) ∈ R. Let x2 ∈ C, then {x2} ⊆ Supp(a), by Proposition 1 ∃b′ ∈ Arg(Σ) such
that Supp(b′) = {x2}. According to rule R4, (a′′, b′) ∈ R. However, x2 ∈ C, thus,
x2 ∈ Formulas(E) thus, ∃d ∈ E such that x2 ∈ Supp(d). Thus, b′ is a sub-argument
of d. Since R satisfies rule R2, it holds that (a′′, d) ∈ R. This contradicts the fact that
E is conflict-free.

Modeling Unreliable Observations

in Bayesian Networks by Credal Networks

Alessandro Antonucci and Alberto Piatti

Dalle Molle Institute for Artificial Intelligence (IDSIA)
Galleria 2, Via Cantonale

CH6927 - Manno - Lugano, Switzerland
{alessandro,alberto.piatti}@idsia.ch

Abstract. Bayesian networks are probabilistic graphical models widely
employed in AI for the implementation of knowledge-based systems.
Standard inference algorithms can update the beliefs about a variable of
interest in the network after the observation of some other variables. This
is usually achieved under the assumption that the observations could re-
veal the actual states of the variables in a fully reliable way. We propose
a procedure for a more general modeling of the observations, which al-
lows for updating beliefs in different situations, including various cases
of unreliable, incomplete, uncertain and also missing observations. This
is achieved by augmenting the original Bayesian network with a number
of auxiliary variables corresponding to the observations. For a flexible
modeling of the observational process, the quantification of the relations
between these auxiliary variables and those of the original Bayesian net-
work is done by credal sets, i.e., convex sets of probability mass functions.
Without any lack of generality, we show how this can be done by simply
estimating the bounds of likelihoods of the observations for the different
values of the observed variables. Overall, the Bayesian network is trans-
formed into a credal network, for which a standard updating problem has
to be solved. Finally, a number of transformations that might simplify
the updating of the resulting credal network is provided.

1 Introduction

Bayesian networks ([14], Section 2.1) are graphical tools allowing for the spec-
ification of a probabilistic model through combination of local models, each
involving only some of the variables in the domain. This feature makes those
probabilistic graphical models particularly effective for capturing expert knowl-
edge about specific problems. Once the network has been specified, different
kinds of probabilistic information can be extracted from it. Updating beliefs
about a variable of interest after the observation of some other variables is a
typical task, that might be solved through standard inference algorithms. The
underlying assumption for this task is that the observations are able to reveal the
actual state of the variables in a fully reliable way. Yet, in many situations this
might not be true: unreliable sensors, imperfect diagnostic tests, qualitative ob-
servations, etc. are not always supposed to be correct. This problem is addressed

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 28–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modeling Unreliable Observations in Bayesian Networks by Credal Networks 29

in Section 4. Following a standard epistemological paradigm, we regard the out-
comes of the observations as the (actual) values of manifest variables, which
are in general distinguished from the latent (and hence directly unobservable)
variables, whose states we try to detect through the observations.

Following these ideas, we might regard at a Bayesian network implementing
a knowledge-based systems as a model of the relations between a set of latent
variables, which should be augmented by a manifest variable for each observation
we perform. This step is achieved in Section 5 by a simple graphical transforma-
tion. We indeed model the particular observational process relating the manifest
to the latent variables by an appropriate quantification of the corresponding
conditional probabilities. In order to provide a flexible model of these relations,
we adopt credal sets, i.e., convex sets of probability mass functions ([11], Sec-
tion 2.2). Without any lack of generality, this quantification can be achieved in a
very compact way: we simply need to estimate the bounds for the likelihoods of
the observations corresponding to the different values of the observed variables
(this is proved on the basis of the technical results reported in Section 3). Our
approach is quite general, and we can easily generalize to set-valued probabilistic
assessments many kinds of observations (e.g., data missing-at-random [12] and
Pearl’s virtual evidence method [14, Sect. 2.2.2]).

Overall, the method we present transforms the original Bayesian network
into a credal network ([5], Section 2.3). In the new updating problem all the
observed variables are manifest, and the outcomes of the observation should
therefore correspond to the actual state of the relative variables. Thus, we can
employ standard inference algorithms for credal networks to update our beliefs.
Moreover, in Section 6, we describe a simple variable elimination procedure for
some of the variables in the credal network: the manifest variables associated
to latent variables that are root or leaf nodes in the original Bayesian network
can be eliminated by simple local computations. Conclusions and outlooks are
in Section 7, while the proofs of the theorems are in Appendix A.

2 Bayesian and Credal Networks

In this section we review the basics of Bayesian networks (BNs) and their exten-
sion to convex sets of probabilities, i.e., credal networks (CNs). Both the models
are based on a collection of random variables X, which take values in finite
sets, and a directed acyclic graph G, whose nodes are associated to the variables
of X. For both models, we assume the Markov condition to make G represent
probabilistic independence relations between the variables in X: every variable is
independent of its non-descendant non-parents conditional on its parents. What
makes BNs and CNs different is a different notion of independence and a dif-
ferent characterization of the conditional mass functions for each variable given
the possible values of the parents, which will be detailed next.

Regarding notation, for each Xi ∈ X, ΩXi is the possibility space of Xi, xi a
generic element of ΩXi . For binary variables we simply set ΩXi = {xi,¬xi}. Let
P (Xi) denote a mass function for Xi and P (xi) the probability that Xi = xi. A

30 A. Antonucci and A. Piatti

similar notation with uppercase subscripts (e.g., XE) denotes arrays (and sets)
of variables in X. The parents of Xi, according to G, are denoted by Πi and for
each πi ∈ ΩΠi , P (Xi|πi) is the conditional mass function for Xi given the joint
value πi of the parents of Xi. Moreover, the nodes of G without children and
without parents are called respectively leaf and root nodes.

2.1 Bayesian Networks

In the case of BNs, the modeling phase involves specifying a conditional mass
function P (Xi|πi) for each Xi∈X and πi∈ΩΠi ; and the standard notion of prob-
abilistic independence is assumed in the Markov condition. A BN can therefore
be regarded as a joint probability mass function over X ≡ (X1, . . . , Xn), that
factorizes as follows: P (x) =

∏n
i=1 P (xi|πi), for each x ∈ ΩX, because of the

Markov condition. The updated belief about a queried variable Xq, given some
evidence XE =xE , is:

P (xq|xE) =

∑
xM

∏n
i=1 P (xi|πi)

∑
xM ,xq

∏n
i=1 P (xi|πi)

, (1)

where XM ≡ X \ ({Xq} ∪ XE), the domains of the arguments of the sums
are left implicit and the values of xi and πi are consistent with (xq, xM , xE).
Despite its hardness in general, Eq. (1) can be efficiently solved for polytree-
shaped BNs with standard propagation schemes based on local computations and
message propagation [14]. Similar techniques apply also for general topologies
with increased computational time. Fig. 1 reports a simple knowledge-based
system based on a small BN to be used in the rest of the paper to explain how
our ideas apply in practice.

2.2 Credal Sets

CNs relax BNs by allowing for imprecise probability statements: in our assump-
tions, the conditional mass functions of a CN are just required to belong to
a finitely generated credal set, i.e., the convex hull of a finite number of mass
functions over a variable. Geometrically, a credal set is a polytope. A credal set
contains an infinite number of mass functions, but only a finite number of ex-
treme mass functions : those corresponding to the vertices of the polytope, which
are, in general, a subset of the generating mass functions. It is possible to show
that updating based on a credal set is equivalent to that based only on its ver-
tices. A credal set over X will be denoted as K(X). It is easy to verify that, if
X is binary, any credal set has at most two vertices and can be specified by a
single linear constraint l ≤ P (x) ≤ u.

2.3 Credal Networks

In order to specify a CN over the variables in X based on G, a collection of
conditional credal sets K(Xi|πi), one for each πi ∈ ΩΠi , should be provided

Modeling Unreliable Observations in Bayesian Networks by Credal Networks 31

X1 X2

X3 X4 X5

X6

X7 X8

Fig. 1. The Asia network [10]. This is a small BN that calculates the probability of a
patient having tuberculosis, lung cancer or bronchitis respectively based on different
factors. The semantic of the variables, which are all binary and referred to a particular
patient is: he visited Asia (X1), he smokes (X2), he has tuberculosis (X3), he has lung
cancer (X4), he has bronchitis (X5), he has tuberculosis or cancer (X6), his X-rays
show something (X7), he has dyspnea (X8).

separately for each Xi ∈ X; while, regarding Markov condition, we assume strong
independence [6]. A CN associated to these local specifications is said to be with
separately specified credal sets. The specification becomes global considering the
strong extension of the CN, i.e.,

K(X) ≡ CH
{ n∏

i=1

P (Xi|Πi) : P (Xi|πi) ∈ K(Xi|πi)
∀πi ∈ ΩΠi ,
∀i = 1, . . . , n

}
, (2)

where CH denotes the convex hull of a set of functions. Let {Pk(X)}nv

k=1 denote
the set of vertices of K(X). It is an obvious remark that, for each k = 1, . . . , nv,
Pk(X) is the joint mass function of a BN over G. For this reason a CN can
be regarded as a finite set of BNs. In the case of CNs, updating is intended as
the computation of tight bounds of the probabilities of a queried variable, given
some evidences, i.e., Eq. (1) generalizes as:

P (xq |xE) = min
k=1,...,nv

∑
xM

∏n
i=1 Pk(xi|πi)

∑
xM ,xq

∏n
i=1 Pk(xi|πi)

, (3)

and similarly with a maximum replacing the minimum for upper probabilities
P (xq|xE). Exact updating in CNs displays higher complexity than in BNs: up-
dating in polytree-shaped CNs is NP-complete, and NPPP-complete in general
CNs [7]. Also non-separate specifications of CNs can be provided [2]. Here, we
sometimes consider extensive specifications where a list of possible values for
the conditional probability tables P (Xi|Πi) is provided instead of the (separate)
specification of the conditional credal sets K(Xi|πi) for each πi ∈ ΩΠi .

32 A. Antonucci and A. Piatti

3 Equivalence Relations for Credal Networks Updating

In this section, we prove some simple equivalences between CNs with respect
to the updating problem. The results are simple and the proofs are reported in
App. A for sake of completeness. Let us consider the updating of a CN as in
Eq. (3). We obtain a new CN through each one of the four following transfor-
mations.

Transformation 1. For each Xi ∈ XE, iterate the following operations for
each children Xj of Xi (i.e., for each Xj such that Xi ∈ Πj): (i) remove from G
the arcs Xi → Xj; (ii) redefine the conditional credal sets of Xj as K(Xj|π′

j) :=
K(Xj|π′

j , xi) for each π′
j ∈ ΩΠ′

j
, with Π ′

j = Πj \ {Xi} and the value of xi

consistent with xE .

Transformation 2. Assume all the nodes in XE to be leaf. For each Xi ∈ XE,
iterate the following operations: (i) make Xi a binary variable by shrinking its
possibility space to Ω′

Xi
:= {xi,¬xi}; (ii) redefine the conditional credal sets

K(X ′
i|πi) by the constraint

P (Xi = xi|πi) ≤ P (X ′
i = xi|πi) ≤ P (Xi = xi|πi), (4)

for each πi ∈ ΩΠi , with the values of xi consistent with xE .

Transformation 3. Assume all the nodes in XE to be leaf, binary, and with
the same (and unique) parent Xj. Transform the (joint) variable XE into a
(single) binary variable with ΩXE := {xE ,¬xE}. Define its conditional credal
sets K(XE |xj) by the constraints

∏

i∈E

P (xi|xj) ≤ P (xE |xj) ≤
∏

i∈E

P (xi|xj), (5)

for each xj ∈ Ωj, with the values of xi consistent with xE.

Transformation 4. Assume all the nodes in XE leaf and binary. For each
Xi ∈ XE, consider an extensive quantification {Pk(Xi|Πi)}mi

k=1 of its condi-
tional probability table.1 For each k = 1, . . . , mi, define the table P ′(Xi|Πi) such
that P ′

k(xi|πi) = αk · Pk(xi|πi) for each πi ∈ ΩΠi , where αk is an arbitrary
nonnegative constant such that all the new probabilities remains less than or
equal to one. Then, let {P ′

k(Xi|Πi)}mi

k=1 be the new extensive specification for the
node Xi.

Theorem 1. The updating problem in Eq. (3) can be equivalently discussed in
the CNs returned by the Transformation 1, 2, 3 and 4.

According to this result, we have that, with respect to belief updating: (i) ob-
served nodes can be always regarded as leaf and binary; (ii) only the (lower and
1 If the credal set are separately specified, we can obtain an extensive specification by

taking all the possible combinations of the vertices of the credal sets.

Modeling Unreliable Observations in Bayesian Networks by Credal Networks 33

upper) probabilities for the observed state matter; (iii) if two observed nodes
have a single and common parent, they can be regarded as a single node; (iv)
if the quantification of the observed node is extensive (or is formulated in an
extensive form) what really matters are the ratios between the probabilities of
the observed state for the different value of the relative latent variable.

4 The Observational Process

Both BNs and CNs are widely used in AI for the implementation of knowledge-
based systems. In fact, the decomposition properties of these graphical tools
allow for a compact and simple modeling of the knowledge of an expert. Inference
algorithms solving the updating tasks in Eq. (1) and Eq. (3) can be indeed used
to extract probabilistic information about the posterior beliefs for the variable
of interest Xq after the observation of xE for the joint variables XE . Yet, the
idea that the outcomes in xE would always correspond to the actual states of
the variables in XE is not always realistic. In general situations, the outcome of
an observation should be better regarded as a different variable from the one we
try to measure.

This idea follows an epistemological paradigm in the conceptualization of the-
oretical systems: the holistic construal proposed in [3] for the representation of
a theory. This is based on a distinction between theoretical constructs, that are
unobservable (latent) real entities, and empirical constructs (or measures), that
are observable (manifest) empirical entities representing the observation, percep-
tion or measurement of theoretical constructs. Accordingly, any theory can be
divided into two parts: “one that specifies relationships between theoretical con-
structs and another that describes relationships between (theoretical) constructs
and measures”.

In the case of probabilistic theories, this seems to corresponds to the approach
to the modeling of missing data in [17], where a latent level and a manifest level
of the information are distinguished. In the first, theoretical constructs are rep-
resented as latent variables2 and the relationships between them are represented
through conditional (in)-dependence relations and conditional probabilities. In
the manifest level, the observations (empirical constructs) are represented as
manifest variables and the correspondence rules, i.e., the relationships between
the underlying theoretical constructs and their observations, are represented
through conditional (in)-dependence relations and conditional probabilities. The
sum of the observations and the correspondence rules is called observational pro-
cess. The result of this approach is a single model, embedding both the formal
theory and the observational process.

Note that the interpretation associated to the latent variables is realistic [4]:
they are considered as (unobservable) real entities that exist independent of their

2 Following [15], a latent variable is a random variable whose realizations are unob-
servable (hidden), while a manifest variable is a random variable whose realizations
can be directly observed.

34 A. Antonucci and A. Piatti

observation. In the realistic view, latent variables (theoretical entities) are con-
sidered to be causes of the observed phenomena and are usually modeled through
a reflective model [4,9], i.e., a model where manifest variables (observations) are
specified conditional on the underlying latent variables.

5 Modeling the Observations

5.1 A Simple Example

Let us explain by means of the example in Fig. 1 how the ideas of the previous
section may apply to BNs, The fact that a patient have or not cancer (or tu-
berculosis, dyspnea, etc.) is clearly a real fact (realistic interpretation), but in
general we can verify that only through tests that are not fully reliable. In order
to decide whether or not the patient is a smoker (or has been to Asia, etc.) we
can just ask him, but no guarantees about the truth of its answer are given.
Similarly, the reliability of tests measuring dyspnea are not always accurate [13]
(or an x-ray might blurred, etc.). Similar considerations can be done for any
variable in the BN, which should be therefore regarded as the latent level of our
theory (and all its variables as latent ones). In fact, the answers of the patient
about having been in Asia or being a smoker, as well as the outcomes of the test
of dyspnea or of the observation of the x-ray should be therefore regarded as the
(actual) values of new manifest variables.

Generally speaking, only the relative latent variable is expected to affect the
state of a manifest variable (reflective model). Accordingly, the fact that the
patient would tell us whether he smokes or not might be influenced by the fact
that he really smokes or not (e.g., we could assume that a non-smoker would
never lie, while most of the smokers would do that). On the contrary, it seems
hard to assume that the fact that he visited or not Asia might affect his answer
about smoking. These assumptions makes it possible to embed the new manifest
variables into the original network as depicted in Fig. 2.

5.2 The General Transformation

Now let us consider a generic BN over the variables X := (X1, . . . , Xn) im-
plementing a knowledge-based system. Let XE ⊂ X denote the variables we
observe. Assume that these observations might be not fully reliable (and hence
it might have sense to consider many observations for a single variable). For
each Xi ∈ XE, let oj

i denote the outcome of the j-th observation of Xi, with
j = 1, . . . , ni. The outcomes oj

i are regarded as the actual values of a correspond-
ing set of manifest variables Oj

i , while the variables in XE as well as the other
variables in X are regarded as latent variables. In general the outcome of an
observation might also be missing, and we therefore set oj

i ∈ ΩXi ∪ {∗} =: ΩOj
i

for each i = 1, . . . , n and j = 1, . . . , ni, where ∗ denotes a missing outcome. Let
also O := {Oj

i }j=1,...,ni

i=1,...,n .
At this point, we should extend the original BN defined over X to a prob-

abilistic model over the whole set of variables (X,O). To this aim, we assume

Modeling Unreliable Observations in Bayesian Networks by Credal Networks 35

O1
1 X1 X2 O1

2

X3 X4 X5

X6

X7 X8

O1
7 O1

8 O2
8

Fig. 2. The Asia network in Fig. 1 with manifest variables (gray nodes) modeling the
observations of four latent variables. Two different tests about dyspnea are considered.

each manifest variables to be affected only by its corresponding latent variable.3

In the probabilistic framework this corresponds to the conditional independence
between a manifest variables and all the other variables given its relative latent
variable. According to the Markov condition this means that the manifest vari-
able is a child of its latent variable. Thus, we augment the directed acyclic graph
over (O,X) by simply adding to G an arc Xi → Oj

i , for each j = 1, . . . , ni and
i = 1, . . . , n.

Finally, to complete the specification of the model, we quantify P (Oj
i |xi) for

each i = 1, . . . , n, j = 1, . . . , ni, xi ∈ Xi. In the BNs framework, those proba-
bilistic values should be precisely assessed. This might be problematic because
statistical data about these relations are rarely available, while the quantification
is often based on expert qualitative judgements. For this reason, it seems much
more realistic, at least in general, to allow for an imprecise-probability speci-
fications and give therefore the expert the freedom to model his uncertainty
about the observational process through credal sets K(Oj

i |xi) instead of precise
probability mass functions P (Oj

i |xi).
Overall, this procedure transforms a BN without an explicit model of the ob-

servations into a CN which embeds in its structure the model of the observational
process.

Finally, let us detail how the results in Th. 1 allow for a simplification of the
CN to be updated. First, the manifest variables in O can be always assumed
leaf. This basically means that we can model situation where the outcome of
some observation is affected by the outcome of some other observation without
connecting the corresponding nodes (provided that in the quantification of the
corresponding credal sets we take care of this relations). As an example, the

3 In principle also more general situations can be considered without big problems.
Here we focus on this assumption as in real application it is very often satisfied.

36 A. Antonucci and A. Piatti

topology in Fig. 2 could model a situation where the outcome of the first of dys-
pnea (O1

8) has an effect on the second test (O2
8) without tracing any arc between

these two nodes. These manifest variables can be also assumed to be binary, and
we set Ωj

i := {oj
i ,¬oj

i } for each i = 1, . . . , n and j = 1, . . . , ni. This basically
means that, in the quantification of K(Oj

i |xi), we might simply assess P (oj
i |xi)

and P (oj
i |xi) for each xi ∈ Ωi. Note that these numbers are the lower and upper

likelihood for the outcome of the observation corresponding to the different val-
ues of the relative latent variable. If the specification is extensive, we can also
unequivocally describe the quantification in terms of a collection of likelihood
ratios. Finally, we can cluster together the manifest variable corresponding to
the observations of a latent variable.

5.3 Possible Models of the Observations

Overall, the problem of updating beliefs in a BN with unreliable observations has
been mapped into a “standard”, in the sense that now only manifest variables are
observed, updating problem for a CN. The above procedure is quite general and
proper specifications of the conditional credal sets can be used to describe many
different observational process, including various cases of unreliable, incomplete,
uncertain, and also missing observations. Let us describe how this can be done
in some important cases.

– Fully reliable observation: the outcome cannot be missing, and we have
P (oi|xi) = 1 if oi = xi and zero otherwise. This means that the mani-
fest and the latent variable coincides and, in practice, an explicit modeling
of the observation is unnecessary.

– Fully unreliable observation: this condition of complete ignorance is modeled
by a vacuous quantification of the credal sets K(Oi|xi). This corresponds
to the conservative updating rule (CUR) for modeling missing data [8]. No-
tably, the specification employed in [1] to describe the same situation can be
regarded as an equivalent (but extensive) specification of the same model.

– Missing-at-random (MAR, [12]): this is a model of an unselective missingness
process, i.e., P (Oi = ∗|xi) constant for each xi ∈ Ωi. Note also that the
situation where we assume to do not observe a variable is a particular case of
MAR (with the constant equal to one). A situation of this kind corresponds
to assume (unconditional) independence between Oi and Xi. Accordingly
we can remove the arc Xi → Oi, and that proves that also in this case
the explicit modeling of the observational process in unnecessary. Yet, in
our framework we can consider relaxed version of the MAR assumption,
where for instance, all the conditional probabilities are not all equal, but
are supposed to vary in the same intervals. This seems particularly suited
to model epistemic irrelevance and should be investigated in more detail in
the future.

– Pearl’s virtual evidence [14, Sect. 2.2.2]): the method proposed by Pearl for
modeling ambiguous observations can be clearly modeled in our framework.
Moreover, we can easily consider situations where sets of likelihood ratios

Modeling Unreliable Observations in Bayesian Networks by Credal Networks 37

(corresponding to an extensive specification) or a single interval-valued like-
lihood ratio (corresponding to a separate specification) could be reported.

6 Variable Elimination for Root and Leaf Nodes

In this section we call observational CN, a CN obtained from a BN after the
transformation in Section 5.2. In order to update our beliefs about the variable
of interest in the original BN after the unreliable observations, an updating
problem as in Equation 3 should be therefore solved for the observational CN.
With respect to the original BN, the size of the CN is larger because we have
augmented the model with a new variable for each observation. Yet, in the
previous section we have already shown that the observations of a same latent
variable can be equivalently clustered into a single variable. Here, we want to
show how is possible to eliminate the observation nodes corresponding to the
latent variables that are root or leaf nodes in the original BN.4 The results are
based on two simple transformations.

Transformation 5. Let Xi be a latent variable corresponding to a root node in
the original BN (which is clearly a root node also in the observational CN), and
Oi the relative manifest variable. Consider the unconditional probability mass
function P̃ (Xi) such that

p̃(xi) :=

[

1 +

∑
x′

i�=xi∈Ωi
p(x′

i) · p(oi|x′
i)

p(xi) · p(oi|xi)

]−1

, (6)

for each xi ∈ Ωi, with P (oi|xi) ∈ {P (oi|xi), P (oi|xi)}, and where P (Xi) is the
(unconditional) mass function associated to Xi. Let K(Xi) be the convex hull of
the 2|Ωi| possible specifications of P̃ (Xi). Finally, replace P (Xi) with K(Xi) in
the specification of the CN, and remove Oi from it.

Theorem 2. An updating problem for an observational CN can be equivalently
discussed in the CN obtained by applying Transformation 5 to each node that
was a root node in the original BN.

Something similar can be done also for the latent variables that are leaf nodes
in the original BN.

Transformation 6. Let Xi be a latent variable corresponding to a leaf node
in the original BN, and Oi the relative manifest variable. For each πi ∈ ΩΠi ,
consider the conditional probability mass function P̃ (Oi) such that:

p̃(oi|πi) :=
∑

xi∈Ωi

P (oi|xi) · P (xi|πi), (7)

4 This assumption is not particularly constraining as, for most of the BNs implement-
ing knowledge-based systems, the variables to be observed are of this kind.

38 A. Antonucci and A. Piatti

with P (oi|xi) ∈ {P (oi|xi), P (oi|xi)}, and where P (Xi|πi) is a conditional mass
function associated to Xi. Let K(Oi|πi) denote the credal set whose two vertices
produce the minimum and the maximum for P̃ (Oi|πi) among all the 2|Ωi| possible
specifications of P̃ (Oi|πi). Remove Xi from the network, and let the parents Πi

of Xi to become parents of Oi. Finally, set K(Oi|πi) as the conditional credal
sets associated to Oi for each πi ∈ ΩΠi .

Theorem 3. An updating problem for an observational CN can be equivalently
discussed in the CN obtained by applying Transformation 6 to each node that
was a leaf node in the original BN.

As an example of the application of Th. 2, we can remove O1
1 and O1

2 from
the observational CN in Fig. 2 by means of Transformation 5, and hence by an
appropriate redefinition of the unconditional credal sets for the nodes X1 and
X2. Similarly, in order to apply Th. 3, we can remove X7 and X8 (which is
replaced by the cluster of O1

8 and O2
8 by means of Transformation 6.

7 Conclusions and Outlooks

We have defined a general protocol for the modeling of unreliable observation
in Bayesian networks. The procedure transform the model into a credal net-
work, for which some procedures for variable elimination by local computations
are proposed. As a future direction for this research we want to develop specific
algorithm for the particular class of credal networks returned by the transforma-
tion. Moreover, we want to further investigate the possible models of uncertain
and missing observation that can be describe by our framework.

References

1. Antonucci, A., Zaffalon, M.: Equivalence between bayesian and credal nets on
an updating problem. In: Lawry, J., Miranda, E., Bugarin, A., Li, S., Gil, M.A.,
Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Integrated Uncer-
tainty Modelling, Springer (Proceedings of the third international conference on
Soft Methods in Probability and Statistics: SMPS 2006), pp. 223–230. Springer,
Heidelberg (2006)

2. Antonucci, A., Zaffalon, M.: Decision-theoretic specification of credal networks:
A unified language for uncertain modeling with sets of bayesian networks. Int. J.
Approx. Reasoning 49(2), 345–361 (2008)

3. Bagozzi, R.P., Phillips, L.W.: Representing and testing organizational theories: A
holistic construal. Administrative Science Quarterly 27(3), 459–489 (1982)

4. Borsboom, D., Mellenbergh, G.J., Heerden, J.v.: The theoretical status of latent
variables. Psychological Review 110(2), 203–219 (2002)

5. Cozman, F.G.: Credal networks. Artificial Intelligence 120, 199–233 (2000)
6. Cozman, F.G.: Graphical models for imprecise probabilities. Int. J. Approx. Rea-

soning 39(2-3), 167–184 (2005)
7. de Campos, C.P., Cozman, F.G.: The inferential complexity of Bayesian and credal

networks. In: Proceedings of the International Joint Conference on Artificial Intel-
ligence, Edinburgh, pp. 1313–1318 (2005)

Modeling Unreliable Observations in Bayesian Networks by Credal Networks 39

8. de Cooman, G., Zaffalon, M.: Updating beliefs with incomplete observations. Ar-
tificial Intelligence 159, 75–125 (2004)

9. Edwards, J.R., Bagozzi, R.P.: On the nature and direction of relationships between
constructs and measures. Psychological Methods 5(2), 155–174 (2000)

10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society (B) 50, 157–224 (1988)

11. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)
12. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley,

New York (1987)
13. Mahler, D.A.: Mechanisms and measurement of dyspnea in chronic obstructive

pulmonary disease. The Proceedings of the American Thoracic Society 3, 234–238
(2006)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

15. Skrondal, A., Rabe-Hesketh, S.: Generalized latent variable modeling: multi-
level, longitudinal, and structural equation models. Chapman and Hall/CRC,
Boca Raton (2004)

16. Zaffalon, M.: The naive credal classifier. Journal of Statistical Planning and Infer-
ence 105(1), 5–21 (2002)

17. Zaffalon, M., Miranda, E.: Conservative inference rule for uncertain reasoning un-
der incompleteness. Journal of Artificial Intelligence Research 34, 757–821 (2009)

A Proofs

Proof (Theorem 1). Let us first prove the thesis for Tr. 1 and Tr. 2 in the special
case where the CN is a BN and XE is made of a single node. It is sufficient
to observe that in both the numerator and denominator of the second side of
Eq. (1) there is no sum over xE . Thus, we simply have the proof, which can be
easily extended to the case where XE has more than a single variable, and to the
case of CNs by simply considering Eq. (3). Regarding the result for Tr. 3, it is
sufficient to consider the expression in [16, Eq. 3.8] by assuming the prior precise.
Finally, for Tr. 4, we can consider the result in [14, Sect. 2.2.2] for the case of
BNs, and then generalize it to CNs by simply regarding a CN as a collection of
BNs.

Proof (Theorems 2 and 3). By Tr. 5 we compute the conditional credal set
K(Xi|oi), while by Tr. 6 we marginalize out Xi from the conditional credal set
K(Oi, Xi|πi). The results therefore follows from the d-separation properties of
CNs.

Interventions in Possibilistic Logic

Salem Benferhat1, Didier Dubois2, and Henri Prade2

1 CRIL - Université d’Artois
Rue Jean Souvraz, SP 18, 62307 Lens Cedex, France

2 IRIT, CNRS and University of Toulouse, 31062 Toulouse Cedex 9, France
benferhat@cril.univ-artois.fr, dubois@irit.fr, prade@irit.fr

Abstract. An intervention is a tool that enables us to distinguish be-
tween causality and simple correlation. The use of interventions has been
only implemented in Bayesian net structures (or in their possibilistic
counterpart) until now. The paper proposes an approach to the repre-
sentation and the handling of intervention-like pieces of knowledge, in the
setting of possibilistic logic. It is compatible with a modeling of the way
agents perceive causal relations in reported sequences of events, on the
basis of their own beliefs about how the world normally evolves. These
beliefs can also be represented in a possibilistic logic framework.

1 Introduction

Modelling causation is known to be a difficult task. For instance, probabilistic
approaches to this issue have often been controversial, because the notion of
dependence in probability theory is symmetric. The use of Bayesian networks
that rely on directed acyclic graphs may have seemed to address the issue, in-
terpreting the directed arcs as a form of causation. However, the direction of
arcs is merely a matter of convention, as any ranking of the variables would lead
to an equally valid network representation. In fact, a Bayesian network is often
viewed as a compact representation of a joint probability distribution, instead
of the representation of some causal relations between variables. The notion of
intervention, which has been informally discussed by philosophers (e.g., [15]),
has been formally introduced by Pearl, initially in [7] in the setting of Spohn’s
ordinal conditional functions [14], but then essentially developed in the setting
of probabilistic networks [11], [12], as a tool for distinguishing genuine causal-
ity relations from mere correlations. It amounts to describing actions and their
results. In order to test if the value of a variable causally affects the value of
another, the idea is to imagine an “external” action enforcing the value of the
first variable and check if it is enough to alter the value of the other variable.
In practice, Pearl’s idea, implemented in the directed setting of probabilistic
Bayesian networks, amounts to setting the value of some variable and to cut the
links that constrain the value of this variable in the original graph, the rest of
the network being unchanged.

Recently, Benferhat and Smaoui [3] have introduced the notion of intervention
in the setting of possibilistic networks, which are counterparts of probabilistic

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 40–54, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Interventions in Possibilistic Logic 41

Bayesian networks in a more qualitative, but still directed, setting. They have
shown that the computational handling of interventions is then easier. However,
the question arises whether or not the notion of intervention requires the use
of graphical representations. Namely, how can intervention be modelled in non-
directed representations of knowledge?

In this paper, we discuss the representation of interventions in the non directed
framework of possibilistic logic both at the semantic and at the syntactic level.
We then show its use for getting rid of spurious causal relations, after a reminder
on an approach to causal ascription where generic beliefs are represented by
nonmonotonic consequence relations.

2 Possibilistic Logic: A Short Background

Propositional possibilistic logic [5] has been essentially developed as a formalism
for handling qualitative uncertainty or preferences in a framework where syntax
and proof machinery remain close to the one of classical logic. A possibilistic logic
atomic formula is a pair made of i) a well-formed classical propositional logic
formula, and ii) a weight expressing its certainty or priority. Thus, a standard
atomic possibilistic logic expression is denoted as a pair (φ, α), where φ is a
propositional logic formula and α ∈ (0, 1] is interpreted as a lower bound of
a necessity measure N , i.e., (φ, α) is semantically interpreted as N(φ) ≥ α,
where N is a necessity measure. Necessity measures N are characterized by
the decomposability property N(φ ∧ ψ) = min(N(φ), N(ψ)), and are dual of
possibility measures Π (namely N(φ) = 1 −Π(¬φ)). A possibilistic logic base
is a set of possibilistic logic formulas. It is viewed as a conjunction of atomic
possibilistic formulas. A possibilistic logic base can be easily put in clausal form
thanks to the decomposability property of necessity measures.

A possibilistic logic base is semantically equivalent to a possibility distribu-
tion that restricts the set of interpretations (w. r. t. the considered language)
that are more or less compatible with the base. More precisely, a propositional
possibilistic logic base B = {(pi, αi)|i = 1, n} is semantically associated with the
possibility distribution

πB(ω) = min
i=1,n

π(pi,αi)(ω)

with π(pi,αi)(ω) = 1 if ω � pi, and π(pi,αi)(ω) = 1 − αi if ω � ¬pi.

Thus, πB is obtained as the min-based conjunctive combination of the repre-
sentations of each formula in B. Moreover, an interpretation ω is all the more
possible as it does not violate any formula pi with a high certainty level αi.
So, the possibility degree πB(ω) is all the less as the weight of the most certain
possibilistic logic formula violated by ω is greater. The normalization of the pos-
sibility distribution πB, i.e., ∃ ω, πB(ω) = 1 is equivalent to the consistency of
the classical logic base B∗ = {pi|i = 1, n}.

The basic inference rule in possibilistic logic put in clausal form is the following
resolution rule, here written in the propositional case:

(¬p ∨ q, α); (p ∨ r, β) � (q ∨ r,min(α, β)).

42 S. Benferhat, D. Dubois, and H. Prade

Using this rule repeatedly, a refutation-based proof procedure that is sound
and complete w. r. t. the semantics exists for propositional possibilistic logic
[5]. When ∀i, αi = 1, B = {(pi, αi)|i = 1, n} is isomorphic to the classical
propositional logic base B∗ = {pi|i = 1, n}, and has the same deductive closure.

3 Introducing Interventions

Roughly speaking, interventions on a knowledge base are actions performed on
this base, such as setting the values of propositional variables and possibly delet-
ing (or deactivating) formulas, in order to observe the behavior of the base under
such changes. It is expected that an intervention has no irreversible effect on the
knowledge base.

Following the notation introduced by Pearl [11], we use the new variable do(s)
to denote the fact of setting the value of literal s at ‘true’, this literal being of
the form p or ¬p. Interventions will be performed only on consistent possibilistic
logic bases. Moreover, it is assumed in the next subsection that ∃ω, ω � s and
π(ω) = 1. Namely, interventions should be fully possible apriori (in subsection
3.1). Otherwise, performing an intervention would create an inconsistency.

In the following, we first consider interventions that only amount to enforc-
ing the value of some variables, before discussing interventions where formulas
involving enforced variables are actually deleted from the the knowledge base
(or made inactive), thus cutting the links with other variables.

3.1 Interventions by Simple Enforcement

If we want to set to true a propositional variable, say p, it seems natural to
add it to the considered possibilistic logic base B. But, once p is added, the
original possibility distribution πB cannot be recovered from the knowledge of
πB∪{(p,1)} = min(πB, π(p,1)) where π(p,1)(ω) = 1 if ω � p and π(p,1)(ω) = 0
otherwise.

However, a trick can be used for both preserving the information πB, and
the impact of the input information, viewed as an intervention, assumed for
the moment to be elementary, i.e. pertaining to one variable. Let us introduce
the new variable do(p) where p is a literal. The idea is to augment B by a
formula ¬do(p) ∨ p, stating that if we intervene on p, then p becomes true. The
set of interpretations Ω is then expanded, by adding the new variable do(p) to
the language, into (Ω)do(p) = {ω¬do(p) for ω ∈ Ω}∪{ωdo(p) for ω ∈ Ω}. This is
a natural technique that allows us to distinguish between the action of enforcing
the truth of p, from the mere observation that p is true. Let us take an example.

Example 1. Let us consider a very simple propositional logic base B1 = {¬p∨q},
where the only impossible worlds are those where p is true and q is false. (when
the weight is not explicitly specified, as in B1, it simply means that the formula
is fully certain, namely it is equal to 1). Indeed, let πB1 be the possibility distri-
bution associated with B1. As can be seen, πB1(ω) = 1 if ω is pq, ¬pq, or ¬p¬q,
and πB1(ω) = 0 if ω is p¬q.

Interventions in Possibilistic Logic 43

Assume we study the intervention on q. So there are two cases, either we
force ¬q by introducing do(¬q), or we force q by introducing do(q). Let us
consider first the case with do(¬q). Then B1 becomes Bdo(¬q)

1 = {¬p∨q,¬do(¬q)∨
¬q}. The last clause expresses the effectiveness of the manipulation.

Table 1. Interventions on B1 = {¬p ∨ q} by doing ¬q and doing q

p q do(¬q) doing ¬q (or not) do(q) doing q (or not)
1. 1 1 1 0 1 1 : p ∧ q ∧ do(q)
2. 1 1 0 1 : p ∧ q ∧ ¬do(¬q) 0 1 : p ∧ q ∧ ¬do(q)
3. 1 0 1 0 1 0
4. 1 0 0 0 0 0
5. 0 1 1 0 1 1 : ¬p ∧ q ∧ do(q)
6. 0 1 0 1 : ¬p ∧ q ∧ ¬do(¬q) 0 1 : ¬p ∧ q ∧ ¬do(q)
7. 0 0 1 1 : ¬p ∧ ¬q ∧ do(¬q) 1 0
8. 0 0 0 1 : ¬p ∧ ¬q ∧ ¬do(¬q) 0 1 : ¬p ∧ ¬q ∧ ¬do(q)

We can observe that πBdo(¬q)
1

(ω) = 1 only if ω is ¬p¬qx for x = do(¬q). See
Table 1. Comparing πBdo(¬q)

1
with πB1 reveals what is made impossible by the

intervention do(¬q), namely p ∧ q and ¬p ∧ q. Moreover, Bdo(¬q)
1 ∪ {do(¬q)} is

logically equivalent to {¬p ∧ ¬q}.
Now consider the case where B1 becomes Bdo(q)

1 = {¬p∨ q,¬do(q)∨ q}. What
is made impossible by the intervention do(q) is then ¬p∧¬q. Bdo(q)

1 ∪ {do(q)} is
logically equivalent to {q}. See Table 1.

Observe also that πB1 = max(πBdo(¬q)
1

, πBdo(q)
1

).

It is important to note that our way to handle interventions, by adding extra
variables, is fully consistent with the way interventions are handled in Bayesian
causal networks. Indeed, one natural way to deal with interventions in graphical
models, is to add for each variable A, a new variable “DOA”. The obtained graph
is called “augmented graph”. Interventions in initial causal graph are handled as
observations in the augmented graph. Clearly, this paper follows the same spirit.
The following results can be established in the propositional case.

Proposition 1. Let Bdo(p) = B ∪ {¬do(p) ∨ p}. Then
πBdo(p)(ωx) = πB(ω) if x = ¬do(p);
πBdo(p)(ωx) = πB∪{(p,1)}(ω) if x = do(p).
πB = max(πBdo(p) , πBdo(¬p)).

Clearly, what is impossible before an intervention remains impossible after in
the above view. This will not be always the case with the type of interventions
we consider next, since then some clause(s) of the initial base could be put aside.

44 S. Benferhat, D. Dubois, and H. Prade

3.2 Interventions with Cut

In the above view of the idea of intervention, only the effect of setting the value
of a variable has been described. In the above example, when applying do(¬q),
we have kept ¬p ∨ q in Bdo(¬q)

1 , thus continuing to enforce the constraint “if q is
false then p is false”.

However, there is a stronger view of the idea of intervention, used by Pearl
[12], where when “doing”, we do not only set the value of a variable, but we should
also cut the links with this variable. The intuition behind this cutting of links,
is that interventions are results of external actions, and hence beliefs on direct
causes of the intervened variable should not change. This is now illustrated on
an example.

Example 2. We consider the example discussed by Sloman and Lagnado [13].
We have three balls A, B, C, put in this order that may roll in a gauge. The
base B2 = {¬a ∨ b,¬b ∨ c}, where a (resp. b, c) means A (resp. B, C) moves,
expresses that if A moves, B moves, and if B moves, C moves. Let us consider
the intervention do(¬b), i.e., B is maintained and does not move.

Let Bdo(¬b)
2 = {¬a∨b,¬b∨c,¬do(¬b)∨¬b}. As can be easily seen (see Table 2),

once do(¬b) is performed, the only remaining possible worlds are such that ¬a∧
¬b holds.

This result may be found too drastic in the sense that once do(¬b) is per-
formed, it may be no longer the case that the laws relating the object of the
intervention to the rest of the system still apply. In our example, the fact that,
after intervention, ball B can no longer move makes the application of rule “if B
does not move, A does not move” debatable, since in some sense the intervention
may be viewed as breaking the constraint linking A and B.

The above discussion leads us to the following definition.

Definition 1. Let B be a propositional logic base put in clausal form. The in-
tervention aiming at doing p with cut results in a new propositional logic base
Bdo(p),cut = (B\{¬p∨q s.t. ¬p∨q ∈ B and q is a disjunct})∪q{¬do(p)∨p, do(p)∨
¬p ∨ q}.

Table 2. Sloman and Lagnado’ example

a b c B2 B
do(¬b)
2 intervention intervention on

no intervention for do(¬b) = 1 with cut B2 modified

1.abc 1 1 1 1 0 0 0
2.ab¬c 1 1 0 0 0 0 0
3.a¬bc 1 0 1 0 0 1 0
4.a¬b¬c 1 0 0 0 0 1 1
5.¬abc 0 1 1 1 0 0 0
6.¬ab¬c 0 1 0 0 0 0 0
7.¬a¬bc 0 0 1 1 1 1 1
8.¬a¬b¬c 0 0 0 1 1 1 1

Interventions in Possibilistic Logic 45

Thus, Bdo(p),cut is obtained from B by deleting all the clauses that can be resolved
with p, and adding the success clause ¬do(p) ∨ p, as well as weakened versions
of the deleted clauses that are now “conditioned” by ¬do(p) (in order to recover
them if the intervention does not take place, while they are inhibited if it takes
place).

Note that the deletion of all the clauses that can be resolved with the result
p of doing the action do(p) is a matter of cautiousness. Indeed in the above balls
example, if it seems natural to consider that “if B does not move, A does not
move” is no longer valid whence B is stopped by doing the action (since B no
longer interacts with the rest of the system), a rule such as “if B does not move,
B is easy to grasp” would not need to be deleted if it was part of the knowledge.
However, since there is no straightforward criterion to determine what has to be
deleted, the above definition of the intervention with cut, deletes all the clauses
that can be resolved with the result of the action of doing.

At the semantic level, the result of an intervention with cut can be described
in the following way.

Proposition 2. Let B be a consistent propositional logic base put in clausal
form. Let do(p) be an intervention to be performed with cut. Let B¬p = {¬p ∨
q s.t. (¬p ∨ q) ∈ B and q is a disjunct}. Let Bdo(p),cut denote the resulting base.
The models and counter-models of Bdo(p),cut can be obtained from those of B in
the following way.

– if x = ¬do(p), πBdo(p),cut(ωx) = πB(ω) ;
– if x = do(p)

• πBdo(p),cut(ωx) = 1, if πB¬p(ω) = 0 and πB\B¬p(ω) = 1;
• πBdo(p),cut(ωx) = πB∪{(p,1)}(ω) otherwise.

Proof: If x = ¬do(p), then ¬do(p)∨p is set to true, and do(p)∨¬p∨q reduces to
¬p∨ q, which restores the deleted formulae. If x = do(p), then p is also enforced
to true but there is no constraint on the truth value of q since do(p) ∨ ¬p ∨ q
is set to true. So, πBdo(p),cut(ωx) = 1 even if some formulas in B¬p are violated,
as long as formulas in the rest of B are satisfied; i.e. it sanctions the deletion of
¬p ∨ q. QED

This is illustrated on the example of Table 2. In this example, after doing
¬b with cut, Bdo(¬b),cut

2 = {do(¬b) ∨ ¬a ∨ b,¬do(¬b) ∨ ¬b,¬b ∨ c}. When doing
¬b, its models reduce to those of ¬b. The column “intervention with cut” is ob-
tained by applying the two following rules to the initial column “no intervention”
representing B2:

- the interpretations abc,¬abc, that are possible when b is true, become im-
possible;

- the interpretations a¬bc, a¬b¬c that are impossible when b is false become
possible again (since the formula ¬a ∨ b that affects b is dropped when doing
¬b), unless they are made impossible due to formulas in B \ B¬p.

To illustrate this last point, consider the knowledge base B modified.

46 S. Benferhat, D. Dubois, and H. Prade

Example 3. Consider the set

Bmod
2 = {¬a ∨ b,¬b ∨ c ,¬a ∨ ¬c}.

Then, any interpretation where both a and c are true remains impossible, even
if b is made false, since it is made impossible by a formula ¬a ∨ ¬c unrelated to
b. See especially the values in bold in Table 2.

The approach can handle the case of “combined interventions”. Indeed one may
fix several variables simultaneously. For instance, in agreement with Definition
2, setting both p and q to true with respect to a base B, amounts to stating

Bdo(p),do(q),cut = B \ {¬p ∨ r,¬q ∨ s s.t. (¬p ∨ r) ∈ B, (¬q ∨ s) ∈ B and
r, s are disjuncts} ∪r,s {¬do(p) ∨ p,¬do(q) ∨ q, do(p) ∨ ¬p ∨ r, do(q) ∨ ¬q ∨ s}.

We have discussed the ideas of interventions without, and with cut in the set-
ting of propositional logic, independently from uncertainty. However, the above
approach can be extended to situations with graded certainty levels. It basically
amounts to replacing the possibility degrees that are 0, by possibility degrees
strictly smaller than 1 corresponding to the violation of possibilistic formulas
(pi, αi) with 0 < αi < 1 (in agreement with the semantics recalled in section 2).
The extension is easy. It is not explicitly made here due to space limitation.

4 Ascription of Causal Relations Based on Default Rules

People try to make sense of what they observe or of what is reported to them.
Ascribing causality relations is one of the main ways to do it. A formal definition
of this process has been recently proposed [6], [4]. Namely, given a context C (C
represents the available contextual information that does not evolve), a sequence
of events ¬Bt, At, Bt′ is reported, where t′ denotes a time instant strictly after t
(B′

t means that B is reported as true at time t′). Besides, the agent that receives
the sequenced information has some knowledge about what is the normal (thus
expected) course of things in context C, as well as in context C∧A, in particular
regarding the truth status of B.

The idea that B is normally true in the context C is encoded at the syntactic
level by means of a conditional assertion C |∼ B, where |∼ is a non-classical
consequence relation symbol. This language can capture the fact that the agent
may either believes that C |∼ B (the agent expects B to be true in context C), or
that C |∼ ¬B (the agent expects that B to be false in context C), or that C �|∼ B
and C �|∼ ¬B (the truth or the falsity of B is contingent in context C according
to the agent), where |∼ is a nonmonotonic consequence relation stating what is
normal, while �|∼ denotes its negation. It is assumed that |∼ obeys the postulates
of system P [9]. Similarly, in the context C∧A, the agent may have the same type
of beliefs (it is supposed that C ∧A is consistent). Note that the truth of A may
refer to an action that was performed (e.g. “the driver drank before taking his
car”), or to some state of facts that is still true (e.g., “the driver is inebriated”).
A may be also an event that does not result from an action (for instance “a storm

Interventions in Possibilistic Logic 47

has broken out”). The following definition of (perceived) causality is borrowed
from [6]:

Definition 2. (Causality) Suppose that an agent becomes aware of the sequence
of events ¬Bt, At, Bt′ . Let C be context, i.e. the conjunction of all the other
facts known by the agent at instant t’ > t. Let |∼ be a nonmonotonic consequence
relation. If the agent believes that C |∼ ¬B,

– and then C ∧A |∼ B, the agent perceives A in context C as being the cause
of B becoming true, which is denoted C : A⇒ca B).

– and only thinks that C ∧ A �|∼ ¬B, then the agent considers that in context
C, A has facilitated the fact that B became true.

Among the noticeable properties of causality defined in this way, let us mention
that [4]:

– If C : A ⇒ca B then C |∼ ¬A. It means that a potential cause can be only
an abnormal fact with respect to the current context C.

– Causality satisfies a restricted form of transitivity: if C : A ⇒ca B, if C :
B ⇒ca D and if moreover B ∧ C |∼ A, then C : A⇒ca D.

These two properties are valid for ⇒ca provided that |∼ is a “preferential” non
monotonic consequence relation in the sense of [9].

Note that in this approach, the knowledge the agent is aware of about the
normal course of the world, whether correct or not, is qualitative, and separates
what is normal in the context from what is exceptional in this context. This
distinguishes this approach from the one of Halpern and Pearl [8], which is
based on the use of structural equations and demands a richer knowledge about
the behavior of the considered system.

Consider the following illustrative example.

Example 4. Mary is told that Peter has a lung cancer, and she knows that he is
an heavy smoker, and that until recently he was not ill. Mary believes that in
general, one has not a lung cancer, but that if one smokes a lot, it is normal to
get it sooner or later, i.e., C |∼ ¬cancer and C ∧ smoking |∼ cancer. Then Mary
considers that “smoking” caused Peter’s cancer (i.e., C: smoking ⇒ca cancer). If
her beliefs obey the rationality postulates of “preferential” inference, Mary also
thinks that generally one does not smoke: C |∼ ¬smoking.

However the predictions provided by this approach may be not satisfactory,
as shown now. Indeed suppose that Mary moreover believes that
C |∼ ¬yellow teeth; C ∧ smoking |∼ yellow teeth;
C ∧ yellow teeth �|∼ ¬cancer.
i.e., according to Mary, in general teeth are not yellow, smoking makes teeth

yellow, and that lung cancer is not exceptional for somebody who has yellow
teeth. Thus for Mary, if Peter’s teeth are yellow, this leads to think that i) “the
fact that Peter is an heavy smoker is the cause of his yellow teeth” (which is
satisfactory), but also that ii) “the fact that Peter has yellow teeth facilitated
(according to the above definition) the fact that he has a lung cancer” ! If Mary

48 S. Benferhat, D. Dubois, and H. Prade

had the stronger belief that C ∧ yellow teeth |∼ cancer (thus expressing that
yellow teeth are a strong indication of lung cancer), then Mary should conclude
that having yellow teeth causes lung cancer!

The notion of intervention provides a way for distinguishing causality from
mere correlation. The idea is to simulate the effect of actions (which may be
fictitious). Let us denote such an action by do(A) (for distinguishing the action
that makes A true from the fact that A is true). In the example, Mary may
then refer to a supplementary piece of belief such that: C ∧ do(yellow teeth) |∼
¬cancer, i.e., if the teeth of somebody are made yellow, cancer should remain
the exception (Mary already believes that C |∼ ¬cancer).

Such intervention-based beliefs can be used for blocking undesirable facilitation
or causality judgements as the ones mentioned above (note however that the
conditionals C ∧ A �|∼ B, C ∧ do(A) |∼ B, and C ∧ do(A) |∼ A constitute a
consistent set of beliefs). Before discussing the use of intervention-based beliefs
in the next section, we need first to recall how conditionals can be represented
in possibilistic logic [2].

A default rule “generally, if p then q” can be represented in the framework of
possibility theory by a constraint on a possibility ranking over interpretations,
of the form Π(p ∧ q) > Π(p ∧ ¬q), which expresses that in the context where
p is true, having q true is strictly more possible than having q false [2]. In this
setting, it has been shown that a collection of default rules represented by a set of
such constraints, induces a unique qualitative possibility ranking >π under the
form of an ordered partition (E1, . . . , Em) of the set of interpretations (such as
if i > j, ω ∈ Ei and ω′ ∈ Ej then ω >π ω

′). This ranking is the least restrictive
solution of the considered set of constraints, the one that leads to a minimal
number of classes of equally plausible situations.

Example 5. The default rulesC |∼ ¬yellow teeth, andC∧smoking |∼ yellow teeth
correspond to the constraints (where s stands for “smoking” and y for “yellow”):

Π(C ∧ ¬y) > Π(C ∧ y)
Π(C ∧ s ∧ y) > Π(C ∧ s ∧ ¬y)

Using the max-decomposability of possibility measures w. r. t. disjunction,
with the following notations :

Ω = {ω1 = Csy, ω2 = C¬sy, ω3 = Cs¬y, ω4 = C¬s¬y, ω5 = ¬Csy,
ω6 = ¬C¬sy, ω7 = ¬Cs¬y, ω8 = ¬C¬s¬y},

the constraints can be rewritten

max(π(ω3), π(ω4)) > max(π(ω1), π(ω2)),

and
π(ω1) > π(ω3),

which leads to a partition into three classes:

ω4 =π ω5 =π ω6 =π ω7 =π ω8 >π ω1 =π ω2 >π ω3

Interventions in Possibilistic Logic 49

where ωi =π ωj (resp. ωi >π ωj) translates π(ωi) = π(ωj) (resp. π(ωi) > π(ωj))
in terms of complete preorder. At the syntactic level, this is equivalent to the
possibilistic logic base {(¬C ∨¬y, α), (¬s∨¬C ∨ y, β)}, with α < β. This means
that priority is given to the most specific rule.

Similarly, the set of default rules {C |∼ ¬yellow teeth, C |∼ ¬cancer, C ∧
smoking |∼ yellow teeth, C ∧ smoking |∼ cancer} can be represented by the
possibilistic base:

K = {(¬C ∨ ¬y, α), (¬C ∨ ¬c, α), (¬C ∨ ¬s ∨ y, β), (¬C ∨ ¬s ∨ c, β)},

with α < β (general rules are less prioritary than specific and exceptional rules).
At the semantic level, without introducing the context C (that does not play
any particular role here) in the notations, letting

ω1 = csy, ω2 = c¬sy, ω3 = cs¬y, ω4 = c¬s¬y,
ω5 = ¬csy, ω6 = ¬c¬sy, ω7 = ¬cs¬y, ω8 = ¬c¬s¬y,

leads to the following qualitative possibility ranking:

ω8 >π ω1 =π ω2 =π ω4 =π ω6 >π ω3 =π ω5 =π ω7.

However, the approach cannot take into account the information

C ∧ yellow teeth �|∼ ¬cancer,

which might be thought of as expressible by Π(C ∧ y ∧ c) ≥ Π(C ∧ y ∧ ¬c),
and corresponds to the constraint max(π(ω1), π(ω2)) ≥ max(π(ω5), π(ω6)). But
this constraint is already satisfied by the above ranking, and has by the way no
syntactic counterpart in possibilistic logic!

Besides, the stronger piece of information “yellow teeth are indications that the
person shall develop a lung cancer: C∧yellow teeth |∼ cancer, which corresponds
to

Π(C ∧ y ∧ c) > Π(C ∧ y ∧ ¬c),
leads to the ranking

ω8 >π ω1 =π ω2 =π ω4 >π ω6 =π ω3 =π ω5 =π ω7

and to the base

K′ = {(¬y, α), (¬c, α), (¬s ∨ y, β), (¬s ∨ c, β), (¬y ∨ c, β)}

with α < β. But, we are going to see now that in such a base, causality cannot
be set apart from correlation without intervention-based knowledge.

5 Adding Intervention-Based Information

Let us again consider the example that illustrates the problem raised by the
ascription of causal relationships. This basic example is made of three statements

50 S. Benferhat, D. Dubois, and H. Prade

– heavy smoking (s) leads to cancer (c);
– heavy smoking (s) makes teeth yellow (y);
– having yellow teeth (y) is an indication for (lung) cancer (c).

Let us make some remarks before considering a logical formalization. Intuitively
the two first statements express causal relations and sound “deductive”, while the
last one is “inductive”, according to the opposition (stressed by Pearl [10]) be-
tween, e.g., “fire is the cause for smoke”, and “seeing smoke suggests the presence
of fire”. Clearly, the three statements (i)-(ii)-(iii) are generic, but liable to many
exceptions, whose rate may be expressed by means of conditional probabilities,
or certainty levels.

Let us represent the three statements in the setting of propositional logic,
assuming for the moment that they have no exception : K = {¬s∨c,¬s∨y,¬y∨c}.
Note that in fact it corresponds to the β level cut of the base K′ computed at
the end of Section 4 (i.e., the formulas associated to a level at least equal to β),
which corresponds to the default rules that are the most specific. At the semantic
level, it can be easily checked that K has only four models. These models are
scy, ¬scy, ¬sc¬y, ¬s¬c¬y, which correspond to four possible worlds and can be
summarized in at least three different ways, according to the variable we start
with:

1. either one smokes and one has a cancer and yellow teeth, or one does not
smoke and it is not possible to have yellow teeth without having cancer;

2. either one has yellow teeth and one has a cancer, or one has no yellow teeth
and one does not smoke;

3. either one has not a cancer and one has no yellow teeth and one does not
smoke, or one has a cancer and it is impossible to smoke without having
yellow teeth.

In this poor representation setting, y and s play the same role with respect to
c, i.e. it expresses that yellow teeth cause cancer as sure as smoking does. This
can be expressed in terms of the possibility distribution:
πK(ω) = 1 if ω ∈ {scy,¬scy,¬sc¬y,¬s¬c¬y}, πK(ω) = 0 otherwise.
As can be seen,
- K delimits the non impossible worlds;
- in K one has lost the directed nature of causal links and of the evocation link

(which cannot be simply guessed from the presence of the positive and negative
literals), and in K no distinction is made between the two types of links.

Following Pearl [12] (see also Sloman and Lagnado [13] for a psychological
validation), the idea is to perform a thought experiment and to express its be-
lieved results, i.e., in the example, that “if one makes the teeth of non-smokers
yellow, they will not get a cancer for that reason”, which suggests the conditional:
¬smoking ∧ do(yellowteeth) |∼ ¬cancer.

Let do(y) be a new variable expressing that teeth are painted in yellow, then
it might seem natural to complete K in the following way (without performing
any cut):

Interventions in Possibilistic Logic 51

Table 3. Yellow teeth example 1

s c y ¬s ∨ c ¬s ∨ y ¬y ∨ c K
1 1 1 1 1 1 1
1 1 0 1 0 1 0
1 0 1 0 1 0 0
1 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 0 1 1 1 1
0 0 1 1 1 0 0
0 0 0 1 1 1 1

Table 4. Yellow teeth example 2

s c y do(y) ¬s ∨ c ¬s ∨ y ¬do(y) ∨ y ¬do(y) ∨ s ∨ ¬c K∗
do(y) ¬y ∨ c Kdo(y)

1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1
1 1 0 1 1 0 0 1 0 1 0
1 1 0 0 1 0 0 1 0 1 0
1 0 1 1 0 1 1 1 0 0 0
1 0 1 0 0 1 1 1 0 0 0
1 0 0 1 0 0 0 1 0 1 0
1 0 0 0 0 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 1 0
0 1 1 0 1 1 1 1 1 1 1
0 1 0 1 1 1 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0
0 0 1 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 1 0 1 0
0 0 0 0 1 1 1 1 1 1 1

Kdo(y) = K ∪ {¬do(y) ∨ y,¬do(y) ∨ s ∨ ¬c}
= {¬s ∨ c,¬s ∨ y,¬y ∨ c,¬do(y) ∨ y,¬do(y) ∨ s ∨ ¬c},

thus adding to K the fact that painting teeth in yellow makes them yellow, but
is not a source of cancer for non-smokers. The only models of Kdo(y) are

{scydo(y), scy¬do(y), negscy¬do(y),¬sc¬y¬do(y),¬s¬c¬y¬do(y)}.

We have thus lost information, in particular the inconsistency of K, which states
the impossibility of having yellow teeth without cancer (see 1., above), together
with {¬do(y)∨ y,¬do(y)∨ s∨¬c}, which has do(y)y¬s¬c and do(y)ys¬c among
its models, thus stating the non impossibility of having yellow teeth without
cancer.

52 S. Benferhat, D. Dubois, and H. Prade

As stated in the directed setting of probabilistic Bayesian nets by Pearl [12],
intervention does not only amount to setting the value of a variable, but it
also cuts the links that previously constrained its value, the remaining being
unchanged. In the example, we thus withdraw formula ¬y∨ c, thus withdrawing
all the formulas that involve the negative literal ¬y, in order to cut the possibility
of any logical resolution with ¬do(y) ∨ y. This gives, once adding the fact that
making teeth of a non-smoker yellow does not lead to cancer:

K∗
do(y) = (K − {¬y ∨ c}) ∪ {¬do(y) ∨ y,¬do(y) ∨ s ∨ ¬c}

= {¬s ∨ c,¬s ∨ y,¬do(y) ∨ y,¬do(y) ∨ s ∨ ¬c}.

The models of K∗
do(y) are given in Table 4. Thus K∗

do(y) has 7 models:

scydo(y), scy¬do(y), ¬scy¬do(y), ¬sc¬y¬do(y),
¬s¬cydo(y), ¬s¬cy¬do(y), ¬s¬c¬y¬do(y),

i.e., either one smokes and one gets a cancer and yellow teeth, or one does not
smoke and it is impossible of not having yellow teeth once they have been made
yellow, but one may have yellow teeth without being threatened by a cancer:
¬s¬cydo(y) is a model of K∗

do(y). Thus having yellow teeth no longer causes can-
cer! Performing a ‘do’ operation in a logical framework amounts to a “revision”
operation, which changes the base K into the base K∗

do(y) defined above.
In the general case, intervention consists not only of introducing a new vari-

able do(p) controling a literal p and inhibiting the existing causal links bearing
on it, but also introducing specific knowledge pertaining to the intervention on
p (here, ¬do(y) ∨ s ∨ ¬c), distinguishing between the known effect of interven-
tion on a literal p of interest and the spurious causation between p and t. Then
definition 1 becomes

Definition 3. Let K be a set of logical formulas in clausal form such that K �� t
and K �� ¬t, where t is a literal that appears in K. Let p be another literal appearing
in K. The intervention on p in connection with some effect t consists in

1. Adding the clause ¬do(p) ∨ p to K.
2. Adding all known results of intervention on p, of the form ¬do(p) ∨ q ∨ ¬t,

that deny the causal influence of doing p on the truth of t.
3. Deleting all clauses that unify with p of the form ¬p∨r and adding substitutes

of the form do(p) ∨ ¬p ∨ r.
Let KI(p,t) be the result of this transformation. Note that the last point means
that one deletes the problematic links such as ¬p ∨ t that refers to a spurious
causation between p and t.

Proposition 3. If K �� t and K �� ¬t then KI(p,t) is consistent with p ∧ ¬t.
Proof : We must show that KI(p,t) ∪ {p} �� t. Since all clauses that unify with p
have been modified by adding literal do(p), KI(p,t) ∪ {p} can only entail clauses
of the form do(p) ∨ r by unification with p. Such clauses can also unify with

Interventions in Possibilistic Logic 53

¬do(p)∨p and yield p∨r. As K �� t and K �� ¬t, and there is no additional clause
produced by the transformation of K that can produce t, KI(p,t) is consistent
with p ∧ ¬t. In particular, if ¬p ∨ t ∈ K, then only do(p) ∨ t and p ∨ t can be
produced.

This result shows that there is a counter-example to an hypothetical causal
link from p to t. For instance on the yellow teeth example, one can check that

KI(p,t) = {¬s ∨ c,¬s ∨ y,¬do(y) ∨ y, do(y) ∨ ¬y ∨ c,¬do(y) ∨ s ∨ ¬c},
namely step 2 adds the known fact ¬do(y) ∨ s ∨ ¬c and step 3 removes ¬y ∨ c
and adds do(y) ∨ ¬y ∨ c. It ensures that making teeth yellow (adding do(y) to
the above knowledge base) cannot imply c. However yellow teeth still suggest
cancer if this colour is not the effect of an action (this is expressed by adding
¬do(y)), but is the result of smoking (when s is a known fact).

This approach provides a tool for deleting from a knowledge base the links
that are known to be non-causal due to intervention. Thus, intervention can
refine the perception of causal links provided by the default rule-based approach
presented in Section 4.

This technique can be generalized to possibilistic logic bases, which thus en-
ables us to work with the representations of default rules. In the example, at
the semantic level, the initial Table 3 would become Table 5 below where the
interpretations that are completely possible are unchanged. The knowledge per-
taining to interventions could then be dealt with directly at the syntactic level
in the setting of possibilistic logic, from the modified base K∗

do(y), viewed as a
level cut of a possibilistic logic base.

Table 5. Yellow teeth example 3

s c j ¬s ∨ c ¬s ∨ y ¬y ∨ c K
1 1 1 1 1 1 1
1 1 0 1 1 − β 1 1 − β
1 0 1 1 − α 1 1 − β min(1 − α, 1 − β)
1 0 0 1 − α 1 − β 1 min(1 − α, 1 − β)
0 1 1 1 1 1 1
0 1 0 1 1 1 1
0 0 1 1 1 1 − β 1 − β
0 0 0 1 1 1 1

6 Concluding Remarks

The paper has shown how interventions (with or without cut) can be handled in
a propositional logic setting. It has outlined how interventions, once expressed
in such a setting, can supplement the approach that models the ascription of
causal relations in a reported sequence of events on the basis of default rules
expressing generic beliefs, in order to distinguish causality from correlation. The
proposed approach is still to be compared with the treatment of interventions
in the setting of possibilistic networks [3], since a possibilistic network can be

54 S. Benferhat, D. Dubois, and H. Prade

translated into a possibilistic logic base and vice versa [1]. However, the paper
has shown that the notion of intervention makes sense in non directed settings.

Acknowledgements

This work is financially supported by the ANR project MICRAC (NT05-3-44479).

References

1. Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between
possibilistic logic bases and possibilistic causal networks. Inter. J. of Approximate
Reasoning 29, 135–173 (2002)

2. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects
and possibility theory. Artificial Intelligence 92, 259–276 (1997)

3. Benferhat, S., Smaoui, S.: Possibilistic causal networks for handling interventions:
A new propagation algorithm. In: Proc. 22nd AAAI Conf. on Artif. Intelligence
(AAAI 2007), July 2007, pp. 373–378 (2007)

4. Bonnefon, J.F., Da Silva Neves, R.M., Dubois, D., Prade, H.: Background default
knowledge and causality ascriptions. In: Proc. 17th Europ. Conf. on Artif. Intel
(ECAI 2006), vol. 29(8-1(9)), pp. 11–15. Riva del Garda (2006)

5. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C.,
Robin-son, J., Nute, D. (eds.) Handbook de Logic in Artificial Intelligence and
Logic Programming, vol. 3, pp. 439–513. Oxford Univ. Pr., Oxford (1994)

6. Dubois, D., Prade, H.: Modeling the role of (ab)normality in the ascription of
causality judgements by agents. In: Morgenstern, L., Pagnucco, M. (eds.) Proc.
of IJCAI-05 Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC
2005), Edinburg, August 1, pp. 22–27 (2005)

7. Goldszmidt, M., Pearl, J.: Rank-based Systems: A Simple Approach to Belief Re-
vision, belief update, and reasoning about evidence and actions. In: Proc. of 3rd
Inter. Conf. on Principles of Knowledge Representation and Reasoning (KR 1992),
Cambridge, MA, October 25-29, pp. 661–672. Morgan Kaufmann, San Francisco
(1992)

8. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach. Part
I: Causes. Part II: Explanations. British Journal for the Philosophy of Science 56,
843–887, 889–911 (2005)

9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Arti cial Intelligence 44, 167–207 (1990)

10. Pearl, J.: Embracing causality in default reasoning. Artificial Intelligence 35,
259–271 (1988)

11. Pearl, J.: A probabilistic calculus of actions. In: Lopez de Mantaras, R., Poole,
D. (eds.) Proc. 10th Conf. Uncertainty in A I (UAI-1994), Seattle, July 29-31,
pp. 454–462. Morgan Kaufmann, San Francisco (1994)

12. Pearl, J.: Causality. Cambridge Univ. Pr., Cambridge (2000)
13. Sloman, S.A., Lagnado, D.A.: Do we "do"? Cognitive Science 29, 5–39 (2005)
14. Spohn, W.: A general non-probabilistic theory of inductive reasoning. In:

Shachter, R., Levitt, T., Kanal, L., Lemmer, J. (eds.) Uncertainty in Artificial
Intelligence, North-Holland, vol. 4, pp. 149–158 (1990)

15. Woodward, J.: Causation and manipulability. In: Zalta, E.N. (ed.) Stanford Ency-
clopedia of Philosophy (2001)
http://plato.stanford.edu/entries/causation-mani/

An Analysis of Sum-Based Incommensurable
Belief Base Merging

Salem Benferhat, Sylvain Lagrue, and Julien Rossit

CRIL-CNRS UMR 8081,
Université d’Artois, Faculté des Sciences Jean Perrin

rue Jean Souvraz, SP18. 62307 Lens France
{benferhat,lagrue,rossit}@cril.univ-artois.fr

Abstract. Different methods have been proposed for merging multiple
and potentially conflicting informations. Sum-based operators offer a nat-
ural method for merging commensurable prioritized belief bases. Their
popularity is due to the fact that they satisfy the majority property and
they adopt a non cautious attitude in deriving plausible conclusions.

This paper analyses the sum-based merging operator when sources to
merge are incommensurable, namely they do not share the same meaning
of uncertainty scales. We first show that the obtained merging operator
can be equivalently characterized either in terms of an infinite set of com-
patible scales, or by a well-known Pareto ordering on a set of models. We
then study different families of compatible scales useful for merging pro-
cess. This paper also provides a postulates-based analysis of our merging
operators.

1 Introduction

The problem of merging multiple-source information is crucial for many ap-
plications. Indeed, many situations require to take into account several poten-
tially conflicting pieces of information, such as distributed databases frameworks,
multi-agent systems, or distributed information in general (e.g. semantic web).
This kind of situation leads to perform some combination operations on available
pieces of information, which is well known as a data fusion problem.

Different merging operators have been proposed in the literature to merge
prioritized pieces of information issued from different sources [1, 2, 3]. Most of
existing merging methods assume that ranks associated with beliefs are com-
mensurable from one source to another. This commensurability assumption may
make sense in some situations, when it is possible to obtain a reference scale
between sources. However, it can appear to be too strong for other applications.
Only few works have addressed the issue of merging incommensurable ranked
belief bases [4, 5].

In this paper, we first provide, in Section 3, a natural extension of the sum-
based fusion mode to deal with incommensurable belief bases. This extension
uses the concept of compatible scales to define the result of merging. We show,
in the same section, that the fusion can also be characterized in terms of a

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 55–67, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

56 S. Benferhat, S. Lagrue, and J. Rossit

Pareto-ordering on possible worlds. We then analyze, in Section 4, the logical
behavior of the sum-based merging operator in commensurable and incommen-
surable cases. As a surprising result, the majority postulate is no longer valid
when dealing with incommensurable belief bases. Even worse, the sum-based
merging operator become majority-independent. Section 5 presents several in-
ference relations based on some selection functions of compatible scales (such as
the ones obtained from linear transformations or bounded compatible scales). In
particular, we analyze the impact of these selection functions on the satisfaction
of rationality postulates, and on the prudence of merging operators. Section 6
provides a brief comparison with some other merging approaches.

Before developing in details these results, we first provide some backgrounds
on ranked belief bases and sum-based merging of commensurable belief bases.

2 Merging Ranked Belief Bases

Let L be a finite propositional language. We denote by Ω the set of interpreta-
tions of L and by ω an element of Ω. Greek letters ϕ and ψ denote propositional
formulas. ≡ denotes a logical equivalence, Mod(ϕ) represents the set of models
of ϕ, � and ⊥ represent respectively a tautology and a contradiction.

2.1 Ranked Belief Bases

A ranked belief base is a multi-set of ranked formulas. It contains beliefs provided
by a given source. The term belief is used when pieces of information provided by
sources are uncertain. A ranked belief is represented by a propositional formula
associated with a rank. This rank represents the amount of uncertainty asso-
ciated with the formula, and can simply expresses the reliability of the source
which provides this belief. A ranked belief base is a convenient framework to
represent uncertain (or prioritized) pieces of information:

Definition 1 (Ranked belief base). A ranked belief base Bi is a multi-set
of ranked propositional formulas Bi = {(ϕij , RBi(ϕij)), j ∈ {1, ...,mi}}, where
ϕij ∈ L, and RBi(ϕij) ∈ N

∗.

(ϕij , RBi(ϕij)) means that ϕij has a priority rank of at least RBi(ϕij). Intu-
itively, formulas associated with highest ranks are those which are preferred for
a given source (or agent). Only strictly positive ranks are represented. Ranked
belief bases are used in different frameworks, such as possibility theory [6] or
ordinal conditional functions (OCF) [7,8,9]. We denote by B∗

i the set of propo-
sitional formulas obtained from Bi by ignoring ranks associated with formulas.

Given a ranked belief base, a total pre-order on interpretations of Ω can be
derived as follows: ω is preferred to ω′ if and only if the strongest belief falsified
by ω is less important than the strongest belief falsified by ω′. More precisely:

Definition 2 (κ-functions). A ranking function κBi associated with a ranked
belief base Bi is a function that maps each interpretation ω ∈ Ω to an integer
κBi(ω) such that:

An Analysis of Sum-Based Incommensurable Belief Base Merging 57

κB(ω) =

{
0 if ∀(ϕij , RBi(ϕij)) ∈ Bi, ω |= ϕij

max{RBi(ϕij) : ω � ϕij , (ϕij , RBi(ϕij)) ∈ Bi} otherwise.

Interpretations associated with lower ranks represent agent’s current beliefs. This
ordering is the basis of possibilistic logic [6] and adjustment revision [8].

Example 1. Let us consider the ranked belief base B = {(¬a ∨ b, 8), (a ∨ b, 5),
(a, 2)}. Table 1 gives the κ-function κB associated with B. ω3 is the preferred
interpretation and will represent agent’s current beliefs.

Table 1. An example of κ-function

ωi ∈ Ω a b κB(ωi)

ω0 0 0 5
ω1 0 1 2
ω2 1 0 8
ω3 1 1 0

It is important to note that beliefs are inserted as they are and as they come
from their sources, and we do not add derived beliefs. This is the spirit of what is
called “belief bases” by Nebel [10]. Hence, the same belief can be present several
times in Bi and this explains why we consider it as a multi-set. Equivalent beliefs
have different identification (the identification can be an arbitrary numbering of
the beliefs in Bi). We do not make these identifications explicit since it renders
the notation heavy. Formulas of belief bases are distinguished from plausible
conclusions which are derived from beliefs.

2.2 Sum-Based Fusion of Commensurable Bases

This section recalls a sum-based merging method. Let E = {B1, ..., Bn} be a
multi-set of n ranked belief bases issued from n sources, and let μ be a proposi-
tional formula representing integrity constraints to satisfy. The aim of merging
is, given E and μ, to rank-order different interpretations of Ω with respect to
pieces of information provided by sources. This ordering is often obtained using
a merging operator denoted here by �μ. Given E, �μ, we denote by �E the
ordering on Ω induced by �μ and E. We denote by �μ(E) the so-called belief
set which represents the set of actual beliefs obtained after merging E and μ
by �μ. �μ(E) is defined as usually, namely it is such that its models are those
which are minimal with respect to �E . In the literature, different methods for
merging E have been proposed (e.g. [3,2,11]). This paper focuses on a sum-based
fusion, denoted by �μ

Σ .
To compute the result of merging, each interpretation ω is associated with a

profile, denoted by νE(ω), and defined by:

νE(ω) = 〈κB1(ω), ..., κBn(ω)〉
It represents the consistency degree of an interpretation ω with respect to ranked
bases to merge. The computation of �μ

Σ is achieved in two steps: first combine

58 S. Benferhat, S. Lagrue, and J. Rossit

the consistency degrees κBi(ω)’s with the Sum operator Σ, and then rank-order
interpretations with respect to their obtained ranks. More formally:

Definition 3 (�E
Σ). Let ω and ω′ be two interpretations of Ω, and νE(ω),

νE(ω′) be their respective profiles. Then : ω �E
Σ ω′ iff Σ(νE(ω)) < Σ(νE(ω′)),

where Σ(νE(ω)) =
∑

i=1,..,n

κBi(ω).

Models of �μ
Σ(E) are models of μ which are minimal with respect to �E

Σ:

Mod(�μ
Σ(E)) = Min(Mod(μ), �E

Σ)

The sum-based merging operator is majority dependent : the repetition of a
same piece of information may affect the result of merging. This kind of operator
is particularly well adapted if sources (or agents) are assumed to be independent.

Example 2. Let us consider E = {B1, B2 B3} where B1 = {(a, 6), (b, 3)}, B2 =
{(a∨ b, 3), (¬b, 1)} and B3 = {(¬a, 5}. Assume that μ ≡ ¬a∨¬b. Profiles associ-
ated with interpretations are given by Table 2. We have Mod(�μ

Σ(E)) = {ω1}.

Table 2. Profiles associated with interpretations

ω ∈ Ω a b νE(ω) Σ(νE(ω))

ω0 0 0 〈6,3,0〉 9
ω1 0 1 〈6,1,0〉 7
ω2 1 0 〈3,0,5〉 8
ω3 1 1 〈0,1,5〉 6

3 Extension of the Sum-Based Operator for Merging
Incommensurable Belief Bases

3.1 Compatible Scales Merging Approach

The sum-based merging operator defined above assumes that ranks, associated
with formulas, have to be commensurable in order to sum them. Such assump-
tion can be too strong for some applications, for instance when information is
obtained from sources with unknown quality (e.g. web). A natural way to merge
incommensurable belief bases consists in using possible common scales, called
compatible scales [5]. A compatible scale affects new ranks to beliefs such that
initial relative orders between beliefs of each agent are preserved.

Definition 4 (Compatible scale). A compatible scale S is a function that
maps E = {B1, ..., Bn} to ES = {BS

1 , ..., B
S
n }such that for all Bi ∈ E:

(i) BS
i = {(ϕij ,S(ϕij)) : (ϕij , RBi(ϕij)) ∈ Bi}

(ii) ∀Bi ∈ E, ∀(ϕij , RBi(ϕij)) ∈ Bi, ∀(ϕij′ , RBi(ϕij′)) ∈ Bi,
RBi(ϕij) ≤ RBi(ϕij′) iff S(ϕij) ≤ S(ϕij′).

An Analysis of Sum-Based Incommensurable Belief Base Merging 59

The following example shows that compatible scales are not unique.

Example 3. Let us consider E = {B1, B2, B3} be belief bases provided by Ex-
ample 2. Table 3 gives three possible scales: S1, S2 and S3. Scales S1 and S2 are
compatible, because they preserve initial orders induced by each base. However,
S3 is not a compatible one: it inverses priority between beliefs of B1.

Table 3. Examples of compatible scales

ϕij RBi(ϕij) S1(ϕij) S2(ϕij) S3(ϕij)

B1 a 6 2 6 1
b 3 1 4 5

B2 a ∨ b 3 2 3 3
¬b 1 1 2 1

B3 ¬a 5 1 4 5

As we already pointed out, beliefs are considered as self justified. A compatible
scale does not directly handle beliefs but rather normalize ranks associated with
beliefs. If, for instance, one have two bases: B1 = {(a, 1), (b, 2)}, and B2 =
{(b, 3), (a, 5)}; a possible common scale is S such that BS

1 = {(a, 2), (b, 3)}, and
BS

2 = {(b, 2), (a, 3)}. This scale is compatible since it simply preserves the initial
ordering between beliefs of B1 and between beliefs of B2.

The set of scales compatible with E is denoted by SE . Note that SE is never
empty (it is enough to consider a scale that simply uses initial ranks, which is
trivially compatible). Given a compatible scale S ∈ SE , we denote by BS

i the
belief base obtained from Bi by using a compatible scale S. More formally, BS

i

is obtained by replacing each pair (ϕij , RBi(ϕij)) by (ϕij ,S(ϕij)). Moreover, we
denote by ES the multi-set obtained by application of S on each Bi from E.

Definition 5 (Definition of �E
Σ). Let ω, ω′ be two interpretations of Ω. Then:

ω �E
Σ ω′ iff ∀S ∈ SE , ω �

ES
Σ ω′

where �ES
Σ is the result of applying the Definition 3 on ES .

Models of �μ
Σ(E) are again: Mod(�μ

Σ(E)) = Min(Mod(μ),�E
Σ).

Example 4. Let consider again B1 = {(a, 6), (b, 3)}, B2 = {(a ∨ b, 3), (¬b, 1)}
and B3 = {(¬a, 5}. Table 4 provides profiles associated with interpretations for
each of two compatible scales, S1 and S2. Bold elements represent models of
�μ

Σ(ESi). For instance, ω2, and ω3 are models of �μ
Σ(ES1) according to S1.

3.2 Characterization of the Result of Merging

This subsection shows that it is possible to characterize the result of fusion
without comparing all compatible scales. The following proposition shows that

60 S. Benferhat, S. Lagrue, and J. Rossit

Table 4. Profiles associated with interpretations

ω ∈ Ω a b νES1 (ω) ΣS1 νES2 (ω) ΣS2

ω0 0 0 〈2, 2, 0〉 4 〈6, 3, 0〉 9
ω1 0 1 〈2, 1, 0〉 3 〈6, 2, 0〉 8
ω2 1 0 〈1,0,1〉 2 〈4, 0, 4〉 8
ω3 1 1 〈0,1,1〉 2 〈0,2,4〉 6

an interpretation ω is a model of �μ
Σ(E) if and only if there exists a compatible

scale S where ω is a model of �μ
Σ(ES). More formally:

Proposition 1. Let E be a multi-set of ranked belief bases. Then
ω ∈ Mod(�μ

Σ(E)), if and only if there exists a compatible scaling S such that
ω ∈Mod(�μ

Σ(ES)).

We now generalize this proposition by characterizing the whole ordering �E
Σ

and not only its minimal elements. It turns out that �E
Σ corresponds to the

well-known Pareto Criterion. Namely:

Proposition 2. Let ω and ω′ be two interpretations of Ω. Then ω �E
Σ ω′ iff:

(i) ∀j ∈ {1, .., n}, κBj (ω) ≤ κBj (ω′) and (ii) ∃i ∈ {1, ..., n}, κBi(ω) < κBi(ω′).

The first condition means that ω is at least as preferred as ω′ with respect to each
belief base, while the second condition means that at least one base expresses a
strict preference for ω.

4 Logical Behavior and Rational Postulates

Many postulates have been proposed in the literature to characterize merging
operators under constraints (see [3] for details). These postulates are defined
when belief bases are represented by propositional formulas. In our framework,
these postulates have been adapted (see [5] for details) as follows:

(IC0) �μ(E) |= μ ;
(IC1) If μ is consistent, then �μ(E) is consistent;
(IC2∗) If

∧
B∈E B

∗ is consistent with μ, then
�μ(E) ≡ ∧

B∈E B
∗ ∧ μ;

(IC3∗) If E1 ≡R E2 and μ1 ≡ μ2, then
�μ1(E1) ≡ �μ2(E2);

(IC4∗) If B∗
1 |= μ and B∗

2 |= μ, then �μ({B1, B2}) ∧B∗
1 is

consistent iff �μ({B1, B2}) ∧B∗
2 is consistent;

(IC5) �μ(E1) ∧�μ(E2) |= �μ(E1

⊔
E2);

(IC6) If �μ(E1) ∧�μ(E2) is consistent, then
�μ(E1

⊔
E2) |= �μ(E1) ∧�μ(E2);

(IC7) �μ1(E) ∧ μ2 |= �μ1∧μ2(E);
(IC8) If �μ1(E) ∧ μ2 is consistent, then

�μ1∧μ2(E) |= �μ1(E) ∧ μ2.

An Analysis of Sum-Based Incommensurable Belief Base Merging 61

Additional postulates have been proposed in [3]:

(IC6’) If �μ(E1) ∧�μ(E2) is consistent, then
�μ(E1

⊔
E2) |= �μ(E1) ∨�μ(E2);

(MAJ) ∃m ∈ N : �μ(E � Bm
i) |= B∗

i , (with Bm
i = {Bi} � ... � {Bi} m times

and � the multi-set union) ;
(MI) ∀m, �μ(E1 � Em

2) ≡ �μ(E1 � E2).

The majority postulate (MAJ) characterizes majoritarian merging operators:
if a given set of beliefs is repeated often enough, this set of beliefs should be
accepted in the result of merging. At the opposite, the majority independence
postulate states that the result of merging is independent of the repetition of
beliefs. (IC6’) is a weakened version of (IC6). We also introduce in this paper
a stronger version of (IC4∗), called the consensus postulate:

(CSS) ∀Bi ∈ E, if Bi |= μ, then B∗
i ∧�μ(E) is consistent.

4.1 The Commensurable Case

In the commensurable case, the following proposition shows that �μ
Σ satisfies

most of the original postulates:

Proposition 3. �μ
Σ satisfies (IC0), (IC1), (IC2∗), (IC3∗), (IC5), (IC6),

(IC6’), (IC7), (IC8) and (MAJ).

However, �μ
Σ falsifies (IC4∗), (MI) and (CSS). For the lack of space, we only

provide a counter-example for (IC4∗):

Example 5. Let us consider B1 = {(¬a, 2), (b, 1)}, B2 = {(a, 3), (b, 2)}, and μ =
a∨b. We have B∗

1 |= μ and B∗
2 |= μ, and from Table 5,Mod(�μ

Σ(E)) = {ω3}, and
then �μ

Σ(E) ≡ a ∧ b. Hence, on this example, �μ({B1, B2}) ∧B∗
2 is consistent,

but �μ({B1, B2}) ∧B∗
1 is not.

Table 5. Profiles associated with interpretations

a b κB1(ω) κB2(ω) νE(ω) Σ(νE(ω))
ω0 0 0 1 3 〈1,3〉 4
ω1 0 1 0 3 〈0,3〉 3
ω2 1 0 2 2 〈2,2〉 4
ω3 1 1 2 0 〈2,0〉 2

4.2 The Incommensurable Case

When belief bases are incommensurable, we obtain:

Proposition 4. �μ1
Σ (E) satisfies (IC0), (IC1), (IC2∗), (IC3∗), (IC4∗),

(IC5), (IC7) and (CSS).

