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Dedication

In memory of Rudolf Friedrich - University of Münster

On 16th of August 2012 just a few weeks before our 5th iTi Conference Rudolf
Friedrich, 55, unexpectedly passed away.

He was a very good friend with whom one could spend nice evenings taking about all
the world and his brother, as well as, about profound scientific problems like turbu-
lence. We lost a colleague with whom we loved to cooperate, an excellent researcher
who looked forward to find some time to work on the problem of turbulence. Turbu-
lence as a cooperative systems of coupled subsystems was a main challenge for him.
As he stated: “Turbulence remains a highly interesting and modern problem, which
has been the origin of many actual scientific ideas without being solved”. For him



VI

the comprehension of the pressure term was a, if not the, central challenging issue.
The large range of interdisciplinary applications inspired him in many ways.

He succeeded to pass his enthusiasm to his students and his colleagues and thus
initiated many new ideas. As a deep thinking theoretician he was highly interested
in applications and experimental work. He liked very much the interdisciplinary
aspect of science, which also characterized his work, which ranged from neural
science, over mechanical machining of materials, to mathematical problems like
the fractional substantial derivative. A main focus of his work was devoted to the
turbulence problem, where he found beside other results the spiral turbulence and
the stochastic description by means of a Fokker-Planck equation.

With him we lost a charming friend, a committed colleague, an excellent scientist
and a founding member of the interdisciplinary turbulence initiative.

Alessandro, Martin and Joachim
Forlì, Darmstadt, Oldenburg, 11thJuly 2013



Preface

This volume collects the latest contributions presented in the 5th iTi Conference in
Bertinoro, continuing a tradition that has been started in Bad Zwischenahn/Germany
with the first edition of the conference in 2003. Since 2008 the conference has been
held in the beautiful town of Bertinoro/Italy favoring the interactions between par-
ticipants mostly coming from the engineering and physicist communities.

About 65 scientists coming from 12 countries have presented their latest contri-
bution covering several fundamental aspects in turbulent flows. The contributions
have been submitted to external peer reviewers and in the end 38 (together with 2
invited papers) have been collected in this fifth issue on Progress in Turbulence.

It must be stated that since Progress in Turbulence IV online publication on
Apr 25, 2012, there has been a total of 1472 chapter downloads from this book
on SpringerLink, the online platform, which means that the book is one of the top
25% most downloaded eBooks in the Springer eBook Collection in 2012.

The present volume is dedicated to the memory of Prof. Rudolf Friedrich who
prematurely died in Münster/Germany on the 16th of August 2012. In his honor
the conference has started with a special session dedicated to his work. The volume
contains one paper describing his main contributions.

As Wind Energy has been a focal topic during the iTi Conference in 2010, this 5th

iTi Conference started with a one-day workshop on symmetries and conservation
laws as it experiences an increasing interest in recent turbulence research activities.

In the spirit of the iTi initiative, the volume is produced after the conference so
that the authors have the possibility to incorporate comments and discussions raised
during the meeting.

Turbulence presents a large number of aspects and problems, which are still un-
solved and which challenge research communities in engineering and physical sci-
ences both in basic and applied research. The book presents recent advances in
theory related to new statistical approaches, effect of non-linearities and presence of
symmetries. This edition presents new contributions related to the physics and con-
trol of laminar-turbulent transition in wall-bounded flows, which may have a signifi-
cant impact on drag reduction applications. Turbulent boundary layers, at increasing
Reynolds number, are the main subject of both computational and experimental long
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research programs aimed at improving our knowledge on scaling, energy distribu-
tion at different scales, structure eduction, roughness effects to name only a few.

Like previous editions several numerical and experimental analysis of complex
flows, mostly related to applications, are presented.

Based on the successful previous conferences, we intend to continue with this
initiative for subsequent years with the 6th iTi Conference planned for September
2014.

The structure of the present book is as such that contributions have been bundled
according to covering topics i.e. I Theory, II Stability, III Wall bounded flows, IV,
Complex flows, V Acoustic, VI Numerical methods.

Finally, we would like to thank all authors for their contributions to this volume
and the reviewers whose comments have significantly contributed to the overall sci-
entific quality of the proceedings. We would like to thank Thomas Ditzinger from
Springer for his patience during the production of the book. Finally we gratefully
acknowledge the staff from CEUB and University of Bologna for helping us to carry
out this conference.

Alessandro Talamelli
Martin Oberlack
Joachim Peinke

(Forlì, Darmstadt, Oldenburg, 2013)
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Statistical Description of Turbulent Flows
A Short Review in Memory of Rudolf Friedrich

Oliver Kamps and Michael Wilczek

Abstract. In this article we review two different approaches to the statistical
description of turbulent flows in terms of evolution equations for probability den-
sity functions (PDFs), namely a description of the turbulent cascade by a Fokker-
Planck equation, as well as kinetic equations in terms of the theoretical framework
of the Lundgren-Monin-Novikov hierarchy. In both cases conditional averages are
the building blocks that allow to make a connection to experimental or numerical
data. Professor Dr. Rudolf Friedrich made central contributions to both of these ap-
proaches, which we want to highlight here.

1 Introduction

The spatio-temporal complexity of turbulence necessitates a statistical description
of the flow field in terms of statistical quantities like averages or PDFs. In this ar-
ticle we review two different approaches to the description of turbulence based on
PDFs. Both approaches aim at deriving evolution equations for the PDF describing
the observable of interest. The first one, referred to as Fokker-Planck approach, is
motivated by the theory of stochastic processes and was introduced by Friedrich and
Peinke [1]. Here, the central idea is to understand the velocity increment statistics as
a stochastic process in scale, whose properties can be estimated from experimental
data. In more detail, the Fokker-Planck approach starts with the N-point PDF fN

containing the full information on the physical problem. If we interpret this N-point
PDF as a PDF describing the probability of a realization of N steps of a stochastic
process, we could ask whether this process obeys the Markov property. This would
mean that one can split up the N-point PDF into a product of two-point transition
PDFs which would be a tremendous reduction of the complexity of the problem.

Oliver Kamps
Center for Nonlinear Science, University of Münster, 48149 Münster
e-mail: okamp@uni-muenster.de

Michael Wilczek
Institute for Theoretical Physics, University of Münster, 48149 Münster
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A. Talamelli et al. (eds.), Progress in Turbulence V, 1
Springer Proceedings in Physics 149,
DOI: 10.1007/978-3-319-01860-7_1, c© Springer International Publishing Switzerland 2014



2 O. Kamps and M. Wilczek

The crucial question in this context is under which conditions this assumption is
fulfilled, e.g., how large the distance between two steps has to be taken to observe
a Markov process. If the transition PDF is additionally close to Gaussian, its time
evolution can be described by a Fokker-Planck equation. If this is possible, we arrive
at a closed evolution equation from which the whole N-point PDF can be computed.

The second approach is inspired by the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy of statistical mechanics [2] and was introduced into turbulence
research by Lundgren [3], Monin [4] and Novikov [5]. Therefore we refer to this
approach as the Lundgren-Monin-Novikov (LMN) hierarchy. The main feature of
this approach is that the evolution of the PDF can be related to averages involving
the Navier-Stokes dynamics, for example by considering the temporal evolution of
a so-called fine-grained PDF. Averaging these fine-grained evolution equations then
leads to the usual closure problem of turbulence, which either can be expressed in
terms of a coupling to higher-order multi-point PDFs or in terms of unclosed condi-
tional averages. Especially the latter are accessible to DNS investigations and their
investigation has led to interesting insights on the connection of turbulence dynam-
ics and statistics. Combining these two approaches was one of the goals of Rudolf
Friedrich’s recent research, but now remains an open problem for future work.

2 The Fokker-Planck Approach

Starting with a paper by Friedrich and Peinke [1] the Fokker-Planck approach was
mainly pursued to describe the velocity increment statistics in scale. The character-
ization of the complexity of a turbulent flow in terms of velocity increments is inti-
mately related to the idea of a cascade and the transport of energy between scales.
We define the longitudinal velocity increment as

U(r,x, t) = [v(x+ r, t)− v(x, t)] · r
r
, (1)

In case of a stationary, homogeneous and isotropic flow the one-point PDF can now
be written as

f (u;r) = 〈δ (u−U(r,x, t))〉 (2)

e.g., the increment statistics depends only on the absolute value r of the distance
vector r. Here the average is taken with respect to time and space. Our goal is to
describe the increment statistics on different length scales rN , with ri+1 > ri and
Δr = ri+1−ri where the increments have the same starting point x. A full description
of the statistics is encoded in the N-point PDF

f (urN ,urN−1 , . . . ,ur1) = p(urN |urN−1 , . . . ,ur1) f (urN−1 , . . . ,ur1) . (3)

Here we used the shorthand notation uri to denote the dependence on the parameter
ri. Since the N-point PDF is a rather complex object the question for a possible
simplification of (3) arises quite naturally. One could ask under which conditions
does the relation
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p(urN |urN−1 , . . . ,ur1) = p(urN |urN−1) (4)

hold so that the N-point statistics can be described as a Markov process

f (urN ,urN−1 , . . . ,ur1) = p(urN |urN−1)p(urN−1 |urN−2) . . . p(ur2 |ur1) f (ur1) (5)

in scale. In a practical application, instead of (4) the relation p(uri |uri−1 ,uri−2) =
p(uri |uri−1) or the Chapman-Kolmogorov equation can be checked numerically. The
equality of the PDFs can be tested by hypothesis tests like the Wilcox test or meth-
ods that calculate the distance between both PDFs like the Kullback-Leibler mea-
sure. For details we refer the reader to [1, 6, 7].

2.1 The Markov-Einstein Length

Based on experimental data from hot wire measurements of free jet turbulence it
was possible to show that for length scales Δr ≥ lME the Markov property is ful-
filled [1]. Further investigations [6] indicate that this scale is proportional to the
Taylor microscale lλ which was confirmed in an extensive study of experimental
data from various experiments [8]. This leads to the insight that the complete infor-
mation about the increment statistics for scales larger than lλ and therefore in the
whole inertial range is encoded in two-point transition PDFs.

The occurrence of a finite length scale reflects the fact that for many physical
systems a description in terms of stochastic processes or more specific as Markov
processes is only valid for time and length scales above typical microscopic time
and length scales of the problem. This was already realized by Einstein [9] when he
developed a quantitative description of Brownian motion. He explicitly stated that
the stochastic description is only valid for scales above the mean free path length.
For this reason the length scale lME is termed Markov-Einstein coherence length [8].

2.2 The Fokker-Planck Equation

Given the fact that the two-point transition PDFs are sufficient to reproduce the
N-point statistics we now seek for a dynamical equation for these transition prob-
abilities. From the theory of stochastic processes we know that such a dynamical
description is given by the Kramers-Moyal expansion [10] with an infinite number
of coefficients Dn. For Gaussian transition PDFs or equivalently in case of vanishing
D4 the expansion reduces to the Fokker-Planck equation

∂
∂ ri

p(uri |uri−1) =

[
− ∂

∂uri

D1(uri)+
∂ 2

∂u2
ri

D2(uri)

]
p(uri |uri−1) (6)

with drift-coefficient D1 and the diffusion-coefficient D2 which can be estimated
from data [1, 6]. It was shown that D1 and D2 are sufficient to reproduce the incre-
ment PDFs in the whole inertial range. The general structure of the coefficients can
be approximated by polynomials of the form
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D1(u,r) = a1(r)u (7)

D2(u,r) = b1(r)+ b2(r)u+ b3(r)u
2 (8)

showing the r-dependence of the process. A detailed discussion of the dependence
of this approximation on the Reynolds number can be found in [11]. Due to the fact
that we have a finite Markov-Einstein length, some subtleties are involved in the
estimation procedure. Nevertheless, given both coefficients it is not only possible to
reproduce the increment statistics but also to determine all transition probabilities
and the whole N-point PDF.

2.3 Further Investigations

Beside homogeneous, isotropic turbulence the Fokker-Planck approach was also
applied to other types of turbulent flows. For example, it could be shown that the
transition to turbulence in the wake behind a cylinder is characterized by a transition
in the functional structure of the drift coefficient [12]. For fractal grid generated
turbulence it could be shown that in contrast to classical fully developed turbulence
the drift- and diffusion coefficients are independent of Rλ [13]. Also solar wind
turbulence [14] and passive scalar turbulence [15] exhibit the Markov property on
small scales.

It is worth mentioning that the spin-off of the investigations started by [1] was
the development of a systematic approach to the estimation of Fokker-Planck and
Langevin equations from data which has been successfully applied to various sci-
entific fields ranging from medicine to finance [7]. This is a further example of the
stimulating character of basic turbulence research for other scientific fields.

3 The LMN Hierarchy

One of the main strengths of the Fokker-Planck approach is that it is data-driven, i.e.
in a sense it can be regarded as a closure scheme based on experimental observa-
tions. One would also like, however, to connect to the basic dynamical equation, the
Navier-Stokes equation, to obtain a statistical framework based on first principles.

This is the route followed by studying PDF equations in terms of the LMN hi-
erarchy. As mentioned above, this framework is based on works by Lundgren [3],
Monin [4] and Novikov [5], which appeared in the late 1960’s. Back then, the equa-
tions of the hierarchy only were accessible to analytical closure schemes, but later on
also could be combined with data obtained by direct numerical simulations, as has
been demonstrated by Novikov and co-workers in their study of vorticity statistics
from three-dimensional turbulence [16, 17]. This idea was picked up in the group
of Rudolf Friedrich and has been followed on in recent years with application to
the statistics of vorticity in two- and three-dimensional turbulence [18, 19], velocity
[20, 21], and temperature in Rayleigh-Bénard convection [22]. These works have
been summarized recently in [23], to which we refer the interested reader. Here, we
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will focus on a presentation of the main ideas and a number of general features of
this approach. We also refer to the textbook by Pope [24] for further reading.

3.1 Basic Concepts

While for the Fokker-Planck equation the starting point was the experimental obser-
vation of velocity fluctuations, we now start our discussion with the Navier-Stokes
equation

∂
∂ t

u(x, t)+u(x, t) ·∇u(x, t) =−∇p(x, t)+νΔu(x, t)+F(x, t) . (9)

For a statistical description we introduce the fine-grained one-point PDF

f̂1(v1;x1, t) = δ (u(x1, t)− v1) , (10)

which can be used to obtain the full one-point PDF by an ensemble average:

f1(v1;x1, t) = 〈 f̂1(v1;x1, t)〉 (11)

The N-point PDF is now obtained as a straightforward generalization by averaging
the product of one-point fine-grained PDFs

f1(v1, . . . ,vn;x1, . . . ,xn, t) =

〈
N

∏
i=1

δ (u(xi, t)− vi)

〉
. (12)

Following [3] one can derive an evolution equation for the fine-grained PDF. Sub-
sequent averaging leads to an equation for the full PDF of the form

∂
∂ t

f1(v1; x1, t)+ v1 ·∇x1 f1(v1;x1, t) =

−∇v1 ·
〈
(−∇x1 p(x1, t)+νΔx1u(x1, t)+F(x1, t)) f̂1(v1;x1, t)

〉
. (13)

Here we encounter the closure problem of turbulence because the average on the
right-hand side of (13) still contains the fine-grained PDF f̂1. There are in principle
two ways of proceeding; either one can express the unclosed expressions in terms
of higher-order statistics, or one can introduce conditional averages. The former
procedure easily becomes clear at the example of the pressure term. As the pressure
field is governed by a Poisson equation, it can be expressed in terms of the velocity
field according to

p(x, t) =
1

4π

∫
dx′

∇x′ · [u(x′, t) ·∇x′u(x′, t)]
|x− x′| (14)

which shows that the pressure field is a non-local expression of the velocity field.
Statistically, this leads to the coupling to the two-point PDF [3]. A similar reasoning
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can be applied to the diffusive term, so that this coupling to the two-point PDF can
formally be written as〈

(−∇x1 p(x1, t)+νΔx1u(x1, t)+F(x1, t)) f̂1(v1;x1, t)
〉
= C1[ f2,F1] , (15)

where C1 is the non-local operator including the coupling due to pressure, diffusion
and the information of the external forcing field. Deriving the evolution equation
for the two-point PDF f2 then leads to a coupling to the three-point PDF f3 and so
forth, finally establishing the famous hierarchy of PDF equations.

The second possibility, again at the example of the pressure term, is to use a
conditional average to split the term into

〈−∇x1 p(x1, t) f̂1(v1;x1, t)〉= 〈−∇x1 p(x1, t)|v1,x1, t〉 f1(v1;x1, t) (16)

leading to a closure of (13) once the conditional averages are specified. Express-
ing the closure problem in terms of conditional averages makes it more accessible
to physical intuition and modeling. For instance, for the above expression we need
to answer the question: What is the average value of the pressure gradient given
a fixed value of velocity? Furthermore, the conditional averages are accessible by
direct numerical simulations, although this also can be quite challenging. However,
by exploiting statistical symmetries, the dimensionality of these unknowns can be
considerably reduced. This route has been taken to explain slight deviations from
Gaussianity of the single-point velocity PDF as well as strong departures from Gaus-
sianity of the single-point vorticity PDF [19, 20, 21].

3.2 General Structure of the Hierarchy

If we combine the coupling to higher-order PDFs with conditional averaging, we
can specify the hierarchy up to a given level according to

∂
∂ t

f1 + v1 ·∇x1 f1 = C1[ f2,F1] (17)

∂
∂ t

f2 + v1 ·∇x1 f2 + v2 ·∇x2 f2 = C2[ f3,F1,F2] (18)

going up to

∂
∂ t

fN−1 +
N−1

∑
i=1

vi ·∇xi fN−1 = CN−1[ fN ,F1, . . . ,FN−1] . (19)

Here Ci[ fi+1,F1, . . . ,Fi] describes the coupling to the next order including the de-
pendence on the forcing. Then introducing the conditional averages on the N-th
level yields

∂
∂ t

fN +
N

∑
i=1

vi ·∇xi fN =−
N

∑
i=1

∇vi · {〈−∇xi pi +νΔxiui +Fi|v1, . . . ,vN〉 fN} , (20)
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by which we have obtained a set of N kinetic equations. If we do not introduce
conditional averages, this hierarchy in principle continues to infinity. As a side re-
mark we would like to note that this is a direct consequence of the fact that we
describe turbulence in terms of a field and not in terms of a finite number of fluid
particles. However, one can argue that from a physical point of view a finite set of
points should suffice, for example, when the Eulerian field is sampled fine enough
to smoothly resolve the Kolmogorov scale. So one interesting question for future re-
search is whether it is possible to formulate a reasonable closure at large, but finite
N which in principle contains all relevant physical information.

On the other hand, it would be interesting to combine also the multi-point PDF
equations with DNS results, which, however, turns out to be quite challenging as
tremendous amounts of data are needed for statistical convergence. Some progress
recently was made for the two-point statistics of two-dimensional turbulence [18].
For more details on the LMN hierarchy, we would like to invite the reader to [23],
which gives a broader overview of the contribution of Rudolf Friedrich and his
group to this research field.

4 Conclusion and Outlook

We have presented a short overview of two approaches dealing with evolution equa-
tions for probability density functions describing statistical properties of fully de-
veloped turbulence. The motivation and starting point of the two approaches is quite
different: The Fokker-Planck approach mainly is motivated by the desire to estab-
lish a self-consistent closure from experimental data, whereas the investigation of
the LMN hierarchy mainly has been motivated by the aim of making contact to the
Navier-Stokes dynamics. Despite these quite different motivations, both approaches
lead to evolution equations for probability density functions and hence share some
interesting formal analogies.

One of the most interesting questions for future work is to investigate whether
these two approaches can be combined. Is it, for example, possible to derive a clo-
sure scheme for the LMN equations based on the Markov property? Or conversely:
What is the physical meaning of the Markov property? Can the LMN hierarchy
eventually be used to prove the Markov property from first principles? A progress
with respect to these questions will surely lead to a deeper understanding of the
statistics of fully developed turbulence.
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Extreme Events for Two-Particles Separations
in Turbulent Flows

Luca Biferale, A.S. Lanotte, R. Scatamacchia, and F. Toschi

Abstract. Results from high resolution numerical simulations of tracer particles
emitted from localised sources in homogeneous and isotropic flows are presented.
A huge number of tracers are emitted in order to reach an unprecedented statistics
concerning particles pairs motion. We show that the far tails of the particles pair
separation Probability Distribution Function can not be described by a Richardson-
like distribution, even if finite Reynolds effects are introduced. We argue that to
describe extreme event statistics, velocity temporal correlations and non-Gaussian
fluctuations must be taken into account.

1 Introduction

The relative separation between two fluid particles by turbulent flows has been firstly
addressed by L.F. Richardson [1] (see [2, 3] for recent reviews). The main question
is the following: given a pair of tracer particles released, at time t0 = 0 at a small
separation distance r0 (smaller of the Kolmogorov dissipative scale, η), what is the
probability, P(r0, t0;r, t) to find it at a given distance r at a later time t?
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The knowledge of such Probability Density Function (PDF) is of crucial impor-
tance for many geophysical applications [4, 5, 6]. It is a highly complex statistical
problem due to its dependence on the velocity fluctuations evaluated at the parti-
cle positions, along their whole past history [7]. Here we will investigate only the
classical case of passive particles, with no feedback on the flow and in the dilued
limit, neglecting collisions. Richardson proposed to model the particle separation,
at inertial subrange distances η � r � L0, as a Fokker-Planck diffusive process

characterised by an effective inertial range diffusivity, DRic(r) = 1
2

d〈r2〉
dt , with

DRic(r)∼ β r4/3 . (1)

Here L0 is the large-scale of the flow and β = k0ε1/3, where k0 is a non dimen-
sional constant and ε is the mean kinetic energy dissipation. It is possible to re-
late Richardson and Kolmogorov 1941 theory [8], by using dimensional estimate
[7, 9]. Namely, DRic(r) ∼ τ(r)〈(δrv)2〉 , where τ(r) ∼ ε−1/3r2/3 is the local eddy-
turn-over-time at the inertial range scale r, and 〈(δrv)2〉 ∝ ε2/3r2/3 is the second or-
der Eulerian longitudinal structure function. The resulting long time growth of the
mean squared separation is: 〈r2(t)〉 = gεt3, where g � 0.5 is the Richardson con-
stant [10, 11, 12, 13, 14]. Since [1], many experimental and numerical studies have
focused on the statistics of pair dispersion in turbulent flows [15, 16, 12, 17, 18, 14],
also considering the problem of multiparticle dispersion [19, 20]. More recently, ef-
fects related to inertia have also been considered in dispersion studies [21, 22, 23].
Here we would like to understand if the Richardson’s approach is suitable for the
statistics of the extreme events also, i.e. those pairs of tracers with separation much
larger/smaller than the average one, 〈r2(t)〉1/2.

To proceed with our analysis, it is worth recalling that Richardson’s approach
can be reinterpreted as the evolution of tracers in a Gaussian, homogeneous and

Fig. 1 Two different bunches emitted in two different locations from a source of size ∼ η ,
recorded at time t = 75τη . On the left, a bunch emitted in a strong shear-rate region; on the
right, a bunch emitted in a weak shear region. Direct Numerical Simulations are performed
on a cubic fully periodic grid at 10243 points, at a Reynolds-Taylor number Reλ ∼ 300. For
further details see [30].
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rescaled in this way (solid curve). Inset: same PDFs plotted only for separations rn that belong
to the inertial subrange at any time lag chosen.

isotropic velocity field, delta-correlated in time, with two-point correlation given
by 〈δrvi(t)δrv j(t ′)〉 = δ (t − t ′)[D‖(r)r̂i r̂ j +D⊥(r)(δi j − r̂ir̂ j)] , where the longitudi-
nal and transverse second order structure functions D‖(r) and D⊥(r) are such that
D⊥(r) = D‖(r)+ 1/2r ∂r D‖(r), because of incompressibility [24].

The pair separation PDF for tracers advected by such a velocity field satisfies the
following diffusive Fokker-Planck equation [24, 7]

∂tP(r, t) = r−2∂rr
2D‖(r)∂rP(r, t) . (2)

Moreover, if the eddy-diffusivity has a power-law behavior, D‖(r) = D0rξ with 0 ≤
ξ < 2, the Richardson equation (2) with initial condition P(r, t0) ∝ δ (r− r0) can be
solved [25, 26]. The solution has an asymptotic large time form (independent of the
initial condition r0 at t0) of the kind

PRic(r, t) ∝
r2

〈r2(t)〉 3
2

exp

⎧⎨⎩−b

(
r

〈r2(t)〉 1
2

)2−ξ
⎫⎬⎭ , (3)

where b is a constant determined in terms of D0 [25]. In this infinite Reynolds num-
ber scaling scenario (no cut-offs are present), tracer pairs separate in an explosive
way: 〈r2(t)〉 ∝ t2/(2−ξ ). It is easy to recognise that, for ξ = 4/3, this behaviour is
the one originally proposed by Richardson. At small scales, where the turbulent flow
is differentiable and the eddy diffusivity is D‖(r) = D0r2, the PDF assumes a log-
normal shape, P(r, t|r0,0) ∝ exp

{−(log(r/r0)−λ t)2/(2Δ t)
}

, [7]; here λ is the
maximal Lyapunov exponent and Δ is connected to fluctuations of the strain field.
In this case the rate of separation is strongly fluctuating from point-to-point and
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from time-to-time being connected to the fluctuations of the Lyapunov exponents
[7, 27].

There are many reasons for which the Richardson distribution can not exactly
describe the behaviour of tracer pairs in real flows. The most important are: (i) the
nature of the temporal correlations of the fluid flow [24, 9, 28, 18]; (ii) the non-
Gaussian fluctuations of turbulent velocities; (iii) the small-scales effects induced
by the dissipation subrange, and (iv) the large-scales effects induced by the flow
correlation lenght and/or the flow geometry. These last two are of course connected
to finite Reynolds effects [29].

In this paper, we review some recent results about finite Reynolds effects on the
rate of occurrence of rare extreme events [30]. Moreover, we present a generaliza-
tion of the Richardson approach by introducing an effective turbulent diffusivity,
taking into account also of viscous and large-scale turbulent properties.
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Fig. 3 Log-log plot of the second moment of relative dispersion 〈r2(t)〉. Symbols are from
DNS data, while the continuous line is obtained from integrating the diffusive evolution with
the eddy diffusivity model of eq. (4). Notice the change in the asymptotic evolution obtained
with (4) due to the saturation of the effective diffusivity at large separation scales.

2 DNS Results

We have performed a series of Direct Numerical Simulations (DNS) of homoge-
neous and isotropic turbulence, seeding the fluid with bunches of tracers, emitted in
different locations (see [30] for details). In Fig. 1, a glance on the complexity of the
problem is given. In the left panel, there is a typical bunch emitted in a region of
strong shear: we observe an abrupt transition in the particle dispersion occurring at a
time t ∼ 10τη after the emission, when most of the pairs reaches a relative distance
of the order of ∼ 10η . Later on, we again note the presence of many pairs with mu-
tual separations much larger than the mean one. In the right panel, there is a bunch
with an anomalous history: at difference with the previous case, here tracers tend to
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stay at mutual distance of the order of η for a very long time. This happens when
pairs are injected in a spatial region characterised by a very small stretching rate.

In Fig. 2, we quantify these observation by plotting the PDF P(r, t) rescaled in
terms of the variable rn(t) = r(t)/〈r2(t)〉1/2, and compared against the asymptotic
prediction (3). The deviations from Richardon’s model are evident in the strong
discrepancies at large scales, for all times. In the inset of the same figure, a more
stringent test is shown. We plot the same PDFs but restricting the pair distances to
scales belonging to the inertial subrange, 30η < r < 300η .

Let us remark that previous studies could access events up to separation dis-
tances r/〈r2(t)〉1/2 < 3 (see e.g. [2]). Our study improves of about four order of
magnitude (in probability) the intensity of detectable events, highlighting strong de-
viations from Richardon’s shape previously inaccessible. Such departures from the
ideal infinite-Reynolds distribution proposed by Richardson call for a better quan-
tification. In particular, to assess the importance of finite Reynolds effects, we have
integrated the Richardson equation (2) using an effective eddy-diffusivity De f f (r)
which modifies the classical expression (1) by including small- and large-scales
cut-offs:

De f f
‖ (r)∼ r2 r � η

De f f
‖ (r)∼ r4/3 η � r � L0 (4)

De f f
‖ (r)∼ const. r � L0 .

In this way, the eddy-diffusivity spans all statistical behaviours from the smooth
one in the dissipative range, up to the saturated one at scales larger than the flow
correlation lenght L0. A popular fitting formula that reproduces well the Eulerian
data, and that matches the expected scaling for both τ(r) and 〈(δrv)2〉, is (see also
[31]):

〈(δrv)2〉= c0
r2

((r/η)2 + c1)2/3

[
1+ c2

(
r

L0

)2
]−1/3

(5)

supplemented with a similar expression for the eddy turn over time:

τ(r) =
τη

((r/η)2 + c1)−1/3

[
1+ d2

(
r

L0

)2
]−1/3

. (6)

The O(1) parameters c0, c1, c2 are fitted from the Eulerian statistics; the parameter
d2 is fixed such as to correctly reproduce the evolution of the mean square sepa-
ration, 〈r2(t)〉, over the whole time range τη ≤ t ≤ TL, see Fig. 3. Note that the
hypothesis of Gaussian statistics still holds true in this approach, since the velocity
field distribution is fixed by De f f (r) only.

In Fig. 4, there is the solution, Pe f f (r, t), of the diffusive equation (2) obtained
using De f f (r) and for different choices for the parameter d2: these modelling solu-
tions are compared with the PDF obtained from the numerical simulation, and with
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the ideal Richardson prediction. Despite the excellent agreement for the second mo-
ment 〈r2(t)〉 obtained from DNS and that obtained using the stochastic model (2)
and (4), the PDF far tails are still different. For large separations the agreement with
the DNS data is qualitatively better but still quantitatively off, particularly when fo-
cusing on the sharp change at the cut-off scale where the left tail becomes steeper
and steeper: this effect is still absent in the evolution given by (4). This is a key-
point which tells us that to reproduce the observed PDF for large excursions, it is
not enough to impose a saturation of eddy-diffusivity at large scales. The behavior
of pair dispersion must then be crucially dependent on the nature of the Lagrangian
turbulent velocity in the inertial subrange.
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Fig. 4 Lin-log plot of Pe f f (r, t) as obtained from the integration of (3) with De f f (r) at chang-
ing the d2 parameter (thin line, and different dashed lines) and the DNS data (symbols). The
Richardson PDF is also plot (thick solid line).

3 Conclusions

We have reviewed recent results from a numerical simulation designed in order to
quantitatively explore the stastistics of rare events in turbulent pair dispersion. Here
we concentrated on the pairs that separate much “faster” than typical ones (for the
case of “slow” pairs see also [30]). We showed the existence of an important depar-
ture from the Richardson-like inertial and idealised behavior described in eqn. (3). A
step forward is obtained introducing a finite-Reynolds effective eddy-diffusivity ker-
nel, which correctly takes into account both the viscous and integral scale physics.
In this way, a better qualitative agreement with real data is observed. A different
attempt using the diffusive nature of Lagrangian relative velocities has been re-
cently proposed [18, 14]. Alternatively, suggestions based on a memory kernel to
overcome the presence of unphysical infinite speed events [28, 32] has also been
proposed. Further studies will be needed to quantify this issues. Single particles
absolute dispersion and or dependence on the Stokes time for inertial particles are
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other two important points that may deliver new insights in the physics of particles
dispersions [35].
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Higher Order Moments of Velocity Fluctuations
and Their Gradients in Turbulent Wall-Jets

Zeinab Pouransari, Luca Biferale, and Arne V. Johansson

Abstract. The concept of local isotropy is addressed in a turbulent wall-jet. Di-
rect numerical simulations (DNS) of a reacting turbulent wall-jet flow are used to
evaluate the probability density functions (PDF) and higher order moments of the
velocity and of the gradient in our set-up, in order to illustrate different aspects of
the degree of isotropy at small scales. We observe a strong persistency of small-scale
anisotropy up to y/y1/2 ≈ 1.5, where y1/2 is the half width of the jet.

1 Introduction

The idea of local isotropy is an interesting topic, since, if it holds, small scales
in turbulent flows can be described by universal parameters [1,2]. The turbulent
plane wall-jet is a test case that has close resemblance to a wide range of mixing
and combustion applications. In the present study, DNS data is used to investigate
the PDF shapes and the characteristics of the higher order moments at different
downstream positions and at different wall-normal planes [3].

To provide an overview of the turbulent wall-jet flow, some of the mean profiles
are shown in Fig. 1. The position of the maximum streamwise velocity and the
position of zero shear stress in the turbulent wall-jet flow do not exactly coincide.
This behavior has some similarities to what has been previously reported for the
jet flows. We observed in Figs. 1(a,b) that in the self-similar region (x/h > 20), the
latter lies below the former, and in between, a region with negative mean production.
The zero-crossing in the skewness of the streamwise velocity gradient also lies close
to these positions, see black curve in Fig. 4(a).
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Fig. 1 (a) Mean cross-stream profiles of streamwise velocity, (b) Reynolds shear stress and
(c) streamwise fluctuation intensity at x/h = 25. The red and blue lines show the position of
the local maximum mean streamwise velocity and the local zero shear position, respectively.
The green lines show the positions of the streamwise fluctuation intensity maxima.

2 Probability Density Functions

The PDF of the streamwise velocity fluctuation and its wall-normal gradient are
shown in Fig.2(a) and (b), where we can observe a good collapse of the PDF curves
in a large portion of the domain [3]. Rather different characteristics for the PDF
of the velocities and gradients are observed in the inner region (y/y1/2 < 0.4). The
PDF of the gradients have longer tails, caused by the inhomogeneity near the wall,
also associated with larger flatness factors than for the velocity fluctuations, see
Fig. 3. The occurrence of large flatness factors around y/y1/2 = 1.5 and beyond this
positions, indicates high intermittency even for large-scale velocity fields. This also
shows that a large number of realizations is needed to have statistical convergence
in this region. The PDF of the derivatives are more influenced by the small scales.
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Fig. 2 Probability density functions of (a) the streamwise velocity and (b) the wall-normal
gradient of the streamwise velocity at downstream position x/h = 25. Color code as follows,
green: y/y1/2 = 0.25, blue: y/y1/2 = 0.5, magenta: y/y1/2 = 0.75, cyan: y/y1/2 = 1, red:
y/y1/2 = 1.5.
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Fig. 3 Distributions of third and forth-order moments, (a) skewness and (b) flatness of the
velocity fluctuations at x/h = 25. Color code as follows, streamwise: black (O), wall-normal:
cyan (Δ ) and spanwise: magenta (♦). Here y+ is yuτ/ν and y1/2 is the half-height of the jet.

3 Higher Order Moments

In order to investigate the intermittency effects at different wall-normal levels,
the skewness and flatness of the velocity fluctuations and the velocity gradients
are shown in Figs. 3 and 4, respectively. From studying the skewness factor
of the streamwise velocity and its transversal gradient, one can get conclusions on
the large-scale and small-scale anisotropy of the flow. Note that, the skewness of
the velocity fluctuations is connected to the large-scale anisotropy and the skewness
of the transverse velocity gradients to the small scale anisotropy.

Skewness and Flatness Factors of Velocities

The positive skewness of the streamwise velocity close to the wall is an indication
of anisotropic large-scale velocities. This is a rather universal behavior for all wall-
bounded flows. The zero crossings of the streamwise velocity skewness coincide
with two maxima of the streamwise turbulent intensity (Fig. 3). The inner maximum
around y+ = 14 is similar to that in the turbulent boundary layer. In the turbulent
wall-jet flow, a second zero-crossing occurs around y/y1/2 = 0.75, see Fig. 1(c).
The zero crossing of the skewness factor and the local minimum in flatness profiles,
Fig. 3(b), is an indication that around the region where turbulence intensity has a
local maximum, the PDF shape remains fairly symmetric. As seen in Fig. 3(b), the
wall normal velocity in the near wall region, has a higher flatness factor than the
other two components, which has a clear similarity with other wall-bounded flows.
In the outer region of the wall-jet, large positive values of flatness are observed for
all three components, which is due to the intermittency at the interface between
turbulent and laminar regions, just as it is at the edge of turbulent boundary layer.
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Fig. 4 Distributions of skewness (a) and flatness (b) of the wall-normal gradients of the ve-
locity components at x/h = 25. Color code as in Fig. 3.

Skewness and Flatness Factors of Velocity Gradients

The skewness and flatness factor of the velocity gradients in the wall-normal direction
are shown in Fig.4.Letusstress that in apurely isotropicensemble, allodd momentsof
the transverse gradients are exactly vanishing, so a measure of the skewness of du/dy
givesadirectquantitative information on thedegreeofanisotropy.Theskewnessof the
streamwise velocity gradient, Skdu/dy crosses zero close to y/y1/2 = 0.25, where also
the turbulent shear is zero. For a wide region above this position 0.4 < y/y1/2 < 1.4,
there is a plateau with a negative value about −0.5, indicating a strong small-scale
anisotropy. The anisotropy of the small scales seems to be of the same order as the
anisotropy of the large scales, but interesting enough, starting from the wall region up
to y/y1/2 = 0.25, the skewness of du/dy is positive, which indicates a significant in-
fluence of the mean flow inhomogeneity for the small scales. At the position where the
mean Reynolds shear stress (transversal shear) changes sign, the skewness of du/dy
(transversal gradient) changes sign too. The high values of all the velocity gradient
flatness is a further indication of high non-Gaussian statistics at small-scales.
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Local and Non-local Interactions in the
Batchelor Regime of the Passive Scalar

Robert Rubinstein and Wouter J.T. Bos

Abstract. Following a suggestion of Yukio Kaneda, Kraichnan’s interpretation of
Batchelor’s analysis of high Schmidt number passive scalar turbulence is described
in terms of local and non-local interactions. The formulations of Batchelor and
Kraichnan are then compared through their predictions of the diffusive range fol-
lowing the Batchelor range and of the reduction of mean-square advection in scalar
turbulence. Although comparison based on the diffusive range proves inconclusive,
the predictions of reduction of mean-square advection may support Kraichnan’s for-
mulation; however, a definite conclusion is not yet possible.

1 Introduction

Passive advection of a scalar θ by a turbulent velocity field uuu is governed by

θ̇ (kkk)+κk2θ (kkk) =−i
∫

kkk=ppp+qqq
d ppp uuu(ppp) ·qqqθ (qqq) (1)

where κ denotes the scalar diffusivity. Scalar and velocity correlations are denoted
by Ui j(kkk) = 〈ui(kkk)u j(−kkk)〉 and Uθ (kkk) = 〈θ (kkk)θ (−kkk)〉. Spectra are defined as usual

by the properties 〈uuu ·uuu〉=
∫

dkkk Umm(kkk) = 2
∫ ∞

0
E(k)dk and 〈θ 2〉=

∫
dkkk Uθ (kkk) =

2
∫ ∞

0
Eθ (k)dk. The rate of destruction of scalar fluctuations is χ = 2κ〈|∇θ |2〉.

In the limit of high Schmidt number κ � ν , where ν is the fluid viscosity, Batch-
elor’s analysis [1] showed that for k � kd ∝ (ε/ν3)1/4, a scaling range in which
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Eθ (k) = C

√
ν
ε

χk−1 (2)

is possible provided that the total strain due to the velocity field,

√∫ ∞

0
dk k2E(k)dk

=

√
ε
ν

exceeds the viscous frequency κk2. Here and throughout, C denotes a con-

stant, not necessarily the same constant whenever it appears. This condition requires
k � kB ∝ (ε/νκ2)1/4 ∝ kdSc1/2. Recent numerical simulations [2] confirm the ex-
istence of the Batchelor spectrum Eq. (2) in this wavenumber range.

2 Batchelor and Kraichnan Formulations

Batchelor gave a physical argument for Eq. (2) based on the idea that the velocity
field statically strains ‘blobs’ of scalar at the average rate

√
ε/ν . Assuming that

this strain gives rise to a constant flux χ , dimensional analysis leads to Eq. (2). This
argument postulates a kind of ‘rapid distortion theory’ in which scalar ‘blobs’ are
deformed by a uniform strain; hence, the velocity field acts on the scalar field as a
mean field (‘mean’ here in the sense of Reynolds averaging). Batchelor scaling can
also be established following [1] by an elementary closure approach. Non-diffusive
conservation of scalar variance implies that the scalar spectrum satisfies

Ėθ (k) =− ∂
∂k

Fθ − 2κk2Eθ (k). (3)

The simplest possible hypothesis is

Fθ = Cη(k)kEθ (k) (4)

where η(k) is a suitably defined frequency. In a Batchelor range η(k) =
√

ε/ν.
Then the constant flux condition χ = C

√
ε/νkEθ (k) leads at once to Eq. (2). We

will call this analysis the Batchelor formulation.
A systematically derived alternative to the heuristic closure Eq. (4) is the scalar

Test-Field Model [3]

U̇θ (kkk) =
∫

kkk=ppp+qqq
d ppp Θ(kkk, ppp,qqq)Ui j(ppp)kik j[Uθ (qqq)−Uθ (kkk)] (5)

where Θ(kkk, ppp,qqq) is a triad relaxation time determined by the theory. Since the ener-
getic wavenumbers in the velocity field are much smaller than those in the Batchelor
range, we consider wavevector triads in which ppp ≈ 0, qqq ≈ kkk. In this limit, some sim-
plifications of Eq. (5) lead to

Fθ (k) =−C

√
ε
ν

k4 ∂
∂k

(
Eθ (k)

k2

)
(6)
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[3, 4]. This is a modified form of the Leith scalar diffusion model [5]. It is easily
verified that Eq. (6) is consistent with Batchelor scaling of a steady, non-diffusive
constant flux scalar spectrum. Since Kraichnan [6] derives an equation of this
form for a white-in-time Gaussian velocity field, we will call this the Kraichnan
formulation.

Eq. (6) is diffusive because triad interactions with |ppp| ≤ Δ p spread scalar excita-
tion at wavevector k over an interval k−Δ p ≤ λ ≤ k+Δ p. But in Eq. (4), although
a range of wavenumbers contributes to the total strain, triad interactions between
the scalar and these velocity modes are ignored, and consequently the entire strain
field acts as if it were a mean field concentrated at ppp = 0. Although usage of these
terms is not unambiguous, we might describe the interactions in Kraichnan’s formu-
lation as ‘local,’ and those in Batchelor’s as ‘non-local:’ the distinction is whether
velocity-scalar triad interactions are considered, or not.

3 Comparison of the Formulations

Kraichnan [6] presented these formulations as alternatives (a static or a rapidly vary-
ing straining field) that might well apply under different conditions. Nevertheless, it
is natural to ask which formulation better describes advection in a random velocity
field, such as turbulence, which is neither exactly static nor white noise in time.

Batchelor considered the diffusive range following the constant scalar flux range.
For this range, the steady form of Eq. (3) with the flux model Eq. (4) gives

C
d
dk

(√
ε
ν

kEθ

)
= −2κk2Eθ with the solution Eθ (k) = k−1e−(2/C)(k/kB)

2
(recall

that kB = (ε/(νκ2)1/4). The flux model Eq. (6) gives instead an equation with

a leading order asymptotic solution Eθ (k) ∼ k2e−(k/
√
CkB). Thus, Eq. (6) predicts

slower decay in the diffusive range than Eq. (4). DNS data [2] support this pre-
diction. However, this finding does not necessarily establish Kraichnan’s formu-
lation instead of Batchelor’s: an extension of Batchelor’s argument had already
been suggested in [6], namely, that if the strain rate in Batchelor’s theory is
taken to be a random variable γ with mean 〈γ〉 = √

ε/ν , then although the k−1

range is preserved (since it is linear in γ), the dissipation range is not; Gotoh has
shown [7] that the pdf of γ can be chosen so that the expected scalar spectrum

is Eθ (k) =
∫
〈Eθ (k)|γ〉P(γ)dγ ∼ k−3/2e−ak/kB , with a theoretically predicted con-

stant a. Although the prefactor is not the same as Kraichnan’s, this approach makes
the Batchelor formulation consistent with the exponential decay of the Kraichnan
formulation.

This observation causes us to seek another way to distinguish these physically
very different pictures. Higher order statistics like the mean square advection

〈(uuu ·∇θ )2〉=
∫

dkkk
∫

kkk=ppp+qqq=−ppp′−qqq′
d pppd ppp′ 〈uuu(ppp) ·qqqθ (qqq)uuu(ppp′) ·qqq′θ (qqq′)〉 (7)
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offer a possibility. If we evaluate this fourth order moment by assuming
independence of Fourier modes as in the quasinormality theory, we will obtain

〈(uuu ·∇θ )2〉=
∫

dkkk
∫

kkk=ppp+qqq
d ppp Ui j(ppp)qiq jUθ (qqq). In reality, cumulant corrections to

Eq. (7) exist and are well predicted by closure [8]. These cumulants give a reduction
of mean-square advection compared to the value assuming quasinormality.

Concerning cumulants in Batchelor’s theory, we can only extrapolate, since
Batchelor never wrote anything about this issue. But if we evaluate Eq. (7) in
the RDT-like limit ppp, ppp′ = 0, qqq = −qqq′ = kkk which characterizes Batchelor’s the-
ory, we will obtain 〈uuu(ppp) ·qqqθ (qqq)uuu(ppp′) ·qqq′θ (qqq′)〉 →Ui jkik jUθ (kkk) where Ui j is eval-
uated at zero wavenumber and is therefore actually a mean field as suggested
earlier. This conclusion is not changed if the velocity field depends on a fluctu-
ating total strain γ , because evaluation of the mean square advection then gives∫

dγP(γ)Ui j(γ)kik jUθ (kkk). In either case, we obtain zero cumulants.

Thus, although the Batchelor formulation can predict the same exponential decay
in the diffusive range as the Kraichnan formulation if the strain rate fluctuates, the
formulations differ in their predictions of mean-square advection: Kraichnan’s pre-
dicts cumulants corresponding to suppression of mean-square advection, but Batch-
elor’s predicts zero cumulants, even if the strain rate fluctuates.

Can we use this conclusion to decide which formulation is the more accurate?
Although DNS data do clearly exhibit the ‘suppression of advection’ we have de-
scribed in the inertial-convective range, no suitable high Schmidt number DNS data
has yet been interrogated with respect to this property; thus, we cannot be certain
that the predicted cumulant corrections actually exist. Moreover, the cumulant pre-
dicted by closure appears to diminish as the Schmidt number increases; thus, the
discrepancy between the Batchelor and Kraichnan formulations may not actually be
so large. To conclude, existing knowledge does not favor one formulation over the
other and further research will be needed to decide between them.
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The KOSL Scaling, Invariant Measure and PDF
of Turbulence

Björn Birnir

In 1941 Kolmogorov and Obukhov [9, 12] proposed that there exists a statistical the-
ory of turbulence that should allow the computation of all the statistical quantities
that can be computed and measured in turbulent systems. These are quantities such
as the moments, the structure functions and the probability density functions (PDFs)
of the turbulent velocity field. The Kolmogorov-Obukhov ’41 theory predicted that
the structure functions of turbulence, that are the moments of the velocity differ-
ences at distances separated by a lag variable l, should scale with the lag variable
to a power p/3 for the pth structure function, multiplied by a universal constant.
This was found to be inconsistent with observations and in 1962 Kolomogorov and
Obukhov [10, 13] presented a refined scaling hypothesis, where the multiplicative
constants are not universal and the scaling exponents are modified to ζp = p/3+τp,
by the intermittency correction τp that are due to intermittency in the turbulent ve-
locity. It was still not clear what the values of τp should be, because the log-normal
exponents suggested by Kolmorogov turned out again to be inconsistent with ob-
servations. Then in 1994 She and Leveque [16] found the correct (log-Poissonian)
formulas for τp that are consistent with modern simulations and experiments.

In this paper we will outline how the statistical theory of Kolmogorov and
Obukhov is derived from the Navier-Stokes equation without getting into any of
the technical details. We start with the classical Reynolds decomposition of the ve-
locity into the mean (large scale) flow and the fluctuations or small scale flow. Then
we develop a stochastic Navier-Stokes equation [6], for the small scale flow. If we
assume that dissipation take place on all scales in the inertial range (defined below)
then it turns out that the noise in this stochastic Navier-Stokes equation is deter-
mined by well-known theorems in probability. The additive noise in the stochastic
Navier-Stokes equation is generic noise given by the central limit theorem and the
large deviation principle. The multiplicative noise consists of jumps multiplying the

Björn Birnir
CNLS and Department of Mathematics
UC Santa Barbara
e-mail: birnirb@gmail.com

A. Talamelli et al. (eds.), Progress in Turbulence V, 25
Springer Proceedings in Physics 149,
DOI: 10.1007/978-3-319-01860-7_5, c© Springer International Publishing Switzerland 2014



26 B. Birnir

velocity, modeling jumps in the velocity gradient. We will explain how this form of
the noise follows from very general hypothesis.

Once the form of the noise in the stochastic Navier-Stokes equation for the small
scales is determined, we can estimate the structure functions of turbulence and
establish the Kolmogorov-Obukhov ’62 scaling hypothesis with the She-Leveque
intermittency corrections [5]. Then one can compute the invariant measure of tur-
bulence writing the stochastic Navier-Stokes equation as an infinite-dimensional Ito
process and solving the linear Kolmogorov-Hopf [8] functional differential equation
for the invariant measure. Finally the invariant measure can be projected onto the
PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions
of Barndorff-Nilsen [1, 2], and compare well with PDFs from simulations and ex-
periments. The details of the proofs can be found in [5] and the background material
can be found in [6].

A general incompressible fluid flow satisfies the Navier-Stokes Equation

ut + u ·∇u= νΔu−∇p, u(x,0) = u0(x)

with the incompressibility condition ∇ · u = 0. Eliminating the pressure using the
incompressibility condition gives

ut + u ·∇u= νΔu+∇Δ−1trace(∇u)2, u(x,0) = u0(x).

The turbulence is quantified by the dimensionless Taylor-Reynolds number Reλ =
Uλ
ν [14].

Following the classical Reynolds decomposition [15], we decompose the velocity
into mean flow U and the fluctuations u. Then the velocity is written as U +u, where
U describes the large scale flow and u describes the small scale turbulence. We must
also decompose the pressure into mean pressure P and the fluctuations p, then the
equation for the large scale flow can be written as

Ut +U ·∇U = νΔU −∇P−∇ · (u⊗ u), (1)

where in coordinates ∇ · (u⊗ u) =
∂uiu j
∂x j

, that is ∇ is dotted with the rows of uiu j and

Ri j = u⊗ u is the Reynolds stress, see [3]. The Reynolds stress has the interpretation
of a turbulent momentum flux and the last term in (1) is also know as the eddy
viscosity. It describes how the small scales influence the large scales. In addition we
get divergence free conditions for U , and u

∇ ·U = 0, ∇ ·u = 0.

Together, (1) and the divergence free condition on U give Reynolds Averaged
Navier-Stokes (RANS) that forms the basis for most contemporary simulations of
turbulent flow.

Finding a constitutive law for the Reynolds stress u⊗ u is the famous closure
problem in turbulence and we will solve that by writing down a stochastic equation
for the small scale velocity u. The hypothesis is that the large scale influence the
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small scales directly, through the fluid instabilities and the noise in fully developed
turbulence. An example of this mechanics, how the instabilities magnify the tiny
ambient noise to produce large noise, in given in [4], see also Chapter 1 in [6].

Now consider the inertial range in turbulence. In Fourier space this is the range
of wave numbers k: 1

L ≤ |k| ≤ 1
η , where η = (ν3/ε)1/4 is the Kolmogorov length

scale, ε is the energy dissipation and L the size of the largest eddies, see [6]. If
we assume that dissipation takes place on all length scale in the inertial range then
the form of the dissipation processes are determined by the fundamental theorems of
probability. Namely, if we impose periodic boundary conditions (different boundary
conditions correspond to different basis vectores), then the central limit theorem and
the large deviation principle stipulate that the additive noise in the Navier-Stokes
equation for the small scale must be of the form:

∑
k �=0

c
1
2
k dbk

t ek(x)+ ∑
k �=0

dk|k|1/3dt ek(x),

where ek(x) = e2πik·x are the Fourier coefficient and c
1
2
k and dk are coefficients that

ensure the series converge in 3 dimensions. The first term describes the mean of
weakly coupled dissipation processes given by the central limit theorem and the
second term describes the large deviations of that mean, given by the large deviation
principle, see [6]. Thus together the two terms give a complete description of the
mean of the dissipation process similar to the mean of many processes in probability.
The factor |k|1/3 implies that the mean dissipation has only one scaling. The Fourier
coefficients of the first series contain independent Brownian motions bk

t and thus the
noise is white in time in the infinitely many directions in function space. The noise

cannot be white in space, hence the decaying coefficients c1/2
k and dk, because if it

was the small scale velocity u would be discontinuous in 3 dimension, see [5]. This
is contrary to what is observed in nature.

The other part of the noise, in fully developed turbulence, is multiplicative and
models the excursion (jumps) in the velocity gradient or vorticity concentrations.
If we let Nk

t denote the integer number of velocity excursion, associated with kth
wavenumber, that have occurred at time t, so that the differential dNk(t) = Nk(t +
dt)−Nk(t) denotes the number of excursions in the time interval (t, t +dt], then the
process d f 3

t = ∑M
k �=0

∫
R

hk(t,z)N̄k(dt,dz), gives the multiplicative noise term. One
can show that any noise corresponding to jumps in the velocity gradients must have
this multiplicative noise to leading order, see [5]. A detailed derivation of both the
noise terms can be found in [5] and [6].

Adding the additive noise and the multiplicative noise we get the stochastic
Navier-Stokes equations describing the small scales in fully developed turbulence

du = (νΔu− u ·∇u + ∇Δ−1tr(∇u)2)dt + ∑
k �=0

c
1
2
k dbk

t ek(x)+ ∑
k �=0

dk|k|1/3dt ek(x)

+ u(
M

∑
k �=0

∫

R

hkN̄k(dt,dz))−U ·∇u− u ·∇U, u(x,0) = u0(x), (2)
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where we have used the divergence free condition ∇ · u = 0 to eliminate the small
scale pressure p. Each Fourier component ek comes with its own Brownian motion
bk

t and a deterministic bound |k|1/3dt.
The next step is to figure out how the generic noise interacts with the Navier-

Stokes evolution. This is determined by the integral form of the equation (2),

u = eKte
∫ t

0 dqMtu
0 + ∑

k �=0

∫ t

0
eK(t−s)e

∫ t
s dqMt−s(c

1/2
k dβk

s + dkµkds)ek(x), (3)

where K is the operator K = νΔ+∇Δ−1tr(∇u∇), and we have omitted the terms
−U ·∇u−u ·∇U in (2), to simplify the exposition. We solve (2) using the Feynmann-
Kac formula, and the Cameron-Martin formula (or Girsanov’s Theorem) from prob-
ability theory, see [6], to get (3). The Cameron-Martin formula gives the Martingale
Mt = exp{−∫ t

0 u(Bs,s) ·dBs− 1
2

∫ t
0 |u(Bs,s)|2ds}. The Feynmann-Kac formula gives

the exponential of a sum of terms of the form
∫ t

s dqk =
∫ t

0

∫
R

ln(1+ hk)Nk(dt,dz)−∫ t
0

∫
R

hkmk(dt,dz), see [5] or [6] Chapter 2 for details. The form of the processes

e
∫ t

0
∫
R

ln(1+hk)N
k(dt,dz)−∫ t

0
∫
R

hkmk(dt,dz) = eNk
t lnβ+γ ln |k| = |k|γβNk

t (4)

was found by She and Leveque [16], for hk = β− 1. It was pointed out by She and
Waymire [17] and by Dubrulle [7] that they are log-Poisson processes. The upshot
of this computation is that we see the Navier-Stokes evolution acting on the additive
noise to give the Kolmogorov-Obukhov ’41 scaling, and the Navier-Stokes evolution
acting on the multiplicative noise to produce the intermittency corrections through
the Feynmann-Kac formula. Together these two scaling combine to give the scaling
of the structure functions in turbulence,

Lemma 1 (The Kolmogorov-Obukhov-She-Leveque scaling). The scaling of the
structure functions is

Sp ∼Cp|x− y|ζp , ζp =
p
3
+ τp =

p
9
+ 2(1− (2/3)p/3).

p
3 being the Kolmogorov scaling and τp the intermittency corrections. The scaling
of the structure functions is consistent with Kolmogorov’s 4/5 law, S3 =− 4

5 ε|x−y|,
to leading order, were ε =− dE

dt is the energy dissipation.

The first structure functions is estimated by

S1(x,y,∞) ≤ 2
C ∑

k∈Z3\{0}

|dk|(1− e−λkt)

|k|ζ1
|sin(πk · (x− y))|.

We get a stationary state as t → ∞, and for |x−y| small, S1(x,y,∞)∼ 2πζ1
C ∑k∈Z3\{0}

|dk||x − y|ζ1 , where ζ1 = 1/3 + τ1 ≈ 0.37. Similarly, S2(x,y,∞) ∼
4πζ2

C2 ∑k∈Z3\{0}[dk
2 +(C

2 )ck]|x− y|ζ2 , when |x− y| is small, where ζ2 = 2/3+ τ2 ≈
0.696, and S3(x,y,∞) ∼ 23π

C3 ∑k∈Z3\{0}[|dk|3 + 3(C/2)ck|dk|]|x − y|. For the pth
structure functions, we get that Sp is estimated by
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Sp ≤ 2p

Cp ∑
k∈Z3\{0}

σp · (−i
√

2sgn M)p U
(− 1

2 p, 1
2 ,− 1

2(M/σ)2
)

|k|ζp
|sinp(πk · (x− y))|.

where U is the confluent hypergeometric function, M = |dk|(1− e−λkt) and σ =√
(C/2)ck(1− e−2λkt). The details of these estimates are given in [5].
The integral equation can be considered to be an infinite-dimensional Ito pro-

cess, see [6]. This means that we can find the associated Kolmogorov backward
equation for the Ito diffusion associated with the equation (3) and this equations
that determines the invariant measure of turbulence, see [5], is linear. This was
first attempted by Hopf [8] wrote down a functional differential equation for the
characteristic function of the invariant measure of the deterministic Navier-Stokes
equation. The Kolmogorov-Hopf (backward) equation for (2) is

∂φ
∂t

=
1
2

tr[PtCP∗
t Δφ]+ tr[PtD̄∇φ]+< K(z)Pt ,∇φ >, (5)

see [5] and [6] Chapter 3, where D̄ = (|k|1/3Dk), φ(z) is a bounded function of z,
Pt = e−

∫ t
0 ∇u drMt ∏m

k |k|2/3(2/3)Nk
t . The variance and drift are defined to be

Qt =
∫ t

0
eK(s)PsCP∗

s eK∗(s)ds, Et =
∫ t

0
eK(s)PsD̄ds. (6)

In distinction to the nonlinear Navier-Stokes equation (2) that cannot be solved ex-
plicitly, the linear equation (5) can be solved. The solution of the Kolmogorov-Hopf
equation (5) is

Rtφ(z) =
∫

H
φ(eKt Ptz+EI+ y)N(0,Qt ) ∗PNt (dy),

PNt being the law of the log-Poisson process (4). The invariant measure of turbu-
lence that appears in the last equation can now be expressed explicitly,

Theorem 1. The invariant measure of the Navier-Stokes equation on Hc =

H3/2+(T3) is,

µ(dx) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q−1/2EI|2 N(0,Q)(dx)∑

k

δk,l

∞

∑
j=0

p j
ml

δ(Nl− j)

where Q = Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson processes (4)

and p j
mk =

(mk)
je−mk

j! is the the probability of Nk
∞ = Nk having exactly j jumps, δk,l is

the Kroncker delta function.

This shows that the invariant measure of turbulence is simply a product of two mea-
sure, one an infinite-dimensional Gaussian that gives the Kolmogorov-Obukhov
scaling and the other a discrete Poisson measure that gives the She-Leveque
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intermittency corrections. Together they produce the scaling of the structure func-
tions in Lemma 1.

The quantity that can be compared directly to experiments is the probability den-
sity function (PDF). We take the trace of the Kolmogorov-Hopf equation (5), see [6]
Chapter 3, to compute the differential equation satisfied by the PDE. The stationary
equation satisfied by the PDF is

1
2

φrr +
1+ |c|

r
φr =

1
2

φ. (7)

Lemma 2. The PDF is a Normalized Inverse Gaussian distribution NIG of
Barndorff-Nilsen [1]:

f (x) =
(δ/γ)√

2πK1(δγ)

K1

(
α
√

δ2 +(x− µ)2
)

eβ(x−µ)(√
δ2 +(x− µ)2/α

) (8)

where K1 is modified Bessel’s function of the second kind, γ =
√

α2 −β2.

(8) is the solution of (7) and the PDF that can be compared a large class of experi-
mental data.

We finally explain how we get around the famous non-uniqueness problem of
the Navier-Stokes equation. It is well known that the fluid velocity u solving the
(stochastic) Navier-Stokes equation may not be unique in 3 dimensions. However,
the invariant measure in Theorem 1 exists by Leray’s ’34 [11] theory, see Theorem
2 below. If the velocity is not unique different velocities give equivalent statistics.
Thus the statistical theory is unique although the velocity u may not be.

Theorem 2. The solution of the stochastic Navier-Stokes equation (2) satisfies the
estimates

E(|u|22)(t)≤ |u|22(0)e−at +
1
a
(

2|T |
ε ∑

k �=0

dk|k| 1
3 + ∑

k �=0

ck)+
|T |
a

ln(
m

∏
k=1

|k|2) 1
9 ,

and

(1− εD)sup
[0,t]

E(|u|22)(t)+ 2ν
∫ t

0
E(|∇u|)(s)ds ≤ |u|22(0)+ (

|T |
ε ∑

k �=0

dk|k| 1
3 + ∑

k �=0

ck)t

+|T | ln(
m

∏
k=1

|k|2) 1
9 ,

where D = ∑k �=0 dk|k|1/3, E denotes the expectation, a = 2νλ1 −D, λ1 is the first
eigenvalue of −Δ, with vanishing boundary conditions, ε is a small number and |T |
is the volume of the torus (box with periodic boundary conditions).

The proof of the theorem is similar to the proof of the Leray theory in Chapter 4,
in [6].
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Depression of Nonlinearity and Advection
in Isotropic Turbulence

Wouter J.T. Bos and Robert Rubinstein

Abstract. We investigate the depletion of nonlinearity in isotropic turbulence using
a Markovianized version of the Direct Interaction Approximation (DIA). It is shown
that this depletion is present in both the inertial range and dissipation range scales
at high Reynolds numbers. The mixing of a passive scalar shows a similar depletion
of advection.

1 Introduction

In turbulent flows, velocity and vorticity have a tendency to align in the small scales.
This alignment, also called Beltramization, results in a weakening of the nonlinear
term. Pelz et al. [1] suggested that this effect might importantly affect the turbu-
lence dynamics. However, as outlined by Kraichnan and Panda [2], the depletion of
nonlinearity in Navier-Stokes turbulence is much stronger than can be explained by
local Beltramization. It was shown that it is an effect that is common to a wide class
of systems, displaying quadratic nonlinearity. In [3] it was shown that the effect of
depletion of nonlinearity can be adequately captured by closure theory. The results
in that study were obtained at Reynolds numbers of approximately Rλ = 20. We use
the approach outlined in [3] to obtain predictions for 4th order correlations at much
higher Reynolds numbers.
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2 Method

In [3], the DIA was used to derive closed expressions for the nonlinearity spectrum.
This spectrum is defined so that its integral yields the mean-square value of the
complete nonlinear term in the Navier-Stokes equations,∫

w(k)dk = |uuu ·∇uuu+∇p|2. (1)

The resulting expression depended in [3] on the two-time energy spectrum and the
response funtion. In our approach, we use these DIA expressions and simplify them
by assuming an exponential time dependence of the response function and the two-
time energy spectrum, with a time-scale consistent with Kolmogorov’s 1941 inertial
range theory. The details of this procedure are outlined in [4, 5]. The resulting ex-
pression is numerically integrated and the results are presented in the following
paragraph.

3 Depletion of Nonlinearity

In figure 1, we show w(k), the spectrum of the nonlinear term, normalized by its
Gaussian estimate wG(k). The ratio w(k)/wG(k) is a measure of the depletion of
nonlinearity at different lengthscales. It is observed that in the dissipation range the
nonlinearity drops to a value close to zero. In the inertial range the nonlinearity
divided by its Gaussian estimate is close to a constant value. In [4] it is shown
that the variance of the nonlinear term is sweeping-dominated. The depletion of
nonlinearity is therefore directly related to a partial suppression of the sweeping
of the small scales by the large scales. An open question is how this depletion of
nonlinearity is related to the stabilization of coherent structures.

4 Depletion of Advection in Passive Scalar Mixing

The approach followed in the preceeding paragraph was subsequently applied to
the mixing of a passive scalar in isotropic turbulence and closure expressions were
derived [5]. In this case we study the suppression of the advection term compared
to its Gaussian value. The spectrum we analyze is∫

wθ (k)dk = [uuu ·∇θ ]2. (2)

We consider the case of an isotropic passive scalar, forced at the large scales,
advected by an isotropic turbulent velocity field. Results for mixing at Prandtl
numbers varying from 0.01 to 100 are shown in Figure 2, as obtained by integrat-
ing the Eddy-Damped Quasi-Normal Markovian closure model. The energy spec-
trum and the passive scalar spectra show clear scaling behavior in agreement with
Kolmogorov-Corrsin-Obukhov phenomenology in the inertial range. For large and
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Fig. 1 Top: energy spectra of isotropic turbulence at Taylor-scale Reynolds numbers between
17 and 4.104. Bottom: comparison of the spectrum of the mean square nonlinear term of the
Navier-Stokes equation in isotropic turbulence to its Gaussian value.

small Prandtl number, the scaling is in agreement with Batchelor and Batchelor-
Howells-Townsend scaling, respectively. As for the mean-square nonlinear term,
we observe a depletion of advection in both the inertial-convective range and the
scalar dissipation range. The effect is weaker in the Batchelor range (in which the
scalar spectrum is proportional to k−1). The depletion of advection should manifest
itself in the instantaneous flow fields as an enhanced probability to observe the scalar
gradient to be aligned or anti-aligned with the velocity field, when commpared to
a fully random scalar field, and this is currently under investigation. An interesting
perspective is the investigation of the link between this reduction of advection and
the enhancement of scalar gradients and fronts.
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Fig. 2 Top: scalar variance spectra and energy spectrum (inset) of isotropic turbulence ad-
vecting an isotropic passive scalar at a Taylor-scale Reynolds number of 428 for different
Prandtl numbers. Bottom: comparison of the spectrum of the mean square advection term of
the scalar equation in isotropic turbulence to its Gaussian value.
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“Symmetries and Conservation Laws”
in the Closure Problem of Turbulence

Tomomasa Tatsumi

Abstract. The relative advantage of the statistical mechanical approach to
fluid turbulence over the conventional statistical approach by means of the
mean velocity products is briefly surveyed. In particular, it is shown that the
requirements such as “symmetries and conservation laws” actually provide
us with the necessary and sufficient conditions for the statistical mechanical
approach.

1 Introduction

The present iTi School, prior to the iTi Conference 2012, is entitled as
“Symmetries and Conservation Laws”. This title is actually concerned with
the closure problem in the statistical theory of turbulence.

1.1 Statistical Dynamics of Turbulence

The practical and traditional way of dealing with statistics of turbulence is to
represent the turbulent velocity field in terms of the mean velocity products
at several spatial points and a time.

U
(2)
i1i2

(x1,x2; t) = 〈ui1 (x1, t) ui2 (x2, t)〉 ,
U

(n)
i1...in

(x1, . . . ,xn; t) = 〈Πn
m=1uim (xm, t)〉 , for n ≥ 3, (1)

where the suffixes im (1 ≤ m ≤ n) denote the component (1, 2, 3) of the or-

thogonal coordinates xm, so that U
(n)
i1...in

represents an n-th order tensor while

the mean velocity U
(1)
i1

is taken to zero in homogeneous turbulence.
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1.2 Closure of Equations for Mean Velocity-Products

Dynamical equations governing these mean velocity products are derived
from the Navier-Stokes equation. Then, we encounter the problem of un-
closedness of these dynamical equations, since the equation for the mean

velocity-product of the n-th order U
(n)
i1...in

always includes those of the

higher-order U
(n+1)
i1...in+1

as another unknown, thanks to the nonlinearity of the
Navier-Stokes equation. In order to overcome this difficulty, usually a closure

assumption is introduced for expressing the higher-order product U
(n+1)
i1...in+1

in

terms of those of the lower orders and then the unknown product U
(n)
i1...in

is
obtained as the solution of the closed equation.

A number of studies along this line of idea have been made so far by
theoreticians over the world, and actually the products of these works consti-
tute a substantial part of the achievements in statistical theory of turbulence
(see, for instance, the surveys by Frisch (1995), Lesieur (1993), and McComb
(1990)).

2 Statistical Mechanics of Turbulence

An entirely different statistical mechanical approach to turbulence is made by
dealing with the joint-probability distributions of the multi-point velocities,
um (t) = u (xm, t) (1 ≤ m ≤ n) as follows:

f(v1,x1, t) = 〈δ (u1 (t)− v1)〉 ,
f (2) (v1,v2;x1,x2; t) = 〈δ (u1 (t)− v1) δ (u2 (t)− v2)〉 , (2)

f (n) (v1, . . . ,vn;x1, . . . ,xn; t) = 〈Πn
m=1δ (um (t)− vm)〉 , for n ≥ 3,

where vm denotes the probability variable corresponding to the random ve-
locity um (t) (1 ≤ m ≤ n) .

The statistical mechanical equations governing these velocity distributions
f (n) (n ≥ 1) have been obtained by Lundgren (1967) and Monin (1967) in-
dependently. It should be noted that these equations are also unclosed, since
the equation for the distribution of a certain order f (n) always includes the
higher-order distribution f (n+1) as another unknown. In this case, however,
the unclosedness is much easier to deal with, since the higher-order distribu-
tion f (n+1) appears only in the ”degenerate” form as a ”substantially n-point
distribution”.

2.1 Cross-Independence Closure

Probably, the simplest relationship between the velocity distributions of dif-
ferent orders may be the independence relation,
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f (2) (v1,v2;x1,x2; t) = f (v1, t) f (v2, t) , (3)

which is generally valid for large distance r = |x2 − x1| → ∞ according to
the asymptotic independence of the one-point distributions in this limit, but
not valid otherwise, especially for vanishing distance r → 0.

A relation having a wider range of validity has been proposed by Tatsumi
(2001) by introducing the cross-velocities or the sum and difference of the
velocities (u1,u2) , as

u+ =
1

2
(u1 + u2) , u− =

1

2
(u2 − u1) , (4)

and considering the distributions of these cross-velocities as

g+ (v+;x1,x2; t) = 〈δ (u+ (x1,x2, t)− v+)〉 ,
g− (v−;x1,x2; t) = 〈δ (u− (x1,x2; t)− v−)〉 . (5)

g(2) (v+,v−;x1,x2; t) = 〈δ (u+ (t)− v+) δ (u− (t)− v−)〉 . (6)

Then, the cross-independence relation is defined as

g(2) (v+,v−;x1,x2; t) = g+ (v+;x1,x2; t) g− (v−;x1,x2; t) . (7)

If we take into account the identity for the distributions f (2) and g(2),

f (2) (v1,v2;x1,x2; t) dv1dv2 = g(2) (v+,v−;x1,x2; t) dv+dv−,

or equivalently,

f (2) (v1,v2;x1,x2; t) = 2−3g(2) (v+,v−;x1,x2; t) , (8)

according to the Jacobian ∂ (dv+, dv−) /∂ (dv1, dv2) = 2−3, the relation (7)
is rewritten as

f (2) (v1,v2;x1,x2; t) = 2−3g+ (v+;x1,x2; t) g− (v−;x1,x2; t) , (9)

which provides us with the cross-independence closure relation for the distri-
bution f (2).

Unlike the independence relation (3), the cross-independence relations (7)
and (9) are valid for both large and small distances r → ∞ and r → 0, but
generally not in between. Fortunately, it will be shown below that the closure
is applied only to the vanishing distances |xn+1 − xm| → 0 (m = 1, . . . , n) of
the higher-order f (n+1) terms in the equation for f (n).
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2.2 Closed Equation for One-Point Velocity
Distribution

The closed equation for the one-point velocity distribution f is obtained by
applying the cross-independence relation (9) to the higher-order f (2) term
in the Lundgren-Monin equation for the distribution f. For homogeneous
isotropic turbulence, the closed equation is expressed in the following simple
form: [

∂

∂t
+ α (t)

∣∣∣∣ ∂∂v
∣∣∣∣2
]

f (v, t) = 0, (10)

α (t) =
2

3
ν lim

|r|→0

∣∣∣∣ ∂∂r
∣∣∣∣2 ∫ |v−|2 g− (v−, r, t) dv− =

1

3
ε (t) , (11)

with the suffix of v1 being omitted and r = x2 − x1, where g− denotes
the velocity-difference distribution defined by Eq.(5) and ε (t) is the mean
energy-dissipation rate defined by

ε (t) = ν

3∑
i,j=1

〈(
∂ui (x, t)

∂xj

)2
〉

= −dE (t)

dt
, (12)

for homogeneous turbulence, and E (t) is the kinetic energy of turbulence
defined by

E (t) =
1

2

〈
|u (x, t)|2

〉
=

1

2

3∑
i=1

〈
ui (x, t)

2
〉
. (13)

2.3 Energy Decay of Homogeneous Turbulence

The closed equation (10) for the distribution f seems to be a simple equation
to be easily solved. This is, however, not the case.

First, it includes the energy-dissipation rate, ε (t) = −dE (t) /dt, as a pa-
rameter, so that we have to know the parameters ε (t), or E (t) , as the func-
tion of time t, before solving the equation itself. In homogeneous turbulence
which has no external energy source, the kinetic energy E (t) and its time-
derivative ε (t) both have to decay in time, and all turbulent motions are
driven by this decay of energy.

In the present case, the energy-decay law is immediately obtained from
Kolmogorov’s hypothesis of the inviscid energy-dissipation, ε (t) > 0 for ν →
0, using the dimensional analysis, as

ε (t) = ε0 t−2, (14)

where t0 and ε0 denote certain initial values of t and ε (t) respectively. Hence,
it follows from Eqs.(12) and (13) that
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E (t) = E0 t−1, E0 = ε0. (15)

The inverse-linear decay law (15) of the kinetic energy E (t) has been first
obtained theoretically by Batchelor (1953) for the initial stage of the decay of
turbulence. It has also been derived by Comte-Bellot & Corrsin (1966) from
the condition of the vanishing integral-scales in the inviscid limit. Thus, the
problem of the ”conservation laws” has been completely fixed in the present
context.

2.4 Self-similar Evolution of Velocity Distributions

The next problem is that the equation (10), having a negative diffusion co-
efficient α (t) < 0, may lead to an ill-posed initial-value problem. In order to
avoid such a possibility, we impose on the solution the self-similarity which
is compatible with the energy-decay law (15). This is again the “symmetry”
raised in the present One-Day School.

If we introduce the similarity variables as

w = v t1/2, w± = v± t1/2, s = r t−1/2, (16)

the distributions f and g± are written in the self-similar forms as follows:

f (v, t) = t3/2 F (w) , g± (v±, r, t) = t3/2 G±(w±, s). (17)

Then, it follows from Eq.(11) that

α (t) =
1

3
ε (t) = α0 t−2 =

1

3
ε0 t−2,

α0 =
1

3
ε0 =

2

3
ν lim

|s|→0

∣∣∣∣ ∂∂s
∣∣∣∣2 ∫ |w−|2 G− (w−, s) dw−. (18)

On substitution from Eqs.(16)–(18) and taking account of the isotropy of
the operator, the equation (10) for the distribution f is written in the form
of ordinary differential equation with respect to w = |w| as[

d2

dw2
+

2

w

d

dw
+

1

2α0

(
w

d

dw
+ 3

)]
F (w) = 0,

which is immediately factorized as(
d

dw
+

2

w

)(
d

dw
+

w

2α0

)
F (w) = 0. (19)
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2.5 Normal One-Point Velocity Distribution (N1)

The solution of Eq.(19) which is entitled to be a probability distribution is
given by the solution of its homogeneous part,(

d

dw
+

w

2α0

)
F (w) = 0, (20)

that is,

F (w) = F0 (w) ≡ (4πα0)
−3/2

exp

[
− w2

4α0

]
, (21)

which has been normalized by the condition:
∫∞
0

F (w) 4πw2dw = 1.
The self-similar distribution (21) is expressed in the original variables as

f (v, t) = f0 (v, t) ≡
(

t

4πα0

)3/2

exp

[
−|v|2 t

4α0

]
, (22)

which may be called N1, and the corresponding one-dimensional distribution
is given by

f (v, t) = f0 (v, t) ≡
(

t

4πα0

)1/2

exp

[
− v2t

4α0

]
, (23)

both of which representing the inertial-normal distributions with the decreas-
ing variance in time.

The distributions (22) and (23) change their forms self-similarly in time. At
an initial time t = 0, they represent an uniform distribution with infinitesimal
probability density, grow up with time t > 0 as the normal distributions with
the decreasing variances or the kinetic energy, and eventually tend to the delta
distributions around |v| = 0 in the limit of infinite time t → ∞. The existing
experimental results are generally in good agreement with the normality of
the distribution f (v, t) and its way of change in time.

2.6 Closed Equations for Cross-Velocity Distributions

The two-point velocity distribution f (2) defined by Eq.(2) is equivalently
expressed by the cross-velocity distributions g± as Eq.(9). Thus, the set of
the one-point velocity distribution f and the cross-velocity distributions g±
constitutes the minimum deterministic mechanical system, irrespective to the
higher-order velocity distributions.

The closed equations for the cross-velocity distributions g± can be derived
from the closed equation for the distribution f (2), which is obtained by apply-
ing the cross-independence relation (9) to the higher-order f (3) terms in the
Lundgren-Monin equation for the distribution f (2). However, unlike the case
of the one-point distribution f, this closure scheme can be applied only for the
distribution f (2) associated with a finite distance r = |x2 − x1| = O (L) as in
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the global range, since otherwise, the application of the cross-independence
relation to each of the higher-order f (3) terms should interact with each
other. Thus, the case of small distance r of the distribution f (2) requires a
more sophisticated treatment, that will be dealt with in the last subsection.

2.7 Normal Cross-Velocity Distributions (N2)

Now, if we restrict ourselves to the case of finite distance r of the distribution
f (2) as for the global range, we can proceed in the same manner as for the
distribution f and finally obtain the following closed equations for the cross-
velocity distributions g± :[

∂

∂t
+

1

2
α (t)

∣∣∣∣ ∂

∂v±

∣∣∣∣2
]

g± (v±, t) = 0, (24)

where, the parameter α (t) is same as that defined by Eq.(11).
It is clearly seen from Eq.(24) that the equations governing the distribu-

tions g+ and g− are the same with each other and both are associated with
the the variance 1

2α (t) which is a half of that for the distribution f given by
Eq.(10). Thus, the self-similar solutions which are entitled to be probability
distributions are derived, following the procedure for the distribution f , as
follows:

g± (v±, t) = g±0 (v±, t) ≡
(

t

2πα0

)3/2

exp

[
−|v±|2 t

2α0

]
, (25)

which may be called N2, and the one-dimensional distribution,

g± (v±, t) = g±0 (v±, t) ≡
(

t

2πα0

)1/2

exp

[
− v2±t
2α0

]
. (26)

It may easily be seen that the second normal distributions N2 of the dis-
tributions g+ and g− are nothing but the convolution of the two independent
distributions N1 at points x1 and x2 in the global range. Thus, the two-
point statistics of homogeneous isotropic turbulence has been completely de-
termined, so far as the global range is concerned. Then, the problem of
the cross-velocity distributions in the local range is dealt with in the next
subsection.

2.8 Local Cross-Velocity Distributions

As stated in §2.6, the closure process of the equation for the distribution f (2)

leads to the non-zero interaction between the higher-order f (3) terms if the
distance r associated with the distribution f (2) is so small as in the local
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range. This interaction, however, can be dissolved if we transfer the variables
(v1,v2) in the f (3) terms into the cross-velocities (v+,v−) , since the latter
are independent from each other for the small distance r. In this way, we can
derive the closed equation for the local cross-velocity distributions g∗±, where
∗ represents the local variables (see for details Tatsumi (2011)).

It should be noted that the closed equations for the g∗± are associated with
the parameters,

α∗
± (r∗, t∗) =

2

3
lim

|r∗′|→0

∣∣∣∣ ∂

∂r∗′

∣∣∣∣2 ∫ ∣∣v∗′
±−

∣∣2 g∗±−
(
v∗′
±−; r

∗, r∗′; t∗
)
dv∗′

±−

=
2

3
lim

|r∗′′|→0

∣∣∣∣ ∂

∂r∗′′

∣∣∣∣2 ∫ ∣∣v∗′′
±−

∣∣2 g∗±−
(
v∗′′
±−; r

∗, r∗′′; t∗
)
dv∗′′

±−, (27)

which are functions of the distance r∗ = |x∗
2 − x∗

1| .
The space-dependence of the parameters α∗

± = 1
3ε

∗
±, being the extended

energy-dissipation rate, actually represents the so-called ”intermittency” of
the energy-dissipation rate ε in a concrete manner. The full dynamics of
the local cross-velocity distributions g∗± in the local range is dealt with in a
separate paper.

3 Concluding Remarks

It is generally recognized that the closure process of turbulence must be sup-
plemented by the physical requirements such as the “symmetries and conser-
vation laws”. This situation is found to be quite the same in the statistical
mechanical approach of turbulence in terms of the multi-point velocity dis-
tributions.

In the two-point statistics of the latter approach, the closed equations for
the one-point velocity distribution f and the two-point cross-velocity distri-
butions g± are derived from the unclosed Lundgren-Monin equations using
the cross-independence closure hypothesis (9), and then the closed equations
are solved imposing the self-similarity conditions (16) due to the energy decay
law (15), which are closely related with the “symmetries and conservation
laws”, constituting the subject of the One-Day School.

As the result, the distributions f and g± have been obtained as the self-
consistent set of the inertial normal distributions with the parameters α0 =
1
3ε0 and 1

2α0 = 1
6ε0, respectively in the global range. In the local range,

the closed equations for the local cross-velocity distributions g∗± have been
obtained exactly with the space-dependent parameters α∗

±0 (r
∗) , and the full

solution of the distributions g∗± is being obtained in a separate paper.
Thus, the concept of the ”symmetries and conservation laws” as the phys-

ical requirements for the closure process to turbulence seem to have been
well established, so far as the statistical mechanical approach of turbulence
is concerned.
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Lie Symmetries of the
Lundgren−Monin−Novikov Hierarchy

N. Staffolani, M. Waclawczyk, Martin Oberlack,
R. Friedrich, and Michael Wilczek

Abstract. In this work we consider the statistical approach to turbulence repre-
sented by the Lundgren−Monin−Novikov (LMN) hierarchy of equations for the
probability density functions (PDFs). After a review of the properties that the PDFs
have to satisfy, we first show the basic Galilean invariance of the LMN equations;
then we discuss the extended Galilean one and finally we present a transforma-
tion of the PDFs and examine the conditions which have to be satisfied so that this
transformation represents a symmetry of the LMN hierarchy corresponding in the
Multi−Point Correlation (MPC) approach to one of the so called statistical symme-
tries found using the Lie symmetry machinery in [6] for the infinite hierarchy of
equations satisfied by the correlation functions from which some decay exponents
of turbulent scaling law could be worked out.

1 Introduction

Let us take into consideration an ensemble of solutions to the incompressible
Navier−Stokes (NS) equations defined over the entire infinite space R3 but obeying
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different initial conditions. Let the velocity field of each member of the ensemble
be denoted by u. It is assumed that the statistical distribution of u over the ensem-
ble at the initial time t0 is given. The main aim is to understand how the statistical
distribution of the velocity field evolves with time. In order to do so, let us define
multi−point probability density functions (PDFs) in the following usual way: the
1−point PDF f1(x1,v1;t) is such that f1(x1,v1; t)dv1 expresses the probability to
measure for the fluid element that occupies the position x1 at the time t a velocity in-
side the infinitesimal element dv1 about v1. Let 〈·〉 denote the operation of ensemble
average; then the 1−point PDF can be written as:

f1(x1,v1;t) = 〈δ (u(x1, t)− v1〉. (1)

Analogously to eq. (1) the 2−point PDF, which denotes the joint probability to
measure two given velocities at two defined points in space at the same time, can be
expressed as:

f2(x1,v1;x2,v2;t) = 〈δ (u(x1, t)− v1)δ (u(x2, t)− v2)〉,
and so on. To avoid cumbersome formulae the following notation will be used:

fn ≡ fn(1, . . . ,n)≡ fn (x1,v1; . . . ,xn,vn;t) .

From the NS equation the LMN hierarchy [3, 4, 5] can be derived. The n−th
equation for the n−point PDF fn reads:[

∂t +
n

∑
i=1

vi ·∇i

]
fn =−

n

∑
j=1

∂
∂v j

·
{

lim
xn+1→x j

ν �n+1

∫
dvn+1vn+1 fn+1−

−
∫

dxn+1

(
∇ j

1

4π
∣∣x j − xn+1

∣∣
)∫

dvn+1 (vn+1 ·∇n+1)
2 fn+1

}
, (2)

where ∇i and �i denote the differential operators with respect to the i−th coor-
dinate. We also recall that the presence of fn+1 in the n−equation represents the
closure problem of turbulence.

1.1 Properties of the PDFs

The physical meaning of the PDFs defined in section 1 requires them to satisfy four
conditions:

1. the reduction or normalization property imposed by the concept of probability:∫
dv1 f1(x1,v1;t) = 1;∫

dv2 f2 (x1,v1;x2,v2;t) = f1 (x1,v1; t) ;

... (3)
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2. an infinite number of divergenceless or “continuity” conditions dictated by the
incompressibility of the fluid:

∇i ·
∫

dvi vi fn = 0, ∀i ∈ {1, . . . ,n},∀n = 1,2, . . . ; (4)

3. the “coincidence” property:

limx2→x1 f2(1,2) = f1(1)δ (v2 − v1) ;

limx3→x1 f3(1,2,3) = f2(1,2)δ (v3 − v1) ;

... (5)

4. the “separation” property (here only for the 2−point PDF) which expresses the
fact that the velocities of two fluid elements tends to become independent if the
two points are set far apart from each other:

lim
|x1−x2|→∞

f2(1,2) = f1(1) f1(2). (6)

2 Classical Symmetries of the LMN Hierarchy

In this section we discuss the invariance of the LMN hierarchy under time and space
translations, Galilean transformations and extended Galilean transformations [7].

The invariance under time and space translations can be very easily inspected.
As far as Galilean transformations are concerned, the left hand side of eq. (2) is also
readily seen to be invariant, while for the right hand side we have to use the reduction
property (3) for the viscous term and the reduction and continuity (4) ones for the
pressure−gradient term.

The extended Galilean invariance is instead broken by the integral representation
of the pressure−gradient term.

3 Statistical Symmetries of the LMN Hierarchy

In the multi−point correlation (MPC) approach [6] the MPC tensor of order n+ 1
Hi(0)...i(n) = 〈ui(0) (x0;t) . . .ui(n)(xn; t)〉 is defined as the average value of the product of
the velocity field considered at n different points. By multiplying the NS equations
by ui(0) . . .ui(n) and then averaging an infinite hierarchy of linear partial differential
equations for the MPC tensors can be obtained. In [6] it has been shown that, ap-
plying the Lie algorithm [1, 2] to this infinite hierarchy, a set of symmetries which
have been called statistical symmetries can be deduced. One of these symmetries,
which leads to the log-law for stationary wall bounded turbulent shear flows, can be
deducted; it reads:

Hi(0)...i(n) → Hi(0)...i(n) + ci(0)...i(n) , ∀n = 1,2, . . . (7)
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where ci(1)...i(n) , . . . are constants independent one of each other. In what follows we
show that there exists a symmetry transformation of the LMN eq. (2) that correponds
to the symmetry transformations (7) for the MPC equations.

In the LMN vocabulary the MPC tensors Hi(0)...i(n) are given by:

Hi(0)...i(n) = 〈ui(0) (x0;t) . . .ui(n)(xn; t)〉=
∫

dv0 . . .

∫
dvn fn ui(0) . . .ui(n) .

Let us consider the transformation fi → f̂i = fi +φi where φi = φi(v1, . . . ,vi). It
can be easily checked that the transformation that corresponds to (7) is given by:

φ1(v1) = φ1(v1);

φ2(v1,v2) = φ1(v1)δ (v1 − v2)

...

φn(v1, . . . ,vn) = φ1(v1)δ (v1 − v2)δ (v2 − v3) . . .δ (vn−1 − vn)

... (8)

The LMN eq. (2) is invariant under the transformations (8). Indeed, on the left
hand side the differential operators ∂t and ∇i applied to φn(v1, . . . ,vn) give a null
contribution. On the right hand side the same applies, this time with respect to ∇n+1.
However, in order for the transformed functions to still be PDFs two conditions must
be imposed, namely:

0 ≤ fi +φi, ∀{x1, . . . ,xi},{v1, . . . ,vi} ∈ R
3i; i = 1,2, . . . ; t ≥ t0; (9)∫

dv [ f (v)+φ(v)] = 1 ⇒
∫

dvφ(v) = 0. (10)

Moreover, as the functions φi do not depend on the space variables, the property
of separation (6) is not satisfied. Therefore, the invariance of the LMN eq. (2) un-
der the transformations (8) is true only at moderate separations between the spatial
points.
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An Investigation into Non-linear Growth Rate of
2D and 3D Single-Mode Richtmyer–Meshkov
Instability

M.G. Probyn and B.J.R. Thornber

Abstract. Richtmyer–Meshkov instability (RMI) promotes turbulent mixing and is
seen across a variety of events ranging from supernova to inertial confinement fu-
sion. In particular understanding RMI is important for ICF where enhanced mixing
tends to reduce power output in energy applications. In the case of ICF the shock-
wave will be reflected and this wave may interact with the mixing front causing
deposition of yet more vorticity. A number of models of reshock have been pro-
posed and work by Latini et al [3] compares numerical results to the experimental
work by Collins and Jacobs [2]. Previous work has shown that after reshock the
mixing rate is increased and is in agreement with predictions. In this paper a 5th

order MUSCL scheme [9] is used on a mesh moving with plane averaged fluid ve-
locity. Results are then presented for an investigation into non-linear growth of the
mixing zone following reshock using an setup comparable to that of Collins and Ja-
cobs to evaluate the behaviour of the numerical scheme for SM-RMI. Subsequently
the code is used to evaluate the growth rate for a range of different initial conditions
(amplitude/wavelength) and different reshock times. The effective growth rate will
be presented as a function of the initial mode linearity. This is an important feature
of reshocked interfaces. Also considered are the initial growth rate for 3D SM-RMI.
The numerical studies detail the development of the mixing layer width (W) both
prior to and after reshock. Prior to reshock the mixing layer is known to develop as
w ∝ tθ with θ ∼ 0.28 for the bubble growth and this is compared to the results of
the numerical scheme [10].
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1 Introduction

The Richtmyer–Meshkov instability (RMI) is a special case [4, 7] of the Rayleigh–
Taylor instability (RTI) [6, 8]. In the case of RTI the driving force is a difference in
density between two fluids, with a heavy fluid tending to sink into a light one as a
result of a gravitational or other acceleration force. RMI occurs when a shock wave
is used to initiate the mixing, and can be considered as the impulsive limit of RTI.
Other instabilities may subsequently act, particularly Kelvin–Helmholtz instability
(KHI) may arise due to shear and eventually the fluid will break down in to a fully
turbulent layer.