However, �μ
Σ falsifies (IC6), (IC6’), (IC8), and (MAJ). For the lack of space,

we only provide a counter-example for (IC6).

62 S. Benferhat, S. Lagrue, and J. Rossit

Example 6. Let us consider μ = �, E1 = {B1 = {(a, 1)}, B2 = {(¬a, 1)}} and
E2 = {B3 = {(a, 1)}}. From Tables 6, we have �μ

Σ(E1) ≡ � and �μ
Σ(E2) ≡ a.

Furthermore, we have �μ
Σ(E1

⊔
E2) ≡ �, but �μ

Σ(E1) ∧ �μ
Σ(E2) ≡ a. Hence,

(IC6) is not satisfied since �μ
Σ(E1)∧�μ

Σ(E2) is consistent, but �μ
Σ(E1

⊔
E2) �|=

�μ
Σ(E1) ∧ �μ

Σ(E2).

Table 6. Profiles associated with interpretations

a b νE1(ω) νE2(ω) νE1
⊔

E2(ω)

ω0 0 0 〈1,0〉 〈1〉 〈1,0,1〉
ω1 0 1 〈1,0〉 〈1〉 〈1,0,1〉
ω2 1 0 〈0,1〉 〈0〉 〈0,1,0〉
ω3 1 1 〈0,1〉 〈0〉 〈0,1,0〉

Note that the non-satisfaction of (IC8) is due to the fact that when dealing with
incommensurable belief bases, �E

Σ is only a partial order. For instance, in [12],
the fusion mode based on partial order does not satisfy (IC8).

Regarding the non satisfaction of the majority postulate, the situation is even
worst. It can be shown that the Sum-based incommensurable belief base merging
operator satisfies the majority independence postulate.

Proposition 5. �μ
Σ(E) satisfies (MI).

5 Selection Functions of Compatible Scales

This section restricts our merging operator to particular subsets of compatible
scales, in order to derive more plausible conclusions. We discuss the following
particular classes of compatible scales:

– bounded class S(p): compatible scales such that the highest new rank assigned
to a formula cannot exceed a fixed threshold p (a positive integer).

– linear class Sl: this class only proceeds to a linear transformation of initial
ranks;

– weighted class Sw: this class allows a proportional change of initial weights;
– shift class Ss: this class allows to hold distance between ranks associated

with two distinct formulas from a given source.

Table 7 gives formal definitions of these selection functions:

Table 7. Particular classes of compatible scales

Class Notation {S s.t. ∀Bi ∈ E, ∀ϕ ∈ Bi : ... }
Bounded S(p) S(ϕ) ≤ p

Linear Sl S(ϕ) = ai.RBi(ϕ) + bi with ai > 0, bi ≥ 0

Weighted Sw S(ϕ) = ai.RBi(ϕ) with ai > 0

Shift Ss S(ϕ) = RBi(ϕ) + bi with bi ≥ 0

An Analysis of Sum-Based Incommensurable Belief Base Merging 63

Bounded compatible scales offer a natural way to select a set of compatible
scales, since in practice common scales are bounded. One can remark that the
smallest possible p is pmin = max{|Bi| : Bi ∈ E}, where |Bi| represents the
number of different rank (or ranks) in Bi. If p < pmin, then the set of compatible
scales is empty.

The shift compatible scale class allows to hold distance relations between
ranks of formulas. Indeed, when applying a such compatible scale S, then:
∀(ϕij , RBi(ϕij)), (ϕij′ , RBi(ϕij′)) ∈ Bi, S(ϕij)−S(ϕij′) = RBi(ϕij)−RBi(ϕij′).

Weighted compatible scales are obtained by multiplying associated ranks
RBi(ϕij) by a weight ai. Intuitively, these weights may represent the reliability
of sources (each Bi has a reliability weight ai), and the merging operator become
a weighted sum. Linear compatible scales class generalizes the two above classes
(weighted and shift).

We denote by �μ
Σ,S(p) (resp. �μ

Σ,Sl , �μ
Σ,Sw , and �μ

Σ,Ss) the order obtained
from Definition 5 by replacing S by S(p) (resp. Sl, Sw, and Ss). Following subsec-
tions analyze the impact of restricting to particular classes on the cautiousness
of our merging operator and on the satisfaction of rational postulates.

5.1 Impact on Cautiousness

As a first surprising result, restricting to classes of affine or linear compatible
scales does not affect the result of merging:

Proposition 6. ∀ω, ω′ ∈ Ω,ω �E
Σ,Sl

E

ω′ iff ω �E
Σ,Sw

E
ω′ iff ω �E

Σ ω′.

However, inference based on bounded scales is in general more productive than
�μ

Σ . In fact, inference from bounded scales depends on the value of p, and for a
very particular value of p the standard sum-based merging operator is recovered.
Indeed, if all bases in E have the same number of different ranks, equal to p0,
and that the maximal rank associated with formulas in each Bi is p0, then
∀ω, ω′ ∈ Ω: ω �E

Σ,S
(p0)
E

ω′ iff ω �ESp0
Σ ω′.

Regarding inference based on shift compatible scales, it is also in general
more productive than �μ

Σ . In fact, we can even provide a criterion which allows
to characterize the order on possible worlds induced by �E

Σ,Ss
E
.

Proposition 7. Let ω, ω′ be two interpretations of Ω. Then ω �E
Σ,Ss

E
ω′ if and

only if: i)Σ(νE(ω)) < Σ(νE(ω′)) and ii)∀Bi ∈ {Bj ∈ E,ω′ |= Bj}, ω |= Bi.

A full picture of the relationships between these different merging operators
regarding prudence relations will be provided before the concluding discussion.

5.2 Impact on Rational Postulates

Table 8 summarizes the impact of selection functions on the satisfaction of pos-
tulates. In addition to Table 8, �μ

Σ,S(p) and �μ
Σ,Ss both satisfy (IC0), (IC1),

(IC2∗), (IC3∗), (IC5), and (IC7).

64 S. Benferhat, S. Lagrue, and J. Rossit

Table 8. Rational postulates satisfied in commensurable and incommensurable cases

(IC4∗) (IC6) (IC8) (MAJ) (MI) (CSS)
	μ

Σ -
√ √ √

- -
�μ

Σ

√
- - -

√ √
�μ

Σ,Ss

√
- - - -

√
�μ

Σ,S(p)

√
- -

√
- -

The main reason of the non-satisfaction of the majority postulate by �μ
Σ(E)

is that new ranks which are assigned to belief bases by compatible scales are not
bounded. For instance, assume that B1 contains ϕ and B2 contains ¬ϕ. Since
compatible scales are not bounded, then even if B1 is repeated m times, it is
always possible to find a compatible scale that assigns a high rank to formulas
of B2 (hence to ¬ϕ) which blocks the inference of ϕ. This explains why �μ

Σ,S(p)

satisfies (MAJ) while other compatible based operators not.
�μ

Σ satisfies most of postulates except the fairness postulate (IC4∗) and
(CSS). A natural question is whether there exists a single compatible scale
that satisfies the fairness postulate and the consensus postulate. The following
proposition provides a very particular case where (IC4∗) and (CSS) hold.

Proposition 8. Let E = {B1,= {(ϕ,RB1(ϕ))}, B2 = {(ϕ′, RB2(ϕ′))}}. Let S
be a compatible scale. Then: �μ

Σ,S satisfies (IC4∗)and (CSS) iff S(ϕ) = S(ϕ′).

However, in general, there is no hope to recover the satisfaction of the fairness
and consensus postulates if one only uses a single compatible scale.

Proposition 9 (of impossibility). There is no single compatible scale such
that �μ

Σ,S satisfies the fairness and the consensus postulate for multi-set of
sources E, namely: �S s.t. ∀E : �μ

Σ,S satisfies (IC4∗) or (CSS).

For the counter example, it is enough to consider E = {B1, B2, B3} with B1 =
{(a ∧ c, 1)}, B2 = {(¬a, 1)}, and B3 = {(¬c, 1), (a, 2)}.

6 A Comparative Study

This section provides a comparative study of our merging operators with re-
spect to max-based merging and coherence-based merging. Let �μ

Max(E) (resp.
�μ

Max(E)) be defined exactly as �μ
Σ(E) (resp. �μ

Σ(E)) given by Definition 5
(resp. Definition 3), except that the sum operator Σ is replaced by the maxi-
mum operator Max (see [5] for more details).

Note that in the commensurable case, the sum-based and the Max-based
merging operators are incomparable. In the incommensurable case, we have a
strict inclusion between these two inference relations, namely:

�μ
Σ(E) |= �μ

Max(E).

An Analysis of Sum-Based Incommensurable Belief Base Merging 65

Another way to deal with merging incommensurable bases is to view the set
of bases to merge E as a partially ordered belief bases (KE , <KE) where KE is
a multi-set containing all formulas in each bases of E, and <KE is defined by:
ϕij <KE ϕik iff ∃Bi ∈ E such as ϕij ∈ Bi, ϕik ∈ Bi and RBi(ϕij) < RBi(ϕik).
Computing the result of merging comes down to select a set of preferred interpre-
tation, according to (KE , <KE). One way to define such preferred interpretations
is to use the well-known set inclusion-based criterion defined by [13]:

Definition 6. An interpretation ω is said to be Incl-preferred to another inter-
pretation ω′, denoted by ω �Incl

E ω′, iff: ∀ϕ ∈ KE s.t. ω �|= ϕ and ω′ |= ϕ,
∃ψ ∈ KE s.t. ω |= ψ and ω′ �|= ψ and: ψ <KE ϕ.

This leads to define a merging operator �μ
Incl based on �Incl

E . Preferred beliefs
for this merging operator are defined as follows:
Mod(�μ

Incl(E)) = Min(Mod(μ), �Incl
E).

The following proposition expresses that when each belief base contains ex-
actly one formula, namely KE is a set of propositional formulas, then �μ

Incl and
�μ

Σ provide the same result:

Proposition 10. Assume that each Bi exactly contains one propositional for-
mula. Then ∀ϕ ∈ L, �μ

Incl(E) |= ϕ iff �μ
Σ(E) |= ϕ.

Again, Proposition 10 shows that �μ
Σ has a different behavior in the incommen-

surable case, since if Bi’s are commensurable and contains a single formula, then
�μ

Σ is more productive than inclusion-based approach. Now, if Bi’s contain more
than one formula, then �μ

Incl(E) and �μ
Σ(E) are incomparable.

Example 7. Let E1 = {B1, B2, B3} be such that B1 = {(a ∧ b, 1)}, B2 = {(¬a ∧
b, 1)} and B3 = {(a, 1)}. The sum-based operator will conclude {a} whereas
the inclusion-based merging operator will not. Now consider E2 = {B1, B2}
whereB1 = {(b, 2), (a, 1)} andB2 = {(¬a, 2)}. Here, the inclusion-based merging
operator will deduce {b} whereas the sum-based merging operator will not.

Figure 1 summarizes the links between all operators in terms of cautiousness:
�1 → �2 means that �1 can be inferred by �2 . Flat case is also represented.

�μ
Max

�μ
Σ ≡ �Σ,Sl ≡ �Σ,Sw(≡flat �μ

Incl)

�μ
Σ,Ss

�μ
Max �μ

Σ,S(p) �μ
Σ,S(1) �μ

Σ

flat

Fig. 1. Cautiousness of the different merging operators

66 S. Benferhat, S. Lagrue, and J. Rossit

In case of flat bases (namely each Bi contains exactly one formula), then �μ
Incl

is more cautious than if one uses bounded scales with p = 1. In fact, when each
belief base in E contains a single formula, then we can check that the well-known
cardinality-based inference can be recovered from bounded scales with p = 1.

7 Conclusion

This paper investigated the sum-based merging operator for incommensurable
bases. We proposed a characterization of the merging result in terms of com-
patible scales and in terms of a Pareto-ordering. This paper showed that the
behavior of the sum-based merging in incommensurable case departs from the
commensurable case, regarding postulates satisfaction and cautiousness proper-
ties. In particular, the sum-based merging operator is no longer a majoritarian
operator. We analyzed different classes of compatible scales. Bounded compat-
ible scales allow to recover the majority operator, and some coherence based
approaches [14] when bases contain a single formula. We also analyzed the fair-
ness postulate (IC4∗) and the new postulate proposed in this paper, called
consensus postulate (CSS). We showed that there is no way to recover these
postulates if a single compatible scale is selected. Lastly, this paper provided a
comparative study between different merging operators discussed in this paper.

References

1. Everaere, P., Konieczny, S., Marquis, P.: Conflict-based merging operators. In:
Proceedings of KR 2008, pp. 348–357 (2008)

2. Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83(2),
363–378 (1996)

3. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical
framework. Journal of Logic and Computation 12(5), 773–808 (2002)

4. Guilin, Q., Liu, W., Bell, D.A.: Merging stratified knowledge bases under con-
straints. In: Proceedings of AAAI 2006, July 2006, pp. 348–356 (2006)

5. Benferhat, S., Lagrue, S., Rossit, J.: An egalitarist fusion of incommensurable
ranked belief bases under constraints. In: Proceedings of AAAI 2007, pp. 367–372
(2007)

6. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Arti-
ficial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University
Press, Oxford (1994)

7. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic state.
Causation in Decision, Belief Change and Statistics, 105–134 (1988)

8. Williams, M.A.: Iterated theory base change: A computational model. In: Proceed-
ings of IJCAI 1995, pp. 1541–1547 (1995)

9. Meyer, T.: On the semantics of combination operations. Journal of Applied Non-
Classical Logics 11(1-2), 59–84 (2001)

10. Nebel, B.: Belief revision and default reasoning: Syntax-based approaches. In: Pro-
ceedings of KR 1991, July 1991, pp. 417–428 (1991)

11. Liberatore, P., Schaerf, M.: Arbitration: A commutative operator for belief revision.
In: Proceedings of the 2nd World Conference on the Fundamentals of Artificial
Intelligence, pp. 217–228 (1995)

An Analysis of Sum-Based Incommensurable Belief Base Merging 67

12. Everaere, P., Konieczny, S., Marquis, P.: A diff-based merging operator. In: Pro-
ceedings of NMR 2008, pp. 19–25 (2008)

13. Brewka, G.: Preferred subtheories: an extended logical framework for default rea-
soning. In: Proceedings of IJCAI 1989, pp. 1043–1048 (1989)

14. Benferhat, S., Dubois, D., Prade, H.: Some Syntactic Approaches to the Handling
of Inconsistent Knowledge Bases: a Comparative Study Part 2: the Prioritized
Case. In: Orłowska, E. (ed.) Logic at Work: Essays Dedicated to the Memory of
H. Rasiowa, pp. 437–511. Physica-Verlag (1999)

An Argument-Based Approach to Using Multiple
Ontologies

Elizabeth Black1, Anthony Hunter2, and Jeff Z. Pan3

1 Department of Engineering Science,
University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

2 Department of Computer Science,
University College London, Gower Street, London WC1E 6BT, UK

3 Department of Computing Science,
University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract. Logic-based argumentation offers an approach to querying and revis-
ing multiple ontologies that are inconsistent or incoherent. A common assump-
tion for logic-based argumentation is that an argument is a pair 〈Φ, α〉 where Φ is
a minimal subset of the knowledgebase such that Φ is consistent and Φ entails the
claim α. Using dialogue games, agents (each with its own ontology) can exchange
arguments and counterarguments concerning formulae of interest. In this paper,
we present a novel framework for logic-based argumentation with ontological
knowledge. As far as we know, this is the first proposal for argumentation with
multiple ontologies via dialogues. It allows two agents to discuss the answer to
queries concerning their knowledge (even if it is inconsistent) without one agent
having to copy all of their ontology to the other, and without the other agent hav-
ing to expend time and effort merging that ontology with theirs. Furthermore, it
offers the potential for the agents to incrementally improve their knowledge based
on the dialogue by checking how it differs from the other agent’s.

1 Introduction

Inconsistency and incoherence are recognized as significant problems in managing on-
tological knowledge (e.g. [11]). These problems are particularly an issue when using
multiple ontologies. Current solutions include the “maxcon” approach (which involves
merging ontologies by selecting a maximal consistent subset of the union of the multiple
ontologies) and the “oracle” approach (which involves constructing a merged consistent
ontology by getting extra information to help resolve the conflicts). Unfortunately, the
maxcon approach results in a loss of useful information, as it may not be certain which
subset to choose, and therefore an arbitrary choice is made, and the oracle approach in-
volves a lot of work that may not be necessary if for example a query can be answered
from a small part of the agents’ knowledge, and furthermore that this knowledge may
not even be in conflict.

To address these problems, here we explore an alternative approach which involves
only focusing on the subset of the union of the ontologies that is required for answering
queries. Our approach is to keep the ontologies separate, and associate each ontology
with an agent. Then, the agents enter into a dialogue in which arguments are exchanged

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 68–79, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Argument-Based Approach to Using Multiple Ontologies 69

concerning some subject. To simplify our presentation, we restrict consideration to two
agents 1 and 2. Each agent i has a personal knowledgebase (or perbase) Δi that is a
description logic ontology (e.g. OWL). We assume each perbase is finite, consistent
and coherent, but that normallyΔ1 ∪Δ2 is inconsistent or incoherent. We also assume
they use the same description logic, though not necessarily the same vocabulary (i.e.
they can use different names for the same concept and/or the same names for different
concepts). Each perbase is private (i.e. the contents of the perbase are only available
to the agent). The strategy used by the agent dictates what the agent will make public
from its perbase. We also assume a finite knowledgebase of lexical matching knowledge
called a lexbase Π that contains just formulae of the form A � B where A and B are
named concepts. Each formula in Π is obtained by a lexical matching algorithm, and
there is some reasonable probability that it is correct. Π is public knowledge (i.e. the
contents are available to both agents) and Π may be inconsistent with either of the
perbases. We assume some external agent has decided what formulae are in Π , and that
each agent can choose to draw on formulae from the lexbase as required.

The aim of each agent is to co-operate with the other to answer questions about the
ontological information they have, even though there may be conflicts between their
perbases. This will allow agents to efficiently and effectively use their own ontology
with the other agent’s knowledge even when there is conflict between them. A further
benefit (which we consider in the discussion) is that each agent can improve their own
perbase through the argumentation process, and so undertake a form of partial merging
of the other agent’s ontological knowledge with their own ontological knowledge.

In the rest of this paper, we consider arguments based on description logic, and
present a general framework for dialogical argumentation. We show that using dia-
logical argumentation allows for agents to use multiple ontologies without having to
distribute each ontology to every other agent, and without having to merge the ontolog-
ical knowledge.

2 Logical Arguments

The usual paradigm for logic-based argumentation is that there is a large repository
of information, represented byΔ, from which logical arguments can be constructed for
and against arbitrary claims (e.g. [15,4,1,9,7]). There is no a priori restriction on the
contents, and the pieces of information in the repository can be arbitrarily complex.
Therefore, Δ is not expected to be consistent. It need not even be the case that every
single formula in Δ is consistent.

Our framework adopts a very common intuitive notion of a logical argument. Essen-
tially, an argument is a set of formulae that can be used to prove some claim, together
with that claim. Each claim is represented by a formula. Provability is represented by
a consequence relation that may be for a logic such as classical logic, or a description
logic.

Here we focus on description logics (DLs) [2], which is a family of logic-based
knowledge representation formalisms used as the underpinning of the standard OWL
Web ontology language. DLs are characterised by the constructors (such as C � D,
∃R.C, ∀R.C) for building complex concept descriptions, such as Animal�∀Eat.Plant

70 E. Black, A. Hunter, and J.Z. Pan

(animals that eat only plants), and role descriptions. A DL ontology O can consist of
concept axioms, such as concept inclusion axioms C � D (e.g., Cow � Animal �
∀Eat.Plant), role axioms, such as transitive role axioms, and individual axioms, such
as concept assertions (e.g. Cow(daisy) and Plant(grass1)),C(a) and role assertions
R(a, b) (e.g. Eat(daisy, grass1)). We use A ≡ B as shorthand for A � B and B �
A. A DL ontology O is consistent if there exists some interpretation J that satisfies all
its axioms. A conceptC is satisfiable w.r.t. O if there exists some interpretationJ of O
such that CJ is non-empty. A DL ontology O is coherent if all the named concepts in
O are satisfiable. Negated axioms are closely related to inconsistencies and changes in
ontologies. Since well known DLs do not provide enough expressive power to represent
negations of all the axioms, we use two relaxed notions of negation proposed in [8],
namely consistency-negation and coherence-negation. Intuitively speaking, an axiom α
and any of its consistency-negation (coherence-negation)β are inconsistent (incoherent,
resp.) with each other; i.e., {α, β} is inconsistent (incoherent, resp.).

We let L denote a DL and � denote the consequence relation of the DL. We use
α, β, γ, . . . to denote DL formulae (axioms),Δ,Φ, Ψ, . . . to denote sets of DL formulae,
and Names(α) to denote the set of names for concepts, roles and individuals from which
a formula α is composed.

Definition 1. An argument is a pair 〈Φ, α〉 s.t.: (1) Φ ⊆ Δ; (2) Φ is consistent and
coherent; (3) Φ � α; and (4) there is no Φ′ ⊂ Φ s.t. Φ′ � α. We say that 〈Φ, α〉 is an
argument for α. We call α the claim and Φ the support of the argument.

An undercut is a counterargument that directly opposes the support of an argument.

Definition 2. Let 〈Φ, α〉, 〈Ψ, β〉 be arguments. 〈Ψ, β〉 is an undercut for 〈Φ, α〉 iff
{β} ∪ Φ is inconsistent or incoherent.

Example 1. Let Δ = {A � B,B � C,A � D,A � ¬C}. Some arguments include
〈{A � B,B � C}, A � C〉 and 〈{A � ¬C}, A � ¬C〉 which undercut each other.

We can capture an argument
together with its undercuts, and by recursion, undercuts to undercuts, in a tree struc-

ture as follows. We assume that X denotes this set of arguments.

Definition 3. An argument tree for φ is a tree (N,E,X, f) where N is a set of nodes,
E is a set of edges, X is a set of arguments, and f : N → X assigns an argument to
each node s.t. (1) the root is assigned with an argument for φ (the root argument); (2)
for each node n, if m is a child of n, then f(m) is an undercut of f(n); and (3) for each
node n, if m is an ancestor of n in the branch, then the support of f(n) is not a subset
of the support of f(m).

The dialectical principle (widely adopted in the literature on argumentatation) eval-
uates each argument as defeated or undefeated: An argument is undefeated if all the
undercuts for it are defeated, and an argument is defeated if there is a undercut to it that
is undefeated. Any argument with no undercuts is undefeated. For example, let A1 be
the root argument,A2 and A3 be undercuts to A1, and A4 be an undercut to A3. In this
case, only A2 and A4 are undefeated.

An Argument-Based Approach to Using Multiple Ontologies 71

3 Dialogue Framework

The communicative acts in a dialogue are called moves. We assume that there are al-
ways exactly two agents taking part in a dialogue, each with its own identifier taken
from the set I = {1, 2}. Each agent takes it in turn to make a move to the other agent.
We also refer to agents using the variables x and x such that if x is 1 then x is 2 and if
x is 2 then x is 1. The format for moves is shown in Table 1, and the set of all moves
meeting the format is denoted M. For a movem, the function Sender returns the agent
that made the move.

We now informally explain the different types of move: A query move 〈x, query, α〉
starts a dialogue with the topic α; A posit move 〈x, posit, 〈Φ, α〉〉 asserts an argu-
ment 〈Φ, α〉 by x for the topic, or an undercut for a previous posit; A concede move
〈x, concede, α〉 asserts agent x will regard α as valid; and a close move 〈x, close, γ〉
is used when an agent has no other moves it can make. Note, for a posit move m =
〈x, posit, 〈Φ, α〉〉, we say that m is a posit move for α.

A dialogue is simply a sequence of moves, each of which is made from one partic-
ipant to the other. As a dialogue progresses over time, we denote each timepoint by a
natural number. Each move is indexed by a timepoint and exactly one move is made at
each timepoint.

Definition 4. A dialogue, denoted Dt, is a sequence of moves m1, . . . ,mt involving
two agents in I = {1, 2}, s.t. (1) m1 is of the form 〈x, query, γ〉; (2) Sender(ms) ∈ I
for 1 ≤ s ≤ t; and (3) Sender(ms) �= Sender(ms+1) for 1 ≤ s < t. The topic of the
dialogue Dt is returned by Topic(Dt) (i.e. Topic(Dt) = γ). The set of all dialogues is
denoted D.

The first move of a dialogue Dt must always be a query move (condition 1), every
move of the dialogue must be made to a participant of the dialogue (condition 2), and
the agents take it in turns to make moves (condition 3). In order to terminate a dialogue,
two close moves must appear one immediately after the other in the sequence (called a
matched-close).

Definition 5. LetDt be a dialogue s.t. Topic(Dt) = γ. We say thatms (1 < s ≤ t), is a
matched-close for Dt iff ms−1 = 〈x, close, γ〉 andms = 〈x, close, γ〉. Dt terminates
at t iff mt is a matched-close for Dt and there does not exist an s s.t. s < t and Ds

terminates at s.

Table 1. The move format, where γ is a formula, 〈Φ, φ〉 is an argument and x ∈ {1, 2} is the
agent that makes the move

Move Format
query 〈x,query, γ〉
posit 〈x,posit, 〈Φ, φ〉〉
concede 〈x, concede, γ〉
close 〈x, close, γ〉

72 E. Black, A. Hunter, and J.Z. Pan

Example 2. Δ1 ={¬C(b)};Δ2 ={C(b), R(b, a), C � ∀R.C,D(a)}; Π={C ≡ D}.

〈1, query, C(a)〉
〈2, posit, 〈{C(b), R(b, a), C � ∀R.C}, C(a)〉〉
〈1, posit, 〈{¬C(b)},¬C(b)〉〉
〈2, concede, D(a)〉
〈1, concede, C ≡ D〉
〈2, posit, 〈{C ≡ D,D(a)}, C(a)〉〉
〈1, close, C(a)〉
〈2, close, C(a)〉

Agent 2 posits an argument for the topic, and agent 1 provides an undercut to it. Then
each agent concedes a formula, and agent 2 uses these to posit an argument for the
topic.

Since all our examples are terminated dialogues, from now on we will omit the matched-
close moves.

We associate a commitment store with a dialogue, and let it grow monotonically over
the course of the dialogue: If an agent posits an argument, the support is added to the
commitment store; If an agent concedes a formula, it is added to the commitment store.
A commitment store is therefore the union of all the supports of all the arguments that
have been publicly posited along with all the formulae that have been publicly conceded
by the agents so far. For this reason, when constructing an argument, an agent may make
use of not only its own perbase but also those from the commitment store.

Definition 6. A commitment store Σt is ∅ at t = 0, and for all t ≥ 1, if mt =
〈x, posit, 〈Φ, φ〉〉, thenΣt =Σt−1∪Φ, else ifmt = 〈x, concede, α〉, thenΣt = Σt−1∪
{α}, otherwise Σt = Σt−1.

A protocol is a function that returns the set of moves that are legal for an agent to make
at a particular point in a particular type of dialogue. Here we give the specific protocol
that we require. It takes the dialogue and the identifier of the agent whose turn it is to
move, and returns the set of legal moves that the agent may make.

Definition 7. Let Dt be a dialogue s.t. Sender(mt) = x, and Topic(Dt) = γ. The
protocol for agent x is a function Protocolx : D → ℘(M) s.t. Protocolx(Dt) is

P posit
x (Dt) ∪ P concede

x (Dt) ∪ {〈x, close, γ〉}
where P posit

x (Dt) is { 〈x, posit, 〈Φ, φ〉〉 | 〈Φ, φ〉 is an argument } and P concede
x (Dt) is {

〈x, concede, φ〉 | φ �∈ Σt }.

Note that it is straightforward to check conformance with the protocol as the protocol
only refers to public elements of the dialogue (i.e. it does not refer to perbases). For
instance, the dialogue in Ex. 2 conforms to the protocol.

In general, a strategy for agent x is a function Strategyx : D → ℘(M) that takes the
dialogue Dt and returns a subset of the legal moves. A strategy is personal to an agent
and the moves that it returns depends on the agent’s private beliefs (i.e. its perbaseΔx).

A well-formed dialogue is a dialogue that does not continue after terminated and that
is generated by the strategy.

An Argument-Based Approach to Using Multiple Ontologies 73

Definition 8. A dialogue Dt is a well-formed dialogue iff, for all s (s < t), (1) Ds

does not terminate at s and (2) if Sender(ms) = x, then ms+1 ∈ Strategyx(Ds).

In the next section, we give a specific strategy for using inconsistent ontologies, and
then discuss alternatives to it.

4 An Example of a Strategy

We will shortly give a specific strategy function using the following subsidiary notions.

Definition 9. Let Ψ be a set of formulae. The set of arguments that can be formed from
Ψ is Args(Ψ) = {〈Φ,ψ〉 | Φ ⊆ Ψ and 〈Φ,ψ〉 is an argument }.

The posit moves that occur after and including the last posit move for the topic are
called live moves.

Definition 10. For Dt, the set of live moves, Live(Dt), is

{mk | there is an i s.t. i ≤ k ≤ t
and mi = 〈x, posit, 〈Φ,Topic(Dt)〉〉
and there is not a j s.t. (i < j ≤ t

and mj = 〈x, posit, 〈Ψ,Topic(Dt)〉〉)}
For instance, for Ex. 2, as sequence m1,m2, .. is made, the move m3 is live until the
move m6 is made.

Given a dialogue, we define as follows whether an argument can be a novel undercut
to extend the dialogue, as in Ex. 2, where each undercut is novel when posited.

Definition 11. 〈Φ, φ〉 is a novel undercut for Dt iff there is a set of posit moves
{n1, ..., nk} ⊆ Live(Dt) s.t. (1) n1 posits an argument for the topic, (2) 〈Φ, φ〉 is an
undercut for the posit of nk, (3) for each i, (1 < i ≤ k), ni is a posit for an undercut
for the posit of ni−1, (4) for each i, (1 ≤ i ≤ k), Φ is not a subset of the support of the
posit of ni.

We break a dialogue into phases. Intuitively, a phase is started by an agent positing an
argument for the topic, and ended either by the dialogue ending, or by the next move
being another posit move for the topic. So the live moves are in the latest phase in the
dialogue.

Definition 12. Let γ be the topic of Dt. A sequence of moves mi, ...,mk is a phase in
Dt iff mi, ...,mk is a subsequence of Dt (i.e. Dt is m1, ...,mi, ...,mk, ...,mt where
1 ≤ i ≤ k ≤ t), andmi is a posit for γ and either t is k or mk+1 is a posit of γ and for
all j s.t. i < j ≤ k, mj is not a posit for γ.

To ensure that each concede move is relevant, the formula being conceded must have
an atom in common with a formula already in the commitment store or with the topic
of the dialogue in order to ensure that it can potentially be used with other formulae in
a posit move.

74 E. Black, A. Hunter, and J.Z. Pan

Strategyx(Dt) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Scounter
x (Dt) iff Scounter

x (Dt) �= ∅
Sarg

x (Dt) iff Sarg
x (Dt) �= ∅ and Scounter

x (Dt) = ∅
Sconcede

x (Dt) iff Sconcede
x (Dt) �= ∅

and Scounter
x (Dt) = ∅ and Sarg

x (Dt) = ∅
〈x, close, Topic(Dt)〉 otherwise

Fig. 1. The strategy function selects moves according to the following preference ordering (start-
ing with the most preferred): posit moves, concede moves, and close moves. The conditions on
the r.h.s. of each iff statement above imposes this ordering.

Definition 13. A formula φ is relevant in Dt iff Names(φ) ∩ Names(Topic(Dt)) �= ∅
or ∃ψ ∈ Σt s.t. Names(φ) ∩ Names(ψ) �= ∅.

We also require the following subsidiary functions. Essentially, Sarg
x gives the posits for

the topic of the dialogue that have not been posited before, Scounter
x gives the undercuts

for any argument in the current phase that have not been given so far in the current
phase, and Sconcede

x gives any formulae from its perbase or the lexbase that is relevant
to the topic of the dialogue or to any formula already used in the dialogue.

Definition 14. For the strategy function given in Fig. 1, we require the following sets
of moves where y ∈ {1, 2}.

Sarg
x (Dt) = {〈x, posit, 〈Φ, φ〉〉 ∈ P posit

x (Dt) |
〈Φ, φ〉 ∈ Args(Δx ∪Σt)
and φ = Topic(Dt)
and ¬∃mi s.t. mi appears in Dt

and mi = 〈y, posit, 〈Φ, φ〉〉}

Scounter
x (Dt) = {〈x, posit, 〈Φ, φ〉〉 ∈ P posit

x (Dt) |
〈Φ, φ〉 ∈ Args(Δx ∪Σt)
and 〈Φ, φ〉 is a novel undercut for Dt}

Sconcede
x (Dt) = {〈x, concede, φ〉 ∈ P concede

x (Dt) |
(φ ∈ Δx or φ ∈ Π)
and φ is relevant in Dt}

For the strategy defined in Fig. 1, a posit for the topic is made if possible. Then, the
agents exhaustively present undercuts to this, and by recursion, undercuts to undercuts.
When this is exhausted, the first phase has finished. If another posit for the topic can be
made, then the second phase starts, and undercuts to this, and by recursion, undercuts
to undercuts are exhaustively presented, thereby bringing the second phase to a close.
Subsequent phases are constructed accordingly. The dialogue in Ex. 2 is generated by
this strategy.

Now, we consider how to evaluate these dialogues. The set of arguments posited in
a phase is called a constellation.

An Argument-Based Approach to Using Multiple Ontologies 75

Definition 15. Let mi, ...,mk be a phase in Dt. X is the constellation for mi, ...,mk

iff X = {〈Φ, α〉 | mj = 〈x, posit, 〈Φ, α〉〉 and mj ∈ {mi, ...,mk}}.

Intuitively, a dialogue supports the topic iff there is a constellation that can be obtained
from a phase of the dialogue and that the constellation can be arranged as an argument
tree with an undefeated root argument for the topic of the dialogue. For this property,
we require the following: A complete argument tree is an argument tree (N,E,X, f)
such that if there is a node n ∈ N , and an argument A ∈ X where A undercuts f(n)
and there is not a node n′ ∈ N such that n′ is on the branch from the root to n and the
support of A is a subset of the support of f(n′), then there is a child m of n such that
f(m) is A.

Definition 16. For a dialogue Dt where Topic(Dt) = α, Dt supports α iff there is a
phasemi, ...,mk inDt s.t.X is the constellation formi, ...,mk and there is a complete
argument tree for α (N,E,X, f) s.t. its root argument is undefeated.

The dialogue in Ex. 2 has two phases and supports C(a).

Example 3. Δ1 = {¬D(a), D � A,A � ¬C}; Δ2 = {D(a), D � C,D � E,E �
¬A}; Π = ∅.

〈1, query, C(a)〉
〈2, posit, 〈{D(a), D � C}, C(a)〉〉
〈1, posit, 〈{D � A,A � ¬C}, D � ¬C〉〉
〈2, posit, 〈{D � E,E � ¬A}, D � ¬A〉〉
〈1, posit, 〈{¬D(a)},¬D(a)〉〉

Here there is just one phase (m2, ...,m5). Agent 2 gives an argument, then Agent 1
gives an undercut to it, and then Agent 2 gives an undercut to that. Finally, Agent 1
comes back with an undercut to the first argument by Agent 2. As a result, C(a) is not
supported.

So each dialogue generated with this strategy ensures that all the possible arguments
relevant to the query are presented, and these arguments can be assessed to determine
whether the query is supported in the dialogue. Because the strategy returns choices of
moves, the dialogue is not necessarily unique given a query, but the alternative dialogues
that can be obtained given a query are isomorphic, and hence the constellations will be
the same.

With the protocol, we can also define alternative strategies that ensure alternative
useful behaviour. For instance, we could define a strategy that stops the dialogue when
a phase has occurred that alone can be used to demonstrate support for the topic, or we
could define a strategy that also gives the arguments for the negation of the topic, or we
could define a strategy that only allows a concede move of a formula when that formula
is consistent with its perbase.

5 Properties of Dialogical Argumentation

The constraints on the strategy function are such that we can show that all dialogues
terminate (as agents’ perbases are finite, hence there are only a finite number of different
moves that can be generated and agents cannot repeat these moves ad infinitum).

76 E. Black, A. Hunter, and J.Z. Pan

Proposition 1. For any well-formed dialogue Dt, there exists a Du s.t. t ≤ u and Du

terminates at u and Du extends Dt (i.e. the first t moves of Du are given by Dt).

A dialogue is sound if and only if, if an argument is generated by the dialogue, then it
can also be constructed from the union of the perbases and the lexbase.

Definition 17. Let Dt be a well-formed dialogue. We say that Dt is sound iff, for
each s, if s ≤ t and ms = 〈x, posit, 〈Φ, φ〉〉, then 〈Φ, φ〉 is an argument s.t. Φ ⊆
(Δx ∪Δx ∪Π).

When an agent posits an argument, it must be able to construct the argument from its
perbase and the commitment store. This is clear from the definition of the strategy. From
this, and the fact that the commitment stores are only updated when a posit or concede
move is made, we get that a commitment store is always a subset of the union of the
perbases and the lexbase. From these observations, we get soundness.

Proposition 2. If Dt is a well-formed dialogue, then Dt is sound.

Similarly, a dialogue is complete if and only if, if the dialogue terminates at t and it
is possible to construct an argument for the topic of the dialogue from the union of
the perbases and lexbase, then that argument will eventually be posited by one of the
agents.

Definition 18. Let Dt be a well-formed dialogue and Topic(Dt) = γ. We say that Dt

is complete iff, if there is a argument 〈Φ, γ〉 s.t. Φ ⊆ (Δx ∪Δx ∪Π), then there is a
move 〈x, posit, 〈Φ, γ〉〉 in Dt.

In order to show that all dialogues are complete, we need some further lemmas. The
first states: If an agent cannot produce, given their perbase and the commitment store,
an argument for the topic of the dialogue, then the strategy forces them to concede
formulae from their perbase and the lexbase, thus adding to the commitment store.

Lemma 1. Let Dt be a well-formed dialogue with Topic(Dt) = γ. If Sarg
x (Dt) = ∅

and Scounter
x (Dt) = ∅ and there is a β ∈ Δx ∪Π s.t. β is relevant for Dt and β �∈ Σt

then 〈x, concede, β〉 ∈ Strategyx(Dt).

Following from the above lemma, we obtain the following lemma that says if there is
an argument for the topic of the dialogue that can be obtained by pooling the agents’
perbases and the lexbase, then, once the dialogue has terminated, there is the support
for this argument in the union of the agent’s perbase with the commitment store.

Lemma 2. Let Dt be a well-formed dialogue that terminates at t with Topic(Dt) = γ.
If there is a Φ ⊆ (Δx ∪Δx ∪Π) s.t. 〈Φ, γ〉 is a argument, then Φ ⊆ (Δx ∪Σt).

The next lemma says that if there is an argument for the topic of the dialogue that can
be obtained from an agent’s perbase and the commitment store, then the strategy will
force the posit of that argument at some point in the dialogue.

Lemma 3. Let Dt be a well-formed dialogue that terminates at t with Topic(Dt) = γ.
If there is a Φ ⊆ (Δx ∪ Σt) s.t. 〈Φ, γ〉 is an argument, then there is an s s.t. s < t and
ms = 〈x, posit, 〈Φ, γ〉〉.

An Argument-Based Approach to Using Multiple Ontologies 77

Using the above lemmas, it is straightforward to now show that dialogues are complete.

Proposition 3. If Dt is a well-formed terminated dialogue, then Dt is complete.

A dialogue is faithful if it supports the topic iff the arguments that can be constructed
from the union of the perbases and the lexbase can be arranged as a complete argument
tree for the topic where the root argument is undefeated.

Definition 19. LetDt be a well-formed dialogue, Topic(Dt) = γ, andX = Args(Δx∪
Δx ∪Π). We say that Dt is faithful when the following equivalence holds.

Dt supports γ iff
there is a complete argument tree (N,E,X, f) for γ
where f(n) is undefeated for root n

From completeness and soundness, for topic γ, we get that 〈Φ, γ〉 is an argument from
the union of the agents’ perbases and the lexbase iff there is a posit move of 〈Φ, γ〉 in the
dialogue. Furthermore, there is exactly one phase for each of these arguments 〈Φ, γ〉.
We can then generalize the completeness and soundness results so that for each phase,
if 〈Φ, γ〉 is the argument that starts the phase, then the posit moves made in the phase
contain exactly, the undercuts of 〈Φ, γ〉, and by recursion, the novel undercuts to each
undercut, that could be obtained from the union of the agents’ perbases and the lexbase.
Therefore, each phase is isomorphic to a complete argument tree for the topic that can
be obtained from the union of the agents’ perbases and the lexbase, and each complete
argument tree for the topic that can be obtained from the union of the agents’ perbases
and the lexbase is isomorphic to a phase. Hence, we get the following.

Proposition 4. If Dt is a well-formed terminated dialogue, then Dt is faithful.

A corollary of this proposition is that all the minimal inconsistent subsets of the union
of the agents’ ontologies that involve the topic of the dialogue can be recovered from
the commitment store of the dialogue. In other words, from each phase of the dialogue,
the minimal inconsistent subsets involving the query can be obtained from the posit
starting the phase, and the undercuts to this posit.

So in this section, we have shown that the dialogues always terminate, they are sound
(any argument posited is an argument that can come from the union of the agents’
ontologies plus the lexbase), they are complete (any argument for the topic obtainable
from the union of the agents’ ontologies plus the lexbase, is posited in the dialogue),
they are faithful (any argument for the topic shown to be undefeated given the union
of the agents’ ontologies plus the lexbase, is shown to be undefeated in a phase in the
dialogue, and vice versa). These properties mean that the dialogical argumentation is
equivalent to argumentation with the union of the agents’ ontologies plus the lexbase,
but with the advantage that it is not necessary to copy all of each ontology to each agent
in order to undertake the argumentation. Rather, just enough knowledge is exchanged
in the posit and concede moves for the argument trees to be implicitly constructed in
the dialogue.

78 E. Black, A. Hunter, and J.Z. Pan

6 Conclusions

We have presented a dialogical argumentation framework for using multiple ontologies.
In comparison with the maxcon approach, we do not lose information, rather we keep
it all, and we do not make arbitrary choices. Furthermore, any inference that can be
obtained from the maxcon approach can be obtained from our approach, but not vice
versa. In comparison with the oracle approach, we may get inferior inferences (i.e.
inferences that with the benefit of some oracle are not deemed to be good), but the
significant advantage here is that we do not need to copy and merge all of the ontology
for each agent to use knowledge from other agents’ ontologies.

There are other proposals for argumentation with ontologies. In [10,13], all the on-
tological knowledge is in a centralized location, and so they do not get the advantages
that come from using dialogues, and in [12], dialogues are used for discussing ontology
alignments, but not for querying the ontological knowledge.

Another advantage of our approach is that it allows an agent to determine how its
perbase differs from another. This can then be used by the agent to decide how to update
its perbase. For instance, if it regards the other agent as more reliable, or if it has had
the same conflict with a number of agents, it may choose to delete some of its own
knowledge.

Our system also allows the definition of alternative strategies that ensure alternative
intelligent behaviour. For instance, we can define a more efficient strategy that only
builds a pruned version of the argument tree and yet still produces faithful dialogues.
Also we can refine how agents chose to concede a move from the lexbase (e.g. by
only allowing a formula to be conceded if it is consistent with the agent’s perbase,
or by more tightly coupling concession to the search for premises for arguments and
counterarguments).

Our proposal is influenced by [5], but it does involve some substantial developments
over it: (1) That paper was for a simple propositional defeasible logic whereas this paper
is for much richer description logics; (2) That paper was only about finding arguments
whereas this paper is about the more complex issue of finding warranted arguments; (3)
That paper has different moves, protocol and strategy to this paper; (4) This paper has
a more general framework based on phases that is valuable for supporting and auditing
diverse protocols and strategies for arguing about ontologies.

The dialogues generated by our system allow agents to jointly construct arguments
for a topic and to determine if this topic is supported given the union of available knowl-
edge. As far as we are aware, there are only three other dialogue systems that share
this same aim and have been shown to have similar properties to ours (i.e. are faith-
ful) [3,16,6]; However, none deal with ontological knowledge and the first two impose
restictions on the distribution of formulae between the agents. [14] also consider com-
pleteness properties for general classes of protocol that allow agents to jointly construct
argument trees, but they do not allow the joint construction of arguments nor do they
consider ontological knowledge.

In future work, we will develop a range of more refined strategies including for
conceding formulae from the lexbase. We will also extend our system to address wider
issues concerning semantic heterogenity arising between ontologies.

An Argument-Based Approach to Using Multiple Ontologies 79

References

1. Amgoud, L., Cayrol, C.: A model of reasoning based on the production of acceptable argu-
ments. Annals of Mathematics and Artificial Intelligence 34, 197–216 (2002)

2. Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P. (eds.): Description Logic Hand-
book: Theory, implementation and applications. Cambridge University Press, Cambridge
(2002)

3. Bentahar, J., Alam, R., Maamar, Z.: An argumentation-based protocol for conflict resolution.
In: KR 2008-workshop on Knowledge Representation for Agents and Multi-Agent Systems,
pp. 19–35 (2008)

4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial
Intelligence 128, 203–235 (2001)

5. Black, E., Hunter, A.: A generative inquiry dialogue system. In: 6th Int. Joint Conf. on Au-
tonomous Agents and Multi-Agent Systems, pp. 1010–1017 (2007)

6. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-Agent
Systems 19(2), 173–209 (2009)

7. Dung, P., Kowalski, R., Toni, F.: Dialectical proof procedures for assumption-based admis-
sible argumentation. Artificial Intelligence 170, 114–159 (2006)

8. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and
changes in ontologies. In: 21st AAAI Conf., pp. 1295–1300 (2006)

9. Garcı́a, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory
and Practice of Logic Prog. 4(1), 95–138 (2004)

10. Gómez, S., Chesñevar, C., Simari, G.: An argumentative approach to reasoning with inconsis-
tent ontologies. In: Knowledge Representation and Ontologies Workshop, pp. 11–20 (2008)

11. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: 19th
Int. Joint Conf. on Artificial Intelligence, pp. 454–459 (2005)

12. Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation
over ontology correspondences in MAS. In: 6th Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems, pp. 1293–1300 (2007)

13. Moguillansky, M., Rotstein, N., Falappa, M.: A theoretical model to handle ontology de-
bugging & change through argumentation. In: 2nd Int. Workshop on Ontology Dynamics
(2008)

14. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utterances in for-
mal inter-agent dialogues. In: 6th Int. Joint Conf. on Autonomous Agents and Mutli-Agent
Systems, pp. 1002–1009 (2007)

15. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. Journal of Applied Non-classical Logic 7, 25–75 (1997)

16. Thimm, M., Kern-Isberner, G.: A distributed argumentation framework using defeasible
logic programming. In: 2nd Int. Conf. on Computational Models of Argument, pp. 381–392
(2008)

A Model Based on Possibilistic Certainty Levels

for Incomplete Databases

Patrick Bosc1, Olivier Pivert1, and Henri Prade2

1 Irisa – Enssat, University of Rennes 1
Technopole Anticipa 22305 Lannion Cedex France

2 IRIT, CNRS and University of Toulouse, 31062 Toulouse Cedex 9, France
bosc@enssat.fr, pivert@enssat.fr, prade@irit.fr

Abstract. This paper deals with the modeling and querying of a
database containing uncertain attribute values, in the situation where
some knowledge is available about the more or less certain value (or dis-
junction of values) that a given attribute in a given tuple can take. This
is represented in the setting of possibility theory. A relational database
model suited to this context is introduced, and selection, join and union
operators of relational algebra are extended so as to handle such rela-
tions. It is shown that i) the model in question is a strong representation
system for the algebraic operators considered, and that ii) the data com-
plexity associated with the extended operators in this context is the
same as in the classical database case, which makes the approach highly
scalable. A possibilistic logic encoding of the model is also outlined.

1 Introduction

Thirty years ago, two papers authored respectively by E.F. Codd [5] and W.
Lipski [16] were published the same year on the issue of extending the relational
database model so as to represent unknown (null) values. Since then, many
authors have made diverse proposals to model and handle databases involving
uncertain or incomplete data. In particular, the last two decades have witnessed
an explosion of research on this topic (cf. e.g., [2,3,6,7,11,13,15,18] for some recent
ones). The notion of an uncertain (or imprecise) database covers two aspects:

– Attribute uncertainty: i.e. when some attribute values are ill-known;
– Existential uncertainty: i.e. when the existence of some tuples is itself un-

certain.

In this paper, we deal with the first aspect only. Even though most of the liter-
ature about uncertain databases considers probability theory as the underlying
uncertainty model, some approaches rather rest on possibility theory [19]. The
initial idea consisting in applying possibility theory to the modeling of incom-
plete databases goes back to the early 80’s with the work by Prade and Testemale
[17]. More recent advances on this topic can be found in [4]. In the present paper,
we introduce a new idea which is to use the notion of certainty (necessity) to
qualify the likeliness that an ill-known piece of data takes a given value. With
respect to using probability theory, one expects the following advantages:

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 80–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 81

– the qualitative nature of the model makes easier the elicitation of the degrees
attached to the various candidate values;

– in probability theory, the fact that the sum of the degrees from a distribution
must equal 1 makes it difficult to deal with incompletely known distributions;

– there does not exist any probabilistic logic which is complete and works
locally as possibilistic logic does [10]: this can be problematic in the case
where the degrees attached to certain pieces of data must be automatically
deduced from those attached to some other pieces of data (when data coming
from different sources have to be merged into a single database, for instance).

With respect to probabilistic databases and possibilistic ones, the main advan-
tage — and this constitutes a major result of this paper — lies in the fact that
operations from relational algebra can be extended in a simple way and with a
data complexity which is the same as in a precise database context.

The rest of the paper is organized as follows. Section 2 is devoted to a reminder
about basic notions concerning the interpretation of an uncertain database in
terms of possible worlds, as well as the property characterizing a strong represen-
tation system. In Section 3, we present the main features of the certainty-based
model and we describe a method that can be used to prove that it is a strong
representation system for a given set of operators. Section 4 gives the definition
of the compact operators (i.e., operators working directly on tables of the model)
for selection, join and union in this framework. In Section 5, a possibilistic logic
encoding of the model is briefly discussed, before concluding.

2 Basic Notions

2.1 Interpretation of an Uncertain Database in Terms of Worlds

The possible worlds model is founded on the fact that uncertainty in data makes
it impossible to define what precisely the real world is. One can only describe
the set of possible worlds which are consistent with the available information. As
far as a table T conveys some imprecision/uncertainty, several interpretations
(I) can be drawn from T and the set of all the interpretations of T is denoted
by rep(T). The notation rep(D) extends naturally to an uncertain database D
involving several tables. Note: a regular database is a special case of an uncertain
one which has only one interpretation.

In an incomplete relational database D, attribute values in the tables of D
may be imprecisely known and then represented as sets of candidates of various
kinds, including null values, sets and intervals, and distributions.

From a semantic point of view, such an uncertain database D can be inter-
preted in terms of a (possibly infinite) set of usual databases, also called worlds
W1, ..., Wp, and rep(D) = {W1, ..., Wp}. This view establishes a strong connec-
tion between uncertain and regular databases, which is particularly interesting
since it offers a canonical definition of the meaning of queries addressed to un-
certain databases as it will be seen later. Any world Wi is obtained by choosing a
candidate value in each set appearing in every relation Tj pertaining to D. One

82 P. Bosc, O. Pivert, and H. Prade

of these (regular) databases, let us say Wk, is supposed to correspond to the ac-
tual state of the universe modeled. The assumption of independence between the
various sets of candidates is usually made and then any world Wi corresponds
to a conjunction of independent choices.

Example 1. Let us consider the uncertain database D involving a single re-
lation im whose schema is IM(#i, airc, date, place). Relation im is assumed to
describe satellite images of aircrafts. Each image, numbered (#i), was taken on
a certain location (place) a given day (date) and it is supposed that it includes
a single aircraft (airc). With the extension of im depicted in Table 1 six worlds
can be drawn, W1, W2, W3, W4, W5 and W6 since there are three candidates for
date in the first tuple and two candidates for airc in the second one. Two of the
worlds associated with the uncertain relation im are represented in Figure 1. ♦

Table 1. An extension of relation im

#i airc date place

i1 a1 {d1, d3, d7} c1

i3 {a3, a4} d1 c2

#i airc date place

i1 a1 d1 c1

i3 a3 d1 c2

#i airc date place

i1 a1 d7 c1

i3 a4 d1 c2

Fig. 1. Two worlds associated with relation im

2.2 Strong Representation Systems and Compact Calculus

When dealing with an uncertain databaseD, a very important issue is that of the
efficiency of the querying process. A naive way of doing would be to make explicit
all the interpretations of D (at least when they are finite) in order to query each
of them. Such an approach is intractable in practice and it is of prime importance
to find a more realistic alternative. To this end, the notion of a representation
system has been introduced — initially by Imielinski and Lipski [14] — and
discussed in [1]. The basic idea is to look for a way for representing both initial
tables and those resulting from queries in such a way that the representation
of the result of a query q against any database D (made of tables T1, ..., Tp)
denoted by q(D), is equivalent (in terms of interpretations, or worlds) to the set
of results obtained by applying q to every interpretation of D, i.e.:

rep(q(D)) = q(rep(D)). (P1)

If property P1 holds for a representation system ρ and a subset σ of the relational
algebra, ρ is called a strong representation system for σ.

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 83

From a querying point of view, P1 permits to envisage a direct (or compact)
calculus of a query Q, in the sense that Q applies to D itself without making the
worlds explicit. So doing, provided that relational operations are defined over
tables of the system considered, reasonable performances can be expected.

2.3 Reminder about Possibility Theory

Possibility theory [19] offers a qualitative model for uncertainty where a piece
of information is represented by means of a possibility distribution encoding
a complete preorder over the possible situations. More formally, a possibility
distribution is a function π from a domain X to the unit interval [0, 1] and π(a)
expresses the degree to which a is a possible value for the considered variable. The
normalization condition imposes that at least one of the values of the domain
(a0) is completely possible, i.e., π(a0) = 1. When the domain is discrete, a
possibility distribution can be written {π1/a1, ..., πn/an} where ai is a candidate
value and πi its possibility degree. Any event E defined in the powerset of X is
characterized by two measures Π and N . The axioms related to the measure of
possibility Π are the following:

– Π(X) = 1 (which requires the normalization condition mentioned above),
– Π(∅) = 0,
– Π(E1 ∪ E2) = max(Π(E1), Π(E2))

and the measure of possibility of the event E is derived from the possibility
distribution associated with the concerned variable in the following way:Π(E) =
maxx ∈ Eπ(x). It can be seen that the third axiom differs from that of probability
theory in the sense that the measure is not additive. The possibility of the
conjunction of two events (see, e.g., [9]) only obey the inequality Π(E1 ∩E2) ≤
min(Π(E1), Π(E2)), but if the underlying variables are non interactive (i.e., E1

and E2 are logically independent) Π(E1 ∩ E2) = min(Π(E1), Π(E2)).
The only relationship between the possibility of E (the opposite event of E)

and that of E is: max(Π(E), Π(E)) = 1. In order to have a better charac-
terization of the event E, the measure of certainty (or necessity) N has been
introduced: N(E) = 1 – Π(E). In other words, the less possible E, the more
certain E. Due to the duality between these two measures, the following formulas
hold in the general case:

– N(X) = 1; N(∅) = 0;
– N(E1 ∩ E2) = min(N(E1), N(E2)); N(E1 ∪ E2) ≥ max(N(E1), N(E2)),

and in case of non-interactivity: N(E1 ∪E2) = max(N(E1), N(E2)).
We now illustrate the use of possibility distributions for representing candidate

values for some attributes in the context of the database describing satellite
images of aircrafts (cf. Example 1).

In the first tuple of im depicted in Table 2, d1 is completely possible and it
is more possible than d3. Let us mention that Table 2 corresponds to a relation
from the model proposed in [17] while the model proposed in [4] involves an
additional attribute expressing the certainty for a tuple to have a representative
in any possible world (this is mandatory in order to guarantee property P1).

84 P. Bosc, O. Pivert, and H. Prade

Table 2. An extension of relation im

#i airc date place

i1 a1 {1/d1, 0.7/d3, 0.4/d7} c1

i3 {1/a3, 1/a4} d1 c2

3 The Model

As that described in [4], the model we propose is based on possibility theory
[19], but it represents the values that are more or less certain instead of those
which are more or less possible. This corresponds to the most important part
of information (in this approach, a possibility distribution is “synthetized” by
keeping its most plausible elements). The idea is to attach a certainty level to
each piece of data (by default, a piece of data has certainty 1). Certainty is
modeled as a lower bound of a necessity measure. We assume that there always
exists a key non pervaded with uncertainty in base relations. For instance, 〈037,
John, (40, α)〉 denotes the existence of a person named John, whose age is 40 with
certainty α. Then the possibility that his age differs from 40 is upper bounded
by 1 − α without further information on the respective possibility degrees of
other possible values. In the following, uncertainty may pervade attribute values,
for instance when a source cannot fully guarantee their values, e.g., for those
attributes whose value may change without notice, or data evolving with time.

3.1 Main Features of the Model

In the proposed model, to each uncertain attribute value is attached a certainty
degree. The underlying possibility distribution associated with an uncertain at-
tribute value (a, α) is {1/a, (1 − α)/ω} where ω denotes domain(A) − {a}, A
being the attribute considered (due to the duality necessity (certainty) / pos-
sibility: N(a) ≥ α ⇔ Π(a) ≤ 1 − α [8]). For instance, let us assume that the
domain of attribute City is {Brest, Quimper, Rennes}. The uncertain attribute
value (Brest,α) is assumed to correspond to the possibility distribution {1/Brest,
(1−α)/Quimper, (1−α)/Rennes}. More generally, the model can also deal with
disjunctive uncertain values, and the underlying possibility distributions are of
the form max(μS(x), 1 − α)/x where S is an α-certain subset of the attribute
domain and μS(x) equals 1 if x ∈ S, 0 otherwise.

Moreover, since some operations (e.g., the selection) may create “maybe tu-
ples”, each tuple t from an uncertain relation r has to be associated with a degree
N expressing the certainty that t exists in r. It will be denoted by N/t.

Example 2. Let us consider the relation r of schema (#id, Name, City) con-
taining tuple t1 = 〈1, John, (Rennes, 0.8)〉, and the query “find the persons
who live in Rennes”. Let the domain of attribute City be {Brest, Quimper,
Rennes}. The answer contains 0.8/t1 since it is 0.8 certain that t1 satisfies
the requirement, while the result of the query “find the persons who live

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 85

in Rennes, Brest or Quimper” contains 1/t1 since it is totally certain that t1
satisfies the condition. �
To sum up, a tuple α/〈037, John, (Rennes, β)〉 from relation r means that it
is α certain that person 037 exists in the relation, and that it is β certain that
037 lives in Rennes (independently from the fact that it is or not in relation r).

Given a query, we only look for answers that are somewhat certain. Consider
the relations r and s given in Table 3 and a query asking for the persons who
live in a city where there is a flea market), then John will be retrieved with a
certainty level equal to min(α, β) (in agreement with the calculus of necessity
measures [8]). Note that it should also be possible to find the tuples that are
more or less certainly not answers to the query. There are usually many. All the
other tuples are only possible, but we do not try to evaluate to what extent.
Here, Mary with certainty level min(δ, γ) is not an answer to the query.

Table 3. Relations r (top) and s (bottom)

#id Name City N

1 John (Brest, α) 1
2 Mary (Lannion, δ) 1

City Flea Market N

Brest (yes, β) 1
Lannion (no, γ) 1

It is also possible to accommodate cases of disjunctive information in this
setting. For instance, 〈3, Peter, (Albi ∨ Toulouse, 0.8)〉 represents the fact that it
is 0.8-certain that the person number 3 named Peter lives in Albi or in Toulouse.

3.2 Strong Representation System

Let us now examine what becomes of property P1 in such a context. Let us denote
byD an uncertain database involving certainty levels, poss(D) the corresponding
uncertain database involving possibility distributions (cf. the comment above
about the underlying possibility distributions associated with somewhat certain
values), q an algebraic query, and qc the compact version of q suited to the
certainty-based model. The counterpart of property P1 is:

qc(D) = ψ(q(rep(poss(D)))) (P2)

where ψ(r′) denotes the certainty-based relation which gathers the tuples some-
what certainly in the intersection of all the (more or less) possible worlds from
the set r′ (each world from r′ represents a possible result of q applied to D). Op-
eration ψ works as follows. First, one attaches an identifier to every tuple from
D involving at least one uncertain value (this is necessary when q involves a pro-
jection which removes the keys). Note that this identifier is virtual and does not

86 P. Bosc, O. Pivert, and H. Prade

impact the result of the operations performed on the worlds (intersection and
difference, in particular). When duplicates are eliminated in a world, the list of
identifiers attached to the tuples merged is attached to the tuple resulting from
the merging. For each tuple present in a world from q(rep(poss(D))), denoting
by id its identifier, or (id1, id2) in case of a binary operation, one has to check:

– whether there exists a completely possible world from q(rep(poss(D))) from
which id — or (id1, id2) for a join, id1 and/or id2 for an intersection, id1

for a difference — is absent. If it is the case, ψ(q(rep(poss(D)))) does not
contain any tuple identified by id;

– otherwise, for each attribute, one gathers into a disjunction V the values
associated with id in the different completely possible worlds; the certainty
degree associated with such a disjunction equals 1 minus the maximal possi-
bility degree attached to a world containing id associated with a value absent
from V . Notice that for the intersection, the “empty tuples” that may have
been generated must be considered too. The certainty degree associated with
the “compact tuple” produced is equal to 1 minus the maximal possibility
degree associated with a world from which id is absent.

Due to space limitation, we only deal with three relational operators in this
paper: selection, join and union; however it is possible to use property P2 to
prove that the model is a strong representation system for the whole relational
algebra. It is important to emphasize that this property makes the certainty-
based model we propose the only simple uncertain database model that can
handle the join operation in a compact and very efficient way (with a data
complexity which is the same as in the classical database case).

4 The Operators

The goal of this section is to define the compact version of the three operators
from σ = {selection, join, union} and to show that the certainty-based database
model is a strong representation system — i.e., that property P2 then holds.

4.1 Selection

Let us consider a relation r of schema (A, X) where A is an attribute and X is
a set of attributes, and a selection condition φ on A. Let us denote by s(t.A) the
disjunctive set of values — which may be reduced to a singleton — somewhat
certain for attribute A in tuple μ/t, and by c(t.A) the associated certainty level.

Let us first deal with the case where φ is of the form attribute θ q where q
denotes a constant.

select(r, A θ q) = {μ′/t | ∃μ/t ∈ r s.t. ∀ai ∈ s(t.A), ai θ q ∧
μ′ = min(μ, 1) = μ if ∀ai ∈ domain(A), ai θ q;
μ′ = min(μ, c(t.A)) otherwise}.

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 87

Proof. Let us show that property P2 is satisfied. Since the selection operates
on tuples individually, one can assume that r contains only one tuple. Let us
denote it by μ/t and assume that s(t.A) = (a1 ∨ a2 ∨ . . . ∨ an) and c(t.A) = α.
Let us attach identifier k to this tuple. Let us recall that the maximal possibility
distribution associated with s(t.A) is {1/a1, 1/a2, . . . , 1/an, 1 − α/ω} where
ω = domain(A) − {a1, , a2, . . . , an}. Three cases may appear:

– ∃ai ∈ {a1, a2, . . . , an} such that ¬(ai θ q):
then, there exists a completely possible world of the result where k is not
present. The certainty degree attached to k is zero and ψ(q(rep(poss(D))))
is empty, which is consistent with the definition of the compact selection.

– ∀ai ∈ domain(A), aiθq: then, k is present in every completely possible world
and the only possible world where k is not present is the empty world (possi-
bility 1−μ). Hence, the certainty degree attached to k in ψ(q(rep(poss(D))))
is 1 − (1 − μ) = μ. The most possible world where k has an A-value which
does not belong to s(t.A) in the result has the possibility degree 1−α. Hence,
the certainty degree attached to the A-value s(t.A) in the tuple identified
by k in ψ(q(rep(poss(D)))) is 1 − (1 − α) = α. This is consistent with the
compact definition of selection where s(t.A) and c(t.A) are kept unchanged.

– ∀ai ∈ {a1, a2, . . . , an}, ai θ q ∧ ∃ui ∈ domain(A) such that ¬(ui θ q):
then, k is present in every completely possible world. The most possible
world where k is not present is either the empty world (possibility 1− μ) or
is made of a tuple 〈k, ui, t.X〉 where ui ∈ ω (possibility 1 − α). Thus, this
most possible world has the possibility degree max(1−μ, 1−α). Hence, the
certainty degree attached to k in ψ(q(rep(poss(D)))) is 1−max(1−μ, 1−α) =
min(μ, α). The most possible world where k has an A-value which does not
belong to s(t.A) in the result has the possibility degree 1 − α. Hence, the
certainty degree attached to the A-value s(t.A) in the tuple identified by k
in ψ(q(rep(poss(D)))) is 1−(1−α) = α. This is consistent with the compact
definition of selection. �

Let us now consider a condition φ of the form: attribute1 θ attribute2. The defi-
nition of the selection in this case is:

select(r, A1 θ A2) =
{μ′/t | ∃μ/t ∈ r s.t. ∀a1,i ∈ s(t.A1), ∀a2,j ∈ s(t.A2), a1,i θ a2,j ∧
μ′ = μ iff ∀(u, v) ∈ (domain(A1) × domain(A2), u θ v;
μ′ = min(μ, c(t.A1), c(t.A2)) otherwise}.

From the previous definitions, it immediately follows that the data complexity
of the selection operation is linear (as usual). The example hereafter illustrates
the case of a conjunctive selection condition.

Example 3. Let us consider the database D made of the sole relation emp
of schema (id, name, city, job). Let us suppose that emp only contains tuple t
= 0.9/〈17, John, (Paris, 0.8), (Engineer, 0.7)〉 and let us consider the query:

q = select(emp, city = ’Paris’ and job = ’Engineer’).

88 P. Bosc, O. Pivert, and H. Prade

Its compact result is 0.7/〈17, John, (Paris, 0.8), (Engineer, 0.7)〉. Let us show
that property P2 is satisfied. Identifier 17 is present in every completely possible
world. The most possible world where 17 is not present is made of the tuple 〈17,
John, Paris, ω2)〉 and has the possibility degreemin(1, 1−0.7)) = 0.3. Hence, the
certainty degree attached to 17 in the result is 1 – 0.3 = 0.7. The most possible
world where 17 has a city value different from “Paris” in the result has the
possibility degree 1− 0.8 = 0.2. Hence, the certainty degree attached to the city
value “Paris” in the tuple identified by 17 in the result is 1−0.2 = 0.8. The most
possible world where 17 has a job value different from “Engineer” in the result has
the possibility degree 1−0.7 = 0.3. Hence the certainty degree attached to the job
value “Engineer” in the tuple identified by 17 in the result is 1− 0.3 = 0.7. The
compact calculus is thus correct. �

4.2 Join

The compact definition of the join is:

join(r1, r2, A θ B) = {min(α, β, χ, δ)/t1 ⊕ t2 | ∃α/t1 ∈ r1, ∃β/t2 ∈ r2 s.t.
card(s(t1.A)) = 1 ∧ card(s(t2.B)) = 1 ∧
s(t1.A) θ s(t2.A) ∧ c(t1.A) = χ ∧ c(t2.B) = δ}

where ⊕ denotes the concatenation and card returns the cardinality of a set.
Notice that only the tuples whose value for the join attribute is non-disjunctive
(i.e., is a singleton) can participate in the result: for the other ones, one cannot be
certain at all that they match a tuple from the other relation. Indeed, for a tuple
t1 whose join attribute value t1.A is disjunctive, it is always completely possible
that a given tuple t2 does not match, whatever the value of t2.B. The proof is
omitted for space reasons, but the example hereafter illustrates the way it works.

Example 4. Consider relations Person and Lab from Table 4 and the query:

join(Person, Lab, Pcity = Lcity)

which looks for the pairs (p, l) such that person p (somewhat certainly) lives in a
city where a research center l is located. Its compact result is represented in Ta-
ble 5. Let us show that this result is correct using the proof method described in
Subsection 3.2. The only pair of identifiers present in every completely possible
world is (12, 21). The most possible world where (12, 21) is not present has the
possibility degreemin(1, max(1−β, 1−μ)) = max(1−β, 1−μ) = 1−min(β, μ).
Hence, the certainty degree attached to (12, 21) in the result is min(β, μ). The
most possible world where (12, 21) has a Pcity value different from “Rennes”
has the possibility degree min(1 − β, 1) = 1 − β. Hence the certainty degree
attached to the Pcity value “Rennes” in the tuple identified by (12, 21) in the
result is β. The most possible world where (12, 21) has a Lcity value different
from “Rennes” has the possibility degree min(1, 1 − μ) = 1 − μ. Hence the
certainty degree attached to the Lid value “Rennes” in the tuple identified by

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 89

Table 4. Relations Person (top) and Lab (bottom)

#Pid Pname Pcity N

11 John (Rennes ∨ Brest, α) 1
12 Mary (Rennes, β) 1

#Lid Lname Lcity N

21 INRIA (Rennes, μ) 1
22 IFREMER (Brest, ρ) 1
23 CNRS (Rennes ∨ Brest, ξ) 1

Table 5. Result of the compact join query

#Pid Pname Pcity N #Lid Lname Lcity N

12 Mary (Rennes, β) 1 21 INRIA (Rennes, μ) min(β, μ)

(12, 21) in the result is μ. Notice that in case of an equi-join — as it is the case
here — both columns Pid and Lid could be merged into a single column in the
resulting table. John cannot take part to the result since one cannot be certain
of what is the Lab value associated with him. �

About the semi-join. An interesting remark about the preceding example
is that, even though the result of the join does not contain any tuple involving
John, this individual belongs to the result of the semi-join which looks for the
persons who (somewhat certainly) live in a city where a research center is lo-
cated: Person � Lab. This means that the usual equivalence between a semi-join
and a join followed by a projection: r1 � r2 ≡ (r1 �� r2)[X] where X denotes
the attributes of r1, is not valid anymore in the context of the certainty-based
model. However, the semi-join can be defined in a sound way in this framework.
Informally, for a tuple t1 from r1 to be in the result of the semi-join r1 � r2,
each value ai from s(t1.A) has to be present as a singleton B-value in a tuple
from r2. If an ai from s(t1.A) joins with several tuples from r2, the maximum
of the corresponding certainty degrees must be used for computing the certainty
degree attached to t1 in the result. The formal definition is as follows.

semijoin(r1, r2, A θ B) = {min(μ, α, mini=1..n λi)/t1) | ∃μ/t1 ∈ r1 s.t.
s(t1.A) = {a1, . . . , an} ∧ c(t1.A) = α ∧ ∀ai ∈ s(t1.A), (∃t2j ∈ r2 s.t.
s(t2j .B) = {ai})∧λi = maxj s.t. δj/t2j ∈ r2 ∧ s(t2j .B)={ai} ∧ c(t2j .B)=βj

min(δj , βj).

Using this definition and the relations from Table 4, the result of the semi-
join expressed above is given in Table 6. Note that the tuple #Lid = 23 in Table
4 has no influence on the result, since taking into account tuple #Pid = 11,
John may live in Rennes while the CNRS lab may be in Brest (or the converse).

90 P. Bosc, O. Pivert, and H. Prade

Table 6. Result of the compact semi-join query

#Pid Pname Pcity N

11 John (Rennes ∨ Brest, α) min(α, μ, ρ)
12 Mary (Rennes, β) min(β, μ)

The key to the fact that join (and semi-join) can be easily handled in this model
lies in the property that a tuple involving disjunctive values can produce at
most one tuple in the result (due to the semantics of certainty). This is not the
case when a probabilistic or a full possibilistic [4] model is used and it is then
necessary to deal with dependencies between tuples in the result (which is a
complex and expensive issue). Let us illustrate this point with a simple example
where the degrees are either probability or possibility degrees. Let us consider
the relations r(A, B) and s(B, C) with the extensions:

r = {〈{α/a1, β/a2, γ/a3}, b〉} s = {〈b, c1〉, 〈b, c2〉}
where incompleteness is only due to the fact that the actual value of A in the
tuple of r is either a1, or a2, or a3. The natural join of r and s leads to a relation
t(A, B, C) involving two tuples, but it is mandatory to guarantee that only three
possible worlds can be drawn from t (and not 32), since attribute A should take
the same value in each of the two tuples, in order that property P1 holds. Now,
let us perform the natural join of the following relations:

r = {〈a, {α/b1, β/b2, γ/b3}〉} s = {〈b1, c1〉, 〈b3, {η/c2, δ/c3}〉}.
Here, the resulting relation is either empty, or made of a single tuple among three
possible: 〈a, b1, c1〉, 〈a, b3, c2〉 and 〈a, b3, c3〉. It is then necessary to express
that these four situations are exclusive. On the other hand, in the certainty-
based model we propose, the processing of a join is very similar to what it is in
a regular database context. It follows from the previous definition that its data
complexity is in θ(|r|× |s|) — as in the usual case when no indexes are available
— and no dependencies between tuples have to be dealt with.

4.3 Union

Union is defined as usual (and has the same data complexity), except that:

– one must keep the duplicates when they correspond to tuples that involve
uncertain values, so as to be consistent with a world-based processing (cf.
property P2);

– the relations involved must be independent: they must not result from two
selections on the same relation, for instance since the usual equivalence
select(r, φ1 or φ2) ≡ select(r, φ1) ∪ select(r, φ2) does not hold due to the
duplicate removal policy.

As to tuples that only involve certain values, one can remove the duplicates as
in the classical case.

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 91

Example 5. Consider the relations from Table 7. The result of their union is
shown in Table 8. Note that the second tuple in Table 8 is redundant w.r.t. the
fourth one, but is kept to be consistent with a world-based interpretation. �

Table 7. Relations r1 (top) and r2 (bottom)

Job City N

(Engineer, 0.6) (Rennes, 0.7) 1
(Engineer ∨ Manager, 0.7) (Rennes, 0.8) 0.7

Manager Brest 1

Job City N

(Engineer ∨ Manager, 0.9) Rennes 0.9
Manager Brest 1

(Engineer, 0.8) (Rennes, 0.4) 0.4

Table 8. Result of the union r1 ∪ r2

Job City N

(Engineer, 0.6) (Rennes, 0.7) 1
(Engineer ∨ Manager, 0.7) (Rennes, 0.8) 0.7

Manager Brest 1
(Engineer ∨ Manager, 0.9) Rennes 0.9

(Engineer, 0.8) (Rennes, 0.4) 0.4

5 About a Possibilistic Logic Encoding of the Model

Possibilistic logic [10] provides a computational tool (with a complexity similar
to classical logic) for inferring from certainty-qualified formulas by means of
the cut rule (p ∨ q, α); (¬q ∨ r, β) � (p ∨ r,min(α, β)). It can be applied to the
computation of the answers to a query to an uncertain database. Due to space
limitation, we only survey and illustrate the main issues. Tuples are translated
into a possibilistic logic base, applying the following principles:

– keys become variables;
– attributes become predicates;
– tuples become instantiated formulas.

A query such as ‘find the x’s s. t. condition Q is true’, i.e., ∃xQ(x)? is processed
by refutation, adding the formulas corresponding to ¬Q(x) ∨ answer(x) to the
base, using a small trick due to [12] (see [8]). Let us first take a simple example.

Example 6. A tuple such as t = 〈17, John, (Paris, 0.8), (Engineer, 0.7)〉 trans-
lates into the possibilistic logic base:

K1 = {(name(17, John)), (city(17, Paris), 0.8), (job(17, Engineer), 0.7)}.

92 P. Bosc, O. Pivert, and H. Prade

Query q = select(emp, city = ′Paris′ and job = ′Engineer′) translates
into:

q = {((¬city(x, Paris)) ∨ (¬job(x, Engineer)) ∨ answer(x), 1)}.
From K1 ∪ q, applying resolution and unification, one gets (answer(17), 0.7).�

The previous example does not require the use of formulas expressing that the
values of the attributes are necessarily in the attribute domains. Here is an ex-
ample, with five tuples, where such formulas are useful:

Example 7. Let us consider the tuples:

tR1 = 〈John, (Brest ∨ V annes, α)〉
tR2 = 〈Mary, (Rennes, β)〉
tS1 = 〈Brest, (Britanny, 1)〉
tS2 = 〈V annes, (Britanny, 1)〉
tS3 = 〈Rennes, (Britanny, 1)〉.

Assuming that there are only three cities (Brest, Rennes, Vannes) where people
in the database may live, it translates into:

K2 = {(city(John,Brest) ∨ city(John, V annes), α),
(city(John,Brest) ∨ city(John,Rennes)∨ city(John, V annes), 1),
(city(Mary,Rennes), β),
(city(Mary,Brest) ∨ city(Mary,Rennes)∨ city(Mary, V annes), 1),
(Britanny(Brest), 1), (Britanny(V annes), 1), (Britanny(Rennes), 1)}.

Considering the request ∃x city(x, y) ∧Brit.(y)?, we add

q = {(¬city(x, y) ∨ ¬Brit.(y) ∨ answer(x), 1)}.
From K2∪ q, one can deduce (answer(John), 1) and (answer(Mary), 1). If the
query is slightly modified into ∃(x, y) city(x, y)∧Britanny(y) ?, which translates
into q = {(¬city(x, y) ∨ ¬Britanny(y) ∨ answer(x, y), 1)}, we then obtain:

(answer(John,Brest) ∨ answer(John, V annes) ∨ answer(John,Rennes), 1),

and the same for Mary. Notice that we also get (answer(Mary,Rennes), β),
(answer(John,Brest) ∨answer(John, V annes), α), which are not subsumed by
the previous formulas. �

Example 8 shows that the approach can provide conditional answers as well.

Example 8. Let be the three tuples:

t1 = 〈John, veterinary, (Paris ∨Rennes, α)〉;
t2 = 〈Peter, taxidermist, (Paris, β)〉;
t3 = 〈Mary, taxidermist, (Paris ∨Rennes, γ)〉.

A Model Based on Possibilistic Certainty Levels for Incomplete Databases 93

It translates into:

K3 = {(city(John, Paris) ∨ city(John,Rennes), α),
(job(John, veterinary), 1),
(city(Peter, Paris), β), (job(Peter, taxidermist), 1),
(city(Mary, Paris) ∨ city(Mary,Rennes), γ),
(job(Mary, taxidermist), 1)}.

Consider the query ‘Find the persons who are veterinaries and live in a city
where at least a taxidermist lives and the corresponding taxidermists’:

q = {(¬city(x, z) ∨ ¬city(y, z) ∨ ¬job(x, veterinary) ∨ ¬job(y, taxidermist)
∨ answer(x, y), 1)}.

One can, for example, deduce from K3 ∪ q:
(city(John,Rennes)∨ answer(John, Peter),min(α, β))

(city(John,Rennes) ∨ city(Mary,Rennes) ∨ answer(John,Mary),min(α, γ))

which expresses that (John, Peter) (resp. (John, Mary)) is an answer with cer-
tainty min(α, β) (resp. min(α, γ)) provided that John does not live in Rennes
(resp. both John and Mary do not live in Rennes – hence they live in Paris). �

The possibilistic logic modeling provides an alternative way to prove that the
compact definitions of the operators are correct. It is also an expressive setting.

6 Conclusion

In this paper, we have presented a model for incomplete databases based on
the notion of certainty levels. The idea is to associate every candidate value
(or disjunction of such values) representing an ill-known piece of data with a
degree expressing the extent to which the candidate value (or disjunction) is
certain. We have extended the operations of selection, join and union in this
context and shown that the model constitutes a strong representation system
for this set of operators. A very interesting result is that the data complexity of
these operations in the context of the certainty-based model is the same as in
the classical database case, which makes the approach highly scalable. We have
also briefly discussed the way the model can be encoded using possibilistic logic,
which makes it possible to benefit from powerful automated reasoning tools, thus
leading to a question-answering approach potentially more expressive than the
relational framework.

Immediate perspectives for future work concern: i) the extension of the model
to the entire relational algebra, ii) the extensive definition of a logical counterpart
of the relational database model described here.

94 P. Bosc, O. Pivert, and H. Prade

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and simple processing of un-
certain data. In: Proc. of ICDE 2008, pp. 983–992 (2008)

3. Benjelloun, O., Das Sarma, A., Halevy, A., Widom, J.: ULDBs: Databases with
uncertainty and lineage. In: Proc. VLDB 2006, pp. 953–964 (2006)

4. Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilis-
tic relational databases. IEEE Trans. on Fuzzy Systems 13, 124–139 (2005)

5. Codd, E.F.: Extending the relational database model to capture more meaning.
ACM Transactions on Database Systems 4(4), 397–434 (1979)

6. Dalvi, N., Suciu, D.: Management of probabilistic data: Foundations and
challenges. In: Proc. of PODS 2007, pp. 1–12 (2007)

7. Das Sarma, A., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncer-
tain data. In: Proc. of 22nd Int. Conf. on Data Engineering, ICDE (2006)

8. Dubois, D., Prade, H.: Necessity measures and the resolution principle. IEEE
Trans. Syst., Man and Cyber. 17, 474–478 (1987)

9. Dubois, D., Prade, H.: Possibility Theory. Plenum, New York (1988)
10. Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic:

Semantics, belief revision, and variable certainty weights. IEEE Transactions on
Knowledge and Data Engineering 6(1), 64–71 (1994)

11. Eiter, T., Lukasiewicz, T., Walter, M.: Extension of the relational algebra to proba-
bilistic complex values. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS,
vol. 1762, pp. 94–115. Springer, Heidelberg (2000)

12. Green, C.: Theorem-proving by resolution as a basis for question-answering sys-
tems. In: Michie, D., Meltzer, B. (eds.) Machine Intellig., vol. 4, pp. 183–205. Edinb.
Uni. Pr. (1969)

13. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information.
IEEE Data Eng. Bull. 29, 17–24 (2006)

14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. of the
ACM 31, 761–791 (1984)

15. Lakshmanan, L., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible
probabilistic system. ACM Trans. Database Syst. 22(3), 419–469 (1997)

16. Lipski, W.: Semantic issues connected with incomplete information databases.
ACM Transactions on Database Systems 4(3), 262–296 (1979)

17. Prade, H., Testemale, C.: Generalizing database relational algebra for the
treatment of incomplete/uncertain information and vague queries. Information
Sciences 34, 115–143 (1984)

18. Ré, C., Dalvi, N., Suciu, D.: Query evaluation on probabilistic databases. IEEE
Data Eng. Bull. 29, 25–31 (2006)

19. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Sys-
tems 1, 3–28 (1978)

A Proposal for Making Argumentation

Computationally Capable of Handling Large
Repositories of Uncertain Data

Marcela Capobianco and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur – Av. Alem 1253, (8000) Bah́ıa Blanca Argentina
{mc,grs}@cs.uns.edu.ar

Abstract. Data intensive applications with the capability of handling
uncertain, imprecise, and inconsistent information are in constant de-
mand. Efficient computational systems that can perform complicated in-
ferences, obtain the appropriate conclusions, and explain the results are
increasingly being required to act upon large databases. Argumentation
systems could be used in the construction of interactive systems that
are able to reason with large databases and/or different data sources.
Notwithstanding, there are two important issues that need to be re-
solved in order to use argumentation in this kind of practical applica-
tions: adding the ability to deal with explicit uncertainty, and improving
the computational complexity of argumentation, which so far has been
an obstacle for its integration into interactive systems acting on large
databases. In this paper we propose an argumentation-based system that
has been engineered to address these issues.

1 Introduction

Research in argumentation has provided important results while developing tools
for common sense reasoning. As a result, argumentation systems have substan-
tially evolved in the past few years, putting forward a number of argument-
based applications in diverse areas where knowledge representation issues play a
major role. Clustering algorithms [16], intelligent web search [10], recommender
systems [9], agent systems [5], knowledge engineering systems [7], argumentation-
based negotiation [19], and natural language assessment [10] are the outcome of
one of these lines of research.

Data intensive applications are in constant demand and there is need of com-
puting environments with better intelligent capabilities than those present in to-
day’s Database Management Systems (DBMS). Recently, there has been progress
in developing efficient techniques to store and retrieve data, and many satisfac-
tory solutions have been found for the associated problems. However, the prob-
lem of how to understand and interpret a large amount of information remains

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 95–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

96 M. Capobianco and G.R. Simari

open, particularly when this information is uncertain, imprecise, and/or incon-
sistent. To do this we need formalisms that can perform complicate inferences,
obtain the appropriate conclusions, and explain the results.

Argumentation systems appear as an interesting choice that could result in
interactive systems able to reason with large databases and/or different data
sources. Nevertheless, there are two important issues that need to be addressed
to use argumentation in these kind of practical applications. The first concerns
the quality of the information expected by argumentation systems: most of them
are unable to deal with explicit uncertainty which is a vital capability in modern
applications. The second problem is the computational complexity of argumenta-
tion, that so far has been an obstacle for its integration into interactive systems.

Here, we propose an argumentation-based system that addresses these prob-
lems. First, it incorporates the treatment of possibilistic uncertainty into the
framework following the approach introduced in [11,3]. Second, to solve the
problem of performance in argumentation, we have equipped this system with
a pre-compiled knowledge component that allows significant speed-ups in the
inference process. This development was inspired in Truth Maintenance Sys-
tems (tms) [12] that use pre-compiled knowledge to improve the performance of
problem solvers. We have also provided the system with the ability to seamlessly
incorporate uncertain and/or contradictory information into its knowledge base,
using a modular upgrading and revision procedure.

This paper is organized as follows. First, we present the formal definition
of our argumentation framework showing its fundamental properties. Next, we
propose an architectural software pattern useful for applications adopting our
reasoning system. Section 4 discusses how to optimize the inference engine with
pre-compiled knowledge and presents the corresponding algorithms. Finally, we
state the conclusions of our work.

2 The OP-DeLP Programming Language: Fundamentals

Possibilistic Defeasible Logic Programming (P-DeLP) [1,2] is an important ex-
tension of DeLP in which the elements of the language have the form (ϕ, α),
where ϕ is a DeLP clause or fact. Below, we will introduce the elements of the
language necessary in this presentation. Observation based P-DeLP (OP-DeLP)
is an optimization of P-DeLP that allows the computation of warranted argu-
ments in a more efficient way, by means of a pre-compiled knowledge component.
It also permits a seamless incorporation of new perceived facts into the program
codifying the knowledge base of the system. Therefore the resulting system can
be used to implement practical applications with performance requirements. The
idea of extending the applicability of DeLP in a dynamic setting, incorporating
perception and pre-compiled knowledge, was originally conceived in [6]. Thus the
OP-DeLP system incorporates elements from two different variants of the DeLP
system, O-DeLP [6] and P-DeLP [11]. In what follows we present the formal
definition of the resulting system.

A Proposal for Making Argumentation Computationally Capable 97

2.1 Language

To formally define the language of OP-DeLP we start introducing the concept
of signature, that summarizes the elements that change in accordance with the
program under consideration.

Definition 1. [Signature]A signature Σ is a tuple 〈V , Pred, Func〉, where V is a
countable set of variables, Pred is a finite set of predicates, and Func is a finite
set of functions, such that V ∩ (Pred ∪ Func) = ∅.

As in Prolog standard notation, variables are denoted with identifiers starting
with uppercase letters while functions and predicates start with lowercase letters.
Every signature has an associated arity function that assigns a natural number
to each function and predicate. As usual, constants are functions with 0 arity
and propositions are predicates with a null arity. Next, we define the alphabet of
OP-DeLP programs and use this to define terms, atoms, and literals:

Definition 2. [Alphabet]The alphabet generated from a given signature Σ is
composed by the members of Σ, the symbol “∼” denoting strong negation [15]
and the symbols “(”, “)”, “.” and “,”.

Definition 3. [Term]Let Σ = 〈V , Pred, Func〉 be a signature. A term of Σ is
inductively defined as follows: (1) every variable V ∈ V is a term, (2) every
constant c ∈ Func is a term, (3) if f ∈ Func, arity(f) = n and t1, . . . , tn are
terms then f(t1, . . . , tn) is also a term.

Definition 4. [Atom]Let Σ = 〈V , Pred, Func〉 be a signature, t1, . . . , tn terms
of Σ and p ∈ Pred such that arity(p) = n then p(t1, . . . , tn) is an atom of Σ.

Definition 5. [Literal - Weighted Literal]Let Σ be a signature, then every atom
A of Σ is a positive literal, while every negated atom ∼A is a negative literal. A
literal of Σ is a positive literal or a negative literal. A certainty weighted literal,
or simply a weighted literal, is a pair (L, α) where L is a literal and α ∈ [0, 1]
expresses a lower bound for the certainty of ϕ in terms of a necessity measure.

OP-DeLP programs are composed by a set of observations and a set of defeasible
rules. Observations are weighted literals and thus have an associated certainty
degree. In real world applications, observations model perceived facts. Hence
the associated certainty degree may be calculated based on different factors
depending on the act of perception itself, such as plausibility of the source, trust
on the perception mechanism, etc. Defeasible rules provide a way of performing
tentative reasoning as in other argumentation formalisms.

Definition 6. A defeasible rule has the form (L0 –≺ L1, L2, . . . , Lk, α) where L0

is a literal, L1, L2, . . . , Lk is a non-empty finite set of literals, and α ∈ [0, 1]
expresses a lower bound for the certainty of the rule in terms of a necessity
measure.

98 M. Capobianco and G.R. Simari

Ψ
(virus(b), 0.7)
(local(b), 1)
(local(d), 1)
(∼filters(b), 0.9)
(∼filters(c), 0.9)
(∼filters(d), 0.9)
(black list(c), 0.75)
(black list(d), 0.75)
(contacts(d), 1)

Δ
(move inbox(X) –≺ ∼filters(X), 0.6)
(∼move inbox(X) –≺ move junk(X), 0.8)
(∼move inbox(X) –≺ filters(X), 0.7)
(move junk(X) –≺ spam(X), 1)
(move junk(X) –≺ virus(X), 1)
(spam(X) –≺ black list(X), 0.7)
(∼spam(X) –≺ contacts(X), 0.6)
(∼spam(X) –≺ local(X), 0.7)

Fig. 1. An OP-DeLP program for email filtering

Intuitively a defeasible rule L0 –≺ L1, L2, . . . , Lk can be read as “L1, L2, . . . , Lk

provide tentative reasons to believe in L0” [20]. In OP-DeLP these rules also
have a certainty degree, that quantifies how strong is the connection between
the premises and the conclusion. A defeasible rule with a certainty degree 1
models a strong rule.

A set of weighted literals Γ will be deemed as contradictory, denoted as Γ |∼⊥,
iff Γ |∼(l, α) and Γ |∼(¬l, β) with α and β > 0.

Definition 7 (OP-DeLP Program). An OP-DeLP program P is a pair
〈Ψ, Δ〉, where Ψ is a non contradictory finite set of observations and Δ is a
finite set of defeasible rules.

Example 1. Fig.1 shows a program for basic email filtering. Observations de-
scribe different characteristics of email messages. Thus, virus(X) stands for
“message X has a virus”; local(X) indicates that “message X is from the local
host”; filters(X) specifies that “message X should be filtered” redirecting it
to a particular folder; black list(X) indicates that “message X is considered
dangerous” because of the server it is coming from; and contacts(X) indicates
that “the sender of message X is in the contact list of the user”.

The first rule expresses that if the email does not match with any user-defined
filter then it usually should be moved to the “inbox” folder. The second rule
indicates that unfiltered messages in the “junk” folder usually should not be
moved to the inbox. According to the third rule, messages to be filtered should
not be moved to the inbox. The following two rules establish that a message
should be moved to the “junk” folder if it is marked as spam or it contains
viruses. Finally there are three rules for spam classification: a message is usually
labeled as spam if it comes from a server that is in the blacklist. Nevertheless,
even if an email comes from a server in the blacklist it is not labeled as spam
when the sender is in the contact list of the user. Besides, a message from the
local host is usually not classified as spam.

The P-DeLP language [11], which presented the novel idea of mixing argumen-
tation and possibilistic logic, is based on Possibilistic Gödel Logic or PGL [3],

A Proposal for Making Argumentation Computationally Capable 99

which is able to model both uncertainty and fuzziness and allows for a partial
matching mechanism between fuzzy propositional variables. In OP-DeLP, for
simplicity reasons, we will avoid fuzzy propositions, and hence it will be based
on the necessity-valued classical Possibilistic logic [13]. As a consequence, pos-
sibilistic models are defined by possibility distributions on the set of classical
interpretations, and the proof method for our formulas, written |∼, is defined by
derivation based on the following instance of the generalized modus ponens rule
(GMP): (L0 –≺ L1 ∧ · · · ∧Lk, γ), (L1, β1), . . . , (Lk, βk)
 (L0, min(γ, β1, . . . , βk)),
which is a particular instance of the well-known possibilistic resolution rule, and
which provides the non-fuzzy fragment of OP-DeLP with a complete calculus
for determining the maximum degree of possibilistic entailment for weighted lit-
erals. Literals in the set of observations Ψ are the basis case of the derivation
sequence, for every literal Q in Ψ with a certainty degree α it holds that (Q, α)
can be derived from P = (Ψ, Δ).

2.2 Inference Engine

Basically, an OP-DeLP program is a set of weighted literals and rules. In this set
we can distinguish certain from uncertain information. A clause (γ, α) will be
deemed as certain if α = 1, otherwise it will be uncertain. Given an OP-DeLP
program P , a query posed to P corresponds to a ground literal Q which must
be supported by an argument [20,14].

Definition 8. [Argument]–[Subargument]Let P = 〈Ψ, Δ〉 be a program, A ⊆ Δ
is an argument for a goal Q with necessity degree α > 0, denoted as 〈A, Q, α〉,
iff: (1) Ψ∪A |∼(Q, α), (2) Ψ∪A is non contradictory, and (3) there is no A1 ⊂ A
such that Ψ ∪ A1 |∼(Q, β), β > 0. An argument 〈A, Q, α〉 is a subargument of
〈B, R, β〉 iff A ⊆ B.

Note that in addition to provide a proof to support a ground literal an argument
must also be non-contradictory and minimal. The non-contradictory requirement
is easy to understand, since it avoids self-defeating arguments [8]. To see why
arguments should be minimal consider that adding an unnecessary rule into a
set that was already enough to obtain the conclusion Q would only weaken it,
adding more opportunities for conflicts with other arguments (this will be clear
when the notion of conflict between arguments is formally defined.) Regarding
the notion of sub-argumentation, an interesting property can be mentioned.

Proposition 1. Consider an OP-DeLP program P, and an argument 〈A, Q, α〉
based on P. Let SubArgs(〈A, Q, α〉) be the set of subarguments of 〈A, Q, α〉, then
for every 〈B, R, β〉 in SubArgs(〈A, Q, α〉) it holds that β ≥ α.

Proof. Since B ⊆ A then two cases may arise: (1) B = A: in this case α = β;
(2) B ⊂ A: this implies that the derivation of R is part of the derivation of Q.
That is, R could be considered as a premise used in the derivation of Q. Since
arguments are minimal every rule in the derivation is used to obtain R. Since
the GMP rule takes the minimum over the certainty degrees of the rule used in

100 M. Capobianco and G.R. Simari

the derivation and the weighted literals in the body of that rule, it is clear that
every subsequent literal derived from R should receive a weight that is lower or
equal to β. In particular, β ≥ α.

As in most argumentation frameworks, arguments in O-DeLP can attack each
other. This situation is captured by the notion of counterargument. Defeat among
arguments is defined combining the counterargument relation and a preference
criterion “�”.

Definition 9. [Counter-argument][14]An argument 〈A1, Q1, α〉 counter-argues
an argument 〈A2, Q2, β〉 at a literal Q if and only if there is a sub-argument
〈A, Q, γ〉 of 〈A2, Q2, β〉, (called disagreement subargument), such that Q1 and
Q are complementary literals.

In order to define defeat among arguments we need a preference criterion on
conflicting arguments. This criterion is defined on the basis of the necessity
measures associated with arguments.

Definition 10. [Preference criterion �][11] Let 〈A1, Q1, α1〉 be a counterargu-
ment for 〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is preferred over 〈A2, Q2, α2〉
(denoted 〈A1, Q1, α1〉 � 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case that α1 > α2,
then we will say that 〈A1, Q1, α1〉 is strictly preferred over 〈A2, Q2, α2〉, de-
noted 〈A2, Q2, α2〉 � 〈A1, Q1, α1〉. Otherwise, if α1 = α2 we will say that both
arguments are equi-preferred, denoted 〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.

Definition 11. [Defeat][11] Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments
built from a program P. Then 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently
〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉) iff (1) Argument 〈A1, Q1, α1〉 counter-
argues argument 〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉; and (2)
Either it is true that 〈A1, Q1, α1〉 � 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be
called a proper defeater for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which
case 〈A1, Q1, α1〉 will be called a blocking defeater for 〈A2, Q2, α2〉.

As in most argumentation systems [8,18], OP-DeLP relies on an exhaustive
dialectical analysis which allows to determine if a given argument is ultimately
undefeated (or warranted) wrt a program P . An argumentation line starting in
an argument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,
〈An, Qn, αn〉, . . .] that can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed arguments) and an opponent
(oddly-indexed arguments). In order to avoid fallacious reasoning, argumenta-
tion theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt an OP-DeLP program P , namely:

1. Non-contradiction: Given an argumentation line λ, the set of arguments of
the proponent (resp. opponent) should be non-contradictory wrt P .
Non-contradiction for a set of arguments is defined as follows: a set
S =

⋃n
i=1{〈Ai, Qi, αi〉} is contradictory wrt P iff Ψ ∪

⋃n
i=1 Ai is

contradictory.

A Proposal for Making Argumentation Computationally Capable 101

2. No circular argumentation: No argument 〈Aj , Qj, αj〉 in λ is a sub-
argument of an argument 〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation: Every blocking defeater 〈Ai, Qi, αi〉 in λ is
defeated by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line satisfying the above restrictions is called acceptable, and
can be proved to be finite. Given a program P and an argument 〈A0, Q0, α0〉,
the set of all acceptable argumentation lines starting in 〈A0, Q0, α0〉 accounts
for a whole dialectical analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogs rooted
in 〈A0, Q0, α0〉, formalized as a dialectical tree, denoted T〈A0,Q0,α0〉. Nodes in a
dialectical tree T〈A0,Q0,α0〉 can be marked as undefeated and defeated nodes (U-
nodes and D-nodes, resp.). A dialectical tree will be marked as an and-or tree:
all leaves in T〈A0,Q0,α0〉 will be marked U-nodes (as they have no defeaters), and
every inner node is to be marked as D-node iff it has at least one U-node as a
child, and as U-node otherwise. An argument 〈A0, Q0, α0〉 is ultimately accepted
as valid (or warranted) iff the root of T〈A0,Q0,α0〉 is labeled as U-node.

Definition 12. [Warrant][11]Given a program P, and a literal Q, Q is war-
ranted wrt P iff there exists a warranted argument 〈A, Q, α〉 than can be built
from P.

To answer a query for a given literal we should see if there exists a warranted ar-
gument supporting this literal. Nevertheless, in OP-DeLP there may be different
arguments with different certainty degrees supporting a given query. This fact
was not considered in [11], but we are clearly interested in finding the warranted
argument with the highest certainty degree.

Definition 13. [Strongest Warrant]Given a program P, and a literal Q, we will
say that α is the strongest warrant degree of Q iff (1) there exists a warranted
argument 〈A, Q, α〉 than can be built from P and (2) no warranted argument
〈B, Q, β〉 such that β > α can built from P.

Note that to find out the strongest warrant degree for a given literal Q we
need to find the strongest warranted argument supporting it, that is, the war-
ranted argument supporting Q with the higher certainty degree. Then, to find
the strongest warrant degree for a literal Q we must first build the argument A
that supports the query Q with the highest possible certainty degree and see if
A is a warrant for Q. Otherwise we must find another argument B for Q with the
highest certainty degree among the remaining ones, see if it is a warrant for Q,
and so on, until a warranted argument is found or there are no more arguments
supporting Q. This procedure is detailed in algorithm 1.

Example 2. Consider the program shown in Example 1 and let move inbox(d)
be a query wrt this program. The search for a warrant for move inbox(d) will
result in an argument 〈A, move inbox(d), 0.6〉, with

A = {(move inbox(d) –≺ ∼filters(d), 0.6)}

102 M. Capobianco and G.R. Simari

Algorithm 1. StrongestWarrantDegree

Input: P = 〈Ψ, Δ〉, Q
Output: warranted (true/false), α {if warranted is true}
FindArguments(Q,P,L)
{Finds the arguments supporting Q and returns them in L}
L ← Sort(L)
{Orders the arguments according to their certainty degree}
warranted ← false

While L is not empty and not warranted

〈A, Q, α〉 ← Pop(L)
If Warrant(〈A, Q, α〉,P)
{returns true if 〈A, Q, α〉 is warranted wrt P, false otherwise}

then warranted ← true

allowing to conclude that message d should be moved to the folder Inbox, as it
has no associated filter with a certainty degree of 0.6. However, there exists a
defeater for 〈A, move inbox(d), 0.6〉, namely 〈B,∼move inbox(d), 0.7〉, as there
are reasons to believe that message d is spam:

B = {(∼move inbox(d) –≺ move junk(d), 0.8)
(move junk(d) –≺ spam(d), 1), (spam(d) –≺ black list(d), 0.7)}

Using the preference criterion, 〈B,∼move inbox(d), 0.7〉 is a proper defeater
for 〈A, move inbox(d), 0.6〉. However, two counterarguments can be found for
〈B,∼move inbox(d), 0.7〉, since message d comes from the local host, and the
sender is in the user’s contacts list:

– 〈C,∼spam(d), 0.6〉, where C = {(∼spam(d) –≺ contacts(d), 0.6)}.
– 〈D,∼spam(d), 0.9〉, where D = {(∼spam(d) –≺ local(d), 0.9)}.

B defeats C but is defeated by D. There are no more arguments to consider,
and the resulting dialectical tree has only one argumentation line: A is defeated
by B who is in turn defeated by D. Hence, the marking procedure determines
that the root node 〈A, move inbox(d), 0.6〉 is a U-node and the original query
is warranted.

Having defined the inference mechanism, it is interesting to analyze its prop-
erties. Consistency of the set of deductions (warranted literals in OP-DeLP) is
a fundamental property of any inference system. To show this property in OP-
DeLP we demonstrate that the set of warranted arguments is conflict free, that
is, there is no pair of warranted arguments (A, B) such that attack A attacks B
(or the other way around). This is summed-up in the following lemma, but its
proof is not included here for space reasons.

Lemma 1. Let P =〈Ψ, Δ〉be an OP-DeLP program, and let Warr(P) be the set
of arguments warranted from P. For any pair of arguments 〈A, Q, α〉, 〈B, R, β〉,
such that 〈A, Q, α〉 ∈ Warr(P) and 〈B, R, β〉 ∈ Warr(P) it holds that 〈A, Q, α〉
is not a counterargument for 〈B, R, β〉.

A Proposal for Making Argumentation Computationally Capable 103

3 A Design Pattern for OP-DeLP Applications

In this section we present an architectural pattern that can be applied to design
applications that use the OP-DeLP system. Such applications will be engineered
for contexts where: (1) information is uncertain and heterogeneous, (2) handling
of great volume of data flows is needed, and (3) data may be incomplete, vague
or contradictory. In this scenario data will generally be obtained from multiple
sources. Nowadays the availability of information trough the Internet has shifted
the issue of information from quantitative stakes to qualitative ones [4]. For this
reason, new information systems also need to provide assistance for judgind and
examining the quality of the information they receive.

We have chosen to use a multi-source perspective into the characterization of
data quality[4]. In this case the quality of data can be evaluated by comparison
with the quality of other homologous data (i.e. data from different information
sources which represent the same reality but may have contradictory values).
The approaches usually adopted to reconcile heterogeneity between values of
data are : (1) to prefer the values of the most reliable sources, (2) to mention
the source ID for each value, or (3) to store quality meta-data with the data.

For our proposed architecture we have chosen to use the second approach. In
multi-source databases, each attribute of a multiple source element has multiple
values with the ID of their source and their associated quality expertise. Qual-
ity expertise is represented as meta-data associated with each value. We have
simplified this model for an easy and practical integration with the OP-DeLP
system. In our case, data sources are assigned a unique certainty degree. For
simplicity sake, we assume that different sources have different values. All data
from a given source will have the same certainty degree. This degree may be ob-
tained weighting the plausibility of the data value, its accuracy, the credibility
of its source and the freshness of the data.

OP-DeLP programs basically have a set of observations Ψ and a set of rules
Δ. The set of rules is chosen by the knowledge engineer and remains fixed. The
observation set may change according with new perceptions received from the
multiple data sources. Nevertheless, inside the observation set we will distinguish
a special kind of perceptions, those with certainty degree 1. Those perceptions
are also codified by the knowledge engineer and cannot be modified in the future
by the perception mechanism. To assure this, we assume that every data source
has a certainty value γ such that 0 < γ < 1.

Example 3. Consider the program in Example 2. In this case data stablishing
a given message is from the local host cames from the same data source and
can be given a certainty degree of 1. The same applies for contacts(X). The
algorithm that decides whether to filter a given message is another data source
with a degree of 0.9, the filter that classifies a message as a virus is another data
source with a degree of 0.7, and the algorithm that checks if the message came
from some server in the blacklist is a different source that has a degree of 0.75.
Note that we could have different virus filters with different associated certainty
degrees if we wanted to build higher trust on this filter mechanism.

104 M. Capobianco and G.R. Simari

The scenario just described requires an updating criterion different to the one
presented in [6], given that the situation regarding perceptions in OP-DeLP is
much more complex. To solve this, we have devised Algorithm 2, that summarizes
different situations in two conditions. The first one acts when the complement
of the literal Q is already present in the set Ψ . Three different cases can be
analyzed in this setting: (1) If both certainty degrees are equal it means that
both Q and its complement proceed from the same data source. Then the only
reason for the conflict is a change in the state of affairs, thus an update is needed
and the new literal is added. (2) If α > β it means that the data sources are
different, Thus we choose to add (Q, α) since it has the higher certainty degree.
(3) If α < β we keep (Q, β). Note that (1) is an update operation [17] while
(2) and (3) are revisions over Ψ . The difference between updating and revision
is foundamental. Updating consists in bringing the knowledge base up to date
when the world changes. Revision allows us to obtain new information about a
static scenario [17].

The second condition in Algorithm 2 considers the case when Q was in Ψ
with a different certainty degree. Then it chooses the weighted literal with the
highest degree possible. Note that the observations initially codified that have a
certainty degree of 1 cannot be deleted or modified by algorithm 2.

Algorithm 2. UpdateObservationSet

Input: P = 〈Ψ, Δ〉, (Q, α)
Output: P = 〈Ψ, Δ〉 {With Ψ updated }
If there exists a weighted literal (Q, β) ∈ Ψ such that β ≤ α Then

delete((Q, β)
add((Q, α))

If there exists a weighted literal (Q,β) ∈ Ψ such that α ≤ β Then

delete((Q, β)
add((Q, α))

Associating a certainty degree with each data source is an interesting choice
for many applications, but it is not hard coded in the OP-DeLP system. The cer-
tainty degrees in the observation set can be assigned by means of any reasonable
criteria, and this decision is ultimately in hands of the application developer,
who can understand better the particular needs of a given context.

Finally, fig. 2 summarizes the main elements of the O-DeLP-based architec-
ture. Knowledge is represented by an OP-DeLP program P . Perceptions from
multiple sources may result in changes in the set of observations in P , handled by
the updating mechanism defined in algorithm 2. To solve queries the OP-DeLP
inference engine is used. This engine is assisted by the dialectical graph (Def. 15)
to speed-up the argumentation process. The final answer to a given query Q will
be yes, with the particular certainty degree of the warranted argument support-
ing Q, or no if the system could not find a warrant for Q from P .

A Proposal for Making Argumentation Computationally Capable 105

DS1 DS2 DSn
. . .

����
���

Obs Ψ ��

Defeasible
Rules Δ

�
Dialectical

Graph

Revision & Updating

�

�
Answers

�
Queries

Fig. 2. Architecture for applications using OP-DeLP as underlying framework

4 Dialectical Graphs: An Optimization Based on
Pre-compiled Knowledge

To obtain faster query processing in the OP-DeLP system we integrate pre-
compiled knowledge to avoid the construction of arguments which were already
computed before. The approach follows the proposal presented in [6] where the
pre-compiled knowledge component is required to: (1) minimize the number of
stored arguments in the pre-compiled base of arguments (for instance, using one
structure to represent the set of arguments that use the same defeasible rules);
and (2) maintain independence from the observations that may change with
new perceptions, to avoid modifying also the pre-compiled knowledge when new
observations are incorporated.

Considering these requirements, we define a database structure called dialec-
tical graph, which will keep a record of all possible arguments in an OP-DeLP
program P (by means of a special structure named potential argument) as well
as the counterargument relation among them. Potential arguments, originally
defined in [6] contain non-grounded defeasible rules, depending thus only on the
set of rules Δ in P and are independant from the set of observations Ψ .

Potential arguments have been devised to sum-up arguments that are obtained
using different instances of the same defeasible rules. Recording every generated
argument could result in storing many arguments which are structurally identi-
cal, only differing on the constants being used to build the corresponding deriva-
tions. Thus, a potential argument stands for several arguments which use the
same defeasible rules. Attack relations among potential arguments can be also
captured, and in some cases even defeat can be pre-compiled. In what follows we
introduce the formal definitions, adapted from [6] to fit the OP-DeLP system.

106 M. Capobianco and G.R. Simari

Definition 14. [Weighted Potential argument]Let Δ be a set of defeasible rules.
A subset A of Δ is a potential argument for a literal Q with an upper bound
γ for its certainty degree, noted as 〈〈A,Q, γ〉〉 if there exists a non-contradictory
set of literals Φ and an instance A that is obtained finding an intance for every
rule in A, such that 〈A, Q, α〉 is an argument wrt 〈Φ, Δ〉(α ≤ γ) and there is no
instance 〈B, Q, β〉 of A such that β > γ.

Definition 14 does not help to obtain the set of potential arguments from a given
program. The interested reader may consult [6] for a constructive definition and
its associated algorithm. The calculation of the upper bound γ deserves a special
mention, since the algorithm in [6] was devised for a different system, without
uncertainty management. This element will be used later on to speed-up the
extraction of the dialectical tree for a given query from the dialectical graph.
To calculate γ on a potential argument A we simply choose the lower certainty
degree of the defeasible rules present in A.

The nodes of the dialectical graph are the potential arguments. The arcs
of our graph are obtained calculating the counterargument relation among the
nodes previously obtained. To do this, we extend the concept of counterargu-
ment for potential arguments. A potential argument 〈〈A1,Q1, α〉〉 counter-argues
〈〈A2,Q2, β〉〉 at a literal Q if and only if there is a non-empty potential sub-
argument 〈〈A,Q, γ〉〉 of 〈〈A2,Q2, β〉〉 such that Q1 and Q are contradictory lit-
erals.1 Note that potential counter-arguments may or may not result in a real
conflict between the instances (arguments) associated with the corresponding
potential arguments. In some cases instances of these arguments cannot co-exist
in any scenario (e.g., consider two potential arguments based on contradictory
observations). Now we can finally define the concept of dialectical graph:

Definition 15. [Dialectical Graph]Let P = 〈Ψ, Δ〉 be an OP-DeLP program.
The dialectical graph of Δ, denoted as GΔ, is a pair (PotArg(Δ), C) such that:
(1) PotArg(Δ) is the set {〈〈A1,Q1, α1〉〉, . . . , 〈〈Ak,Qk, αk〉〉} of all the potential
arguments that can be built from Δ; (2) C is the counterargument relation over
the elements of PotArg(Δ).

Example 4. Consider the program given in Example 2. The associated graph
is composed by the potential arguments shown in Figure 3, and C = {(A1, A5),
(A5, A1), (A2, A5), (A5, A2), (A4, A5), (A5, A4), (A3, A5), (A5, A3),(A6, A5),(A5, A6),
(C1, C2), (C2, C1), (C1, C3), (C3, C1), (C2, B3), (C3, B3)}.
Having defined the dialectical graph we now present algorithm 3 to extract a
particular dialectical tree rooted in a given potential argument.

To solve a query under the OP-DeLP system using pre-compiled knowl-
edge we use algorithm 1 replacing the call to algorithm Warrant with a call
to WarrantFromGraph. Then the inference process starts finding the potential
argument in the graph corresponding to 〈A, Q, α〉 to follow the link to its coun-
terarguments that are already precomputed in the dialectical graph. Before an-
alyzing the counterarguments it cuts those whose upper bound δ is not greater
1 Note that P (X) and ∼P (X) are contradictory literals although they are non-

grounded. The same idea is applied to identify contradiction in potential arguments.

A Proposal for Making Argumentation Computationally Capable 107

〈〈A1, ∼move inbox(X), 0.8〉〉,
where A1 = {(∼move inbox(X) –≺ move junk(X), 0.8)}
〈〈A2, ∼move inbox(X), 0.8〉〉,
where A2 = {(∼move inbox(X) –≺ move junk(X), 0.8);

(move junk(X) –≺ virus(X), 1)}
〈〈A3, ∼move inbox(X), 0.8〉〉,
where A3 = {(∼move inbox(X) –≺ move junk(X), 0.8);

(move junk(X) –≺ spam(X), 1)}
〈〈A4, ∼move inbox(X), 0.7〉〉,
where A4 = {(∼move inbox(X) –≺ move junk(X), 0.8);

(move junk(X) –≺ spam(X), 1), (spam(X) –≺ black list(X), 0.7)}
〈〈A5, move inbox(X), 0.6〉〉,
where A5 = {(move inbox(X) –≺ ∼filters(X), 0.6)}
〈〈A6, ∼move inbox(X), 0.7〉〉,
where A6 = {(∼move inbox(X) –≺ filters(X), 0.7)}
〈〈B1, move junk(X), 1〉〉,
where B1 = {(move junk(X) –≺ virus(X), 1)}
〈〈B2, move junk(X), 1〉〉,
where B2 = {(move junk(X) –≺ spam(X), 1)}
〈〈B3, move junk(X), 0.7〉〉,
where B3 = {(move junk(X) –≺ spam(X), 1); (spam(X) –≺ black list(X), 0.7)}
〈〈C1, spam(X), 0.7〉〉,
where C1 = {(spam(X) –≺ black list(X), 0.7)}
〈〈C2, ∼spam(X), 0.6〉〉,
where C2 = {(∼spam(X) –≺ contacts(X), 0.6)}
〈〈C3,∼spam(X), 0.7〉〉,
where C1 = {(∼spam(X) –≺ local(X), 0.7)}

Fig. 3. Potential arguments for Example 4

or equal than the certainty degree of 〈A, Q, α〉. Then it instantiates the poten-
tial counterarguments and calculates its certainty degree, to calculate the defeat
relation. The state of every one of A’s defeaters must be obtained through the
State algorithm. Finally the state of A (defeated or undefeated) is set according
to the results obtained for its defeaters.

The code for the State algorithm is not presented here for space reasons.
Basically, it takes as input an OP-DeLP program P , an argument 〈A, Q, α〉
based on it, and the interference and support argumentation lines up to that
point, denoted as IL and SL. Simply put, IL represents the set of arguments
with an even level in the current path of the tree under construction, and SL the
arguments with an odd level. Then the State algorithm works like algorithm
WarrantFromGraph analyzing the defeaters for A to define its state by calling
itself recursively.

Example 5. Consider program in Example 2 and its associated dialectical graph
shown in Example 4. To see if a given message d must be placed in the inbox, the
query move inbox(d) must be solved. As shown in Example 2, solving this query

108 M. Capobianco and G.R. Simari

Algorithm 3. WarrantFromGraph

Input: P = 〈Ψ, Δ〉, 〈A, Q, α〉, GΔ

Output: (true/false)

〈〈A, Q, γ〉〉 ← PotentialArgument(〈A, Q, α〉)
{finds the potential argument in the graph whose instance is 〈A, Q, α〉}
Defeat-state ← undefeated

{finds the defeaters for 〈A, Q, α〉 and sets their state }
For every 〈〈B, X, delta〉〉 in PotArg(Δ) such that (B, A) ∈ C and δ ≥ α

For every instance 〈B, R, β〉 of 〈〈B, X, δ〉〉 such that β ≥ α
{Sets the state of the main argument according to its defeaters }
If state(〈B, R, β〉, P, ∅, {〈A, Q,α〉}) = undefeated

then Defeat-state ← defeated

{If any of the instances remains undefeated it is a warrant }
WarrantFromGraph ← Defeat-state

results in a dialectical tree with tree arguments. Let us analyze now how the same
inference can be obtained using the dialectical graph. Following algorithm 3, po-
tential argument 〈〈A5, move inbox(X), 0.6〉〉 will be instantiated resulting in argu-
ment 〈A, move inbox(d), 0.6〉, with A = {(move inbox(d) –≺ ∼filters(d), 0.6)}.

From the dialectical graph it follows that 〈〈A5, move index(X), 0.6〉〉 has coun-
terarguments A1, A2, A3, A4, A6, but only A4 is active according to the current
set of observations. This argument is instanciated to 〈B,∼move inbox(d), 0.7〉,
where B = {(∼move inbox(d) –≺ move junk(d), 0.8); (move junk(d) –≺ spam(d), 1);
(spam(d) –≺ black list(d), 0.7)}.

From the graph associated with the dialectical database, potential counter-
argument C3 can be found and instanciated 〈D,∼spam(d), 0.9〉, where D =
{(∼spam(d) –≺ local(d), 0.9)}. Note that from the information in the dialecti-
cal graph related to C3 there are no more links in the graph to new counter-
arguments for these potential arguments that can be instanciated to defeat
〈D,∼spam(d), 0.9〉. As a consequence, a dialectical tree identical to the one
shown in Example 2 has been computed from the dialectical graph.

5 Conclusions

In this work we have defined an argumentation-based formalism that integrates
uncertainty management. This system was also provided with an optimization
mechanism based on pre-compiled knowledge. Using this, the argumentation
system can comply with real time requirements needed to administer data and
model reasoning over this data in dynamic environments.

To use dialectical graphs in OP-DeLP we have introduced algorithms for the
inference process. We have also developed new algorithms for the construction
of dialectical bases that have not been included here for space reasons. We
compared the obtained algorithms theoretically with standard argument-based

A Proposal for Making Argumentation Computationally Capable 109

inference techniques (such as those used in P-DeLP). At the inference process,

complexity is lowered from O

(

2|Δ
′|3.(2|Δ′|)/4

)

to O(2|Δ
′|.|Δ′|).

Another contribution is the architectural model to integrate OP-DeLP in
practical applications to administer and reason with data from multiple sources.
In this model we incorporated a perception mechanism that subsumes belief
revision and updating. We have also chosen to assign a unique certainty degree
to each data source. Perceptions obtained from this source automatically acquire
this degree. This is an interesting solution for many applications, since it frees
the knowledge engineer from assigning degrees to perceptions in an ad hoc way.
Currently we are developing a prototype based on the proposed architecture to
extend the theoretical complexity analysis with empirical results and to test the
integration of the OP-DeLP reasoning system in real world applications.

References

1. Alsinet, T., Chesñevar, C.I., Godo, L., Sandri, S., Simari, G.R.: Formalizing argu-
mentative reasoning in a possibilistic logic programming setting with fuzzy unifi-
cation. International Journal of Approximate Reasoning 48(3), 711–729 (2008)

2. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: R Simari. A logic program-
ming framework for possibilistic argumentation: Formalization and logical proper-
ties. Fuzzy Sets and Systems 159(10), 208–228 (2008)

3. Alsinet, T., Godo, L.: A complete calculus for possibilistic logic programming with
fuzzy propositional variables. In: Proceedings of the Sixteenth Conference on Un-
certainty in Artificial Intelligence (UAI-2000), pp. 1–10. ACM Press, New York
(2000)

4. Berti, L.: Quality and recommendation of multi-source data for assisting tech-
nological intelligence applications. In: Proc. of 10th International Conference on
Database and Expert Systems Applications, Italy, pp. 282–291. AAAI, Menlo Park
(1999)

5. Bryant, D., Krause, P.: An implementation of a lightweight argumentation engine
for agent applications. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A.
(eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 469–472. Springer, Heidelberg
(2006)

6. Capobianco, M., Chesñevar, C.I., Simari, G.R.: Argumentation and the dynamics
of warranted beliefs in changing environments. Journal of Autonomous Agents and
Multiagent Systems 11, 127–151 (2005)

7. Carbogim, D., Robertson, D., Lee, J.: Argument-based applications to knowledge
engineering. The Knowledge Engineering Review 15(2), 119–149 (2000)

8. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical Models of Argument. ACM
Computing Surveys 32(4), 337–383 (2000)

9. Chesñevar, C.I., Maguitman, A.G., Simari, G.R.: Argument-based critics and rec-
ommenders: A qualitative perspective on user support systems. Data & Knowledge
Engineering 59(2), 293–319 (2006)

10. Chesñevar, C.I., Maguitman, A.G.: ArgueNet: An Argument-Based Recommender
System for Solving Web Search Queries. In: Proc. of Intl. IEEE Conference on
Intelligent Systems IS-2004, Varna, Bulgaria (June 2004)

110 M. Capobianco and G.R. Simari

11. Chesñevar, C.I., Simari, G.R., Alsinet, T., Godo, L.: A logic programming frame-
work for possibilistic argumentation with vague knowledge. In: Proc. of Uncertainty
in Artificial Intelligence Conference (UAI 2004), Banff, Canada (2004) (to appear)

12. Doyle, J.: A Truth Maintenance System. Artificial Intelligence 12(3), 231–272
(1979)

13. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C.,
Robinson, J. (eds.) Handbook of Logic in Art. Int. and Logic Prog. (Nonmonotonic
Reasoning and Uncertain Reasoning), pp. 439–513. Oxford Univ. Press, Oxford
(1994)

14. Garćıa, A., Simari, G.: Defeasible Logic Programming: An Argumentative Ap-
proach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing, 365–385 (1991)

16. Gomez, S.A., Chesñevar, C.I.: A Hybrid Approach to Pattern Classification Using
Neural Networks and Defeasible Argumentation. In: Proc. of Intl. 17th FLAIRS
Conference, Palm Beach, FL, USA, May 2004, pp. 393–398. AAAI, Menlo Park
(2004)

17. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base
and revising it. In: Gardenfors, P. (ed.) Belief Revision, pp. 183–203. Cambridge
University Press, Cambridge (1992)

18. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Hand-
book of Philosophical Logic, vol. 4, pp. 219–318 (2002)

19. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg,
L.: Argumentation-based negotiation. The Knowledge Engineering Review 18(4),
343–375 (2003)

20. Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and
its Implementation. Artificial Intelligence 53(1–2), 125–157 (1992)

Making Sense of a Sequence of Events:

A Psychologically Supported AI Implementation

Philippe Chassy and Henri Prade

IRIT, University of Toulouse,
31062 Toulouse Cedex 9, France

chassy@irit.fr, henri.prade@irit.fr

Abstract. People try to make sense of the usually incomplete reports
they receive about events that take place. For doing this, they make use
of what they believe the normal course of thing should be. An agent′s
beliefs may be consonant or dissonant with what is reported. For making
sense people usually ascribe different types of relations between events.
A prototypical example is the ascription of causality between events.
The paper proposes a systematic study of consonance and dissonance
between beliefs and reports. The approach is shown to be consistent
with findings in psychology. An implementation is presented with some
illustrative examples.

1 Making Sense in Artificial Intelligence and Psychology

Whether robots, animals, or humans, autonomous agents have to make sense
of their environment before undertaking any further goal-driven action. More
specific to human agents is the fact that making sense may be only but a pre-
requisite for engaging in further task-oriented cognitive processing such as ex-
plaining, persuading, predicting, or diagnosing. The fact that making sense is an
all-purpose psychological function makes it a central topic both in psychology
and in artificial intelligence (AI).

The present paper focuses on human making sense and how to model it. As
pointed out by many psychologists (See [1] and references therein), the mak-
ing sense process is not mere information intake and requires that knowledge
interacts with salient features of a situation. For example, human agents have
at their disposal memory structures developed to encode knowledge about the
events that typically occur in highly-structured situations (e.g. at the doctor, at
the restaurant). These memory structures are called schemes or scripts [5,6] and
are keys to interpret the world. Similarly, experts make rapid sense of complex
situations by coordinating perceptual input and domain-specific knowledge [2].
In line with this view, psychological models, such as ACT- R [3] make use of
declarative and procedural knowledge to account for human problem solving.
The literature of AI is also rich in models that make sense of a situation by
interpreting data with domain-specific knowledge. MYCIN [4] is one of the first
examples of expert support systems that makes sense of a situation. Both AI

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 111–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 P. Chassy and H. Prade

and psychology have brought to light the role played by both declarative and
rule-based knowledge.

In agreement with this view, a new approach of causality ascription has been
recently proposed [7]: faced with a reported sequence of events, the model inter-
prets the facts by using context-dependent knowledge. This model compares well
with other models accounting for causal ascription [8]. We develop the approach
further and term it KUMS (for Knowledge Use for Making Sense) theory in the
following. Data from psychology have been used to justify the architecture of
the model and to add several new features.

The remainder of this paper is structured as follows. In section 2, we show
how a link is put to connect two events1. In Section 3, we provide a structural
view of different making sense situations. Section 4 presents the computer model
developed to test the validity of the model regarding human data. Section 5
reports the results of the simulations and illustrates which key psychological
phenomena the model is able to simulate. Finally, in section 6, we discuss the
limits and point to further studies.

2 Making Sense: Connecting Facts through Knowledge

To introduce the key idea of connection, let us consider the context of soccer, and
the sequence : S (shooting, dribbling, Messi running, goal). We can expect an
agent to reorganize data and perceive: Messi running → Dribbling → Shooting
→ Goal. The connector symbol → does not yet carry any specific meaning and
is used here to show that statements are re-organized so as to integrate facts.
This section addresses the question of the nature of such connectors.

AI and psychology agree on the fact that human agents have a wide variety of
connectors that can bind events together [9,10]. Due to its historical importance
in philosophy, psychology and AI, the causal connector is probably one of the
most studied. We use this connector to illustrate how KUMS theory describes
the process whereby one perceiver ascribes a connector so as to link two (or
more) events. Causal ascription has been the focus of active research recently
[7,8,9,11,12]. For a causal relationship to be perceived, time is to elapse between
the putative cause and its effect [13]. KUMS theory is consistent with these
findings and integrates time as a discrete variable. As outlined in the above,
KUMS theory is based on the assumption that making sense emerges from the
interplay between context, facts, and context-dependent knowledge. We examine
each factor in turn. Context refers to the set of variables that define the situation
under consideration as belonging to a class of situations. The context is of no
use to the agent except that of constraining the knowledge that can be used to
make sense of a situation. The context will be denoted by K. The facts are the
sequence of events that are under consideration in a given context. There are two
possible states about any statement E in context K at time t: either E is known
1 We use the idea of a connector as a ‘psychological operation linking two elements′.

This notion should be distinguished from the common AI notion of connectives for
that human connectors do not need to be logical.

Making Sense of a Sequence of Events 113

as true (denoted Et) , or E is known as false (¬Et). A sequence of events is thus
a series of time-stamped statements reflecting the agent′s knowledge about what
has occurred. Sequences may have more than one event that takes place in one
time step (e.g., the sequence Messi running1, Dribbling1, Shooting2, Goal3). It
is worth noting that the relevant information is not supposed to be complete.

Now we turn our attention to context-dependent knowledge. Note that beliefs
are not necessarily true, but are considered as such by the agent who holds them.
We can distinguish two types of beliefs.

The first type refers to the putative relationship that links two events. We
make the assumption that the pieces of knowledge that are used by an agent
for interpreting reported facts are consistent. Namely, in a given context K, the
agent cannot believe in the same time that E is normal and E is not normal. The
belief connecting an event A to a statement E in context K will be viewed as a
default rule if A and K then normally E denoted by A ∧ K |∼ E; where the |∼
denotes a nonmonotonic consequence relation assumed to follow the postulates
of system P [24]. In context K, given that A is true, an agent may (i) either
believe that E should be true, i.e., A ∧ K |∼ E, (ii) that E should be false, i.e.,
A ∧ K |∼ ¬E, or (iii) that E may be true or false as well, i.e., A ∧ K �|∼ E and A
∧ K �|∼ ¬E. Here, the symbol �|∼ stands for the negation that the default holds.

The second type of knowledge that is crucial for making sense is normality.
As AI scientists and psychologists have shown, events perceived as normal or
abnormal play a central role in causal ascription [14,15]. This finding highlights
the fact that agents hold context-specific beliefs about what is expected to be
normal and what is not. For example, if we are attending a music festival it
is normal to see guitars while this object is not normal in the context of a
battlefield. The epistemic state of an agent with respect to an event E in context
K could correspond to three mutually exclusive situations: (i) K |∼ E, E is
generally true in context K; (ii) K |∼ ¬E, E is generally false in context K; (iii)
K �|∼ E. E may or not be true in context K.

Let us now detail the mechanisms ascribing a causal connector between two
events. Consider for instance the case of an agent informed that a friend of
his, Paul, had an accident. The agent is also aware that Paul was drunk while
driving. Finally, let us presume that the agent believes that drunkenness in the
context of driving generates accidents. Then, the agent will conclude that Paul
being drunk caused his accident. Formally:

Definition 1 (Causal Ascription). Typically, an agent learns that ¬E and A
were true at a time t and that at a later time (t + 1) there has been a change
and now E is true. If the agent holds the belief that K |∼ ¬E and A ∧ K |∼ E,
then A is perceived by the agent to be the cause of E in context K.

The above definition has been validated by psychological experiments [9]. Such a
definition of causality allows deriving some properties associated to the percep-
tion of a causal connector. In particular it is not the case that A can be normal in
context K (the agent cannot consistently hold the belief that K |∼ A). Moreover

114 P. Chassy and H. Prade

transitivity does not necessarily hold for causal ascription; i.e., believing that
A ∧ K |∼ E and E ∧ K |∼ Z does not make believe that A ∧ K |∼ Z; this
property is due to the nonmonotonicity of the |∼ [24]. Through the example of
causal ascription we have shown that connector ascription results from a spe-
cific combination of a set of items, namely: beliefs about what is normal, beliefs
about possible influences, truth state of the possible antecedent A, and change
of state of the supposed effect E. These factors can be set to different values
and generate different ascriptions. These different connectors are the focus of
the next section.

3 The Role of Knowledge in Making Sense

It has been explained in the above that the ascription of the causal link arises
as the interplay between a specific report (pattern of events) and a specific
pattern of beliefs. We present hereafter all the possible beliefs states and the
possible report states. We show that the report-belief interaction generates many
possible types of connections, among which cause is only but one case. For sake
of simplicity, we consider the case wherein the agent is interested in making
sense of the action A on the putative effect E. Let t and t+1 be two time steps.
Action A is reported (or not) to take place at time step t. The state of E in time
steps t and t + 1 is known so that the agent can determine whether the state of
E changes or persists in the course of time. We now detail how connectors are
ascribed. By convention, and for the sake of simplicity, we set t = 1 and t+1 = 2
in the notation below.

Let first consider the role of beliefs. As already said, the belief regarding the
status of normality of one object in a given context can have three different
possible states (i.e., normal, abnormal, or unknown). Similarly, the conditional
belief factor has also three states (A ∧ K |∼ ¬E, A ∧ K |∼ ¬E, or A ∧ K
�|∼ E and A ∧ K �|∼ ¬E). A factorial combination of those two types of belief
yields nine possible belief states. The type of report also arises from a factorial
combination of two factors. The first factor is whether the state of the putative
effect E changes or not during the course of events. The second factor refers to
whether action A is reported to the agent or not. The combination of these two
variables yields four possible report cases. We introduce two key terms that are of
great use to organize the result of a comparison between beliefs and facts. The
term of consonance is used to describe a psychological state where cognitions
do not contradict each other. For example, let consider an agent who believes
that apples fall because of gravity. If an apple falls from a tree the fact will
not contradict the knowledge and thus will be consonant with it. Dissonance
appears whenever there is a inconsistency in cognitions. For example, observing
that the apple does not fall would generate dissonance. Dissonance can also arise
from beliefs inconsistencies. For example, an agent may believe that Paul is nice
and that James is not. A dissonance can emerge between the two beliefs if the
agent learns that Paul and James are good friends (assuming that normally a
nice person has nice friends only). Human agents tend to reduce dissonance by

Making Sense of a Sequence of Events 115

Table 1. Connector ascription as a function of state of the supposed effect (E) and
action (A) as well as the beliefs held regarding the facts (A and E)

reorganizing cognitions. Dissonance reduction is processed by considering events
in a new light or by changing beliefs. Within the theoretical framework presented
in the current paper the terms of consonance and dissonance will refers to a
belief-facts comparison. The combination between beliefs and reports yields the
36 report-belief cases that appear in Table 1.

At the best of our knowledge, the approach presented in Table 1 is new to
AI and psychology. We would like here to establish the various ways in which
making sense is being carried out. Psychologically speaking, the beliefs that an
agent holds regarding a given context yields expectations about what is likely
to occur. As long as the situation is as expected (matches what is believed
to be normal), the match between facts and belief is consonant. We distinguish
between two subclasses of consonance. Note that the proposed taxonomy is made
possible because of the use of |∼ that encodes a qualitative theory of uncertain
knowledge. The type of connector that is ascribed has been selected upon the
base of results collected in AI and psychology [9,8].

Table 1 summarizes how an agent may react to a given report according to his
beliefs. The considered sequence may report a change or a mere persistence, and
it may include or not an event A. Thus, given the context K the agent may find
i) normal that E is true at time 1 (if for him K |∼ E), ii) abnormal that E is true
at time 1 (if (K |∼ ¬E), iii) contingent (if K �|∼ E and K �|∼ ¬E) that E is true
at time 1. Similarly, the state of E at time 2 may be found normal, abnormal, or
contingent w. r. t. the agent′s belief that involve A if A is reported, and the other

116 P. Chassy and H. Prade

beliefs if A is not reported. Thus, one may have nine different pairs of perceived
world states, ranging from (normal1 −normal2) to (abnormal1 −normal2) and
to (contingent1−abnormal2). The pair (normal1−normal2) expresses a strong
consonance (stamped by * in the table), the pairs (normal1 − contingent2),
(contingent1 − normal2) and (contingent1 − contingent2) sound weakly con-
sonant (Stamped by ** in the table). The other pairs are felt dissonant. We
distinguish three different forms of dissonance: dissonance is complete if abnor-
mality takes place at times 1 and 2, it is softened (resp. resolved) if abnormality
is only at time 1 and contingency (resp. normality) takes place at time 2, and it
is final when the situation reported at time 2 is abnormal. Complete and final
dissonance are the most uncomfortable for the agent, since the dissonance marks
a lack of making sense.

Some consonant or dissonant situations when A takes place allow the ascrip-
tion of some specific connector. Causation corresponds to a change from E1 to
¬E2 where normality w. r. t. beliefs is preserved. Facilitation is a weakened
form where the final state after change is found contingent ((K ∧ A) �|∼ E and
(K ∧ A) �|∼ ¬E). In case ¬E is normal in context K for the agent (K |∼ ¬E) –
which makes E1 exceptional – while the agent believes that ¬E is normal when
A takes place ((K ∧ A) |∼ ¬E), A justifies the arrival of ¬E2 (perceived as a
return to normality). If E2 is reported, justification will correspond to the case
where the agent believes (K∧A) |∼ E. Note that A is felt as a justification when
we are back to normality, after being initially in an abnormal or contingent state.

Note that the belief K |∼ E expresses that E tends to persist when nothing
takes place. When K �|∼ E or K |∼ ¬E, it might be the case that the agent has
the additional belief that K ∧ Et |∼ ¬Et+1, i.e. if E takes place contingently or
by exception, it is unstable. Then in such a situation (not considered in Table
1), if the agent also believes that K ∧ A |∼ E, then the agent will consider that
the occurrence of A has prevented ¬E to take place, when E1, A and E2 are
reported.

The idea that we process information as chunks has been put forward by
Miller [17] and then empirically validated [18,19]. This chunking helps to com-
pensate for the limit on human memory. Information is chunked on the base of
association through meaning. Hence, KUMS theory reflects findings in psychol-
ogy and provides a formal background to explain how chunking occurs. KUMS
bridges the gap between memory and the reasoning abilities of human agents.
To summarize, Table 1 can be used to make predictions about how humans are
going to make sense of the situation at hand. That is, ascription will link events
in a bigger psychological representation so that the individual can operate fur-
ther cognitive processing (diagnosing for example). Furthermore, Table 1 offers
a taxonomy of human reactions based on environmental and experiential factors.
As such, it is a good tool to model and simulate human behavior as well as to
develop human-like robots.

The following example illustrates the process of making sense within KUMS
theory. Let consider an agent who holds the following beliefs: One is generally
not drunk, and when driving, one has generally no accident: |∼ ¬ Drunk, Drive

Making Sense of a Sequence of Events 117

|∼ ¬ Accident. The agent also believes that driving while drunk is not as safe and
may lead to an accident: Drive ∧ Drunk �|∼ ¬ Accident. The agent is convinced
that being drunk and driving fast leads to accidents Drive ∧ Fast ∧ Drunk |∼
Accident. In the context of a bar, the agent holds the view that drinking is
normal and that the presence of alcohol is normal as well. So the agent believes
that Bar ∧ Alcohol |∼ Drunk. Let now spell out how the agent is going to make
sense of the following story: John spent his evening at the bar. John was wearing
a red shirt. He drank alcohol for two hours. He eventually got drunk. When time
has come he took his car to go back home. He drove fast as he was in a hurry.
He had an accident.

Fig. 1. Representation of the situation held by the agent before and after making sense

Let us code the facts according to the following sequence: S (Bar1, Shirt1,
Alcohol2, Drunk3, ¬ Bar3, Drive4, Fast4, Accident5). Let us know make a graph
representation of the sequence. See Figure 1 Panel A to see a time dependent
representation of the events.

Figure 1 illustrates the contents of the agent′s temporary buffer before and
after that the making sense process has operated upon the internal represen-
tation. Once the agent is reported with the sequence of events, events are still
unlinked (Panel A). Panel B shows how the agent has made sense of the sequence
of events. In line with the approach we have adopted, we got the following as-
criptions: {Drunk ∧ Drive ∧ Fast CAUSE Accident}; {Bar ∧ Alcohol CAUSE
Drunk}; {Drunk FACILITATE Accident}. It is worth noting that this illustrates
the fact that some pieces of information (here, ‘shirt’) can have no importance
in a given context, and as such can disappear during the process of connector
ascription, as being irrelevant. This is true whenever the agent has no belief that

118 P. Chassy and H. Prade

can be related with some reported fact X (there is no belief of the form K ∧ S
|∼ X , K ∧ S |∼ ¬ X , K ∧ X |∼ S, or K ∧ X |∼ ¬S held by the agent).

4 Implementing a Connection Ascriptor for Making
Sense

Figure 2 shows the architecture of the Connection Ascriptor for Making Sense
(CAMS) module. CAMS is made of four components: a temporary buffer, a
belief base, an interpreter, and a working buffer. We examine each component
in turn. The temporary buffer is in charge of holding the sequence of events
for the duration of the simulation. Psychologically, it is supposed to hold the
information that is accessed by the agent′s consciousness. It is the place wherein
data is held online while making sense processes are run. Events are marked
by their time of occurrence so that time-stamped sequences of events can be
entered.

Fig. 2. Architecture of the CAMS program

The belief base encodes all the context-dependent beliefs held by an agent. The
data stored in the belief base is indexed by two types of entries. The first type
of entry is normality (unconditional beliefs). The records of the unconditional
belief will inform the interpreter as to what is the normal state of the event under
consideration. The second belief base, termed conditional, stores the records
connecting the event under consideration with other pieces of knowledge. From
the standpoint of psychology the belief base implements declarative long-term
memory2. The query of searching into the database is made by the interpreter.
The results that match the queries are forwarded to the interpreter.
2 It is supposed here that the belief memories contain all the beliefs that the agent

is aware of. In particular they should explicitly contain their respective deductive
closure in the sense of System P [24], if the agent is supposed to be omniscient.

Making Sense of a Sequence of Events 119

The interpreter is the core of the model. It completes the function of ascribing
connectors between events. It stands at the interplay between the temporary
buffer, the belief base, and the working buffer. It scans all the events stored in
the temporary buffer and retrieves one fact at a time from it. For each fact,
it applies the following 4-step procedure. First, the interpreter searches for the
information concerning the epistemic state of normality. Then, the information
is retrieved and stored in a local variable. The interpreter then searches into the
conditional belief base to determine whether the event under consideration has
one or more known beliefs associated to it. Finally, by a set of if-then rules the
interpreter combines the type of report and the belief state to determine the type
of connector that is to be ascribed. The interpreter is also in charge of updating
the content of the working buffer at the end of the simulation by forwarding the
chunks of connected data.

The working buffer receives the interpreter results. It holds the chunks of
information reflecting the agents’ understanding of the situation. This buffer
does not play an active role in the simulation but helps distinguishing mere
perception of facts (temporary buffer) from elaborated mental representations.
The architecture of CAMS shares a lot of properties with Atkinson and Shiffrin′s
[21,22] model of human cognition. These authors have posited that an executive
system is controlling the flow of information between short-term memory and
long-term memory.

5 Illustrative Examples

We present in this section some simulations illustrating how the model works
and how sensitive it is to modifications in the belief base or in the report details.
These features aims to reproduce the behavior of human agents when handling
report-based information. In CAMS, we aimed to implement most of the connec-
tors that are under study in psychology (causation, facilitation, justification). We
chose not to show normal ascriptions and unconnected events as this would over-
load the output without adding much information as how people make sense of
events. For the first two examples we selected excerpts from a database of actual
accident reports.

The following table presents the conditional and unconditional beliefs that
were used to simulate the data of examples 1 and 2. The table is a list of the
system knowledge in no specific order. We detail the first example we have used
so as to illustrate how the input and the output are coded. Let us consider the
following story.

Example 1. We were at Somewhere, I was surprised by the person who braked
in front of me, not having the option of changing lane and the road being wet, I
could not stop completely in time.

For the simulations, statements were recoded as simple words; for example, the
fact that the author brakes was coded as A brakes. By using this procedure,

120 P. Chassy and H. Prade

Table 2. Beliefs used to simulate the model on a selected set of examples

Example 1 was recoded as a sequence: S (A drives1, obstacle2, A surprised2,
A brakes3, road wet4, ¬A distance4, accident5). Events were entered sequen-
tially into CAMS.

The interpreter forwarded the following output:

{A brakes ∧ road wet ∧ ¬ A distance CAUSE accident} {A drives ∧
A surprised CAUSE A brakes} {rain JUSTIFIES road wet}

We can see that CAMS ascribed three different types of connectors to make
sense of the situation. CAMS thus agrees with the fact that humans do have
several ways of connecting events.

With the following example we aim at showing the importance of what are
the beliefs involved in connector ascription.

Example 2. I was behind the learner-driver car at the stop sign. The vehicle
started up again, moved forwards and suddenly stalled. I didn′t have the time to
stop my vehicle; I hit the learner-driver car gently at the back. This car had a
slight dent on the boot (trunk), hardly visible.

The input was S (A moves1, B moves1, B stall2, A surprised2, A brakes3,
¬A distance4, accident4). At the first simulation (S1) we used the knowledge
base presented in Table 2. At the second run (S2) one piece of knowledge was
changed from K |∼ ¬ accident to K |∼accident. The output of the two simulations
was:

Simulation 1: {A moves ∧ A surprised CAUSE accident}
{A brakes ∧ ¬A distance CAUSE accident} {A moves ∧ A surprised CAUSE
A brakes} {A surprised FACILITATE A brakes}
Simulation 2: {A moves ∧ A surprised CAUSE A brakes} {A surprised FACIL-
ITATE A brakes}

Making Sense of a Sequence of Events 121

The results show that CAMS is sensitive to changes in the belief base. Even
though the results may seem rather easy from the point of view of AI, they have
far-reaching consequences when analyzed under the light of applied psychology.
Let us consider the case where an agent has to make sense of a situation in a
trial. We can see that in such a case a single belief can change the whole rep-
resentation and as such have tremendous consequences on the jury. The next
example shows that CAMS is sensitive to how the events are reported.

Example 3. Billy and Suzy each throw a pebble at a window [Billy Stone,
Suzy stone] and Suzy′s pebble gets there first [Suzy Faster], breaking the glass
[Suzy wins]. Had not Suzy′s pebble been thrown, Billy′s pebble would have broken
the glass, but Suzy′s throw was nevertheless a cause of the breaking of the window.

We equipped CAMS with the beliefs presented below.
Game |∼ Billy stone; Game |∼ Suzy stone; Game |∼ Billy wins; Game |∼

Suzy wins; Game ∧ Suzy faster |∼ ¬Billy wins; Game ∧ Billy faster |∼
¬Suzy wins; Game ∧ Billy stone ∧ Billy faster |∼ Billy wins; Game ∧ Suzy stone
∧ Suzy faster |∼ Suzy wins; Game ∧ Billy wins |∼ Shatter; Game ∧ Suzy wins
|∼ Shatter.

Two simulations were run. In the first simulation, the following sequence of
events has been entered as an input into CAMS: S (Billy stone1, Suzy stone1,
Suzy faster2, Suzy wins3, ¬ Billy wins3, Shatter4). In the second simulation, we
got rid of Suzy faster in the sequence.

Simulation 1: {Suzy stone∧Suzy faster CAUSE Suzy wins}; Simulation 2: Nil!

The results are striking: an unsuitable level of description can lead CAMS
to be unable to make sense of the report. Similar to humans, CAMS is sensi-
tive to the level of granularity at which events are reported. Should this level
be not suitably chosen then the model cannot perceive the underlying structure
of events. This last example illustrates the fact that sometimes the agent holds
the beliefs necessary to make sense of the situation but due to a lack of appro-
priate level of details it cannot make sense of the situation. Hence, any further
processing, such as explaining or persuading cannot carried out.

6 Concluding Remarks

By extending previous work on causal ascription, we provided a novel approach
to making sense. The novelty of the theory presented in the current paper lies in
the minimality of the assumptions required to make the model work and in the
way the model simulates how events are connected. Various features of the model
make it practical to test several psychological phenomena. CAMS consistently
exhibited good performance in modeling different situations. The results are
consistent with human findings. Interestingly, CAMS is not only able to simulate
what humans do but also it displays the same sensitivity to changes in beliefs
and reports. As such, CAMS represents a significant advance compared with the

122 P. Chassy and H. Prade

previous version of the model [8]. Furthermore, for that CAMS integrates many
types of connectors, it offers a better account of human cognition that models
who limit their making sense of a situation to the analysis of causal relationships.

Although this research advances our understanding of making sense, it is not
free of limitations. The system still need an experimental validation. Besides,
CAMS does not implement intentional processes which are key in the human
modelling of human making sense. In spite of its limits CAMS offers an imple-
mentation of the notion of making sense. As such, it may serve as a base to
implement further, more elaborated notions. Responsibility is a promising av-
enue for that it is a notion closely related to the one of making sense. It also
shares a lot of features with the ascription of causal connectors [20]. Finally, it
has been posited that emotions influence how we build the representation of a
situation. Models of emotional influence on experts’ making sense have been put
forward [23]. A new emotional module could be implemented to simulate how
emotions modulate making sense. AI is interested in providing support systems
with the capacity of predicting what is to occur or diagnosing what occurred.
Such skills rely on the systems ability to trace back the course of events and
analyze which events are connected to which. CAMS offers a tool to equip such
systems.

References

1. Richard, J.-F.: Les activites mentales: comprendre, raisonner, trouver des solutions.
Armand Colin, Paris (1998)

2. Gobet, F., Lane, P.C.R., Croker, S., Cheng, P.C.H., Jones, G., Oliver, I.,
Pine, J.M.: Chunking mechanisms in human learning. Trends in Cognitive Sci-
ences 5, 236–243 (2001)

3. Anderson, J.R., Lebiere, C.: The atomic component of thought. Erlbaum, Mahwah,
NJ (1998)

4. Shortliffe, E.H.: Computer-based medical consultations: MYCIN. Elsevier,
New York (1976)

5. Abelson, R.P.: The Psychological status of the script concept. American Psychol-
ogist 36, 715–729 (1981)

6. Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding. Lawrence
Erlbaum, Hillsdale (1977)

7. Dubois, D., Prade, H.: Modeling the role of (ab)normality in the ascription of
causality judgements by agents. In: NRAC 2005, pp. 22–27 (2005)

8. Benferhat, S., Bonnefon, J.F., Chassy, P., Da Silva Neves, R.M., Dubois, D., Dupin
de Saint-Cyr, F., Kayser, D., Nouioua, F., Nouioua-Boutouhami, S., Prade, H.,
Smaoui, S.: A comparative study of six formal models of causal ascription. In:
Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 47–62.
Springer, Heidelberg (2008)

9. Bonnefon, J.F., Da Silva Neves, R.M., Dubois, D., Prade, H.: Predicting causality
ascriptions from background knowledge: Model and experimental validation. Inter.
J. of Approximate Reasoning 48, 752–765 (2001)

10. Goldvarg, Y., Johnson-Laird, P.N.: Naive causality: a mental model theory of causal
meaning and reasoning. Cognitive Science 25, 565–610 (2001)

Making Sense of a Sequence of Events 123

11. Mandel, D.R., Lehman, D.R.: Counterfactual thinking and ascriptions of cause and
preventability. Journal of Personality and Social Psychology 71, 450–463 (1996)

12. McCloy, R., Byrne, R.M.J.: Semifactual ”even if” thinking. Thinking and Reason-
ing 8, 41–67 (2002)

13. Lagnado, D.A., Sloman, S.A.: Time as a guide to cause. Journal of Experimental
Psychology Learning Memory and Cognition 32, 451–460 (2006)

14. Kayser, D., Nouioua, F.: About Norms and Causes. International Journal of Arti-
ficial Intelligence Tools 14, 7–24 (2005)

15. Hilton, D.J., Slugoski, B.R.: Knowledge-based causal attribution: The abnormal
conditions focus model. Psychological Review 93, 75–88 (1986)

16. Festinger, L.: A theory of cognitive dissonance. Standford University (1957)
17. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review 63, 81–97 (1956)
18. Simon, H.A.: How big is a chunk? Science 183, 482–488 (1974)
19. Campitelli, G., Gobet, F., Head, K., Buckley, M., Parker, A.: Brain localization of

memory chunks in chessplayers. Inter. J. of Neuroscience 117, 1641–1659 (2008)
20. Prade, H.: Responsibility judgments: steps towards a formalization. In:

Magdelena, L., Ojeda- Aciego, M., Verdegay, J.L. (eds.) International Conference
on Information Processing and Management of Uncertainty in Knowledge-based
Systems, pp. 145–152. University of Malaga (2008)

21. Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control
processes. In: Spence, K.W., Spence, J.T. (eds.) The psychology of learning and
motivation, vol. 2. Academic Press, London (1968)

22. Shiffrin, R.M., Atkinson, R.C.: Storage and retrieval processes in long term mem-
ory. Psychological Review 76, 179–193 (1969)

23. Chassy, P., Gobet, F.: A model of emotional influence on memory processing.
In: Cañamero, L. (ed.) AISB 2005: Symposium on Agents that Want and Like,
pp. 21–25. University of Hertforshire, Hatfield (2005)

24. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

Explaining Inconsistencies in OWL Ontologies

Matthew Horridge, Bijan Parsia, and Ulrike Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL

{matthew.horridge,bparsia,sattler}@cs.man.ac.uk

Abstract. Justifications play a central role as the basis for explaining
entailments in OWL ontologies. While techniques for computing justi-
fications for entailments in consistent ontologies are theoretically and
practically well-understood, little is known about the practicalities of
computing justifications for inconsistent ontologies. This is despite the
fact that justifications are important for repairing inconsistent ontolo-
gies, and can be used as a basis for paraconsistent reasoning. This paper
presents algorithms, optimisations, and experiments in this area. Sur-
prisingly, it turns out that justifications for inconsistent ontologies are
more “difficult” to compute and are often more “numerous” than jus-
tifications for entailments in consistent ontologies: whereas it is always
possible to compute some justifications, it is often not possible to com-
pute all justifications for real world inconsistent ontologies.

1 Introduction

An ontology is a machine processable artefact that captures the relationships
between concepts and objects in some domain of interest. A logic based ontology
language allows ontologies to be specified as logical theories, meaning that is it
possible to reason about the relationships between concepts and objects that are
expressed in such an ontology. A widely used logic based ontology language is the
the Web Ontology Language, OWL [1], the latest version of which is underpinned
by a highly expressive Description Logic1 called SROIQ [3].

An inconsistent ontology, is an ontology that, by virtue of what has been
stated in the ontology, cannot have any models, and entails everything. The
effect of this is that, using standard classic semantics, no meaningful conclusions
can be drawn from an inconsistent ontology. All Description Logic based OWL
reasoners merely report “ontology inconsistent” when fed such ontologies.

In practice, inconsistent ontologies can arise due to a number of reasons. For
example, an ontology may become inconsistent during the editing process after
the addition of some axioms. While the last set of axioms that were added may
play a part in making the ontology inconsistent, it may be the case that they
were the correct axioms to add from a modelling point of view, but it is the
interplay of the newly added axioms with axioms already in the ontology that

1 Description Logics [2] may be regarded as decidable fragments of First Order Logic.

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 124–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Explaining Inconsistencies in OWL Ontologies 125

triggers the inconsistency. Inconsistencies can also be the result of automated on-
tology construction techniques. For example, in [4], ontologies are automatically
constructed as an output from text mining, and it is possible for the resulting
ontologies can be inconsistent.

There are a number of different ways of dealing with an inconsistent ontology.
Broadly speaking, either some form of paraconsistent reasoning can be used to
draw “meaningful” conclusions from the ontology, as in [5], or the ontology can
be repaired so that it becomes consistent, thus meaningful conclusions can be
drawn from the repaired ontology using standard semantics. The work presented
in this paper focuses on this latter “repair strategy”, with an assumed scenario
that ontologies may become inconsistent during their construction process, but
not wanting to publish such ontologies, their authors would repair the ontologies
before publication.

Given the assumed “repair and publish” scenario, it is necessary for ontol-
ogy authors to pin point the reasons for an inconsistent ontology. These reasons
may be highly non-obvious, and manually browsing an ontology to determine
the causes of inconsistency, if not impossible, can be a wretched, tedious and
error prone task. In practice it is therefore necessary for people to have access
to some form of automated explanation generation service that, given an incon-
sistent ontology, can identify minimal subsets of the ontology that cause it to
be inconsistent. These minimal subsets are known as justifications [6,7,8], and
a procedure for finding and exposing justifications for inconsistent ontologies is
the subject of this paper.

In what follows, an algorithm for computing all justifications for inconsistent
ontologies is presented. An investigation on real world, hand-crafted, ontologies
is carried out to evaluate the effectiveness of the algorithm for computing jus-
tifications. Finally, the problems and challenges of computing justifications for
inconsistent ontologies, along with the utility of these justifications, is discussed.

2 Preliminaries: OWL and Justifications

The work presented here focuses OWL 2 ontologies which correspond to SROIQ
knowledge bases. SROIQ [3] is a highly expressive description logic and can be
viewed as a decidable and 2NExpTime-complete [9] fragment of First Order
Logic, a close relative of the 2-variable fragment with counting and modal log-
ics [2]. In what follows,

– A and B are used as class names–they correspond in FOL to unary predicates,
– R and S are properties, i.e., property names or inverse properties (written

R− for R a property name)–they correspond to binary predicates,
– C and D are (possibly complex) class expressions that can be built us-

ing Boolean operators on classes (�, �, and ¬), value restrictions ((∃R.C),
(∀R.C)), number restrictions ((≥ nR.C), (≤ nR.C) for n a non-negative
integer), and enumerations ({a})–they correspond to formulae in one free
variable,

– a and b are individual names–they correspond to constants.

126 M. Horridge, B. Parsia, and U. Sattler

A SROIQ ontology is a finite set of SROIQ axioms, which take the form of
subsumptions between (possibly complex) class expressions C � D or properties
R � S, or the form of assertions C(a) or R(a, b).

A definition of the syntax and semantics of SROIQ can be found in [3]. In
what follows a sketch is provided by a translation of the main class, property and
axiom forming constructors into FOL. The translation of classes and properties
is parametrised by two variables, x and y, and uses counting quantifiers.

π(O) :=
∧

α∈O
π(α),

π(C � D) := ∀x.πx(C) ⇒ πx(D), π(R � S) := ∀x, y.πx,y(R) ⇒ πx,y(S),
π(C(a)) := πa(C), π(R(a, b)) := πa,b(R),

πx,y(R) := R(x, y), πx,y(R−) := R(y, x),

πx(A) := A(x), πx(
) := true, πx(⊥) := false, πx({a}) := (x = a),
πx(C � D) := πx(C) ∧ πx(D), πx(C � D) := πx(C) ∨ πx(D),

πx(¬C) := ¬πx(C),
πx(∃R.C) := ∃y.πx,y(R) ∧ πy(C), πx(∀R.C) := ∀y.πx,y(R) ⇒ πy(C),

πx(≤ nR.C) := ∃≤ny.πx,y(R) ∧ πy(C), πx(≥ nR.C) := ∃≥ny.πx,y(R) ∧ πy(C)

Interpretations, models, and entailments are defined as usual in FOL. In partic-
ular, an interpretation I is said to be a model of an ontology O (written I |= O)
iff I |= π(α) for every axiom α ∈ O. A class expression C is satisfiable with
respect to an ontology O if there exists a model I of O with I |= ∃x.πx(C). An
ontology is inconsistent if there does not exist a model of O, i.e., if O |= false(a).
Given an ontology O and an axiom η, O entails η, written O |= η if, for every
model I of O, we have that I |= π(η).

Definition 1 (Justification). Let O be an ontology such that O |= η. J is a
justification for η in O if J ⊆ O, and J |= η, and for all J ′ � J J ′ �|= η.

Intuitively, a justification for an entailment in an ontology is a minimal subset of
the ontology that entails the entailment in question. A justification is a minimal
subset in the sense that any proper subset of the justification does not entail
the entailment in question. It is important to note that there may be multiple,
potentially overlapping, justifications for any given entailment. Note that in
the logics considered here, the number of justifications for an entailment in an
ontology may be exponential in the size of the ontology [10].

Example: Let O = {A � B, B � D, A � ∃R.C, ∃R.
 � D, A � E} so that
O |= A � D. There are two justifications for O |= A � D, J1 = {A � B, B � D}
and J2 = {A � ∃R.C, ∃R.
 � D}.
Definition 2 (Simple Repair). S is a simple repair for O |= η if S ⊆ O and,
for every justification J for O |= η, S ∩ J �= ∅, and for all S′ � S (O \ S′) |= η

Explaining Inconsistencies in OWL Ontologies 127

Hence, in order to construct a repair for an entailment η in an ontology O, it
is necessary to choose one axiom from each justification for η in O and remove
this axiom from O. This implies that, in the general sense, all justifications for
η in O are needed in order to construct a simple repair for O |= η. The process
of finding the justifications for entailments and repairing ontologies is frequently
referred to as ontology debugging.

3 Related Work and Background

In recent years there has been a significant amount of effort and research into
the explanation of entailments that arise in consistent ontologies. In a seminal
paper in the area of debugging ontologies, Schlobach and Cornet [7] presented
minimal unsatisfiable preserving sub-tboxes (MUPS) as a specific kind of justi-
fication for unsatisfiable classes in ontologies. Kalyanpur et al. coined the term
justification as a form of explanation for any arbitrary entailment that holds
in an ontology. In [11] it was shown that it is practical to compute all justifi-
cations for any given entailment in real, published (consistent) ontologies. The
Propositional Logic reasoning community have long used the notion of minimal
conflict sets for determining the minimal unsatisfiable subsets of a set of clauses
for example in [12]. These conflict sets are used to gain insight into why a set of
clauses is unsatisfiable. In essence minimal conflict sets are akin to justifications.
On a practical level, justifications are used by many ontology development and
debugging environments such as Protégé-4 [13], Swoop [14], and RaDON [15],
as a popular form of explanation for entailments in ontologies.

3.1 Model Based Diagnosis and Techniques for Computing All
Justifications

Techniques for computing all justifications for an entailment, and for computing
all minimal conflict sets for a set of unsatisfiable clauses, borrow from techniques
used in the field of Model Based Diagnosis. Model Based Diagnosis is the over-
arching name for the process of computing diagnoses for a faulty system. Briefly,
a diagnosis is a subset minimal set of components from a faulty system, that
if replaced would repair the system so that it functions as intended. The term
model refers to the fact that a model is used to obtain the predicted behaviour of
of a system, which is then compared the observed behaviour of the system. Any
discrepancy between the predicted and observed behaviours indicates a fault
in the system. Model based diagnosis techniques have a wide variety of appli-
cations, and for example, are typically used for diagnosing sets of faulty gates
and connections in circuits. There is a direct correspondence between the ideas
behind model based diagnosis, and the ideas behind justification based ontol-
ogy debugging. Essentially, a diagnosis is the same as a repair (Definition 2),
and Minimal Conflict Sets, which are subsets of the faulty system, are equiva-
lent to justifications which are subsets of an ontology. A particularly pertinent

128 M. Horridge, B. Parsia, and U. Sattler

algorithm that is borrowed from the area of Model Based Diagnosis is “Reiter’s
Hitting Set Tree (HST) Algorithm” [16]. This algorithm essentially constructs
a finite tree whose nodes are labelled with minimal conflict sets (justifications),
and whose edges are labelled with components (axioms) from the system. In
doing this the algorithm finds all minimal hitting sets for the conflict sets in a
system. Since a minimal hitting set corresponds to a repair, and a conflict set
corresponds to a justification, it is possible to use Reiter’s algorithm to find all
repairs, and in doing this find all justifications for an entailment in an ontology
(proof in [11]).

Continuing with the previous example from Section 2, the hitting set tree
algorithm is used to compute all justifications for O |= A � D as follows. A sub-
procedure, computeJustification(η, O), is used, which computes a single justifica-
tion for the entailment η in an ontology O. Suppose that J1 = {A � B, B � D}
is computed by computeJustification(A � D, O). This justification is set as the
label of the root of the tree. Next, one of the axioms from J1, say A � B is
selected and removed from O to give O′. This essentially repairs J1 and allows
another justification (if one exists) to be computed for the entailment with re-
spect to the modified ontology O′. In this case, computeJustification(A � D, O′)
computes J2 = {A � ∃R.C, ∃R.
 � D} as a justification. The hitting set tree
is extended with an edge from the root, to a node labelled with J2 (the upper
left most edge in Figure 3.1), and the edge is labelled with the axiom that was
removed. Next, an axiom from J2, say A � ∃R.C is selected and removed from
O′ to give O′′, and computeJustification(A � D, O′′) is called to compute further
justifications with respect to O′′. This time, no further justifications are found
since the entailment does not hold in O′′, and the hitting set tree is extended
with an edge from the node labelled with J2 to a node with an empty label
which marks this branch as complete. The algorithm then backtracks up a level
to remove a different axiom from J2 and the process continues. The algorithm
terminates when all branches are marked as complete. It is noticeable, that the
axioms labelling the edges in a complete branch form a repair, or a superset
of a repair, since removing them from O results in O′′ such that O′′ �|= η. A
more formal description of this algorithm (with optimisations) is given later
in Function-1R in Algorithm 1 (where the entailment that O is inconsistent
is implicit) and is used in the computation of all justifications for inconsistent
ontologies.

One of the issues with computing all justifications for an entailment is that
the size of the hitting set tree can, in the worst case, be exponential in the size
of the set of justifications. However, a suite of optimisations, detailed in [11]
and presented in Algorithm 1, can be applied to prune the hitting set tree and
minimise its size, so that for practical purposes this is rarely a problem. For
example, in [11] it was shown that for real, published ontologies, the number of
justifications per entailment is usually small—for the ontologies sampled in [11],
the average number of justifications per entailment was two, with one ontology
containing a maximum of twenty six justifications for an entailment.

Explaining Inconsistencies in OWL Ontologies 129

J1 = {A � B, B � D}

A � B

A � ∃R.C

{}

B � D

{}

A � ∃R.C

{} {}

J2 = {A � ∃R.C,∃R.� � D}

∃R.� � D∃R.� � D

J ′
2 = {A � ∃R.C,∃R.� � D}

Fig. 1. An example of a hitting set tree (HST) that is constructed by Reiter’s HST
algorithm

3.2 Computing Single Justifications

The technique described in the previous section for computing all justifications
for an entailment, uses a sub-procedure computeJustification(η, O) that computes
a justification for an entailment η in an ontology O. In this work, a black-box
technique, which is not specific to a particular reasoner or proof strategy is used.
Black-box techniques typically use an “expand-contract” strategy in combination
with calls to an external reasoner. In order to compute a justification for an
entailment η in an ontology O, an initial, and small, subset S of axioms from O
is selected based on the signature of η. The axioms in S are typically the axioms
whose signature has a non-empty intersection with the signature of η, or axioms
that “define”2 terms in the signature of η. A reasoner is then used to check if
S |= η, if not, S is expanded by adding a few more axioms from O. This process
continues until S is large enough so that it entails η (this is the expansion phase).
When a subset S of O that entails η is found, this subset is pruned until it is
a minimal set of axioms that entails η i.e. until it is a justification (this is the
contraction phase). Through careful selection of axioms in the expansion phase,
which minimises the maximum size of S, and various pruning techniques in the
contraction phase, it has been found that this algorithm works well in practice
for entailments in consistent ontologies [11].

4 A Black-Box Algorithm for Computing Justifications
for Inconsistent Ontologies

As described in Section 3.2, the general approach taken by black-box justification
finding algorithms is to use a two phase expand-contract procedure. The “seed”
for selecting the initial small set axioms for the expansion phase is usually the
signature of the entailment in question (the class, property, individual names

2 For example, the axiom A � B defines the class name A.

130 M. Horridge, B. Parsia, and U. Sattler

appearing in the entailment). However, an issue when generating justifications
for inconsistent ontologies using black-box techniques is “where to start”. How
should the initial set of axioms be selected? With inconsistent ontologies there
is no seed signature that can be used as an input to start the expansion process.
This is due to the fact that current OWL reasoners typically do not provide
any information or clues as the possible causes of an inconsistent ontology—
they just output that the ontology is inconsistent.3 Therefore, the black-box
algorithm that is presented here, consists of a very simple expansion phase, which
immediately causes the expansion to contain all of the axioms in an ontology,
followed by a “divide and conquer” contraction phase, which contracts the set
of axioms in the ontology down to a justification. The algorithm for computing
all justifications is a hybrid of the algorithm for computing single justifications
taken from [17] and combined with the algorithm for computing all justifications
(the HST algorithm) taken from [11]. Proof that the Hitting Set Tree algorithm
finds all justifications is given in [11]. Algorithm 1 is the algorithm based on
Reiter’s Hitting Set Tree Algorithm and is used to compute all justifications for
an inconsistent ontology. Algorithm 2 is used as a sub-procedure for Algorithm
1 for computing a justification for the inconsistent ontology.

Algorithm 1. ComputeAllJustifications
Function-1: ComputeAllJustifications(O)

1: S, curpath, allpaths← ∅
2: ComputeAllJustificationsHST(O, S, curpath, allpaths)
3: return S

Function-1R: ComputeAllJustificationsHST(O, S, curpath, allpaths)

1: for path ∈ allpaths do
2: if curpath ⊇ path then
3: return //Path termination without consistency check
4: if IsConsistent(O) then
5: allpaths← allpath ∪ {curpath}
6: return
7: J ← ∅
8: for s ∈ S do
9: if s ∩ path = ∅ then

10: J ← s //Justification reuse (saves recomputing a justification)
11: if J = ∅ then
12: J ← ComputeSingleJustification(O)
13: S ← S ∪ {J}
14: for ax ∈ J do
15: curpath← curpaths ∪ {ax}
16: ComputeAllJustificationsHST(O \ {ax}, S, curpath, allpaths)

3 The exception to this is the Pellet reasoner, which is able to output clash
information—while this is a potential optimisation, it is not supported by all rea-
soners and is therefore not used here.

Explaining Inconsistencies in OWL Ontologies 131

Algorithm 2. ComputeSingleJustification
Function-2: ComputeSingleJustification(O)

1: return ComputeSingleJustification(∅, O)

Function-2R: ComputeSingleJustification(S, F)

1: if |F | = 1 then
2: return
3: SL, SR ← split(F)
4: if IsInconsistent(S ∪ SL) then
5: return ComputeSingleJustification(S, SL)
6: if IsInconsistent(S ∪ SR) then
7: return ComputeSingleJustification(S, SR)
8: S′

L ← ComputeSingleJustification(S ∪ SR, SL)
9: S′

R ← ComputeSingleJustification(S ∪ S′
L, SR)

10: return S′
L ∪ S′

R

5 Implementation and Evaluation

Algorithm 1, and its sub-routine Algorithm 2, were implemented in Java using
the latest version of the OWL API [18]. The OWL API has excellent support for
manipulating ontologies as sets of axioms and provides a common interface to
various OWL reasoners. The algorithm was run on the set of ontologies shown in
Table 1 using the FaCT++ [19], Pellet [20] and HermiT [21] reasoners. For each
ontology, the time to perform a consistency check of the complete ontology was
recorded. Then the time to compute a single justification for the inconsistency,
and the time to compute as many justifications as possible within a time of 30
minutes was recorded.

5.1 Results Analysis

The ontologies shown in Table 1 are real ontologies in the sense that they were
developed by end users using editing tools such as Protégé-4. Since it is rarely

Table 1. Inconsistent Ontologies Used In Experiments

ID Ontology Expressivity Axioms Cons. Cons. Cons.
HermiT Pellet FaCT++

(ms) (ms) (ms)

1 Assignment4 ALCIQ 88 - 1301 40
2 Boat ALCIF(D) 22 34 11 2
3 ComparaGrid ALCHIQ(D) 409 192 175 -
4 Country SROIQ(D) 5921 539 1454 333
5 Fish ALCH 49 36 78 13
6 IedbExport SHOIN (D) 2417 141 1117 67
7 Micro SROIQ(D) 1458 - 556 48
8 Spectro ALCON (D) 26612 1841 1763 378
9 Pizza SHOIQ(D) 179 25 45 5

10 ClassesAsValues ALCO 13 3 2 1
11 Travel SROIQ(D) 6437 443 701 135
12 Units ALCOIF(D) 2254 217 435 72

132 M. Horridge, B. Parsia, and U. Sattler

the case that inconsistent ontologies are published, all of the ontologies in the
sample were obtained either from public mailing lists, where the ontologies had
been posted to the mailing list with a request for help in debugging the ontology,
or from ontologies that were directly received via email from colleagues and users
of Protégé-4 and Swoop.

The rightmost three columns of Table 1 shows the time to load, and check
the consistency of the ontologies using HermiT, Pellet and FaCT++. Even for
the largest ontology, 8, that contains over twenty six thousand axioms, the con-
sistency check is performed within two seconds using HermiT or Pellet and less
that half a second using FaCT++. Note that FaCT++ failed to terminate on
the ComparaGrid ontology, where it entered an infinite loop during preprocess-
ing. HermiT incorrectly found Assignment4 consistent, and crashed on the Micro
ontology. On the surface, it would appear that even for very large ontologies,
the efficiency and speed at which ontologies can be loaded and checked for con-
sistency seems to indicate the feasibility of using a reasoner as an oracle in a
black-box based debugging algorithm.

Table 2 shows the performance results for computing justifications for incon-
sistent ontologies. Showing by ontology and reasoner, the time (ms) to compute
one justification, the number of justifications found within 30 minutes, the time
(ms) to compute all justifications if less than 30 minutes. A dash indicates that
no justifications could be computed. A � indicates that the algorithm did not
terminate within 30 minutes.

It should be noted that for all sampled ontologies, it was possible to com-
pute at least one justification for the ontology being inconsistent using at least
one of the three reasoners. With the exception of the Spectro ontology, it was
possible to compute at least one justification within ten seconds. This is clearly
acceptable performance in the context of generating on demand explanations
in an ontology development environment such as Protégé-4. In the case of the
Spectro ontology, Pellet was able to compute at least one justification within 11
seconds and HermiT within 31 seconds. Considering that this ontology contains
over 26500 axioms, it is arguable that this is acceptable, and even impressive,
performance for the purposes of interactive debugging and explanation in an
ontology development environment.