2 Methodology

Code. The results obtained for this work were achieved using a Cranfield in-house
code (CHOC) an Implicit Large Eddy Simulation (ILES) solver with a 5th order
MUSCL scheme. A standard Eulerian solver and an ALE solver have been devel-
oped and are compared. The equations used are based on the five-equation model of
Allaire [1] and further details of the code can be found in Thornber et al. [9]. The
development of a moving mesh code is essential to reduce the computational time
in particular for convergent geometries.

Initial Conditions. The initial conditions used in these tests are based on Collins
and Jacobs mach number 1.21 single-mode (SM) Sod-shock case [2]. The shock
passes from a light gas (75% air and 25% acetone) into a heavy gas (SF6). The initial
amplitude of the perurbation is 2.0 mm and the wavelength is 59.0 mm, fitting into
a cross-sectional area of 89.0 mm. The interface sits 750 mm from the end wall.

3 Results

Images of the volume fraction at a central slice are compared at low and high reso-
lution (128 and 256 cells per wavelength respectively) with the PLIF experimental
results of Collins and Jacobs [2] as shown in Figure 1. It can clearly be seen that a
higher resolution is required to achieve similar results. This gives a good visualisa-
tion of the development of the fluid and an early qualitative comparison.

The moving mesh was tested for simple cases such as the standard Sod-shock
case to validate behaviour. A grid study was completed for the case of Sec-
tion 2 using three resolutions on a stationary grid (S1[64x512], S2[128x1024],
S3[256x2048]) as well as on a moving grid (M1, M2, M3). Moving grids contained
the same number of cells in the transverse direction as their stationary equivalents
but a quarter of the cells in the direction of the shock. There is a large translation of
the region of interest in this direction, using a moving mesh a high cell density can
track this. The results of the grid study showing convergence are shown in Figure 2.
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Fig. 1 Volume Fraction Slices: Time = 3,5,7,8ms (Left to Right)
(Top: Low Res. CFD; Middle: High Res. CFD; Bottom: Experiment [2])

Fig. 2 Grid convergence
is achieved between the
medium and high resolu-
tion cases (low resolution
omitted here). Reasonable
agreement can be seen be-
tween a moving mesh using
1/4 of the number of cells
as a moving grid right up
to t=8ms. At late-time 2D
schemes divergence since
large coherent structures re-
main and propagate through
vortex advection.
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The comparison between moving and stationary grids show good agreedment
with 1/4 of the number of cells, in this case leading to a compute time of around
1/4. Further gains are expected for use with convergent geometries.

A study of the effect of the initial amplitude on the growth rate was undertaken.
Initial amplitudes should be governed by a linear growth rate ∝ ka0 [7]. For multi-
mode (MM) reshock cases growth rates are believed to be independent of the condi-
tions at reshock [5]. This is shown to be true here for low amplitude cases however
for high amplitude cases the mixing layer shear component becomes more signifi-
cant such that the physics is fundamentally different.

A coefficient of non-linearity is obtained by dividing the initial growth rate ob-
tained through CFD by that of Richtmyer’s formula η̇ = ka0ΔuAt+. This is shown
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in Figure 4. This coefficient may be suitable for use as a simple means of predicting
the growth of a reshocked case by considering the equivalent Richtmyer’s formula
by pre-multiplying by this coefficient [11].

Fig. 3 Growth of the mix-
ing layer plotted for initial
amplitudes ranging from
0.5 mm up to 16.0 mm. Ini-
tial growth rates are approx-
imately linear up to a0 = 4
mm as expected. After that
the large initial amplitudes
create non-linearity’s, there
is now a large shear com-
ponent which leads to KHI.
Reshock of the linear cases
can be seen to create a
growth rate independent of
the initial amplitude.
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Fig. 4 Initial growth rates
converted to a function of
non-linearity show the be-
haviour rapidly departs from
that of linear prediction.
Linearity is expected whilst
ka0 � 1 corresponding to
a0 �∼ 9. in this simulation.
Highly non-linear initial
shock is investigated since
it may provide a model for
reshock [11]
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4 Conclusions

A moving mesh algorithm has been implemented into CHOC a Cranfield solver to
reduce computational time. Results are compared to the work of Collins and Jacobs
[2]. Growth rates for non-linear cases have been tested and it can be seen that non-
linearity breaks down as expected and that growth rates for linear cases after reshock
are independent of the initial amplitude as expected from Mikaelian’s work [5].
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DNS of Turbulent By-Pass Transition at the
Entrance of a Plane Channel

A. Cadiou, M. Buffat, L. Le Penven, and J. Montagnier

Abstract. Direct numerical simulations of boundary layers transition and their in-
teraction in a very elongated plane channel are presented. Wall-normal velocity per-
turbations of small amplitude and with a spanwise wavelength of the order of the
boundary layer thickness are introduced in one of the boundary layer. They generate
steady elongated streaks by a transient growth mechanism. In the non-linear regime,
a varicose instability mechanism pushes the low speed streaks away from the wall.
Mushroom-shaped structures appear in the outer region of the laminar boundary
layer. They are subjected to sinuous instabilities leading to transition. The turbulent
boundary layer evolves further downstream and initiates the by-pass transition of the
second boundary layer. An orthogonal decomposition of the velocity field is used to
characterize the transition.

1 Introduction

Developing channel flows are of interest in a large number of application areas.
Many aspects of these flows are not yet fully understood, such as the flow stability
characteristics in the entrance region. It is well known that for the plane Poiseuille
flow, linear stability theory gives a critical Reynolds number of Rec = 5772 [12]
whereas, in experiments, a plane channel flow can become already turbulent at Re=
1000 [11]. This has been explained by the non-normal property of the linearized
Navier-Stokes operator that allows transient growth of initial perturbations [15].
Entrance flows however significantly differ from the asymptotic Poiseuille flow. For
uniform inlet flow conditions and at high enough Reynolds numbers, the turbulent
transition actually takes place inside the boundary layers [3] and well before the
fully developed regime. When the boundary layers are distant, the nature of their
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transition and of their initial development is expected to have some similarity to the
freestream Blasius boundary layer case. For Blasius flow, the linear stability theory
gives a critical Reynolds number at Rex = 92000 [14], but for entrance flows the
boundary layers are modified, in particular because of the small favorable pressure
gradient existing inside the plane channel. This is known to have a stabilizing effect
on the boundary layers [6]. Another aspect of the entrance flows that differs from the
Blasius case is linked to the fact that two boundary layers are actually co-existing
in the velocity profiles. This raises the question of their mutual interaction in the
transition scenario of the flow. In this is study, we describe the way the turbulence
generated by the transition of one of the boundary layer initiates the transition of the
second boundary layer.

2 Flow Configuration and Numerical Method

We consider the boundary layers developing on the upper and lower walls at the
entrance of a plane channel of width 2h (fig. 1). The flow enters at large Reynolds
number Reh = 10000 (based on the channel half-width and the mean velocity), so
that near the entrance, the boundary layers are well separated. They merge inside
the channel if it is long enough.

The simulation is performed with a DNS spectral code based on a Galerkin for-
mulation of the incompressible Navier-Stokes equations developed in our team [10]
[4] [9]. The numerical method is based on a general property of the decomposition
of solenoidal vector fields [13], derived from the Helmholtz-Hodge theorem. The
velocity is expressed as an L2-orthogonal sum of two incompressible fields. One of
which is function of the normal component of the velocity and the other one of the
normal component of the vorticity. By analogy with the stability analysis of parallel
shear flows, the two velocities are named respectively the Orr-Sommerfeld (OS) and
Squire (SQ) velocity field.
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Fig. 1 Computational domain 150h×2h×3.2h with 17280×192×384 modes

3 Base Flow and Inlet Perturbations

Blasius profiles (δ0.99 = h/10 and Reθ = 138) are imposed at the inlet section of the
computational domain which is located at x0 = 4h from the channel entrance. With-
out inlet perturbation, the flow remains laminar. The Reynolds number Rex, based on
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the distance x from the entrance, ranges from 4104 up to 1.5106. A small favorable
pressure gradient gives a slightly lower shape factor of the laminar boundary layers
compared the Blasius profiles. Its influence on the linear neutral stability curve is
strong, reducing the critical Reynolds number by ten. However, the transient energy
growth remains as large as for the Blasius case, so that the by-pass transition is not
significantly delayed (estimated Falkner-Skan parameter: β ∼ 0.07).

A well-defined perturbation is applied to the upper boundary layer. It is based
on an optimal mode [5] obtained by solving the Orr-Sommerfeld/Squire equations
for the entrance laminar profile. It is made of steady pairs of contra-rotating longi-
tudinal vortices inside the boundary layer, with a spanwise wavenumber β ≈ 2/δ
and zero streamwise wavenumber α . It essentially consists in an OS velocity per-
turbation. In the present simulation, its amplitude is small (∼ 1.7%), but it induces a
large linear transient growth and creates a large longitudinal SQ velocity field, that
corresponds to steady streaks. An additional smaller random perturbation (< 0.1%)
is superimposed to the first one to trigger transition of the upper boundary layer. It
occurs near the entrance of the channel at x/h ∼ 10.

No perturbation is imposed to the other boundary layer, which remains laminar in
a large part of the channel. Near x/h ∼ 100 the low frequency fluctuations induced
by the turbulent upper boundary layer interact with the laminar lower boundary
layer, and generate modulated streaks. Then by-pass transition of the lower bound-
ary layer is observed. The corresponding value of Rex is ∼ 106. Afterwards turbu-
lence occupies all the channel width and a turbulent channel flow develops.

4 Characterization of the Transition Scenario

The disturbance velocity is defined as the velocity departure from the time-averaged,
spanwise-averaged velocity. The streamwise evolutions of the OS and SQ parts of
the disturbance velocity, spatially averaged inside the boundary layer thickness, are
shown on figure 2. Before the turbulent transition point (near x/h ≈ 8), the distur-
bance velocity field mainly contains a SQ streamwise component uSQ, as seen on fig-
ure 2a. The first instability on the upper wall corresponds to steady streaks generated
from the optimal inlet perturbation. As noted before, the transient growth is strong
(uSQ increases from 2% to 20%, up to x/h ≈ 2). An inflection point appears near
x/h ≈ 2, in the wall normal profile of the spanwise averaged streamwise velocity,
as a consequence of nonlinear effects. The SQ velocity field experiences transient
varicose instabilities in the wall-normal direction, that push low speed streaks away
from the wall and form mushroom-shaped structures. It changes the mean velocity
profile and consequently, the energy of the disturbance velocity uSQ decreases. Fur-
ther downstream near x/h ≈ 6, the heads of these low speed streaks are subjected to
sinuous instabilities in the spanwise direction and turbulent transition occurs near
x/h ≈ 8, characterized by an increase of all the components of the disturbance
velocity.

The sinuous instability is clearly seen near x/h ∼ 8 on instantaneous streamwise
velocity contours in a plane parallel to the wall (figure 3a) , whereas the transitional
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x/h
(a) upper wall at the entrance of the domain

x/h
(b) lower wall, near the transition at x/h ≤ 100

Fig. 2 Streamwise evolution of uuuOS and uuuSQ to the disturbance velocity, spatially averaged
inside the boundary layer thickness

varicose instability is only apparent on the streamwise planes (figure 3c). At x/h =
1, the structure of the streaks corresponds to the linear transient growing phase.
Non-linear growth is observed at x/h = 4 with a mushrhroom-like shape of the
streaks enhanced by the transient varicose instabilities. Further downstream these
structures are subject to sinuous instabilities, tilt, twist, interact with the wall and the
neighboring structures and develop into complex forms as they move downstream
into the fully turbulent region.

x/h = 1 4 9

(a) plane parallel to the upper wall
at y/h = 0.33 and 0 ≤ x/h ≤ 10

x/h = 80 10095 115

(b) plane parallel to the lower wall at y/h = 0.15 and
80 ≤ x/h ≤ 120

x/h = 1

x/h = 4

x/h = 9

(c) streamwise planes. upper wall.

x/h = 95

x/h = 100

x/h = 115

(d) streamwise planes. lower wall.

Fig. 3 Visualization of the instantaneous streamwise velocity u

The transition of lower boundary layer is observed at x/h ≈ 100. It results from
the interaction with the upper turbulent boundary layer. On figure 2b, the growth of
the SQ streamwise component uSQ is observed, characteristic of the formation of
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streaks in the boundary layer. Near the transition point, a fast growth of the stream-
wise component uOS is noticed, indicating that the streaks are unsteady and wavy.
Further downstream, turbulent transition occurs characterized by the fast growth of
all the velocity components of uuuOS and uuuSQ.

Vizualisations of the instantaneous streamwise velocity in the lower boundary
layer near the transition location is shown figure 3b and 3d. The formation of low
speed streaks is seen in the plane parallel to the wall (3b). It can be observed that the
streaks are larger than near the entrance as the boundary layer is thicker. The streaks
are also modulated in the streamwise direction. This is similar to the formation of
non stationary streaks. Turbulent spots are observed upstream of the fully turbulent
boundary layer. The breakdown of the streaks follows the same scenario than for
the upper-wall transition. As seen on figure 3d in the streamwise plane x/h = 95,
low speed streaks appears in the near wall region of the boundary layer, due to the
lift-up mechanism induced by normal velocity oscillations of very small amplitude
but with a length scale of the order of the boundary layer thickness. Then non linear
transient growth and transient varicose instabilities push these low speed streaks
away from the wall to form the mushroom-shaped structures seen in the plane x/h=
100. Further downstream they are subject to sinuous instabilities as seen in the plane
x/h = 115.

5 Conclusion

DNS of the by-pass transition and interaction of the two boundary layers develop-
ing from the entrance of an elongated plane channel at high Reynolds number is
discussed. The transition scenario is described using an orthogonal decomposition
of the disturbance velocity field [13]. A perturbation of small amplitude (< 2%)
based on an optimal mode is imposed at the inlet, inside the upper boundary layer,
leading to a fast growth of infinitely elongated streaks. The growth of varicose mode
of flow perturbations is first observed, followed by sinuous instabilities that even-
tually lead to the transition near the channel entrance x/h ∼ 10. This differs from
the stability analysis of steady streaks ([2], [8], [7]) in which the streaky profiles
are obtained from the steady linear optimal perturbation [1] and extracted at a po-
sition where the streaks reach a maximum of energy. These studies indicate that ei-
ther large amplitude streaks or large amplitude spanwise perturbations are required
to destabilize a streaky boundary layer through sinuous instabilities. In our simu-
lations, perturbations are imposed at the inlet section and they correspond to the
optimal mode obtained for the inlet velocity profile, whose boundary layer thick-
ness is δ . Therefore, the perutbations are located inside the boundary layer at the
inlet section. They induce the streaks generation, their transient growth and their
breakdown. The transition of the lower boundary layer occurs near x/h ∼ 100, ini-
tiated by perturbations coming from the upper boundary layer. These perturbations
lead to modulated streaks at Rex ∼ 106. This kind of simulations is, to the author’s
knowledge, the first DNS of boundary layer by-pass transition induced by “real”
external turbulence generated inside the computational domain. The numerical
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simulations of such an experiment require billions of modes and is now possible
thanks to massively parallel ressources.
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Numerical Investigation of the AFRODITE
Transition Control Strategy

S. Camarri, J.H.M. Fransson, and A. Talamelli

Abstract. The experiments carried out within the AFRODITE[2] project are aimed
at exploring the effectiveness of properly shaped velocity miniature vortex gener-
ators in delaying transition to turbulence in a boundary layer. The present work
details the direct numerical simulation setup designed to support and reproduce the
AFRODITE experiments and provide results showing that the proposed DNS is in
good agreement with the experiments. The results of the DNS also show that even a
minimal delay of the transition point results in an overall gain in terms of drag when
MVGs are installed on the plate.

1 Introduction

Transition delay in boundary layers has always been of major scientific interest in
engineering sciences. Recently, it has been shown in the literature that longitudi-
nal high speed streaks in a boundary layer (BL), with proper shape and amplitude,
damp Tollmien-Schlitching (TS) waves, (see e.g. [1]), leading to an evident delay
of the transition point in a Blasius-like BL [4]. AFRODITE project[2], is devoted to
the full experimental characterization of this and related passive control strategies
for transition delay. Presently, the velocity streaks in the experiments (EXPs) are
generated by Miniature Vortex Generators (MVGs), i.e. pairs of triangular winglets,
mounted in one or more spanwise rows on a flat plate and an extensive experimental
activity is carried out on this configuration (see e.g. [3, 5]).
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The present work documents part of a numerical activity aimed at providing full
numerical support to the EXPs of AFRODITE. In this paper the DNS setup designed
to reproduce the EXPs of AFRODITE is described, and the results of its validation
provided. This is the starting point to obtain numerical data, which can be used in
synergy with the EXPs for investigating in details the transition delay mechanism.
Moreover, the same tool can be used to explore configurations alternative to those
presently under investigation in AFRODITE.

2 Results and Discussion

With reference to Fig. 1, where a sketch of the experimental configuration and the
related frame of reference are reported, the considered geometry of the MVGs is
characterized by the following dimensions: h= 1.3 mm, d = 3.25 mm, h= 3.25 mm,
D= 13 mm and xMVG = 222 mm. The thickness of the winglet is equal to t = 0.3 mm.
The incoming velocity is U∞ = 7.7 m/s and the EXP is carried out in air in atmo-
spheric conditions (kinematic viscosity: ν � 1.46 · 10−5 m2/s). The ratio between
h and the BL reference height at the MVGs position δ (xMVG) =

√
ν xMVG/U∞ is

h/δ (xMVG) � 2.00, so that the MVGs’ height is approximately 0.4 times the total
thickness (δ99) of the boundary later.

The numerical code used to perform the DNS of the considered flow is NEK5000,
which is an open-source spectral element solver for the unsteady incompressible
Navier-Stokes equations, employing hexahedral HP elements based on tensorial
product of Gauss-Lobatto Legendre nodes. Details on the code can be found at the
following URL: http://nek5000.mcs.anl.gov/index.php/Main_Page.

In this work we present the results obtained by two DNS simulations. The first
simulation (SA) is carried out on a flow domain which extends in the streamwise
direction from Reynolds number Rex � 5.2 ·104 (measured from the leading edge)
to Rex � 3.0 · 105. A fully-developed Blasius profile is imposed at the inlet of the
domain, which is in excellent agreement with the EXPs, and standard outflow con-
ditions are imposed at the outlet (pn−Re−1(n ·∇u) = 0, n being the outer normal to
the domain, p the pressure and u the velocity vector) and on the top boundary of the
domain, located at a distance H = 19.3h from the wall. In the spanwise direction, the
domain is D/2 wide, thus comprising only one winglet of the MVGs and symmetric
boundary conditions are imposed. Symmetry holds as far as the streaks generated
by the MVGs are stable, as it is the case for the considered flow conditions. Besides
experimental evidence, the stability of the streaks has also been verified a-posteriori
by performing simulations including up to 10 couples of MVGs (not detailed in this
work for the sake of brevity). Finally, no-slip boundary conditions are imposed on
the wall. The grid is made by 3.5 · 104 elements employing 6 collocation points in
each direction (1.8 ·107 global dofs).

The second simulation (SB), is made in two steps, using two partially overlapping
domains placed in cascade in the spanwise direction. The first domain extends in the
streamwise direction from (x−xMVG) =−6.5h to (x−xMVG) = 14h, while the second
starts at (x−xMVG) = 10.2h (Rex = 1.2 ·105) and finishes at Rex = 3.0 ·105. The first

http://nek5000.mcs.anl.gov/index.php/Main_Page
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Fig. 1 Sketch of the flow configuration Fig. 2 Streak amplitude evolution

domain employs 8.2 ·104 elements of order 6 (4.0 ·107 dofs) and the second 1.5 ·104

elements (7.7 ·106 dofs). The boundary conditions and the dimensions in the other
directions are the same as for SA. A first simulation is run on the first subdomain,
and when the steady state is reached this solution is employed to fix the inflow
conditions for the second domain. The motivation of simulation SB is to check the
effect of a highly refined resolution near the MVG. In particular, to have an order of
magnitude of the resolution, 4 elements (20 collocation points) are employed on the
thickness t of the winglet.

The amplitude of the streaks is calculated using the following definition:

Aint(x) =
1

U∞Lz

∫ Lz

0

[∫ 9δ (x)

0

|U(x,y,z)−Um(x,y)|
δ (x)

dy

]
dz (1)

where the mean velocity Um(x,y) is the velocity averaged in the spanwise direction.
The amplitude of the simulated streaks past the MVGs is reported for both SA and
SB in Fig. 2 and compared with experimental data obtained by hot-wire anemom-
etry. In the simulation SA the streak amplitude is estimated with a maximum error
approximately equal to 4%, which is already in good agreement with the EXPs if we
consider the complexity of both EXPs and DNS. Concerning the EXPs, the first two
points closest to the MVG are not considered in the discussion since they can be af-
fected by measurement errors due to the strong velocity gradients in that region and
to the spatial resolution of the hot wire measurements. The results from SA show a
systematic, even if slight, underestimation of the streak amplitude. Cross-checking
the results obtained in SA with a 3D BL solver (results not reported for the sake of
brevity), it was possible to deduce that, if a spatial resolution problem is present in
SA, this must be necessarily localized in proximity of the MVG. This conclusion
led us to setup the simulation SB described above. As shown in Fig. 2, increas-
ing the resolution around the MVG (SB) leads to the prediction of slightly stronger
streamwise vortices which, in turn, lead to stronger streaks with a slightly lower
decay rate in the far wake of the MVG, thus allowing an evident accuracy recovery
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Fig. 3 Profiles of streamwise velocity perturbations along the wall-normal direction in the
high and low speed streaks at (x−xMVG) = 238h: comparison with experiments

of SB with respect to the EXPs. For a more detailed comparison between EXPs and
DNS, we report in Fig. 3 two profiles for each of the SA and SB simulations of the
streamwise velocity perturbations with respect to Um (normalized using U∞), at a
streamwise distance from the MVG equal to 238h. The two profiles are measured
at the spanwise sections where the maximum and minimum of the perturbation are
observed. The figures show a satisfactory agreement between DNS and EXPs and
that with a finer mesh around the MVGs the two sets of data overlap.

The DNS results described (SA) have been used to estimate the minimum tran-
sition delay that is necessary in order to obtain a net gain in terms of drag when the
MVGs are used. To this purpose, we consider a plate with a length from the leading
edge which is representative of the laminar part in a Blasius BL, i.e. Rex = 4.5 ·105.
Concerning the plate with MVGs, the DNS is used to compute the drag coefficient
in the computational domain SA, the Blasius solution is adopted to estimate the
drag between the leading edge of the plate and the beginning of the computational
domain and finally, in the region between the end of the computational domain and
Rex = 4.5 ·105, we assume that the decay of the friction coefficient follows the same
behaviour with Rex as the unperturbed Blasius BL. Considering the wetted surface
as a reference surface, the drag coefficient of the plate with MVGs is estimated to be
Cd � 2.03 ·10−3, with a contribution of the force exerted directly on the MVG which
is two orders of magnitude lower and thus negligible. The corresponding value for
the Blasius BL is Cd � 1.98 · 10−3, so the MVGs lead to an increase of the drag
coefficient of only 2.5% over the considered plate length. Thus, even a minimal de-
lay in transition results in a net gain in terms of drag coefficient, proving the strong
potential of this transition delay strategy.

J.H.M. Fransson acknowledges the financial support of the AFRODITE pro-
gramme by the European Research Council. S. Camarri acknowledges the financial
support provided by the ”C.M. Lerici” Foundation and the computational resources
provided by CASPUR (Roma, Italy) and by CINECA (Bologna, Italy) computing
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Transition to Turbulence Delay Using Miniature
Vortex Generators – AFRODITE –

J.H.M. Fransson, S. Shahinfar, S.S. Sattarzadeh, and A. Talamelli

Abstract. A laminar boundary layer has a relatively low skin-friction drag coeffi-
cient (c f ) with respect to a turbulent one, and for increasing Reynolds number the
difference in c f rapidly increases, and the difference can easily amount to an order
of magnitude in many industrial applications. This explains why there is a tremen-
dous interest in being able to delay transition to turbulence, particularly by means of
a passive mechanism, which has the advantage of accomplishing the control with-
out adding any extra energy into the system. Moreover, a passive, control does not
have to rely on typically complicated sensitive electronics in sensor-actuator sys-
tems. Within the AFRODITE project [3] we now present the first experimental re-
sults where we are able to show that miniature vortex generators (MVGs) are really
coveted devices in obtaining transition delay.

1 Introduction

Classical vortex generators, known for their efficiency in delaying or even inhibiting
boundary layer separation, are here shown to be coveted devices for transition to
turbulence delay. The present devices are miniature with respect to classical vortex
generators but are really effecitve in modulating the laminar boundary layer in the
direction orthogonal to the base flow and parallel to the surface. The modulation
generates an additional term in the perturbation energy equation, which counteracts
the wall-normal production term, and hence stabilizes the flow. Our experimental
results show that these devices are really effective in delaying transition but we also
reveal their Achilles’ heel [7].
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Fig. 1 Schematic of the flat plate boundary layer with the (I–IV) regions described in the
text. The black and white stripy pattern perpendicular to the main stream downstream of
the disturbance slot in region (II) indicates the T-S waves. In region (III) a similar stripy
pattern aligned with the main stream indicates the alternating high and low speed streaks.
Inset shows a photo of a MVG pair. xT−S = 190 mm and xMVG = 222 mm from the leading
edge. h = 1.1, 1.3, 1.5, L = d = 3.25 and t = 0.3 [mm]. The distance between neighboring
MVG pairs is Λ = 13 mm.

The physical mechanism of the stabilizing effect is known [1] and has previously
been shown to be strong enough to delay transition to turbulence in wind tunnel
experiments [4], where the base flow was modulated by means of cylindrical rough-
ness elements. Later this result has been confirmed numerically in [6]. The experi-
mental design (as well as the numerical simulation) was, however, fairly laboured,
since the artificial disturbance was introduced downstream of the cylindrical rough-
ness array avoiding any potential non-linear interaction of the incoming disturbance
with the roughness array. In a recent study the flow configuration and experimen-
tal setup has challenged the passive flow control method by generating controlled
disturbances upstream of the boundary layer modulators and showed promising re-
sults in being capable of delaying transition to turbulence [7]. This work is finan-
cially supported by the European Research Council and is performed within the
AFRODITE research programme, which stands for Advanced Fluid Research On
Drag reduction In Turbulence Experiments.

2 Experimental Setup

The experiments were performed in the Minimum-Turbulence-Level wind tunnel at
KTH, renown for its low background turbulence intensity. This level depends on
the free stream velocity (U∞) and the streamwise velocity component amounts to
less than 0.025% of U∞ at the nominal free stream velocity of 25 m s−1. In this
wind tunnel investigation we test the effectiveness of miniature vortex generators
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Fig. 2 Energy evolution in the downstream direction with and without MVGs plotted with
(�)- and (�)-symbols, respectively, at U∞ = 7.7 m s−1. The same high initial forcing am-
plitude and frequency (F = 102) of the T-S wave were applied. MVGs: h = 1.3 mm giving a
maximum AST of 21%. With the present configuration h/δ≈ 2, where δ=

√
xMVG ν/U∞. The

color bar applied on the symbols corresponds to the intermittency (γ) of the velocity signal.

(MVGs) to stabilize T-S waves with the aim to obtain transition delay in flat plate
boundary layers. In Figure 1 a sketch of the flat plate is shown and, here, the flow
domain can be divided into four regions. In region (I) a 2D laminar boundary layer
develops on the flat plate, while in (II) T-S waves are generated by means of blow-
ing and suction through a spanwise slot in the plate located at xT−S. Throughout this
study we use the non-dimensional frequency F = (2π f ν/U2∞)× 106, where f Hz is
the forcing frequency and ν the kinematic viscosity. For the present MVG configu-
ration F ≈ 102, 135, 178 were tested. In region (III) the 3D streaky base flow with
alternating high and low speed streaks are generated by the MVG array located at
xMVG. In region (IV) the amplitude of the streaky base flow has finally decayed and
the 2D base flow found in region (I) will eventually be recovered, unless the streaks
breakdown to turbulence.

The unsteady blowing and suction is created by a sealed loudspeaker connected
to the slot via vinyl hoses (as described in [2]). The loudspeaker is driven by a
computer generated sinusoidal output signal via an amplifier and the measurements
are triggered based on the phase of this output signal.

The distance between neighboring MVG pairs is Λ = 13 mm. In this investigation
we have considered three different MVG heights h= 1.1, 1.3 and 1.5 mm giving rise
to successively intensified vortices provided that U∞ is kept constant, which in turn
results in stronger modulations of the originally 2D base flow.

The experiments were performed in the low speed closed circuit Minimum-
Turbulence-Level wind tunnel at KTH, renown for its low background disturbance
level and well suited for stability experiments [5]. Phase-triggered single hot-wire
anemometry has been used as measurement technique due to its good accuracy and
resolution (temporal as well as spatial). Note, that the boundary layer thickness in
the present experiments is in the range 4–9 mm.
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3 Results

In this experimental investigation we show that miniature classical vortex genera-
tors really are suitable devices in accomplishing transition delay and plausible to
work in real flow applications. MVGs are clearly superior to circular roughness el-
ements, since the flow is allowed to pass right through them, possibly reducing the
absolute instability region behind the devices and allowing for twice as high ampli-
tude streaks to be generated, but still with some margin to the threshold amplitude
beyond which the streaky base flow becomes unstable. This makes the streaky base
flow much more robust for external perturbations, a prerequisite for real flow ap-
plications. Furthermore, in the present setup the T-S waves are being generated up-
stream of the MVG array, leaving the complex receptivity process of the incoming
wave by the MVG array, which really challenges the present passive flow control
method. Despite this, transition delay is convincingly accomplished (see Figure 2).

Acknowledgements. JHMF acknowledges the European Research Council for their finan-
cial support of the AFRODITE project through a Starting Independent Researcher Grant.
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Large-Scale Structures in High Reynolds
Number Wall-Bounded Turbulence

Nicholas Hutchins

Abstract. Through comparison of two turbulent boundary layers at vastly different
Reynolds numbers, we note that the key features of the very large-scale structures
appear to be universal (when scaled with the boundary layer thickness δ ). The mod-
ulating influence of these large-scale features is analysed through means of con-
ditional averages. It is proposed that the much discussed ‘amplitude modulation’,
whereby the large scales modulate the intensity of the small-scale velocity fluctu-
ations, is primarily a near-wall phenomenon, and that further from the surface this
may be better described as a ‘preferential arrangement’. In this interpretation, it be-
comes evident that there is a strong link between the very large-scales that populate
the log region and the large-scale interfacial bulging that occurs at the edge of the
boundary layers. Conditional averages are presented confirming this finding.

1 Introduction

From observations of pre-multiplied energy spectra, Kim and Adrian (1999) made
the surprising observation that energetic fluctuations existed at very long length-
scales (up to 14R) in turbulent pipe flows. They called these features very large
scale motions (VLSMs). In an attempt to learn more about these features, Hutchins
and Marusic (2007b) deployed rakes of hotwires in the logarithmic region of high
Reynolds number boundary layers, showing that these energetic events take the form
of large-scale streak type structures which they termed ‘superstructures’. Further ex-
periments have shed additional light on these coherent motions, demonstrating that
they modulate the small-scale near-wall cycle and are accompanied by very large-
scale roll-modes (see for example Hutchins and Marusic, 2007a). It has also been
noted that these features have a strong footprint at the wall (Hutchins and Marusic,
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Fig. 1 Linear stochastic estimate (LSE) showing the conditional large-scale structure in the
logarithmic region of (a) a laboratory flat plate zero-pressure-gradient turbulent boundary
layer at moderate Reynolds number (Reτ ≈ 1000) and (b) the near-neutral atmospheric sur-
face layer over smooth flat terrain at very high Reynolds number (Reτ ≈ 7.7×105). Shaded
contours show velocity fluctuations (as a percentage of the condition vector) with the same
colour axis for both flows. Blue shows negative velocity fluctuations and red shows positive.
Cross-plane vectors show the associated large-scale roll-mode. The condition point is in the
logarithmic region for both flows, at z/δ ≈ 0.1 for the laboratory and at z/δ ≈ 0.036 for the
atmospheric data.

2007a; Hutchins et al, 2011) and carry a great deal of Reynolds stress (Balaku-
mar and Adrian, 2007). Examples of these features at two very different Reynolds
numbers are shown in figure 1, which shows the conditionally averaged structure
based on a negative velocity fluctuation in the logarithmic region. Figure 1(a) shows
the laboratory orthogonal-plane PIV data of Hambleton et al (2006) at Reτ = 1100
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the standard deviation. Signals are projected in x using Taylors Hypothesis and a convection
velocity of approximately U+

c = 20.

(Reτ = δUτ/ν , where δ is the boundary layer thickness, Uτ is the friction veloc-
ity and ν is the kinematic viscosity). Figure 1(b) shows field data from the atmo-
spheric surface layer (ASL) experiments of Hutchins et al (2012) with estimated
Reτ ≈ O(106). The time signals of fluctuating velocity from the sonic anemome-
ters are converted to the spatial domain using Taylor’s hypothesis and a convection
velocity given by the measured mean at z/δ = 0.036. Note that the boundary layer
thickness for the low Reynolds number data is 0.06 m, while for the ASL data the
layer thickness is estimated at 60 m (yielding a conditional average in plot b that is
100 m in length). Despite this separation in scale and Reynolds number, it is clear
that the conditionally averaged large-scale events are very similar between these
two boundary layers. In both cases, a highly elongated negative velocity fluctua-
tion is flanked on either side in the spanwise direction by similarly elongated high
momentum regions. These elongated features are tall in the wall-normal direction
(extending to z/δ ≈ 0.5) and are accompanied by large-scale roll modes.

2 Large-Scale / Small-Scale Interaction

We will here explore the interaction between the large-scale structures and the
smaller scale features of wall bounded turbulence. We will make use of data from
Hutchins et al (2011), comprising a spanwise array of wall-mounted hot-film shear
stress sensors and a single traversing hot-wire probe positioned above this array.
Figure 2 shows isocontours of instantaneous wall shear stress fluctuation as mea-
sured by the spanwise array. These data are presented as fluctuating friction ve-
locity filtered with a Gaussian of size 0.5δ × 0.16δ in x and y respectively (uτ f

denotes the filtered signal) and normalised by the standard deviation (σuτ ). Time-
series data from the skin friction sensor array are projected into the spatial domain
using Taylor’s hypothesis and a convection velocity of U+

c = 20 (the convection ve-
locity previously measured for the large-scale fluctuations by Hutchins et al, 2011).
Long meandering low and high shear stress events are evident in Figure 2, with
length-scales that seem to exceed 6δ . The strong similarity between these features
and the superstructures recorded in the logarithmic region by Hutchins and Marusic
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(2007b) suggests that the skin friction sensors are successfully detecting the foot-
prints of the superstructure events. Figure 3(a) shows the conditionally averaged
hot-wire measured velocity fluctuations at z+ ≈ 15 based on the occurrence of a
large-scale negative shear stress event at the wall (uτ f < 0 at Δy = Δx = z = 0).
This figure offers a glimpse of the conditional form of the superstructure event very
close to the surface. The negative shear stress fluctuations are associated with elon-
gated regions of streamwise velocity deficit, flanked on either side in the spanwise
direction by regions of increased momentum.

To investigate the connection between the large-scale and small-scale tur-
bulence, we next decompose the measured hotwire signals into a large and
small-scale component. This process is illustrated in figure 4. The original raw fluc-
tuating velocity signal (shown on the left) is decomposed in to a large- (top right)
and small-scale (bottom right) component using a spectral filter with a wavelength
λ+

x = 7000. The choice of this wavelength is based on analysis of energy spectra
presented in Hutchins and Marusic (2007b) and Mathis et al (2009) indicating that
for Reτ = 14000 this cut-off wavelength is effective in separating small-scale energy
associated with the near-wall cycle from the large-scale superstructure events. There
has been much research (Brown and Thomas, 1977; Bandyopadhyay and Hussain,
1984; Hutchins and Marusic, 2007a; Mathis et al, 2009; Chung and McKeon, 2010;
Hutchins et al, 2011) to suggest that close to the wall the large scales amplitude
modulate the small-scale activity in turbulent boundary layers. All of these studies
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Fig. 4 Decomposition of hot-wire signal into small and large-scale components using a spec-
tral low-pass filter at λ+

x ≈ 7000

have observed that there is a strong correlation between the envelope of the small-
scale signal and the phase-shifted large-scale signal. Close to the wall, the phase
shift seems to tend to zero, such that there is a direct correlation between the fil-
tered envelope of uS and the large-scale signal uL . This scenario is illustrated in the
bottom-right plot of figure 4 where the red shaded region shows the predicted en-
velope of the small-scale signal uS based on the large-scale fluctuation. Although in
this figure the amplitude modulation is difficult to discern, a conditional average of
the small-scale activity based on a large-scale negative shear-stress fluctuation can
demonstrate this trend.

Figure 3(b) shows the square of the small-scale signal u2
S

conditioned on the
occurrence of uτ f < 0. The tilde notation here indicates that a quantity has been
conditionally averaged on the occurrence of a negative large-scale skin friction fluc-
tuation at Δy = Δx = 0. This conditional average represents the modulation of the
small-scale variance at z+ = 15 associated with a low-speed (low skin friction) su-
perstructure event. The data in figure 3(b) are presented as a percentage variation
about the (unconditional) average small-scale variance u2

S
. A comparison between

figure 3(a) and (b) reveals that at z+ = 15, there is a strong positive correlation (with
zero phase shift) between the conditionally averaged large-scale velocity fluctuation
and the envelope of the small scale turbulence. The large-scale elongated low mo-
mentum region (at Δy = 0 in figure 3(a), and extending approximately ±2− 3δ
upstream and downstream of Δx = 0) is clearly accompanied by a region of re-
duced small-scale activity. Figure 3(b) indicates that the conditioned small-scale
variance in this region is decreased by up to 10%. Conversely, the high momentum
regions that flank the elongated low-speed regions in the spanwise direction of fig-
ure 3 exhibit increased small-scale variance. This form of modulation is relatively
straight-forward to understand from simple arguments based on the modified veloc-
ity gradient at the wall. The low-speed region of the superstructure event will cause
a large-scale region of reduced shear at the wall. This large-scale region will have
reduced friction velocity and an increased viscous length-scale. Since the near-wall
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ũ+

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

−10 −8 −6 −4 −2 0 2 4 6 8 10

(b)

Δx/δ

Δ
z/

δ

[
(ũ2
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Fig. 5 (a) The velocity fluctuations and (b) the percentage change in the small-scale stream-
wise velocity variance, ensemble averaged on a streamwise/wall-normal plane at Δy = 0 and
conditioned on a negative skin friction fluctuation (uτ < 0) at Δx = Δy = 0

cycle is believed to scale on viscous units (with a size proportional to ν/Uτ and
a magnitude proportional to Uτ ), it is reasonable to assume that in these regions
the near-wall cycle will have a reduced magnitude (leading to a reduced amplitude
of small-scale fluctuating components close to the wall). Effectively, the near-wall
events (which have a very short time-scale compared to the superstructures) will
experience these regions as if the Reynolds number had been reduced. If this ar-
gument is correct, one would also expect a frequency modulation effect, since the
near-wall structures would be longer in this region and convect somewhat slower
(reflecting the reduced Uτ ). This would lead to lower frequency small-scale fluctua-
tions in these regions. Such a frequency modulation effect has been recently verified
by Ganapathisubramani et al (2012).

At locations further from the surface, the modulation effect becomes more com-
plicated to explain. Figure 5(a) shows the ensemble averaged velocity fluctuations
on a streamwise / spanwise plane at Δy = 0, conditioned on a large-scale region of
reduced skin friction at Δx = Δy = 0. A tall low-momentum region on the plane of
symmetry accompanies the uτ f < 0 event at the origin. This elongated region ex-
tends beyond the log region into the wake of the boundary layer (particularly in the
downstream). This region has a pronounced inclination in the downstream direction,
as has been noted from many previous conditional averages and two-point correla-
tions (see for example Kovasznay et al, 1970; Christensen and Adrian, 2001). This
shape is typical of the low-speed regions that have been previously observed to oc-
cur within hairpin packets (Adrian, 2007). Figure 5(b) shows the modulation of the
small-scale turbulent energy accompanying this large-scale inclined low-momentum
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Fig. 6 (a) fluctuating ve-
locity signal at z/δ ≈ 0.77
(large-scale component uL

is shown in red); (b) decom-
posed small-scale compo-
nent uS ; (c) skewness of the
large-scale component; (d) a
schematic of edge of bound-
ary, showing the turbulent
/ non-turbulent interface.
Red dot-dashed line shows
hot-wire measurement at
z/δ = 0.77.
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region. Only very close to the surface is the negative large-scale velocity fluctua-
tion directly associated with reduced small-scale intensity. Further from the wall,
a more complicated interplay seems to develop. Most noticeably, the upstream in-
clined back of the low-speed region (of figure 5a) seems to be predominantly asso-
ciated with increased small-scale activity. Bandyopadhyay and Hussain (1984) and
Chung and McKeon (2010) have explained this shift in behaviour as an increasing
phase difference with z between the large-scale u fluctuation and the envelope of
the small-scale turbulence. Hutchins et al (2011) have suggested that further from
the wall (in the log and wake region), the increased small-scale amplitude is closely
aligned with the shear layers (the negative du/dx) that exist along the inclined back
of the low momentum region.

There is a fine line here between notions of ‘amplitude modulation’ and sim-
ple ‘preferred arrangements’. The hairpin packet paradigm suggests that increased
vortical activity should be located along the inclined back of the large-scale low mo-
mentum region. The increased small-scale activity observed in this region in figure
5(b) may be more indicative of these arrangements. The suggestion could be that
close to the surface, the large scale shear stress fluctuations genuinely do modulate
the near-wall cycle in a manner that gives rise to amplitude modulated small-scale
fluctuations. Further from the surface, the variations in small-scale activity might be
better understood as preferential arrangements. The analysis below suggests that at
the edge of the layer, at least, this might be a more apt description.

Notions of ‘amplitude modulation’ aside, the remarkable result from figure 5(b)
is that there is an apparent link between the large-scale shear stress fluctuation at the
wall, and increased small-scale activity at the edge of the boundary layer. This would
seem to suggest a strong link between the superstructure events and the interfacial
bulging that is known to occur in the highly intermittent turbulent / non-turbulent
interface at the edge of the boundary layer. To explore this, figure 6(a) shows the
fluctuating velocity signal close to the edge of the layer at z/δ = 0.77. The sig-
nal is highly intermittent, with quiescent regions that are punctuated by periods of



82 N. Hutchins

−10 −8 −6 −4 −2 0 2
−0.5

0

0.5

 

 

−0.1

−0.05

0

0.05

0.1

−20

−15

−10

−5

0

Δx/δ

Δ
y/

δ

(a)

(b)

〈sk
ew

(U
L
)〉

〈u
τ|s

ke
w
(U

L
)
<

−1
0〉
/u

2 τ

Fig. 7 (a) shows condition event 〈skew(uL )<−10〉 at z/δ = 0.77, used to identify the inter-
facial bulge; (b) shows the shear stress at the wall conditioned on the bulge event

intense turbulence. This distinctive signal is a result of the hot-wire measuring a path
through the turbulent / non-turbulent interface as illustrated by the red dot-dashed
line in the schematic of figure 6(d). The small-scale component of the velocity sig-
nal is shown in Figure 6(b), highlighting that at these locations, almost all small-
scale activity is associated with the interfacial bulging (reinforcing the ‘preferential
arrangement’ description). Figure 6(c) shows the skewness of the large-scale com-
ponent (the large-scale component is shown in red on plot a). It is observed that
high negative values of this quantity are an excellent marker of the turbulent bulges.
We use this signal to conditionally average the skin friction fluctuations at the wall
(based on situations where skew(uL) exceeds some negative threshold). The result-
ing conditionally averaged skin friction signal at the wall is shown in figure 7(b).
It is clear that the interfacial bulge (shown in figure 7a and occurring at Δx = 0),
is accompanied by a noticeable large-scale skin friction footprint at the wall (cen-
tered some distance upstream) with a form that is very similar to the previously
observed superstructure event. This conditional average leads us to believe that the
very large-scale features that are known to populate the logarithmic region (with
a footprint down to the wall) are associated with the bulging that characterises the
turbulent / non-turbulent interface at the edge of the boundary layer.

3 Conclusions

The observed superstructure type events, consisting of highly elongated regions of
positive velocity fluctuation, and accompanied by large-scale roll-modes are uni-
versal features of turbulent boundary layers. They have been observed with a very
similar form in laboratory measurements ranging from 1000 < Reτ < 14000, and
also in near-neutral ASL measurements at Reynolds numbers up to Reτ ≈ O(106).
While the notion of amplitude modulation may provide a reasonable explanation
for the interaction between these very large-scales and the near-wall cycle close to
the surface, we would favour an interpretation based on ‘preferential arrangement’
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further from the surface. The preliminary results shown here suggest a link be-
tween the superstructure events and interfacial bulging at the edge of the turbulent
boundary layer.
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Study of the Outer Self-regeneration
of Turbulence in Wall Flows

A. Cimarelli, Elisabetta De Angelis, A. Talamelli, and C.M. Casciola

Abstract. A new approach for the study of the overlap layer of wall-
turbulence is proposed. The multi-dimensional description of turbulence given
by the Kolmogorov equation generalized to wall-flows is used and shown rel-
evant for the identification of very robust features of the overlap layer. Nu-
merical data of a turbulent channel are used. Despite the low Reynolds, a
well-defined outer energy source region appears. The possibility to analyze
its effects on the energy tranfer among scales and wall-distances is shown
important to clarify the influences of the external region on the inner layer.

1 Introduction

One of the most peculiar aspects of turbulence in wall flows is the ability
of the turbulent fluctuations to regenerate themselves forming self-sustained
processes. In wall flows, the production of turbulent fluctuations is embedded
in the system rather than being provided by an external agent. The dynamics
of these self-sustaining mechanisms have been extensively investigated and
these processes are known to be responsible for the turbulent drag.

It is well known that the near-wall layer is crucial to the dynamics of
attached shear flows, being the seat of the highest rate of turbulent energy
production and of the maximum turbulent intensities. The possibility to iden-
tify very robust kinematic features in the proximity of a wall fed the hope
of the scientific community to give a complete and consistent dynamical de-
scription of the underlying physics of these processes. Indeed, the turbulent
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fluctuations near a wall have been found to organize in well defined coherent
motions consisting of quasi-streamwise vortices and high/low velocity regions
alternating in the spanwise direction. From these observations, a conceptual
model has been developped. As shown in [1], these turbulent structures form
a self-sustaining cycle mantaining near-wall turbulence without the need of
any input from the core flow, i.e. it is an autonomous cycle.

From the technological point of view, the near-wall cycle is crucial since it
controls the magnitude of the wall stress. But, coherent structures exist also
at larger scales in the so-called overlap layer and have been found to form
an outer self-sustaining mechanism of regeneration of very large turbulent
fluctuations. The phenomenology resembles the near-wall cycle though its
characteristic dimensions are larger. The coherent motions involved in this
outer cycle should scale with external variables and, as a consequence, its
field of action should increase as the extent of the log-layer with Reynolds.
Hence, the understanding of these outer dynamics is crucial for the modelling
of wall-turbulence at the asymptotic regime of very large Reynolds number.

Several approaches have been used to identify the main features of the
overlap layer such as the study of the turbulent intensity profiles, of the
outer energy spectra scaling and of the dynamical features of the large coher-
ent motion, see [2]. Here, we aim at extending these analysis by considering a
multi-dimensional approach given by the generalized Kolmogorov equation.
The possibility to study how the turbulent energy is generated, transferred
and dissipated among different scales and wall-distances, will be shown rele-
vant for the understanding of the overlap layer physics, see also [3].

2 Kolmogorov Equation

The Kolmogorov equation is the balance equation for the second order struc-
ture function, 〈δu2〉, with δu2 = δuiδui, where the fluctuating velocity
increment at position Xs and vector separation rs is δui = ui(Xs + rs/2)−
ui(Xs−rs/2). This equation allows to identify the energy transport processes
and production mechanisms in the compound space of scales and position.
Indeed, two distinct transport processes exist in wall-turbulence. One corre-
sponds to the energy transfer in the space of scales and the other is associated
with the spatial redistribution of energy due to inhomogeneity. For the chan-
nel flow the equation reads, see [4] for the details,

∂〈δu2δui〉
∂ri

+
∂〈δu2δU〉

∂rx
+ 2〈δuδv〉

(
dU

dy

)∗
+

∂〈v∗δu2〉
∂Yc

= −4〈ε∗〉 + 2ν
∂2〈δu2〉
∂ri∂ri

− 2

ρ

∂〈δpδv〉
∂Yc

+
ν

2

∂2〈δu2〉
∂Yc

2 . (1)

where the mean velocity U(y) (y = x2) is along the x = x1 axis, Yc =
X2 is the wall-normal coordinate of the mid-point, ν is kinematic viscosity
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and ε = ν(∂ui/∂xj)(∂ui/∂xj) is the pseudo-dissipation. Here * denotes the
arithmetic average of a variable at the points Xs ± rs/2. As shown in [5],
to emphasize its conservative nature, equation (1) is restated in terms of
a four-dimensional vector field, Φ = (Φrx , Φry , Φrz , Φc), defined in a four
dimensional space (rx, ry , rz, Yc),

∇4 ·Φ(r, Yc) = ξ(r, Yc) , (2)

where ξ = 2〈δuδv〉 (dU/dy)∗−4〈ε∗〉 is the energy source/sink. The projection
of the flux in the space of scales is the scale-space transfer vector,Φr =
(Φrx , Φry , Φrz) = 〈δu2δu〉 − 2ν∇r〈δu2〉. The projection in physical space is
the spatial flux Φc = 〈v∗δu2〉+2〈δpδv〉/ρ−ν/2∂〈δu2〉/∂Yc. The data used are
those of a channel flow direct numerical simulation (DNS) at Reτ = 550. The
computational domain is 8πh×2h×4πh with a resolution in the homogeneous
directions, Δx+ = 13.5 and Δz+ = 6.7.

3 Results and Final Comments

In the present work we limit our analysis to the (rz , Yc)-space by setting
rx = ry = 0. As shown in the left plot of figure 1, the isocontours of ξ
highlight two regions of energy source. The first stronger one in the near-wall
region is the engine of wall-turbulence and will be hereafter called the driving
scale-range (DSR). Indeed, only one singular point exists in the augmented
space from which the energy fluxes take origin. The field lines of figure 1 stem
from the DSR in the buffer layer and diverging sustain the whole turbulent
motion in the other regions of the combined physical/scale space. Let us
emphasize that the clear matching of scales and positions, r+z ∼ 40 and
Y +
c ∼ 12, suggests a strong connection with the near-wall cycle.
An interesting feature emerging from the present analysis is the existence

of a rescaled replica of the processes described for the DSR, associated with
a second peak in the energy source, called hereafter outer scale-range (OSR),
see the contours of figure 1. Despite the low Reynolds number considered,
the OSR belongs to a putative overlap layer and appears to be the result of
an outer production mechanism well separated from the near-wall one.

Let us now investigate the nature of the turbulent structures involved in
the OSR. According to Townsends attached eddy hypothesis, the production
scales should behave linearly with wall-distance. The present data actually
confirm this prediction with the spanwise scale of the energy source increasing
to a very good degree linearly with wall-distance, r+z ∼ 80 + Y +

c . A second
consequence of the attached eddy hypothesis is the appereance of a k−1-
behavior at the large scales of the energy cospectrum and, hence, for turbulent
production. In the present framework, this spectral law corresponds to a scale-
production which follow a logarithmic behavior [6],
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Fig. 1 Left: energy source contours, ξ, and field line of the energy flux Φ in the
rx = ry = 0-plane. Right: rz-scaling of production, 2〈δuδv〉 (dU/dy)∗, for four
different positions within the overlap layer. The squares represent the log-law (3)
while the two vertical lines are r+z = ky+ and the scale of maximum energy source,
r+z = 80 + Y +

c .

〈δuδv〉dU
dy

= u2
τ (C +D log(r/y))/κy for y < r < h (3)

where κ is the Karman’s constant. In the right of 1, the production in the
overlap layer is reported and shown to follow this law for intermediate scales.

In conclusion, the outer energy source occurs at wall normal positions and
scales that make it suspect of a result of an outer self-regenerating mechanism
composed by attached eddies. As a consequence, its field of action should in-
crease as the extent of the log-layer with Reynolds. The presence of the OSR
violates the equilibrium assumption of the overlap layer. The OSR continu-
ously injects energy feeding and diverging the field lines of the energy fluxes,
see streamtraces of figure 1. In accordance with these observations, the large
Reynolds number state of wall-turbulence should appears dominated by the
overall production associated to the OSR. In this context the influences of
the external region to the near-wall turbulence consist in a modulation and
modification of the energy fluxes topology, i.e. a confination of the energy
transfer emerging from the near-wall energy source.
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Turbulent Boundary Layers in Long
Computational Domains

Philipp Schlatter and Qiang Li

Abstract. A new highly resolved large-eddy simulation is presented for a spatially
developing turbulent boundary layer, covering in one single domain the range of
Reynolds number Reθ = 180 to 8300. Turbulence statistics are in close agreement
with experiments and other simulations. The evolution of the large outer-layer struc-
tures is examined using spectra. It is found that the near-wall region is very inter-
mittent, and at high Reθ dominated by strong modulation of the turbulence intensity
through the outer structures. The corrugated appearance of the boundary-layer edge
is thus directly linked to the turbulence regeneration in the immediate wall vicinity.

1 Introduction

Wall-bounded turbulence emerges e.g. along the surface of moving ships and air-
planes or in pipelines. To emphasise the practical relevance of wall turbulence it
must be clear that the prediction of skin friction and drag is directly related to fuel
consumption or the power needed to transport gases through pipelines. Canonical
wall-bounded flows are the flat-plate boundary layer, pipe and channel flows. While
these flows are in essence theoretical abstractions and do not appear as such in real-
ity it is necessary to study them separately by means of experiments, simulations or
theory, since they constitute basic building blocks of more complete, i.e. real, flows.
For instance, more complex geometries such as the turbulent flow along a curved
wing might be approximated by a boundary layer with a suitable pressure gradient.

Simulations of turbulent flows are particularly helpful identifying physical pro-
cesses occurring in near-wall turbulence, as the whole velocity field is available for
analysis. In particular higher Reynolds numbers are necessary to obtain a clear sep-
aration of scales related to the near-wall turbulence cycle (i.e. scaling in wall units)
and the mechanisms and structures related to the outer region of the boundary layer,
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Fig. 1 Side view of the complete domain showing colours of the streamwise velocity; blue
corresponds to zero velocity and red to the free-stream velocity. The streamwise positions
indicated by the black ticks are: Reθ = 1000, 1410, 2000, 2500, 4300, 5800, 7500, 8300.

i.e. living in the logarithmic region and beyond. However, it remains crucial to prop-
erly validate simulation data with corresponding experimental results to ascertain
that the turbulence at high Reynolds number has reached its developed state.

2 Simulation Setup

In order to contribute to the available simulation data, a new series of numerical sim-
ulations of spatially evolving turbulent boundary layers is discussed, reaching up to
the highest Reynolds numbers in wall-resolved simulations. In a similar way as in
experiments, we let the flow enter the domain as an unperturbed laminar Blasius
flow, which is then disturbed to transition to turbulence via a trip forcing [5,6]. In
this way, we avoid the use of a recycling/rescaling technique to generate turbulent
unsteady inflow conditions. A close correspondence of the flow characteristics as
in experimental setups is expected [3], with a minimum amount of ad-hoc parame-
ters to specify. However, as documented in our recent study [6], the flow response
to tripping is most efficient when performed at lower Reynolds number, i.e. close
to the leading edge of the plate. Therefore, our simulation technique requires very
long computational domains, essentially reproducing a wind-tunnel setup. In the
present case, the domain starts at a low (laminar) Reθ = 180, directly followed by
the tripping location. Transition to turbulence is assumed to be complete by about
Reθ = 700, and a state approximately independent of initial conditions is reached
somewhere around Reθ = 1500. The outflow of our domain is located at the (com-
putationally very) high Reθ = 8500. In this single long domain, illustrated in Fig.
1, the boundary layer is allowed to develop naturally from the tripping location to
the higher Reynolds numbers without any re-injection or recycling procedures. In
consequence, albeit expensive, this computational setup allows us to study, e.g., the
mean flow development and the scaling behaviour of the fluctuating energy over a
long spatial distance free from any pseudo-periodic (parasitic) effects.

However, such domains require a large number of grid points: We employ a
grid with a total of 13824× 513× 1152 collocation points in physical space in the
streamwise, wall-normal and spanwise directions. As in our previous studies [5],
the spectral code SIMSON is employed, giving very high accuracy coupled with
efficient massive parallelisation (parallel efficiency up to 60% on 4096 cores on an
Infiniband cluster). The grid resolution in viscous units is Δx+ = 18 and Δz+ = 8
which is good, but not quite as high as for proper direct numerical simulation (DNS).
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Fig. 2 Skin-friction coef-
ficient c f . (black) present
LES, (gray) DNS [5],
(symbols) experiments
[2, 3], (dotted) c f =

κ−1(lnReθ +C)−2 with
κ = 0.384 and C = 4.127,
(dashed) c f = 0.024Re−1/4
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Fig. 3 Zoom of the
mean velocity profiles at
Reθ = 1000, 2500, 4000,
5800, 7500, symbols from
experiments by Örlü [2, 3].
Gray corresponds to the log
law (κ = 0.41, B = 5.2).
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Therefore, the ADM-RT subgrid-scale model [4] is employed, adding some limited
dissipation only at the smallest scales improving the accuracy of our results. This
model is based on high-order high-pass filters and thus adapts itself to the local res-
olution and will effectively be inactive if not needed. Note that the chosen resolution
in this study corresponds to highly resolved large-eddy simulation (LES), and there
are simulations in the literature with poorer resolution that are denoted DNS.
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Fig. 5 Streamwise veloc-
ity fluctuations urms for
Reθ = 1000, 2500, 4000,
5800, 7500. (solid) present
LES, (dashed) DNS [5],
(symbols) experiments by
Örlü [2, 3] (only shown for
y+ > 100).
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3 Results

The skin friction from the LES compared to DNS [5] and experiments [2, 3] to-
gether with the 1/7th power-law and log-law correlations is shown in Fig. 2. Good
agreement can be established; interesting is that for lower Reθ < 4000 the 1/7th

power-law correlation is accurate, whereas for higher Reθ the log-law correlation
is much more suitable. The generally good agreement with experiments can also
be seen in the mean velocity profile U+: In the near-wall and overlap region, the
data shows the expected linear and logarithmic behaviour; discrepancies usually
show up in the wake region, i.e. farthest away from the wall indicating incomplete
development of the flow. Fig. 3 thus zooms in into that region, showing the good
agreement between LES and experiments also in the outer region. Moreover, the
vertical derivative of the mean velocity, the so-called log-law indicator function Ξ ,
closely follows the correlation proposed by Monkewitz et al. [1], as shown in Fig.
4. In case a genuine logarithmic region is present in the flow, Ξ would asymptote
to a constant with value 1/κ . The present results show that the diagnostic func-
tion is departing into the wake region just before reaching that plateau (expected to
be around κ ≈ 0.38), indicating that the Reynolds number is still too low to make
definite statements about the (disputed) value of κ .

The turbulent fluctuations, shown in Fig. 5, also confirm the above mentioned
agreement. Furthermore, the slow increase of the peak value in the buffer layer due
to the outer influence can be seen together with a slight attenuation effect due to
the lower resolution in the LES. Finally, Fig. 6 displays the premultiplied budget
of the turbulent kinetic energy k, to emphasise the outer layer. In this figure, the
activity of the subgrid-scale model is highlighted by the difference between the
total dissipation and the resolved viscous dissipation (computed via the residual
of the budget). It can be seen that its influence is small, but certainly not neglegible.
Physically, the intermittent wake region, y/δ99 > 0.5 is notable, as all budget terms
except the viscous diffusion are contributing to the energy transfer. This is in stark
contrast to internal flows such as channels or pipes.
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Fig. 6 (Premultiplied) bud-
get of the turbulent kinetic
energy k at Reθ = 4000;
(lines) present LES, (sym-
bols) DNS from [5]. In di-
rection of arrow: production,
turbulent diffusion, viscous
diffusion, velocity-pressure
correlation, convection, re-
solved dissipation, total
dissipation (including SGS
model dissipation).
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Fig. 7 Premultiplied spanwise spectra of the streamwise velocity at Reθ = 2500 and 8300,
scaled in viscous units. The invariant inner peak is clearly visible together with an increas-
ingly strong outer peak. The white line correspond to δ99.

In a second part, structural information of the flow is discussed, exploiting the
wide range of Reynolds number: Premultiplied energy spectra clearly highlight the
presence of an invariant inner peak (corresponding to the near-wall streak cycle)
together with a stronger outer peak, located at λz ≈ δ99 and increasing in amplitude
as the Reynolds number increases (not shown). The footprint of the outer-layer ac-
tivities is getting very strong at Reθ ≈ 8000: Visualisations of the evolving turbulent
boundary layer, such as the ones presented in Fig. 8, persistently show the large-
scale structures, but also another very dominant modulating effect: Near-laminar
low-speed islands are clearly observed, which are alternating with regions of high
intensity. A clear connection between these modulations at the wall, and the large-
scale bulges in the outer region can be established. It should be noted that this large-
scale modulation becomes more prominent with increasing Reθ , motivating further
studies, including postprocessing and new simulations. Proper modelling of turbu-
lence can be improved with a better understanding of these mutli-scale processes.
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Fig. 8 View of the near-wall region in an x/z-plane at y+ = 15. The colours indicate stream-
wise disturbance velocity from negative (blue) to positive (red). Left: Reθ = 2500, corre-
sponding to Reτ ≈ 800. Right: Reθ = 8300, or Reτ = 2500.
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The Streamwise Turbulence Intensity –
A Comparison between Smooth and Rough Wall
Turbulent Boundary Layers

A. Segalini, R. Örlü, Ian P. Castro, and P. Henrik Alfredsson

Abstract. Clear differences in turbulence intensity profiles in smooth, transitional
and fully rough zero-pressure gradient boundary layers are demonstrated, using the
diagnostic plot (u′/U vs. U/U∞ where u′ and U are the local fluctuating and mean
velocities and U∞ is the free-stream velocity). A wide range of published data is
considered and all zero-pressure gradient boundary layers yield outer flow u′/U
values which are roughly linearly related to U/U∞, just as for smooth walls, but with
a significantly higher slope. The difference in slope is due largely to the influence of
the roughness parameter (ΔU+ in the usual notation) and all the data can be fitted
empirically by using a modified form of the scaling, dependent only on ΔU+/U+

∞ . It
is observed that the turbulence intensity, at a location in the outer layer where U/U∞
is fixed, rises monotonically with increasing ΔU+/U+

∞ regardless of the roughness
morphology.

1 Introduction

The turbulent boundary layer over a rough wall is a canonical flow case that, de-
spite its long history, is still a subject of numerous debates regarding the physical
phenomena involved and its appropriate scaling. Compared to a turbulent boundary
layer over a smooth wall with the same Reynolds number based on the thickness
of the boundary layer, δ , and the friction velocity, u∗, the mean velocity over the
rough wall is lower than the corresponding one measured at the same height over
a smooth surface. This velocity difference is usually assumed to be constant from
the roughness surface to a height y = δ , and is referred to as the roughness func-
tion, ΔU+, where the + superscript indicates viscous scaling based on u∗ and the

A. Segalini · R. Örlü · P. Henrik Alfredsson
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kinematic viscosity, ν . The mean velocity profile of the boundary layer over a rough
wall is often assumed to have the same structure as the equivalent smooth case with
the offset provided by the roughness function as

U
u∗

=
1
κ

ln
(
y+
)
+B−ΔU++

2Π
κ

W
( y

δ

)
, (1)

with a logarithmic region near the wall and a wake region for y=O(δ ). The y-origin
is located between the valley and the peak of the roughness, at a distance d from the
roughness minimum height [1]. Another major difference between the smooth and
rough case is associated to the higher value of the wake parameter Π observed over
rough surfaces [2].

It is generally believed that the direct effect of roughness can be observed in
a layer with size 2-3k, where k is the roughness height, leading to the conclusion
that high values of the ratio δ/k are required to reduce the effect of the roughness
to the inner region of the boundary layer, which is dominated by viscous effects
in the smooth wall case [3]. Away from the wall, and for a roughness with high
enough δ/k, the turbulent flow will just be determined by the momentum transferred
downward and absorbed by the drag of the roughness elements, a hypothesis usually
referred to as Townsend’s similarity hypothesis. The validity of such an assumption
has been discussed in some recent investigations [2, 4, 5], but at the moment it is the
only model available that describes at least part of the distribution of the velocity
correlations in the boundary layer.

It is clear that the complete characterization of the flow over rough surfaces is a
complicated task where a large number of parameters are involved, most of them
related to the roughness characteristics, making any attempt to provide an a priori
estimation of the turbulence intensity cumbersome. Despite the fact that a significant
amount of experimental and numerical data are available, the research community
has not been able yet to provide some trend without relying on specific data sets
and, in particular, without the possibility to generalize the results.

Recently, Alfredsson et al. [6] have proposed a new fit of the streamwise ve-
locity fluctuation profile, viz. a scatter plot between the mean velocity (normalized
by an outer characteristic velocity scale, such as the free-stream velocity, U∞) and
the local streamwise turbulence intensity, u′/U , where u′ is the streamwise veloc-
ity standard deviation. The new way to plot experimental and numerical data for u′
yields a collapse of the data over a significant part of the boundary layer and, in a re-
gion starting within the logarithmic region out into the wake region, u′/U decreases
linearly with U/U∞: This feature gave the possibility to develop a simple estimation
of the streamwise velocity variance profile once the mean velocity profile is given.

In the present work the diagnostic plot method is applied to data from rough
surfaces to investigate the possibility that a similar fit might exist in this case as
well, leading to some simple relationship between the mean velocity profile and the
turbulence intensity. It is expected that the roughness characteristics should modify
the plot, but the method should also be able to point out the leading parameters that
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relate the turbulence intensity with the mean velocity, providing some insight into
the physics of the turbulent boundary layer over rough surfaces.

2 Results and Discussions

Since the diagnostic method is still an empirical tool, a large number of experiments
have been collected to provide evidence of the observed behavior. These experi-
ments are listed in table 1 where it is shown that a large range of k+, ΔU+ and
δ99/k has been investigated.

Table 1 Details of the used experimental data

Experiment Roughness k+ δ99/k ΔU+

[4] Sanded surface 8-62 130-162 0.14-4.6
[5] Mesh 67-260 4-50 8-13.4
[5] Random blocks 162-681 4.3-15 9.3-12.5
[5] Grit 32-79 9-30 3-6.4
[8] Braille 7-22 462-492 0.44-3.43
[9] Grit 14-108 20-77 2.6-10.0
[10] 2D rods 103 130 13.9
[11] Cubes 426-474 7-11 12-13.1
[12] Sandpaper 60-385 16-54 5.2-13.0
[12] Mesh 28-309 19-109 6.3-13.2
[13] 2D bars 11 160 7.7
[13] 2D bars 56 32 12.7
[13] Staggered cubes 68 28 10.0

The diagnostic plot of all the available data, plotted regardless of the rough-
ness characteristics and streamwise positions, is shown in figure 1. Each single

Fig. 1 Diagnostic plot of
the available data plotted
in traditional form. The
dashed line indicates the
smooth wall line given by
Alfredsson et al. [7].
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Fig. 2 Diagnostic plot of
the available data in the
proposed form with U ′+ =
U++ΔU+. The dashed line
indicates the smooth wall
line found by Alfredsson et
al. [7].
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experiment follows a linear behaviour, but the negative slope of the line appears
to increase with the roughness strength. A surprising collapse of the data can, how-
ever, be achieved by including the roughness function in the mean velocity, namely
by introducing the velocity U ′+ =U++ΔU+, as shown in figure 2: In this case all
the data agree much better, with a scatter that could be related to the uncertainty in
the determination of ΔU+, and overlaps the smooth wall line found by Alfredsson
et al. [7]. This property is in agreement with Townsend’s hypothesis since the vari-
ance is the same once the corrected mean velocity profile is the same. The fact that
the wake parameter is higher, raises some doubt on the actual validity of Townsend
hypothesis that nevertheless seems to be able to describe the leading observation.

By considering that the modified diagnostic plot indicates a scaling relationship,
the local turbulence intensity at any mean velocity level, U/U∞, can be found as

u′

U
=

U/U∞+ΔU+/U+
∞

U/U∞

(
a+ b

U/U∞+ΔU+/U+
∞

1+ΔU+/U+
∞

)
, (2)

where a = 0.286 and b = −0.255 are the smooth wall constants given by Alfreds-
son et al. [7]. An example of equation (2) is reported in figure 3 where the good
agreement between the measurements and the empirical line is evident.

Despite the different roughness characteristics, figures 1–3 demonstrate that
the parameter ΔU+ (or its equivalent roughness length, y0, defined by ΔU+ =
κ−1 lny+0 + B) is a single measure of the roughness effect to the outer region of
the boundary layer. The corrected diagnostic curves overlap with the smooth wall
data covering the transitional to fully rough regimes, providing a simple and useful
fit to estimate the turbulence intensity in the outer region of the turbulent boundary
layer.
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Fig. 3 Turbulence intensity
of the available data at
U/U∞ = 0.65. The solid
line indicates the extension
of the smooth wall line of
Alfredsson et al. [7] by
accounting for ΔU+, while
the dashed lines indicate a
±10% deviation from the
proposed fit.
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Influence of Tripping on Spatiotemporal
Correlation between Velocity and Wall Pressure
in a Turbulent Boundary Layer

Masaharu Matsubara, Yasuyuki Sendai, Kounosuke Matsumoto, and Taiki Mishiba

Abstract. In this study, investigation of tripping influence on a turbulent boundary
layer was experimentally performed with five different tripping devices including
classical circular rods and ’V’ shape embossment. We focused on not only basic
statistics such as mean velocity and fluctuation profiles, but also spatiotemporal cor-
relation between the wall pressure and the streamwise velocity fluctuations. Mea-
surements were made with a single hot wire and a spanwise array of 32 MEMS
microphone sensors mounted on the wall. The results indicate that the velocity-
pressure correlation is sensitively changed by the tripping devices, while the mean
velocity profile is not affected except for very intense tripping with a thick rod.
Though this tripping influence was confirmed only in the low range of Reynolds
number, it warns that the transition process should be taken into account in re-
searches on turbulent boundary layer flow.

1 Introduction

From extensive comparison of numerical results for turbulent boundary layer flow,
there exist considerable discrepancies in both peak fluctuation value and outer layer
profile [1]. One possible explanation for this inconsistency is that influence of up-
stream disturbance condition that strictly governs boundary layer transition is not
negligible for downstream turbulent boundary layer. The aim of this study is to in-
vestigate tripping influence on not only basic statistics such as the mean velocity
profile and the fluctuation distrubution, but also the spatiotemporal correlation be-
tween the wall pressure and the streamwise velocity fluctuation.
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2 Experimental Setup and Results

The experiment was performed in a closed wind tunnel, which had a vertically
mounted test plate of a 2.1 m length and a 580 mm width. The sidewall faced to the
test surface and the trailing-edge flap were adjusted to prevent separation around
the leading edge and to obtain constant streamwise distribution of pressure in the
free stream. The coordinate system is denoted by the streamwise, wall-normal and
spanwise distances x, y and z from the origin at the center of the leading edge, re-
spectively. The pressure sensor array had 32 holes of a 0.5 mm diameter with a
0.8 mm spanwise space. Each hole was connected to a MEMS microphone. The
sensor array and the hot wire are located at x = 1530 mm. Five tripping sets were
tested. One set labeled ’Case 1’ consisted five plastic tapes embossed with letter
’V’s. They were located between 315 mm ≤ x ≤ 415 mm. Another set of ’Case 2’
had seven plastic tapes but they were placed between 150 mm ≤ x ≤ 400 mm. In
Case 2, a strip of 100 grit sandpaper was sticked downstream of the tapes and this
tripping is very similar to that used by Österund [2]. In both cases the tapes were
placed at regular intervals. Case 3, 4 and 5 were of the classical tripping with a
round cylinder of 1, 2 or 6 mm diameter, respectively. The cylinders were placed on
the test plate surface at x = 150 mm. In all cases, the free stream velocities U∞ were
adjusted so that Reynolds number based on the momentum thickness, Re, was in the
range of 2550 < Re < 3190.

y+

U
+

y+

u+ r
m
s

U/U

u r
m
s
/U

Fig. 1 The basic statistics. (a) Streamwise mean velocity profile. (b) Streamwise velocity
fluctuation. (c) Diagnostic plot. The line is the slope urms/U = 0.38.



Influence of Tripping on Spatiotemporal Correlation 105

As seen in Fig. 1 (a), the dimensionless velocity profiles, U+, are collapsed well
in the whole boundary layer except in Case 5 with the thickest rod. Distributions
of the streamwise velocity fluctuation, u+rms, in Fig. 1 (b) also very similar except
Case 5, though the fluctuation around y+ = 100 in Case 1 is slightly lower than the
other three cases. No drastic influence on the basic statistics in Case 1 to 4 is also
confirmed in the diagnostic plot of Fig. 1 (c).

Figure 2 shows contour maps of the spatiotemporal correlation coefficient be-
tween the wall pressure and the streamwise velocity at y+ = 400. Both tempo-
ral and spatial scales are normalized in the wall scale as Δ t+ = Δ tuτU∞ν and
Δz+ = Δzuτ/ν . The time difference is defined as Δ t = tu − tp, where tu and tp is
the time of the streamwise velocity and the pressure, respectively. The fine span-
wise step of 0.1 mm for the hot wire traversing realizes high spanwise resolution of
these correlation maps. As seen Fig. 2 the correlation maps are obviously affected
by the tripping configuration even the moderate tripping devices of Case 1, 2, 3 and
4. In Case 2 and 3 the positive peaks around Δz+ = 500, Δ t+ = 500 shift father in
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+
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Fig. 2 Contour maps of cross-correlation maps between the streamwise velocity at y+ = 400
and the wall pressure. Contour spacing is 1% and positive and negative regions are colored
in red and blue, respectively.
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the both streamwise and spanwise directions, compared with Case 1. Furthermore,
for Δ t+ < 0 the correlation around Δz+ = 0 in Case 1 is stronger than that in Case
2, 3 and 4. The correlation map in Case 5 is apparently different from others.

The results indicate that the cross-correlation is very sensitive to transition pro-
cess. Velocity and velocity-pressure correlations are indispensable statistics for the
turbulent analysis, so that great care of the tripping should be taken for both experi-
ments and numerical investigation on a turbulent boundary layer.

3 Summary

Influence of a tripping on the zero-pressure-gradient turbulent boundary layer was
investigated with the five sets of tripping devices. The basic statistics, the mean ve-
locity profile and the velocity fluctuation distribution, are not affected by the tripping
except for very intense tripping with the thick rod. However, the cross-correlation
between the streamwise velocity and the wall pressure fluctuations are obviously
changed by the alteration of the tripping devices. This influence suggests that dis-
turbances excited in the transition process trace the turbulent boundary layer for a
long streamwise distance and/or survive in a regeneration circle. Though this trip-
ping influence was confirmed in the low range of Reynolds number, it warns that the
transition process should be taken into account in researches on turbulent boundary
layer flow, especially for analysis of detail statistics such as cross-correlations be-
tween velocities and pressure.
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Turbulent Production and Subgrid
Dynamics in Wall Flows

A. Cimarelli and Elisabetta De Angelis

Abstract. The Kolmogorov equation generalized to wall-turbulence has
been recently proven to give a detailed description of the multi-dimensional
features of such flows[1]. As emerging from this approach, the small scales of
wall turbulence are found to drive the quasi-coherent motion at large scales
through a reverse energy transfer. At the base of this phenomenology is the
focusing of production of turbulent fluctuations at small scales. These ob-
servations may have strong repercussion on both theoretical and modeling
approaches to wall-turbulence. Here, we aim at using the Kolmogorov equa-
tion not only for the study of the mechanisms altering the energy transfer
but also for modeling purpose.

1 Introduction

One of the main goals of large eddy simulation (LES) is the accurate and
low-cost reproduction of the main features of turbulent flows. In LES, the
velocity field, ui, is decomposed into the sum of a filtered, ūi, and a resid-
ual unresolved component, usgs

i , so that the resulting filtered field can be
resolved on a relatively coarse grid. The evolution equations for ūi can be
obtained by applying the filtering operation to the Navier-Stokes equations
where the effects of the small unresolved scales appears in the subgrid stress
tensor τij = uiuj − ūiūj which must be modeled. Arguably, the most impor-
tant effect of the subgrid scales on the large ones is the energy exchange, εsgs,
between large resolved and small subgrid scales. In this context, most of the
commonly used LES models assume that the main role of the subgrid scales
is to remove energy from the large resolved motion and dissipate it. Indeed,
according to the Kolmogorov theory, the small scales of turbulence dissipate

A. Cimarelli · Elisabetta De Angelis
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Fig. 1 Isosurfaces of the streamwise fluctuations in a turbulent channel with colors
encoding wall-distance. Left: entire velocity field. Right: large scale coherent motion.

the energy flowing down from the largest ones at a rate proportional to the
viscous dissipation ε. The filtering operation breaks off this energy transfer
and, hence, the model should reproduce the draining of energy towards the
removed dissipative scales. However, wall-flows have been recognized as ex-
tremely elusive. Indeed, in wall turbulent flows, the Richardson scenario of the
energy cascade is completely modified up to a reverse energy flux from small
to large scales. Even if it is well known that turbulent flows are characterized
by events of energy back-scatter also in globally isotropic and homogeneous
conditions, in the production region of wall turbulent flows these phenomena
prevail resulting in a net energy flux from small to large scales. Here, we aim
at discerning this phenomenon in order to define a new modeling approach
for the subgrid stresses in wall flows.

2 Small-Scale Energy Sourcing

The spectral dynamics at the basis of the reverse energy cascade arise from
the complex interactions between turbulent production in the space of scales
and inhomogeneous fluxes in physical space. In this context, as shown in
[1], the generalized Kolmogorov equation represents an ideal framework to
address these two phenomena and is shown to be fundamental for the iden-
tification of the basic mechanisms responsible for the reverse energy cascade.
Let us recall the main results. The Kolmogorov equation can be written as

∇r ·Φr(r, Yc) +
d

dYc
Φc(r, Yc) = ξ(r, Yc) (1)

where Φr = 〈δu2δu〉 + 〈δu2δU〉 − 2ν∇r〈δu2〉 is the transfer through the
scales, Φc = 〈v∗δu2〉 + 2〈δpδv〉/ρ − νd〈δu2〉/2dYc the flux in physical space
and ξ = −2〈δuδv〉 (dU/dy)∗−4〈ε∗〉 the balance between production and dissi-
pation. When homogeneous and isotropic conditions are recovered, equation
(1) reduces to ∂〈δu2δui〉/∂ri = −4〈ε∗〉 which is analogous to the 4/5 law.
This states that the energy flux through the scales equals the rate of en-
ergy dissipation. There is not direct energy injection and extraction amid the
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Fig. 2 Turbulent channel flow DNS at Reτ = 550, see [1] for the details of the sim-
ulations. (rx, rz, Yc)-trajectories of the energy fluxes (colours according to strength
increasing from blue to red). The two energy source – ξ(rx, rz, Yc) – iso-surfaces
show the two maxima, in the inner (ξ = 0.42, red) and outer (ξ = 0.006, green)
regions.

spectrum of scales. Whereas, as shown in figure 2, in wall-flows the turbulent
production mechanisms concentrate at intermediate small scales, see red iso-
surface. This small-scale source leads to a complex redistribution of energy
in the compound space of scales and wall-distance, see field lines. From the
source the energy fluxes diverge feeding longer and wider structures while
ascending towards the bulk of the flow. Following a spiral-like behavior, the
field lines end up in a Yc-distributed dissipative range located at the smallest
scales of motion.

3 Subgrid Scale Modeling and Final Comments

The driving idea of LES is to directly compute the large coherent motion
whose features are specific of the problem considered, leaving to the small-
scale (subgrid) models the duty to account in almost universal fashion for
the dissipative energy sink, see figure 1. However, wall flows have a much
richer physics accompanied by the focusing of energy generated at small scales
near the wall which feed the large motion farther away from the wall. This
leads to overwhelming difficulties for LES. Actually, the present approach
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Fig. 3 Yc-behaviour of the coefficient C(Yc) evaluated as C(Yc) = 1 +
(∂〈v∗δu2〉/∂Yc)/4〈ε∗〉 for a subset of values of scales such as r+x < 1200 and
r+z < 600

based on the Kolmogorov equation can be also used for modeling purpose.
In particular, starting from the phenomenological relation for the energy
transfer in wall-turbulence proposed in [1], we propose a new LES modeling
approach. This new relation,

∂〈δu2δui〉
∂ri

= −
[
2〈δuδv〉

(
dU

dy

)∗
+ 4C(Yc)〈ε∗〉

]
, (2)

though quite simple, accounts the scale-dependent dynamics of production
which inject energy among the spectrum of scales. In equation (2), the pres-
ence of spatial fluxes (assumed to be weakly dependent on the scales consid-
ered) is taken into account with the constant C(Yc). As shown in figure 3,
C(Yc)−1 is positive in the buffer layer and negative in the bulk region consis-
tently with the role of these layers as global origin and terminus, respectively,
of the spatial flux. In this putative overlap layer, 50 < Yc < 300, our data
show that C(Yc) − 1 is almost vanishing consistently with the traditional
notion of equilibrium layer.

Let us now consider how equation (2) can be used in a LES context.
Equation (2) suggests to model turbulence using two different ingredients at
the basis of the dynamics of small scales of wall turbulence. A linear isotropic
mechanism analogous to the viscous stresses which models the sink behavior
of the small scales and a nonlinear anisotropic one which accounts for their
source behavior. By taking into account this double linear/nonlinear feature
of the small scales, equation (2) has been already used in an a priori test, [2],
to model the energy flux between resolved and subgrid scales, 〈εsgs〉, showing
the capability of this appraoch to reproduce the switch between draining,
−〈εsgs〉 < 0, and sourcing, −〈εsgs〉 > 0, behavior of the subgrid motion
when large filter lengths are considered. The subgrid stress tensor, τ�ij , is
then decomposed in a linear eddy viscosity term which is responsible for the
sink-like behaviour and a nonlinear anisotropic one which is responsible for
the source-like one. A natural candidate for the nonlinear part is the velocity
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increments tensor Q̄ij = δūiδūj , already used in [3]. Indeed, by evaluating the
velocity increments for separation vectors ri proportional to the grid interval,
such a quantity allows for capturing implicitly the anisotropy of the mesh and,
consequentely, of the flow. Hence, the model for the subgrid stresses should
take a relatively standard form, see [4, 5],

τ�ij = CΔδū�
i δū

�
j − 2νT S̄

�
ij (3)

where the coefficient CΔ could be set a priori using similarity or computed
dynamically. Though the main goal of the paper is to present a new LES
approach based on physical arguments, let us notice that very preliminary
results in a turbulent channel are available. These results show the effective-
ness of the present model and the value of the balance of the filtered second
order structure function as a post-processing tool.

Acknowledgements. The DNS was performed on a computing time grant pro-
vided by CASPUR. We acknowledge that the present work has been carried under
the auspices of MIUR through the PRIN08 funding scheme.
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Revisiting the Near-Wall Scaling of the
Streamwise Variance in Turbulent Pipe Flows

S.S. Sattarzadeh, M. Ferro, R. Örlü, and P. Henrik Alfredsson

Abstract. Apparent contradictory results regarding the Reynolds number scaling of
the near-wall peak of the variance distribution in turbulent pipe flows are discussed.
Inconsistencies in the conclusions from the Princeton SuperPipe published between
2010–2012 are highlighted and new experimental evidence in the Kármán number
range 500–2500 is supplemented. The new results support the view that the inner-
scaled peak amplitude increases with Reynolds number as for channel and turbulent
boundary layer flows, and in agreement with trends observed in recent direct nu-
merical simulations and other experiments.

1 Introduction

Despite a large body of experimental investigations and more recently direct nu-
merical simulations (DNS) there are still unresolved fundamental issues regarding
the canonical flow case, the turbulent pipe flow. Among those are the distribution
and scaling of the mean velocity (e.g. the value of the log-law constants) and the
variance. In respect to the latter, two distinct issues have stirred the minds over re-
cent years, namely the question whether the amplitude of the inner-scaled near-wall
peak is Reynolds number (Re) invariant and whether a second (so called “outer”)
maximum emerges at higher Re, i.e. exceeding the highest available DNS by an or-
der of magnitude [1]. While empirical evidences have established that the amplitude
of the inner-scaled near-wall peak grows logarithmically with Re for both flat plate
boundary layer and channel flows [2, 3], the situation for the turbulent pipe flow is
less clear as concluded from a compilation of carefully selected data sets [4].

The main reason for this scatter is the fact that the effect of spatial resolution
in the (predominantly hot-wire) measurements had not been (sufficiently) taken into
account [3,5]. To resolve the controversy regarding the scaling of the near-wall peak
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of the variance distribution, hot-wire measurements with matched viscous scaled
hot-wire lengths (L+) were reported from the Princeton SuperPipe.1 It was con-
cluded [4] that “the magnitude of the peak is constant for all Reynolds numbers
with a magnitude of 7.34±0.13”. Due to the finite length of the used hot-wires (with
L+ = 20) the authors stated that the real peak value “is expected to be closer to the
value found with [their shortest employed hot-wire] L+ = 4 which is 7.77±0.37”.

By applying the semi-empirical correction scheme for hot-wire measurements
proposed in Ref. [6] one would instead obtain a slightly higher amplitude value of
around 8.1. This is also the value obtained in a more recent investigation in which,
besides conventional hot-wire probes, also a nano-scale thermal anemometry probe
(NSTAP) was used in the SuperPipe. In fact, using the aforecited correction scheme,
the authors concluded, that “the corrected hot-wire and NSTAP data collapse onto a
single curve for each Reynolds number [...] with a peak value [...] = 8.1±0.2” [7].
While these and the aforementioned measurements from Princeton were restricted
to Kármán numbers (R+, where R denotes the pipe radius) up to 3300, more re-
cent efforts provide variance profiles up to R+ = 105 using NSTAPs [8, 9], whereas
the near-wall peak was resolved up to (at least) R+ = 20000. These efforts were
seemingly “confirming the Reynolds number invariance of the inner peak magni-
tude” [8] or shown to “clearly demonstrate that the magnitude of the near-wall peak
[...] remains constant” [9] (when corrected for spatial filtering effects).

2 Motivation

Despite the repeated reaffirmation of the Re-invariance through Refs. [4,7–9], there
remain some doubts: Firstly, the corrected (apparently Re invariant) peak value in-
creased from 8.1 [4, 7] to around 8.4 [8] and then to around 9.0 [9]. Secondly, the
quantitative results from preceding studies were not discussed in the succeeding
studies, thereby leaving open whether the preceding (quantitative) conclusions are
superseded. In conclusion, it can be summarised that the outcome of the Princeton
SuperPipe experiments are inconclusive in respect to the amplitude of the near-wall
peak as well as its Re-invariance. On the other hand, considering that the lowest con-
sidered R+ value moved from around 700 [4], to 1100 [7, 8], and finally to around
2000 [9], one could equally well conclude – based on the same corrected data sets
– that the near-wall peak value appears to increase with Re.

Recent DNS results from pipe flows compiled in Ref. [10], albeit limited to
R+ � 1142, and results from a detailed experimental investigation from Ng et
al. [11] in the range 1000< R+ <3000 depict a clear increase with Re. In light of
the aforementioned inconsistencies, there is consequently a clear need for additional
experiments that focus on Re scaling by taking L+ and L/d effects specifically into
account and go beyond R+ = 1000.

1 The superscript ’+’ denotes quantities in wall units.
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3 Results and Discussion

Hot-wire measurements in a turbulent pipe flow facility with a variety of hot-wire
probes varying in diameter, length and length-to-diameter ratios in the range 1.25–
5 micron, 0.24–1.50 mm and 128–600, respectively, have been performed in the
pipe flow facility at KTH Mechanics. Details of the pipe flow facility, the measure-
ment equipment and the measurement parameters covering the range from 500<
R+ <2500, as well as the post-processing procedures are detailed in Refs. [12, 13].

The inner-scaled mean streamwise velocity profile measured with three different
probes is depicted in Fig. 1a) to show the quality of the established flow field as
well as the repeatability and (indirectly) accuracy of the measurements. Figure 1b),
showing the corresponding variance profiles, illustrates the significance of insuffi-
cient spatial resolution, but also demonstrates the good performance of the semi-
empirical correction scheme [6] utilised in the Princeton experiments.

Considering now only the near-wall peak value of the variance profiles, Fig. 2a)
depicts the measured values. Additionally, some of the data points with 3 or more
measurements with exactly the same probe are connected and colour-coded in order
to evince the various trends one can obtain if spatial resolution effects are not con-
sidered. Interestingly, these trends can easily be predicted by use of the empirical
relation given in Ref. [3] (as function of L+ and R+) transformed into a relation as
function of the (more practical) quantity L/R [5], as demonstrated in Fig. 2b).

Correcting the measured data with the same scheme as the Princeton data, the
scatter reduces drastically as shown in Fig. 3a). Neglecting the data corresponding
to the shortest L/d ratio, i.e. L/d = 128 (encircled cases), the scatter reduces even
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Fig. 2 a) Peak amplitude of measured inner-scaled variance profile as function of R+. Points
belonging to same physical probe are connected and colour-coded. Line for L/R = 0 is based
on Ref. [3] for L+ = 0. b) Prediction of the peak value for particular L/R ratios according to
Ref. [5].
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Fig. 3 For notation of data points see Fig. 2. a) Data corrected for L+ effects (×) according
to scheme of Ref. [6]. Encircled cases correspond to L/d = 128. b) Turbulence intensity at
peak location of variance profile, i.e. at same location as the data shown in subplot a).

further. The observed effect of a too short L/d ratio is well known since the seminal
work by Ligrani & Bradshaw [15], and has recently been revisited in Refs. [11,
14]. While an insufficient L/d ratio might at first glance appear to cause the same
kind of attenuation as an insufficient L+, the “attenuation due to long sensors is
scale dependent”, while the “attenuation caused by L/d effects occurs over a much
broader range of wavelengths” as shown in Ref. [11].
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The corrected results support the view that the near-wall peak amplitude of the
variance in pipe flows increases with Re, as it does for channel and boundary layer
flows at least for the Re-range considered here. Since, uncertainties in the measured
or deduced friction velocity can easily mask Re effects if the considered Re range is
relatively small (as is the case here), it is important to ensure that the local turbulence
intensity (which is independent of the friction velocity), i.e. the root mean square
value scaled by the local mean, is as well increasing. Figure 3b) shows the corre-
sponding local turbulence intensity at the same wall-normal location as in Fig. 3a),
i.e. at the peak location, and confirms that the peak value is indeed increasing with
Re, thereby supporting trends from recent direct numerical simulations (cf. compi-
lation in Ref. [10]), the experiments by Ng et al. [11], and the formulation in Ref. [2]
based on the diagnostic plot [16].