It can be seen that for the Assignment4, Fish, Spectro, Travel, and Units on-
tologies, it was not possible to compute all justifications with any of the tested
reasoners. However, for these ontologies, with the exception of Assignment4, a
sizeable number of justifications could be computed. In all cases, the availability
of one or more justifications can provide a vital insight into why an ontology is
inconsistent, and allow a person to begin to repair the ontology. Not all justifica-
tions could be computed for all ontologies within 30 minutes. Broadly speaking,
there are two reasons for this: (1) The reasoner being used found it much harder
to check if some subset of an ontology was consistent, compared to checking
if the whole ontology was consistent (in all cases, consistency checking perfor-
mance for whole ontologies was good e.g. less than 2 seconds), and the running
algorithm therefore “ground to a halt” during entailment checking. An exam-

Explaining Inconsistencies in OWL Ontologies 133

Table 2. Times for computing single and all justifications

Ontology Reasoner Time for One Number found Time for all
(ms) in 30 mins. (ms)

Assignment4 HermiT - - �
Pellet - - �
FaCT++ 5711 1 �

Boat HermiT 129 1 193
Pellet 73 1 93
FaCT++ 11 1 41

ComparaGrid HermiT 2252 9 15901
Pellet 1515 9 13164
FaCT++ - - �

Country HermiT 4177 4 383963
Pellet 4564 4 137348
FaCT++ 1726 4 78547

Fish HermiT 134 162 �
Pellet - - �
FaCT++ 115 162 �

IedbExport HermiT 855 2 2415
Pellet 1257 2 3860
FaCT++ 765 2 2255

Micro HermiT 4538 1 �
Pellet 2326 1 59090
FaCT++ 809 1 1574

Spectro HermiT 30930 76 �
Pellet 10768 76 �
FaCT++ - - �

Pizza HermiT 114 3 592
Pellet 7491 3 �
FaCT++ 37 3 329

ClassesAsValues HermiT 21 1 23
Pellet 4 2 15
FaCT++ 5 2 13

Travel HermiT 7873 7 �
Pellet 884 492 �
FaCT++ 521 163 �

Units HermiT 3023 54 �
Pellet 473 287 �
FaCT++ 285 287 �

Travel-semi-rep HermiT 8309 6 �
(semi repaired Pellet 3975 6 25722
Travel ont.) FaCT++ 1331 6 19280

ple of this is the Travel ontology, where using HermiT the procedure was only
able to compute 7 justifications, but using Pellet, the procedure was able to
compute nearly 500 justifications. (2) The number of justifications for the in-
consistent ontology was very large. The runtime performance of the algorithm
for computing justifications is in the worst case exponential with the number of
justifications—computing all justifications is an inherently difficult problem.

6 Discussion

The usefulness of justifications as explanations for inconsistent on-
tologies. Despite the fact that, in some cases, it is not feasible to compute all
justifications for real inconsistent ontologies, the ability to obtain just one or
two justifications can lend a vital insight into why the ontology is inconsistent.

134 M. Horridge, B. Parsia, and U. Sattler

Some ontologies are inconsistent due to highly non-obvious reasons, and it is
arguable that without automated explanation support, ontology authors would
face a hopeless task of trying to figure out the reasons for an ontology being
inconsistent in order to arrive at a manual repair. An example of a justification
from the Country ontology is shown in Figure 2. The ontology authors, who
made a request for help in trying to track down the reasons for the inconsis-
tency, indicated that it was highly unlikely that they would have discovered the
reason, without considerable difficulty, using manual debugging techniques.

Using justifications for inconsistent ontologies for repair. Even though
it may not be possible in practice to compute all justifications for a given on-
tology, with the availability of at least one justification, it is still possible to
carry out a manual interactive repair. For example, on closer inspection of the
justifications for the travel ontology it was observed that many of them had the
form {R(a, l),
 � ∀R.C}, where l is a data value not in the value space of C4.
In fact, structural inspection revealed that there were over 550 of these kinds
of justifications for the travel ontology and over 12000 for the Spectro ontol-
ogy. In order to test the hypothesis that even seeing a handful of justifications
is helpful for interactive debugging and can support repair, the travel ontology
was modified to produce a new version where all literals in property assertions
were typed with the appropriate data type5. This new version of the ontology
(Travel-semi-rep in Table 2) was still inconsistent, but had just six justifications
for it being inconsistent. Thus, even though it may not be possible to compute
all justifications is one go, being able to compute some justifications can pro-
vide enough insight in order to understand the reasons for an ontology being
inconsistent so that is is possible to perform a manual repair.

The difficulty of finding all justifications for an inconsistent ontology
compared to finding justifications for entailments in consistent on-
tologies. In other work [6,11] it has been shown that it is practical to compute
all justifications for entailments in consistent ontologies using similar blackbox
algorithms as the one presented here. However, the experiments carried out
as part of this research clearly indicate that it is not possible to compute all
justifications for some of the sampled inconsistent ontologies. As a means to
understanding why this could be the case, consider the following consistent on-
tology O = {B � A, C � A, D � A, . . . } such that B, C and D are entailed
to be unsatisfiable. Suppose that there are ten justifications for each unsatis-
fiable class, meaning that there is a total of thirty justifications for the three
unsatisfiable classes. In this case, each entailment can be examined separately,
one after the other, so that the justifications for each entailment are computed
separately. In other words, although the total number of justifications for all
unsatisfiable classes is thirty, they are computed in batches of ten. Now consider
O′ = O∪{B(a), C(b), D(c)}. Since B, C and D are unsatisfiable, O′ is entailed to

4 OWL 2 supports datatypes.
5 Upon seeing the justifications for this ontology it was deemed that this was a natural

repair.

Explaining Inconsistencies in OWL Ontologies 135

Island(ireland) (1)

Island � LandMass (2)

LandMass � GeographicalFeature� ∃hasCoastline.Coastline (3)

GeographicalFeature � NaturalPhysicalThing (4)

NaturalPhysicalThing � NaturalEntity (5)

NaturalEntity � PhysicalEntity (6)

landBoundaryOf(unitedKingdomIrelandBorder, ireland) (7)

landBoundaryOf � hasLandBoundary− (8)

∃hasLandBoundary.
 � Country (9)

Country � AdministrativeDivision (10)

AdministrativeDivision � PoliticalEntity � ∃directPartOf.PoliticalDiv (11)

PoliticalEntity � ¬PhysicalEntity (12)

Fig. 2. An (small) example justification from the (large) country ontology. The indi-
vidual ireland is entailed to be a PhysicalEntity (by axioms (1)(6)) and is also entailed
to be a PoliticalEntity (by axioms (7)-(11)), PhysicalEntity and PoliticalEntity are
disjoint with each other (axiom (12)).

be inconsistent, and there are thirty justifications for this entailment. Although
the total number of justifications for the entailment of interest in O′ is the same
as the total number of justifications for the entailments of interest in O, and the
justifications are almost structurally the same, the key difference is that there
are now thirty justifications for one entailment in O′, compared to thirty justifi-
cations spread over three entailments in O. Since the algorithm for computing all
justifications for an entailment in an ontology is, in the worst case, exponential
in the number of justifications for the entailment, it is clear to see that it can
be much more time consuming to compute all justifications for an inconsistent
ontology compared to computing all justifications for all entailments of interest
in a consistent ontology. In essence, one of the factors that makes it practical
to compute all justifications for entailments in consistent ontologies, is that for
real ontologies, the average number of justifications per entailment tends to be
fairly low. In the case of inconsistent ontologies, it is not possible, using classi-
cal reasoning, to take a more fine-grained approach, because it is not possible
to recognise entailments other than the single entailment that the ontology is
inconsistent.

7 Summary and Future Work

Computing a single justification, as a form of explanation, for real world incon-
sistent ontologies is possible in practice. However, computing all justifications is
not possible in practice for some real world ontologies. This is primarily due to
the fact that there can be a very large number of justifications for an ontology
being inconsistent. Despite this, it is expected that having the ability to compute

136 M. Horridge, B. Parsia, and U. Sattler

just one or two justifications for an inconsistent ontology will be of enormous
benefit to people trying to understand why the ontology is inconsistent. As future
work, we plan to investigate the possibility of using clash information for further
optimisation the current black-box algorithm. We also plan to investigate the use
of paraconsistent reasoning as means for exploring justifications for meaningful
entailments in inconsistent ontologies with a view to repairing these ontologies.

References

1. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics (2003)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation and Applications (2003)

3. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR
2006 (2006)

4. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In:
AAAI, pp. 299–304 (2007)

5. Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with OWL. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413.
Springer, Heidelberg (2007)

6. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, The Grad-
uate School of the University of Maryland (2006)

7. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI (2003)

8. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. Journal of Automated Reasoning (1995)

9. Kazakov, Y.: SRIQ and SROIQ are harder than SHOIQ. Description Logics
(2008)

10. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL. In: KI (2007)

11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: ISWC (2007)

12. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

13. Horridge, M., Tsarkov, D., Redmond, T.: Supporting early adoption of owl 1.1 with
protégé-owl and fact++. In: OWL: Experiences and Directions, OWLED (2006)

14. Kalyanpur, A., Parsia, B., Hendler, J.: A tool for working with web ontologies.
International Journal on Semantic Web and Information Systems 1 (January -
March 2005)

15. Ji, Q., Haase, P., Qu, G., Hitzler, P., Stadtmoeller, S.: RaDON – repair and diag-
nosis in ontology networks. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P.,
Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simper, L.E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 863–867. Springer, Heidelberg (2009)

16. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57–95 (1987)

17. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED (2008)

Explaining Inconsistencies in OWL Ontologies 137

18. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 touch paper: The
OWL API. In: OWLED (2007)

19. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System descrip-
tion. In: IJCAR (2006)

20. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Journal of Web Semantics 5(2) (2007)

21. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using
hypertableaux. In: CADE 21 (2007)

On Improving the Scalability of Checking

Satisfiability in Probabilistic Description Logics

Pavel Klinov and Bijan Parsia

The University of Manchester
Oxford Road, Manchester M13 9PL, UK

{pklinov,bparsia}@cs.man.ac.uk

Abstract. This paper presents an approach aimed at improving scala-
bility reasoning in the probabilistic description logic P-SHIQ(D). The
satisfiability problem is currently intractable as the existing algorithm
generates exponentially large linear optimization systems. To cope with
this, we employ advanced optimization techniques that do not require
the systems to be fully generated before starting to solve them. One
such technique, namely, column generation, can be applied by exploiting
the structure of the reasoning problems in P-SHIQ(D) analogously to
how it has been used for solving such large optimization problems as
constrained shortest path, cutting stock and many others. We present
the formulation of the linear systems for the satisfiability problems in
the column generation form, describe methods for solving them, discuss
their difference from the known column generation approaches to propo-
sitional probabilistic logic, and finally show preliminary experimental
results that demonstrate a useful improvement of scalability.

1 Introduction

Description logics (DLs), especially those in the SH family, are the foundation for
the popular logic based knowledge representation formalism, the Web Ontology
Language (OWL). DLs have proven very effective in supporting large, complex
bio-health ontologies, such as SNOMED-CT, Galen, and the NCI Thesaurus.

However, DLs are (decidable) fragments of first order logic and, as such, do not
provide support for representing statistical knowledge or subjective confidence
(or, for that matter, fuzzy or vague knowledge). Such knowledge is central to
health care, even if we only consider mortality estimation.

There are many proposed formalisms for combining DLs with various sorts of
uncertainty, although, to the best of our knowledge, none have been used for a
production oriented ontology. We believe that this is due to two reasons: 1) there
is comparatively little knowledge about how to use these formalisms effectively
(or even, which are best suited for what purposes) and 2) there is a severe lack
of tooling, in particular, there have been no sufficiently effective reasoners.

In our prior work [1,2], we tackled both of these problems for the probabilis-
tic DL P-SHIQ(D). On the reasoning side, we were able to develop an algo-
rithm that localized the practical intractability of P-SHIQ(D) entailment in a

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 138–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Improving the Scalability of Checking Satisfiability in Probabilistic DLs 139

sub-problem, to wit, probabilistic satisfiability (PSAT) and presented a testing
methodology for evaluating P-SHIQ(D) reasoners. In this paper, we report on
the progress we have made in taming PSAT, as well as compare our efforts to
related work undertaken in the context of other probabilistic logics.

2 P-SHIQ(D) Background

P-SHIQ(D) [3,4] is a probabilistic generalization of the DL SHIQ [5]. It has a
number of properties that make it an attractive formalism. First, it is very expres-
sive: it supports probabilistic subsumptions between arbitrary SHIQ concepts
and a certain class of probabilistic class assertions (but no form of probabilis-
tic role assertions). Second, any SHIQ ontology can be used as a basis for a
P-SHIQ(D) ontology which facilitates transition from classical to probabilistic
ontological models. Third, it combines probabilistic and default reasoning. This
allows for a consistent treatment of exceptional individuals and subconcepts.
Last but not least, its reasoning tasks are decidable.

P-SHIQ(D) is extends the syntax of SHIQ with conditional constraints
[6],that is, expressions of the form (D|C)[l, u] where C and D are arbitrary
SHIQ concepts. Conditional constraints can be used for representing uncer-
tainty in both terminological (TBox) and assertional (ABox) knowledge. A prob-
abilistic TBox (PTBox) is a 2-tuple PT = (T ,P) where T is a SHIQ TBox and
P is a finite set of default conditional constraints. Informally, a PTBox axiom
(D|C)[l, u] means that “generally, if a randomly chosen individual belongs to C,
its probability of belonging to D is in [l, u]”. A probabilistic ABox (PABox) is
a finite set of strict conditional constraints pertaining to a single probabilistic
individual o. All constraints in a PABox are of the restricted form (D|�)[l, u],
and informally read as “o is a member of D with probability between [l, u]” [4].

The semantics of P-SHIQ(D) is standardly given in terms of a possible world
[4]. Let Φ be the set of all concepts that can be used in conditional constraints.
Then a world is a subset of Φ. A world I is called possible if {a : C|C ∈ I}∪{a :
¬C|C /∈ I} is satisfiable w.r.t. TBox for a fresh individual a. The set of all
possible worlds with respect to Φ (the so-called index set) is denoted IΦ. A
world I satisfies a concept C ∈ Φ is denoted as I |= C if C ∈ I. Satisfiability is
inductively extended to complex concepts as usual.

A world I is said to be a model of a TBox axiom η denoted as I |= η if
{η} ∪ {a : C|C ∈ I} ∪ {a : ¬C|C /∈ I} is satisfiable for a fresh individual a. A
world I is a model of a TBox T denoted as I |= T if it is a model of all axioms of
T . It has been shown that this way to providing semantics to DL is equivalent
to the classical model-theoretic approach based on interpretation functions [4].

It is convenient to define probabilistic models in terms of possible worlds.
A probabilistic interpretation Pr is a function Pr : IΦ → [0, 1] such that∑

I∈IΦ
Pr(I) = 1. Pr is said to satisfy a TBox T denoted as Pr |= T iff

∀I ∈ IΦ, P r(I) > 0 ⇒ I |= T . Next, probability of a concept C ∈ Φ denoted
as Pr(C) is defined as

∑
I|=C Pr(I). Pr(D|C) is used as an abbreviation for

Pr(C ∩ D)/Pr(C) given Pr(C) > 0. A probabilistic interpretation Pr satisfies

140 P. Klinov and B. Parsia

a conditional constraint (D|C)[l, u] (or Pr is a model of (D|C)[l, u]) denoted as
Pr |= (D|C)[l, u] iff Pr(C) = 0 or Pr(D|C) ∈ [l, u]. Finally, Pr satisfies a set of
conditional constraints P iff it satisfies each of the constraints.

Reasoning in P-SHIQ(D) can be expected to be computationally hard be-
cause the formalism is an extension of SHIQ which is EXPTIME-Complete in its
main reasoning tasks [5]. Next we explain why although P-SHIQ(D) reasoning
procedures are still in EXPTIME, their implementations perform significantly
worse in practice.

A PTBox is satisfiable if there exists a probabilistic interpretation that sat-
isfies all the conditional constraints. Such an interpretation is a probability dis-
tribution built over the index set. As we see shortly typical size of index sets is
the main reason of intractability.

Given PTBox PT = (P , T), PSAT is equivalent to solvability of the following
system of linear inequalities (for each constraint (C|D)[l, u] in P) [4]:

∑

I∈IΦ,I|=¬D�C

−lxI +
∑

I∈IΦ,I|=D�C

(1 − l)xI ≥ 0

∑

I∈IΦ,I|=¬D�C

uxI +
∑

I∈IΦ,I|=D�C

(u − 1)xI ≥ 0 (1)

xI ≥ 0,
∑

I∈IΦ,

xI = 1

It is easy to see that the number of variables (xI) in the linear system (1) is
equal to the size of the index set which is exponential in the number of concepts
that appear in conditional constraints. This is the main reason why PSAT is
intractable. Experimental studies show that even for small ontologies (i.e. fewer
than 20 constraints) the linear systems become unmanageable [1].

3 Incremental Construction of Linear Systems

The difficulty of having an unmanageable number of variables in linear systems
is well known and is faced in many important problems reduced to linear pro-
gramming, e.g., cutting stock. One very successful approach to coping with this
problem is column generation (CG) [7]. CG is based on the fundamental prop-
erty of linear programming which says that if the optimal solution is feasible
then it can be achieved with only a small subset of variables, the so-called basic
variables, being positive. All other variables can be safely restricted to zero.

In the context of P-SHIQ(D) this forms a basis of the small model theorem
which states that a PTBox is satisfiable (i.e. has some model) if and only if
it has a small model, i.e. a model of polynomial size [6]. In other words, for a
satisfiable PTBox there always exists a satisfying probability distribution built
over only a small subset of the index set. All other index set items do not need
to be generated as they will be represented by non-basic variables.

On Improving the Scalability of Checking Satisfiability in Probabilistic DLs 141

It is therefore highly desirable to compute only those parts of the index set
that are sufficient for constructing a satisfying model. Our strategy, which is
based on column generation, is to compute index sets incrementally trying to
ensure that the desirable subset will be found reasonably soon.

The key aspect of employing column generation is defining and solving the
problem of generating new columns which often appears to be an extra op-
timization problem (the so-called pricing-out problem (POP)). Its constraints
must ensure that each produced solution is, in fact, a column in the context of
the original linear system. As long as each variable in (1)1 corresponds to a pos-
sible world, POP should be formulated in such a way that the set of generated
columns can be put in one-to-one correspondence with the index set.

As defined in Section 2, each possible world can be represented as a satisfiable
conjunctive concept expression in SHIQ. Thus each generated column must
satisfy two conditions: First, it should correspond to a certain conjunctive class
expression. Second, that class expression must be satisfiable given the original
TBox. Then and only then the column is valid (i.e. represents a member of IΦ).

In order to enforce the above conditions we should look at the possible values
of column components in (1). Rows of the matrix represent conditional con-
straints (each constraint is described by two inequalities). Each component of a
generated column (ai,j) should correspond to some constraint (D|C)[l, u] ∈ P .
This observation allows us to restrict the values that ai,j can take on. It follows
from (1) that if ith component corresponds to the lower (resp. upper) bound
inequality then domain of ai,j is {0,−l, 1− l} (resp. {0, u, u− 1}).

Furthermore, a closer inspection of (1) reveals that since expressions ¬D
C
and D
C are disjoint, no I can be a subclass of both. That leads to the following
binary extensional constraints on pairs of consecutive components:

Ri,i+1 = {{0, 0}, {−l, u}, {1− l, u − 1}} (2)
for i = 0, 2, . . . , m. m = 2 × |P|

The constraints (2) guarantee that each column produced by solving POP will
correspond to a world. The transformation (which we call η) of columns into
SHIQ class expressions is straightforward: it proceeds by examining each pair
of column’s components and transforming it into conjunctions of literals. For
example, if 0th and 1st components of a column are −0.4, 0.6 and these (0th and
1st) inequalities correspond to the conditional constraint (X |Y)[0.4, 0.6] then the
conjunct ¬X
 Y will be added to the class expression. The process terminates
in time that is linear in the number of pairs (i.e., the number of conditional
constraints - m). More formally:

Definition 1. η : C → Φ, where C is a set of all possible columns and Φ is a set
of all (not necessarily possible) worlds, is a function that transforms a generated
column into a conjunctive SHIQ class expression. It is defined as η(c) =
i(Ii)
1 In fact, the system of inequalities 1 can always be transformed into a linear pro-

gramming instance which always admits a solution. This makes column generation
easier to apply. We skip the details for brevity.

142 P. Klinov and B. Parsia

where each index i is associated with either lower bound or upper bound linear
inequality corresponding to some conditional constraint (D|C)[l, u]. If it is lower
(resp. upper) bound inequality then Ii is defined as:

– c[i] = −l (resp. u) then Ii = ¬D
 C
– c[i] = 1 − l (resp. u − 1) then Ii = D
 C
– Otherwise Ii = �

This makes η is a well-defined total function on the set of all columns.
The constraints (2) are necessary but not sufficient. They do not ensure that

the corresponding class expression will be satisfiable w.r.t. TBox (or, equiva-
lently, that the world will be possible). For example, if there are conditional
constraints (X |Y)[0.4, 0.6] and (X |Z)[0.8, 1] then a column might be generated
that will correspond to . . .
(X
Y)
 . . .
(¬X
Y)
 Clearly this expression
is unsatisfiable so the column is invalid (it does not represent a variable in (1)).

In order to explicitly prohibit generation of invalid columns we must add an
extra constraint (call it R∗) to the POP:

∀c ∈ C, η(c) must be satisfiable w.r.t. the original TBox (3)

Now we can give the formulation of the POP for PSAT column generation:

Definition 2. The price-out problem for PSAT is a tuple 〈X, D, C, F 〉, where:

– X is a set of variables where each variable represents a component of the
column being generated.

– D is a set of variable domains. Each domain is associated with a conditional
constraint (D|C)[l, u] and contains values {0,−l, 1− l} or {0, u, u− 1}.

– C is a set of constraints. They include constraints {Ri,i+1} of the form (2)
and extra constraint R∗ (3) that ensures satisfiability.

– F =
∑

wixi is a linear objective function where {wi} are known coefficients.

The goal is to minimize F subject to the constraints.

Note that in this formulation POP represents a constraint optimization problem.
Importantly, its size is linear in the number of conditional constraints.

3.1 Constraint Optimization for Column Generation

Constraint optimization problems (COP) can be seen as generalizations of con-
straint satisfaction problems (CSP) that in addition to satisfying constraints also
seek for a solution that optimizes a cost function. It is important to understand
the class of COPs that the problem (2) falls into in order to select the right
method for solving it.

Clearly POP is a combinatorial optimization problem since the domains of
all variables are discrete. Its feasible solution space is discrete and finite (the
upper bound is 32m since columns are 2m-vectors and each domain consists of 3
elements). It can formulated in the weighted Max-CSP form with multiple hard
constraints and one soft constraint (representing the objective function).

On Improving the Scalability of Checking Satisfiability in Probabilistic DLs 143

A classical method for solving such COP problems is based on Branch-and-
Bound search. Solvers that implement this method proceed by assigning values
to variables in the depth-first manner. On each step they compute the lower (or
upper) bound of the objective function based on the current partial assignment
and backtrack if the estimated value is guaranteed to be worse than previously
found. The critically important factor for this search is the ability to compute
good (i.e., tight) objective bounds which allows pruning of search subspaces.

In order to apply Branch-and-Bound or similar search methods we need to
be able to evaluate constraints. This is tricky for the satisfiability constraint
(3) because transforming each partial assignment into a SHIQ constraint and
solving SAT is a very costly operation. Moreover it is unclear how this constraint
can be propagated for ensuring local consistency during the search.

Input: W - objective coefficients, T - TBox, {Ri,i+1} - initial constraints
Output: Valid improving column c or null
POP = initialize POP problem(R, W)1

while True do2

c := solve(POP);3

if c != null && reduced cost(c) < 0 then4

if SAT(η(c), T) then5

return c; // Column is improving and valid6

end7

else8

// Column is improving but invalid
j := compute justifications(η(c), T);9

prohibit assignments(POP , j);10

end11

end12

else13

return null; // There is no improving column, stop14

end15

end16

Algorithm 1. Column generation algorithm

Instead we propose an alternative approach (see Algorithm 1). The idea is
to generate a valid column in several optimization steps by gradually adding
constraints that will eventually ensure satisfiability (or lead to the conclusion
that no valid column is an improving one). The algorithm works as follows:

1. Initially the POP contains only constraints Ri,i+1 (line 1).
2. COP solver solves the POP (line 3).
3. If there exists an improving column then its validity is checked, otherwise

null is returned (line 4).

144 P. Klinov and B. Parsia

4. The column is transformed into a SHIQ concept expression which is checked
for satisfiability w.r.t. TBox (line 5).

5. If the expression is satisfiable then the column is returned (line 6).
6. Add extra constraints that prohibit all partial variable assignments respon-

sible for the unsatisfiability (lines 9 and 10).
7. Step 2 is repeated.

Since search space is finite and the algorithm can never generate the same column
twice it is guaranteed to terminate.

The most interesting step here is 6. Recall that each SHIQ concept expression
is a set of conjuncts. Therefore any unsatisfiability can be justified by minimal
sets of conflicting conjuncts. These are analogous to precise justifications in
OWL [8] in the sense that removal of any conjunct from all of the subsets is
sufficient to make the expression satisfiable. Each minimal subset of conjuncts
(a justification) corresponds to the assignment of values to a subset of column’s
variables. Thus prohibiting such assignment is equivalent to ensuring that any
generated column will not be invalid due to that particular justification. The
goal of the entire process is to capture all reasons of potential unsatisfiabilities
in terms of lists of prohibited assignments to ensure that any generated column
will be valid. In other words, the constraint R∗ is handled as a set of extensional
n-ary constraints prohibiting assignments that make the current column invalid.

The algorithm involves two NP-hard subproblems: solving constraint opti-
mization problem POP (step 2) and computing all precise justifications
(step 6). Unfortunately OWL reasoners currently do not provide efficient means
for obtaining precise justifications for long conjunctive concept expressions thus
we employ an ad hoc pin-pointing method optimized for conjunctions of literals
as opposed to axioms. This may become a bottleneck when dealing with very
long expressions which suggests that better methods are needed.

Now we briefly present constraint optimization method used to solve POP. As
mentioned earlier, the simplest method is Branch-and-Bound however it turns
out to be inefficient in this case due to the presence of prohibited assignments.
Such constraints significantly complicate computing of the lower bound because,
in general, their objective values cannot be estimated until they are fully as-
signed. This makes them very different from normal extensional constraints
which can be easily propagated using local consistency enforcing methods.

Instead our solver is based on the Russian Doll Search algorithm which solves
the problem by splitting it onto a series of nested subproblems [9]. The idea
of classical Russian Doll Search (RDS) is to start with the subproblem having
only the last variable, then proceed to the subproblem having two last variables
and so on, so that ith subproblem contains variables from n − i + 1 to the last.
Finally the nth subproblem is equivalent to the entire problem. The idea of
solving n problems instead of one might appear illogical but, in fact, given that
the variable ordering is fixed the solver is able to use results of previously solved
subproblems to compute better lower bounds for the current subproblems. This
approach is known to be beneficial on overconstrained problems (which are also
the hardest) which was the reason for us to choose it.

On Improving the Scalability of Checking Satisfiability in Probabilistic DLs 145

4 Comparison with Related Work

The intractability of the linear programming approach to probabilistic satisfi-
ability has been tackled with two notable approaches: local inference methods,
which attempt to minimize the size of the linear systems by clever construction
methods, and methods based on the incremental construction the linear systems.

Local inference means that inference rules which consider only subsets of prob-
abilistic knowledge are applied to obtain probability bounds. Unfortunately, re-
sulting reasoning procedures are almost always globally incomplete. Even worse,
it has been shown that no globally complete set of rules exists for any logic that
allows conjunctive expressions (events) in probabilistic formulas [10]. Finally,
local methods cannot ensure any fixed precision in general [11].

The goal of methods based on an informed construction of linear systems is
to avoid unnecessary variables. This approach works well in specific cases, for
example, linear systems for chains of probabilistic formulas will always have
polynomial size [12]. However, in general polynomial size cannot be guaranteed,
for instance, the above technique will generate exponential linear systems if con-
straints of the form (C|�)[l, u] are added to the chain. Since PABox constraints
are always of that form, the method cannot be applied to P-SHIQ(D).

The closest in spirit to our approach is the approach by Kavvadias and Pa-
padimitriou [13], and Jaumard, Hansen and de Aragão [14]. Similar to them we
employ column generation methods of build linear systems incrementally. Their
methods allowed them to solve PSAT for propositional probabilistic knowledges
bases of substantial size (up to 300 unconditional formulas over 140 atoms).

Nevertheless there are substantial differences between our column generation
method and the one used by Jaumard et al. [14]. The key difference is that they
were able to encode the entire knowledge base into specific optimization problems
(nonlinear 0-1 programs) solved to generate columns. While this is arguably more
efficient than our generate-and-validate approach based on constraint graphs (see
Algorithm 1) it is less generic and has some limitations. Most importantly, it
assumes that the entire knowledge base is just a set of propositional probabilistic
formulas. Obviously, DL knowledge bases are not propositional. While we might
hope to reduce our DL knowledge bases to a propositional one in order to apply
Jaumard’s method, it’s clear that any straightforward reduction will involve an
exponential blow up. Part of our future work is to investigate whether this blow
up can be mitigated in practice and whether the subsequent application of this
method fares better than our more generic approach.

5 Experimental Results

We have conducted two series of experiments on different datasets. The first se-
ries is based on random sampling of the previously created BRCA ontology [2,1].
In the other series we use random P-SHIQ(D) generated as in the experiments
of Jaumard et al. [14]. The time limit was 10 minutes. We increased the problem
size as long as the ratio of successfully solved instances stayed above 50% over
10 runs. The test machine was a laptop with 2.13MHz CPU and 1G RAM.

146 P. Klinov and B. Parsia

5.1 Subsets of the BRCA Ontology

We start with the experiments on random fragments of the BRCA ontology,
which is, to the best of our knowledge, the only public realistic P-SHIQ(D) on-
tology. Random samples are generated following our recently developed method-
ology [1]. We vary their size and measure the time and space requirements of
the PSAT algorithms. The former is measured in milliseconds while the latter
is defined as the number of variables (columns) of the largest linear system con-
structed during the solving process. (We attend to space as the original PSAT
algorithm is known to run out of space much sooner than out of time.)

Results for the original and the CG based algorithms are shown on figures
1a and 1b. There are couple of important things to note. First, the CG based
algorithm requires drastically less memory since it does not need to generate the
entire linear system to check its solvability. Furthermore, the amount of needed
space increases very gently with the size of the problem. As a consequence, it is
capable of solving problems that are beyond the limit of the original algorithm.
Finally, it runs faster even on those problems that the original algorithm can
handle because it requires considerably fewer SHIQ SAT tests (recall from
Section 2 that the number of SAT tests corresponds to the number of variables).

(a) (b)

Fig. 1. a) Time results for BRCA ontology b) Space results for BRCA ontology (log-
arithmic scale)

5.2 Random P-SHIQ(D) Ontologies and Modularity

Next we present results obtained on random P-SHIQ(D) ontologies, i.e. where
both classical and probabilistic parts are randomly generated. The generation
procedure follows the one used in [14]. First, we generate conjunctive concept
expressions with random distribution over length (from one to four literals).
Second, we generate conditional constraints using names assigned to previously
generated concept expressions. The ratio of the number of atomic concepts to

On Improving the Scalability of Checking Satisfiability in Probabilistic DLs 147

the number of concept expressions was kept near 0.75. Since satisfiability is
typically harder to prove than unsatisfiability we make a special effort to generate
satisfiable sets of constraints. As in [14], we generate random vectors of possible
world with random probability distribution over them (basically probabilistic
models) and then set probabilities to conditional constraints based on those
models. This guarantees that a satisfying probability distribution will exist.

The results are represented on Figure 2. Figure 2a shows results for uncondi-
tional constraints (i.e. with � used as evidence) which allows us to compare our
results to those of Jaumard’s while Figure 2b shows more realistic results involv-
ing conditional constraints. We note that the results are similar to the BRCA
case except that the unconditional knowledge bases are substantially easier. It
was also observed (although not depicted due to the lack of space) that PSAT
tends to be easier as the number of atoms increases. The reason is that more
atoms generally means fewer relationships between concepts in conditional con-
straints. Therefore the POP problem used to generate columns becomes easier
because there are fewer constraints in the constraint graph (since constraints are
direct consequences of subsumption/disjointness relationships). Interestingly the
increase in the number of atoms is a negative factor for both the original PSAT
algorithm and the Jaumard’s method (see [14]).

(a) (b)

Fig. 2. a) Time results for ontologies with random conditional and unconditional state-
ments b) Time results for ontologies with and without disjoint modules

We conclude that while our algorithm for P-SHIQ(D) is by far superior to
the original one, it is still less scalable than the algorithm for propositional PSAT
esp. since our hardware is orders of magnitude faster than used by Jaumard et
al. in 1991. As mentioned above, the difference probably comes from the fact
that their column generation problem belongs to a more tractable and specific
class of optimization problems than POP. It remains to be seen whether this
advantage will hold in non-propositional cases.

148 P. Klinov and B. Parsia

The results of random PSATs suggest that the CG algorithm is implicitly
exploiting internal structure of PTBox and, thus, if we can encourage more ap-
propriately structured PTBoxes we might see better performance. For example,
assuming that PTBox contains conditional constraints on concepts that come
from disjoint modules with signatures, what will the impact on scalability be?
Such disjointness seems related to the concept of independence which plays rather
fundamental role in many probabilistic formalisms but not yet in P-SHIQ(D).
It’s possible that introducing independence to P-SHIQ(D) will not only allow
modelers more expressivity, but improve the typical performance of reasoners.

The experimental setup remains almost the same except that two sets of
random concept expressions with disjoint signatures are generated. One half of
conditional constraints are generated on concepts from the first set and another—
from the second. This corresponds to having a combined P-SHIQ(D) ontology
containing strictly independent (in all possible senses) modules. Also, only con-
ditional probabilistic formulas are used.

Figure 2b compares the performance of the CG algorithm on random modular
and non-modular ontologies. Indeed the performance and scalability are by far
better on modular ontologies. The improvements come from the fact that there
can never be constraints in the POP whose scope includes variables that corre-
spond to unrelated conditional constraints. Given that conditional constraints
built on concepts from two hierarchies are totally unrelated, we can always de-
compose any POP instance onto two sub-instances that can be solved indepen-
dently. It follows that the complexity of generating each column is now equal to
the complexity of a POP of half the size.

It may seem that given that columns can be generated exponentially faster
the positive impact on PSAT performance should be more significant. However,
in addition to the column generation there is also an NP-hard column validation
step which amounts to computing all justifications of concept unsatisfiability.
Unfortunately, as we observed during the experiments, the latter dominates.
This suggests that it might be needed to tune the algorithm for computing
laconic justifications to the kind of expressions arising in Algorithm 1.

6 Conclusion

In this paper we proposed an approach to coping with exponential size of linear
systems generated by the probabilistic satisfiability algorithm for P-SHIQ(D).
It is substantially different from the known applications of column generation to
the satisfiability problem in propositional probabilistic logic. It does not require
to encode the entire classical and probabilistic knowledge in the optimization
problem solved to generate columns. As a consequence, it can be used with
ontologies that contain very extensive bodies of classical knowledge, e.g. the
NCI Thesaurus augmented with probabilistic statements.

Our approach has a number of advantages over the original PSAT algorithm
[4]. The most important one is that it reduces the problem of managing expo-
nentially large linear systems to a constraint optimization problem of generating

On Improving the Scalability of Checking Satisfiability in Probabilistic DLs 149

columns. The difference is that the latter is restricted in its size and better in-
vestigated with a lot of different methods already developed. Our experiments
demonstrate substantial improvements in reasoning performance and exponen-
tial space savings.

Another advantage is related to exploiting potential modularity of
P-SHIQ(D) ontologies. The experiments show that our algorithm performs
substantially better on ontologies that contain disjoint probabilistic modules
while the original algorithm cannot cope with modularity at all. This fact may
encourage modular design of P-SHIQ(D) ontologies and further research on
introducing independence into the language.

References

1. Klinov, P., Parsia, B.: Optimization and evaluation of reasoning in probabilistic
description logic: Towards a systematic approach. In: International Semantic Web
Conference, pp. 213–228 (2008)

2. Klinov, P., Parsia, B.: Probabilistic modeling and OWL: A user oriented introduc-
tion into P-SHIQ(D). In: OWL: Experiences and Directions (2008)

3. Giugno, R., Lukasiewicz, T.: P−SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the semantic web. Technical Report Nr.
1843-02-06, Institut fur Informationssysteme, Technische Universitat Wien (2002)

4. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelli-
gence 172(6-7), 852–883 (2008)

5. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Journal of the IGPL 8(3) (2000)

6. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints.
ACM Transactions on Computational Logic 2(3), 289–339 (2001)

7. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock
problem. Operations Research 9, 849–859 (1961)

8. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: International Semantic Web Conference, pp. 323–338 (2008)

9. Verfaillie, G., Lematre, M., Schiex, T.: Russian doll search for solving con-
straint optimization problems. In: Advances in Artificial Intelligence Conference,
pp. 181–187 (1996)

10. Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic
events. Journal of Artificial Intelligence Research 10, 199–241 (1999)

11. Lukasiewicz, T.: Local probabilistic deduction from taxonomic and probabilistic
knowledge-bases over conjunctive events. International Journal of Approximate
Reasoning 21(1), 23–61 (1999)

12. Lukasiewicz, T.: Efficient global probabilistic deduction from taxonomic and prob-
abilistic knowledge-bases over conjunctive events. In: 6th International Conference
on Information and Knowledge Management, pp. 75–82. ACM Press, New York
(1997)

13. Kavvadias, D.J., Papadimitriou, C.H.: A linear programming approach to reasoning
about probabilities. Annals of Mathematics and Artificial Intelligence 1, 189–205
(1990)

14. Jaumard, B., Hansen, P., Aragão, M.P.d.: Column generation methods for prob-
abilistic logic. In: Integer Programming and Combinatorial Optimization Confer-
ence, pp. 313–331 (1990)

Towards Relational Schema Uncertainty

Matteo Magnani1 and Danilo Montesi2

1 University of Bologna, Italy
matteo.magnani@cs.unibo.it

2 University of Bologna, Italy
danilo.montesi@unibo.it

Abstract. In this paper we introduce the problem of managing uncertainty on the
schema of a relational database. We formalize this problem using a possible world
semantics, identify the challenges posed by the co-existence of many alternative
schemata, and define some basic properties of a system with uncertain schemata.
Finally, we describe a query rewriting system, i.e., the technique used to produce
valid queries for each alternative schema, and study its properties.

Keywords: schema, uncertainty, possible worlds, soundness, completeness.

1 Introduction

Uncertainty is a state of limited knowledge about a past, current or future state of the
world. Uncertainty plays a fundamental role in many disciplines, like physics (e.g.,
Heisenberg’s uncertainty principle), finance (prediction of future stock prices), insur-
ance (determination of insurance rates based on the likelihood of events), and in several
fields of computer science, like artificial intelligence and database management. In the
following, we will focus on the management of uncertain databases.

Uncertainty has been studied in the field of data management since the early Nineties,
and during the last half-decade there have been significant research efforts to develop
working systems to manage uncertain data. As an example, consider the relation illus-
trated in Figure 1: it expresses uncertainty about Charles’ age, which can be 42 (with a
probability of .3) or 43. Similarly, we are uncertain about Herman’s surname. In both
cases uncertainty affects values, e.g., we are not sure about Charles’ age, but we are
sure that 42 and 43 represent ages: there is no uncertainty on the metadata.

PERSON
Name Surname Age

Charles Dickens 42: .3 || 43: .7

Herman Melville: .5 || Melvil: .5 54
Emily Brontë 25

Fig. 1. A relation with a certain schema containing uncertain data. The symbol || separates alter-
native choices, each one annotated with its probability.

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 150–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Relational Schema Uncertainty 151

In general, a relational database can be modeled as a pair (S, I), where S is the
schema (or intension) and I is the instance (or extension). In the previous example,
PERSON(Name, Surname, Age) is the schema and (Emily, Brontë, 25) is part of the
instance. So far uncertain data management systems have been developed to represent
and manipulate uncertain instances: attributes or tuples are annotated with probabilities
(or possibility/necessity degrees) and, in some models, with additional information to
represent their probabilistic dependencies. However, uncertainty may also affect the
metadata: in this work we provide the first results concerning uncertainty management
on schemata. This problem is particularly relevant with regard to the topic of scalable
uncertainty management, because it can be caused by the presence of large amounts
of data, and the consequent need for automated analysis techniques, as shown in the
following motivating scenarios.

1.1 Motivating Scenarios

Uncertain instances have many possible application fields, e.g., sensor and scientific
databases, and for this reason they have been object of almost all studies on uncertain
data so far. However, recent work on data integration has shown that when we want to
merge different data sources, in general we cannot produce a single mediated schema,
because of the uncertainty generated during the comparison of the data sources [1,2].
Data integration is one of the most relevant and studied problems in the field of database
management, with applications ranging from company information system merging and
data warehousing to Web and scientific meta-search engines. Therefore, data integration
activities affect a very large number of databases, with a consequent very large number
of potential applications of uncertain schemata.

As an example, consider Figure 2, where we have illustrated two schemata P1 and
P2, each one made of a single table. If we want to merge these schemata, we must
decide if Office Phone and Home Phone are two distinct concepts or not, and
depending on this choice the integrated schema will look like the one represented on
the left hand side of Figure 3 (Name, Office Phone, Home Phone) or the one on the
right hand side (Name, Phone). This example shows how data integration activities
may generate uncertainty in the form of alternative schemata.

P1
Name Office phone

Charles 01-2345
Herman 01-3456

P2
Name Home phone

Herman 01-4567
Emily 01-5678

Fig. 2. Two local data sources, P1 and P2

Although data integration is certainly a very important application field of uncertain
schemata, we may find uncertain schemata also in centralized systems, and in particular
inside legacy systems. If a database is not well documented, after many years of activ-
ity, or when its administrators change, there may be a decreasing understanding of its

152 M. Magnani and D. Montesi

P1⊕P2 (1)
Name Office phone Home phone

Charles 01-2345
Herman 01-3456 01-4567
Emily 01-5678

P1⊕P2 (2)
Name Phone

Charles 01-2345
Herman 01-3456
Herman 01-4567
Emily 01-5678

Fig. 3. Two alternative ways to merge the data sources P1 and P2

content. For example, if we find a column telephone, will it contain private or public
(office) telephone numbers? This uncertainty does not necessarily affect only the data
(we may know telephone numbers with certainty), but may also concern the metadata,
i.e., the schema, and can be modeled considering different schemata with alternative
semantics.

As another example, consider a hospital database where one column of a table with
patient records contains dates, and its name is just Date. Are these hospitalization
dates? Do they indicate the date of an exam? In this case, we have uncertainty on the
schema, and alternative schemata can be used to impose different semantics to the data.

1.2 Possible World Semantics and Its Implications on User Interaction

As we have aforementioned, when there is no uncertainty a database can be seen as
a pair (S, I). To extract information from it we can ask a query defined on schema S

(notated qS) and produce a new database qS(S, I) = (SqS

, IqS

). For example, we may
ask a relational query:

πOffice phone(σName=’Charles’(P1))

on the relation P1 represented in Figure 2, obtaining a single relation with one attribute
Office phone containing the value 01-2345.

When a database contains uncertain information, like in Figure 1, this denotes the
contemporary existence of multiple possible worlds. For example, the tuple:

– (Charles, Dickens, 42||43)

corresponds to two possible databases (or worlds), one where Charles is 42 years old
and one where he is 43 (if this is the only tuple in the only relation of the database):

– (Charles, Dickens, 42)
– (Charles, Dickens, 43)

Therefore, we may state that a database with uncertain instance can be modeled as a set
of certain databases (S, I1), . . . , (S, IN). This creates a mismatch: a single user must
deal with multiple databases at the same time. However, despite the presence of many
possible databases, we can still easily define queries that can be applied to all of them,
because they share the same schema. For example, a query on the database illustrated
in Figure 1 like:

πAge(σName=’Charles’(PERSON))

Towards Relational Schema Uncertainty 153

is valid in both the alternative databases above, and can be computed on each of them,
producing 42 and 43 as alternative results. Then, these results may be aggregated and
annotated with their probability (we do not provide additional details, as this is not the
main object of this paper). In Figure 4 we have illustrated this more complex process,
where we can nevertheless easily define queries.

Fig. 4. Query execution with a certain schema and uncertain instances

However, if we allow each possible world to have a specific schema, different from
the others, a query that is valid on one schema may not be the same on another. For
example, with regard to Figure 3, the query:

σOffice phone = Home phone(P1 ⊕ P2)

is valid for the first relation (1), but not for the second, where there is just a single
Phone column.

A solution to this problem is to provide a consolidated schema (Sc), containing a sort
of summary of all the alternative schemata S1, . . . , SN , and a way to rewrite a query on
Sc for each alternative schema Si. This scenario, which we call query rewriting system,
is illustrated in Figure 5.

Fig. 5. Query execution with an uncertain schema, using a consolidated schema

To see how this scenario applies to the aforementioned context of data integration,
and to point out the differences between query rewriting in data integration systems
and in our query rewriting systems, consider Figure 6. The left hand side of the figure
represents a traditional data integration setting, with three local data sources and one
mediated schema (M). Queries are defined on the mediated schema, and then translated
and executed on each data source. The integrated database corresponding to the me-
diated schema contains data from the first and the second and the third data source.
On the right, we have illustrated our scenario: there are many mediated schemata, and
the correct mediated schema is M1 or M2 or M3, exclusive. A query expressed on the

154 M. Magnani and D. Montesi

Fig. 6. Traditional (a) and uncertain (b) data integration

consolidated schema C is first translated to match each alternative mediated schema.
Then, it is rewritten to be executed on each data source for each mediated schema.

Before proceeding with the formalization of this last scenario and of the properties
we may expect from a consolidated schema and a query rewriting system, it is worth
noticing that (although related) the management of uncertain instances and uncertain
schemata are two separate problems: we may have cases with only uncertain tuples, as
in Figure 1, and cases with certain tuples and uncertain schema, e.g., if we consider
table P2 in Figure 2 and state that the first column may contain names or surnames.
In general, both kinds of uncertainty may coexist, and uncertainty on schemata may
induce uncertainty on the answer of queries.

2 Query Rewriting Systems (QRS)

Uncertainty may affect several features of a schema, as suggested in [3]. In this paper,
we focus on one aspect: the aggregation of attributes (that we will also call columns).
In particular, we assume that all alternative schemata contain the same attributes, but
these attributes may constitute different relations — a scenario that can be found in
data integration applications where all alternative mediated schemata contain all the at-
tributes found in all the local data sources. As a working example, we will use the set
of attributes represented in Figure 7 (notice that underlined names are used to distin-
guish different attributes with equal names, and not to indicate keys). Over this set, we
can define the three alternative schemata represented in Figure 8. If these are the only
alternatives, we can see that we are sure that the Age attribute contains ages of people
whose surnames are contained inside the Surname attribute — in fact, these columns
belong to a single relation in all the three alternative schemata. However, we are not
sure that the people described by the underlined attributes (Name, Surname, Age) are
in some relationship with the others — in fact, they are aggregated together only in the
possible world represented in Figure 8(b) (PW2).

Following the previous discussion, we define a schema as a set of relations aggre-
gating some basic attributes, i.e., a partition of these attributes where each partition
(relation) has a name. In particular, we assume to work with un-normalized databases,

Towards Relational Schema Uncertainty 155

Name

Charles
Herman
Lewis

Surname

Dickens
Melville
Carroll

Age

42
54
13

Name

Emily
Jane
Joanne

Surname

Brontë
Austin
Rowling

Age

25
60
12

Fig. 7. A set of attributes A

MAN
Name Surname Age

Charles Dickens 42
Herman Melville 54
Lewis Carroll 13

WOMAN
Name Surname Age

Emily Brontë 25
Jane Austin 60
Joanne Rowling 12

(a) Possible world PW1 — P(PW1)=.3

COUPLE
Name Surname Age Name Surname Age

Charles Dickens 42 Emily Brontë 25
Herman Melville 54 Jane Austin 60
Lewis Carroll 13 Joanne Rowling 12

(b) Possible world PW2 — P(PW2)=.2

WOMAN
Name Surname Age

Emily Dickens 42
Jane Melville 54
Joanne Carroll 13

MAN
Name Surname Age

Charles Brontë 25
Herman Austin 60
Lewis Rowling 12

(c) Possible world PW3 — P(PW3)=.5

Fig. 8. An uncertain schema, made of three possible worlds

where there are no overlapping columns used to reference tuples from one table to the
other. If we consider a single stand-alone database, this would usually result in a single
table, whenever all tables are connected to the others through foreign keys. However,
when we merge two or more heterogeneous databases we may obtain disjoint tables
containing unrelated data.

Definition 1 (Schema). Let A be a set of attribute names. A schema over A is a named
partition of A.

In this paper, we do not consider the partition names while checking for schema equiv-
alence, consistently with the fact that we focus only on attribute aggregation. The defi-
nition of uncertain schema is now straightforward, as an uncertain schema is just a set
of alternative schemata, in this case over the same set of basic attributes.

Definition 2 (Uncertain schema). Let A be a set of attribute names. An uncertain
schema is a set of schemata Su = {Si | i ∈ [1, n]} over A.

Given an uncertain schema, we may use several functions to represent their likelihood,
our preference or our belief in them. In the remaining of the paper, we will focus on
probabilistic uncertainty, and will thus assign a probability mass to each alternative
schema. This choice does not prevent the definition of uncertain schemata annotated
using other uncertainty representation formalims. In addition, we do not deal with the
problem of how probabilities are generated.

156 M. Magnani and D. Montesi

Definition 3 (Probabilistic uncertain schema). A probabilistic uncertain schema is a
pair 〈Su, P 〉, where Su is an uncertain schema and P is a probability distribution over
Su, i.e., a function P : Su → [0, 1] such that

∑
S∈Su P (S) = 1.

Example 1 (Probabilistic uncertain schema). Consider the possible worlds represented
in Figure 8, and the function P indicated in the figure. Then, 〈{PW1, PW2, PW3}, P 〉
is a probabilistic uncertain schema.

As we have aforementioned, to produce queries that are valid for each alternative pos-
sible world, we need a consolidated schema. According to our previous definitions, all
schemata contain the same attributes. Therefore, the same attributes should be present
also in the consolidated schema used to express queries on the alternative databases.

Definition 4 (Consolidated schema). A consolidated schema over an uncertain
schema Su is a schema over the same set of attributes A of Su.

Once we have a consolidated schema, we can express queries on it, that can be trans-
lated into queries on each alternative schema. In the following definition, sort(q(S))
indicates the set of attributes of the relation generated by the query q when applied to a
schema S.

Definition 5 ((Probabilistic) query rewriting system). Let QS be the set of queries we
can express on schema S. A query rewriting system is a tuple 〈A, Su, P, Su

c ,R〉 where
Su = {Si | i ∈ [1, n]} is an uncertain schema over A, 〈Su, P 〉 is a probabilistic uncer-
tain schema, Su

c is a consolidated schema over A, R = {ri | i ∈ [1, n]} is a set of func-
tions {ri : QSu

c → QSi | i ∈ [1, n]} and ∀i, j ∈ [1, n], ∀q ∈ QSu
c , sort(ri(q)(Si)) =

sort(rj(q)(Sj)).

2.1 Properties of QRSs

The previous definitions are very general: any schema over A can be a consolidated
schema. However, we are interested in schemata that represent well the information
contained in the alternative possible worlds. Therefore, we need to define some prop-
erties to characterize good consolidated schemata: schema soundness (or s-soundness)
and schema completeness (or s-completeness).

Let us start by defining schema completeness. Assume that two attributes are aggre-
gated together (belong to the same relation) in an alternative schema. This expresses
the existence of a relationship among the two attributes, i.e., the association of some
values from one column with some values from the other. If the consolidated schema is
complete, this relationship must be present in it as well.

Definition 6 (s-completeness). Let Su be an uncertain schema. A consolidated schema
Su

c is s-complete iff ∀S ∈ Su, ∀R ∈ S �R1, R2 ∈ Su
c | R1 �= R2, Ai ∈ R1, Aj ∈

R2, Ai, Aj ∈ R.

The concept of schema soundness is dual: a sound consolidated schema does not contain
aggregations that are not present in some alternative possible worlds:

Towards Relational Schema Uncertainty 157

Definition 7 (s-soundness). Let Su be an uncertain schema. A consolidated schema
Su

c is s-sound iff ∀S ∈ Su, ∀R ∈ Su
c �R1, R2 ∈ S | R1 �= R2, Ai ∈ R1, Aj ∈

R2, Ai, Aj ∈ R.

These properties could also be graded, to take into account the probabilities attached to
the alternative schemata. However, we leave this extension to future work.

Example 2. Consider the uncertain schema illustrated in Figure 8. The consolidated
schema:

– R(Name, Surname, Age, Name, Surname, Age)

is s-complete, but not s-sound, while the consolidated schema:

– Ra(Name), Rb(Surname, Age), Rc(Name), Rd(Surname), Re(Age)

is s-sound, but not s-complete.

Notice that the concepts of s-completeness and s-soundness are very strong: we re-
quire, respectively, that the consolidated schema contains all the information present in
all possible worlds, but no information that is not present in some of them. It follows
that having both conditions satisfied implies the existence of a single possible world
identical to the consolidated schema.

Proposition 1. Given an uncertain schema with cardinality strictly greater than one,
there is no consolidated schema which is both sound and complete.

So far, we have discussed the concepts of soundness and completeness with regard to the
consolidated schema. While this is certainly important, because we query the alternative
databases through it, the amount of information that we can extract depends also on
the query language used to query the consolidated schema and the way in which we
translate queries. It is worth noticing that these two basic properties alone do not define
the set of good languages and translations. They only indicate how much information
can be extracted from the consolidated schema with regard to the alternative schemata.
Therefore, other additional properties can be defined to further characterize languages
and translations — we leave this aspect to future works.

The concepts of soundness and completeness for QRSs are analogous to the ones
defined for consolidated schemata. A QRS is complete if we can express on the consol-
idated schema all queries that can be expressed on each alternative schema:

Definition 8 (q-completeness). Let 〈A, Su, Su
c , R〉 be a query rewriting system. ∀Si ∈

Su, ∀qSi ∈ QSi ∃qSu
c ∈ QSu

c | ri(qSu
c) = qSi .

Similarly, a QRS is sound if we cannot express queries that cannot be expressed on the
alternative schemata:

Definition 9 (q-soundness). Let 〈A, Su, Su
c , R〉 be a query rewriting system. ∀Si ∈

Su, ∀qSu
c ∈ QSu

c ∃qSi ∈ QSi | ri(qSu
c) = qSi .

158 M. Magnani and D. Montesi

3 Coarsest Refinement (CR) Rewriting Systems

Given an uncertain schema, to define a specific query rewriting system we need to
specify:

– A consolidated schema.
– The query languages for both the consolidated schema and the alternative schemata.
– The rewriting functions.

In this section we describe a specific QRS, which ensures s-soundness. In fact, we
have seen that we cannot be both s-sound and s-complete. However, there are several
possible sound consolidated schemata and query rewriting systems. Among these, we
will choose the one which maximizes completeness.

3.1 Consolidated Schema

Definition 10. A schema S′ is a refinement of a schema S (both over the same set of
attributes A) iff ∀R′ ∈ S′ ∃R ∈ S | R′ ⊆ R.

If a schema is not a refinement of another, it introduces new relationships. For exam-
ple, the schema PW2 is not a refinement of PW1, because it introduces the relationship
between the attributes related to men and those related to women, while PW1 refines
PW2. If we have an uncertain schema Su = {Si | i ∈ [1, n]} over A, the set of consol-
idated schemata containing only relationships which are present in all the consolidated
schemata corresponds to the set of refinements of all the alternative schemata in Su

(notated R(Su)). Importantly, for each uncertain schema there is always at least one
schema in R(Su). However, we are interested in exposing all the relationships that are
defined in all the alternative possible worlds. This corresponds to a coarsest common
refinement of S1, . . . , Sn.

Definition 11 (Coarsest Common Refinement). If Su = {Si | i = 1 . . . n} is an
uncertain schema, a schema Su

c is a coarsest common refinement of S1, . . . , Sn iff

– Su
c ∈ R(Su).

– ∀S ∈ R(Su), S is a refinement of Su
c .

Proposition 2. If Su = {Si | i = 1 . . . n} is an uncertain schema, there is always a
coarsest common refinement of S1, . . . , Sn.

Notice that also in [2] the authors look for the coarsest refinement of a partition, but to
solve a completely different problem — they consider a single relation, and partitions
indicate a union of attributes in a mediated schema.

Example 3. Consider the uncertain schema illustrated in Figure 8. The coarsest refine-
ment consolidated schema is:

R1(Name), R2(Surname, Age), R3(Name), R4(Surname, Age)

Coarsest refinement consolidated schemata have the property that each relation corre-
sponds to at most one relation in each alternative schema. Finally, notice that coarsest
refinement consolidated schemata are sound but not complete, except if the uncertain
schema contains only one possible world (in which case it is not really uncertain).

Towards Relational Schema Uncertainty 159

3.2 Query Languages

In this example of query rewriting system we will use the same query language for both
the consolidated and alternative schemata. In particular, we will focus on the relational
operators π, σ and ×. In addition, we will deal with queries in a normal form with
projections, selections and products: πA1,...,Ak

(σAi=ci∧···∧Aj=cj (R1 × · · · × Rm)).

3.3 Rewriting Functions

Using a coarsest refinement, every relation used in a query on the consolidated schema
corresponds to exactly one relation in each alternative schema. Therefore, a simple way
of rewriting a query consists in replacing each consolidated relation with it, projected
on their common attributes. In the following definition, sort(R) indicates the set of
attributes of R.

Definition 12 (Rewriting function (1)). Let Su = {Si | i = 1 . . . n} be an uncertain
schema over A, Su

c a consolidated schema over A and q ∈ QSu
c a query on the consol-

idated schema. A rewriting function ri replaces all the relations R referenced in q with
πsort(R)(R′) where R′ corresponds to R in Si.

As an example, consider the query πSurname,Surname(R2 × R4). This is rewritten as
follows in the alternative possible worlds:

PW1 πSurname,Surname(πSurname,Age(MAN) × πSurname,Age(WOMAN))

PW2 πSurname,Surname(πSurname,Age(COUPLE) × πSurname,Age(COUPLE))

PW3 πSurname,Surname(πSurname,Age(WOMAN) × πSurname,Age(MAN))

In Figure 9 we have represented the result of this query in each possible world, and the
aggregated result (it is worth noticing that the probability of each tuple cannot be greater
than one in the aggregated result, but we do not prove it here because of space reasons).
However, from this result we miss the fact that in one possible world (PW2) there is

Surname Surname P

Dickens Brontë .3
Dickens Austin .3
Dickens Rowling .3
Melville Brontë .3
Melville Austin .3
Melville Rowling .3
Carroll Brontë .3
Carroll Austin .3
Carroll Rowling .3

(a) PW1

Surname Surname P

Dickens Brontë .2
Dickens Austin .2
Dickens Rowling .2
Melville Brontë .2
Melville Austin .2
Melville Rowling .2
Carroll Brontë .2
Carroll Austin .2
Carroll Rowling .2

(b) PW2

Surname Surname P

Dickens Brontë .5
Dickens Austin .5
Dickens Rowling .5
Melville Brontë .5
Melville Austin .5
Melville Rowling .5
Carroll Brontë .5
Carroll Austin .5
Carroll Rowling .5

(c) PW3

Surname Surname P

Dickens Brontë 1
Dickens Austin 1
Dickens Rowling 1
Melville Brontë 1
Melville Austin 1
Melville Rowling 1
Carroll Brontë 1
Carroll Austin 1
Carroll Rowling 1

(d) Aggregated

Fig. 9. The result of πSurname,Surname(R2 × R4) for the rewriting function (1)

160 M. Magnani and D. Montesi

an explicit relationship between the surnames, which does not include, for instance, the
pair Carroll/Brontë (annotated with probability 1 in the result). In fact, this rewriting
system is not q-complete.

Proposition 3. The query rewriting system with the rewriting function (1) is q-sound
but not q-complete.

Therefore, we define another rewriting function which is both sound and complete:

Definition 13 (Rewriting function (2)). Let Su = {Si | i = 1 . . . n} be an uncer-
tain schema over A, Su

c a consolidated schema over A and q ∈ QSu
c a query on the

consolidated schema. Let A1, . . . , Ak the attributes of the relations referenced in q,
and {R1, . . . , Rm} the smallest set of relations in Si such that ∀j ∈ {1, . . . , k} ∃t ∈
{1, . . . , m} | Aj ∈ Rt. A rewriting function ri replaces the product of relations in q
with πA1,...,Ak

(R1 × · · · × Rm).

Let us consider again the query πSurname,Surname(R2 × R4). This query is rewritten
as follows:

PW1 πSurname,Surname(πSurname,Age(MAN) × πSurname,Age(WOMAN))

PW2 πSurname,Surname(πSurname,Age,Surname,Age(COUPLE))

PW3 πSurname,Surname(πSurname,Age(WOMAN) × πSurname,Age(MAN))

Lemma 1. Let Sys = 〈A, Su, Su
c ,R〉 be a query rewriting system, and I be the instance

of schema S. If ∀S ∈ Su, ∀Ri ∈ S ∃q ∈ QSu
c | q(S, I) = (sort(Ri), Ri), then Sys is

q-complete.

Basically, for each relation in any uncertain schema (and its corresponding instance)
there is a query on the consolidated schema returning exactly that relation.

Proposition 4. The query rewriting system with the rewriting function (2) is q-sound
and q-complete.

Surname Surname P

Dickens Brontë .3
Dickens Austin .3
Dickens Rowling .3
Melville Brontë .3
Melville Austin .3
Melville Rowling .3
Carroll Brontë .3
Carroll Austin .3
Carroll Rowling .3

(a) PW1

Surname Surname P

Dickens Brontë .2
Melville Austin .2
Carroll Rowling .2

(b) PW2

Surname Surname P

Dickens Brontë .5
Dickens Austin .5
Dickens Rowling .5
Melville Brontë .5
Melville Austin .5
Melville Rowling .5
Carroll Brontë .5
Carroll Austin .5
Carroll Rowling .5

(c) PW3

Surname Surname P

Dickens Brontë 1
Dickens Austin .8
Dickens Rowling .8
Melville Brontë .8
Melville Austin 1
Melville Rowling .8
Carroll Brontë .8
Carroll Austin .8
Carroll Rowling 1

(d) Aggregated

Fig. 10. The result of πSurname,Surname(R2 × R4) for the rewriting function (2)

Towards Relational Schema Uncertainty 161

In Figure 10 we have represented the result of this query in each possible world, and
the aggregated result. Now, it can be appreciated how the pairs not supported by the
possible world PW2 do not receive the corresponding probability mass.

4 Related Work

Uncertain schemata have been suggested as an important component of data integra-
tion systems in [1,4,2,5]. [2] provides the first treatment of this problem, but applying
different assumptions with respect to our work, in particular single-table data sources.

Also the literature on uncertain databases is related to the problem discussed in this
paper, because uncertain schemata may generate probabilistic answers [6,7,8,9,10,11].
However, as we have mentioned in the introduction, the two problems can be considered
independently one from the other.

Works on uncertain semi-structured (XML) data management are related to the man-
agement of uncertain schemata, because in semi-structured data schemata are part of the
data [12,13]. However, these works have not treated the problem of XML documents
with sub-trees representing alternative worlds, nor uncertainty on XML schemata.

Finally, our query rewriting system has some references to works on heterogenous
data querying using views [14,15], but in our setting we deal with alternative (i.e., dis-
junctive) databases, and not with separate data sources each providing part of a single
database.

5 Conclusion and Future Work

In this paper we have presented some results on the management of uncertainty in
schemata, a problem recently emerged in the field of data integration [1,2,5] but with
potential applications also in centralized database systems. In particular, we have shown
that uncertainty in metadata can be used to express doubtful relationships between the
data and also alternative semantics of a single data source.

The main problem with uncertain schemata is the general impossibility to express a
single query that is valid for all alternative databases. Therefore, a consolidated schema
(as it has been called in [2]) is used to allow the user to express queries on a single
schema, that are then translated into queries for the alternative databases. In this context,
we have defined some properties (soundness and completeness) to evaluate both the
consolidated schema and the query rewriting system. Finally, we have presented some
specific systems, exemplified query answering, and studied their properties.

This matter is still in its infancy, thus many sub-problems are still awating for
treatment. Important but not exahustive topics are: missing attributes, compositions of
attributes, new languages to represent and query consolidated schemata, as well as prac-
tical issues regarding the implementation of uncertain schemata over existing traditional
or probabilistic database management systems.

References

1. Magnani, M., Rizopoulos, N., Mc.Brien, P., Montesi, D.: Schema integration based on un-
certain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J.,
Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)

162 M. Magnani and D. Montesi

2. Sarma, A.D., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems.
In: Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pp. 861–874. ACM, New York (2008)

3. Magnani, M., Montesi, D.: Dimensions of ignorance in a semi-structured data model. In:
DEXA Workshop, pp. 933–937. IEEE Computer Society, Los Alamitos (2004)

4. Magnani, M., Montesi, D.: Uncertainty in data integration: current approaches and open
problems. In: VLDB Workshop on Management of Uncertain Data (2007)

5. Sarma, A.D., Dong, X., Halevy, A.: Uncertainty in data integration. In: Managing and Mining
Uncertain Data. Springer, Heidelberg (2008)

6. Re, C., Dalvi, N.N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In:
Proceedings of the 23rd International Conference on Data Engineering, pp. 886–895. IEEE,
Los Alamitos (2007)

7. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Widom, J.: Working models for uncertain data.
In: Proceedings of the 22nd International Conference on Data Engineering, p. 7. IEEE Com-
puter Society, Los Alamitos (2006)

8. Boulos, J., Dalvi, N.N., Mandhani, B., Mathur, S., Ré, C., Suciu, D.: Mystiq: a system for
finding more answers by using probabilities. In: SIGMOD Conference, pp. 891–893 (2005)

9. Cheng, R., Singh, S., Prabhakar, S.: U-dbms: A database system for managing constantly-
evolving data. In: Proceedings of the 31st International Conference on Very Large Data
Bases, pp. 1271–1274. ACM, New York (2005)

10. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:
CIDR, pp. 262–276 (2005)

11. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S.U., Sugihara, T., Widom,
J.: Trio: A system for data, uncertainty, and lineage. In: Proceedings of the 32nd International
Conference on Very Large Data Bases, pp. 1151–1154. ACM, New York (2006)

12. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data integration.
In: 21st International Conference on Data Engineering, pp. 459–470 (2005)

13. Magnani, M., Montesi, D.: Management of interval probabilistic data. Acta Informat-
ica 45(2), 93–130 (2008)

14. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS Conference,
pp. 233–246 (2002)

15. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In: VLDB,
pp. 9–16 (2006)

A Proofs

Proof. (Proposition 1) To prove this proposition we assume that a consolidated schema
Su

c is s-complete, and show that it cannot be s-sound.

– The uncertain schema is not a singleton, as stated in the proposition, therefore it
contains at least two schemata S1 and S2.

– S1 and S2 are different (being elements of a set), therefore there must be a relation
R in S1 containing two attributes A and B that belong to two different relations
in S2 (in case S1 contains only relations with one attribute, the proof is still valid
swapping S1 and S2).

– As the consolidated schema is s-complete, it must contain a relation RSu
c with A

and B.
– This relation violates the s-soundness condition with regard to S2.

Towards Relational Schema Uncertainty 163

Therefore, Su
c cannot be both s-sound and s-complete. ��

Proof. (Proposition 2) We provide a constructive proof, by showing how to generate a
coarsest common refinement.

– Build a complete graph G = (A, E), where A is the set of attributes over which
the uncertain schema Su is made. An arc between two nodes/attributes means that
they can belong to the same relation in the consolidated schema.

– For each relation in each alternative schema, remove from G the arcs between at-
tributes belonging to different relations.

– Build a consolidated schema Su
c such that each relation is made by the attributes in

a connected subgraphs of G.

Notice that:

1. If two attributes are not together in all alternative schemata, they are disconnected
in the graph. Therefore, they cannot be together in the consolidated schema.

2. Consider a consolidated schema Sc which is not a refinement of Su
c . By definition,

this implies that it contains two attributes in a relation which belong to two different
relations in Su

c , that is, two attributes whose arc in G has been removed because
they belong to different relations in some alternative schema. Therefore, Sc is not a
refinement of all the alternative schemata.

From (1), Su
c is a common refinement. From (2), there are no other schemata that are

common refinements of Su but not refinements of Su
c . Therefore, Su

c is the coarsest
common refinement. ��
Proof. (Proposition 3)

Completeness: To show that the system is not q-complete, we provide a counter-
example: we cannot express on the consolidated schema the query in PW1:

πName,Surname(MAN)

because these two attributes (Name and Surname) involve two distinct relations in the
consolidated schema.

Soundness: We prove by structural induction that all valid queries on the consolidated
schema:

1. Are valid on a generic alternative schema Si.
2. Produce a relation with the same attributes.

– R is rewritten as πsort(R)(ri(R)). Both conditions are satisfied, because ri(R) ⊇
R.

– q1 × q2, where q1 and q2 are valid queries on the consolidated schema satisfying
both conditions, satisfy both conditions.

– σA=c(q), where q is a valid query on the consolidated schema satisfying both con-
ditions, satisfies both conditions if it is itself valid on the consolidated schema.

164 M. Magnani and D. Montesi

– πA1,...,Ak
(q), where q is a valid query on the consolidated schema satisfying both

conditions, satisfies both conditions if it is itself valid on the consolidated schema.
��

Proof. (Lemma 1) Let q(R) be the query that retrieves relation R from S. A generic
query on a consolidated schema can be expressed on the consolidated schema by sub-
stituting all occurrences of relation R with q(R). ��
Proof. (Proposition 4)

Completeness: Let R(A1, . . . , Ak) be a generic relation in S, and R1, . . . , Rq the
smallest set of relations in Su

c such that R1 ∪ · · · ∪ Rq ⊇ {A1, . . . , Ak}. A query
πA1,...,Ak

(R1×· · ·×Rq) is rewritten, by definition, as πA1,...,Ak
(R). Then, this propo-

sition follows directly from Lemma 1.

Soundness: Analogous to the proof of Proposition 3. ��

Aggregation of Trust for Iterated Belief Revision

in Probabilistic Logics�

Pere Pardo

Institut d’Investigació en Intel·ligència Artificial (IIIA - CSIC)
Campus UAB, E-08193 Bellaterra, Catalonia, Spain

Abstract. In this paper it is shown how communication about trust in
a multi-agent system may be used to endow agents with belief change
capabilities, in a probabilistic logical framework. Belief change operators
are obtained in an intuitive, principled way using aggregation operators
for trust-values. Under additional conditions, such change operators may
be proved to be maxichoice. The present approach constitutes a sound
method for autonomous uncertainty management in multi-agent systems.

Introduction

The purpose of this paper is to show how aggregation of trust-values1 may
be used, in a probabilistic logical framework, to define (iterable) belief change
operations in an intuitive, principled way for multi-agent systems.

With more detail, we propose (using a probabilistic approach) to model, from
an agent x perspective, how does the belief state of x change due to commu-
nications with other agents. Since other agents y may eventually change their
minds, and these revisions may be relevant to x’s own beliefs (due to previous
interactions), x is interested in keeping an up-to-date version of y’s belief state;
the revised belief state of y is then used as an input to revise x’s own beliefs
by. A second part involves a comparison with announcements from other agents
which are logically incompatible with this input, and the subsequent revision
process based upon trust. Briefly, in each step lexicographical orderings (over
possible revisions) or aggregation of trust-values will be used to define revi-
sion operators; in some cases, these operators may be shown to be maxichoice.
The novelty of our approach lies in combining the following features: iterabil-
ity (suggested criteria being reusable2), merging-like (to accept -register- any
� The author wishes to thank Pilar Dellunde, Llúıs Godo and anonymous reviewers

for helpful comments and Agreement Technologies project (Consolider CSD2007-022,
INGENIO 2010) from the Spanish Ministry of Science and Innovation for financial
support.

1 We define trust as a measure of confidence or credibility. In the literature, see e.g.
[23], credibility is understood as trust upon an agent as informant.

2 In this sense, our proposal complies with Hansson’s categorial matching principle in
[16], stating that the output of a change operation should contain the same kind
of elements used earlier in order to face, for arbitrary new inputs, future change
operations in a self-sufficient manner.

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 165–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 P. Pardo

communication does not mean to accept its content), trust-communicability (en-
abling the whole system to be truly dynamic), and meaningfulness (trust-based
aggregation providing intuitive criteria, whose adequacy for particular problems
may be discussed about). After a general presentation of this revision-theoretic
procedure for the probabilistic case within the field of (many-valued modal) un-
certainty logics, we identify some weak conditions making the induced revision
operator maxichoice, and illustrate the effect of properties of aggregation opera-
tors (or lexicographical orderings) in the dynamic behavior of revision operators
induced by them.

Related Work: There are different presentations combining modal logic and
probability in the literature, including Ognjanovic and Raškovic [20], Halpern
and Fagin [15]. We opted for Hájek’s fuzzy approach because truth-constants can
be combined with propositions by using (fuzzy) logical connectives3. One may
find in the literature several proposals related to the trust-based multi-agent as-
pects of our proposal; among these we may point out: Liau’s BIT logic [18] (a crisp
multi-modal logic for belief, communication and trust), Liau and Demolombe’s
[7] (a graded extension of the latter for static level-wise management), Drag-
oni and Giorgini [8] (combining Dempster-Shafer belief functions with Bayesian
inference), Flaminio, Pinna and Tiezzi [11] (nested modal fuzzy predicate logic
with trust-based information management under a static hierarchy of sources),
Maynard-Reid and Shoham [19] (fusion of multi-source belief sets), Konieczny,
Lang and Marquis [17] (aggregation functions for distance-based belief merging)
and Delgrande, Dubois and Lang [5] (iterated revision as prioritized merging,
based in e.g. lexicographic orderings).

The paper is structured as follows. First, we set out the preliminaries including
aggregation operators, t-norm based fuzzy logics and belief change. Then we
describe the method which combines results in these areas. Finally, some results
showing how to (iteratively) induce (possibly maxichoice) revision operators are
proved. As a result, this method is shown to endow agents with autonomous
capabilities to manage arbitrary belief change problems in classical propositional
logic, only assuming some initial trust information.

1 Preliminaries

In this section we introduce the definitions and results (we will need in later sec-
tions) for: aggregation operators, t-norm (graded) fuzzy logics and their (modal)
uncertainty versions, and screened, deg-closed, maxichoice belief revision
operators.

1.1 Aggregation Operators and t-norms

The field of aggregation operators [3] studies quantitative functions mapping
(finitely-many) input values to a single output value. Such functions are assumed
3 In contrast, modal approaches for probabilistic modal logics regard truth-constants

as parameters r attached to modal operators, �r
i . This is also the case for graded

trust-belief-communication logics e.g. [7] listed below.

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 167

to be defined in the real unit interval [0, 1]. Formally, a family of functions A(n) :
[0, 1]n → [0, 1] for arbitrary n ∈ ω is identified with function A :

⋃
n∈ω[0, 1]n →

[0, 1]. Properties considered to define the general class of aggregation operators
are listed next.

Definition 1. [3] A function A(n) : [0, 1]n → [0, 1] is an aggregation operator
iff it satisfies:

(Boundary) A(n)(0, . . . , 0) = 0, A(n)(1, . . . , 1) = 1 and A(1)(x) = x
(Monotonicity) For each n ∈ ω, if x1 ≤ y1, . . . , xn ≤ yn then

A(x1, . . . , xn) ≤ A(y1, . . . , yn)

For a given A function satisfying additionally some of the following conditions

(Idempotence) A(n)(x, . . . , x) = x, or
(Symmetry) A(n)(x0, . . . , xn) = A(n)(xπ(0), . . . , xπ(n)),

for each permutation π of {1, . . . n}
(Associativity) A(x1, . . . , xn, y1, . . . , ym) = A(A(x1, . . . , xn),A(y1, . . . , ym))

then we say A is, respectively, an idempotent, symmetric or associative ag-
gregation operator. An element e ∈ [0, 1] is a neutral element of A iff for
all n ∈ ω and x1, . . . , xn ∈ [0, 1], xi = e (for some i ∈ {1, . . . , n} implies
A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn).

In terms of the preceding definition, a triangular norm, or t-norm, is a binary
associative4 associative symmetric aggregation function with neutral element 1.
On the other side, the class of idempotent aggregation operators A lies between
max and min functions: min ≤ A ≤ max. (The min function also happens to
be the only idempotent t-norm.) See [24] for a study of idempotent symmetric
aggregation operators; in this work, operators in this subclass are simply called
aggregation operators; henceforth, we adopt this notation for convenience, and
refer to each other subclass by its specific name, e.g. t-norms.

1.2 Logical Change Operators

Belief change is the study of how some theory T (non-necessarily closed, as we
use the term) in a given language L can adapt to new incoming information
ϕ ∈ L (inconsistent with T , in the interesting case). The main operations are:
revision, where the new input must follow from the revised theory in a consistent
way and contraction where the input must not follow from the contracted theory.
In the classical paper [1], by Alchourrón, Gärdenfors and Makinson, partial meet
revision and contraction operations were characterized for closed theories in, es-
sentially, monotonic compact logics with the deduction property. Their work
opened the way for other studies involving new objects of change, operations

4 Any associative aggregation function can be simply presented as a binary function;
that is, the corresponding n-ary functions may easily be obtained from the binary
case using associativity.

168 P. Pardo

(see [22] for a comprehensive list) or logics5. Change operators can be defined by
the next method, from [1] (there exist other -classically equivalent- methods as
well, which are based on rankings rather than on selections). Partial meet con-
sists in (i) generating all logically maximal ways to adapt T to the new sentence
(those subtheories of T making further information loss logically unnecessary),
(ii) selecting some of these possibilities, (iii) forming their meet, and, optionally,
(iv) performing additional steps (if required by the operation). Then a set of
axioms is provided to capture these partial meet operators, by showing equiv-
alence between satisfaction of these axioms and being a partial meet operator.
(Observe step (ii) assumes some non-logical components to define a solution for
a given revision problem; this paper is mostly devoted to finding such (a class
of) non-logical components). A base is an arbitrary set of formulas, the original
requirement of logical closure being dropped (for convenience, we indistinctively
use base and theory). We make use of definitions and results proved in [21] (see
also [2]):

Definition 2. ([2]) Given some monotonic logic S, let T0, T1 be theories. We
say T0 is consistent if T0 �S 0, and define the set of subsets of T0 maximally
consistent with T1 as follows: X ∈ Con(T0, T1) iff:

(i) X ⊆ T0,
(ii) X ∪ T1 is consistent, and
(iii) for any X ′ such that X � X ′ ⊆ T0, we have X ′ ∪ T1 is inconsistent

The axioms to characterize (multiple) base revision operators � : P(Fm) →
P(Fm) for some T0 (in a given finitary monotonic logic S) are the following:

(F1) T1 ⊆ T0 � T1 (Success)
(F2) If T1 is consistent, then T0 � T1 is also consistent. (Consistency)
(F3) T0 � T1 ⊆ T0 ∪ T1 (Inclusion)
(F4) For all ψ ∈ Fm, if ψ ∈ T0 � T0 � T1 then,

there exists T ′ with T0 � T1 ⊆ T ′ ⊆ T0 ∪ T1

and such that T ′
�S 0 but T ′ ∪ {ψ} �S 0) (Relevance)

(F5) If for all T ′ ⊆ T0 (T ′ ∪ T1 �S 0 ⇔ T ′ ∪ T2 �S 0)
then T0 ∩ (T0 � T1) = T0 ∩ (T0 � T2) (Uniformity)

Definition 3. For a given set X of families of sets, a selection function γ is a
function selecting a non-empty subset of each family in X.

γ : X −→
⋃

X∈X

P(X), with ∅ �= γ(X) ⊆ X

5 Following [12], we define a logic as a finitary and structural consequence relation
�S⊆ P(Fm) × Fm, for some algebra of formulas Fm. That is, S satisfies (1) If
ϕ ∈ Γ then Γ �S ϕ, (2) If Γ �S ϕ and Γ ⊆ Δ then Δ �S ϕ, (3) If Γ �S ϕ and for
every ψ ∈ Γ , Δ �S ψ then Δ �S ϕ (consequence relation); (4) If Γ �S ϕ then for
some finite Γ0 ⊆ Γ we have Γ0 �S ϕ (finitarity); (5) If Γ �S ϕ then e[Γ] �S e(ϕ) for
all substitutions e ∈ Hom(Fm,Fm) (structurality).

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 169

In particular, we will make use of selection functions being defined for Con(T0, T1)
sets, for at least some T0 and arbitrary T1. This suffices to define, given some
theory T0 ⊆ Fm and selection function γ for T0, a partial meet revision operator
�γ for T0 as follows:

T0 �γ T1 =
⋂
γ(Con(T0, T1)) ∪ T1

Definition 4. Let S be some finitary logic, and T0 a theory. Then � : P(Fm) →
P(Fm) is a revision operator for T0 iff for any T1 ⊆ Fm, T0 � T1 = T0 �γ T1

for some selection function γ for T0.6

Theorem 1. [21] Let S be a finitary monotonic logic. For any T0, T1 ⊆ Fm
and function � : P(Fm) → P(Fm) for T0:

� satisfies (F1) − (F5) iff T0 � T1 = T0 �γ T1, for some γ

In the limiting case where a revision operator is induced by some function γ
selecting a unique element X , i.e. γ(X) = {x}, this operator is called maxichoice.

Theorem 2. [21] Let S, T0 and T1 be as above, then � is maxichoice iff (F1)−
(F5) plus (MC) hold:

(MC) For all ψ ∈ Fm with ψ ∈ T0 � T0 � T1 we have T0 � T1 ∪ {ψ} �S 0

In the results shown in the next section, a variant of belief revision, screened be-
lief revision is used. This operation of belief change consists, as usual, in selecting
subsets of the base T0 consistent with the new input T1 with the restriction that
for some previously chosen consistent subset T ∗ ⊆ T0, it must be the case that
T ∗ ⊆ T0 � T1. Sentences in T ∗ are, then, preserved under revision and can be
considered irrevocable; thus, it is assumed that (acceptable) inputs T1 will be
consistent with T ∗. This is called T ∗-screened revision operator for T0. Screened
revision can be characterized in terms of standard belief revision as follows:

T0 �T∗
T1 = T0 � (T1 ∪ T ∗) =

⋂
γ′(Con(T0 � T

∗, T1 ∪ T ∗) ∪ (T1 ∪ T ∗)

for some suitable γ′. We will also consider a natural variant, in graded logics,
of basehood, where bases are deductively closed by lower truth-degrees (deg-
closed), as in [2]. This is unproblematic, since, as it was proved in [21], revision
of deg-closed bases by deg-closed inputs results in deg-closed bases. Moreover,
this can be generalized to finite subsets7 of the set of truth-values, preserving
this result in the finitely-closed case (i.e for fdeg-closed bases).

6 Thus, revision operators are defined relative to some fixed base T0. Nonetheless,
instead of �T0T1, we keep the traditional infix notation T0 � T1.

7 That is, if truth-constants r occurring in base and input are taken from values r = m
n

for 0 ≤ m ≤ n (i.e. dividing [0, 1] into n equal parts).

170 P. Pardo

1.3 Uncertainty Logics Based on t-norms

We recall basic definitions about t-norm based fuzzy logics and some defini-
tions and results for their uncertainty modal extensions. T-norm based logics
are residuated logical systems capturing the validities of formulas whose con-
junction & and implication → connectives are interpreted respectively by classes
of (left-)continuous t-norms and their residua. A left-continuous t-norm ∗ and
its residuum ⇒∗, then, define a pair of fuzzy truth-functions in the real unit
interval [0, 1], which extend their classical counterparts in {0, 1} and satisfy the
residuation law: a ∗ b ≤ c iff a ≤ b ⇒∗ c, for all a, b, c ∈ [0, 1] The logics of
the three basic continuous t-norms, �Lukasiewicz �L, product Π and Gödel G, are
axiomatic extensions of Hájek’s Basic logic BL [14] (this logic capturing the set
of tautologies common to any logic of a continuous t-norm) with the following
corresponding axioms:

(�L) ¬¬ϕ→ ϕ (Π) ¬ϕ ∨ ((ϕ → ϕ&ψ) → ψ) (G) ϕ→ ϕ&ϕ

which are shown to be complete with respect to the semantic calculus defined
by the corresponding t-norm: a ∗�L b = max(0, a + b − 1), a ∗Π b = a · b and
a ∗G b = min(a, b).

Hájek introduced in [14] the logic RPL as a graded expansion of �Lukasiewicz
logic �L, adding into the language a truth-constant r for each rational number in
[0, 1] together with the so-called book-keeping axioms : r ∗�L s ≡ r&s and r →�L

s ≡ r ⇒�L s, where a⇒�L b = min{1, 1− a+ b}. RPL logic was proved to satisfy
Pavelka-style completeness. Given a theory T and a sentence ϕ in the language of
RPL, we define the provability- and the truth-degrees of ϕ in T by, respectively,

|ϕ|T = sup{r ∈ [0, 1] | T �S r →�L ϕ} ‖ϕ‖T = inf{e(ϕ) | e is a model of T}

Theorem 3. [14, Thm 3.3.5] (In RPL) For each theory T and formula ϕ,
|ϕ|T = ‖ϕ‖T .

Finitely Strong Completeness was also proved to hold in RPL.

Theorem 4. [14, Thm 3.3.14] (In RPL) Let T be a finite theory and ϕ a
formula. If ϕ is 1-true in all models of T , then T �RPL ϕ.

Other graded expansions of continuous t-norm based logics have been studied,
see e.g. [10]. One of the motivations after the introduction of (t-norm) fuzzy
logics was to capture (in a sound way) reasoning about sentences having a truth-
degree other than 0 or 1. It was realized, e.g. [9], that (a) gradual truth of some
worldly sentence was to be distinguished from (b) uncertainty about some crisp
(worldly) sentence. T-norm fuzzy logics capture reasoning of type (a), but to
model non-truth-functional uncertainty, some modifications are required. In the
literature, logical models of uncertainty have been presented (so far) as fuzzy
logics over a simple modal logic for two-valued Boolean propositions. This is
the case of probability and possibility [14], and Dempster-Shafer functions [13]
among others.

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 171

We briefly describe next Hájek’s FP (RPL) logic [14], a modal-like logic to
reason about probability built over RPL. This logic deals with classical Boolean
sentences being qualified by a modality here denoted B (for belief). Indeed,
atomic modal formulas of FP (RPL) are of the form Bϕ, to be read as ϕ is
believed, where ϕ is a classical Boolean formula ϕ (nested modal operators are
not allowed); finally, these basic modal formulas and truth-constants r can be
arbitrarily combined by means of �Lukasiewicz connectives &,→�L in the usual
way.

For our purposes in this paper, we will need to deal. not with a single modal
operator B, but with a set of modal operators {[Bx]}x∈Ag, each one modelling
the belief of each agent x in a given (finite) set of agents Ag. The axioms and rules
for our multi-modal version of FP (RPL) are listed in Fig. 1.3. The semantics

Axioms of Classical Propositional Logic (for non-modal formulas)
Axioms of RPL (for modal formulas): BL + �L and book-keeping axioms
Axioms of fuzzy probability for each modality [Bx]

(FP1): [Bx](ϕ) →�L ([Bx](ϕ→ ψ) →�L [Bx]ψ)
(FP2): [Bx](¬ϕ) ≡ ¬[Bx]ϕ
(FP3): [Bx](ϕ ∨ ψ) ≡ [([Bx]ϕ →�L [Bx](ϕ&ψ)) →�L [Bx]ψ]

Rules of inference:
modus ponens (for modal and non-modal formulas) and
[Bx]-necessitation: from � ϕ infer � [Bx]ϕ, for each modality [Bx]

Fig. 1. Axioms and rules of multi-modal FP (RPL)-logic

of our language is given by means of Kripke models of the following form K =
(W, e, 〈μx〉x∈Ag) where W �= ∅, e is an evaluation (that is, e(w, p) ∈ {0, 1} for
w ∈ W and p a propositional variable), and for every modality [Bx], μx is a
finitely additive probability on some Boolean subalgebra F ⊆ 2W such that
the sets {w | e(w,ϕ) = 1}, for every classical propositional formula ψ, are μx-
measurable. The semantics of non-modal formulas, also denoted by e, is defined
as usual from atomic evaluations in each w ∈ W . For every modality [Bi] the
truth value of an atomic modal formula [Bi]ϕ in a model K is defined as

‖[Bx]ϕ‖K = μx({w | e(w,ϕ) = 1})

and the truth-value of compound modal formulas are computed from the atomic
(modal) ones using the truth-functions of �Lukasiewicz logic.

As before, a set of sentences T is called a theory and it is said that a theory
T is closed iff T is closed under the �FP (RPL) relation. Finally, a theory T
is called modal iff T only contains modal formulas. Borrowing the notions of
provability and truth-degrees for RPL, the following completeness results for
the multi-modal version of FP (RPL) hold.

172 P. Pardo

Theorem 5. [14] [Pavelka Completeness] For any modal theory T and modal
formula Φ, it holds that: |Φ|T = ‖Φ‖T .

Theorem 6. [14] [Finite Strong Completeness] For any finite modal theory T ,
and modal formula Φ, T �FP (RPL) Φ iff ‖Φ‖T = 1.

2 From Aggregation Functions to Change Operators

Let Ag be a set of agents. Given a set of information communications among the
agents, our aim is to model, from an agent x’s perspective, changes in x’s beliefs
about the world and about the trust in other agents.

To this end, we assume that, at a given moment, each agent x ∈ Ag maintains
a belief base Tx which is composed of

(i) a trust subbase Trx, gathering information about the degree of trust x has on
other agents. This information will be represented by FP (RPL)-formulas
of the kind r →�L [Bx]Trxy, where Bx is the agent x’s probability modality
and Trxy is a Boolean atomic formula. The intended reading of such a
formula is: x believes with probability at least r that x can trust on y.

(ii) a knowledge subbase Kx, gathering (graded) beliefs about the world, ex-
pressed by means of modal formulas of FP (RPL) built with the modality
[Bx]. Typical formulas will be of the form s→�L [Bx]ϕ, denoting that agent
x believes ϕ holds, with probability at least s. But arbitrary, more complex
FP (RPL)-formulas are also allowed8.

(iii) a communication subbase Ty�x for each agent y �= x containing information
that agent y has communicated to agent x, i.e. what agent x has received
from agent y’s discourse. Such information will be again obtainable from y’s
trust, knowledge and communication subbases. All this information coming
from agent y will be again expressed by FP (RPL) formulas built over agent
y’s modality [By].

Therefore each agent belief state can be expressed as

Tx = Trx ∪ Kx ∪
⋃

y�=x
Ty�x

If the context makes it clear, we define T =
⋃
y�=x Ty�x as the set of x’s knowledge

of all agents’ discourses.
Let us describe informally which kind of belief change processes we envisage

when an agent x receives some communication from agent y of form Φ = r →�L

[By]ϕ, expressing that agent y believes ϕ (which may denote an information
about the world or about the trust on some other agent z) to the degree r.

In a first step, agent x revises (her record of) y’s discourse, Ty�x, by Φ, to
keep it up-to-date. The idea here to guide this revision is to consider that newest
8 For the sake of a simpler presentation, in this paper we will assume agent x’s knowl-

edge base to be empty.

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 173

information prevails over old one (in Ty�x). In a second step, once Ty�x has been
revised and taking into account the trust she has on agent y, agent x transforms
the information provided by agent y in Ty�x into x’s own beliefs by means,
building a new base F [Ty�x] by means of the following simple transformation:

if Φ([By]ϕ) ∈ Ty�x, then [Bx]Trxy →�L Φ
∗ ∈ F [Ty�x],

where Φ∗ is the result of replacing each occurrence of [By] by [Bx]. That is, this
transformation in fact conditionalizes Φ to how much agent x trusts on agent
y. Note that if agent x does not trust y at all, i.e. ¬[Bx]Trxy ∈ Trx, then from
Trx ∪ F [Ty�x] nothing can be inferred about the belief on Φ.

Then the question which remains is how to revise the agent x’s belief trust
subbase Trx in the light of the communicated information to agent x by the other
agents. The idea9 that guides this revision process is a principle of minimizing
the loss of trust on the other agents, i.e. we look for maximal subsets of Trx
consistent with F [T] which yield a minimal aggregated loss of trust (given a
suitable aggregation function A) of agent x on the rest of agents y ∈ Ag � {x}.

In the following subsections we provide details on the revision procedures used
in each step described above.

2.1 (i) Enforcing Consistency in an Agent’s Discourse

At this step agent x adjusts her beliefs about an agent’s discourse to this agent’s
announcements. This revision will be non-trivial (i.e. not an expansion) when y
tells x something contradicting some of y’s previous announcements10. For our
modeling purposes, we need to consider the communications subbase Ty�x as a
temporally ordered sequence with newest information first:

−−→
Ty�x = 〈Φn+1, Φn, . . . , Φ0〉

This enables agent y to univocally guide (if necessary) x’s revision process in
Ty�x according to the prevalence of new information convention11. This is im-
plemented by letting the lexicographic ordering determine a selection function
for Ty�x. Let

−→
X = 〈ϕni〉i∈I and

−→
Y = 〈ϕnj 〉j∈J be the temporally reverse order-

ings of subsets X,Y of Ty�x. We define a lexicographical ordering based on the
subindexes of formulas in

−→
X,

−→
Y :

X <lex Y, if 〈ni〉i∈I ≺lex 〈nj〉j∈J
9 Other principles can also be taken into account. See the examples at the end of the

paper.
10 This is how we prevent diachronic inconsistencies (y telling p first and ¬p later) from

being attributed p ∧ ¬p to an agent. By definition of revision operators, synchronic
inconsistencies (i.e. telling p ∧ ¬p) are simply ignored.

11 After being told by y (1) that ϕ, (2) that ψ and (3) that ¬(ϕ∧ψ) agent x will prefer
ψ to ϕ, unless y tells x that ϕ between just before (3) to guide x’s revision of her
own discourse. Similarly, if y told. Observe it is in benefit of y to make her position
clear.

174 P. Pardo

where I, J ⊆ {0, . . . , n+ 1} and ≺lex is the usual lexicographic ordering of ω<ω

(the set of finite sequences of natural numbers).

Proposition 1. Any function of the following form is a selection function for
Ty�x and induces a maxichoice revision operator for Ty�x.

γ0(Con(Ty�x, Φ)) = {X}, if X is maximum w.r.t. <lex.

Proof. Obviously γ0 selects a subset of Con(Ty�x, Φ). We show that γ0 selects a
unique element (hence it is non-empty). Since ≺lex is a total ordering of ω<ω,
<lex is also total in Con(Ty�x, Φ); hence, it has a <lex-maximum element, X ,
which is the only element of γ0(Con(Ty�x, Φ)). Thus, γ0 is non-empty, hence a
selection function for Ty�x. This γ0 also induces a maxichoice revision operator,
since it is proved above that γ selects a single element.

2.2 (ii) Multi-source Conflict Resolution

Managing conflicts between sources is the main part of the method proposed.
We generalize the previous step to the case where more than one discourse is
being revised. Let T =

⋃
y�=x(T′

y�x �γ0 Φy), where T′
y�x is the old subbase and

Φy its revision input. Analogously, we define T′ =
⋃
y�=x T

′
y�x. The set F [T], the

F -translation of step one output T, is the revision input for this part.
Only sentences in the trust-subbase are eligible12 for withdrawal when revising

by F [T]. Withdrawing old beliefs in the trust-base Trx will be needed only when
F [T] turns out to be inconsistent with the trust-base Trx. This motivates the
following definitions.

Consider the family of maxichoice revision operator outputs, for fixed Trx
and F [T], defined as the family X of sets X∗ = X ∪ F [T], for some X ∈
Con(Trx, F [T]). We want to compare these values with those from the old, pre-
revision base Trx∪F [T′], denoted by F [Tx]. To do so, in each revised set X∗ we
compute to which degree αX

∗
xy agent x trusts on y as the provability degree over

FP (RPL) (see Section 1.3) of the formula [Bx]Trxy in the theory X∗. Formally,

Definition 5. For each y �= x, we define αX
∗

xy = |[Bx]Trxy|X∗ . We define
βX

∗
xy = |[Bx]Trxy|F [Tx] − |[Bx]Trxy|X∗ . In the following P stands for α or β

(with corresponding scripts).

Parameters α measure the total amount of agents’ trust (either preserved or
gained), while β parameters measure the amount of trust lost from the old belief

12 The present approach might be improved into more sophisticated versions. (1) A
first possibility would be to turn trust recommendation r →�L [By]Trxz (which is
conditional on x’s trust upon y) into (unconditional) trust information to be added to
the trust subbase Trx. This would have the effect of making y no longer responsible
for her recommendation of z. (2) Another option is to enlarge the trust subbase
so as to cover derived trust information too (e.g. trust information derived from
unconditional trust, and a trust recommendation). To simplify the exposition neither
of these options is considered in the present approach.

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 175

state, both after some revision (would that particular revision take place). We
pointed out that revision processes often require non-logical components. In our
proposal, α or β values will be the first element used to define this non-logical
component. Other elements are: (ii) an aggregation operator A to aggregate the
agents’ P-values for a fixed X∗ ∈ X

∗ (that is, for y varying over Ag � {x});
thus, from a sequence 〈PX∗

xy 〉y�=x we obtain a value A(〈PX∗
xy 〉y�=x) ∈ [0, 1]. Finally,

we introduce (iii) a closed13 aggregation operator f (typically, max or min) to
select among X∗ sets according to the aggregated A-value supplied in (ii). That is,
given A(〈PX∗

0
xy 〉y�=x), . . . ,A(〈PX∗

n
xy 〉y�=x), function f will choose, say, the maximum

of these values. Now, the advantage of requiring f to be closed is that we can
recover the particular set(s) X∗ whose A-value gets selected by f . We define the
selection function induced by (f,A,P) as follows:

γ(f,A,P)(Con(T0, T1)) = {X∗ ∩ T0}

for X∗ such that A(〈PX∗
xy 〉y�=x) = f({A(〈PY ∗

xy 〉y�=x) | Y ∗ ∈ X∗}). As shown next,
this γ(f,A,P) is a selection function for any base T0 and input T1. Observe this
method must compute first the values of each output of some maxichoice revision
operator, in order to decide for the (f,A,P)-best selections.

Proposition 2. Let T0 be a base and T1 an input. For any (f,A,P) as defined
above γ(f,A,P) is a selection function inducing a (F [Tx]�Trx)-screened revision
operator for Trx.

Proof. The bijection between X∗ elements (under ∩Trx) and Con(T0, T1) el-
ements is obvious (by definition of X∗). By definition of γ(f,A,P), this func-
tion selects a subset of Con(T0, T1). Now, we prove that γ(f,A,P) is non-empty:
since f is closed there exists a subset {X∗

0 , . . . , X
∗
k} such that, for 0 ≤ i ≤ k,

A(〈PX∗
i

xy 〉y�=x) = f({〈A(PX
∗

xy)〉y�=x | X∗ ∈ X
∗}). By the previous bijection

{X∗
0 ∩ T0, . . . , X

∗
k ∩ T0} is a subset of Con(T0, T1). The latter set is non-empty

whenever T1 is consistent.

Observe that F -translated step one inputs satisfy the consistency condition for
T1: the set F [T] is always consistent: let e be an assignment with e(Trxy) = 0
for each y �= x. Then, e is a model of F [T] Thus, when T1 is obtained as an
step one revision, the above result applies. This result also shows F to preserve
consistency, but not necessarily to preserve consistency with Trx. As usual, the
revision operator induced by such γ(f,A,β) is defined by

F [Tx] �(f,A,P) F [T] = (
⋂
γ(f,A,P)(Con(Trx, F [T])) ∪ F [T]

Under additional conditions, we can enforce the defined revision operators to be
maxichoice.

13 An aggregation operator f is closed if f(X) ∈ X. In set-theoretic terminology, a
closed aggregation operator is also a choice function.

176 P. Pardo

Proposition 3. Let (f,A,P) be as above and assume all values A(〈PX∗
xy 〉y�=x) are

pairwise different for X∗ ∈ X∗. Then γ(f,A,β) induces a maxichoice revision oper-
ator. The same holds if the above quantification ranges over X ∈ Con(Trx, F [T])
instead of X ∈ X∗.

Proof. We prove the last, stronger, claim. Since the aggregated A-values of P-
parameters for any X∗, Y ∗ are pairwise different, they can be totally ordered,
so closed f will select a unique P-value, r. Let X∗ be the unique element with
A(〈PX∗

xy 〉y�=x) = r, that is A(〈PX∗
xy 〉y�=x) = f({A(〈PY ∗

xy 〉y�=x) | Y ∗ ∈ X∗}). Finally,
X∗ ∩ Trx is the unique maximal consistent theory selected by γ(f,A,P), so this
function induces a maxichoice revision operator.

Alternatively, if we are given a lexicographical ordering <lex (in place of previous
A), then f ∈ {maxlex,minlex} may be introduced to induce selection functions
which will give rise, as before, to maxichoice revision operators. We will define
lexicographical orderings from reference base Z and a class of P-parameters.
Then, the resulting selection function (to be defined) will be called γ(f ′,∅,P)Z

.
This function may be shown to induce a maxichoice revision operator. Again,
a natural choice for Z, according to the minimize information loss principle, is
the pre-revision belief state Z = F [Tx].

Proposition 4. For f ∈ {min,max} and a base Z, we have that γ(f ′,∅,P)Z
in-

duces a maxichoice revision operator.

Proof. Let (f, ∅,P)Z be as above for some base Z; observe that for any X,Y
maximal consistent subsets, by their maximality, exist y0, y1 ∈ Ag � {x} such
that PX

∗
xy0 > P

Y ∗
xy0 while PX

∗
xy1 < P

Y ∗
xy1. Now, we order each 〈P(·)

xy〉, matching this
order (upon agents) with that of PZxy, when the latter is decreasingly ordered,
the result being possibly non-decreasing. In any case, the above consequence of
maximality induces a lexicographic ordering of X∗ sets in X∗; this lexicographic
ordering is translated to maximal consistent subset by means of the mapping
X∗ �−→ X = X∗ ∩ Trx. Let this second lexicographic ordering be denoted by
<∗

lex. Obviously, taking the f -value on <∗
lex makes (f ′, ∅,P)Z to select a unique

element: consider the f = max case first; for X,Y ∈ Con(Trx, F [T]), we have

{X∗} = γ(max,∅,P)Z
(Con(Trx, F [T])), where X∗ is maximum w.r.t. <∗

lex

This γ(max,∅,P) is a selection function (it is non-empty, since Con(Trx, F [T]) is
not empty either), and since the element selected is unique this selection function
induces a maxichoice revision operator. The proof of case f = min is similar:
simply replace maximum by minimum in the previous set.

2.3 Examples of Aggregation-Based Revision Operators

We consider the next criteria (1) (max,max, α) i.e. f = A = max, and αXxy =
|[Bx]Trxy|X inducing revision operators that opt for maximizing the trust upon
the maximally trusted agent in the resulting revision; and (2) (min,mean, β), for

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 177

βXxy = |[Bx]Trxy|T − |[Bx]Trxy|X , to generate revision operators that minimize
the mean of the differences in trust before and after revision. Observe that max
is associative but mean is not: (1) induces revision operators unsensitive to
order and simultaneity of inputs; while this need not to be the case for (2), in
principle; although to properly implement (2) agent x should not revise her belief
states after each new input is received. Doing so would make (min,mean, β) to
collapse into the former (max,max, α) 14. This is shown in the first example.
As mentioned before, we will assume in the next examples that bases are closed
under (a finite but sufficient set of) truth-degrees: if r →�L [Bx]ϕ ∈ T then for
each s < r, s→�L [Bx]ϕ ∈ T . (Doing otherwise just leads to more drastic revision
operators.) In these examples, there is no internal conflict in the discourse of any
agent y �= x. Hence we can forget about the first revision step depicted above.

Example 1. Consider the base

T0 = { [Bx]Trxy →�L [Bx]p, 0.9 →�L [Bx]Trxy,
0.8 →�L [Bx]Trxz0 , 0.7 →�L [Bx]Trxz1 }, and inputs

ϕ0 = [Bx]Trxz0 →�L [Bx]¬p and ϕ1 = [Bx]Trxz1 →�L [Bx]¬p

(a) Observe criterion C = (max,max, α) leads to |ψ|(T0�Cϕ0)�Cϕ1 = |ψ|T0 , for ψ
not being a trust sentence about z0 or z1; i.e. revision preserves the rest of
the base. This is so because neither z0 nor z1 can individually beat y. As a
consequence, trust upon z0 and z1 is lowered to 0.1.

(b) The same holds for C′ = (min,mean, β), if x revises as soon as a new input
is received. Let T ′ := T �C′ ϕ0. We have T ′ makes x’s trust upon z0 be set
to 0.1 →�L [Bx]Trxz0. On second input, T ′ �C′ ϕ1, x joint trust upon z0 and
z1 cannot beat that upon y.

(c) Finally, consider (b)’s criterion C′ but now with simultaneous (i.e. multiple)
revision of T by input {ϕ0, ϕ1}. In this case, x must choose between a loss
of .9+0+0

3 units of trust or a loss of 0+(.8−.1)+(.7−.1)
3 units of trust. Since the

later means a minimum loss, z0 and z1 beat y, who looses credibility from
x’s point of view.

Another important question is how does a new communication of trust affect
old communications. Assume z0 and z1 happen to disagree about p. The next
example shows there is an important difference between ψ = y recommending z1

(to x) and ψ′ = y disrecommending z0 (to x). The latter, as a revision input, does
not make x to recover an old high degree of trust in z1 (this is case (T �ϕ)�ψ′)
unless y’s disrecommendation of z0 takes place before z1’s conflicting message
about p (case (T �ψ′)�ϕ). On the other side, this example makes no difference
between C and C′.

14 Instead, in order to implement revision under (min,mean, β) it is recommendable
to wait until several inputs have been gathered so as to have better grounds for
deciding.

178 P. Pardo

Example 2. Let

T = { 0.9 →�L [Bx]Trxy, 0.7 →�L [Bx]Trxz0,
0.6 →�L [Bx]Trxz1 , [Bx]Trxz0 →�L [Bx]¬p }, and inputs

ϕ = [Bx]Trxz1 →�L [Bx]p, ψ = [Bx]Trxy →�L (0.9 →�L [Bx]Trxz1),

and ψ′ = [Bx]Trxy →�L ([Bx]Trxz0 →�L 0.4)

In each of the next sequences of revisions, x’s trust upon z0, z1 becomes

|[Bx]Trxz1|T�ϕ = 0.3
|[Bx]Trxz1|(T�ϕ)�ψ = 0.8 |[Bx]Trxz0|(T�ϕ)�ψ = 0.2
|[Bx]Trxz0|(T�ϕ)�ψ′ = 0.5 |[Bx]Trxz1|(T�ϕ)�ψ′ = 0.3
|[Bx]Trxz1|(T�ψ′)�ϕ = 0.6 |[Bx]Trxz0|(T�ψ′)�ϕ = 0.4

3 Conclusions and Future Work

We studied revision-theoretic properties of a probabilistic (uncertainty) graded
logic, with propositional atoms for trust and modalities for (communicated)
belief. This was but an example of how can we define a trust-based method
of iterated belief revision (on top of some uncertainty logic) by imposing an
aggregation operator to generate revision operators guiding belief change in an
automated way.

We hope this work can throw some light into the area of iterated belief revision
by providing classes of examples from which axioms for iterated change (other
than those from Darwiche and Pearl’s [4]) can be extracted. Several improve-
ments of our proposal can also be devised for future work, including updates
and topic-sensitive trust. The study of protocols for sending messages to other
agents would make the system fully autonomous in its implementation. Allowing
for nested communications or splitting Trust into Sincerity and Credibility could
improve agents’ epistemic capabilities as well as their performance.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: Par-
tial Meet Contraction and Revision Functions. The Journal of Symbolic Logic 50,
510–530 (1985)

2. Booth, R., Richter, E.: On Revising Fuzzy Belief Bases. Studia Logica 80, 29–61
(2005)

3. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators. Physica-Verlag;
Springer-Verlag (2002)

4. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelli-
gence 89(1,2), 1–29 (1997)

5. Delgrande, J., Dubois, D., Lang, J.: Iterated revision as prioritized merging. In:
Proceedings of KR-2006, pp. 210–220 (2006)

6. Dellunde, P., Godo, L.: Introducing grades in deontic logics. In: van der Meyden,
R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 248–262.
Springer, Heidelberg (2008)

Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics 179

7. Demolombe, R., Liau, C.J.: A Logic of Graded Trust and Belief Fusion. In: Proc.
4th Workshop on Deception, Fraud and Trust in Agent Societies, Montréal (2001)

8. Dragoni, A.F., Giorgini, P.: Revising beliefs received from multiple sources. In:
Williams, M.A., Rott, H. (eds.) Frontiers in belief revision, vol. 22. Kluwer,
Dordrecht (2001)

9. Dubois, D., Prade, H.: Possibility theory, probability theory and muliple-valued
logics: A clarification. Annals of Math. and Art. Intel. 32, 35–66 (2001)

10. Esteva, F., Gispert, J.: Adding truth-constants to logics of continuous t-norms:
axiomatization and completeness results. Fuzzy Sets and Systems 185, 597–618
(2007)

11. Flaminio, T., Pinna, G.M., Tiezzi, E.B.P.: A complete fuzzy logical system to deal
with trust management systems. Fuzzy Sets and Systems 159, 1191–1207 (2008)

12. Font, J.M., Jansana, R.: A General Algebraic Semantics for Sentential Logics.
Lecture Notes in Logic, vol. 7. Springer, Heidelberg (1996)

13. Godo L.l., Hájek P. and Esteva F.: A Fuzzy Modal Logic for Belief Functions.
Fundamenta Informaticae, 1001–1020 (2001)

14. Hájek, P.: Metamatematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer,
Dordrecht (1998)

15. Halpern, J., Fagin, R.: Reasoning about Knowledge and Probability. Journal of the
ACM 41(2), 340–367 (1994)

16. Hansson, S.o.: Ten philosophical problems in belief revision. Journal of Logic and
Computation 13(1), 37–49 (2003)

17. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelli-
gence 157, 49–79 (2004)

18. Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems - A
modal logic formulation. Artificial Intelligence 149, 31–60 (2003)

19. Maynard-Reid II, P., Shoham, Y.: Belief Fusion: Aggregating Pedigreed Belief
States. Journal of Logic, Language and Information 10, 183–209 (2001)

20. Ognjanovic, Z., Raškovic, M.: Some first-order probability logics. Theoretical Com-
puter Science 247, 191–212 (2000)

21. Pardo, P.: Base Belief Revision for Finitary Monotonic logics. In: Proceedings of
the ESSLLI 2009 Student Session (2009)

22. Peppas, P.: Belief Revision. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)
Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)

23. Sierra, C., Sabater-Mir, J.: Review on Computational Trust and Reputation Sys-
tems. Artificial Intelligence Review 24, 33–60 (2005)

24. Torra, V., Narukawa, Y.: Information Fusion and Aggregation Operators. Cognitive
Technologies Series. Springer, Heidelberg (2007)

Fast and Accurate Prediction of the Destination of
Moving Objects

Austin Parker1, V.S. Subrahmanian1, and John Grant1,2

1 University of Maryland, College Park, MD 20742, USA
2 Towson University, Towson, MD 21252, USA

Abstract. Companies and organizations that track moving objects are interested
in predicting the intended destination of these moving objects. We develop a for-
mal model for destination prediction problems where the agent (Predictor) pre-
dicting a destination may not know anything about the route planning mechanism
used by another agent (Target) nor does the agent have historical information
about the target’s past movements nor do the observations about the agent have
to be complete (there may be gaps when the target was not seen). We develop
axioms that any destination probability function should satisfy and then provide
a broad family of such functions guaranteed to satisfy the axioms. We experimen-
tally compare our work with an existing method for destination prediction using
Hidden Semi-Markov Models (HSMMs). We found our algorithms to be faster
than the existing method. Considering prediction accuracy we found that, when
the Predictor knows the route planning algorithm the target is using, the HSMM
method is better, but without this assumption our algorithm is better.

1 Introduction

Numerous applications require the prediction of the destinations of various moving
objects. Maritime security organizations are interested in tracking maritime traffic, de-
termining where they are going, and rapidly making an assessment of the threat posed
by those vessels. Recent events involving Somali pirates in the Gulf of Aden, and the
arrival by sea of terrorists in Mumbai further highlight the need to rapidly predict where
vessels are headed and then make decisions based on those determinations. In a similar
vein, the ability to predict destinations of cell phones is critical to determining and bal-
ancing loads across multiple cell towers. Each of these situations requires a solution to
the simpler problem of determining an agent’s intended destination based on informa-
tion about their current path. Throughout this paper, we will refer to the entity whose
destination we seek to predict as the target and the entity performing the prediction as
the predictor. We will further assume the target is unaware of the predictor’s operation
and is not willfully trying to deceive the predictor (such an adversarial treatment of the
problem is left as future work).

All of the above examples have three important characteristics. First, little if any
information might be available to the predictor on the actual planning mechanisms used
by a target. Does a specific target just make up a route manually? Does the target use
a route planning service (such as Google Maps or Via Michelin for land vehicles) for
planning purposes? The important point is that the route planning mechanism used

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 180–192, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fast and Accurate Prediction of the Destination of Moving Objects 181

by the target is usually unknown to the predictor. Second, the observations of the target
may be spotty or incomplete: the target may be spotted only at irregular intervals. Third,
there may be little if any historical data about the target’s past movements from which
one can build a model of the target’s preferred movement.

In this paper, we develop a formal, axiomatic theory to address the destination pre-
diction problem under these assumptions. We start with a simple motivating example
and some basic definitions in Section 2, Then, in Section 3, we formally define a desti-
nation probability function as any function that satisfies certain axioms. We explain why
these axioms make sense. In order to define specific destination probability functions,
we often need to examine the distance between an observed route that the target has
taken, and some other route. In Section 4, we also define axioms that any function to
measure distance between routes should satisfy in order to be applicable to destination
prediction, and then we go on to provide definitions of four route distance functions that
satisfy these very simple axioms. In Section 5, we use the route distance functions to de-
fine a class of destination prediction functions that satisfy all the destination prediction
axioms from Section 3. Finally, in Section 6, we report on a prototype implementa-
tion and a suite of experiments comparing these methods — not only with each other,
but also with the only other algorithm we are aware of in the literature for destination
prediction under our assumptions. We show that several of our algorithms significantly
outperform these algorithms when the predictor does not know the route planning algo-
rithm used by the target — however, when the predictor knows the route planner used
by the target, [1]’s algorithm outperforms ours. As a consequence, a combination of the
two methods could provide a powerful predictive mechanism depending on whether or
not the route planner used by the target is known.

2 Preliminary Definitions

Throughout this paper, we assume that all objects are present in an N × N space S
where N is the set of all non-negative integers. We assume that S is discrete – thus
S includes the point (3, 5) but not (2.5, 2.7). We assume the existence of a distance
function d : S × S → R specifying the physical distance which must be traveled to get
from one point to another. We say that two points are adjacent if the Manhattan distance
between them is one1. We also assume that there is a set D ⊆ S of possible destinations.
Each point in D may represent a location deemed to be worth visiting from the point of
view of the target. For example, if the target appears to be engaged in tourism, D could
include hotels, restaurants, tourist sights, airports, bus stations, train stations, ports, etc.
We assume that the target has a destination in D unknown to the predictor; however, the
predictor knows D.

Definition 1 (Route). A route ℘ is a sequence 〈p1, p2, ..., pn〉 where all pi ∈ S. We use
R to denote the set of all routes. Route ℘ is said to be full iff pi and pi+1 are adjacent
for all i, 1 ≤ i < n.

Basically a route is a list of points in space through which the target travels. Note that
℘ = 〈(1, 1), (3, 1), (4, 3)〉 is a route, even though consecutive points are not adjacent.

1 Manhattan distance between (x1, y1) and (x2, y2) is the L1 norm, or |x1 − x2| + |y1 − y2|.

182 A. Parker, V.S. Subrahmanian, and J. Grant

Fig. 1. Pictured here are two exam-
ple routes: ℘1 in the solid line is
〈(0, 2), (4, 4), (9.2), (11, 4)〉, and ℘2

in the dotted line is 〈(0, 0), (6, 5),
(7, 4), (10, 5)〉

Fig. 2. Illustration for counter-example
to using the Monotonicity properties as
axioms

This may simply reflect known information about the target’s route, since not all points
the target has visited may be recorded in a route. We specify complete ignorance as
to the target’s location with the empty route: 〈〉 – this route is used when there is no
information about the target’s past or present location.

We now define the concept of a subroute.

Definition 2 (Subroute). A route ℘ = 〈p1, p2, . . . , pn〉 is a subroute of a route ℘′ =
〈p′1, p′2, . . . , p′m〉 iff there is a function α : {1, . . . , n} → {1, . . . ,m} such that for all i,
p′i = pα(i) and α(i) < α(i+ 1).

For example, the route 〈(1, 1), (3, 1), (4, 3)〉 is a subroute of the (full) route
〈(1, 1), (2, 1), (3, 1), (3, 2), (3, 3), (4, 3)〉.
Definition 3 (Prefix Route). A route ℘ = 〈p1, p2, . . . , pn〉 is a prefix of a route
℘′ = 〈p′1, p′2, . . . , p′m〉 iff for i = 1 to n, pi = p′i.

Thus far, a route has merely been defined as a sequence of points. But clearly not just
any route is feasible for a given target. For instance, if the target is a boat, it is infeasible
for it to traverse the middle of the Sahara desert. We assume the existence of a feasibility
predicate feas that takes a route as input and either returns true or false. feas(℘) returns
“true” iff the route is considered feasible. The feasibility predicate is required to satisfy
the axiom: If℘ is a subroute of℘′ and feas(℘′) = true, then feas(℘) =true. Throughout
this paper, we assume that the definition of feas is arbitrary, but fixed. We now define
route planners as programs that return routes that the given target might use.

Definition 4 (Route Planner). A route planner is a function P : S × S → 2R which
takes an origin and a destination from space and returns a set of feasible full routes
from the origin to the destination. If there is no feasible route from the origin to the
destination, ∅ is returned. P must satisfy the following condition: if P(p1, p2) 	= ∅ and
P(p2, p3) 	= ∅ then P(p1, p3) 	= ∅.

Some route planners return only a subset of the feasible routes. Examples of such route
planners are Google Maps, Mapquest, Via Michelin, and other automated route planners

Fast and Accurate Prediction of the Destination of Moving Objects 183

that return a single route (which can be interpreted as a singleton route set). One can
imagine more and more inclusive route planners, which return larger and larger sets of
feasible full routes. We assume all route planners always return a finite set of full routes.

Intuitively, P((x1, y1), (x2, y2)) returns feasible routes from (x1, y1) to (x2, y2).
The transitivity requirement in the definition makes sense because if the target has a
way of getting from p1 to p2 (making P(p1, p2) non-empty) and a way of getting from
p2 to p3 (making P(p2, p3) non-empty), then it should have a way of getting from p1 to
p3 (making P(p1, p3) non-empty). Route planners can be implemented in many ways
— the above definition is rich enough to allow us to think of Google Maps, Mapquest,
Via Michelin and other online route planning sites as route planners. More traditional
route planners such A* search and variants [2] also fit our definition. Likewise, flight
planning programs would be route planners as well (if we were to extend our treatment
to 3-dimensional spaces). Even a person constructing routes by hand can be considered
a route planner!

In this paper, we consider the Destination Probability Function problem.

DPF Problem: Given a route ℘ that a target has been seen taking, and given a potential
destination �, what is the probability that the target is going to destination �?

3 Destination Prediction Axioms

As we have already seen, there are many different route planners. There are also many
different ways in which one could try to define a destination probability function.

Definition 5 (Destination Probability Function). μ : R×D → [0, 1] is a destination
probability function.

μ(℘, �) is the probability that location � is the destination of an object given that the
object has traveled the route ℘. When applied to the null route 〈〉, μ gives an a priori
distribution over possible destinations, specifying where an object is headed given no
information on the object’s location or path.

We want to identify “reasonable” properties that any destination probability function
should satisfy.

DP1 (PDF Axiom) For all feasible routes ℘,
∑
�∈D μ(℘, �) = 1.

DP2 (a priori Axiom) For all destinations � ∈ D, μ(〈〉, �) > 0.
DP3 (Reachability Axiom) For all routes ℘ with first location p1 and all � ∈ D,

μ(℘, �) > 0 iff ℘ is a feasible route from p1 to �.

Axiom DP1 ensures that for every route that may be observed, μ is a probability distri-
bution over D. Axiom DP2 ensures the exclusion of trivial destinations from the list of
potential destinations i.e. only destinations that are possible a priori are allowed in the
destination set. Axiom DP3 ensures that any location that can be reached by a feasible
route gets a nonzero probability, while when a location cannot be reached by a feasible
route, the probability must be zero.

It turns out that destination probability functions satisfying these axioms do not al-
ways exist as we now demonstrate. Let D = {�} and suppose there exists no feasible

184 A. Parker, V.S. Subrahmanian, and J. Grant

route from any p ∈ S, p 	= � to � (maybe � is an island and the target cannot travel
on water). Next suppose that there exists a destination probability function μ that satis-
fies the axioms. For any route ℘ not containing �, μ(℘, �) must be zero by DP3. Thus∑

�′∈D μ(℘, �′) = 0 (since D = {�}), and that violates DP1.
In the future we will avoid such an anomaly when there is no way to get to a destina-

tion and assume that for all D we encounter, there exists a DPF that satisfies DP1-DP3.
We now introduce the monotonicity properties that assert that a destination proba-

bility function must not become less sure of the correct destination as it is given more
information about the agent’s movement. These properties involve the intuition that the
probability of a given destination being an agent’s destination should not decrease as
the agent travels a path towards that destination.

Definition 6 (Monotonicity Properties)

Weak Monotonicity. For all points p and all locations � if ℘ = 〈p1, . . . , pn〉 ∈ P
(p1, �), then for all i s.t. 1 ≤ i < n, μ((p1, . . . , pi), �) ≤ μ((p1, . . . , pi+1), �).

Strong Monotonicity. For all points p and all locations � if ℘ = 〈p1, . . . , pn〉 ∈
P(p, �), then for all subroutes ℘′ and ℘′′ of ℘, where ℘′ is also a subroute of ℘′′,
μ(℘′, �) ≤ μ(℘′′, �).

The monotonicity properties are segregated from the DPF axioms because there are
sensible DPFs that do not satisfy these properties. Consider Figure 2 to see an example
case where we may not want either monotonicity axiom to hold. According to both
axioms, the probability of traveling to destination F given route 〈A,B〉 must be equal
or higher than the route 〈A〉 (since 〈A〉 is a subroute of 〈A,B〉 and both are prefix routes
of 〈A,B,C,D, F 〉). However, it may be that the agent is known to be very likely to
travel route 〈A,G, F 〉 when traveling to F , implying that when given the route 〈A,B〉
the destination F is actually less likely than when given the route 〈A〉.

4 Route Distance Functions

One general method of finding the probability that a given location � is the destination
of a target that has been observed to travel route ℘ = (p1, . . . , pn) is the following. We
use some route planner P to get a set of possible routes from p1 to �. Let us suppose
that P(p1, �) = {℘1, . . . , ℘k}. At this stage, we define the “similarity” between the
observed route ℘ taken by the target and then aggregate the similarities between ℘ and
each of ℘1, . . . , ℘k to identify a net probability that the target is going towards �.

To define similarity, we define the dissimilarity between routes with a “route dis-
tance function” that gives a numeric distance between two routes, and use fractions
composed of these numeric distances as similarity. We define a route distance function
to be something that tells the distance between two routes and satisfies some simple
axioms.

Definition 7 (Route Distance Function). A route distance function is a function ψ :
R×R → R satisfying the following axioms. (B is a constant.)

Fast and Accurate Prediction of the Destination of Moving Objects 185

RD1 For all routes ℘, ψ(℘, ℘) = 0.
RD2 For all routes ℘1 and ℘2, ψ(℘1, ℘2) ≥ 0.
RD3 For all routes ℘1, ℘2, ψ(℘1, ℘2) ≤ B.

Axiom RD1 states that a route’s distance from itself is 0. Axiom RD2 enforces the non-
negativity of the route distance function. Finally, axiom RD3 states that the distance
function is bounded. This boundedness axiom is reasonable because our space S is
finite.

More notable than the axioms we chose to include are the axioms we left out. In par-
ticular, one might expect a distance function to satisfy both symmetry and the triangle
inequality. For the purposes of destination prediction, both properties may be undesir-
able, as we now show.

Fig. 3. Example routes demonstrating
why both symmetry and the triangle
inequality may be undesirable proper-
ties for a route distance function

Fig. 4. A set of example routes where,
for the purposes of destination predic-
tion, one would want to consider R2 to
be closer to R3 than to R1

Symmetry: Suppose we have seen an object travel route r1 in Figure 3, and suppose we
want to compare it to a path r2 from route planner P . In this case r1 should be fairly
“close” to r2: the entirety of the r1 path is near to r2. However, if we have seen the
object travel the route r2, and the route planner gives us r1 as a potential route we want
the distance from r2 to r1 to be quite large. An object traveling r2 is pretty unlikely to
have the last point in r1 as its intended destination.

Triangle Inequality: Again using the routes in Figure 3, consider the triangle inequal-
ity: ψ(r1, r3) ≤ ψ(r1, r2) + ψ(r2, r3). However, the distance from r1 to r2 should be
small (it is reasonable for an object traveling r1 to be intending a route like r2), and
the distance from r2 to r3 should be small (they run parallel to one another towards the
end). But again intuitively, the distance from r1 to r3 should be large: they seem the
most “distant” two routes in the diagram. So we do not include the triangle inequality
as an axiom. It may, however, be used in a discretionary manner depending upon the
characteristics of an application.

In the rest of this section, we will define some alternative methods to compute the
distance between routes.

Naive Route Distance Function: The first route distance function is naive and is in-
cluded as a baseline example. The distance between a point pi in the first route and the

186 A. Parker, V.S. Subrahmanian, and J. Grant

entire second route is defined to be the distance between pi and the closest point to it
in the second route. The distance between the first route and the second route is then
obtained by averaging the distances between each point in the first route and the entire
second route.

Definition 8 (Naı̈ve Route Distance). For ℘ = 〈p1, . . . , pn〉 and ℘′ = 〈p′1, . . . , p′m〉
the naive route distance is:

NRD(℘, ℘′) def=
1
n

n∑

i=1

min
j∈{1,...,m}

(
d(pi, p′j)

)

Weighted Distance Function: One potential improvement on the naı̈ve route distance
function involves weighting the summation according to the fraction of the path the
point is responsible for.

Definition 9 (Weighted Route Distance). For routes ℘ = (p1, . . . , pn) and ℘′ =
(p′1, . . . , p

′
m) the weighted route distance is:

WRD(℘, ℘′) def=
1

2 · d(℘)

n∑

i=1

[(
d(pi−1, pi)
+d(pi, pi+1)

)

min
j∈{1,...,m}

(d(pi, p′j)
]

(for pi = p1 when i < 1, and pi = pn when i > n, and d(℘) =
∑n
i=1 d(pi, pi+1)).

In order to understand this, note that (d(pi−1, pi) + d(pi, pi+1)) is the amount of dis-
tance in route ℘ in which pi is involved. As each pi participates in two terms, dividing
this quantity by 2 · d(℘) gives the contribution of pi (in terms of distance) to the total
distance in route ℘. This serves to weight the distance from that point appropriately.
If p1 is responsible for very little of ℘, then its distance should be taken into account
proportionally less than if it is responsible for a large piece of ℘.

Discounted Route Distance: So far we have only considered route distance functions
that treat the distance between paths regardless of where the distances between the paths
occur. For instance, consider the routes in Figure 4. In this figure we have three routes,
R1, R2, and R3. R2 and R3 have the same destination, however, according to all the
route distance functions considered thus far, R1 is “closer” to R2 than R3. We employ
the notion of a discount factor to alleviate this issue, and define a route distance function
where early similarity between routes is worth less than late similarity.

Definition 10 (Discounted Route Distance). For routes ℘ = (p1, . . . , pn) and
℘′ = (p′1, . . . , p

′
m) and δ ≤ 1 (a discount factor):

DRDδ(℘, ℘′) =
1
n

n∑

i=1

δn−i min
j∈{1,...,m}

d(pi, p′j).

Example 1. In Figure 4 we see three routes: R1 = ((0, 0), (4, 1), (6, 3), (8, 6)), R2 =
((0, 1), (4, 1), (7, 3), (10, 4)), and R3 = ((0, 2), (3, 5), (8, 3), (10, 4)). The discounted
route distance from R1 to R2 is: 1

4

(
δ3 · 1 + δ2 · 0 + δ1 · 1 + δ0 · 2.83

)
, and the dis-

counted route distance fromR3 to R2 is: 1
4

(
δ3 · 1 + δ2 · 4.12 + δ1 · 1 + δ0 · 0)

. When

Fast and Accurate Prediction of the Destination of Moving Objects 187

δ = 0.9 the first value is 1.11, and the second value is 1.24, and when δ = 0.6 the first
value is 0.91 and the second value is 0.57. So with the higher δ, R1 is closer to R2 than
R3 is to R2; however, with lower δ = 0.6, R3 is closer to R2 than R1 is to R2, since
with lower δ, the initial portion of the routes count proportionally less towards the total
distance.

We can also weight the points in the discounted route distance as in the weighted route
distance function.

Definition 11 (Discounted Weighted Route Distance). For routes ℘ = (p1, . . . , pn)
and ℘′ = (p′1, . . . , p′m) and δ ≤ 1 (a discount factor):

DWRDδ(℘, ℘′) def=
1

2d(℘)

n∑

i=1

[

δn−i
(
d(pi−1, pi)
+d(pi, pi+1)

)

min
j∈{1,...,m}

(d(pi, p′j)
]

(for pi = p1 when i < 1, and pi = pn when i > n, and d(℘) =
∑n
i=1 d(pi, pi+1)).

The following result states that all the route distance functions provided thus far satisfy
the axioms for a function to be considered a route distance function.

Proposition 1. Suppose 0 ≤ δ ≤ 1. Then: NRD,WRD,DRDδ and DWRDδ are
all valid route distance functions, i.e. they satisfy axioms RD1, RD2, and RD3.

5 Destination Probability Function

Given a route distance function ψ and a route planner P , we are now in a position to
construct a destination probability function. We define one family of such functions,
parameterized by a specific distance function, in this section. We point out that many
different destination probability functions exist, and we do not mean to suggest that the
construction below is best (though it will be shown to satisfy the destination prediction
axioms).

Given a route ℘, we can find the minimum route distance to routes returned by P for
a given destination. By normalizing that value over all destinations, we now have what
we call a route distance destination probability function.

Definition 12 (Route Distance Destination Probability Function). Suppose ψ is a
route distance function, P is a route planner, and route ℘ = 〈p1, . . . , pn〉. We define a
route distance destination probability function μψ,P : P ×D → [0, 1] as follows:

μψ,P(℘, �) def=

{
0 if P(℘, �) = ∅

max℘′∈P(p1,�)(ψ(℘,℘′)−1)
∑

�′∈D max℘′∈P(p1,�′)(ψ(℘,℘′)−1) otherwise

First, if there is no ℘′ ∈ P(p1, �), then the expression equals zero and the probability of
� being the intended destination likewise becomes zero. This makes sense since in this
case there is no route from p1 to �, so how could � be the destination? Otherwise, since
ψ(℘, ℘′) gives the distance between routes ℘, ℘′, ψ(℘, ℘′)−1 is one way of measuring

188 A. Parker, V.S. Subrahmanian, and J. Grant

similarity (inverse of distance) between these two routes2. Thus, μψ,P computes the
similarity between the target’s observed route and the best route to destination � and
divides this by the sum of the same similarity for every possible destination. The simple
example below illustrates this.

Example 2. Let D = {�, �′} be a set of just two destinations and suppose P returns two
routes r1, r2 between p1 and � where the target’s observed route is ℘ = p1, p2 Sup-
pose the distances between the routes are given as follows: ψ(℘, r1) = 100, ψ(℘, r2) =
600. In this case, r1 is closer to ℘, so the numerator in the definition of μ becomes
(100)−1. This is a measure of the similarity between route ℘ and the best route to des-
tination �. We likewise compute the similarity between route ℘ and the best route to �′.
Suppose there are two routes r3, r4 from p1 to �′ and that ψ(℘, r3) = 300, ψ(℘, r4) =
400. Then the similarity between route ℘ and the best route to �′ is given by (300)−1.
The destination probability function μψ,P computes the probability of the target going
to � as the ratio of the similarity of the target’s observed route to the best route to � to the
sum of the similarities of the target’s observed route to the best route to each possible
destination. We obtain:

μψ,P(℘, �) = (100)−1

(100)−1+(300)−1 = 0.75, while μψ,P(℘, �′) = (300)−1

(100)−1+(300)−1 = 0.25

The following result states that μ always satisfies the axioms to be a destination proba-
bility function.

Proposition 2. For any route distance function ψ and any route planner P that re-
turns at least one route between any two points where a feasible route exists, the route
similarity destination probability function μψ,P satisfies Axioms DP1-DP3.

The reader can imagine a weighted version of the above destination probability func-
tion which weights the minimum distance to each location by an a prior probability
of the location being the intended destination. Examination of such functions and the
increased predictive capacity are reserved for future work.

6 Experiments

We built a prototype of this system on top of the HOG system [2] that provides 54
different maps as well as several pathfinding algorithms. In our experiments, we select a
number of destinations on a map, and create a target that travels to the destination using
A* search and then try to measure the predictive accuracy of our different algorithms.

After every move by the agent, we computed the expected distance from the pre-
dicted destination to the actual destination as follows. Let �d be the agent’s actual des-
tination and μ be the probability distribution returned by the destination predictor. The
expected distance from prediction is then defined as: dis(μ, �d) =

∑
�∈D d(�, �d) ·μ(�).

The smaller this measure, the better the algorithm’s predictive power.
The running times reported are the average per-step running time. The algorithms in

[1] require some pre-computation time that is not required by the algorithms presented

2 To make this method work in practice, we enforce some small lower bound ε on the distance
between two routes, so as to avoid division-by-zero errors when, for instance, ℘ equals ℘′.

Fast and Accurate Prediction of the Destination of Moving Objects 189

Table 1. The expected distance of predic-
tion and running time of various destination
prediction techniques when all techniques
are given access to the same planner as the
agent uses

Algorithm exp. dis. of running
prediction time (ms)

HSMM 4.629726 34
WRD 5.928825 8

DWRD (0.9) 6.041613 8
DWRD (0.6) 6.283690 8

NRD 7.830972 8
DRD (0.9) 9.041494 8
DRD (0.6) 11.788955 8

Table 2. The expected distance of predic-
tion and running time of various destination
prediction techniques when all techniques
are given access to a different planner than
the agent uses

Algorithm exp. dis. of running
prediction time (ms)

DWRD (0.6) 10.301018 6
DWRD (0.9) 10.641678 6

WRD 11.097869 6
NRD 12.467360 6

DRD (0.9) 12.613394 6
HSMM 13.075787 34

DRD (0.6) 14.068911 6

in this paper. We therefore include pre-computation time in the running time of the
first prediction, but include only the time needed to query the HSMM for subsequent
predictions so that the average times reported reflect the total computational cost of both
methods.

Experiment 1 (Predictor and Target Use Same Route Planner). We first assumed that
the predictor uses the same A* search algorithm as the target. These results are shown
in Table 1, and are an average of over 1000 runs. They show the HSMM algorithm of
[1] doing best, though taking longer to compute. The longer computation time of the
HSMM approach is due to the cost of generating the HSMM, which is done as rarely
as is possible in our experiments. If this generation cost is left out, the HSMM has a
runtime competitive with the route distance approaches.

Experiment 2. (Target and Predictor use Different Route Planners). In a second ex-
periment, we let P(p, �) be the result of PRA* search (from [2]), while the agent still
uses standard A* search. We take this as an example of how the prediction algorithms
can perform when we do not have access to exactly the same pathfinding algorithm used
by the moving agent. We see from Table 2 that in this case, discounted weighted route
distance provides the best prediction with a discount factor of 0.6.

One may note that the running times in experiment 2 are consistently smaller than
those for experiment 1. This is because the destination predictors in experiment 2 use
PRA*, which is a faster route planner than A*.

To investigate the difference between when the predictor knows the target’s route
planner and when it does not, we narrowed our focus to two individual maps. The first
is the GRID map, shown in Figure 5. This map contains a grid of obstacles, and allows
many potentially quite different routes from one point to another. The second is the
CSC2F map, which resembles the inside of an office buildling. In the CSC2F map,
there is more similarity between paths from point to point than in GRID, as the target
must travel through doors and down specific corridors.

190 A. Parker, V.S. Subrahmanian, and J. Grant

Fig. 5. The GRID map Fig. 6. The CSC2F map

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

E
xp

. D
is

. o
f P

re
di

ct
io

n

Route Length

Map GRID

NRD
DRD (0.6)
DRD (0.9)

WRD
DWRD (0.6)
DWRD (0.9)

HSMM

Fig. 7. Prediction accuracy by route length
on GRID map when the Predictor knows
Target’s route planner

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

E
xp

. D
is

. o
f P

re
di

ct
io

n

Route Length

Map GRID

NRD
DRD (0.6)
DRD (0.9)

WRD
DWRD (0.6)
DWRD (0.9)

HSMM

Fig. 8. Prediction accuracy by route length
on GRID map when the Predictor does not
know Target’s route planner

In Figure 7 we see the expected distance of prediction as a function of the length of
the input route for the GRID map when the Predictor is using the Target’s route planner.
Comparing this graph to Figure 8, where the Predictor uses a different route planner,
we see a case where the HSMM predictor does substantially worse than the predictors
investigated in this paper. This appears to be due to the large number of routes possible
in the grid world between one point and another.

In CSC2F the variety of routes is limited by the existence of doorways and hallways,
and in Figures 9 and 10 we see that for this map, HSMM remains competitive with the
techniques provided in this paper even when it is not given the same route planner. This
supports the hypothesis that HSMM is robust whenever the routes between points tend
to be very similar.

7 Related Work and Conclusions

In this paper, we have developed a framework for predicting where a target might be
going. We do this under (i) no knowledge by the predictor of the route planning program
used by the target, (ii) routes that are potentially incomplete in the sense that observa-
tions of the target may be intermittent, and (iii) no information about past movements

Fast and Accurate Prediction of the Destination of Moving Objects 191

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

E
xp

. D
is

. o
f P

re
di

ct
io

n

Route Length

Map CSC2F

NRD
DRD (0.6)
DRD (0.9)

WRD
DWRD (0.6)
DWRD (0.9)

HSMM

Fig. 9. Prediction accuracy by route length
on CSC2F map when the Predictor knows
the Target’s route planner

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

E
xp

. D
is

. o
f P

re
di

ct
io

n

Route Length

Map CSC2F

NRD
DRD (0.6)
DRD (0.9)

WRD
DWRD (0.6)
DWRD (0.9)

HSMM

Fig. 10. Prediction accuracy by route length
on CSC2F map when the Predictor does not
know the Target’s route planner

of the target. This latter part would make our methods suitable to predicting destina-
tions on a one-time basis for a new target. We have provided a set of axioms defining a
destination prediction function. In order to define specific destination prediction func-
tions, we first came up with axioms to define distances between routes (measuring how
dissimilar two routes are), and then proposed four such route distance functions. We
showed how any route distance function (including the four we proposed) can be used
to define a destination probability function satisfying the axioms. Finally, we imple-
mented our algorithms and combined them with the only other system we know that
does not require historical data about the moving object: [1]. Present results showing
that when the route planner used by the target is known in advance by the predictor,
[1] is slower, but more accurate than our algorithms; otherwise, our algorithms are both
faster and more accurate.

[1] proposed an HSMM based algorithm for assigning probabilities to destinations.
In the same paper, Southey et al. further address important issues relating to destination
prediction such as multiple target identification and the use of graph abstraction tech-
niques in prediction. Our work expands upon theirs by providing an axiomatic founda-
tion for destination prediction and by introducing general algorithms that do not require
pre-computation and are more robust in environments with dissimilar routes.

There are several works using past GPS data for specific users in a probabilistic
model to predict future locations or destinations for the given user [3,4,5,6]. Unlike our
work, these techniques assume the existence of past GPS data for the specific individual
to learn their respective models, and are therefore solving a different problem.

In [3], a hierarchical Markov model is developed to model a user’s daily movements
where different levels of the hierarchy describe different modes of transportation or
user destinations. The parameters for the model can be learned from a given user’s GPS
logs. In [4], a system called comMotion is created for recognizing locations of import
to a given user. Their system recognizes important locations and allows users to tag
these locations and attach data (such as reminders, to-do lists and the like) for retrieval
upon arrival at a given location. The technique in [5] involves clustering GPS data
into “places” via a variant of k-means clustering, then creating a Markov model where
the nodes are “places” and the transitions are defined by data-derived probabilities for

192 A. Parker, V.S. Subrahmanian, and J. Grant

moving between the associated locations. They show their algorithm to consistently
predict agent location in a real-world pilot study.

Other work centers on predicting where a mobile user might be in a wireless network,
based on the base stations the user has contacted recently. Cheng et al. [7] survey some
of the work in this area.

Acknowledgements

Researchers funded in part by ARO grant W911NF0910206, ONR grant
N000140910685, and AFOSR grant FA95500510298. We thank the referees for their
helpful comments.

References

1. Southey, F., Loh, W., Wilkinson, D.F.: Inferring complex agent motions from partial trajectory
observations. In: Veloso, M.M. (ed.) IJCAI, pp. 2631–2637 (2007)

2. Bulitko, V., Sturtevant, N., Lu, J., Yau, T.: Graph abstraction in real-time heuristic search.
Journal of Artificial Intelligence Research (JAIR) 30, 51–100 (2007)

3. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines.
Artificial Intelligence 171(5-6), 311–331 (2007)

4. Marmasse, N., Schmandt, C.: A User-Centered location model. Personal and Ubiquitous Com-
puting 6(5), 318–321 (2002)

5. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement
across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)

6. Krumm, J., Horvitz, E.: Predestination: Inferring destinations from partial trajectories. In:
Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 243–260. Springer,
Heidelberg (2006)

7. Cheng, C., Jain, R., van den Berg, E.: Location prediction algorithms for mobile wire-
less systems. In: Wireless internet handbook: technologies, standards, and application,
pp. 245–263. CRC Press, Inc., Boca Raton (2003)

Weighted Description Logics Preference Formulas for
Multiattribute Negotiation

Azzurra Ragone1, Tommaso Di Noia1, Francesco M. Donini2, Eugenio Di Sciascio1,
and Michael P. Wellman3

1 SisInfLab, Politecnico di Bari, Bari, Italy
{a.ragone,t.dinoia,disciascio}@poliba.it

2 Università della Tuscia , Viterbo, Italy
donini@unitus.it

3 Artificial Intelligence Laboratory–University of Michigan, Ann Arbor, USA
wellman@umich.edu

Abstract. We propose a framework to compute the utility of an agreement w.r.t.
a preference set in a negotiation process. In particular, we refer to preferences
expressed as weighted formulas in a decidable fragment of First-order Logic and
agreements expressed as a formula. We ground our framework in Description
Logics (DL) endowed with disjunction, to be compliant with Semantic Web tech-
nologies. A logic based approach to preference representation allows, when a
background knowledge base is exploited, to relax the often unrealistic assump-
tion of additive independence among attributes. We provide suitable definitions
of the problem and present algorithms to compute utility in our setting. We also
validate our approach through an experimental evaluation.

1 Introduction

The problem of user preference specification have always been a particularly challeng-
ing research problem in knowledge representation. Expressing preferences in an ef-
fective and expressive way is especially important in negotiation contests. Indeed, in
negotiation processes preference representation is of capital importance in order to al-
low users to express preferences on issues characterizing the bargaining object. One
common approach to represent preferences on multiattribute negotiation rely on multi-
attribute utility theory [1], where utility functions assign a real value to different combi-
nations of attributes. However, the number of possible combinations exponentially grow
in the size of the attribute domain, therefore even with a small number of attributes, the
number of possible combinations could be really high. For this reason, usually, inde-
pendence relations among the attributes are exploited, and often attributes are assumed
to be additively independent, so that the multiattribute utility function is a weighted sum
of single-attribute utility functions. However, in real-world domains such an assumption
is often not entirely true, as there are preferential dependencies among attributes that
cannot be simple ruled out. For example, referring to a negotiation on the characteristics
of a laptop, a user should be able to express a preference not only on a single attribute,
e.g., a particular operating systems, but on a combination of attributes: a particular oper-
ating system with a minimum amount of memory. This mean that a particular operating

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 193–205, 2009.
©c Springer-Verlag Berlin Heidelberg 2009

194 A. Ragone et al.

system does not have a value per se, so we cannot simple use an additive value function.
Some recent approaches support relaxation of the fully additive assumption, for exam-
ple by providing generalized versions [2] or exploiting graphical models of dependence
structure [3,4,5], while remaining within the multiattribute framework.

On the other hand, logical languages seem to be the ideal candidates to express in-
terdependencies among preferences. Moreover they can also model in an ontology the
knowledge about the domain, in order to express interdependencies among attributes,
(e.g., a Centrino is an Intel processor with a 32-bit CPU), as well as the fact that some
combination of features may be infeasible due to constraints in the ontology itself (e.g.,
a Centrino processor is not compatible with a processor with a 64-bit architecture). In
a negotiation it is important to compute the utility value of different outcomes (agree-
ments) w.r.t. the set of preferences expressed by the agent, in order to rank them.

The main contribution of this paper is an approach that, given a set of preferences,
represented as weighted Description Logics formulas w.r.t. a shared ontology, computes
the utility of a formula (agreement) based on its possible models (interpretations). To
our knowledge, the only prior method proposed in the literature for this problem is
subsumption, which has some limitations, as shown in [6].

The problem is particularly challenging as if preferences are expressed using Propo-
sitional Logic, then the utility can be computed considering a particular propositional
model (representing the agreement), taking into account formulas satisfied by that
model. While for Propositional Logic it is possible to refer directly to models (inter-
pretations) in order to compute utility, this computation for First-order Logic (FOL) is
less straightforward, as the number of possible models is infinite.

The results presented in the paper remain valid for whatever decidable logic with a
model-theoretic semantics, but we ground our approach on DLs because of their impor-
tance in the development of the Semantic Web.

The remainder of the paper proceeds as follows. Firstly we brief introduce the nota-
tion used in the paper and the problem of preference representation in the field of logic
languages. Then we present the framework to compute the utility of a DL preference
set w.r.t. a formula, illustrating a novel algorithm to compute a preference closure in our
set. Finally we perform some experiments in order to evaluate the approach. Conclusion
closes the paper.

2 Notation

Hereafter, we assume the reader be familiar with DLs syntax and semantics. We use
symbols A, B, C, D, . . . ,�,⊥ to denote concepts. Given a generic concept C, we use
the notation I |= C to say that CI �= ∅. Interpretation functions can also apply to
concept expressions and axioms: (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI ,
(¬C)I = ΔI\CI , (C
 D)I = CI ⊆ DI .

Here we use T (for Terminology) to indicate a DL ontology, i.e., a set of axioms of
the form C
 D (inclusion) and C ≡ D (definition) with C and D being concepts. We
say C is subsumed by D w.r.t. T when T |= C
 D, or equivalently C
T D; C is
not satisfiable w.r.t. the ontology T when it is subsumed by the most specific concept
T |= C
 ⊥, or equivalently C
T ⊥; C is not subsumed by D w.r.t. T when

Weighted DL Preference Formulas for Multiattribute Negotiation 195

T �|= C
 D, or equivalently C �
T D. We write I |= T to denote that for each axiom
C
 D in T it results CI ⊆ DI and for each axiom C ≡ D in T it results CI = DI .
Similarly I |= C
T D, with C
 D �∈ T , denotes that both I |= T and I |= C
 D.

3 Preference Representation Using Description Logics

The problem of preference representation deals with the expression and evaluation of
preferences over a set of different alternatives (outcomes). This problem can be chal-
lenging even for a small set of alternatives, involving a moderate number of features, as
the user has to evaluate all possible configurations of feature values in the domain.

In this work, we deal with this problem by a combination of expressive language
to facilitate preference specification, and preference structure exploitation, justified by
multiattribute utility theory.

Several approaches to negotiation have exploited logic languages in order to express
preferences, most of them using propositional logic [7,8,9], however only few of the
approaches proposed in the literature have explored the possibility to use also an On-
tology to model relations among attributes [10] or the use of more expressive logics as
DLs [11].

We point out the importance to refer to a background knowledge, i.e., having an
Ontology T , in order to model not only interdependencies among attributes in pref-
erence statements, but also to model inner relations among attributes that cannot be
disregarded. We extend the well-known approach of weighted propositional formulas
[7,8,9], representing preferences as DL formulas, where at each formula we associate a
value v representing the relative importance of that formula.

Definition 1. Let T be an ontology in a DL. A Preference is a pair φ = 〈P, v〉 where
P is a concept such that P �
T ⊥ and v is a positive real number assigning a worth to
P . We call a finite set P of preferences a Preference Set iff for each pair of preferences
φ′ = 〈P ′, v′〉 and φ′′ = 〈P ′′, v′′〉 such that P ′ ≡T P ′′ then v′ = v′′ holds.

Example 1 (Desktop Computer Negotiation). Imagine a negotiation setting where buyer
and seller are negotiating on the characteristics of a desktop computer. The buyer will
have some preferences, while the seller will have some different configurations to of-
fer to the buyer in order to satisfy her preferences. Let us hence suppose the buyer is
looking for a desktop PC endowed with an AMD CPU. Otherwise, if the desktop PC
has an Intel CPU, it should only be a Centrino one. The buyer also wants a desktop
PC supporting wireless connection. Following Definition 1 the buyer’s Preference set
is P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉}, with:

P1 = ∀hasCPU.Centrino � ∃hasCPU
P2 = ∃hasCPU.AMD
P3 = ∃netSupport.WiFi

On the other side, the seller could offer a Desktop computer supporting either a wire-
less connection or an AMD CPU, specifically a Sempron one, and he does not have a
desktop PC endowed with a Centrino CPU.

196 A. Ragone et al.

A = DesktopComputer � ¬∃hasCPU.Centrino � (∃netSupport.WiFi �
∀hasCPU.Sempron)

Therefore, given a preference set P and a proposal A, how to evaluate the utility of
this proposal w.r.t. buyer’s preferences? Intuitively, the utility value should be the sum
of the value vi of the preferences satisfied by the seller’s proposal. Next sections will
adress this problem, showing a computation method for weighted DL-formulas.

�

Definition 2 (Minimal Models – Minimal Utility Value). Given an ontology T , a
concept A, such that T �|= A
 ⊥, and a Prefernce Set P , a Minimal Model w.r.t. A,
P and T is an interpretation I such that:

1. both I |= A and I |= T
2. the value uc(A) =

∑
{v | 〈P, v〉 ∈ P and I |= P} is minimal

We call uc(A) a Minimal Utility Value for A w.r.t. to P .

4 Computation of Minimal Utility Value

In this section we show how the computation of the minimal utility value for a prefer-
ence set P w.r.t. a concept A can be turned out in solving an optimization problem.

Definition 3 (Preference Clause). Given a preference set P = {〈Pi, vi〉}, i = 1 . . . n,
an ontology T and a concept A such that A �
T ⊥, we say that P is constrained if the
following condition holds:

A
T P̂1 � . . . � P̂n (1)

Where P̂i ∈ {Pi,¬Pi}. We call P̂1 � . . . � P̂n a Preference Clause if there is no strict
subset Q ⊂ P such that Q is constrained.

We may say that a Preference Clause contains the minimal set of preferences such that
Equation (1) holds. Note that Equation (1) can be rewritten as A�¬P̂1�. . .�¬P̂n
T ⊥
(see [12] for more details).

Definition 4 (Preference Closure). Given a Preference set P = {φi}, i = 1 . . . n, an
ontology T and a concept A �
T ⊥, we call Preference Closure, denoted as CL, the
set of Preference Clauses built, if any, for each set in 2P .

In other words, a Preference Closure represents the set of all possible Preference
Clauses over P . It represents all possible (minimal) interrelations occurring between
A and preference descriptions in P w.r.t. an ontology T .

Proposition 1. Given a concept A, a Preference Closure CL and an ontology T , if Im

is a Minimal Model of A then

Im |= CL (2)

Proof. By Definition 2 since Im is a Minimal Model then Im |= T and Im |= A. As
for all models I such that I |= T , including Im, also I |= CL is satisfied, then the
proposition holds. �

Weighted DL Preference Formulas for Multiattribute Negotiation 197

4.1 Preference Clauses and Theory Prime Implicates

It is easy to see that the notion of Preference Closure shares many characteristics with
the one of prime implicates [13] of a formula. Nevertheless the former extends, to some
extent, the definition of prime implicates of a formula. For the sake of completeness
we rewrite here the definition of theory prime implicates [14]. This formulation was
originally proposed for a propositional setting but it remains consistent also if we move
to First Order Logic or to whathever logical language for which we have the notion of:
clause (the language allows the use of Boolean disjunction); logical entailment; logical
equivalence w.r.t. entailment.

Definition 5 (Theory Prime Implicates [14]). Let T be a propositional knowledge
base and both A and CL be two propositional formulas. A theory prime implicate of A
w.r.t. T is a clause CL such that:

– A |=T CL holds;
– for every clause CL′, if both A |=T CL′ and CL′ |=T CL hold, then |=T CL′ ≡

CL holds.

Noteworthy is that in the classical definition of theory of prime implicates there is no
restriction of the symbols to be used in CL. In order to (re)define Definition 3 in terms
similar to Theory Prime Implicates we introduce the notion of concept signature of
a formula in DL. Given a DL formula C we call concept signature of C, denoted as
sign(C), the set of concept names occurring in C. It is straight to extend concept sig-
nature to axioms and set of axioms.

Definition 6 (Preference Clause - Preference Name). Let L be a decidable Descrip-
tion Logic and let T and A be a consistent knowledge base in L and a concept in L
such that A �
T ⊥. Given a set of preferences P = {〈Pi, vi〉} we define a TBox TPN =
{PNi ≡ Pi} where PNi is a concept name such that PNi �∈

⋃
〈Pi,vi〉∈P sign(Pi) ∪

sign(T) ∪ sign(A). We say that PNi is a preference name for Pi and we use PN to
denote the set of all preference names. A preference clause of A w.r.t. T is a clause CL
such that:

– sign(CL) ⊆ PN ;
– A
T ∪TP CL holds;
– for every clause CL′, such that sign(CL′) ⊆ PN , if both A |=T ∪TP CL′ and

CL′ |=T ∪TP CL hold, then |=T CL′ ≡ CL holds.

In other words, a preference clause can be seen as a theory prime implicate where
CL has to be rewritten in terms of Preference Names. In fact, prime implicates for
Propositional Logic are more similar to preference clauses than the ones proposed for
for Description Logics [15].

4.2 From Preference Closure to Minimal Utility Value

In order to compute Minimal Utility Value uc(A) we reduce to an optimization problem
(OP). Usually, in an OP we have a set of constrained numerical variables and a function

198 A. Ragone et al.

to be maximized/minimized. In our case we will represent constraints as a set χ of
linear inequalities over binary variables, i.e., variables whose value is in {0, 1}, and
the function to be minimized as a weighted combination of such variables. In order to
represent χ we need some pre-processing steps.

1. Compute the Preference Closure CL for P ;
2. For each Preference Clause A�P̂1� . . . P̂n
T ⊥ ∈ CL, compute a corresponding

preference constraint set CL = {¬P̂1, . . . ,¬P̂n}. We denote with CLc
= {CL} the

set of all preference constraint sets.

Example 2 (Desktop Computer Negotiation cont’d). Consider again the Desktop Com-
puter negotiation of Example 1. Given the set of preference P = {〈P1, v1〉, 〈P2, v2〉,
〈P3, v3〉} and the proposal A, if we compute the Preference Closure CL we find:

CL =
{

A � P1
T ⊥;
A � ¬P2 � ¬P3
T ⊥

}

hence, the two corresponding preference constraint sets in CLc
are: CL1= {¬P1}, CL2=

{P2, P3}
�

Based on well-known encoding of clauses into linear inequalities (e.g., [16, p.314]) we
transform each set CL ∈ CLc

in a set of linear inequalities χ and then define a function
to be minimized in order to solve an OP.

Definition 7 (Minimal Utility Value OP). Let P be a set of preferences and CLc
be the

set of all preference constraint sets. We define a Minimal Utility Value OP, represented
as 〈χ, u(p)〉, the optimization problem built as follows:

1. numerical variables – for each preference 〈Pi, vi〉 ∈ P , with i = 1, . . . , n in-
troduce a binary variable pi ∈ {0, 1} and define the corresponding array p =
(p1, . . . , pn) (see Example 3);

2. set χ of linear inequalities – pick up each set CL ∈ CLc
and build the linear

inequalities
∑

{(1 − p) | ¬P ∈ CL} +
∑

{p | P ∈ CL} ≥ 1

3. function to be minimized – given the array p of binary variables

u(p) =
∑

{v · p | p is the variable mapping 〈P, v〉}

Observation 1 If we considered also ¬A when computing the sets CL ∈ CLc
we would

have had inequalities in the form:

(1 − a) +
∑

{(1 − p) | ¬P ∈ CL} +
∑

{p | P ∈ CL} ≥ 1

Since we are interested in models where AI is interpreted as nonempty, then variable a
has to be equal to 1. Hence the first element of the above summation is always equal to
0. In other words, we can omit ¬A when computing a preference constraint set CL.

Weighted DL Preference Formulas for Multiattribute Negotiation 199

The solution to a Minimal Utility Value OP will be an assignment ps for p, i.e., an array
of {0, 1}-values, minimizing u(p).

Example 3 (Desktop Computer Negotiation cont’d). Back to the Desktop Computer
negotiation of Example 1, after the computation of Preference Closures and set CLc

,
we build the corresponding optimization problem in order to find the model with the
minimal utility value:

p = (p1, p2, p3)

χ =
{

1 − p1 ≥ 1
p2 + p3 ≥ 1

u(p) = v1 · p1 + v2 · p2 + v3 · p3

Possible solutions are:

p′
s = (0, 1, 0) , u(p′

s) = v2

p′′
s = (0, 0, 1) , u(p′′

s) = v3

p′′′
s = (0, 1, 1) , u(p′′′

s) = v2 + v3

The minimal solution will be either p′
s or p′′

s , depending of the value of v2 and v3.
�

Given a a solution ps to a Minimal Utility Value OP 〈χ, u(p)〉, we call Minimal Pref-
erence Set Pm

and Minimal Assignment Am, respectively, the set and the formula built
as in the following1:

Pm
= {〈Pi, vi〉 | pi = 1 in the solution ps}

Am =
�

{Pi | pi = 1 in the solution ps} �
�

{¬Pi | pi = 0 in the solution ps}

Theorem 1. Given a solution ps to a Minimal Utility Value OP 〈χ, u(P)〉 and a Min-
imal Assignment Am:

1. if Im is a Minimal Model then Im |= Am;
2. u(ps) is a Minimal Utility Value.

Proof. First we show that there exists at least one model Im |= T such that both
Im |= A and Im |= Am. If Im did not exist, then AIm ∩ (Am)I

m

= ∅. We can easily
rewrite the latter relation as A � Am
T ⊥ which is equivalent to A
T ¬Am. But
this is not possible. Indeed, if A and Am were inconsistent with each other w.r.t. T then,
by Proposition 1 we should have the corresponding Preference Clause in CL and the
related inequality in χ:

∑
{(1 − p) | P appears in Am} +

∑
{p | ¬P appears in Am} ≥ 1

In order to be satisfied, the latter inequality must have either (a) at least one variable
assigned to 0 in the first summation or (b) at least one variable assigned to 1 in the
second one. Case (a) means that the corresponding preference is not satisfied by Am

1 with
�
{·} we denote the conjunction of all the concepts in the set {·}.

200 A. Ragone et al.

while case (b) means that the corresponding preference is satisfied by Am. Both cases
are conflicting with the definition of Am.
By construction of χ, we have that if Im |= Am then Im |= A (see Observation 1).
Since Am comes from the minimization of u(ps) then Im |= Am represents a model of
Am (and then of A) such that

∑
{v | 〈P, v〉 ∈ P and Im |= P}

is minimal.
It is straightforward to show that u(ps) is a Minimal Utility Value. �

4.3 An Algorithm to Compute a Preference Closure

Although the above shown similarities, it is quite hard to adapt the algorithm already
proposed in the literature for the theory of prime implicates to compute a Preference
Clousure. Indeed, algorithms for Propositional Logic rely on the propositional struc-
ture of formulas and axioms in the theory T . In [17], Ngair needs the knowledge base
to be a conjunction of DNF formulas while Dechter and Rish [18] uses a knowledge
base in CNF. Marquis and Sadaoui [14] rewrite propositional formulas using a Shannon
expansion which, to our knowledge, is not applicable to non-propositional languages.
Moreover known algorithms for Description Logics [15] do not take into accounts the
knowledge base (theory). In this section we propose an algorithm to compute a Pref-
erence Closure for a Description Logic L. The main idea behind the algorithm we are
going to describe bases on the following two simple observations:

1. since Boolean disjunction enjoys the commutativity property, if A
T Pi�Pj then
A
T Pj � Pi. Hence, once we know that A
T Pi � Pj holds we do not check
A
T Pj � Pi also.

2. given a clause CL with sign(CL) ⊆ PN , if A
T CL holds then also A
T
CL � PN ′, with PN ′ ∈ PN , holds (the same may be for ¬PN ′).

To compute all the clauses belonging to the Preference Closure, we build a tree where
each node is labeled with a preference name or a negated preference name and edges
represent a Boolean disjunction between the two preferences (positive or negated) rep-
resented by the two nodes connected by the edge. We denote with L(n) the label of
a node n in the tree and with N the set containing only the leaf nodes of the tree.
In order to build the tree, we impose a total order < between preference names. We
call PNlast the preference name such that for each preference name PNi the relation
PNi < PNlast always holds.

The following functions will be useful to build the Preference Closure starting from
the tree.

abs : N → PN

abs(n) =
{

PN, if L(n) = PN
PN, if L(n) = ¬PN

branch clause : N → L
branch clause(n) =

⊔
{L(m) | m is a node in the branch containing n}

Weighted DL Preference Formulas for Multiattribute Negotiation 201

Given a leaf node n, the tree is expanded according to Algorithm expand(n).

Algorithm:expand(n)

foreach preference name PN such that abs(L(n)) < PN do
create two nodes m′ and m′′ such that L(m′) = PN and L(m′′) = ¬PN ;
add the edges (n, m′) and (n, m′′) to the tree ;

end

We say a branch is open if it is possible to further expand the branch starting from
its leaf node. A branch is closed if it is not open. We impose the root node of the tree,
denoted as ε, has no label. The tree for Preference Closure computation is computed
according to Algorithm 1. Note that the subsumption check in Line 2 of Algorithm 1,
both does not involve the TBox and it compares only clauses. Then it can be easily
reduced to set comparison.

In Figure 1 is depicted the tree built to compute the Preference Closure in Example 2.
The number below the leaf nodes represents the reason why the corresponding branch
closed w.r.t. lines in Algorithm 1. As an example, number 2 (respectively 2 and 2) says
taht the brach closed because of line 2 (respectively 2 and 2) in Algorithm 1.

Algorithm:preference closure(ε, A, T ,P ,PN , TPN)1

CL = ∅;2

foreach preference name PNi ∈ PN do3

create two nodes m′
i and m′′

i such that L(m′
i) = PN and L(m′′

i) = ¬PN ;4

add the edges (ε, m′
i) and (ε, m′′

i) to the tree;5

end6

while there is an open branch in the tree do7

foreach open branch βj with nj being its leaf node do8

if CL |= A � branch clause(nj) then9

close βj ;10

end11

else if A �T ∪TPN branch clause(nj) then12

CL = CL ∪ {A � branch clause(nj)} ;13

close βj ;14

end15

if label(nj) = PNlast then16

close βj ;17

end18

else19

expand(nj);20

end21

end22

end23

Algorithm 1. An algorithm to compute a Preference Closure

202 A. Ragone et al.

ε

P1

P2

P3
×
2

¬P3
×
2

¬P2

P3
×
2

¬P3
×
2

P3
×
2

¬P3
×
2

¬P1
×
2

P2

P3
×
2

¬P3
×
2

¬P2

P3
×
2

¬P3
×
2

P3
×
2

Fig. 1. The tree built using preference closure to compute the Preference Closure of Ex. 2

The complexity of Algorithm 1 is dominated by the number of open nodes in the
tree. Although one may optimize the search by expanding first nodes with shortest and
longest paths, in the worst case a constant fraction of the powerset of the preferences
must be taken into account. Hence the subsumption test of Line 2 is repeated 2|P|

times. Let ‖x‖ be a measure of the size of x. Denoting by s(‖T ‖, ‖C‖, ‖D‖) a function
bounding the time complexity of a subsumption test C
T D in the chosen DL, the
overall complexity is bounded by 2|P| ·s(‖T ∪TPN ‖, ‖A‖, |P|). Observe that the third
argument of s is just |P|, since the size of preferences is hidden in TPN . It is reasonable
to assume that the number of preferences is bounded; in this case, the overall complexity
of Algorithm 1 is dominated by the subsumption test in the chosen DL.

4.4 Performance Evaluation

In order to evaluate what is the impact, from a performance perspective, of the com-
putation of a Preference Clause in a real world application, we built some testbeds and
evaluated execution time w.r.t. the parameters highlighted in the previous section. We
selected some OWL DL ontologies with different expressivity (considering the cor-
responding DL language) from the publicly available repository of TONES project2.
Based on these ontologies we randomly generated concept expressions which resulted
consistent w.r.t. the source ontology. From these sets of concepts, one for each ontol-
ogy, we selected 150 different subsets of 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 concepts. Hence,
we generated 150 tests with 1 concept representing A and 10 concepts representing
preferences P1, . . . , P10 and similarly for the other subsets. In Figure 2 in Appendix
we report results for three of the ontologies we tested, i.e Pizza, Movie and Build-
ingsAndPlaces (see Table 1). For Pizza ontology we removed inconsistent classes. For
the sake of presentation we report only average execution time w.r.t. number of ax-
ioms in the original ontology (i.e., without TPN) as the number of preferences changes.
Complete testbeds and test results are available at http://sisinflab.poliba.
it/dinoia/preference_tests.zip. The reference architecture is a Intel Core
Duo Quad CPU @ 2.66 Ghz processor, 3.2 Gigabytes of RAM, Ubuntu Linux 9.04,
Kernel 2.6.28, Sun Java Runtime Environment 1.6.0.

2 http://owl.cs.manchester.ac.uk/repository/browser

Weighted DL Preference Formulas for Multiattribute Negotiation 203

Table 1. Reference Ontologies

Ontology Name DL Expressivity Number of Axioms
Pizza SHOIN 712
Movie ALCN 140

BuildingsAndPlaces ALCHOQ 1204

5 Conclusion

Logic languages have been proposed here as a natural and powerful way to express pref-
erences in negotiation contests. We presented a framework to compute the utility value
of a formula (agreement), when preference are expressed as weighted DL formulas w.r.t.
a shared ontology. We remark that, even if we use DLs, the framework is completely
general and suitable for whatever decidable fragment of FOL. We propose a novel algo-
rithm to compute a Preference closure and discuss also its complexity. An experimental
evaluation showed the applicability and suitability of our framework. Currently, we are
studying how to combine this approach with graphical models, and in particular GAI
(Generalized Additive Independence) [19,3], in order to model multiattribute auctions.

Acknowledgment

We are very grateful to Michelantonio Trizio for developing the system used to test and
evaluate the approach. We wish to thank anonymous reviewers for useful comments and
suggestions. This research is partially sponsored by Distributed Production as Innova-
tive System (DIPIS) and Telecommunication Facilities and Wireless Sensor Networks in
Emergency Management projects.

References

1. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-
offs. John Wiley & Sons, New York (1976)

2. Gonzales, C., Perny, P.: GAI networks for utility elicitation. In: KR, pp. 224–234 (2004)
3. Bacchus, F., Grove, A.: Graphical models for preference and utility. In: UAI, pp. 3–10 (1995)
4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for rep-

resenting and reasoning about conditional ceteris paribus preference statements. JAIR 21,
135–191 (2004)

5. Engel, Y., Wellman, M.P.: CUI networks: A graphical representation for conditional utility
independence. JAIR 31, 83–112 (2008)

6. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M., Wellman, M.: Computing utility
from weighted description logic preference formulas. In: Declarative Agent Languages and
Technologies VII Workshop Notes (2009), http://www.di.unito.it/˜baldoni/
DALT-2009/DALT-WorkshopNotes.pdf

7. Pinkas, G.: Propositional non-monotonic reasoning and inconsistency in symmetric neural
networks. In: IJCAI, pp. 525–531 (1991)

204 A. Ragone et al.

8. Lafage, C., Lang, J.: Logical representation of preferences for group decision making. In:
KR, pp. 457–468 (2000)

9. Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas
for cardinal preference modelling. In: KR, pp. 145–152 (2006)

10. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.: A logic-based framework to compute
Pareto agreements in one-shot bilateral negotiation. In: ECAI, pp. 230–234 (2006)

11. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: Description logics for multi-issue
bilateral negotiation with incomplete information. In: AAAI, pp. 477–482 (2007)

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge Univ. Press, Cambridge (2002)

13. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Comm 10(3-4), 137–150
(1997)

14. Marquis, P., Sadaoui, S.: A new algorithm for computing theory prime implicates compila-
tions. In: AAAI, pp. 504–509 (1996)

15. Bienvenu, M.: Prime implicate normal form for ALC concepts. In: AAAI, pp. 412–417
(2008)

16. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, Englewood Cliffs (1982)

17. Ngair, T.-H.: A new algorithm for incremental prime implicate generation. In: IJCAI,
pp. 46–51 (1993)

18. Dechter, R., Rish, I.: Directional resolution: The Davis-Putnam procedure, revisited. In: KR,
pp. 134–145 (1994)

19. Fishburn, P.C.: Interdependence and additivity in multivariate, unidimensional expected util-
ity theory. International Economic Review 8, 335–342 (1967)

Weighted DL Preference Formulas for Multiattribute Negotiation 205

Appendix

N. of prefrences Movie Pizza BuildingsAndPlaces
1 6,87 5,07 10,27
2 5,3 5,78 9,58
3 9,87 7,4 11,16
4 13,32 9,74 15,7
5 23,96 14,74 21,59
6 42,75 26,04 39,73
7 102,08 64,76 95,78
8 241,05 155,17 294,86
9 597,52 398,22 1055,96
10 1484,68 1317,39 2319,38

Fig. 2. Execution times (in ms) of preference closure using generated testbeds for Pizza,
Movie and BuildingAndPlaces ontologies

Probabilistic Planning with Imperfect Sensing

Actions Using Hybrid Probabilistic Logic
Programs

Emad Saad

Department of Computer Science
Gulf University for Science and Technology

West Mishref, Kuwait
saad.e@gust.edu.kw

Abstract. Effective planning in uncertain environment is important to
agents and multi-agents systems. In this paper, we introduce a new logic
based approach to probabilistic contingent planning (probabilistic plan-
ning with imperfect sensing actions), by relating probabilistic contingent
planning to normal hybrid probabilistic logic programs with probabilis-
tic answer set semantics [24]. We show that any probabilistic contingent
planning problem can be encoded as a normal hybrid probabilistic logic
program. We formally prove the correctness of our approach. Moreover,
we show that the complexity of finding a probabilistic contingent plan in
our approach is NP-complete. In addition, we show that any probabilistic
contingent planning problem, PP , can be encoded as a classical normal
logic program with answer set semantics, whose answer sets corresponds
to valid trajectories in PP . We show that probabilistic contingent plan-
ning problems can be encoded as SAT problems. We present a new high
level probabilistic action description language that allows the represen-
tation of sensing actions with probabilistic outcomes.

1 Introduction

Agents with sensing actions produce conditional plans under the assumption
that the agent has incomplete knowledge about the world. However, classical
conditional planning assumes the agent sensors are perfect, which is unrealistic
assumption and limits its applicability to many real-world domains. To deal with
the agent’s imperfect sensors, classical conditional planning has been extended
with sensing actions with probabilistic outcomes, as well as actions with prob-
abilistic conditional effects, forming probabilistic contingent planning [5] that
allows agents to cope with the uncertainty that stems form dynamic and chang-
ing environments as well as the imperfection of the actions execution.