4 Conclusion and Outlook

Contrary to the view put forward in several of the Superpipe publications, new em-
pirical evidence supports the view that the inner-scaled peak amplitude increases
with Re at least up to R+ = 3000. Since the SuperPipe experiments exceed the em-
pirical evidence presented here and available elsewhere by an order of magnitude
in Re, there is clearly a need for concerted experiments for R+ > 3000 to settle
this issue while taking L+, L/d, and the frequency response of the employed hot-
wire probe specifically into account. Such data will be available once the Center
for International Cooperation in Long Pipe Experiments (CICLoPE) [17] goes into
operation.

One additional cause for the disparity regarding the near-wall peak between vari-
ous experiments might lie in the temperature gradient that can arise across the mea-
surement plane in internal flows, i.e. between the inner pipe wall and the centreline.
Preliminary results based on velocity and temperature fluctuation measurements by
means of hot- and cold-wire measurements at KTH [13] have shown in the present
experimental facility that temperature differences between the inner pipe wall and
centreline of up to 2 K occurred at the highest flow rate. By exploiting the fact that
the streamwise velocity and temperature fluctuations are nearly fully correlated [18]
and taking the measured variances of both quantities into account, such a tempera-
ture gradient was found to lead to differences in the variance peak value of around
2 %. While the effect of temperature gradients on the mean streamwise velocity pro-
file can be compensated for, if the mean temperature profile is known, it is a nearly
impossible task to measure the spatially and temporally resolved temperature and
velocity fluctuations simultaneously at the same location in order to facilitate the
compensation of temperature fluctuations on the velocity measurements. Based on
this observation, efforts have been initiated to study the effect of temperature gradi-
ents on the higher-order moments obtained through hot-wire anemometry by means
of velocity and temperature fields from DNS of turbulent channel flows [19].
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16. Örlü, R., Alfredsson, P.H.: The diagnostic plot – a litmus test for wall bounded turbulence
data. Eur. J. Mech. B 29, 403–406 (2010)

17. Talamelli, A., Persiani, F., Fransson, J.H.M., Alfredsson, P.H., Johansson, A.V., Nagib,
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Turbulence Control in Plane Couette Flow by
Spanwise Reflection Symmetry Breaking

George Khujadze, George Chagelishvili, and Martin Oberlack

Abstract. We propose a new strategy shear flow turbulence control which can be
realised by the following steps: (i) a specially designed, non-symmetric in span-
wise direction seed velocity perturbations imposed at the boundaries of the flow;
(ii) the configuration of the imposed perturbations ensures a gain of shear flow en-
ergy and the breaking of turbulence reflection symmetry – generates spanwise mean
flow; (iii) the generated flow changes the self-sustaining dynamics and results in
considerable reduction of the level of turbulence and its kinetic energy production.
The generated spanwise mean flow is a result of an action of intrinsic nonlinear
processes of forced turbulence and it is not directly introduced in the system – the
activation of the intrinsic processes is the basic idea of the proposed strategy. A
model, weak near-wall forcing was designed to impose in the flow the perturbations
with required characteristics and the efficiency of the proposed scheme was demon-
strated by direct numerical simulation using plane Couette flow as a representative
example. The considerable reduction (up to 35%) of production of turbulent kinetic
energy was obtained.

1 Introduction

Controll of wall-bounded turbulent flows is an important topic in modern fluid me-
chanics. Investigations of problems concerned with a reduction of consumption of
fuel in aeronautical applications, or reduction of energetic costs at pipeline trans-
portation of fluids, have a century long history. A wide variety of active and passive,
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linear and nonlinear flow control mechanisms have been suggested and developed
over the years (Choi et al., 1993; Gad-el-Hak, 2000).

Coherent structures in turbulence play an important role in wall-layer dynam-
ics and most high skin-friction regions in near-wall turbulent layers are induced by
nearby streamwise vortices (Kim, 2011; Garcia-Mayoral & Jimenez, 2011). Gener-
ally, streamwise vortices are formed and maintained by a self-sustained dynamics
of turbulence which goes by linear/unstable and nonlinear processes associated with
these structures. The common features of all drag-reduced flows are weakened near-
wall streamwise vortices and streaks. Recently efforts have been made to control
turbulence through different spanwise wall-based forcing methods (Karniadakis &
Choi, 2003). These attempts address the modification of near-wall turbulence by di-
rect creation of a spanwise mean flow using the models of the shark-skin riblets
(Garcia-Mayoral & Jimenez, 2011), streamwise traveling waves (Quadrio et al.,
2009), etc. However, there could be an indirect way of a spanwise mean flow gen-
eration, for instance, by a week near-wall forcing that initiates the breaking of tur-
bulence spanwise reflection symmetry that, finally, leads to the turbulence control:
(i) a specially designed, non-symmetric in spanwise direction, near-wall weak forc-
ing generates seed velocity perturbations that draw shear flow energy and undergo
substantial transient growth; (ii) the amplified non-symmetric velocity perturbations
lead to the breaking of turbulence reflection symmetry and the generation of mean
spanwise flow; (iii) the latter, in turn, changes the statistics of the turbulence giving
a considerable reduction of its level.

2 Model of Non-symmetric Near-Wall Forcing

Incompressible plane Couette flow with shear parameter A and Reynolds number
Re ≡UL/ν = AL2/ν , based on the wall velocity U , the channel half-width L, and
the kinematic viscosity ν is considered. (x,y,z) indexes of physical variables for
streamwise, wall-normal and spanwise directions are used respectively.

The transient growth of perturbations (that is due to the non-normality of the lin-
earised operators of shear flow system) is the basis of smooth shear flows dynamical
activity. It is well-known that constant shear flows for sufficiently high Reynolds
numbers support a set of perturbations that undergo large transient growth during
the dynamical time of turbulence (O(1/A)). A robust growth appears for 3D pertur-
bations satisfying the following conditions: characteristic streamwise and spanwise
scales of which are the same order but larger than the viscous dissipative length
scale, �x � �z � �ν , or, in terms of wavenumbers, kx,kz � kν (kν ≡ √

Re ≈ 1/�ν);
the perturbations are tilted with the background shear (Craik & Criminale (1986)),
or in terms of wavenumbers, ky/kx < 0.

This type of seed (i.e., small amplitude) velocity perturbations can be imposed in
the flow by the following model of the helical forcing:
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where f (y) = sin(πy)exp
[−(|y|− ypeak)

2/l2
y

]
,y ∈ [−1,1]. Functions Xn,Zm, X̂ , Ẑ

on the bottom wall (y =−1) are defined as:

Xn(a,φ) = x/a− 2ncosφ , Zm(a,φ) = z/a− 1− (4m+ 1)(1− sinφ),

X̂n(a,φ) = x/a− (2n+ 1)cosφ , Ẑm(a,φ) = z/a− (4m+ 2)(1− sinφ),

while the functions Xn,Zm, X̂ , Ẑ on the top wall (y = 1) have the form:

Xn(a,φ) = (Lx − x)/a−2ncosφ , Zm(a,φ) = (Lz − z)/a−1− (4m+1)(1− sinφ),

X̂n(a,φ)= (Lx − x)/a−(2n+1)cosφ , Ẑm(a,φ)= (Lz − z)/a−(4m+2)(1−sinφ),

where Lx = 2a(N−1)cosφ and Lz = 4aM(1−sinφ) are sizes of the simulation box
and N+1 and M+1 are numbers of the forcing centers in the streamwise and span-
wise directions, respectively; a and φ define the forcing configuration (a defines the
forcing “cell” size and φ – the forcing orientation in x− z plane, e.g., at φ = π/4
quasi equipartition of the forcing in the streamwise and spanwise directions occurs);
lx, ly and lz are sizes of the forcing localisations in the streamwise, wall-normal and
spanwise directions respectively; A1 and A2 define the forcing amplitudes in the
streamwise (spanwise) and wall-normal directions; Xn(a,φ) and Zm(a,φ) define the
location of the forcing symmetry centers and X̂n(a,φ) and Ẑm(a,φ) define the loca-
tion of the forcing localisation centers in the streamwise and spanwise directions,
respectively; ypeak defines the location of the forcing localisation center in the wall-
normal direction. Fig. 1 displays the forcing design in xz-plane.

Fig. 1 Design of the helical
forcing (with zoomed region
in the upper right part of
the plot) in the xz-plane
at y = −ypeak = −0.95
and with the parameters
M = 7, N = 13, a = 1.2221,
φ = π/4, �x = �z = 1/

√
10,

�y = 0.2, A1 = 0.4, A2 =
0.008
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3 Numerical Simulations: Results and Analysis

Pseudo-spectral code developed at KTH, Stockholm was used in the simulations
(Skote, 2001) of the controlled and unmanipulated flows at Re = 750. The simu-
lation box Lx × Ly × Lz = 8π × 2× 4π and two different number of modes Nx ×
Ny ×Nz = 256× 97× 128, 512× 257× 256 were used. The resolution was Δx+ =
5, Δy+ = 0.03− 1.6,Δz+ = 5. It was found that the production of turbulent ki-
netic energy is very sensitive to the forcing parameters. Here only the case with the
significant reduction of turbulent kinetic energy production is presented.

In Fig. 2 the contours of spanwise velocity for the unmanipulated (top plot) and
controlled (bottom plot) turbulence are shown in xy-plane with the levels in the range
of [−0.2,0.2] and increment 0.02. Dashed and solid contours correspond to the neg-
ative and positive spanwise velocities correspondingly. In the case of unmanipulated
flow, the contours with different signs are uniformly distributed in wall-normal di-
rection (no mean spanwise flow in this case). A completely different picture is ob-
served on the bottom plot. Firstly, the contours become rare indicating a reduction
of the turbulence intensity. Secondly, the contours with negative values are located
in the upper half of the flow and vice versa, which means the appearance of the
mean flow in the spanwise direction. The statistics of Reynolds stress tensor com-
ponents in unmanipulated (dashed lines) and forced (solid lines) cases are shown in
Fig. 3 showing significant decrease of level of turbulence in the latter case. We have
to emphasize the appearance of the nonzero non-diagonal stress components in the
controlled case.

Fig. 4 shows the deviation of the controlled flow mean streamwise (ΔUx =

U
contr
x −U

turb
x ) and spanwise (ΔUz = U

contr
z −U

turb
z ) velocity profiles from the

unmanipulated ones. The maximum deviation of the mean streamwise velocity is
small: ΔUx,max ≈ 0.014. In the unmanipulated case the mean spanwise velocity is
zero, consequently its deviation is ΔUz =U

contr
z with the maximum U

contr
z,max ≈ 0.07.

As for the production of turbulent kinetic energy, besides the classical term, Prx =
−u′xu′ydUx/dy, the additional component Prz = −u′yu′zdUz/dy appears due to the

forcing. The power input in the flow can be defined by: Pin = Fxu′x +Fyu′y +Fzu′z ≡
Pin

x +Pin
y +Pin

z , where the term Pin
y is negligible. The terms characterising the en-

ergetics of the control process are presented in Fig. 5. The left plot displays Pin
x

(dashed-dotted line) and Prx for the unmanipulated (dashed line) and controlled
(solid line) flows. The right plot displays the same for the spanwise components.

y

x
Fig. 2 Contours of spanwise velocity for unmanipulated (top plot) and controlled (bot-
tom plot) flows. The levels are in the range [−0.2,0.2] with increment 0.02: positive,

negative.
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Fig. 3 Reynolds stresses for unmanipulated ( ) and controlled ( ) flows
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Fig. 4 The deviation of the controlled flow mean streamwise (ΔUx) and spanwise (ΔUz)
velocity profiles from the unmanipulated ones
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Fig. 5 Time averaged productions of turbulent kinetic energy. Left plot: Prx for the unma-
nipulated turbulent ( ) and controlled ( ) flows and input power, Pin

x , ( ); Right
plot: The same for the spanwise components.

The figure shows that Pin
x ,Pin

z ,Prz � Prx and the turbulent kinetic energy produc-
tion is substantially reduced in the controlled case. This result is confirmed by Fig. 6
that displays the time evolution of the space averaged production of turbulent kinetic
energy. The time region t ≤ 3000 corresponds to the unmanipulated turbulent flow.
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Fig. 6 Time evolution of
Prx (averaged in space) for
unmanipulated (t < 3000)
and controlled (t > 3000)
flows

P
r x

t

At t = 3000 the forcing was switched on. The reduction of the level of turbulence
about 35% was obtained.

4 Conclusions

The aim of this study was to propose a new strategy of the flow control by perma-
nent imposition in the flow a specially designed seed velocity perturbations that have
potential of transient growth and generation of helical turbulence with simultaneous
creation of spanwise mean flow. This strategy is based on peculiarities of linear and
nonlinear processes in the framework of the bypass concept of transition to turbu-
lence in shear flows. According to this concept, the self-sustenance of the turbulence
is a result of the flow non-normality induced transient growth of kinetic energy of
perturbations and positive nonlinear feedback. The turbulence level depends on the
nonlinear redistribution process in wavenumber space and the balance between the
linear and nonlinear processes can be achieved at different levels (low or high). At
the proposed control strategy the imposed specially designed velocity perturbations
grow transiently and become active participant of the nonlinear redistribution pro-
cess changing it and finally leading to the balance at the low level of turbulence.
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The “Long Pipe” in CICLoPE: A Design for
Detailed Turbulence Measurements

A. Talamelli, G. Bellani, and A. Rossetti

Abstract. A new facility to study high Reynolds number wall bounded turbulent
flow has been designed. It will be installed in the laboratory of Center for Interna-
tional Collaboration on Long Pipe Experiments ”CICLoPE” in Predappio (Italy).
The facility consists of a large pipe, allowing to reach high Reynolds numbers,
where all turbulent scales can be resolved with standard measurement techniques.
The pipe operates with air at ambient conditions with a maximum speed of 60 m/s
in order to avoid any compressibility effect. In order to maintain stable conditions
over long period of time the pipe is part of a close loop circuit. The pipe will be
located in a tunnel 60 m underground, thus ensuring very low level of external per-
turbations. The layout resembles an ordinary wind tunnel where the main difference
is the long test section, which produces most of the friction losses. This requires the
use of a multiple stage axial fan driven by two independent motors. Even though
many of the various aerodynamic components are similar to those ordinary used in
wind tunnel (corners, diffusers, turbulence manipulators, contraction, etc.) they have
been designed aiming at obtaining a very good quality of the flow and minimizing
the overall pressure losses.

1 Introduction

Even if the possibility to simulate and understand turbulence dynamics has recently
taken a giant leap with the increase of computing power, the worlds largest comput-
ers still may completely simulate (through Direct Numerical Simulation, DNS) only
flows at moderate Reynolds numbers and are not likely to reach the higher values of
practical interest for decades to come. Moreover, the required computational time to
obtain good statistical significance at high Reynolds numbers for higher moments
and spectra still remains prohibitive.
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As far as the interaction between the large, essentially inviscid, outer scales and
the viscously influenced, highly anisotropic, near-wall structures, DNS has recently
advanced to the point where a real scale separation between inner and outer scales
can be seen and new findings are emerging on the role of their interaction [1].
However, although DNS is giving us valuable information, there are still a num-
ber of outstanding questions in turbulence research that can only be answered by
studying turbulence at high Reynolds numbers experimentally under well controlled
conditions.

Several possibilities exist to obtain high Re in a laboratory. However, if a full
characterization of the turbulent flow is required then it is necessary to operate with
a facility where the spatial sizes of the smallest scales are sufficiently large to be
resolvable by the available measurement techniques. A measure of the smallest scale
is the viscous length scale (�∗ = ν/uτ) and it can be shown that for a pipe flow
experiment with radius R the following relation holds (Reτ ∼ Re)

�∗ =
R

Reτ
(1)

so it is clear that in order to have large scales, for a fixed Reynolds number, the
overall dimension of the facility should be chosen as large as possible.

The facility which is presently under construction in CICLoPE1 is a large circu-
lar pipe, which will allow high Reynolds numbers to be reached and to resolve all
turbulent scales with standard measurement techniques (see Figure 1). An advan-
tage of the pipe flow compared to the other canonical cases, i.e. two-dimensional
channel flow and flat-plate boundary layer flows, is that the wall shear stress can
be determined directly from the pressure drop, which can be measured directly and
very accurately.

2 The Facility

The main element of the apparatus is the long pipe, which consists of a 115 m long
tube with an inner diameter of 0.9 m, result in in an L/D of about 125 [2]. The
pipe is made of 5 m long carbon fiber modules held by precision positioning ele-
ments for accurate alignment. All pipe elements have two accesses with a diameter
of 10 cm allowing measurement devices like traversing mechanism to be mounted
every 5 m along the pipe. The main test section, at the end of the pipe, is 1.5 m long,

1 CICLoPE, Center for International Cooperation in Long Pipe Experiments
(www.ciclope.unibo.it), is an international cooperation between several Universities
and research Institutions to establish a laboratory where large scale facilities for high
Reynolds number experiments can be mounted. The laboratory is located in Predappio
beside the old factory of the Caproni Industry, which was one of the major sites of aircraft
production in Italy between 1930 and 1945. Two 130 m long tunnels were excavated
under the mountains to keep the plant operative under bombing activities as well as to
provide shelter for civilians during the 2nd World War. In 2006 the tunnels were given to
the University of Bologna specifically for hosting the CICLoPE laboratory.
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and can be easily removed and replaced with another, according to experiment type
and/or measurement technique. This feature allows a maximal flexibility in terms of
experiment and enables users to build their own instrumented test section for spe-
cific measurements. The mechanical requirements for the pipe are mainly fixed by
the demand to have a hydrodynamically smooth surface and diameter accuracy. In
order to achieve this, the sand equivalent surface roughness of the pipe ks has to be
lower than 3.5�∗ according to recent results for a honed finished surface[3]. It was
also shown that for such a surface ks/kRMS � 3. Since the minimal scale for spatial
resolution for the long pipe is �∗ = 12 μm, this means that the RMS surface rough-
ness can be maximum 14 μm, values that can be obtained with moulded carbon
fiber. The absolute accuracy of the diameter is not very stringent in itself, as long
as its variation is small along the pipe. For a pipe flow, the convective term of the
streamwise momentum equation, which should ideally be zero, should at least be
small compared to the longitudinal pressure gradient. It can be shown easily that in
order to get stream-wise mean velocity variations not greater than 0.2 % the diame-
ter variation for a diameter of 0.9 m is about 0.9 mm.

The test section is linked to the return duct, one floor below, through a series
of shape converter, diffusers and corners. Immediately after the test section a fast
diffuser is mounted in order to reduce significantly the flow speed before the first
corner. Inside, a set of guide vanes allow a wide angle expansion avoiding any pos-
sible flow separation. Some corners in the entire apparatus are characterized by the

Fig. 1 Range of Reynolds number and viscous length scale of various pipe flow experiments
(see [2] for symbols); �: CICLoPE experiment. The solid vertical line refers to the criterion
of a well developed overlap region (R+ > 14000). Horizontal line gives the limit for �∗ >
10 μm which is the minimum for sufficient spatial resolution.
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Fig. 2 Outline of the long pipe facility

presence of expanding guide vanes which allow the flow to be expanded during the
corner phase while preserving an excellent quality of the flow. Expanding corners
have been extensively studied by Lindgren [4]. The major benefit of using these
corners is the possibility to compact the overall dimension and to reduce the friction
losses without increasing the total pressure-loss. The return duct first runs under the
floor of the main laboratory to allow access to the second tunnel and then rise above
the floor of the main tunnel trough an “S”-shape made of two expanding corners.

A heat exchanger located downstream of the “S” controls the temperature of the
flow with a target accuracy of ±0.1◦C. The main idea is to keep the temperature
stable in order to maximize the accuracy of the Constant Temperature Anemome-
try, CTA, measurements in the test section. The heat exchanger consists of elliptical
pipes where cold water is flowing at a constant rate ad where the flow is blowing per-
pendicularly to the grid. Since this is an element which increases the pressure losses
it must be as large as possible, expanding the flow before and reducing significantly
the flow speed.

The shape of the return duct is converted downstream of the heat exchanger from
rectangular to circular and remains the same for the rest of the circuit. The fan is
located along the return duct and ensures an optimal homogenization of the temper-
ature in the flow. The fan produces a maximum pressure rise of 6500 Pa at a volume
flow rate of 38 m3s−1, corresponding to a velocity of 60 m/s in the test section. It
has a diameter of 1.8 m and a power of about 300 kW. Since axial fans may create
flow quality problems when subjected to large loads, it has been decided to divide it
in 4 different stages driven by two independent motors. The motors are powered by
two AC inverters, which controls the flow velocity with an accuracy of ±0.1%.

The stagnation chamber, positioned after the fourth corner, has the objective to
improve the quality of the flow in the test section. To this aim, inside the stagnation
chamber there is a honeycomb section followed by five screens. The function of
these flow manipulators is twofold: firstly they make the flow more homogeneous
by introducing a pressure drop (slowing down the faster regions of the flow), sec-
ondly, they dampen flow fluctuation, reducing the turbulence level. When the flow
passes through the last screen, it has been subjected to a non homogeneous strain
which give a non isotropic state of the turbulent energy. For this reason, before en-
tering in the contraction the flow passes through a straight part of the circuit (settling
chamber).

After the settling chamber, the flow enters the contraction, which is crucial for
the flow quality improvement in the test section. In order to avoid any possible
separation of the flow (especially at the end) it has been chosen a shape taken from
the MTL wind tunnel at the KTH Mekanik in Stockholm [4]. The contraction will
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be realized in fiber glass material. Right after the contraction a metal interface will
be positioned in order to host possible flow manipulators, like screens, turbulence
generator, grids to change the initial conditions in a controlled matter.

Acknowledgements. We would like to acknowledge the input from the different researchers
involved in CICLoPE: H. Nagib (Illinois Institute of Technology), I. Marusic (University of
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K.R. Sreenivasan and P. Monkewitz. J.D. Rüedi, Studio YES, A. Bassi and P. Proli are also
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Large Eddy Simulation of Accidental Releases   

Bernd Leitl, Denise Hertwig, Frank Harms, Michael Schatzmann,  
Gopal Patnaik, Jay Boris, Keith Obenschain, Susanne Fischer,  
and Peer Rechenbach 

Abstract. First responders need a more or less instant estimate of danger zones 
resulting from accidentally released hazardous materials in order to take imme-
diate action, to coordinate rescue teams and to protect human population and criti-
cal infrastructure. To fulfill the need for a sufficient dispersion modeling accuracy 
while maintaining efficient access to reliable results in a first responders environ-
ment, systematic high resolution pre-accidental LES modeling can be combined 
with 'physical data reduction' in an emergency assessment tool. A typical example 
of such an approach adjusted to the geometry of the Hamburg inner city area will 
be presented. It gives a glimpse into the application of LES-modeling for real-
world problems.  

Keywords: LES-modeling, Flow and dispersion, Accidental releases, Emergency 
response tool, Urban environment. 

1 Introduction 

Manufacturing, storing and transportation of flammable and toxic gases involves 
the risk of accidental spills of hazardous materials. Releases of major concern oc-
cur in urban or industrial environments, with the consequence that the dispersion 
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is heavily influenced by buildings and other obstructions. Flow and dispersion 
models of different complexity have been developed in the past. Although they 
have been reasonably successful in some cases, most of them are still limited in 
scope. Especially in cases where obstacle effects dominate the dispersion of the 
hazardous cloud, these models are either too simplistic and thus unable to cope 
with the geometric complexity, or they are much too slow and thus not able to 
provide immediate guidance for the persons in charge of the rescue operations.   

Recent progress in the fields of computer hardware development, numerical 
mathematics and scientific computing opens up the potential for improvements. In 
an effort jointly carried out by the Ministry of the Interior of the Free and Hansea-
tic City of Hamburg, by the US Naval Research Laboratory, Washington DC, and 
by the Meteorological Institute of the University of Hamburg, a new emergency 
management tool for the Hamburg inner city area has been developed. This tool 
provides, nearly instantaneously, the space-time-structure of airborne hazardous 
clouds. It is based on NRL’s high-resolution large eddy simulation (LES) conta-
minant transport model (FAST3D-CT) which provides the detailed velocity and 
turbulence fields within the urban domain. The database created by the model is 
subsequently converted to an efficient form suitable for use in a second model 
(CT-Analyst) which runs on a laptop and comes with an interface as is common in 
computer games. The system is fast because results are pre-computed for a large 
number of meteorological situations. In case of an accident predictions are based 
solely on already existing knowledge. The system is easy to handle due to its user-
friendly interface. Subsequently details of the new emergency management tool 
for the city of Hamburg will be presented.  

2 The Large Eddy Simulation Model 

The LES simulations were carried out at the Laboratories for Computational Phys-
ics and Fluid Dynamics of the US Naval Research Laboratory in Washington. 
Their FAST3D-CT three-dimensional flow simulation model (Boris, 2002;  
Cybyk, et al, 1999) is based on the scalable, low dissipation Flux-Corrected 
Transport (FCT) convection algorithm (Boris and Book, 1973, 1976). FCT is a 
high-order, monotone, positivity-preserving method for solving generalized conti-
nuity equations with source terms. The particular FCT convection algorithm in 
FAST3D-CT was modified by Patnaik et al (2005).  

Relevant physical processes simulated in FAST3D-CT include complex build-
ing vortex shedding, flows in recirculation zones, and approximating the dynamic 
subgrid-scale turbulent and stochastic backscatter. The model has the potential to 
also incorporate stratification, solar heating, urban greenery etc., but these features 
have not been used here. Emphasis was laid on capturing the effects of unsteady 
flow on the evolving pollutant concentration distributions.  

The simulation code is designed to run efficiently on shared-memory comput-
ers. Computational grids involving about 200 million cells were typically used in 
the presently discussed simulations. This requires about 20 GB of memory which 
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is now tractable on advanced computers. The challenge of high-resolution grids is 
not so much one of computer memory but one of computer speed. More details of 
the physical models in FAST3D-CT are given in Patnaik et al. (2005) and omitted 
here for brevity. 

Runs were made separately for two domain sizes; A larger domain of 16km x 
12km with a resolution of 10 m, and a smaller domain of 4km x 4km (Fig. 1a) 
with a resolution of 2.5 m. With the exception of the upper part of the domains the 
cells were horizontally and vertically unstretched. Also shown in Fig. 1a is the 
area modeled in the wind tunnel (diagonal rectangle, see section 4.2). Fig. 1b 
gives an impression of the high resolution geometry. 18 wind directions were cal-
culated. Different wind speeds were accounted for by scaling the results according 
to the appropriate similarity laws. The CPU time needed per run for one wind di-
rection and a one hour real time episode in the small domain was approximately 
six days. 

 

 
Fig. 1 (a) Top view (from OpenStreetMap) on the 4km x 4km domain. Lake Alster, River 
Elbe and the city centre are landmarks which provide orientation. Also shown is the 3.7km 
x 1.4km section modeled in the wind tunnel. (b) Sample of the 3D high-resolution 
geometry. The Hamburg Fair ground, the TV tower and parts of Hamburg University are 
easily identifiable.  

For the dispersion calculations a passive, inert, gaseous tracer has been used. 
Passive means that the released substance drifts with the wind and spreads and 
dilutes due to atmospheric and obstacle generated turbulence. Buoyancy forces are 
neglected which, however, does not mean that the relevant substance needs to 
have the same density as the surrounding air. It is assumed only that the densime-
tric Froude number of the released cloud is well above 1. Inert means that the re-
leased gas over the period of interest neither reacts chemically nor deposits. This 
leads to conservative results. These are common assumptions which need not nec-
essarily be introduced but seem to be adequate for the purpose under discussion 
here. With additional effort they could easily be avoided, and the FAST3D-CT 
code already contains the necessary physics for these additional processes.  
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3 The Emergency Management Tool 

After the detailed 3D simulations for 18 wind directions are pre-computed for the 
coverage region, they are handed over to NRL’s emergency management tool CT-
Analyst® through a new data structure called Dispersion NomografsTM. CT-
Analyst extends these results to all wind directions, speeds, sources, and source 
locations. These “nomografs” are generated well in advance, so manager using 
CT-Analyst in an emergency need not wait for supporting analyses (Boris, 2002).  

Fig. 2a elucidates the basic method applied. The LES model provides for each 
grid point the local mean wind vector and the wind directional variation. Starting 
from a chosen source position the plume envelop can be determined by selecting 
at the right and left plume edge the worst case directional deviation from the mean 
wind vector, thereby determining the total area over which the pollutant is able to 
spread at all. The magnitudes of the local wind vectors determine the speed with 
which the cloud moves through the urban geometry. The method works likewise 
for instantaneous puffs and for continuous plumes, since the latter can be regarded 
as being made up from a series of individual puffs. Simultaneous discharges from 
multiple sources can be handled as well. Last but not least, the method allows 
placing sensors at many locations inside the domain and back-tracking the signal 
to an up to then unknown source location. 
 

Source Position 

 
Fig. 2 (a) Top view on a plume dispersing in an environment in which obstacles effect 
plume shape and direction. The left and right plume edges are determined from the mean 
and turbulent velocity field computed by the LES model in a narrow 2.5m grid.  (b) Geo-
metrical detail of the physical model of Hamburg in the wind tunnel and indication of the 
source position during the field tests. 

Although the immediate knowledge of the total area over which a pollutant can 
spread is certainly the most important information for a first responder, the second 
question concerns the pollutant concentrations. For these only conservative 
estimates are provided. Since the sources can be anywhere in the domain, the huge 
number of possible concentration fields are not directly calculated by the LES 
model. Instead of this, the plume edges in combination with a plume profile 
assumption are used to determine the local mean concentrations as a function of 
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source strengths, simply by applying the mass conservation principle. Variability 
around the mean value is roughly estimated from mean to peak ratios determined 
for a few spills released at representative positions in LES model experiments. 
Taking into account that reasonable thresholds for short time peak concentrations 
are often not available, this seems to be an acceptable constraint.    

4 Validation of the Emergency Management System 

In order to demonstrate the quality of the emergency management system, valida-
tion data sets have been generated in field and wind tunnel experiments.  

4.1 Field Experiments 

Two short field campaigns were carried out in addition to the wind tunnel experi-
ments. Such field tests are always limited in scope. As was described in more de-
tail in Schatzmann and Leitl (2011), it is nearly impossible gaining reliable test 
data for complex CFD models in such experiments. The atmosphere is intrinsical-
ly time dependent and never steady state. The commonly assumed 15 min or 30 
min quasi-steady episodes exhibit a large inherent variability. Data obtained over 
such short periods of time are not representative for the assumed mean wind ve-
locity and direction. And even worse, in urban canopy layers it proves to be nearly 
impossible to determine a position at which a wind vector representative for the 
dispersing cloud could be measured. Nevertheless comparisons with field data are 
vital for building confidence in the quality of numerical and physical model pre-
dictions; whenever possible they should be carried out. To perform field mea-
surements in a vibrant metropolitan area is, however, hardly feasible. Permission 
for carrying out dispersion experiments was granted only for a few early morning 
hours at 2 weekends. With strong support by fire-fighters and police of the city of 
Hamburg small amounts of SF6 were released upwind from the city centre from a 
boat positioned at river Elbe. In cooperation with scientists from the For-
schungszentrum Jülich about 20 automated bag samplers were distributed over the 
inner city area (Fig. 3a). The probes were subsequently analyzed by using gas 
chromatography.  

Early morning observations are always somewhat of a problem. During the first 
observational period at April 16, 2011, there was high pressure over Hamburg 
with clear skies and large radiative cooling of the surface. Such weather situations 
are subject to stratification and inversion layers, and this was indeed the case as  
the measurements at the Hamburg TV-Mast (http://www.wettermast-hamburg. 
zmaw.de) approximately 10 km apart from the site clearly indicate. As becomes 
evident from Fig 4a, there was a strong inversion above the 110 m measurement 
platform (Fig 4b) although the wind speed at higher altitudes was quite strong. As 
smoke experiments carried out at the end of the intensive operation period  
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Fig. 3 (a) Measurement positions during the field experiments (from Google Earth) and (b) 
picture of an automated bag sampler rig (under surveillance of a student) in front of the 
Hamburg town hall 

 
showed, there were even more inversions near the ground. None of the altogether 
8 ultra-sonic-anemometers which were operated simultaneously at different loca-
tions around the test site provided a wind speed and direction which matched the 
movement of the smoke cloud.         

 

Fig. 4 Wind velocities (a) and virtual potential temperatures (b) measured during the first 
experimental period at 5 different height levels at a TV mast located about 10 km apart 
from the test site at the eastern edge of Hamburg 

 
With the second field experiment we waited until a really stormy weekend ar-

rived, with winds from the favored directional sector. Although highly fluctuating 
with time, wind speed and direction were much more uniform compared to the 
first campaign (Fig 5b). This finding was fully corroborated by the measurements 
performed at different height levels at the Hamburg TV mast. In contrast to Fig. 4, 
in the second phase the boundary layer was well mixed. The wind directions in the 
lowest 250 m above ground were always around 220°, independent of height and 
time, and the velocity profile only slightly increased with height.   
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Fig. 5 Second campaign at June 19, 2011: (a) Picture from the highly meandering smoke 
plume and from the ultra sonic anemometer located near to the source at ‘Kehrwieders-
pitze’. (b) Wind velocity versus time trace measured simultaneously at 2 different stations 
during the intensive operation period on June 19, 2011.     

The automated samplers were spread over an area much wider than the ex-
pected cloud width in order to identify not only polluted but unpolluted areas as 
well. Although the time resolution of the field data is insufficient for the purpose 
of LES model validation, the overall agreement was generally fair. A comparison 
of measured and predicted concentrations is presented in Figure 6.  

However, since the bag samplers average over an intermittently fluctuating 
contaminant supply rate, large variability bars would have to be added to the mea-
surements. The magnitude of these bars remains unknown since short-time expe-
riments do not provide the information necessary for statistical analyses (see 
Schatzmann and Leitl, 2011).  

 

220°220° 
 

Fig. 6 Second campaign at June 19, 2011. Bag sampler positions are shown with red dots 
polluted and blue dots unpolluted. The bag-samplers operated time-staggered with suction 
intervals of 10 min. Comparison of cloud contours predicted by the emergency manage-
ment tool with measured results (a) 5 min after the release and (b) 10 min after the release.       
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Further comparisons between field data, wind tunnel data and numerical results 
are under preparation and will be published soon. They also comprise FTIR mea-
surements which were carried out by the Technical University of Hamburg-
Harburg in combination with Bruker Sigma. Additionally, a second wind tunnel 
experiment is presently carried out in which the field tests of the second campaign 
are replicated with boundary conditions as they were met during the field experi-
ments. This will allow comparing not only arrival times and the contaminated area 
but local mean and peak concentration levels as well. 

4.2 Wind Tunnel Experiments 

Prior to the field tests a first wind tunnel experiment was carried out in the large 
boundary layer wind tunnel ‘Wotan’ of Hamburg University. This tunnel has a 
total length of 25 m with a test section which is 4 m wide and 3 m high and con-
tains a flow establishment section of about 18 m length. The wind tunnel is 
equipped with an adjustable ceiling allowing a ±0.25 m height change of the test 
section. An approach flow boundary layer matching the scale of the Hamburg 
model (1:350) was generated. The boundary layer properties were controlled and 
documented similarly as described in Schatzmann and Leitl (2011) for another 
wind tunnel investigation. Non-intrusive flow measurements were carried out with 
an optical LDA fiber probe with a focal length of 800 mm. To measure high reso-
lution concentration time series a fast flame ionization detector was used. Fig. 1a 
shows the location of the (in full scale) 3700m long and 1400m wide area mod-
eled in the wind tunnel and Fig. 2b a section of the physical model. Under steady-
state mean flow conditions numerous instantaneous and continuous clouds were 
released at multiple positions.   

The subsequent results from the validation exercise with respect to the mean 
and turbulent flow field are taken over from the paper by Hertwig et al. (2011). It 
should be mentioned that the wind tunnel experiments and LES simulations were 
done at the same time in different locations, i.e. neither side knew the results of 
the other side beforehand (blind testing).  

22 measurement locations within the model domain were chosen and time se-
ries of the resulting velocity and concentration fields were monitored. For each 
position highly resolved time series of the horizontal wind components (and partly 
also for the vertical component) were taken in densely spaced profiles and hori-
zontal flow layers. The selection was made to include areas of the city that feature 
characteristic urban flow situations that also pose challenges to numerical models. 
Thus, the locations include narrow street canyons, complex intersections, and 
measurement points close to the ground. Wind detectors in the numerical calcula-
tions were deployed to match the specified locations in the wind-tunnel experi-
ment as closely as possible. The nearest neighbor extraction was chosen in order 
to avoid contamination of the results by interpolating data in order to have an ex-
act spatial match. This procedure led to slight offsets of the x, y, and z positions of 
the comparison points that were in the range of a few centimeters up to a  
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maximum of 1.75m. Experimental and numerical data were homogenized by refe-
rencing all velocities and their derivatives to a reference wind speed at a fixed  
location. This monitoring point was defined at a height of 49m above the river 
Elbe at approximately 1km upstream distance from the city center (above the 
source, see Figure 2b). All results which are subsequently presented were obtained 
for a wind direction of 235°.  

Although the emphasis of the analyses was put on the comparison of time-
series characteristics, the starting point of the study was set by the validation of 
the mean flow. Figure 7 shows comparisons of vertical profiles of the stream wise 
velocity component from wind-tunnel measurements and FAST3D-CT simula-
tions. The inflow is approaching from left to right. Scatter bars attached to the 
experimental values represent the reproducibility of the data based on repetition 
measurements under identical boundary conditions. The profile locations differ in 
the arrangement of the surrounding buildings. Figure 7a shows velocity profiles 
above the river Elbe (the location is identical with the reference point above the 
source location indicated in Figure 2b). Being situated well upstream of the dense-
ly built-up city centre, the good agreement between experimental and numerical 
profiles mirrors a good match of the mean inflow conditions. A good agreement is 
also found for positions at which the flow is strongly influenced by the building 
structure (Figs 7b and 7c). 

 

 

Fig. 7 (a)-(c):  Comparison of mean stream-wise velocity profiles at various locations. Area 
images extracted from Google Earth. 

For some of the compared locations, a slight trend towards an under prediction 
of velocities can be observed at elevations below the mean building height (ap-
prox. Hmean~35m by averaging over the city center) as seen in Figure 7c. In con-
trast, higher wind speeds than in the reference measurements are found at heights 
larger than 2.5Hmean. The slight offsets observed within the street canyon might be 
explained by the close proximity of building walls and the effect of their physical 
treatment inside the simulation. The stronger acceleration well above the canopy 
has to be investigated further and might reflect an excess of TKE in the numerical 
inflow prescription. 

A comparison of horizontal flow fields in terms of mean horizontal wind speed 
vectors is presented in Figure 8 for different heights above ground. The test case is 



142 B. Leitl et al. 

 

represented by the flow entering a courtyard. The large gray arrows indicate the 
inflow direction. The overall comparison is again quite good, although strong di-
rectional deviations at the lowest measurement plane are detected (see Figure 8a;  
z = 3.5m in the experiment and 2.75m for the numerical simulation). It has to be 
noted that this is also the lowest computational level of the simulation, which is a 
possible explanation for the offsets. At this first node the results are strongly in-
fluenced by the boundary constraints and the flow did not have enough time to 
evolve physically. 

 
(a) (b) (c) 

inflow 
direction 

 
Fig. 8 Mean horizontal velocity vectors of flow entering a courtyard at heights of (a) 3.5m, 
(b) 17m, and (c) 30m. Gray vectors represent wind-tunnel measurements. Color-coded 
vectors are from the numerical simulation with FAST3D-CT. 

 
Next, experimental and numerical time series were analyzed in terms of fre-

quency distributions and spectral characteristics of the signals. It has to be noted 
that both signals differ in their length and their time resolution under full-scale 
conditions. While the 170s measurement time in the wind tunnel results in a full-
scale length of 16.5 hours, the length of the numerical time series is 4.5 hours  
only. Especially at low elevations within street canyons the full-scale temporal 
resolution of 2Hz of the FAST3D-CT signals is better than the scaled wind-tunnel 
data rate that is strongly affected by the local seeding conditions that influences 
the experimental data rate. 

First, the frequency distributions of instantaneous horizontal wind speeds and 
wind directions were evaluated. Figure 9a shows the location for such a test. The 
mean horizontal wind speeds Uh and wind directions are compared in terms of 
vertical profiles shown in Figures 9b and 9c, respectively. At each of the profile 
heights, the fluctuations about these means were investigated.  

Figure 10 shows wind-rose diagrams of horizontal wind speeds and directions 
observed (Figure 10a) and simulated (Figure 10b) at four different heights within 
the street canyon profile. At first view the graphs show that the model predicts the 
deflection of wind directions inside the canopy quite well, together with the ad-
justment to the wind direction of the inflow at roof-top level and well above at 
57.75m (i.e. 1.65Hmean). The spread about the central direction is largest at roof-
top height and smallest at the highest elevation in both the experiment and the  
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235° 

 
Fig. 9 (a) Profile measurement location at a complex intersection; image extracted from 
Google Earth. (b) Mean horizontal wind speed and (c) wind direction profiles from wind-
tunnel measurements and FAST3D-CT calculations. 

 
 
WIND TUNNEL 
 

       

FAST3D-CT 
 
 

235° 

(a) 

(b) 

 

Fig. 10 Wind-rose diagrams showing frequency distributions of horizontal wind speeds and 
wind directions for wind-tunnel measurements (a) and FAST3D-CT simulations (b) at four 
different heights within and above a street canyon (same location as in Figure 8a). Large 
grey arrows indicate the inflow direction. Wind velocities non-dimensionalized with the 
reference wind speed. 

 
simulation. However, discrepancies in velocity magnitudes are observed inside the 
canopy, especially for the lowermost point at 2.5m and 2.75m, respectively. As 
discussed earlier in connection with the mean flow validation, the lower magni-
tudes are most likely due to the influence of wall boundary conditions prescribed 
at the ground and at upright building surfaces. Despite these differences the analy-
sis indicates that the LES code is able to reproduce the directional fluctuation le-
vels caused by unsteady flow effects quite reliably. 
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Auto-spectral energy densities of the turbulent stream-wise velocity component 
are studied in order to analyze the spectral content associated with different eddy 
structures found in the flow. The spectra were obtained using an FFT algorithm. In 
order to make the spectra interpretable in terms of characteristic energetic ranges, 
two averaging techniques are used. First, the time series is separated into frag-
ments of equal lengths and it is averaged over the spectra obtained from these sub-
samples. Next, this averaged spectrum is smoothed by taking the mean over equal 
intervals with respect to the logarithm of frequency. Original values are only kept 
for the lowest frequencies that are connected to the largest structures in the flow. 

Figures 11a-c show scaled frequency spectra obtained from numerical and ex-
perimental velocities at various locations at heights of 17.5m (~0.5Hmean) and 
45.5m (~1.3Hmean), respectively. A very good agreement of the production and 
energy-containing range of the spectra is found at all positions. The energetic 
peaks associated with integral length scale eddies coincide very well for the mea-
surements shown in Figures 11b and 11c, whereas at the position above the river 
(Figure 11a) the peak is shifted for more than a decade towards higher frequen-
cies. This offset might have been caused by the shorter overall signal length of the 
numerical time series. In order to investigate this further, next analyses will con-
centrate on comparisons of integral length scales that can be determined from au-
tocorrelation time scales invoking Taylor’s hypothesis. 

 
 (a) (b) (c) 

 
Fig. 11 (a)-(c) Auto-spectral energy densities of the fluctuating stream-wise velocity com-
ponent from wind-tunnel measurements and simulations with FAST3D-CT at various loca-
tions within the city at heights of 17.5m (~0.5Hmean) and 45.5m (~1.3Hmean). The dashed 
lines separate the low frequency parts of the spectra that can be directly resolved by the 
numerical model given the grid resolution of Δ=2.5m and the respective mean wind speeds 
from the subgrid-scales affected by numerical diffusion. Area images are extracted from 
Google Earth. 

Common to all of the numerical spectra is their fast roll-off in the high frequen-
cy range that marks the onset of the influence from the dissipation scheme. At 
most of the investigated locations this influence becomes noticeable approximate-
ly one decade after the spectral peak was reached resulting in a shortened extent of 
the inertial range. In consideration of the fact that FAST3D-CT was particularly 
designed to simulate dispersion processes in urban areas, the very good match of 
the energy-containing ranges associated with eddies that play a dominant role for 
scalar transport confirms the model’s fitness for that purpose. However, it should 
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be studied whether an extension of the inertial range is possible in order to add to 
the physical character of the LES. 

Another objective of the validation study was to validate the predicted danger 
zones of CT-Analyst. A danger zone marks the area which can be reached by a 
released tracer for a selected source location and a selected mean wind direction. 
For this analysis two different source locations and a wind direction of again 235° 
were selected. The tracer was released continuously during the measurements. 
Figure 12 shows the result of this comparison for the two dispersion scenarios. 
The marked area indicates in each case the predicted danger zone by CT-Analyst. 
The triangles and squares in Figure 12 represent the results of the wind tunnel 
measurements. A triangle states that no concentration was detected during a 4 
minute wind tunnel measurement, and a square indicates that within the 4 minute 
measurement a concentration above instrument threshold was exceeded at least 
once. Hence the area between a triangle and a square marks the edge of the wind 
tunnel plume. It has to be considered that due to the model scale of 1:350 a 4 
minute wind tunnel measurement would correspond to nearly a 24 hour measure-
ment at full scale under identical mean weather conditions. In order to analyze the 
effect of the release rate the measurements were repeated for different release 
rates. In line with theory it was found that increasing the release rate by a factor of 
ten has no effect to the size of the danger zone.  