An approach to probabilistic contingent planning has been introduced in [5]
along with a representation of sensing actions with probabilistic outcomes and
non-sensing actions with probabilistic conditional effects. However, there are two
drawbacks in the sensing actions representation of [5]. In [5], the sensing actions
outcomes are represented by arbitrary strings called observation labels that do

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 206–222, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Probabilistic Planning with Imperfect Sensing Actions 207

not relate to the fluents that describe the world [19]. In addition, [5] treats sensing
and non-sensing actions equally in the sense that, like non-sensing actions, a
sensing action has preconditions and effects as well as outcomes resulting from
observing the environment. However, [25] proved that sensing actions affect only
knowledge fluents and has no effect on the other fluents.

Based on the success of classical planning as propositional satisfiability (SAT
planning) [13], a probabilistic contingent planning approach has been presented
in [18]. The approach of [18] is developed by converting a probabilistic contingent
planning problem into a stochastic satisfiability problem and solving the stochas-
tic satisfiability problem instead to generate probabilistic contingent plans. How-
ever, the problems with SAT planning in general are that [18] translating a
planning problem as propositional satisfiability (SAT) problem causes an explo-
sion in the size of the problem representation. Moreover, encoding a planning
problem as a SAT problem affects the planning problem structure which makes
it not obvious to clearly understand the planning process. Moreover, solving a
probabilistic contingent planning problem as a stochastic satisfiability problem
is NPPP−complete [18]. But, on the other hand, SAT planning has a number
of advantages. These include that [18] SAT problem is a central widely studied
problem in computer science, therefore, many techniques have been developed
to solve the problem. The existence of many efficient solvers that solve the SAT
problem.

Based on another successful logic based approach to classical planning, using
normal logic programs with answer set semantics (answer set planning) [27], a
probabilistic planning approach has been presented in [22], namely, probabilistic
answer set planning. Probabilistic answer set planning [22] is a logical approach
to probabilistic planning in which a probabilistic planning problem, PP , is solved
by translating PP into a normal hybrid probabilistic logic program with prob-
abilistic answer set semantics [24] whose probabilistic answer sets correspond
to trajectories in PP with associated probabilities. The complexity of finding a
plan in probabilistic answer set planning is NP-complete [22]. Moreover, it has
been shown in [22] that probabilistic planning problems can be encoded as SAT,
hence, efficient SAT solvers can be used to solve probabilistic planning prob-
lems. However, the applicability of normal hybrid probabilistic logic programs
with probabilistic answer set semantics to probabilistic contingent planning has
not been yet investigated.

In this paper we relate probabilistic contingent planning to normal hybrid
probabilistic logic programs (NHPP) with probabilistic answer set semantics,
introducing a novel logical probabilistic contingent planning approach that is a
probabilistic extension to both conditional planning using answer set program-
ming [28] to account for probabilistic domains and probabilistic answer set plan-
ning [22] to account for sensing action with probabilistic outcomes. In addition,
we introduce a new high level probabilistic action description language, called
P , that overcomes the drawbacks in the representation of sensing actions with
probabilistic outcomes described in [5].

208 E. Saad

2 Syntax and Semantics of NHPP

We present a subset of the language NHPP [24], denoted by NHPPP , that is ex-
pressive enough and sufficient to encode probabilistic contingent planning prob-
lems. The syntax and semantics of the full version of NHPP can be found in
[24].

2.1 The Language of NHPPP

Let L be a first-order language with finitely many predicate symbols, constants,
and infinitely many variables. The Herbrand base of L is denoted by BL. Prob-
abilities are assigned to atoms in BL as values from [0, 1]. An annotation, μ, is
either a constant in [0, 1], a variable (annotation variable) ranging over [0, 1],
or f(μ1, . . . , μn) (called annotation function) where f is a representation of a
computable total function f : ([0, 1])n → [0, 1] and μ1, . . . , μn are annotations.
Let a1, a2 ∈ [0, 1]. Then we say that a1 ≤t a2 iff a1 ≤ a2. A probabilistic logic
program (p-program) in NHPPP is a pair P = 〈R, τ〉, where R is a finite set of
normal probabilistic rules (p-rules) and τ is a mapping τ : BL → Sdisj , where
Sdisj is a set of disjunctive probabilistic strategies (p-strategies) whose composi-
tion functions, c, are mappings c : [0, 1]× [0, 1]→ [0, 1]. A composition function
of a disjunctive p-strategy returns the probability of a disjunction of two atoms
given the probability values of its components. A p-rule is an expression of the
form

A : μ← A1 : μ1, . . . , An : μn, not (B1 : μn+1), . . . , not (Bm : μn+m)

where A, A1, . . . , An, B1, . . . , Bm are atoms and μ, μi (1 ≤ i ≤ m + n) are
annotations. Intuitively, the meaning of a p-rule is that if for each Ai : μi, the
probability value of Ai is at least μi (w.r.t. ≤t) and for each not (Bj : μj), it is
not believable that the probability values of Bj is at least μj , then the probability
of A is μ. The mapping τ associates to each atom A a disjunctive p-strategy that
will be employed to combine the probability values obtained from different p-
rules having A in their heads. A p-program is ground if no variables appear in
any of its p-rules.

2.2 Probabilistic Answer Set Semantics of NHPPP

A probabilistic interpretation (p-interpretation) is a mapping h : BL → [0, 1].
Let P = 〈R, τ〉 be a ground p-program, h be a p-interpretation, and r be

A : μ← A1 : μ1, . . . , An : μn, not (B1 : β1), . . . , not (Bm : βm) ∈ R.

Then, we say
• h satisfies Ai : μi (denoted by h |= Ai : μi) iff μi ≤t h(Ai).
• h satisfies not (Bj : βj) (denoted by h |= not (Bj : βj)) iff βj �≤t h(Bj).
• h satisfies Body ≡ A1 : μ1, . . . , An : μn, not (B1 : β1), . . . , not (Bm : βm)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Ai : μi and ∀(1 ≤ j ≤ m), h |=
not (Bj : βj).

Probabilistic Planning with Imperfect Sensing Actions 209

• h satisfies A : μ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every p-rule in R and for every atom A ∈ BL, we

have

cτ(A){{μ|A : μ← Body ∈ R such that h |= Body}} ≤t h(A).

The probabilistic reduct P h of P w.r.t. h is a p-program P h = 〈Rh, τ〉 where:

Rh =

⎧
⎨

⎩
A : μ← A1 : μ1, . . . , An : μn

A : μ← A1 : μ1, . . . , An : μn,
not (B1 : β1), . . . , not (Bm : βm) ∈ R and
∀(1 ≤ j ≤ m), βj �t h(Bj)

⎫
⎬

⎭

Intuitively, for any not (Bj : βj) in the body of r ∈ R with βj �t h(Bj) is simply
satisfied by h, and not (Bj : βj) is removed from the body of r. If βj ≤t h(Bj)
then the body of r is not satisfied and r is trivially ignored. A probabilistic
model (p-model) of a p-program P is a p-interpretation of P that satisfies P . A
p-interpretation h of a p-program P is said to be a probabilistic answer set of P
if h is the minimal p-model of the probabilistic reduct of P w.r.t. h.

Definition 1 (Probabilistic Answer Set). A probabilistic interpretation h is
a probabilistic answer set of a p-program P if h is the least p-model of P h.

3 Probabilistic Action Language with Imperfect Sensing
Actions

In this section we develop the syntax and semantics of a novel probabilistic
action language called P that allows the representation of sensing actions with
probabilistic outcomes.

3.1 Language Syntax of P
A fluent is an atomic proposition that describes a property of the world. Let F
be a set of fluents and A be a set of actions. A fluent literal is either a fluent f
or ¬ f . Conjunctive fluent formula is a conjunction of fluent literals of the form
l1 ∧ . . . ∧ ln. Sometimes we abuse the notation and refer to a conjunctive fluent
formula as a set of fluent literals (∅ denotes true). A probabilistic action theory
in P is a set of probabilistic propositions of the form:

initially {ψi : pi | 1 ≤ i ≤ n} (1)
l if ψ (2)

executable a if ψ (3)
a causes {φi : pi if ψi | 1 ≤ i ≤ n} (4)

a determines {φi : pi sensing ψi | 1 ≤ i ≤ n} (5)

where l is a fluent literal and for all (1 ≤ i ≤ n), ψ, ψi, φi are conjunctive fluent
formulas, pi ∈ [0, 1], and a ∈ A is an action. The set of all ψi must be exhaustive

210 E. Saad

and mutually exclusive, where ∀ i
∑

s pi Pr(ψi|s) = 1 and ∀ i, j, s, ψi �= ψj ⇒
Pr(ψi ∧ ψj |s) = 0 (given s is a state defined later).

The initial situation is presented by probabilistic proposition (1). Probabilistic
proposition (1) states that the possible initial state ψi holds with probability pi.
Indirect effect of action is described by proposition (2), which says that l holds
in every state in which ψ also holds. Executability condition is represented by
(3), which states that an action a is executable in any state in which ψ holds.
Probabilistic proposition of the form (4) represents the probabilistic conditional
effects of a non-sensing action a. It says that for all 1 ≤ i ≤ n, a causes φi

to hold with probability pi ∈ [0, 1] in a successor state to a state in which a
is executed and ψi holds. The set of all ψi must be mutually exclusive and
exhaustive. Probabilistic proposition of the form (5) describes sensing action
with probabilistic outcomes. It states that executing a sensing action a in a state
causes any of φi to be known true with probability pi whenever a correlated ψi is
known to be true in a successor state to a state in which a is executed. Each ψi is
called the sensed-literals (the sensor reading), where the literals in ψi determine
what the sensor is observing, φi is called the sensor report, where the literals
in φi determine what the sensor reports on. pi is the probability that φi holds
whenever ψi holds after executing a. The set of all ψi (φi) must be mutually
exclusive and exhaustive. Similar to [5], when a property of the world cannot be
directly sensed by the sensor, another correlated property of the world, that can
be sensed by the sensor, can be used instead.

A probabilistic action theory is a pairD = 〈s̃I ,AD〉, where s̃I is a probabilistic
proposition of the form (1) andAD is a set of probabilistic propositions from (2)-
(5). We call AD a probabilistic action description. For convenience, we present
an action a by the set a = {a1, . . . , an}, where for each 1 ≤ i ≤ n, ai corresponds
to φi and ψi.

Example 1 ([5]). Assume that a robot is processing a widget. The goal of the
robot is to paint (pa) and process (pr) the widget without errors (¬er) by de-
termining if it is flawed (fl) or not flawed (¬ fl), then deciding to reject or ship
the widget by performing the reject or ship actions respectively. The flawed (fl)
property is not directly observable. Therefore, the robot determines whether the
widget is flawed by performing the sensing action inspect that senses whether
the widget is blemished (bl) (a correlated property). But, the robot’s sensor is
not always perfect. If the widget is blemished (bl) then the robot reports that
the widget is flawed (fl) with 0.9 probability, however, it erroneously reports
that the widget is not flawed (¬ fl) with 0.1 probability. Performing the paint
action in the state of the world in which the widget is not processed (¬ pr)
causes the widget to be painted (pa) and all blemishes removed (¬ bl) with 0.95
probability, and causes no change in the state of the world with 0.05 probability.
However, an error is caused (er) if paint is performed in the state of the world in
which widget is being processed (pr). The effects of ship and reject are certain.
Consider that initially the widget is blemished and flawed with probability 0.3
and it is not blemished and not flawed with probability 0.7. Consider also that
the target is to find a probabilistic contingent plan that achieves its goal with

Probabilistic Planning with Imperfect Sensing Actions 211

probability at least 0.95. This can be represented by the probabilistic action
theory D = 〈s̃I ,AD〉 where

s̃I = initially
{
{bl, f l,¬pa,¬pr,¬er} : 0.3
{¬bl,¬fl,¬pa,¬pr,¬er} : 0.7

}

and AD consists of: executable AC if ∅, where AC ∈ {paint, inspect,
ship, reject}.

paint causes

⎧
⎨

⎩

{pa,¬bl} : 0.95 if {¬pr}
∅ : 0.05 if {¬pr}
{er} : 1 if {pr}

⎫
⎬

⎭
ship causes

⎧
⎨

⎩

{pr} : 1 if {¬pr,¬fl}
{pr, er} : 1 if {¬pr, fl}
{er} : 1 if {pr}

⎫
⎬

⎭

reject causes

⎧
⎨

⎩

{pr, er} : 1 if {¬pr,¬fl}
{pr} : 1 if {¬pr, fl}
{er} : 1 if {pr}

⎫
⎬

⎭
inspect determines

⎧
⎨

⎩

{fl} : 0.9 sensing {bl}
{¬fl} : 0.1 sensing {bl}
{¬fl} : 1 sensing {¬bl}

⎫
⎬

⎭

3.2 Semantics of P
We say a set of literals φ is consistent if it does not contain a pair of complemen-
tary literals. We say that a set of literals φ satisfies an indirect effect of action
proposition of the form (2), if l belongs to φ whenever ψ is contained in φ or ψ
is not contained in φ. Let D be a probabilistic action theory and φ be a set of
literals. Then CD(φ) is the smallest set of literals that contains φ and satisfies
all the indirect effects of actions propositions in D. A state s is a complete and
consistent set of literals that satisfies all the indirect effects of actions proposi-
tions appearing in D. Let s be a state and G be conjunctive fluent formula. The
probability of G w.r.t. s is given by Pr(G|s) = 1 if G ⊆ s, otherwise, Pr(G|s) = 0.

Definition 2. Let D be a probabilistic action theory, s be a state, a causes{φi :
pi if ψi | 1 ≤ i ≤ n} and a′ determines{φ′i : p′i sensing ψ′

i | 1 ≤ i ≤ n} be
probabilistic propositions, and a = {ai | (1 ≤ i ≤ n)}, a′ = {a′i | (1 ≤ i ≤
n)}, where each ai(a′i) corresponds to φi (φ′i) and ψi (ψ′

i). Then, CD(Φ(ai, s))
(CD(Φ(a′i, s))) is the state resulting from executing a (a′) in s, where Φ(ai, s) is
defined as follows:

1. l ∈ Φ(ai, s) and ¬ l /∈ Φ(ai, s) if l ∈ φi and ψi ⊆ s.
2. ¬ l ∈ Φ(ai, s) and l /∈ Φ(ai, s) if ¬ l ∈ φi and ψi ⊆ s.
3. Otherwise, l ∈ Φ(ai, s) iff l ∈ s and ¬ l ∈ Φ(ai, s) iff ¬ l ∈ s.

Moreover, Φ(a′i, s) is defined as:

1. l ∈ Φ(a′i, s) and ¬ l /∈ Φ(a′i, s) iff l ∈ φi and ψi ⊆ s.
2. ¬ l ∈ Φ(a′i, s) and l /∈ Φ(a′i, s) iff ¬ l ∈ φi and ψi ⊆ s.
3. Otherwise, l ∈ Φ(a′i, s) iff l ∈ s and ¬ l ∈ Φ(a′i, s) iff ¬ l ∈ s.

We call Φ probabilistic transition function. An action in a probabilistic action
theory D causes a transition from a probability distribution over possible states

212 E. Saad

to another probability distribution. Probability is assigned to a possible world
state, resulting from executing an action in a given state, in which literals are
deterministically true or false. The probability of a state s′ resulting from exe-
cuting a(a′) in a state s is given by Pr′(s′|s, a) = pi if a causes{φi : pi if ψi |1 ≤
i ≤ n} and s′ = CD(Φ(ai, s)). Otherwise, Pr′(s′|s, a) = 0. Pr′(s′|s, a′) = pi if
a′ determines{φi : pi sensing ψi |1 ≤ i ≤ n} and s′ = CD(Φ(a′i, s)). Otherwise,
Pr′(s′|s, a′) = 0.

Definition 3 (Probabilistic Contingent Plan). An empty sequence of ac-
tions 〈〉 is a probabilistic contingent plan. 〈a, c〉 is a probabilistic contingent plan,
where a is a non-sensing action with probabilistic effects and c is a probabilistic
contingent plan. 〈a, case {φi → ci}ni=1〉 is a probabilistic contingent plan where a
is a sensing action with probabilistic outcomes and ci is a probabilistic contingent
plan.

The definition of probabilistic contingent plan is inspired from [28]. The prob-
ability that a conjunctive fluent formula G holds after executing a non-empty
probabilistic contingent plan is given by the following definition.

Definition 4. Let s, s′ be states, G be a conjunctive fluent formula, s̃I be a
random variable over the initial states, and q = 〈a, c〉 (q = 〈a, case {φi →
ci}ni=1〉) be probabilistic contingent plan. Then:

– The probability that s′ holds after executing q in s is given by:

• Pr(s′|s, 〈a, c〉) =
∑

s′′ Pr′(s′′|s, a) Pr(s′|s′′, c).
• Pr(s′|s, 〈a, case {φi → ci}ni=1〉) =

∑
s′′|=φi

Pr′(s′′|s, a)Pr(s′|s′′, ci).
– The probability that G is true after executing q in s is given by:

• Pr(G|s, 〈a, c〉) =
∑

s′ Pr(s′|s, 〈a, c〉) Pr(G|s′).
• Pr(G|s, 〈a, case {φi → ci}ni=1〉) =

∑
s′ Pr(s′|s, 〈a, case {φi → ci}ni=1〉)

Pr(G|s′).

– The probability that G is true after executing q in the initial states s̃I is given
by:

• Pr(G|s̃I , 〈a, c〉) =
∑

s Pr(G|s, 〈a, c〉) Pr(s̃I = s).
• Pr(G|s̃I , 〈a, case {φi → ci}ni=1〉) =

∑
s Pr(G|s, 〈a, case {φi → ci}ni=1〉)

Pr(s̃I = s).

Definition 5. A probabilistic contingent planning problem is a 4-tuple PP =
〈s̃I ,AD,G, T 〉, where s̃I is a random variable over states represents the initial
agent knowledge about the world at the time of execution, AD is a probabilistic
action description, G is conjunctive fluent formula represents the goal to be sat-
isfied, and 0 ≤ T ≤ 1 is the probability threshold for the goal G to be achieved.
We say q is a probabilistic contingent plan for PP iff each a in q appears in AD
and Pr(G|s̃I , q) ≥ T .

Probabilistic Planning with Imperfect Sensing Actions 213

4 Probabilistic Answer Set Contingent Planning

In this section we describe a logic based probabilistic continent planning ap-
proach called probabilistic answer set contingent planning that employs NHPPP
with probabilistic answer set semantics. Probabilistic answer set contingent plan-
ning is developed by providing a translation from a probabilistic contingent plan-
ning problem in P into a p-program. The p-program translation of a probabilistic
contingent planning problem is adapted from the probabilistic answer set plan-
ning described in [22]. We assume that the length of a probabilistic contingent
plan we are looking for is known. We use the predicates (i) holds(L, T) to repre-
sent the fact that a literal L holds at time moment T , (ii) occ(AC, T) to describe
that an action AC executes at time moment T , and (iii) state(T) to represent
a possible state of the world at time moment T . We use lower case letters to
represent constants and upper case letters to represent variables.

Let ΠPP = 〈R, τ〉 be the p-program translation of a probabilistic contin-
gent planning problem, PP, where τ is any arbitrary assignment of disjunctive
p-strategies and R is the set of p-rules described below. To simplify the pre-
sentation, any atom appearing in a p-rule in R with no annotation is assumed
to be associated with the annotation 1. In addition, given p is a predicate and
ψ = {l1, . . . , ln}, we use p(ψ) : V to denote p(l1) : V1, . . . , p(ln) : Vn, where
V, V1, . . . , Vn are annotations.

– For each action a = {a1, . . . , an} ∈ A is represented in R by the set of facts

action(ai)← (6)

Furthermore, literals that form the states of the world are represented in R
by

literal(A)← atom(A) (7)
literal(¬A)← atom(A) (8)

atom(A) is a set of facts that describe the properties of the world. In addition,
p-rules that specify that A and ¬A are contrary literals are encoded as

contrary(A,¬A) ← atom(A) (9)
contrary(¬A,A) ← atom(A) (10)

– The initial probability distribution over the possible initial states is encoded
as follows. For initially {ψi : pi | 1 ≤ i ≤ n} and Pr(s̃I = ψi) = pi, let
each ψi : pi be represented as {li,1 : pi,1, li,2 : pi,2, . . . , li,mi : pi,mi}, where
ψi = {li,1, li,2, . . . , li,mi} is a set of literals and pi =

∏mi

j=1 pi,j. ∀(1 ≤ j ≤ mi),
the meaning of li,j : pi,j is that the literal li,j holds with probability pi,j .
Moreover, let ψ = ψ1∪ψ2∪ . . .∪ψn, ψ′ = ψ1∩ψ2∩ . . .∩ψn, and ψ̂ = ψ−ψ′.
Let ψreport = { l | l ∈ ψi and l is a sensor report literal } be the set of all
sensor report literals in all ψi. We denote ψ′′ = { l | l ∈ (ψ̂ − ψreport) ∨ ¬l ∈
(ψ̂−ψreport)}. Intuitively, ψ′′ is the same as ψ̂ after excluding the set of sensor

214 E. Saad

report literals ψreport from ψ̂. Let ψsense be the set of all pairs (δi, γi), where
δi and γi are sets of literals contained in ψi,∀ (1 ≤ i ≤ n), such that δi is
the set of sensor reading literals and γi is the set of sensor report literals
appearing in ψi. Let us denote a literal in ψi, ψ

′, ψ′′, δi, γi by li,j for any i
and j. Notice also that for any literal li,j , there is an associated probability
pi,j . To generate the set of all possible initial states we add to R the following
set of p-rules. For each literal li,j ∈ ψ′, we add to R the fact

holds(li,j , 0) : pi,j ← (11)

where pi,j is the probability li,j holds in the initial situation. This fact says
that the literal li,j holds at time moment 0 with probability pi,j . This set
of facts represents the set of literals that hold in every possible initial state
along with their associated probability. For each literal li,j ∈ ψ′′,

holds(li,j , 0) : pi,j ← not holds(¬li,j , 0) : pi,j (12)
holds(¬li,j , 0) : pi,j ← not holds(li,j , 0) : pi,j (13)

are added to R, where pi,j and pi,j are the probabilities that li,j and ¬li,j
hold respectively. The above p-rules describe that the literal l (similarly ¬l)
holds with probability pi,j at time moment 0, if ¬l (similarly l) does not
hold with probability pi,j at the time moment 0. For each (δi, γi) ∈ ψsense,
let δi = {li,1, li,2, . . . , li,mi}, then for each li,j in γi, we have

holds(li,j , 0) : pi,j ← holds(li,1) : pi,1, holds(li,2) : pi,1, . . . , holds(li,mi) : pi,1

(14)
belongs to R. The initial probability distribution over the possible initial
states is encoded in R as

state(0) : pi ← holds(li,1, 0) : pi,1, holds(li,2, 0) : pi,2, . . . , holds(li,mi , 0) : pi,mi

(15)

for all (1 ≤ i ≤ n) and pi =
∏mi

j=1 pi,j . The above p-rule says that
the probability of a state at time moment 0 (a possible initial state) is
pi if li,1, li,2, . . . , li,mi hold at the time moment 0 with probability pi,1,
pi,2, . . . , pi,mi respectively.

– Let V, V ′ be annotation variables act as place holders, then for each indirect
effect of an action proposition of the form (2), R contains

holds(l, T) : V ′ ← holds(ψ, T) : V (16)

– For each action a = {a1, . . . , an}, each executability condition of the form
(3) is encoded as

exec(ai, T)← holds(ψ, T) : V (17)
– For each probabilistic conditional effects of a non-sensing action of the form
a causes {φi : pi if ψi | 1 ≤ i ≤ n}, let for each φi : pi be represented
as {li,1 : pi,1, li,2 : pi,2, . . . , li,mi : pi,mi}, where φi = {li,1, li,2, . . . , li,mi} and
pi =

∏mi

j=1 pi,j . Then for each (1 ≤ i ≤ n) and (1 ≤ j ≤ mi), we have

holds(li,j , T + 1) : pi,j ← occ(ai, T), exec(ai, T), holds(ψi, T) : V (18)

Probabilistic Planning with Imperfect Sensing Actions 215

This p-rule states that if the action a occurs at time moment T and ψi holds
at the same time moment with probability V , then the literal li,j holds at
time moment T + 1 with probability pi,j . The probability distribution over
states resulting from executing a is represented in R by:

state(T + 1) : pi × V ← state(T) : V, occ(ai, T), exec(ai, T), holds(ψi, T) : V ′,

holds(φi, T + 1) : pi (19)

where V, V ′ are annotation variables ranging over [0, 1] acts as place holders.
The above p-rule says that if ψi is true with probability V ′ in a state of the
world at time moment T , whose probability is V , and in which the action
a is executable, then the probability of a successor state at time moment
T + 1, after executing an action a in the state at time T , is pi× V , in which
the effect φi is true with probability pi.

– For each sensing action with probabilistic outcomes of the form a
determines {φi : pi sensing ψi |1 ≤ i ≤ n}, let each φi : pi be represented
as {li,1 : pi,1, li,2 : pi,2, . . . , li,mi : pi,mi}, where φi = {li,1, li,2, . . . , li,mi} and
pi =

∏mi

j=1 pi,j . Then for each (1 ≤ i ≤ n) and (1 ≤ j ≤ mi) and for each
l′i,j ∈ ψi, we have in R

sense(l′i,j, T) : V ′ ← occ(ai, T), exec(ai, T), holds(ψi, T) : V (20)
holds(li,j , T + 1) : pi,j ← occ(ai, T), exec(ai, T), sense(ψi, T) : V (21)

The p-rule (20) says that executing the sensing action a at time moment T
in which ψi holds with probability V causes ψi to be sensed to be known
true at the same time moment T . The p-rule (21) states that if a sensing
action a occurs at time moment T and the sensed-literals ψi is sensed to be
known true at the same time moment with probability V , then the literal li,j
is known to hold at the time moment T + 1 with probability pi,j . The prob-
ability distribution over states resulting from executing the sensing action a
is represented in R by

state(T + 1) : pi × V ← state(T) : V, occ(ai, T), exec(ai, T), sense(ψi, T) : V ′,

holds(φi, T + 1) : pi (22)

The above p-rule says that the probability of a state at time moment T + 1
is pi × V if φi become known to be true at the same time moment with
probability pi, after executing the sensing action a in a state of the world
at time T , whose probability is V , in which ψi is sensed to be true with
probability V ′.

– The frame axioms are encoded in R as follows. For any literal L we have

holds(L, T+1) :V ← holds(L, T) :V,not;holds(L′, T+1) :V ′, contrary(L,L′)(23)

The above p-rule says that L continues to hold at the time moment T+1 with
probability V if L holds at the time moment T with the same probability
and its contrary does not hold at the time moment T + 1 with probability
V ′.

216 E. Saad

– To encode that a literal A and its negation ¬A cannot hold at the same time

inconsistent← not inconsistent, holds(A, T) : V, holds(¬A, T) : V ′ (24)

is added to R, where inconsistent is a special literal that does not appear
in P .

– Actions are generated using the p-rules

occ(ACi, T)← action(ACi), not abocc(ACi, T) (25)
abocc(ACi, T)← occ(ACj , T), ACi �= ACj (26)

The above two p-rules generate action occurrences once at a time, where
ACi and ACj are variables representing actions.

– A goal G = g1 ∧ . . . ∧ gm is encoded in R as a p-rule of the form

goal ← holds(g1, T) : V1, . . . , holds(gm, T) : Vm (27)

Example 2. The p-program encoding, ΠPP = 〈R, τ〉, of the probabilistic con-
tingent planning problem PP = 〈s̃I ,AD,G, T 〉 presented in Example 1 is given
as follows, where τ is any arbitrary assignment of disjunctive p-strategies and
R consists of the following p-rules, in addition to the p-rules (7), (8), (9), (10),
(23), (24), (25), (26):

action(painti)← action(shipi)← action(rejecti)← action(inspecti)←

for 1 ≤ i ≤ 3. Properties of the world are described by the atoms bl (widget
blemished), fl (widget flawed), pa (widget painted), pr (widget processed), and
er (error occurred), which are encoded in R by the p-rules

atom(bl)← atom(fl)← atom(pa)← atom(pr)← atom(er)←

The set of possible initial states are encoded by the p-rules:

holds(¬pa, 0)← holds(¬pr, 0)← holds(¬er, 0)←
holds(bl, 0)← not holds(¬bl, 0) holds(¬bl, 0)← not holds(bl, 0)
holds(fl, 0) : 0.3← holds(bl, 0) holds(¬fl, 0) : 0.7← holds(¬bl, 0)

The initial probability distribution over the possible initial states is encoded as

state(0) : 0.3← holds(bl, 0), holds(fl, 0) : 0.3, holds(¬pa, 0), holds(¬pr, 0), holds(¬er, 0)
state(0) : 0.7← holds(¬bl, 0), holds(¬fl, 0) : 0.7, holds(¬pa, 0), holds(¬pr, 0), holds(¬er, 0)

The executability conditions of actions are encoded by the following p-rules

exec(painti)← exec(shipi)← exec(rejecti)← exec(inspecti)←

for 1 ≤ i ≤ 3. Effects of the paint action are encoded by the p-rules

holds(pa, T + 1) ← occ(paint1, T), exec(paint1, T), holds(¬pr, T) : V
holds(¬bl, T + 1) : 0.95← occ(paint1, T), exec(paint1, T), holds(¬pr, T) : V
holds(er, T + 1) ← occ(paint3, T), exec(paint3, T), holds(pr, T) : V

Probabilistic Planning with Imperfect Sensing Actions 217

The probability distribution resulting from executing the paint action is given
by

state(T + 1) : 0.95× V ← occ(paint1, T), exec(paint1, T), state(T) : V, holds(¬pr, T) : V ′,
holds(pa, T + 1), holds(¬bl, T + 1) : 0.95

state(T + 1) : 0.05× V ← occ(paint2, T), exec(paint2, T), state(T) : V, holds(¬pr, T) : V ′

state(T + 1) : V ← occ(paint3, T), exec(paint3, T), state(T) : V, holds(pr, T) : V ′,
holds(er, T + 1)

Effects of the ship action are encoded by the p-rules

holds(pr, T + 1)← occ(ship1, T), exec(ship1, T), holds(¬pr, T) : V1, holds(¬fl, T) : V2

holds(pr, T + 1)← occ(ship2, T), exec(ship2, T), holds(¬pr, T) : V1, holds(fl, T) : V2

holds(er, T + 1) ← occ(ship2, T), exec(ship2, T), holds(¬pr, T) : V1, holds(fl, T) : V2

holds(er, T + 1) ← occ(ship3, T), exec(ship3, T), holds(pr, T) : V

The probability distribution resulting from executing the ship action is given by

state(T + 1) : V ← occ(ship1, T), exec(ship1, T), state(T) : V, holds(¬pr, T) : V1,
holds(¬fl, T) : V2, holds(pr, T + 1) : V3

state(T + 1) : V ← occ(ship2, T), exec(ship2, T), state(T) : V, holds(¬pr, T) : V1,
holds(fl, T) : V2, holds(pr, T + 1) : V3, holds(er, T + 1) : V4

state(T + 1) : V ← occ(ship3, T), exec(ship3, T), state(T) : V, holds(pr, T) : V1,
holds(er, T + 1) : V2

Effects of the reject action are encoded by the p-rules

holds(pr, T + 1)← occ(reject1, T), exec(reject1, T), holds(¬pr, T) : V1, holds(¬fl, T) : V2

holds(er, T + 1) ← occ(reject1, T), exec(reject1, T), holds(¬pr, T) : V1, holds(¬fl, T) : V2

holds(pr, T + 1)← occ(reject2, T), exec(reject2, T), holds(¬pr, T) : V1, holds(fl, T) : V2

holds(er, T + 1) ← occ(reject3, T), exec(reject3, T), holds(pr, T) : V

The probability distribution resulting from executing the reject action is given
by

state(T + 1) : V ← occ(reject1, T), exec(reject1, T), state(T) : V, holds(¬pr, T) : V1,
holds(¬fl, T) : V2, holds(pr, T + 1) : V3, holds(er, T + 1) : V4

state(T + 1) : V ← occ(reject2, T), exec(reject2, T), state(T) : V, holds(¬pr, T) : V1,
holds(fl, T) : V2, holds(pr, T + 1) : V3

state(T + 1) : V ← occ(reject3, T), exec(reject3, T), state(T) : V, holds(pr, T) : V1,
holds(er, T + 1) : V2

Effects of the inspect action are encoded by the p-rules

sense(bl, T) : V ← occ(inspect1, T), exec(inspect1, T), holds(bl, T) : V
sense(bl, T) : V ← occ(inspect2, T), exec(inspect2, T), holds(bl, T) : V
sense(¬bl, T) : V ← occ(inspect3, T), exec(inspect3, T), holds(¬bl, T) : V
holds(fl, T + 1) : 0.9 ← occ(inspect1, T), exec(inspect1, T), sense(bl, T) : V
holds(¬fl, T + 1) : 0.1← occ(inspect2, T), exec(inspect2, T), sense(bl, T) : V
holds(¬fl, T + 1) ← occ(inspect3, T), exec(inspect3, T), sense(¬bl, T) : V

218 E. Saad

The probability distribution resulting from executing the inspect action is given
by

state(T + 1) : 0.9× V ← occ(inspect1, T), exec(inspect1, T), state(T) : V, sense(bl, T) : V1,
holds(fl, T + 1) : 0.9

state(T + 1) : 0.1× V ← occ(inspect2, T), exec(inspect2, T), state(T) : V, sense(bl, T) : V1,
holds(¬fl, T + 1) : 0.1

state(T + 1) : V ← occ(inspect3, T), exec(inspect3, T), state(T) : V, sense(¬bl, T) : V1,
holds(¬fl, T + 1) : V2

The goal is encoded by the p-rule
goal ← holds(pa, T) : V1, holds(pr, T) : V2, holds(¬er, T) : V3

5 Correctness

In this section we prove the correctness of the probabilistic answer set contingent
planning. Let the domain of T be {0, . . . , n}. Let PP = 〈s̃I ,AD,G, T 〉 be a prob-
abilistic contingent planning problem, Φ be a probabilistic transition function
associated with PP , s0 be a possible initial state, and a0, . . . , an be a collection
of (sensing and non-sensing) actions in A. We say that s0 aj0 s1 . . . ajn sn+1 is
a trajectory in PP if si+1 = CD(Φ(aji , si)), where ∀(0 ≤ i ≤ n), si is a state, ai

is an action, and aji ∈ ai = {a1i, . . . , ami}. A trajectory s0 aj0 s1 . . . ajn sn+1

in PP is said to achieve a conjunctive fluent formula G if G ⊆ sn+1. Moreover,
let RG be the set of all trajectories s0 aj0 s1 . . . ajn sn+1 in PP that achieve G.
We say that a probabilistic contingent plan q achieves G if the execution of q
in the initial states will yield a non-empty set of trajectories RG each of which
achieves G.

Theorem 1. Let PP = 〈s̃I ,AD,G, T 〉 be a probabilistic contingent planning
problem and G ≡ g1 ∧ . . . ∧ gm. Then, G is achievable from PP iff G′(t) ≡
holds(g1, t), . . . , holds(gm, t) is true (satisfied) in some probabilistic answer set
of ΠPP , for some 0 ≤ t ≤ n.

Intuitively, the probabilistic answer sets of the p-program translation, ΠPP ,
of a probabilistic contingent planning problem, PP , are equivalent to the tra-
jectories of PP . Let OCC be a set such that s0 aj0 s1 . . . ajn sn+1 ∈ RG iff
occ(aj0 , 0), . . . , occ(ajn , n) ∈ OCC, where aj0 , . . . , ajn correspond to actions ap-
pearing in q

Lemma 1. Let h be a probabilistic answer set of ΠPP and q = 〈a, case {φi →
ci}mi=1〉 (similarly q = 〈a, c〉) (possibly empty) be a probabilistic contingent
plan for PP. Then,

∑
h|=G′(n+1) and h|=occ(aj0 ,0),...,occ(ajn ,n)∈OCC h(state(n+1)) =

Pr(G|s̃I , q), where G = g1 ∧ . . . ∧ gm and G′(n + 1) ≡ holds(g1, n + 1) : p1, . . . ,
holds(gm, n+ 1) : pm.

The probability a goal G is true, after executing a probabilistic contingent plan
q of PP in the possible initial states s̃I , is equivalent to the summation of

Probabilistic Planning with Imperfect Sensing Actions 219

the probabilities h(state(n + 1)) over the probabilistic answer sets h of ΠPP
that satisfy G′(n + 1) (the goal G encoding in ΠPP), where h contains actions
appearing in q. The following theorem follows directly from Lemma 1.

Theorem 2. Let h be a probabilistic answer set of ΠPP and q (possibly empty)
be a probabilistic contingent plan for PP. Then, Pr(G|s̃I , q) ≥ T iff∑

h|=G′(n+1) and h|=occ(aj0 ,0),...,occ(ajn ,n)∈OCC h(state(n+ 1)) ≥ T .

Probabilistic answer set contingent planning produces acyclic plans using flat
representation of the probabilistic contingent planning domains. According to
the classification of [16], acyclic plan, also referred to as totally ordered con-
ditional (contingent) plan, is a total order plan with conditional (contingent)
execution of actions. Flat representation of probabilistic planning domains is
the explicit enumeration of the world states [16]. Hence, Theorem 4 follows di-
rectly from Theorem 3.

Theorem 3 ([16]). The plan existence problem in the flat representation of
probabilistic planning domains is NP-complete.

Theorem 4. The plan existence problem in probabilistic answer set contingent
planning for probabilistic planning domains is NP-complete.

6 Probabilistic Contingent Planning Using Answer Sets

In [22], it has been shown that probabilistic planning problems can be encoded
as classical normal logic programs with classical answer set semantics. In the
rest of this section, we follow the steps of [22]. In this section we show that any
probabilistic contingent planning problem can be encoded as a classical normal
logic program with classical answer set semantics. Excluding p-rules (15), (19),
and (22) and replacing all annotations in the p-program translation,ΠPP , of PP
with 1 yields a p-program, denoted by Πnormal

PP , with only annotations of the
form 1. As shown in [24], the syntax and semantics of this class of p-programs is
equivalent to classical normal logic programs with classical answer set semantics.

Theorem 5. Let Πnormal
PP be the normal logic program resulting from ΠPP after

deleting the p-rules (15), (19) and (22) and replacing all annotations in ΠPP
with 1. Then, a trajectory s0 aj0 s1 . . . ajn sn+1 in PP achieves G = g1∧ . . .∧gm

iff G′
(n+ 1) ≡ holds(g1, n+ 1), . . . , holds(gm, n+ 1) is true in some answer set

of Πnormal
PP .

Theorem 5 shows that classical normal logic programs with classical answer set
semantics can be used to solve probabilistic contingent planning problems in two
steps. The first step is to translate a probabilistic contingent planning problem,
PP , into a classical normal logic program whose answer sets corresponds to valid
trajectories in PP . From the answer sets of the normal logic program translation
of PP , we can determine the trajectories Rq of a plan q in PP that achieve the

220 E. Saad

goal G. The second step is to calculate the probability that the goal is satisfied
by

∑
s0 aj0 s1...ajn sn+1∈Rq

Pr(s0)
∏n

i=0 pji .
Now, we show that any probabilistic contingent planning problem can be en-

coded as a SAT problem. Hence, state-of-the-art SAT solvers can be used to
solve probabilistic contingent planning problems. Any normal logic program, Π ,
can be translated into a SAT problem, S, where the models of S are equivalent
to the answer sets of Π [15]. Therefore, the normal logic program encoding of a
probabilistic contingent planning problem PP can be translated into an equiva-
lent SAT problem, S, where the models of S correspond to valid trajectories in
PP .

Theorem 6. Let PP be a probabilistic contingent planning problem andΠnormal
PP

be a normal logic program translation of PP. The models of the SAT encoding
of Πnormal

PP are equivalent to valid trajectories in PP.

However, similar to [22], in encoding probabilistic contingent planning problems
into normal logic programs or SAT, explicit representation and assignment of
probabilities to states rely on an external mechanism to normal logic programs
syntax and semantics and not on normal logic programs syntax and semantics
themselves. These issues are overcome naturally by encoding probabilistic con-
tingent planning problems in NHPP.

7 Conclusions and Related Work

We presented a new high level probabilistic action language P that allows the
representation of imperfect sensing actions, in addition, we introduced a new
probabilistic contingent planning approach by relating probabilistic contingent
planning to NHPP.

The syntax and semantics of the probabilistic action language P is built on
top of the action language AK [28] and the probabilistic action representation
of [5]. The major difference between AK and P is that P allows the specifica-
tion of sensing actions with probabilistic outcomes and non-sensing actions with
probabilistic conditional effects and the presentation of the initial probability
distribution over the possible initial states. Unlike the probabilistic action rep-
resentation of [5,19], P is a high level language and allows the representation
of indirect effects of actions and executability conditions of actions. In addition,
in P , the sensing actions outcomes are represented by fluents that describe the
world. Contrary to [5] and [19], we treat non-sensing and sensing actions differ-
ently in the sense that a sensing action has no preconditions and effects. The
action language E+ [11] allows sensing actions, actions with probabilistic effects,
and actions with non-deterministic effects. In P actions with non-deterministic
effects are not allowed. However, similar to AK , E+ assumes that the agent’s
sensors are perfect. In addition, the semantics of E+ is based on description
logic. Other high level probabilistic action description languages are described
in [2,6], but they do not allow sensing actions.

Probabilistic Planning with Imperfect Sensing Actions 221

Probabilistic answer set contingent planning extends probabilistic answer set
planning [22] to deal with sensing actions with probabilistic outcomes. The trans-
lation from a probabilistic contingent planning problem in P into a p-program is
mainly adapted from [22]. In [5,19] a probabilistic contingent planning approach
based on partial order planning is presented. [5,19] extends [14], a probabilis-
tic partial order planner, with imperfect sensing actions to generate contingent
plans. Based on planning as satisfiability approach [13] for classical planning,
a probabilistic contingent planning approach is developed [18]. A probabilis-
tic contingent planning problem PP in [18] is solved by converting PP into a
stochastic satisfiability problem and solving the stochastic satisfiability problem
instead. [18] extends [17], a stochastic satisfiability based probabilistic planning
approach, with sensing action with probabilistic outcomes to generate proba-
bilistic contingent plans. Our approach is similar in spirit to [18] in the sense
that both approaches are logic based approaches. However, solving stochastic
satisfiability problem is NPPP -complete, but, probabilistic answer set contin-
gent planning is NP-complete. The probabilistic contingent planning approach
in [4] is based on another classical planning approach (heuristic based planner)
[3]. [4] produces probabilistic contingent plans, similar to [18,5].

References

1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
Logic Programming and Non-monotonic Reasoning. Springer, Heidelberg (2004)

2. Baral, C., et al.: Reasoning about actions in a probabilistic setting. In: AAAI (2002)
3. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial

Intelligence 90(1-2), 297–298 (1997)
4. Blum, A., Langford, J.: Probabilistic planning in the Graphplan framework. In:

ECP (1999)
5. Draper, D., Hanks, S., Weld, D.: Probabilistic planning with information gathering

and contingent execution. In: Proc. of the 2nd AIPS, pp. 31–37 (1994)
6. Eiter, T., Lukasiewicz, T.: Probabilistic reasoning about actions in nonmonotonic

causal theories. In: 19th Conference on Uncertainty in Artificial Intelligence, UAI
2003 (2003)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICSLP (1988)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 363–385 (1991)

9. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propo-
sitional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

11. Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions with
sensing under qualitative and probabilistic uncertainty. In: 16th ECAI (2004)

12. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially ob-
servable stochastic domains. Artificial Intelligence 101, 99–134 (1998)

13. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and
stochastic search. In: Proc. of 13th National Conference on Artificial Intelligence
(1996)

222 E. Saad

14. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic planning.
Artificial Intelligence 76(1-2), 239–286 (1995)

15. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

16. Littman, M., Goldsmith, J., Mundhenk, M.: The computational complexity of
probabilistic planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)

17. Majercik, S., Littman, M.: MAXPLAN: A new approach to probabilistic planning.
In: Proc. of the 4th International Conference on Artificial Intelligence Planning
(1998)

18. Majercik, S., Littman, M.: Contingent planning under uncertainty via stochastic
satisfiability. Artificial Intelligence 147(1–2), 119–162 (2003)

19. Onder, N., Pollack, M.: Contingency Selection in plan generation. In: 4th ECP
(1997)

20. Saad, E.: Incomplete knowlege in hybrid probabilistic logic programs. In: JELIA
(2006)

21. Saad, E.: A logical approach to qualitative and quantitative reasoning. In: 9th
European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (2007)

22. Saad, E.: Probabilistic planning in hybrid probabilistic logic programs. 1st SUM
(2007)

23. Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic program-
ming framework. Practical Aspects of Declarative Languages (2005)

24. Saad, E., Pontelli, E.: A new approach to hybrid probabilistic logic programs.
Annals of Mathematics and Artificial Intelligence Journal 48(3-4), 187–243 (2006)

25. Scherl, R., Levesque, H.: The frame problem and knowledge producing actions. In:
AAAI (1993)

26. Son, T., Baral, C.: Formalizing sensing actions - a transition function based ap-
proach. Artificial Intelligence 125(1-2), 19–91 (2001)

27. Subrahmanian, V.S., Zaniolo, C.: Relating stable models and AI planning domains.
In: International Conference of Logic Programming, pp. 233–247 (1995)

28. Tu, P., Son, T., Baral, C.: Reasoning and planning with sensing actions, incomplete
information, and static causal laws using logic programming. TPLP 7(4), 377–450

Extended Fuzzy Logic Programs with Fuzzy

Answer Set Semantics

Emad Saad

Department of Computer Science
Gulf University for Science and Technology

Mishref, Kuwait
saad.e@gust.edu.kw

Abstract. This paper extends fuzzy logic programs [12, 42] to allow
the explicit representation of classical negation as well as non-monotonic
negation, by introducing the notion of extended fuzzy logic programs.
We present the fuzzy answer set semantics for the extended fuzzy logic
programs, which is based on the classical answer set semantics of classi-
cal extended logic programs [7]. We show that the proposed semantics is
a natural extension to the classical answer set semantics of classical ex-
tended logic programs [7]. Furthermore, we define fixpoint semantics for
extended fuzzy logic programs with and without non-monotonic nega-
tion, and study their relationship to the fuzzy answer set semantics. In
addition, we show that the fuzzy answer set semantics is reduced to the
stable fuzzy model semantics for normal fuzzy logic programs introduced
in [42]. The importance of that is computational methods developed for
normal fuzzy logic programs can be applied to the extended fuzzy logic
programs. Moreover, we show that extended fuzzy logic programs can
be intuitively used for representing and reasoning about actions in fuzzy
environment.

1 Introduction

Managing uncertainty is vital for real-world applications including those in AI
domains. The literature is rich of proposals with extensions to logic programming
with different notions of uncertainty. According to the way certainty values are
attached to the rules and facts in logic programs, the frameworks for dealing with
uncertainty in logic programming can be classified into two main approaches:
annotation based (AB) approaches and implication based (IB) approaches. The
semantics of logic programs under either approaches depends on the underlying
formalisms which both approaches are based on. These formalisms include fuzzy
set theory [10, 22, 25, 39, 40, 43], possibilistic logic [5], multi-valued logic [11, 12],
and formalisms based on probability theory [2, 15, 26–30, 35–37].

In the implication-based approach, certainty values are associated to the rules
as a whole as well as to the facts present in a program [10, 17, 22, 25, 39, 40, 43].
A rule in the IB approach is an expression of the form

(a← a1, . . . , an, θ)

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 223–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

224 E. Saad

where that a, a1, . . . , an are atoms and θ is the certainty associated to the rule.
Intuitively, the certainty of the rule head a is determined by propagating the
certainty of the rule body a1, . . . , an to the rule head using the certainty θ
attached to the rule. While in the annotation based approach, certainty values
are attached to every sub-goal and head of rules of the logic program [2, 11, 12,
26–30, 35–37]. A rule in the AB approach is an expression of the form

a : μ← a1 : μ1, . . . , an : μn

where a, a1, . . . , an are atoms and μ, μ1, . . . , μn are annotations. The intuitive
meaning of that rule is that if the certainty of a1 is at least μ1, . . . , and the
certainty of an is at least μn, then the certainty of a is at least μ.

The main difference between the annotation based and the implication based
approaches is that the annotation based approach is strictly more expressive
than the implication based approach [12, 27]. This makes AB approach more
suitable for complex applications than IB approach. Moreover, it has been shown
that the AB approach of [12] subsumes van Emden IB approach for fuzzy logic
programming [43]. In addition, as argued in [17], an appropriately defined AB
approach can subsumes any IB approach which uses multisets as the basis of
its semantics. Another difference between the IB and the AB approaches is that
unlike IB, the way a rule is fired in AB approach is close to classical logic
programming [12]. This is an important feature in the AB approach because
it makes any possible extension to more expressive forms of logic programming
with uncertainty in AB approach, including the addition of negation as failure,
classical negation, and disjunctions, is more intuitive and more flexible than the
IB approach as proposed in [28–30, 36, 42].

It is known that non-monotonic negation is vital to capture the principles of
commonsense reasoning [1]. Moreover, it is important to provide the ability to
derive negative conclusions in the absence of positive information [28]. In addi-
tion, classical negation is important to allow reasoning in the presence of incom-
plete knowledge [7]. Therefore, different versions of annotated logic programming
have been extended with non-monotonic negation including multi-valued anno-
tated logic programming [42] and probabilistic annotated logic programming
[28–30, 36]. Although good progress has been made in probabilistic annotated
logic programming with both non-monotonic negation and classical negation
[28–30, 36] and its application to real-world applications [31–34], less progress
and attention has been given to fuzzy annotated logic programming with both
non-monotonic negation and classical negation and its application to real-world
applications.

One of the earliest work to develop semantics for logic programs with uncer-
tainty in the implication-based approach under the fuzzy set theory has been
introduced in [43]. This work was inspired by the need for reasoning in the pres-
ence of uncertainties in rule-based expert systems, instead of reasoning over only
two values true and false as proposed by classical logic programming. In addi-
tion, the use of fuzzy set theory provides a mathematical formalism for reasoning
under uncertainty in rule-based expert systems. Hence, a notion of fuzzy logic

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 225

programs has been proposed, which generalizes definite logic programs (logic
programs without either classical or non-monotonic negation).

A general semantics for annotated logic programs (without negation) based on
lattice theory has been introduced in [12]. This has been done by permitting an-
notation variables to take certainty values over arbitrary lattices of truth values,
instead of using the special lattice of [11]. Programs in the proposed framework
are called generalized annotated programs. A model theoretic semantics of gener-
alized annotated programs has been defined in [12]. Due to its expressive power,
it has been shown that fuzzy logic programs proposed in [43] is subsumed by the
generalized annotated programs of [12].

A stable model semantics and well-founded semantics (based on alternating
fixpoint semantics [8]) have also been presented in [42] for annotated logic pro-
grams with non-monotonic negation. An annotation in [42] is a tuple of truth
values generated from a cross product of complete lattices of arbitrary truth
values. If one complete lattice is used that is formed from the set of values in
[0, 1] and the partial order ≤, the annotated logic programs with non-monotonic
negation in [42] reduce to annotated logic programs with non-monotonic nega-
tion whose underlying semantics is the fuzzy set theory. I.e., [42] reduces to
generalized annotated programs with non-monotonic negation with the fuzzy
set theory as the underlying formalism (forming the notion of normal fuzzy logic
programs (NFLP) whose semantics is the stable fuzzy model semantics and the
alternating fixed point well-founded fuzzy model semantics). In this view, [42]
generalizes [12] with non-monotonic negation under the fuzzy set theory.

Furthermore, in [3], the semantics of [42] has been extended to allow classical
negation as well as non-monotonic negation by proposing alternating fixpoint like
semantics. However, neither answer set semantics nor declarative well-founded
semantics has been given for annotated logic programs of [3].

In this paper we extend annotated logic programs under the fuzzy set theory
[12, 42] to allow both classical negation and non-monotonic negation introducing
the notion of extended fuzzy logic programs (EFLP) and define the fuzzy answer
set semantics of EFLP. We show that fuzzy answer set semantics of EFLP is
a natural extension to the classical answer set semantics of classical extended
logic programs [7]. Moreover, we show that the fuzzy answer set semantics of
EFLP is reduced to stable fuzzy model semantics of normal fuzzy logic programs
(NFLP) of [42]. The importance of that is computational methods developed for
NFLP can be applied to EFLP. Furthermore, we define fixpoint semantics for
EFLP with and without non-monotonic negation, and study their relationship
to the fuzzy answer set semantics of EFLP. We show that a fuzzy answer set of
an extended fuzzy logic program is a minimal fixpoint.

2 Related Work

In [18, 19], a well-founded like semantics extension to implication-based fuzzy
logic programming framework of [43] was introduced along with well-founded
like semantics [8] extension to various probabilistic and non-probabilistic logic

226 E. Saad

programming frameworks with uncertainty [17]. The notion of non-monotonic
negation in [28–30, 36, 42] is more natural and closer to the classical notion
of non-monotonic negation, however the notion of non-monotonic negation in
[18, 19] is closer to classical negation (since fuzzy value of ¬A is equal to 1
minus the fuzzy value of A, where ¬ is the non-monotonic negation in the sense
of [18, 19]). An alternating fixpoint semantics was introduced in [18] to describe
the well-founded like semantics. In [19], a framework to approximate the well-
founded semantics for [17], including the fuzzy logic programming framework of
[43], was described.

Another extension to [43] that allows disjunctions in the head of rules and arbi-
trary connector functions was presented in [40]. A logic program in [40] is a set of
rules of the form g(B1, . . . , Bm)← f(A1, . . . , An), where B1, . . . , Bm, A1, . . . , An

are atoms and f ,g are any arbitrary monotone computable connector functions
over a complete lattice of truth values. This form of rules are expressive enough
to subsume any monotone multi-valued implication-based logic programming
approach including the implication-based fuzzy logic programming without any
form of negation. However, the multi-valued logic programming approach of [40],
although allows disjunctions in the head of rules, it does not allow either classical
or non-monotonic negation.

[22] proposed an extension to the implication-based fuzzy logic programs with
both classical negation and non-monotonic negation. A fuzzy logic program in
[22] is a set of weighted rules, where negative literals (a negated atom with
classical negation) are allowed in the head and the body of rules, and a weight
is a certainty value taken form a residuated lattice of truth values. In addition,
a fuzzy answer set semantics was defined for the fuzzy logic programs of [22].
However, similar to [18, 19], non-monotonic negation in [22] is treated like a
classical negation, where the negation function in the residuated lattice is used
to evaluate a literal negated with the non-monotonic negation. In addition, it is
not clear how negative literals themselves are evaluated in [22], since although
negative literals are allowed in the rules, the fuzzy answer set semantics of [22] is
computed by transforming a fuzzy logic program with negative literals and non-
monotonic negation into a positive form with positive literals (atoms without
classical negation) and non-monotonic negation.

In [10, 25] another implication-based fuzzy logic programming approach with
only non-monotonic negation was presented, in which [10] extended [25] with
any arbitrary monotone fuzzy connector functions. Unlike other approaches to
fuzzy logic programming, [10, 25] considered satisfying fuzzy rules to a maximum
extent rather than completely satisfying the rules. However, in [10, 25], similar
to [18, 19, 22], non-monotonic negation is treated as a classical negation using a
negator function.

An implication-based semantics, based on the possible world semantics, for
disjunctive logic programs with non-monotonic negation has been presented in
[21]. The semantics of [21] is based on multi-valued logic and a stable model se-
mantics has been described. However, similar to [18, 19], non-monotonic negation
is treated as the classical negation in [21].

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 227

An annotation based framework based on multi-valued logic [11] has been
developed to provide a formal semantics to rule based systems with uncertainty,
which uses certainty values as a representation of uncertainty. The purpose for
the development of this approach is to overcome some of the drawbacks of im-
plication based-approaches, such as fuzzy logic programs of [43], and make the
framework suitable to larger application domains. This is achieved by allowing
complex certainty functions to appear in the logic programs and by using more
general propagation functions. Moreover, the semantics is extended to deal with
programs with negation under the assumption that the considered programs are
stratified. In [11], negative literals are allowed in both the heads and the bodies
of the rules, in addition, model theoretic semantics has been given for annotated
programs that are stratified, which have a unique model. A general annotated
logic programming framework with non-monotonic was introduced in [23] that
captures reasoning with any arbitrary annotated multi-valued logic program-
ming approach with non-monotonic negation. Although general framework, [23]
does not allow classical negation in its semantics.

A probabilistic annotated logic programming framework, called Hybrid Prob-
abilistic Programs (HPP), that enables the user to explicitly encode the knowl-
edge about the type of dependencies existing between the probabilistic events
being described by the programs is presented in [2]. HPP generalizes the proba-
bilistic annotated logic programming framework of [26] that is extended in [27].
The probabilistic annotated logic programming framework of [27] was extended
in [28] to allow non-monotonic negation and a probabilistic stable model se-
mantics is developed for the proposed language. The probabilistic stable model
semantics of [28] is computationally expensive, since at every fixpoint iteration
an exponential number of linear programs, each having an exponential number
of variables, needs to be solved. A generalization of HPP of [2] was proposed
in [4] by providing a more general semantical characterization in which HPP
fits. However, [4] does not allow non-monotonic negation in defining its seman-
tics. In addition, it relies on a complex translation process which is exponential
in the size of HPP. A generalization and new semantics for HPP have been
defined in [29, 30, 35–37]. The new semantics, intuitively, capture the proba-
bilistic reasoning according to how likely are the various events to occur. It was
shown that the new HPP framework subsumes Lakshmanan and Sadri’s [15]
probabilistic implication-based framework as well as it is a natural extension of
classical logic programming. In addition, these probabilistic logic programming
approaches [29, 30, 35–37] have proven intuitively applicable in representing and
reasoning about a variety of fundamental probabilistic reasoning tasks including
probabilistic planning [31], probabilistic planning with imperfect sensing actions
[34], stochastic satisfiability [32], and reinforcement learning [33].

3 Fuzzy Sets

In this section we review the basic notions of fuzzy sets as presented in [44]. Let
U be a set of objects. A fuzzy set, F , in U is defined by the grade membership

228 E. Saad

function μF : U → [0, 1], where for each element x ∈ U , μF assigns to x a value
μF (x) in [0, 1]. The support for F denotes the set of all objects x in U for which
the grade membership of x in F is a non-zero value. Formally, support(F) =
{x ∈ U | μF (x) > 0}. The intersection (conjunction) of two fuzzy sets F and F ′

in U , denoted by F ∧f F ′ is a fuzzy set G in U where the grade membership
function of G is μG(x) = min(μF (x), μF ′(x)) for all x ∈ U . However, the union
(disjunction) of two fuzzy sets F and F ′ in U , denoted by F ∨f F ′ is a fuzzy set G
in U where the grade membership function of G is μG(x) = max(μF (x), μF ′(x))
for all x ∈ U . The complement (negation) of a fuzzy set F in U is a fuzzy set in U
denoted by F where the grade membership function of F is μF (x) = 1− μF (x)
for all x ∈ U . A fuzzy set F in U is said to be contained in another fuzzy
set G in U if and only if μF (x) ≤ μG(x) for all x ∈ U . Notice that we use
the notations ∧f and ∨f to denote fuzzy conjunction and fuzzy disjunction
respectively to distinguish them from ∧ and ∨ for propositional conjunction and
disjunction respectively. Furthermore, other function characterizations for the
fuzzy conjunction and fuzzy disjunction operators can be used. However, we will
stick with the min and max function characterizations for the fuzzy conjunction
and fuzzy disjunction as originally proposed in [44].

4 Extended Fuzzy Logic Programs

In this section, we present the syntax of extended fuzzy logic programs, which
are annotated logic programs with both classical negation and non-monotonic
negation whose underlying semantics is the fuzzy set theory.

Let L be an arbitrary first-order language with finitely many predicate sym-
bols, constants, and infinitely many variables. The Herbrand base of L is denoted
by BL. A literal is either an atom a in BL or the negation of a (¬a), where ¬
is the classical negation and not is the non-monotonic negation or the nega-
tion as failure. We denote the set of all literals in L by Lit. More formally,
Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}. The grade membership are assigned to liter-
als in L as values from [0, 1]. Let α1, α2 ∈ [0, 1], the set [0, 1] and the relation
≤ form a complete lattice. In particular, the join (⊕) operation is defined as
α1 ⊕ α2 = max(α1, α2) and the meet (⊗) is defined as α1 ⊗ α2 = min(α1, α2)
w.r.t. ≤. An annotation, α, is either a constant in [0, 1], a variable (annotation
variable) ranging over [0, 1], or f(α1, . . . , αn) (called annotation function) where
f is a representation of a computable total function f : ([0, 1])n → [0, 1] and
α1, . . . , αn are annotations. A fuzzy literal is an expression of the form l : μ,
where l is a literal in Lit and μ is an annotation.

Definition 1 (Rules). An extended fuzzy rule is an expression of the form

l : μ← l1 : μ1, . . . , ln : μn, not ln+1 : μn+1, . . . , not lm : μn+m

where l, li(1 ≤ i ≤ m+n) are literals and μ, μi (1 ≤ i ≤ m+n) are annotations.
A fuzzy rule is an extended fuzzy rule such that m = 0—i.e., there are no

non-monotonic negation in the rule.

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 229

The intuitive meaning of an extended fuzzy rule, in Definition 1, is that, if for
each li : μi (1 ≤ i ≤ n), it is known that the grade membership of li is at least
μi and for each not lj : μj (n + 1 ≤ j ≤ n + m), it is not known that the grade
membership of lj is at least μj , then the grade membership of l is μ.

Definition 2 (Programs). An extend fuzzy logic program is a finite set of
extended fuzzy rules. A fuzzy logic program is an extended fuzzy logic program
where all the rules are fuzzy rules (extended fuzzy rules without non-monotonic
negation).

An extended fuzzy logic program is ground if no variables appear in any of its
rules. The following is a typical extended fuzzy logic program.

Example 1. Consider the following fuzzy planning problem from [38] and
adapted from [13]. An arm of a robot is grasping a block from a table, where
the pickup action the robot performs has effects that are imprecisely defined.
The arm is able to tightly hold a block (hb) with a grade membership 0.9 after
executing the pickup action in the state in which the gripper is dry (gd), and
the arm cannot tightly hold the block (¬hb), after executing the pickup action
in the same state, with grade membership value 0.1. When the pickup action
is executed in the state while the gripper is not dry (¬ gd) causes the block to
be tightly held (hb) with grade membership equal to 0.4 and tightly not held
(¬ hb) with grade membership 0.6. We assume initially the grade membership
of gripper dry (gd) is 0.8 and the grade membership of gripper is not dry (¬gd)
is 0.2. Hence, the distribution of the initial states of the world is given by the
grade membership function μS such that μS(s1) = 0.8 and μS(s2) = 0.2, where
s1 = {gd,¬hb} and s2 = {¬gd,¬hb}, with the understanding that the grade
membership of the other states of the world is 0. This fuzzy planning problem
can be represented as an extended fuzzy logic program as follows which contains
the following extended fuzzy rules.

action(pickup1) : 1← action(pickup2) : 1←
action(pickup3) : 1← action(pickup4) : 1←

where pickup is an action. Action generation rules are represented by the follow-
ing rules that generate action occurrences one at a time, where ACi and ACj

are variables representing actions.

occ(AC, T) : 1 ← action(AC) : 1, not abocc(AC,T) : 1
abocc(ACi, T) : 1← action(ACi) : 1, action(ACj) : 1, occ(ACj , T) : 1, ACi �= ACj

Properties of the world are described by the atoms gd (gripper dry) and hb
(holding block). The set of possible initial states are encoded by the rules:

¬hb(0) : 1 ←
gd(0) : 0.8 ← not ¬gd(0) : 0.2
¬gd(0) : 0.2← not gd(0) : 0.8

230 E. Saad

Let V , V1, and V2 be annotation variables act as place holders, then the following
rules encode that a literal and its negation cannot hold at the same time.

inconsistent : 1← not inconsistent : 1, gd(T) : V1,¬gd(T) : V2

inconsistent : 1← not inconsistent : 1, hb(T) : V1,¬hb(T) : V2

Constraint to prevents executing an action in a state in which its preconditions
does not hold are encoded as:

inconsistent : 1← not inconsistent : 1, occ(pickup1, T) : 1,¬gd(T) : V
inconsistent : 1← not inconsistent : 1, occ(pickup2, T) : 1,¬gd(T) : V
inconsistent : 1← not inconsistent : 1, occ(pickup3, T) : 1, gd(T) : V
inconsistent : 1← not inconsistent : 1, occ(pickup4, T) : 1, gd(T) : V

Frame axioms are encoded as the rules

gd(T + 1) : V1 ← gd(T) : V1, not ¬gd(T + 1) : V2

¬gd(T + 1) : V1 ← ¬gd(T) : V1, not gd(T + 1) : V2

hb(T + 1) : V1 ← hb(T) : V1, not ¬hb(T + 1) : V2

¬hb(T + 1) : V1 ← ¬hb(T) : V1, not hb(T + 1) : V2

Effects of the pickup action are encoded by the rules

hb(T + 1) : 0.9 ← occ(pickup1, T) : 1, gd(T) : V
¬hb(T + 1) : 0.1← occ(pickup2, T) : 1, gd(T) : V
hb(T + 1) : 0.4 ← occ(pickup3, T) : 1,¬gd(T) : V
¬hb(T + 1) : 0.6← occ(pickup4, T) : 1,¬gd(T) : V

4.1 Satisfaction and Models

In this subsection, we define the declarative semantics and the fixpoint semantics
of extended fuzzy logic programs and fuzzy logic programs, along with their
notions of interpretations, models, and satisfaction.

Definition 3. A fuzzy interpretation, I, is a fuzzy set in the set of all literals
Lit where the grade membership function of I is a mapping μI : Lit → [0, 1].
We say that a fuzzy interpretation I is a partial fuzzy interpretation iff the grade
membership function of I is a partial mapping from Lit to [0, 1].

For simplicity, we refer to the fuzzy interpretation as the mapping I : Lit→ [0, 1],
where the grade membership of a literal l in the fuzzy interpretation I is I(l). If
the grade membership of a literal, l, in the fuzzy interpretation, I, is I(l), then the
grade membership of the negation of l (¬l) in I is I(¬l) = 1−I(l). As a literal and
its negation are allowed in a fuzzy interpretation, more conditions are required
to ensure the consistency of fuzzy interpretations. This can be characterized by
the following definition.

Definition 4. A total or partial fuzzy interpretation, I, is inconsistent if there
exists l,¬l ∈ Lit (l,¬l ∈ dom(I)) such that I(¬l)�= 1− I(l).

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 231

Definition 5. Let S be a subset of literals from Lit. We say that S is a set of
consistent literals if there is no pair of complementary literals l and ¬l belonging
to S.

Definition 6. A consistent fuzzy interpretation I is either not inconsistent or
maps a consistent set of literals S to [0, 1].

A fuzzy interpretation is consistent if for every l,¬l ∈ dom(I), I(¬l) = 1− I(l)
or it maps a consistent set of literals into [0, 1]. Let I1 and I2 be two (partial or
total) fuzzy interpretations in Lit and dom(I1), dom(I2) be the domains of I1

and I2 respectively. For a fuzzy interpretation I, dom(I) ⊆ Lit if I is total fuzzy
interpretation and dom(I) � Lit if I is partial fuzzy interpretation. Then, we
say that I1 ≤ I2 iff dom(I1) ⊆ dom(I2) and ∀l ∈ dom(I1) we have I1(l) ≤ I2(l).
The set of all fuzzy interpretations in Lit (denoted by F) and the relation ≤
form a complete lattice. The meet ⊗ and the join ⊕ operations on F are defined
as follows.

Definition 7. Let I1 and I2 be two partial fuzzy interpretations. The meet ⊗
and join ⊕ operation corresponding to the partial order ≤ are defined respectively
as:
• (I1 ⊗ I2)(l) = I1(l)⊗ I2(l) = min(I1(l), I2(l)) for all l defined in both I1 and
I2, otherwise, undefined.
• (I1 ⊕ I2)(l) is equal to

– I1(l)⊕ I2(l) = max(I1(l), I2(l)) for all l defined in both I1 and I2.
– (I1 ⊕ I2)(l) = I1(l) for all l defined in I1 but not defined in I2

– (I1 ⊕ I2)(l) = I2(l) for all l defined in I2 but not defined in I1

– otherwise, undefined.

Definition 8 (Fuzzy Satisfaction). Let P be a ground extended fuzzy logic
program, I be a fuzzy interpretation, and r be

l : μ← l1 : μ1, . . . , ln : μn, not l′1 : β1, . . . , not l′m : βm ∈ P.

Then

• I satisfies li : μi (denoted by I |= li : μi) iff μi ≤ I(li) and li ∈ dom(I).
• I satisfies not l′j : βj (denoted by I |= not l′j : βj) iff βj � I(l′j) and
l′j ∈ dom(I) or l′j /∈ dom(I).
• I satisfies Body ≡ l1 : μ1, . . . , ln : μn, not l′1 : β1, . . . , not l′m : βm (denoted
by I |= Body) iff ∀(1 ≤ i ≤ n), I |= li : μi and ∀(1 ≤ j ≤ m), I |= not l′j : βj.
• I satisfies l : μ← Body iff I |= l : μ or I does not satisfy Body.
• I satisfies P iff I satisfies every extended fuzzy rule in P and for every literal
l ∈ dom(I), we have max{{μ|l : μ← Body ∈ P and I |= Body}} ≤ I(l).

Definition 9 (Models). Let P be an extended fuzzy logic program. A fuzzy
model of P is a total or partial fuzzy interpretation of P that satisfies P .

232 E. Saad

A fuzzy model I is said to be a minimal fuzzy model of an extended fuzzy
logic program, P , if there is no fuzzy model I ′ of P such that I ′ < I w.r.t.
the order ≤. Extended fuzzy logic programs without non-monotonic negation,
which are called fuzzy logic programs, has exactly one minimal fuzzy model. This
is characterized by the following results.

Proposition 1. Let P be a ground fuzzy logic program and I1, I2 be fuzzy models
of P . Then I1 ⊗ I2 is also a fuzzy model of P .

Proposition 2. Let P be a fuzzy logic program. Then, IP = ⊗ {I|I is a fuzzy
model of P } is the least fuzzy model of P .

Example 2. Consider the following fuzzy logic program P :

r : 0.9 ← p : 0.1, q : 0.8
¬r : 0.2 ← p : 0.1,¬q : 0.05
s : 0.18 ← r : 0.35
¬s : 0.55← p : 0.15,¬q : 0.02,¬r : 0.1
¬q : 0.3 ←
p : 0.2 ←

It is easy to verify that the least fuzzy model of P is I, where I(p) = 0.2, I(¬q) =
0.3, I(¬r) = 0.2, I(¬s) = 0.55.

A fuzzy logic program (extended fuzzy logic program without non-monotonic
negation), P , is inconsistent if the least fuzzy model of P is inconsistent. If P is
inconsistent, then we say that the mapping Lit→ {1}, is the least fuzzy model
of P . This implies that every literal with the grade membership 1 follows from P .
We adopt this view from the semantics of classical logic programs with classical
negation [7].

Associated with each fuzzy logic program P , is an operator, TP , called the
fixpoint operator, which maps fuzzy interpretations to fuzzy interpretations.

Definition 10. Let P be a ground fuzzy logic program, I be the set of all fuzzy
interpretations of P , and I be a fuzzy interpretation in I. The fixpoint operator
TP is a mapping TP : I → I which is defined as follows. For each l ∈ Lit,

1. TP (I)(l) = max{{μ|l : μ ← l1 : μ1, . . . , ln : μn ∈ P and I |= (l1 : μ1, . . . , ln :
μn)}}.

2. Otherwise undefined, i.e., there is no fuzzy rule in P such that l appears in
its head and its body is satisfied by I.

If there are no fuzzy rules in P whose heads contain l such that their bodies are
satisfied by a fuzzy interpretation I, then no grade membership value is assigned
to l. This implies that the grade membership of l is unknown with respect to I.
The following definition provides the construction of the least fuzzy model of a
fuzzy logic program as a repeated iteration of the fixpoint operator TP .

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 233

Definition 11. Let P be a ground fuzzy logic program. Then
• TP ↑ 0 = ∅ where ∅ is the empty set.
• TP ↑ α = TP (TP ↑ (α− 1)) where α is a successor ordinal.
• TP ↑ λ = ⊕{TP ↑ α|α < λ} where λ is a limit ordinal.

Lemma 1. The TP operator is monotonic.

The properties of the TP operator guarantee the existence of a least fixpoint.

Proposition 3. Let P be a fuzzy logic program and I be a fuzzy interpretation.
Then I is a fuzzy model of P iff TP (I) ≤ I.

Theorem 1. Let P be a fuzzy logic program and IP be the least fuzzy model of
P . Then, IP = lfp(TP).

Example 3. Consider again the fuzzy logic program, P , presented in Example 2.
It is easy to verify that lfp(TP) assigns 0.2 to p, 0.3 to ¬q, 0.2 to ¬r, and 0.55
to ¬s.
Now we show that the model-theoretic and fixpoint semantics of fuzzy logic
programs generalize their classical counterparts for classical logic programs with
classical negation [7]. A classical logic program P ′ can be represented as a fuzzy
logic program P where each rule

l← l1, . . . , ln ∈ P ′

can be encoded, in P , as a fuzzy rule of the form

l : 1← l1 : 1, . . . , ln : 1

where l, l1, . . . , ln are literals and 1 represents the truth value true.

Proposition 4. Let P ′ be a classical logic program and P be the fuzzy logic
program encoding of P ′. Then, I is the least fuzzy model of P iff I ′ is the classical
least model of P ′ where I(l) = 1 iff l ∈ I ′.

5 Fuzzy Answer Set Semantics

In this section we introduce the notion of fuzzy answer sets for extended fuzzy
logic programs, which generalizes the notion of answer sets of classical extended
logic programs [7]. The fuzzy answer set semantics of extended fuzzy logic pro-
grams is defined by first guessing a fuzzy model I for an extended fuzzy logic
program P , then the notion of the fuzzy reduct of P with respect to I is defined,
which is a fuzzy logic program (an extended fuzzy logic program without non-
monotonic negation). Then, the fuzzy model I of P is verified as a fuzzy answer
set of P if I is recognized as the least fuzzy model of the fuzzy reduct of P w.r.t.
I. Every fuzzy logic program has a unique least fuzzy model.

234 E. Saad

Definition 12 (Fuzzy Reduct). Let P be a ground extended fuzzy logic pro-
gram and I be a fuzzy interpretation. The fuzzy reduct P I of P w.r.t. I is:

P I =

⎧
⎨

⎩
l : μ← l1 : μ1, . . . , ln : μn

l : μ← l1 : μ1, . . . , ln : μn,
not l′1 : β1, . . . , not l′m : βm ∈ P and
∀(1 ≤ j ≤ m), βj � I(l′j) or l′j /∈ dom(I).

⎫
⎬

⎭

The fuzzy reduct, P I , of an extended fuzzy logic program, P , w.r.t. the fuzzy
interpretation, I, is a fuzzy logic program. For any not l′j : βj in the body of
an extended fuzzy rule r ∈ P such that βj � I(l′j) implies that it is not known
that the grade membership of l′j is at least βj given the available knowledge, and
not l′j : βj is removed from the body of r. Moreover, if l′j /∈ dom(I), i.e., l′j is
undefined in I, then it is entirely not known that the grade membership of l′j is
at least βj. In this case, not l′j : βj is also removed from the body of r.

Definition 13. A fuzzy interpretation I of an extended fuzzy logic program P
is a fuzzy answer set of P if I is the least fuzzy model of fuzzy reduct P I of P
w.r.t. I.

Intuitively, the fuzzy answer sets of an extended fuzzy logic program are the
agent’s possible sets of beliefs with associated beliefs degrees. It is worth not-
ing that extended fuzzy logic programs without classical negation, called normal
fuzzy logic programs [42], which are extended fuzzy logic programs without neg-
ative literals neither in head nor in the body of their rules, have fuzzy answer
sets whose domains consisting of only atoms. Moreover, the definition of fuzzy
answer sets for normal fuzzy logic programs coincides with the definition of sta-
ble fuzzy models defined in [42] for the same class of programs. This implies that
the fuzzy answer sets of a normal fuzzy logic program are equivalent to its stable
fuzzy models. This means that the application of fuzzy answer set semantics to
normal fuzzy logic programs is reduced to the stable fuzzy model semantics for
normal fuzzy logic programs.

However, there are two main differences between the two semantics. A stable
fuzzy model for a normal fuzzy logic program is a total fuzzy model, however,
the fuzzy answer set of a normal fuzzy logic program could be a partial fuzzy
model. Furthermore, for each atom, a, with grade membership value 0 in a stable
fuzzy model I of a normal fuzzy logic program P , we have a undefined in the
fuzzy answer set I ′ of P that is equivalent to I. I.e., a is false in the stable fuzzy
model I of P , but a is undefined and hence unknown in the fuzzy answer set I ′

equivalent to I.

Proposition 5. Let P be a normal fuzzy logic program. Then I is a fuzzy answer
set for P iff I ′ is a stable fuzzy model of P , where I(a) = I ′(a) for I ′(a) �= 0
and I(a) is undefined for I ′(a) = 0.

Proposition 5 shows that there is a simple reduction from extended fuzzy logic
programs with fuzzy answer set semantics to normal fuzzy logic programs with
stable fuzzy model semantics [42]. The importance of that is, under the consis-
tency condition, computational methods developed for normal fuzzy logic pro-
grams can be applied to extended fuzzy logic programs.

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 235

Example 4. Considering only one time step, i.e. T = 1, the extended fuzzy logic
program of Example 1 has four fuzzy answer sets as follows. For the ease of
presentation, we present these fuzzy answer sets as sets of annotated literals as:

I1 = {gd(0) : 0.8,¬hb(0) : 1, occ(pickup1, 0) : 1, gd(1) : 0.8, hb(1) : 0.9, . . .}
I2 = {gd(0) : 0.8,¬hb(0) : 1, occ(pickup2, 0) : 1, gd(1) : 0.9,¬hb(1) : 0.1, . . .}
I3 = {¬gd(0) : 0.2,¬hb(0) : 1, occ(pickup3, 0) : 1,¬gd(1) : 0.2, hb(1) : 0.4, . . .}
I4 = {¬gd(0) : 0.2,¬hb(0) : 1, occ(pickup4, 0) : 1,¬gd(1) : 0.2,¬hb(1) : 0.6, . . .}

Theorem 2. Every fuzzy logic program P has a unique fuzzy answer set I iff I
is the least fuzzy model of P .

In the rest of this section we define the immediate consequence operator of ex-
tended fuzzy logic programs and study its relationship to the fuzzy answer sets
semantics.

Definition 14. Let P be a ground extended fuzzy logic program and I ∈ I be
a fuzzy interpretation. The immediate consequence operator T ′

P is a mapping
T ′

P : I → I which is defined as:

1. T ′
P (I)(l) = max

{{

μ
l : μ← l1 : μ1, . . . , ln : μn, not l′1 : β1, . . . , not l′m : βm ∈ P and

∀(1 ≤ i ≤ n), μi ≤ I(li) and ∀(1 ≤ j ≤ m), βj � I(l′j) or l′j /∈ dom(I)

}}

2. Undefined otherwise, i.e., there is no extended fuzzy rule in P such that l appears in
its head and its body is satisfied by I.

Obviously, T ′
P extends TP to handle fuzzy rules with non-monotonic negation,

hence, T ′
P = TP for any fuzzy logic program P .

Theorem 3. Let P be an extended fuzzy logic program without non-monotonic
negation. Then T ′

P = TP .

The following example shows that T ′
P is not monotonic w.r.t. the order ≤.

Proposition 6. T ′
P is not monotonic w.r.t. the order ≤.

Example 5. Consider the extended fuzzy logic program P : ¬p : 0.25 ← not q :
0.7. Let I1 = ∅ be a fuzzy interpretation for P . Furthermore, let I2 be a fuzzy
interpretation for P that assigns 0.8 to q. Hence, I1 ≤ I2. But T ′

P (I1) assigns
0.25 to ¬p and T ′

P (I2) = ∅. Thus, T ′
P (I1) � T ′

P (I2)

The following results show the relationship between the fuzzy answer set seman-
tics and the T ′

P operator of extended fuzzy logic programs.

Lemma 2. Let P be an extended fuzzy logic program and I be a fuzzy answer
set of P . Then T ′

P (I) = I, i.e., I is a fixpoint of T ′
P .

Theorem 4. Let P be an extended fuzzy logic program and I be a fuzzy answer
set of P . Then I is a minimal fixpoint of T ′

P .

236 E. Saad

It is not the case that every minimal fixpoint of T ′
P is a fuzzy answer set of P .

Consider the following extended fuzzy logic program P .

Example 6. Let P be an extended fuzzy logic program that contains

p : 0.2← not p : 0.2
p : 0.2← ¬q : 1

We can see that the fuzzy interpretation I, where I(p) = 0.2 and I(¬q) = 1
is a minimal fixpoint of T ′

P . However, the fuzzy reduct, P I , of P w.r.t. I is
p : 0.2← b : 1, where lfp(TP I) = ∅. Thus, I is not a fuzzy answer set for P .

Now, we show that the fuzzy answer set semantics of extended fuzzy logic
programs extends the classical answer set semantics of classical extended logic
programs [7]. A classical extended logic program P ′ can be represented as an
extended fuzzy logic program P where each classical extended rule

l ← l1, . . . , lm, not lm+1, . . . , not ln

in P ′ can be encoded as an extended fuzzy rule of the form

l : 1← l1 : 1, . . . , lm : 1, not lm+1 : 1, . . . , not ln : 1

in P , where l, l1, . . . , lm, lm+1, . . . , ln are literals and 1 represents the truth value
true. The following result shows that classical extended logic programs [7] are
subsumed by extended fuzzy logic programs.

Proposition 7. Let P ′ be a classical extended logic program. Then I ′ is a clas-
sical answer set of P ′ iff I is a fuzzy answer of an extended fuzzy logic program
P equivalent to P ′, where I(l) = 1 iff l ∈ I ′ and I(l) is undefined iff l /∈ I ′.

6 Conclusions

We presented the notion of extended fuzzy logic programs that extend annotated
logic programs under the fuzzy set theory [12, 42] to allow both classical nega-
tion and non-monotonic negation. We defined the fuzzy answer set semantics of
extended fuzzy logic programs. We showed that the fuzzy answer set semantics
of extended fuzzy logic programs generalize the classical answer set semantics
of classical extended logic programs [7]. Furthermore, we showed that stable
fuzzy model semantics of normal fuzzy logic programs [42] is subsumed by the
fuzzy answer set semantics. The importance of that is computational methods
developed for normal fuzzy logic programs can be applied to extended fuzzy
logic programs. Moreover, we defined fixpoint semantics for extended fuzzy logic
programs with and without non-monotonic negation, and studied their relation-
ship to the fuzzy answer set semantics. We showed that a fuzzy answer set of an
extended fuzzy logic program is a minimal fixpoint of the fixpoint operator of

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 237

the extended fuzzy logic program. We showed that actions with fuzzy effects can
be intuitively represented and reasoned about by extended fuzzy logic programs
with fuzzy answer set semantics.

References

1. Apt, K.R., Bol, R.N.: Logic programming and negation:a survey. Journal of logic
programming 19(20), 9–71 (1994)

2. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic program. Journal of Logic
Programming 43(3), 187–250 (2000)

3. Damasio, C.V., et al.: Coherent well-founded annotated logic programs. In: LP-
NMR. Springer, Heidelberg (1999)

4. Damasio, C.V., Moniz Pereira, L.: Hybrid probabilistic logic programs as resid-
uated logic programs. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G. (eds.)
JELIA 2000. LNCS (LNAI), vol. 1919, pp. 57–72. Springer, Heidelberg (2000)

5. Dubois, D., et al.: Towards possibilistic logic programming. In: ICLP. MIT Press,
Cambridge (1991)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICSLP. MIT Press, Cambridge (1988)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 363–385 (1991)

8. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences 47(1), 185–221 (1993)

9. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of ACM 38(3), 620–650 (1991)

10. Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: General fuzzy answer set
programs. In: International Workshop on Fuzzy Logic and Applications (2009)

11. Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty.
In: Intl. Conf. on Database Theory. Springer, Heidelberg (1988)

12. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming 12, 335–367 (1992)

13. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic planning.
Artificial Intelligence 76(1-2), 239–286 (1995)

14. Lakshmanan, V.S.L., Sadri, F.: Modeling uncertainty in deductive databases. In:
Conf. on Database Expert Systems and Applications. Springer, Heidelberg (1994)

15. Lakshmanan, V.S.L., Sadri, F.: Probabilistic deductive databases. In: Intl. Logic
Programming Symposium. MIT Press, Cambridge (1994)

16. Lakshmanan, V.S.L., Sadri, F.: Uncertain deductive databases: a hybrid approach.
Information Systems 22(8), 483–508 (1997)

17. Lakshmanan, V.S.L., Shiri, N.: A Parametric approach to deductive databases with
uncertainty. IEEE TKDE 13(4), 554–570 (2001)

18. Loyer, Y., Straccia, U.: The well-founded semantics in normal logic programs with
uncertainty. In: FLOPS. Springer, Heidelberg (2002)

19. Loyer, Y., Straccia, U.: The approximate well-founded semantics for logic programs
with uncertainty. In: 28th International Symposium on Mathematical Foundations
of Computer Science (2003)

20. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic Web. Fundamenta Informaticae 82(3), 289–310 (2008)

238 E. Saad

21. Lukasiewicz, T.: Many-valued disjunctive logic programs with probabilistic seman-
tics. In: LPNMR (1999)

22. Madrid, N., Ojeda-Aciego, M.: Towards a fuzzy answer set semantics for residuated
logic programs. In: Proceedings of the IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology (2008)

23. Nerode, A., Remmel, J., Subrahmanian, V.S.: Annotated nonmonotone rule sys-
tems. Theoretical Computer Science 171(1-2), 77–109 (1997)

24. Niemela, I., Simons, P.: Efficient implementation of the well-founded and stable
model semantics. In: Joint International Conference and Symposium on Logic Pro-
gramming, pp. 289–303 (1996)

25. Nieuwenborgh, D., Cock, M., Vermeir, D.: An introduction to fuzzy answer set
programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–388
(2007)

26. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information &
Computation 101(2) (1992)

27. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective
and conditional probabilities in deductive databases. ARJ 10(2) (1993)

28. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive
databases. Information & Computation 110(1) (1994)

29. Saad, E.: Incomplete knowlege in hybrid probabilistic logic programs. In: 10th
European Conference on Logics in Artificial Intelligence (2006)

30. Saad, E.: A logical approach to qualitative and quantitative reasoning. In: 9th
European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (2007)

31. Saad, E.: Probabilistic planning in hybrid probabilistic logic programs. In: 1st
International Conference on Scalable Uncertainty Management (2007)

32. Saad, E.: On the relationship between hybrid probabilistic logic programs and
stochastic satisfiability. In: 2nd 1st International Conference on Scalable Uncer-
tainty Management (2008)

33. Saad, E.: A logical framework to reinforcement learning using hybrid probabilis-
tic logic programs. In: 2nd 1st International Conference on Scalable Uncertainty
Management (2008)

34. Saad, E.: Probabilistic planning with imperfect sensing actions using hybrid prob-
abilistic logic programs. In: Proceedings of the Ninth International Workshop on
Computational Logic in Multi-Agent Systems (2008)

35. Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic program-
ming framework. In: Practical Aspects of Declarative Languages (2005)

36. Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic
negation. In: International Conference of Logic Programming. Springer, Heidelberg
(2005)

37. Saad, E., Pontelli, E.: A new approach to hybrid probabilistic logic programs.
Annals of Mathematics and Artificial Intelligence Journal 48(3-4), 187–243 (2006)

38. Saad, E., Elmorsy, S., Gabr, M., Hassan, Y.: Reasoning about actions in fuzzy
environment. In: The World Congress of the International Fuzzy Systems Associa-
tion/European society for Fuzzy Logic and Technology, IFSA/EUSFLAT-09 (2009)

39. Shapiro, E.: Logic Programs with Uncertainties: A Tool for implementing expert
systems. In: Proc. of IJCAI, pp. 529–532 (1983)

Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics 239

40. Straccia, U., Ojeda-Aciego, M., Damasio, C.V.: On fixed-points of multivalued
functions on complete lattices and their application to generalized logic programs.
SIAM Journal on Computing 38(5), 1881–1911 (2009)

41. Subrahmanian, V.S.: On the semantics of quantitative logic programs. In: Symp.
on Logic Programming, pp. 173–182. IEEE Computer Society, Los Alamitos (1987)

42. Subrahmanian, V.S.: Amalgamating knowledge bases. ACM TDS 19(2), 291–331
(1994)

43. van Emden, M.H.: Quantitative deduction and Its fixpoint theory. Journal of Logic
Programming 4(1), 37–53 (1986)

44. Zadeh, L.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)
45. Zadeh, L.: Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Trans. on Systems, Man, and Cybernetics SMC-3, 28–44
(1973)

Finite Satisfiability in Infinite-Valued

�Lukasiewicz Logic

Steven Schockaert1, Jeroen Janssen2, Dirk Vermeir2, and Martine De Cock1,3

1 Dept. of Applied Mathematics and Computer Science, Ghent University, Belgium
{steven.schockaert,martine.decock}@ugent.be

2 Dept. of Computer Science, Vrije Universiteit Brussel, Belgium
{jeroen.janssen,dvermeir}@vub.ac.be

3 Institute of Technology, University of Washington, Tacoma, WA, USA
mdecock@u.washington.edu

Abstract. Although it is well-known that every satisfiable formula in
�Lukasiewicz’ infinite-valued logic L∞ can be satisfied in some finite-
valued logic, practical methods for finding an appropriate number of
truth degrees do currently not exist. As a first step towards efficient rea-
soning in L∞, we propose a method to find a tight upper bound on this
number which, in practice, often significantly improves the worst-case
upper bound of Aguzzoli et al.