Further comparisons with respect to local mean and peak concentrations will be 
done as soon as the results from the second wind tunnel campaign become availa-
ble. These experiments will be an exact repetition of the conditions which were 
met during the second field tests. 

 

  
Fig. 12 Comparison of the predicted and measured danger zones for two different disper-
sion scenarios within the city center of Hamburg. Wind from 235 °. 

5 Conclusions 

Accidental or deliberate releases of harmful agents in urban areas can produce a 
tremendous challenge to emergency response staff even if the amount of the re-
leased substance is small and the scale of the threat limited. This is partly caused 
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by the fact that the dispersion process in complex geometries is driven by complex 
wind flows and turbulent diffusion. From a strict physical point of view, the 
source sizes, release rates or (mostly short time) durations of release events often 
restrict the use of tools which are based on mean flow and dispersion modeling 
because in the atmosphere the assumed mean conditions do not exist for relevant 
time periods less than many hours of constant weather.  

Therefore it is necessary to move forward to more sophisticated modeling tech-
niques which have the potential to deal with the unsteady behavior of local scale 
dispersion in complex geometries in a more consistent way. As was shown, tech-
nical progress has advanced and a new generation of CFD models is ready to be 
applied in the context of dispersion predictions for hazardous clouds resulting 
from accidental releases in urban or industrial environments. Although these mod-
els of LES type are very demanding with respect to computational hardware and 
time resources, they can be applied before an emergency occurs. In combination 
with an intelligent tool which excerpts the relevant information from the simulated 
CFD results first responders receive immediate decision making assistance.  

A prototype of such an emergency management system adjusted to the geome-
try of the city of Hamburg has been developed and validated with data from  
appropriate wind tunnel and field experiments. The results obtained so far are 
promising. In spring 2012 the new emergency management system was handed 
over to Hamburg’s city authorities. It is now being tested under realistic operating 
conditions.  
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Turbulent Rayleigh-Bénard Convection in Air:
How Uniform Is the Local Wall Heat Flux at
Finite Aspect Ratio?

Ronald du Puits, Robert Kaiser, Johannes Rilk, and André Thess

Abstract. In our talk we present a visualization of the flow field inside the bound-
ary layer in highly turbulent Rayleigh-Bénard convection in air. Sequences were
captured at various positions along the heated bottom plate in a rectangular cell of
2.5×2.5×0.6 m3 at a Rayleigh number of Ra = 1.3×1010. They demonstrate that
the velocity field may not be considered as uniform over the entire surface of the
plate and, therefore, the distribution of the local heat flux becomes non-uniform as
well. Local heat flux measurements using an infrared camera show that in the spe-
cific case this quantity varies by at least ±10% depending on the local flow condition
at distinct areas of the plate surface.

1 Introduction

Phenomenological scaling theories on heat transport in turbulent Rayleigh-Bénard
convection (RB) frequently base on the assumption of a virtually infinite lateral
extent of the cell [1, 2, 3]. In this case the mean fields of velocity and temperature
are not affected by the sidewall(s). In particular, the local heat flux along the surface
of the heated bottom and the cooled top plates is uniformly or at least periodically
distributed. On the other hand, it is well known that in RB cells of small aspect
ratios Γ = L/H (H - height, L - lateral extent of the cell) of the order of one and less
a large-scale circulation (LSC) evolves that does not homogeneously fill the space
between the plates [4]. If the LSC often referred to as mean wind passes the top and
the bottom plates the local heat flux is enhanced along its path while in areas out of
the mean wind the heat flux is lower than its spatial averaged mean. Since the aspect
ratio of the cell affects the global flow structure the distribution of the local heat flux
at the surface of the horizontal plates may also depend on the geometry.
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2 Experimental Set-Up

We have performed a series of measurements of the local heat flux at the surface of
the heating plate in a rectangular RB cell with aspect ratios Γx = 1 and Γz = 0.26
(see Figure 1). The working fluid is air and both Prandtl number Pr = ν/κ and
Rayleigh number Ra = (β gΔTH3)/(νκ) are fixed at Pr = 0.7 and Ra = 1.3× 1010,
respectively. The boundary layer flow visualization has been performed using a 2 W
laser in continuous wave mode. In combination with special optics a light sheet of
70 mm in height and about 2 mm in thickness has been generated according to the
position in Figure 1. Adding cold-atomized droplets of Di-Ethyl-hexal-sebacate of
about 1 μm size to the air flow the velocity field in the proximity of the heated
bottom plate becomes visible and the motion of particles could be tracked by a
digital photo camera CANON EOS 600D.

The local heat flux has been measured using an infrared camera. To this purpose
the surface of the heating plate has been covered with a thin layer of a synthetic ma-
terial with a well-defined heat conductivity. This layer generates a temperature drop
being proportional to the local heat flux. Assuming that the temperature distribution
beneath the synthetic layer is uniform (or at least known) the temperature field at the
upper side represents the distribution of the local wall heat flux. In order to increase
the accuracy of the method local heat flux sensors of very small thickness have been
placed at various positions along the surface of the heating plate.

Laser

beam

extension

heating plate mirrors

field of view

mean wind

cooling plate

x

y

z

Fig. 1 Set-up of the boundary layer visualization in turbulent Rayleigh-Bénard convection.
The rectangular test cell with the dimensions of 2.5×2.5×0.6 m3 is embedded in the large
scale experiment “Barrel of Ilmenau” (please visit www.ilmenauer-fass.de for detailed in-
formation) using its heating and cooling plates with uniform temperature as bottom and top
bound. The photo on the right shows the rectangular test cell.
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3 Results

In Figure 2 a snapshot of the boundary layer flow captured above the center of the
heating plate is shown.

Fig. 2 Boundary layer in turbulent Rayleigh-Bénard convection in air at Ra = 1.3× 1010.
The mean wind is from left to right. The scale on the left hand side is the distance z from the
heating plate in units of millimeter, z = 0 mm corresponds to the surface of the plate.

The large-scale circulation above the plate surface is from left to right as indicated
in Figure 1. The picture illustrates how thermal plumes evolve as buoyancy driven
boundary layer instabilities and how they interact with the mean wind. In the talk a

Fig. 3 Caricature of the flow field at the heated bottom plate along the mean wind as obtained
from flow visualization and the time-averaged heat flux distribution 〈NuL(x,y)〉t measured at
its surface. The color plot shows the full 2.5 x 0.6 m sized area of the heating plate.
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few sequences from distinct areas of the heating plate have been presented showing
the very different behavior of the boundary layer flow at various locations with
respect to the mean wind.

Figure 3 shows both a caricature of the boundary layer flow structure at the heat-
ing plate derived from the flow visualization and the measured heat flux distribu-
tion at its surface. The heat flux is expressed in terms of a local Nusselt number
NuL(x,y) = (−q(x,y)H)/(λ ΔT). The highest value is measured at the area of the
plate surface where the falling plumes impinge the bottom plate. Along the path of
the mean wind the local heat flux decreases and achieves its minimum at the center
of the cell. The plot clearly demonstrates that the assumption of a uniform heat flux
at the surface of the horizontal plates represents a strong simplification particularly
at small aspect ratios Γ ≤ 1. In the specific case studied here it quantity varies by
more than ±10% depending on the local flow condition.

4 Conclusion

In our talk we demonstrated that the assumption of a uniform heat flux distribu-
tion along the surface of the heating (and the cooling) plate might be a too strong
simplification in turbulent Rayleigh-Bénard convection at aspect ratios Γ ≤ 1 and
moderate Rayleigh number. For the first time a detailed map of this quantity could
be generated using infrared camera technology. We are planning to apply this tech-
nique at the full-size RB experiment of 7.0 m in diameter and 6.3 m in height.
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A Gas Discharge Normal to a Wake:
Experimental Investigation of the Plasma-Flow
Interaction

Marco Belan

Abstract. An experimental investigation has been conducted to study the inter-
action of a gas discharge with the wake generated by a flat plate normal to the free
airstream. The free discharge and the free airstream are orthogonal to each other and
the electric forces are of the same order as the inertial forces in the absence of the
discharge. The facilities include devices for local discharge current measurements, a
hot wire anemometer and a visualization system. The analysis of the time histories
of the cathodic currents suggests that the flow-discharge configuration considered
here may give rise to a coupling between the flow and the electric fields oscillations.

1 Introduction

The phenomenon of the electric discharge in a gas has been of interest to engi-
neers and physicists for many years. In particular, the flow induced by a non-thermal
plasma stream in a ionized region of a gas, also known as electric wind, may give
rise to important applications in itself and in relation with other phenomena in a
variety of fields, such as fluid dynamics, heat and mass transfer, chemical reactions
and so forth. In fluid dynamics, several efforts have been made to gain a better un-
derstanding of the interaction between airstreams and discharges of this kind, and
many theoretical, experimental and numerical results have been published, see re-
views [1, 2]. On the other hand, a wide range of studies is devoted to flow and
turbulence control through plasma-based devices, as outlined in [3].

The airstream–discharge interaction may take place at different energy levels for
the two phenomena involved; in many studies, focused on technical applications,
the discharge energy density is considered definitely higher than the airstream en-
ergy density. However, a deeper comprehension of these interactions could arise
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from examining the whole range of possibilities between the limiting cases of a
pure airflow and a fluid subject exclusively to electrical forces. Such wide range in-
vestigation can also be important from the point of view of turbulence–flow control,
where the unsteady phenomena can reach high levels of complexity, and the useful
applications correspond in general to well energized actuators that force the airflow
at some specific location.

Within this context, the present experiment can be considered as an intermediate
case, where the effects of the pure discharge and the pure airstream are comparable.
This experiment deals with the interaction of a gas discharge with the flow past a
bluff body, here a flat plate normal to the free stream. The same plate plays also
the role of the discharge anode, whereas the cathode, located at the wall of the test
section, is parallel to the free stream. This makes the main directions of airstream
and discharge orthogonal each other. The resulting plasma-flow interactions can be
basically characterized by few parameters, namely the gas density ρ , the airflow
velocity scale U , the ion mobility μi, a spatial scale L for the discharge, typically
related to the electrodes length (here also to the body span), and the time-averaged
discharge current i. These parameters may be combined to obtain the dimensionless
electrohydrodynamic number NEHD = i/(ρμiU2L), which represents the ratio of
discharge-induced body force to inertial force on a gas volume: when this number
is very small with respect to the unity, the airflow is scarcely affected by the electric
field, whereas a large number indicates that the electric field controls the airflow,
as in many plasma actuators. In this experiment, NEHD is always less than 0.75
and typically bounded in the range 0.005 to 0.25, what means that the physics is
neither airflow-dominated nor discharge-dominated. In other words, the NEHD range
is selected in such a way as to study a plasma-flow interaction where the discharge
electric energy and the airflow kinetic energy are comparable.

2 Experimental Setup

In the electrohydrodynamic number NEHD, the parameter actually common to dis-
charge and airstream is the length L. Since electrical and inertial forces scale dif-
ferently, the desired values of NEHD turn out to be easily achievable in a small size
facility, where L can take affordable values. A sketch of the relevant experimental
setup is shown in Fig. 1. The fluid is air at atmospheric pressure and room temper-
ature. The humidity, a crucial parameter for gas discharges, was less than 40% in
all tests; in this range the discharge regimes can be easily identified by the relevant
currents. The airstream flows inside a small wind tunnel and meets a metallic flat
plate at 90◦ incidence in a test section of size L×H = 80× 50 mm. The consid-
ered velocity range is 3 to 6 m/s, and the Reynolds number of the plate ranges from
1500 to 3200. The plate spans the center of the test section, parallel to the L side,
it has a chord c = 8mm, a thickness of 0.5mm and is chamfered at both sides. It is
also connected to the positive pole of a DC power supply through a ballast resistor,
Rb =1MΩ , and in this way it acts as an anode of length ∼ L, driven at voltages
between 17 and 19kV. The cathode consists of an array of plane electrodes, located
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Fig. 1 Experimental setup, scaled coordinates. The flat plate is centered vertically on cathode
d). The pure wake zone (without discharge) is sketched by thin lines, the pure discharge zone
(without airflow) is sketched by dotted lines.

on a wall of the test section. Each electrode is connected to ground through a low
impedance measuring device, which can be a 1kΩ resistor or a suitable voltage
transformer, depending on the particular test which is being performed. The multi-
ple cathodes a)... h) allow to gain information about the spatial distribution of the
discharge as a function of time. The output signals are digitally acquired by stan-
dard devices, sampling up to 48kHz. A hot wire probe can be used to measure the
velocity power spectrum in the wake. The probe position for the best detection of
the vortex shedding frequency is shown in Fig. 1. The facilities include also a smoke
generator and a camera for the visualization of flow and discharge patterns.

3 Results and Discussion

The unsteadiness of the pure wake, without discharge, can be basically character-
ized by measuring the dominant frequency f in the power spectrum of the HWA
signal, that is the Strouhal number St = f c/U in dimensionless form. The mea-
sured value 0.168, corrected for solid blockage by the formula used in experimental
literature [4], turns out to be St = 0.136, which agrees very well with the known
blockage free value [5, 6] in the Reynolds range under consideration. The relevant
dimensional frequencies vary from 60 to 130Hz. The gas discharge under study,
depending on the current intensity, belongs to two known regimes, the corona or
glow discharge and the filamentary or breakdown streamer discharge [7]. In the ab-
sence of airstream, the time-averaged current density exhibits a standard symmetric
spatial distribution with the maximum value on cathode d). The unsteadiness of the
discharge is characterized by a typical high frequency pulsation in the kHz band
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Fig. 2 Discharge burst fre-
quencies and vortex shed-
ding frequency. Dashed
lines: burst frequencies for 3
current levels, identified by
the total time-averaged dis-
charge currents i1 = 40μA,
i2 = 70μA and i3 = 140μA,
measured at U = 0 m/s.
Solid line: natural Strouhal
frequency of the pure wake
in the absence of the dis-
charge. 1 2 3 4 5

50

100

150

200

U[m/s]

f
[Hz]

i1

i3

i2

known as flashing corona [2] and a low frequency pulsation that appears at the high-
est currents (filamentary regime) due to repetitive current bursts, in the 100 Hz band.
In this experiment, the high frequency pulsations lie in the range from 1.5 to 3.5kHz,
whilst the low frequencies are generally lower than 200Hz. These frequencies can
be measured by spectral analysis of the signals or also by direct counting of the
bursts through a threshold algorithm. When both the airstream and the discharge are
present, several phenomena can be observed. A smoke wire visualization reveals
that the typical wake patterns are deflected toward the cathodic wall, whereas a vi-
sualization based on the weak light emitted from the discharge, obtained by means
of an intensified camera, reveals that the discharge is deflected downstream. These
effects are related to the intensities of discharge current and flow velocity in an intu-
itive way, which can be expressed by the value of the NEHD number; unfortunately,
a presentation of these results cannot be included here for reasons of space. About
the unsteady behaviour of the plasma-flow system, other interesting results can be
obtained by analyzing the time history of the cathodic output signals. Under the in-
fluence of the airstream, the outputs a), b), c) decrease rapidly whilst the outputs
d)... f) maintain a good level. The output d) exhibits in general a dense, continuous
spectrum, whilst the outputs e), f), g), h) have similar spectral properties, including
high flashing frequencies and low burst frequencies. Both frequencies increase with
the discharge current, but the flashing frequency lying in the kHz band remains in-
dependent of the airspeed U , whilst the burst frequency instead turns out to depend
on U . The best S/N ratio is found on output f), that gives rise to Fig. 2, where the
discharge is established at U = 0 m/s for 3 different currents, then the burst fre-
quencies are measured for several flow velocities and shown in comparison with the
Strouhal frequencies of the pure wake. In general, the burst frequencies are weakly
raised by the interaction with the airstream. In particular, at the lowest current level
i1, the burst frequency is only slightly influenced by the airstream, this phenomenon
is more evident when the frequency approaches the natural pulsation of the wake
(lowering the current below this level leads to a glow discharge with rare non repet-
itive bursts). At the intermediate level i2, the burst frequency appears to be strongly
influenced by the airflow, and seems to grow together with the wake frequency in
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the considered airspeed range. At the highest level i3, the burst frequency returns to
be weakly influenced by the airstream; further increases of the current lead subse-
quently to the transition to spark regime.

In conclusion, the presented results suggest that the flow-discharge configuration
considered here may give rise to a coupling between the oscillatory behaviours of
the flow field and the discharge stream. At the present state of the work, a complete
understanding of the underlying physics cannot yet be reached, but it is worth to
add some comments: first, a simple interpretation of the current waveform as a pe-
riodic deflection of the discharge due to the wake is not satisfactory. Actually, the
bursts exist even without airflow, provided that the current is high enough, because
of the voltage–current characteristic of the discharge and the intrinsic capacitance
of the circuit. When both the airflow and the wake are present, a possible mecha-
nism for the coupling could be the enhanced ion transport each time that a vortex
rolls up toward the cathodic wall creating a favourable velocity zone. Then, the cou-
pling would take place when the natural frequencies of the two phenomena are close
enough. At present, this mechanism must be considered as a mere hypothesis, and
other interpretations may also arise as consequences of different kind of measure-
ments. Therefore, a more articulated investigation of this phenomenon will be the
object of a further work.
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Mixing due Pulsating Turbulent Jets

Holger Grosshans, Alexander Nygård, and Laszlo Fuchs

Abstract. Combustion efficiency and the formation of soot and/or NOx in Internal-
Combustion engines depends strongly on the local air/fuel mixture, the local flow
conditions and temperature. Modern diesel engines employ high injection pressure
for improved atomization, but mixing is controlled largely by the flow in the cylin-
der. By injecting the fuel in pulses one can gain control over the atomization, evap-
oration and the mixing of the gaseous fuel. We show that the pulsatile injection of
fuel enhances fuel break-up and the entrainment of ambient air into the fuel stream.
The entrainment level depends on fuel property, such as fuel/air viscosity and den-
sity ratio, fuel surface-tension, injection speed and injection sequencing. Examples
of enhanced break-up and mixing are given.

1 Introduction

Steady turbulent jets generate large scale vortices which enhance the large scale
mixing and the entrainment of ambient fluid into the jet. The shear-layer of the jet
produces also small scale turbulent eddies that are responsible for the local mixing.
For many applications, such as a fuel jet injected into a combustion chamber, the
time and space that is allowed for mixing is limited. One has observed in the past
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that pulsatile injection, instead of a continuous one, enhances entrainment and mix-
ing. In [1] one considers mixing in jets subject to some means of jet exit nozzle
pattern excitations. [1] note that even relatively minor changes to the exit flow pat-
tern of a round jet, through changes to the exit nozzle profile are found to propagate
downstream into the far field. [2] studied impulsively started incompressible turbu-
lent jets with emphasis on the transient phase. [3] and [4] measured the characteris-
tics of air jets intermittently discharged into ambient fluid. This type of jet shows a
much higher rate of entrainment than do steady or pulsed jets at the same mass flow.
In the LDV measurements of [4] a pulsed subsonic jet with significant no-flow pe-
riod between pulses has been studied. It was shown that such a jet has much higher
entrainment than steady or partially pulsed jets of the same mass flow. The effect
of pulsations is observed up to distances of 50 nozzle diameters. Similar findings of
the effects of jet unsteadiness have been observed by [5] in their gravity-driven flow
in which they used dyed fluid from a vertical tube flowing into a large water tank.
The measurements revealed that the portion of the unsteady jet corresponding to the
deceleration phase dilutes more than the steady jet. By using acid-base neutraliza-
tion reaction, one could show that the jet mixes in a shorter distance than the steady
jet. Modern diesel engines use common rail injectors. The injectors can be steered
electronically with respect to duration and frequency of injection. [6] studied a sin-
gle nozzle of such an injector. The axial velocity of the droplets was studied. The
radial distribution of the normalized axial mean velocity was similar to that of the
free gas jet within r/r0.5 = 1.0−1.5 (r0.5 is the radius where the jet velocity attains
half of the velocity at the center-line) regardless of time. The effects of intermittent
injections on entrainment were not considered. Experiments and experience in the
diesel engine industry indicated the benefits of staged/multiple injection of fuel. The
initial purpose has been to generate stratified charges, but it has been observed that
enhanced mixing is attained at the end of the injection pulse. A related engineering
solution is using rotating fuel injectors. There have been some attempts to explain
the observed effect of mixing at the end of injection. [7] proposed a 1-D model for
studying mixing of an inert diesel spray. The main assumptions of the model are
the mixing-controlled hypothesis. The authors claim that by making some further
assumptions the model would enable the estimation of the distribution of properties
within the spray as well as the tip penetration. A more detailed analysis by [8, 9]
using also a 1-D model, indicates the formation of a so called entrainment wave.
This entrainment wave propagates at the centreline twice as fast as the jet [8, 9].

2 Models and Methods

The liquid jet is injected into a quiescent air, where it undergoes an initial break-up.
The flow is assumed to be incompressible both in the liquid as well as in the gaseous
phase. The liquid-gas interface is handled by the so called Volume Of Fluid (VOF)
approach [10]. Large Eddy Simulations (LES) is used for handling this transitional
flow such that it is practically equivalent to Direct Numerical Simulation (DNS) in
larger parts of the domain, since in these regions all scales are resolved. At regions



Mixing due Pulsating Turbulent Jets 161

where the resolution is incomplete the approach becomes to be LES. The influence
of the liquid-gas density ratio, ρl/ρg, the Weber number,We= ρgUin jd jet/σ , and the
injection timing parameters T1 and T2 is studied as shown in Tab. 1. T1 corresponds
to the duration of one injection pulse, T2 corresponds to no injection. At injection
the jet has a constant speed of U which is changed to zero at off state.

Table 1 Characteristics of the simulations

CASE Rejet
ρl
ρg

μl
μg

Wejet T1 T2

vof.aI 9300 1 2.8 108 10 10
vof.aII 9300 20 2.8 108 10 10
vof.bI 9300 1 2.8 108 10 20
vof.bII 9300 20 2.8 108 10 20
vof.cII 9300 20 2.8 500 10 10

3 Results

Two of the cases are shown below. The first case is a single phase jet but with
μl/μg = 2.8. Fig. 1 depicts the injection of five jet pulses. The first injected blob
disintegrates not only at its leading edge but even more at its trailing part. This is the
effect of enhanced entrainment of ambient air due to the strong deceleration as the
injection is halted, leading to the suction of ambient air towards the tail of the blob.
At the fifth injection one may note the disintegrated jet even though one may notice
the centroids of the previously injected blobs. Fig. 2 depicts a different case with
relatively stronger surface tension effects. The dominating break-up mechanism is
different as compared to the previous case. In the former case the gas inertia is
large compared to the surface tension force per unit of interfacial are. The resulting
break-up generates many droplets much smaller than the jet diameter and is called
catastrophic. In latter case the breakup is of shear type. Additionally, one may also
observe that due to the low speed the jet breaks up at its tail in the first wind induced
regime. A measure of the entrainment is the speed of the jet along the center-line. As
ambient air is entrained the speed of the jet decreases. Fig. 3(a) depicts the stream-
wise velocity along the jet axis at two different locations. The delay between the
leading edge of the jet pulses as they pass the two monitoring points is 5.7 t∗ (t∗ =
d jet/U). The corresponding time delay for the tail of the blob is only 4.3 t∗. The
entrainment wave speed is the ratio of these two time delays, which is about 1.3
which is considerably smaller than the factor 2 seen is the experiments and the 1D
model. The corresponding plot for the case in Fig. 2 is depicted in Fig. 3(b). In this
case the time delays for the leading and trailing edges are 4.3 and 2.2, respectively.
This case is closer in its parameter range to the experimental one and hence also the
entrainment wave speed is predicted very well (i.e. equals to 2).
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Fig. 1 First (Fig. 1(a)), second (Fig. 1(b)) and fifth (Fig. 1(c)) injection pulse. At the end of
injection of the first blob, ambient fluid is penetrating the blob from behind and when the
second blob is injected the first one starts to disintegrate (right frame). ρl/ρg = 1, μl/μg =
2.8, Re = 9300 and We = 108. The injection and pause intervals are equally long.

(a) (b) (c) (d)

Fig. 2 Injection of a liquid jet: The red regions correspond to the liquid phase as it disinte-
grates. Note the disintegration at the tail of the jet. The density ratio is 20, injection time over
pause time is 2, We = 500.
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Fig. 3 Center-line axial velocity of the jet vs. time. Solid line corresponds to a point located
0.75 diameters downstream, dashed line to a point 3.75 diameters downstream. The flow in
Fig. 3(a) corresponds to the case shown in Fig. 1, Fig. 3(a) to Fig. 2.

4 Conclusion

The effects of intermittent injection of a jet has been studied numerically. The in-
fluence of the gas-liquid density ratio, the We number and the injection frequency
has been investigated. It can be concluded, that for certain parameters the tail of
a injected blob travels twice the speed than the head. This agrees with experimen-
tal and analytical results, but is not generally valid for all parameters. Increased air
entrainement is indicated, which effects not only the tail but the whole blob.
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DNS of Stable Spatially-Developing Turbulent
Thermal Boundary Layers under Weak
Stratification

Guillermo Araya, Luciano Castillo, and Kenneth Jansen

Abstract. Direct Numerical Simulations (DNS) of spatially-developing turbulent
thermal boundary layers under stratification are performed. It is well known that the
transport phenomena of the flow is significantly affected by buoyancy, particularly
in urban environments where neutral, stable and unstable atmospheric boundary lay-
ers are encountered. In the present investigation, the Dynamic Multi-scale approach
(DMA) by Araya et al. [3] for turbulent inflow generation is extended to thermally
stratified boundary layers. Furthermore, the proposed DMA is based on the origi-
nal rescaling-recycling method by Lund et al. [12]. The two major improvements
are: (i) the utilization of different scaling laws in the inner and outer parts of the
boundary layer to better absorb external conditions such as inlet Reynolds numbers,
streamwise pressure gradients, buoyancy effects, etc. ([4]), (ii) the implementation
of a dynamic approach ([3]) to compute scaling parameters from the flow solution
without the need of empirical correlations for the friction velocity and friction tem-
perature as in Lund et al. [12] and Kong et al. [11], respectively.

1 Introduction

Stratification mainly occurs in a natural setting and possesses significant conse-
quences on key areas such as wind energy, urban aerodynamics, pollen/contaminant
dispersion to name a few. Furthermore, stable conditions are reached whenever the
bottom surface is colder than the freestream air. In addition, under stable conditions,
turbulence is generated by shear and destroyed by negative buoyancy and viscosity.
Therefore, the strength of turbulence in the stable boundary layer (SBL) is much
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weaker in comparison to the neutral and unstable boundary layers [8]. As a result,
the stable boundary layer is also much thinner and characterized by smaller eddy
motions, as a consequence field measurements and numerical simulations (LES)
have found enormous difficulties [6]. Actually, this problem of SBL is indeed very
similar to boundary layers under favorable pressure gradients (FPG) in which the
external pressure gradient reduces the large scales of turbulence, and, thus the pro-
duction of the turbulent kinetic energy and shear Reynolds stresses are diminished
as well [2]. Finally, in the present investigation we have focused on stable condi-
tions and by means of extensive and highly accurate DNS, we have tried to shed
some light on the physical aspects of stable boundary layers.

2 The Dynamic Multi-scale Approach (DMA)

Araya et al. [3] introduced an improved version of the rescaling-recycling method
by Lund et al. [12], originally devised only for zero pressure (ZPG) flows. The
DMA considers different scaling laws in the inner and outer zones of the boundary
layer, therefore, different external conditions such as streamwise pressure gradi-
ents, Reynolds numbers and stratification can be better absorbed. Table 1 shows the
proposed thermal scaling laws used for the thermal boundary layers and success-
fully employed in [4]. Moreover, these thermal scaling laws have been obtained by
performing a similarity analysis over the governing equations of the flow [13]. Fur-
thermore, Table 2 depicts the velocity scaling functions considered in the proposed
turbulent inflow generation method base on the equilibrium similarity by [9] (re-
ferred henceforth as GC97) and the classical scales. The GC97 scaling laws have
already been tested in [1] and [3] in the rescaling process with high quality results
including higher order statistics. It can be observed that different scales are used
by GC97 in the inner and outer regions contrary to the classical approach, which
is based on a single scaling, mainly the friction velocity, uτ . Furthermore, the cor-
responding length scales are y+ = yuτ/ν (inner) and ȳ = y/δ (outer) in the GC97
and classical approaches of Table 2. It is worth noting that the proposed inflow gen-
eration method has been developed in such a way to apply any other scaling laws
from the literature. Thus, the method is very versatile and can be easily expanded to
absorb other external conditions, such as compressibility and freestream turbulence.

Table 1 Thermal scaling functions

Variable Type

Proposed Scaling

Inner Outer

Length scale Tsi and T ′
si Length scale Tso and T ′

so

Θ Mean temp. y+T = yU∞
ν

√
St Pr

√
St(Θw −Θ∞) yT = y

δT
(Θw −Θ∞)

δT
δ ∗

T

θ ′
Fluctuating temp.
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Table 2 Velocity scaling functions

Variable Inner Outer

Classical Equilibrium similarity Classical Equilibrium similarity
U ,u′,w′ uτ uτ uτ U∞

V,v′ U∞ uτ U∞ U∞dδ/dx

In order to calculate the friction velocity (uτ) and fiction temperature (Θτ) at
the inlet plane, power law variations are assumed (i.e., uτ/U∞ ∼ Reγ

δ and Θτ/Θ∞ ∼
ReγT

δT
). At each timestep, γ and γT are computed dynamically based on the mean flow

solution downstream. As a consequence, there is no need for empirical correlations
as in the Lund’s method [12]. The reader is referred to [3] for details and method
validation in turbulent boundary layers without buoyancy.

3 Numerical Details

Figure 1 shows a schematic of the thermal boundary layer with the corresponding
inner and outer regions. DNS of the Navier-Stokes and heat transfer equations for in-
compressible attached flows have been performed in momentum/thermal spatially-
developing boundary layers. Isothermal conditions are prescribed at the wall for the
temperature field. The Boussinesq approximation is used to model buoyancy along
the wall-normal direction in the momentum equation. Two ZPG cases are simu-
lated in this paper: neutral and stable. For the neutral case, the momentum thickness
Reynolds number (Reθ ) range is 2600-2987 while 2993-3610 for the stable case.
The bulk Richardson number (Riθ = gβ θ (Θ∞−Θw)/U2

∞) is zero in the neutral case
and 0.001 in the stable case. The idea of imposing a low Richardson number is to
analyze the effects of weak stratification in the boundary layer. Furthermore, the
initial conditions for the stable case are prescribed from the neutral case. In ad-
dition, domain dimensions (L+

x = 7421,L+
y = 2330,L+

z = 1153), mesh resolution
(Δx+ = 18.6,Δy+min = 0.46,Δy+max = 18.6,Δz+ = 9.3) and number of grid points
(Nx = 400,Ny = 150,Nz = 125) in the stable case are very similar than those of
the neutral case, whose grid resolution and domain dimension suitability have been
demonstrated in Araya et al. [3].

The local gradient Richardson number (Ril = gβ (∂Θ/∂y)/(∂U/∂y)2) is shown
in Fig. 2 at Reθ = 3200 for the stable case. As observed, the gradient Ril is lower
than the critical value of 0.25 in most of the boundary layer, except at the edge of the
boundary layer. Furthermore, the Ril follows a linear increasing trend from the wall
up to y+ ≈ 50, where Ril ≈ 0.01. Therefore, the level of stratification introduced
in the near wall region is low; however, significant decreases of the skin friction
(Cf ) and Stanton number (St) are seen for the stable case in figs. 3 (a) and 3 (b),
respectively. In other words, under stable conditions, the flow tends to laminarize
and the heat transfer between the wall and the flow is much poorer than that of
the neutral case. Comparable behaviors of the Cf and St have been reported by
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Fig. 1 Schematic of the thermal boundary layer with different regions

Araya et al. [5] for DNS in a turbulent channel under local blowing at the wall.
This may reveal that in a turbulent boundary layer under stable conditions, the low
speed streaks in the near wall region are pushed up due to buoyancy, which provokes
the skin friction reduction. However, further investigation should be carried out to
confirm it.

y+

R
i l

0 250 500 750 1000 1250

10-3

10-2

10-1

Ric = 0.25

Reθ = 3200

Riθ = 0.001

Fig. 2 Local Richardson number along y+

Moreover, the effects of weak buoyancy can be appreciated far from the wall,
as well: the Reynolds normal stresses in outer units show a decrease when stable
conditions are applied (see Fig. 4). However, the most meaningful reductions (up
to 17%) can be observed in the Reynolds shear stresses in Fig. 5 (a) and the wall-
normal turbulent heat fluxes in Fig. 5 (b). Similar findings have been obtained by
Hattori et al. [10] at much lower Reynolds numbers. Notice the good agreement
of present DNS in the neutral case (without buoyancy) with experimental data by
DeGraaff & Eaton [7] at Reθ = 2900. Figure 6 shows iso-contours of instantaneous
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Fig. 3 Skin friction (a) and Stanton numbers (b) along the streamwise direction
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Fig. 5 Reynolds shear stresses (a) and wall-normal turbulent heat fluxes (b) in outer units
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temperature fluctuations at y+ ≈ 5 for the neutral and stable cases in the near wall
region. It is observed that the stable condition provokes a suppressing effect on
the high temperature streaks (i.e., high speed streaks) in spite of the weak level of
stratification imposed. A similar behavior has been observed for FPG flows [2].

(a)

(b)

Fig. 6 Iso-contours of temperature fluctuations at y+ ≈ 5 for: (a) neutral and (b) stable
conditions

4 Final Remarks

A Dynamic Multi-scale Approach (DMA) is introduced to generate realistic tur-
bulent inflow conditions at the inlet of a computational domain in stable boundary
layers. Present DNS have demonstrated significant modifications in the near wall re-
gion despite the weak stratification level introduced. The most significant effects of
stratification have been identified as decreases of Reynolds shear stresses and wall-
normal turbulent heat fluxes (up to 17%) for a bulk Richardson number of 0.001.
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An Experimental Study of a Rotating-Disk
Turbulent Boundary-Layer Flow

Shintaro Imayama, R.J. Lingwood, and P. Henrik Alfredsson

Abstract. The azimuthal velocity distribution in a turbulent boundary layer (TBL)
on a rotating disk is explored using hot-wire anemometry and compared with those
of the two-dimensional TBL over a flat plate.

1 Introduction

The turbulent boundary layer on a rotating disk (RDTBL) in an otherwise quiescent
fluid has a three-dimensional velocity distribution with an inflection point in the
radial component. The aim of this study is to investigate both the mean and fluctuat-
ing azimuthal velocity distribution using hot-wire anemometry and to compare these
distributions with those of the two-dimensional TBL (2DTBL) over a flat plate.

The rotating-disk experimental set-up was identical to the one used by ref. [1], see
their figure 1. A hot-wire probe, with a single sensor made of platinum, is operated
by a constant temperature anemometer (CTA) with an overheat ratio of 0.8. The
sensor has a diameter of 1.3 μm and its length (L∗) is 0.3 mm. The signal from the
CTA is digitalized by a 16 bit A/D converter at a sampling rate of 2880 data points
per disk rotation during a sampling time of 60 seconds.

The location of the hot-wire sensor with respect to the disk surface is obtained
through a comparison with a gauge block with height 1.000 mm put next to the
sensor (figure 1(a)). The calibration of the hot wire is performed using the laminar
velocity profile however the highest velocity calibration datum for the TBL is ob-
tained by extrapolating the anemometer voltage to the wall (figure 1(b)). A typical
hot-wire calibration curve obtained by using various rotational speeds and heights
is shown in figure 1(c). The calibration data are fitted by a fourth-order polynomial,
resulting in a deviation of less than ±1.0% except in the very low velocity region.
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Table 1 Experimental conditions and DNS data. T01 and T02 are the two experimental pro-
files presented here. 2D01 and 2D02 are profiles for a 2DTBL flow taken from ref. [3].
R = r∗(Ω∗/ν∗)1/2, where r∗ is the radius of the disk at the measurement position, Ω∗ is
the rotational speed of the disk, and ν∗ is the kinematic viscosity of the fluid. The Reynolds
number based on friction velocity is defined as Reτ = v∗τ δ ∗

99/ν∗, where v∗τ is the friction ve-
locity and δ ∗

99 is defined as the height the velocity is 1% of V ∗
w . δ ∗

95 corresponds to the height
where the velocity is 5% of V ∗

w . The Reynolds number based on momentum loss thickness δ ∗
2

is defined as Reθ =V ∗
wδ ∗

2 /ν∗. H is the shape factor H = δ ∗
1 /δ ∗

2 , where δ ∗
1 is the displacement

thickness. The skin friction is defined as c f = 2(v∗τ/V ∗
w)

2. The viscous length is defined as
�∗ = ν∗/v∗τ and the non-dimensional hot-wire length L+ = L∗/�∗.

Case R Reτ Reθ r∗ V ∗
w δ ∗

99 δ ∗
95/δ ∗

99 δ ∗
1 δ ∗

2 H v∗τ c f �∗ L+

[-] [-] [mm] [m/s] [mm] [-] [mm] [mm] [-] [m/s] [-] [μm] [-]

T01 668 885 1714 210 32.0 9.3 0.60 1.08 0.81 1.34 1.43 0.00399 10.5 28.6
T02 698 1011 1935 220 33.5 10.4 0.59 1.16 0.87 1.33 1.46 0.00380 10.3 29.2

2D01 492 1420 0.78 1.43 0.00388
2D02 974 3032 0.78 1.40 0.00319
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Fig. 1 Details of the procedure of the hot-wire calibration and wall shear stress determi-
nation. (a) hot-wire height calibration, (b) estimation of wall voltage (∗) using TBL profile
near-wall region, (c) hot-wire calibration curve including the estimated wall voltage (∗), (d)
wall position estimation.
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Fig. 2 Mean, rms, skewness and flatness profiles versus wall-normal distance (z) scaled by
the inner scale (�∗), Rotta-Clauser boundary-layer thickness defined as Δ ∗ = δ ∗

1 Vw/v∗τ and
boundary layer thickness, where the symbols and lines indicate T01 (©), T02 (�), 2D01
(dashed line) and 2D02 (solid line), respectively. V+ is the non-dimensional azimuthal mean
velocity given as V+ = V ∗/v∗τ . The straight line corresponds to the logarithmic law with
the Kármán constant κ = 0.41 and logarithmic intercept of 5.0. v+rms is the non-dimensional
intensity of the velocity fluctuation (v+rms = vrms/v∗τ ) with spatial resolution corrections to
the data from the hot-wire probe in RDTBL. Sv and Fv are the skewness and flatness of
the velocity fluctuations given as Sv = v∗3/v∗3

rms and Fv = v∗4/v∗4
rms, respectively, where the

overline indicates the averaging. The skewness in T01 and T02 is multiplied by -1.
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2 Results and Discussions

The azimuthal friction velocity is estimated by measuring the velocity distribution
in the near-wall region. Ref. [2] has shown that the cumulative distribution functions
(CDF) of the fluctuating streamwise velocity in 2DTBL is self-similar in the viscous
sublayer. Figure 1(d) presents the mean azimuthal velocity profile in the near-wall
region with five different values of the CDF, namely 0.2, 0.3, 0.4, 0.5 and 0.6. The
self-similar behaviour makes the extrapolated lines meet at the position of the wall
and the estimated wall position indicated by ⊗, shows an error of about 2 μm and
less than 1 % in the velocity. Then the azimuthal wall-shear stress is calculated by
the slope of the velocity profile in the self-similar region. In contrast to the veloc-
ity profile in figure 9 in ref. [2] where heat conduction to the wall gives too high
readings, figure 1(d) shows no increase of the mean velocity near the wall, indicat-
ing that wall interference is negligible here. Since heat convection from the sensor is
high due to the high velocities near the disk, the effect of heat conduction to the wall
is negligible, indicating that the main problem of hot-wire measurement close to a
stationary wall is heat conduction rather than, e.g. blockage by the hot-wire probe.

In figure 2, a comparisons between the RDTBL and the 2DTBL for the mean,
rms, skewness and flatness distributions are shown using three different length
scales, the inner scale, Rotta-Clauser and the 95% boundary-layer thickness (for
specifications of the cases see table 1). The two flows show nice agreement in inner-
scaling for the inner layer (figure 2(a, g, j)) except for the rms profiles (figure 2(d))
despite with spatial resolution corrections of the hot-wire probe by ref. [5]. However
differences between the two flows are clearly observed in the outer region where
there is no obvious wake component (figure 2(a), also pointed out by ref. [4]),
much smaller rms (figure 2(d)) and larger values of both skewness and flatness (fig-
ure 2(g,j)) for the RDTBL. The almost linear decrease of v∗rms/V ∗

w with z∗/δ ∗
95 shown

in figure 2(f) in the region 0.1< z∗/δ ∗
95 < 1.0 is in agreement with ref. [6]. It is clear

that neither the Rotta-Clauser boundary-layer thickness nor δ ∗
95 are appropriate outer

scales to compare with 2DTBL.
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DNS of Rotating Turbulent Plane Poiseuille Flow
in Low Reynolds- and Rotation-Number Ranges

Takahiro Ishida, Takahiro Tsukahara, and Yasuo Kawaguchi

Abstract. We performed a series of direct numerical simulation (DNS) of the rotat-
ing turbulent channel flow in low Reynolds-number and rotation-number ranges, in
order to investigate presence or absence of turbulent stripe, i.e., large-scale laminar-
turbulent banded pattern, in the rotating Poiseuille flow and to elucidate the transi-
tional process in terms of structures including longitudinal roll cells induced by the
Coriolis force. As a result, we found that the turbulent stripe occured only in flows
with weak (or no) spanwise system rotations and coexisted with the roll cell under
a limited condition. We investigated relationships between the dominant-structure
alterations and the changes of rotation-number dependencies of statistics.

1 Introduction

Turbulent Poiseuille flow with spanwise system rotation includes the suction side
and the pressure side, where turbulence would be either attenuated or enhanced. In
the suction side, where the system rotation has the same direction as the vorticity of
the mean shear, the flow becomes stable or sometimes laminarized. In the pressure
side, where their directions are opposite to each other, the Coriolis force may give
rise to roll cells (RC). The structure of RC is an array of large-scale longitudinal
vortices aligning in the spanwise direction with regularity [1]. It has been known
that the spanwise size of a counter-rotating vortex pair in RC is 4–6δ and 2–3δ
(δ , the channel half width) for the plane Couette and Poiseuille flows, respectively,
under spanwise system rotations. Figure 1(a) shows a diagram of RC that occurs
in a channel. Black and gray cylinders in the figure represent longitudinal vortices,
which rotate in the clockwise and counter-clockwise directions, respectively.

Reducing the Reynolds number from a fully-developed turbulent flow, the large-
scale structure named ‘turbulent stripe’ (TS) was found to occur spontaneously by
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Fig. 1 Diagrammatic illustrations of large-scale organized structures in plane channel flows

recent studies. The structure of TS consists of large-scale turbulent and (quasi-)
laminar bands, which incline at a certain degree to the streamwise direction. The
stream- and spanwise wavelengths of a pattern of TS were reported as λ+

x ≈ 5000
and λ+

z ≈ 2000, respectively, in the plane Poiseuille flow at Reτ = 80 based on
the friction velocity uτ and the channel half width δ [2, 3], although those wave-
lengths might be influenced by the finite-length calculation domain with periodic
boundaries. Figure 1(b) schematically illustrates the structure of a single band of
TS captured in the minimal domain, showing an elongation of a turbulent band in
the diagonal direction of the domain. In the turbulent region, there occur low- and
high-speed streaks and fine-scale vortices, while they are almost absent in the quasi-
laminar region. According to previous studies, TS would be considered as a common
state during the transitional regime in various flow systems: such as plane Poiseuille
flow and plane Couette flow [3, 4]. In particular, the stabilizing rotation allows TS in
the plane Couette flow to persist in a wider range of the Reynolds number [5]. In the
rotating plane Poiseuille flow (RPPF), an occurrence of TS has not been reported in
any Reynolds number, because RC in the pressure side was dominant [6]. We spec-
ulate TS would occur in the suction (stable) side in RPPF. Therefore, we investigate
presence or absence of TS in RPPF and elucidate the transitional process in terms
of structures including TS and RC, by means of direct numerical simulation (DNS).

2 Numerical Procedures

The incompressible-fluid channel flow we consider here is driven by a uniform pres-
sure gradient in x and subjected to a positive system rotation along the spanwise (z)
axis with an angular velocity Ω . Hence, the pressure and suction sides are bottom-
and top-side halves of the channel, respectively. Strictly speaking, a border between
stabilized and destabilized regions should be demarcated based on the Bradshaw
number, Br = S(S+ 1), where S = 2Ω/(−du/dy) [1, 7]. In this study, we decided
to simply define the border of two regions at the channel center, since the maxi-
mum of the mean velocity u did not significantly change in height because of low
rotation numbers. The periodic boundary conditions are imposed in the x and z di-
rections and the non-slip condition is applied on the wall surface. The fundamental
equations are the equation of continuity and the following Navier-Stokes equation:
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Fig. 2 Visualization of instantaneous flow fields at Reτ = 80 for (a) Roτ = 0.05, (b) Roτ =
0.5. For each figure, (i) and (ii) show the stable and the unstable sides, respectively. Black
isosurface, u′+ > 3; gray, u′+ <−3. The mean flow moves from bottom-left to top-right.

∂u+i
∂ t∗

+ u+j
∂u+i
∂x∗j

=−∂ p+

∂x∗i
+

1
Reτ

∂ 2u+i
∂x∗j∂x∗j

−Roτ εi3ku+k (1)

Note that the superscripts of + and ∗ indicate the quantities normalized by the wall
units and the outer scale, respectively, and εi jk means the Eddington’s epsilon. The
finite difference method was adopted for the spatial discritization. For the time inte-
gration, the second-order Crank-Nicolson and Adams-Bashforth schemes were used
for the wall-normal (y) viscous term and the other terms, respectively.

A series of DNS has been made for Reτ = 54–80 and Roτ = 2Ωδ/uτ = 0.0–1.5.
We employed a large computational domain of 102.4δ × 2δ × 51.2δ with grids of
2048×192×1024 in the x, y, and z directions. The present domain size was chosen
to capture several bands of TS, according to the earlier DNS results. Indeed, three or
four TS bands were observed to exist stably, as described in the following section.

3 Results and Discussion

Some examples of three-dimensional visualization of instantaneous flow fields at
Reτ = 80 are given in Fig. 2, where each side is separately shown. Note that the
field presented in (a) is obtained for a low rotation number of Roτ = 0.05, while
that in (b) is for a relatively high value of Roτ = 0.5. Here, the isosurfce values
of the streamwise velocity fluctuations are set at u′+ = ±3, so that it allows us
to extract streaky structures in the near-wall regions clearly. From observation of
their distributions in instantaneous fields, we can detect the structures of TS and
RC. For instance, if a focus is placed on the suction side shown in Fig. 2(a-ii), the
streaks exhibits a spatially intermittent pattern in the field, giving rise to several
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Fig. 3 Pre-multiplied en-
ergy spectra of u′ as a func-
tion of spanwise wavelength
(λz) at y+ = 34 in the pres-
sure side for Reτ = 80. Note
that kz = 2π/λz.
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bands of locally strong turbulence, in accordance with the result in the non-rotaing
case (figure not shown). It implies that the flow in this side of channel be dominated
by TS. On the other hand, we confirmed that TS occured in the RPPF and found a
transitional state (in terms of the dominant structure) in the pressure side, where both
TS and RC coexisted in the flow field, as shown in Fig. 2(a-i). Although difficult
to detect from the given figure, low-speed streaks are remarkably elongated in x
and probably along RC. Hereafter, such a transitional state between TS and RC
as Roτ increases gradually is labeled as either Tr1 or Tr2. In the regime of Tr1,
TS seems to be more dominant than RC, while RC is stronger than TS in Tr2. At
high Roτ , the flow field given in Fig. 2(b) apparently involves only RC, and TS
cannot be determined. The low-speed streaks are very prominent compared to high-
speed ones in the pressure side (b-i), because ejecting fluid motions due to RC are
enhanced, whereas sweeping motions from the core region are relatively weak. In
the suction side (b-ii), the flow should be stabilized by the Coriolis force and so the
streaks observed in this side might be induced passively by RC in the pressure side,
resulting in the dominancy of high-speed streaks in the suction (stable) side.

In the present study, we have determined the dominant structure on the basis of
flow visualizations (as like Fig. 2) and statistics. Figure 3 represents spanwise pre-
multiplied energy spectra of u′ in the buffer layer of the pressure side, for different
rotation numbers. In this spectrum, a wavelength giving a peak/spike represents
the spacing of an energetic structure. That is, we can quantitatively determine the
dominant structure in the flow field from this plot. In particular, Fig. 3 shows that the
primary peak in the spectra has been taken at λ+

z ≈ 100, corresponding to the well-
known spacing of the near-wall streaky structures. It can be clearly seen that there
exists an additional peak at λ+

z = 1500, which indicates the spanwise spacing of the
TS patterns, for Roτ = 0 and 0.05, but the peak is obviously damped in the latter
case. At Roτ = 0.5, such a peak in λ+

z > 103 completely disappears and several
spikes exist in a range of λ+

z = 300–400, which should be relevant to RC. Although
not presented, the streamwise wavelength of TS has been detected at λ+

x = 4100.



DNS of Rotating Turbulent Plane Poiseuille Flow 181

Fig. 4 Rotation-number
dependency of streamwise
turbulent intensity (root-
mean-square of stream-
wise velocity fluctuation) at
Reτ = 80
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On the basis of the present DNS results, we have classified various turbulent
states about each side. As the rotation number Roτ is increased from stationary with
a fixed Reynolds number in the present range of Reτ = 54–80, the state of turbulent
flow changes gradually, revealing a transitional process of TS→Tr1→Tr2→RC both
for the suction side and the pressure side. If an emphasis is placed on the scenario
observed at Reτ = 80, the rotation numbers at which the respective structure transi-
tions arise in the pressure side are Roτ = 0.02 (for TS→Tr1), 0.05 (for Tr1→Tr2),
and 0.1 (for Tr2→RC). As for the suction side, each transition is found to be de-
layed to somewhat higher values: for instance, Roτ = 0.05 for TS→Tr1, and 0.2
for Tr2→RC. Therefore, any footprint of TS cannot be detected even in the stable
side of RPPF at Roτ ≥ 0.2. We found that the dependencies on the rotation num-
ber described above were more or less unchanged for Reτ = 54–80, although TS in
Reτ = 54 clearly remained in both channel halves even for slightly higher Roτ .

It is interesting to note that the transitional values with respect to Roτ , at which
the dominant structure changes from TS to Tr1 or from Tr2 to RC, correspond to
those with respect to the statistics described in the following. Although figures are
not shown, the wall-normal profile of the mean velocity become unchanged practi-
cally for Roτ ≤ 0.05, corresponding to the TS and transition states (Tr1, Tr2). More-
over, the profile becomes asymmetric and then decreases gradually for Roτ ≥ 0.2
in conjunction with the appearance of RC. The wall-normal height, at which the
Reynolds shear stress −u′v′ is zero, shifts from the center to the suction side with
increasing Roτ . For Roτ ≥ 0.2, this height almost unchanges, maybe because RC
is dominant. Figure 4 presents the root-mean-square values of the streamwise ve-
locity fluctuation. In the suction side, u′+rms drastically decreases as Roτ = 0 → 0.2,
while it almost remains irrespective of Roτ for Roτ ≥ 0.2. In the pressure side, u′+rms
shows a trend of monotonic increase for Roτ ≤ 0.5, but monotonically decreases
for Roτ > 0.5 with increasing Roτ . It can be seen that u′+rms does not depend on
Roτ , once TS disappears completely. This relationship implies that the transitional
process from TS to RC significantly affects statistics.
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In summary, we found that TS, which spontaneously occured in the non-rotating
transitional Poiseuille flow, would remain only in flows with weak spanwise rota-
tions which has not been reported in the literature. Moderate rotations gave rise to
coexistence of TS and RC. Johnston & Halleen [1] reported RC was present for
Rom(= 2Ωδ/um) > 0.04 (um, the bulk mean velocity) and absent for Rom ≤ 0.02.
In the range of 0.02 < Rom ≤ 0.04, the flow was unsteady and sometimes RC form,
decay, wash-out, and wave in a very unsteady manner. In a DNS study [7], the
different numbers of RC vortices was identified by increasing rotation rates up to
Rom = 0.2 and 0.5, respectively, and the scale of RC tends to diminish with increas-
ing Rom. This implies that the wall-normal size of RC may change. In the present
study, we observed turbulent motions that were affected by RC in the range of
0.02< Roτ < 0.05 (0.014< Rom < 0.037), but RC did not completely develop. For
Roτ > 0.1 (Rom > 0.075), RC develops in the whole domain. The Rom-dependency
of RC is consistent with the literature [1], and the dominant region of RC is in good
agreement with those obtained by Krisroffersen & Andersson [7]. For Roτ ≥ 0.2,
TS disappeared, resulting in monotonic Roτ -dependencies of statistical results.

Acknowledgements. This work was supported by a KAKENHI Grant-in-Aid, #22760136.
The present simulations were performed by SX-9 at Cyberscience Center, Tohoku University.
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4. Prigent, A., Grégoire, G., Chaté, H., Dauchot, O., van Saarloos, W.: Large-scale finite-
wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501 (2002)

5. Tsukahara, T., Tillmark, N., Alfredsson, P.H.: Flow regimes in a plane Couette flow with
system rotation. J. Fluid Mech. 648, 5–33 (2010)

6. Iida, O., Fukudome, K., Iwata, T., Nagano, Y.: Low Reynolds number effects on rotating
turbulent Poiseuille flow. Phys. Fluids 22, 085106 (2010)

7. Krisroffersen, R., Andersson, H.I.: Direct simulations of low-Reynolds-number turbulent
flow in a rotating channel. J. Fluid Mech. 256, 163–197 (1993)



The Characteristics of Turbulence in Curved
Pipes under Highly Pulsatile Flow Conditions

A. Kalpakli, R. Örlü, N. Tillmark, and P. Henrik Alfredsson

Abstract. High speed stereoscopic particle image velocimetry has been employed
to provide unique data from a steady and highly pulsatile turbulent flow at the exit of
a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady
conditions, the so called “swirl switching” phenomenon, as well as the secondary
flow under pulsations have been reconstructed through proper orthogonal decom-
position. The present data set constitutes – to the authors’ knowledge – the first
detailed investigation of a turbulent, pulsatile flow through a pipe bend.

1 Introduction

Turbulent flow through curved pipes occurs in a number of industrial applications
and has recently re-attracted the attention of scientists, mainly due to the oscillatory
character of the vortices formed in a pipe bend [1–5]. Such oscillations are known to
cause fatigue in piping systems. On the other hand, in some technical applications,
the turbulent flow is superposed with a pulsating motion which often is of much
higher frequency. This kind of flow is for example prevalent in different components
of the Internal Combustion Engine (ICE) such as the exhaust manifold. Numerical
simulations of such flow systems are generally favoured [6], however these need to
be validated against experiments in which the main physical features of interest are
captured, in order to assess the accuracy and limitations of the simulations. Study-
ing the fundamental fluid dynamics governing the engine’s functionality would lead
to better understanding of the gas exchange system and consequently lead to more
efficient management of the exhaust gases. However, there is barely any experi-
mental data available in the literature when it comes to turbulent, pulsatile flow
through curved pipes and existing studies are predominantly on laminar, pulsatile
flows [7–9]. The present work aims at filling this gap in the literature by providing
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2D3C (2-dimensional, 3-component) data from high-speed stereoscopic particle im-
age velocimetry (PIV) measurements. Both a steady and a highly pulsatile turbulent
flow in a generic geometry related to engine components are considered. The study
provides insight into the secondary flow structures with the aid of proper orthogonal
decomposition (POD). In particular, the low frequency oscillatory motion (so called
“swirl switching”) in steady flows as well as the secondary, in-plane motion under
pulsatile flow conditions will be illuminated.

2 Experimental Set Up and Measurement Technique

The experiments were conducted in the CICERO laboratory at KTH CCGEx, a cen-
tre focussing on gas exchange research for ICE. A compressor installation facility
delivers air at a maximum mass flow rate of 500 g/s at 6 bar, under either steady
and pulsating flow conditions. The pulsatile motion is created by rotating a valve
with its rotation rate being set by a frequency controlled AC motor. In order to
ensure steady flow conditions, the mass flow rate is additionally monitored by a
hot-film type mass flow meter (ABB Thermal Mass Flow meter FMT500-IG). The
reader is referred to Ref. [10] for details on the CICERO laboratory, and the pulsatile
flow rig.

A 90◦ pipe bend is connected to the pipe flow rig (see figure 1) and measurements
are taken at the immediate vicinity of the bend exit. The diameter of the pipe is
D = 40.5 mm and the curvature radius is Rc = 51 mm. The data presented here were
acquired using high-speed stereoscopic PIV at pipe cross-sections 0.2 and 2 pipe
diameters downstream the 90◦ pipe bend section (see figure 1). A laser light sheet
of 1 mm thickness was produced by a Nd-YLF laser (Pegasus, 10 kHz maximum
frequency, New Wave Research). The laser was externally triggered by the valve ro-
tation in order to enable phase averaging of the snapshots. Two high-speed C-MOS

Fig. 1 Geometrical configuration used in the experiments and camera set up for the stereo-
scopic PIV measurements (top view). Pipe diameter D = 40.5 mm and curvature radius
Rc = 51 mm, I) smoke injection inlet, II) rotating valve. Insert depicts the relative open valve
area change as function of the revolution angle.
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cameras (Fastcam APX RS, Photron, 3000 fps at full resolution 1024×1024 pixels,
10 bit) were positioned at an angle of approximately 70◦ between their viewing axes
(Figure 1). The 105 mm Nikon Nikkor lenses of the cameras were adjusted using
a Scheimpflug adapter. The data sets consist of 1000 snapshots taken at a sampling
frequency of 1 and 1.5 kHz for the steady and pulsating flow cases, respectively.
The vector fields were calculated using the commercial software Davis (Lavision
GmbH). A multi-pass iteration procedure was chosen for increased resolution start-
ing with an interrogation window of 64×64 pixels and decreasing to 16×16 pixels
with an overlapping area of 50%. Details of the set-up and parameters of the stereo-
scopic PIV measurements are documented in Ref. [11].

3 Results and Discussion

For the experiments the flow parameters used correspond to a Dean number of
De = 15× 103, defined as the product of curvature ratio (γ = D/(2Rc) = 0.4) and
Reynolds number (based on bulk velocity and D), and a Womersley number, defined
through α = D/2

√
ω/ν = 58 (with ω and ν denoting the angular frequency of the

imposed pulsations and kinematic viscosity, respectively) in case of the pulsatile
flow. Throughout this paper only POD reconstructed snapshots are shown, in order
to focus on the most energetic structures, which in the present study has been been
utilised mainly as an in-homogenous spatial filter. For details on the use of POD as
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Fig. 2 a) Time-averaged flow field 0.2 (left) and 2 (right) D downstream the 90◦ pipe bend.
The streamwise velocity component (scaled by the bulk speed) is shown as the contour map
and the in-plane components as the vectors. The largest time-averaged in-plane velocity com-
ponent is around 30 % of the bulk velocity. b–d) Subsequent snapshots (reconstructed by
means of the first 4 POD modes) for the 0.2 (left) and 2 (right) D stations, showing the mag-
nitude of the in-plane velocity components as the coloured vectors. Highest value (red) equals
to 50 % of the bulk velocity.
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a tool to extract large scale structures from PIV data and for a similar (steady) flow
case as the one shown here the reader is referred to Ref. [5, 12].

Figure 2a) shows the time-averaged flow field 0.2 and 2 D downstream the pipe
bend, with the streamwise velocity component shown as the background contour
map and the in-plane components as the vectors. The mean flow fields exhibit the
main characteristics of flow fields in curved pipes, i.e. the high velocity fluid in
the centre of the pipe tends to move outwards, being greatly affected by centrifu-
gal forces, while slow-moving fluid particles close to the pipe walls move inwards
thereby creating a C-shaped streamwise velocity distribution. This behaviour in-
duces two counter rotating cells, the so-called Dean vortices, which are apparent
in the vector field and are – due to the sharp curvature of the present pipe bend
– much closer located to the pipe walls than in cases with a milder curvature (cf.
Ref. [3]). While previous studies in steady turbulent flow through pipe bends with
milder curvature ratios have reported a low-frequency oscillatory motion of the
Dean cells [1, 3, 5], such a behaviour is not apparent from the snapshots depicted
in figure 2b–d) for the 0.2 D station. In fact, the instantaneous flow field resembles
to a large extent its time-averaged counterpart. Further downstream, on the other
hand, at the 2 D station, the flow starts to recover from the sharp bend as apparent
from the mean streamwise velocity distribution where the Dean cells move away
from the wall. In the instantaneous flow field, as observed in flows with a milder
curvature ratio, the Dean cells, depict an unsteady behaviour, i.e. the Dean cells
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Fig. 3 Reconstructed pulsating flow field using the first 4 POD modes, a) 0.2 and b) 2 D
downstream the bend, for three valve angles (cf. figure 1 for the relative valve area change)
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“switch” between three states: a symmetric one, and two in which either the upper
or lower cell appears as the dominant one.

When it comes to the pulsatile flow case, the flow field is dictated by the imposed
pulsatile motion, and the aforementioned unsteady behaviour of the Dean cells is
replaced by a secondary flow that is determined through the pulsatile motion. As
apparent from figure 3, the highest velocity reaches around three times the bulk
speed, while at the end of the deceleration phase back flow with a magnitude of
almost the bulk speed sets in. The shown three different phase angles along the de-
celeration phase depict, that the flow is characterised by a net secondary flow from
the inner to the outer wall and cell-like structures at the start and end of the decel-
eration phase, respectively. To the authors’ knowledge, this is the first experimental
investigation revealing the secondary flow pattern for a pipe bend under turbulent,
pulsatile flow conditions.

Acknowledgements. This research was done within KTH CCGEx, a centre supported by
the Swedish Energy Agency, Swedish Vehicle Industry and KTH.
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11. Kalpakli, A., Örlü, R., Tillmark, N., Alfredsson, P.H.: Pulsatile turbulent flow through
pipe bends at high Dean and Womersley numbers. J. Phys.: Conf. Ser. 318, 092023
(2011)
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Nonlinear Development of Unstable Modes
and Formation of Coherent Vortex Structures
in Weakly Supercritical Zonal Shear Flows

S.V. Shagalov and G.V. Rybushkina

Abstract. This study explores the nonlinear development of the barotropic insta-
bility in weakly supercritical horizontally sheared zonal currents in the presence of
vertical stratification. The energy exchange between unstable normal modes and the
flow is shown to be confined to the common critical layer-region where the modal
wave speed matches the flow velocity. A closed system of equations governing the
evolution of instability wave amplitudes and critical layer vorticity distributions is
derived with the aid of an asymptotic procedure. The dependence of the evolutionary
scenarios of the flow on the values of the supercriticality and dissipation parame-
ters is examined within the framework of qualitative and numerical analysis of the
obtained equations. Nonlinear growth and saturation of the unstable barotropic and
baroclinic modes lead to development of periodic coherent structures in the vortic-
ity distribution inside the common modal critical layer. These structures take on the
appearance of two-dimensional vortex chain or three-dimensional baroclinic vortex
pattern depending on the flow regime at the stage of the instability equilibration.

1 Introduction

Exploring the development of the shear-flow (barotropic) instability in rotating fluid
[4] has continued to attract considerable attention because of its relevance to the
formation of large-scale vortex structures [2, 3] and transition to turbulence [5, 6] in
horizontally sheared atmospheric and oceanic zonal flows. The physical mechanism
feeding the instability near its onset in a weakly dissipative zonal flow is restricted
to resonant extracting the kinetic energy from the flow by weakly unstable normal
modes in the relatively thin critical layer (CL) surrounding a level where the wave
speed of a marginal mode matches the mean flow [1, 5, 6]. The studies [5, 6] seem to
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Fig. 1 (a) Schematic illustration of the cat’s eye streamline pattern in the nonlinear CL of a
zonal mixing layer. (b) The stability boundaries of the barotropic mode (a solid line) and the
main baroclinic mode (a dashed line) for the zonal flow U = tanhy.

be the first to perform an asymptotic analysis of transition to turbulence and chaotic
advection in parallel shear flows on the basis of the nonlinear CL concept.

2 Description of the Model, Scalings and Evolution Equations

The objective of this research is to extend the asymptotic CL approach to exploration
effects arising from the stable density stratification in a weakly dissipative barotrop-
ically unstable flow on a horizontal plane rotating with angular velocity Ω0. Being
specified by a mixing layer velocity profile U(y) most typical of the Antarctic polar
vortex periphery [7], the background flow is assumed to be directed along the zonal
x-axis and varies in the meridional y-direction (Fig. 1(a)). The β -effect (variation of
Coriolis parameter f = 2Ω0 with y) is included. A simple model of density stratifi-
cation in the vertical z-direction with constant buoyancy frequency N is adopted.The
flow is furthermore confined in the vertical direction between two rigid horizontal
boundaries at z = 0 and z = 1 .

According to the linear inviscid theory based on the Rayleigh-Kuo’s theorem [4]
the basic flow is capable of supporting barotropic and baroclinic unstable normal
modes whenever the constant meridional gradient β of the Coriolis parameter f is
less than a critical value βm = (U ′′)max. The nondimensional variables are related
to their (primed) dimensional counterparts through (x,y) = (x′,y′)

/
L, z = z′

/
H and

β = β ′L2
/

U0, where L and H are a shear scale length and a depth of stratified fluid
respectively. A notable feature of the problem is that all marginal modes correspond-
ing to β = βm have the same phase speed c. As a consequence, weakly unstable
normal modes adjacent to marginal modes for the values of β close to βm grow in
the flow due to the interaction with the common CL in the vicinity of y = yc where
U(y) = c (Fig. 1(a)). Only two unstable modes (the barotropic mode and the main
baroclinic one) sharing common CL are shown to develop in the flow near the in-
stability onset provided that some restriction is imposed on the value of the Burger
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number B = (NH
/

f L)2 (Fig. 1(b)). Supercriticality of an inviscid flow defined as
δβ = βm −β is expressed through a small amplitude parameter ε: δβ = ε pβ1. To
capture effects arising from small dissipation a dimensionless viscosity parameter ν
(an inverse Reynolds number defined through the parameter of turbulent viscosity)
is also scaled in terms of ε: ν = ε3/2ν∗. The scaling of δβ allows the regimes of
quasi-steady (p = 1) and time-dependent (p = 1

/
2) CL to be considered. Outside

the CL a solution to potential-vorticity equation describing the flow dynamics [4] is
sought as a series in ε for the total streamfunction

ψ =

∫ y

yc

(U − c)dy+ ε

{
2Re ∑

n=0,1
An(τ1)ϕ(y)cos(πnz)eiknξ

}
+ ε p+1ψ(p+1) + ... ,

(1)
where the O(ε) term satisfying the rigid-lid boundary conditions at z = 0 and z = 1
accounts for the slowly growing instability waves. The complex amplitude functions
A0 and A1 depend on the slow variable τ1 = ε pt; ψ(p+1) = ψ(p+1)(ξ ,y,z,τ1), ξ =
(x−ct) is a streamwise coordinate in a frame of reference moving with the common
phase speed c of the marginal modes having wavenumbers k0 and k1 (Fig. 1(b))
and common latitudinal structure ϕ(y). The regular asymptotic expansion scheme
breaks down near the level y = yc and asymptotic series become disordered for
y− yc = O(ε1/2) (see, e.g., [1, 6]). At this stage rescaled cross-stream coordinate
should be introduced to search for asymptotic solutions inside the CL surrounding
the critical level y = yc. The scaling of ν ensures that the viscous scale of the CL
lν = (ν

/
k0U ′

c)
1/3 and the nonlinear scale ln = (|ψc|

/
U ′

c)
1/2 are O(ε1/2) and hence

viscous and nonlinear effects may be of comparable importance inside the CL. An
analysis of the asymptotic expansions outside and inside the CL and the matched
asymptotics formalism (see also [6, 1]) are employed to derive a closed system of
equations governing the evolution of the instability modes amplitudes a j ( j = 0,1)
and CL vorticity distribution Ω = Ω(ξ ,η ,z, t)

da0

dt
= iϕ2

c
k0

J

∫ 1

0
dz
∫ ∞

−∞

〈
Ωe−ik0ξ

〉
dη , (2)

da1

dt
= iϕ2

c
2k1

J

∫ 1

0
cos(πz)dz

∫ ∞

−∞

〈
Ωe−ik1ξ

〉
dη , (3)

∂Ω
∂ t

+U ′
cη

∂Ω
∂ξ

−2Re

{
∑

n=0,1
iknan cos(πnz)eiknξ

}
∂Ω
∂η

= F (ξ ,z, t)+ν
∂ 2Ω
∂η2 , (4)

where F contains terms describing supercriticality and nonlinearity, 〈...〉 and (...)c

denote local averaging over zonal coordinate ξ and evaluation at y = yc respectively,
a j = εϕcA j, η = y− yc, J is a functional of modal profile ϕ(y) and U(y). Being
written in terms of physical variables, equations (2)-(4) combine both variants of
δβ scaling and allow one to study the shear flow dynamics over relatively wide
range of supercriticality.
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3 Results

Under sufficiently small supercriticality with δβ � ν2/3 the CL-flow is shown to
evolve in a quasi-steady weakly nonlinear regime. In this case equations (2)-(4) may
be reduced to a set of two coupled Landau-Stuart amplitude equations describing
simultaneous development of the unstable normal modes

da j

dt
= γ ja j + a j ∑

l

ρ jl |al |2 + a j ∑
l,m

α jlm |al |2 |am|2 ( j = 0,1) , (5)

where γ j = πk jϕ2
c δβ

/
JU ′

c is the linear growth rate of the j-wave and ρ jl , α jlm are
real coefficients. A qualitative analysis of the system (5) based on the phase-plane
description (see, e.g., [8]) was performed. It has been revealed that the primary ef-
fect of the nonlinear interaction between modes within the CL is the suppression of
the baroclinic mode and saturation of the instability in barotropic regime as a result.
The physical mechanism of this effect is based on the nonlinear interaction of the
modes with the second-order “beat-wave” vorticity perturbations induced in the CL.
At the higher level of supercriticality (δβ ∼ ν1/3) nonlinearity and time dependence
play a significant role in the CL and development of the instability can no longer be
described by the weakly nonlinear equations (5). It is shown with the aid of numer-
ical analysis of the equations (2)-(4) that in this case the flow exhibits competition
between modes and depending on the initial conditions for the mode amplitudes the
instability saturates in pure barotropic or baroclinic regime (Fig. 2(a),(b)).

This evolutionary scenario is accompanied by development of periodic coherent
structures in the vorticity distribution inside the common modal CL taking the form
of the two-dimensional barotropic vortex chain or the three-dimensional baroclinic
vortex pattern at the stage of the instability equilibration. Figure 3 shows the snap-
shots of the final state potential vorticity field

Fig. 2 (a), (b) The time evolution of the normalized mode amplitudes a j = a j / U ′
cl2

ν in the
regime of the nonlinear time-dependent CL for different initial conditions
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Z =− 1
3!

UIV
c η3 + δβ η − UIV

c

U ′
c

ηRe
(

a0eik0ξ + a1 cosπzeik1ξ
)
+Ω (ξ ,η ,z, t) (6)

for the barotropic and baroclinic regimes of the instability saturation for different
values of vertical coordinate z .

Fig. 3 Computed constant-potential vorticity Z contours in the barotropic (a) and baroclinic
(b) regimes of the instability saturation for different values of vertical coordinate z

4 Concluding Remarks

In this study an asymptotic approach based on the critical layer concept is used to an-
alyze the nonlinear development of barotropic instability in a horizontally sheared,
stratified zonal flow. The contribution of the baroclinic (three-dimensional) unsta-
ble normal modes to different scenarios of the barotropic instability is explored. It
has been shown that in the absence of resonant interaction between unstable normal
modes characteristics of the instability crucially depend on the value of the super-
criticality. Transition from the regime of the baroclinic mode suppression to the
regime of competition between modes with the supercriticality increasing has been
revealed.
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Reactive Continuum Mixtures under the
Influence of Electromagnetic Fields

Martina Costa Reis and Adalberto Bono Maurizio Sacchi Bassi

Abstract. In this work, we present the equations of balance of mass, linear and
angular momenta, energy, and entropy for reactive continuum mixtures under the
influence of electromagnetic fields. We assume that the mixture is a polar contin-
uum whose constituents are electric charge and/or electric dipole moment carriers
immersed in a Newtonian fluid. From the mass balance equation, properties of real
and potential electrolytes were related to the terms of mass production. In addition,
from the linear and angular momenta balances, it was shown that the stress tensor
is not symmetric due to the polar nature of both the constituents and the mixture.
Moreover, the energy balance equation for the mixture reveals that the energy flux
vector should not be interpreted as the heat flux vector from the classical continuum
mechanics. The balance laws presented in this work may offer a theoretical tool to
investigate mass transport and thermoelectric phenomena in electrolyte solutions as
well as in bio and geological fluids.

1 Introduction

The study of the electrodynamics of deformable and reactive bodies interests
chemists, physicists and engineers. Some authors [4, 5] have demonstrated that
many physical and biological processes are influenced by electromechanical inter-
actions, so that several continuum models, varying in degree of complexity, have
been developed. However, despite the many models available, the electrodynam-
ics of deformable and reactive bodies has not been appropriately described in the
literature yet.

Thus, the aim of this work is to present the balance laws for reactive mix-
tures under the influence of electromagnetic fields. This is done by superposing the
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quasi-electrostatic theory on the continuum theory of mixtures. The results of this
work may be useful for modeling the thermomechanical behavior of electrolyte
solutions and bio and geological fluids too.

2 Dynamics of Electrolyte Solutions

We assume that electrolyte solutions are continuum mixtures whose polar con-
stituents may carry electric charges and/or electric dipole moments. In describing
electrolyte solutions as electrically polarizable and conducting media, we assign an
inner structure to the mixture. Briefly, electrolyte solutions are considered microp-
olar mixtures whose macroscopic behavior is strongly influenced by microscopic
properties, such as molecular motion, electric dipole moments and size of particles.

Maxwell’s equations of electromagnetism are considered under the
quasi-electrostatic approximation [6]. All equations are written in their component
forms by considering a Cartesian coordinate system, and all quantities relative to the
individual constituents of the mixture, named partial quantities, are labeled by an in-
dex a. Furthermore, time derivatives of the fields ψ (x, t) following the motion of the

mixture are denoted by
·

ψ , whereas time derivatives of the fields ψa (xa, t) following
the motion of the constituent are expressed by ψ̀a. Besides, brackets represent the
anti-symmetry of second order tensors.

2.1 Kinematics

Let B be a micropolar mixture of n constituents Ba with a = 1, ...,n, such that a
particle of Ba is represented by Xa. Besides, let a region of the Euclidean space E be
simultaneously occupied by n particles, one from each constituent [2]. Thus, if Xa is
the material coordinate in some reference configuration, the motion xa

i = xa
i (X

a, t) of
constituent a is a smooth function of space and time with velocity and acceleration
respectively given by:

va
i ≡

∂xa
i (X

a, t)
∂ t

, (1)

aa
i ≡

∂ 2xa
i (X

a, t)
∂ t2 .

Each particle Xa undergoes the rotation ωa
i , as well as the displacement set above.

These rotations are independent of mixture vorticity, wi, and are not described by the
spin tensor, but by an orthogonal tensor, Ia

i j, which accounts for the average moment
of inertia of molecules of Ba [3]. By assuming that particles behave as rigid bodies,
one has

sa
i = Ia

i jωa
j , (2)

where sa
i is the spin field, a quantity that represents the internal angular momentum

of the molecules of Ba.
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2.2 Balance Laws

For a multi-constituent system, the local balance equation of mass for the constituent
a is given by

ρ̀a +ρava
i,i − ca = 0 , (3)

where ρa is the mass density of a, and ca =
n

∑
b=1

(
cba − cab

)
, being cba the rate of

mass conversion from constituent b to constituent a as result of a chemical reaction.
The charge density of each constituent a, qa, may be obtained from qa = ρaza, where
za is the charge per unit mass of constituent a.

The introduction of cba is very important to define two kinds of electrolytes:
the potential electrolytes and the real ones. Potential electrolytes are those which
dissociate into ions through chemical reactions with solvent molecules. Most so-
lutions of potential electrolytes contain small ionic concentrations, thus the effects
of ion-ion interactions are frequently neglected. The behavior of these solutions is
mainly governed by the equilibrium position of the reaction between the potential
electrolyte and the solvent. Hence, until kinetic equilibrium is reached, cba and cab

are different for the same point of the mixture at the same time. On the other hand,
real electrolytes are those which generate ions in solution through physical interac-
tions between the ions present in the ionic solid and the solvent molecules. Usually,
real electrolytes are completely ionized when dissolved in water, so that the final
solutions consist only of solvated ions and solvent molecules. For these solutions,
the dependence of their properties on concentration is determined by the ion-ion
interaction force [1].

For a micropolar mixture whose constituents are chemical species, which may
carry electric charge and/or electric dipole moments, each constituent experiences
mechanical as well as chemical and electrical forces. Then, the local balance equa-
tions of linear momentum for each constituent and mixture are, respectively,

ρag̀a
i −T a

[i j], j −ρaba
i − qaEa

i −Pa
i Ea

i, j −ma
i = 0 ,

ρ ġi −T[i j], j −ρbi− qEi−PiEi, j = 0 ,
(4)

where ρgi =
n

∑
a=1

ρaga
i is the total linear momentum density, T[i j] =

n

∑
a=1

(
T a
[i j]−ρaua

i ua
j

)
is the total stress tensor, ui is the translational diffusion velocity, ρbi =

n

∑
a=1

ρaba
i is

the mechanical body force density, qEi =
n

∑
a=1

qaEa
i is the coulombic force density,

ma
i is the linear momentum production that accounts for the chemical interaction

of constituent a with other constituents, and Pi is the polarization vector defined by
Pi = ρ pi, such that pi denotes the dipole moment. The linear momentum production,
ma

i , can be split up into two parts: a part that comes from the thermochemical inter-
actions of a with other constituents and another part that follows from the chemical
production of mass of constituent a.
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Unlike single fluids, the stress tensor for continuum mixtures contains two con-
tributions: the first one, named inner part, is the sum of all partial stress tensors, and
the second one, named partial diffusive stress tensor, describes the transfer of linear
momentum caused by the diffusive motion of each constituent of the mixture. More-
over, as the dynamics of the whole mixture must not be changed by the interactions

among the constituents, one necessarily has
n

∑
a=1

ma
i = 0.

The local balance equations of spin for each constituent and mixture are,
respectively,

ρas̀a
i −Ca

i j, j +
1
2 εi jkT a

[ jk]− εi jkPa
j Ea

k −ρala
i − τa

i = 0 ,

ρ ṡi −Ci j, j +
1
2 εi jkT[ jk]− εi jkPjEk −ρ li = 0 ,

(5)

where ρsi =
n

∑
a=1

ρasa
i is the spin density, Ci j =

n

∑
a=1

(
Ca

i j −ρasa
i ua

j

)
is the coupling

stress tensor, ρ li =
n

∑
a=1

ρala
i is the mechanical body coupling force, and τa

i is the spin

production due to the electromechanical interactions of a with other constituents
and the chemical production of mass of constituent a. According to Eq. 5, there
exists an electromagnetic body coupling force acting on polar molecules given by
εi jkPjEk which contributes to the time change of spin and to the antisymmetry of
the stress tensor. In fact, Eq. 5 shows that the stress tensor of each constituent will
be symmetric if, and only if, simultaneously sa

i is a time constant, Ca
i j is a solenoidal

field, τa
i = 0, la

i = 0, and Pa
i and Ea

i are aligned. As expected, the same conclusions
hold for the whole mixture too.

At this point, it should be emphasized that body coupling forces can also act on
particles of apolar fluids, but, in this case, they are equivalent to body forces, so they
only modify non-internal degrees of freedom. On the other hand, these body cou-
pling forces work upon the internal degrees of freedom of structured fluids, inducing
fluid flow.

The local energy balance equations for each constituent and mixture are,
respectively,

ρaὲa + ha
i,i + Sa

i,i−T a
[i j]v

a
i, j − 1

2 ωa
i ε i jkT a

[ jk]−
Ca

i jωa
i, j −ρara −ρaEa

i p̀a
i −Ea

i iai −ϑ a = 0 ,
ρε̇ + hi,i+ Si,i−T[i j]vi, j − 1

2 ωiε i jkT[ jk]−Ci jωi, j −ρr−ρEiṗi −Eiii = 0 ,
(6)

where ρε =
n

∑
a=1

(
ρaεa + 1

2 Ea2 + 1
2 ρaua2 + 1

2 ρasa
i ςa

i

)
is the density of internal en-

ergy, being the total kinetic energy split up into translational and rotational kinetic
energies, ςa

i is the angular diffusion velocity,

hi =
n

∑
a=1

{
ha

i −T a
[i j]u

a
i −Ca

i jς
a
i +

[ 1
2 ρaεa + 1

2 Ea2 + 1
2 ρaua2 + 1

2 ρasa
i (ς

a
i −ωi)

]
ua

i

}
is
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the energy flux vector, Sa
i is the Poynting’s vector, ρr =

n

∑
a=1

ρara is the energy sup-

ply due to mechanical body forces, ii is the conduction current, and ϑ a is the energy
production. The last two terms on the right-hand side of Eq. 6.2 respectively describe
the rate of work done by the constituents which are carriers of electric dipoles, and
the Joule effect. Moreover, the heat flux vector for the mixture involves not only
the contribution of partial heat fluxes, but also the stress powers and the coupling
stresses over the diffusive movement, and the convective energy flux associated to
diffusion. Consequently, the energy flux vector, hi, should not be interpreted just as
the heat flux vector, φi.

Additionally to Eqs. 3-6, the behavior of reactive continuum mixtures under in-
fluence of electromagnetic fields must also obey the entropy principle. The entropy
principle for each constituent and mixture respectively are

ρaὴa +Φa
i,i −ρaσa −ρaπa = 0 , (7)

ρη̇ +Φi,i −ρσ ≥ 0 ,

where ρη =
n

∑
a=1

ρaηa is the the specific entropy density, Φi =
n

∑
a=1

(Φa
i +ρaηaua

i ) is

the entropy flux, ρσ =
n

∑
a=1

ρaσa is the entropy supply density, and

ρπ =
n

∑
a=1

ρaπa ≥ 0 is the entropy production density. Note that the entropy produc-

tion for each constituent may take any value, provided that the entropy production
for the whole mixture is a non-negative quantity. Furthermore, unlike the Coleman
and Noll exploitation method [7] of the entropy principle, Φi and ρσ are not a priori
assumptions, but constitutive functions on which thermodynamic restrictions must
be placed. In fact, with Φi and ρσ given by the previous expressions, the main con-

stitutive assumptions adopted by Coleman and Noll, Φi =
1
θ

φi and σ =
1
θ

r, clearly

do not hold, where θ stands for the empiric temperature.

3 Concluding Remarks

In this work, we discussed the dynamics of reactive micropolar mixtures under in-
fluence of electromagnetic fields. We described the electrolyte solution as a dis-
continuous medium on the microscopic scale, such that the intrinsic motion of the
molecules of each constituent is taken into account. Moreover, we presented balance
equations of mass, linear and angular momenta, energy, and entropy. Mass produc-
tion terms were used to distinguish the nature of potential and real electrolytes. The
results obtained from the balance equation of linear momentum indicated that the
stress tensor is the sum of the partial stress tensors minus the sum of the diffu-
sive coupling stresses. Indeed, we showed that the manifestation of torques on polar
molecules is closely related to the inner structure of the fluid and causes the lack of
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symmetry of the stress tensor. We also demonstrated that the vector hi should not
be interpreted as the heat flux vector, φi, from the classical continuum mechanics.
Thus, the well-known Clausius-Duhem inequality does not apply to reactive contin-
uum mixtures, so that other entropy principles, for instance, the Müller-Liu entropy
principle, should be employed to impose restrictions on the constitutive responses
of the body.

Acknowledgements. Martina Costa Reis acknowledges financial support from the Brazilian
National Counsel for Scientific and Technological Development (CNPq) and German Aca-
demic Exchange Service (DAAD). The authors are also indebted to Professor Yongqi Wang
for his pertinent comments about the equations.
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Sound Generating Flow Structures in a Thick
Orifice Plate Jet

Emma Alenius

Abstract. The aim of this work is to study sound generating flow structures in a thick
circular orifice plate jet, placed in a circular duct. Large eddy simulations (LES)
are performed for two jet Mach numbers, 0.4 and 0.9. Characteristic frequencies
in the flow, and their corresponding flow structures, are identified with dynamic
mode decomposition (DMD). The results show that a tonal noise is generated at
frequencies where the jet displays strong ring vortices, in the plane wave range.
The main sound generating mechanisms seems to be a fluctuating mass flow at the
orifice opening and a fluctuating surface force at the plate sides, caused by the ring
vortices. The frequencies are believed to be chosen, and strengthened, by a feedback
mechanism between the orifice in- and outlet.

1 Introduction

When air flows through a thick orifice, a jet is formed inside and downstream of the
orifice, generating sound. In this work we study sound generating flow structures in
a circular orifice jet, confined in a circular duct. Simulations are an important tool for
studying the flow structures; they can give insight into what happens in areas where
it is difficult to perform measurements. Here, compressible large eddy simulation
(LES) is used in order to capture both the sound generating flow structures and the
acoustics.

Orifice jets have been shown to exhibit similar, although more 3D, coherent struc-
tures as nozzle jets, which have been more extensively studied in literature, [7, 6].
The jet shear layer is unstable to small perturbations, which grow exponentially and
roll up into axisymmetric vortex rings close to the nozzle exit and helical structures
further downstream [3]. The passing of axis-symmetric vortex rings has been shown
to give rise to a periodic acceleration of the jet core fluid [5]. The most unstable
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frequency of the jet shear layer is very sensitive to low level coherent background
perturbations [2]. Thus, a feedback mechanism can occur when the jet impinges on
an object, giving upstream propagating coherent disturbances that excite the shear
layer at the point of separation [8]. For a ducted orifice plate, a similar feedback
mechanism can generate a high amplitude tonal noise, so called whistling, due to
interaction with reflecting duct ends [11].

The focus of this paper is flow structures that generate a tonal noise in a 2 cm
thick orifice plate jet, with non-reflecting duct ends. The flow structures are studied
using dynamic mode decomposition (DMD), which is a method to extract struc-
tures corresponding to characteristic frequencies in the flow [10]. Simulations are
performed for an orifice with an area contraction ratio of 0.36, and at two flow
speeds, corresponding to jet Mach numbers of 0.4 and 0.9.

2 Models and Methods

In this study LES is used since direct numerical simulations (DNS) are too expen-
sive, and Reynolds average Navier Stokes (RANS) models are too dissipative and
problematic at the time-scales related to the sound generation. The idea with LES
is to resolve the large energy containing scales, which are coupled to the geometry,
while the small scales are modeled. This model should account for the effects of
the small, unresolved, scales on the resolved ones, where the most important effect
is dissipation of kinetic energy. An alternative to using an explicit model for the
sub-grid scales is implicit LES, where the numerical dissipation in the discretiza-
tion scheme is assumed to account for the dissipation by the sub-grid scales. In the
simulations it is also made sure that the spatial resolution is good enough to resolve
a part of the inertial sub-range, as required in an LES.

The LES have been performed with the general compressible CFD code Edge,
which is a node based finite volume code, see [1]. The spatial discretization uses
a formally second order central scheme, with a Jameson type of artificial dissipa-
tion [4] added to the inviscid terms. For the temporal discretization an explicit, low
storage, four stage, second order accurate Runge-Kutta scheme is used.

In DMD the flow is decomposed into a temporal part, consisting of frequencies
ω j and growth rates β j, and a spatial part, with flow structures/modes φ j corre-
sponding to these frequencies. Mathematically this is formulated as:

u(x, t) =
∞

∑
j=1

η je
(β j−iω j)tφ j(x),

where u is the velocity, t is the time and η j is an amplitude. In order to compute the
modes a linear tangent approximation is done, where A is assumed to connect the
flow field um+1 with the flow field at the previous time um. That is, um+1 = Aum.
The eigenvalues and eigenvectors of A now correspond to the DMD eigenvalues and
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modes. However, in real problems A becomes very large, so the problem is rewritten
to give approximate DMD eigenvalues and modes. In this work a method based on
the singular value decomposition of the snapshot matrix (containing the velocity
field at 3000 time instants) is used. For more information about DMD and how it is
computed see [9] and [10].

3 Results

High sound levels are generated at certain frequencies, which depend on the flow
speed, see Fig. 1. These frequencies correspond to jet instabilities, as seen in Fig. 2
of the DMD mode spectra. Studying the shape of the modes at the lower flow speed,
Fig. 3, it is observed that the two modes that generate a tonal noise are axisymmet-
ric, while no noise seems to be generated by the azimuthal mode. This is explained
by the fact that only plane waves, which have variables that are constant over duct
cross-sections, are studied, and if the fluctuations of an azimuthal mode are inte-
grated over a cross-section the result is zero. The fact that only axisymmetric modes
generate a tonal noise at these frequencies also applies to the higher mass flow case.

The generated sound can be correlated to a fluctuating mass flow at the orifice
openings and a fluctuating surface force at the plate sides, indicating that these are
the main sound generating mechanisms. These fluctuations are caused by the peri-
odic passing of strong vortex rings, which drive an oscillation of the jet core fluid.

The strong axisymmetric vortices at specific frequencies are believed to be caused
by a feedback mechanism. When a vortex reaches the downstream edge a pulse is
generated and propagates to the upstream edge, where it triggers a new vortex. This
hypothesis is supported by the correlation of the mass flow at the orifice inlet and
outlet, having a maximum for a time delay corresponding to the upstream acoustic
propagation speed.
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Fig. 1 Power spectral density of the plane wave sound generated by the Mach 0.4 jet to the
left and the Mach 0.9 jet to the right
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Fig. 2 DMD mode spectra
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Fig. 3 DMD modes at 2600 Hz (left), 2800 Hz (middle) and 5150 Hz (right), for the Mach
0.4 jet. Iso-surfaces of a positive and a negative axial velocity.
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Sound Generation in Plane Couette Flow:
A Failure of Lighthill’s Analogy

Jan-Niklas Hau, George Chagelishvili, George Khujadze,
Martin Oberlack, and Alexander Tevzadze

Abstract. The linear mechanism of acoustic wave generation by initially pure vortex
perturbations embedded in a two-dimensional, inviscid and unbounded Couette flow
is investigated by Kelvin-mode analysis and direct numerical simulations (DNS).
Our results show a misleading representation of the linear sources of aerodynamic
sound generation by Lighthill’s acoustic analogy approach, not taking the strong
anisotropy of the linear generation of acoustic waves by pure vortex mode perturba-
tions in non-normal shear flow systems into account. DNS confirm the importance
of linear sound production in the range of validity of rapid distortion theory (RDT),
herein being superior compared to the nonlinear mechanism despite the common
opinion.