1 Introduction

The boolean satisfiability problem SAT plays a central role in many areas of
computer science at large, and artificial intelligence in particular. Consequently,
substantial research efforts have been devoted at finding efficient methods, both
complete and heuristic, for solving SAT [22]. The success of this line of research
has led to efficient solvers for many of the AI formalisms that are polynomially
reducible to SAT, including constraint satisfaction [20], planning [6], answer set
programming [12], and temporal reasoning [17].

When moving from classical propositional logic to (propositional) multi-valued
and fuzzy logics, the central importance of the satisfiability problem seems pre-
served. Indeed, as exemplified by existing work on fuzzy description logics [19],
fuzzy answer set programming [10], or fuzzy spatial reasoning [18], there is a
tendency to tackle fuzzy reasoning tasks by reducing them to a fuzzy version of
SAT (even if the connection with SAT is not always made explicit). Essentially,
a given problem is then translated into fuzzy clauses of the following form:

〈0.4 → (x ⊗ y) ≥ 0.7〉 ∨ 〈x ∨ z ≤ 0.7〉 (1)

When all connectives correspond to the �Lukasiewicz operators, satisfiability
checking for fuzzy clauses can be reduced to mixed integer programming (MIP),
which has nice theoretical properties; other types of mathematical programming
can be used for other fuzzy logic connectives [4]. Unfortunately, the limited
scalability of MIP and mathematical programming in general, quickly becomes

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 240–254, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 241

problematic when we are faced with non-trivial fuzzy SAT instances. In practice,
it is therefore more common to assume only a finite number of truth degrees,
taken from a set {0, 1

k , 2
k , . . . , 1} with k ∈ N \ {0}, such that other techniques

than MIP can be employed. In the finite case, the fuzzy SAT problem can, among
others, be solved by reducing it to boolean satisfiability, by treating it as a con-
straint satisfaction problem, or by using dedicated solvers. Moreover, by keeping
the number of truth degrees sufficiently small (e.g. k = 10), problem instances
of a reasonable size can thus be addressed.

The choice of an appropriate number of truth degrees, however, is more im-
portant than is generally acknowledged. In particular, let ⊕, → and ¬ be the
disjunction, implication and negation from �Lukasiewicz logic (see Section 3); for
each l in N \ {0}, we can construct the following two fuzzy clauses:

〈b ⊕ · · · ⊕ b
︸ ︷︷ ︸

l−1

→ ¬b ≥ 1〉 〈¬b → b ⊕ · · · ⊕ b
︸ ︷︷ ︸

l−1

≥ 1〉 (2)

It is not hard to prove that these clauses can only be jointly satisfied if b is
interpreted as 1

l . This means in particular that the number k+1 of truth degrees
considered must be such that k is a multiple of l. Thus, the practice of choosing
an (arbitrary) finite number of truth degrees should be considered as a sound,
but incomplete approach to satisfiability checking, in the sense that when a set
of fuzzy clauses is found to be unsatisfiable, this might be inherent to the fuzzy
clauses, or it might be an artifact of the particular number of truth degrees that
was chosen. On the other hand, it was shown in [14] that for every set of formulas
Θ that are satisfiable in infinite-valued �Lukasiewicz logic (L∞), there exists a
finite number k such that Θ is satisfiable in k + 1 valued �Lukasiewicz logic (Lk).
Unfortunately, in practice, finding this particular value of k seems as hard as
solving the satisfiability problem itself. As an alternative, we show in this paper
how a reasonable upper bound on the value of k can be obtained in polynomial
time.

2 Related Work

Theoretical work on the logic L∞ was essentially initiated by McNaughton [13],
who proved a fundamental representation theorem, relating formulas in L∞ to
piecewise linear functions with integer coefficients. Using this theorem, the NP-
completeness of satisfiability checking in L∞ was established by Mundici in [14].
Strengthening a related result from Mundici, in [2] it is shown that the validity of
a formula φ in L∞ can be decided by checking its validity in Lk, for k = 2�φ with
�φ the number of variable occurrences in φ1. It is furthermore shown in [2] that
validity can also be checked by checking validity in Lk for every strictly positive
integer k not larger than

(

�φ
n

)n

, where n is the number of different variables.

1 Some care should be taken when counting variable occurrences, since the number of
occurrences may be different in two semantically equivalent formulas.

242 S. Schockaert et al.

Furthermore, it has been shown in [1] that this latter upper bound is (asymptot-
ically) optimal. Concerning satisfiability, a difference should be made between
strong and weak satisfiability (see Section 3.1). It can easily be seen that bounds
for deciding weak satisfiability follow immediately from bounds for deciding va-
lidity. For strong satisfiability, a similar result follows from [2] (Theorem 14), i.e.
the satisfiability of φ in L∞ can be decided by checking its satisfiability in Lk

for every k ≤
(

�φ
n

)n

. In contrast to the case for weak satisfiability, however, it is

not sufficient to check strong satisfiability for k = 2�φ; note that this was already
illustrated by (2) which cannot be satisfied for any number of truth degrees k
of the form k = 2i when e.g. l = 3. Despite the theoretical importance of these
results, their immediate practical value remains limited, due to the exponential
nature of the provided upper bounds. In this paper, we show how the bound
for strong satisfiability can nonetheless be considerably tightened in many prac-
tical situations by looking at more features than only the number of variables
and variable occurrences. Interestingly, results from [2] have been generalized to
other t-norm based logics in [3].

Regarding computational approaches to (strong) satisfiability checking in
infinite-valued �Lukasiewicz logic, it is easy to see that for each set of formulas
Θ there exist a (possibly exponential) number of systems of linear inequalities,
such that Θ is satisfiable iff at least one of these systems of inequalities has a
solution. Hähnle [8] showed how the need for more than one system of linear
inequalities can be eliminated by introducing 0-1 integer variables, leading to
one MIP problem instance. An alternative reduction to MIP has been presented
in [16], based on a Kripke semantics of L∞. Other authors have looked at proof
calculi which are more similar to the calculi used for classical propositional logic,
typically focusing on generalizations of Horn or Krom clauses for which reason-
ing is in P. For instance, in [21] a resolution principle is discussed for a clause
form based on McNaughton functions. In [15], a purely syntactical clause form
is used, which covers, however, only a subfragment of the formulas that can be
expressed in �Lukasiewicz logic.

In the case of multi-valued logics with a finite number of truth degrees, most
work is based on the fact that any formula, regardless of the specific interpre-
tation of the logical connectives, can be translated in a satisfiability-preserving
way to a boolean combination of expressions of the form x ∈ S, with x a variable
and S a set of truth degrees [7]; we refer to [9] for an overview.

3 Basic Notions

3.1 Fuzzy Clauses

We define a fuzzy clause as the disjunction of zero or more fuzzy literals, which are
in turn defined as either an upper bound or a lower bound on a fuzzy expression.
Fuzzy expressions are either constants or variables, or the application of a fuzzy
logic operator on fuzzy expressions. In this paper, we will only consider the

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 243

�Lukasiewicz connectives as fuzzy logic operators, i.e. the operators ⊗, ⊕, →, ∧,
∨ and ¬ are interpreted for a and b in [0, 1] as

a ⊗ b = max(0, a + b − 1) a ⊕ b = min(1, a + b) a → b = min(1, 1 − a + b)
a ∧ b = min(a, b) a ∨ b = max(a, b) ¬a = 1 − a

Note that all these operators can be defined in terms of → and 0: ¬a = a → 0,
a⊗b = ¬(a → ¬b), a⊕b = ¬(¬a⊗¬b), a∧b = a⊗(a → b), and a∨b = ¬(¬a∧¬b).
Constants are taken from a finite set Mk = {0, 1

k , . . . , k−1
k , 1} with k ∈ N \ {0},

and variables are taken from some finite set V . When there is more than one
fuzzy literal in a fuzzy clause, angle brackets 〈.〉 are used around the fuzzy literals
for clarity (see (1)). Furthermore, as a notational convenience, we sometimes use
expressions of the form φ = λ, with φ a fuzzy expression and λ ∈ [0, 1], as a
shorthand for the conjunction of fuzzy literals φ ≥ λ and φ ≤ λ.

The notion of satisfiability for a set of fuzzy clauses Θ is defined as follows. Let
M be a subset of [0, 1]; then an M -interpretation is any mapping from V to M .
We write [φ]I for the valuation of a fuzzy expression φ under the interpretation
I. An M -interpretation I satisfies a fuzzy literal φ ≥ λ, resp. φ ≤ λ, if it holds
that [φ]I ≥ λ, resp. [φ]I ≤ λ; I satisfies a fuzzy clause if it satisfies at least
one of its disjuncts. Next, I satisfies a set of fuzzy clauses Θ iff I satisfies each
of the fuzzy clauses in Θ. Such an interpretation I is called an M -model of
Θ. Finally, the set Θ is called M -satisfiable iff Θ has at least one M -model.
For convenience [0, 1]-interpretations, [0, 1]-models, and [0, 1]-satisfiability will
simply be referred to as interpretations, models, and satisfiability when there
is no cause for confusion. Similarly, when M = {0, 1

k , . . . , 1} we will talk about
k-interpretations, k-models and k-satisfiability. It is interesting to note that the
satisfiability problem is NP-complete even when every fuzzy clause only contains
one fuzzy literal.

In �Lukasiewicz logic, a well-formed formula is either a variable, or the appli-
cation of ⊕ or ¬ to well-formed formulas. We call a formula φ from L∞ satisfi-
able if there is an interpretation I such that [φ]I = 1. Alternatively, φ is some-
times called satisfiable as soon as [φ]I > 0 for some I. To avoid confusion, we
will sometimes refer to the former variant as strong satisfiability and to the latter
as weak satisfiability. Note that strong satisfiability indeed implies weak satis-
fiability. Clearly, every well-formed formula φ from �Lukasiewicz logic naturally
corresponds to the fuzzy clause 〈φ ≥ 1〉, in the sense that the former is (strongly)
satisfiable iff the latter is satisfiable. Conversely, it is also possible to convert a
fuzzy clause to a well-formed formula from L∞ in a satisfiability-preserving way.
To see this, first note that →, ⊗, ∧ and ∨, as defined above, can all be represented
in terms of ⊕ and ¬. Furthermore, every fuzzy clause can be converted into a fuzzy
clause of the form φ ≥ 1, where φ is a well-formed formula from L∞, which is sat-
isfiable iff φ is strongly satisfiable. For example φ ≥ λ is satisfiable iff λ → φ ≥ 1 is
satisfiable; 〈φ1 ≥ 1〉∨ 〈φ2 ≥ 1〉 is satisfiable iff max(φ1, φ2) ≥ 1 is satisfiable; and
rational constants can be replaced by variables, using fuzzy clauses similar to (2).
Fuzzy clauses seem to be more convenient in practical applications, whereas the

244 S. Schockaert et al.

well-formed formulas from �Lukasiewicz logic make it easier to study theoretical
properties of the logic (axiomatization, completeness, etc.).

Example 1. Consider the following sets Θn of fuzzy clauses:

{a1 ⊗ a1 = 0.5, a2 ⊗ a2 → a1 ≥ 1, a3 ⊗ a3 → a2 ≥ 1, . . . , an ⊗ an → an−1 ≥ 1,

a1 → a2 ⊗ a2 ≥ 1, a2 → a3 ⊗ a3 ≥ 1, . . . , an−1 → an ⊗ an ≥ 1}
Then Θn is k-satisfiable iff k is a multiple of 2n+1, its unique2 k-model I being
defined by I(ai) = 1 − (1

2)i+1. The exponential number of truth degrees needed
illustrates that we cannot, in general, significantly strengthen the upper bound
from [2] by only looking at the number of variables and variable occurrences.

3.2 Disjunctive Linear Relations

A linear relation is an expression of the form a1v1 +a2v2 + · · ·+anvn �b where ai

and b are real numbers, and � is ≥ or ≤. A disjunctive linear relation (DLR) is
an expression of the form γ1∨γ2∨· · ·∨γs with each γi a linear relation. We write
vars(γ) to denote the set of variables occurring in a DLR γ (with a non-zero
coefficient), and vars(Γ) =

⋃

γ∈Γ vars(γ) for a set of DLRs Γ . An M -solution of
Γ is a mapping from vars(Γ) to M (M ⊆ R) which verifies at least one disjunct
from every DLR in Γ . Let Θ be a set of fuzzy clauses involving only constants
from the set Mk. Then we can construct a set Γ of DLRs in polynomial time
such that all coefficients that occur in the linear relations are integers and the
right-hand sides are of the form l

k for some l in N, and such that every [0, 1]-
solution of Γ corresponds to a model of Θ and vice versa. In particular, writing
L(θ) for the set of DLRs corresponding to the fuzzy clause θ, we have

L(¬α ≤ λ) = L(α ≥ 1 − λ)
L(¬α ≥ λ) = L(α ≤ 1 − λ)

L(α1 ⊕ α2 ≤ λ) = L(α1 ≤ x1) ∪ L(α1 ≥ x1) ∪ L(α2 ≤ x2) ∪ L(α2 ≥ x2)
∪ {x1 + x2 ≤ λ ∨ λ ≥ 1}

L(α1 ⊕ α2 ≥ λ) = L(α1 ≤ x1) ∪ L(α1 ≥ x1) ∪ L(α2 ≤ x2) ∪ L(α2 ≥ x2)
∪ {x1 + x2 ≥ λ, λ ≤ 1}

L(α1 ∨ α2 ≤ λ) = L(α1 ≤ λ) ∪ L(α2 ≤ λ)
L(α1 ∨ α2 ≥ λ) = L(α1 ≤ x1) ∪ L(α1 ≥ x1) ∪ L(α2 ≤ x2) ∪ L(α2 ≥ x2)

∪ {x1 ≥ λ ∨ x2 ≥ λ}
The translations for the other operators are obtained by writing them in terms
of ¬, ⊕ and ∨, e.g. L(α1 → α2 ≤ λ) = L(¬α1 ⊕ α2 ≤ λ). For disjunctive
clauses, the transformation is performed by applying the transformation to each
of the disjuncts and converting the result to conjunctive-normal form. In the
transformations above, x1 and x2 refer to fresh variables. When α1 and α2 are
2 We assume that V contains no irrelevant variables, i.e. V = {a1, . . . , an}.

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 245

variables or constants, we can of course have simpler translations, e.g. L(α1 ⊕
α2 ≤ λ) = {α1 + α2 ≤ λ ∨ λ ≥ 1}. Other optimizations are possible, resulting
in a more concise translation; we will briefly come back to this in Section 4.3.
Note that λ can be a variable or a constant of the form l

k , i.e. the argument
of the mapping L does not need to be a fuzzy clause. Also note that we are
slightly abusing notation, in the sense that e.g. x1 + x2 ≥ λ should be read as
x1 + x2 − λ ≥ 0 when λ is a variable.

Geometrically, the solution space of Γ corresponds to the union of a finite
number of polyhedra, whose dimension is at most |vars(Γ)|. Now assume that Θ
is satisfiable; then there is at least one non-empty polyhedron. All points in these
polyhedra, and in particular also the vertices of these polyhedra, correspond to
models of Θ. From Cramer’s rule, we know that the coordinates (x1, . . . , xm) of
such vertices are of the form det(Ai)

det(A) where A is an m × m matrix whose rows
correspond to the coefficients of particular disjuncts of particular DLRs from Γ
and columns are associated to the corresponding variables; Ai is the matrix that
is obtained by replacing the ith column of A by the corresponding right-hand
sides. Every xi is the interpretation of a given variable in the associated model
of Θ; if m is smaller than the number of variables of Γ , the remaining variables
are unconstrained. Note that both k · det(Ai) and det(A) are integers, since all
the coefficients in Γ are integers and the right-hand sides are of the form l

k .
This means that Θ is k′-satisfiable for k′ = k · abs(det(A)). Although finding an
appropriate matrix A is in itself NP-hard, this idea can be exploited by deriving
upper bounds for the value of det(A). This idea was pursued in [3], where, using

the Hadamard inequality, it led to the aforementioned upper bound of
(

�φ
n

)n

.

3.3 Cycle Basis

We associate a bipartite graph GΓ = (N, E) with Γ as follows. The set N
contains one node ν(γ) for every DLR γ in Γ (called a DLR-node) and one node
ν(v) for every variable v occurring in Γ (called a variable-node). Furthermore,
there is an edge in E between ν(γ) and ν(v) iff v ∈ vars(γ).

Each cycle in an undirected graph with ne edges can be represented as an ne-
dimensional vector v = (vi) over F2, the Galois field of order 2. Every dimension
corresponds to a specific edge, and vi = 1 iff the corresponding edge is contained
in the cycle. The vector space (over F2) spanned by all the cycle vectors of G
is called the cycle space of G. It can be shown that the dimension of the cycle
space is equal to ne − nv + nc, where ne, nv and nc are the number of edges,
nodes and connected components of G [5]. Finding a cycle basis of a graph is in
P, even when some notion of minimality is required [11]

4 Relating Cycles to Truth Degrees

Throughout this section, we let Θ be some set of fuzzy clauses, involving only
constants from Mk, and we let Γ be an equivalent set of DLRs with associated

246 S. Schockaert et al.

graph GΓ = (N, E). We use A to denote the set of coefficient matrices corre-
sponding to possible vertices of the polyhedra that define the solution space of
Γ . More precisely, there is an A in A for every subset of linear relations occur-
ring as disjuncts in Γ such that the number of variables involved is equal to
the size of this subset. Most importantly, for every vertex of the aforementioned
polyhedra, there will be a corresponding A in A. From the preceding discussion,
we therefore know that if Θ is satisfiable, there will be an A in A such that Θ
is also k′-satisfiable for k′ = k · abs(det(A)). Our aim is therefore to provide an
upper bound for maxA∈A abs(det(A)).

If GΓ consists of several connected components G1, . . . , Gs, then there must
be a corresponding partitioning Γ = Γ1 ∪ · · · ∪ Γs and Θ = Θ1 ∪ · · · ∪ Θs such
that vars(Γi)∩vars(Γj) = ∅ for i �= j, and similar for Θi and Θj . Thus, we have
that Θ is satisfiable iff each of the subproblems Θi is satisfiable. Without loss of
generality, we can therefore assume henceforth that GΓ is connected.

If GΓ does not contain any cycles, the following upper bound can be obtained.

Lemma 1. If GΓ does not contain any cycles, it holds for any A = (aij) in A
that

abs(det(A)) ≤ max
σ

m
∏

i=1

abs(aiσ(i))

where m is the dimension of A, and the maximum is taken over all permutations
σ of (1, . . . , m).

Note that when Γ is obtained using the procedure from Section 3.2, all non-zero
coefficients are in fact -1 or 1, in which case we obtain abs(det(A)) ∈ {0, 1}.
Certain optimizations, however, may lead to different coefficients, in which case
we still need to obtain an upper bound for abs(aiσ(i)) (recall that the matrix
A is unknown). A straightforward possibility is to use

∏

γ∈Γ c(γ), with c(γ) the
largest value among the absolute values of the coefficients occurring in γ.

In the general case, where GΓ contains cycles, we can split the problem in
two subproblems, as follows. Let C be a cycle appearing in GΓ , and let n be
a node through which this cycle passes. Furthermore, let E1 ∪ E2 be the set
of edges that are incident with n, such that both E1 and E2 contain an edge
from cycle C. Then let G1 = (N, E \ E1) and G2 = (N, E \ E2), and let Γ1 and
Γ2 be the sets of DLRs corresponding to G1 and G2 respectively. Note that a
given edge corresponds to the fact that a given variable occurs in a given DLR
with a non-zero coefficient. Thus, it is clear that Γ1 and Γ2 can be obtained
from Γ by removing the occurrences of particular variables, i.e. by replacing
their coefficients with 0. Furthermore, let A1 and A2 be the sets of coefficient
matrices corresponding to Γ1 and Γ2. Then it is straightforward to show the
following lemma.

Lemma 2. For any A in A, there is an A1 in A1 and an A2 in A2 such that

abs(det(A)) ≤ abs(det(A1)) + abs(det(A2))

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 247

Note in particular that A1 and A2 correspond to subproblems in which the
dimension of the cycle basis of the associated graph has decreased by at least one.
Both subproblems can be further divided into subproblems with a cycle space
of an even smaller dimension. This can be repeated until a set of subproblems is
obtained whose associated graphs do no longer contain any cycles. It is easy to
see that the number of subproblems can at most be 2dim(GΓ), where dim(GΓ)
is the dimension of the cycle space of GΓ . Since, moreover, the absolute values
of the coefficients in these subproblems cannot be larger than in Γ , we arrive at
the following corollary.

Corollary 1. Let Θ, Γ and GΓ be defined as before, and assume that GΓ is
connected. It holds that Θ is satisfiable iff Θ is k · l-satisfiable for at least one l
not greater than

2(
∑

γ∈Γ |vars(γ)|)−|Γ |−|vars(Γ)|+1 ·
∏

γ∈Γ

c(γ)

Note that this bound will often be significantly lower than the bound from [2],
because it does not only take into account the number of variables and variable
occurrences, but to some extent also the structure of the problem.

4.1 Splitting into Subproblems

In this section, we improve the procedure above by looking at how a given prob-
lem can be split into subproblems more effectively. First note that by defining
the sets of edges E1 and E2 more carefully, it is often possible to reduce the
dimension of the cycle space by more than 1. Moreover, if we allow that a given
problem may be split into more than two subproblems, it is always possible to
define the subproblems such that none of their cycle spaces contains any cycle
that passes through n.

Specifically, let n be a node from GΓ such that at least one cycle passes
through n, and let C be an arbitrary cycle basis of GΓ . We now define the graph
Gn = (En, Mn) as follows. Every node in En corresponds to an edge in GΓ that
is incident with n and vice versa. Furthermore, there is an edge in Mn between
the nodes e1 and e2 from En iff there is a cycle in C that contains both the edges
corresponding to e1 and e2. Once the graph Gn has been constructed, we define
s subproblems of Γ , where s is the size of the largest connected component of
Gn. In particular, the graphs G1, . . . , Gs are obtained from GΓ such that they
contain all edges that are not incident with n, and moreover

1. Each graph Gi does not contain more than one edge from the same connected
component of Gn (recall that the nodes of Gn are edges in GΓ).

2. Every edge that is incident with n in GΓ occurs in exactly one of the sub-
graphs Gi.

248 S. Schockaert et al.

Then we have the following result.

Lemma 3. Let GΓ , G1, . . . , Gs and n be defined as above. It holds that C is a
cycle in Gi (i ∈ {1, . . . , s}) iff C is a cycle in GΓ and C contains no edges that
are incident with node n.

Note that the graph Gn is constructed by looking at the cycles in C only, and
therefore depends on the particular cycle basis that was chosen. However, as
part of the proof of Lemma 3, we can show that the size of the largest connected
component of Gn is independent of this choice.

One important problem remains. In principle, we need to apply this process
repeatedly on each of the obtained subproblems, which would require an expo-
nential amount of time. However, this can be avoided by considering the fact
that the procedure only depends on a given cycle basis of the graph, and not
on the graph itself. This means that we do not actually need to construct the
subgraphs Gi, only their cycle bases. The feasibility of this approach then fol-
lows from the fact that each of the subgraphs Gi has the same cycle space C′,
defined as follows. Let C0 = C, and let {e1, e2, . . . , el} be the set of edges that
are incident with n in GΓ , and that appear in some cycle of C. For each ei, we
define a set of vectors (cycles) Ci which is obtained from Ci−1 as follows. Let a1,
. . . , as be the vectors (cycles) from Ci−1 that contain the edge ei. Then

Ci = (Ci−1 \ {aj|j = 1, . . . , s}) ∪ {aj + aj+1|j = 1, . . . , s − 1}
where the vector addition is carried out in F2. Furthermore, we let C′ = Cl.

Lemma 4. Let G1, . . . , Gs and C′ be defined as above. It holds that C′ is a cycle
basis of Gi, for all i in {1, . . . , s}.
Thus, the whole procedure consists of producing a cycle basis for GΓ , repeatedly
choosing a node n, and in each step reducing the cycle basis accordingly. As a
result, we end up with a certain number K of subproblems (being the product
of the numbers of subproblems obtained in each reduction of the cycle basis),
each of which satisfies the conditions of Lemma 1.

4.2 Harmless Cycles

Note that every row of a coefficient matrix A ∈ A corresponds to a DLR from
Γ and every column corresponds to a variable. We write GA to refer to the
subgraph of GΓ that corresponds to A, i.e. there is a node ν(γ) in GA for every
row (i.e. DLR) in A and a node ν(v) for every column (i.e. variable). There is
an edge between ν(γ) and ν(v) iff the coefficient of v in the row corresponding
to γ is non-zero. To apply Lemma 1, it is in fact sufficient that GA does not
contain any cycles. The reason that we have insisted that GΓ does not contain
any cycles is that we do not know, a priori, which nodes and edges from GΓ will
be contained in GA. There are, however, some types of cycles which are in some
sense harmless, and do not need to be eliminated as a result. In this section,
we explore this idea with the aim of further tightening the upper bound. We

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 249

will restrict our attention to the special, but common, case where all non-zero
coefficients occurring in Γ , and therefore also in A, are either 1 or -1. Recall that
it is always possible to construct Γ such that this requirement is met.

Given a subgraph G′ of GΓ containing an equal number of DLR-nodes and
variable-nodes, it is easy to see that there is a unique matrix A such that
GA = G′, and such that the non-zero elements of A are determined by the
corresponding coefficients in Γ . If G′ corresponds to a cycle, the corresponding
matrix A contains exactly two non-zero positions on each row. Now let us call a
row in such a matrix positive if the two non-zero positions have the same sign,
and negative otherwise. A first type of harmless cycles results from the following
lemma, which can be shown using Leibniz’ rule for determinants.

Lemma 5. Let A be the matrix corresponding to some cycle C. It holds that

abs(det(A)) =

{

2 if the number of positive rows in A is odd
0 otherwise

Cycles whose associated matrix has a zero determinant will be called zero cycles.
As clarified in the following lemma, such cycles can be ignored when they are
not entangled with other cycles.

Lemma 6. Let GΓ , A and GA be defined as before. Furthermore, assume that
exactly s cycles C1, . . . , Cs occur in GA, that no two cycles have an edge in
common, and that z of these cycles are zero-cycles. Then either det(A) = 0 or
abs(det(A)) = 2l for some l ≤ s − z.

Thus to find an upper bound on the number of truth degrees, we only need to
eliminate cycles from the cycle basis until all the remaining cycles are isolated
zero cycles. A second type of harmless cycles is obtained by the following variant
of Lemma 6, involving a stronger form of disentanglement.

Lemma 7. Let GΓ , A and GA be defined as before. Furthermore, assume that
exactly s cycles C1, . . . , Cs occur in GA, and that no two cycles have a node in
common. It holds that

abs(det(A)) =

{

abs(det(A)) = 2s if none of the cycles is a zero cycle
0 otherwise

What is crucial in this lemma is that the value of the determinant in each sub-
problem depends only on the cycle basis and the original matrix A. In particular,
assume that after we have split the original problem in K subproblems, all cycles
remaining in the cycle basis are disentangled in the strong sense of Lemma 7.
Then for some s, the value of det(A) will be equal to

det(A) = det(A1) + · · · + det(AK) = 2s(y1 + · · · + yK)

where each yi is either 1 or -1. The value s depends on how many of the remaining
cycles are also present in the subgraph GA. At most, s can be equal to the number

250 S. Schockaert et al.

of cycles remaining in the cycle basis. Now assume that there is some cycle C still
in the cycle basis and that this cycle is contained in GA. Furthermore, assume
that (at least) one of the DLRs involved in this cycle is such that in each of
its disjuncts, the right-hand side is an even multiple of 1

k . Then we can divide
the right-hand sides, as well as the coefficients of this DLR by two, without
changing the solution space. Note that the coefficients occurring in this DLR
will then not necessarily be integers anymore. The result will be that the value
of det(A) is halved to 2s−1(y1 + · · ·+ yK), which is exactly the value that would
have been obtained if the cycle C did not occur. Consequently, when all cycles
are disentangled in the sense of Lemma 7 we can ignore those cycles which have
the property that at least one participating DLR has only even multiples of 1

k
as right-hand sides. The optimizations resulting from Lemma 6 and Lemma 7
can also be combined; we omit the details.

4.3 Further Optimizations

The general method we introduced above can be optimized in several aspects.
For example, it is important to choose the “right” node n to reduce the cycle
basis in each step. A second aspect which is amenable to optimization is the
definition of Γ . After a straightforward translation of Θ to a set of DLRs Γ ,
we can simplify Γ in several ways. For example, it may happen that a given
variable x only occurs positively, in the sense that increasing the value of x may
never cause a DLR to be violated, in which case we can simply replace x by 1. A
similar observation applies to the dual notion of negatively occurring variables.

Moreover, from the theory of linear programming, it follows that we can re-
move one arbitrary DLR from Γ without compromising the soundness of the
overall approach. Indeed, assume for example that this DLR γ is of the form
α ≥ λ (a similar reasoning applies when the DLR contains several disjuncts).
While not all solutions of Γ \ {γ} correspond to models of Θ anymore, we know
that the solution of Γ \{γ} which maximizes the linear expression α corresponds
to a vertex of the solution space of Γ \ {γ}, which will also be a vertex in the
solution space of Γ when Θ is satisfiable. As a consequence, the upper bound
resulting from Γ \ {γ} is still an upper bound for the minimal number of truth
degrees needed to decide satisfiability.

5 Preliminary Experimental Results

The aim of our experiments is two-fold. First, we want to verify that the proposed
techniques indeed lead to significantly tighter upper bounds for some problems.
Second, we want to verify that having a tighter upper bound can indeed lead
to complete satisfiability checking procedures that outperform MIP for some
problems. We can expect that such results would only hold for certain types of
problem instances, i.e. MIP will still outperform the methods we sketch below
in many cases. Similarly, as already illustrated in Example 1, it is sometimes not
even possible to improve the bound from [2] significantly.

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 251

Table 1 reports the upper bounds that were found for a number of randomly
generated data sets. In particular, we have generated sets of n fuzzy clauses in
which every fuzzy clause consists of exactly one fuzzy literal, containing a fixed
number m of variable occurrences. Literals are of the form φ ≥ λ or φ ≤ λ, where
λ is a constant which is chosen randomly from M4 (with a uniform distribution),
and φ is a fuzzy expression consisting of applications of ⊗ and ¬ to variables,
e.g. x1 ⊗¬(x2 ⊗ x3). Clearly the number of applications of ⊗ is equal to m− 1.
The probability that a negation occurs in front of a subexpression was set to 0.5.
Clearly, the upper bounds presented in Table 1 are a substantial improvement
over the upper bound for strong satisfiability resulting from [2], which is e.g. of
the order 4 · 3100 in the case where m = 3 and n = 100. The upper bounds are
also a substantial improvement over the upper bound derived in Corollary 1,
which is of the order 4 · 2100 for m = 3 and n = 100; note that the exact bound
depends on the translation to DLRs of the fuzzy clauses.

Table 1. Value of l such that satisfiability can be reduced to 4l-satisfiability. The values
shown are median(min,max) for 50 randomly generated, satisfiable data sets with m
variable occurrences per fuzzy clause, and a total of n different variables and n fuzzy
clauses.

n 10 20 30 40 50 60 80 100
m = 2 1(1,2) 1(1,2) 1(1,1) 1(1,2) 1(1,2) 1(1,2) 1(1,2) 1(1,2)
m = 3 1 (1,8) 1 (1,8) 1 (1,8) 1 (1,256) 2 (1,32) 2 (1,256) 2(1,32) 4 (1,256)
m = 4 1(1, 64) 2(1, 64) 8(1,−) 16(1,−) 32(1,−) 24(1,−) 160(2, −) 192(2,−)

Note that Table 1 reports the median values, rather than the average. One reason
is that the latter is very sensitive to outliers and therefore less informative; e.g.
for m = 4 and n = 100 the average value is over 72000, whereas the median
is 192. The second, related reason is that the actual value of outliers is of no
practical importance. When the upper bound is too large, we need to fall back on
existing techniques such as MIP. Our general strategy for satisfiability checking
in L∞ is therefore given by

1. Determine an upper bound l∗ for the number of truth degrees.
2. Use a reasoner for finite multi-valued logics, and consider all values k = 4l for

1 ≤ l ≤ min(t, l∗), until a model is found, where t is a predefined threshold.
3. If no models were found and l∗ > t, use a reasoner based on MIP.

The intuition behind this approach is that the computation time for the first step
is insignificant compared to that of the second step, which is in turn insignificant
compared to that of the third step (if t is sufficiently small). In Figure 1, the
computation time of this procedure is compared against that of a reasoner which
is exclusively based on MIP. Again the results are based on randomly generated
sets of fuzzy clauses, in which the number of variables n is equal to the number
of clauses, and in which there are three variable occurrences per fuzzy clause. For
each value of n, 50 different sets of fuzzy clauses were generated, either satisfiable
or unsatisfiable. As the fuzzy clauses are generated independent of each other,

252 S. Schockaert et al.

Table 2. Number of sets of fuzzy clauses that are satisfiable/unsatisfiable for different
sizes n

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

satisfiable 40 40 36 32 32 35 31 28 24 23 23 18 17 26 17 17 17 17 16 16 18 14 7 8
unsatisfiable 10 10 14 18 18 15 19 22 26 27 27 32 33 24 33 33 33 33 34 34 32 36 43 42

Fig. 1. Comparison of a MIP based reasoner with a CSP based reasoner. Each data
point is the average value for 50 randomly generated problem instances.

the larger the number of clauses n, the higher the probability that a given set is
unsatisfiable. Table 2 reports the number of sets that are satisfiable/unsatisfiable
for each n. To solve MIP instances we used lp solve3. To check the satisfiabil-
ity in finite-valued logics, we straightforwardly reduce the satisfiability problem
to a constraint satisfaction problem (CSP), which is subsequently solved using
Choco4. The results in Figure 1 were obtained for t = 10. In the figure, the
execution time for satisfiable instances is shown separately from that of unsat-
isfiable instances. Interestingly, when first trying to find models in finite-valued
logics (SAT-CSP), satisfiable instances are recognized extremely fast on average.
Regarding unsatisfiable instances, Figure 1 suggests that the approach based on
finite-valued logics (UNSAT-CSP) is at least one order of magnitude faster than
the traditional MIP approach (UNSAT-MIP) on average.

3 http://lpsolve.sourceforge.net/
4 http://choco-solver.net/

Finite Satisfiability in Infinite-Valued �Lukasiewicz Logic 253

6 Concluding Remarks

We showed how a reasonable upper bound can be found for the number of truth
degrees needed to decide (strong) satisfiability in L∞. Our main contribution lies
in the fact that, unlike existing approaches, we do not only look at the number of
variables and variable occurrences, but also at the structure of the formulas. This
is accomplished by relating fuzzy clauses, or equivalently, well-formed formulas
in L∞, to cycles in an associated bipartite graph. Our results open the door
for efficient reasoners in L∞, and they furthermore offer valuable insights in the
connection between finite and infinite �Lukasiewicz logic. Experimental results
demonstrate the potential of our approach, although we should be careful in
extrapolating results for (simple) random data to real-world problem instances.
Future work will therefore focus on a more thorough evaluation, characterizing
when the proposed approach is successful and when it is not.

Acknowledgments

Steven Schockaert was funded as a postdoctoral fellow of the Research Foun-
dation – Flanders. Jeroen Janssen was funded by a joint Research Foundation
– Flanders project. We are grateful to the anonymous reviewer whose detailed
comments helped in clarifying the presentation of our results.

References

1. Aguzzoli, S.: An asymptotically tight bound on countermodels for �lukasiewicz logic.
International Journal of Approximate Reasoning 43, 76–89 (2006)

2. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued �Lukasiewicz logic. Journal
of Logic, Language, and Information 9, 5–29 (2000)

3. Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive
for Mathematical Logic 41, 361–399 (2002)

4. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems (in press) doi:doi:10.1016/j.fss.2009.03.006

5. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998)
6. Ernst, M., Millstein, T., Weld, D.: Automatic SAT-compilation of planning prob-

lems. In: Proceedings of the 15th International Joint Conference on Artificial In-
telligence, pp. 1169–1176 (1997)

7. Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics.
In: Börger, E., Kleine Büning, H., Richter, M., Schönfeld, W. (eds.) Selected Papers
from Computer Science Logic, pp. 248–260. Springer, Heidelberg (1991)

8. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathe-
matics and Artificial Intelligence 12, 231–264 (1994)

9. Hähnle, R., Escalada-Imaz, G.: Deduction in multivalued logics: a survey. Math-
ware & Soft Computing 4(2), 69–97 (1997)

10. Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set
programs to fuzzy propositional theories. In: Proceedings of the 24th International
Conference on Logic Programming, pp. 362–376 (2008)

254 S. Schockaert et al.

11. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: An o(m2n) algorithm for min-
imum cycle basis of graphs. Algorithmica 52, 333–349 (2008)

12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

13. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Sym-
bolic Logic 16, 1–13 (1951)

14. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theo-
retical Computer Science 52, 145–153 (1987)

15. Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued
calculus of �Lukasiewicz. Theoretical Computer Science 200, 335–366 (1998)

16. Olivetti, N.: Tableaux for �Lukasiewicz infinite-valued logic. Studia Logica 73(1),
81–111 (2003)

17. Pham, D., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as
propositional satisfiability. Artificial Intelligence 172(15), 1752–1782 (2008)

18. Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connec-
tion calculus. Artificial Intelligence 173, 258–298 (2009)

19. Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions
and fuzzy description logics. Mathware & Soft Computing 14(3), 247–259 (2007)

20. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer,
Heidelberg (2006)

21. Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of
�Lukasiewicz. In: Proceedings of the International Workshop on First order Theorem
Proving, pp. 234–243 (1998)

22. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 641–653.
Springer, Heidelberg (2002)

Compression of Probabilistic XML Documents

Irma Veldman, Ander de Keijzer, and Maurice van Keulen

University of Twente
P. O. Box 217 Enschede

The Netherlands
{veldmani,keijzer,keulen}@cs.utwente.nl

Abstract. Database techniques to store, query and manipulate data
that contains uncertainty receives increasing research interest. Such
UDBMSs can be classified according to their underlying data model:
relational, XML, or RDF. We focus on uncertain XML DBMS with as
representative example the Probabilistic XML model (PXML) of [10,9].
The size of a PXML document is obviously a factor in performance.
There are PXML-specific techniques to reduce the size, such as a push
down mechanism, that produces equivalent but more compact PXML
documents. It can only be applied, however, where possibilities are de-
pendent. For normal XML documents there also exist several techniques
for compressing a document. Since Probabilistic XML is (a special form
of) normal XML, it might benefit from these methods even more. In this
paper, we show that existing compression mechanisms can be combined
with PXML-specific compression techniques. We also show that best
compression rates are obtained with a combination of PXML-specific
technique with a rather simple generic DAG-compression technique.

1 Introduction

Probabilistic XML (PXML) is XML that allows the representation of uncertainty
in the data [10, 9]. Uncertainty can, for example, arise from the integration of
two or more XML documents when conflicts or ambiguities are encountered.
Resolving these at integration time often is a severe obstacle, because it requires
a huge amount of user effort. Being able to leave unresolved issues as uncertainty
in the integrated document removes this obstacle, as they can resolved when they
become visible during use, i.e., at query time.

In the field of probabilistic XML some good solutions have been achieved
with respect to data representation and efficient querying of the uncertain data,
as in [10, 9]. For illustration purposes, we use the same running example as
in [10]. The example concerns the integration of two small address books, each
containing a record of a person named John, whose phone number is 1111 in one
address book and 2222 in the other. Integrating these two address books will
result in ambiguity and a possible conflict. In the real world, different situations
could be possible:

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 255–267, 2009.
� Springer-Verlag Berlin Heidelberg 2009

256 I. Veldman, A. de Keijzer, and M. van Keulen

�
◦

1

•
�

◦
.7

��������

•
������

◦
1

•

�
��

�

◦
.5

��
�

•
◦
.5��

�

•

◦
.3

����������

•�����

���
�

◦
1

•

�
��

�

◦
1

•

•�
����

���
�

◦
1

•

�
��

�

◦
1

•

persons

persons person person

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(a)

�
◦

.35

����������

•
�
◦

1

•
���

�

◦
1

•

�
��

�

◦
1

•

◦
.35

•
�
◦

1

•
���

�

◦
1

•

�
��

�

◦
1

•

◦
.3

															

•
�
◦

1

•�����

���
�

◦
1

•

�
��

�

◦
1

•

•�
����

���
�

◦
1

•

�
��

�

◦
1

•

persons persons persons

person person person person

John
nm

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(b)

•
�

◦
.7

����������

•
•�

��
�

�����

◦
.5

��
�

•
◦
.5��

�

•

◦
.3

����������

•�����

•�
��

•
��

� •�
����

•�
��

•
��

�

persons

person person person

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(c)

Fig. 1. Example probabilistic XML tree (a), its possible world style (PWS) tree (b), and
its reduced form where probability and possibility nodes that give no extra information
are omitted (c)

– Both records refer to the same person named John, but one of the phone
numbers is wrong.

– Both records refer to a different person named John and for each person the
phone number is correct.

A rule engine could assign probability values to these different situations. During
integration these possible situations are represented as uncertainty in the PXML
document. After integration, the probabilistic XML document could look like the
PXML tree in Figure 1(a).

The � nodes denote probability nodes. They represent choice points in the
tree. Its children are possibility nodes that represent the mutually exclusive pos-
sible subtrees. The ◦ nodes denote the possibility nodes. They have an associated
probability value. This value lies within the range 〈0.0, 1.0]. The actual proba-
bility value is determined by a rule engine. The • nodes represent normal XML
nodes.

Obviously it is important to be able to query the uncertain data represented
by a PXML document. This is what [10] says about the semantics of querying
uncertain data:

Compression of Probabilistic XML Documents 257

“Uncertainty can be treated as having more than one possible instan-
tiation describing a particular real world object. Choosing one possible
instantiation, or possibility for short, for each real world object, results
in a possible world. Analogous to the notion of parallel universes, all
possible worlds co-exist in the database and a query should, therefore, be
evaluated in every possible world separately.”

Our example document represents 3 possible worlds (see Figure 1(b)).
Unfortunately, this Possible World Style (PWS) comes with a major draw-

back, which does not emerge from this example because it is too small. Imagine
the integration of address books with over 100 records each. With n (n < 100)
conflicting records, each with 3 possible real world situations, the PWS of the
document could grow a factor 3n. Efficient querying techniques do not suffer from
this drawback, because they work directly on the compact representation [7]. In
these compact representations possibilities are pushed down to lower levels in the
tree and probability and possibility nodes that do not provide extra information
are removed, see Figure 1(c) and section 2.3.

It is evident that there is a strong relationship between the size of the PXML-
document and query performance. This paper addresses the issue of how to
obtain a PXML-document that is as compact as possible. Since PXML is a
special kind of XML, one solution direction is to apply XML compression tech-
niques. Another is to apply PXML-specific compression techniques. Note that
the latter produce a PXML-document that is equivalent, i.e., encodes the same
set of possible worlds, but that may from a normal XML point-of-view be struc-
turally completely different (see for example Figures 1(a), 1(b), and 1(c) which
are all equivalent). Also note that most compression techniques are orthogonal to
each other, hence can be applied in combination to possibly achieve even better
compression than each individually.

In this paper, we evaluate several combinations of PXML-specific and XML-
generic compression techniques. Important evalation criteria are compression
ratio, compression time, and query execution time on the compressed documents.
This paper focuses solely on the former, i.e., we determine experimentally which
combination has the highest compression ratio. We use a real-world data set
originating from the application area of probabilistic data integration.

2 PXML Compression

There are several ways to categorize compression mechanisms. In the compara-
tive study of Ng et al. [5], the authors chose to categorize the compression tech-
niques into queriable versus unqueriable techniques. Queriable techniques come
with the important feature that they can be queried directly on the compressed
data, but unfortunately do not perform as well in terms of compression ratio
and execution time. Unqueriable techniques need to fully decompress their data
before it can be queried again, but they can achieve a much higher compression
ratio.

258 I. Veldman, A. de Keijzer, and M. van Keulen

In our study of XML compression techniques we also group the compressors
by their (in)ability of supporting queries. Due to space limitations, we only re-
view queriable techniques here. For a complete review, we refer to [11]. PXML
documents obtained from probabilistic data integration appear to contain many
subtrees that are highly similar, but not completely equal. Therefore, we pay
special attention to an advanced compression technique called BPLEX in Sec-
tion 2.2, because it can compress parameterized subtrees.

2.1 Queriable XML Compression Techniques

XGrind [6] and XPress [4] are queriable compression techniques that adopt a
homomorphic transformation, which means that the structure and semantics of
the XML document are preserved. This enables the document to be parsed as
any other XML document. As with XMill, XGrind uses a dictionary encoding
approach for the tag and attribute names. The data values are encoded by Huff-
man encoding (for the non-enumerated attribute values and the PCDATAs) or
binary encoded (for the enumerated attribute values).

XPress [4] uses a reverse arithmetic encoding scheme for the encoding of the
skeleton. This method encodes not only the tag name, but also the tree path
to this tag. Such a tree path is modeled as a real number interval in the range
[0.0, 1.0〉 that satisfies the suffix containment property. This means that if an
element path P is a suffix of an element path Q, the interval that represents P
should contain the interval of Q. XPress can automatically determine the type
of a data value and hence apply the proper compression for it. Besides, XPress
also supports query updates directly on the compressed data.

Another approach for the compression of the skeleton of an XML document
is the use of DAGs (Directed Acyclic Graphs). This technique is based on the
sharing of common subtrees and is applied in [1]. The compressed document is
still queriable and results can be returned in compressed form to serve as an
input for another query.

We illustrate DAG-compression with an example from [2]. It is based on the
tree c(c(a,a),c(a,a)). Figure 2(a) shows the XML code of the example. The cor-
responding tree can be seen in 2(b). The minimal DAG for this tree is illustrated
in Figure 2(c).

〈c〉
〈c〉
〈a/〉
〈a/〉

〈/c〉
〈c〉
〈a/〉
〈a/〉

〈/c〉
〈/c〉
(a)

c

c

a�
��

a
��

� c

a�
��

a
��

�

(b)

c

c
��

a
�� ��

��

(c)

Fig. 2. Example XML fragment (a), its corresponding tree (b) and minimal DAG (c)

Compression of Probabilistic XML Documents 259

c

c�
��

a�
��

a
��

� d

c�
��

a�
��

a
��

� c

c�
��

a�
��

a
��

� d

c�
��

a�
��

a
��

� c

a�
��

a
��

�

(a)

c

C
��
�

d

C
��
�

(b)

Fig. 3. Example XML tree (a) with the pattern C �c(A,A) and A �a illustrated in
(b) which shows the restrictions of DAG-compression

2.2 BPLEX

As mentioned, we pay some special attention to the compression technique,
called BPLEX (bottom-up multiplexing). For a more detailed description of the
algorithm, we refer to [2]. It takes the idea of transforming the XML tree into
a DAG one step further. It is based on the sharing of common parameterized
subgraphs instead of common subtrees. This makes it possible to share parts of a
subtree instead of complete subtrees, which increases the sharing opportunities.

XML trees can be expressed as grammars. The minimal unique DAG can
also be seen as the minimal regular tree grammar that generates the tree. A
generalization of the sharing of subtrees is the sharing of arbitrary patterns,
i.e., connected subgraphs of a tree. A sharing graph can be seen as a context-
free (cf) tree grammar. For example, the minimal DAG of Figure 2(c) can be
described by a minimal regular tree grammar consisting of the following produc-
tions: S �c(V,V), V �c(W,W) and W �a.

We illustrate the idea of a sharing graph in the next example, also from [2].
We take the tree c(c(a,a),d(c(a,a),c(c(a,a),d(c(a,a),c(a,a))))) which is depicted
in Figure 3(a). In this tree, there is a pattern (3(b)) that is repeated. Because dif-
ferent subtrees are hanging underneath, DAG-compression is not able to obtain
sharing for this pattern. However, with the introduction of formal parameters,
we can share this subgraph. The resulting grammar would have the following
productions: S �B(B(C)), B(y1) �c(C,d(C,y1)), C �c(A,A) and A �a. This
context-free grammar is also called a straight-line (SL) grammar.

The sharing of the pattern is depicted in Figure 4(b). We see that the most
upper c has two special incoming edges. These special incoming edges are rec-
ognizable by the ⊥ symbol at the end of the edge. This means that the subtree
is shared.

Walking through the tree, we arrive at this c from the incoming edge marked
with a 1. This number at the end of the edge means that whenever a choice has to
be made between two or more outgoing edges belonging to a choice, recognizable
by the ⊥ symbol at the start of the edge, you have to choose the one with the
same number. In this case this outgoing edge itself is again a special incoming
edge, marked with a 2, meaning that the next time you come across a choice

260 I. Veldman, A. de Keijzer, and M. van Keulen

c

c
����
��
��
��

a
����

a
��

��

d
��

��

c
��

��
d

��

		

(a)

c
�1

c

a�
��

a
��

� d

c

a�
��

a
��

�
��� ��
1

��

2���

c

� 2

a�
��

a
��

�

(b)

Fig. 4. The DAG created from Figure 3 (a) and the plexed version (b)

point, you have to choose the other special outgoing edge. The other ‘normal’
outgoing edge from node d is not marked, hence it is not shared. The numbers
alongside the edges represent the formal parameters in the grammar.

In Figure 4, we can also see the difference between creating a DAG from the
tree in Figure 3 and plexing it. The original tree has 19 nodes. The DAG has
already reduced this to 7 nodes. Obviously, on the plexed tree the c(a,a)-subtrees
can also be shared, even completely. However, we did not do that for simplicity.
However, when we would have done that, another 6 nodes disappear and we are
left with only 5 nodes, which is less than the DAG variant.

2.3 PXML-specific Compression

A method to compact specifically PXML documents is described in [10]. This
technique is different from generic XML compression techniques, because it pro-
duces a document that is fundamentally different according to XML semantics.
The resulting document is, however, possible worlds equivalent, i.e., it represents
the same possible worlds. We illustrate the push-down technique in Figure 5. We
call this technique simplification in this paper. The compact representation of a
tree, is the tree after simplification. We refer to [11] for a more detailed descrip-
tion of the algorithm.

3 Experiments

To evaluate the effectiveness of the various combinations of compression tech-
niques on PXML documents, we conducted some experiments. First, we briefly
discuss the prototype implementation, and experimental setup and measure-
ments. A more detailed description of the prototype and experiments can be
found in [11].

Prototype. The main goal of the prototype is to measure compression ratios of
PXML documents. The performance of the prototype in terms of compression
and decompression speed will not be part of the comparison.

We adapted the BPLEX algorithm of [2] to work on a DOM structure of the
tree [3] instead of the SL grammar. We call this algorithm PLEX.

Compression of Probabilistic XML Documents 261

�
◦

1

•
�

◦
.35

����������

•
���

�

◦
1

•

�
��

�

◦
1

•

◦
.35

•
���

�

◦
1

•

�
��

�

◦
1

•

◦
.3

															

•�����

���
�

◦
1

•

�
��

�

◦
1

•

•�
����

���
�

◦
1

•

�
��

�

◦
1

•

persons

person person person person

John
nm

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(a)

�
◦

1

•
�

◦
.35

����������

•
�
◦

1

•�
��

•
��

�

◦
.35

•
�
◦

1

•�
��

•
��

�

◦
.3

															

•�����

���
�

◦
1

•

�
��

�

◦
1

•

•�����

���
�

◦
1

•

�
��

�

◦
1

•

persons

person person person person

John
nm

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(b)

�
◦

1

•
�

◦
.7

�����

•
�

◦
.5

�����

•�
��

•
��

� ◦
.5

�����

•�
��

•
��

�

◦
.3

															

•�����

���
�

◦
1

•

�
��

�

◦
1

•

•�
����

���
�

◦
1

•

�
��

�

◦
1

•

persons

person person person

John
nm

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(c)

�
◦

1

•
�

◦
.7

�����

•
���

�

◦
1

•

�
�����

◦
.5

��
�

•
◦
.5��

�

•

◦
.3

															

•�����

���
�

◦
1

•

�
��

�

◦
1

•

•�
����

���
�

◦
1

•

�
��

�

◦
1

•

persons

person person person

John
nm

John
nm

John
nm

1111
tel

1111
tel

2222
tel

2222
tel

(d)

Fig. 5. Four example iterations of the PXML-specific push-down compression

3.1 Measurement

We evaluate the compression techniques and combinations thereof based on com-
pression ratio. Common definitions for compression ratio are: 1) the number of
bits required to represent a byte, 2) the fraction in terms of bytes of the input
document eliminated. Since there are many encoding techniques used to store
XML in file systems or XML databases, we believe that a compression ratio
measure based on a size in bytes is not suitable. XML databases, for instance,
use indices for tag names and text fields, hence the byte size of a document is
very system-specific. The compression techniques we focus on compress XML
documents by reducing the number of nodes in the XML tree. We therefore
measure compression ratios in terms of numbers of nodes.

The number of nodes in a document (ntotal) is the total number of elements
(nelements), text nodes (ntext) and attributes (nattributes): ntotal = nelements +
ntext + nattributes. The compression ratio r is defined as: r = 1 − nafter

total
nbefore

total
. In this

formula, nafter
total is the number of nodes after applying the compression, and nbefore

total

the number of nodes before compression.
Besides this measurement, we are interested in the amount of overhead

involved in compressed documents due to necessary additional bookkeeping.
Typically, id’s and other attributes need to be added to represent for example

262 I. Veldman, A. de Keijzer, and M. van Keulen

references. Overhead nodes noverhead are all such attributes and nodes initially
not present in the uncompressed documents. The overhead o is defined as:
o = noverhead

ntotal
.

3.2 Data Sets

We use PXML documents representing the uncertain integration result produced
by the probabilistic integration technique of [10]. We use PXML documents
obtained from integration under different conditions such as other integration
rules and thresholds. The integration scenario used in [8,9] concerns integration
of data from a TV guide1 with data from IMDB2.

We use two sets of documents. It is beyond the scope of this paper to elabo-
rate on all parameters that are involved in the generation of these documents.
It suffices to know that these parameters are directly related to the amount of
uncertainty in the integrated document. Since there is no generally accepted mea-
sure for ‘amount of uncertainty’, we use the parameters themselves as indicators
for a growing amount of uncertainty. The first set of documents contains integra-
tion results where the parameter actor threshold has been varied. The threshold
determines a minimum similarity when the system considers two actor elements
to possibly refer to one and the same actor in real life. The second set of docu-
ments contains integration results where the parameter movie margin has been
varied. The margin determines how much more dissimilar a movie title may be
than the best matching title for the system to consider the possibility that the
movie title may happen to refer to the same movie in real life. Details can be
found in [8]. It suffices to know that a lower actor treshold and a higher margin
mean more uncertainty. The size of the documents varies from 3177 nodes in the
smallest document to 44815 nodes in the biggest document.

3.3 Results

We feed the documents to various combinations of compression techniques. We
use the following abbreviations for the different combinations: SIMP is the sim-
plification method; RRPP the removal of redundant probability and possibility
nodes; PXML is a combination of these two methods; SIMP DAG stands for the
combination of simplification and building a DAG. The rest is self-explanatory.

Figure 6 shows the average compression ratio and overhead over all documents
in both sets for each combination of compression techniques.

Note that there is no overhead after applying SIMP, RRPP and PXML. Re-
markable is that DAG scores better than PLEX on these documents. SIMP on
its own, as well as combinations with DAG and PLEX score better than DAG
or PLEX solely, as expected. Same is true for RRPP and PXML. However, the
ratio for combinations with RRPP or PXML are almost exactly the same. We
explore this later.
1 http://www.tvguide.com
2 http://www.imdb.com

Compression of Probabilistic XML Documents 263

 0

 0.2

 0.4

 0.6

 0.8

 1

DAG
PLEX

SIM
P

SIM
P_DAG

SIM
P_PLEX

RRPP

RRPP_DAG

RRPP_PLEX

PXM
L

PXM
L_DAG

PXM
L_PLEX

Average compression ratio and overhead

Ratio
Overhead

Fig. 6. Average compression ratio and overhead for each combination of compression
techniques

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

DAG
PLEX

SIM
P

RRPP

PXM
L

Compression ratio (Series 1)

1.00-0.80
0.70-0.50

0.4
0.3

0.25
0.2

Fig. 7. Influence of amount of uncertainty
(actor threshold) on the compression ra-
tio obtained for various compression tech-
niques (first document set)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

DAG
PLEX

SIM
P

RRPP

PXM
L

Compression ratio (Series 2)

00
01
02
03
04

Fig. 8. Influence of amount of uncertainty
(movie margin) on the compression ra-
tio obtained for various compression tech-
niques (second document set)

We can also see in Figure 6 that the amount of overhead decreases when we
combine DAG or PLEX with the other methods. This makes sense, since the
other methods already achieve a certain amount of compression. The amount of
nodes to which DAG or PLEX can be applied is then already decreased, hence
the smaller overhead.

Let’s take a more detailed look on the results. Figure 7 and Figure 8 show the
compression ratios for the first, respectively the second document set. Documents
associated with thresholds that display highly similar compression ratios have
been combined. The bars in the figures from left to right belong to documents
with increasing uncertainty.

It is interesting to see that for both the series, DAG, and for the first series,
PLEX, benefit from the increasing amount of uncertainty. More uncertainty
means more duplicated data and hence more chances for matches. Surprisingly,
simplification does not benefit from the uncertainty.

For RRPP it is not really a surprise that it doesn’t benefit from uncertainty,
because some probability and possibility nodes are not redundant any more.
Since PXML is the combination of SIMP and RRPP, this method doesn’t benefit

264 I. Veldman, A. de Keijzer, and M. van Keulen

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1.00-0.80

0.70-0.50

0.4
0.3

0.25
0.2

Compression ratio (Series 1)

SIMP
SIMP_DAG

SIMP_PLEX

Fig. 9. Sensitivity of combinations with
SIMP to the amount of uncertainty (first
document set)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

00 01 02 03 04

Compression ratio (Series 2)

SIMP
SIMP_DAG

SIMP_PLEX

Fig. 10. Sensitivity of combinations with
SIMP to the amount of uncertainty (sec-
ond document set)

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

1.00-0.80

0.70-0.50

0.4
0.3

0.25
0.2

Compression ratio (Series 1)

RRPP
RRPP_DAG

RRPP_PLEX

Fig. 11. Sensitivity of combinations with
RRPP to the amount of uncertainty (first
document set)

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

00 01 02 03 04

Compression ratio (Series 2)

RRPP
RRPP_DAG

RRPP_PLEX

Fig. 12. Sensitivity of combinations with
RRPP to the amount of uncertainty (sec-
ond document set)

either. In the second series however, RRPP does benefit from uncertainty. This
might be caused by the new (partially) duplicated subtrees that are added due to
the uncertainty. If these subtrees are deep and don’t have any useful probability
and possibility nodes, then the number of redundant probability and possibility
nodes increases, hence compression ratio increases.

In Figure 9 and Figure 10 we see how PXML and DAG, and PXML and
PLEX these combinations perform with only simplification. Both diagrams show
us that the combinations perform better when uncertainty increases. Especially
the combination with DAG performs well. One might think that this is caused
by the larger amount of overhead that naturally comes with PLEX, but the
results do not confirm this. Another explanation for this, is that matches can be
applied straightforward with DAGs, whereas with PLEX one needs to check if
previous matches did not change the subtree to which the match refers so that
this match is not applicable anymore. For the combination of RRPP with DAG
and PXML, we see the same pattern, see Figure 11 and Figure 12.

Compression of Probabilistic XML Documents 265

Table 1. Details for the first and last document of the first series

Document 1.00 0.20

nbefore
total 9692 16041

Mode PXML RRPP PXML RRPP

ntotal

after SIMP 6638 - 12111 -

ntotal

after RRPP 2822 2840 5496 5514

r (ratio) 0.709 0.707 0.758 0.757

Contribution
of SIMP 52% - 37% -

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

1.00-0.80

0.70-0.50

0.4
0.3

0.25
0.2

Compression ratio (Series 1)

PXML
PXML_DAG

PXML_PLEX

Fig. 13. Sensitivity of combinations with
PXML to the amount of uncertainty (first
document set)

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

00 01 02 03 04

Compression ratio (Series 2)

PXML
PXML_DAG

PXML_PLEX

Fig. 14. Sensitivity of combinations with
PXML to the amount of uncertainty (sec-
ond document set)

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

1.00-0.80

0.70-0.50

0.4
0.3

0.25
0.2

Compression ratio (Series 1)

RRPP_DAG
RRPP_PLEX
PXML_DAG

PXML_PLEX

Fig. 15. Sensitivity of combinations with
DAG and PLEX to the amount of uncer-
tainty (first document set)

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

00 01 02 03 04

Compression ratio (Series 2)

RRPP_DAG
RRPP_PLEX
PXML_DAG

PXML_PLEX

Fig. 16. Sensitivity of combinations with
DAG and PLEX to the amount of uncer-
tainty (second document set)

As we have already seen in Figure 6, PXML has almost the same results
as RRPP. However, when we look at intermediary results, we see that SIMP
significantly contributes to the compression ratio. It is just that, when RRPP
is applied after SIMP, one almost gets the same end result as without SIMP,

266 I. Veldman, A. de Keijzer, and M. van Keulen

see Table 1. It is important that we know that SIMP does in fact contribute to
the compression, which cannot be distinguished in the diagrams. From Figure
6, we can conclude that on average the methods that involve RRPP perform
best. This is not a surprise. RRPP is the method that could and should always
be used since it deletes redundant nodes, and no method is restricted by the
removal of these nodes.

As the uncertainty increases in a document, a combination of RRPP with
DAG outperforms a combination with PLEX, see Figure 15 and 16. Although the
differences between the results are small, we believe DAG is better than PLEX.
Not only is the algorithm of PLEX more complex than DAG, it also results in
documents that are more complex. This means that not only the compression
itself could suffer from performance problems, also querying the document would
take more time.

4 Conclusions

In this paper we have evaluated the compression ratios of various combinations of
compression techniques, both generic XML compression techniques and PXML-
specific compression techniques. As representative techniques, we took the DAG
and PLEX methods for generic XML compression techniques, and simplification
and redundant nodes removal for PXML-specific compression techniques.

We experimentally evaluated the compression ratios and overhead for the
different methods and combination of methods. We used documents with an
increasing amount of uncertainty. RRPP is the method that should always be
used, since it removes useless nodes. The compression ratio can be improved by
combining it with DAG or PLEX. Although both methods show good increasing
compression ratio with increasing amount of uncertainty DAG is preferred, since
the algorithm and the resulting document are less complex than with PLEX.

In terms of size reduction, it is not worth the effort of simplifying the docu-
ment, since RRPP alone achieves almost the same reduction. However, simpli-
fying the document comes with a more simple structure of the document, that
might increase performance when querying the document or even navigating.
If we look only at the size of the document, performing SIMP is not worth it.
Besides compression ratio we also measured the amount of overhead as a con-
sequence of additional bookkeeping necessary in the DAG and PLEX methods.
The results showed that the amount of overhead was reasonable. The results
gave no indication that the amount of overhead was problematic.

Although, the compression ratio is substantial, it can be increased even more.
Furthermore, for PXML documents to be used in practice, not only performance
in terms of compression but also time and space complexity of the compres-
sion and decompression algorithms need to be improved to be able to handle
large documents. Finally, document size is only one factor in query and up-
date performance. It is an open problem how query algorithms can be adapted
to support the compressed formats. Also the influence of these adaptations on
query performance may change the suitability of the investigated combinations
of compression techniques.

Compression of Probabilistic XML Documents 267

References

1. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: Pro-
ceedings of the 29th VLDB Conference (2003)

2. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
document trees. Information Systems 33(4-5), 456–474 (2008)

3. Document object model, DOM (2009), http://www.w3.org/DOM
4. Min, J.-K., Park, M.-J., Chung, C.-W.: A compressor for effective archiving, re-

trieval, and updating of XML documents. ACM Trans. Internet Technol. 6(3),
223–258 (2006)

5. Ng, W., Lam, W.-Y., Cheng, J.: Comparative analysis of XML compression tech-
nologies. World Wide Web 9(1), 5–33 (2006)

6. Tolani, P.M., Haritsma, J.R.: Xgrind: A query-friendly XML compressor. In: IEEE
Proceedings of the 18th International Conference on Data Engineering (2002)

7. van Kessel, R.: Querying probabilistic XML. Master’s thesis, University of Twente
(April 2008)

8. van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules in probabilis-
tic data integration. Technical Report TR-CTIT-08-42, Centre for Telematics and
Information Technology, University of Twente, Enschede (2008)

9. van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules and user
feedback in probabilistic data integration. The VLDB Journal (2009); To Appear
in Special Issue on Uncertain and Probabilistic Databases

10. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data
integration. In: Proc. ICDE Conf., pp. 459–470 (2005)

11. Veldman, I.E., de Keijzer, A., van Keulen, M.: Compression of probabilistic XML
documents. Technical Report TR-CTIT-09-20, CTIT, Enschede (May 2009)

Query Answering in Belief Logic Programming�

Hui Wan and Michael Kifer

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

Abstract. In this paper we introduce a fixpoint semantics for quanti-
tative logic programming, which is able to both combine and correlate
evidence from different sources of information. Based on this semantics,
we develop efficient algorithms that can answer queries for non-ground
programs with the help of an SLD-like procedure. We also analyze the
computational complexity of the algorithms and illustrate their uses.

1 Introduction

Quantitative logic programming is a widely popular approach for dealing with
uncertainty and inconsistency in knowledge representation. The issue of com-
bining evidence obtained from different sources has been known since the early
attempts to develop expert systems for the medical and other domains [20]. How-
ever, researchers quickly realized the difficulty of addressing this issue formally
and one of the most common ways to sidestep this problem is to arbitrarily
assume that all information sources are independent.

Recently, the problem of combining correlated information obtained from dis-
tributed sources has been formally addressed by a new theory called Belief Logic
Programming (BLP) [23]. BLP’s semantics takes into account correlation of evi-
dence obtained from different, but overlapping and, possibly, contradicting infor-
mation sources. BLP’s semantics is based on belief combination functions and
is inspired by Dempster-Shafer theory of evidence [3, 18]. In our earlier work
[23], we related BLP semantics to Dempster-Shafer theory and also showed the
connection with certain forms of defeasible reasoning, such as Courteous Logic
Programming [5] and, more generally, Logic Programming with Courteous Ar-
gumentation Theories (LPDA) [22].

However, the previous work didn’t address the issues of efficient reasoning and
query answering, especially for non-ground programs. The present paper presents
a fixpoint semantics which coincides with the declarative semantics introduced
in [23], and an efficient query answering algorithm, which can answer queries on
non-ground programs with the help of an SLD-like procedure.

Although this paper is technically self-contained, it is a followup work on [23],
which presented a model-theoretic semantics and detailed motivation for BLP. To
avoid repetition, we do not rehash here the arguments showing limitations of the
� This work is part of the SILK (Semantic Inference on Large Knowledge) project

sponsored by Vulcan, Inc.

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 268–281, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Query Answering in Belief Logic Programming 269

earlier approaches—those based on probability theory, Fuzzy Logic, Dempster-
Shafer theory, and other approaches [1, 2, 4, 6–12, 14–17, 19, 21, 24].

The paper is organized as follows. Section 2 gives a brief overview of the syntax
of BLP and necessary notions. Section 3 introduces the fixpoint semantics of
BLP. The query answering algorithm and the SLD-like procedure are presented
in Section 4. Section 5 concludes the paper.

2 Preliminaries

2.1 Syntax of BLP

A belief logic program (or a blp, for short) is a set of annotated rules. Each
annotated rule is of the form

[v, w] X :- Body

where X is a positive atom and Body is a Boolean combination of atoms, i.e., a
formula composed out of atoms and negated atoms by conjunction and disjunc-
tion. An atom in BLP has the form p(t1, ..., tn), where p is a predicate and ti is
a constant or a variable, 1 ≤ i ≤ n. We will use capital letters to denote positive
atoms, e.g., A, and a bar over such a letter will denote negation, e.g., A. The
annotation [v, w] is called a belief factor, where v and w are real numbers such
that 0 ≤ v ≤ w ≤ 1.

The informal meaning of the above rule is that if Body is true, then this rule
supports X to the degree v and X to the degree 1−w. The difference, w − v, is
the information gap (or the degree of ignorance) with regard to X .

Note that, in keeping with the theory of evidence, BLP uses what is known as
explicit negation (or, strong negation) [13] rather than negation as failure. That
is, if nothing is known about A, it only means that there is no evidence that A
holds; it does not mean that the negation of A holds.

An annotated rule with empty body is called an annotated fact; it is of-
ten written as [v, w] X . In the remainder of this paper we will deal only with
annotated rules and facts and refer to them simply as rules and facts.

Definition 1. Given a blp P, an atom X is said to depend on an atom Y

– directly, if X is the head of a rule R and Y occurs in the body of R;
– indirectly, if X is dependent on Z, and Z depends on Y . �

We require that in a ground blp no atom depends on itself. So, there can be no
recursion among ground atoms, but recursion among predicates is possible. An
extension of BLP that drops this restriction is future work.

2.2 Combination Functions

Definition 2. Let D be the set of all belief factors, Φ : D × D → D is said to
be a belief combination function if Φ is associative and commutative. �

270 H. Wan and M. Kifer

Due to the associativity of Φ, we can extend it from two arguments to nullary
case, single argument, and three and more arguments: Φ() = [0, 1], Φ([v, w]) =
[v, w], Φ([v1, w1], ..., [vk, wk]) = Φ

(
Φ([v1, w1], ..., [vk−1, wk−1]), [vk, wk]

)
. Note

that the order of arguments in a belief combination function is immaterial, since
such functions are commutative, so we often write such functions as functions
on multisets of belief factors, e.g., Φ({[v1, w1], ..., [vk, wk]}).

Different types of beliefs might require different ways to combine them, so
predicates in the same blp might be using different combination functions. Here
are some popular combination functions:

– Dempster’s combination rule:
• ΦDS([0, 0], [1, 1]) = [0, 1].
• ΦDS([v1, w1], [v2, w2]) = [v, w] if {[v1, w1], [v2, w2]} �= {[0, 0], [1, 1]},

where v = v1·w2+v2·w1−v1·v2
K , w = w1·w2

K , and K = 1 + v1 · w2 + v2 ·
w1 − v1 − v2. In this case, K �= 0 and thus v and w are well-defined.

– Maximum: Φmax([v1, w1], [v2, w2]) = [max(v1, v2), max(w1, w2)].
– Minimum: Φmin([v1, w1], [v2, w2]) = [min(v1, v2), min(w1, w2)].

2.3 Support and Belief Functions

Given a blp P, the definitions of Herbrand Universe UP and Herbrand Base BP

of P are the same as in the classical case. Each atom X has an associated belief
combination function, denoted ΦX .1 Intuitively, ΦX is used to help determine
the combined belief in X accorded by the rules in P that support X .

Definition 3. A truth valuation over a set of atoms α is a mapping from α
to {t, f ,u}. The set of all the truth valuations over α is denoted as T Val(α).

A truth valuation I for a blp P is a truth valuation over BP. We often write
T Val(BP) as T Val(P). �

Definition 4. A support function for a set of atoms α is a mapping mα from
T Val(α) to [0, 1] such that

∑
I∈T Val(α) mα(I) = 1.

The atom-set α is called the base of mα. A support function for a blp P is
a mapping m from T Val(P) to [0, 1] such that

∑
I∈T Val(P) m(I) = 1. �

If α is a set of atoms, we will use Bool(α) to denote the set of all Boolean formulas
constructed out of these atoms (i.e., using ∧, ∨, and negation).

Definition 5. Given a truth valuation I over a set of atoms α and a formula
F ∈ Bool(α), I(F) is defined as in Lukasiewicz’s three-valued logic: I(A ∨ B) =
max

(
I(A), I(B)

)
, I(A ∧ B) = min

(
I(A), I(B)

)
, and I(A) = ¬I(A), where f <

u < t and ¬t = f , ¬f = t, ¬u = u. We say that I |= F if I(F) = t. �

Definition 6. A mapping bel : Bool(BP) −→ [0, 1] is said to be a belief
function for P if there exists a support function m for P, so that for all F ∈
Bool(BP), bel(F) =

∑
I∈T Val(P) such that I|=F m(I). �

1 Separate belief combination functions can be associated to different predicates or
even ground atoms.

Query Answering in Belief Logic Programming 271

3 Fixpoint Semantics of BLP

Belief functions form the basis for the model-theoretic semantics for blps in-
troduced in [23]. However, such semantics does not provide any effective way
of computing the models or answering queries. In this section, we introduce a
fixpoint semantics for BLP, which will serve as a basis for the development of a
query answering algorithm in subsequent sections. As is customary in logic pro-
gramming, we define the semantics using ground (i.e., variable-free) blps. Later
this is lifted to the non-ground case.

Definition 7. Suppose I is a truth valuation over a set of atoms β and α ⊆ β.
A restriction of I to α, denoted I |α, is the truth valuation over α such that
∀X ∈ α, I |α (X) = I(X). �

Definition 8. Let I1 and I2 be truth valuations over the sets of atoms α and β,
respectively, where α ∩ β = ∅. The union of I1 and I2, denoted I1 � I2, is the
truth valuation over α ∪ β such that (I1 � I2) |α= I1 and (I1 � I2) |β= I2. It is
easy to see that I1 � I2 = I2 � I1. �

There is a special truth valuation whose domain is the empty set; we write
it as I∅ : ∅ −→ {t, f ,u}. It is clear that T Val(∅) = {I∅} and ∀α∀I ∈
T Val(α) I |∅= I∅. There is also a special support function whose base is the
empty set: m∅(I∅) = 1. We can see that m∅ is the only support function for ∅.

We define SF(P) to be the set of all support functions for P: SF(P) = {m | m
is a support function for α ∈ BP}. Associated with each blp P, there is an
operator T̂P, which takes a support function in SF(P) as an argument and
returns another support function in SF(P).

Definition 9. Let P be a blp, T̂P is a mapping from SF(P) to SF(P), defined
as follows. For any support function m in SF(P), let α be the base of m, let

dep(α) = {X | X ∈ BP − α, and every atom that X depends on is in α}.

Then T̂P(m) is a support function over the set of atoms α∪dep(α) such that for
every I1 ∈ T Val(α) and I2 ∈ T Val(dep(α)),

T̂P(m)(I1 � I2) = m(I1) ·
∏

X∈dep(α)

V al
(
ΦX

(
BF (X,P, I1)

)
, I2(X)

)
(1)

where BF (X,P, I) is the multiset of the belief factors of all the rules in P, which
have atom X in head and whose bodies are true in I, and

V al([v, w], τ) =

⎧
⎨

⎩

v, if τ = t;
1 − w, if τ = f ;
w − v, if τ = u.

In the special case when the base of m is BP, we have T̂P(m) = m. �

272 H. Wan and M. Kifer

It can be shown that T̂P(m) is a support function because, for every I1 ∈
T Val(α), it is the case that

∑
I2∈T Val(dep(α)) T̂P(m)(I1 � I2) = m(I1) and, con-

sequently,
∑

I1∈T Val(α), I2∈T Val(dep(α)) T̂P(m)(I1 � I2) = 1.
If the equation (1) looks mysterious, it should not be. All it says is that when

we construct T̂P(m) by expanding the base of the support function m from α
to α∪ dep(α), we split each support amount m(I1) according to the constituent
components T̂P(m)(I1 � I2). Each such component is assigned a fraction speci-
fied by the product

∏
X∈dep(α) in (1). Product is used here because under a fixed

truth valuation I1 over α, the rule-sets that fire in I1 and have different heads
are treated as independent and each member of the product represents the con-
tribution of each particular head X ∈ dep(α). In the contribution of a particular
head, X , ΦX

(
BF (X,P, I1) is simply the combined belief factor [v, w] of the rules

that support X in I1. V al examines I2(X) and, depending on whether I2(X) is
true, false, or unknown, interprets the first argument (the combined belief factor
[v, w] for X) as the degree of belief in X (i.e., v), or in X (i.e., 1−w), or as the
uncertainty gap for X (i.e., w − v).

Theorem 1. Let P be a blp. Starting with m0 = m∅, let mk be T̂ ↑k
P (m0), k =

0, 1, There is an integer 0 ≤ n ≤ |BP| such that mn = mn+1. The support
function mn coincides with the support function m̂P defined in purely model-
theoretic terms in [23]. �

Theorem 1 shows that there is always a fixpoint for the T̂P operator. And the
fixpoint semantics coincides with the model-theoretic semantics defined in [23].

Definition 10. Let P be a blp and mω be the fixpoint of T̂P. The model of P
is the following belief function:

model(F) =
∑

I∈T Val(P) such that I|=F

mω(I), where F ∈ Bool(BP). �

It turns out that model is precisely the “correct” and unique belief function that
one should expect: it provides each atom in the Herbrand base with precisely the
right amount of support from all the applicable rules. Namely, if S is a suitable
set of the rules that support A (see [23] for a precise formulation) then

model
(
A ∧

∧
R∈S Body(R)

)

model
(∧

R∈S Body(R)
) = v

model
(
A ∧

∧
R∈S Body(R)

)

model
(∧

R∈S Body(R)
) = 1 − w.

where [v, w] = ΦX(BFS) and BFS is the multiset of belief factors of rules in S.

4 Query Answering

In this section we introduce proof DAGs and present an algorithm that uses proof
DAGs for query answering. First, we consider only ground blps and queries, then
in Section 4.3 we generalize the algorithm to non-ground blps and queries.

Query Answering in Belief Logic Programming 273

A ground query to a blp P is a statement of the form ? − Goal, where
Goal ∈ Bool(BP). An answer to ground query ? − Goal is the belief by P in
Goal.

Given a blp P and a ground query ?− Goal, let Pg be a rule-set composed of
all the rules in P plus the additional rule of the form [1, 1] g :- Goal, where g
is a new proposition. The belief in Goal by P is equivalent to the belief in g by
Pg. This simple standard trick simplifies the matters by allowing us to assume
that all ground queries are simply singleton atoms.

To simplify the description of the main algorithm in this section, we assume
that each rule, R, has a unique identifier, denoted IDR — a new propositional
constant.

4.1 Proof DAG

We first introduce dependency DAGs, which represent derivation paths through
which belief factors are propagated in a blp.

Definition 11. The dependency DAG, H, of a ground blp P is a directed
acyclic bipartite graph whose nodes are partitioned into a set of atom nodes
(a-nodes, for short) and rule nodes (r-nodes, for short). The nodes and edges
are defined as follows:

– For each atom A in P, H has an a-node labeled A.
– For each rule R in P, H has an r-node labeled with proposition IDR.
– For each rule R in P, an edge goes from the r-node labeled IDR to the a-node

labeled with the atom in R’s head.
– For each rule R in P and each atom A that appears in R’s body, an edge

goes from the a-node labeled A to the r-node labeled IDR.
– Each edge that goes from an r-node, labeled IDR, to an a-node is labeled with

the belief factor associated with the rule R. �
Proof DAGs are defined next as subgraphs of dependency DAGs, which contain
only the atoms and rules involved with particular queries.

Definition 12. Let H be the dependency DAG of a ground blp P. The proof
DAG of P for a ground query ?− g, denoted Hg, is a subgraph of H such that

– Every node in Hg is connected to the a-node labeled g by a directed path; and
– Hg contains all the nodes that are so connected to the a-node labeled g. �

In dependency DAGs and proof DAGs, if there is an edge from node A to node
B in a DAG, We call A a child node of B and B a parent node of A.

Example 1. Figure 1 shows the proof DAG of the following blp for the query
? − g.

rg : [1, 1] g :- b ∨ e
r1 : [0.2, 0.4] a :- b ∧ c r4 : [0.3, 0.6] b
r2 : [0.8, 0.8] e :- a ∧ c r5 : [1, 1] c
r3 : [0.2, 0.3] e :- b ∧ d r6 : [0.4, 0.6] d �

274 H. Wan and M. Kifer

Fig. 1. The proof DAG for Example 1

Definition 13. Let mα and mβ be support functions for the sets of atoms α
and β, respectively, where α ⊆ β. We say mα is a projection of mβ on α if for
every I ∈ T Val(α), mα(I) =

∑
J∈T Val(β) where J|α=I mβ(J). (Recall that J |α

is defined in Definition 7.) �

It is clear that for any support function m and any subset α of m’s base, there
exists one and only one projection of m on α. We denote it by projection(m, α).

If α is a set of atoms and τ ∈ {t, f ,u}, we will use {α → τ} to denote the
constant truth valuation over α, which maps every atom X ∈ α to τ . If α = {A}
is a singleton set, we will simply write {A → τ} instead of {{A} → τ}.

Algorithm 1 computes answers to the query ?− g, i.e., the degree of belief in g.
The algorithm is based on the same idea as the fixpoint semantics: for every node
X in the post-order traversal, the algorithm first expands m from the base Base
to a larger base Base ∪ {X}. The difference is that Algorithm 1 then projects
m to a smaller base by throwing out the nodes which are no longer needed for
the rest of the computation. Each r-node IDR represents the statement that the
body of rule R is true and is used to facilitate the computation.

Theorem 2 (Correctness of Algorithm 1). Given a ground blp P and a
ground query ? − g, let model be the model of P and bel(g) be the outcome of
Algorithm 1. The algorithm is correct in the sense that bel(g) = model(g). �

Example 2. Algorithm 1 does not specify any concrete post-order traversal to
use. One possible order of traversal for the proof DAG in Figure 1 is: 〈r5, c, r4, b,
r1, a, r2, r6, d, r3, e, rg, g〉. With this traversal, the base of the support function

Query Answering in Belief Logic Programming 275

Algorithm 1. Query answering by traversing proof DAG
Input: A ground blp P, a ground query ? − g, and the proof DAG, H, of P and of

the query ? − g.
Output: The answer to the query ? − g, i.e., the degree of belief in g.
1: Let X1, ..., Xn be a post-order traversal of H.
2: m ⇐ m∅ ; V isited ⇐ ∅; Base ⇐ ∅;
3: for i = 1 to n do
4: if X is an a-node labeled with an atom A then
5: Initialize a new support function m′ for Base ∪ {A}.
6: Let Id1, . . . , Idk be the labels of the child r-nodes of X.
7: for all I ∈ T Val(Base) such that m(I) �= 0 do
8: S ⇐ ∅;
9: for j = 1 to k do

10: if I(Idj) = t then
11: Let [Vj , Wj] be the belief factor of the rule identified by Idj.
12: S ⇐ S ∪ {[Vj , Wj]};
13: end if
14: end for
15: [V, W] ⇐ ΦA(S);
16: m′(I � {A → t}) ⇐ m(I) · V ;
17: m′(I � {A → f}) ⇐ m(I) · (1 − W);
18: m′(I � {A → u}) ⇐ m(I) · (W − V);
19: end for
20: m′ ⇐ projection(m′, Base ∪ {A} − {Id1, . . . , Idk});
21: m ⇐ m′; V isited ⇐ V isited ∪ {A}; Base ⇐ Base ∪ {A} − {Id1, . . . , Idk};
22: else /* X is an r-node labeled with Id which is the identifier of rule R. */
23: Initialize a new support function m′ for Base ∪ {Id}.
24: Let A1, . . . , Ak be the labels of the child a-nodes of X.
25: Let F be the body of R.
26: for all I ∈ T Val(Base) such that m(I) �= 0 do
27: for all τ ∈ {t, f , u} do
28: if τ = I(F) then
29: m′(I � {Id → τ}) ⇐ m(I);
30: end if
31: end for
32: end for
33: α ⇐ ∅;
34: for i = 1 to k do
35: if every parent node of Ai is in V isited then
36: α ⇐ α ∪ {Ai};
37: end if
38: end for
39: m′ ⇐ projection(m′, Base ∪ {Id} − α);
40: m ⇐ m′; V isited ⇐ V isited ∪ {Id}; Base ⇐ Base ∪ {Id} − α;
41: end if
42: end for
43: return

∑
I∈T Val(Base),I(g)=t m(I)

276 H. Wan and M. Kifer

m changes during the runtime of Algorithm 1 in the following order: {r5}, {c},
{c, r4}, {c, b}, {c, b, r1}, {c, b, a}, {b, r2}, {b, r2, r6}, {b, r2, d}, {b, r2, r3}, {b, e},
{rg}, {g}. Suppose Φe = ΦDS , the output of Algorithm 1 is bel(g) = 0.3. �

4.2 Complexity

First we derive complexity bounds for the unoptimized fixpoint computation in
Section 3. It is easy to see that the space complexity is bounded by the domain
size of the final and largest support function, which is O(3|BP|). For the time
complexity, consider the operator T̂P from Definition 9. During the execution of
the fixpoint semantics, each rule is processed exactly once by the operator T̂P,
and the computation is dominated by evaluating the rule body under each truth
valuation over the base of the current support function. Therefore, the time
complexity of processing a rule R is bounded by O(|Body(R)| · 3|BP|), where
|Body(R)| denotes the size of the body of R, and the overall complexity of the
fixpoint semantics is O(

∑
R∈P |Body(R)| · 3|BP|).

The complexity of Algorithm 1 is much lower. First of all, the space complexity
is bounded by the domain size of the largest support function. Let M be the
maximum among the sizes of support function bases constructed during the
run of the algorithm. Then space complexity is O(3M). The time needed to
construct the proof DAG H for a query is the same as the time needed to
find all the proof paths in classical deductive databases (with certainty factors
removed): it is polynomial in the size of the data. Then the algorithm performs
a post-order traversal of H. At each step, when visiting a node, X , it tries to
expand the support function mS from the base S to S ∪ {X}. By the same
argument as in the previous paragraph, the time complexity for processing each
rule R is bounded by O(|Body(R)| · 3M). Therefore, since each rule is processed
by exactly one step of the algorithm, the overall time complexity is bound by
O(

∑
R∈T |Body(R)| · 3M), where T is the set of rules that appear in H.

It is clear from the query answering algorithm that, compared to the stock fix-
point computation, it requires less space in a typical run by “garbage-collecting”
atoms in the base of the support function. It is less clear where the time savings
come from. The two time complexity bounds estimates above indicate that the
exponent has dominant effect. For instance, in Example 2, the fixpoint compu-
tation yields the exponent |BP| = 6. In contrast, the exponent for the query
answering algorithm is M = 3.

It is interesting to note that different traversals of the proof DAG might gen-
erate support function bases whose maximum sizes vary greatly. An important
issue is, therefore, finding heuristics that produce smaller bases.

4.3 Non-ground Cases

Now we turn to non-ground programs and non-ground queries.
A non-ground query to a blp P is a statement of the form ?− Goal, where

Goal is a Boolean combination of non-ground atoms. A ground instance goal
of Goal is called a positive instance of Goal if goal is entailed by P with a

Query Answering in Belief Logic Programming 277

positive belief. An answer to non-ground query ? − Goal is any positive
instance goal of Goal, together with the belief in goal. Using the same trick as
for ground queries, we can make the assumption that all non-ground queries are
simply singleton non-ground atoms.

The main problem in answering queries to non-ground blps is how to construct
proof DAGs without grounding the whole program and constructing the whole
dependency DAG. It turns out that a procedure in the style of SLD-resolution
can solve this problem and even construct a pruned proof DAG which does not
contain atom that is not supported at all or rules that never fires.

First, recall that SLD-resolutions can only be applied to programs without
body-disjunctions, while blps might have such disjunctions. Fortunately, every
blp can be transformed into an equivalent blp without body-disjunctions.

Definition 14. For any blpP, itsnon-disjunctive equivalent,nodisjunct(P),
is obtained from P by replacing every rule R of the form

[v, w] H :- Body1 ∨ · · · ∨ Bodyk.

where k > 1 and Bodyi (1 ≤ i ≤ k) are conjunctions of literals, with a set of
rules of the form

[v, w] H :- HR.
[1, 1] HR :- Bodyi. 1 ≤ i ≤ k

where HR is a new predicate that does not appear anywhere else in nodisjunct(P)
and HR has the same arguments (variables) as H does. �

Theorem 3. Let P be a blp, bel1 be the model of P, and bel2 be the model of
nodisjunct(P). If all combination functions in P have the property Φ([1, 1], [1, 1])
= [1, 1] then bel1(F) = bel2(F) for all F ∈ Bool(BP). �

In other words, the models of P and nodisjunct(P) coincide where it matters.
From now on we assume that blps do not have disjunctions in rule bodies.

Definition 15. The pruned proof DAG of a ground blp P for a ground query
? − g is obtained from the proof DAG of P for ? − g by the following steps:

– Mark all leaf a-nodes as “failed” and all leaf r-nodes as “non-failed”.
– Perform a post-order traversal to mark every node as follows:

• If an a-node has at least one child r-node which is marked “non-failed,”
mark the a-node as “non-failed;” otherwise, mark the a-node as “failed.”

• If an r-node has at least one child a-node which is marked “failed,” mark
the r-node as “failed;” otherwise, mark the r-node as “non-failed.”

– Delete all the nodes which are marked as “failed.”
– Delete all the nodes which are not connected to the a-node g. �

It is clear that pruned proof DAG contains all the necessary information to
answer ? − g, and executing Algorithm 1 on pruned proof DAGs eliminates
unnecessary computation compared to running it without pruning the DAGs.

Now we define SLD-trees on non-ground programs and queries, which we will
use in Algorithm 2 to construct the pruned proof DAGs.

278 H. Wan and M. Kifer

Definition 16. An SLD-tree for a blp P and a query ? − G (both P and G
can be non-ground) is constructed by the following steps:

– Add a node labeled with ? − G as root.
– Repeat the following until no nodes can be added:

Let o be a leaf node labeled with ? − G1 ∧ ... ∧ Gn, for every rule R in P of
the form [v, w] A :- B1 ∧ ... ∧ Bm such that G1 and A or G1 and A unify
with the most general unifier (mgu) θ,

• Add a node o′ labeled with ? − (B1 ∧ ... ∧ Bm ∧ G2 ∧ ... ∧ Gn)θ;
• Add an edge from o to o′ and label that edge with a triple 〈θ, IDR, V arsθ〉,

where IDR is the identifier of R and V ars is the list of variables in R.

In a special case when o above is labeled with ? − G1 (has only one atom)
and R above is a fact that unifies with G1 or G1, o′ becomes a leaf node
labeled with ? − {}. We call it a success node.

– Delete the nodes and edges that are not connected to any success node. �

Using the SLD-tree for ? − G, Algorithm 2 constructs the set of pruned proof
DAGs for the grounding of P and each query ?− g, where g is a positive instance
of G. The query ? − G can then be answered by applying Algorithm 1 on the
output of Algorithm 2.

Algorithm 2. Construct pruned proof DAGs from SLD-tree
Input: An SLD-tree, T , of P and of the query ? − G.
Output: Set, the set of pruned proof DAGs for the grounding of P and each query

? − g, where g is a positive instance of G.
1: HS ⇐ ∅; Θ ⇐ ∅;
2: for all path, path, in T from root to a leaf node labeled ? − {} do
3: Let θ be the composition of all the mgu’s labeled along path, Θ ⇐ Θ ∪ {θ};
4: for all edge e along path do
5: Let IDR be the rule identifier labeled on e and R the corresponding rule.
6: Let V ars be the variable list labeled on e.
7: Insert(HS, an r-node labeled with IDR(V arsθ));

/* Insert means insert a node or an edge if it is not already in the graph */
8: Insert(HS, an a-node labeled with head(R)θ);
9: Insert(HS, edge(IDR(V arsθ), head(R)θ));

10: label the new edge with the belief factor of R.
11: for all atom A in the body of R do
12: Insert(HS, an a-node labeled with Aθ);
13: Insert(HS, edge(Aθ, IDR(V arsθ)));
14: end for
15: end for
16: end for
17: Set ⇐ {H | ∃θ ∈ Θ, H is a subgraph of HS which contains all the nodes that are

connected to a node labeled with gθ}
18: return Set

Query Answering in Belief Logic Programming 279

Example 3. Consider a system that assesses the risk for people getting a certain
disease. The relevant inference rules and facts can be expressed as follows:

@r1 [0.2, 1] disease(X) :- little sports(X).
@r2 [0.1, 1] disease(X) :- favorite(X, Y), unhealthy(Y).
@r3 [1, 1] little sports(p1).
@r4 [1, 1] favorite(p1, a). @r5 [1, 1] favorite(p1, b).
@r6 [1, 1] favorite(p1, c). @r7 [1, 1] favorite(p2, a).
@r8 [1, 1] favorite(p2, d). @r9 [1, 1] favorite(p2, e).
@r10 [1, 1] favorite(p3, b). @r11 [1, 1] favorite(p3, f).
@r12 [1, 1] unhealthy(a). @r13 [1, 1] unhealthy(d).

Figure 2 shows an SLD-tree for this program and the query ? − disease(X).
The pruned proof DAGs are shown in Figure 3. Suppose Φdisease = ΦDS . Then
the result is {〈disease(p1), belief : 0.28〉, 〈disease(p2), belief : 0.19〉}. �

Fig. 2. SLD-tree for Example 3

Fig. 3. Pruned proof DAGs for Example 3

280 H. Wan and M. Kifer

5 Conclusions

We presented a fixpoint semantics for Belief Logic Programming (BLP) and
optimized algorithms for answering general BLP queries. The current version
of the BLP semantics does not permit recursion at the ground level, which is
left as future work. Another interesting future direction is combining BLP with
annotated logic programming [7].

References

1. Baldwin, J.F.: Evidential support logic programming. Fuzzy Sets and Sys-
tems 24(1), 1–26 (1987)

2. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. J. of Logic Pro-
gramming 43, 391–405 (1997)

3. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping.
Ann. Mathematical Statistics 38 (1967)

4. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of logic in arti-
ficial intelligence and logic programming, nonmonotonic reasoning and uncertain
reasoning, vol. 3, pp. 439–513. Oxford University Press, Inc., Oxford (1994)

5. Grosof, B.N.: A courteous compiler from generalized courteous logic programs to
ordinary logic programs. Technical Report Supplementary Update Follow-On to
RC 21472, IBM (July 1999)

6. Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty.
In: Gyssens, M., Van Gucht, D., Paredaens, J. (eds.) ICDT 1988. LNCS, vol. 326,
pp. 102–117. Springer, Heidelberg (1988)

7. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. J. of Logic Programming 12(3,4), 335–367 (1992)

8. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with
uncertainty. IEEE T. Knowledge and Data Engineering 13(4), 554–570 (2001)

9. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints.
ACM Trans. on Computational Logic 2(3), 289–339 (2001)

10. Muggleton, S.: Learning stochastic logic programs. Electron. Trans. Artif. In-
tell. 4(B), 141–153 (2000)

11. Ng, R.T.: Reasoning with uncertainty in deductive databases and logic programs.
Intl. J. of Uncertainty,Fuzziness and Knowledge-Based Sys. 5(3), 261–316 (1997)

12. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective
probabilities in deductive databases. J. of Automated Reasoning 10(2), 191–235
(1993)

13. Pearce, D., Wagner, G.: Logic programming with strong negation. In: Proceedings
of the international workshop on Extensions of logic programming, pp. 311–326.
Springer-Verlag New York, Inc., New York (1991)

14. Poole, D.: The independent choice logic and beyond. In: Probabilistic Inductive
Logic Programming, pp. 222–243 (2008)

15. De Raedt. L, Kersting, K.: Probabilistic inductive logic programming. In: Proba-
bilistic inductive logic programming, pp. 1–27 (2008)

16. Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic program-
ming framework. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS,
vol. 3350, pp. 67–82. Springer, Heidelberg (2005)

Query Answering in Belief Logic Programming 281

17. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. of Artificial Intelligence Research 15, 391–454 (2001)

18. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

19. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation.
In: Uncertainty in Artificial Intelligence, pp. 169–198. North-Holland, Amsterdam
(1990)

20. Shortliffe, E.H.: Computer Based Medical Consultations: MYCIN. American Else-
vier, Amsterdam (1976)

21. Subrahmanian, V.S.: On the semantics of quantitative logic programs. In: Sympo-
sium on Logic Programming (SLP), pp. 173–182 (1987)

22. Wan, H., Grosof, B.N., Kifer, M., Fodor, P., Liang, S.: Logic programming with
defaults and argumentation theories. In: Intl. Conf. on Logic Programming (2009)

23. Wan, H., Kifer, M.: Belief logic programming: Uncertainty reasoning with cor-
relation of evidence. In: Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning, LPNMR (2009)

24. Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–353 (1965)

Towards Effective Elicitation of

NIN-AND Tree Causal Models

Yang Xiang, Yu Li, and Zoe Jingyu Zhu

University of Guelph, Canada

Abstract. To specify a Bayes net (BN), a conditional probability table
(CPT), often of an effect conditioned on its n causes, needs assessed for
each node. It generally has the complexity exponential on n. Noisy-OR
reduces the complexity to linear, but can only represent reinforcing causal
interactions. The non-impeding noisy-AND (NIN-AND) tree is the first
causal model that explicitly expresses reinforcement, undermining, and
their mixture. It has linear complexity, but requires elicitation of a tree
topology for types of causal interactions. We study their topology space
and develop two novel techniques for more effective elicitation.

1 Introduction

To specify a BN, a CPT needs to be assessed for each non-root node. It is often
advantageous to construct BNs along the causal direction, in which case a CPT
is the distribution of an effect conditioned on its n causes. In general, assessment
of a CPT has the complexity exponential on n.

Noisy-OR [7] is the most well known technique that reduces this complexity to
linear. A number of extensions have also been proposed such as [4,3,5]. However,
noisy-OR, noisy-AND [3], as well as related techniques, can only represent causal
interactions that are reinforcing [9]. The NIN-AND tree [9] extends noisy-OR
and provides the first causal model that explicitly expresses reinforcing and
undermining causal interactions, as well as their mixture. It requires elicitation
of a linear number of probability parameters and, in addition, a tree topology
which specifies the types of causal interactions among causes.

The elicitation relies on expert to describe the tree topology. When the number
of causes is more than four or five, accurate description may be challenging. We
study the topology space of NIN-AND tree models and develop novel techniques
for more effective elicitation. One allows expert to select a topology from an
enumeration. Another allows expert to specify only types of pairwise interactions
among causes, from which a unique tree topology is identified.

2 Background

This section is mostly based on [9]. An uncertain cause is a cause that can pro-
duce an effect but does not always do so. Denote a set of binary cause variables
as X = {c1, ..., cn} and their effect variable (binary) as e. For each ci, denote

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 282–296, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Effective Elicitation of NIN-AND Tree Causal Models 283

ci = true by c+
i and ci = false by c−i . Similarly, denote e = true by e+ and

e = false by e−.
A causal event refers to an event that a cause ci caused an effect e to occur

successfully when all other causes of e are absent. Denote this causal event
by e+ ← c+

i and its probability by P (e+ ← c+
i). The causal failure event,

where e is false when ci is true and all other causes of e are false, is denoted as
e+ �← c+

i . Denote the causal event that a set X = {c1, ..., cn} of causes caused e
by e+ ← c+

1 , ..., c+
n or e+ ← x+. Denote the set of all causes of e by C. The CPT

P (e|C) relates to probabilities of causal events as follows: If C = {c1, c2, c3},
then P (e+|c+

1 , c−2 , c+
3) = P (e+ ← c+

1 , c+
3). Note that C is assumed to include

a leaky variable (if any) to capture causes that we do not wish to represent
explicitly, and hence P (e+|c−1 , c−2 , c−3) = 0.

Causes reinforce each other if collectively they are at least as effective in
causing the effect as some acting by themselves. If collectively they are less
effective, then they undermine each other. Note that if C = {c1, c2} and c1 and
c2 undermine each other, then all the following hold:

P (e+|c−1 , c−2) = 0, P (e+|c+
1 , c−2) > 0, P (e+|c−1 , c+

2) > 0,

P (e+|c+
1 , c+

2) < min(P (e+|c+
1 , c−2), P (e+|c−1 , c+

2)).

The following Def.1 defines the two types of causal interactions generally. Note
that reinforcement and undermining occur between individual variables as well as
sets of variables. For instance, variables within each of two sets can be reinforcing,
while the two sets can undermine each other. Hence, each Wi in Def. 1 is not
necessarily a singleton.

Def. 1. Let R = {W1, W2, ...} be a partition of a set X of causes, R′ ⊂ R be
any proper subset of R, and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each
other, iff

∀R′ P (e+ ← y+) ≤ P (e+ ← x+).

Sets of causes in R undermine each other, iff

∀R′ P (e+ ← y+) > P (e+ ← x+).

Disjoint sets of causes W1, ..., Wm satisfy failure conjunction iff

(e+ �← w+
1 , ..., w+

m) = (e+ �← w+
1) ∧ ... ∧ (e+ �← w+

m).

That is, collective failure is attributed to individual failures. They also satisfy
failure independence iff

P ((e+ �← w+
1) ∧ ... ∧ (e+ �← w+

m)) = P (e+ �← w+
1) ... P (e+ �← w+

m).

Disjoint sets of causes W1, ..., Wm satisfy success conjunction iff

e+ ← w+
1 , ..., w+

m = (e+ ← w+
1) ∧ ... ∧ (e+ ← w+

m).

284 Y. Xiang, Y. Li, and Z.J. Zhu

That is, collective success requires individual effectiveness. They also satisfy
success independence iff

P ((e+ ← w+
1) ∧ ... ∧ (e+ ← w+

m)) = P (e+ ← w+
1) ... P (e+ ← w+

m).

It has been shown that causes are reinforcing when they satisfy failure con-
junction and independence, and they are undermining when they satisfy success
conjunction and independence. Hence, undermining can be modeled by a direct

+ ++ +

+ + +e c ,...,c1 n

1 n...
e ce c + ++ +

+ + +e c ,...,c1 n

1 n...
e ce c

Fig. 1. Direct (left) and dual (right) NIN-AND gates

NIN-AND gate (Fig. 1, left), and reinforcement by a dual NIN-AND gate (right).
As per Def. 1, a set of causes can be reinforcing (undermining), but the set

is undermining (reinforcing) with another set. Such causal interaction can be
modeled by a NIN-AND tree. As shown in Fig. 2 (a), causes c1 through c3

are undermining, and they are collectively reinforcing c4. The following defines
NIN-AND tree models in general:

Def. 2. An NIN-AND tree is a directed tree for effect e and a set X = {c1, ..., cn}
of occurring causes.

1. There are two types of nodes. An event node (a black oval) has an in-degree
≤ 1 and an out-degree ≤ 1. A gate node (a NIN-AND gate) has an in-degree
≥ 2 and an out-degree 1.

2. There are two types of links, each connecting an event and a gate along input-
to-output direction of gates. A forward link (a line) is implicitly directed. A
negation link (with a white oval at one end) is explicitly directed.

3. Each terminal node is an event labeled by a causal event e+ ← y+ or e+ �←
y+. There is a single leaf (no child) with y+ = x+, and the gate it connects
to is the leaf gate. For each root (no parent; indexed by i), y+

i
⊂ x+,

y+
j
∩ y+

k
= ∅ for j �= k, and

⋃
i y+

i
= x+.

4. Inputs to a gate g are in one of two cases:

(a) Each is either connected by a forward link to a node labeled e+ ← y+,
or by a negation link to a node labeled e+ �← y+. The output of g is
connected by a forward link to a node labeled e+ ← ∪iy

+
i
.

(b) Each is either connected by a forward link to a node labeled e+ �← y+,
or by a negation link to a node labeled e+ ← y+. The output of g is
connected by a forward link to a node labeled e+ �← ∪iy

+
i
.

Towards Effective Elicitation of NIN-AND Tree Causal Models 285

An NIN-AND tree model for effect e and its causes C can be obtained by eliciting
a tree topology with |C| roots plus |C| single-cause probabilities P (e+ ← c+

i).
The CPT P (e|C) can then be derived using the model. For each P (e+|ci, ..., cj),
first modify the model to remove roots corresponding to inactive causes, i.e., ci =
c−i , and related gates if necessary. Then apply algorithm GetCausalEventProb
below to the modified tree. It recursively processes from the leaf to roots. As
soon as probabilities of input events to a gate is obtained, probability of its
output event is computed.

Algorithm 1. GetCausalEventProb(T)

Input: A NIN-AND tree T of leaf v and leaf gate g, with root probabilities spec-
ified.
for each node w directly inputting to g, do

if P (w) is not specified,
denote the sub-NIN-AND-tree with w as the leaf by Tw;
P (w) = GetCausalEventProb(Tw);

if (w, g) is a forward link, P ′(w) = P (w);
else P ′(w) = 1− P (w);

return P (v) =
∏

w P ′(w);

By default, each root event in a NIN-AND tree is a single-cause event, and all
causal interactions satisfy failure (or success) conjunction and independence. If a
subset of causes do not satisfy these assumptions, suitable multi-cause probabil-
ities P (e+ ← x+), where X ⊂ C, can be directly elicited and incorporated into
the NIN-AND tree model. Hence, by trading efficiency, any non-deterministic
CPT can be encoded through NIN-AND trees. The default is assumed in this
paper.

3 Minimal NIN-AND Tree Topology Space

NIN-AND tree models allow a CPT of generally exponential complexity to be
obtained by eliciting a tree topology and a linear number of probabilities of
single-cause events. Reference [9] relies on human expert to describe the tree
topology. One alternative is to show expert all possible tree topologies so that
one can be selected. We study the space of NIN-AND trees below so that tree
topologies can be enumerated.

First of all, what qualifies as an individual in the space? For instance, it would
be undesirable that two distinct topologies in the space correspond to the same
CPT. Consider the two NIN-AND trees in Fig. 2. Although the topologies appear
different, given an identical set of single-cause probabilities, they yield the same
probability P (e+ �← c+

1 , c+
2 , c+

3 , c+
4). Hence, it is desirable that only one of them

is deemed legal in the topology space.
We establish below associativity of NIN-AND gates, which allows identifica-

tion of equivalent topologies such as the above. Proposition 1 shows that an
NIN-AND tree of multiple dual NIN-AND gates is equivalent to a single gate.

286 Y. Xiang, Y. Li, and Z.J. Zhu

e c1
+ + e c+ +

3

e c+ +
2

e c+ +
4

e c , c , c1 2 3
+ + + +

e c , c , c , c1 2 3 4
+ + + + +

e c+ +
3

e c+ +
4

e c , c , c1 2 3
+ + + +

e c , c , c , c1 2 3 4
+ + + + +

+ + +
1 2 e c , c

e c1
+ + e c+ +

2 (b)(a)

Fig. 2. NIN-AND trees depicting the same causal model

Proposition 1. Let T be an NIN-AND tree for n ≥ 3 causes with m ≥ 1 dual
NIN-AND gates, and P (e+ ← c+

1 , ..., c+
n) be the probability of the causal event

obtained from T . Let T ′ be a single dual NIN-AND gate for the same causes
and P ′(e+ ← c+

1 , ..., c+
n) the probability from T ′. Then P (e+ ← c+

1 , ..., c+
n) =

P ′(e+ ← c+
1 , ..., c+

n).

Proof: We prove by induction on the number of gates in T . For m = 1, T and
T ′ are identical. Applying GetCausalEventProb to T , we obtain

P (e+ �← c+
1 , ..., c+

n) = P ′(e+ �← c+
1 , ..., c+

n) =
n∏

i=1

P (e+ �← c+
i).

Assume that the proposition holds for m = 1, 2, ..., k where k ≥ 1. Below we
consider m = k + 1.

Let g denote the leaf gate of T . Since k ≥ 1 and m ≥ 2, there exists a gate
t that outputs to g. Let v be the output event of t. Let S denote the subtree
seated at v and for a subset X of causes. In other words, v is the leaf in S. S
is a valid NIN-AND tree with no more than k gates. By inductive assumption,
applying GetCausalEventProb to S, we obtain

P (e+ �← x+) =
∏

ci∈X

P (e+ �← c+
i).

The above argument holds for each gate t. When GetCausalEventProb is applied
to the leaf node in T , the probability of the corresponding event is the product
of the probability of each input event to g. Hence,

P (e+ �← c+
1 , ..., c+

n) =
n∏

i=1

P (e+ �← c+
i)

when m = k + 1. �
Proposition 2 shows that an NIN-AND tree of multiple direct NIN-AND gates
is equivalent to a single direct NIN-AND gate. It can be proven similarly as for
Proposition 1.

Towards Effective Elicitation of NIN-AND Tree Causal Models 287

Proposition 2. Let T be an NIN-AND tree for n ≥ 3 causes with m ≥ 1 direct
NIN-AND gates, and P (e+ ← c+

1 , ..., c+
n) be the probability of the causal event

obtained from T . Let T ′ be an NIN-AND tree for the same causes with a single
direct NIN-AND gate, and P ′(e+ ← c+

1 , ..., c+
n) be the probability from T ′. Then

P (e+ ← c+
1 , ..., c+

n) = P ′(e+ ← c+
1 , ..., c+

n).

Base on the associativity of NIN-AND gates, we select the single NIN-AND gate
to represent all equivalent NIN-AND trees of the same input events, and to
be the only legal individual in the topology space. Applying this to NIN-AND
gates embedded in an NIN-AND tree, we have the following classification of tree
topologies.

Def. 3. Let T be an NIN-AND tree. If T contains a gate t that outputs to
another gate g of the same type (direct or dual), delete t and connect its inputs
to g. If such deletion is possible, then T is superfluous. Apply such deletions
until no longer possible. The resultant NIN-AND tree is minimal.

As per Def. 3, we require individuals in the topology space to be minimal. That
is, we require a minimal topology space. Hence, the NIN-AND tree in Fig. 2 (a)
is legal in the space, and that in (b) is not. This leads to Corollary 1.

Corollary 1. Let T be a minimal NIN-AND tree. Then whenever a NIN-AND
gate g outputs to another NIN-AND gate t, g and t are of different type (direct
or dual).

From Corollary 1, a minimal NIN-AND tree has the following structure: If the
leaf gate g is a direct gate, then all gates outputting to g are dual, and their
inputs are all from direct gates. That is, from the leaf towards root nodes, gates
alternate in types. This alternation implies that, in the minimal space, for every
legal NIN-AND tree T with a direct leaf gate, there exists a legal NIN-AND
tree T ′ obtained by replacing each gate in T with its opposite type. This is
summarized in the following:

Proposition 3. Let Ψ be the collection of minimal NIN-AND trees for n causes
with direct leaf gates. Let Ψ ′ be the collection of minimal NIN-AND trees for n
causes with dual leaf gates. Then an one-to-one mapping exists between Ψ and
Ψ ′, defined by replacing each gate with the opposite type.

We refer to Ψ as the minimal topology space for n causes with direct leaf gates,
and Ψ ′ as the minimal topology space with dual leaf gates. As per Proposition 3,
properties from one of them are applicable to the other. Below, we focus on tree
enumeration in the minimal space with direct leaf gates.

From Corollary 1, given the type of leaf gate, types of all gates in a minimal
NIN-AND tree are unique, as well as the nature of all event nodes (causal failure
or success). We thus omit labels for event nodes. Note that we choose minimal
trees to be unlabeled as the space is more compact. How to enumerate root-
labeled minimal trees given the unlabeled enumeration is studied in [10].

288 Y. Xiang, Y. Li, and Z.J. Zhu

4 Enumerating NIN-AND Trees by Local Insertion

There is only one minimal NIN-AND tree for 2 causes. For 3 causes, there are
two minimal NIN-AND trees with direct leaf gate (see Fig. 3 (a) and (b)). For
a larger number of causes, Theorem 1 suggests operations for automatic tree
topology generation, which are illustrated in Fig. 3 (c) and (d).

(a) (b) ...

...

...

...

...

...

...

...

...

...

...

... (d)(c)

Fig. 3. (a) and (b): Minimal NIN-AND trees for 3 causes. (c) Op1. (d) Op2.

Theorem 1. Every minimal NIN-AND tree for n ≥ 3 causes can be constructed
by starting from an NIN-AND gate for 2 causes and applying a sequence of
operations made of the following two:

Op1. Add a root event as an input to a gate.
Op2. Insert a new gate between a root event and an existing gate and add a

new root event as the second input of the new gate.

Proof by induction (sketch): For n = 3, there are exactly two minimal NIN-AND
trees. The trees in Fig. 3 (a) and (b) can be constructed by applying Op1 and
Op2 to the NIN-AND gate for 2 causes.

Assume that the theorem holds for n = k ≥ 3 and consider n = k + 1. Let
T ′ be a minimal tree for n causes, x be a root event in T ′ and is connected to a
gate g. Let T be a tree obtained by removing x from T ′. Analyzing the following
cases and applying the inductive assumption to T , it can be shown that, in each
case, T ′ can be constructed by a sequence made of Op1 and Op2.

– Gate g has three or more input events.
– Gate g has two input events x and y.
• Gate g is the leaf gate.
• Gate g is a non-leaf gate.
∗ Event y is a root event.
∗ Event y is a non-root event. �

Theorem 1 suggests the following procedure to generate all minimal NIN-AND
trees for n causes: Start with the NIN-AND gate for 2 causes. Apply Op1 and
Op2 to the gate to generate the two NIN-AND trees for 3 causes. Repeat the
process to generate all minimal trees for 4 causes based on minimal trees for 3
causes, then those for 5 causes based on minimal trees for 4 causes, and so on,

Towards Effective Elicitation of NIN-AND Tree Causal Models 289

until those for n causes based on minimal trees for n− 1 causes. At round k +1,
all minimal trees for k causes have been constructed from the round k. With
each tree T for k causes, for each gate g in T , apply Op1 once to generate a tree
for k + 1 causes, and apply Op2 once to generate another tree if g has any root
input event.

5 Removing Duplication Trees

The above procedure can generate all minimal NIN-AND trees for n causes.
However, when executed, no matter what data structure is used, nodes in each
tree is implicitly labeled. This causes generation of labeled trees corresponding
to the same unlabeled NIN-AND tree. For instance, from the minimal tree in

uuu v xw

(e)(d)

ff

ih iih h

ggg

yy

t

f

s

w xvw xv

ts

f f

s t

(a) (b) (c)

ww xx yy v u vu

t tss

Fig. 4. Trees in (b) and (c) are generated from (a). (d) Reduced tree from (b). (e)
Reduced tree from (c).

Fig. 4 (a), when Op1 is applied to gate h, the labeled tree in (b) is generated.
When the operation is applied to gate i, the tree in (c) is generated. In both
(b) and (c), the new node is labeled y. However, in (b) it is connected to a
gate adjacent to u, v and s. But in (c), it is connected to a gate adjacent to
w, x and t. It is not obvious that trees in (b) and (c) correspond to the some
unlabeled tree. To turn a list of generated trees into an enumeration, all labeled
trees corresponding to the same unlabeled tree must be removed, except one.

Algorithm 2 below decides if a newly generated labeled NIN-AND tree T ′

corresponds to the unlabeled tree represented by an existing labeled tree T . It
uses a more compact representation where each gate node is merged with the
unique non-root event node connected to it. This converts a minimal NIN-AND
tree to a reduced tree, defined below and illustrated in Fig. 4 (d) and (e).

Def. 4. Let T be a minimal NIN-AND tree. A reduced tree relative to T is a
directed graph obtained by (1) merging each gate node with the unique non-root
event node that it is connected to, and (2) making all links explicitly directed in
the same directions as in T .

Now the task is to recognize two reduced trees such as those in Fig. 4 (d) and
(e) to be isomorphic. Two reduced trees are isomorphic if there is an one-to-one

290 Y. Xiang, Y. Li, and Z.J. Zhu

mapping of their nodes which (1) maps the leaf in one to the leaf in the other,
and (2) preserves in-degree and out-degree. Algorithm 2 performs the task, where
|T | denotes the number of nodes in T .

Algorithm 2. IsIsomorphicTree(T, T’)

Input: Two reduced trees T and T ′, with leaf nodes v and v′, and their parent
sets π and π′, respectively.

1 if |T ′| �= |T |, return false;
2 if |T ′| = 1, return true;
3 if |π′| �= |π|, return false;
4 Sub′ = the set of subtrees each with the leaf in π′;
5 Sub = the set of subtrees each with the leaf in π;
6 for each subtree S′ ∈ Sub′,
7 for each unmarked subtree S ∈ Sub,
8 if IsIsomorphicTree(S, S’) returns true,
9 mark S′ and S;
10 break inner for loop;
11 if S′ is unmarked, return false;
12 return true;

Theorem 2 establishes that IsIsomorphicTree recognizes isomorphic reduced
trees correctly.

Theorem 2. IsIsomorphicT ree(T, T ′) returns true iff reduced trees T and T ′

are isomorphic.

Proof: We prove by strong induction on n = |T |. Denote n′ = |T ′|. For n = 1, the
only case where T ′ and T are isomorphic is n′ = 1. IsIsomorphicTree returns true
in line 2. If T ′ and T are not isomorphic, we must have n′ �= 1. IsIsomorphicTree
returns false in line 1.

Since T and T ′ are reduced NIN-AND trees, n > 1 implies n ≥ 3 (similarly
n′ > 1 implies n′ ≥ 3). We therefore also consider the base case n = 3, where T
has the leaf and two roots. If T and T ′ are not isomorphic, we must have n′ �=
3. IsIsomorphicTree returns false in line 1. T and T ′ are isomorphic whenever
n′ = 3. IsIsomorphicTree returns true in line 2.

Assume that the theorem holds for n = 1, 3, 4, ..., k where k ≥ 3. We consider
the case n = k+1. If T and T ′ are not isomorphic, either n′ �= n, or the degree of
v′ differs from that of v, or subtrees seated at parents of v′ cannot be one-to-one
mapped to subtrees seated at parents of v such that each pair is isomorphic. In
the first two cases, IsIsomorphicTree returns false in lines1 and 3. In the third
case, for at least one subtree S′, no subtree S exists such that IsIsomorphicTree
returns true by inductive assumption (the number of nodes in S is at most k−1).
Hence, IsIsomorphicTree returns false in line 11.

On the other hand, if T and T ′ are identical, IsIsomorphicTree will enter
the outer for loop. For each subtree S′, there exists a subtree S such that
IsIsomorphicTree returns true by inductive assumption (the number of nodes in

Towards Effective Elicitation of NIN-AND Tree Causal Models 291

S is at most k−1). Hence, the outer for loop will complete and IsIsomorphicTree
will return true in line 12. �
The following algorithm enumerates minimal NIN-AND trees of n ≥ 3 causes in
terms of reduced trees.

Algorithm 3. EnumerateReducedTree(n)

1 initialize set ST2 with a single reduced tree for 2 causes;
2 for i = 3 to n,
3 initialize STi to empty set;
4 for each reduced tree T in STi−1,
5 for each non-root node x of T ,
6 duplicate T as T ′;
7 add a root parent to x in T ′;
8 if for each S ∈ STi, IsIsomorphicT ree(S,T ′) returns false, add T ′ to STi;

9 if x has a root parent p;
10 duplicate T as T ′′;
11 insert a new node z between x and p in T ′′;
12 add a root parent to z in T ′′;
13 if for each S ∈ STi, IsIsomorphicT ree(S, T ′′) returns false,

add T ′′ to STi;
14 return STn;

The algorithm enumerates reduced trees of i causes based on the enumeration
of i − 1 causes, collected in set STi−1. For each reduced tree T in STi−1, each
non-root node x is processed, which corresponds to a gate of the original NIN-
AND tree. For each x, Op1 and Op2 (if applicable) are applied. If the new tree
is not isomorphic to one in set STi, it is added. Each reduced tree in STn can
be easily converted to a minimal NIN-AND tree for n causes.

Due to Theorem 1 and one-to-one mapping between a reduced tree and the
corresponding minimal NIN-AND tree, minimal NIN-AND trees corresponding
to each STi are exhaustive. Due to Theorem 2, they are also mutually exclusive.
Hence, we have the following theorem.

Theorem 3. STn produced by EnumerateReducedTree enumerates minimal
NIN-AND trees for n causes.

Using EnumerateReducedTree, we enumerated minimal NIN-AND trees for n
causes with n between 2 and 10. The table below shows the execution result.

n 2 3 4 5 6 7 8 9 10
|Stn| 1 2 5 12 33 90 261 766 2312

Our enumeration enables an NIN-AND tree for n causes to be elicited by
displaying all alternative trees to human expert so that one can be selected. As
it is often easier to select a target object from a list than to describe the object
from vacuum, this technique is expected to improve the accuracy and efficiency
in elicitation.

292 Y. Xiang, Y. Li, and Z.J. Zhu

6 Pairwise Causal Interactions

Although selection from a list is usually less demanding mentally than descrip-
tion from vacuum, when the number of causes is more than six or seven, iden-
tifying the target NIN-AND tree accurately from the enumeration may still be
challenging. For instance, there are 261 minimal NIN-AND trees for 8 causes, On
the other hand, eliciting whether a pair of causes is reinforcing or undermining
is much less demanding (binary selection). We therefore explore the possibil-
ity to uniquely identify a minimal NIN-AND tree based on elicitation of O(n2)
pairwise causal interactions.

To do so, we need to understand how a minimal NIN-AND tree determines a
set of pairwise causal interactions. However, this is impossible because a minimal
NIN-AND tree is unlabeled while a set of pairwise causal interactions must be
specified over specific pairs of causes. On the other hand, any minimal NIN-
AND tree with its root nodes labeled determines uniquely a set of pairwise
causal interactions, as shown by the following proposition. We refer to such a
tree as a minimal, root-labeled NIN-AND tree. Note that in a root-labeled tree,
root nodes are labeled but non-root nodes are unlabeled. Note also the default
assumption that every root node is a single-cause event.

Proposition 4. Let T be a minimal NIN-AND tree for a set X of causes and
rl be a labeling of root nodes. Then T and rl define a function pci from pairs
of distinct causes {ci, cj} ⊂ X, where i �= j, to the set {rif, udm}, where rif
stands for reinforcing and udm stands for undermining.

For instance, pci(ci, cj) = udm means that causal interaction between ci and cj

is undermining. Proof of Proposition 4 depends on Proposition 5 below, which
in turn relies on the concept of the closest common gate (ccg):

Def. 5. Let x and y be two root nodes in a minimal NIN-AND tree T . Let pathx

be the directed path from x to the leaf of T and pathy be that from y. Then, the
first node in pathx common to a node in pathy is the ccg of x and y.

In Fig. 4 (c), the ccg of x and y is i. Note that the first node common in pathx

and pathy is always a gate. The following proposition shows how the interaction
between a pair of causes is encoded in an NIN-AND tree.

Proposition 5. Let T be a minimal, root-labeled NIN-AND tree. Let x and y
be a pair of root nodes, ci and cj be their corresponding causes, and g be their
ccg. Then the causal interaction between ci and cj is of the type of g.

Proof: Given root-labeled T , assume that all causes become inactive except ci

and cj . Now except g, all other gates have no more than one active causal input
event, and hence can be removed. The resultant minimal NIN-AND tree has a
single gate g with root input events x and y. �

From Proposition 5, it is clear that the topology of T and a root labeling uniquely
determine the type of causal interaction between each pair of causes (correspond-
ing to a pair of roots in T). Hence, Proposition 4 holds.

Towards Effective Elicitation of NIN-AND Tree Causal Models 293

7 Are NIN-AND Trees PCI Differentiable?

Given that each minimal NIN-AND tree, plus a root labeling, uniquely deter-
mines a set of pairwise causal interactions, can a minimal NIN-AND tree be
identified from a set of pairwise causal interactions? In other words, are pairwise
causal interactions sufficient to differentiate minimal NIN-AND trees?

More specifically, let X = {c1, ..., cn} be a set of n causes for an effect, and STn

be the set of all minimal NIN-AND trees for n causes. Let pci be a function from
pairs of distinct causes {ci, cj} ⊂ X (i �= j) to the set {rif, udm}, determined
by T ∈ STn and a root labeling. The question then is whether it is possible to
uniquely identify T given pci only. For instance, the NIN-AND tree in Fig. 2
(a) has pci(c1, c2) = pci(c1, c3) = pci(c2, c3) = udm, pci(c1, c4) = pci(c2, c4) =
pci(c3, c4) = rif. Can the tree model be uniquely identified from the function?
We refer to this as the identification question.

Note that since T and a root labeling together define a causal interaction
function pci, to answer the above question in general, the search space is not
STn but the space of all root-labeled minimal NIN-AND trees, whose complexity
is O(n! |STn|).

We answer the identification question by exhaustively testing whether there
exists a pair of NIN-AND trees T and T ′ and there exists a root labeling for
each of them, such that the two root-labeled trees satisfy the same set of pairwise
causal interactions corresponding to some pci function. Although this method
does not scale for very large n, we point out that a NIN-AND tree model is
used to acquire a single CPT in a BN and hence very large n is not expected
given the conditional independence expressed by the BN. To make the testing
computation effective, we developed the following test conditions:

Given n causes, there are n(n− 1)/2 pairs. A pci function maps each pair to
one of rif and udm, thus defining two sets of pairs which we refer to as Rif and
Udm. That is, a pair {ci, cj} ∈ Udm, iff pci(ci, cj) = udm. Once one of Rif and
Udm is defined, the other is uniquely determined.

Proposition 6 below shows that if two minimal NIN-AND trees, under arbi-
trary root-labeling, produce two Rif sets of different cardinalities, then the two
trees are differentiable from pairwise casual interactions.

Proposition 6. Let T and T ′ be two minimal NIN-AND trees of n causes, rl
and rl′ be some root labeling of T and T ′, and pci and pci′ be the corresponding
pairwise causal interaction functions, respectively. Let Rif and Rif ′ be the sets
of reinforcing pairs, defined by pci and pci′, respectively.

If |Rif | �= |Rif ′|, there exist no root labeling for T and T ′, such that the two
root-labeled trees satisfy the same pairwise causal interaction function.

Proof: When |Rif | �= |Rif ′|, the number of reinforcing cause pairs defined by T
and rl differs from that defined by T ′ and rl′. Since the number of reinforcing
cause pairs is independent of root labeling, no matter what alternative root
labeling are used, the inequality remains. This implies that Rif �= Rif ′ no
matter what root labeling is used. Hence, the proposition holds. �

294 Y. Xiang, Y. Li, and Z.J. Zhu

Proposition 6 suggests an inexpensive test (to be referred as Test 1) that rules out
the tree pair from possibly contributing to the negative answer of identification
question.

If two minimal NIN-AND trees, under some root-labeling, produce Rif sets of
identical cardinalities, it is uncertain how the tree pair contributes to the answer
of identification question. The following proposition suggests a further test.

Proposition 7. Let T , T ′, rl, rl′, pci and pci′ be defined as in Proposition 6.
For each cause c, let k(c) be the number of other causes that are pairwise rein-
forcing with c according to pci, and κ be the sorted list of k(c)’s. Let κ′ be the
corresponding sorted list defined by pci′.

If κ �= κ′, there exist no root labeling for T and T ′, such that the two root-
labeled trees satisfy the same pairwise causal interaction function.

For the NIN-AND tree in Fig. 2 (a), κ = (1, 1, 1, 3) because k(c1) = k(c2) =
k(c3) = 1 and k(c4) = 3.

Proof: If κ �= κ′, then there exists k (0 ≤ k < n(n−1)/2) such that m elements of
κ have value k, m′ elements of κ′ have value k, and m �= m′. That is, according
to T under root-labeling rl, each of m causes reinforces with another k causes.
But according to T ′ under root-labeling rl′, each of m′ causes reinforces with
another k causes.

The number of other causes which a given cause reinforces with is indepen-
dent of root labeling. Hence, no matter what alternative root labeling are used,
according to T the number of causes reinforcing with k other causes remains m,
and according to T ′ the number remains m′. This implies that κ �= κ′ no matter
what root labeling is used. Hence, the proposition holds. �
Proposition 7 suggests another inexpensive test (to be referred as Test 2) that
rules out a tree pair from possibly contributing to the negative answer of identifi-
cation question. Algorithm 4 utilizes Test 1 and Test 2 in answering identification
question.

Lines 1 through 4 enumerate minimal NIN-AND trees and compute the pci
function for each tree under some root labeling. Lines 6 and 7 perform Test 1,
and lines 8 and 9 perform Test 2. Lines 10 through 12 (Test 3) tries each of the
n!− 1 alternative root labeling on T ′. If one produces Rif ′ identical to Rif for
T , then T and T ′ cannot be differentiated by pairwise causal interactions. The
algorithm will return false.

Algorithm 4. IsPciIdentificable(n)

1 run EnumerateReducedTree(n) to produce STn;
2 convert reduced trees in STn to minimal NIN-AND trees;
3 for each minimal NIN-AND tree T ,
4 compute its pci function under some root labeling;
5 for each pair of trees T and T ′ with pci and pci′,
6 compute Rif and Rif ′ from pci and pci′;
7 if |Rif | �= |Rif ′|, go to line 5 for next pair;

Towards Effective Elicitation of NIN-AND Tree Causal Models 295

8 compute κ and κ′ from pci and pci′;
9 if κ �= κ′, go to line 5 for next pair;
10 for each alternative root labeling rl′ of T ′,
11 recompute Rif ′;
12 if Rif = Rif ′, return false;
13 return true;

If for every pair of T and T ′, either Test 1 fails (|Rif | �= |Rif ′|), or Test 2
fails (κ �= κ′|), or Test 3 fails (Rif �= Rif ′ for all root labeling), the algorithm
returns true. This means that every minimal NIN-AND tree for n causes can be
identified based solely on a set of pairwise causal interactions. This leads to the
following theorem, whose proof is straightforward given the above analysis.

Theorem 4. Let T be a minimal NIN-AND tree for n causes and Rif is the
set of pairwise causal interactions determined by T under some root labeling.
Then given Rif only, T can be identified from all minimal NIN-AND trees for
n causes iff algorithm IsPciIdentificable(n) returns true.

For example, given Rif = {{c1, c4}, {c2, c4}, {c3, c4}}, the minimal NIN-AND
tree in Fig. 2 (a) is uniquely identified. Justified by Theorem 4, we implemented
IsPciIdentificable(n). Executions for n = 3, ..., 10 all returned true. Tests 1 and
2 suggested by Propositions 6 and 7 trim computation significantly. For n = 10,
there are 2312 minimal NIN-AND trees, and hence 2671516 pairs. Only 122588
pairs (< 5%) passed the least expensive Test 1, where Test 2 is needed. Out of
these pairs, only 467 pairs (< 0.4%) passed Test 2, where the most expensive
Test 3 has to be run. This amounts to the processing of 1694649600 root-labeled
trees in Test 3, which is about 20% of the total 8389785600 root-labeled trees.

8 Remarks

Assessment of CPTs is often a bottleneck in practical applications of BNs when
frequency data are not available and elicitation from expert is necessary. This
work follows the effort by many, e.g., [7,4,3,5,9], to make this step in probabilistic
reasoning more efficient. The main contributions are the following:

From associativity of NIN-AND gates, we characterized minimal NIN-AND
tree topology space and partitioned it into the subspace with direct leaf NIN-
AND gates and the subspace with dual leaf gates. This partition allows subse-
quent investigation to be focused on one subspace while the results are applicable
to the other. We developed a method to enumerate NIN-AND trees based on
local insertion. This result provides an alternative method for NIN-AND tree
elicitation and allows expert to select from enumeration. We demonstrated that
NIN-AND trees for up to 10 causes (about the necessary upper bound for CPTs
in BNs) can be differentiated based on pairwise causal interactions. This re-
sult provides an even more powerful technique for eliciting NIN-AND trees by
eliciting from expert only pairwise causal interactions.

In developing the two elicitation techniques, enumeration of NIN-AND trees
by number of causes (Section 4) is needed. As information flows from single-cause

296 Y. Xiang, Y. Li, and Z.J. Zhu

events to the multi-cause event in an NIN-AND tree, following the convention
in causal graphical models, we directed reduced NIN-AND trees with single-
cause events as roots and with a single leaf. We therefore needed to enumerate
unlabeled trees of a single leaf by number of roots. Many methods of tree enu-
meration in the mathematics literature, e.g., [1,8,6], do not address this problem.
In [2], under the context of phylogenetic trees, counting of rooted multifurcating
tree shapes by tips is presented. Reversing directions of links, these tree shapes
are equivalent to what we enumerate. However, Felsenstein’s counting is based
on an ordered partition of tips, and our method is based on local insertion. It
focuses on counting without generation and ours emphasizes generation. In [10],
we extend [2] into a method as an alternative to the method presented here.

Acknowledgements

We acknowledge the financial support through the Discovery Grant, NSERC,
Canada. We thank anonymous reviewers for their helpful comments.

References

1. Cayley, A.: A theorem on trees. Quarterly J. Mathematics, 376–378 (1889)
2. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)
3. Galan, S.F., Diez, F.J.: Modeling dynamic causal interaction with Bayesian net-

works: temporal noisy gates. In: Proc. 2nd Inter. Workshop on Causal Networks,
pp. 1–5 (2000)

4. Heckerman, D., Breese, J.S.: Causal independence for probabilistic assessment and
inference using Bayesian networks. IEEE Trans. on System, Man and Cybernet-
ics 26(6), 826–831 (1996)

5. Lemmer, J.F., Gossink, D.E.: Recursive noisy OR - a rule for estimating complex
probabilistic interactions. IEEE Trans. on System, Man and Cybernetics, Part
B 34(6), 2252–2261 (2004)

6. Moon, J.W.: Counting Labeled Trees. William Clowes and Sons, London (1970)
7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Francisco (1988)
8. Riordan, J.: The enumeration of trees by height and diameter. IBM J., 473–478

(November 1960)
9. Xiang, Y., Jia, N.: Modeling causal reinforcement and undermining for efficient

cpt elicitation. IEEE Trans. Knowledge and Data Engineering 19(12), 1708–1718
(2007)

10. Xiang, Y., Zhu, J., Li, Y.: Enumerating unlabeled and root labeled trees for causal
model acquisition. To appear in Proc. Canadian AI 2009., Springer, Heidelberg
(2009)

An Evidence-Theoretic k-Nearest Neighbor Rule

for Multi-label Classification

Zoulficar Younes, Fahed Abdallah, and Thierry Denœux

UMR CNRS 6599 Heudiasyc,
Université de Technologie de Compiègne, France

{firstname.lastname}@hds.utc.fr

Abstract. In multi-label learning, each instance in the training set is
associated with a set of labels, and the task is to output a label set for
each unseen instance. This paper describes a new method for multi-label
classification based on the Dempster-Shafer theory of belief functions to
classify an unseen instance on the basis of its k nearest neighbors. The
proposed method generalizes an existing single-label evidence-theoretic
learning method to the multi-label case. In multi-label case, the frame
of discernment is not the set of all possible classes, but it is the powerset
of this set. That requires an extension of evidence theory to manipu-
late multi-labelled data. Using evidence theory makes us able to handle
ambiguity and imperfect knowledge regarding the label sets of training
patterns. Experiments on benchmark datasets show the efficiency of the
proposed approach as compared to other existing methods.

1 Introduction

Traditional single-label classification assigns an object to exactly one class, from
a set of Q disjoint classes. In contrast, Multi-label classification is the task of
assigning an instance to one or multiple classes simultaneously. In other words,
the target classes are not exclusive: an object may belong to an unrestricted set
of classes instead of exactly one. This task makes multi-label classifiers more
difficult to train than traditional single-label classifiers. Recently, multi-label
classification methods have been increasingly required by modern applications
where it is quite natural that some instances belong to several classes at the
same time. In text categorization, each document may belong to multiple topics,
such as arts and humanities [8].

In natural scene classification, each image may belong to several image types
at the same time, such as sea and sunset [1]. In classification of music into
emotions, music may evoke more than one emotion at the same time, such as
relaxing and sad [7].

Few algorithms have been proposed for multi-label learning. A first family
of algorithms transforms the multi-label classification problem into a set of bi-
nary classification problems; each binary classifier is then trained to separate
one class from the others [1]. A second family consists in extending common

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 297–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

298 Z. Younes, F. Abdallah, and T. Denœux

learning algorithms and making them able to manipulate multi-label data di-
rectly. In [14] and [15], a Bayesian approach based on multi-label extension of
the k-nearest neighbor (k-NN) rule is presented. In the literature, there also ex-
ist multi-label extensions of neural networks [2], support vector machine [6], and
boosting learning algorithms [9].

In this paper, we present a new method for multi-label classification based on
the Dempster-Shafer theory of belief functions to classify an unseen instance on
the basis of its k nearest neighbors.

The Dempster-Shafer (D-S) theory [10] is a formal framework for representing
and reasoning with uncertain and imprecise information. Different approaches for
pattern classification in the framework of evidence theory have been presented
in the literature [4] [5]. In [3], A k-NN classification rule based on D-S theory
is presented. Each neighbor of an instance to be classified is considered as an
item of evidence supporting certain hypotheses regarding the class membership
of that instance. The degree of support is defined as a function of the distance
between the two samples. The evidence of the k nearest neighbors is then pooled
by means of Dempster’s rule of combination.

The proposed method generalizes the k-NN classification rule based on the D-
S theory to the multi-label case. This generalization requires an extension of the
D-S theory in order to handle multi-labelled data. In mono-labelled data case,
the uncertainty is represented by evidence on multiple hypotheses where each
hypothesis is a label to be assigned or not to an unseen instance. In contrast,
when the data is multi-labelled, each hypothesis represents a set of labels and
the uncertainty is then expressed by evidence on sets of label sets. The proposed
algorithm is called EML−kNN for Evidential Multi-Label k-Nearest Neighbor.

The remainder of the paper is organized as follows. Section 2 recalls the basics
of the D-S theory and the principle of the single-label evidence-theoretic k-NN
rule [3]. Section 3 introduces the extension of the D-S theory to the multi-
label case and describes the proposed algorithm for multi-label learning that
consists in applying the D-S multi-label extended theory using the k-NN rule.
Section 4 presents experiments on two real datasets and shows the effectiveness
of the proposed algorithm as compared to a recent high-performance method for
multi-label learning based on k-NN rule, referred to as ML− kNN [15]. Finally
Section 5 summarizes this work and makes concluding remarks.

2 Single-label Classification

2.1 Basics of Dempster-Shafer Theory

In D-S theory, a frame of discernment Ω is defined as the set of all hypotheses
in a certain domain, e.g., in classification Ω is the set of all possible classes. A
basic belief assignment (BBA) is a function m that defines a mapping from the
power set of Ω to the interval [0, 1] verifying:

m : 2Ω −→ [0, 1] (1)
∑

A∈2Ω

m(A) = 1. (2)

An Evidence-Theoretic k-Nearest Neighbor Rule 299

Given a certain piece of evidence, the value of the BBA for a given set A expresses
a measure of belief that one is willing to commit exactly to A. The quantity m(A)
pertains only to the set A and makes no additional claims about any subsets of
A. If m(A) > 0 , then the subset A is called a focal element of m.

The BBA m and its associated focal elements define a body of evidence, from
which a belief function Bel and a plausibility function Pl mapped from 2Ω to
[0, 1] can be deduced. For a set A, Bel(A), called belief in A or credibility of A,
represents a measure of the total belief committed to the set A ⊆ Ω. Bel(A) is
defined as the sum of all the BBAs of the non-empty subsets of A.

Bel(A) =
∑

∅�=B⊆A

m(B) (3)

Pl(A), called plausibility of A, represents the amount of belief that could po-
tentially be placed in A, if further information became available [3]. Pl(A) is
defined as the sum of all the BBAs of the sets that intersect A.

Pl(A) =
∑

B∩A�=∅
m(B) (4)

From the definitions of belief and plausibility functions, it follows that:

Pl(A) = Bel(Ω) − Bel(Ā) (5)

where Ā is the complement of A.
Given the belief function Bel, it is possible to derive the corresponding BBA

as follows:

m(∅) = 1 − Bel(Ω), (6)

m(A) =
∑

B⊆A

(−1)|A\B| Bel(B), A �= ∅ (7)

where |A\B| is the cardinality of the complement of B in A.
As a consequence of (5), (6) and (7), given any one of the three functions m,

Bel and Pl it is possible to recover the other two.
The unnormalized Dempster’s rule of combination [10] [11] is an operation for

pooling evidence from a variety of sources. This rule aggregates two independent
bodies of evidence defined within the same frame of discernment into one body
of evidence. Let m1 and m2 be two BBAs. Let m12 be the new BBA obtained by
combining m1 and m2 using the unnormalized Dempster’s rule of combination.
m12 is the orthogonal sum of m1 and m2 denoted as m12 = m1 ∩©m2. The
aggregation is calculated in the following manner:

m12(A) =
∑

B∩C=A

m1(B)m2(C), A ⊆ Ω. (8)

This rule is commutative and associative, and admits the vacous BBA
(m(Ω) = 1) as neutral element.

300 Z. Younes, F. Abdallah, and T. Denœux

2.2 Evidence-Theoretic k-NN Rule

Let X = RP denote the domain of instances and let Y = {1, 2, . . . , Q} be the
finite set of classes, also called labels or categories. The available information is
assumed to consist in a training set T = {(x1, y1), . . . , (xM , yM)} of M single-
labelled samples, where xi ∈ X and the corresponding class label yi takes value
in Y, for each i = 1, . . . , M .

Let x be a new instance to be classified on the basis of its nearest neighbors
in T . Let Nx = {(xi, yi)|i = 1 . . . , k} be the set of the k-nearest neighbors of
x in T based on a certain distance function d(., .), e.g, the Euclidean distance.
Each pair (xi, yi) in Nx constitutes a distinct item of evidence regarding the
class membership of x. If x is close to xi according to the distance function d,
then one will be inclined to believe that both instances belong to the same class,
while when d(x,xi) increases, this belief decreases and that yields to a situation
of almost complete ignorance concerning the class of x. Consequently, each pair
(xi, yi) in Nx induces a basic belief assignment mi over Y defined by:

mi({yi}) = αφ(di) (9)
mi(Y) = 1 − αφ(di) (10)
mi(A) = 0, ∀A ∈ 2Y\{Y, {yi}} (11)

where di = d(x,xi), α is a parameter such that 0 < α < 1 and φ is a decreasing
function verifying φ(0) = 1 and limd→∞ φ(d) = 0. In [3], the author suggests to
choose the function φ as:

φ(d) = exp(−γdβ) (12)

where γ > 0 and β ∈ {1, 2, . . .}. As explained in [3], parameter β has been
found to have very little influence on the performance of the method, and can
be arbitrarily fixed to a small value (1 or 2). The most influential parameter
on the performance of the classifier is γ. In [3], a distinct parameter γq was
associated for each class q ∈ Y. When considering the item of evidence (xi, yi)
for the class membership of x, if yi = q, using (12), φ(di) in (9) and (10) was
replaced by γqd

β
i . The values of α and γq, q = 1, . . . , Q were fixed via heuristics

[3].
As a result of considering each training instance in Nx as an item of evidence,

we obtain k BBAs that can be pooled by means of the unnormalized Dempster’s
rule of combination yielding to the aggregated BBA m synthesizing one’s final
belief regarding the class membership of x:

m = m1 ∩© . . . ∩©mk. (13)

For making decisions, functions Bel and Pl can be derived from m using (3)
and (4) respectively, and the test instance x is assigned to the class q that
corresponds to the maximum credibility or the maximum plausibility.

An Evidence-Theoretic k-Nearest Neighbor Rule 301

3 Multi-label Classification

3.1 Multi-label Extension of Dempster-Shafer Theory

In Sect. 2.1, we have recalled the basics of D-S theory used to handle uncer-
tainty in problems where only one single hypothesis is true. Moreover, there ex-
ist problems where more than one hypothesis is true at the same time, e.g., the
multi-label classification task. To handle such problems, we need to extend the
classical D-S framework. The frame of discernment of the multi-label extended
D-S theory is not the set Ω of all possible single hypotheses but its power set
Θ = 2Ω. A basic belief assignment is now defined as a mapping from the power
set of Θ to the interval [0, 1]. Instead of considering the whole power set of Θ,
we will focus on the subset C(Ω) of 2Θ defined as:

C(Ω) = {ϕ(A, B)| A ∩ B = ∅} ∪ {∅Θ} (14)

where ∅Θ represents the conflict in the frame 2Θ, and for all A, B ⊆ Ω with
A ∩ B = ∅, ϕ(A, B) is the set of all subsets of Ω that include A and have no
intersection with B:

ϕ(A, B) = {C ⊆ Ω| C ⊇ A and C ∩ B = ∅}. (15)

The size of the subset C(Ω) of 2Θ is equal to 3|Ω| + 1, it is thus much smaller
than the size of 2Θ (|2Θ| = 22|Ω|

), while being rich enough to express evidence
in many realistic situations. That reduces the complexity of such problems.

The chosen subset C(Ω) of 2Θ is closed under intersection, i.e., for all ϕ(A, B),
ϕ(A′, B′) ∈ C(Ω), ϕ(A, B)∩ϕ(A′, B′) ∈ C(Ω). Based on the definition of ϕ(A, B),
one can deduce that:

ϕ(∅, ∅) = Θ, (16)
∀A ⊆ Ω, ϕ(A, Ā) = {A}, (17)

∀A ⊆ Ω, A �= ∅, ϕ(A, A) = ∅Θ. (18)

By convention, we will note ∅Θ by ϕ(Ω, Ω) in the rest of the paper.

Example 1. Let Ω = {a, b} be a frame of discernment. The corresponding subset
C(Ω) of 2Θ, where Θ is the power set of Ω, is:

C(Ω) = {ϕ(∅, ∅), ϕ(∅, {a}), ϕ(∅, {b}), ϕ(∅, Ω), ϕ({a}, ∅),
ϕ({b}, ∅), ϕ(Ω, ∅), ϕ({a}, {b}), ϕ({b}, {a}), ϕ(Ω, Ω)}.

For instance, ϕ({a}, ∅) = {{a}, Ω} and ϕ({a}, {b}) = {{a}}.

For any ϕ(A, B), ϕ(A′, B′) ∈ C(Ω) the intersection operator over C(Ω) is
defined as follow:

ϕ(A, B) ∩ ϕ(A′, B′) =
{

ϕ(A ∪ A′, B ∪ B′) if A ∩ B′ = ∅ and A′ ∩ B = ∅
ϕ(Ω, Ω) otherwise,

(19)

302 Z. Younes, F. Abdallah, and T. Denœux

and the inclusion operator over C(Ω) is defined as:

ϕ(A, B) ⊆ ϕ(A′, B′) ⇐⇒ A ⊇ A′ and B ⊇ B′. (20)

The description of a BBA m on C(Ω) can be represented with the following
two equations:

m : C(Ω) −→ [0, 1] (21)

∑

ϕ(A,B)∈C(Ω)

m(ϕ(A, B)) = 1. (22)

In the following, the notation m(ϕ(A, B)) will be simplified to m(A, B). For any
ϕ(A, B) ∈ C(Ω), the belief and plausibility functions are defined as:

Bel(A, B) =
∑

ϕ(Ω,Ω)�=ϕ(A′,B′)⊆ϕ(A,B)

m(A′, B′), (23)

and
Pl(A, B) =

∑

ϕ(A′,B′)∩ϕ(A,B)�=ϕ(Ω,Ω)

m(A′, B′). (24)

Given two independent bodies of evidence over the same frame of discernment
like C(Ω), the aggregated BBA, denoted by m12, obtained by combining the
BBAs m1 and m2 of the two bodies of evidence using the unnormalized Demp-
ster’s rule is calculated in the following manner:

m12(A, B) =
∑

ϕ(A′,B′)∩ϕ(A′′,B′′)=ϕ(A,B)

m1(A′, B′)m2(A′′, B′′). (25)

This rule is commutative and associative, and has the vacuous BBA (m(∅, ∅) = 1)
as neutral element.

3.2 Evidential Multi-label k-NN

Problem. As in Sect. 2.2, let X = RP denote the domain of instances and
let Y = {1, 2, . . . , Q} be the finite set of labels. The multi-label classification
problem can be formulated as follows. Given a set S = {(x1, Y1), . . . , (xM , YM)}
of M training examples drawn from X × 2Y , and identically distributed, where
xi ∈ X and Yi ⊆ Y, the goal of the learning system is to output a multi-label
classifier H : X → 2Y that optimizes some pre-defined criteria.

The method. Let x be an unseen instance that we search to estimate its set
of labels Y on the basis of its k nearest neighbors in S represented by Nx using
the multi-label extension of the D-S theory introduced in Sect. 3.1. The frame
of discernment of the multi-label classification problem is the powerset of Y.

An Evidence-Theoretic k-Nearest Neighbor Rule 303

Each pair (xi, Yi) in Nx constitutes a distinct item of evidence regarding the
label set of x. Regarding the label set Yi, we can conclude either that Y must
include all the labels in Yi, or that Y must contain at least one of the labels
that belong to Yi, or that Y does not contain any label not belonging to Yi.
Let ϕ(Ai, Bi) be the set of label sets that corresponds to the item of evidence
(xi, Yi), where Ai, Bi ⊆ Y. We recall that the set ϕ(Ai, Bi) contains all the label
sets that include Ai and having no intersection with Bi. There exist different
ways to express our beliefs about the labels to be assigned to the instance x
based on the item of evidence (xi, Yi). This leads to different versions of our
proposed method EML − kNN :

– Version 1 (V1): the mass is attributed to the set Yi, thus ϕ(Ai, Bi) =
ϕ(Yi, Ȳi).

– Version 2 (V2): the mass is attributed to the set Yi and all its supersets,
thus ϕ(Ai, Bi) = ϕ(Yi, ∅).

– Version 3 (V3): the mass is attributed to the set Yi and all its subsets, thus
ϕ(Ai, Bi) = ϕ(∅, Ȳi).

The BBA mi over C(Y) induced by the item of evidence (xi, Yi) regarding the
label set of x can then be defined as:

mi(Ai, Bi) = αφ(di) (26)
mi(∅, ∅) = 1 − αφ(di) (27)

where di = d(x,xi), φ is the decreasing function introduced in Sect. 2.2 (see (12)).
After considering each item of evidence in Nx, we obtain the BBAs mi, i =

1, . . . , k that can be combined 2 by 2 using the multi-label extension of the
unnormalized Dempster’s rule of combination presented in Sect. 3.1 (see (25))
to form the resulting BBA m.

Let Ŷ denote the estimated label set of the instance x to differentiate it from
the ground truth label set Y of x. One of the methods to determine Ŷ that we
have adopted in this paper is to assign x to the set C ⊆ Y that corresponds to
the maximum plausibility. Thus, the estimated label set of x is:

Ŷ = max
C⊆ Y

Pl(C, C̄). (28)

The plausibility function Pl derived from the aggregated BBA m is determined
using (24).

4 Experiments

4.1 Datasets

Two datasets are used for experiments: the emotion and the scene datasets.

Emotion Dataset. This dataset contains 593 songs, each represented by a 72-
dimensional feature vector (8 rhythmic features and 64 timbre features) [7]. The
emotional labels are: amazed-surprised, happy-pleased, relaxing-calm, quiet-still,
sad-lonely and angry-fearful.

304 Z. Younes, F. Abdallah, and T. Denœux

Scene Dataset. This dataset contains 2000 natural scene images. Each image
is associated with some of the six different semantic scenes: sea, sunset, trees,
desert and mountains. For each image, spatial color moments are used as fea-
tures. Images are divided into 49 blocks using a 7×7 grid. The mean and variance
of each band are computed corresponding to a low-resolution image and to com-
putationally inexpensive texture features, respectively [1]. Each image is then
transformed into a 49 × 3 × 2 = 294-dimensional feature vector.

Each dataset was split into a training set and a test set. Table 1 summarizes
the characteristics of the datasets used in the experiments. The label cardinality
of a dataset is the average number of labels of the instances, while the label
density is the average number of labels of the instances divided by the total
number of labels [12].

4.2 Evaluation Metrics

Let D = {(x1, Y1), . . . , (xN , YN)} be a multi-label evaluation dataset containing
N labelled examples. Let Ŷi = H(xi) be the predicted label set for the pattern
xi, while Yi is the ground truth label set for xi.

A first metric called Accuracy gives an average degree of similarity between
the predicted and the ground truth label sets of all test examples:

Accuracy(H,D) =
1
N

N∑

i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

. (29)

Two other metrics called Precision and Recall are also used in the literature
to evaluate a multi-label learning system. The former computes the proportion
of correct positive predictions while the latter calculates the proportion of true
labels that have been predicted as positives:

Precision(H,D) =
1
N

N∑

i=1

|Yi ∩ Ŷi|
|Ŷi|

, (30)

Recall(H,D) =
1
N

N∑

i=1

|Yi ∩ Ŷi|
|Yi|

. (31)

These metrics have been cited in [12].
Another evaluation criterion is the F1 measure that is defined as the harmonic

mean of the Precision and Recall metrics [13]:

F1 =
2

1
Precision + 1

Recall

. (32)

The values of these evaluation criteria are in the interval [0, 1]. Larger values of
these metrics correspond to higher classification quality.

An Evidence-Theoretic k-Nearest Neighbor Rule 305

Table 1. Characteristics of datasets

Number of Feature vector Number of Training Test Label Label maximum size
Dataset instances dimension labels instances instances cardinality density of a label set

emotion 593 72 6 391 202 1.868 0.311 3
scene 2407 294 6 1211 1196 1.074 0.179 3

0 0.5 1 1.5 2
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

γ

A
cc

ur
ac

y

EML−KNN
ML−KNN

0 0.5 1 1.5 2
0.48

0.49

0.5

0.51

0.52

0.53

0.54

γ

P
re

ci
si

on

0 0.5 1 1.5 2
0.35

0.4

0.45

0.5

0.55

γ

R
ec

al
l

0 0.5 1 1.5 2
0.4

0.42

0.44

0.46

0.48

0.5

0.52

γ

F
1

Fig. 1. Accuracy, Precision, Recall and F1 measures for EML − kNN (V1) and
ML − kNN algorithms as a function of γ on the emotion dataset, for k = 10

4.3 Results and Discussions

The proposed algorithm was compared to a Bayesian method for multi-label
classification based on the k-NN rule named ML − kNN [15].

The model parameters for EML − kNN are : The number of neighbors k,
and the parameters for the induced BBAs, α, β and γ. ML − KNN has only
one parameter that needs to be optimized, which is k. As in [3], α was fixed to
0.95 and β to 1. For all experiments, EML−kNN and ML−kNN were trained
on the training data and evaluated on the test data of each of the two datasets.

To take an idea about the influence of the parameter γ on the performance of
the proposed algorithm, we evaluated version 1 of our method on the emotion
dataset where k was fixed to 10 and γ was varied from 0 to 2 with 0.01 steps.
Figure 1 shows the results. For the different values of γ, our algorithm performs
better than ML−KNN for all criteria except Precision. Based on (26) and (27),
we can notice that for small values of γ, we favor the allocation of mass to the

306 Z. Younes, F. Abdallah, and T. Denœux

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

k

A
cc

ur
ac

y

V1
V2
V3
ML−KNN

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

k

P
re

ci
si

on

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

R
ec

al
l

0 5 10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

k

F
1

Fig. 2. Accuracy, Precision, Recall and F1 measures for the three versions of EML−
kNN and ML−kNN algorithms as a function of k on the emotion dataset, for γ = 0.1

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

k

A
cc

ur
ac

y

V1
V2
V3
ML−KNN

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

k

P
re

ci
si

on

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

R
ec

al
l

0 5 10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

k

F
1

Fig. 3. Accuracy, Precision, Recall and F1 measures for the three versions of EML−
kNN and ML − kNN algorithms as a function of k on the scene dataset, for γ = 0.1

An Evidence-Theoretic k-Nearest Neighbor Rule 307

set of label sets ϕ(Ai, Bi) that corresponds to the item of evidence (xi, Yi). In
contrast, for larger values of γ, a larger fraction of the mass is assigned to the
ignorance set ϕ(∅, ∅).

In a second step, γ was fixed to 0.1 and k was varied from 1 to 30. Figures 2
and 3 show the performance of the three versions of EML − kNN (denoted
by V1, V2 and V3) and the ML − kNN algorithms on the emotion and scene
datasets, respectively. Algorithm V1 yields the better performance on the emo-
tion dataset based on all criteria. On the scene dataset, algorithms V1 and V3
yield similar results and both outperform ML − KNN for the different values
of k and for all evaluation measures. Algorithm V2 yields poor results for all
values of k and for all metrics except Recall. We recall that for version 2 of
EML − kNN , given an item of evidence (xi, Yi), the belief is allocated to the
set Yi and all its supersets. For higher values of k, given an unseen instance x,
the most plausible label set after pooling the BBAs induced by the k nearest
neighbors will be the set of all labels, i.e., the predicted label set will be Ŷ = Y.
That explains the fact that the Recall measure tends to 1 while the Precision
measure decreases when the value of k increases.

5 Conclusion

In this paper, an evidence-theoretic k-NN rule for multi-label classification has
been presented. Using the evidence theory makes us able to handle the ambigu-
ity and making decisions with multiple possible label sets for an unseen instance
without having to resort to assumptions about these sets. The proposed method
generalizes the single-label evidence-theoretic k-NN rule to the multi-label case.
An unseen instance is classified on the basis of its k nearest neighbors. Each
neighbor of an instance to be classified is considered as an item of evidence
supporting some hypotheses regarding the set of labels of this instance. A first
approach consists in supporting the hypothesis that the label set of the un-
seen instance is identical to the label set of the ith neighbor considered as an
item of evidence. A second one consists in supporting the label set of the ith
neighbor and all its supersets. The hypotheses supported by a third approach
are the label set of the ith neighbor and all its subsets. The experiments on
two real datasets demonstrate the effectiveness of the proposed method as com-
pared to state-of-the-art method also based on the k-NN principle. Especially,
the first and the third approaches gave better performance than the second
one.

Another contribution of this paper is the presentation of an extension of the
D-S theory to manipulate multi-labelled data. In the multi-label case, the frame
of discernment defined as the set of all hypotheses in a certain domain is not
the set of all possible classes but the powerset of this set. Thus, each hypothesis
represents a set of labels and the uncertainty is then expressed by evidence on
sets of label sets.

308 Z. Younes, F. Abdallah, and T. Denœux

References

1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recognition 37(9), 1757–1771 (2004)

2. Crammer, K., Singer, Y.: A Family of Additive Online Algorithms for Category
Ranking. In: Proc. of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 151–158 (2002)

3. Denœux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Trans. on Systems, Man and Cybernetics 25(5), 804–813 (1995)

4. Denœux, T., Smets, P.: Classification using Belief Functions: the Relationship be-
tween the Case-based and Model-based Approaches. IEEE Trans. on Systems, Man
and Cybernetics B 36(6), 1395–1406 (2006)

5. Denœux, T., Zouhal, L.M.: Handling possibilistic labels in pattern classification
using evidential reasoning. Fuzzy Sets and Systems 122(3), 47–92 (2001)

6. Elisseeff, A., Weston, J.: Kernel methods for multi-labelled classification and cat-
egorical regression problems. Advances in Neural Information Processing Sys-
tems 14, 681–687 (2002)

7. Konstantinos, T., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multi-label classifica-
tion of music into emotions. In: Proc. of the 9th International Conference on Music
Information Retrieval (ISMIR 2008), Philadelphia, PA, USA (2008)

8. McCallum, A.: Multi-Label Text Classification with a Mixture Model Trained by
EM. In: Working Notes of the AAAI 1999 Workshop on Text Learning (1999)

9. Schapire, R.E., Singer, Y.: BoosTexter: A Boosting-based System for Text Cate-
gorization. Machine Learning 39(2-3), 135–168 (2000)

10. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Prince-
ton (1976)

11. Smets, P.: The combination of evidence in the Transferable Belief Model. IEEE
Trans. on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)

12. Tsoumakas, G., Katakis, I.: Multi-Label Classification: An Overview. International
Journal of Data Warehousing and Mining 3(3), 1–13 (2007)

13. Yang, Y.: An evaluation of statistical approaches to text categorization. Journal of
Information Retrieval 1, 78–88 (1999)

14. Younes, Z., Abdallah, F., Denœux, T.: Multi-label classification algorithm derived
from k-nearest neighbor rule with label dependencies. In: Proc. of the 16th Euro-
pean Signal Processing Conference, Lausanne, Switzerland, August 25–29 (2008)

15. Zhang, M.-L., Zhou, Z.-H.: ML-KNN:A lazy learning approach to multi-label learn-
ing. Pattern Recognition 40(7), 2038–3048 (2007)

Author Index

Abdallah, Fahed 297
Amgoud, Leila 12
Antonucci, Alessandro 28

Benferhat, Salem 40, 55
Besnard, Philippe 12
Black, Elizabeth 68
Bosc, Patrick 80

Capobianco, Marcela 95
Chassy, Philippe 111

De Cock, Martine 240
de Keijzer, Ander 255
Denœux, Thierry 297
Deshpande, Amol 1
Di Noia, Tommaso 193
Di Sciascio, Eugenio 193
Donini, Francesco M. 193
Dubois, Didier 40

Grant, John 180

Horridge, Matthew 124
Hunter, Anthony 68

Janssen, Jeroen 240

Kifer, Michael 268
Klinov, Pavel 138

Lagrue, Sylvain 55
Li, Yu 282
Lukasiewicz, Thomas 2

Magnani, Matteo 150
Montesi, Danilo 150

Pan, Jeff Z. 68
Pardo, Pere 165
Parker, Austin 180
Parsia, Bijan 124, 138
Piatti, Alberto 28
Pivert, Olivier 80
Prade, Henri 40, 80, 111

Ragone, Azzurra 193
Rossit, Julien 55

Saad, Emad 206, 223
Sattler, Ulrike 124
Schockaert, Steven 240
Simari, Guillermo R. 95
Subrahmanian, V.S. 180

van Keulen, Maurice 255
Veldman, Irma 255
Vermeir, Dirk 240

Wan, Hui 268
Wellman, Michael P. 193

Xiang, Yang 282

Younes, Zoulficar 297

Zhu, Zoe Jingyu 282

	Front matter
	Chapter 1
	PrDB: Managing Large-Scale Correlated Probabilistic Databases (Abstract)

	Chapter 2
	Uncertainty in the Semantic Web
	Introduction
	Probabilistic Description Logics
	Probabilistic Description Logic Programs
	Fuzzy Description Logic Programs
	Probabilistic Fuzzy Description Logic Programs

	Chapter 3
	Bridging the Gap between Abstract Argumentation Systems and Logic
	Introduction
	Tarski's Abstract Consequence Operations
	An Extension of Dung's Abstract System
	Some Problematic Cases
	Properties of Attack Relations
	Choosing an Attack Relation
	Case of Binary Minimal Conflicts
	Case of General Minimal Conflicts

	Conclusion

	Chapter 4
	Modeling Unreliable Observations in Bayesian Networks by Credal Networks
	Introduction
	Bayesian and Credal Networks
	Bayesian Networks
	Credal Sets
	Credal Networks

	Equivalence Relations for Credal Networks Updating
	The Observational Process
	Modeling the Observations
	A Simple Example
	The General Transformation
	Possible Models of the Observations

	Variable Elimination for Root and Leaf Nodes
	Conclusions and Outlooks

	Chapter 5
	Interventions in Possibilistic Logic
	Introduction
	Possibilistic Logic: A Short Background
	Introducing Interventions
	Interventions by Simple Enforcement
	Interventions with Cut

	Ascription of Causal Relations Based on Default Rules
	Adding Intervention-Based Information
	Concluding Remarks

	Chapter 6
	An Analysis of Sum-Based Incommensurable Belief Base Merging
	Introduction
	Merging Ranked Belief Bases
	Ranked Belief Bases
	Sum-Based Fusion of Commensurable Bases

	Extension of the Sum-Based Operator for Merging Incommensurable Belief Bases
	Compatible Scales Merging Approach
	Characterization of the Result of Merging

	Logical Behavior and Rational Postulates
	The Commensurable Case
	The Incommensurable Case

	Selection Functions of Compatible Scales
	Impact on Cautiousness
	Impact on Rational Postulates

	A Comparative Study
	Conclusion

	Chapter 7
	An Argument-Based Approach to Using Multiple Ontologies
	Introduction
	Logical Arguments
	Dialogue Framework
	An Example of a Strategy
	Properties of Dialogical Argumentation
	Conclusions

	Chapter 8
	A Model Based on Possibilistic Certainty Levels for Incomplete Databases
	Introduction
	Basic Notions
	Interpretation of an Uncertain Database in Terms of Worlds
	Strong Representation Systems and Compact Calculus
	Reminder about Possibility Theory

	The Model
	Main Features of the Model
	Strong Representation System

	The Operators
	Selection
	Join
	Union

	About a Possibilistic Logic Encoding of the Model
	Conclusion

	Chapter 9
	A Proposal for Making Argumentation Computationally Capable of Handling Large Repositories of Uncertain Data
	Introduction
	The OP-DeLP Programming Language: Fundamentals
	Language
	Inference Engine

	A Design Pattern for OP-DeLP Applications
	Dialectical Graphs: An Optimization Based on Pre-compiled Knowledge
	Conclusions

	Chapter 10
	Making Sense of a Sequence of Events: A Psychologically Supported AI Implementation
	Making Sense in Artificial Intelligence and Psychology
	Making Sense: Connecting Facts through Knowledge
	The Role of Knowledge in Making Sense
	Implementing a Connection Ascriptor for Making Sense
	Illustrative Examples
	Concluding Remarks

	Chapter 11
	Explaining Inconsistencies in OWL Ontologies
	Introduction
	Preliminaries: OWL and Justifications
	Related Work and Background
	Model Based Diagnosis and Techniques for Computing All Justifications
	Computing Single Justifications

	A Black-Box Algorithm for Computing Justifications for Inconsistent Ontologies
	Implementation and Evaluation
	Results Analysis

	Discussion
	Summary and Future Work

	Chapter 12
	On Improving the Scalability of Checking Satisfiability in Probabilistic Description Logics
	Introduction
	P-$\mathcal {SHIQ}$(D) Background
	Incremental Construction of Linear Systems
	Constraint Optimization for Column Generation

	Comparison with Related Work
	Experimental Results
	Subsets of the BRCA Ontology
	Random P-$\mathcal {SHIQ}$(D) Ontologies and Modularity

	Conclusion

	Chapter 13
	Towards Relational Schema Uncertainty
	Introduction
	Motivating Scenarios
	Possible World Semantics and Its Implications on User Interaction

	Query Rewriting Systems (QRS)
	Properties of QRSs

	Coarsest Refinement (CR) Rewriting Systems
	Consolidated Schema
	Query Languages
	Rewriting Functions

	Related Work
	Conclusion and Future Work
	Proofs

	Chapter 14
	Aggregation of Trust for Iterated Belief Revision in Probabilistic Logics
	Preliminaries
	Aggregation Operators and t-norms
	Logical Change Operators
	Uncertainty Logics Based on T-norms

	From Aggregation Functions to Change Operators
	(i) Enforcing Consistency in an Agent's Discourse
	(ii) Multi-source Conflict Resolution
	Examples of Aggregation-Based Revision Operators

	Conclusions and Future Work

	Chapter 15
	Fast and Accurate Prediction of the Destination of Moving Objects
	Introduction
	Preliminary Definitions
	Destination Prediction Axioms
	Route Distance Functions
	Destination Probability Function
	Experiments
	Related Work and Conclusions

	Chapter 16
	Weighted Description Logics Preference Formulas for Multiattribute Negotiation
	Introduction
	Notation
	Preference Representation Using Description Logics
	Computation of Minimal Utility Value
	Preference Clauses and Theory Prime Implicates
	From Preference Closure to Minimal Utility Value
	An Algorithm to Compute a Preference Closure
	Performance Evaluation

	Conclusion

	Chapter 17
	Probabilistic Planning with Imperfect Sensing Actions Using Hybrid Probabilistic Logic Programs
	Introduction
	Syntax and Semantics of NHP$_P$
	The Language of NHPP$_P$
	Probabilistic Answer Set Semantics of NHPP$_P$

	Probabilistic Action Language with Imperfect Sensing Actions
	Language Syntax of $\mathcal {P}$
	Semantics of $\mathcal {P}$

	Probabilistic Answer Set Contingent Planning
	Correctness
	Probabilistic Contingent Planning Using Answer Sets
	Conclusions and Related Work

	Chapter 18
	Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics
	Introduction
	Related Work
	Fuzzy Sets
	Extended Fuzzy Logic Programs
	Satisfaction and Models

	Fuzzy Answer Set Semantics
	Conclusions

	Chapter 19
	Finite Satisfiability in Infinite-Valued Łukasiewicz Logic
	Introduction
	Related Work
	Basic Notions
	Fuzzy Clauses
	Disjunctive Linear Relations
	Cycle Basis

	Relating Cycles to Truth Degrees
	Splitting into Subproblems
	Harmless Cycles
	Further Optimizations

	Preliminary Experimental Results
	Concluding Remarks

	Chapter 20
	Compression of Probabilistic XML Documents
	Introduction
	PXML Compression
	Queriable XML Compression Techniques
	BPLEX
	PXML-specific Compression

	Experiments
	Measurement
	Data Sets
	Results

	Conclusions

	Chapter 21
	Query Answering in Belief Logic Programming
	Introduction
	Preliminaries
	Syntax of BLP
	Combination Functions
	Support and Belief Functions

	Fixpoint Semantics of BLP
	Query Answering
	Proof DAG
	Complexity
	Non-ground Cases

	Conclusions

	Chapter 22
	Towards Effective Elicitation of NIN-AND Tree Causal Models
	 Introduction
	 Background
	 Minimal NIN-AND Tree Topology Space
	Enumerating NIN-AND Trees by Local Insertion
	 Removing Duplication Trees
	 Pairwise Causal Interactions
	 Are NIN-AND Trees PCI Differentiable?
	Remarks

	Chapter 23
	An Evidence-Theoretic k-Nearest Neighbor Rule for Multi-label Classification
	Introduction
	Single-label Classification
	Basics of Dempster-Shafer Theory
	Evidence-Theoretic k-NN Rule

	Multi-label Classification
	Multi-label Extension of Dempster-Shafer Theory
	Evidential Multi-label k-NN

	Experiments
	Datasets
	Evaluation Metrics
	Results and Discussions

	Conclusion

	Back matter