1 Introduction

Aerodynamic sound generation is a major subject of fluid dynamics, with applica-
tions in wide areas of engineering problems, even extending to the astrophysical
context (helio- and astroseismology). The framework for modern aero-acoustic re-
search was accomplished by Lighthill’s pioneering work [3] and the derivation of
the acoustic analogy (AA). Particularly, Lighthill’s statement [4] that linear sound
generation can be increased by a mean shear flow, due to the linear terms in the
so-called source term S , is one of the motivations of the presented research. This
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has the dual purpose of: i) Rethinking Lighthill’s AA approach [3, 4] in the light of
the breakthrough of the hydrodynamic stability community in the 1990s (e.g. [1, 9]
and references herein) that was followed by the understanding of phenomena in-
troduced by the non-normality of non-uniform flow systems. In nonuniform/shear
flows the set of governing equations describing the dynamics of are non-normal.
Hence, the operators in the mathematical formalism of shear flow modal analysis
are non-normal and the corresponding eigenmodes non-orthogonal (see e.g. [9]).
This fact leads to strong interference phenomena among the eigenmodes, which are
not captured by the classic modal analysis, and can be circumvented by the so called
non-modal approach; ii) Comparing the efficiency of the linear and nonlinear mech-
anisms of aerodynamic sound generation at different Mach numbers, M , and RDT
parameters, D , of the embedded flow eddies.

Our investigation is performed by means of Kelvin-mode analysis as well as di-
rect numerical simulations (DNS) of the Navier-Stokes equations, focusing on the
dynamics in the spectral plane, as this analysis facilitates grasping the basic physics
of acoustic wave generation. Herein, the linear generation of acoustic waves by
initially pure vortex perturbations embedded in a two-dimensional, inviscid and un-
bounded plane Couette flow with constant/homogeneous shear (V0 = (Ay,0), shear
parameter A > 0 without the loss of generality), uniform pressure and density dis-
tribution is investigated. Thence, we can focus entirely on phenomena induced by
the non-normal nature of the underlying base flow system, which appears partially
in jets, and subsequently shed some light on the open question for the true sources
of aerodynamic sound, which are still not properly defined, [2].

2 Results

The ability of wave-generation by pure vortex mode perturbations in the linear limit
as gained by Kelvin-mode analysis [1] is illustrated in Fig. 1a)-c). Herein, the abil-
ity of wave-generation is regarded for different Mach numbers based on the initial
perturbation M = A/(kx0cs) and, moreover, for different ratios of initial (subscript
0) wavenumbers β = ky0/kx0, in spanwise (ky) and streamwise (kx) direction, whilst
cs denotes the speed of sound.

By comparing Fig. 1a) and b) it becomes evident that acoustic wave spatial
Fourier harmonics (SFH) are generated just at the time τ∗ of the vortex SFH crossing
the line of ky = 0 (τ∗ = ky0/Akx0) at sufficiently high values of M , when compress-
ibility effects come into play [1]. The specific time behaviour is due to the linear
drift induced in spectral space by the flow system non-normality. Passing the criti-
cal time τ∗, henceforth, leads to an excessive energy-extraction (Ek) from the shear
flow by the newly generated wave SFH. On the other hand it is observed in Fig.
1c) that the vortex SFH, initially located in regions of β < 0, decay, incapable of
generating sound waves, as they do not bear the ability to cross the line of ky = 0,
which contradicts Lighthill’s acoustic analogy in the linear limit, as to be shown.

In order to validate the obtained results by DNS, which were carried out with the
PLUTO code [6], pure vortex mode perturbations are inserted into the flow, being
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Fig. 1 The figure shows the evolution of SFH in terms of normalised velocity and density per-
turbations (vx(τ)/cs, vy(τ)/cs and D≡ iρ(τ)/ρ0) and its normalised energy ( Ek(τ)/Ek(0) )
at a) M = 0.05; b) M = 0.40 for equally β = ky0/kx0 = 10 and c) M = 0.40 for
β = ky0/kx0 =−1 · 10−5. Evolving in the shear flow, the initially imposed vortex SFH (with
β > 10, respectively adjusted A) transiently grows and retains its aperiodic nature, whereas
the one initially located at β < 0 undergoes immediate attenuation. Note that the ordinate is
adjusted to the respective amplitude after the moment of wave-generation, and the abscissa
due to the increased speed of drift.

stochastically localised in the spanwise (y) and homogeneous in the streamwise (x)
directions, respectively. The initial stochastic velocity perturbation distribution at
t = 0 (see Fig. 2(a)) is given by

vx(x,0) = Be−(y/2hd)4
∫ ∫ k2

y

k2
y0

e
−
[
(kx−kx0)

2

Δk2
x

+
k2
y

k2
y0

]
2π iζp(k)

ζa(k)eix·kdk

whereas initial density ρ(0) and spanwise velocity perturbations vy(0) can be calcu-
lated from the linearised Navier-Stokes equations. Herein, ζa(k),ζp(k) ∈ [0,1] are
random numbers depending on k = (kx,ky), h and d denote the box-size and local-
isation scale in y-direction, respectively, with x = (x,y). The perturbation spectrum
is centred along the kx-axis at kx = kx0, which half-width Δkx satisfies the condition
Δkx � kx0 – allowing to easily distinguish between linearly and nonlinearly gen-
erated acoustic waves – and the ky-axis at ky = ky0. The perturbations are inserted
in the physical plane, extending from −h ≤ x,y ≤ h with h = 10, at the parameters
A = 4, d = 2, kx0 = 5, ky0 = 50, Δkx = 2 and amplification factor B = 105, B = 106,
accordingly. By choosing a the value of β = 10 we can assure, that the initial
perturbations have sufficient time to amplify transiently and, hence, in combination



208 J.-N. Hau et al.

kx

k
y

−20 −15 −10 −5 0 5 10 15 20
−200

−150

−100

−50

0

50

100

150

200

(a) vx(t = 0)
kx

k
y

−20 −15 −10 −5 0 5 10 15 20
−200

−150

−100

−50

0

50

100

150

200

(b) Sl(t = 0)
kx

k
y

−20 −15 −10 −5 0 5 10 15 20
−200

−150

−100

−50

0

50

100

150

200

(c) Snl(t = 0)

Fig. 2 Contour plots of (a) stream-wise velocity perturbation distribution vx and (b) linear Sl
and (c) nonlinear Snl source prediction by Lighthill at t = 0

with M = 0.8 strong linear wave emergence is expected (compare Fig. 1a) and b)).
Moreover, the proposed choice of the amplification factor B assures that we operate
in the range of validity of RDT. This approximation holds for shear rates, A, and am-
plitudes, B, of the initial stochastic perturbations the inequality D = A/(kx0q) � 1
is met, [10]. Herein, q is the characteristic velocity of the largest energy containing
scales, located around kx0 in the spectral plane.

The presented set of parameters allows us to perform a comparative analysis
(i) of linear (D � 103) and weakly nonlinear (D � 10) sound generation by stochas-
tic perturbations in an unbounded Couette flow and (ii) of the results from DNS
and Lighthill’s AA. The initial spectra of the linear Sl and nonlinear Snl sources
as predicted by [3] for the embedded perturbations are presented in Fig. 2(b)-(c),
showing that Sl is distributed in all quadrants of k-space and, consequently, pre-
dicting immediate acoustic wave-generation in all regions of ky/kx. Although, often
reworked (e.g. [7, 8]) the failure is of fundamental nature, consistently leading to a
similar distribution of the linear sources in spectral space. This prognosis is in con-
tradiction with the results obtained by Kelvin-mode analysis, while latter is nicely
confirmed by our DNS (see Figs. 3- 4).
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Fig. 3 Temporal evolution of vortex mode perturbations in k-space in terms of ρ . The scaling
varies continuously between the range of ±|ρ|max with D � 103.
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Fig. 4 Identical to Fig. 3 for the case of fortified nonlinear mechanisms, D � 10

The time evolution of density perturbations ρ of initially pure vortex mode SFH
in k-space are shown in these figures for D � 103 (Fig. 3) and D � 10 (Fig. 4).
As one can see, only those vortex SFH coming from regions of β > 0 amplify and
are thence responsible for linear sound generation, while those, initially located in
regions of β < 0, decay and do not bear the potential of triggering wave emergence
despite the prediction of Lighthill’s AA (see Fig. 2(b)-(c)). These results are in per-
fect agreement with the results gained by Kelvin-mode analysis, that have been
presented in Figs. 1b) and c), respectively. Although the fortified nonlinear mecha-
nisms (D � 10) lead to the appearance of additional structures around kx = 2kx0 and
kx = 0 – some mixture of wave and vortex mode SFH – those forthwith decay (see
Fig. 4), hence being inferior compared to the linear mechanism of sound generation
in plane shear flows.

3 Conclusion

Summarising, the present results show a failure of Lighthill’s AA for non-normal
flow systems comprising linear sources of aerodynamic sound generation. Taking
advantage of the ability of Kelvin-mode analysis to capture strong non-normal ef-
fects in shear flow systems, we are able to extract the true sources of linear sound.
Moreover, it was shown and proven by DNS that the linear sound dominates over the
nonlinear one at moderate and high Mach numbers up to rather large amplitudes of
the stochastic perturbations at which RDT is still valid (D � 1). The strong charac-
ter of linear aerodynamic sound generation bears the potential of efficient nonlinear
wave-generation, which are able to travel to the (near) far-field, and hereby strongly
contradicts the common view that linear sources are negligible in many applications
[5]. The basic character of the failure, which is an unambiguously connected phe-
nomena induced by the non-normality of nonuniform flow systems, makes it for
many applications unfeasible to remain in the framework of the AA “ideology” in
general.
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Using an Inflow Turbulence Generator
for Leading Edge Noise Predictions

Thomas P. Lloyd, Mathieu Gruber, Stephen R. Turnock, and Victor F. Humphrey

Abstract. Inflow turbulence noise is often the dominant noise mechanism in turbo-
machines. It has been shown that the sound pressure level is related to the intensity
and integral length scale of the turbulence. We utilise a methodology for generat-
ing turbulence with prescribed intensity and length scales within a detached eddy
simulation. This is applied to a case of homogeneous isotropic turbulence imping-
ing on a non-symmetric aerofoil at high Reynolds number (2.1× 105). The sound
pressure level is estimated using Curle’s compact acoustic analogy, and compared to
experimental data and analytical estimates. The intensity of the inflow turbulence is
higher than expected, though it exhibits approximately homogeneous and isotropic
characteristics. While the general shape of the predicted noise spectrum is correct,
the magnitude differs from the experimental results by up to 17 dB. Reasons for this
are elaborated, and improved predictions based on a flat plate are presented.

1 Introduction

Broadband noise of turbomachines has become an important design consideration in
numerous applications, including axial fans, marine propulsors and wind turbines.
Leading edge (or inflow turbulence) noise has been shown to dominate when the
flow into the rotor is turbulent [1]. In case of a marine propeller, this occurs when
the turbulent boundary layer of the hull enters the propulsor. For tidal turbines, the
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inflow turbulence may be due to the oceanic boundary layer or the turbulent wakes
from upstream turbines.

Amiet [2] derived an analytical model showing that the far field acoustic pressure
is proportional to the integral length scale (L) and square of the turbulence intensity
(I2). As such, the measurement or specification of these quantities is important in the
investigation of inflow turbulence noise. Measurements have also focussed on the
leading edge noise of fixed aerofoils [3, 4]. The inflow turbulence is grid-generated,
thus generating approximately homogeneous, isotropic turbulence.

One computational approach is to generate synthetic inflow turbulence [5, 6].
These studies have illustrated that predicting not only the noise, but also the inflow
turbulence characteristics correctly is not easily achievable. In this study, we present
validation of a computational methodology for predicting leading edge noise, using
experimental data for homogeneous isotropic turbulence [4]. The intention is to ap-
ply this to inhomogeneous and anisotropic cases in the future.

2 Simulation Details

The simulation setup is based on measurements made of leading edge noise of a
NACA 65(12)10 fixed at zero degrees angle of attack in a planar jet [4]. We use
the OpenFOAM simulation environment, and employ the improved delayed de-
tached eddy simulation (IDDES) modelling approach, with k−ω SST turbulence
model. This has been chosen since IDDES allows considerable unsteadiness inside
the boundary layer without the need for large eddy simulation (LES) grid quality at
the wall.

The simulation parameters are as follows. A freestream velocity of 20 ms−1 re-
sults in a chord-based Reynolds number of 2.1× 105, and Mach number of 0.059.
The inflow turbulence is generated using the method of Kornev et. al. [7], with
I = 2.1% and L = 0.005m. A structured multi-block grid is used, with the spanwise
domain width equal to 10%c. The mean Δy+1 is 1.6, whilst Δz+ = 40, with a total
of 4M cells are used. The computational time step is 1× 10−6 s. Data is sampled at
10 kHz for 4 flow-throughs of the domain.

3 Results

Results are presented in terms of the inflow turbulence characteristics, and aeroa-
coustic predictions. Figure 1 shows properties of the inflow turbulence. The in-
flow turbulence is observed to be approximately homogeneous and isotropic; in
fact the numerical result shows the turbulence intensity to be more homogeneous
than the experiments. The mean velocity profile agrees well with the experiment,
while the turbulence intensity is over-predicted.

Figure 2(a) confirms that the target mesh cut-off frequency of ≈ 2 kHz has been
achieved, and lies inside the inertial subrange. The integral length scale has been
estimated, using a temporal autocorrelation and Taylor’s hypothesis, as 0.0054 m,
approximately 8% higher than that of the experiment. We note however that the
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integral length scale in the experiment was deduced by curving fitting to a von
Kármán spectrum and not via autocorrelation. Hence there may be experimental
error associated with the prescribed value.
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The estimated sound pressure level (SPL) is presented in Figure 3. The source
strength has been estimated using only the first 10% of the aerofoil chord, as in
[6], in an attempt to isolate the leading edge noise source. The unexpectedly large
magnitude of the SPL at high frequencies has been attributed to flow separation
on the aerofoil pressure side close to the leading edge. This leads to an artificially
strong trailing edge noise source, as also observed by Deniau et. al. [6]. This can be
visualised in Figure 4(b). The main reason for the difference between experimental
and numerical results is the omission of turbulence trip strips in the simulations.
Hence the development of the turbulent boundary layer is delayed (Figure 4(a)),
causing large laminar trailing edge noise. Future simulations will include some form
of trip strip to replicate the experiments more closely.
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The inability of Amiet’s analytical model to predict the low frequency noise is
evident from Figure 3. Aerofoil numerical result shows the correct spectral shape at
low frequency, suggesting that this method offers an advantage over the analytical
prediction in this frequency range. This has been confirmed by performing the same
simulations for a flat plate of equivalent chord and relative thickness 0.02. This
result is presented in Figure 3. A correction has been included for the difference in
thickness between the aerofoil and flat plate [8], although this effect is dominant at
higher frequencies. Significant improvement is observed for the flat plate case, since
issues surrounding the turbulent boundary layer are somewhat negated; there is no
spurious trailing edge noise source.
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4 Conclusions

The method used replicates the mean velocity profile of the planar jet very well, but
over-predicts turbulence intensity by up to 30%. For the case presented, the inflow
turbulence is divergence free. The method must be modified for future cases con-
cerning anisotropic or inhomogeneous turbulence, so as to maintain the divergence
free condition. The magnitude of the SPL error for the aerofoil case is up to 17dB;
improvements are observed for a flat plate, where comparison of the data is allowed
by applying a thickness correction. Grid design in combination with IDDES can
have a significant impact on the magnitude of the predicted acoustic sources. It is
our intention to refine the grid close to the leading edge in order to predict this source
with greater accuracy. Including trip strips in the simulation is to be considered, as
a way to remove the unexpected trailing edge noise sources presented here.

Acknowledgements. Experimental data was collected by MG as part of the FLOCON
project. Gratitude is expressed to Prof. Richard Sandberg for providing the k−ω SST im-
plementation of IDDES, and Evgeny Shchukin for the inflow generator. The authors ac-
knowledge the use of the IRIDIS HPC facility at the University of Southampton. TPL
acknowledges the financial support of a University of Southampton Postgraduate Scholar-
ship, dstl and QinetiQ.

References

1. Moreau, S., Roger, M.: Competing broadband noise mechanisms in low-speed axial fans.
AIAA Journal 45, 48–57 (2007)

2. Amiet, R.K.: Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vibrat. 300,
407–420 (1975)

3. Devenport, W.J., Staubs, J.K., Glegg, S.A.: Sound radiation from real airfoils in turbu-
lence. J. Sound Vibrat. 329, 3470–3483 (2010)

4. Gruber, M.: Airfoil noise reduction by edge treatments. Ph.D. thesis, Uni. Southampton
(2012)

5. Christophe, J., Anthoine, J., Rambaud, P., Schram, C., Moreau, S.: Prediction of incoming
turbulent noise using a combined / semi-empirical method and experimental validation. In:
West-East High Speed Flow Field Conference, November 19-22 (2007)

6. Deniau, H., Dufour, G., Boussuge, J.-F., Polacsek, C., Moreau, S.: Affordable compress-
ible LES of airfoil-turbulence interaction in a free jet. AIAA Paper No. 2011-2707 (2011)
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A Mixed RANS/LES Model Applied to the
Channel Flow

Antonella Abbà and Massimo Germano

Abstract. In the paper we present some preliminary results related to a new LES
approach, the mixed RANS/LES modelling technique that should exploit both the
experience accumulated in RANS modelling, particularly near the wall, and the
LES capabilities. This new approach was first presented to the APS/DFD Meeting
of Baltimore in 2012 [1] and represents a particular application of the general Hy-
brid RANS/LES filtering technique. Here in particular we have applied this new
mixed RANS/LES modelling technique to the channel flow in the particular case of
exact RANS databases as regards the RANS model and the no-model and the dy-
namic anisotropic model as regards the LES aspect. The results are interesting and
promising for a simple implementation in different codes with different models.

1 The Mixed RANS/LES Model

The difficult dialogue between RANS, the Reynolds Averaged Navier-Stokes equa-
tions based on the statistical average, and LES, the Large Eddy Simulation based
on the filtering approach, has been revived recently by practical needs. Hybrid
RANS/LES methods for the simulation of turbulent flows have been proposed in
order to reduce computational cost in a wide range of complex industrial applica-
tions [2]. The related scenario of models is very complex and difficult to classify
[3], and many blending techniques are highly empirical. Exact hybrid RANS/LES,
HRL, equations have been recently derived [4] by applying to the Navier-Stokes
equations a hybrid filtering operator which linearly combines a LES average and the
RANS statistical mean with an additive blending factor, generally function of space
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and time. These hybrid equations are formally exact, they can be implemented with
every code and with any combination of RANS and LES models and some prelim-
inary investigations [5, 6] have shown that notwithstanding challenges and difficult
issues the additive hybrid method is an interesting and viable approach to simulate
turbulent flows. In order to better understand the basic peculiarities of this procedure
we have studied in this paper the simple case of a constant additive blending factor.
In this case we have mixed RANS/LES equations and in the paper we apply this
procedure to the simulation of the turbulent flow in a channel. In particular we pay
attention to low resolution grids and simple modelling assumptions in order to better
understand the peculiarities of the method and the ability to develop and to control
the turbulent fluctuations. We stress the fact that a constant blending factor both in
the bulk of the channel and near the wall is rather unusual in a hybrid model, but
we really think that this preliminary study will be an important step to better clarify
the different roles of the new terms introduced in the mixed equations by the new
RANS/LES mixing technique. In particular it removes the terms introduced by the
non commutativity of a variable RANS/LES filter with the derivatives, and permits
to better understand the importance of the terms peculiar to this new approach and
physically related to the mixed subgrid RANS/LES stress.

The general governing equations for the incompressible channel flow are

∂uk

∂xk
= 0 ;

∂ui

∂ t
+

∂ (uiuk)

∂xk
=− ∂ p

∂xi
+ fi +

1
Reτ

∂ 2ui

∂xk∂xk

f1 =
∂P
∂x1

= cos(α) ; f2 =
∂P
∂x2

= sin(α) ; f3 = 0 (1)

where as usual the quantities are referred to the friction velocity uτ and the channel
half-width h, α is the rotation angle between the coordinates system and the mean
flow [7] and fi are constant forcing terms related to the mean pressure gradient along
the channel. In the present paper we will assume α = 0, (the channel is oriented as
usual with the mean flow), and we remark that Reτ is the Reynolds number based
on the friction velocity and the channel half-width. These equations are solved for
0 ≤ x1 ≤ 2π , 0 ≤ x2 ≤ π , −1 ≤ x3 ≤ 1, the velocity components ui are zero at the
walls and are provided with periodic conditions in the x1 and x2 directions.

Let us now apply to these equations a mixed additive RANS/LES average H
such that

H = kF +(1− k)E (2)

where E is the statistical RANS operator, F an explicit or implicit filtering operator
and k a constant blending factor. The resulting mixed RANS/LES equations are

∂vk

∂xk
= 0 ;

∂vi

∂ t
+

∂ (vivk + τik)

∂xk
=− ∂q

∂xi
+ fi +

1
Reτ

∂ 2vi

∂xk∂xk
(3)

where vi and q are the mixed components of the velocity and pressure and τik the
mixed subgrid stress. It results
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vi = 〈ui〉H = kwi +(1− k)ūi ; q = 〈p〉H = kπ +(1− k)p̄i (4)

and

τi j = 〈uiu j〉H −〈ui〉H〈u j〉H = kτ f (ui,u j)+(1−k)τe(ui,u j)+
1− k

k
(vi − ūi) (v j − ū j)

(5)
where wi and π are the LES components of the velocity and pressure

wi = 〈ui〉F ; π = 〈p〉F (6)

τ f (ui,u j) and τe(ui,u j) the stresses associated to the filtering LES operator and to
the RANS operator and where the overline indicates the statistical mean value

ūi = 〈ui〉E ; p̄ = 〈p〉E (7)

These equations are numerically integrated in space with a second order centred
finite difference scheme and in time with a three steps explicit Runge Kutta scheme,
combined with a Projection Method.
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Fig. 1 Mean velocity profiles for different values of the blending factor k f : results obtained
without subgrid model (on the left side) and with the anisotropic subgrid model [8](on the
right side) are compared with the DNS results [9]. The upper graphs are obtained with 32×
32×32 grid points, while the bottom ones with the lower resolution 16×16×32.
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2 Numerical Results

We start our exploration with a low Reynolds number, Reτ = 180, with a classical
LES resolution, 32× 32× 32, and a lower resolution 16× 16× 32. As regards the
particular subgrid model chosen to test the hybrid approach we have directed our
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Fig. 2 Profiles of the rms of velocity components for different blending factors: results ob-
tained without subgrid model (on the left side) and with the anisotropic subgrid model [8](on
the right side) are compared with the DNS results [9](continuous line); empty symbols cor-
respond to the resolved fluctuations, while the filled symbols represent the total (resolved +
modelled) contribution; circle: k f = 1; square: k f = 0.75; diamond: k f = 0.5. The results are
obtained with the lower resolution 16×16×32.
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attention to the dynamic anisotropic model [8]. The no-model option has been ex-
plored first in order to have an idea of the peculiarities of the code, in particular
as regards the dissipation of the numerical scheme. The constant blending factor
assumes the value 1, that corresponds to pure LES, no-model (NM) or anisotropic
model (AM), and the values 0.75 and 0.5. We examine the mean velocity profiles,
and from figure 1 we deduce a considerable improvement of the Mixed RANS/LES
procedure compared both to the LES no-model case and the LES anisotropic model,
and the advantage is particularly evident at the lower resolution. Obviously due
to the very low resolution these results are purely indicative, in particular we re-
mark better results for the no-model case compared with the nisotropic model,
but the general trend is positive both for a blending factor of 0.75 and 0.5. In figure
2 the predicted rms are presented for the same values of the blending factor and for
the lower resolutions. Also in this case we register a positive trend in the results if
compared to the pure LES case that corresponds to a blending factor of one. We
remark again that we have deliberately chosen very coarse resolution levels in order
to amplify the effect of the mixed RANS/LES approach. Obviously a practical use
of the hybrid method proposed should cope with the problem of a varying blending
factor near the wall and the related difficulties of the non commutative terms in the
filtered equations.

3 Conclusion

Finally we can say that the present results reinforce and confirm the conclusions
of previous more dedicated researches : notwithstanding issues and challenges this
hybrid approach seems really a simple and viable tool for simulating turbulent flows.
Obviously this flexibility has to be explored in more detail by applying the hybrid
filtering approach to different codes and test flows, but we think that the test reported
in the paper in the simple case of constant blending factors and for low resolution
levels gives confidence in the practical application to industrial codes and complex
engineering flows.
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References

1. Germano, M., Sanchez-Rocha, M., Menon, S.: Hybrid RANS/LES equations. 64th Annual
Meeting of the DFD/APS, Bulletin of the APS 56(18), 77 (2011)

2. Sagaut, P., Deck, S.: Large eddy simulations for aerodynamics: Status and perspectives.
Phil. Trans. R. Soc. A 367, 2849–2860 (2009)
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Model Reduction Based on a Numerical Length
Scale Analysis

Niklas Winkler and Laszlo Fuchs

Abstract. For the time being, the required computational cost to solve the 3D time-
dependent flow prevents the use of such methods for internal flows at high Reynolds
number in complex geometries. In this work we present a method based on a nu-
merical length scale analysis to get a rational reduction of the full 3D governing
equations for turbulent pipe flows. The length scale analysis quantifies the terms
of the governing equations after changing the coordinate system into a curvilinear
coordinate system with one coordinate aligned with the flow path. By retaining the
most important terms or neglecting the (significantly) smallest terms, different re-
ductions may be attained. The results for a double bent pipe, used to illustrate the
approach, show that the most significant component of the viscous terms is the nor-
mal component. The convective terms are all important. The normal component is
significant in the bends of the pipe due to centrifugal forces, while the spanwise
component is most significant after the second bend due to a swirling motion.

1 Introduction

Low-order models, where the dimensionality has simply been reduced to decrease
computational cost are today being used for machine design. One-dimensional mod-
els are e.g. used for engine manifolds [4], which assumes that the flow is uniform
across the flow direction or two-dimensional models, which are used for turbine de-
sign [1] where the flow is computed on a stream surface between the blade rows
with the assumption that no mass flow is crossing it.
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The aim with this study is to show a concept to derive a reduced model based on
a numerical length scale analysis of the terms in the governing equations, which has
also been performed on the disturbance equations to study the disturbance growth in
boundary layers [3]. By retaining the most important terms or neglecting the (signif-
icantly) smallest terms, different reductions may be attained. Dropping the smallest
term, gives the so called Parabolized Navier-Stokes equations [2] or keeping the
largest term, gives the boundary-layer equations, which was adopted by Prandtl in
1904 to the incompressible Navier-Stokes equations to derive the boundary-layer
equations with the assumption that the flow in the boundary-layer is thin in the wall
normal direction. Hence, the approach enables one to get a reduced model with
assessed accuracy.

2 Method

To quantify the terms in the Navier-Stokes equations for a complex geometry, the
terms have to be projected onto the flow path. Here we use a curvilinear coordinate
system, with the main coordinate aligned with the flow path. The transformation is
given by scaling factors hi, which give a stretching of the field to transform it from
the physical to the computational domain, with i = S in the direction of the flow
path, i.e. the streamwise, i = η in the normal and i = ξ in the spanwise direction,

hS =

∣∣∣∣ ∂r
∂S

∣∣∣∣ , hη =

∣∣∣∣ ∂r
∂η

∣∣∣∣ , hξ =

∣∣∣∣ ∂r
∂ξ

∣∣∣∣ , (1)

where r = xex + yey + zez is the position vector.
Considering incompressible Newtonian fluids, the Navier-Stokes equations are

∇ ·u = 0 (2)

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+ν∇2u. (3)

As a first approach we are mainly interested to compute the flow in the streamwise
direction eS and to quantify the influence from the other components. The terms
can now be rewritten into curvilinear coordinates where the convective term in the
streamwise direction becomes,

((u ·∇)u) · es =
uS
hS

∂uS
∂S +

uη
hη

∂uS
∂η +

uξ
hξ

∂uS
∂ξ

+
uSuη
hShη

∂hS
∂η +

uSuξ
hShξ

∂hS
∂ξ − u2

η
hShη

∂hη
∂S − u2

ξ
hShξ

∂hξ
∂S ,

(4)

where uS,uη ,uξ are the velocity components in the streamwise, normal and span-
wise direction and can be computed through the scaling factors. The first three terms
in the momentum equation denotes convection of uS in the three directions corre-
sponding to u ·∇u in the Cartesian coordinate system. The four remaining terms
account for the fact that the coordinate system is curved, which gives a contribution
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to the convective terms of the momentum equation in eS. The fourth and fifth term
corresponds to convection of uη and uξ in eS. The sixth and seventh term corre-
spond to convection of uη and uξ in eη and eξ , which gives a contribution to the
momentum equation in eS.

The viscous terms can be rewritten as,

ν∇2u = ν∇ ·Πi j, (5)

where the terms of the stress tensor Πi j are obtained from computing ∇u for the
curvilinear coordinates taking into account that the unit vectors are functions of the
coordinates as e.g.

ΠSS =
1
hS

∂uS

∂S
+

uη

hShη

∂hS

∂η
+

uξ

hShξ

∂hS

∂ξ
, ΠSη =

1
hη

∂uS

∂η
− uη

hShη

∂hη

∂S
. (6)

The viscous term of the momentum equations in the streamwise direction become,

∇ ·Πi j|s = 1
hShη hξ

[ ∂
∂S

(
hηhξ ΠSS

)
+ ∂

∂η
(
hShξ ΠSη

)
+ ∂

∂ξ
(
hShηΠSξ

)
+hξ ΠηS

∂hS
∂η + hηΠξ S

∂hS
∂ξ − hξ Πηη

∂hη
∂S − hηΠξ ξ

∂hξ
∂S ],

(7)

where the first three terms correspond to ∇2u in the Cartesian coordinate system.
The remaining terms compensate for the fact that the coordinate system is curved in
a similar way as for the convective terms, Equation 4.

Quantifying the different convective and viscous terms will show the error a re-
duction of each term will give. However, even though the viscous terms are most
certainly smaller than the convective terms, not all of them can be neglected if one
would like to account for viscous effects in the spanwise plane. The pressure terms,
i.e. the gradient of the pressure, has to balance the inertia terms and has therefore to
be included in the reduced model.

The main limitation of the approach is for flow situations that do not have a
dominating flow direction. Under such conditions the analysis would reveal that the
reduction is inconsistent.

3 Results

The turbulent flow field, computed with the Large Eddy Simulation (LES) approach,
of a double bent pipe, bent in different directions, for Re= 25000 is used to illustrate
the concept. The magnitude of the viscous terms for each component computed from
the Navier-Stokes equations in the streamwise direction with respect to the curvi-
linear coordinates for the double bent pipe are presented in Figure 1 and for the
convective terms as the ratio between the normal and spanwise components com-
pared to the streamwise component in Figure 2, as area-weighted averages across
the streamwise direction based on 100 snapshots of the flow field.

The results show that the viscous term in the normal direction is approxi-
mately two orders of magnitude larger than the viscous term in the streamwise and
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spanwise direction, respectively. This is due to that the normal component is large
close to the boundary due to the large velocity gradient. Comparing the convec-
tion of the different velocity components shows that they are all in the same order of
magnitude. The convective terms are all of great importance. The normal component
is significant in the bends of the pipe due to centrifugal forces, while the spanwise
component is most significant after the second bend due to a swirling motion.
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Fig. 1 Magnitude of the viscous terms in curvilinear coordinates, in ”S”, ”η” and ”ξ” di-
rections from the momentum equation in eS, respectively. The dashed vertical lines show the
locations of the bends.
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A Quasi-optimal Spectral Method for Turbulent
Flows in Non-periodic Geometries

Franco Auteri

Abstract. In this work, a quasi-optimal spectral solver for the incompressible
Navier–Stokes equations is proposed which is able to treat nonperiodic geometries
by construction. The method is based on a fractional-step time discretization re-
cently proposed by Guermond and Minev. A Chebyshev–Galerkin spatial discretiza-
tion is adopted to satisfy the LBB condition while maintaining an efficient treatment
of the linear and nonlinear, dealiased, terms. A careful construction of the algorithm
allows the computational complexity to grow as C N3 logN in 3D.

1 Introduction

Fast solvers are necessary for the direct numerical simulation of turbulent flows.
This is especially true when the transition process is concerned, since in this case a
wide range of different space and time scales has to be resolved.

Two kinds of solvers have been mainly employed for DNS in non-periodic ge-
ometries: finite difference solvers [1] and spectral solvers based on the Fourier
expansion, the non-periodic direction being treated by ad hoc strategies, see for
instance [2].

Despite providing a more sound mathematical formulation, spectral solvers based
on polynomials have been considered unattractive so far when more than one direc-
tion is characterized by non-periodic boundary conditions, since the computational
complexity of the solver growed as N4 in the available solvers, N being the polyno-
mial basis degree. In this work this limitation is addressed, and the computational
complexity of the proposed solver scales as N3 logN.

The construction of the present solver is based on two key elements. First, a 1D
Helmholtz solver able to cope with Dirichlet and Neumann boundary conditions
while retaining a quasi-optimal computational complexity. The key idea to obtain
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such solvers is to convert the Neumann or mixed problem to their Dirichlet coun-
tepart, an operation which takes at most 7N operations. Second, a direction splitting
fractional step method, recently proposed by Guermond and Minev [3], which al-
lows to reduce both the velocity step and the pressure correction step to the solution
of a sequence of one dimensional Helmholtz equations. In this way, a quasi-optimal
spectral solver is obtained.

2 Time Discretization

The equations to be solved are the Navier–Stokes equations, supplemented by
Dirichlet boundary conditions for velocity. A second order Crank–Nicolson scheme
with explicit treatment of the nonlinear term is employed to discretize the problem
in time,⎧⎨⎩

uk+1 −uk

Δ t
− ν

2
∇2(uk+1 +uk) = fk+1/2 − (uk+1/2

� ·∇)uk+1/2
� −∇pk+1/2

�

∇·uk+1 = 0,
(1)

where pk+1/2
� = pk−1/2 + φ k−1/2 represents the pressure predictor and uk+1/2

� =
(3uk −uk−1)/2 the extrapolated velocity.

The discretized Navier–Stokes equations are split by the fractional-step, pressure-
correction algorithm proposed in [3]. Velocity is then obtained by the sequence of
1D equations

zk+1 −uk

Δ t
= fk+1/2 +ν∇2uk − (uk+1/2

� ·∇)uk+1/2
� −∇pk+1/2

�

wk+1 − zk+1

Δ t
− ν

2
∂xx(wk+1 −uk) = 0,

vk+1 −wk+1

Δ t
− ν

2
∂yy(vk+1 −uk) = 0,

uk+1 − zk+1

Δ t
− ν

2
∂zz(uk+1 −uk) = 0.

(2)

Each equation requires to solve ordinary differential equations only.
To compute the pressure field first the following cascade of 1D Neumann elliptic

problems has to be solved⎧⎪⎪⎨⎪⎪⎩
(
1− ∂xx

)
ψ =− 1

Δ t
∇·uk+1, ∂xψ |ξ=±1 = 0(

1− ∂yy
)
ϕ = ψ , ∂yϕ |η=±1 = 0(

1− ∂zz
)
φ k+1/2 = ϕ , ∂zφ k+1/2|ζ=±1 = 0

(3)
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to compute the auxiliary variable φ k+1/2, then the pressure is updated by the mass
problem:

pk+1/2 = pk−1/2 +φ k+1/2 − χ
ν
2

∇· (uk+1 +uk). (4)

As reported in [3], the algorithm is stable for 0≤ χ ≤ 1. The numerical tests reported
in [4] show that the choice χ = 1 leads to the most accurate solver.

3 Space Discretization

After time discretization we are led to the solution of a cascade of one-dimensional
elliptic problems for velocity and pressure. To treat these problems efficiently, it is
convient to expand the unknowns by a Chebyshev polynomial basis, so that FFT can
be used for forward and backward transformation. For instance, velocity is expanded
as follows:

u(ξ ,η ,ζ ) =
I

∑
i=0

J

∑
j=0

M

∑
m=0

T̂i(ξ )T̂j(η)T̂m(ζ )ui, j,m. (5)

A similar expansion is employed for the pressure, but a smaller polynomial degree
Î = I − 2, Ĵ = J − 2, K̂ = K − 2 is employed in each direction to satisfy the LBB
condition.

The selected basis functions T̂m(ζ ) are those proposed by Jie Shen [7] since they
lead to better conditioned operators, allow a trivial enforcement of Dirichlet bound-
ary conditions and preserve the quasi-optimal computational complexity of the al-
gorithm. The basis functions are defined as

T̂0(ξ ) = 1, T̂1(ξ ) = ξ , T̂i(ξ ) = Ti−2(ξ )−Ti(ξ ), i ≥ 2, (6)

where Ti(ξ ) represents the i-th degree Chebyshev polynomial.
Neumann boundary conditions for the pressure are converted to Dirichlet bound-

ary condition by a simple and efficient procedure to retain the quasi-optimal com-
putational complexity. A similar procedure can be adopted to treat mixed boundary
conditions [4].

4 Results and Discussion

Convergence tests have been performed to assess the spectral accuracy in space and
the second order accuracy in time of the method. In table 1, for instance, space
convergence results are reported for the test case reported in [3].

Table 1 Space convergence results for velocity, L2(ω) norm of the error, test reported in [3]

N 8 10 12 16

Error 9.7×10−7 1.2×10−7 9.9×10−9 2.6×10−11
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Fig. 1 Sketch of the geome-
try of the cavity
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Then the turbulent flow in a regularized cubic driven cavity has been simulated
for a Reynolds number based on the cavity side and on the lid velocity of 12000,
see the sketch reported in figure 1.

A dealiased spatial discretization has been adopted with 963 degrees of freedom
for each velocity component and 943 degrees of freedom for the pressure. The time
step was Δ t = 0.00125, the time being adimensionalized with respect to the cavity
side and lid velocity. In figure 2 the velocity profile of the mean x component of
the velocity computed on the symmetry plane for x = 0 is reported. The mean has
been computed over 150 time units, with a sample every 0.125 time units. In fig-
ure 3 the velocity profile of the mean y component of the velocity computed on the
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Fig. 2 Mean x component of the velocity field for x = 0 and z = 0. Comparison with results
from Leriche & Gavrilakis and Prasad & Koseff, see [5].
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Fig. 3 Mean y component of the velocity field for x = 0 and z = 0. Comparison with results
from Leriche & Gavrilakis and Prasad & Koseff, see [5].

same line and during the same time interval is also reported. As shown in the figure,
these results are in very good agreement with analogous results reported by Leriche
and Gavrilakis [5] despite the lower resolution and lower mean time. The reference
results reported by Leriche and Gavrilakis were computed by a projection diffusion
method [6], a fractional-step method, and a collocation spatial discretization on the
Gauss–Chebyshev points using a nonstaggered grid. In their algorithm, the linear
systems arising from the space and time discretization are solved by a diagonaliza-
tion procedure requiring O(N4) operations, which is therefore sub-optimal.
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On Subgrid-Scale Model Implementation for a
Lee-Wave Turbulent Patch in a Stratified Flow
above an Obstacle

Sergey N. Yakovenko, T. Glyn Thomas, and Ian P. Castro

Abstract. Results of application of a subgrid-scale (SGS) model to describe tur-
bulence arising in a stably stratified flow above an obstacle are shown for high
Schmidt/Prandtl numbers. An appropriate SGS Schmidt/Prandtl number is 0.3 for
the case of weakly unstable stratification in the internal wave breaking region. Use
of the SGS model allows us to remove numerical noise and obtain adequate spectra,
as well as fine details of secondary instabilities during the transition to turbulence.

1 Introduction

Studies (via DNS) of turbulence in breaking internal waves require fine grids when
the Schmidt/Prandtl number Sc is high, as for salinity stratification in water. The
finest grid used in [1], with well over one billion cells, was estimated to be insuf-
ficient to capture all scales of the density field: the scalar dissipation microscale is
much smaller than both the mesh size and the Kolmogorov microscale of the ve-
locity field. Runs at Sc = 700 using under-resolved DNS with no SGS models, i.e.
implicit large-eddy simulation (ILES), have inadequate resolution of the dissipa-
tion range as illustrated by spectra (Fig. 1). The density field generates (numerical)
noise which remains not only in the wave-breaking turbulent patch itself, but also in
the surrounding fluid (Fig. 2) where one would expect very low noise levels due to
strongly stable stratification. It is therefore a challenging to resolve adequately fine
details of the flow at Sc � 1. Similar difficulties may arise at Reynolds numbers
observed in environmental flows (higher than the Re = 4000 of [1]).
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2 Results and Discussion

To overcome the problems of insufficient resolution, SGS models of Smagorinsky
type for velocity and density are applied at Sc = 700 using the standard value of
Smagorinsky constant, Cs = 0.1, and the same boundary conditions, sponge layers,
and refined uniform grid as in the DNS at Sc = 1 [1]. To check transient behaviour,
two preliminary LES runs with the SGS Schmidt/Prandtl number, Scsgs = 1 and 0.3
(the latter has been used in buoyant jet studies [2]), begin from the data of the under-
resolved ILES at Sc = 700 for t = 35 (where transient processes are finished, and
the quasi-steady period begins). By t ∼ 40 the spatial spectra curves collapse into
one and do not vary for t > 40. So t ∼ 42.5 is chosen for comparison of spanwise
spectra, and temporal spectra are obtained for 40 ≤ t ≤ 50, to exclude the transient
period when the effect of the SGS model insertion has settled down.

The preliminary runs produce a viscous range in the high wave-number spectra
which move away from the ILES Sc = 700 results and towards the Sc = 1 results.
However, Scsgs = 1 leads to insufficient improvement in the density spectra and to
only partial damping of the numerical density noise. The latter still exists, e.g. in front
of the turbulent patch and under it where one may expect laminar-like behaviour due
to strongly stable stratification. In contrast, for Scsgs = 0.3 the larger eddy diffusiv-
ity has essentially removed this noise from the density distributions, see Fig. 2, and
the spectra almost coincide with those for DNS (with Cs = 0) at Sc = 1, see Fig. 1.
Thus, spectra obtained inside the patch, and density distributions inside and around
it indicate that Cs = 0.1 and Scsgs = 0.3 as in [2] are more suitable to predict ad-
equately the under-resolved density field. This is confirmed by other studies (e.g.
[3, 4]) where Scsgs ∼ 1 only for very stable stratification, whereas for less stable,
neutral and unstable cases it is, typically, from 0.25 to 0.50. In our case, slightly un-
stable (mean) density distributions, produced by the overturning and breaking of the
internal wave, remain inside the patch [1]. This unstable density-field feature does
not disappear completely (when turbulence activity destroys the recirculation struc-
ture in the wave-breaking region) and serves in fact to maintain the turbulent patch.

The next LES run was started from t = 0, and ‘white-noise’ perturbation was ap-
plied at t = 7.5 as in [1] (to break the 2D symmetry assigned by initial conditions).
For the fine grid as used in [1] and at Re = 4000, the SGS viscosity is almost every-
where below the molecular one (see e.g. Fig. 3), except at some (separated) points
during transition to turbulence. However, for most times and in most areas, the SGS
diffusivity at Sc � 1 is much larger than the molecular one, so has a considerable
effect (Fig. 1, 2). Note, the SGS viscosity and diffusivity distributions look like the
vorticity invariant ones because both depend on local velocity gradients and indicate
the existence of large structures with the (non-dimensional) spanwise wavelengths
λy ∼ 2, heavily modulated by the range of smaller turbulent eddies (Fig. 3).

Moreover, we can still capture fine details of the transition, in particular, growth
of the mushroom-like convective structures (Fig. 4) arising from the Rayleigh–Tay-
lor instability (RTI). They have small wavelengths (0.2 ≤ λy ≤ 1.0 at 19 ≤ t ≤ 26)
which tend to increase with time up to λy ∼ 2.5 at 30 ≤ t ≤ 35 according to the
corresponding spanwise spectra. The RTI development looks very similar to that
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Fig. 2 Density contours for t = 35 and y = 5 in ILES (left) and LES (right) at Sc = 700
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Fig. 3 Subgrid-scale eddy viscosity for t = 35 at a position x = 2.5 just behind the hill (left)
and y = 5 in LES at Sc = 700 (the non-dimensional value of the molecular viscosity was
ν = 1/Re = 0.00025)

in experiments on a flow with an unstable, step-like density gradient [5], where
the mixed layer depth increased linearly with time, and the number of convective
elements decreased with time, through the mechanism of subsequent pairing. The
same scenario of structures’ growth with their interaction and merging was also
proposed for the RTI evolution of the interface between two immiscible fluids [6],
but the mixed region width was in that case quadratically dependent on time.

The behaviour of filtered velocity and density fields during the quasi-steady pe-
riod of the developed turbulent patch, shown by density and vorticity invariant
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Fig. 4 Density contours for t = 22, 23, 24, 25 and x = 2.5 in LES at Sc = 700

contours and by fluid particle pathlines, demonstrates that the patch stays practi-
cally unchanged at t ≥ 35 and looks closely like those obtained in the DNS at Sc
= 1 in [1]. The statistical moments of the velocity field obtained within the turbu-
lent patch in the LES computations at Re = 4000 and Sc = 700 (by spanwise and
time averaging during the quasi-steady period of the developed turbulence) are also
expected to be nearly the same as those in [1]. In both cases we get the same energy-
containing and inertial spectral ranges, and the unresolved velocity fluctuations are
negligible in comparison with the resolved ones due to the small SGS viscosity, so
the corresponding contributions to the statistical moments are insignificant.
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